

This file contains the following documents:

- 1. Summary of application (in plain language)
 - English
 - Alternative Language (Spanish)
- 2. First Notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
 - English
 - Alternative Language (Spanish)
- 3. Application materials

Este archivo contiene los siguientes documentos:

- 1. Resumen en lenguaje sencillo (PLS, por sus siglas en inglés) de la actividad propuesta
 - Inglés
 - Idioma alternativo (español)
- 2. Primer aviso (NORI, por sus siglas en inglés)
 - Inglés
 - Idioma alternativo (español)
- 3. Solicitud original

TCEQ

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

PLAIN LANGUAGE SUMMARY FOR TPDES OR TLAP PERMIT APPLICATIONS

Plain Language Summary Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary as required by <u>Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H.</u> Applicants may modify the template as necessary to accurately describe their facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how the applicant will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS Enter 'INDUSTRIAL' or 'DOMESTIC' here WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

Messer LLC (CN603509266) operates an ASU Plant (RN110995396), an Air Separation Unit. The facility is located at 11605 Strang Road, in La Porte, Harris County, Texas 77571. The facility is requesting renewal of TPDES Permit WQ0005108000.

Discharges from the facility are expected to contain total suspended solids, oil and grease and copper. Wastewater generated at the facility is treated by GAC (Granular Activated Carbon) beds using a lead-lag system prior to discharging from Outfall 001. Wastewater generated at the facility includes process wastewater, cooling tower blowdown, filter backwash water, and utility wastewater, which is discharged via Outfall 001. Process wastewater consists of compressor condensate that is generated from the compression stage of the gas separation process. The condensate generated from the Main Air Compressor (MAC) is treated through GAC (Granular Activated Carbon) beds using a lead-lag system. Cooling tower blowdown is discharged in order to maintain a certain water quality in the cooling tower. Filter backwash water is produced when the side stream filter for the cooling

tower is backwashed periodically with the water supplied to the cooling tower. Utility wastewater includes, but is not limited to, steam condensate and emergency firewater washdown. Wastewater is monitored prior to being routed to a facility storm water ditch, and are then discharged via Outfall 001 to San Jacinto Bay. Discharges of storm water are authorized under the TPDES Stormwater Multi-Sector General Permit (TXR05CH73) and commingle with discharges authorized under the facility's TPDES permit no. WO0005108000. The facility is requesting renewal of TPDES Permit WQ0005108000 to discharge effluent not exceeding an average flow of 0.25 MGD and a maximum flow of 0.35 MGD. The facility is also requesting a reduction/elimination of copper limits. The facility installed Granular Activated Carbon (GAC) copper beds in October 2022 to treat the condensate generated from the Main Air Compressor (major source of copper in the wastewater). Based on the analytical results for copper for the past 18-months, the average copper concentrations for the period from 10/26/22 to 3/20/24 (after the installation of copper beds) is 0.0248 mg/L, which is less than 70% of daily average limit (0.0305 mg/L) and less than 85% of daily average limit (0.037 mg/L). The average copper concentration for that period is approximately 57% of the daily average limit. Based on this pattern of reduction in the analytical values of copper, the facility requests a reduction/elimination of copper effluent limits in the renewed permit. The analytical sample values for copper after the installation of the copper beds will be provided to the TCEQ upon request.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES Introduzca 'INDUSTRIALES' o 'DOMÉSTICAS' aquí /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

Messer LLC (CN603509266) opera una planta ASU (RN110995396), una Unidad de Separación de Aire. La instalación está ubicada en el 11605 Strang Road, en La Porte, Condado de Harris, Texas 77571. La instalación está solicitando renovación del Permiso TPDES WQ0005108000.

Se espera que las descargas de la instalación contengan sólidos suspendidos totales, aceites y grasas y cobre. Las aguas residuales generadas en la instalación son tratadas por lechos de GAC (Carbón Activado Granular) utilizando un sistema de retardo de plomo antes de la descarga del Desagüe 001. Las aguas residuales generadas en la instalación incluyen aguas residuales de proceso, la purga de la torre de enfriamiento, el agua de retrolavado del filtro y las aguas residuales de los servicios públicos, que se descargan a través del Desagüe 001. Las aguas residuales de proceso consisten en condensado del compresor que se genera durante la etapa de compresión del sistema de separación de gases. El condensado generado por el Compresor de Aire Principal (MAC) se trata a través de lechos GAC (Carbón Activado Granular) utilizando un sistema de retardo de plomo. La purga de la torre de enfriamiento se descarga para mantener una cierta calidad del agua en la torre de enfriamiento. El agua de retrolavado del filtro se produce cuando el filtro de flujo lateral de la torre de enfriamiento se lava periódicamente con el agua suministrada a la torre de enfriamiento. Las aguas residuales de los servicios públicos incluyen, entre otras, el condensado de vapor y el lavado de emergencia de aguas contra incendios. Las aguas residuales se monitorean antes de ser enviadas a una zanja de aguas pluviales de la instalación, y luego se descargan a través del Desagüe 001 a la Bahía de San Jacinto. Las descargas de aguas pluviales están autorizadas bajo el Permiso General Multisectorial de Aguas Pluviales (TXR05CH73) de TPDES y se mezclan con las descargas autorizadas bajo el permiso TPDES no. WQ0005108000 de la instalación. La instalación está solicitando la renovación del permiso TPDES WQ0005108000 para descargar efluentes que no excedan un flujo promedio de 0.25 MGD y un flujo máximo de 0.35 MGD. La instalación también está solicitando una reducción/eliminación de los límites de cobre. La instalación instaló lechos de cobre de Carbón Activado Granular (GAC) en octubre de 2022 para tratar el condensado generado por el Compresor de Aire Principal (principal fuente de cobre en las aguas residuales). Con base en los resultados analíticos de cobre de los últimos 18 meses, las concentraciones promedio de cobre para el período del 10/26/22 al 3/20/24 (después de la instalación de los lechos de cobre) son de 0.0248 mg/L, que es menos del 70% del límite promedio diario (0.0305 mg/L) y menos del 85% del límite promedio diario (0.037 mg/L). La concentración promedio de cobre para ese período es aproximadamente el 57% del límite promedio diario. Con base en este patrón de reducción en los valores analíticos del cobre, la instalación solicita una reducción/eliminación de los límites de efluentes de cobre en el permiso renovado. Los valores de las muestras analíticas de cobre después de la instalación de los lechos de cobre se proporcionarán a la TCEQ si lo solicita. . 16. Elija del menú desplegable tratado por .

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT AMENDMENT

PERMIT NO. WQ0005108000

APPLICATION. Messer LLC, 11605 Strang Road, La Porte, Texas 77571, which owns an air separation plant, has applied to the Texas Commission on Environmental Quality (TCEQ) to amend Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0005108000 (EPA I.D. No. TX0135101) to authorize reduction/elimination of the copper effluent limits. The facility is located at 11605 Strang Road, near the city of La Porte, in Harris County, Texas 77571. The discharge route is from the plant site directly to San Jacinto Bay. TCEQ received this application on April 26, 2024. The permit application will be available for viewing and copying at La Porte Public Library, 600 South Broadway Street, La Porte, in Harris County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-95.053333,29.704444&level=18

The application is subject to the goals and policies of the Texas Coastal Management Program and must be consistent with the applicable Coastal Management Program goals and policies.

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a

public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from Messer LLC at the address stated above or by calling Rami Qafisheh, La Porte Zone Production Manager, at 409-240-9150.

Issuance Date: June 4, 2024

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECEPCIÓN DE LA SOLICITUD Y LA INTENCIÓN DE OBTENER CALIDAD DEL AGUA PERMISO MODIFICACION

PERMISO NO. WQ0005108000

SOLICITUD. Messer LLC, 11605 Strang Road, La Porte, Texas 7757, propietario de una planta de separación de aire, ha solicitado a la Comisión de Calidad Ambiental de Texas (TCEQ) enmendar el Permiso No. WQ0005108000 (EPA I.D. No. TX0135101) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la reducción/eliminación de los límites de efluentes de cobre. La planta está ubicada en el 11605 Strang Road, cerca de la ciudad de La Porte, en el Condado de Harris, Texas 77571. La ruta de descarga es desde el sitio de la planta hasta directamente a la Bahía de San Jacinto. La TCEQ recibió esta solicitud el día 26 de abril de 2024. La solicitud para el permiso estará disponible para leerla y copiarla en la Biblioteca Pública de La Porte, 600 South Broadway Street, La Porte, en el Condado de Harris, antes de la fecha de publicación de este aviso en el periódico. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-95.053333,29.704444&level=18

El Director Ejecutivo de la TCEQ ha revisado esta medida para ver si está de acuerdo con los objetivos y las regulaciones del Programa de Administración Costero de Texas (CMP) de acuerdo con las regulaciones del Consejo Coordinador de la Costa (CCC) y ha determinado que la acción es conforme con las metas y regulaciones pertinentes del CMP.

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es

una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. además, puede pedir que la TCEQ ponga su nombre en una o más de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos del solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas

designe cual lista(s) y envía por correo su pedido a la Oficina del secretario Principal de la TCEO.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía

http://www14.tceq.texas.gov/epic/eComment/ o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional por parte de Messer LLC en la dirección indicada arriba o llamando a Rami Qafisheh, Gerente de producción Zona de La Porte al 409-240-9150.

Fecha de emisión el 4 de junio de 2024

AECOM

April 26, 2024

Hand Delivery

Executive Director Applications Review and Processing Team, MC-148 Texas Commission on Environmental Quality 12100 Park 35 Circle Austin, Texas 78753

Re: Submittal of Permit Renewal and Major Amendment Request Application

Messer LLC

TPDES Permit No. WQ0005108000 La Porte Air Separation Unit

11605 Strang Road, La Porte, TX 77571 Regulated Entity Number: RN110995396 Customer Reference Number: CN603509266

Applications Review and Processing Team,

On behalf of Messer LLC, please find attached the Texas Pollutant Discharge Elimination System (TPDES) permit renewal and major amendment request application for the Messer LLC La Porte Air Separation Unit (ASU) Facility. Three copies of the application package are included. Wet signatures for the three signature pages will be provided next week.

If you have any questions, please contact me at (609) 213-7245.

Sincerely,

Andrea Wagner

Andre Wagner

Project Manager, AECOM

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

TPDES PERMIT RENEWAL APPLICATION DRAFT

MESSER LLC LA PORTE AIR SEPARATION UNIT 11605 STRANG ROAD LA PORTE, TEXAS 77571

TPDES permit number WQ0005108000

EPA ID number TX0135101

Prepared by:

AECOM 19219 Katy Freeway, Suite 100 Houston, Texas 77094

April 2024

TABLE OF CONTENTS

INDUSTRIAL ADMINISTRATIVE REPORT 1.0

INDUSTRIAL ADMINISTRATIVE REPORT 1.1

SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

WATER QUALITY PERMIT PAYMENT SUBMITTAL FORM

ATTACHMENT 1 INDIVIDUAL INFORMATION

CHECKLIST OF COMMON DEFICIENCIES

TECHNICAL REPORT 1.0

WORKSHEET 1

WORKSHEET 2

WORKSHEET 4

WORKSHEET 5

ATTACHMENTS

AR.1.0.1.f – Major Amendment Request

AR.1.0.1.h – Copy of Applicant Fee Payment

AR.1.0.4.a – Core Data Form

AR.1.0.9.f - PLAIN LANGUAGE SUMMARY TEMPLATE

AR.1.0.9.g – Public Involvement Form

AR.1.0.11.b – USGS Topographic Map

AR.1.1.1.a – Adjacent Landowner Map

AR.1.1.1 – Adjacent Landowner Cross-reference list

AR.1.1.1.b – Adjacent Landowner Labels – 4 sets

AR.1.1.2 – Original Photographs

AR.SPIF – SPIF Form

AR.SPIF.5 – SPIF Map

TR.1.0.1.a – Facility Description

TR.1.0.1.d – Facility Map

TR.1.0.2.b – Water Balance Diagram

TR.1.0.worksheet2.0.1 – Sampling Results

TR.1.0.5.b – Chemical Information

Safety Datasheets

INDUSTRIAL ADMINISTRATIVE REPORT 1.0

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

INDUSTRIAL WASTEWATER PERMIT APPLICATION CHECKLIST

Complete and submit this checklist with the industrial wastewater permit application.

APPLICANT NAME: Messer LLC

PERMIT NUMBER (If new, leave blank): WQ00 05108000

Indicate if each of the following items is included in your application.

	Y	N		Y	N
Administrative Report 1.0	\boxtimes		Worksheet 8.0		\boxtimes
Administrative Report 1.1	\boxtimes		Worksheet 9.0		\boxtimes
SPIF	\boxtimes		Worksheet 10.0		\boxtimes
Core Data Form	\boxtimes		Worksheet 11.0		\boxtimes
Public Involvement Plan Form	\boxtimes		Worksheet 11.1		\boxtimes
Plain Language Summary	\boxtimes		Worksheet 11.2		\boxtimes
Technical Report 1.0	\boxtimes		Worksheet 11.3		\boxtimes
Worksheet 1.0	\boxtimes		Original USGS Map	\boxtimes	
Worksheet 2.0	\boxtimes		Affected Landowners Map	\boxtimes	
Worksheet 3.0		\boxtimes	Landowner Disk or Labels	\boxtimes	
Worksheet 3.1		\boxtimes	Flow Diagram	\boxtimes	
Worksheet 3.2		\boxtimes	Site Drawing	\boxtimes	
Worksheet 3.3		\boxtimes	Original Photographs	\boxtimes	
Worksheet 4.0	\boxtimes		Design Calculations		\boxtimes
Worksheet 4.1		\boxtimes	Solids Management Plan		\boxtimes
Worksheet 5.0	\boxtimes		Water Balance	\boxtimes	
Worksheet 6.0		\boxtimes			
Worksheet 7.0		\boxtimes			
For TCEQ Use Only					

TCEO-10053 (01/08/2024) Industrial Wastewater Permit Application Administrative R

Segment Number _____County ____ Expiration Date _____Region ____

Permit Number

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

INDUSTRIAL WASTEWATER PERMIT APPLICATION ADMINISTRATIVE REPORT 1.0

This report is required for all applications for TPDES permits and TLAPs, except applications for oil and gas extraction operations subject to 40 CFR Part 435. Contact the Applications Review and Processing Team at 512-239-4671 with any questions about completing this report.

Applications for oil and gas extraction operations subject to 40 CFR Part 435 must use the Oil and Gas Exploration and Production Administrative Report (<u>TCEQ Form-20893 and 20893-inst</u>¹).

Ite	em 1. Application Information and Fees (Instructions, Page 26)
a.	Complete each field with the requested information, if applicable.
	Applicant Name: Messer LLC
	Permit No.: <u>WQ0005108000</u>
	EPA ID No.: <u>TX0135101</u>
	Expiration Date: October 22, 2024
b.	Check the box next to the appropriate authorization type.
	☑ Industrial Wastewater (wastewater and stormwater)
	☐ Industrial Stormwater (stormwater only)
c.	Check the box next to the appropriate facility status.
	□ Inactive
d.	Check the box next to the appropriate permit type.
	□ TPDES Permit □ TLAP □ TPDES with TLAP component
e.	Check the box next to the appropriate application type.
	□ New
	☐ Renewal with changes ☐ Renewal without changes
	☑ Major amendment with renewal ☐ Major amendment without renewal
	☐ Minor amendment without renewal
	☐ Minor modification without renewal
f.	If applying for an amendment or modification, describe the request: <u>Please see Attachment AR.1.0.1.f-Major Amendment Request.</u>
	TCEQ Use Only
Seg	ment NumberCounty biration DateRegionRegion
	mit Number

¹ https://www.tceq.texas.gov/publications/search_forms.html

g. Application Fee

EPA Classification	New	Major Amend. (with or without renewal)	Renewal (with or without changes)	Minor Amend. / Minor Mod. (without renewal)
Minor facility not subject to EPA categorical effluent guidelines	\$350	□ \$350	\$315	□ \$150
(40 CFR Parts 400-471)				
Minor facility subject to EPA categorical effluent guidelines	□ \$1,250	⊠ \$1,250	□ \$1,215	□ \$150
(40 CFR Parts 400-471)				
Major facility	N/A ²	□ \$2,050	□ \$2,015	□ \$450

h. Payment Information

Mailed

Check or money order No.: Click to enter text.

Check or money order amt.: Click to enter text.

Named printed on check or money order: Click to enter text.

Epay

Voucher number: <u>702415 & 702416</u>

Copy of voucher attachment: AR.1.0-1h - Copy of Applicant Fee Payment

Item 2. Applicant Information (Instructions, Pages 26)

a. Customer Number, if applicant is an existing customer: <u>CN603509266</u> **Note:** Locate the customer number using the <u>TCEO's Central Registry Customer Search</u>³.

b. Legal name of the entity (applicant) applying for this permit: Messer LLC.

Note: The owner of the facility must apply for the permit. The legal name must be spelled exactly as filed with the TX SOS, Texas Comptroller of Public Accounts, County, or in the legal documents forming the entity.

c. Name and title of the person signing the application. (Note: The person must be an executive official that meets signatory requirements in 30 TAC \S 305.44.)

Prefix: N/A Full Name (Last/First Name): Agle Samuel

Title: <u>Vice President of Operations</u> Credential: <u>N/A</u>

d. Will the applicant have overall financial responsibility for the facility?

✓ Yes □ No

² All facilities are designated as minors until formally classified as a major by EPA.

³ https://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=cust.CustSearch

Note: The entity with overall financial responsibility for the facility must apply as a coapplicant, if not the facility owner.

Item 3. Co-applicant Information (Instructions, Page 27)

- ☑ Check this box if there is no co-applicant.; otherwise, complete the below questions.
- a. Legal name of the entity (co-applicant) applying for this permit: <u>Click to enter text.</u>
 Note: The legal name must be spelled exactly as filed with the TX SOS, Texas Comptroller of Public Accounts. County, or in the legal documents forming the entity.
- b. Customer Number (if applicant is an existing customer): <u>CNClick to enter text.</u>

 Note: Locate the customer number using the TCEO's Central Registry Customer Search.
- c. Name and title of the person signing the application. (**Note:** The person must be an executive official that meets signatory requirements in 30 TAC § 305.44.)

Prefix: Click to enter text. Full Name (Last/First Name): Click to enter text.

Title: <u>Click to enter text.</u> Credential: <u>Click to enter text.</u>

d. Will the co-applicant have overall financial responsibility for the facility?

☐ Yes ☐ No

Note: The entity with overall financial responsibility for the facility must apply as a coapplicant, if not the facility owner.

Item 4. Core Data Form (Instructions, Pages 27)

a. Complete one Core Data Form (TCEQ Form 10400) for each customer (applicant and coapplicant(s)) and include as an attachment. If the customer type selected on the Core Data Form is Individual, complete Attachment 1 of the Administrative Report. Attachment: AR.1.0.4.a – Core Data Form

Item 5. Application Contact Information (Instructions, Page 27)

Provide names of two individuals who can be contact for additional information about this application. Indicate if the individual can be contact about administrative or technical information, or both.

a. $oxed{oxed}$ Administrative Contact . $oxed{\Box}$ Technical Contact

Prefix: N/A Full Name (Last/First Name): <u>Oafisheh, Rami</u>
Title: La Porte Zone Production Manager Credential: N/A

Organization Name: Messer LLC

Mailing Address: <u>11605 Strang Road</u> City/State/Zip: <u>La Porte, TX</u>

Phone No: <u>409-204-9150</u> Email: <u>rami.gafisheh@messer-us.com</u>

b. □ Administrative Contact ⊠ Technical Contact

Prefix: N/A Full Name (Last/First Name): Wagner Andrea

Title: <u>Project Manager</u> Credential: <u>N/A</u>

Organization Name: AECOM

Mailing Address: 625 West Ridge Pike, Suite E-100 City/State/Zip: Conshohocken,

Pennsylvania, 19428

Phone No: 609-213-7245 Email: andrea.wagner@aecom.com

Attachment: N/A

Item 6. Permit Contact Information (Instructions, Page 28)

Provide two names of individuals that can be contacted throughout the permit term.

a. Prefix: N/A Full Name (Last/First Name): Qafisheh Rami

Title: <u>La Porte Zone Production Manager</u> Credential: <u>N/A</u>

Organization Name: Messer LLC

Mailing Address: <u>11605 Strang Road</u> City/State/Zip: <u>La Porte, TX 77571</u>

Phone No: 409-204-9150 Email: rami.gafisheh@messer-us.com

b. Prefix: N/A Full Name (Last/First Name): Armstrong Hunter

Title: <u>Production Supervisor</u> Credential: <u>N/A</u>

Organization Name: Messer LLC

Mailing Address: <u>11605 Strang Road</u> City/State/Zip: <u>La Porte, TX 77571</u>

Phone No: <u>281-687-0261</u> Email: <u>hunter.armstrong@messer-us.com</u>

Attachment: N/A

Item 7. Billing Contact Information (Instructions, Page 28)

The permittee is responsible for paying the annual fee. The annual fee will be assessed for permits **in effect on September 1 of each year**. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (form TCEQ-20029).

Provide the complete mailing address where the annual fee invoice should be mailed and the name and phone number of the permittee's representative responsible for payment of the invoice.

Prefix: N/A Full Name (Last/First Name): Qafisheh Rami

Title: La Porte Zone Production Manager Credential: N/A

Organization Name: Messer LLC

Mailing Address: 11605 Strang Road City/State/Zip: La Porte, TX 77571

Phone No: 409-204-9150 Email: rami.qafisheh@messer-us.com

Item 8. DMR/MER Contact Information (Instructions, Page 28)

Provide the name and mailing address of the person delegated to receive and submit DMRs or MERs. **Note:** DMR data must be submitted through the NetDMR system. An electronic reporting account can be established once the facility has obtained the permit number.

Prefix: N/A Full Name (Last/First Name): Qafisheh Rami

Title: <u>La Porte Zone Production Manger</u> Credential: <u>N/A</u>

Organization Name: Messer LLC

Mailing Address: <u>11605 Strang Road</u> City/State/Zip: <u>La Porte, TX 77571</u>

Phone No: <u>409-204-9150</u> Email: <u>rami.qafisheh@messer-us.com</u>

Item 9. Notice Information (Instructions, Pages 28)

a. Individual Publishing the Notices

Prefix: N/A Full Name (Last/First Name): Oafisheh Rami
Title: La Porte Zone Production Manger Credential: N/A

Organization Name: Messer LLC

Mailing Address: <u>11605 Strang Road</u> City/State/Zip: <u>La Porte, TX 77571</u>

Phone No: 409-204-9150 Email: rami.gafisheh@messer-us.com

- b. Method for Receiving Notice of Receipt and Intent to Obtain a Water Quality Permit Package (only for NORI, NAPD will be sent via regular mail)
 - ⊠ E-mail: <u>rami.qafisheh@messer-us.com</u>
 - ☐ Fax: Click to enter text.
 - ☐ Regular Mail (USPS)

Mailing Address: Click to enter text.

City/State/Zip Code: Click to enter text.

c. Contact in the Notice

Prefix: N/A Full Name (Last/First Name): Qafisheh Rami

Title: La Porte Zone Production Manager Credential: N/A

Organization Name: Messer LLC

Phone No: 409-204-9150 Email: rami.qafisheh@messer-us.com

d. Public Viewing Location Information

Note: If the facility or outfall is located in more than one county, provide a public viewing

place for each county.

Public building name: La Porte Public Library Location within the building: Reference

Section / Information Desk

Physical Address of Building: 600 South Broadway Street

City: <u>La Porte, TX 77571</u> County: <u>Harris</u>

e. Bilingual Notice Requirements

This information is required for new, major amendment, minor amendment or minor modification, and renewal applications.

This section of the application is only used to determine if alternative language notices will be needed. Complete instructions on publishing the alternative language notices will be in your public notice package.

Call the bilingual/ESL coordinator at the nearest elementary and middle schools and obtain the following information to determine if an alternative language notice(s) is required.

	1.	Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility?
		⊠ Yes □ No
		If no, publication of an alternative language notice is not required; skip to Item 8 (Regulated Entity and Permitted Site Information.)
	2.	Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school?
		⊠ Yes □ No
	3.	Do the students at these schools attend a bilingual education program at another location?
		□ Yes ⋈ No
	4.	Would the school be required to provide a bilingual education program, but the school has waived out of this requirement under 19 TAC §89.1205(g)?
		□ Yes ⋈ No □ N/A
	5.	If the answer is yes to question 1, 2, 3, or 4, public notices in an alternative language are required. Which language is required by the bilingual program? <u>Spanish</u>
f.	20	in Language Summary Template – Complete the Plain Language Summary (TCEQ Form 972) and include as an attachment. Attachment: <u>AR.1.0-9.f – Plain Language Summary mplate</u>
g.	for	mplete one Public Involvement Plan (PIP) Form (TCEQ Form 20960) for each application a new permit or major amendment and include as an attachment. Attachment: .1.0.9.g - PIP Form
Ite	em	10. Regulated Entity and Permitted Site Information (Instructions Page 29)
a.	TC	EQ issued Regulated Entity Number (RN), if available: RN110995396.
	ma the	te: If your business site is part of a larger business site, a Regulated Entity Number (RN) by already be assigned for the larger site. Use the RN assigned for the larger site. Search at TCEQ's Central Registry to determine the RN or to see if the larger site may already be distered as a Regulated Entity. If the site is found, provide the assigned RN.
b.		me of project or site (the name known by the community where located): <u>Messer Air</u> <u>paration Plant</u>
c.	Is t	the location address of the facility in the existing permit the same?
		Yes ⊠ No □ N/A (new permit)
	Wi	te: If the facility is located in Bexar, Comal, Hays, Kinney, Medina, Travis, Uvalde, or liamson County, additional information concerning protection of the Edwards Aquifer y be required.
d.	Ow	vner of treatment facility:
	Pre	rfix: <u>N/A</u> Full Name (Last/First Name): <u>N/A</u>
	or	Organization Name: <u>Messer LLC</u>
	Ma	iling Address: <u>11605 Strang Road</u> City/State/Zip: <u>La Porte, TX 77571</u>

	Phone No. <u>409-204-9150</u> Ema	ııı: <u>ranıı.qans</u>	<u>nen@messer-t</u>	<u>is.com</u>	
e.	Ownership of facility: \square Public	⊠ Priva	ate 🗆 B	Both	☐ Federal
f.	Owner of land where treatment fac-	cility is or wil	l be: Click to	enter text	<u> </u>
	Prefix: <u>N/A</u> Full Name (Last/First	Name): <u>N/A</u>			
	or Organization Name: Messer LLC	<u>.</u>			
	Mailing Address: 11605 Strang Ro	<u>ad</u>	City/State,	/Zip: <u>La P</u>	<u>orte, TX 77571</u>
	Phone No: <u>409-204-9150</u> Ema	il: <u>rami.qafis</u> l	neh@messer-ı	ıs.com	
	Note: If not the same as the facilit at least six years (In some cases, a N/A				
g.	Owner of effluent TLAP disposal s	ite (if applica	ble): <u>N/A</u>		
	Prefix: <u>Click to enter text.</u> Full	Name (Last/l	First Name): C	lick to en	ter text.
	or Organization Name: Click to en	ter text.			
	Mailing Address: Click to enter tex	ct.	City/State,	/Zip: <u>Click</u>	k to enter text.
	Phone No: Click to enter text. Ema	il: <u>Click to er</u>	ter text.		
	Note: If not the same as the facilit at least six years. Attachment: Clic			ı lease agı	reement in effect for
h.	Owner of sewage sludge disposal s	site (if applica	able):		
	Prefix: <u>Click to enter text.</u> Full	Name (Last/l	First Name): C	lick to en	ter text.
	or Organization Name: Click to en	ter text.			
	Mailing Address: Click to enter tex	ct.	City/State,	/Zip: <u>Click</u>	k to enter text.
	Phone No: <u>Click to enter text.</u> Emai	l: Click to ent	er text.		
	Note: If not the same as the facilit at least six years. Attachment: Clic	•		ı lease agı	reement in effect for
It€	em 11. TDPES Discharge/7 Page 31)	TLAP Disp	osal Inforn	nation (Instructions,
a.	Is the facility located on or does the	ne treated eff	luent cross Na	ative Ame	rican Land?
	□ Yes ⊠ No				
b.	Attach an original full size USGS Trenewal or amendment application each item below to confirm it has	ns) with all re	quired inform		
	⊠ One-mile radius		hree-miles do	ownstrean	n information
	☑ Applicant's property boundarie	s \square \urcorner	reatment faci	ility bound	daries
	☑ Labeled point(s) of discharge	\boxtimes H	lighlighted di	scharge ro	oute(s)
	☐ Effluent disposal site boundarie	es 🗆 A	all wastewater	ponds	
	☐ Sewage sludge disposal site		lew and futur	e constru	ction

c.	Is the location of the sewage sludge disposal site in the existing permit accurate? \Box Yes \Box No or New Permit
	If no, or a new application, provide an accurate location description: $\underline{N/A}$
d.	Are the point(s) of discharge in the existing permit correct? ☑ Yes □ No or New Permit
	If no, or a new application, provide an accurate location description: <u>Click to enter text.</u>
e.	Are the discharge route(s) in the existing permit correct?
	☑ Yes ☐ No or New Permit
	If no, or a new permit, provide an accurate description of the discharge route: <u>Click to enter text.</u>
f.	City nearest the outfall(s): <u>La Porte</u>
g.	County in which the outfalls(s) is/are located: <u>Harris</u>
h.	Is or will the treated wastewater discharge to a city, county, or state highway right-of-way, or a flood control district drainage ditch?
	□ Yes ⋈ No
	If yes, indicate by a check mark if: \square Authorization granted \square Authorization pending
	For new and amendment applications, attach copies of letters that show proof of contact and provide the approval letter upon receipt. Attachment: $\underline{N/A}$
	For all applications involving an average daily discharge of 5 MGD or more, provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge: $\underline{\text{N/A}}$
i.	For TLAPs, is the location of the effluent disposal site in the existing permit accurate?
	\square Yes No or New Permit \square N/A
	If no, or a new application, provide an accurate location description: Click to enter text.
j.	City nearest the disposal site: $\underline{N/A}$
k.	County in which the disposal site is located: $\underline{N/A}$
l.	For TLAPs, describe how effluent is/will be routed from the treatment facility to the disposal site: $\underline{\text{N/A}}$
m.	For TLAPs, identify the nearest watercourse to the disposal site to which rainfall runoff might flow if not contained: N/A

Attachment: <u>AR.1.0.11.b - USGS Topographic Map</u>

Item 12. Miscellaneous Information (Instructions, Page 33)

a.	bid any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?
	□ Yes ⊠ No
	If yes, list each person: N/A
b.	Do you owe any fees to the TCEQ?
	□ Yes ⊠ No
	If yes, provide the following information:
	Account no.: <u>N/A</u>
	Total amount due: <u>N/A</u>
c.	Do you owe any penalties to the TCEQ?
	□ Yes ⊠ No
	If yes, provide the following information:
	Enforcement order no.: N/A
	Amount due: <u>N/A</u>

Item 13. Signature Page (Instructions, Page 33)

Permit No: <u>WO0005108000</u>
Applicant Name: <u>Messer LLC</u>

Certification: I, <u>Samuel Agle</u>, certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code §305.44 to sign and submit this document and can provide documentation in proof of such authorization upon request.

Signatory name (typed or printed): <u>Samuel Agle</u>

Signatory title: <u>Vice President of Operations</u>

Signature: (Use blue ink)	Date: 4/2	29/2024
	April	, 20 <u>२</u> भ , 20 <u>२</u> १७.
MONIQUE M ARMSTEAD Notary Public - State of New Jersey My Commission Expires Jan 15, 2026 County, Texas	[SEAL]	

Note: If co-applicants are necessary, each entity must submit an original, separate signature page.

INDUSTRIAL ADMINISTRATIVE REPORT 1.1

INDUSTRIAL WASTEWATER PERMIT APPLICATION ADMINISTRATIVE REPORT 1.1

The following information is required for new and amendment applications.

Item 1. Affected Landowner Information (Instructions, Page 35)

Attach a landowner map or drawing, with scale, as applicable. Check the box next to each item to confirm it has been provided.
☑ The applicant's property boundaries.
☐ The facility site boundaries within the applicant's property boundaries.
☐ The distance the buffer zone falls into adjacent properties and the property boundaries of the landowners located within the buffer zone.
☑ The property boundaries of all landowners surrounding the applicant's property. (Note: if the application is a major amendment for a lignite mine, the map must include the property boundaries of all landowners adjacent to the new facility (ponds).)
☑ The point(s) of discharge and highlighted discharge route(s) clearly shown for one mile downstream.
☐ The property boundaries of the landowners located on both sides of the discharge route for one full stream mile downstream of the point of discharge.
☐ The property boundaries of the landowners along the watercourse for a one-half mile radius from the point of discharge if the point of discharge is into a lake, bay, estuary, or affected by tides.
☐ The boundaries of the effluent disposal site (e.g., irrigation area or subsurface drainfield site) and all evaporation/holding ponds within the applicant's property.
☑ The property boundaries of all landowners surrounding the applicant's property boundaries where the effluent disposal site is located.
☐ The boundaries of the sludge land application site (for land application of sewage sludge for beneficial use) and the property boundaries of landowners within one-quarter mile of the applicant's property boundaries where the sewage sludge land application site is located.
☑ The property boundaries of landowners within one-half mile in all directions from the applicant's property boundaries where the sewage sludge disposal site (e.g., sludge surface disposal site or sludge monofil) is located.
Attachment: <u>AR.1.1.1.a - Adjacent Landowner Map and AR.1.1.1 - Adjacent Landowner map cross-reference list</u>
Check the box next to the format of the landowners list:
☐ Readable/Writeable CD Four sets of labels
Attachment: <u>AR.1.1.1.b - Adjacent Landowner Labels - 4 sets</u>
Provide the source of the landowners' names and mailing addresses: <u>Harris County</u> <u>Appraisal District</u>

e. As required by Texas Water Code § 5.115, is any permanent school fund land affected by

b.

d.

this application?

If yes, provide the location and foreseeable impacts and effects this application has on the land(s): $\underline{N/A}$
Item 2. Original Photographs (Instructions, Page 37)
Provide original ground level photographs. Check the box next to each of the following item to indicate it is included.
☐ At least one original photograph of the new or expanded treatment unit location.

- At least two photographs of the existing/proposed point of discharge and as much area downstream (photo 1) and upstream (photo 2) as can be captured. If the discharge is to an open water body (e.g., lake, bay), the point of discharge should be in the right or left edge of each photograph showing the open water and with as much area on each respective side of the discharge as can be captured.
- ☐ At least one photograph of the existing/proposed effluent disposal site.
- ☐ A plot plan or map showing the location and direction of each photograph.

Attachment: <u>AR.1.1.2</u> - <u>Original Photographs</u>

□ Yes ⊠ No

INDUSTRIAL WASTEWATER PERMIT APPLICATION SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

This form applies to TPDES permit applications only. Complete and attach the Supplemental Permit information Form (SPIF) (TCEQ Form 20971).

Attachment: AR.SPIF - SPIF Form

WATER QUALITY PERMIT PAYMENT SUBMIT	TAL FORM

WATER QUALITY PERMIT

PAYMENT SUBMITTAL FORM

Use this form to submit the Application Fee, if mailing the payment. (Instructions, Page 36–37)

- Complete items 1 through 5 below.
- Staple the check or money order in the space provided at the bottom of this document.
- Do not mail this form with the application form.
- Do not mail this form to the same address as the application.
- Do not submit a copy of the application with this form as it could cause duplicate permit entries.

Mail this form and the check or money order to:

BY REGULAR U.S. MAIL

BY OVERNIGHT/EXPRESS MAIL

Texas Commission on Environmental Quality Texas Commission on Environmental Quality

Financial Administration Division Financial Administration Division

Cashier's Office, MC-214
P.O. Box 13088
Austin, Texas 78711-3088
Cashier's Office, MC-214
12100 Park 35 Circle
Austin, Texas 78753

Fee Code: WQP Permit No: WQ0005108000

1. Check or Money Order Number: N/A (paid online)

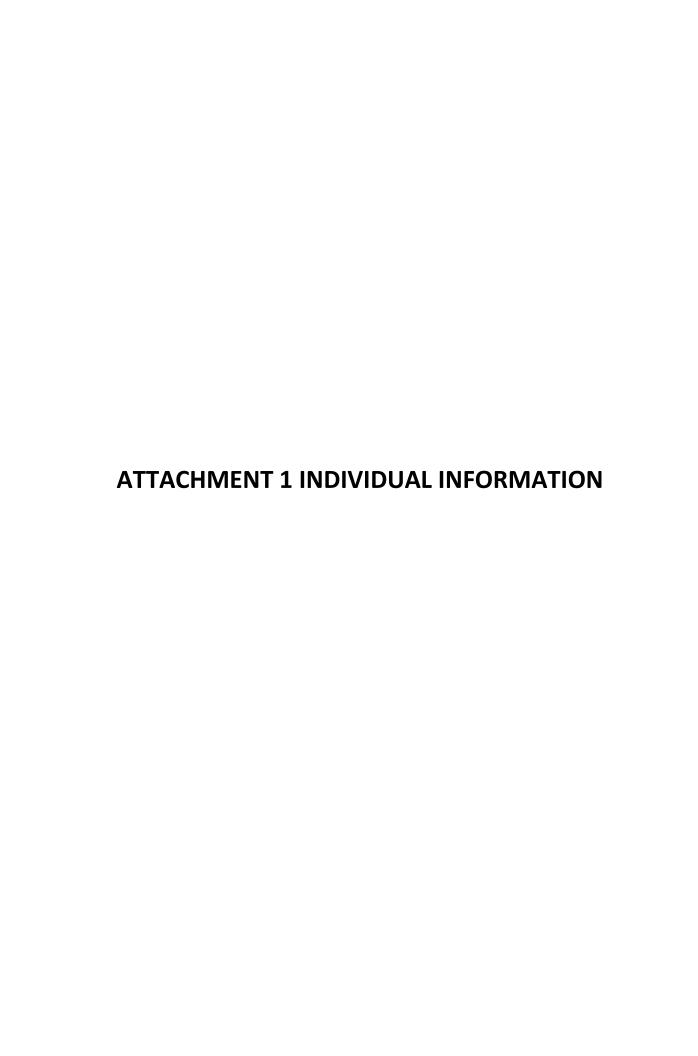
2. Check or Money Order Amount: Click to enter text.

3. Date of Check or Money Order: Click to enter text.

4. Name on Check or Money Order: Click to enter text.

5. APPLICATION INFORMATION

Name of Project or Site: Messer ASU Plant


Physical Address of Project or Site: 11605 Strang Road, La Porte, TX 77571.

If the check is for more than one application, attach a list which includes the name of each

Project or Site (RE) and Physical Address, exactly as provided on the application.

Attachment: N/A

Staple Check or Money Order in This Space

ATTACHMENT 1

INDIVIDUAL INFORMATION

Item 1. Individual information (Instructions, Page 38)

Complete this attachment if the facility applicant or co-applicant is an individual. Make additional copies of this attachment if both are individuals.

Prefix (Mr., Ms., or Miss): N/A

Full legal name (first, middle, and last): N/A

Driver's License or State Identification Number: Click to enter text.

Date of Birth: Click to enter text.

Mailing Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Phone No.: <u>Click to enter text.</u>

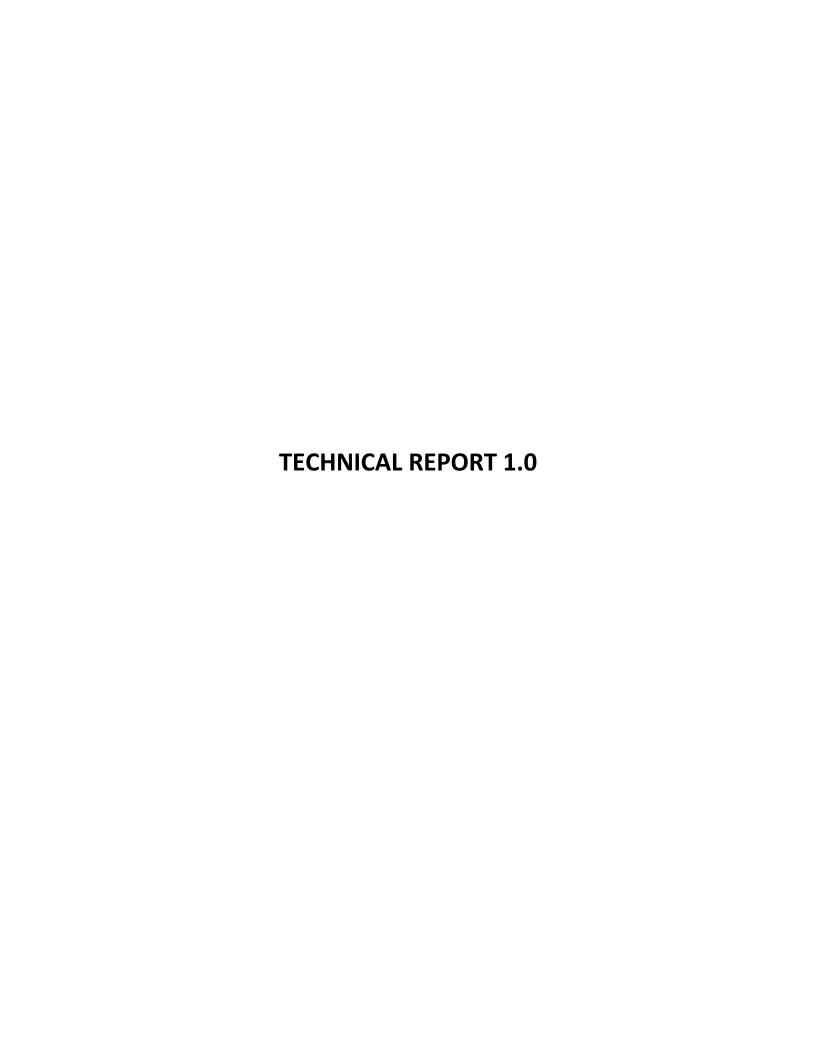
Fax No.: Click to enter text.

E-mail Address: Click to enter text.

CN: Click to enter text.

CHECKLIST OF COMMON DEFICIENCIES

INDUSTRIAL WASTEWATER PERMIT APPLICATION CHECKLIST OF COMMON DEFICIENCIES


Below is a list of common deficiencies found during the administrative review of industrial wastewater permit applications. To ensure the timely processing of this application, please review the items below and indicate each item is complete and in accordance applicable rules at 30 TAC Chapters 21, 281, and 305 by checking the box next to the item. If an item is not required this application, indicate by checking N/A where appropriate. Please do not submit the application until all items below are addressed.

- □ Core Data Form (TCEQ Form No. 10400)
 (Required for all applications types. Must be completed in its entirety and signed. Note: Form may be signed by applicant representative.)
- ☑ Correct and Current Industrial Wastewater Permit Application Forms (*TCEQ Form Nos. 10055 and 10411. Version dated 5/10/2019 or later.*)
- Water Quality Permit Payment Submittal Form (Page 14) (Original payment sent to TCEQ Revenue Section. See instructions for mailing address.)
- ∑ 7.5 Minute USGS Quadrangle Topographic Map Attached (Full-size map if seeking "New" permit.

 ∑ x 11 acceptable for Renewals and Amendments.)
- ☑ N/A ☐ Current/Non-Expired, Executed Lease Agreement or Easement Attached
- □ N/A ⊠ Landowners Map
 (See instructions for landowner requirements.)

Things to Know:

- All the items shown on the map must be labeled.
- The applicant's complete property boundaries must be delineated which includes boundaries of contiguous property owned by the applicant.
- The applicant cannot be its own adjacent landowner. You must identify the landowners immediately adjacent to their property, regardless of how far they are from the actual facility.
- If the applicant's property is adjacent to a road, creek, or stream, the landowners on the opposite side must be identified. Although the properties are not adjacent to applicant's property boundary, they are considered potentially affected landowners. If the adjacent road is a divided highway as identified on the USGS topographic map, the applicant does not have to identify the landowners on the opposite side of the highway.
- □ N/A ☑ Landowners Cross Reference List (See instructions for landowner requirements.)
- □ N/A ☑ Landowners Labels or CD-RW attached (See instructions for landowner requirements.)
- ☑ Original signature per 30 TAC § 305.44 Blue Ink Preferred (If signature page is not signed by an elected official or principle executive officer, a copy of signature authority/delegation letter must be attached.)
- ☑ Plain Language Summary

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY INDUSTRIAL WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

The following information **is required** for all applications for a TLAP or an individual TPDES discharge permit.

For **additional information** or clarification on the requested information, please refer to the <u>Instructions for Completing the Industrial Wastewater Permit Application</u>¹ available on the TCEQ website. Please contact the Industrial Permits Team at 512-239-4671 with any questions about this form.

If more than one outfall is included in the application, provide applicable information for each individual outfall. **If an item does not apply to the facility, enter N/A** to indicate that the item has been considered. Include separate reports or additional sheets as **clearly cross-referenced attachments** and provide the attachment number in the space provided for the item the attachment addresses.

NOTE: This application is for an industrial wastewater permit only. Additional authorizations from the TCEQ Waste Permits Division or the TCEQ Air Permits Division may be needed.

Item 1. Facility/Site Information (Instructions, Page 39)

a. Describe the general nature of the business and type(s) of industrial and commercial activities. Include all applicable SIC codes (up to 4).

The Messer ASU is an air separation plant that falls under the SIC code 2813 (Industrial Gases) and NAICS Code 32120 (Industrial Gas Manufacturing). The unit produces GOX (Gaseous Oxygen), GAN (Gaseous Nitrogen), CDA (Clean Dry Air), Gaseous Neon, Kr/Xe (gaseous), LIN (liquid Nitrogen), LOX (liquid Oxygen), and LAR (liquid Argon) which are manufactured by low temperature distillation of liquid air. More information regarding the manufacturing process are provided in Attachment T.R.1.0.1.a-Facility Description.

b. Describe all wastewater-generating processes at the facility.

Wastewater generated at the facility includes process wastewater, cooling tower blowdown, filter backwash water, and utility wastewater, which is discharged via Outfall 001. Process wastewater consists of compressor condensate that is generated from the compression stage of the gas separation process. The condensate from the Main Air Compressor is treated through GAC (Granular Activated Carbon beds) to treat for copper. Cooling tower blowdown is discharged in order to maintain a certain water quality in the cooling tower. Filter backwash water is produced when the side stream filter for the cooling tower is backwashed periodically with the water supplied to the cooling tower. Utility wastewater includes, but is not limited to, steam condensate and emergency firewater washdown. Wastewater is monitored prior to being routed to a facility storm water ditch and are then discharged via Outfall 001 to San Jacinto Bay. Discharges of storm water are authorized under the TPDES Stormwater Multi-Sector General Permit (TXR05CH73) and commingle with discharges authorized under the facility's TPDES permit no. WQ0005108000.

 $\underline{https://www.tceq.texas.gov/permitting/wastewater/industrial/TPDES_industrial_wastewater_st_eps.html$

c. Provide a list of raw materials, major intermediates, and final products handled at the facility.

Materials List

Raw Materials	Intermediate Products	Final Products
Ambient air	None	Oxygen (gas) (7782-44-7)
		Nitrogen (gas) (7727-37-9)
		Clean Dry Air (CDA)
		Neon (gas)
		Krypton (7439-90-9)/Xenon (7440-63-3) (Kr/Xe) (gas)
		Nitrogen (liquid)
		Oxygen (liquid)
		Argon (liquid) (7440-37-1)

Attachment: N/A

d.	Attach a facility map (drawn to scale) with the following information:							
	• Production areas, maintenance areas, materials-handling areas, waste-disposal areas, and water intake structures.							
	 The location of each unit of the WWTP including the location of wastewater collection sumps, impoundments, outfalls, and sampling points, if significantly different from outfall locations. 							
	Attachment: TR.1.0.1.d – Facility Map							
e.	Is this a new permit application for an existing facility?							
	□ Yes ⊠ No							
	If yes, provide background discussion: Click to enter text.							
f.	Is/will the treatment facility/disposal site be located above the 100-year frequency flood level.							
	⊠ Yes □ No							
	List source(s) used to determine 100-year frequency flood plain: <u>Flood map 48201C0935M on the FEMA website (msc.fema.gov/portal)</u> , accessed March 2024.)							
	If no , provide the elevation of the 100-year frequency flood plain and describe what protective measures are used/proposed to prevent flooding (including tail water and rainfall run-on controls) of the treatment facility and disposal area: Click to enter text.							
	Attachment: N/A							
σ	For new or major amendment permit applications, will any construction operations result							

g. For new or major amendment permit applications, will any construction operations result in a discharge of fill material into a water in the state?

	\square Yes \boxtimes No \square N/A (renewal only)
h.	If yes to Item 1.g, has the applicant applied for a USACE CWA Chapter 404 Dredge and Fill permit?
	□ Yes □ No
	If yes , provide the permit number: N/A
	If no , provide an approximate date of application submittal to the USACE: Click to enter text.
It	em 2. Treatment System (Instructions, Page 40)
a.	List any physical, chemical, or biological treatment process(es) used/proposed to treat wastewater at this facility. Include a description of each treatment process, starting with initial treatment and finishing with the outfall/point of disposal.
	Process wastewater generated at the facility consists of compressor condensate which is treated via granular activated carbon beds for the removal of copper. No other treatment processes are used for treating wastewater before being discharged through Outfall 001. Cooling water blowdown and non-process wastewater/filter backwash discharge into a storm water ditch on the east side of the property. The side stream filter treats a slipstream of the bulk recirculating cooling water. The filter is backwashed using the same water supplied to the cooling tower. The ASU process is enclosed, which limits contact of process materials in contact with storm water. Storm water is routed to perimeter ditches and authorized under the TCEQ's MSGP permit.
b.	Attach a flow schematic with a water balance showing all sources of water and wastewater flow into the facility, wastewater flow into and from each treatment unit, and wastewater flow to each outfall/point of disposal.
	Attachment: <u>TR.1.0.2.b – Water Balance Diagram</u>
It	em 3. Impoundments (Instructions, Page 40)
Do	bes the facility use or plan to use any wastewater impoundments (e.g., lagoons or ponds?) □ Yes 🗵 No

If **no**, proceed to Item 4. If **yes**, complete **Item 3.a** for **existing** impoundments and **Items 3.a** – **3.e** for **new or proposed** impoundments. **NOTE**: See instructions, Pages 40-42, for additional information on the attachments required by Items 3.a – 3.e.

a. Complete the table with the following information for each existing, new, or proposed impoundment. Attach additional copies of the Impoundment Information table, if needed.

Use Designation: Indicate the use designation for each impoundment as Treatment (T), Disposal (D), Containment (C), or Evaporation (E).

Associated Outfall Number: Provide an outfall number if a discharge occurs or will occur.

Liner Type: Indicate the liner type as Compacted clay liner (**C**), In-situ clay liner (**I**), Synthetic/plastic/rubber liner (**S**), or Alternate liner (**A**). **NOTE:** See instructions for further detail on liner specifications. If an alternate liner (A) is selected, include an attachment that provides a description of the alternate liner and any additional technical information necessary for an evaluation.

Leak Detection System: If any leak detection systems are in place/planned, enter **Y** for yes. Otherwise, enter **N** for no.

Groundwater Monitoring Wells and Data: If groundwater monitoring wells are in place/planned, enter **Y** for yes. Otherwise, enter **N** for no. Attach any existing groundwater monitoring data.

Dimensions: Provide the dimensions, freeboard, surface area, storage capacity of the impoundments, and the maximum depth (not including freeboard). For impoundments with irregular shapes, submit surface area instead of length and width.

Compliance with 40 CFR Part 257, Subpart D: If the impoundment is required to be in compliance with 40 CFR Part 257, Subpart D, enter Y for yes. Otherwise, enter N for no.

Date of Construction: Enter the date construction of the impoundment commenced (mm/dd/yy).

Impoundment Information

Parameter	Pond #	Pond #	Pond #	Pond #
Use Designation: (T) (D) (C) or (E)	N/A			
Associated Outfall Number				
Liner Type (C) (I) (S) or (A)				
Alt. Liner Attachment Reference				
Leak Detection System, Y/N				
Groundwater Monitoring Wells, Y/N				
Groundwater Monitoring Data Attachment				
Pond Bottom Located Above The Seasonal High-Water Table, Y/N				
Length (ft)				
Width (ft)				
Max Depth From Water Surface (ft), Not Including Freeboard				
Freeboard (ft)				
Surface Area (acres)				
Storage Capacity (gallons)				
40 CFR Part 257, Subpart D, Y/N				
Date of Construction				

Attachment: Click to enter text.

The following information (**Items 3.b – 3.e**) is required only for **new or proposed** impoundments.

- b. For new or proposed impoundments, attach any available information on the following items. If attached, check **yes** in the appropriate box. Otherwise, check **no** or **not yet designed**.
 - 1. Liner data

	Yes		No	Not yet designed
		_		,

2. Leak detection system or groundwater monitoring data

П	Voc	No	\Box	Not yot decigned
L	Yes	No	ш	Not yet designed
				/

3. Groundwater impacts

☐ Yes ☐ No ☐ Not yet design	ngne	٠,
-----------------------------	------	----

NOTE: Item b.3 is required if the bottom of the pond is not above the seasonal highwater table in the shallowest water-bearing zone.

Attachment: Click to enter text.

For TLAP applications: Items 3.c - 3.e are not required, continue to Item 4.

c. Attach a USGS map or a color copy of original quality and scale which accurately locates and identifies all known water supply wells and monitor wells within ½-mile of the impoundments.

Attachment: N/A

d. Attach copies of State Water Well Reports (e.g., driller's logs, completion data, etc.), and data on depths to groundwater for all known water supply wells including a description of how the depths to groundwater were obtained.

Attachment: N/A

e. Attach information pertaining to the groundwater, soils, geology, pond liner, etc. used to assess the potential for migration of wastes from the impoundments or the potential for contamination of groundwater or surface water.

Attachment: N/A

Item 4. Outfall/Disposal Method Information (Instructions, Page 42)

Complete the following tables to describe the location and wastewater discharge or disposal operations for each outfall for discharge, and for each point of disposal for TLAP operations.

If there are more outfalls/points of disposal at the facility than the spaces provided, copies of pages 6 and/0r numbered accordingly (i.e., page 6a, 6b, etc.) may be used to provide information on the additional outfalls.

For TLAP applications: Indicate the disposal method and each individual irrigation area **I**, evaporation pond **E**, or subsurface drainage system **S** by providing the appropriate letter designation for the disposal method followed by a numerical designation for each disposal

area in the space provided for **Outfall** number (e.g. **E1** for evaporation pond 1, **I2** for irrigation area No. 2, etc.).

Outfall Longitude and Latitude

Outfall No.	Latitude (Decimal Degrees)	Longitude (Decimal Degrees)
001	29.706005	-95.052258

Outfall Location Description

Outfall No.	Location Description		
001	Directly into San Jacinto Bay		

Description of Sampling Point(s) (if different from Outfall location)

Outfall No.	Description of sampling point
001	Temperature – measured at the north end of the facility, prior to the effluent entering San Jacinto Bay
	All other parameters – measured at the effluent sampling station, located near the cooling tower, at the cooling water blowdown collection header, prior to mixing with other waters.

Outfall Flow Information - Permitted and Proposed

Outfall No.	Permitted Daily Avg Flow (MGD)	Permitted Daily Max Flow (MGD)	Proposed Daily Avg Flow (MGD)	Proposed Daily Max Flow (MGD)	Anticipated Discharge Date (mm/dd/yy)
001	0.25	0.35	0.25	0.35	Existing

Outfall Discharge - Method and Measurement

Outfall No.	Pumped Discharge? Y/N	Gravity Discharge? Y/N	Type of Flow Measurement Device Used
001	N	Y	Estimate

Outfall Discharge - Flow Characteristics

Outfall No.	Intermittent Discharge? Y/N	Continuous Discharge? Y/N		Discharge Duration (hrs/day)	Discharge Duration (days/mo)	Discharge Duration (mo/yr)
001	N	N	Y	24	31	12

Outfall Wastestream Contributions

Outfall No. 001

Contributing Wastestream	Volume (MGD)	Percent (%) of Total Flow
Process wastewater*	*	*
Cooling tower blowdown	0.20	80%
Filter backwash water and utility wastewater	0.05	20%

^{*}Process wastewater, which consists of compressor condensate, is routed to the cooling tower system. As such, it is represented as part of the cooling tower blowdown.

Outfall No. N/A

Contributing Wastestream	Volume (MGD)	Percent (%) of Total Flow

Outfall No. N/A

Contributing Wastestream	Volume (MGD)	Percent (%) of Total Flow

Contributing Wastestream	Volume (MGD)	Percent (%) of Total Flow

Attachment: N/A

Item 5. Blowdown and Once-Through Cooling Water Discharges (Instructions, Page 43)

- a. Indicate if the facility currently or proposes to:
 - oxdot Yes oxdot No Use cooling towers that discharge blowdown or other wastestreams
 - oxdot Yes oxdot No Use boilers that discharge blowdown or other wastestreams
 - □ Yes ⊠ No Discharge once-through cooling water

NOTE: If the facility uses or plans to use cooling towers or once-through cooling water, Item 12 **is required**.

- b. If **yes** to any of the above, attach an SDS with the following information for each chemical additive.
 - Manufacturers Product Identification Number
 - Product use (e.g., biocide, fungicide, corrosion inhibitor, etc.)
 - Chemical composition including CASRN for each ingredient
 - Classify product as non-persistent, persistent, or bioaccumulative
 - Product or active ingredient half-life
 - Frequency of product use (e.g., 2 hours/day once every two weeks)
 - Product toxicity data specific to fish and aquatic invertebrate organisms
 - Concentration of whole product or active ingredient, as appropriate, in wastestream.

In addition to each SDS, attach a summary of the above information for each specific wastestream and the associated chemical additives. Specify which outfalls are affected.

Attachment: TR.1.0.5.b-Chemical Information

c. Cooling Towers and Boilers

If the facility currently or proposes to use cooling towers or boilers that discharge blowdown or other wastestreams to the outfall(s), complete the following table.

Cooling Towers and Boilers

Type of Unit	Number of Units	Daily Avg Blowdown (gallons/day)	Daily Max Blowdown (gallons/day)
Cooling Towers	1	200,000	300,000
Boilers	3	<500	500

Item 6. Stormwater Management (Instructions, Page 44)
Will any existing/proposed outfalls discharge stormwater associated with industrial activities as defined at $40\ CFR\ \S\ 122.26(b)(14)$, commingled with any other wastestream?
□ Yes ⊠ No
If yes , briefly describe the industrial processes and activities that occur outdoors or in a manner which may result in exposure of the activities or materials to stormwater: N/A

Item 7. Domestic Sewage, Sewage Sludge, and Septage Management and Disposal (Instructions, Page 44)

Domestic Sewage - Waste and wastewater from humans or household operations that is discharged to a wastewater collection system or otherwise enters a treatment works.

a.	Check the box next to the appropriate method of domestic sewage and domestic sewage sludge treatment or disposal. Complete Worksheet 5.0 or Item 7.b if directed to do so.
	□ Domestic sewage is routed (i.e., connected to or transported to) to a WWTP permitted to receive domestic sewage for treatment, disposal, or both. Complete Item 7.b.
	☑ Domestic sewage disposed of by an on-site septic tank and drainfield system. Complete Item 7.b.
	\square Domestic and industrial treatment sludge ARE commingled prior to use or disposal.
	☐ Industrial wastewater and domestic sewage are treated separately, and the respective sludge IS NOT commingled prior to sludge use or disposal. Complete Worksheet 5.0.
	☐ Facility is a POTW. Complete Worksheet 5.0.
	□ Domestic sewage is not generated on-site.
	□ Other (e.g., portable toilets), specify and Complete Item 7.b: Click to enter text.

b. Provide the name and TCEQ, NPDES, or TPDES Permit No. of the waste-disposal facility which receives the domestic sewage/septage. If hauled by motorized vehicle, provide the name and TCEQ Registration No. of the hauler.

Domestic Sewage Plant/Hauler Name

No

Yes

Plant/Hauler Name	Permit/Registration No.
United Site Services	455120133
City of Houston POTW (Almeda Sims WWTP)	WQ0010495003

Item 8. Improvements or Compliance/Enforcement Requirements (Instructions, Page 45)

a.	. Is the permittee currently required to meet any implementation schedule for compliance of enforcement?			
	\boxtimes	Yes		No
b.	Has	the p	erm	ittee completed or planned for any improvements or construction projects?

c.	If yes to either 8.a or 8.b, provide a brief summary of the requirements and a status update: Permit required facility to implement control measures for the attainment of water quality-based effluent limitations for total copper within 3 years from date of permit issuance. Facility met the compliance schedule. Facility installed granular activated carbon beds for the removal of copper in October 2022.
It	em 9. Toxicity Testing (Instructions, Page 45)
	ive any biological tests for acute or chronic toxicity been made on any of the discharges or a receiving water in relation to the discharge within the last three years?
T C	□ Yes ⊠ No
	yes, identify the tests and describe their purposes: Click to enter text.
	lditionally, attach a copy of all tests performed which have not been submitted to the TCEQ EPA. Attachment : Click to enter text.
It	em 10. Off-Site/Third Party Wastes (Instructions, Page 45)
a.	Does or will the facility receive wastes from off-site sources for treatment at the facility, disposal on-site via land application, or discharge via a permitted outfall? \square Yes \square No
	If yes , provide responses to Items 10.b through 10.d below.
	If no , proceed to Item 11.
b.	Attach the following information to the application:
	• List of wastes received (including volumes, characterization, and capability with on-site wastes).
	• Identify the sources of wastes received (including the legal name and addresses of the generators).
	• Description of the relationship of waste source(s) with the facility's activities.
	Attachment: Click to enter text.
c.	Is or will wastewater from another TCEQ, NPDES, or TPDES permitted facility commingled with this facility's wastewater after final treatment and prior to discharge via the final outfall/point of disposal?
	□ Yes ⊠ No
	If yes , provide the name, address, and TCEQ, NPDES, or TPDES permit number of the contributing facility and a copy of any agreements or contracts relating to this activity.
	Attachment: Click to enter text.
d.	Is this facility a POTW that accepts/will accept process wastewater from any SIU and has/is required to have an approved pretreatment program under the NPDES/TPDES program?
	□ Yes ⊠ No
If	yes, Worksheet 6.0 of this application is required.

Item 11. Radioactive Materials (Instructions, Page 46) a. Are/will radioactive materials be mined, used, stored, or processed at this facility? □ Yes ⋈ No

If **yes**, use the following table to provide the results of one analysis of the effluent for all radioactive materials that may be present. Provide results in pCi/L.

Radioactive Materials Mined, Used, Stored, or Processed

Radioactive Material Name	Concentration (pCi/L)

b.	Does the applicant or anyone at the facility have any knowledge or reason to believe that
	radioactive materials may be present in the discharge, including naturally occurring
	radioactive materials in the source waters or on the facility property?

□ Yes ⊠ No

If **yes**, use the following table to provide the results of one analysis of the effluent for all radioactive materials that may be present. Provide results in pCi/L. Do not include information provided in response to Item 11.a.

Radioactive Materials Present in the Discharge

O .				
Radioactive Material Name	Concentration (pCi/L)			
That is a second of the second	concentration (per/ L)			

Item 12. Cooling Water (Instructions, Page 46)

a.	Does the facili	ty use or propose	to use water	for cooling	purposes?
----	-----------------	-------------------	--------------	-------------	-----------

⊠ Yes □ No

If **no**, stop here. If **yes**, complete Items 12.b thru 12.f.

b. Cooling water is/will be obtained from a groundwater source (e.g., on-site well).

□ Yes ⊠ No

If **yes**, stop here. If **no**, continue.

- c. Cooling Water Supplier
 - 1. Provide the name of the owner(s) and operator(s) for the CWIS that supplies or will supply water for cooling purposes to the facility.

Cooling Water Intake Structure(s) Owner(s) and Operator(s)

d.

CWIS ID	S1013463A (Trinity River)	S1013463B (Lake Houston)	
Owner	-	-	
Operator	Coastal Water Authority	Coastal Water Authority	

		Authority		Authority		
2.		_	obtaine No	ed from a Public Wa	ater Supplier (PWS)	
				the PWS Registrati	on No. and stop he	ere: <u>PWS No.</u>
3.	Cooling water	er is/will be o	obtaine	ed from a reclaime	d water source?	
		Yes 🗵	No			
	If no , contintext.	ue. If yes , pr	ovide t	he Reuse Authoriz	ation No. and stop	here: Click to enter
4.	Cooling water	er is/will be o	obtaine	ed from an Indepe	ndent Supplier	
	\square Y	Zes ⊠	No			
	If no , proceed to Item 12.d. If yes , provide the actual intake flow of the Independent Supplier's CWIS that is/will be used to provide water for cooling purposes and proceed: Click to enter text.					
31	316(b) General Criteria					
1.				iter for cooling pur of 2 MGD or greate	poses to the facility r.	y has or will have a
	\square Y	∕es □	No			
2.				withdrawn by the s on an annual ave	CWIS is/will be use rage basis.	d at the facility
	\square Y	′es □	No			
3.					vater for cooling pu s of the United Stat	
	\square Y	∕es □	No			
		•		f how the waterbook $40 \ CFR \ \S \ 122.2$:	dy does not meet the	he definition of
	. 11 .1		. 10	. 1 .1 0 111.	1	

If **yes** to all three questions in Item 12.d, the facility **meets** the minimum criteria to be subject to the full requirements of Section 316(b) of the CWA. Proceed to **Item 12.f**.

If **no** to any of the questions in Item 12.d, the facility **does not meet** the minimum criteria to be subject to the full requirements of Section 316(b) of the CWA; however, a determination is required based upon BPJ. Proceed to **Item 12.e**.

e.		be facility does not meet the minimum requirements to be subject to the fill requirements Section 316 (b) and uses/proposes to use cooling towers.
	\boxtimes	Yes No
		yes, stop here. If \mathbf{no} , complete Worksheet 11.0, Items 1.a, 1.b.1-3 and 6, 2.b.1, and 3.a to ow for a determination based upon BPJ.
f.	Oi	l and Gas Exploration and Production
	1.	The facility is subject to requirements at 40 CFR Part 435, Subparts A or D.
		□ Yes ⊠ No
		If yes , continue. If no , skip to Item 12.g.
	2.	The facility is an existing facility as defined at 40 CFR \S 125.92(k) or a new unit at an existing facility as defined at 40 CFR \S 125.92(u).
		□ Yes ⊠ No
		If yes , complete Worksheet 11.0, Items 1.a, 1.b.1-3 and 6, 2.b.1, and 3.a to allow for a determination based upon BPJ. If no , skip to Item 12.g.3.
g.	Co	ompliance Phase and Track Selection
	1.	Phase I - New facility subject to 40 CFR Part 125, Subpart I
		□ Yes □ No
		If yes , check the box next to the compliance track selection, attach the requested information, and complete Worksheet 11.0, Items 2 and 3, and Worksheet 11.2.
		\square Track I – AIF greater than 2 MGD, but less than 10 MGD
		 Attach information required by 40 CFR §§ 125.86(b)(2)-(4).
		□ Track I – AIF greater than 10 MGD
		 Attach information required by 40 CFR § 125.86(b).
		□ Track II
		 Attach information required by 40 CFR § 125.86(c).
		Attachment: Click to enter text.
	2.	Phase II - Existing facility subject to 40 CFR Part 125, Subpart J
		□ Yes □ No
		If yes , complete Worksheets 11.0 through 11.3, as applicable.
	3.	Phase III - New facility subject to 40 CFR Part 125, Subpart N
		□ Yes □ No
		If yes , check the box next to the compliance track selection and provide the requested information.
		□ Track I – Fixed facility
		• Attach information required by 40 CFR § 125.136(b) and complete Worksheet 11.0, Items 2 and 3, and Worksheet 11.2.

		Track I – Not a fixed facility
		• Attach information required by 40 CFR § 125.136(b) and complete Worksheet 11.0, Item 2 (except CWIS latitude/longitude under Item 2.a).
		Track II – Fixed facility
		\bullet Attach information required by 40 CFR § 125.136(c) and complete Worksheet 11.0, Items 2 and 3.
	Att	tachment: Click to enter text.
Ite	em 1	3. Permit Change Requests (Instructions, Page 48)
Th	is item	is only applicable to existing permitted facilities.
a.	Is the	facility requesting a major amendment of an existing permit?
	\boxtimes	Yes
	inforn	, list each request individually and provide the following information: 1) detailed nation regarding the scope of each request and 2) a justification for each request. In any supplemental information or additional data to support each request.
	Pleas	e see attachment AR.1.0.1.f-Major Amendment.
b.	Is the	facility requesting any minor amendments to the permit?
		Yes 🗵 No
	If yes	, list and describe each change individually.
	Click	to enter text.
c.	Is the	facility requesting any minor modifications to the permit?
٠.		Yes No
	If yes	, list and describe each change individually.

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 1.0: EPA CATEGORICAL EFFLUENT GUIDELINES

This worksheet **is required** for all applications for TPDES permits for discharges of wastewaters subject to EPA categorical effluent limitation guidelines (ELGs).

Item 1. Categorical Industries (Instructions, Page 53)

Is this facility subject	t to any 40 CFR categoric	cal ELGs outlined on pag	e 53 of the instructions?			
⊠ Yes □ No	⊠ Yes □ No					
If no , this worksheet	is not required. If yes , p	provide the appropriate	information below.			
40 CFR Effluent Guide	eline					
Industry		40	CFR Part			
Inorganic Chemicals	Manufacturing	41	5			
I	/D	1 - /T 1 1 ¹	D 5 4)			
item 2. Produc	ction/Process Da	ita (instructions,	Page 54)			
NOTE: For all TPDES permit applications requesting individual permit coverage for discharges of oil and gas exploration and production wastewater (discharges into or adjacent to water in the state, falling under the Oil and Gas Extraction Effluent Guidelines – 40 CFR Part 435), see Worksheet 12.0, Item 2 instead.						
a. Production Data	a. Production Data					
Provide appropriate data for effluent guidelines with production-based effluent limitations.						
Production Data						
Subcategory	Actual Quantity/Day	Design Quantity/Day	Units			
AW - Oxygen and Nitrogen						

Nitrogen Production		
Oxygen	2200	Tons
Nitrogen	179	Tons

Click to enter text.	:a

Item 14. Laboratory Accreditation (Instructions, Page 49)

All laboratory tests performed must meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the *Signature Page* section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Samuel Agle

Title: Vice President of Operations

Signature:

Date:

Subcategory	Actual Quantity/Day	Design Quantity/Day	Units
o. Organic Chemi	icals, Plastics, and Synthet	ic Fibers Manufacturing	Data (40 CFR Part 414
Provide each appli	cable subpart and the perdle-bearing wastestreams, as	cent of total production.	Provide data for metal-
Percentage of Total	Production		
Subcategory	Percent of Total Production	Appendix A and B – Metals	Appendix A - Cyanide
N/A			
D (1) (40)	(CED D = 4410)		
c. Refineries (40	,	- C : : C : :	
rovide the applica	able subcategory and a bri	er justification.	
N/ <u>A</u>			

Item 3. Process/Non-Process Wastewater Flows (Instructions, Page 54)

Provide a breakdown of wastewater flow(s) generated by the facility, including both process and non-process wastewater flow(s). Specify which wastewater flows are to be authorized for discharge under this permit and the disposal practices for wastewater flows, excluding domestic, which are not to be authorized for discharge under this permit.

tem 4. New S	ource Determina	ation (Instructio	ons, Page 54)
Provide a list of all we he appropriate guide commenced.	vastewater-generating pr leline Part and Subpart,	rocesses subject to EPA and provide the date	A categorical ELGs, identify the process/construction
Process	ng Processes Subject to Ef	EPA Guideline Subpart	Date Process/ Construction Commenced
Oxygen and Nitrogen Production	415	AW	July 2013

Process wastewater, which consists of compressor condensate is routed to copper beds for treatment prior to being routed to a holding tank and subsequently to the cooling tower. It is represented as a

part of the cooling tower blowdown. Cooling tower blowdown – 0.20 MGD

Filter backwash water / utility wastewater – 0.05 MGD

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: POLLUTANT ANALYSIS

Worksheet 2.0 **is required** for all applications submitted for a TPDES permit. Worksheet 2.0 is not required for applications for a permit to dispose of all wastewater by land disposal or for discharges solely of stormwater associated with industrial activities.

Item 1. General Testing Requirements (Instructions, Page 55)

- a. Provide the date range of all sampling events conducted to obtain the analytical data submitted with this application (e.g., 05/01/2018-05/30/2018): 3/21/2024 to 4/9/2024
- b. 🗵 Check the box to confirm all samples were collected no more than 12 months prior to the date of application submittal.
- c. Read the general testing requirements in the instructions for important information about sampling, test methods, and MALs. If a contact laboratory was used, attach a list which includes the name, contact information, and pollutants analyzed for each laboratory/firm. Attachment: TR.1.0Worksheet2.0.1 Sampling results

Item 2. Specific Testing Requirements (Instructions, Page 56)

Attach correspondence from TCEQ approving submittal of less than the required number of samples, if applicable. Attachment: Click to enter text.

TABLE 1 and TABLE 2 (Instructions, Page 58)

Completion of Tables 1 and 2 is required for all external outfalls for all TPDES permit applications.

Pollutant	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)
BOD (5-day)	12	3.0	3.0	12
CBOD (5-day)	3.0	3.0	6.0	30
Chemical oxygen demand	75	3.4	55	86
Total organic carbon	12	5.1	12	13
Dissolved oxygen	5.18	5.92	5.09	5.65
Ammonia nitrogen	0.16	0.37	0.051	0.051
Total suspended solids	13	27	16	9.8
Nitrate nitrogen	4.4	0.94	4.3	5.1
Total organic nitrogen	3.2	1.0	2.9	3.0
Total phosphorus	0.83	0.088	3.2	3.4
Oil and grease	1.6	1.7	1.9	2.6
Total residual chlorine	1.1	0.05	0.88	1.1

Pollutant	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)
Total dissolved solids	1200	340	1400	1300
Sulfate	330	48	360	320
Chloride	300	41	360	320
Fluoride	1.2	0.24	0.70	2.6
Total alkalinity (mg/L as CaCO3)	150	100	130	210
Temperature (°F)	65	60	61	70
pH (standard units)	7.82	7.9	7.91	8.5

Table 2 for Outfall No.: 001	Samples are (check one): \square Composite \boxtimes Grab				
Pollutant	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	MAL (µg/L)
Aluminum, total	210	470	190	190	2.5
Antimony, total	1.6	1.1	1.3	1.1	5
Arsenic, total	4.4	2.9	4.5	5.2	0.5
Barium, total	160	80	170	190	3
Beryllium, total	0.15	0.15	0.15	0.15	0.5
Cadmium, total	0.26	0.26	0.26	0.26	1
Chromium, total	2.8	6.6	2.6	3.1	3
Chromium, hexavalent	3.4	5.4	4.0	3.4	3
Chromium, trivalent	3.4	3.4	3.4	3.4	N/A
Copper, total	36	54	42	36	2
Cyanide, available	8.4	5.0	5.5	6.1	2/10
Lead, total	0.4	4.3	0.59	0.39	0.5
Mercury, total	0.016	0.0043	0.015	0.018	0.005/0.0005
Nickel, total	15	9.4	16	18	2
Selenium, total	1.7	0.69	0.95	2.0	5
Silver, total	0.12	0.12	0.12	0.22	0.5
Thallium, total	0.22	0.22	0.22	0.22	0.5
Zinc, total	12	130	17	18	5.0

TABLE 3 (Instructions, Page 58)

Completion of Table 3 **is required** for all **external outfalls** which discharge process wastewater.

Partial completion of Table 3 **is required** for all **external outfalls** which discharge non-process wastewater and stormwater associated with industrial activities commingled with other wastestreams (see instructions for additional guidance).

 Table 3 for Outfall No.: oo1
 Samples are (check one):□
 Composite
 ☑
 Grab

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
Acrylonitrile	14	14	14	14	50
Anthracene	1.5	1.5	1.5	1.5	10
Benzene	0.46	0.46	0.46	0.46	10
Benzidine	4.8	4.8	4.8	4.8	50
Benzo(a)anthracene	0.17	0.17	0.17	0.17	5
Benzo(a)pyrene	0.36	0.36	0.36	0.36	5
Bis(2-chloroethyl)ether	2.2	2.2	2.2	2.2	10
Bis(2-ethylhexyl)phthalate	0.28	0.28	0.28	0.28	10
Bromodichloromethane [Dichlorobromomethane]	1.8	0.55	6.0	5.0	10
Bromoform	0.63	0.63	0.63	0.63	10
Carbon tetrachloride	0.90	0.90	0.90	0.90	2
Chlorobenzene	0.46	0.46	0.46	0.46	10
Chlorodibromomethane [Dibromochloromethane]	0.55	0.55	1.2	0.55	10
Chloroform	17	0.46	54	59	10
Chrysene	0.22	0.22	0.22	0.22	5
m-Cresol [3-Methylphenol]	2.6	2.6	2.6	2.6	10
o-Cresol [2-Methylphenol]	1.6	1.6	1.6	1.6	10
p-Cresol [4-Methylphenol]	2.6	2.6	2.6	2.6	10
1,2-Dibromoethane	1.0	1.0	1.0	1.0	10
m-Dichlorobenzene [1,3-Dichlorobenzene]	0.41	0.41	0.41	0.41	10
o-Dichlorobenzene [1,2-Dichlorobenzene]	0.43	0.43	0.43	0.43	10
p-Dichlorobenzene [1,4-Dichlorobenzene]	0.45	0.45	0.45	0.45	10
3,3'-Dichlorobenzidine	0.34	0.34	0.34	0.34	5
1,2-Dichloroethane	0.37	0.37	0.37	0.37	10

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
1,1-Dichloroethene [1,1-Dichloroethylene]	0.74	0.74	0.74	0.74	10
Dichloromethane [Methylene chloride]	1.7	1.7	1.7	1.7	20
1,2-Dichloropropane	0.56	0.56	0.56	0.56	10
1,3-Dichloropropene [1,3-Dichloropropylene]	1.3	1.3	1.3	1.3	10
2,4-Dimethylphenol	0.65	0.65	0.65	0.65	10
Di-n-Butyl phthalate	0.25	13	0.25	0.25	10
Ethylbenzene	0.39	0.59	0.39	0.39	10
Fluoride	1200	240	700	2600	500
Hexachlorobenzene	0.31	0.31	0.31	0.31	5
Hexachlorobutadiene	0.63	0.63	0.63	0.63	10
Hexachlorocyclopentadiene	4.6	4.6	4.6	4.6	10
Hexachloroethane	0.53	0.53	0.53	0.53	20
Methyl ethyl ketone	8.3	8.3	8.3	8.3	50
Nitrobenzene	1.7	1.7	1.7	1.7	10
N-Nitrosodiethylamine	1.8	1.8	1.8	1.8	20
N-Nitroso-di-n-butylamine	1.8	1.5	1.5	1.5	20
Nonylphenol	10	10	10	10	333
Pentachlorobenzene	1.1	1.1	1.1	1.1	20
Pentachlorophenol	0.23	0.23	0.23	0.23	5
Phenanthrene	1.4	1.4	1.4	1.4	10
Polychlorinated biphenyls (PCBs) (**)	<0.1	< 0.1	<0.1	<0.1	0.2
Pyridine	2.6	2.6	2.6	2.6	20
1,2,4,5-Tetrachlorobenzene	1.3	1.3	1.3	1.3	20
1,1,2,2-Tetrachloroethane	0.47	0.47	0.47	0.47	10
Tetrachloroethene [Tetrachloroethylene]	0.66	0.66	0.66	0.66	10
Toluene	0.48	0.48	0.48	0.48	10
1,1,1-Trichloroethane	0.59	0.59	0.59	0.59	10
1,1,2-Trichloroethane	0.41	0.41	0.41	0.41	10
Trichloroethene [Trichloroethylene]	1.5	1.5	1.5	1.5	10

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
2,4,5-Trichlorophenol	2.0	2.2	2.0	2.0	50
TTHM (Total trihalomethanes)	19	0.63	61	64	10
Vinyl chloride	0.43	0.43	0.43	0.43	10

^(*) Indicate units if different from µg/L.

TABLE 4 (Instructions, Pages 58–59)

Partial completion of Table 4 **is required** for each **external outfall** based on the conditions below.

a. Tributyltin

Yes

Is this facility an industrial/commercial facility which currently or proposes to directly dispose of wastewater from the types of operations listed below or a domestic facility which currently or proposes to receive wastewater from the types of industrial/commercial operations listed below?

	check the box next to each of the following criteria which apply and provide the oriate testing results in Table 4 below (check all that apply).
	Manufacturers and formulators of tributyltin or related compounds.
	Painting of ships, boats and marine structures.
	Ship and boat building and repairing.
	Ship and boat cleaning, salvage, wrecking and scaling.
	Operation and maintenance of marine cargo handling facilities and marinas.
	Facilities engaged in wood preserving.

b. Enterococci (discharge to saltwater)

in the effluent.

This facility discharges/proposes to discharge directly into saltwater receiving waters **and** Enterococci bacteria are expected to be present in the discharge based on facility processes.

Any other industrial/commercial facility for which tributyltin is known to be

present, or for which there is any reason to believe that tributyltin may be present

☐ Yes☒ NoDomestic wastewater is/will be discharged.☐ Yes☒ No

No

If **yes to either** question, provide the appropriate testing results in Table 4 below.

^(**) Total of detects for PCB-1242, PCB-1254, PCB-1221, PCB-1232, PCB-1248, PCB-1260, and PCB-1016. If all non-detects, enter the highest non-detect preceded by a "<".

c. E. coli (discharge to freshwater)

This facility discharges/proposes to discharge directly into freshwater receiving waters **and** *E. coli* bacteria are expected to be present in the discharge based on facility processes.

□ Yes ⊠ No

Domestic wastewater is/will be discharged.

□ Yes ⊠ No

If **yes to either** question, provide the appropriate testing results in Table 4 below.

Table 4 for Outfall No.: Click to enter text. Samples are (check one):□ Composite Grab **Pollutant** Sample 1 Sample 2 Sample 3 Sample 4 **MAL** Tributyltin (µg/L) 0.010 Enterococci (cfu or MPN/100 mL) N/A E. coli (cfu or MPN/100 mL) N/A

TABLE 5 (Instructions, Page 59)

Completion of Table 5 **is required** for all **external outfalls** which discharge process wastewater from a facility which manufactures or formulates pesticides or herbicides or other wastewaters which may contain pesticides or herbicides.

If this facility does not/will not manufacture or formulate pesticides or herbicides and does not/will not discharge other wastewaters that may contain pesticides or herbicides, check N/A.

⊠ N/A

Table 5 for Outfall No.: Click	Samples ar	e (check one):□	l Composit	e 🗆 Grab	
Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
Aldrin					0.01
Carbaryl					5
Chlordane					0.2
Chlorpyrifos					0.05
4,4'-DDD					0.1
4,4'-DDE					0.1
4,4'-DDT					0.02
2,4-D					0.7
Danitol [Fenpropathrin]					_
Demeton					0.20
Diazinon					0.5/0.1
Dicofol [Kelthane]					1
Dieldrin					0.02
Diuron					0.090

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)*
Endosulfan I (<i>alpha</i>)					0.01
Endosulfan II (<i>beta</i>)					0.02
Endosulfan sulfate					0.1
Endrin					0.02
Guthion [Azinphos methyl]					0.1
Heptachlor					0.01
Heptachlor epoxide					0.01
Hexachlorocyclohexane (alpha)					0.05
Hexachlorocyclohexane (beta)					0.05
Hexachlorocyclohexane (gamma) [Lindane]					0.05
Hexachlorophene					10
Malathion					0.1
Methoxychlor					2.0
Mirex					0.02
Parathion (ethyl)					0.1
Toxaphene					0.3
2,4,5-TP [Silvex]					0.3

^{*} Indicate units if different from µg/L.

TABLE 6 (Instructions, Page 59)

Completion of Table 6 is required for all external outfalls.

Table 6 for Outfall No.: **001** Samples are (check one):□ Composite ⊠ Grab

Pollutants	Believed Present	Believed Absent	Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)	MAL (μg/L)*
Bromide	\boxtimes		0.23	0.071	0.071	0.071	400
Color (PCU)	\boxtimes		20	10	15	NA	_
Nitrate-Nitrite (as N)	\boxtimes		4.4	1.4	4.3	5.1	_
Sulfide (as S)	\boxtimes		0.040	0.040	0.040	0.040	_
Sulfite (as SO3)	\boxtimes		5.0	5.0	5.0	1.5	_
Surfactants			0.28	< 0.1	< 0.1	<0.1	_
Boron, total	\boxtimes		0.34	0.098	0.35	0.32	20
Cobalt, total	\boxtimes		.00060	0.00069	0.00065	0.00085	0.3
Iron, total	\boxtimes		0.79	0.91	0.80	0.61	7
Magnesium, total	\boxtimes		16	7.8	16	17	20
Manganese, total	\boxtimes		0.032	0.074	0.035	0.024	0.5
Molybdenum, total	\boxtimes		0.0097	0.015	0.0086	0.0078	1
Tin, total	\boxtimes		0.00065	0.00069	0.0004	0.00033	5
Titanium, total	\boxtimes		0.0021	0.018	0.0018	0.0026	30

TABLE 7 (Instructions, Page 60)

Check the box next to any of the industrial categories applicable to this facility. If no categories are applicable, check N/A. If GC/MS testing is required, check the box provided to confirm the testing results for the appropriate parameters are provided with the application.

□ N/A

Table 7 for Applicable Industrial Categories

Industrial Category	40 CFR Volatiles Part Table 8		Acids Table 9	Bases/ Neutrals Table 10	Pesticides Table 11	
☐ Adhesives and Sealants		□ Yes	□ Yes	□ Yes	No	
☐ Aluminum Forming	467	□ Yes	□ Yes	□ Yes	No	
☐ Auto and Other Laundries		□ Yes	□ Yes	□ Yes	□ Yes	
□ Battery Manufacturing	461	□ Yes	No	□ Yes	No	
□ Coal Mining	434	No	No	No	No	
□ Coil Coating	465	□ Yes	□ Yes	□ Yes	No	
□ Copper Forming	468	□ Yes	□ Yes	□ Yes	No	
☐ Electric and Electronic Components	469	□ Yes	□ Yes	□ Yes	□ Yes	
□ Electroplating	413	□ Yes	□ Yes	□ Yes	No	
☐ Explosives Manufacturing	457	No	□ Yes	□ Yes	No	
□ Foundries		□ Yes	□ Yes	□ Yes	No	
☐ Gum and Wood Chemicals - Subparts A,B,C,E	454	□ Yes	□ Yes	No	No	
☐ Gum and Wood Chemicals - Subparts D,F	454	□ Yes	□ Yes	□ Yes	No	
	415	⊠ Yes	⊠ Yes	⊠ Yes	No	
☐ Iron and Steel Manufacturing	420	□ Yes	□ Yes	□ Yes	No	
☐ Leather Tanning and Finishing	425	□ Yes	□ Yes	□ Yes	No	
☐ Mechanical Products Manufacturing		□ Yes	□ Yes	□ Yes	No	
□ Nonferrous Metals Manufacturing	421,471	□ Yes	□ Yes	□ Yes	□ Yes	
Oil and Gas Extraction - Subparts A, D, E, F, G, H	435	□ Yes	□ Yes	□ Yes	No	
☐ Ore Mining - Subpart B	440	No	□ Yes	No	No	
☐ Organic Chemicals Manufacturing	414	□ Yes	□ Yes	□ Yes	□ Yes	
☐ Paint and Ink Formulation	446,447	□ Yes	□ Yes	□ Yes	No	
□ Pesticides	455	□ Yes	□ Yes	□ Yes	□ Yes	
☐ Petroleum Refining	419	□ Yes	No	No	No	
☐ Pharmaceutical Preparations	439	□ Yes	□ Yes	□ Yes	No	
☐ Photographic Equipment and Supplies	459	□ Yes	□ Yes	□ Yes	No	
☐ Plastic and Synthetic Materials Manufacturing	414	□ Yes	□ Yes	□ Yes	□ Yes	
□ Plastic Processing	463	□ Yes	No	No	No	
□ Porcelain Enameling	466	No	No	No	No	
☐ Printing and Publishing		□ Yes	□ Yes	□ Yes	□ Yes	
☐ Pulp and Paperboard Mills - Subpart C	430	*	□ Yes	*	□ Yes	
□ Pulp and Paperboard Mills - Subparts F, K	430	*	☐ Yes	*	*	
□ Pulp and Paperboard Mills - Subparts A, B, D, G, H	430	□ Yes	□ Yes	*	*	
Pulp and Paperboard Mills - Subparts I, J, L	430	□ Yes	□ Yes	*	□ Yes	
□ Pulp and Paperboard Mills - Subpart E	430	□ Yes	□ Yes	□ Yes	*	
□ Rubber Processing	428	☐ Yes	☐ Yes	□ Yes	No	
Soap and Detergent Manufacturing	417	☐ Yes	□ Yes	□ Yes	No	
□ Steam Electric Power Plants	423	□ Yes	□ Yes	No	No	
Textile Mills (Not Subpart C)	410	☐ Yes	□ Yes	□ Yes	No	
☐ Timber Products Processing	429	□ Yes	□ Yes	□ Yes	□ Yes	

^{*} Test if believed present.

TABLES 8, 9, 10, and 11 (Instructions, Page 60)

Completion of Tables 8, 9, 10, and 11 **is required** as specified in Table 7 for all **external outfalls** that contain process wastewater.

Completion of Tables 8, 9, 10, and 11 **may be required** for types of industry not specified in Table 7 for specific parameters that are believed to be present in the wastewater.

Table 8 for Outfall No.: $\underline{\mathbf{ooi}}$ Samples are (check one): \square Composite \square Grab

lable 8 for Outfall No.: <u>001</u>		ples are (chec		Grab	
Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (µg/L)
Acrolein	11	11	11	11	50
Acrylonitrile	14	14	14	14	50
Benzene	0.46	0.46	0.46	0.46	10
Bromoform	0.63	0.63	0.63	0.63	10
Carbon tetrachloride	0.90	0.90	0.90	0.90	2
Chlorobenzene	0.46	0.46	0.46	0.46	10
Chlorodibromomethane	0.55	0.55	1.2	0.55	10
Chloroethane	2	2	2	2	50
2-Chloroethylvinyl ether	0.75	0.75	0.75	0.75	10
Chloroform	17	0.46	54	59	10
Dichlorobromomethane [Bromodichloromethane]	1.8	0.55	6.0	5.0	10
1,1-Dichloroethane	0.64	0.64	0.64	0.64	10
1,2-Dichloroethane	0.37	0.37	0.37	0.37	10
1,1-Dichloroethylene [1,1-Dichloroethene]	0.74	0.74	0.74	0.74	10
1,2-Dichloropropane	0.56	0.56	0.56	0.56	10
1,3-Dichloropropylene [1,3-Dichloropropene]	1.3	1.3	1.3	1.3	10
Ethylbenzene	0.39	0.59	0.39	0.39	10
Methyl bromide [Bromomethane]	1.4	1.4	1.4	1.4	50
Methyl chloride [Chloromethane]	2	2	2	2	50
Methylene chloride [Dichloromethane]	1.7	1.7	1.7	1.7	20
1,1,2,2-Tetrachloroethane	0.47	0.47	0.47	0.47	10
Tetrachloroethylene [Tetrachloroethene]	0.66	0.66	0.66	0.66	10
Toluene	0.48	0.48	0.48	0.48	10
1,2-Trans-dichloroethylene [1,2-Trans-dichloroethene]	0.37	0.37	0.37	0.37	10
	L	1	1	1	·

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
1,1,1-Trichloroethane	0.59	0.59	0.59	0.59	10
1,1,2-Trichloroethane	0.41	0.41	0.41	0.41	10
Trichloroethylene [Trichloroethene]	1.5	1.5	1.5	1.5	10
Vinyl chloride	0.43	0.43	0.43	0.43	10

^{*} Indicate units if different from µg/L.

Table 9 for Outfall No.: **001**

Samples are (check one):□ Composite ☑ Grab

	samples are (effect offe).				
Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (µg/L)
2-Chlorophenol	0.65	0.65	0.65	0.65	10
2,4-Dichlorophenol	0.31	0.31	0.31	0.31	10
2,4-Dimethylphenol	0.65	0.65	0.65	0.65	10
4,6-Dinitro-o-cresol	1.4	1.4	1.4	1.4	50
2,4-Dinitrophenol	1.6	1.6	1.6	1.6	50
2-Nitrophenol	1.7	1.7	1.7	1.7	20
4-Nitrophenol	4.9	4.9	4.9	4.9	50
p-Chloro-m-cresol	1.6	1.6	1.6	1.6	10
Pentachlorophenol	0.23	0.23	0.23	0.23	5
Phenol	0.42	0.42	0.42	0.42	10
2,4,6-Trichlorophenol	1.4	1.4	1.4	1.4	10

^{*} Indicate units if different from µg/L.

Table 10 for Outfall No.: **001**

Samples are (check one):□ Composite ☑ Grab

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Acenaphthene	1.4	1.4	1.4	1.4	10
Acenaphthylene	1.4	1.4	1.4	1.4	10
Anthracene	1.5	1.5	1.5	1.5	10
Benzidine	4.8	4.8	4.8	4.8	50
Benzo(a)anthracene	0.17	0.17	0.17	0.17	5
Benzo(a)pyrene	0.36	0.36	0.36	0.36	5
3,4-Benzofluoranthene [Benzo(b)fluoranthene]	2.0	2.0	2.0	2.0	10
Benzo(ghi)perylene	2.7	2.7	2.7	2.7	20
Benzo(k)fluoranthene	0.38	0.38	0.38	0.38	5
Bis(2-chloroethoxy)methane	1.8	1.8	1.8	1.8	10

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Bis(2-chloroethyl)ether	2.2	2.2	2.2	2.2	10
Bis(2-chloroisopropyl)ether	1.8	1.8	1.8	1.8	10
Bis(2-ethylhexyl)phthalate	0.28	0.28	0.28	0.28	10
4-Bromophenyl phenyl ether	0.26	0.26	0.26	0.26	10
Butylbenzyl phthalate	0.34	0.34	0.34	0.34	10
2-Chloronaphthalene	0.46	0.46	0.46	0.46	10
4-Chlorophenyl phenyl ether	1.3	1.3	1.3	1.3	10
Chrysene	0.22	0.22	0.22	0.22	5
Dibenzo(a,h)anthracene	0.25	0.25	0.25	0.25	5
1,2-Dichlorobenzene [o-Dichlorobenzene]	0.43	1.6	1.6	1.6	10
1,3-Dichlorobenzene [m-Dichlorobenzene]	0.41	1.4	1.4	1.4	10
1,4-Dichlorobenzene [p-Dichlorobenzene]	0.45	1.6	1.6	1.6	10
3,3'-Dichlorobenzidine	0.34	0.34	0.34	0.34	5
Diethyl phthalate	1.6	1.6	1.6	1.6	10
Dimethyl phthalate	0.30	0.30	0.30	0.30	10
Di-n-butyl phthalate	0.25	13	0.25	0.25	10
2,4-Dinitrotoluene	1.3	1.3	1.3	1.3	10
2,6-Dinitrotoluene	1.6	1.6	1.6	1.6	10
Di-n-octyl phthalate	0.37	0.37	0.37	0.37	10
1,2-Diphenylhydrazine (as Azobenzene)	1.5	1.5	1.5	1.5	20
Fluoranthene	1.6	1.6	1.6	1.6	10
Fluorene	1.6	1.6	1.6	1.6	10
Hexachlorobenzene	0.31	0.31	0.31	0.31	5
Hexachlorobutadiene	0.24	0.24	0.24	0.24	10
Hexachlorocyclopentadiene	4.6	4.6	4.6	4.6	10
Hexachloroethane	0.53	0.53	0.53	0.53	20
Indeno(1,2,3-cd)pyrene	2.3	2.3	2.3	2.3	5
Isophorone	1.6	1.6	1.6	1.6	10
Naphthalene	0.54	0.54	0.54	0.54	10
Nitrobenzene	1.7	1.7	1.7	1.7	10
N-Nitrosodimethylamine	2.0	2.0	2.0	2.0	50

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
N-Nitrosodi-n-propylamine	2.9	2.9	2.9	2.9	20
N-Nitrosodiphenylamine	1.8	1.8	1.8	1.8	20
Phenanthrene	1.4	1.4	1.4	1.4	10
Pyrene	0.18	0.18	0.18	0.18	10
1,2,4-Trichlorobenzene	1.8	1.6	1.6	1.6	10

^{*} Indicate units if different from µg/L.

Table 11 for Outfall No.: N/A Samples are (check one):□ Composite □

Grab

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
Aldrin					0.01
alpha-BHC [alpha-Hexachlorocyclohexane]					0.05
beta-BHC [beta-Hexachlorocyclohexane]					0.05
gamma-BHC [gamma-Hexachlorocyclohexane]					0.05
delta-BHC [delta-Hexachlorocyclohexane]					0.05
Chlordane					0.2
4,4'-DDT					0.02
4,4'-DDE					0.1
4,4'-DDD					0.1
Dieldrin					0.02
Endosulfan I (alpha)					0.01
Endosulfan II (beta)					0.02
Endosulfan sulfate					0.1
Endrin					0.02
Endrin aldehyde					0.1
Heptachlor					0.01
Heptachlor epoxide					0.01
PCB 1242					0.2
PCB 1254					0.2
PCB 1221					0.2
PCB 1232					0.2
PCB 1248					0.2

Pollutant	Sample 1 (µg/L)*	Sample 2 (µg/L)*	Sample 3 (µg/L)*	Sample 4 (µg/L)*	MAL (μg/L)
PCB 1260					0.2
PCB 1016					0.2
Toxaphene					0.3

^{*} Indicate units if different from µg/L.

Attachment: Click to enter text.

TABLE 12 (DIOXINS/FURAN COMPOUNDS)

Complete of Table 12 is required for external outfalls, as directed below. (Instructions, Pages 59-60)

Indicate which compound(s) are manufactured or used at the facility and provide a brief description of the conditions of its/their presence at the facility (check all that apply).

- □ 2,4,5-trichlorophenoxy acetic acid (2,4,5-T) CASRN 93-76-5
- 2-(2,4,5-trichlorophenoxy) propanoic acid (Silvex, 2,4,5-TP)CASRN 93-72-1
- 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate (Erbon) CASRN 136-25-4
- 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate (Ronnel)CASRN 299-84-3
- □ 2,4,5-trichlorophenol (TCP) CASRN 95-95-4
- □ hexachlorophene (HCP) CASRN 70-30-4
- None of the above

Description: <u>Click to enter text.</u>

Does the applicant or anyone at the facility know or have any reason to believe that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or any congeners of TCDD may be present in the effluent proposed for discharge?

□ Yes ⊠ No

Description: Click to enter text.

If **yes** to either Items a **or** b, complete Table 12 as instructed.

Table 12 for Outfall No.: Click to enter text. Samples are (check one):□ Composite □ Grab

Compound	Toxicity Equivalent Factors	Wastewater Concentration (ppq)	Wastewater Toxicity Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Toxicity Equivalents (ppt)	MAL (ppq)
2,3,7,8-TCDD	1					10
1,2,3,7,8- PeCDD	1.0					50
2,3,7,8- HxCDDs	0.1					50
1,2,3,4,6,7,8- HpCDD	0.01					50

Compound	Toxicity Equivalent Factors	Wastewater Concentration (ppq)	Wastewater Toxicity Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Toxicity Equivalents (ppt)	MAL (ppq)
2,3,7,8-TCDF	0.1					10
1,2,3,7,8- PeCDF	0.03					50
2,3,4,7,8- PeCDF	0.3					50
2,3,7,8- HxCDFs	0.1					50
2,3,4,7,8- HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					500
PCB 81	0.0003					500
PCB 126	0.1					500
PCB 169	0.03					500
Total						

TABLE 13 (HAZARDOUS SUBSTANCES)

Complete Table 13 is required for all external outfalls as directed below. (Instructions, Pages 60-61)

Are there any pollutants listed in the instructions (pages 55-62) believed present in the discharge?

□ Yes ⊠ No

Are there pollutants listed in Item 1.c. of Technical Report 1.0 which are believed present in the discharge and have not been analytically quantified elsewhere in this application?

□ Yes ⊠ No

If **yes** to either Items a **or** b, complete Table 13 as instructed.

Table 13 for Outfall No.: Click to enter text. Samples are (check one):

CASRN Sample 1 Sample 2 Sample 3 Sample 4 (μg/L) Method

(μg/L) (μg/L) (μg/L) (μg/L) Method

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 3.0: LAND APPLICATION OF EFFLUENT

This worksheet **is required** for all applications for a permit to disposal of wastewater by land application (i.e., TLAP)).

Item 1. Type of Disposal System (Instructions, Page 69)

Check the box next to the type of land disposal requested by this application:

	Irrigation			Subsurface application	
	Evaporation			Subsurface soils absorp	otion
	Evapotranspiration	beds		Surface application	
	Drip irrigation syst	em		Other, specify: <u>Click to</u>	enter text.
It€	em 2. Land Ap	plication Area ((Inst	tructions, Page 6	9)
Lan	ıd Application Area Iı	nformation			
	fluent Application allons/day)	Irrigation Acreage (acres)		cribe land use & icate type(s) of crop(s)	Public Access?
	• •	(deres)	IIIu	icate type(s) of crop(s)	(Y/N)
		(ucres)	IIIu	icate type(s) of crop(s)	(1/N)
		(del'es)	ma	icate type(s) of crop(s)	(1/N)
		(deles)	IIId	icate type(s) of crop(s)	(1/N)

Item 3. Annual Cropping Plan (Instructions, Page 69)

Attach the required cropping plan that includes each of the following:

- Cool and warm season plant species
- Breakdown of acreage and percent of total acreage for each crop
- Crop growing season
- Harvesting method/number of harvests
- Minimum/maximum harvest height
- Crop yield goals
- Soils map
- Nitrogen requirements per crop
- Additional fertilizer requirements
- Supplemental watering requirements
- Crop salt tolerances
- Justification for not removing existing vegetation to be irrigated

Attachment:

Item 4. Well and Map Information (Instructions, Page 70)

a.		neck each box to confirm the required information is shown and labeled on the attached SGS map:								
		The e	xact boundaries of the	land applicat	tion area					
		On-site buildings								
		Waste-disposal or treatment facilities								
		Effluent storage and tailwater control facilities								
		Buffe	r zones							
		All su	rface waters in the sta	ate onsite and	within 500 feet of the	property boundaries				
	□ bou	All wa ındarie		e of the dispo	sal site, wastewater poi	nds, or property				
		All springs and seeps onsite and within 500 feet of the property boundaries								
	Atta	achme	nt: Click to enter text.							
	was nec	List and cross reference all water wells located on or within 500 feet of the disposal site, wastewater ponds, or property boundaries in the following table. Attach additional pages as necessary to include all of the wells. I and Map Information Table								
	ell I		Well Use	Producing?	Open, cased, capped,					
				Y/N/U	or plugged?	Management Practice				
At	tach	ment:	Click to enter text.							
c.		roundwater monitoring wells or lysimeters are/will be installed around the land pplication site or wastewater ponds.								
	Ī	□ Ye	s 🗆 No							
If yes , provide the existing/proposed location of the monitoring visite map attached for Item 4.a. Additionally, attach information on lysimeters, sampling schedule, and monitoring parameters for TC modification, and approval.						depth of the wells or				
	Atta	achme	nt: Click to enter text.							
d.		tach a short groundwater technical report using 30 TAC § 309.20(a)(4) as guidance.								

Item 5. Soil Map and Soil Information (Instructions, Page 71)

Check each box to confirm that the following information is attached:

- a. USDA NRCS Soil Survey Map depicting the area to be used for land application with the locations identified by fields and crops.
- b. \square Breakdown of acreage and percent of total acreage for each soil type.
- **c.** □ Copies of laboratory soil analyses. **Attachment**: Click to enter text.

Item 6. Effluent Monitoring Data (Instructions, Page 72)

a. Completion of Table 14 **is required** for all **renewal** and **major amendment** applications. Complete the table with monitoring data for the previous two years for all parameters regulated in the current permit. An additional table has been provided with blank headers for parameters regulated in the current permit which are not listed in Table 14.

Table 14 for Outfall No.: Click to enter text. Samples are (check one):□ Composite □ Grab Daily Avg Conductivity Hvdraulic Date BOD5 TSS Nitrogen Total Flow (gpd) (mg/L)(mmhos/cm) **Application** rate (mo/yr) (mg/L)(mg/L)acres irrigated (acrefeet/month)

Date	Daily Avg	BOD5	TSS	Nitrogen	Conductivity	Total	Hydraulic
(mo/yr)	Flow (gpd)	(mg/L)	(mg/L)	(mg/L)	(mmhos/cm)		Application rate
						irrigated	(acre-
							feet/month)

b. Use this table to provide effluent analysis for parameters regulated in the current permit which are not listed in Table 14.

Additional Parameter Effluent Analysis

			1

c. Attach an explanation of all persistent excursions to permitted parameters and corrective actions taken. Attachment: Click to enter text.

Item 7. Pollutant Analysis (Instructions, Page 72)

- a. Provide the date range of all sampling events conducted to obtain the analytical data submitted with this application (e.g., 05/01/2018-05/30/2018): Click to enter text.
- b. \square Check the box to confirm all samples were collected no more than 12 months prior to the date of application submittal.
- c. Complete Tables 15 and 16.

Table 15 for Outfall No.: <u>oo1</u> Samples are (check one):□ Composite ⊠ Grab

•	`	· •	
Sample 1 (mg/L)	Sample 2 (mg/L)	Sample 3 (mg/L)	Sample 4 (mg/L)
	Sample 1	Sample 1 Sample 2	Sample 1 Sample 2 Sample 3

Table 16 for Outfall No.: Click to enter text. Samples are (check one):□ Composite □ Grab

Pollutant	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	MAL (μg/L)
Aluminum, total					2.5
Antimony, total					5

Pollutant	Sample 1 (µg/L)	Sample 2 (µg/L)	Sample 3 (µg/L)	Sample 4 (µg/L)	MAL (µg/L)
Arsenic, total					0.5
Barium, total					3
Beryllium, total					0.5
Cadmium, total					1
Chromium, total					3
Chromium, hexavalent					3
Chromium, trivalent					N/A
Copper, total					2
Cyanide, available					2/10
Lead, total					0.5
Mercury, total					0.005/0.0005
Nickel, total					2
Selenium, total					5
Silver, total					0.5
Thallium, total					0.5
Zinc, total					5.0

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 3.1: SURFACE LAND APPLICATION AND APPLICATION

This worksheet **is required** for all applications for a permit to disposal of wastewater by surface land application or evaporation.

Item 1. Edwards Aquifer (Instructions, Page 73)

a. Is the facility subject to 30 TAC Chapter 213, Edwards Aquifer Rules?

- □ Yes □ No
 If no, proceed to Item 2. If yes, complete Items 1.b and 1.c.
 b. Check the box next to the subchapter applicable to the facility.
 □ 30 TAC Chapter 213, Subchapter A
 □ 30 TAC Chapter 213, Subchapter B
 c. If 30 TAC Chapter 213, Subchapter A applies, attach either: 1) a Geologic Assessment (if conducted in accordance with 30 TAC § 213.5) or 2) a report that contains the following:
 A description of the surface geological units within the proposed land application site
 - The location and extent of any sensitive recharge features in the land application site and wastewater pond area
 - A list of any proposed BMPs to protect the recharge features.

Attachment: <u>Click to enter text.</u>

and wastewater pond area.

Item 2. Surface Spray/Irrigation (Instructions, Page 73)

a.	Provide the following information on the irrigation operations:
	Area under irrigation (acres): <u>Click to enter text.</u>
	Design application rate (acre-ft/acre/yr): Click to enter text.
	Design application frequency (hours/day): Click to enter text.
	Design application frequency (days/week): Click to enter text.

Design total nitrogen loading rate (lbs nitrogen/acre/year): <u>Click to enter text.</u>

Average slope of the application area (percent): Click to enter text.

Maximum slope of the application area (percent): <u>Click to enter text.</u>

Irrigation efficiency (percent): <u>Click to enter text.</u>

Effluent conductivity (mmhos/cm): Click to enter text.

Soil conductivity (mmhos/cm): <u>Click to enter text.</u>

Curve number: Click to enter text.

Describe the application method and equipment: <u>Click to enter text.</u>

b. Attach a detailed engineering report which includes a water balance, storage volume calculations, and a nitrogen balance. **Attachment**: Click to enter text.

Item 3. Evaporation Ponds (Instructions, Page 74)

- a. Daily average effluent flow into ponds: Click to enter text. gallons per day
- b. Attach a separate engineering report of evaporation calculations for average long-term and worst-case critical conditions. **Attachment:** Click to enter text.

Item 4. Evapotranspiration Beds (Instructions, Page 74)

a. Provide the following information on the evapotranspiration beds:

Number of beds: Click to enter text.

Area of bed(s) (acres): <u>Click to enter text.</u>

Depth of bed(s) (feet): Click to enter text.

Void ratio of soil in the beds: <u>Click to enter text.</u>

Storage volume within the beds (include units): Click to enter text.

Description of any lining to protect groundwater: Click to enter text.

- b. Attach a certification by a licensed Texas professional engineer that the liner meets TCEQ requirements. **Attachment:** Click to enter text.
- c. Attach a separate engineering report with water balance, storage volume calculations, and description of the liner. **Attachment:** Click to enter text.

Item 5. Overland Flow (Instructions, Page 74)

a. Provide the following information on the overland flow:

Area used for application (acres): Click to enter text.

Slopes for application area (percent): <u>Click to enter text.</u>

Design application rate (gpm/foot of slope width): Click to enter text.

Slope length (feet): Click to enter text.

Design BOD5 loading rate (lbs BOD5/acre/day): Click to enter text.

Design application frequency (hours/day): Click to enter text.

Design application frequency (days/week): Click to enter text.

b. Attach a separate engineering report with the method of application and design requirements according to *30 TAC § 217.212*. **Attachment:** Click to enter text.

INDUSTRIAL WASTEWATER PERMIT APPLICATION **WORKSHEET 3.2: SUBSURFACE IRRIGATION (NON-DRIP)**

This worksheet **is required** for all applications for a permit to disposal of wastewater by subsurface land application.

Check the box to confirm the Class V Injection Well Inventory/Authorization Form (Worksheet 9.0) has been submitted to the TCEO UIC Permits Team as directed.

Item 1. Edwards Aquifer (Instructions, Page 75)

a.	The subsurface system is/will be located on the Edwards Aquifer Recharge Zone, as mapped by TCEQ?
	□ Yes □ No
b.	The subsurface system is/will be located on the Edwards Aquifer Transition Zone, as mapped by TCEQ?
	□ Yes □ No

If yes to Item 1.a or 1.b, the subsurface system may be prohibited by 30 TAC § 213.8. Contact the Water Quality Assessment Section at (512) 239-4671 for a preapplication meeting.

Item 2. Subsurface Application (Instructions, Page 75)

a.	Che	eck the box next to the type of subsurface land disposal system requested:
		Conventional drainfield, beds, or trenches
		Low pressure dosing
		Other: Click to enter text.
b.	Prov	vide the following information on the irrigation operations:

Application area (acres): Click to enter text.

Area of drainfield (square feet): Click to enter text.

Application rate (gal/square ft/day): Click to enter text.

Depth to groundwater (feet): Click to enter text.

Area of trench (square feet): Click to enter text.

Dosing duration per area (hours): Click to enter text.

Number of beds: Click to enter text.

Dosing amount per area (inches/day): Click to enter text.

Soil infiltration rate (inches/hour): Click to enter text.

Storage volume (gallons): Click to enter text.

Area of bed(s) (square feet): Click to enter text.

Soil classification: Click to enter text.

c. Attach a separate engineering report using 30 TAC § 309.20, Subchapter C, Land Disposal of Sewage Effluent as guidance, excluding items b(3)(A) and b(3)(B). Include a description of the schedule of dosing basin rotation. Attachment: Click to enter text.

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 3.3: SUBSURFACE AREA DRIP DISPERSAL SYSTEMS

This worksheet is required for all applications for a permit to dispose of wastewater using a

su	bsurface area drip dispersal system (SADDS).
	Check the box to confirm the Class V Injection Well Inventory/Authorization Form (Worksheet 9.0) has been submitted to the TCEQ UIC Permits Team as directed.
It	em 1. Edwards Aquifer (Instructions, Page 76)
a.	The subsurface system is/will be located on the Edwards Aquifer Recharge Zone, as mapped by TCEQ?
	□ Yes □ No
b.	The subsurface system is/will be located on the Edwards Aquifer Transition Zone, as mapped by TCEQ?
	□ Yes □ No
	yes to Item 1.a or 1.b, the subsurface system may be prohibited by $30\ TAC\ \S\ 213.8$. Contact Water Quality Assessment Section at (512) 239-4671 for a preapplication meeting.
It	em 2. Administrative Information (Instructions, Page 76)
a.	Provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the owner of the treatment facility: <u>Click to enter text.</u>
b.	The owner of the land where the WWTF is/will be located is the same as the owner of the WWTF.
	□ Yes □ No
	If no , provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the owner of the land where the WWTF is/will be located: <u>Click to enter text</u> .
c.	Provide the legal name of the owner of the SADDS: <u>Click to enter text.</u>
d.	The owner of the SADDS is the same as the owner of the WWTF or the site where the WWTF is/will be located.
	□ Yes □ No
	If no , identify the legal name of all corporations or other business entities managed, owned or otherwise closely related to the entity identified in Item 1.c: <u>Click to enter text.</u>
e.	Provide the legal name of the owner of the land where the SADDS is located: <u>Click to entertext.</u>
f.	The owner of the land where the SADDS is/will be located is the same as owner of the WWTF, the site where the WWTF is located, or the owner of the SADDS.
	□ Yes □ No

If **no**, provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the entity identified in item 1.e: <u>Click to enter text.</u>

Item 3. SADDS (Instructions, Page 77)

a.	Checl	the box next to the type SADDS requested by this application:
	\square S	ubsurface drip/trickle irrigation
	\Box S	urface drip irrigation
		Other: <u>Click to enter text.</u>
b.		h a description of the SADDS proposed/used by the facility (see instructions for nce). Attachment: Click to enter text.
c.	Provid	de the following information on the SADDS:
	Appli	cation area (acres): <u>Click to enter text.</u>
	Soil ir	afiltration rate (inches/hour): <u>Click to enter text.</u>
	Avera	ge slope of the application area: <u>Click to enter text.</u>
	Maxir	num slope of the application area: <u>Click to enter text.</u>
	Stora	ge volume (gallons): <u>Click to enter text.</u>
	Major	soil series: <u>Click to enter text.</u>
	Deptl	n to groundwater (feet): <u>Click to enter text.</u>
	Efflue	ent conductivity (mmhos/cm): <u>Click to enter text.</u>
d.	veget	acility is/will be located west of the boundary shown in 30 TAC § 222.83 and using ative cover of non-native grasses over seeded with cool-season grasses.
		Yes No
		s, the facility may propose a hydraulic application rate up to, but not to exceed, 0.1 2 /day.
e.		acility is/will be located east of the boundary shown in 30 TAC § 222.83 or is the y proposing any crop other than non-native grasses.
		Yes □ No
		s, the facility must use the formula in $30\ TAC\ \S\ 222.83$ to calculate the maximum rulic application rate.
f.		acility has or plans to submit an alternative method to calculate the hydraulic cation rate for approval by the ED.
		Yes 🗆 No
	If yes	, provide the following information on the hydraulic application rates:
	•	Hydraulic application rate (gal/square foot/day): Click to enter text.
	•	Nitrogen application rate (gal/square foot/day): Click to enter text.

g. Provide the following dosing information:

a

	Number of doses per day: <u>Click to enter text.</u>
	Dosing duration per area (hours): <u>Click to enter text.</u>
	Rest period between doses (hours): Click to enter text.
	Dosing amount per area (inches/day): Click to enter text.
	Number of zones: Click to enter text.
h.	The system is/will be a surface drip irrigation system using existing native vegetation as a crop?
	□ Yes □ No
	If yes , attach the following information:
	• A vegetation survey by a certified arborist describing the percent canopy cover and relative percentage of major overstory and understory plant species.
	Attachment: Click to enter text.
	• Attach a separate engineering report using 30 TAC § 309.20, Subchapter C, Land Disposal of Sewage Effluent as guidance, excluding items b(3)(A) and b(3)(B). Include a description of the schedule of dosing basin rotation.
	Attachment: Click to enter text.
It	em 4. Required Plans (Instructions, Page 78)
a.	Attach a Soil Evaluation with all information required in 30 TAC § 222.73.
	Attachment: Click to enter text.
h	Attach a Site Preparation Plan with all information required in 30 TAC § 222.75.
	Attachment: Click to enter text.
c.	Attach a Recharge Feature Plan with all information required in 30 TAC § 222.79.
	Attachment: Click to enter text.
d.	Provide soil sampling and testing with all information required in 30 TAC § 222.157.
	Attachment: Click to enter text.
T+,	om F Flood and Dun On Protection (Instructions Dags 70)
IU	em 5. Flood and Run-On Protection (Instructions, Page 79)
a.	Is the existing/proposed SADDS located within the 100-year frequency flood level?
	□ Yes □ No
	Source: Click to enter text.
	If yes , describe how the site will be protected from inundation: <u>Click to enter text.</u>
b.	Is the existing/proposed SADDS within a designated floodway?
	□ Yes □ No
	If yes , attach either the FEMA flood map or alternate information used to make this determination. Attachment : Click to enter text.

Item 6. Surface Waters in The State (Instructions, Page 79)

	water wells, and springs/seeps. Attachment: Click to enter text.
b.	The facility has or plans to request a buffer variance from water wells or waters in the state?
	□ Yes □ No
	yes, attach the additional information required in $30~TAC~\S~222.81$ (c). Attachment: Click to ter text.

a. Attach a buffer map which shows the appropriate buffers on surface waters in the state,

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: RECEIVING WATERS

This worksheet **is required** for all TPDES permit applications.

Item 1. Domestic Drinking Water Supply (Instructions, Page 80)

a.	There is a surface water intake for domestic drinking water supply located within 5 (five) miles downstream from the point/proposed point of discharge. Yes No
	If no , stop here and proceed to Item 2. If yes , provide the following information:
	1. The legal name of the owner of the drinking water supply intake: <u>Click to enter text.</u>
	2. The distance and direction from the outfall to the drinking water supply intake: <u>Click to enter text.</u>
b.	Locate and identify the intake on the USGS 7.5-minute topographic map provided for Administrative Report 1.0.
	☐ Check this box to confirm the above requested information is provided.
It	em 2. Discharge Into Tidally Influenced Waters (Instructions, Page 80)
	the discharge is to tidally influenced waters, complete this section. Otherwise, proceed to em 3.
a.	Width of the receiving water at the outfall: <u>~4000</u> feet
b.	Are there oyster reefs in the vicinity of the discharge? □ Yes ☑ No
	If yes , provide the distance and direction from the outfall(s) to the oyster reefs: Click to enter text.
C.	Are there sea grasses within the vicinity of the point of discharge? ☐ Yes ☑ No
	If yes , provide the distance and direction from the outfall(s) to the grasses: Click to enter text.
It	em 3. Classified Segment (Instructions, Page 80)
Th	e discharge is/will be directly into (or within 300 feet of) a classified segment. ☑ Yes □ No
If v	yes , stop here and do not complete Items 4 and 5 of this worksheet or Worksheet 4.1.

If **no**, complete Items 4 and 5 and Worksheet 4.1 may be required.

Item 4. Description of Immediate Receiving Waters (Instructions, Page 80)

		(IIISTructions, Page 60)
a.	Nam	e of the immediate receiving waters: <u>Click to enter text.</u>
b.	Chec	ek the appropriate description of the immediate receiving waters:
		Lake or Pond
	•	Surface area (acres): Click to enter text.
	•	Average depth of the entire water body (feet): Click to enter text.
	•	Average depth of water body within a 500-foot radius of the discharge point (feet): <u>Click to enter text.</u>
		Man-Made Channel or Ditch
		Stream or Creek
		Freshwater Swamp or Marsh
		Гidal Stream, Bayou, or Marsh
		Open Bay
		Other, specify:
		Made Channel or Ditch or Stream or Creek were selected above, provide responses to c – 4.g below:
c.		existing discharges, check the description below that best characterizes the area ream of the discharge.
		new discharges, check the description below that best characterizes the area nstream of the discharge.
		Intermittent (dry for at least one week during most years)
		Intermittent with Perennial Pools (enduring pools containing habitat to maintain aquatic life uses)
		Perennial (normally flowing)
		k the source(s) of the information used to characterize the area upstream (existing narge) or downstream (new discharge):
		USGS flow records
		personal observation
		historical observation by adjacent landowner(s)
		other, specify: <u>Click to enter text.</u>
d.		the names of all perennial streams that join the receiving water within three miles astream of the discharge point: Click to enter text.
e.		receiving water characteristics change within three miles downstream of the discharge natural or man-made dams, ponds, reservoirs, etc.).
		Yes □ No

	If y	yes, describe how: <u>Click to enter text.</u>							
f.		eneral observations of the water body during normal dry weather conditions: <u>Click to nter text.</u>							
	Dat	Date and time of observation: <u>Click to enter text.</u>							
g.	Ī	The water body was influenced by stormwater runoff during observations. \[\subseteq \text{Yes} \subseteq \text{No} \] If yes , describe how: Click to enter text.							
It	tem 5. General Characteristics of Water Body (Instructions, Page 81)								
a.		he receiving water upstream of the existing uenced by any of the following (check all the							
		oil field activities		urban runoff					
		agricultural runoff		septic tanks					
		upstream discharges		other, specify: <u>Click to enter text.</u>					
b.	Use	s of water body observed or evidence of su	ıch u	ses (check all that apply):					
		livestock watering		industrial water supply					
		non-contact recreation		irrigation withdrawal					
		domestic water supply		navigation					
		contact recreation		picnic/park activities					
		fishing		other, specify: <u>Click to enter text.</u>					
с.	Description which best describes the aesthetics of the receiving water and the surrounding area (check only one):								
	☐ Wilderness: outstanding natural beauty; usually wooded or un-pastured area: water clarity exceptional								
		Natural Area: trees or native vegetation of fields, pastures, dwellings); water clarity of							
		Common Setting: not offensive, develope turbid	d bu	t uncluttered; water may be colored or					
		Offensive: stream does not enhance aesth areas; water discolored	etics	s; cluttered; highly developed; dumping					

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 4.1: WATERBODY PHYSICAL CHARACTERISTICS

The following information **is required** for new applications, EPA-designated Major facilities, and major amendment applications requesting to add an outfall if the receiving waters are perennial or intermittent with perennial pools (including impoundments) for a TDPES permit.

Complete the transects downstream of the existing or proposed discharges.

	Item 1. l	Data Collection	(Instructions)	. Page	82
--	-----------	-----------------	----------------	--------	----

a.	Date of study: <u>Click to enter text.</u> Time of study: <u>Click to enter text.</u>
	Waterbody name: Click to enter text.
	General location: <u>Click to enter text.</u>
b.	Type of stream upstream of an existing discharge or downstream of a proposed discharge (check only one):
	\square perennial \square intermittent with perennial pools \square impoundment
c.	No. of defined stream bends:
	Well: <u>Click to enter text.</u> Moderately: <u>Click to enter text.</u> Poorly: <u>Click to enter text.</u>
d.	No. of riffles: Click to enter text.
e.	Evidence of flow fluctuations (check one):
	□ Minor □ Moderate □ Severe
f.	Provide the observed stream uses and where there is evidence of channel obstructions/modifications: <u>Click to enter text.</u>
g.	Complete the following table with information regarding the transect measurements.

Stream Transect Data

Transect Location	Habitat Type*	Water Surface Width (ft)	Stream Depths (ft)**				

^{*} riffle, run, glide, or pool

^{**} channel bed to water surface

Item 2. Summarize Measurements (Instructions, Page 83)

Provide the following information regarding the transect measurements:

Streambed slope of entire reach (from USGS map in ft. /ft.): Click to enter text.

Approximate drainage area above the most downstream transect from USGS map or county highway map (square miles): <u>Click to enter text.</u>

Length of stream evaluated (ft): Click to enter text.

Number of lateral transects made: Click to enter text.

Average stream width (ft): Click to enter text.

Average stream depth (ft): Click to enter text.

Average stream velocity (ft/sec): Click to enter text.

Instantaneous stream flow (ft³/sec): Click to enter text.

Indicate flow measurement method (VERY IMPORTANT – type of meter, floating chip timed over a fixed distance, etc.): Click to enter text.

Flow fluctuations (i.e., minor, moderate, or severe): Click to enter text.

Size of pools (i.e., large, small, moderate, or none): Click to enter text.

Maximum pool depth (ft): Click to enter text.

Total number of stream bends: Click to enter text.

Number well defined: Click to enter text.

Number moderately defined: Click to enter text.

Number poorly defined: Click to enter text.

Total number of riffles: Click to enter text.

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: SEWAGE SLUDGE MANAGEMENT AND DISPOSAL

The following information **is required** for all TPDES permit applications that meet the conditions as outlined in Technical Report 1.0, Item 7.

Item 1. Sewage Sludge Solids Management Plan (Instructions, Page 84)

a.	Is th	is a new permit application or an amendment permit application?
		□ Yes ⊠ No
b.	Does	s or will the facility discharge in the Lake Houston watershed?
		□ Yes ⊠ No
If y	yes to	o either Item 1.a or 1.b, attach a solids management plan. Attachment: N/A
It	em	2. Sewage Sludge Management and Disposal (Instructions
		Page 84)
a.		ck the box next to the sludge disposal method(s) authorized under the facility's existing nit (check all that apply).
		Permitted landfill
		Marketing and distribution by the permittee, attach Form TCEQ-00551
		Registered land application site, attach Form TCEQ-00565
		Processed by the permittee, attach Form TCEQ-00744
		Surface disposal site (sludge monofill), attach Form TCEQ-00744
	\boxtimes	Transported to another WWTP
		Beneficial land application, attach Form TCEQ-10451
		Incineration, attach Form TCEQ-00744
	dire	ed on the selection(s) made above, complete and attach the required TCEQ forms as cted. Failure to submit the required TCEQ form will result in delays in processing the lication
	Atta	chment: Click to enter text.
b.	Prov	ride the following information for each disposal site:
	Disp	oosal site name: City of Houston POTW (Almeda Sims WWTP)
	TCE	Q Permit/Registration Number: <u>WQoo10495003</u>
	Cou	nty where disposal site is located: <u>Harris</u>

c.	Method of sewage sludge transportation:							
	$lacksquare$ truck \Box train \Box pipe \Box other: Click to enter text.							
	TCEQ Hauler Registration Number: 455120133							
d.	Sludge is transported as a:							
	\square liquid \square semi-liquid \boxtimes semi-solid \square solid							
e.	Purpose of land application: \square reclamation \square soil conditioning \square N/A							
f.	If sewage sludge is transported to another WWTP for treatment, attach a written statement or copy of contractual agreements confirming that the WWTP identified above will accept and be responsible for the sludge from this facility for the life of the permit (at least 5 years). Attachment: N/A							
It	em 3. Authorization for Sewage Sludge Disposal (Instructions, Page 85)							
slu	this is a new or major amendment application which requests authorization of a new sewage adge disposal method, check the new sewage disposal method(s) requested for authorization neck all that apply):							
	\square Marketing and distribution by the permittee, attach Form TCEQ-00551							
	□ Processed by the permittee, attach Form TCEQ-00744							
	☐ Surface disposal site (sludge monofill), attach Form TCEQ-00744							
	☐ Beneficial land application, attach Form TCEQ-10451							
	☐ Incineration, attach Form TCEQ-00744							
diı	sed on the selection(s) made above, complete and attach any required TCEQ forms, as rected. Failure to submit the required TCEQ form will result in delays in processing the plication.							
	Attachment: N/A							
in for de	OTE: New authorization for beneficial land application, incineration, processing, or disposal the TPDES permit or TLAP requires a major amendment to the permit. New authorization recomposting may require a major amendment to the permit. See the instructions to termine if a major amendment is required or if authorization for composting can be added rough the renewal process.							

INDUSTRIAL WASTEWATER PERMIT APPLICATION **WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION**

The following information is required for all applications for publicly-owned treatment works (POTWs).

For an explanation of the terms used in this worksheet, refer to the General Definitions on pages 4-12 and the Definitions Relating to Pretreatment on pages 13-14 of the Instructions.

Item 1. All POTWs (Instructions, Page 86)

a. Complete the following table with the number of each type of industrial users (IUs) that discharge to the POTW and the daily average flows from each.

Industrial User Information						
Type of Industrial User	Number of Industrial Users	Daily Average Flow (gallons per day)				
CIU						
SIU - Non-categorical						
Other IU						
 b. In the past three years, has the POTW experienced treatment plant interference? Yes No If yes, identify the date(s), duration, nature of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IU(s) that may have caused the interference: Click to enter text. c. In the past three years, has the POTW experienced pass-through? Yes No If yes, identify the date(s), duration, pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass-through event. Include the names of 						
☐ Yes ☐ No If yes , answer all quest If no , skip Item 2 and a Item 2. POTWs Wi	ions in Item 2 and skip Item 3. nswer all questions in Item 3 for the Approved Pretreat	or each SIU and CIU.				

Those Required To Develop A Pretreatment Program (Instructions, Page 86)

a.	Have there been any substantial modifications to the POTW's approved pretreatment program that have not been submitted to the Approval Authority (TCEQ) for approval according to $40\ CFR\ \S\ 403.18$?
	□ Yes □ No

	If yes , include an attach been submitted to the T				tions that have not
	Attachment: Click to en	ter text.			
b.	Have there been any no program that have not l	peen submitted to the			_
	If yes , include an attach not been submitted to t	nment which identifie			ifications that have
	Attachment: Click to en	ter text.			
c.	List all parameters meas last three years:	sured above the MAL	in the POT\	N's effluent mo	onitoring during the
	fluent Parameters Measure				
P	ollutant	Concentration	MAL	Units	Date
	Attachment: Click to en	ter text.			
d.	Has any SIU, CIU, or oth interference or pass-thr				ems (excluding
	□ Yes □ No	_	_	-	
	If yes , provide a description problems, and probable may have caused or continuous	pollutants. Include th	ie name(s) c	of the SIU(s)/CI	U(s)/other IU(s) that
It	em 3. Significant User Infor	Industrial Use mation (Instru		•	
	OTWs that do not have ar llowing information for e		ent progra	m are required	d to provide the
a.	Mr. or Ms.: Click to ente	<u>r text.</u> First/Last Nam	e: <u>Click to e</u>	enter text.	
	Organization Name: Cli	ck to enter text. SI	C Code: <u>Cli</u>	ck to enter tex	t.
	Phone number: Click to	enter text. Er	nail addres	s: <u>Click to ente</u>	r text.
	Physical Address: Click	to enter text. Ci	ty/State/Z	IP Code: <u>Click t</u>	o enter text.
	Attachment: Click to en				
b.	Describe the industrial p CIU(s) discharge (e.g., p				

Effluent Type		scharge Day llons per day)		Discharge Frequency (Continuous, batch, or intermitted		
Process Wastev						
Non-process W	astewater					
. Pretreatmen	t Standards					
1. Is the SIU instruction		o technology-based	local limits as defi	ned in the application		
☐ Yes	□ No					
	_	orical pretreatment	etandarde?			
Z. Is the sto	□ No	orical pretreatment	stanuarus:			
If yes , provid	_	nd subcategory or s ndards table.	subcategories in th	e SIUs Subject To		
	ategorical Pretrea		Cubactagovija	Cubaatagawyin		
Category in 40 CFR	Subcategory in 40 CFR	Subcategory in 40 CFR	Subcategory in 40 CFR	Subcategory in 40 CFR		
		contributed to any contributed t				
	le a description o	of each episode, incl		tion, description of SIU(s)/CIU(s) that may		

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 7.0: STORMWATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES

This worksheet **is required** for all TPDES permit applications requesting individual permit coverage for discharges consisting of **either**: 1) solely of stormwater discharges associated with industrial activities, as defined in 40 CFR § 122.26(b)(14)(i-xi), **or** 2) stormwater discharges associated with industrial activities and any of the listed allowable non-stormwater discharges, as defined in the MSGP (TXR05000), Part II, Section A, Item 6.

Discharges of stormwater as defined in 40 CFR § 122.26 (b)(13) are not required to obtain authorization under a TPDES permit (see exceptions at 40 CFR §§ 122.26(a)(1) and (9)). Authorization for discharge may be required from a local municipal separate storm sewer system.

Item 1. Applicability (Instructions, Page 89)

Do discharges from any of the existing/proposed outfalls consist either 1) solely of stormwater discharges associated with industrial activities **or** 2) stormwater discharges associated with industrial activities and any of the allowable non-stormwater discharges?

□ Yes ⊠ No

If **no**, stop here. If **yes**, proceed as directed.

Item 2. Stormwater Coverage (Instructions, Page 89)

List each existing/proposed stormwater outfall at the facility and indicate which type of authorization covers or is proposed to cover discharges.

Authorization Coverage

Outfall	Authorization under MSGP	Authorized Under Individual Permit

If **all** existing/proposed outfalls which discharge stormwater associated with industrial activities (and any of the allowable non-stormwater discharges) are **authorized under the MSGP**, **stop** here.

If **seeking authorization** for any outfalls which discharge stormwater associated with industrial activities (and any of the allowable non-stormwater discharges) **under an individual permit, proceed**.

NOTE: The following information is required for each existing/proposed stormwater outfall for which the facility is seeking individual permit authorization under this application

Item 3. Site Map (Instructions, Page 90)

Attach a site map or maps (drawn to scale) of the entire facility with the following information.

- the location of each stormwater outfall to be covered by the permit
- an outline of the drainage area that is within the facility's boundary and that contributes stormwater to each outfall to be covered by the permit
- connections or discharge points to municipal separate storm sewer systems
- locations of all structures (e.g. buildings, garages, storage tanks)
- structural control devices that are designed to reduce pollution in discharges of stormwater associated with industrial activities
- process wastewater treatment units (including ponds)
- bag house and other air treatment units exposed to stormwater (stormwater runoff, snow melt runoff, and surface runoff and drainage)
- landfills; scrapyards; surface water bodies (including wetlands)
- vehicle and equipment maintenance areas
- physical features of the site that may influence discharges of stormwater associated with industrial activities or contribute a dry weather flow
- locations where spills or leaks of reportable quality (as defined in *30 TAC § 327.4*) have occurred during the three years before this application was submitted to obtain coverage under an individual permit
- processing areas, storage areas, material loading/unloading areas, and other locations where significant materials are exposed to stormwater (stormwater runoff, snow melt runoff, and surface runoff and drainage)

Check the box to confirm all above information was provided on the facility site map(s).
Attachment: Click to enter text

Item 4. Facility/Site Information (Instructions, Page 90)

a. Provide the area of impervious surface and the total area drained by each stormwater outfall requested for authorization by this permit application.

Impervious Surfaces

Outfall	Area of Impervious Surface (include units)	Total Area Drained (include units)

b. Provide the following local area rainfall information and the source of the information.

Wettest month: Click to enter text.

Average rainfall for wettest month (total inches): Click to enter text.

25-year, 24-hour rainfall (inches): Click to enter text.

Source: Click to enter text.

- c. Attach an inventory, or list, of materials currently handled at the facility that may be exposed to precipitation. **Attachment:** Click to enter text.
- d. Attach narrative descriptions of the industrial processes and activities involving the materials in the above-listed inventory that occur outdoors or in some manner that may result in exposure of the materials to precipitation or runoff (see instructions for guidance). **Attachment:** Click to enter text.
- e. Describe any BMPs and controls the facility uses/proposes to prevent or effectively reduce pollution in stormwater discharges from the facility: Click to enter text.

Item 5. Pollutant Analysis (Instructions, Page 91)

- a. Provide the date range of all sampling events conducted to obtain the analytical data submitted with this application (e.g., 05/01/2018-05/30/2018): Click to enter text.
- b. \square Check the box to confirm all samples were collected no more than 12 months prior to the date of application submittal.
- c. Complete Table 17 as directed on page 92 of the Instructions.

Table 17 for Outfall No.: Click to enter text.

Pollutant	Grab Sample* Maximum (mg/L)	Composite Sample** Maximum (mg/L)	Grab Sample* Average (mg/L)	Composite Sample** Average (mg/L)	Number of Storm Events Sampled	MAL (mg/L)
pH (standard units)	(max)	_	(min)	_		_
Total suspended solids						_
Chemical oxygen demand						_
Total organic carbon						_
Oil and grease						_
Arsenic, total						0.0005
Barium, total						0.003
Cadmium, total						0.001
Chromium, total						0.003
Chromium, trivalent						_
Chromium, hexavalent						0.003
Copper, total						0.002
Lead, total						0.0005

Pollutant	Grab Sample* Maximum (mg/L)	Composite Sample** Maximum (mg/L)	Grab Sample* Average (mg/L)	Composite Sample** Average (mg/L)	Number of Storm Events Sampled	MAL (mg/L)
Mercury, total						0.000005
Nickel, total						0.002
Selenium, total						0.005
Silver, total						0.0005
Zinc, total						0.005

^{*} Taken during first 30 minutes of storm event

d. Complete Table 18 as directed on pages 92-94 of the Instructions.

Table 18 for Outfall No.: Click to enter text.

Pollutant	Grab Sample* Maximum	Composite Sample** Maximum	Grab Sample* Average (mg/L)	Composite Sample** Average (mg/L)	Number of Storm Events
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Sampled

^{*} Taken during first 30 minutes of storm event

Attachment: Click to enter text.

^{**} Flow-weighted composite sample

^{**} Flow-weighted composite sample

Item 6. Storm Event Data (Instructions, Page 93)

Provide the following data for the storm event(s) which resulted in the maximum values for the analytical data submitted:

Date of storm event: Click to enter text.

Duration of storm event (minutes): <u>Click to enter text.</u>

Total rainfall during storm event (inches): <u>Click to enter text.</u>

Number of hours the between beginning of the storm measured and the end of the previous measurable storm event (hours): <u>Click to enter text.</u>

Maximum flow rate during rain event (gallons/minute): Click to enter text.

Total stormwater flow from rain event (gallons): Click to enter text.

Provide a description of the method of flow measurement or estimate:

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 8.0: AQUACULTURE

This worksheet **is required** for all TPDES permit applications requesting individual permit coverage for discharges of aquaculture wastewater.

Item 1. Facility/Site Information (Instructions, Page 94)

a. Complete the following table with information regarding production ponds, raceways, and fabricated tanks at the facility.

Production Pond Descriptions

Number of Ponds	Dimensions (include units)	Area of Each Pond (include units)	Number of Ponds x Area of Ponds (include Units)

Total surface area of all ponds: <u>Click to enter text.</u>

Raceway Descriptions

Number of Raceways	Dimensions (include units)

Fabricated Tank Descriptions

Number of Tanks	Dimensions (include units)				

D.	Does t	пе тасш	ty nave	a rewd-approved	emergency plan?		
		Yes		No			
	If yes,	attach	а сору с	of the approved plai	n.		
	Attach	ment: 🖸	Click to e	enter text.			
c.	Does t	he facili	ity have	an aquatic plant tr	ansplant authoriz	ation?	
		Yes		No			
	If yes,	attach	а сору с	of the authorization	letter.		
	Attach	ment: 🖸	Click to e	enter text.			
Ito	enter t	. Spec	cies Io	f aquaculture facilit dentification	(Instructions	s, Page 95)	
of	the sto		tify and	able regarding each attach copies of an			
Sto	ck Spe	cies Info	rmation				
Sı	pecies			Source of Stock	Origin of Stock	Disease Status	Authorizations
	Attach	ment: 🖸	Click to e	enter text.			
Ite	em 3	Stoc	k Ma	nagement Pla	n (Instructio	ons, Page 95)
Att	tach a c	letailed	stock m	nanagement nlan: C	lick to enter text		

Item 4. Water Treatment and Discharge Description (Instructions, Page 96)

Attach a detailed description of the discharge practices and water treatment process(es): Click to enter text.

Item 5. Solid Waste Management (Instructions, Page 96)

Attach a description of the solid waste-disposal practices: Click to enter text.

Item 6. Site Assessment Report (Instructions, Page 96)

All new and expanding commercial shrimp facilities located/to be located within the coastal zone must attach a detailed site assessment report which identifies sensitive aquatic habitats within the coastal zone: Click to enter text.

WORKSHEET 9.0

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

CLASS V INJECTION WELL INVENTORY/AUTHORIZATION FORM

Submit the completed form to:

TCEQ IUC Permits Team Radioactive Materials Division MC-233 PO Box 13087 Austin, Texas 78711-3087 512-239-6466

For TCEQ Use Only
Reg. No
Date Received
Date Authorized
Date Authorized

Item 1. General Information (Instructions Page 99)

1. TCEQ Program Area

Program Area (PST, VCP, IHW, etc.): Click to enter text.

Program ID: Click to enter text.

Contact Name: <u>Click to enter text.</u>
Phone Number: <u>Click to enter text.</u>

2. Agent/Consultant Contact Information

Contact Name: Click to enter text.

Address: Click to enter text.

City, State, and Zip Code: <u>Click to enter text.</u>

Phone Number: <u>Click to enter text.</u>

3. Owner/Operator Contact Information

☐ Owner ☐ Operator

Owner/Operator Name: Click to enter text.

Contact Name: Click to enter text.

Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Phone Number: Click to enter text.

4. Facility Contact Information

Facility Name: <u>Click to enter text.</u>

Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Location description (if no address is available): Click to enter text.

Facility Contact Person: <u>Click to enter text.</u>

Phone Number: <u>Click to enter text.</u>

	Latitu	ide: <u>Click</u>	to enter tex	<u>Xt.</u>					
	Longi	tude: <u>Clic</u>	ck to enter t	ext.					
				GPS, TOPO, etc.): <u>Click to enter</u>	text.				
	Attac	h topogra	aphic quadra	angle map as attachment A.					
6.		Informat							
	Type	of Well C	onstruction	, select one:					
□ Vertical Injection									
		□ Infi	ltration Gall	ery					
		□ Ten	nporary Inje	ection Points					
		□ Oth	er, Specify:	Click to enter text.					
	Numb	er of Inj	ection Wells	: Click to enter text.					
7.	Purpo	ose							
	Detai	led Descr	ription regar	ding purpose of Injection System	m:				
	Clic	k to entei	text.						
		h a Site M priate.)	lap as Attac	chment B (Attach the Approved I	Remediat	ion Plan, if			
8.	Water	. Well Dr	iller/Install	er					
	Water	r Well Dri	ller/Installe	r Name: Click to enter text.					
	City,	State, and	d Zip Code:	Click to enter text.					
	Phone	e Numbei	: Click to er	nter text.					
	Licen	se Numb	er: <u>Click to e</u>	enter text.					
Item	12.]	Propos	ed Dow	n Hole Design					
		_		led by a licensed engineer as At	tachment	C.			
		esign Tal		,					
Name		Size	Setting	Sacks Cement/Grout - Slurry	Hole	Weight (lbs/ft)			
String	_		Depth	Volume - Top of Center	Size	PVC/Steel			
Casin									
Tubir	Ü								
LEGRAA	n		I			Ī			

5. Latitude and Longitude, in degrees-minutes-seconds

Item 3. Proposed Trench System, Subsurface Fluid Distribution System, or Infiltration Gallery

Attach a diagram signed and sealed by a licensed engineer as Attachment D.

System(s) Dimensions: <u>Click to enter text.</u>
System(s) Construction: <u>Click to enter text.</u>

Item 4. Site Hydrogeological and Injection Zone Data

- 1. Name of Contaminated Aquifer: Click to enter text.
- 2. Receiving Formation Name of Injection Zone: <u>Click to enter text.</u>
- 3. Well/Trench Total Depth: <u>Click to enter text.</u>
- 4. Surface Elevation: Click to enter text.
- 5. Depth to Ground Water: <u>Click to enter text.</u>
- 6. Injection Zone Depth: <u>Click to enter text.</u>
- 7. Injection Zone vertically isolated geologically? ☐ Yes ☐ No Impervious Strata between Injection Zone and nearest Underground Source of Drinking Water:

Name: Click to enter text.

Thickness: Click to enter text.

- 8. Attach a list of contaminants and the levels (ppm) in contaminated aquifer as Attachment E.
- 9. Attach the Horizontal and Vertical extent of contamination and injection plume as Attachment F.
- 10. Attach Formation (Injection Zone) Water Chemistry (Background levels) TDS, etc., as Attachment G.
- 11. Injection Fluid Chemistry in PPM at point of injection. Attach as Attachment H.
- 12.Lowest Known Depth of Ground Water with < 10,000 PPM TDS: Click to enter text.
- 13. Maximum injection Rate/Volume/Pressure: Click to enter text.
- 14. Water wells within 1/4 mile radius (attach map as Attachment I): Click to enter text.
- 15. Injection wells within 1/4 mile radius (attach map as Attachment J): Click to enter text.
- 16. Monitor wells within 1/4 mile radius (attach drillers logs and map as Attachment K): Click to enter text.
- 17. Sampling frequency: Click to enter text.
- 18. Known hazardous components in injection fluid: Click to enter text.

Item 5. Site History

- 1. Type of Facility: <u>Click to enter text.</u>
- 2. Contamination Dates: <u>Click to enter text.</u>
- 3. Original Contamination (VOCs, TPH, BTEX, etc.) and Concentrations. Attach as Attachment L.
- 4. Previous Remediation. Attach results of any previous remediation as Attachment M.

NOTE: Authorization Form should be completed in detail and authorization given by the TCEQ before construction, operation, and/or conversion can begin. Attach additional pages as necessary.

Item 6. CLASS V INJECTION WELL DESIGNATIONS

- 5A07 Heat Pump/AC return (IW used for groundwater to heat or cool buildings)
- 5A19 Industrial Cooling Water Return Flow (IW used to cool industrial process equipment)
- 5B22 Salt Water Intrusion Barrier (IW used to inject fluids to prevent the intrusion of salt water into an aquifer)
- 5D02 Stormwater Drainage (IW designed for the disposal of rain water)
- 5D04 Industrial Stormwater Drainage Wells (IW designed for the disposal of rain water associated with industrial facilities)
- 5F01 Agricultural Drainage (IW that receive agricultural runoff)
- 5R21 Aquifer Recharge (IW used to inject fluids to recharge an aquifer)
- 5S23 Subsidence Control Wells (IW used to control land subsidence caused by groundwater withdrawal)
- 5W09 Untreated Sewage
- 5W10 Large Capacity Cesspools (Cesspools that are designed for 5,000 gpd or greater)
- 5W11 Large Capacity Septic systems (Septic systems designed for 5,000 gpd or greater)
- 5W12 WTTP disposal
- 5W20 Industrial Process Waste-disposal Wells
- 5W31 Septic System (Well Disposal method)
- 5W32 Septic System Drainfield Disposal
- 5X13 Mine Backfill (IW used to control subsidence, dispose of mining byproducts, or fill sections of a mine)
- 5X25 Experimental Wells (Pilot Test) (IW used to test new technologies or tracer dye studies)
- 5X26 Aguifer Remediation (IW used to clean up, treat, or prevent contamination of a USDW)
- 5X27 Other Wells
- 5X28 Motor Vehicle Waste-disposal Wells (IW used to dispose of waste from a motor vehicle site These are currently banned)
- 5X29 Abandoned Drinking Water Wells (waste disposal)

INDUSTRIAL WASTEWATER PERMIT APPLICATION **WORKSHEET 10.0: QUARRIES IN THE JOHN GRAVES SCENIC** RIVERWAY

This worksheet is required for all applications for individual permits for a municipal solid waste facility or mining facility located within a Water Quality Protection Area in the John Graves Scenic Riverway. Note: Review 30 TAC §§ 311.71–311.82 thoroughly prior to completing any portion of this worksheet.

Item 1. Exclusions (Instructions, Page 100)
a. Is this a municipal solid waste facility?
□ Yes □ No
b. Has this quarry been in operation since January 1, 1994 without cessation of operation for more than 30 consecutive days and under the same ownership?
□ Yes □ No
c. Is this a coal mine?
□ Yes □ No
d. Is this facility mining clay and/or shale for use in manufacturing structural clay products
□ Yes □ No
If yes to any above question, stop here . The facility is required to maintain documentation, a outlined in $30\ TAC\ \S\ 311.72(c)$, at the facility to demonstrate the exclusion(s).
Item 2. Location of the Quarry (Instructions, Page 101)
Check the box next to the distance between the quarry and the nearest navigable water bod
\square < 200 feet \square 200 feet - 1,500 feet \square 1,500 feet - 1 mile \square > 1 mile
NOTE: The construction or operation of any new quarry or expansion of any existing quarry prohibited within 200 feet of any water body located within a Water Quality Protection Area the John Graves Scenic Riverway.
Item 3. Additional Requirements (Instructions, Page 101)
Ilos the table in the Instructions to determine if additional application requirements apply to

Use the table in the Instructions to determine if additional application requirements apply to the facility based on distance between the quarry and the nearest waterway. Attach as appropriate or enter N/A.

- a. Attach a Restoration Plan: Click to enter text.
- b. Amount of Financial Assurance for Restoration: \$\(\frac{\text{Click to enter text.}}{\text{}} \)

Mechanism: Click to enter text.

- c. Attach a Technical Demonstration: Click to enter text.
- d. Attach a Reclamation Plan: Click to enter text.
- e. Amount of Financial Assurance for Reclamation: \$ Click to enter text.

Mechanism: Click to enter text.

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 11.0: COOLING WATER SYSTEM INFORMATION

This worksheet is required for all TPDES permit applications that meet the conditions outlined in Technical Report 1.0, Item 12.

Item 1. Cooling Water System Data (Instructions, Page 104)

a. Complete the following table with information regarding the cooling water system.

Cooling Water System Data

Parameter	Volume (include units)
Total DIF	
Total AIF	
Intake Flow Use(s) (%)	
Contact cooling	
Non-contact cooling	
Process Wastewater	
Other	

b. Attach the following information:

- 1. A narrative description of the design and annual operation of the facility's cooling water system and its relationship to the CWIS(s).
- 2. A scaled map depicting the location of each CWIS, impoundment, intake pipe, and canals, pipes, or waterways used to convey cooling water to, or within, the cooling water system. Provide the latitude and longitude for each CWIS and any intake pipe(s) on the map. Indicate the position of the intake pipe within the water column.
- 3. A description of water reuse activities, if applicable, reductions in total water withdrawals, if applicable, and the proportion of the source waterbody withdrawn (on a monthly basis).
- 4. Design and engineering calculations prepared by a qualified professional and data to support the information provided in above item a.
- 5. Previous year (a minimum of 12 months) of AIF data.
- 6. A narrative description of existing or proposed impingement and entrainment technologies or operation measures and a summary of their performance, including, but not limited to, reductions in impingement mortality and entrainment due to intake location and reductions in total water withdrawals and usage.

Attachment: <u>Click to enter text.</u>

Item 2. Cooling Water Intake Structure(s) Data (Instructions, Page 105)

a. Complete the following table with information regarding each cooling water intake structure (this includes primary and make-up CWIS(s)).

Cooling Water Intake Structure(s) Data

CWIS ID		
DIF (include units)		
AIF (include units)		
Intake Flow Use(s) (%)		
Contact cooling		
Non-contact cooling		
Process Wastewater		
Other		
Latitude (decimal degrees)		
Longitude (decimal degrees)		

- b. Attach the following information regarding the CWIS(s):
 - 1. A narrative description of the configuration of each CWIS, annual and daily operation, including any seasonal changes, and where it is located in the water body and in the water column.
 - 2. Engineering calculations for each CWIS.

Attachment: Click to enter text.

Item 3. Source Water Physical Data (Instructions, Page 105)

a. Complete the following table with information regarding the CWIS(s) source waterbody (this includes primary and make-up CWIS(s)).

Source Waterbody Data

CWIS ID		
Source Waterbody		
Mean Annual Flow		
Source		

- b. Attach the following information regarding the source waterbody.
 - 1. A narrative description of the source water for each CWIS, including areal dimensions, depths, salinity and temperature regimes, and other documentation that supports this determination of the water body type where each cooling water intake structure is located.

- 2. A narrative description of the source waterbody's hydrological and geomorphological features.
- 3. Scaled drawings showing the physical configuration of all source water bodies used by the facility, including the source waterbody's hydrological and geomorphological features. **NOTE:** The source waterbody's hydrological and geomorphological features may be included on the map submitted for item 1.b.ii of this worksheet.
- 4. A description of the methods used to conduct any physical studies to determine the intake's area of influence within the waterbody and the results of such studies.

Attachment: Click to enter text.

I

n 4. Operational Status (Instructions, Page 106)
this application for a power production or steam generation facility? — Yes — No
no , proceed to Item 4.b. If yes , provide the following information as an attachment:
Describe the operating status of each individual unit, including age, capacity utilization rate (or equivalent) for the previous five years (a minimum of 60 months), and any seasonal changes in operation.
Describe any extended or unusual outages or other factors which significantly affect current data for flow, impingement, entrainment.
Identify any operating unit with a capacity utilization rate of less than 8 percent averaged over a contiguous period of two years (a minimum of 24 months).
Describe any major upgrades completed within the last 15 years, including but not limited to boiler replacement, condenser replacement, turbine replacement, or changes of fuel type.
ttachment: Click to enter text.
rocess Units
Is this application for a facility which has process units that use cooling water (other than for power production or steam generation)?
□ Yes □ No
If no , proceed to Item 4.c. If yes , continue.
Does the facility use or intend to use reductions in flow or changes in operations to meet the requirements of 40 CFR § 125.94 (c)?
□ Yes □ No
If no , proceed to Item 4.c. If yes , attach descriptions of the following information:
 Individual production processes and product lines
 The operating status, including age of each line and seasonal operation Any extended or unusual outages that significantly affect current data for flow,

impingement, entrainment, or other factors

	 Any major upgrades completed within the last 15 years and plans or schedules for decommissioning or replacement of process units or production processes and product lines.
	Attachment: Click to enter text.
c.	Is this an application for a nuclear power production facility?
	□ Yes □ No
	If no , proceed to Item 4.d. If yes , attach a description of completed, approved, or scheduled upgrades and the Nuclear Regulatory Commission relicensing status for each unit at the facility.
	Attachment: Click to enter text.
d.	Is this an application for a manufacturing facility?
	□ Yes □ No
	If ${\bf no}$, proceed to Worksheet 11.1. If ${\bf yes}$, attach descriptions of current and future production schedules and any plans or schedules for any new units planned within the next five years (a minimum of 60 mos)
	Attachment: Click to enter text

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 11.1: IMPINGEMENT MORTALITY

This worksheet **is required** for all TPDES permit applications **that meet the conditions outlined in Technical Report 1.0, Item 12.** Complete one copy of this worksheet for **each** individual CWIS the facility uses or proposes to use.

Check the box next to the method of compliance for the Impingement Mortality Standard

CWIS ID: Click to enter text.

Item 2.

Item 1. Impingement Compliance Technology Selection (Instructions, Page 107)

□ Closed-cycle recirculating system(CCRS) [40 CFR § 125.94(c)(1)]
□ 0.5 ft/s Through-Screen Design Velocity [40 CFR § 125.94(c)(2)] - Proceed to Worksheet 11.2
□ 0.5 ft/s Through Screen Actual Velocity [40 CFR § 125.94(c)(3)]
□ Existing offshore velocity cap [40 CFR § 125.94(c)(4)] - Proceed to Worksheet 11.2
□ Modified traveling screens [40 CFR § 125.94(c)(5)]
□ System of technologies [40 CFR § 125.94(c)(6)]
□ Impingement mortality performance standard [40 CFR § 125.94(c)(7)]
□ De minimis rate of impingement [40 CFR § 125.94(c)(11)]
□ Low capacity utilization power-generation facilities [40 CFR § 125.94(c)(12)]

If 0.5 ft/s Through-Screen Design Velocity [$40 \ CFR \ \S \ 125.94(c)(2)$] or existing offshore velocity cap [$40 \ CFR \ \S \ 125.94(c)(4)$] was selected, proceed to Worksheet 11.2. Otherwise, continue to

Item 2. Impingement Compliance Technology Information (Instructions, Page 107)

Complete the following sections based on the selection made for item 1 above.

	r
a.	CCRS [40 CFR § 125.94(c)(1)]
	Check this box to confirm the CWS meets the definition of CCRS located at 40 CFR $125.91(c)$ and provide a response to the following questions.
	 Does the facility use or propose to use a CWIS to replenish water losses to the CWS? ☐ Yes ☐ No
	If no , proceed to item a.2. If yes , provide the following information as an attachmenand continue.
	• CWIS ID

• 12 months of intake flow data for any CWIS used for make-up intake flows to replenish cooling water losses, excluding intakes for losses due to blowdown, drift, or evaporation.

§

• A narrative description of any physical or operational measures taken to minimize make-up withdraws.

Attachment: Click to enter text.

NOTE: Do not complete a separate Worksheet 11.1 for a make-up CWIS.

- 2. Does the facility use or propose to use cooling towers?
 - □ Yes □ No

If **no**, proceed to Worksheet 11.2. If **yes**, provide the following information and proceed to Worksheet 11.2.

• Average number of cycles of concentration (COCs) prior to blowdown:

Average COCs Prior to Blowdown

Cooling Tower ID		
COCs		

- Attach COC monitoring data for each cooling tower from the previous year (a minimum of 12 months): Click to enter text.
- Maximum number of COCs each cooling tower can accomplish based on design of the system.

Calculated COCs Prior to Blowdown

Cooling Tower ID		
COCs		

- Describe conditions that may limit the number of COCs prior to blowdown, if any, including but not limited to permit conditions: <u>Click to enter text.</u>
- b. 0.5 ft/s Through Screen Actual Velocity [40 CFR § 125.94(c)(3)]

Provide daily intake flow measurement monitoring data from the previous year (a minimum of 12 months) as an attachment and proceed to Worksheet 11.2.

Attachment: Click to enter text.

c. Modified traveling screens [40 CFR § 125.94(c)(5)]

Provide the following information as an attachment and proceed to Worksheet 11.2.

- 1. A description of the modified traveling screens and associated equipment.
- 2. A site-specific impingement technology performance optimization study that includes a narrative description of the biological data collection methods
- 3. Biological sampling data from the previous two years (a minimum of 24 months).

Attachment: Click to enter text.

d. System of technologies [$40 \ CFR \ \S \ 125.94(c)(6)$] or impingement mortality performance standard [$40 \ CFR \ \S \ 125.94(c)(7)$]

Provide the following information as an attachment and proceed to Worksheet 11.2.

1. A description of the system of technologies used or proposed for use by the facility to

achieve compliance with the impingement mortality standard.

- 2. A site-specific impingement technology performance optimization study that includes a narrative description of the biological data collection methods.
- 3. Biological sampling data from the previous two years (a minimum of 24 months).

Attachment: Click to enter text.

- e. De minimis rate of impingement [40 CFR § 125.94(c)(11)] Provide the following information and proceed to Worksheet 11.2.
 - 1. Attach monitoring data from the previous year (a minimum of 12 months) of intake flow measured at a frequency of 1/day on days of operation.

Attachment: Click to enter text.

2. If the rate of impingement caused by the CWIS is extremely low (at an organism or ageone equivalent count), attach supplemental information to Worksheet 11.0, item 1.b.6. to support this determination.

Attachment: Click to enter text.

f. Low capacity utilization power-generation facilities [40 CFR § 125.94(c)(12)]

Attach monthly utilization data from the previous 2 years (a minimum of 24 months) for each operating unit and proceed to Worksheet 11.2.

Attachment: Click to enter text.

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 11.2: SOURCE WATER BIOLOGICAL DATA

This worksheet **is required** for all TPDES permit applications that **meet the conditions outlined in Technical Report 1.0, Item 12**. Complete one copy of this worksheet for **each** source waterbody of a CWIS for which a facility has selected an Impingement Mortality Technology Option described at $40 \ CFR \ \S S \ 125.94(c)(1)$ –(7).

Name of source waterbody: <u>Click to enter text.</u>

Item 1. Species Management (Instructions, Page 109)

a.	The facility has obtained an incidental take permit for its cooling water intake structure(s) from the USFWS or the NMFS.
	□ Yes □ No
	If yes, attach any information submitted in order to obtain that permit, which may be used to supplement the permit application information requirements of paragraph $40\ CFR\ S$ $125.95(f)$.
	Attachment: Click to enter text.
b.	Is the facility requesting a waiver from application requirements at 40 CFR § $122.21(r)(4)$ in accordance with 40 CFR § 125.95 for any CWIS(s) that withdraw from a man-made reservoir that is stocked and managed by a state or federal natural resources agency or the equivalent?
	□ Yes □ No
	If yes , attach a copy of the most recent managed fisheries report to TPWD, or equivalent.
	Attachment: Click to enter text.
c.	There are no federally listed threatened or endangered species or critical habitat designations within the source water body.
	□ True □ False
It	em 2. Source Water Biological Data (Instructions, Page 109)
Ne	ew Facilities (Phase I, Track I and II)

Existing Facilities (Phase II)

- If the answer to **1.b.** above was **no**, provide responses to all items in this section and proceed to Worksheet 11.3.
- If the answer to **1.b.** was **yes** and **1.c.** was **true**, do not complete any items in this section and proceed to Worksheet 11.3.
- If the answer to **1.b.** was **yes** and **1.c.** was **false**, attach a response for any item in this section that is not contained within the most recent TPWD, or equivalent and proceed to Worksheet 11.3.

Attachment: Click to enter text.

• Provide responses to all items in this section and stop.

- a. A list of the data requested at 40 CFR § 122.21(r)(4)(ii) through (vi) that are not available, and efforts made to identify sources of the data.
- b. Provide a list of species (or relevant taxa) in the vicinity of the CWIS and identify the following information regarding each species listed.
 - all life stages and their relative abundance,
 - identification of all species and life stages that would be most susceptible to impingement and entrainment,
 - forage base,
 - significance to commercial fisheries,
 - significance to recreational fisheries,
 - primary period of reproduction,
 - larval recruitment, and
 - period of peak abundance for relevant taxa.
- c. Data representative of the seasonal and daily activities (e.g., feeding and water column migration) of biological organisms in the vicinity of the CWIS(s).
- d. Identify all threatened, endangered, and other protected species that might be susceptible to impingement and entrainment at the CWIS(s).
- e. Documentation of any public participation or consultation with federal or state agencies undertaken.

The following is required for existing facilities only. Include the following information with the above listed attachment.

- f. Identify any protective measures and stabilization activities that have been implemented and provide a description of how these measures and activities affected the baseline water condition in the vicinity of the intake.
- g. A list of fragile species, as defined at 40 CFR § 125.92(m), at the facility. The applicant need only identify those species not already identified as fragile at 40 CFR § 125.92(m).

NOTE: New units at an existing facility are not required to resubmit this information if the cooling water withdrawals for the operation of the new unit are from an existing intake.

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 11.3: ENTRAINMENT

This worksheet **is required** for all TPDES permit applications that **meet the conditions outlined in Technical Report 1.0, Item 12**. Complete one copy of this worksheet for **each** individual CWIS the facility uses or proposes to use.

CWIS ID: Click to enter text.

Item 1. Applicability (Instructions, Page 111)

Is the AIF of the CWIS identified above greater than, or equal to, 125 MGD?

- □ Yes □ No
- If **no** or the facility has selected **CCRS** [40 CFR § 125.94(c)(1)] for the impingement mortality compliance method, complete Item 2 and stop here.
- If **yes** and the facility is **seeking a waiver** from application requirements in accordance with 40 CFR § 125.95 for any CWIS(s) that withdraw from a man-made reservoir that is stocked and managed by a state or federal natural resources agency or the equivalent, complete item 2 and stop.
- If **yes** and the facility is **not seeking a waiver** from application requirements in accordance *with 40 CFR § 125.95*, complete item 2 and provide any required and completed studies listed in item 3. For any required studies in item 3 that are not complete, provide a detailed explanation for the delay and an anticipated schedule for completion and submittal.

Item 2. Existing Entrainment Performance Studies (Instructions, Page 111)

Attach any previously conducted studies or studies obtained from other facilities addressing technology efficacy, through-facility entrainment survival, and other entrainment studies.

Attachment: Click to enter text.

Item 3. Facility Entrainment Performance Studies (Instructions, Page 111)

- a. Attach an entrainment characterization study, as described at 40 CFR § 122.21(r)(9). Click to enter text.
- b. Attach a comprehensive feasibility study, as described as 40 CFR § 122.21(r)(10). Click to enter text.
- c. Attach a benefits valuation study, as described as 40 CFR § 122.21(r)(11): Click to enter text.
- d. Attach a non-water quality environmental and other impacts study, as described as 40 CFR § 122.21(r)(12). Click to enter text.
- e. Attach a peer review analysis, as described as 40 CFR § 122.21(r)(13). Click to enter text.

INDUSTRIAL WASTEWATER PERMIT APPLICATION WORKSHEET 12.0: OIL AND GAS EXPLORATION, DEVELOPMENT, AND PRODUCTION WASTEWATER DISCHARGES

This worksheet **is required** for all TPDES permit applications that are subject to Effluent Limitation Guidelines in 40 CFR Part 435.

Item 1. Operational Information (Instructions, Page 112)

a.	Is the wastewater from an oil and gas exploration, development, or production facility located west of the 98th meridian?								
	□ Yes □ No								
	If yes, continue to the next question. If no, skip to Item 2 relating to Production/Process Data.								
b.	Provide justification for how the wastewater is/will be used for agriculture or wildlife propagation.								
	Click to enter text.								
Ite	em 2. Production/Process Data (Instructions, Page 112)								
a.	Provide the applicable 40 CFR Part 435 Subpart(s).								
	Click to enter text.								
b.	Describe if the permit being sought is for discharges from exploration, development, production, or for a combination of more than one of those activities.								
	Click to enter text.								

/astestreams Generated Wastestream	Requesting authorization	Volume	% of
	to discharge? (Yes/No)	(MGD)	Total Flow
Describe how the facility w not being sought. Click to enter text.	ill manage wastestreams for which	discharge au	thorization
not being sought. Click to enter text.		discharge au	thorization
not being sought. Click to enter text. Attachment: Click to enter	text.	discharge au	thorization
not being sought. Click to enter text. Attachment: Click to enter	text.	discharge au	thorization
Attachment: Click to enter Provide information on mis	text.	discharge au	thorization
Attachment: Click to enter Provide information on mis	text.	discharge au	thorization
not being sought. Click to enter text. Attachment: Click to enter Provide information on mis	text.	discharge au	thorization
not being sought. Click to enter text. Attachment: Click to enter Provide information on mis	text.	discharge au	thorization

f. List of chemicals that are in use, or will be used, downhole. Provide the category, concentration used/to be used, and purpose of using the chemical. Attach a safety data sheet for each chemical listed.

Chemicals List

Category	Chemical Name	Concentration (include units)	Purpose

Attachment: Click to enter text.

g. List of chemicals that are in use, or will be used, to treat the wastewater to be discharged under this authorization. Provide the concentration used/to be used and purpose of using the chemical. Attach a safety data sheet for each chemical listed.

Water Treatment Chemicals List

Category	Chemical Name	Concentration (include units)	Purpose

Attachment: Click to enter text.

Item 3. Pollutant Analysis (Instructions, Page 113)

Tables 1, 2, 6, and 7 located in Worksheet 2.0 are required. In addition, Table 19 below is required and must be completed for each outfall and submitted with this application. The remaining tables in Worksheet 2.0, are required as applicable.

- a. Provide the date range of all sampling events conducted to obtain the analytical data submitted with this application (e.g., 05/01/2018-05/30/2018): Click to enter text.
- b. \square Check the box to confirm all samples were collected no more than 12 months prior to the date of application submittal.
- c. Read the general testing requirements in the instructions for important information about sampling, test methods, and MALs. If a contact laboratory was used, attach a list which includes the name, contact information, and pollutants analyzed for each laboratory/firm. Attachment: Click to enter text.
- d. Attach correspondence from TCEQ approving submittal of less than the required number of samples, if applicable. **Attachment:** Click to enter text.

Table 19 for Outfall No.: Click to enter text. Samples are (check one):□ Composite □ Grab

Pollutant	Sample 1 (mg/L)*	Sample 2 (mg/L)*	Sample 3 (mg/L)*	Sample 4 (mg/L)*
Calcium				
Potassium				
Sodium				

^{*}Indicate units if different from mg/L.

AR.1.0.1.f – Major Amendment Request

AR.1.01.f - Major Amendment Request

The facility installed Granular Activated Carbon (GAC) copper beds in October 2022 to treat the condensate generated from the Main Air Compressor (major source of copper in the wastewater). Based on the analytical results for copper for the past 18-months, the average copper concentrations for the period from 10/26/22 to 3/20/24 (after the installation of copper beds) is 0.0248 mg/L, which is less than 70% of daily average limit (0.0305 mg/L) and less than 85% of daily average limit (0.037 mg/L). The average copper concentration for that period is approximately 57% of the daily average limit.

Based on this pattern of reduction in the analytical values of copper, the facility requests a reduction/elimination of copper effluent limits in the renewed permit. The analytical sample values for copper after the installation of the copper beds will be provided to the TCEQ upon request.

AR.1.0.1.h – Copy of Applicant Fee Payment

Your transaction is complete. Thank you for using TCEQ ePay.

Note: It may take up to 3 working days for this electronic payment to be processed and be reflected in the TCEQ ePay system. Print this receipt and the vouchers for your records. An email receipt has also been sent.

Transaction Information

Trace Number: 582EA000607444

Date: 04/22/2024 02:55 PM

Payment Method: CC - Authorization 0000095438

ePay Actor: HUDA SHIHADA

Texas.gov Price: \$1,278.38*

Actor Email: huda.shihada@aecom.com

IP: 165.85.199.60 **TCEQ Amount:** \$1,250.00

* This service is provided by Texas.gov, the official website of Texas. The price of this service includes funds that support the ongoing operations and enhancements of Texas.gov, which is provided by a third party in partnership with the State.

Payment Contact Information

Name: HUNTER ARMSTRONG

Company: MESSER LLC

Address: 11605 STRANG RD, LA PORTE, TX 77571

Phone: 281-687-0261

Cart Items

Click on the voucher number to see the voucher details.

chek on the ve	defici number to see the vociner details.		
Voucher	Fee Description	AR Number	Amount
702415	WW PERMIT - MINOR FACILITY SUBJECT TO 40 CFR 400-471 - MAJOR AMENDMENT		\$1,200.00
702416	30 TAC 305.53B WQ NOTIFICATION FEE	TCEQ Amount:	\$50.00 \$1,250.00

Note: It may take up to 3 working days for this electronic payment to be processed and be reflected in the TCEQ ePay system. Print this receipt for your records.

Print this voucher for your records. If you are sending the TCEQ hardcopy documents related to this payment, include a copy of this voucher.

Transaction Information

Voucher Number: 702415

Trace Number: 582EA000607444

Date: 04/22/2024 02:55 PM

Payment Method: CC - Authorization 0000095438

Voucher Amount: \$1,200.00

Fee Type: WW PERMIT - MINOR FACILITY SUBJECT TO 40 CFR 400-471 - MAJOR AMENDMENT

ePay Actor: HUDA SHIHADA

Actor Email: huda.shihada@aecom.com

IP: 165.85.199.60

Payment Contact Information

Name: HUNTER ARMSTRONG

Company: MESSER LLC

Address: 11605 STRANG RD, LA PORTE, TX 77571

Phone: 281-687-0261

Site Information

RN: RN110995396
Site Name: MESSER LA PORTE

Site Address: 11605 STRANG RD, LA PORTE, TX 77571 Site Location: 11605 STRANG RD LA PORTE TX 77571

Customer Information

CN: CN603509266
Customer Name: MESSER LLC

Customer Address: 11605 STRANG RD, LA PORTE, TX 77571

Other Information

Program Area ID: WQ0005108000

Print this voucher for your records. If you are sending the TCEQ hardcopy documents related to this payment, include a copy of this voucher.

Transaction Information

Voucher Number: 702416

Trace Number: 582EA000607444

Date: 04/22/2024 02:55 PM

Payment Method: CC - Authorization 0000095438

Voucher Amount: \$50.00

Fee Type: 30 TAC 305.53B WQ NOTIFICATION FEE

ePay Actor: HUDA SHIHADA

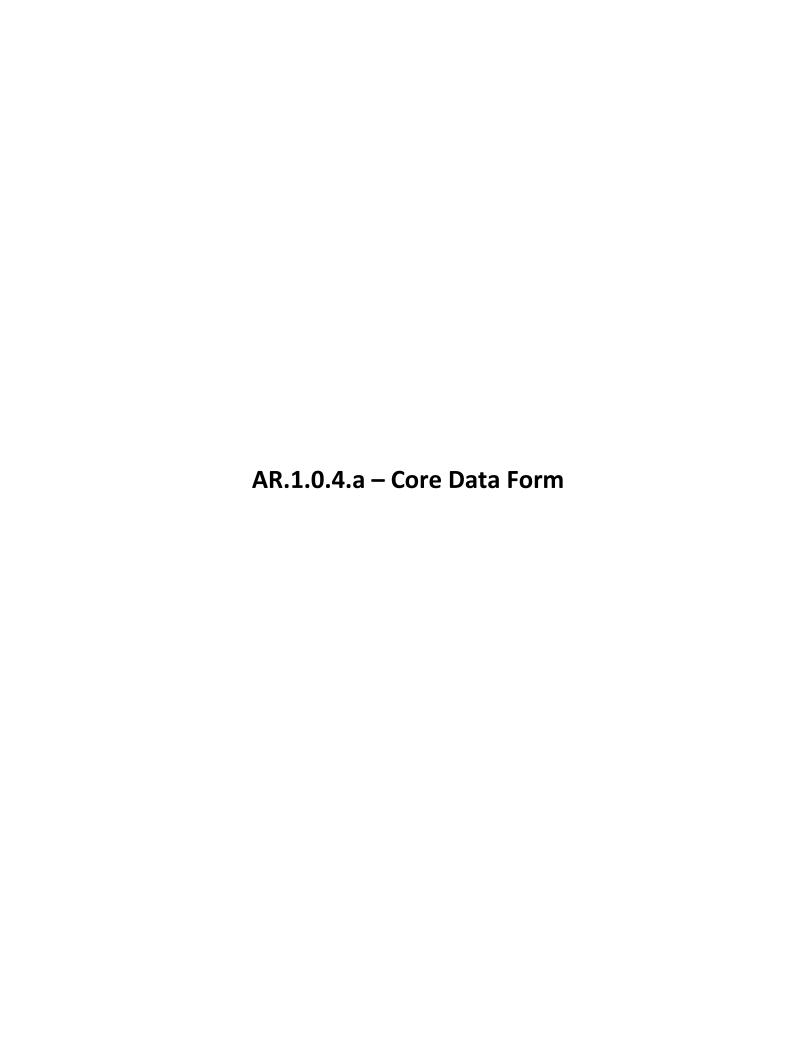
Actor Email: huda.shihada@aecom.com

IP: 165.85.199.60

Payment Contact Information

Name: HUNTER ARMSTRONG

Company: MESSER LLC


Address: 11605 STRANG RD, LA PORTE, TX 77571

Phone: 281-687-0261

Site Help | Disclaimer | Web Policies | Accessibility | Our Compact with Texans | TCEQ Homeland Security | Contact Us Statewide Links: Texas.gov | Texas Homeland Security | TRAIL Statewide Archive | Texas Veterans Portal

© 2002-2024 Texas Commission on Environmental Quality

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (if other is checked please describe in space provided.)												
New Permit, Registration or Authorization (Core Data Form should be submitted with the program application.)												
Renewal (Core Data l	Form should be submi	tted with the	renewal form)			□ o	Other				
2. Customer	Reference	Number (if issued)		Follow this I								ssued)
CN 6035092	Central R			RN 1	RN 110995396							
ECTION II: Customer Information												
4. General Cu	istomer In	formation	5. Effective	e Date for Cu	ıstome	r Info	rmation	Updat	es (mm/dd/	уууу)		
New Custor			-	tomer Informa					egulated Ent	ity Owne	ership	
Change in Le	egal Name (Verifiable with the Te	xas Secretary	of State or Tex	as Com	ptrolle	r of Public	Accou	nts)			
		bmitted here may	-	automatical	ly base	d on 1	what is c	urrent	and active	with th	e Texas Secr	etary of State
(SUS) or lexa	s Comptro	oller of Public Accou	ints (CPA).									
6. Customer	Legal Nam	e (If an individual, pri	nt last name	first: eg: Doe, J	lohn)			<u>If nev</u>	v Customer, e	enter pre	evious Custom	er below:
Messer LLC												
7. TX SOS/CP	A Filing Nu	umber	8. TX Stat	e Tax ID (11 d	igits)			9. Federal Tax ID 10. DUNS Number (if			Number (if	
								(9 digits)				
								51-01	120061		00-136-814	1
11. Type of C	ustomer:		tion				☐ Individ	lual		Partne	rship: \square Gen	eral Limited
_		County Federal	Local Sta	te 🗌 Other			Sole Pi	roprieto	orship	Otl	ner:	
12. Number o	of Employe	ees						13. I	ndependen	tly Ow	ned and Ope	erated?
0-20	21-100] 101-250 251-	500 🛭 50	1 and higher				⊠ Ye	es [☐ No		
14. Customer	Role (Prop	posed or Actual) – as i	t relates to th	ne Regulated Ei	ntity list	ed on	this form.	Please (check one of	the follo	wing	
Owner Occupation	al Licensee	Operator Responsible Pa		Owner & Opera					Other:			
	11605 Str	rang Road										
15. Mailing												
Address:	City	La Darta		State	TX		ZIP	7757	1		ZIP + 4	9749
	City	La Porte		State	1.7		217	//5/	1		ZIP T 4	3/43
16. Country N	Mailing Inf	ormation (if outside	USA)			17.	E-Mail Ad	ddress	(if applicable	2)		
N/A						N/A						
18. Telephon	18. Telephone Number 19. Extension or Code 20. Fax Number (if applicable)											

TCEQ-10400 (11/22) Page 1 of 3

(409) 204-9150	() -
(409) 204-9150	() -

SECTION III: Regulated Entity Information

3	tity iiiioiiii	acion (i) New Neg	gulated Entity" is selec	teu, u new pi	лин арриса	tion is u	iso required.)		
☐ New Regulated Entity	Update to	Regulated Entity	Name 🔀 Update t	o Regulated	Entity Inform	ation			
The Regulated Entity Namas Inc, LP, or LLC).	ne submitte	ed may be upda	ted, in order to med	et TCEQ Cor	e Data Star	ndards	(removal of or	ganization	al endings such
22. Regulated Entity Nam	e (Enter nan	ne of the site wher	re the regulated action	is taking pla	ce.)				
Messer La Porte									
23. Street Address of the Regulated Entity:	11605 Stra	ng Road							
(No PO Boxes)	City	La Porte	State	ТХ	ZIP	7757:	1	ZIP + 4	9749
24. County	Harris		·						
		If no Stre	et Address is provid	led, fields 2	5-28 are re	quired.			
25. Description to	N/A								
Physical Location:									
26. Nearest City						State		Nea	rest ZIP Code
Latitude/Longitude are re used to supply coordinate	-	-	-		ata Standa	rds. (G	eocoding of th	e Physical	Address may be
• • •		ne nave been p	provided or to gain (accuracy).					
27. Latitude (N) In Decima		29.704264	or to gain t		ongitude (V	V) In De	ecimal:	-95.05357	70
		_	Seconds			V) In De	ecimal:	-95.05357	70 Seconds
27. Latitude (N) In Decima	al:	_		28. L		V) In De		-95.05357	
27. Latitude (N) In Decima	al: Minutes	29.704264	Seconds	28. Lo	es		Minutes 3	-95.05357	Seconds
27. Latitude (N) In Decimal Degrees	Minutes	29.704264	Seconds	28. Lo	es 95 ry NAICS Co		Minutes 3	ndary NAIC	Seconds
27. Latitude (N) In Decimal Degrees 29 29. Primary SIC Code	Minutes	29.704264 42 Secondary SIC	Seconds	28. Lo	es 95 ry NAICS Co		Minutes 3	ndary NAIC	Seconds
27. Latitude (N) In Decimal Degrees 29 29. Primary SIC Code (4 digits)	30. (4 c	29.704264 42 Secondary SIC	Seconds 15.26 Code	28. Lo Degree 31. Primar (5 or 6 digit	es 95 ry NAICS Co		Minutes 3	ndary NAIC	Seconds
27. Latitude (N) In Decimal Degrees 29 29. Primary SIC Code (4 digits) 2813	Minutes 30. (4 c	29.704264 42 Secondary SIC	Seconds 15.26 Code	28. Lo Degree 31. Primar (5 or 6 digit	es 95 ry NAICS Co		Minutes 3	ndary NAIC	Seconds
27. Latitude (N) In Decimal Degrees 29 29. Primary SIC Code (4 digits) 2813 33. What is the Primary Build Industrial Gas Manufacturing	Minutes 30. (4 c	29.704264 42 Secondary SIC digits) this entity? (D	Seconds 15.26 Code	28. Lo Degree 31. Primar (5 or 6 digit	es 95 ry NAICS Co		Minutes 3	ndary NAIC	Seconds
27. Latitude (N) In Decimal Degrees 29 29. Primary SIC Code (4 digits) 2813 33. What is the Primary B Industrial Gas Manufacturing	Minutes 30. (4 c	29.704264 42 Secondary SIC digits) this entity? (D	Seconds 15.26 Code	28. Lo Degree 31. Primar (5 or 6 digit	es 95 ry NAICS Co		Minutes 3	ndary NAIC	Seconds
27. Latitude (N) In Decimal Degrees 29 29. Primary SIC Code (4 digits) 2813 33. What is the Primary Build Industrial Gas Manufacturing	Minutes 30. (4 c	29.704264 42 Secondary SIC digits) this entity? (D	Seconds 15.26 Code	28. Lo Degree 31. Primar (5 or 6 digit	es 95 ry NAICS Co		Minutes 3 32. Secon (5 or 6 dig	ndary NAIC	Seconds
27. Latitude (N) In Decimal Degrees 29 29. Primary SIC Code (4 digits) 2813 33. What is the Primary B Industrial Gas Manufacturing	Minutes 30. (4 c	29.704264 42 Secondary SIC digits) this entity? (D	Seconds 15.26 Code o not repeat the SIC or	28. Li Degree 31. Primai (5 or 6 digit 325120 **NAICS description**	es 95 Y NAICS Co s) iption.)	de	Minutes 3 32. Secon (5 or 6 dig	ndary NAIC	Seconds
27. Latitude (N) In Decimal Degrees 29 29. Primary SIC Code (4 digits) 2813 33. What is the Primary B Industrial Gas Manufacturing 34. Mailing Address:	Minutes 30. (4 c	29.704264 42 Secondary SIC ligits) this entity? (D ang Road La Porte	Seconds 15.26 Code o not repeat the SIC or	28. Lo Degree 31. Primal (5 or 6 digit 325120 • NAICS descr	es 95 y NAICS Co ss) iption.)	7757:	Minutes 3 32. Secon (5 or 6 dig	ndary NAIC	Seconds
27. Latitude (N) In Decimal Degrees 29 29. Primary SIC Code (4 digits) 2813 33. What is the Primary B Industrial Gas Manufacturing 34. Mailing Address: 35. E-Mail Address:	Minutes 30. (4 c	29.704264 42 Secondary SIC ligits) this entity? (D ang Road La Porte	Seconds 15.26 Code To not repeat the SIC of State State ser-us.com	28. Lo Degree 31. Primal (5 or 6 digit 325120 • NAICS descr	es 95 y NAICS Co ss) iption.) ZIP 38. F.	7757:	Minutes 3 32. Secon (5 or 6 dig	ndary NAIC	Seconds

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

TCEQ-10400 (11/22) Page 2 of 3

☐ Dam Safety		Districts	☐ Edwards Aquifer	Aquifer		sions Inventory Air	☐ Industrial Hazardous Waste	
							41967	
☐ Municipal Solid	d Waste	New Source Review Air	□ OSSF	ι	☐ Petro	leum Storage Tank	□ PWS	
		158367, 156746						
☐ Sludge		☑ Storm Water	☐ Title V Air	1	Tires		☐ Used Oil	
		TXR05CH73						
☐ Voluntary Clea	nup	☑ Wastewater	☐ Wastewater Agricu	Ilture		er Rights	Other:	
		WQ0005108000						
0. Name: D	ivya Dhiman I mber	43. Ext./Code	44. Fax Number	41. Title: 45. E-Ma		rironmental Engineer		
832) 812-7265			() -	divya.dhin	nan@ae	com.com		
By my signature l	pelow, I certify	thorized S ,, to the best of my kno e entity specified in Sec		ion provided in	this for	m is true and complet s to the ID numbers id	e, and that I have signature authorit entified in field 39.	
Company:	Messer, L	LC		Job Title:	V	ice President of Opera	itions	
lame (In Print):	Samuel A	lgio .				Phone:	(267) 799- 6244	
vame (in Print):	Januaci A	, gic	V			Phone:	(207)755-0244	

Company:	Messer, LLC Job Title: V			dent of Operat	ions
Name (In Print):	Samuel Agle	•		Phone:	(267) 799- 6244
Signature:	AWS &			Date:	4/24/2024

AR.1	.0.9.f - PLAI	N LANGU	AGE SUN	IMARY TEN	⁄IPLATE

TCEQ

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

PLAIN LANGUAGE SUMMARY FOR TPDES OR TLAP PERMIT APPLICATIONS

Plain Language Summary Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary as required by <u>Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H</u>. Applicants may modify the template as necessary to accurately describe their facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how the applicant will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS Enter 'INDUSTRIAL' or 'DOMESTIC' here WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

Messer LLC (CN603509266) operates an ASU Plant (RN110995396), an Air Separation Unit. The facility is located at 11605 Strang Road, in La Porte, Harris County, Texas 77571. The facility is requesting renewal of TPDES Permit WQ0005108000.

Discharges from the facility are expected to contain total suspended solids, oil and grease and copper. Wastewater generated at the facility is treated by GAC (Granular Activated Carbon) beds using a lead-lag system prior to discharging from Outfall 001. Wastewater generated at the facility includes process wastewater, cooling tower blowdown, filter backwash water, and utility wastewater, which is discharged via Outfall 001. Process wastewater consists of compressor condensate that is generated from the compression stage of the gas separation process. The condensate generated from the Main Air Compressor (MAC) is treated through GAC (Granular Activated Carbon) beds using a lead-lag system. Cooling tower blowdown is discharged in order to maintain a certain water quality in the cooling tower. Filter backwash water is produced when the side stream filter for the cooling

tower is backwashed periodically with the water supplied to the cooling tower. Utility wastewater includes, but is not limited to, steam condensate and emergency firewater washdown. Wastewater is monitored prior to being routed to a facility storm water ditch, and are then discharged via Outfall 001 to San Jacinto Bay. Discharges of storm water are authorized under the TPDES Stormwater Multi-Sector General Permit (TXR05CH73) and commingle with discharges authorized under the facility's TPDES permit no. WO0005108000. The facility is requesting renewal of TPDES Permit WQ0005108000 to discharge effluent not exceeding an average flow of 0.25 MGD and a maximum flow of 0.35 MGD. The facility is also requesting a reduction/elimination of copper limits. The facility installed Granular Activated Carbon (GAC) copper beds in October 2022 to treat the condensate generated from the Main Air Compressor (major source of copper in the wastewater). Based on the analytical results for copper for the past 18-months, the average copper concentrations for the period from 10/26/22 to 3/20/24 (after the installation of copper beds) is 0.0248 mg/L, which is less than 70% of daily average limit (0.0305 mg/L) and less than 85% of daily average limit (0.037 mg/L). The average copper concentration for that period is approximately 57% of the daily average limit. Based on this pattern of reduction in the analytical values of copper, the facility requests a reduction/elimination of copper effluent limits in the renewed permit. The analytical sample values for copper after the installation of the copper beds will be provided to the TCEQ upon request.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES Introduzca 'INDUSTRIALES' o 'DOMÉSTICAS' aquí /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

Messer LLC (CN603509266) opera una planta ASU (RN110995396), una Unidad de Separación de Aire. La instalación está ubicada en el 11605 Strang Road, en La Porte, Condado de Harris, Texas 77571. La instalación está solicitando renovación del Permiso TPDES WQ0005108000.

Se espera que las descargas de la instalación contengan sólidos suspendidos totales, aceites y grasas y cobre. Las aguas residuales generadas en la instalación son tratadas por lechos de GAC (Carbón Activado Granular) utilizando un sistema de retardo de plomo antes de la descarga del Desagüe 001. Las aguas residuales generadas en la instalación incluyen aguas residuales de proceso, la purga de la torre de enfriamiento, el agua de retrolavado del filtro y las aguas residuales de los servicios públicos, que se descargan a través del Desagüe 001. Las aguas residuales de proceso consisten en condensado del compresor que se genera durante la etapa de compresión del sistema de separación de gases. El condensado generado por el Compresor de Aire Principal (MAC) se trata a través de lechos GAC (Carbón Activado Granular) utilizando un sistema de retardo de plomo. La purga de la torre de enfriamiento se descarga para mantener una cierta calidad del agua en la torre de enfriamiento. El agua de retrolavado del filtro se produce cuando el filtro de flujo lateral de la torre de enfriamiento se lava periódicamente con el agua suministrada a la torre de enfriamiento. Las aguas residuales de los servicios públicos incluyen, entre otras, el condensado de vapor y el lavado de emergencia de aguas contra incendios. Las aguas residuales se monitorean antes de ser enviadas a una zanja de aguas pluviales de la instalación, y luego se descargan a través del Desagüe 001 a la Bahía de San Jacinto. Las descargas de aguas pluviales están autorizadas bajo el Permiso General Multisectorial de Aguas Pluviales (TXR05CH73) de TPDES y se mezclan con las descargas autorizadas bajo el permiso TPDES no. WQ0005108000 de la instalación. La instalación está solicitando la renovación del permiso TPDES WQ0005108000 para descargar efluentes que no excedan un flujo promedio de 0.25 MGD y un flujo máximo de 0.35 MGD. La instalación también está solicitando una reducción/eliminación de los límites de cobre. La instalación instaló lechos de cobre de Carbón Activado Granular (GAC) en octubre de 2022 para tratar el condensado generado por el Compresor de Aire Principal (principal fuente de cobre en las aguas residuales). Con base en los resultados analíticos de cobre de los últimos 18 meses, las concentraciones promedio de cobre para el período del 10/26/22 al 3/20/24 (después de la instalación de los lechos de cobre) son de 0.0248 mg/L, que es menos del 70% del límite promedio diario (0.0305 mg/L) y menos del 85% del límite promedio diario (0.037 mg/L). La concentración promedio de cobre para ese período es aproximadamente el 57% del límite promedio diario. Con base en este patrón de reducción en los valores analíticos del cobre, la instalación solicita una reducción/eliminación de los límites de efluentes de cobre en el permiso renovado. Los valores de las muestras analíticas de cobre después de la instalación de los lechos de cobre se proporcionarán a la TCEQ si lo solicita. . 16. Elija del menú desplegable tratado por .

INSTRUCTIONS

- 1. Enter the name of applicant in this section. The applicant name should match the name associated with the customer number.
- 2. Enter the Customer Number in this section. Each Individual or Organization is issued a unique 11-digit identification number called a CN (e.g. CN123456789).
- 3. Choose "operates" in this section for existing facility applications or choose "proposes to operate" for new facility applications.
- 4. Enter the name of the facility in this section. The facility name should match the name associated with the regulated entity number.
- 5. Enter the Regulated Entity number in this section. Each site location is issued a unique 11-digit identification number called an RN (e.g. RN123456789).
- 6. Choose the appropriate article (a or an) to complete the sentence.
- 7. Enter a description of the facility in this section. For example: steam electric generating facility, nitrogenous fertilizer manufacturing facility, etc.
- 8. Choose "is" for an existing facility or "will be" for a new facility.
- 9. Enter the location of the facility in this section.
- 10. Enter the City nearest the facility in this section.
- 11. Enter the County nearest the facility in this section.
- 12. Enter the zip code for the facility address in this section.
- 13. Enter a summary of the application request in this section. For example: renewal to discharge 25,000 gallons per day of treated domestic wastewater, new application to discharge process wastewater and stormwater on an intermittent and flow-variable basis, or major amendment to reduce monitoring frequency for pH, etc. If more than one outfall is included in the application, provide applicable information for each individual outfall.
- 14. List all pollutants expected in the discharge from this facility in this section. If applicable, refer to the pollutants from any federal numeric effluent limitations that apply to your facility.
- 15. Enter the discharge types from your facility in this section (e.g., stormwater, process wastewater, once through cooling water, etc.)
- 16. Choose the appropriate verb tense to complete the sentence.
- 17. Enter a description of the wastewater treatment used at your facility. Include a description of each process, starting with initial treatment and finishing with the outfall/point of disposal. Use additional lines for individual discharge types if necessary.

Questions or comments concerning this form may be directed to the Water Quality Division's Application Review and Processing Team by email at <a href="https://www.wei.ac.no.nd/worden.com/

Example

Individual Industrial Wastewater Application

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

ABC Corporation (CN600000000) operates the Starr Power Station (RN10000000000), a two-unit gas-fired electric generating facility. Unit 1 has a generating capacity of 393 megawatts (MWs) and Unit 2 has a generating capacity of 528 MWs. The facility is located at 1356 Starr Street, near the City of Austin, Travis County, Texas 78753.

This application is for a renewal to discharge 870,000,000 gallons per day of once through cooling water, auxiliary cooling water, and also authorizes the following waste streams monitored inside the facility (internal outfalls) before it is mixed with the other wastewaters authorized for discharge via main Outfall 001, referred to as "previously monitored effluents" (low-volume wastewater, metal-cleaning waste, and stormwater (from diked oil storage area yards and storm drains)) via Outfall 001. Low-volume waste sources, metal-cleaning waste, and stormwater drains on a continuous and flow-variable basis via internal Outfall 101.

The discharge of once through cooling water via Outfall 001 and low-volume waste and metal-cleaning waste via Outfall 101 from this facility is subject to federal effluent limitation guidelines at 40 CFR Part 423. The pollutants expected from these discharges based on 40 CFR Part 423 are: free available chlorine, total residual chlorine, total suspended solids, oil and grease, total iron, total copper, and pH. Temperature is also expected from these discharges. Additional potential pollutants are included in the Industrial Wastewater Application Technical Report, Worksheet 2.0.

Cooling water and boiler make-up water are supplied by Lake Starr Reservoir. The City of Austin municipal water plant (CN600000000, PWS 00000) supplies the facility's potable water and serves as an alternate source of boiler make-up water. Water from the Lake Starr Reservoir is withdrawn at the intake structure and treated with sodium hypochlorite to prevent biofouling and sodium bromide as a chlorine enhancer to improve efficacy and then passed through condensers and auxiliary equipment on a once-through basis to cool equipment and condense exhaust steam.

Low-volume wastewater from blowdown of boiler Units 1 and 2 and metal-cleaning wastes receive no treatment prior to discharge via Outfall 101. Plant floor and equipment drains and stormwater runoff from diked oil storage areas, yards, and storm drains are routed through an oil and water separator prior to discharge via Outfall 101. Domestic wastewater, blowdown, and backwash water from the service water filter, clarifier, and sand filter are routed to the Starr Creek Domestic Sewage Treatment Plant, TPDES Permit No. WQ0010000001, for treatment and disposal. Metal-cleaning waste from equipment cleaning is generally disposed of off-site.

AR.1.0.9.g – Public Involvement Form

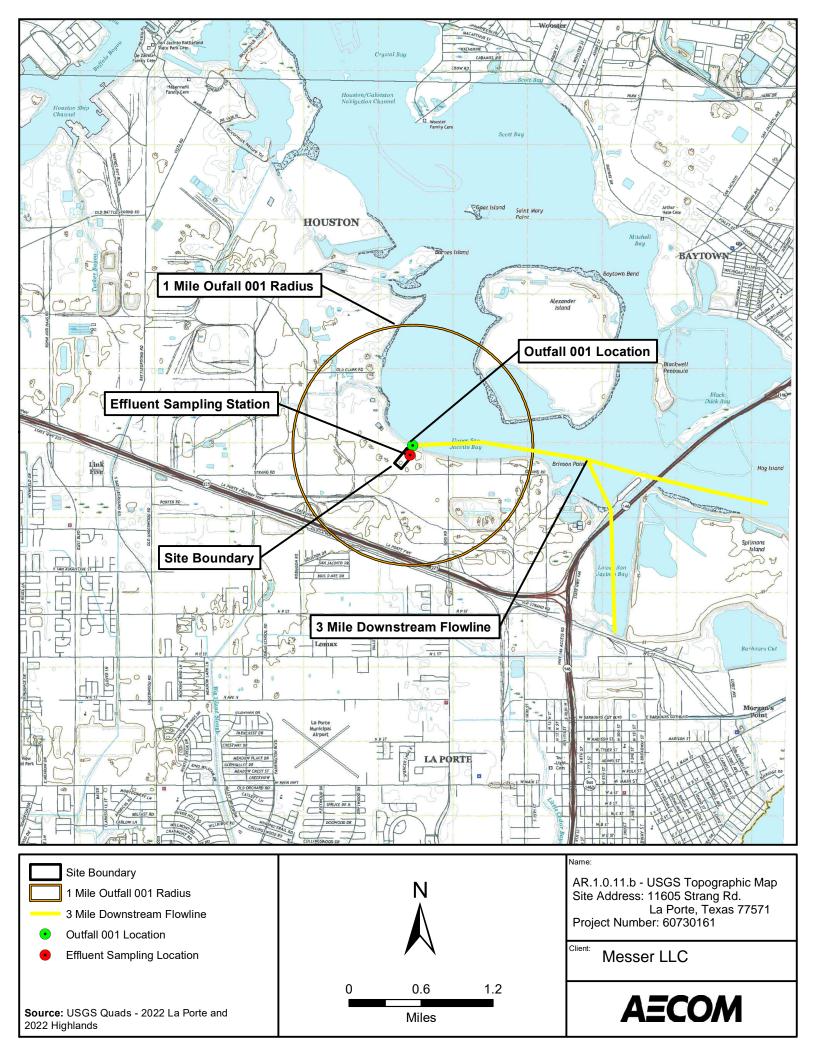
Public Involvement Plan Form for Permit and Registration Applications

The Public Involvement Plan is intended to provide applicants and the agency with information about how public outreach will be accomplished for certain types of applications in certain geographical areas of the state. It is intended to apply to new activities; major changes at existing plants, facilities, and processes; and to activities which are likely to have significant interest from the public. This preliminary screening is designed to identify applications that will benefit from an initial assessment of the need for enhanced public outreach.

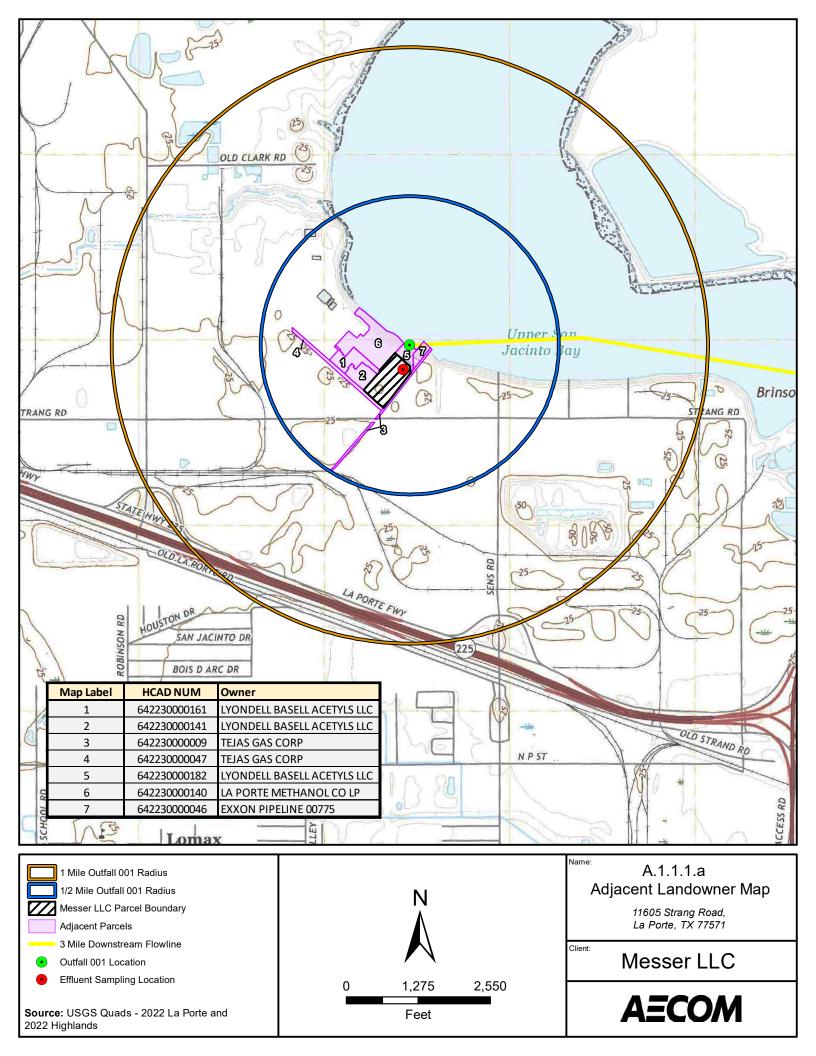
All applicable sections of this form should be completed and submitted with the permit or registration application. For instructions on how to complete this form, see TCEQ-20960-inst.

Section 1. Preliminary Screening
New Permit or Registration Application New Activity - modification, registration, amendment, facility, etc. (see instructions)
If neither of the above boxes are checked, completion of the form is not required and does not need to be submitted.
Section 2. Secondary Screening
Requires public notice,
Considered to have significant public interest, <u>and</u>
Located within any of the following geographical locations:
 Austin Dallas Fort Worth Houston San Antonio West Texas Texas Panhandle Along the Texas/Mexico Border Other geographical locations should be decided on a case-by-case basis
If all the above boxes are not checked, a Public Involvement Plan is not necessary. Stop after Section 2 and submit the form.
Public Involvement Plan not applicable to this application. Provide brief explanation.

Page 1 of 4


TCEQ-20960 (02-09-2023)

Section 3. Application Information
Type of Application (check all that apply): Air
Waste Municipal Solid Waste Industrial and Hazardous Waste Scrap Tire Radioactive Material Licensing Underground Injection Control
Water Quality
Texas Pollutant Discharge Elimination System (TPDES)
Texas Land Application Permit (TLAP)
State Only Concentrated Animal Feeding Operation (CAFO)
Water Treatment Plant Residuals Disposal Permit
Class B Biosolids Land Application Permit
Domestic Septage Land Application Registration
Water Rights New Permit
New Appropriation of Water
New or existing reservoir
Amendment to an Existing Water Right
Add a New Appropriation of Water
Add a New or Existing Reservoir
Major Amendment that could affect other water rights or the environment
Section 4. Plain Language Summary
Provide a brief description of planned activities.
Messer LLC (CN603509266) operates an ASU Plant (RN110995396), an Air Separation Unit. The facility is located at 11605 Strang Road, in La Porte, Harris County, Texas 775571. The facility is requesting renewal of TPDES Permit WQ0005108000. Discharges from the facility are expected to contain total suspended solids, oil and grease and copper. Wastewater generated at the facility is treated by GAC (Granular Activated Carbon) beds using a lead-lag system prior to discharging from Outfall 001. Wastewater generated at the facility includes process wastewater, cooling tower blowdown, filter backwash water, and utility wastewater, which is discharged via Outfall 001. Process wastewater consists of compressor condensate that is generated from the compression stage of the gas separation process. The condensate generated from the Main Air Compressor (MAC) is treated through GAC (Granular Activated Carbon) beds using a lead-lag system. Cooling tower blowdown is discharged in order to maintain a certain water quality in the cooling tower. Filter backwash water is produced when the side stream filter for the cooling tower is backwashed periodically with the water supplied to the cooling tower. Utility wastewater includes, but is not limited to, steam condensate and emergency firewater washdown. Wastewater is monitored prior to being routed to a facility storm water are authorized under the

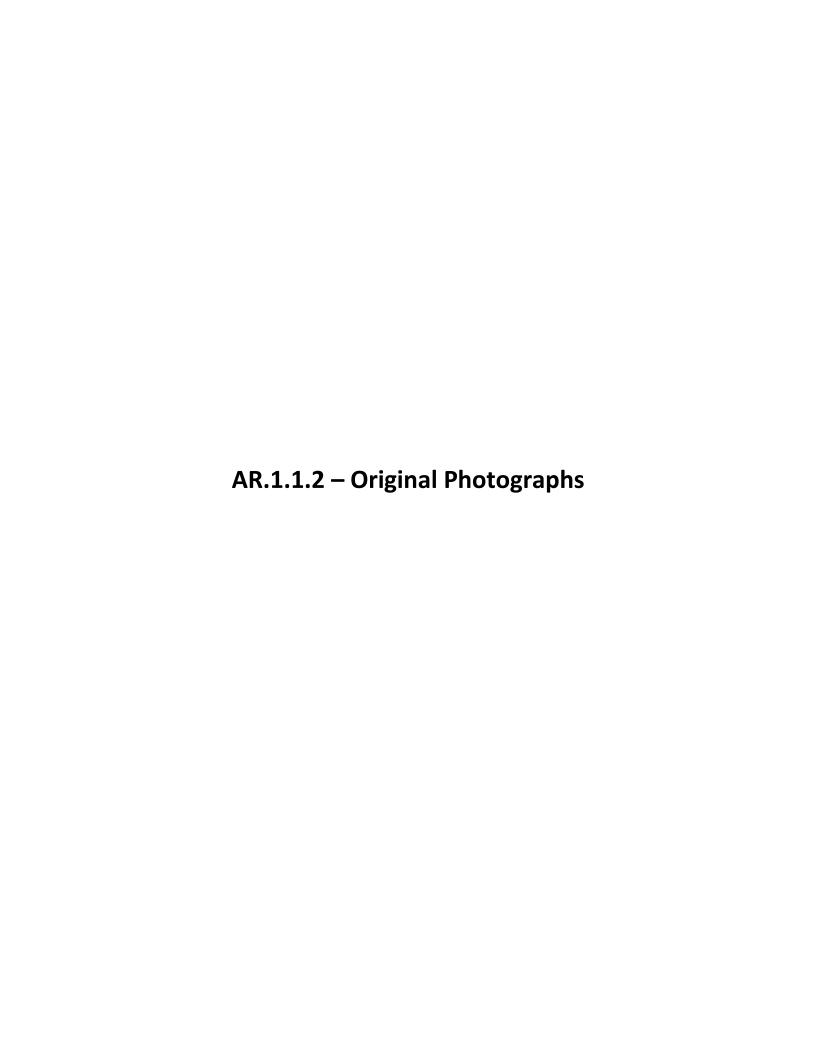

Section 5. Community and Demographic Information
Community information can be found using EPA's EJ Screen, U.S. Census Bureau information, or generally available demographic tools.
Information gathered in this section can assist with the determination of whether alternative language notice is necessary. Please provide the following information.
(City) La Porte
(County) Harris
(Census Tract)
Please indicate which of these three is the level used for gathering the following information. City Census Tract Census Tract
(a) Percent of people over 25 years of age who at least graduated from high school
Less than 50 percentile.
(b) Per capita income for population near the specified location
(c) Percent of minority population and percent of population by race within the specified location
(d) Percent of Linguistically Isolated Households by language within the specified location
(e) Languages commonly spoken in area by percentage
English - Less than 50 percentile.
(f) Community and/or Stakeholder Groups
(g) Historic public interest or involvement

TCEQ-20960 (02-09-2023) Page 4 of 4

AR.1.0.11.b – USGS Topographic Map

AR.1.1.1.a – Adjacent Landowner Map

AR.1.1.1 – Adjacent Landowner Cross-reference list


AR.1.1.1 – Adjacent Landowner Cross-reference List

Map ID	Adjacent Landowner Name	Adjacent Landowner Address
1	Lyondell Basell Acetyls LLC	Lyondell chemical CO
		1221 McKinney St STE 300
		Houston TX 77010-2036
2	Lyondell Basell Acetyls LLC	Lyondell chemical CO
		1221 McKinney St STE 300
		Houston TX 77010-2036
3	Tejas Gas Corp	PROPERTY TAX DEPT
		500 DALLAS ST STE 100
		HOUSTON TX77002-4804
4	Tejas Gas Corp	PROPERTY TAX DEPT
		500 DALLAS ST STE 100
		HOUSTON TX77002-4804
5	Lyondell Basell Acetyls LLC	Lyondell chemical CO
		1221 McKinney St STE 300
		Houston TX 77010-2036
6	La Porte Methanol CO LP	MILLENNUUM CHEMICALS TAX DEPT
		PO BOX 3646
		HOUSTON TX 77253-36
7	Exxon Pipeline 00775	EXXON PIPELINE 00775
		PO BOX 53
		HOUSTON TX 77001-0053

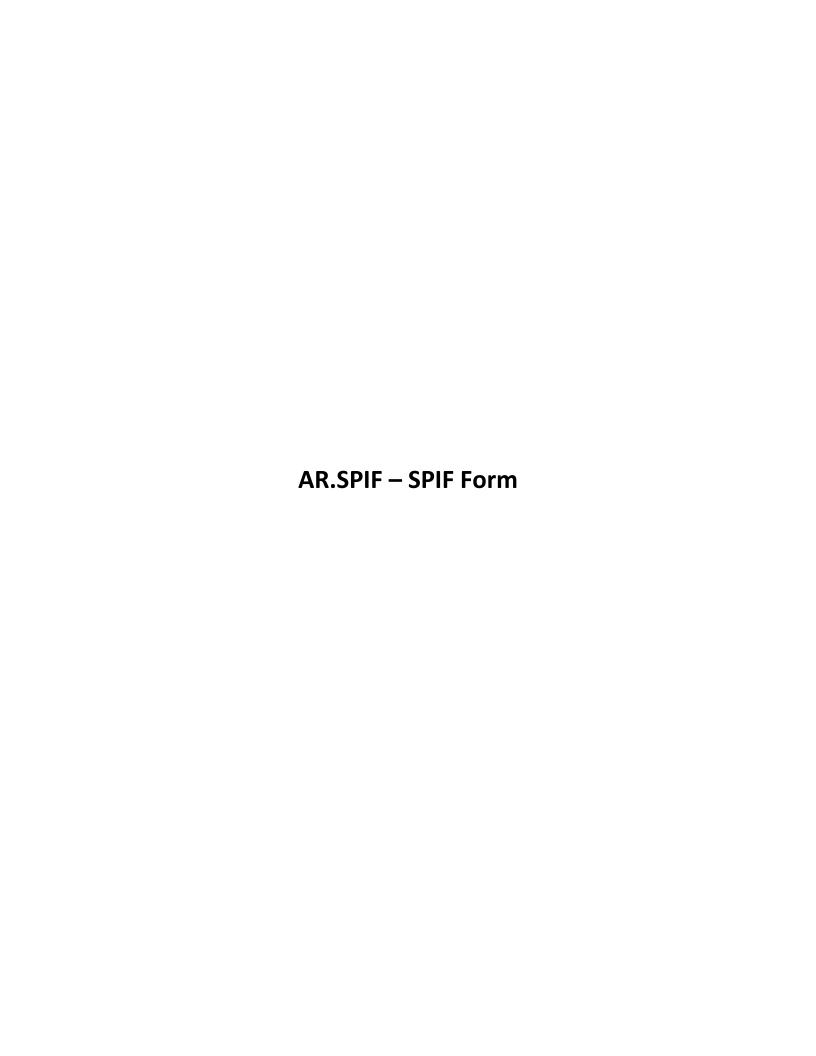
AR.1.1.1.b – Adjacent Landowner Labels – 4 sets

TEJAS GAS CORP LYONDELL BASELL ACETYLS LLC **EXXON PIPELINE 00775** PROPERTY TAX DEPT LYONDELL CHEMICAL CO PO BOX 53 500 DALLAS ST STE 100 1221 MCKINNEY ST STE 300 HOUSTON TX 77001-0053 HOUSTON TX77002-4804 HOUSTON TX 77010-2036 LYONDELL BASELL ACETYLS LLC **TEJAS GAS CORP EXXON PIPELINE 00775** LYONDELL CHEMICAL CO PROPERTY TAX DEPT PO BOX 53 1221 MCKINNEY ST STE 300 500 DALLAS ST STE 100 HOUSTON TX 77001-0053 HOUSTON TX 77010-2036 HOUSTON TX77002-4804 LYONDELL BASELL ACETYLS LLC **TEJAS GAS CORP EXXON PIPELINE 00775** LYONDELL CHEMICAL CO PROPERTY TAX DEPT PO BOX 53 1221 MCKINNEY ST STE 300 500 DALLAS ST STE 100 HOUSTON TX 77001-0053 HOUSTON TX 77010-2036 HOUSTON TX77002-4804 **TEJAS GAS CORP** LYONDELL BASELL ACETYLS LLC **EXXON PIPELINE 00775** LYONDELL CHEMICAL CO PROPERTY TAX DEPT PO BOX 53 1221 MCKINNEY ST STE 300 500 DALLAS ST STE 100 HOUSTON TX 77001-0053 HOUSTON TX 77010-2036 HOUSTON TX77002-4804 LA PORT METHANOL CO LP LA PORT METHANOL CO LP **EXXON PIPELINE 00775** MILLENNUUM CHEMICALS TAX DEPT MILLENNUUM CHEMICALS TAX DEPT PO BOX 53 PO BOX 3646 PO BOX 3646 HOUSTON TX 77001-0053 **HOUSTON TX 77253-36 HOUSTON TX 77253-36** LA PORT METHANOL CO LP **EXXON PIPELINE 00775 EXXON PIPELINE 00775** MILLENNUUM CHEMICALS TAX DEPT PO BOX 53 PO BOX 53 PO BOX 3646 HOUSTON TX 77001-0053 HOUSTON TX 77001-0053 **HOUSTON TX 77253-36**

LA PORT METHANOL CO LP MILLENNUUM CHEMICALS TAX DEPT PO BOX 3646 HOUSTON TX 77253-36 EXXON PIPELINE 00775 PO BOX 53 HOUSTON TX 77001-0053

AR1.1-2 ORIGINAL PHOTOGRAPHS

Picture 1 – Outfall 001 (downstream


Picture 2 – Outfall 001 (downstream)

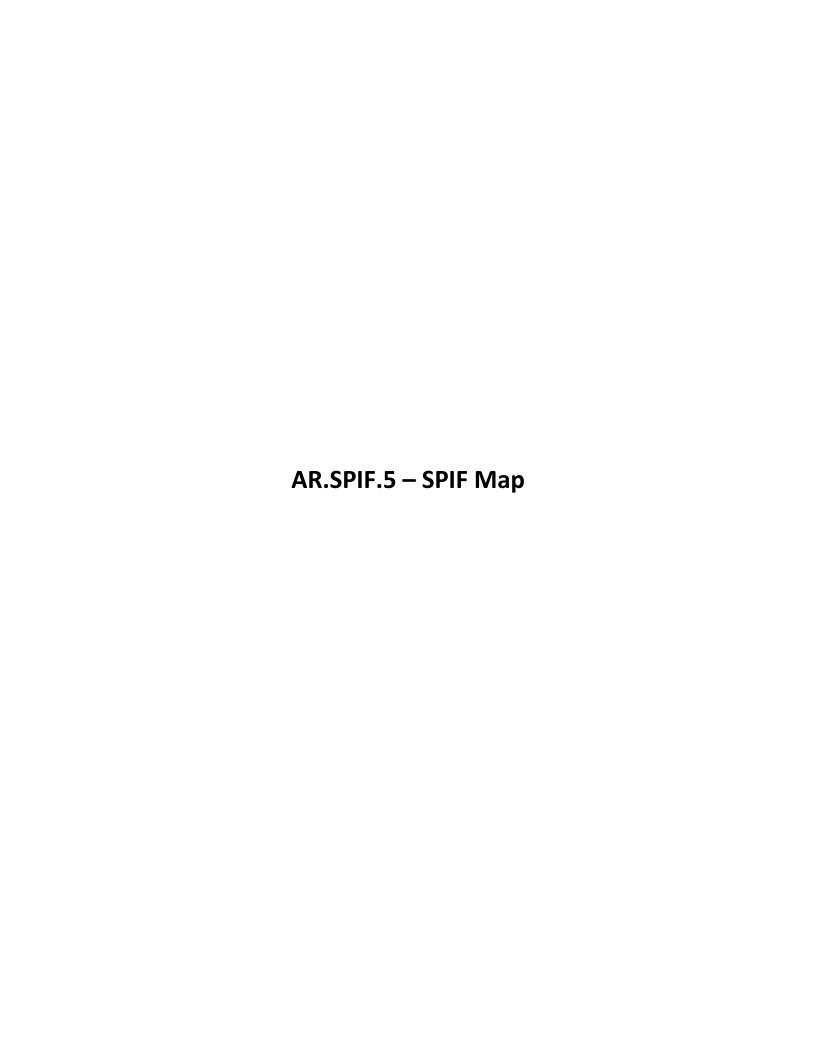
Picture 3 (Area around Outfall 001)

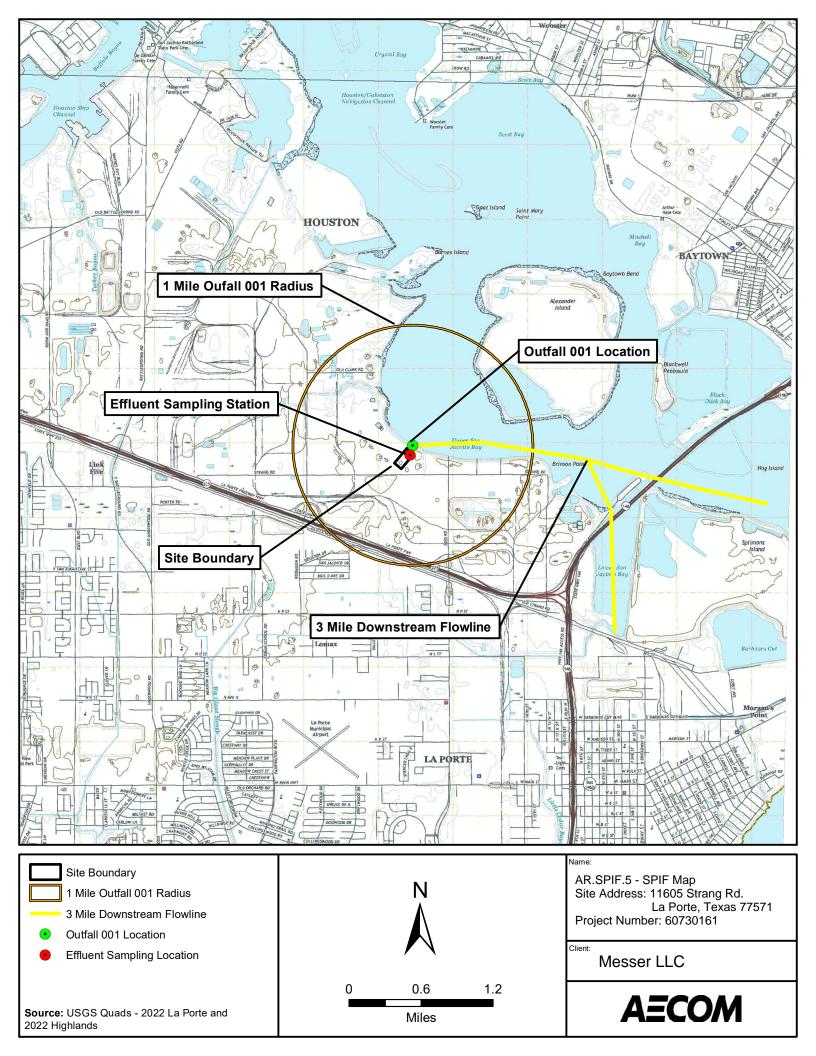
Picture 4 (Area upstream of Outfall 001)

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

•	_	
	gment Number:	
Admin Complete Date:		
Agency Receiving SPIF:		
Texas Historical Commission	U.S. Fish and Wildlife	
This form applies to TPDES permit applications o	<u>nly.</u> (Instructions, Page 53)	
our agreement with EPA. If any of the items are not is needed, we will contact you to provide the inform	completely addressed or further information	
attachment for this form separately from the Admi application will not be declared administratively co completed in its entirety including all attachments. may be directed to the Water Quality Division's App	nistrative Report of the application. The mplete without this SPIF form being Questions or comments concerning this form plication Review and Processing Team by	
The following applies to all applications:		
1. Permittee: <u>Messer LLC</u>		
Permit No. WQ00 <u>05108000</u>	EPA ID No. TX <u>0135101</u>	
and county):		
11605 Strang Road, La Porte, Harris County, Te	<u>xas 77571.</u>	


	e the name, address, phone and fax number of an individual that can be contacted to especific questions about the property.
Prefix ((Mr., Ms., Miss):
First ar	nd Last Name: <u>Rami Qafisheh</u>
Creden	atial (P.E, P.G., Ph.D., etc.):
Title: <u>L</u>	a Porte Zone Production Manager
Mailing	g Address: <u>11605 Strang Road</u>
City, St	tate, Zip Code: <u>La Porte, TX 77571</u>
Phone	No.: <u>409-204-9150</u> Ext.: <u>N/A</u> Fax No.: <u>N/A</u>
E-mail	Address: <u>rami.qafisheh@messer-us.com</u>
List the	e county in which the facility is located: <u>Harris</u>
-	property is publicly owned and the owner is different than the permittee/applicant,
please N/A	list the owner of the property.
11/11	
Provide	e a description of the effluent discharge route. The discharge route must follow the flow
	ent from the point of discharge to the nearest major watercourse (from the point of
	rge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify ssified segment number.
	ent is discharged from Outfall 001 directly into San Jacinto Bay in Segment No. 2427
	Bays and Estuaries.
plotted route f	provide a separate 7.5-minute USGS quadrangle map with the project boundaries and a general location map showing the project area. Please highlight the discharge from the point of discharge for a distance of one mile downstream. (This map is ed in addition to the map in the administrative report).
Provide	e original photographs of any structures 50 years or older on the property.
Does y	our project involve any of the following? Check all that apply.
	Proposed access roads, utility lines, construction easements
	Visual effects that could damage or detract from a historic property's integrity
	Vibration effects during construction or as a result of project design
	Additional phases of development that are planned for the future
	Sealing caves, fractures, sinkholes, other karst features
	\mathbf{c}


2.3.

4.

5.

	☐ Disturbance of vegetation or wetlands
1.	List proposed construction impact (surface acres to be impacted, depth of excavation, sealing of caves, or other karst features):
	Click here to enter text
2.	Describe existing disturbances, vegetation, and land use:
	The site is an industrial manufacturing site.
	IE FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR MENDMENTS TO TPDES PERMITS
3.	List construction dates of all buildings and structures on the property:
	The Air Separation Unit was constructed and started in 2014. Prior to the ASU, the site was used as an equipment laydown and auxiliary parking area for the adjacent Syngas plant.
4.	Provide a brief history of the property, and name of the architect/builder, if known.
	Based on aerial photographs since the 1980s, the site was formerly either vacant or used as an equipment laydown and auxiliary parking area.

TR.1.0.1.a – Facility Description

Attachment TR.1.0.1.a – Facility Description

The LaPorte, TX Air Separation Unit (ASU) facility # 5187, was commissioned in January 2015. It has industrial gas manufacturing, distribution, and customer service operations.

This ASU produces: GOX (Gas Oxygen), GAN (Gas Nitrogen), CDA (Clean dry Air), Neon (Gaseous), Kr/Xe (gaseous Krypton/Xenon - future), LIN (liquid Nitrogen), LOX (liquid Oxygen), and LAR (liquid Argon) which are manufactured by low temperature distillation of liquid air.

Production Capacity.

At complex sites like LaPorte, the production mix will vary depending upon a number of factors. The plant is capable of delivering the maximum flow rates as listed below. However, the plant will not produce the maximum quantity for all the products at the same time:

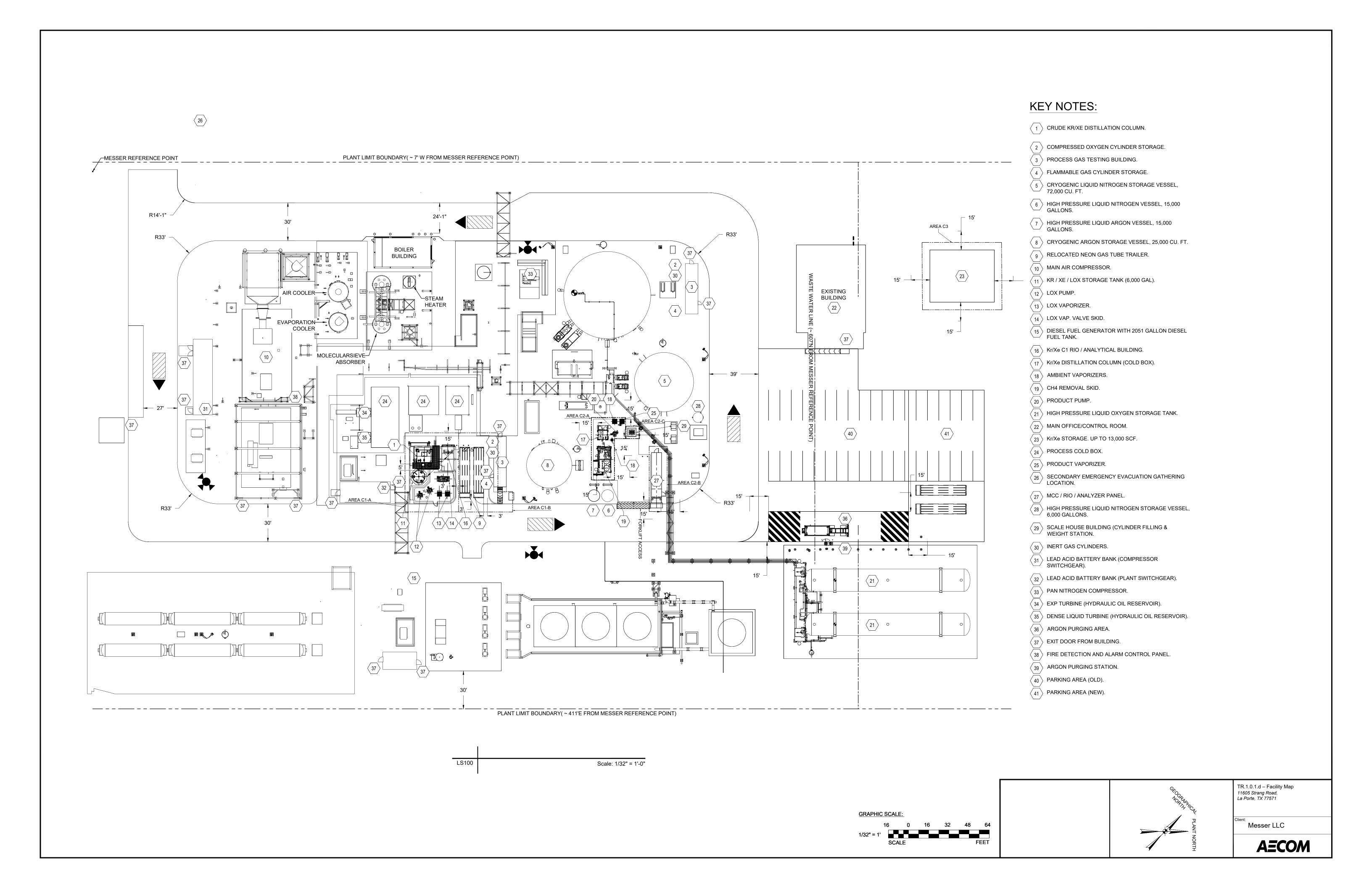
GOX = 2200 TPD LOX = 172 TPD GAN = 179 TPD LIN = 344 TPD LAR = 108 TPD CDA = 85 TPD Neon = 0.17 TPD Kr/Xe = 0.0115 TPD (future)

Storage Facilities.

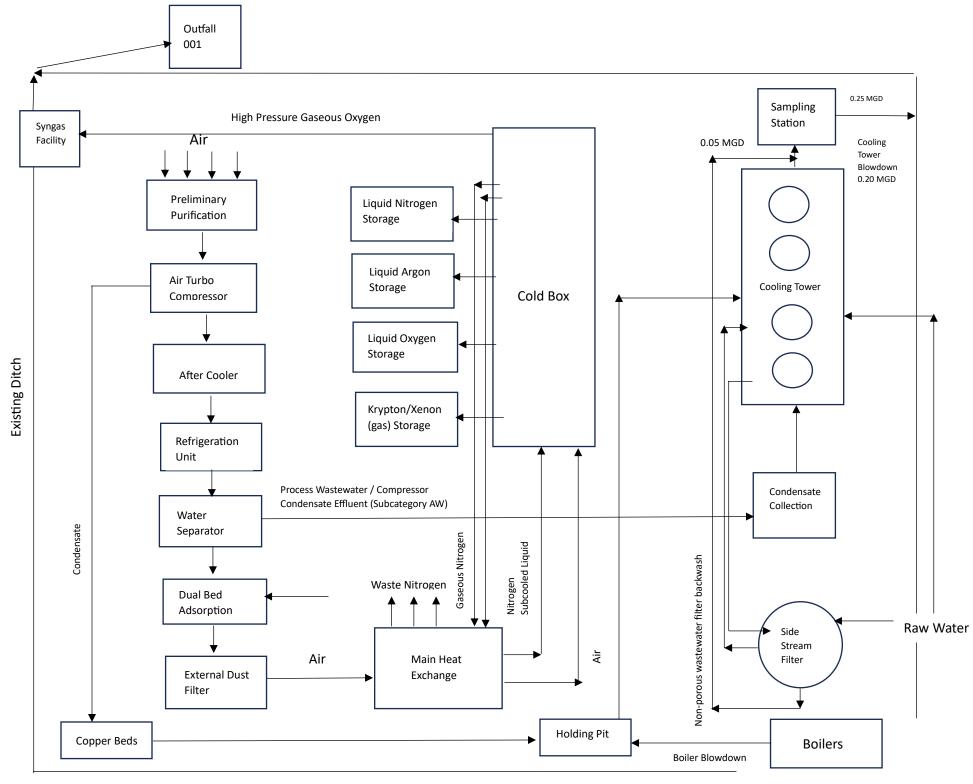
The following storage capacity is provided for this plant:

6,653 Tons of Liquid Oxygen 1,851 Tons of Liquid Nitrogen 1,096 Tons of Liquid Pure Argon 87 Tons of Liquid Crude Argon

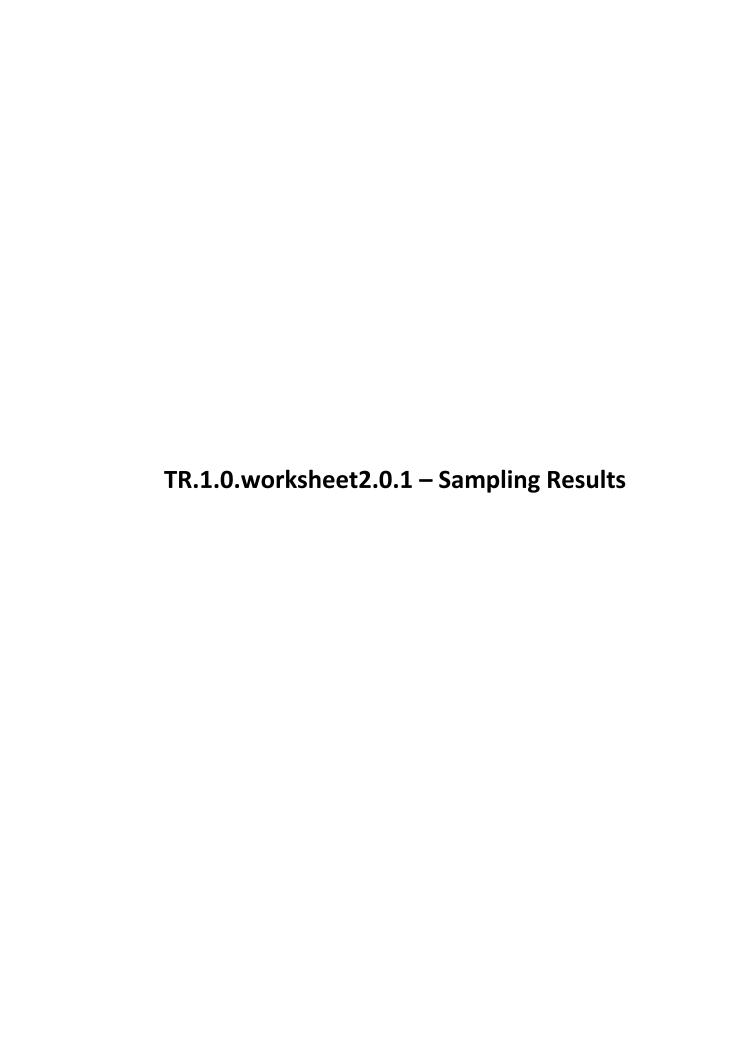
Air Separation Process.


Atmospheric air is filtered and compressed. This high-pressure air is then chilled. The chilled air enters a distillation column where the air is fractionally distilled at very low temperature into its components: oxygen, nitrogen, argon, neon, Kr/Xe (future), etc. The heat exchanger and distillation column are housed in a structure known as a cold box. Products (GOX, GAN & CDA) are delivered to the HYCO site (LyondellBasell) by pipeline as a gas. Liquid oxygen, liquid nitrogen, and liquid argon are delivered by truck to merchant customers, and liquid argon is also railed out. Neon is compressed and loaded into a tube trailer. Kr/Xe is collected in cylinders.

There are 10 buildings (Control Room / Office Building, Driver's Room, ASU Analytical Equipment Room, ATF Analytical Equipment Room, Kr/Xe Analytical Room, Multipurpose Kr/Xe Analytical room / Motor Control Center, Boiler Building, and 3 Power Distribution Centers) and 7 product storage tanks. The total site area covers approximately 10 acres. The facility operates 24 hours per day, 7 days per week. It employs 8 people on day shifts, and 1 on the night shift. The facility is operated by the Remote Operations Center (ROC).


Temporary Natural Gas Supply

Stabilis Solutions has temporarily placed a 14,400-gallon Queen liquefied natural gas (LNG) trailer, ambient vaporization trailer, and odorization skid end to end at the Facility. Vehicle and containment barriers have been erected around all three units. The units are connected via stainless steel flex hoses to transfer LNG to the ambient vaporization trailer where it is vaporized to a gas using passive stainless steel coils and then odorized before being delivered to the plant natural gas supply line. This natural gas is used as fuel for the three steam generation units in the boiler building.


TR.1.0.1.d – Facility Map

TR.1.0.2.b – Water Balance Diagram

Existing Ditch

12

14

ANALYTICAL REPORT

PREPARED FOR

Attn: Rami Qafisheh Messer LLC 11605 Strang Rd. La Porte, Texas 77571

Generated 4/15/2024 8:14:24 PM

JOB DESCRIPTION

Messer Gas ASU Permit Renewal 3-21-24

JOB NUMBER

860-70454-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

4/15/2024 8:14:24 PM

Authorized for release by Lance Tigrett, Project Manager II Lance.Tigrett@et.eurofinsus.com (979)484-9088

Eurofins Houston is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 2 of 53

4/15/2024

Receipt Checklists . . .

46

47

48

51

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	6
Detection Summary	8
Client Sample Results	9
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	36
Lab Chronicle	42
Certification Summary	44

Table of Contents

Definitions/Glossary

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

LCS and/or LCSD is outside acceptance limits, low biased.

*1 LCS/LCSD RPD exceeds control limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1- Surrogate recovery exceeds control limits, low biased.
U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier Qualifier Description

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

F1 MS and/or MSD recovery exceeds control limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Metals

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier	Qualifier	Descriptio	n

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable

HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Eurofins Houston

Page 4 of 53 4/15/2024

Definitions/Glossary

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Glossary (Continued)

TEQ

TNTC

Abbreviation These commonly used abbreviations may or may not be present in this report. NEG Negative / Absent POS Positive / Present PQL **Practical Quantitation Limit PRES** Presumptive QC **Quality Control** RER Relative Error Ratio (Radiochemistry) RL Reporting Limit or Requested Limit (Radiochemistry) RPD Relative Percent Difference, a measure of the relative difference between two points TEF Toxicity Equivalent Factor (Dioxin)

2

3

4

O

10

12

13

14

Case Narrative

Client: Messer LLC Job ID: 860-70454-1

Project: Messer Gas ASU Permit Renewal 3-21-24

Job ID: 860-70454-1 Eurofins Houston

Job Narrative 860-70454-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 3/21/2024 3:21 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice.

Subcontract Work

Method Surfactants: This method was subcontracted to Envirodyne Laboratories. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 625.1: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: Outfall 001 (860-70454-1). These results have been reported and qualified.

Method 625.1: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample(s) contained an allowable number of surrogate compounds outside limits. These results have been reported and qualified.

Method 625.1: The laboratory control sample and laboratory control sample duplicate (LCS/LCSD) for preparation batch 860-152370 and analytical batch 860-152604 recovered outside control limits for the following analytes: Benzidine and Pyridine have been identified as poor performing analytes when analyzed using this method; therefore, reextraction/re-analysis was not performed. Batch precision also exceeded control limits for these analytes. These results have been reported and qualified.

Method 625.1: The laboratory control sample and laboratory control sample duplicate (LCS/LCSD) for preparation batch 860-152370 and analytical batch 860-152604 recovered outside control limits for the following analyte: Di-n-octyl phthalate. This analyte was biased high in the LCS/LCSD and was not detected in the associated samples; therefore, the data have been reported.

Method 625.1: The laboratory control sample and laboratory control sample duplicate (LCS/LCSD) for preparation batch 860-151704 and analytical batch 860-151846 recovered outside control limits for multiple analytes. The associated sample was reprepared and/or re-analyzed outside holding time. Both sets of data have reported.

Method 625.1: The following sample was re-prepared and re-analyzed outside of preparation holding time due to first analysis LCS/LCSD recoveries outside control limits (low biased): Outfall 001 (860-70454-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The instrument blank for analytical batch 860-151005 contained Chloride greater than the method detection limit (MDL), and were not reanalyzed because results were greater than 10X the value found in the instrument blank/CCB. The data have been qualified and reported.

Eurofins Houston

Page 6 of 53 4/15/2024

3

1

5

6

8

9

1 4

12

13

14

Case Narrative

Client: Messer LLC Job ID: 860-70454-1

Project: Messer Gas ASU Permit Renewal 3-21-24

Job ID: 860-70454-1 (Continued)

Eurofins Houston

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 860-151005 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 300_ORGFM_28D: The method blank for analytical batch 860-151005 contained Bromide above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or reanalysis of samples was not performed.

Method 300 ORGFMS: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 860-151006 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or nonhomogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Method 200.8 - Total Recoverable: The following sample was diluted to bring the concentration of target analytes within the calibration range: Outfall 001 (860-70454-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 365.1 NP: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 860-152937 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Houston

4/15/2024

Page 7 of 53

Detection Summary

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Client Sample ID: Outfall 001

Lab Sample ID: 860-70454-1

Sample Analysis Not Complete.

This Detection Summary does not include radiochemical test results.

4/15/2024

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Client Sample ID: Outfall 001

Lab Sample ID: 860-70454-1 Date Collected: 03/21/24 10:00

Matrix: Water Date Received: 03/21/24 15:21

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acrolein	0.011	U	0.050	0.011	mg/L			03/22/24 18:03	1
Acrylonitrile	0.014	U	0.050	0.014	mg/L			03/22/24 18:03	1
Benzene	0.00046	U	0.0010	0.00046	mg/L			03/22/24 18:03	1
Carbon tetrachloride	0.00090	U	0.0050	0.00090	mg/L		>	03/22/24 18:03	1
Chlorobenzene	0.00046	U	0.0010	0.00046	mg/L	0		03/22/24 18:03	1
1,2,4-Trichlorobenzene	0.0018	U	0.0050	0.0018	mg/L]]		03/22/24 18:03	1
1,2-Dichloroethane	0.00037	U	0.0010	0.00037	mg/L			03/22/24 18:03	1
1,1,1-Trichloroethane	0.00059	U	0.0050	0.00059	mg/L			03/22/24 18:03	1
1,1-Dichloroethane	0.00064	U	0.0010	0.00064	mg/L			03/22/24 18:03	1
1,1,2-Trichloroethane	0.00041	U	0.0010	0.00041	mg/L			03/22/24 18:03	1
1,2-Dibromoethane	0.0010	U	0.0050	0.0010	mg/L			03/22/24 18:03	1
1,1,2,2-Tetrachloroethane	0.00047	U	0.0010	0.00047	mg/L			03/22/24 18:03	1
Chloroethane	0.0020	U	0.010	0.0020	mg/L			03/22/24 18:03	1
2-Chloroethyl vinyl ether	0.00075	U	0.0050	0.00075	mg/L			03/22/24 18:03	1
Chloroform	0.017		0.0010	0.00046	mg/L			03/22/24 18:03	1
1,2-Dichlorobenzene	0.00043	U	0.0010	0.00043	mg/L			03/22/24 18:03	1
1,3-Dichlorobenzene	0.00041	U	0.0010	0.00041	mg/L			03/22/24 18:03	1
1,4-Dichlorobenzene	0.00045	U 🖟	0.0010	0.00045	mg/L			03/22/24 18:03	1
1,1-Dichloroethene	0.00074	u 📡	0.0010	0.00074	mg/L			03/22/24 18:03	1
trans-1,2-Dichloroethene	0.00037	U	0.0010	0.00037	-			03/22/24 18:03	1
1,2-Dichloropropane	0.00056	U, //	0.0050	0.00056	-			03/22/24 18:03	1
Ethylbenzene	0.00039	γÙ	0.0010	0.00039				03/22/24 18:03	1
2-Butanone	0.0083		0.050	0.0083	-			03/22/24 18:03	1
Methylene Chloride	0.0017		0.0050	0.0017	-			03/22/24 18:03	1
Chloromethane	0.0020	U	0.010	0.0020	mg/L			03/22/24 18:03	1
Bromomethane	0.0014	U	0.0050	0.0014	mg/L			03/22/24 18:03	1
Bromoform	0.00063	U	0.0050	0.00063	mg/L			03/22/24 18:03	1
Bromodichloromethane	0.0018		0.0010	0.00055				03/22/24 18:03	1
Chlorodibromomethane	0.00055	U	0.0050	0.00055	-			03/22/24 18:03	1
Hexachlorobutadiene	0.00063	U	0.0050	0.00063	-			03/22/24 18:03	1
Naphthalene	0.0014		0.010	0.0014	mg/L			03/22/24 18:03	1
Tetrachloroethene	0.00066	U	0.0010	0.00066	-			03/22/24 18:03	1
Toluene	0.00048	U	0.0010	0.00048	•			03/22/24 18:03	1
Trichloroethene	0.0015		0.0050	0.0015				03/22/24 18:03	1
Vinyl chloride	0.00043		0.0020	0.00043	-			03/22/24 18:03	1
1,3-Dichloropropylene	0.0013		0.0050	0.0013	-			03/22/24 18:03	1
cis-1,3-Dichloropropene	0.0011		0.0050	0.0011				03/22/24 18:03	
Trihalomethanes, Total	0.019		0.0050	0.00063	-			03/22/24 18:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105	63 - 144	03/22/24 18:	
4-Bromofluorobenzene (Surr)	105	74 - 124	03/22/24 18:	03 1
Dibromofluoromethane (Surr)	108	75 ₋ 131	03/22/24 18:	03 1
Toluene-d8 (Surr)	102	80 - 120	03/22/24 18:	03 1

Method: EPA 625.1 - Semivolatile	Organio	Compound	is (GC/MS)					ed Analyzed Dil Fac 16:25 03/27/24 19:50 1				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
1,2,4,5-Tetrachlorobenzene	0.0013	U	0.010	0.0013	mg/L		03/26/24 16:25	03/27/24 19:50	1			
1,2-Dichlorobenzene	0.0016	U *-	0.010	0.0016	mg/L		03/26/24 16:25	03/27/24 19:50	1			
1,3-Dichlorobenzene	0.0014	U *-	0.010	0.0014	mg/L		03/26/24 16:25	03/27/24 19:50	1			

Eurofins Houston

Page 9 of 53 4/15/2024

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Client Sample ID: Outfall 001

Lab Sample ID: 860-70454-1 Date Collected: 03/21/24 10:00 **Matrix: Water**

Date Received: 03/21/24 15:21

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,4-Dichlorobenzene	0.0016	U	0.010	0.0016	mg/L		03/26/24 16:25	03/27/24 19:50	
Acenaphthene	0.0014		0.0057	0.0014			03/26/24 16:25	03/27/24 19:50	
Benzidine	0.0048	U *- *1	0.020		mg/L		03/26/24 16:25	03/27/24 19:50	
1,2,4-Trichlorobenzene	0.0016		0.0050	0.0016			03/26/24 16:25	03/27/24 19:50	
Hexachlorobenzene	0.00031		0.0050	0.00031	mg/L		/*	03/27/24 19:50	
Hexachloroethane	0.00053		0.0048	0.00053	mg/L	17		03/27/24 19:50	
2,4,5-Trichlorophenol	0.0020		0.010	0.0020	mg/L	<i>!</i>		03/27/24 19:50	
Bis(2-chloroethyl)ether	0.0022		0.010	0.0022	// 7/ LV2			03/27/24 19:50	
2-Chloronaphthalene	0.00046		0.0050	///	mg/L			03/27/24 19:50	
2,4,6-Trichlorophenol	0.0014		0.0050	0.0014	// -			03/27/24 19:50	
p-Chloro-m-cresol	0.0016		0.0050	0.0016	-			03/27/24 19:50	
2-Chlorophenol	0.00065		0.0050	0.00065	Ū			03/27/24 19:50	
3,3'-Dichlorobenzidine	0.00034		0.0050	0.00034				03/27/24 19:50	
2,4-Dichlorophenol	0.00031		0.0050	11.	mg/L			03/27/24 19:50	
2,4-Dimethylphenol	0.00065		0.0050	0.00065	•			03/27/24 19:50	
2,4-Dinitrotoluene	0.0013	,	0.010	0.0013				03/27/24 19:50	
1,2-Diphenylhydrazine	0.0015	~	0.010	0.0015	-			03/27/24 19:50	
Fluoranthene	0.0016	.// \/	0.0050	0.0016	-			03/27/24 19:50	
4-Bromophenyl phenyl ether	0.00026		0.0050	0.00026				03/27/24 19:50	
4-Chlorophenyl phenyl ether	0.0013		0.010	0.00020	-			03/27/24 19:50	
o-Cresol	0.0016		0.010	0.0016	-			03/27/24 19:50	
Bis(2-chloroethoxy)methane	0.0018	, <u>,, Y</u>	0.010	0.0018				03/27/24 19:50	
m & p - Cresol	0.0018		0.010	0.0016	-			03/27/24 19:50	
bis (2-chloroisopropyl) ether	0.0020		0.010	0.0020	J			03/27/24 19:50	
Hexachlorobutadiene	0.00018		0.0010	0.00014				03/27/24 19:50	
Hexachlorocyclopentadiene	0.0046		0.010	0.00024	-			03/27/24 19:50	
Isophorone	0.0040		0.0050	0.0046	-			03/27/24 19:50	
Naphthalene	0.00054		0.0025	0.00054				03/27/24 19:50	
Nitrobenzene	0.00034		0.0023	0.00034	•			03/27/24 19:50	
4-Nitrophenol	0.0017		0.0030		mg/L			03/27/24 19:50	
2-Nitrophenol	0.0049		0.012	0.0049				03/27/24 19:50	
4,6-Dinitro-o-cresol	0.0017		0.010	0.0017	-			03/27/24 19:50	
N-Nitrosodimethylamine	0.0014		0.010	0.0014	-			03/27/24 19:50	
	0.0020		0.010	0.0020	.			03/27/24 19:50	
N-Nitrosodiphenylamine N-Nitrosodi-n-propylamine	0.0018		0.010	0.0018	Ū			03/27/24 19:50	
' ',	0.0029		0.010		-				
Pentachlorophenol	0.00023		0.010	0.00023 0.00042				03/27/24 19:50 03/27/24 19:50	
Phenol					-			03/27/24 19:50	
Bis(2-ethylhexyl) phthalate	0.00028		0.0050	0.00028	-				
Butyl benzyl phthalate	0.00034		0.0050	0.00034				03/27/24 19:50	
Di-n-butyl phthalate	0.00025		0.0050	0.00025	-			03/27/24 19:50	
Di-n-octyl phthalate	0.00037		0.0050	0.00037	-			03/27/24 19:50	
Diethyl phthalate	0.0016		0.0050	0.0016				03/27/24 19:50	
Dimethyl phthalate	0.00030		0.0025	0.00030	-			03/27/24 19:50	
Benzo[a]anthracene	0.00017		0.0050	0.00017	-			03/27/24 19:50	
Benzo[a]pyrene	0.00036		0.0050	0.00036				03/27/24 19:50	
Benzo[b]fluoranthene	0.0020		0.010	0.0020	-			03/27/24 19:50	
Benzo[k]fluoranthene	0.00038		0.0050	0.00038	-			03/27/24 19:50	
Chrysene	0.00022	U	0.0050	0.00022	mg/L		03/26/24 16:25	03/27/24 19:50	

Eurofins Houston

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Client Sample ID: Outfall 001

Date Collected: 03/21/24 10:00 Date Received: 03/21/24 15:21

Lab Sample ID: 860-70454-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Anthracene	0.0015	U	0.0057	0.0015	mg/L		03/26/24 16:25	03/27/24 19:50	1
Benzo[g,h,i]perylene	0.0027	U	0.010	0.0027	mg/L		03/26/24 16:25	03/27/24 19:50	1
Fluorene	0.0016	U *-	0.0050	0.0016	mg/L		03/26/24 16:25	03/27/24 19:50	1
Phenanthrene	0.0014	U	0.010	0.0014	mg/L		03/26/24 16:25	03/27/24 19:50	1
Dibenz(a,h)anthracene	0.00025	U	0.0050	0.00025	mg/L	0	03/26/24 16:25	03/27/24 19:50	1
Indeno[1,2,3-cd]pyrene	0.0023	U	0.010	0.0023	mg/L]]	03/26/24 16:25	03/27/24 19:50	1
Pyrene	0.00018	U	0.0050	0.00018	mg/L		03/26/24 16:25	03/27/24 19:50	1
2,4-Dinitrophenol	0.0016	U	0.010	0.0016	mg/L		03/26/24 16:25	03/27/24 19:50	1
2,6-Dinitrotoluene	0.0016	U	0.0050	0.0016	mg/L		03/26/24 16:25	03/27/24 19:50	1
N-Nitrosodi-n-butylamine	0.0015	U	0.010	0.0015	mg/L		03/26/24 16:25	03/27/24 19:50	1
N-Nitrosodiethylamine	0.0018	U	0.010	0.0018	mg/L		03/26/24 16:25	03/27/24 19:50	1
Nonylphenol	0.010	U	0.010	0.010	mg/L		03/26/24 16:25	03/27/24 19:50	1
Pentachlorobenzene	0.0011	U	0.010	0.0011	mg/L		03/26/24 16:25	03/27/24 19:50	1
Pyridine	0.0026	U *1	0.010	0.0026	mg/L		03/26/24 16:25	03/27/24 19:50	1
Total Cresols	0.0026	U	0.010	0.0026	mg/L		03/26/24 16:25	03/27/24 19:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	40		31 - 132				03/26/24 16:25	03/27/24 19:50	1
2-Fluorobiphenyl (Surr)	35 ^{<}		29 - 112				03/26/24 16:25	03/27/24 19:50	1
2-Fluorophenol (Surr)	17	S1-	28 - 114				03/26/24 16:25	03/27/24 19:50	1
Nitrobenzene-d5 (Surr)	40		15 - 314				03/26/24 16:25	03/27/24 19:50	1
p-Terphenyl-d14 (Surr)	49	>	20 - 141				03/26/24 16:25	03/27/24 19:50	1
Phenol-d5 (Surr)	12		8 - 424				03/26/24 16:25	03/27/24 19:50	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.23	J	0.50	0.071	mg/L			03/22/24 07:56	1
Nitrate as N	4.4		0.10	0.039	mg/L			03/22/24 07:56	1
Chloride	<i> →</i> 300		0.50	0.25	mg/L			03/22/24 07:56	1
Nitrite as N	0.029	U F1	0.10	0.029	mg/L			03/22/24 07:56	1
Fluoride	1.2		0.50	0.10	mg/L			03/22/24 07:56	1
Nitrate Nitrite as N	4.4		0.10	0.039	mg/L			03/22/24 07:56	1
Sulfate	330		0.50	0.20	mg/L			03/22/24 07:56	1

Method: EPA 1631E - Mercury	, Low Level (CVAFS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	16	0.50	0.20	ng/L		03/25/24 13:48	03/26/24 13:32	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.21		0.020	0.0030	mg/L		03/28/24 11:30	03/28/24 20:23	1
Antimony	0.0016	J	0.0020	0.0011	mg/L		03/28/24 11:30	03/28/24 20:23	1
Arsenic	0.0044		0.0040	0.00034	mg/L		03/28/24 11:30	03/28/24 20:23	1
Barium	0.16		0.0040	0.00029	mg/L		03/28/24 11:30	03/28/24 20:23	1
Beryllium	0.00015	U	0.0020	0.00015	mg/L		03/28/24 11:30	03/28/24 20:23	1
Boron	0.34		0.020	0.0050	mg/L		03/28/24 11:30	04/02/24 11:57	2
Cadmium	0.00026	U	0.0020	0.00026	mg/L		03/28/24 11:30	03/28/24 20:23	1
Chromium	0.0028	J	0.0040	0.00033	mg/L		03/28/24 11:30	03/28/24 20:23	1
Cobalt	0.00060	J	0.0020	0.00026	mg/L		03/28/24 11:30	03/28/24 20:23	1
Copper	0.036		0.0040	0.00069	mg/L		03/28/24 11:30	03/28/24 20:23	1

Eurofins Houston

Page 11 of 53

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Client Sample ID: Outfall 001

Carbonaceous Biochemical Oxygen

Demand (SM5210B CBOD)

Lab Sample ID: 860-70454-1 Date Collected: 03/21/24 10:00

Matrix: Water

Date Received: 03/21/24 15:21 Method: EPA 200.8 - Metals (ICP/MS) - Total Recoverable (Continued) **MDL** Unit Dil Fac Analyte Result Qualifier RL D Prepared Analyzed 0.020 Iron 0.79 0.0020 mg/L 03/28/24 11:30 03/28/24 20:23 0.0020 03/28/24 20:23 Lead 0.00040 J 0.00014 mg/L 03/28/24 11:30 03/28/24 11:30 03/28/24 20:26 **Magnesium** 16 1.0 0.092 mg/L 10 0.0020 03/28/24 11:30 03/28/24 20:23 Manganese 0.00016 mg/L 0.032 0.0020 0.00016 mg/L 03/28/24 11:30 03/28/24 20:23 Molybdenum 0.0097 03/28/24 11:30 03/28/24 20:23 **Nickel** 0.0020 0.00049 mg/L 0.015 0.0020 0.00069 mg/L 03/28/24 11:30 03/28/24 20:23 Selenium 0.0017 J Silver 0.0020 0.00012 mg/L 03/28/24 11:30 03/28/24 20:23 0.00012 U 0.00022 Thallium 0.00022 U 0.0020 mg/L 03/28/24 11:30 03/28/24 20:23 Tin 0.00065 J 0.0020 0.00033 mg/L 03/28/24 11:30 03/28/24 20:23 0.00042 mg/L **Titanium** 0.0021 J 0.0040 03/28/24 11:30 03/28/24 20:23 0.00089 mg/L **Zinc** 0.0040 03/28/24 11:30 03/28/24 20:23 0.012 **General Chemistry** Result Qualifier Analyte RL **MDL** Unit Prepared Dil Fac Analyzed HEM (1664B) 1.6 U 5.0 1.6 mg/L 03/27/24 14:23 0.10 03/27/24 15:00 Ammonia (EPA 350.1) 0.16 0.051 mg/L Nitrogen, Kjeldahl (EPA 351.2) 3.4 0.20 0.089 mg/L 03/26/24 20:10 03/28/24 11:16 1.0 mg/L 03/25/24 16:54 Oxygen, Dissolved (EPA 360.1) 10 HF 1.0 **Phosphorus Total (EPA 365.1)** 0.83 0.10 0.072 mg/L 04/03/24 00:17 0.0034 U Cr (VI) (SW846 7196A) 0.010 0.0034 mg/L 03/21/24 19:20 0.0034 U 0.0034 mg/L Cr (III) (SW846 7196A) 0.010 04/08/24 14:54 **Chemical Oxygen Demand (Hach** 20 3.4 mg/L 04/01/24 19:18 75 Nitrogen, Organic (EPA 0.20 0.061 mg/L 3.2 03/29/24 15:58 Nitrogen, Org) Cyanide, Available (OI CORP 0.0084 0.0060 0.0050 mg/L 04/02/24 15:55 **OIA-1677**) 2 Color, Apparent (SM 2120B) 30 10 10 Color Units 03/22/24 19:15 10 10 Color Units 03/22/24 19:15 2 Color, True (SM 2120B) 20 2 0.10 0.10 S.U. 03/22/24 19:15 pH (SM 2120B) 8.2 Alkalinity (SM 2320B) 150 4.0 4.0 mg/L 03/25/24 23:08 **Bicarbonate Alkalinity as CaCO3** 4.0 4.0 mg/L 03/25/24 23:08 150 (SM 2320B) Carbonate Alkalinity as CaCO3 (SM 4.0 U 4.0 03/25/24 23:08 4.0 mg/L 2320B) Hydroxide Alkalinity (SM 2320B) 4.0 U 4.0 4.0 mg/L 03/25/24 23:08 Phenolphthalein Alkalinity (SM 2320B) 4.0 U 4.0 4.0 mg/L 03/25/24 23:08 Total Dissolved Solids (SM 2540C) 20 mg/L 03/26/24 12:59 1200 03/26/24 15:02 **Total Suspended Solids (SM** 4.0 mg/L 4.0 13 2540D) Chlorine, Total Residual (SM 4500 1.1 HF 0.10 0.10 mg/L 03/25/24 14:46 2 CIG) Sulfide (SM 4500 S2 D) 0.040 U 0.10 0.040 mg/L 03/22/24 16:04 5.0 UHF Sulfite (SM 4500 SO3 B) 5.0 5.0 mg/L 03/25/24 16:55 Biochemical Oxygen Demand (SM 12 U 12 03/22/24 13:00 03/22/24 16:06 mg/L **Total Organic Carbon (SM 5310C)** 12 1.0 0.50 mg/L 03/29/24 04:14

Eurofins Houston

03/22/24 18:32 03/22/24 19:14

3.0

3.0 mg/L

3.0 U

4/15/2024

Surrogate Summary

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery						
		DCA	BFB	DBFM	TOL				
Lab Sample ID	Client Sample ID	(63-144)	(74-124)	(75-131)	(80-120)				
860-70454-1	Outfall 001	105	105	108	102				
LCS 860-151135/1011	Lab Control Sample	90	99	94	99				
LCSD 860-151135/12	Lab Control Sample Dup	90	98	95	100				
MB 860-151135/18	Method Blank	97	99	97	100				
Surrogate Legend									

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)						
		ТВР	FBP	2FP	NBZ	TPHd14	PHL		
Lab Sample ID	Client Sample ID	(31-132)	(29-112)	(28-114)	(15-314)	(20-141)	(8-424)		
860-70454-1	Outfall 001	40	35	17 S1-	40	49	12		
LCS 860-151704/2-A	Lab Control Sample	61	59	37	70	75	27		
LCSD 860-151704/3-A	Lab Control Sample Dup	66	63	40	73	80	30		
MB 860-151704/1-A	Method Blank	56	63	36	76	83	26		

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

Eurofins Houston

Page 13 of 53

2

3

4

6

Q

9

11

40

14

QC Sample Results

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-151135/18

Matrix: Water

Analysis Batch: 151135

Client Sample ID: Method Blank **Prep Type: Total/NA**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acrolein	0.011	U	0.050	0.011	mg/L			03/22/24 15:12	1
Acrylonitrile	0.014	U	0.050	0.014	mg/L			03/22/24 15:12	1
Benzene	0.00046	U	0.0010	0.00046	mg/L		>	03/22/24 15:12	1
Carbon tetrachloride	0.00090	U	0.0050	0.00090	mg/L			03/22/24 15:12	1
Chlorobenzene	0.00046	U	0.0010	0.00046	mg/L	Ŋ		03/22/24 15:12	1
1,2,4-Trichlorobenzene	0.0018	U	0.0050	0.0018	mg/L			03/22/24 15:12	1
1,2-Dichloroethane	0.00037	U	0.0010	0.00037	mg/L			03/22/24 15:12	1
1,1,1-Trichloroethane	0.00059	U	0.0050	0.00059	mg/L			03/22/24 15:12	1
1,1-Dichloroethane	0.00064	U	0.0010	0.00064	mg/L			03/22/24 15:12	1
1,1,2-Trichloroethane	0.00041	U	0.0010	0.00041	mg/L			03/22/24 15:12	1
1,2-Dibromoethane	0.0010	U	0.0050	0.0010	mg/L			03/22/24 15:12	1
1,1,2,2-Tetrachloroethane	0.00047	U	0.0010	0.00047	mg/L			03/22/24 15:12	1
Chloroethane	0.0020	U	0.010	0.0020	mg/L			03/22/24 15:12	1
2-Chloroethyl vinyl ether	0.00075	U	0.0050	0.00075	mg/L			03/22/24 15:12	1
Chloroform	0.00046	U	0.0010	0.00046	mg/L			03/22/24 15:12	1
1,2-Dichlorobenzene	0.00043	U	0.0010	0.00043	mg/L			03/22/24 15:12	1
1,3-Dichlorobenzene	0.00041	_U <<	0.0010	0.00041	mg/L			03/22/24 15:12	1
1,4-Dichlorobenzene	0.00045	u »	0.0010	0.00045	mg/L			03/22/24 15:12	1
1,1-Dichloroethene	0.00074	Ŭ	0.0010	0.00074	mg/L			03/22/24 15:12	1
trans-1,2-Dichloroethene	0.00037	M.	0.0010	0.00037	mg/L			03/22/24 15:12	1
1,2-Dichloropropane	0.00056	ŶU	0.0050	0.00056	mg/L			03/22/24 15:12	1
Ethylbenzene	0.00039	U	0.0010	0.00039	mg/L			03/22/24 15:12	1
2-Butanone	0.0083	U	0.050	0.0083	mg/L			03/22/24 15:12	1
Methylene Chloride	0.0017	U	0.0050	0.0017	mg/L			03/22/24 15:12	1
Chloromethane	0.0020	U	0.010	0.0020	mg/L			03/22/24 15:12	1
Bromomethane	0.0014	U	0.0050	0.0014	mg/L			03/22/24 15:12	1
Bromoform	0.00063	U	0.0050	0.00063	mg/L			03/22/24 15:12	1
Bromodichloromethane	0.00055	U	0.0010	0.00055	mg/L			03/22/24 15:12	1
Chlorodibromomethane	0.00055	U	0.0050	0.00055	mg/L			03/22/24 15:12	1
Hexachlorobutadiene	0.00063	U	0.0050	0.00063	mg/L			03/22/24 15:12	1
Naphthalene	0.0014	U	0.010	0.0014	mg/L			03/22/24 15:12	1
Tetrachloroethene	0.00066	U	0.0010	0.00066	mg/L			03/22/24 15:12	1
Toluene	0.00048	U	0.0010	0.00048	mg/L			03/22/24 15:12	1
Trichloroethene	0.0015	U	0.0050	0.0015	mg/L			03/22/24 15:12	1
Vinyl chloride	0.00043	U	0.0020	0.00043	mg/L			03/22/24 15:12	1
1,3-Dichloropropylene	0.0013	U	0.0050	0.0013	mg/L			03/22/24 15:12	1
cis-1,3-Dichloropropene	0.0011	U	0.0050	0.0011	mg/L			03/22/24 15:12	1
Trihalomethanes, Total	0.00063	U	0.0050	0.00063	mg/L			03/22/24 15:12	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		63 - 144		3/22/24 15:12	1
4-Bromofluorobenzene (Surr)	99		74 - 124	0.	3/22/24 15:12	1
Dibromofluoromethane (Surr)	97		75 - 131	0.	3/22/24 15:12	1
Toluene-d8 (Surr)	100		80 - 120	0.	3/22/24 15:12	1

Page 14 of 53

QC Sample Results

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 860-151135/1011

Matrix: Water

Analysis Batch: 151135

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
Acrolein	0.250	0.240		mg/L	96	60 - 140	
Acrylonitrile	0.500	0.461		mg/L	92	60 - 140	
Benzene	0.0500	0.0491		mg/L/	> 98	75 - 125	
Carbon tetrachloride	0.0500	0.0486		mg/L	97	70 - 125	
Chlorobenzene	0.0500	0.0505		mg/L/	101	82 - 135	
1,2,4-Trichlorobenzene	0.0500	0.0559		mg/L	112	75 - 135	
1,2-Dichloroethane	0.0500	0.0464	\sim 0	mg/L	93	72 - 130	
1,1,1-Trichloroethane	0.0500	0.0496		mg/L	99	70 - 130	
1,1-Dichloroethane	0.0500	0.0473		mg/L	95	71 - 130	
1,1,2-Trichloroethane	0.0500	0.0488		mg/L	98	75 - 130	
1,2-Dibromoethane	0.0500	0.0509		mg/L	102	73 - 125	
1,1,2,2-Tetrachloroethane	0.0500	0.0463		mg/L	93	74 - 125	
Chloroethane	0.0500	0.0400		mg/L	80	60 - 140	
2-Chloroethyl vinyl ether	0.0500	0.0516		mg/L	103	50 - 150	
Chloroform	0.0500	0.0481		mg/L	96	70 - 121	
1,2-Dichlorobenzene	0.0500	0.0505		mg/L	101	75 - 125	
1,3-Dichlorobenzene	0.0500	0.0517		mg/L	103	75 - 125	
1,4-Dichlorobenzene	0.0500	0.0498		mg/L	100	75 - 125	
1,1-Dichloroethene	0.0500	0.0518		mg/L	104	50 - 150	
trans-1,2-Dichloroethene	0.0500	0.0516		mg/L	103	75 - 125	
1,2-Dichloropropane	0.0500	0.0494		mg/L	99	74 - 125	
Ethylbenzene	0.0500	0.0536		mg/L	107	75 - 125	
2-Butanone	0.250	0.232		mg/L	93	60 - 140	
Methylene Chloride	0.0500	0.0461		mg/L	92	71 - 125	
Chloromethane	0.0500	0.0441		mg/L	88	60 - 140	
Bromomethane	0.0500	0.0393		mg/L	79	60 - 140	
Bromoform	0.0500	0.0487		mg/L	97	70 - 130	
Bromodichloromethane	0.0500	0.0507		mg/L	101	75 - 125	
Chlorodibromomethane	0.0500	0.0541		mg/L	108	73 - 125	
Hexachlorobutadiene	0.0500	0.0510		mg/L	102	75 - 125	
Naphthalene	0.0500	0.0465		mg/L	93	70 - 130	
Tetrachloroethene	0.0500	0.0520		mg/L	104	71 - 125	
Toluene	0.0500	0.0512		mg/L	102	75 - 130	
Trichloroethene	0.0500	0.0528		mg/L	106	75 - 135	
Vinyl chloride	0.0500	0.0452		mg/L	90	60 - 140	
cis-1,3-Dichloropropene	0.0500	0.0527		mg/L	105	74 - 125	

LCS LCS	
---------	--

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	90		63 - 144
4-Bromofluorobenzene (Surr)	99		74 - 124
Dibromofluoromethane (Surr)	94		75 - 131
Toluene-d8 (Surr)	99		80 - 120

Eurofins Houston

Page 15 of 53

QC Sample Results

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 860-151135/12

Matrix: Water

Analysis Batch: 151135

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analyte	Spike Added		LCSD Qualifier	Unit	D	%Rec	%Rec Limits	RPD	RPD Limit
Acrolein	0.250	0.229		mg/L		92	60 - 140	5	25
Acrylonitrile	0.500	0.461		mg/L		92	60 - 140	0	25
Benzene	0.0500	0.0479		mg/L/	S	96	75 - 125	2	25
Carbon tetrachloride	0.0500	0.0458		mg/L	!):	92	70 - 125	6	25
Chlorobenzene	0.0500	0.0504		mg/L/		101	82 - 135	0	25
1,2,4-Trichlorobenzene	0.0500	0.0577		mg/L		115	75 - 135	3	25
1,2-Dichloroethane	0.0500	0.0449	~ (C)	mg/L		90	72 - 130	3	25
1,1,1-Trichloroethane	0.0500	0.0492		mg/L		98	70 - 130	1	25
1,1-Dichloroethane	0.0500	0.0483		mg/L		97	71 - 130	2	25
1,1,2-Trichloroethane	0.0500	0.0482		mg/L		96	75 - 130	1	25
1,2-Dibromoethane	0.0500	0.0505		mg/L		101	73 - 125	1	25
1,1,2,2-Tetrachloroethane	0.0500	0.0458		mg/L		92	74 - 125	1	25
Chloroethane	0.0500	0.0400		mg/L		80	60 - 140	0	25
2-Chloroethyl vinyl ether	0.0500	0.0505		mg/L		101	50 - 150	2	25
Chloroform	0.0500	0.0473		mg/L		95	70 - 121	2	25
1,2-Dichlorobenzene	0.0500	0.0505		mg/L		101	75 - 125	0	25
1,3-Dichlorobenzene	0.0500	0.0519		mg/L		104	75 - 125	0	25
1,4-Dichlorobenzene	0.0500	0.0489		mg/L		98	75 - 125	2	25
1,1-Dichloroethene	0.0500	0.0500		mg/L		100	50 - 150	4	25
trans-1,2-Dichloroethene	0.0500	0.0490		mg/L		98	75 - 125	5	25
1,2-Dichloropropane	0.0500	0.0481		mg/L		96	74 - 125	3	25
Ethylbenzene	0.0500	0.0535		mg/L		107	75 - 125	0	25
2-Butanone	0.250	0.226		mg/L		90	60 - 140	2	25
Methylene Chloride	0.0500	0.0462		mg/L		92	71 - 125	0	25
Chloromethane	0.0500	0.0435		mg/L		87	60 - 140	1	25
Bromomethane	0.0500	0.0390		mg/L		78	60 - 140	1	25
Bromoform	0.0500	0.0497		mg/L		99	70 - 130	2	25
Bromodichloromethane	0.0500	0.0503		mg/L		101	75 - 125	1	25
Chlorodibromomethane	0.0500	0.0542		mg/L		108	73 - 125	0	25
Hexachlorobutadiene	0.0500	0.0548		mg/L		110	75 - 125	7	25
Naphthalene	0.0500	0.0505		mg/L		101	70 - 130	8	25
Tetrachloroethene	0.0500	0.0521		mg/L		104	71 - 125	0	25
Toluene	0.0500	0.0510		mg/L		102	75 - 130	1	25
Trichloroethene	0.0500	0.0525		mg/L		105	75 - 135	1	25
Vinyl chloride	0.0500	0.0474		mg/L		95	60 - 140	5	25
cis-1,3-Dichloropropene	0.0500	0.0520		mg/L		104	74 - 125	1	25

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	90		63 - 144
4-Bromofluorobenzene (Surr)	98		74 - 124
Dibromofluoromethane (Surr)	95		75 ₋ 131
Toluene-d8 (Surr)	100		80 - 120

Eurofins Houston

Page 16 of 53

QC Sample Results

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-151704/1-A

Matrix: Water Analysis Batch: 151846 Client Sample ID: Method Blank **Prep Type: Total/NA**

Analysis Batch: 151846								Prep Batch:	151704
Analista		MB	DI.	MDI	l lm!4	_	Duamanad	A a l a al	Dil Fa
Analyte	0.0013	Qualifier	RL 0.010	0.0013		<u>D</u>	Prepared	Analyzed 03/27/24 14:41	Dil Fa
1,2,4,5-Tetrachlorobenzene					-			03/27/24 14:41	
1,2-Dichlorobenzene	0.0016		0.010	0.0016	•				
1,3-Dichlorobenzene	0.0014		0.010	0.0014		(()	03/26/24 16:25		
1,4-Dichlorobenzene	0.0016		0.010	0.0016	- \"/	/7		03/27/24 14:41	
Acenaphthene	0.0014		0.0057	0.0014				03/27/24 14:41	
Benzidine	0.0048		0.020	0.0048	. <i>[[7]</i> . [N2			03/27/24 14:41	
1,2,4-Trichlorobenzene	0.0016		0.0050	0.0016				03/27/24 14:41	
Hexachlorobenzene	0.00031		0.0050	0.00031	// -			03/27/24 14:41	
Hexachloroethane	0.00053		0.0048	0.00053				03/27/24 14:41	
2,4,5-Trichlorophenol	0.0020		0.010	0.0020	-			03/27/24 14:41	
Bis(2-chloroethyl)ether	0.0022		0.010	0.0022	-		03/26/24 16:25	03/27/24 14:41	
2-Chloronaphthalene	0.00046	U	0.0050	0.00046			03/26/24 16:25	03/27/24 14:41	
2,4,6-Trichlorophenol	0.0014	U	0.0050	0.0014	mg/L		03/26/24 16:25	03/27/24 14:41	
p-Chloro-m-cresol	0.0016	U	0.0050	0.0016	-		03/26/24 16:25	03/27/24 14:41	
2-Chlorophenol	0.00065	U	0.0050	0.00065			03/26/24 16:25	03/27/24 14:41	
3,3'-Dichlorobenzidine	0.00034	U	0.0050	0.00034	mg/L		03/26/24 16:25	03/27/24 14:41	
2,4-Dichlorophenol	0.00031	n «(»	0.0050	0.00031	mg/L		03/26/24 16:25	03/27/24 14:41	
2,4-Dimethylphenol	0.00065	u 💝	0.0050	0.00065	mg/L		03/26/24 16:25	03/27/24 14:41	
2,4-Dinitrotoluene	0.0013	U	0.010	0.0013	mg/L		03/26/24 16:25	03/27/24 14:41	
1,2-Diphenylhydrazine	0.0015	W.	0.010	0.0015	mg/L		03/26/24 16:25	03/27/24 14:41	
Fluoranthene	0.0016	ν̈́Ū	0.0050	0.0016	mg/L		03/26/24 16:25	03/27/24 14:41	
4-Bromophenyl phenyl ether	0.00026	U	0.0050	0.00026	mg/L		03/26/24 16:25	03/27/24 14:41	
4-Chlorophenyl phenyl ether	0.0013	U	0.010	0.0013	mg/L		03/26/24 16:25	03/27/24 14:41	
o-Cresol	0.0016	U	0.010	0.0016	mg/L		03/26/24 16:25	03/27/24 14:41	
Bis(2-chloroethoxy)methane	0.0018	U	0.010	0.0018	mg/L		03/26/24 16:25	03/27/24 14:41	
m & p - Cresol	0.0026	U	0.010	0.0026	-		03/26/24 16:25	03/27/24 14:41	
bis (2-chloroisopropyl) ether	0.0018	U	0.010	0.0018	-		03/26/24 16:25	03/27/24 14:41	
Hexachlorobutadiene	0.00024	U	0.0010	0.00024			03/26/24 16:25	03/27/24 14:41	
Hexachlorocyclopentadiene	0.0046		0.010	0.0046	-			03/27/24 14:41	
Isophorone	0.0016		0.0050	0.0016	-			03/27/24 14:41	
Naphthalene	0.00054		0.0025	0.00054				03/27/24 14:41	
Nitrobenzene	0.0017		0.0050	0.0017	-			03/27/24 14:41	
4-Nitrophenol	0.0049		0.0072	0.0049	-			03/27/24 14:41	
2-Nitrophenol	0.0017		0.010	0.0017				03/27/24 14:41	
4.6-Dinitro-o-cresol	0.0017		0.010	0.0017	-			03/27/24 14:41	
N-Nitrosodimethylamine	0.0020		0.010	0.0020	-			03/27/24 14:41	
N-Nitrosodiphenylamine	0.0020		0.010	0.0020				03/27/24 14:41	
N-Nitrosodi-n-propylamine	0.0018		0.010	0.0018	-			03/27/24 14:41	
Pentachlorophenol	0.0029		0.010	0.0029	-			03/27/24 14:41	
Phenol	0.00023		0.0045	0.00023				03/27/24 14:41	
					_				
Bis(2-ethylhexyl) phthalate	0.00028		0.0050	0.00028	-			03/27/24 14:41 03/27/24 14:41	
Butyl benzyl phthalate	0.00034		0.0050	0.00034					
Di-n-butyl phthalate	0.00025		0.0050	0.00025	-			03/27/24 14:41	
Di-n-octyl phthalate	0.00037		0.0050	0.00037	-			03/27/24 14:41	
Diethyl phthalate	0.0016		0.0050	0.0016				03/27/24 14:41	
Dimethyl phthalate	0.00030		0.0025	0.00030	-			03/27/24 14:41	
Benzo[a]anthracene	0.00017		0.0050	0.00017	_			03/27/24 14:41	
Benzo[a]pyrene	0.00036	U	0.0050	0.00036	mg/L		03/26/24 16:25	03/27/24 14:41	•

Eurofins Houston

Page 17 of 53

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 860-151704/1-A

Matrix: Water

Analysis Batch: 151846

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 151704

7									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[b]fluoranthene	0.0020	U	0.010	0.0020	mg/L		03/26/24 16:25	03/27/24 14:41	1
Benzo[k]fluoranthene	0.00038	U	0.0050	0.00038	mg/L		03/26/24 16:25	03/27/24 14:41	1
Chrysene	0.00022	U	0.0050	0.00022	mg/L		03/26/24 16:25	03/27/24 14:41	1
Acenaphthylene	0.0014	U	0.010	0.0014	mg/L		03/26/24 16:25	03/27/24 14:41	1
Anthracene	0.0015	U	0.0057	0.0015	mg/L	/7	03/26/24 16:25	03/27/24 14:41	1
Benzo[g,h,i]perylene	0.0027	U	0.010	0.0027	mg/L		03/26/24 16:25	03/27/24 14:41	1
Fluorene	0.0016	U	0.0050	0.0016	mg/L)		03/26/24 16:25	03/27/24 14:41	1
Phenanthrene	0.0014	U	0.010	0.0014	mg/L		03/26/24 16:25	03/27/24 14:41	1
Dibenz(a,h)anthracene	0.00025	U	0.0050	0.00025	mg/L		03/26/24 16:25	03/27/24 14:41	1
Indeno[1,2,3-cd]pyrene	0.0023	U	0.010	0.0023	mg/L		03/26/24 16:25	03/27/24 14:41	1
Pyrene	0.00018	U	0.0050	0.00018	mg/L		03/26/24 16:25	03/27/24 14:41	1
2,4-Dinitrophenol	0.0016	U	0.010	0.0016	mg/L		03/26/24 16:25	03/27/24 14:41	1
2,6-Dinitrotoluene	0.0016	U	0.0050	0.0016	mg/L		03/26/24 16:25	03/27/24 14:41	1
N-Nitrosodi-n-butylamine	0.0015	U	0.010	0.0015	mg/L		03/26/24 16:25	03/27/24 14:41	1
N-Nitrosodiethylamine	0.0018	U	0.010	0.0018	mg/L		03/26/24 16:25	03/27/24 14:41	1
Nonylphenol	0.010	U	0.010	0.010	mg/L		03/26/24 16:25	03/27/24 14:41	1
Pentachlorobenzene	0.0011	U 📈	0.010	0.0011	mg/L		03/26/24 16:25	03/27/24 14:41	1
Pyridine	0.0026	u 📎	0.010	0.0026	mg/L		03/26/24 16:25	03/27/24 14:41	1
Total Cresols	0.0026	Ú	0.010	0.0026	mg/L		03/26/24 16:25	03/27/24 14:41	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	56	31 - 132	03/26/24 16:25	03/27/24 14:41	1
2-Fluorobiphenyl (Surr)	63	29 - 112	03/26/24 16:25	03/27/24 14:41	1
2-Fluorophenol (Surr)	36	28 - 114	03/26/24 16:25	03/27/24 14:41	1
Nitrobenzene-d5 (Surr)	76	15 - 314	03/26/24 16:25	03/27/24 14:41	1
p-Terphenyl-d14 (Surr)	83	20 - 141	03/26/24 16:25	03/27/24 14:41	1
Phenol-d5 (Surr)	26	8 - 424	03/26/24 16:25	03/27/24 14:41	1

Lab Sample ID: LCS 860-151704/2-A

Matrix: Water

Analysis Batch: 151846

Jilent Sample ID:	Lab C	control Sample
	Prep	Type: Total/NA
	Prep	Batch: 151704

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,4,5-Tetrachlorobenzene	0.0400	0.0217		mg/L		54	41 - 125	
1,2-Dichlorobenzene	0.0400	0.0236	*-	mg/L		59	60 - 140	
1,3-Dichlorobenzene	0.0400	0.0229	*-	mg/L		57	60 - 140	
1,4-Dichlorobenzene	0.0400	0.0232		mg/L		58	19 - 121	
Acenaphthene	0.0400	0.0263		mg/L		66	60 - 132	
Benzidine	0.0400	0.00896	J *-	mg/L		22	25 - 125	
1,2,4-Trichlorobenzene	0.0400	0.0210	*_	mg/L		52	57 - 130	
Hexachlorobenzene	0.0400	0.0242		mg/L		60	8 - 142	
Hexachloroethane	0.0400	0.0221		mg/L		55	55 - 120	
2,4,5-Trichlorophenol	0.0400	0.0248		mg/L		62	35 - 111	
Bis(2-chloroethyl)ether	0.0400	0.0292		mg/L		73	43 - 126	
2-Chloronaphthalene	0.0400	0.0237	*_	mg/L		59	65 - 120	
2,4,6-Trichlorophenol	0.0400	0.0249		mg/L		62	52 - 129	
p-Chloro-m-cresol	0.0400	0.0270		mg/L		67	41 - 128	
2-Chlorophenol	0.0400	0.0228		mg/L		57	36 - 120	

Page 18 of 53

QC Sample Results

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample	ID:	LCS	860- 1	517	04/2-A
------------	-----	-----	---------------	-----	--------

Matrix: Water

Pentachlorobenzene

Client	Sample	ID:	Lab	Control	Samp	ole

Prep Type: Total/NA Prep Batch: 151704

Analysis Batch: 151846	Spike	LCS LC			Prep Batch: 15170 %Rec
Analyte	Added	Result Q		D %Rec	Limits
3,3'-Dichlorobenzidine	0.0400	0.0303	mg/L	76	18 - 213
2,4-Dichlorophenol	0.0400	0.0251	mg/L	63	53 - 122
2,4-Dimethylphenol	0.0400	0.0347	mg/L/	87	42 - 120
2,4-Dinitrotoluene	0.0400	0.0311	mg/L	78	48 - 127
1,2-Diphenylhydrazine	0.0400	0.0326	mg/L/	82	28 - 136
Fluoranthene	0.0400	0.0327	mg/L	82	43 - 121
4-Bromophenyl phenyl ether	0.0400	0.0245 *-	mg/L	61	65 - 120
4-Chlorophenyl phenyl ether	0.0400	0.0252	mg/L	63	38 - 145
o-Cresol	0.0400	0.0203	mg/L	51	14 - 176
Bis(2-chloroethoxy)methane	0.0400	0.0259	mg/L	65	49 - 165
m & p - Cresol	0.0400	0.0213	mg/L	53	14 - 176
bis (2-chloroisopropyl) ether	0.0400	0.0324	mg/L	81	63 - 139
Hexachlorobutadiene	0.0400	0.0196	mg/L	49	38 - 120
Hexachlorocyclopentadiene	0.0400	0.0314	mg/L	79	41 - 125
Isophorone	0.0400	0.0278	mg/L	70	47 - 180
Naphthalene	0.0400	0.0250	mg/L	63	36 - 120
Nitrobenzene	0.0400	0.0279	mg/L	70	54 - 158
4-Nitrophenol	0.0400	0.0129	mg/L	32	13 - 129
2-Nitrophenol	0.0400	0.0253	mg/L	63	45 - 167
4,6-Dinitro-o-cresol	0.0400	0.0334	mg/L	83	53 - 130
N-Nitrosodimethylamine	0.0400	0.0146	mg/L	37	20 - 125
N-Nitrosodiphenylamine	0.0400	0.0290	mg/L	73	2 - 196
N-Nitrosodi-n-propylamine	0.0400	0.0303	mg/L	76	14 - 198
Pentachlorophenol	0.0400	0.0201	mg/L	50	38 - 152
Phenol	0.0400	0.0124	mg/L	31	17 - 120
Bis(2-ethylhexyl) phthalate	0.0400	0.0384	mg/L	96	29 - 137
Butyl benzyl phthalate	0.0400	0.0372	mg/L	93	12 - 140
Di-n-butyl phthalate	0.0400	0.0350	mg/L	87	8 - 120
Di-n-octyl phthalate	0.0400	0.0454	mg/L	114	19 - 132
Diethyl phthalate	0.0400	0.0300	mg/L	75	17 - 120
Dimethyl phthalate	0.0400	0.0273	mg/L	68	25 - 120
Benzo[a]anthracene	0.0400	0.0303	mg/L	76	42 - 133
Benzo[a]pyrene	0.0400	0.0338	mg/L	84	32 - 148
Benzo[b]fluoranthene	0.0400	0.0320	mg/L	80	42 - 140
Benzo[k]fluoranthene	0.0400	0.0324	mg/L	81	25 - 146
Chrysene	0.0400	0.0289	mg/L	72	44 - 140
Acenaphthylene	0.0400	0.0259	mg/L	65	54 - 126
Anthracene	0.0400	0.0311	mg/L	78	43 - 120
Benzo[g,h,i]perylene	0.0400	0.0267	mg/L	67	13 - 195
Fluorene	0.0400	0.0277 *-	mg/L	69	70 - 120
Phenanthrene	0.0400	0.0294	mg/L	74	65 - 120
Dibenz(a,h)anthracene	0.0400	0.0277	mg/L	69	16 - 200
Indeno[1,2,3-cd]pyrene	0.0400	0.0282	mg/L	70	13 - 151
Pyrene	0.0400	0.0331	mg/L	83	70 - 120
2,4-Dinitrophenol	0.0400	0.0331	mg/L	51	12 - 173
2,4-Dinitrophenoi	0.0400	0.0202	mg/L	70	68 - 137
N-Nitrosodi-n-butylamine	0.0400	0.0279	mg/L	62	33 - 141
N-Nitrosodiethylamine N-Nitrosodiethylamine	0.0400	0.0250	_	67	
14-14II 030UIGII IYIAI III IIG	0.0400	0.0200	mg/L	07	30 - 160

Eurofins Houston

0.0216

mg/L

54

25 - 131

0.0400

3

4

0

8

10

12

13

QC Sample Results

Spike

Added

0.0800

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 860-151704/2-A

Matrix: Water

Analyte

Pyridine

o-Cresol

Isophorone

Naphthalene

Nitrobenzene

4-Nitrophenol

Hexachlorobutadiene

Hexachlorocyclopentadiene

Analysis Batch: 151846

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 151704

LCS LCS %Rec Result Qualifier Unit %Rec Limits 0.0137 mg/L 5 - 94

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	61		31 - 132
2-Fluorobiphenyl (Surr)	59		29 - 112
2-Fluorophenol (Surr)	37		28 - 114
Nitrobenzene-d5 (Surr)	70		15-314
p-Terphenyl-d14 (Surr)	75		20 - 141
Phenol-d5 (Surr)	27		8 - 424

Client Sample ID: Lab Control Sample Dup

52

92

77

67

75

38 - 120

41 - 125

47 - 180

36 - 120

54 - 158

13 - 129

Prep Batch: 151704 **RPD**

Lab Sample ID: LCSD 860-151704/3-A **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 151846** Spike LCSD LCSD %Rec Added Analyte Result Qualifier Unit %Rec Limits **RPD** 0.0400 0.0240 1,2,4,5-Tetrachlorobenzene mg/L 60 41 - 125 10 1,2-Dichlorobenzene 0.0400 0.0253 63 60 - 140 mg/L 7 0.0400 0.0245 7 1.3-Dichlorobenzene mg/L 61 60 - 1401,4-Dichlorobenzene 0.0400 0.0246 mg/L 62 19 - 121 0.0400 Acenaphthene 0.0293 73 60 - 132 mg/L 11 0.0048 U*-*1 Benzidine 0.0400 mg/L 0.9 25 - 125 184 1.2.4-Trichlorobenzene 0.0400 0.0226 56 57 - 130 7 mg/L Hexachlorobenzene 0.0400 0.0270 mg/L 67 8 - 142 11 Hexachloroethane 0.0400 0.0236 59 55 - 120 7 mg/L 70 35 - 111 2,4,5-Trichlorophenol 0.0400 0.0280 mg/L 12 79 Bis(2-chloroethyl)ether 0.0400 0.0318 mg/L 43 - 126 8 2-Chloronaphthalene 0.0400 0.0263 66 65 - 120 10 mg/L 2,4,6-Trichlorophenol

30 15 0.0400 0.0280 70 52 - 129 12 30 mg/L 75 41 - 128 p-Chloro-m-cresol 0.0400 0.0299 mg/L 10 30 2-Chlorophenol 0.0400 0.0252 mg/L 63 36 - 120 10 30 3,3'-Dichlorobenzidine 0.0400 0.0309 77 18 - 213 2 30 mg/L 2,4-Dichlorophenol 0.0400 0.0274 mg/L 69 53 - 12230 0.0400 0.0385 96 42 - 120 30 2,4-Dimethylphenol mg/L 10 2,4-Dinitrotoluene 0.0400 0.0348 mg/L 87 48 - 127 11 25 1,2-Diphenylhydrazine 0.0400 0.0366 92 28 - 136 12 30 mg/L 0.0400 88 Fluoranthene 0.0353 mg/L 43 - 121 7 30 4-Bromophenyl phenyl ether 0.0400 0.0271 mg/L 68 65 - 120 10 26 0.0400 0.0288 72 38 - 145 4-Chlorophenyl phenyl ether mg/L 13 30 0.0400 0.0227 mg/L 57 14 - 176 11 30 Bis(2-chloroethoxy)methane 0.0400 0.0286 mg/L 71 49 - 165 10 30 m & p - Cresol 0.0400 0.0235 mg/L 59 14 - 176 10 30 0.0357 89 10 30 bis (2-chloroisopropyl) ether 0.0400 mg/L 63 - 139

0.0208

0.0367

0.0308

0.0268

0.0300

0.0145

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

Eurofins Houston

6

16

10

7

7

30

30

30

30

30

30

Page 20 of 53

0.0400

0.0400

0.0400

0.0400

0.0400

0.0400

Limit

30

30

30

30

29

30

30

30

30

Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 860-151704/3-A

Matrix: Water

Client: Messer LLC

Analysis Batch: 151846

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 151704

•	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2-Nitrophenol	0.0400	0.0278		mg/L		69	45 - 167	9	30
4,6-Dinitro-o-cresol	0.0400	0.0366		mg/L		91	53 - 130	9	30
N-Nitrosodimethylamine	0.0400	0.0156		mg/L	>	39	20 - 125	7	30
N-Nitrosodiphenylamine	0.0400	0.0317		mg/L)~	79	2 - 196	9	30
N-Nitrosodi-n-propylamine	0.0400	0.0330		mg/L/		83	14 - 198	9	30
Pentachlorophenol	0.0400	0.0242		mg/L		60	38 - 152	19	30
Phenol	0.0400	0.0141		mg/L		35	17 - 120	13	30
Bis(2-ethylhexyl) phthalate	0.0400	0.0428		mg/L		107	29 - 137	11	30
Butyl benzyl phthalate	0.0400	0.0419		mg/L		105	12 - 140	12	30
Di-n-butyl phthalate	0.0400	0.0390		mg/L		97	8 - 120	11	28
Di-n-octyl phthalate	0.0400	0.0512		mg/L		128	19 - 132	12	30
Diethyl phthalate	0.0400	0.0334		mg/L		84	17 - 120	11	30
Dimethyl phthalate	0.0400	0.0307		mg/L		77	25 - 120	12	30
Benzo[a]anthracene	0.0400	0.0335		mg/L		84	42 - 133	10	30
Benzo[a]pyrene	0.0400	0.0378		mg/L		94	32 - 148	11	30
Benzo[b]fluoranthene	0.0400	0.0361		mg/L		90	42 - 140	12	30
Benzo[k]fluoranthene	0.0400	0.0354		mg/L		89	25 - 146	9	30
Chrysene	0.0400	0.0319		mg/L		80	44 - 140	10	30
Acenaphthylene	0.0400	0.0294		mg/L		74	54 - 126	13	30
Anthracene	0.0400	0.0341		mg/L		85	43 - 120	9	30
Benzo[g,h,i]perylene	0.0400	0.0298		mg/L		75	13 - 195	11	30
Fluorene	0.0400	0.0316		mg/L		79	70 - 120	13	23
Phenanthrene	0.0400	0.0324		mg/L		81	65 - 120	10	30
Dibenz(a,h)anthracene	0.0400	0.0318		mg/L		79	16 - 200	14	30
Indeno[1,2,3-cd]pyrene	0.0400	0.0319		mg/L		80	13 - 151	12	30
Pyrene	0.0400	0.0366		mg/L		91	70 - 120	10	30
2,4-Dinitrophenol	0.0400	0.0235		mg/L		59	12 - 173	15	30
2,6-Dinitrotoluene	0.0400	0.0312		mg/L		78	68 - 137	11	29
N-Nitrosodi-n-butylamine	0.0400	0.0279		mg/L		70	33 - 141	11	30
N-Nitrosodiethylamine	0.0400	0.0291		mg/L		73	30 - 160	8	30
Pentachlorobenzene	0.0400	0.0245		mg/L		61	25 - 131	13	30
Pyridine	0.0800	0.00410	J *1	mg/L		5	5 - 94	108	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	66		31 - 132
2-Fluorobiphenyl (Surr)	63		29 - 112
2-Fluorophenol (Surr)	40		28 - 114
Nitrobenzene-d5 (Surr)	73		15 - 314
p-Terphenyl-d14 (Surr)	80		20 - 141
Phenol-d5 (Surr)	30		8 - 424

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 860-151005/3

Matrix: Water

Analysis Batch: 151005

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.121 J		0.50	0.071	mg/L			03/21/24 20:01	1

Eurofins Houston

Page 21 of 53

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 860-151005/3

Matrix: Water

Analysis Batch: 151005

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 0.25 U 0.50 0.25 mg/L 03/21/24 20:01 Fluoride 0.10 U 0.50 0.10 mg/L 03/21/24 20:01 Sulfate 0.20 U 0.50 03/21/24 20:01 0.20 mg/L

Lab Sample ID: MB 860-151005/60

Matrix: Water

Analysis Batch: 151005

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB MDL Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac 0.071 U 0.50 0.071 mg/L **Bromide** 03/22/24 07:21 Chloride 0.25 U 0.50 0.25 mg/L 03/22/24 07:21 Fluoride 0.50 0.10 mg/L 0.10 U 03/22/24 07:21 Sulfate 0.20 U 0.50 0.20 mg/L 03/22/24 07:21

Lab Sample ID: LCS 860-151005/61

Matrix: Water

Analysis Batch: 151005

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike %Rec Analyte Added Result Qualifier Limits Unit %Rec Bromide 5.00 4.69 94 90 - 110 mg/L 5.00 4.80 Chloride mg/L 96 90 - 110 Fluoride 5.00 4.81 96 mg/L 90 - 110 Sulfate 5.00 5.07 mg/L 101 90 - 110

Lab Sample ID: LCSD 860-151005/62

Matrix: Water

Analysis Batch: 151005

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Bromide 5.00 4.81 mg/L 96 90 - 110 20 Chloride 5.00 4.86 mg/L 97 90 - 110 20 5.00 4.88 Fluoride mg/L 98 20 90 - 110Sulfate 5.00 5.08 102 90 - 110 mg/L 20

Lab Sample ID: LLCS 860-151005/7

Matrix: Water

Analysis Batch: 151005

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LLCS LLCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Bromide 0.500 0.574 mg/L 115 50 - 150 0.584 Chloride 0.500 mg/L 117 50 - 150 Fluoride 0.500 0.433 J mg/L 87 50 - 150 Sulfate 0.500 0.325 J mg/L 65 50 - 150

Lab Sample ID: 860-70454-1 MS

Matrix: Water

Analysis Ratch: 151005

Client Sample ID: Outfall 001

Prep Type: Total/NA

Allalysis Datell. 101000										
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromide	0.23	J	5.00	5.20		ma/L		100	90 - 110	

Eurofins Houston

Page 22 of 53

4/15/2024

Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 860-70454-1 MS

Matrix: Water

Client: Messer LLC

Analysis Batch: 151005

Client Sample ID: Outfall 001

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS			%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit [O %Rec	Limits	
Chloride	300		5.00	302	4	mg/L	115	90 - 110	
Fluoride	1.2		5.00	6.18		mg/L	100	90 - 110	
Sulfate	330		5.00	330	4	mg/L	-17	90 - 110	

Lab Sample ID: 860-70454-1 MSD

Matrix: Water

Analysis Batch: 151005

Client Sample ID: Outfall 001

Prep Type: Total/NA

-	Sample	Sample	Spike	MSD	MSD -	/			%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromide	0.23	J	5.00	5.17	7/	mg/L		99	90 - 110	1	15
Chloride	300		5.00	302	4	mg/L		123	90 - 110	0	15
Fluoride	1.2		5.00	6.31		mg/L		103	90 - 110	2	15
Sulfate	330		5.00	330	4	mg/L		-21	90 - 110	0	15

Lab Sample ID: MB 860-151006/3

Matrix: Water

Analysis Batch: 151006

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.039 U	0.10	0.039 mg/L			03/21/24 20:01	1
Nitrite as N	0.029 U	0.10	0.029 mg/L			03/21/24 20:01	1
Nitrate Nitrite as N	0.039 U	0.10	0.039 mg/L			03/21/24 20:01	1

Lab Sample ID: MB 860-151006/60

Matrix: Water

Analysis Batch: 151006

Client Sample ID: Method Blank Prep Type: Total/NA

R V	// MB N	ИB							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.039	J	0.10	0.039	mg/L			03/22/24 07:21	1
Nitrite as N	0.029 L	J	0.10	0.029	mg/L			03/22/24 07:21	1
Nitrate Nitrite as N	0.039 L	J	0.10	0.039	mg/L			03/22/24 07:21	1

Lab Sample ID: LCS 860-151006/61

Matrix: Water				Prep Type: Total/NA
Analysis Batch: 151006				
-	Spike	LCS LCS		%Rec
Analyte	Added	Result Qualifier Unit	D %Rec	Limits

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate as N	5.00	4.79		mg/L		96	80 - 120	
Nitrite as N	5.00	4.74		mg/L		95	80 - 120	

Lab Sample ID: LCSD 860-151006/62

Matrix: Water

Analysis Batch: 151006

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Analysis Buton, 101000										
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Nitrate as N	5.00	4.82		mg/L		96	80 - 120	1	20	
Nitrite as N	5.00	4.78		mg/L		96	80 - 120	1	20	

Eurofins Houston

Page 23 of 53

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LLCS 860-151006/6

Matrix: Water

Analysis Batch: 151006

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LLCS LLCS Spike %Rec Added Result Qualifier %Rec Limits Analyte Unit D 0.100 Nitrate as N 0.0619 J mg/L 62 50 - 150 Nitrite as N 0.100 0.0612 J mg/L 61 50 - 150

Lab Sample ID: 860-70454-1 MS

Matrix: Water

Analysis Batch: 151006

Sample Sample Spike MS MS %Rec **Result Qualifier** Analyte Result Qualifier Added Unit %Rec Limits Nitrate as N 4.4 5.00 9.73 106 80 - 120 mg/L 0.889 F1 0.029 UF1 1.25 mg/L 71 80 - 120 Nitrite as N

Lab Sample ID: 860-70454-1 MSD

Matrix: Water

Analysis Batch: 151006

Sample Sample Spike MSD MSD %Rec **RPD** RPD Added Result Qualifier Limits Analyte Result Qualifier Unit D %Rec Limit Nitrate as N 4.4 5.00 9.72 mg/L 106 80 - 120 0 15 Nitrite as N 0.029 U F1 1 25 0.866 F1 69 mg/L 80 - 120 3 15

Method: 1631E - Mercury, Low Level (CVAFS)

Lab Sample ID: MB 400-665799/3-A

Matrix: Water

Analysis Batch: 665859

MR MR

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.20 ng/L Mercury 0.20 0.50 03/25/24 16:00 03/26/24 09:50

Lab Sample ID: LCS 400-665799/4-A

Matrix: Water

Analysis Batch: 665859

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits 5.00 79 - 121 5.14 103 Mercury ng/L

Lab Sample ID: LCSD 400-665799/5-A

Matrix: Water

Analysis Batch: 665859

Spike LCSD LCSD %Rec Analyte Added Result Qualifier Unit %Rec Limite RPD Limit Mercury 5.00 5.04 ng/L 101 79 - 121

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 860-152111/1-A

Matrix: Water

Analysis Batch: 152235

MB MB Result Qualifier RI MDI Unit Prepared Analyzed Dil Fac **Analyte** 0.020 03/28/24 11:30 03/28/24 19:58 0.0030 U Aluminum 0.0030 mg/L

Eurofins Houston

Page 24 of 53

Client Sample ID: Outfall 001

Client Sample ID: Outfall 001

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 665799

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 665799

Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Prep Batch: 665799 RPD

Prep Batch: 152111

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 860-152111/1-A

Matrix: Water

Analysis Batch: 152235

Client Sample ID: Method Blank Prep Type: Total Recoverable **Prep Batch: 152111**

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.0011 U Antimony 0.0020 0.0011 mg/L 03/28/24 11:30 03/28/24 19:58 Arsenic 0.00034 U 0.0040 0.00034 mg/L 03/28/24 11:30 03/28/24 19:58 Barium 0.0040 0.00029 U 0.00029 mg/L 03/28/24 11:30 03/28/24 19:58 Beryllium 0.00015 U 0.0020 0.00015 mg/L 03/28/24 11:30 03/28/24 19:58 Cadmium 0.0020 0.00026 mg/L 03/28/24 11:30 03/28/24 19:58 0.00026 U Chromium 0.00033 U 0.0040 0.00033 mg/L 03/28/24 11:30 03/28/24 19:58 Cobalt 0.00026 U 0.0020 0.00026 mg/L 03/28/24 11:30 03/28/24 19:58 0.00069 mg/L Copper 0.00069 U 0.0040 03/28/24 11:30 03/28/24 19:58 0.0020 mg/L 03/28/24 11:30 03/28/24 19:58 Iron 0.0020 U 0.020 0.0020 0.00014 mg/L 03/28/24 11:30 03/28/24 19:58 Lead 0.00014 U 0.0092 mg/L 03/28/24 11:30 03/28/24 19:58 Magnesium 0.0092 U 0.10< 0.0020 0.00016 mg/L 03/28/24 11:30 03/28/24 19:58 Manganese 0.00016 U Molybdenum 0.00016 U 0.0020 0.00016 mg/L 03/28/24 11:30 03/28/24 19:58 0.0020 0.00049 mg/L Nickel 0.00049 U 03/28/24 11:30 03/28/24 19:58 Selenium 0.00069 U 0.0020 0.00069 mg/L 03/28/24 11:30 03/28/24 19:58 Silver 0.0020 0.00012 U 0.00012 mg/L 03/28/24 11:30 03/28/24 19:58 Thallium 0.0020 0.00022 U 0.00022 mg/L 03/28/24 11:30 03/28/24 19:58 Tin 0.00033 U 0.0020 0.00033 mg/L 03/28/24 11:30 03/28/24 19:58 0.00042 U 0.0040 Titanium 0.00042 mg/L 03/28/24 11:30 03/28/24 19:58 0.00089 U Zinc 0.0040 0.00089 mg/L 03/28/24 11:30 03/28/24 19:58

Lab Sample ID: MB 860-152111/1-A

Matrix: Water

Matrix: Water

Boron

Analysis Batch: 152895

MB MB

0.0025 U

Analyte Result Qualifier Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 152111**

Prepared Analyzed Dil Fac

Lab Sample ID: LCS 860-152111/2-A

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

03/28/24 11:30 04/02/24 11:38

Analysis Batch: 152235							Prep Batch: 152111
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	0.500	0.498		mg/L		100	85 - 115
Antimony	0.100	0.0980		mg/L		98	85 - 115
Arsenic	0.100	0.0975		mg/L		98	85 - 115
Barium	0.100	0.0971		mg/L		97	85 - 115
Beryllium	0.100	0.0985		mg/L		99	85 - 115
Cadmium	0.100	0.101		mg/L		101	85 - 115
Chromium	0.100	0.0997		mg/L		100	85 - 115
Cobalt	0.100	0.0977		mg/L		98	85 - 115
Copper	0.100	0.0971		mg/L		97	85 - 115
Iron	0.500	0.507		mg/L		101	85 - 115
Lead	0.100	0.0982		mg/L		98	85 - 115
Magnesium	2.50	2.47		mg/L		99	85 - 115
Manganese	0.100	0.100		mg/L		100	85 - 115
Molybdenum	0.100	0.0988		mg/L		99	85 - 115
Nickel	0.100	0.0973		mg/L		97	85 - 115
Selenium	0.100	0.0944		mg/L		94	85 - 115

RL

0.010

MDL Unit

0.0025 mg/L

Eurofins Houston

Page 25 of 53

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 860-152111/2-A **Matrix: Water**

Analysis Batch: 152235

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 152111

Spike	LCS	LCS		%Rec	
Added	Result	Qualifier Unit	D %R	ec Limits	
0.0500	0.0493	mg/L		99 85 - 115	
0.100	0.0984	mg/L	9	98 85 - 115	
0.100	0.0984	mg/L	<i>></i>	98 85 - 115	
0.100	0.0987	mg/L	,	99 85 - 115	
0.100	0.0982	mg/L/	9	98 85 - 115	
	Added 0.0500 0.100 0.100 0.100	Added Result 0.0500 0.0493 0.100 0.0984 0.100 0.0984 0.100 0.0987	Added Result Qualifier Unit 0.0500 0.0493 mg/L 0.100 0.0984 mg/L 0.100 0.0984 mg/L 0.100 0.0987 mg/L	Added Result Qualifier Unit D %R 0.0500 0.0493 mg/L mg/L 0.100 0.0984 mg/L 0.100 0.0984 mg/L 0.100 0.0987 mg/L	Added Result Qualifier Unit D %Rec Limits 0.0500 0.0493 mg/L 99 85 - 115 0.100 0.0984 mg/L 98 85 - 115 0.100 0.0984 mg/L 98 85 - 115 0.100 0.0987 mg/L 99 85 - 115

Lab Sample ID: LCS 860-152111/2-A

Matrix: Water

Analyte

Boron

Analysis Batch: 152895

Spike Added 0.100

LCS LCS

Result Qualifier 0.0913

Unit %Rec 91 mg/L

%Rec Limits

Prep Type: Total Recoverable

Client Sample ID: Lab Control Sample

85 - 115

Lab Sample ID: LCSD 860-152111/3-A

Matrix: Water

Analysis Batch: 152235

Client Sample ID: Lab Control Sample Dup **Prep Type: Total Recoverable**

Prep Batch: 152111

Prep Batch: 152111

Analysis Batch: 152235	4(())						Prep B	atch: 1	52111
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	0.500	0.498		mg/L		100	85 - 115	0	20
Antimony	0.100	0.0990		mg/L		99	85 - 115	1	20
Arsenic	0.100	0.0982		mg/L		98	85 - 115	1	20
Barium	0.100	0.0973		mg/L		97	85 - 115	0	20
Beryllium	0.100	0.0992		mg/L		99	85 - 115	1	20
Cadmium	0.100	0.100		mg/L		100	85 - 115	1	20
Chromium	0.100	0.0997		mg/L		100	85 - 115	0	20
Cobalt	0.100	0.0974		mg/L		97	85 - 115	0	20
Copper	0.100	0.0970		mg/L		97	85 - 115	0	20
Iron	0.500	0.506		mg/L		101	85 - 115	0	20
Lead	0.100	0.0985		mg/L		98	85 - 115	0	20
Magnesium	2.50	2.47		mg/L		99	85 - 115	0	20
Manganese	0.100	0.101		mg/L		101	85 - 115	0	20
Molybdenum	0.100	0.0985		mg/L		99	85 - 115	0	20
Nickel	0.100	0.0970		mg/L		97	85 - 115	0	20
Selenium	0.100	0.0962		mg/L		96	85 - 115	2	20
Silver	0.0500	0.0498		mg/L		100	85 - 115	1	20
Thallium	0.100	0.0986		mg/L		99	85 - 115	0	20
Tin	0.100	0.0991		mg/L		99	85 - 115	1	20
Titanium	0.100	0.100		mg/L		100	85 - 115	1	20
Zinc	0.100	0.0981		mg/L		98	85 - 115	0	20
-									

Lab Sample ID: LCSD 860-152111/3-A

Matrix: Water

Analyte

Boron

Analysis Batch: 152895

Spike Added 0.100 LCSD LCSD

Result Qualifier 0.0937

Unit mg/L

%Rec 94

Client Sample ID: Lab Control Sample Dup

Prep Batch: 152111 %Rec

Prep Type: Total Recoverable

RPD Limits **RPD** Limit 85 - 115

Eurofins Houston

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: 1664B - HEM and SGT-HEM

Lab Sample ID: MB 860-151920/1

Matrix: Water

Analysis Batch: 151920

MB MB

мв мв Result Qualifier

0.051 U

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte D Prepared HEM 5.0 03/27/24 14:23 1.6 U 1.6 mg/L

LCS LCS

LCSD LCSD

38.0

Result Qualifier

MDL Unit

0.051 mg/L

LCS LCS

LCSD LCSD

1.07

Result Qualifier

1.07

Result Qualifier

38.1

Result Qualifier

Unit

mg/L

Unit

mg/L

Unit

mg/L

Unit

mg/L

Spike

Added

40.0

Spike

Added

40.0

Spike

Added

1.00

Spike

Added

1.00

RL

0.10

Lab Sample ID: LCS 860-151920/2

Matrix: Water

Analysis Batch: 151920

Analyte HEM

Lab Sample ID: LCSD 860-151920/3 **Matrix: Water**

Analysis Batch: 151920

Analyte HEM

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 860-152223/66

Matrix: Water

Analysis Batch: 152223

Analyte Ammonia

Lab Sample ID: LCS 860-152223/67 **Matrix: Water**

Analysis Batch: 152223

Analyte Ammonia

Ammonia

Lab Sample ID: LCSD 860-152223/68

Matrix: Water

Analysis Batch: 152223

Analyte

Method: 351.2 - Nitrogen, Total Kjeldahl

Lab Sample ID: MB 860-151764/32-A **Matrix: Water**

Analysis Batch: 152217

MB MB

Nitrogen, Kjeldahl

Result Qualifier 0.089 U

RL 0.20

MDL Unit 0.089 mg/L

Prepared

Analyzed 03/26/24 20:10 03/28/24 11:13

Prep Type: Total/NA

Prep Batch: 151764

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

D %Rec

%Rec

Prepared

107

%Rec

107

Client Sample ID: Lab Control Sample Dup

95

95

Client Sample ID: Lab Control Sample Dup

%Rec

Limits

78 - 114

%Rec

Limits

78 - 114

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec

Limits

%Rec

Limits

90 - 110

Client Sample ID: Method Blank

90 - 110

Analyzed

03/27/24 13:20

Prep Type: Total/NA

RPD

RPD

RPD

Limit

Dil Fac

RPD

Limit

20

18

Eurofins Houston

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: 351.2 - Nitrogen, Total Kjeldahl (Continued)

Lab Sample ID: MB 860-151764/4-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Nitrogen, Kjeldahl

Nitrogen, Kjeldahl

Analyte

Analysis Batch: 152217

Prep Batch: 151764 MB MB Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 0.20 03/26/24 20:10 03/28/24 11:00 0.089 U 0.089 mg/L

mg/L

Lab Sample ID: LCS 860-151764/33-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Analysis Batch: 152217 **Prep Batch: 151764** Spike LCS LCS %Rec Added Result Qualifier Unit D %Rec Limits Analyte

1.96

Lab Sample ID: LCSD 860-151764/34-A Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 152217 Prep Batch: 151764** Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Limits RPD Limit Analyte Unit %Rec Nitrogen, Kjeldahl 2.00 1.95 90 - 110 mg/L

2.00

Lab Sample ID: LLCS 860-151764/5-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 152217** Prep Batch: 151764 Spike LLCS LLCS %Rec Added Analyte Result Qualifier Unit %Rec Limits 0.200 0.193 J Nitrogen, Kjeldahl mg/L 50 - 150

Method: 365.1 - Phosphorus, Total

Lab Sample ID: MB 860-152937/16 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 152937

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Phosphorus Total 0.014 U 0.020 0.014 mg/L 04/02/24 15:06

Lab Sample ID: LCS 860-152937/17 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 152937

LCS LCS Spike %Rec Added Result Qualifier Analyte Unit %Rec Limits 0.250 Phosphorus Total 0.248 mg/L 99 90 - 110

Lab Sample ID: LCSD 860-152937/18 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 152937

LCSD LCSD **RPD** Spike %Rec Added Result Qualifier Unit %Rec Limits **RPD** Limit 0.250 0.250 Phosphorus Total mg/L 100 90 - 110

Eurofins Houston

90 - 110

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: 365.1 - Phosphorus, Total (Continued)

Lab Sample ID: 860-70454-1 MS Client Sample ID: Outfall 001 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 152937

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec 0.250 Phosphorus Total 3.0 3.17 4 mg/L 69 90 - 110

Lab Sample ID: 860-70454-1 MSD

Matrix: Water

Analysis Batch: 152937

RPD Sample Sample Spike MSD MSD %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit 0.250 90 - 110 Phosphorus Total 3.0 3.22 4 mg/L 91

Lab Sample ID: MB 860-153014/46

Matrix: Water

Analysis Batch: 153014

MB MB Result Qualifier RI **MDL** Unit Analyte Prepared Analyzed Dil Fac Phosphorus Total 0.014 U 0.020 0.014 mg/L 04/02/24 22:23

Lab Sample ID: LCS 860-153014/47

Matrix: Water

Analysis Batch: 153014

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit %Rec Limits Phosphorus Total 0.250 0.243 90 - 110 mg/L

Lab Sample ID: LCSD 860-153014/48

Matrix: Water

Analysis Batch: 153014

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Limit 0.250 0.253 Phosphorus Total mg/L 101 90 - 110 20

Method: 7196A - Chromium, Hexavalent

Lab Sample ID: MB 860-151042/3

Matrix: Water

Analysis Batch: 151042

мв мв Result Qualifier Analyte

RL **MDL** Unit Prepared Analyzed Dil Fac 0.0034 U 0.010 0.0034 mg/L 03/21/24 19:20 Cr (VI)

Lab Sample ID: LCS 860-151042/4

Matrix: Water

Analysis Batch: 151042

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits Cr (VI) 0.200 0.193 mg/L 96 85 - 115

Eurofins Houston

4/15/2024

Client Sample ID: Outfall 001

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: 7196A - Chromium, Hexavalent (Continued)

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 860-151042/5 **Matrix: Water** Prep Type: Total/NA Analysis Batch: 151042

Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Unit Limits RPD Limit Analyte %Rec Cr (VI) 0.200 0.193 mg/L 96 85 - 115 0 20

Lab Sample ID: 860-70454-1 MS Client Sample ID: Outfall 001 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 151042

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Unit D %Rec Limits Analyte 0.200 85 - 115 Cr (VI) 0.0034 U 0.197 mg/L 98

Lab Sample ID: 860-70454-1 MSD Client Sample ID: Outfall 001

Matrix: Water Prep Type: Total/NA Analysis Batch: 151042

Sample Sample Spike MSD MSD %Rec **RPD** Analyte Result Qualifier Added Result Qualifier Limits **RPD** Unit %Rec Limit Cr (VI) 0.0034 U 0.200 0.197 98 85 - 115 20 mg/L

Method: 8000 - COD

Lab Sample ID: MB 860-152732/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 152732 мв мв

Result Qualifier Analyte RL MDL Unit Prepared Analyzed Dil Fac Chemical Oxygen Demand 3.4 U 20 3.4 mg/L 04/01/24 19:18

Lab Sample ID: LCS 860-152732/4 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 152732

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits

Chemical Oxygen Demand 101 mg/L 101 90 - 110

Method: OIA-1677 - Cyanide, Available (Flow Injection)

Lab Sample ID: MB 410-489850/17 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 489850

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Cyanide, Available 0.0050 U 0.0060 0.0050 mg/L 04/02/24 15:45

Lab Sample ID: LCS 410-489850/16 **Client Sample ID: Lab Control Sample**

Matrix: Water Prep Type: Total/NA

Analysis Batch: 489850

LCS LCS Spike %Rec Added Limits Result Qualifier Unit %Rec 0.0500 0.0472 Cyanide, Available 94 82 - 132 mg/L

Eurofins Houston

Job ID: 860-70454-1

Client: Messer LLC

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: SM 2120B - Color, Colorimetric

Lab Sample ID: MB 860-151765/3

Matrix: Water

Analysis Batch: 151765

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Color, Apparent	5.0	U	5.0	5.0	Color Units	_		03/22/24 19:15	1
Color, True	5.0	U	5.0	5.0	Color Units			03/22/24 19:15	1
pН	na		0.10	0.10	S.U. //	/\\\	>	03/22/24 19:15	1
					. ^ (\cup			

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 860-151592/34

Matrix: Water

Analysis Batch: 151592

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

	MB	МВ		~					
Analyte	Result	Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	4.0	U	4:0	4.0	mg/L			03/25/24 22:44	1
Bicarbonate Alkalinity as CaCO3	4.0	U	4.0	4.0	mg/L			03/25/24 22:44	1
Carbonate Alkalinity as CaCO3	4.0	U	4.0	4.0	mg/L			03/25/24 22:44	1
Hydroxide Alkalinity	4.0	U	4.0	4.0	mg/L			03/25/24 22:44	1
Phenolphthalein Alkalinity	4.0	U	4.0	4.0	mg/L			03/25/24 22:44	1
-									

Lab Sample ID: LCS 860-151592/35

Matrix: Water

Analysis Batch: 151592

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

_		Spike	LCS	LCS				%Rec
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits
Alkalinity	_	250	242		mg/L		97	85 - 115

Lab Sample ID: LCSD 860-151592/36

Matrix: Water

Analysis Batch: 151592

_		Spike	LCSD	LCSD				%Rec		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Alkalinity		250	246		mg/L		98	85 - 115	2	20

Lab Sample ID: 860-70454-1 DU Client Sample ID: Outfall 001 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 151592

Analysis balcii. 151552									
	Sample	Sample	DU	DU				RPD	
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit	
Alkalinity	150		142		mg/L		9	20	
Bicarbonate Alkalinity as CaCO3	150		142		mg/L		9	20	
Carbonate Alkalinity as CaCO3	4.0	U	4.0	U	mg/L		NC	20	
Hydroxide Alkalinity	4.0	U	4.0	U	mg/L		NC	20	
Phenolphthalein Alkalinity	4.0	U	4.0	U	mg/L		NC	20	

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 860-151649/1

Matrix: Water

Analysis Batch: 151649

Client Sample ID: Method Blank Prep Type: Total/NA

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	5.0	U	5.0	5.0	mg/L			03/26/24 12:58	1

Eurofins Houston

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 860-151649/2

Matrix: Water

Analysis Batch: 151649

Spike LCS LCS %Rec Result Qualifier Added Limits Analyte Unit D %Rec **Total Dissolved Solids** 1000 1010 mg/L 101 80 - 120

Lab Sample ID: LCSD 860-151649/3

Matrix: Water

Analysis Batch: 151649

RPD Spike LCSD LCSD %Rec Added Result Qualifier Unit D %Rec Limits RPD Limit Analyte 1000 80 - 120 **Total Dissolved Solids** 1010 mg/L 101 n

Lab Sample ID: LLCS 860-151649/4

Matrix: Water

Analysis Batch: 151649

Spike LLCS LLCS %Rec Added Result Qualifier Limits Analyte Unit %Rec Total Dissolved Solids 5.00 6.50 130 50 - 150 mg/L

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 860-151677/1

Matrix: Water

Analysis Batch: 151677

MB MB

Result Qualifier Analyte RL MDL Unit Prepared Analyzed Dil Fac Total Suspended Solids 4.0 U 4.0 4.0 mg/L 03/26/24 15:02

Lab Sample ID: LCS 860-151677/2

Matrix: Water

Analysis Batch: 151677

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit Limits %Rec Total Suspended Solids 100 111 mg/L 80 - 120

Lab Sample ID: LCSD 860-151677/3

Matrix: Water

Analysis Batch: 151677

LCSD LCSD RPD Spike %Rec Added Result Qualifier RPD Analyte Unit %Rec Limits Limit Total Suspended Solids 100 111 mg/L 111 80 - 120

Method: SM 4500 CI G - Chlorine, Residual

Lab Sample ID: MB 860-151472/3

Matrix: Water

Analysis Batch: 151472

MB MB

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.050 U 0.050 03/25/24 14:46 Chlorine, Total Residual 0.050 mg/L

Eurofins Houston

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client Sample ID: Method Blank Prep Type: Total/NA

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: SM 4500 CI G - Chlorine, Residual (Continued	Method: SI	1 4500 CI G -	 Chlorine. 	Residual	(Continued
--	-------------------	---------------	-------------------------------	----------	------------

Lab Sample ID: LCS 860-1514/2/4			Client Sample ID: Lab Control Sample
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 151472			
	Spike	LCS LCS	%Rec

Analyte Added Result Qualifier Unit Limits D %Rec Chlorine, Total Residual 0.250 0.270 mg/L 108 85 - 115

Lab Sample ID: LCSD 860-151472/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 151472** Spike LCSD LCSD %Rec

RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chlorine, Total Residual 0.250 0.257 mg/L 103 85 - 115 5

Method: SM 4500 S2 D - Sulfide, Total

Lab Sample ID: MB 860-151211/3 Matrix: Water Analysis Batch: 151211							Client Sam	ple ID: Method Prep Type: To	
	MB	МВ	> //						
Analyte	Result	Qualifier (///)	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfide	0.040	U	0.10	0.040	mg/L			03/22/24 16:04	1

Lab Sample ID: LCS 860-151211/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 151211 Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Sulfide 1.00 1.05 mg/L 105 90 - 110

Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA Analysis Batch: 151211 LCSD LCSD **RPD** Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Sulfide 1.00 1.04 mg/L 104 90 - 110 20

Method: SM 4500 SO3 B - Sulfite

Lab Sample ID: LCSD 860-151211/5

Lab Sample ID: MB 860-151506/1	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Ratch: 151506	

	MB	MB							
Analyte	Result	Qualifier	RL	MDL (Unit	D	Prepared	Analyzed	Dil Fac
Sulfite	5.0	U –	5.0	5.0 r	mg/L			03/25/24 16:54	1

Lab Sample ID: LCS 860-151506/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 151506

_	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfite	10.0	9.00		mg/L		90	80 - 120	

Eurofins Houston

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: SM 4500 SO3 B - Sulfite (Continued)

Lab Sample ID: LCSD 860-151506/3 Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 151506

RPD Spike LCSD LCSD %Rec Added Result Qualifier Limits RPD Limit Analyte Unit %Rec Sulfite 10.0 9.00 mg/L 90 80 - 1200 20

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: SCB 860-152548/2

Matrix: Water

Analysis Batch: 152548

SCB SCB Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.855 0.0000020 0.0000020 mg/L 03/22/24 15:38 Biochemical Oxygen Demand

Lab Sample ID: USB 860-152548/1

Matrix: Water

Analysis Batch: 152548

USB USB Result Qualifier **MDL** Unit Dil Fac Analyte Prepared Analyzed 0.0000020 **Biochemical Oxygen Demand** 0.0800 0.0000020 mg/L 03/22/24 15:36

Lab Sample ID: LCS 860-152548/3

Matrix: Water

Analysis Batch: 152548

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits **Biochemical Oxygen Demand** 198 183 92 85 - 115 mg/L

Method: SM 5310C - TOC

Lab Sample ID: MB 860-152393/11 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 152393

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Total Organic Carbon 0.50 U 1.0 0.50 mg/L 03/29/24 02:59

Lab Sample ID: LCS 860-152393/12

Matrix: Water

Analysis Batch: 152393

Spike LCS LCS %Rec Added Result Qualifier %Rec Limits Unit Total Organic Carbon 5.00 5.26 mg/L 105 90 - 110

Lab Sample ID: LCSD 860-152393/13

Matrix: Water

Analysis Batch: 152393

LCSD LCSD **RPD** Spike %Rec Added Limits Result Qualifier Unit %Rec Limit Total Organic Carbon 5 00 5.32 106 90 - 110 mg/L

Eurofins Houston

4/15/2024

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

QC Sample Results

Client: Messer LLC Job ID: 860-70454-1

Spike

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Method: SM 5310C - TOC (Continued)

Lab Sample ID: LLCS 860-152393/14

Matrix: Water Analysis Batch: 152393

Analyte

Added Total Organic Carbon 1.00 **Client Sample ID: Lab Control Sample**

Prep Type: Total/NA

%Rec %Rec Limits

100 50 - 150

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Analyzed

03/22/24 18:36

Prep Type: Total/NA

Dil Fac

Dil Fac

Method: SM5210B CBOD - Carbonaceous BOD, 5 Day

Lab Sample ID: SCB 860-151940/2

Matrix: Water

Analysis Batch: 151940

SCB SCB

Analyte Result Qualifier 0.900 Carbonaceous Biochemical Oxygen

Demand

Lab Sample ID: USB 860-151940/1 **Matrix: Water**

Analysis Batch: 151940

Carbonaceous Biochemical Oxygen

Demand

Lab Sample ID: LCS 860-151940/3

Matrix: Water

Analysis Batch: 151940

Analyte

Carbonaceous Biochemical Oxygen Demand

USB USB Result Qualifier

0.0000020 U

Spike Added

198

0.0000020

RL

0.0000020

0.0000020 mg/L

LCS LCS

174

Result Qualifier

LLCS LLCS

0.997 J

Result Qualifier

MDL

0.0000020 mg/L

MDL Unit

Unit

mg/L

Unit

mg/L

Prepared

Prepared

03/22/24 18:33

Analyzed

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec

Limits %Rec 88 85 - 115

Eurofins Houston

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

GC/MS VOA

Analysis Batch: 151135

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	624.1	
MB 860-151135/18	Method Blank	Total/NA	Water	624.1	
LCS 860-151135/1011	Lab Control Sample	Total/NA	Water	624.1	
LCSD 860-151135/12	Lab Control Sample Dup	Total/NA	Water	624.1	

GC/MS Semi VOA

Prep Batch: 151704

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	625	
MB 860-151704/1-A	Method Blank	Total/NA	Water	625	
LCS 860-151704/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 860-151704/3-A	Lab Control Sample Dup	Total/NA	Water	625	

Analysis Batch: 151846

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	625.1	151704
MB 860-151704/1-A	Method Blank	Total/NA	Water	625.1	151704
LCS 860-151704/2-A	Lab Control Sample	Total/NA	Water	625.1	151704
LCSD 860-151704/3-A	Lab Control Sample Dup	Total/NA	Water	625.1	151704

Prep Batch: 152370

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1 - RE	Outfall 001	Total/NA	Water	625	
MB 860-152370/1-A	Method Blank	Total/NA	Water	625	
LCS 860-152370/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 860-152370/3-A	Lab Control Sample Dup	Total/NA	Water	625	

Analysis Batch: 152604

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 860-152370/1-A	Method Blank	Total/NA	Water	625.1	152370
LCS 860-152370/2-A	Lab Control Sample	Total/NA	Water	625.1	152370
LCSD 860-152370/3-A	Lab Control Sample Dup	Total/NA	Water	625.1	152370

Analysis Batch: 152789

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1 - RE	Outfall 001	Total/NA	Water	625.1	152370

HPLC/IC

Analysis Batch: 151005

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	300.0	
MB 860-151005/3	Method Blank	Total/NA	Water	300.0	
MB 860-151005/60	Method Blank	Total/NA	Water	300.0	
LCS 860-151005/61	Lab Control Sample	Total/NA	Water	300.0	
LCSD 860-151005/62	Lab Control Sample Dup	Total/NA	Water	300.0	
LLCS 860-151005/7	Lab Control Sample	Total/NA	Water	300.0	
860-70454-1 MS	Outfall 001	Total/NA	Water	300.0	
860-70454-1 MSD	Outfall 001	Total/NA	Water	300.0	

Eurofins Houston

4/15/2024

Page 36 of 53

2

3

4

6

7

9

11

13

14

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

HPLC/IC

Analysis Batch: 151006

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	300.0	
MB 860-151006/3	Method Blank	Total/NA	Water	300.0	
MB 860-151006/60	Method Blank	Total/NA	Water	300.0	
LCS 860-151006/61	Lab Control Sample	Total/NA	Water	300.0	
LCSD 860-151006/62	Lab Control Sample Dup	Total/NA	Water	300.0	
LLCS 860-151006/6	Lab Control Sample	Total/NA	Water	300.0	
860-70454-1 MS	Outfall 001	Total/NA	Water	300.0	
860-70454-1 MSD	Outfall 001	Total/NA	Water	300.0	

Metals

Prep Batch: 152111

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total Recoverable	Water	200.8	
MB 860-152111/1-A	Method Blank	Total Recoverable	Water	200.8	
LCS 860-152111/2-A	Lab Control Sample	Total Recoverable	Water	200.8	
LCSD 860-152111/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	

Analysis Batch: 152235

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total Recoverable	Water	200.8	152111
860-70454-1	Outfall 001	Total Recoverable	Water	200.8	152111
MB 860-152111/1-A	Method Blank	Total Recoverable	Water	200.8	152111
LCS 860-152111/2-A	Lab Control Sample	Total Recoverable	Water	200.8	152111
LCSD 860-152111/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	152111

Analysis Batch: 152895

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total Recoverable	Water	200.8	152111
MB 860-152111/1-A	Method Blank	Total Recoverable	Water	200.8	152111
LCS 860-152111/2-A	Lab Control Sample	Total Recoverable	Water	200.8	152111
LCSD 860-152111/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	152111

Prep Batch: 665799

Lab Sample ID 860-70454-1	Client Sample ID Outfall 001	Prep Type Total/NA	Matrix Water	Method 1631E	Prep Batch
MB 400-665799/3-A	Method Blank	Total/NA	Water	1631E	
LCS 400-665799/4-A	Lab Control Sample	Total/NA	Water	1631E	
LCSD 400-665799/5-A	Lab Control Sample Dup	Total/NA	Water	1631E	

Analysis Batch: 665859

Lab Sample ID 860-70454-1	Client Sample ID Outfall 001	Prep Type Total/NA	Matrix Water	Method 1631E	Prep Batch 665799
MB 400-665799/3-A	Method Blank	Total/NA	Water	1631E	665799
LCS 400-665799/4-A	Lab Control Sample	Total/NA	Water	1631E	665799
LCSD 400-665799/5-A	Lab Control Sample Dup	Total/NA	Water	1631E	665799

General Chemistry

Analysis Batch: 151042

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	7196A	

Eurofins Houston

Page 37 of 53

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

General Chemistry (Continued)

Analy	vsis	Batch:	151042	(Continued)	١
, u.u.	, 0.0	Dato		Outiliada	,

Lab Sample ID MB 860-151042/3	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Water	Method 7196A	Prep Batch
LCS 860-151042/4	Lab Control Sample	Total/NA	Water	7196A	
LCSD 860-151042/5	Lab Control Sample Dup	Total/NA	Water	7196A	
860-70454-1 MS	Outfall 001	Total/NA	Water	7196A	
860-70454-1 MSD	Outfall 001	Total/NA	Water	7196A	

Analysis Batch: 151044

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	Nitrogen,Org	

Analysis Batch: 151048

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	7196A	

Analysis Batch: 151211

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	SM 4500 S2 D	
MB 860-151211/3	Method Blank	Total/NA	Water	SM 4500 S2 D	
LCS 860-151211/4	Lab Control Sample	Total/NA	Water	SM 4500 S2 D	
LCSD 860-151211/5	Lab Control Sample Dup	Total/NA	Water	SM 4500 S2 D	

Prep Batch: 151213

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	BOD Prep	

Prep Batch: 151247

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	BOD Prep	

Analysis Batch: 151472

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	SM 4500 CI G	
MB 860-151472/3	Method Blank	Total/NA	Water	SM 4500 CI G	
LCS 860-151472/4	Lab Control Sample	Total/NA	Water	SM 4500 CI G	
LCSD 860-151472/5	Lab Control Sample Dup	Total/NA	Water	SM 4500 CI G	

Analysis Batch: 151505

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	360.1	

Analysis Batch: 151506

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	SM 4500 SO3 B	
MB 860-151506/1	Method Blank	Total/NA	Water	SM 4500 SO3 B	
LCS 860-151506/2	Lab Control Sample	Total/NA	Water	SM 4500 SO3 B	
LCSD 860-151506/3	Lab Control Sample Dup	Total/NA	Water	SM 4500 SO3 B	

Analysis Batch: 151592

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	SM 2320B	
MB 860-151592/34	Method Blank	Total/NA	Water	SM 2320B	

Eurofins Houston

4/15/2024

4

6

8

3

11

13

14

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

General Chemistry (Continued)

Analy	/sis	Batch:	151592	(Continued)
Allai	7313	Dateii.	101002	(Ooiitiiiucu)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 860-151592/35	Lab Control Sample	Total/NA	Water	SM 2320B	
LCSD 860-151592/36	Lab Control Sample Dup	Total/NA	Water	SM 2320B	
860-70454-1 DU	Outfall 001	Total/NA	Water	SM 2320B	

Analysis Batch: 151649

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	SM 2540C	
MB 860-151649/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 860-151649/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 860-151649/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	
LLCS 860-151649/4	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 151677

Lab Sample ID	Client Sample ID	Prep Type	e Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	SM 2540D	
MB 860-151677/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 860-151677/2	Lab Control Sample	Total/NA	Water	SM 2540D	
LCSD 860-151677/3	Lab Control Sample Dup	Total/NA	Water	SM 2540D	

Prep Batch: 151764

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	351.2	
MB 860-151764/32-A	Method Blank	Total/NA	Water	351.2	
MB 860-151764/4-A	Method Blank	Total/NA	Water	351.2	
LCS 860-151764/33-A	Lab Control Sample	Total/NA	Water	351.2	
LCSD 860-151764/34-A	Lab Control Sample Dup	Total/NA	Water	351.2	
LLCS 860-151764/5-A	Lab Control Sample	Total/NA	Water	351.2	

Analysis Batch: 151765

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	SM 2120B	
MB 860-151765/3	Method Blank	Total/NA	Water	SM 2120B	
LCS 860-151765/4	Lab Control Sample	Total/NA	Water	SM 2120B	
LCSD 860-151765/5	Lab Control Sample Dup	Total/NA	Water	SM 2120B	

Analysis Batch: 151920

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	1664B	
MB 860-151920/1	Method Blank	Total/NA	Water	1664B	
LCS 860-151920/2	Lab Control Sample	Total/NA	Water	1664B	
LCSD 860-151920/3	Lab Control Sample Dup	Total/NA	Water	1664B	

Analysis Batch: 151940

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	SM5210B CBOD	151247
SCB 860-151940/2	Method Blank	Total/NA	Water	SM5210B CBOD	
USB 860-151940/1	Method Blank	Total/NA	Water	SM5210B CBOD	
LCS 860-151940/3	Lab Control Sample	Total/NA	Water	SM5210B CBOD	

Eurofins Houston

4/15/2024

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

General Chemistry

Analysis Batch: 152217

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	351.2	151764
MB 860-151764/32-A	Method Blank	Total/NA	Water	351.2	151764
MB 860-151764/4-A	Method Blank	Total/NA	Water	351.2	151764
LCS 860-151764/33-A	Lab Control Sample	Total/NA	Water	351.2	151764
LCSD 860-151764/34-A	Lab Control Sample Dup	Total/NA	Water	351.2	151764
LLCS 860-151764/5-A	Lab Control Sample	Total/NA	Water	351.2	151764

Analysis Batch: 152223

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Bat	ch
860-70454-1	Outfall 001	Total/NA	Water	350.1	
MB 860-152223/66	Method Blank	Total/NA	Water	350.1	
LCS 860-152223/67	Lab Control Sample	Total/NA	Water	350.1	
LCSD 860-152223/68	Lab Control Sample Dup	Total/NA	Water	350.1	

Analysis Batch: 152393

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	SM 5310C	
MB 860-152393/11	Method Blank	Total/NA	Water	SM 5310C	
LCS 860-152393/12	Lab Control Sample	Total/NA	Water	SM 5310C	
LCSD 860-152393/13	Lab Control Sample Dup	Total/NA	Water	SM 5310C	
LLCS 860-152393/14	Lab Control Sample	Total/NA	Water	SM 5310C	

Analysis Batch: 152548

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	SM 5210B	151213
SCB 860-152548/2	Method Blank	Total/NA	Water	SM 5210B	
USB 860-152548/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 860-152548/3	Lab Control Sample	Total/NA	Water	SM 5210B	

Analysis Batch: 152732

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	8000	
MB 860-152732/3	Method Blank	Total/NA	Water	8000	
LCS 860-152732/4	Lab Control Sample	Total/NA	Water	8000	

Analysis Batch: 152937

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 860-152937/16	Method Blank	Total/NA	Water	365.1	
LCS 860-152937/17	Lab Control Sample	Total/NA	Water	365.1	
LCSD 860-152937/18	Lab Control Sample Dup	Total/NA	Water	365.1	
860-70454-1 MS	Outfall 001	Total/NA	Water	365.1	
860-70454-1 MSD	Outfall 001	Total/NA	Water	365.1	

Analysis Batch: 153014

Lab Sample ID 860-70454-1	Client Sample ID Outfall 001	Prep Type Total/NA	Matrix Water	Method 365.1	Prep Batch
MB 860-153014/46	Method Blank	Total/NA	Water	365.1	
LCS 860-153014/47	Lab Control Sample	Total/NA	Water	365.1	
LCSD 860-153014/48	Lab Control Sample Dup	Total/NA	Water	365.1	

Eurofins Houston

2

3

6

Q

9

11

12

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

General Chemistry

Analysis Batch: 489850

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70454-1	Outfall 001	Total/NA	Water	OIA-1677	
MB 410-489850/17	Method Blank	Total/NA	Water	OIA-1677	
LCS 410-489850/16	Lab Control Sample	Total/NA	Water	OIA-1677	

Lab Chronicle

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Client Sample ID: Outfall 001

Date Collected: 03/21/24 10:00

Date Received: 03/21/24 15:21

Total/NA

Total/NA

Total/NA

Total/NA

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	5 mL	5 mL	151135	03/22/24 18:03	AN	EET HOU
Total/NA	Prep	625			1000 mL	1.00 mL	151704	03/26/24 16:25	DR	EET HOU
Total/NA	Analysis	625.1		1	1 mL	1 mL	151846	03/27/24 19:50	PXS	EET HOU
Total/NA	Prep	625	RE		1000 mL	1.00 mL	152370	03/29/24 12:29	DR	EET HOU
Total/NA	Analysis	625.1	RE	1	1 mL	1 mL	152789	04/02/24 16:20	PXS	EET HOU
Total/NA	Analysis	300.0		1			151005	03/22/24 07:56	A1S	EET HOU
Total/NA	Analysis	300.0		1		\sim $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$	151006	03/22/24 07:56	A1S	EET HOU
Total/NA	Prep	1631E			40 mL	40 mL	665799	03/25/24 13:48	VLC	EET PEN
						<u> </u>	Completed:	03/26/24 08:50	1	
Total/NA	Analysis	1631E		1	a		665859	03/26/24 13:32	VLC	EET PEN
Total Recoverable	Prep	200.8			50 mL	50 mL	152111	03/28/24 11:30	MD	EET HOU
Total Recoverable	Analysis	200.8		2	P		152895	04/02/24 11:57	DP	EET HOU
Total Recoverable	Prep	200.8			50 mL	50 mL	152111	03/28/24 11:30	MD	EET HOU
Total Recoverable	Analysis	200.8			>//		152235	03/28/24 20:23	DP	EET HOU
Total Recoverable	Prep	200.8		\sim	50 mL	50 mL	152111	03/28/24 11:30	MD	EET HOU
Total Recoverable	Analysis	200.8	~ <<	10			152235	03/28/24 20:26	DP	EET HOU
Total/NA	Analysis	1664B		1	1000 mL	1000 mL	151920	03/27/24 14:23	ТВ	EET HOU
Total/NA	Analysis	350.1		1	10 mL	10 mL	152223	03/27/24 15:00	ADL	EET HO
Total/NA	Prep	351.2			20 mL	20 mL	151764	03/26/24 20:10	SA	EET HO
Total/NA	Analysis	351.2	\Rightarrow	1			152217	03/28/24 11:16	LD	EET HO
Total/NA	Analysis	360.1		1			151505	03/25/24 16:54	HN	EET HO
Total/NA	Analysis	365.1		5	10 mL	10 mL	153014	04/03/24 00:17	HN	EET HO
Total/NA	Analysis	7196A		1	25 mL	25 mL	151042	03/21/24 19:20	SCI	EET HO

Total/NA Analysis SM 2120B 2 50 mL 151765 03/22/24 19:15 YG **EET HOU** Total/NA SM 2320B 151592 03/25/24 23:08 SC Analysis 1 **EET HOU** Total/NA SM 2540C 50 mL 200 mL 03/26/24 12:59 SA **EET HOU** Analysis 1 151649 Total/NA Analysis SM 2540D 1 1000 mL 1000 mL 151677 03/26/24 15:02 FN **EET HOU** Total/NA Analysis SM 4500 CI G 2 10 mL 10 mL 151472 03/25/24 14:46 SCI **EET HOU** Total/NA SM 4500 S2 D 7.5 mL 7.5 mL 151211 03/22/24 16:04 SCI **EET HOU** Analysis 1 Total/NA Analysis SM 4500 SO3 B 50 mL 50 mL 151506 03/25/24 16:55 SCI **EET HOU**

2 mL

50 mL

1

1

1

1

151048

152732

151044

489850

2 mL

04/08/24 14:54 SC

04/01/24 19:18 HN

03/29/24 15:58 SC

04/02/24 15:55 UJE2

BOD Prep Total/NA Prep 151213 03/22/24 13:00 ALL **EET HOU** Total/NA Analysis SM 5210B 50 mL 300 mL 152548 03/22/24 16:06 HN **EET HOU** Total/NA SM 5310C 40 mL 03/29/24 04:14 YG Analysis 40 mL 152393 **EET HOU** Total/NA **BOD Prep** 03/22/24 18:32 ALL **EET HOU** Prep 151247 SM5210B CBOD 300 mL 03/22/24 19:14 HN **EET HOU** Total/NA Analysis 200 mL 151940

This procedure uses a method stipulated length of time for the process. Both start and end times are displayed.

7196A

8000

Nitrogen, Org

OIA-1677

Analysis

Analysis

Analysis

Analysis

Eurofins Houston

Lab Sample ID: 860-70454-1

Matrix: Water

EET HOU

EET HOU

EET HOU

ELLE

Lab Chronicle

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

EET PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

3

4

5

7

10

13

14

Accreditation/Certification Summary

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-00759	08-03-24
Florida	NELAP	E871002	06-30-24
Louisiana (All)	NELAP	03054	06-30-24
Oklahoma	NELAP	1306	08-31-24
Oklahoma	State	2023-139	08-31-24
Texas	NELAP	T104704215	06-30-24
Texas	TCEQ Water Supply	T104704215	12-28-25
USDA	US Federal Programs	525-23-79-79507	03-20-26

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

<u> </u>	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Authority	Program	Identification Number	Expiration Date
A2LA	Dept. of Defense ELAP	0001.01	11-30-24
A2LA	ISO/IEC 17025	0001.01	11-30-24
Alabama	State	43200	01-31-25
Alaska	State	PA00009	06-30-24
Alaska (UST)	State	17-027	02-28-25
Arizona	State	AZ0780	03-12-25
Arkansas DEQ	State	88-00660	08-09-24
California	State	2792	11-30-24
Colorado	State	PA00009	06-30-24
Connecticut	State	PH-0746	06-30-25
DE Haz. Subst. Cleanup Act (HSCA)	State	019-006 (PA cert)	01-31-25
Delaware (DW)	State	N/A	01-31-25
Florida	NELAP	E87997	06-30-25
Georgia (DW)	State	C048	01-31-25
Hawaii	State	N/A	01-31-25
Illinois	NELAP	200027	01-31-25
lowa	State	361	03-01-24 *
Kansas	NELAP	E-10151	10-31-24
Kentucky (DW)	State	KY90088	12-31-24
Kentucky (UST)	State	0001.01	11-30-24
Kentucky (WW)	State	KY90088	12-31-23 *
Louisiana (All)	NELAP	02055	06-30-24
Maine	State	2019012	03-12-25
Maryland	State	100	06-30-24
Massachusetts	State	M-PA009	06-30-24
Michigan	State	9930	01-31-25
Minnesota	NELAP	042-999-487	12-31-24
Mississippi	State	023	01-31-25
Missouri	State	450	01-31-25
Montana (DW)	State	0098	01-01-25
Nebraska	State	NE-OS-32-17	01-31-25
New Hampshire	NELAP	2730	01-10-25
New Jersey	NELAP	PA011	06-30-24
New York	NELAP	10670	04-01-25
North Carolina (DW)	State	42705	07-31-24
North Carolina (WW/SW)	State	521	12-31-24
Oklahoma	NELAP	9804	08-31-24

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Page 44 of 53

Accreditation/Certification Summary

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program		Identification Number	Expiration Date
Oregon	NELAP		PA200001	09-11-24
Pennsylvania	NELAP		36-00037	04-07-24
Quebec Ministry of Environment and Fight against Climate Change	PALA		507	09-16-24
Rhode Island	State		LAO00338	12-30-24
South Carolina	State		89002	01-31-24 *
Tennessee	State		02838	01-31-25
Texas	NELAP		T104704194-23-46	08-31-24
USDA	US Federal Programs		525-22-298-19481	10-25-25
Vermont	State		VT - 36037	10-28-24
Virginia	NELAP		460182	06-14-25
Washington	State		C457	04-11-24
West Virginia (DW)	State		9906 C	01-31-25
West Virginia DEP	State	41	055	07-31-24
Wyoming	State	2	8TMS-L	01-31-25
Wyoming (UST)	A2LA		0001.01	11-30-24

Laboratory: Eurofins Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alabama	State	40150	06-30-24
ANAB	ISO/IEC 17025	L2471	02-22-26
Arkansas DEQ	State	88-00689	08-01-24
California	State	2510	06-30-24
Florida	NELAP	E81010	06-30-24
Georgia	State	E81010(FL)	06-30-24
Illinois	NELAP	200041	10-09-24
Kansas	NELAP	E-10253	10-31-24
Kentucky (UST)	State	53	06-30-24
Louisiana (All)	NELAP	30976	06-30-24
Louisiana (DW)	State	LA017	12-31-24
North Carolina (WW/SW)	State	314	12-31-24
Oklahoma	NELAP	9810	08-31-24
Pennsylvania	NELAP	68-00467	01-31-25
South Carolina	State	96026	06-30-24
Tennessee	State	TN02907	06-30-24
Texas	NELAP	T104704286	09-30-24
US Fish & Wildlife	US Federal Programs	A22340	06-30-24
USDA	US Federal Programs	FLGNV23001	01-08-26
USDA	US Federal Programs	P330-21-00056	05-17-24
Virginia	NELAP	460166	06-14-24
West Virginia DEP	State	136	03-31-24

Eurofins Houston

- 0

5

7

Q

11

12

4 4

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Method Summary

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

625.1 Semivolatile Organic Compounds (GC/MS) EPA EET HOU 300.0 Anions, Ion Chromatography EPA EET HOU 16031E Mercury, Low Level (CVAFS) EPA EET PEN 1200.8 Metals (ICP/MS) EPA EET HOU 1664B HEM and SGT-HEM 1664B EET HOU 350.1 Nitrogen, Ammonia EPA EET HOU 360.1 Oxygen, Dissolved EPA EET HOU 360.1 Oxygen, Dissolved EPA EET HOU 360.1 Phosphorus, Total Kjeldahl EPA EET HOU 360.1 Phosphorus, Total EPA EET HOU 365.1 Phosphorus, Total EPA EET HOU 4196A Chromium, Trivalent (Colorimetric) SW846 EET HOU 3000 COD Hach EET HOU Nitrogen, Organic EPA EET HOU SM 2120B Color, Colorimetric SM EET HOU SM 2250B Alkalinity SM EET HOU SM 2540C	Method	Method Description	Protocol	Laboratory
Section	624.1	Volatile Organic Compounds (GC/MS)	EPA	EET HOU
1631E Mercury, Low Level (CVAFS) EPA EET PEN 200.8 Metals (ICPMS) EPA EET HOU 1664B HEM and SGT-HEM 1664B EET HOU 150.1 Nitrogen, Ammonia EPA EET HOU 151.2 Nitrogen, Total Kjeldahl EPA EET HOU 151.2 EPA EET HOU 151.2 Phosphorus, Total EPA EET HOU 151.3 EPA EET HOU 151.4 EPA EET HOU 151.5 EP	625.1	Semivolatile Organic Compounds (GC/MS)	EPA	EET HOU
200.8 Metals (ICP/MS) EPA EET HOU 1664B HEM and SGT-HEM 1664B EET HOU 350.1 Nitrogen, Ammonia EPA EET HOU 351.2 Nitrogen, Total Kjeldahl EPA EET HOU 360.1 Oxygen, Dissolved EPA EET HOU 365.1 Phosphorus, Total EPA EET HOU 7196A Chromium, Hexavalent SW846 EET HOU 3000 COD Was 6 EET HOU Nitrogen, Organic EPA EET HOU OIA-1677 Cyanide, Available (Flow Injection) OI CORP ELE SM 2320B Alkalinity SM EET HOU SM 2340C Solids, Total Dissolved (TDS) SM EET HOU SM 2540D Solids, Total Suspended (TSS) SM EET HOU SM 4500 CI G Chlorine, Residual SM EET HOU SM 4500 S2 D Sulfide, Total SM EET HOU SM 4500 SO3 B Sulfite SM EET HOU SM 5210B BOD,	300.0	Anions, Ion Chromatography	EPA	EET HOU
HEM and SGT-HEM	1631E	Mercury, Low Level (CVAFS)	EPA	EET PEN
Section Nitrogen, Ammonia EPA EET HOU	200.8	Metals (ICP/MS)	EPA	EET HOU
Section Sect	1664B	HEM and SGT-HEM	1664B	EET HOU
380.1 Oxygen, Dissolved EPA EET HOU 365.1 Phosphorus, Total EPA EET HOU 7196A Chromium, Hexavalent SW846 EET HOU 7196A Chromium, Trivalent (Colorimetric) SW846 EET HOU 3000 COD Hach EET HOU Nitrogen, Org Nitrogen, Organic EPA EET HOU DIA-1677 Cyanide, Available (Flow Injection) OI CORP ELLE SM 2120B Color, Colorimetric SM EET HOU SM 2320B Alkalinity SM EET HOU SM 2540C Solids, Total Dissolved (TDS) SM EET HOU SM 2540D Solids, Total Suspended (TSS) SM EET HOU SM 4500 CI G Chlorine, Residual SM EET HOU SM 4500 CI G Chlorine, Residual SM EET HOU SM 4500 SO3 B Sulfide SM EET HOU SM 5210B BOD, 5-Day SM EET HOU SM 5210B BOD, 5-Day SM EET HOU	350.1	Nitrogen, Ammonia	EPA	EET HOU
365.1 Phosphorus, Total EPA EET HOU 7196A Chromium, Hexavalent SW846 EET HOU 7196A Chromium, Trivalent (Colorimetric) SW846 EET HOU 3000 COD Hach EET HOU Nitrogen, Org Nitrogen, Organic EPA EET HOU DIA-1677 Cyanide, Available (Flow Injection) OI CORP ELLE SM 2120B Color, Colorimetric SM EET HOU SM 2320B Alkalinity SM EET HOU SM 2540C Solids, Total Dissolved (TDS) SM EET HOU SM 2540D Solids, Total Suspended (TSS) SM EET HOU SM 4500 CI G Chlorine, Residual SM EET HOU SM 4500 S2 D Sulfide, Total SM EET HOU SM 4500 S03 B Sulfite SM EET HOU SM 5310C TOC SM EET HOU SM5210B BOD, 5-Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU 1631	351.2	Nitrogen, Total Kjeldahl	EPA	EET HOU
T196A Chromium, Hexavalent SW846 EET HOU T196A Chromium, Trivalent (Colorimetric) SW846 EET HOU SW846 COLOR Colorimetric SW EET HOU SW840 SOLOR SOLOR TOLOR SW846 EET HOU SW840 SOLOR SOLOR TOLOR SW846 EET HOU SW840 SOLOR SOLOR TOLOR SW846 EET HOU SW840 SOLOR SW846 EET HOU SW8450 SOLOR SW846 EET HOU SW850 SOLOR SW846 EET HOU SW850 SOLOR SW850 SOLOR SW850 SOLOR SW850 SW	360.1	Oxygen, Dissolved	EPA	EET HOU
7196A Chromium, Trivalent (Colorimetric) SW846 EET HOU 8000 COD Hach EET HOU Nitrogen, Org Nitrogen, Organic EPA EET HOU DIA-1677 Cyanide, Available (Flow Injection) OI CORP ELLE SM 2120B Color, Colorimetric SM EET HOU SM 2320B Alkalinity SM EET HOU SM 2540C Solids, Total Dissolved (TDS) SM EET HOU SM 2540D Solids, Total Suspended (TSS) SM EET HOU SM 4500 CI G Chlorine, Residual SM EET HOU SM 4500 S2 D Sulfide, Total SM EET HOU SM 4500 S0 3 B Sulfite SM EET HOU SM 5210B BOD, 5-Day SM EET HOU SM 5210B BOD, 5-Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU 1631E Preparation, Mercury, Low Level EPA EET HOU 200.8 Preparation, Total Recoverable Metals EPA	365.1	Phosphorus, Total	EPA	EET HOU
South Sout	7196A	Chromium, Hexavalent	SW846	EET HOU
Nitrogen,Org Nitrogen, Organic EPA EET HOU OIA-1677 Cyanide, Available (Flow Injection) OI CORP ELLE SM 2120B Color, Colorimetric SM EET HOU SM 2320B Alkalinity SM EET HOU SM 2540C Solids, Total Dissolved (TDS) SM EET HOU SM 2540D Solids, Total Suspended (TSS) SM EET HOU SM 4500 CI G Chlorine, Residual SM EET HOU SM 4500 S2 D Sulfide, Total SM EET HOU SM 4500 S03 B Sulfite SM EET HOU SM 5210B BOD, 5-Day SM EET HOU SM 5310C TOC SM EET HOU SM 5310C TOC SM EET HOU SM 5310C TOC SM EET HOU SM 531E Preparation, Mercury, Low Level EPA EET HOU SM 531.2 Nitrogen, Total Recoverable Metals EPA EET HOU SM 531.2 Nitrogen, Total Kjeldahl EPA EET HOU SM 5320 Liquid-Liquid Extraction EPA EET HOU SM 5320 EPA EET HOU SM 531.2 Liquid-Liquid Extraction EPA EET HOU SM 5320 EPA EET HOU SM 5320 EPA EET HOU SM 5320 EPA EET HOU SM 531.2 Liquid-Liquid Extraction EPA EET HOU SM 5320 EPA EET HOU EPA EET HOU SM 5320 EPA EET HOU SM 5320 EPA EET HOU SM 5320 EPA E	7196A	Chromium, Trivalent (Colorimetric)	SW846	EET HOU
DIA-1677 Cyanide, Available (Flow Injection) OI CORP ELLE SM 2120B Color, Colorimetric SM EET HOU SM 2320B Alkalinity SM EET HOU SM 2540C Solids, Total Dissolved (TDS) SM EET HOU SM 2540D Solids, Total Suspended (TSS) SM EET HOU SM 4500 CI G Chlorine, Residual SM EET HOU SM 4500 S2 D Sulfide, Total SM EET HOU SM 4500 SO3 B Sulfite SM EET HOU SM 5210B BOD, 5-Day SM EET HOU SM 5310C TOC SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day 1631E Preparation, Mercury, Low Level 200.8 Preparation, Total Recoverable Metals EPA EET HOU 351.2 Nitrogen, Total Kjeldahl EPA EET HOU SEET HOU SM 5210B EET HOU SM 525 Liquid-Liquid Extraction	8000	COD	Hach	EET HOU
SM 2120B Color, Colorimetric SM EET HOU SM 2320B Alkalinity SM EET HOU SM 2320B Alkalinity SM EET HOU SM 2540C Solids, Total Dissolved (TDS) SM EET HOU SM 2540D Solids, Total Suspended (TSS) SM EET HOU SM 4500 CI G Chlorine, Residual SM EET HOU SM 4500 S2 D Sulfide, Total SM EET HOU SM 4500 S2 D Sulfide, Total SM EET HOU SM 5210B BOD, 5-Day SM EET HOU SM 5310C TOC SM EET HOU SM 5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM 5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM 5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM 5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM 5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM 5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM 5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM 5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM 5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM 5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM 5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM 5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM 5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM 5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM 5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM 5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM 5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM 5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM 5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM 5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM 5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM 5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM 5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM 5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM 5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM 5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM 5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM 5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM 5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM 5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM 5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM 5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM 5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM 5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM	Nitrogen,Org	Nitrogen, Organic	EPA	EET HOU
SM 2320B Alkalinity SM EET HOU SM 2540C Solids, Total Dissolved (TDS) SM 2540D Solids, Total Suspended (TSS) SM EET HOU SM 2540D Solids, Total Suspended (TSS) SM EET HOU SM 4500 Cl G Chlorine, Residual SM EET HOU SM 4500 S2 D Sulfide, Total SM EET HOU SM 4500 SO3 B Sulfite SM EET HOU SM 5210B BOD, 5-Day SM EET HOU SM 5310C TOC SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD CArbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD CArbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD CArbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD CArbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CBOD CBOD CBOD CBOD CBOD CBOD CBO	OIA-1677	Cyanide, Available (Flow Injection)	OI CORP	ELLE
SM 2540C Solids, Total Dissolved (TDS) SM EET HOU SM 2540D Solids, Total Suspended (TSS) SM EET HOU SM 4500 Cl G Chlorine, Residual SM EET HOU SM 4500 S2 D Sulfide, Total SM EET HOU SM 4500 S03 B Sulfite SM EET HOU SM 5210B BOD, 5-Day SM EET HOU SM 5310C TOC SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day I631E Preparation, Mercury, Low Level EPA EET PEN 200.8 Preparation, Total Recoverable Metals EPA EET HOU SM 525 Liquid-Liquid Extraction EPA EET HOU EPA E	SM 2120B	Color, Colorimetric	SM	EET HOU
SM 2540D Solids, Total Suspended (TSS) SM EET HOU SM 4500 CI G Chlorine, Residual SM EET HOU SM 4500 S2 D Sulfide, Total SM EET HOU SM 4500 S03 B Sulfite SM EET HOU SM 5210B BOD, 5-Day SM EET HOU SM 5310C TOC SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day 1631E Preparation, Mercury, Low Level 200.8 Preparation, Total Recoverable Metals EPA EET HOU SM51.2 Nitrogen, Total Kjeldahl EPA EET HOU EPA EE	SM 2320B	Alkalinity	SM	EET HOU
SM 4500 CI G Chlorine, Residual SM EET HOU SM 4500 S2 D Sulfide, Total SM EET HOU SM 4500 SO3 B Sulfite SM EET HOU SM 5210B BOD, 5-Day SM EET HOU SM 5310C TOC SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 DAY SM EET HOU SM52	SM 2540C	Solids, Total Dissolved (TDS)	SM	EET HOU
SM 4500 S2 D Sulfide, Total SM EET HOU SM 4500 SO3 B Sulfite SM EET HOU SM 5210B BOD, 5-Day SM EET HOU SM 5310C TOC SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 Day SM EET HOU SM5210B CBOD CARBONACEOUS BOD, 5 DAY SM5210B	SM 2540D	Solids, Total Suspended (TSS)	SM	EET HOU
SM 4500 SO3 B Sulfite SM EET HOU SM 5210B BOD, 5-Day SM EET HOU SM 5310C TOC SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU 1631E Preparation, Mercury, Low Level EPA EET PEN 200.8 Preparation, Total Recoverable Metals EPA EET HOU 351.2 Nitrogen, Total Kjeldahl EPA EET HOU 352.5 Liquid-Liquid Extraction EPA EET HOU	SM 4500 CI G	Chlorine, Residual	SM	EET HOU
SM 5210B BOD, 5-Day SM EET HOU SM 5310C TOC SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU 1631E Preparation, Mercury, Low Level EPA EET PEN 200.8 Preparation, Total Recoverable Metals EPA EET HOU 1631.2 Nitrogen, Total Kjeldahl EPA EET HOU 1635 Liquid-Liquid Extraction EPA EET HOU 1635 EPA EET HOU	SM 4500 S2 D	Sulfide, Total	SM	EET HOU
SM 5310C TOC SM EET HOU SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU 1631E Preparation, Mercury, Low Level EPA EET PEN 200.8 Preparation, Total Recoverable Metals EPA EET HOU 1631.2 Nitrogen, Total Kjeldahl EPA EET HOU 1635 Liquid-Liquid Extraction EPA EET HOU 1635 EPA EET HOU	SM 4500 SO3 B	Sulfite	SM	EET HOU
SM5210B CBOD Carbonaceous BOD, 5 Day SM EET HOU 1631E Preparation, Mercury, Low Level EPA EET PEN 200.8 Preparation, Total Recoverable Metals EPA EET HOU 351.2 Nitrogen, Total Kjeldahl EPA EET HOU 625 Liquid-Liquid Extraction EPA EET HOU	SM 5210B	BOD, 5-Day	SM	EET HOU
1631EPreparation, Mercury, Low LevelEPAEET PEN200.8Preparation, Total Recoverable MetalsEPAEET HOU351.2Nitrogen, Total KjeldahlEPAEET HOU3525Liquid-Liquid ExtractionEPAEET HOU	SM 5310C	TOC	SM	EET HOU
200.8 Preparation, Total Recoverable Metals EPA EET HOU 351.2 Nitrogen, Total Kjeldahl EPA EET HOU 325 Liquid-Liquid Extraction EPA EET HOU	SM5210B CBOD	Carbonaceous BOD, 5 Day	SM	EET HOU
S51.2 Nitrogen, Total Kjeldahl EPA EET HOU S25 Liquid-Liquid Extraction EPA EET HOU	1631E	Preparation, Mercury, Low Level	EPA	EET PEN
625 Liquid-Liquid Extraction EPA EET HOU	200.8	Preparation, Total Recoverable Metals	EPA	EET HOU
	351.2	Nitrogen, Total Kjeldahl	EPA	EET HOU
3OD Prep Preparation, BOD SM EET HOU	625	Liquid-Liquid Extraction	EPA	EET HOU
	BOD Prep	Preparation, BOD	SM	EET HOU

Protocol References:

1664B = EPA-821-98-002

EPA = US Environmental Protection Agency

Hach = Hach Company

OI CORP = OI Corporation Instrument Manual.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

EET PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Eurofins Houston

2

3

5

7

9

11

12

14

4 E

Sample Summary

Client: Messer LLC Job ID: 860-70454-1

Project/Site: Messer Gas ASU Permit Renewal 3-21-24

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-70454-1	Outfall 001	Water	03/21/24 10:00	03/21/24 15:21

3

Δ

5

7

8

9

11

12

Eurofins Houston 1145 Greenbriar Dr Stafford TX 77477	Ch	Chain of Custody Record	tody Reco	ă				°urofins
Tible (col) 240-4200	Sampler		Lab PM:		860-70454 Chain of	of Custody		No:
Jient Confact Rami Qafisheh	Phone 281-68	7		E-Mail: Lance.Tigrett@et.eurofinsus.com		are or Origina		Page:
company: Vesser LLC		PWSID	_		Analysis Requested	ested	Ja	Job #:
ddress. I 1605 Strang Rd	Due Date Requested:							eservation Codes:
Jity _a Porte	TAT Requested (days):		- 一			HMs		A HCL M PEAGLE B NaOH None C 75 Apetrate O AsNaO2
tate, Zip: - X. 77571	Compliance Project: A	Yes A No	<u> </u>			E+TTI	m 0 (Nitric Acid
hone:	- 1	1	ř.		WS, TO	c/2CV		MeOH S F
inali: ami dafisheh@messer-us com	WO#			VAFS)	TOC) ORGF 6A, 71	s+ Ac//		Ascorbic Acid Ice
roject Name:	Project#:			el (C	300_ 715	/OC		K EDTA W pH 4-5
sser Gas ASU Permit Renewal 2024	86006711			Leve	Carb 8D, 3	.1 V	SM5	
	SSOW#:			LOW CN Sulfide	ganle GFM_2 _G, 55	1 624 540C_	_Cale,	Other:
		Sample	Matrix Iltered	Mercury valiable _S2_D - 51.2, 36	Total Or 300_OR	Custom CB, 625, (T\$S), 2	SO3_B M5210B umber	
Sample Identification	Sample Date T	<u> </u>		1631E 1677 -A SM450	5310C 2320B, 2120B,	608.3_F 2540D	360.1 5	Special Instructions/Note:
			on code:	N B CB S	N	N N	z	
Out 6011 001	3-21-21/1900	C)	Water	××××	x x x	x	X X 26 Field	Field pH
	Al .						1	Temp: 7/0F
	,							
		>				-		
			4					
			\			-		
				1			Temp:	4.8 IR ID HOU-368
						_	Corrected Temp:	ed Temp: 5,0
Possible Hazard Identification Non-Hazard Flammable Skin Intant Poison B	on B Unknown	Radiological	Sa	Sample Disposal (A fee	4 fee may be ass	may be assessed if samples	ss are retained longer	than 1 mo
Other (specify)	j	ľ	Sp	Special Instructions/QC Requirements	OC Requirements			or or other transfer or other
mpty Kit Relinguished by	Date		Time:			Method of Shipment	lent:	
The property	Date/Time: 5/21/2 1	1000	Company Messer	Reserved by:	ant	Dale	Time: フィイ	11:35 Company
Singuisted by MAX	Date/Time:	114.46	Company & UTS-	Received by	A For	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	12/12/	1440 company to to
				consists of			Cater (inte:	Company
Δ Yes Δ No Custon Seaton (C)				Cooler Temperature(Cooler Temperature(s) °C and Other Remarks.	ार्डः 		

💸 eurofins Environment Testing	COC No: 860-107405.1	Page: Page 1 of 1	Job #: 860-70454-1	ĕ		D - Nitric Acid C - Na2045 C - NaHSO4 C - Na2S203	.0	I - Ice J - DI Water	K - EDIA Y - Trizma L - EDA Z - other (specify)	of cor	rsi Vumber		2							ple shipment is forwarded under chain-of-custody. If the ttory or other instructions will be provided. Any changes to noe to Eurofins Environment Testing South Central, LLC.	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)			123 /Jul 956 Company	те: Сотрапу	ne: Company	288
900 PM	Carrier Tracking No(s):	State of Origin: Texas		Analysis Requested											4	- 4			<i>/</i>	ubcontract laboratories. This samp Testing South Central, LLC laboral f Custody attesting to said compliar	y be assessed if samples a	rements:	Method of Shipment:	Date/Tim	Date/Time	Date/Time:	ther Remarks: U, 6 2
cord	Lab PM: Tigrett, Lance	E-Mail: Lance. Tigrett@et. eurofinsus. com	Accreditations Required (See note): NELAP - Texas	Analysis		(25) (15) (16) (18) (15)		(o)	1 10 26	X) ası	sterieste p	чX	×							e & accreditation compliance upon our sipped back to the Eurofins Environment urrent to date, return the signed Chain o	Sample Disposal (A fee may	Special Instructions/QC Requirements:	Time:	Received by: PS	Received by:	Received by:	Cooler Temperature(s) °C and Other Remarks:
Chain of Custody Record	Lab PM: Tigrett,	E-Mail: Lance.	S Z	4	£.			N 10	S AJ S	dues		G=grab) BT=Tissue, A=Air) Preservation Code:	7	<u> </u>						aces the ownership of method, analyting analyzed, the samples must be string an in requested accreditations are c		k: 2		Company	Company	Company	
Chair	Sampler:	Phone:		Due Date Requested: 3/28/2024	TAT Requested (days):		PO#:	₩O#:	Project #: 86006711	SSOW#:	, ", ", ", ", ", ", ", ", ", ", ", ", ",	Sample Date Time	3/21/24 10:00	Central						ment Testing South Central, LLC pla ed above for analysis/fests/matrix bei h Central, LLC attention immediately		Primary Deliverable Rank: 2	Date:	Date/Time: 770	Date/Tme:	Date/Time:	
Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Phone: 281-240-4200	Client Information (Sub Contract Lab)	1	Company: Eurofins Environment Testing Southeast,	Address: 3355 McLemore Drive, ,	City: Pensacola	State, Zip: FL, 32514	Phone: 850-474-1001(Tel) 850-478-2671(Fax)		Project Name: Messer Gas ASU Permit Renewal 2024	Site:		Sample Identification - Client ID (Lab ID)	Outfall 001 (860-70454-1)							Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing South Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations status should be brought to Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, LLC.	Possible Hazard Identification	Oncommined Deliverable Requested: I, II, III, IV, Other (specify)	Empty Kit Relinquished by	Relinquished by:	Relinquished by:	Relinquished by:	Custody Seals Intact: Custody Seal No.: △ Yes △ No

Eurofins Houston

4145 Greenbriar Dr Stafford, TX 77477 Phone: 281-240-4200

Chain of Custody Record

💸 eurofins

Environment Testing

	0													1555	
Client Information (Sub Contract Lab)	Sampler:			Lab PM: Tigrett,	Lance	•				Carrier Tra	icking N	O(s):		COC No: 860-107393.1	
Client Information (Sub Contract Lab) Client Contact Shipping/Receiving	Phone:			E-Mail: Lance.T	Tigrett	@et.eurc	ofinsus.c	om /		State of O	rigin:		-	Page: Page 1 of 1	
Company	L			Acc	creditat	ions Requir								Job #:	
Eurofins Lancaster Laboratories Environm Address	Due Date Request	nd:		NE	ELAP	- Texas	- 2		-					860-70454-1	
2425 New Holland Pike, ,	3/28/2024	ou.					A	nalysi	s Req	uested				Preservation Co	M - Hexane
City	TAT Requested (da	sys):		- 0			4/10)						100	A - HCL B - NaOH	N - None O - AsNaO2
Lancaster State, Zip:	-			18			14							C - Zn Acetate D - Nitric Acid	P - Na2O4S
PA, 17601							"							E - NaHSO4	Q - Na2SO3 R - Na2S2O3
Phone:	PO #:					1 5/								F - MeOH G - Amchlor	S - H2SO4 T - TSP Dodecahydrate
717-656-2300(Tel)	WO#:													H - Ascorbic Acid	U - Acetone
				٥	2								2	J - DI Water	V - MCAA W - pH 4-5
Project Name:	Project #		(Ž	ŏ	1 1							ine	K - EDTA L - EDA	Y - Trizma Z - other (specify)
Messer Gas ASU Permit Renewal 2024 Site:	86006711 SSOW#			౼	(Yes	1 1							of containers	Other:	Z - other (specify)
316				Sample (Yes or No	S								ojo		
			Sample Matr	7	MS/MSD	1 1							ped		
			TVDB (Wews	ter,	F						1		Total Number		
		Sample	(C=Comp, O=waste	Moll,	Регот	1677							Isl		
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab) ST=Tissue.		1	9							15	Special Ir	nstructions/Note:
AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO I		10.00	Preservation Co		Y	66 000					\vdash				
Outfall 001 (860-70454-1)	3/21/24	Central	Wat	er		X			1		\sqcup		1		
	\ \frac{1}{2} \tag{2}	P.													
		1			П										
				\neg											
	> //				П										
C V					\sqcap										
				\neg	T	\dashv									
				+		\dashv					\vdash				
				+	\vdash				-		\vdash	-			
✓															
Note: Since laboratory accreditations are subject to change, Eurofins Environmen	nt Testing South Cent	ral, LLC places	the ownership of metho	d, analyte	& accr	editation co	ompliance	upon our	subconti	act laborat	ories. T	his sample	shipmen	nt is forwarded under o	hain-of-custody. If the
laboratory does not currently maintain accreditation in the State of Origin listed at accreditation status should be brought to Eurofins Environment Testing South Ce	pove for analysis/test intral, LLC attention in	s/matrix being : nmediately. If	analyzed, the samples m all requested accreditation	ust be shi	ipped bi	ack to the E date, retur	Eurofins Er m the sign:	vironme ed Chain	nt Testing of Custo	South Ce dy attesting	ntral, LL to said	C laborato complianc	ry or other to Euro	r instructions will be p fins Environment Test	rovided. Any changes to ing South Central, LLC.
Possible Hazard Identification														ned longer than 1	_
						_	To Clier			Disposal .				hive For	Months
Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	rable Rank	2		Spec	ial Instru					ву сац	,	AIC	IIIVO PUI	MONUIS
Deliverable requested. If it is, ref exist (eposity)					1										
Empty Kit Relinquished by:		Date:		Ti	ime:					Met		hipment:			
Relinquished by:	Date/Time:	122/201	Company	j	F	Received by	y :		-			Date/Time:	>		Company
Relinquished by:	Date/Time:		Company	,	F	leceived by	r:	/		_		Date/Time:			Company
Relinquished by:	Date/Time:		Company	,	F	Received by	/: \$	11)	u			Date/Time:	フス/	240936	Company
Custody Seals Intact: Custody Seal No.:						Cooler Tem	perature(s	°C and	Other Re	marks:		1, 1	21		1.21
I W Voc A No I					- 1						- 10	: oc	• _	/	0

Client: Messer LLC Job Number: 860-70454-1

Login Number: 70454 List Source: Eurofins Houston

List Number: 1

Creator: Torres, Sandra

Creator: Torres, Sandra		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True 🗸	
Cooler Temperature is recorded.	True	5.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

Eurofins Houston

Job Number: 860-70454-1

Login Number: 70454 List Source: Eurofins Lancaster Laboratories Environment Testing, LLC List Number: 2 List Creation: 03/23/24 10:05 AM

Creator: Santiago, Nathaniel

Client: Messer LLC

Question	Answer	Comment
The cooler's custody seal is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature acceptable, where thermal pres is required (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV:Container Temp acceptable, where thermal pres is required (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact.	N/A	
VOA sample vials do not have headspace >6mm in diameter (none, if from WV)?	N/A	

Eurofins Houston

Client: Messer LLC Job Number: 860-70454-1

List Source: Eurofins Pensacola
List Number: 3
List Creation: 03/23/24 11:45 AM

Creator: Roberts, Alexis J

oreator. Roberts, Alexis 3		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice.	True True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	4.6°C IR8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins Houston

PREPARED FOR

Attn: Rami Qafisheh Messer LLC 11605 Strang Rd. La Porte, Texas 77571

Generated 4/19/2024 5:40:29 PM

JOB DESCRIPTION

Messer Gas ASU Permit Renewal 3-27-24

JOB NUMBER

860-70887-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

4/19/2024 5:40:29 PM

Authorized for release by Lance Tigrett, Project Manager II Lance.Tigrett@et.eurofinsus.com (979)484-9088

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	6
Detection Summary	8
Client Sample Results	9
Surrogate Summary	14
QC Sample Results	15
QC Association Summary	38
Lab Chronicle	43
Certification Summary	45
Method Summary	47
Sample Summary	48
Subcontract Data	49
Chain of Custody	55
Receipt Checklists	59

Definitions/Glossary

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Qualifier	Qualifier Description
*	LOC

*- LCS and/or LCSD is outside acceptance limits, low biased.

*+ LCS and/or LCSD is outside acceptance limits, high biased.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1- Surrogate recovery exceeds control limits, low biased.
U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

H Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Metals

Qualifier Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

General Chemistry

HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Eurofins Houston

Page 4 of 61 4/19/2024

4

5

7

8

10

11

14

15

10

Definitions/Glossary

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Too Numerous To Count

Glossary (Continued)

TNTC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Eurofins Houston

Page 5 of 61 4/19/2024

Case Narrative

Client: Messer LLC Job ID: 860-70887-1

Project: Messer Gas ASU Permit Renewal 3-27-24

Job ID: 860-70887-1 Eurofins Houston

Job Narrative 860-70887-1

Receipt

The sample was received on 3/27/2024 2:30 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.1° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

Method 625.1: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample(s) contained an allowable number of surrogate compounds outside limits. These results have been reported and qualified.

Method 625.1: The laboratory control sample and the laboratory control sample duplicate (LCS/LCSD) for preparation batch 860-152882 and analytical batch 860-153021 recovered outside control limits for the following analyte: Benzidine. Benzidine has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified.

Method 625.1: The laboratory control sample duplicate (LCSD) for preparation batch 860-152882 and analytical batch 860-153021 recovered outside control limits for the following analyte: Di-n-octyl phthalate. This analyte was biased high in the LCSD and was not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method 300.0: The instrument blank for analytical batch 860-152429 contained Chloride greater than the method detection limit (MDL), and were not reanalyzed because results were greater than 10X the value found in the instrument blank/CCB. The data have been qualified and reported.

Method 300.0: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 860-152429 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 300.0: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 860-152429 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 300.0: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 860-152430 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method SM 4500 CI G: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 860-152922 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method SM 4500 S2 D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 860-153135 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 351.2: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 860-152741 and analytical batch 860-153251 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Eurofins Houston

Page 6 of 61 4/19/2024

Case Narrative

Client: Messer LLC Job ID: 860-70887-1

Project: Messer Gas ASU Permit Renewal 3-27-24

Job ID: 860-70887-1 (Continued)

Eurofins Houston

Method 300.0: Reanalysis of the following sample was performed outside of the analytical holding time due to failure of the quality control parameters in the initial analysis: Outfall 001 (860-70887-1).

Method SM 5310C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 860-153498 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method SM 5310C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 860-153920 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Subcontract non-Sister

See attached subcontract report.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Subcontract Work

Method Surfactants: This method was subcontracted to Envirodyne Laboratories. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

Eurofins Houston

Page 7 of 61 4/19/2024

Detection Summary

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Client Sample ID: Outfall 001

Lab Sample ID: 860-70887-1

Analyte		Qualifier	RL	MDL		Dil Fac		Prep Type
Ethylbenzene	0.00059	J	0.0010	0.00039	-	1	624.1	Total/NA
Di-n-butyl phthalate	0.013		0.0050	0.00025	mg/L	1	625.1	Total/NA
Nitrate as N	0.94	Н	0.10	0.039	mg/L	1	300.0	Total/NA
Chloride	41		0.50	0.25	mg/L	1	300.0	Total/NA
Nitrite as N	0.44	Н	0.10	0.029	mg/L	1	300.0	Total/NA
Fluoride	0.24	J	0.50	0.10	mg/L	1	300.0	Total/NA
Nitrate Nitrite as N	1.4	Н	0.10	0.039	mg/L	1	300.0	Total/NA
Sulfate	48		0.50		mg/L	1	300.0	Total/NA
Mercury	4.3		0.50	0.20	-	1	1631E	Total/NA
Aluminum	0.47		0.020	0.0030		1	200.8	Total
					-			Recoverable
Arsenic	0.0029	J	0.0040	0.00034	mg/L	1	200.8	Total
								Recoverable
Barium	0.080		0.0040	0.00029	mg/L	1	200.8	Total
Donon	0.000		0.010	0.0005	no ar li		200.0	Recoverable
Boron	0.098		0.010	0.0025	mg/L	1	200.8	Total Recoverable
Chromium	0.0066		0.0040	0.00033	ma/l	1	200.8	Total
Omoman	0.0000		0.0040	0.00000	mg/L	•	200.0	Recoverable
Cobalt	0.00069	J	0.0020	0.00026	mg/L	1	200.8	Total
								Recoverable
Copper	0.054		0.0040	0.00069	mg/L	1	200.8	Total
								Recoverable
Iron	0.91		0.020	0.0020	mg/L	1	200.8	Total
Lead	0.0043		0.0020	0.00014	ma/l	1	200.8	Recoverable Total
Leau	0.0043		0.0020	0.00014	mg/L	1	200.6	Recoverable
Magnesium	7.8		0.10	0.0092	ma/L	1	200.8	Total
3					3.	•		Recoverable
Manganese	0.074		0.0020	0.00016	mg/L	1	200.8	Total
								Recoverable
Molybdenum	0.015		0.0020	0.00016	mg/L	1	200.8	Total
NI II.			0.0000	0.00040				Recoverable
Nickel	0.0094		0.0020	0.00049	mg/L	1	200.8	Total
Tin	0.00069	.1	0.0020	0.00033	ma/l	1	200.8	Recoverable Total
	0.00000	· ·	0.0020	0.00000	mg/L	•	200.0	Recoverable
Titanium	0.018		0.0040	0.00042	mg/L	1	200.8	Total
					· ·			Recoverable
Zinc	0.13		0.0040	0.00089	mg/L	1	200.8	Total
					_			Recoverable
Ammonia	0.37		0.10	0.051	-	1	350.1	Total/NA
Nitrogen, Kjeldahl	1.4		0.20	0.089			351.2	Total/NA
Oxygen, Dissolved		HF	1.0		mg/L	1	360.1	Total/NA
Phosphorus Total	0.088		0.040	0.029	-	2	365.1	Total/NA
Cr (VI)	0.0054	J	0.010	0.0034		1	7196A	Total/NA
Nitrogen, Organic	1.0		0.20	0.061	-	1	Nitrogen,Org	Total/NA
Color, Apparent	15		5.0	5.0	Color Units	1	SM 2120B	Total/NA
Color, True	10		5.0	5.0	Color Units	1	SM 2120B	Total/NA
рН	8.1		0.10	0.10	S.U.	1	SM 2120B	Total/NA
Alkalinity	100		4.0	4.0	mg/L	1	SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	100		4.0	4.0	mg/L	1	SM 2320B	Total/NA
Total Dissolved Solids	340		10		mg/L	1	SM 2540C	Total/NA
Total Suspended Solids	27		4.0		mg/L	1	SM 2540D	Total/NA
Total Organic Carbon	5.1		1.0	0.50	mg/L	1	SM 5310C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Houston

4/19/2024

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Client Sample ID: Outfall 001

Date Collected: 03/27/24 08:30 Date Received: 03/27/24 14:30 Lab Sample ID: 860-70887-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acrolein	0.011	U	0.050	0.011	mg/L			03/28/24 11:14	1
Acrylonitrile	0.014	U	0.050	0.014	mg/L			03/28/24 11:14	1
Benzene	0.00046	U	0.0010	0.00046	mg/L			03/28/24 11:14	1
Carbon tetrachloride	0.00090	U	0.0050	0.00090	mg/L			03/28/24 11:14	1
Chlorobenzene	0.00046	U	0.0010	0.00046	mg/L			03/28/24 11:14	1
1,2,4-Trichlorobenzene	0.0018	U	0.0050	0.0018	mg/L			03/28/24 11:14	1
1,2-Dichloroethane	0.00037	U	0.0010	0.00037	mg/L			03/28/24 11:14	1
1,1,1-Trichloroethane	0.00059	U	0.0050	0.00059	mg/L			03/28/24 11:14	1
1,1-Dichloroethane	0.00064	U	0.0010	0.00064	mg/L			03/28/24 11:14	1
1,1,2-Trichloroethane	0.00041	U	0.0010	0.00041	mg/L			03/28/24 11:14	1
1,2-Dibromoethane	0.0010	U	0.0050	0.0010	mg/L			03/28/24 11:14	1
1,1,2,2-Tetrachloroethane	0.00047	U	0.0010	0.00047	mg/L			03/28/24 11:14	1
Chloroethane	0.0020	U	0.010	0.0020	mg/L			03/28/24 11:14	1
2-Chloroethyl vinyl ether	0.00075	U	0.0050	0.00075	mg/L			03/28/24 11:14	1
Chloroform	0.00046	U	0.0010	0.00046	mg/L			03/28/24 11:14	1
1,2-Dichlorobenzene	0.00043	U	0.0010	0.00043	mg/L			03/28/24 11:14	1
1,3-Dichlorobenzene	0.00041	U	0.0010	0.00041	mg/L			03/28/24 11:14	1
1,4-Dichlorobenzene	0.00045	U	0.0010	0.00045	mg/L			03/28/24 11:14	1
1,1-Dichloroethene	0.00074	U	0.0010	0.00074	mg/L			03/28/24 11:14	1
trans-1,2-Dichloroethene	0.00037	U	0.0010	0.00037	mg/L			03/28/24 11:14	1
1,2-Dichloropropane	0.00056	U	0.0050	0.00056	mg/L			03/28/24 11:14	1
Ethylbenzene	0.00059	J	0.0010	0.00039	mg/L			03/28/24 11:14	1
2-Butanone	0.0083	U	0.050	0.0083	mg/L			03/28/24 11:14	1
Methylene Chloride	0.0017	U	0.0050	0.0017	mg/L			03/28/24 11:14	1
Chloromethane	0.0020	U	0.010	0.0020	mg/L			03/28/24 11:14	1
Bromomethane	0.0014	U	0.0050	0.0014	mg/L			03/28/24 11:14	1
Bromoform	0.00063	U	0.0050	0.00063	mg/L			03/28/24 11:14	1
Bromodichloromethane	0.00055	U	0.0010	0.00055	mg/L			03/28/24 11:14	1
Chlorodibromomethane	0.00055	U	0.0050	0.00055	mg/L			03/28/24 11:14	1
Hexachlorobutadiene	0.00063	U	0.0050	0.00063	mg/L			03/28/24 11:14	1
Naphthalene	0.0014	U	0.010	0.0014	mg/L			03/28/24 11:14	1
Tetrachloroethene	0.00066	U	0.0010	0.00066	mg/L			03/28/24 11:14	1
Toluene	0.00048	U	0.0010	0.00048	mg/L			03/28/24 11:14	1
Trichloroethene	0.0015	U	0.0050	0.0015	mg/L			03/28/24 11:14	1
Vinyl chloride	0.00043	U	0.0020	0.00043	mg/L			03/28/24 11:14	1
1,3-Dichloropropylene	0.0013	U	0.0050	0.0013				03/28/24 11:14	1
cis-1,3-Dichloropropene	0.0011	U	0.0050	0.0011	mg/L			03/28/24 11:14	1
Trihalomethanes, Total	0.00063	U	0.0050	0.00063	mg/L			03/28/24 11:14	1
Surrogate	%Recovery	Qualifier	Limits			-	Prepared	Analyzed	Dil Fac
1 2-Dichloroethane-d4 (Surr)	106		63 - 144					03/28/24 11:14	1

Surrogate	%Recovery Qua	lifier Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	63 - 144	03/28/24 11:1	4 1
4-Bromofluorobenzene (Surr)	102	74 - 124	03/28/24 11:1	4 1
Dibromofluoromethane (Surr)	109	75 - 131	03/28/24 11:1	4 1
Toluene-d8 (Surr)	103	80 - 120	03/28/24 11:1	4 1

Method: EPA 625.1 - Semivolatile	Organic Compounds ((GC/MS)
----------------------------------	---------------------	---------

Michiga. El A 620.1 - Gelli Volutile	oi gaini	Compounds							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	0.0013	U	0.010	0.0013	mg/L		04/02/24 15:31	04/03/24 22:32	1
1,2-Dichlorobenzene	0.0016	U	0.010	0.0016	mg/L		04/02/24 15:31	04/03/24 22:32	1
1,3-Dichlorobenzene	0.0014	U	0.010	0.0014	mg/L		04/02/24 15:31	04/03/24 22:32	1

Eurofins Houston

Page 9 of 61 4/19/2024

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Client Sample ID: Outfall 001

Lab Sample ID: 860-70887-1 Date Collected: 03/27/24 08:30

Matrix: Water

Method: EPA 625.1 - Semivo Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.0016		0.010	0.0016		=	04/02/24 15:31	04/03/24 22:32	1
Acenaphthene	0.0014		0.0057	0.0014			04/02/24 15:31	04/03/24 22:32	· · · · · · · · · · · · · · · · · · ·
Benzidine	0.0048		0.020	0.0048	•		04/02/24 15:31	04/03/24 22:32	1
1,2,4-Trichlorobenzene	0.0046		0.0050	0.0016			04/02/24 15:31	04/03/24 22:32	· · · · · · · · · · · · · · · · · · ·
Hexachlorobenzene	0.00031		0.0050	0.00031	-		04/02/24 15:31	04/03/24 22:32	1
Hexachloroethane	0.00053		0.0048	0.00053	•		04/02/24 15:31	04/03/24 22:32	
2,4,5-Trichlorophenol	0.0020		0.010	0.0020			04/02/24 15:31	04/03/24 22:32	· · · · · · · · · · · · · · · · · · ·
Bis(2-chloroethyl)ether	0.0022		0.010	0.0022	Ū		04/02/24 15:31	04/03/24 22:32	1
2-Chloronaphthalene	0.00046		0.0050	0.00046	•		04/02/24 15:31	04/03/24 22:32	1
2,4,6-Trichlorophenol	0.0014		0.0050	0.0014			04/02/24 15:31	04/03/24 22:32	 1
p-Chloro-m-cresol	0.0016		0.0050	0.0016	Ū		04/02/24 15:31	04/03/24 22:32	1
2-Chlorophenol	0.00065		0.0050	0.00065	•		04/02/24 15:31	04/03/24 22:32	1
3,3'-Dichlorobenzidine	0.00034		0.0050	0.00034			04/02/24 15:31	04/03/24 22:32	· · · · · · · · · · · · · · · · · · ·
2,4-Dichlorophenol	0.00031		0.0050	0.00031	•		04/02/24 15:31		1
2,4-Dimethylphenol	0.00065		0.0050	0.00065	-		04/02/24 15:31		1
2,4-Dinitrotoluene	0.0013		0.010	0.0013			04/02/24 15:31		· · · · · · · · · · · · · · · · · · ·
1,2-Diphenylhydrazine	0.0015		0.010	0.0015	U		04/02/24 15:31		1
Fluoranthene	0.0016		0.0050	0.0016	-		04/02/24 15:31		1
4-Bromophenyl phenyl ether	0.00026		0.0050	0.00026	-		04/02/24 15:31		1
4-Chlorophenyl phenyl ether	0.0013		0.010	0.0013	-		04/02/24 15:31	04/03/24 22:32	1
o-Cresol	0.0016		0.010	0.0016	-		04/02/24 15:31	04/03/24 22:32	1
Bis(2-chloroethoxy)methane	0.0018		0.010	0.0018			04/02/24 15:31	04/03/24 22:32	·
m & p - Cresol	0.0026		0.010	0.0026	-		04/02/24 15:31	04/03/24 22:32	1
bis (2-chloroisopropyl) ether	0.0018		0.010	0.0018	•		04/02/24 15:31	04/03/24 22:32	1
Hexachlorobutadiene	0.00024		0.0010	0.00024			04/02/24 15:31	04/03/24 22:32	1
Hexachlorocyclopentadiene	0.0046		0.010	0.0046	Ū		04/02/24 15:31	04/03/24 22:32	1
Isophorone	0.0016		0.0050	0.0016	-		04/02/24 15:31	04/03/24 22:32	1
Naphthalene	0.00054		0.0025	0.00054			04/02/24 15:31	04/03/24 22:32	 1
Nitrobenzene	0.0017		0.0050	0.0017	-		04/02/24 15:31	04/03/24 22:32	1
4-Nitrophenol	0.0049		0.0072	0.0049	•		04/02/24 15:31	04/03/24 22:32	1
2-Nitrophenol	0.0017		0.010	0.0017			04/02/24 15:31		 1
4,6-Dinitro-o-cresol	0.0014		0.010	0.0014	-		04/02/24 15:31	04/03/24 22:32	1
N-Nitrosodimethylamine	0.0020		0.010	0.0020	mg/L		04/02/24 15:31	04/03/24 22:32	1
N-Nitrosodiphenylamine	0.0018		0.010	0.0018			04/02/24 15:31		· · · · · · · · · · · · · · · · · · ·
N-Nitrosodi-n-propylamine	0.0029		0.010	0.0029	Ū		04/02/24 15:31	04/03/24 22:32	1
Pentachlorophenol	0.00023		0.010	0.00023	-		04/02/24 15:31	04/03/24 22:32	1
Phenol	0.00042		0.0045	0.00042			04/02/24 15:31		 1
Bis(2-ethylhexyl) phthalate	0.00028		0.0050	0.00028	-		04/02/24 15:31	04/03/24 22:32	1
Butyl benzyl phthalate	0.00034		0.0050	0.00034	-		04/02/24 15:31		1
Di-n-butyl phthalate	0.013		0.0050	0.00025			04/02/24 15:31		1
Di-n-octyl phthalate	0.00037	U *+	0.0050	0.00037	-		04/02/24 15:31		1
Diethyl phthalate	0.0016		0.0050	0.0016	•		04/02/24 15:31		1
Dimethyl phthalate	0.00030		0.0025	0.00030			04/02/24 15:31		1
Benzo[a]anthracene	0.00017		0.0050	0.00017	-		04/02/24 15:31		1
Benzo[a]pyrene	0.00036		0.0050	0.00036	-		04/02/24 15:31		1
Benzo[b]fluoranthene	0.0020		0.010	0.0020			04/02/24 15:31		· · · · · · · · · · · · · · · · · · ·
Benzo[k]fluoranthene	0.00038		0.0050	0.00038	-		04/02/24 15:31		1
Chrysene	0.00022		0.0050	0.00022	-		04/02/24 15:31	04/03/24 22:32	1
Acenaphthylene	0.0014		0.010	0.0014			04/02/24 15:31		· · · · · · · · · · · · · · · · · · ·

Eurofins Houston

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Client Sample ID: Outfall 001

Date Collected: 03/27/24 08:30

Date Received: 03/27/24 14:30

Lab Sample ID: 860-70887-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Anthracene	0.0015	U	0.0057	0.0015	mg/L		04/02/24 15:31	04/03/24 22:32	1
Benzo[g,h,i]perylene	0.0027	U	0.010	0.0027	mg/L		04/02/24 15:31	04/03/24 22:32	1
Fluorene	0.0016	U	0.0050	0.0016	mg/L		04/02/24 15:31	04/03/24 22:32	1
Phenanthrene	0.0014	U	0.010	0.0014	mg/L		04/02/24 15:31	04/03/24 22:32	1
Dibenz(a,h)anthracene	0.00025	U	0.0050	0.00025	mg/L		04/02/24 15:31	04/03/24 22:32	1
Indeno[1,2,3-cd]pyrene	0.0023	U	0.010	0.0023	mg/L		04/02/24 15:31	04/03/24 22:32	1
Pyrene	0.00018	U	0.0050	0.00018	mg/L		04/02/24 15:31	04/03/24 22:32	1
2,4-Dinitrophenol	0.0016	U	0.010	0.0016	mg/L		04/02/24 15:31	04/03/24 22:32	1
2,6-Dinitrotoluene	0.0016	U	0.0050	0.0016	mg/L		04/02/24 15:31	04/03/24 22:32	1
N-Nitrosodi-n-butylamine	0.0015	U	0.010	0.0015	mg/L		04/02/24 15:31	04/03/24 22:32	1
N-Nitrosodiethylamine	0.0018	U	0.010	0.0018	mg/L		04/02/24 15:31	04/03/24 22:32	1
Nonylphenol	0.010	U	0.010	0.010	mg/L		04/02/24 15:31	04/03/24 22:32	1
Pentachlorobenzene	0.0011	U	0.010	0.0011	mg/L		04/02/24 15:31	04/03/24 22:32	1
Pyridine	0.0026	U	0.010	0.0026	mg/L		04/02/24 15:31	04/03/24 22:32	1
Total Cresols	0.0026	U	0.010	0.0026	mg/L		04/02/24 15:31	04/03/24 22:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	67		31 - 132				04/02/24 15:31	04/03/24 22:32	1
2-Fluorobiphenyl (Surr)	64		29 - 112				04/02/24 15:31	04/03/24 22:32	1
2-Fluorophenol (Surr)	24	S1-	28 - 114				04/02/24 15:31	04/03/24 22:32	1
Nitrobenzene-d5 (Surr)	69		15 - 314				04/02/24 15:31	04/03/24 22:32	1
p-Terphenyl-d14 (Surr)	88		20 - 141				04/02/24 15:31	04/03/24 22:32	1
Phenol-d5 (Surr)	17		8 - 424				04/02/24 15:31	04/03/24 22:32	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	0.000013	U	0.00010	0.000013	mg/L		04/13/24 06:30	04/15/24 11:50	1
PCB-1221	0.000013	U	0.00010	0.000013	mg/L		04/13/24 06:30	04/15/24 11:50	1
PCB-1232	0.000013	U	0.00010	0.000013	mg/L		04/13/24 06:30	04/15/24 11:50	1
PCB-1242	0.000013	U	0.00010	0.000013	mg/L		04/13/24 06:30	04/15/24 11:50	1
PCB-1248	0.000013	U	0.00010	0.000013	mg/L		04/13/24 06:30	04/15/24 11:50	1
PCB-1254	0.0000078	U	0.00010	0.0000078	mg/L		04/13/24 06:30	04/15/24 11:50	1
PCB-1260	0.0000078	U	0.00010	0.0000078	mg/L		04/13/24 06:30	04/15/24 11:50	1
Polychlorinated biphenyls, Total	0.00010	U	0.00010	0.00010	mg/L		04/13/24 06:30	04/15/24 11:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene (Surr)	76		18 - 126				04/13/24 06:30	04/15/24 11:50	1
DCB Decachlorobiphenyl (Surr)	119		15 - 136				04/13/24 06:30	04/15/24 11:50	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.071	U	0.50	0.071	mg/L			03/31/24 19:26	1
Nitrate as N	0.94	H	0.10	0.039	mg/L			03/31/24 19:26	1
Chloride	41		0.50	0.25	mg/L			03/31/24 19:26	1
Nitrite as N	0.44	Н	0.10	0.029	mg/L			03/31/24 19:26	1
Fluoride	0.24	J	0.50	0.10	mg/L			03/31/24 19:26	1
Nitrate Nitrite as N	1.4	Н	0.10	0.039	mg/L			03/31/24 19:26	1
Sulfate	48		0.50	0.20	mg/L			03/31/24 19:26	1

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Client Sample ID: Outfall 001

Zinc

Lab Sample ID: 860-70887-1 Date Collected: 03/27/24 08:30

Matrix: Water

Date Received: 03/27/24 14:30 Method: EPA 1631E - Mercury, Low Level (CVAFS)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	4.3	0.50	0.20	ng/L		04/01/24 15:00	04/02/24 12:15	1
Г., -								

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	0.47		0.020	0.0030	mg/L		04/02/24 18:00	04/03/24 20:14	
Antimony	0.0011	U	0.0020	0.0011	mg/L		04/02/24 18:00	04/03/24 20:14	
Arsenic	0.0029	J	0.0040	0.00034	mg/L		04/02/24 18:00	04/03/24 20:14	
Barium	0.080		0.0040	0.00029	mg/L		04/02/24 18:00	04/03/24 20:14	
Beryllium	0.00015	U	0.0020	0.00015	mg/L		04/02/24 18:00	04/03/24 20:14	
Boron	0.098		0.010	0.0025	mg/L		04/02/24 18:00	04/04/24 18:09	
Cadmium	0.00026	U	0.0020	0.00026	mg/L		04/02/24 18:00	04/03/24 20:14	
Chromium	0.0066		0.0040	0.00033	mg/L		04/02/24 18:00	04/03/24 20:14	
Cobalt	0.00069	J	0.0020	0.00026	mg/L		04/02/24 18:00	04/03/24 20:14	
Copper	0.054		0.0040	0.00069	mg/L		04/02/24 18:00	04/03/24 20:14	
Iron	0.91		0.020	0.0020	mg/L		04/02/24 18:00	04/03/24 20:14	
Lead	0.0043		0.0020	0.00014	mg/L		04/02/24 18:00	04/03/24 20:14	
Magnesium	7.8		0.10	0.0092	mg/L		04/02/24 18:00	04/03/24 20:14	
Manganese	0.074		0.0020	0.00016	mg/L		04/02/24 18:00	04/03/24 20:14	
Molybdenum	0.015		0.0020	0.00016	mg/L		04/02/24 18:00	04/03/24 20:14	
Nickel	0.0094		0.0020	0.00049	mg/L		04/02/24 18:00	04/03/24 20:14	
Selenium	0.00069	U	0.0020	0.00069	mg/L		04/02/24 18:00	04/03/24 20:14	
Silver	0.00012	U	0.0020	0.00012	mg/L		04/02/24 18:00	04/04/24 13:15	
Thallium	0.00022	U	0.0020	0.00022	mg/L		04/02/24 18:00	04/03/24 20:14	
Tin	0.00069	J	0.0020	0.00033	mg/L		04/02/24 18:00	04/03/24 20:14	
Titanium	0.018		0.0040	0.00042	mg/L		04/02/24 18:00	04/03/24 20:14	

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (1664B)	1.7		5.3		mg/L		Торигои	04/08/24 11:12	1
Ammonia (EPA 350.1)	0.37		0.10	0.051	J			04/03/24 23:28	1
Nitrogen, Kjeldahl (EPA 351.2)	1.4		0.20	0.089	ū		04/01/24 20:31	04/03/24 12:02	1
Oxygen, Dissolved (EPA 360.1)	11	HF	1.0		mg/L			03/31/24 14:09	1
Phosphorus Total (EPA 365.1)	0.088		0.040	0.029	-			04/09/24 19:34	2
Cr (VI) (SW846 7196A)	0.0054	J	0.010	0.0034	mg/L			03/27/24 19:03	1
Cr (III) (SW846 7196A)	0.0034	U	0.010	0.0034	mg/L			04/08/24 19:28	1
Chemical Oxygen Demand (Hach 8000)	3.4	U	20	3.4	mg/L			04/09/24 20:17	1
Nitrogen, Organic (EPA Nitrogen,Org)	1.0		0.20	0.061	mg/L			04/05/24 18:57	1
Cyanide, Available (OI CORP OIA-1677)	0.0050	U	0.0060	0.0050	mg/L			04/02/24 16:02	1
Color, Apparent (SM 2120B)	15		5.0	5.0	Color Units			03/28/24 17:00	1
Color, True (SM 2120B)	10		5.0	5.0	Color Units			03/28/24 17:00	1
pH (SM 2120B)	8.1		0.10	0.10	S.U.			03/28/24 17:00	1
Alkalinity (SM 2320B)	100		4.0	4.0	mg/L			03/29/24 18:25	1
Bicarbonate Alkalinity as CaCO3 (SM 2320B)	100		4.0	4.0	mg/L			03/29/24 18:25	1
Carbonate Alkalinity as CaCO3 (SM 2320B)	4.0	U	4.0	4.0	mg/L			03/29/24 18:25	1
Hydroxide Alkalinity (SM 2320B)	4.0	U	4.0	4.0	mg/L			03/29/24 18:25	1

0.0040

0.13

0.00089 mg/L

Eurofins Houston

Page 12 of 61

04/02/24 18:00 04/03/24 20:14

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Client Sample ID: Outfall 001

Date Received: 03/27/24 14:30

Lab Sample ID: 860-70887-1 Date Collected: 03/27/24 08:30

Matrix: Water

General Chemistry (Continued) Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Phenolphthalein Alkalinity (SM 2320B)	4.0		4.0		mg/L		Тторигои	03/29/24 18:25	1
Total Dissolved Solids (SM 2540C)	340		10		mg/L			04/02/24 12:40	·
Total Suspended Solids (SM 2540D)	27		4.0		mg/L			04/02/24 18:33	1
Chlorine, Total Residual (SM 4500 Cl G)	0.050	U HF	0.050	0.050	mg/L			04/02/24 18:16	1
Sulfide (SM 4500 S2 D)	0.040	U	0.10	0.040	mg/L			04/03/24 18:05	1
Sulfite (SM 4500 SO3 B)	5.0	U HF	5.0	5.0	mg/L			04/04/24 17:40	1
Biochemical Oxygen Demand (SM 5210B)	3.0	U	3.0	3.0	mg/L		03/28/24 10:11	03/28/24 12:46	1
Total Organic Carbon (SM 5310C)	5.1		1.0	0.50	mg/L			04/09/24 06:59	1
Carbonaceous Biochemical Oxygen Demand (SM5210B CBOD)	3.0	U	3.0	3.0	mg/L		03/28/24 12:52	03/28/24 15:34	1

Surrogate Summary

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

_			Percent Surrogate Recove				
		DCA	BFB	DBFM	TOL		
Lab Sample ID	Client Sample ID	(63-144)	(74-124)	(75-131)	(80-120)		
860-70887-1	Outfall 001	106	102	109	103		
860-70887-1 MS	Outfall 001	98	105	100	100		
LCS 860-152033/3	Lab Control Sample	99	103	100	100		
LCSD 860-152033/4	Lab Control Sample Dup	97	102	99	100		
MB 860-152033/9	Method Blank	103	106	107	103		
Surrogate Legend							

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

=		Percent Surrogate Recovery (Acceptance Limits)								
		TBP	FBP	2FP	NBZ	TPHd14	PHL			
Lab Sample ID	Client Sample ID	(31-132)	(29-112)	(28-114)	(15-314)	(20-141)	(8-424)			
860-70887-1	Outfall 001	67	64	24 S1-	69	88	17			
CS 860-152882/2-A	Lab Control Sample	74	69	36	77	88	25			
.CSD 860-152882/3-A	Lab Control Sample Dup	83	72	38	78	98	28			
MB 860-152882/1-A	Method Blank	75	81	41	90	104	29			

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		TCX1	DCB1						
Lab Sample ID	Client Sample ID	(18-126)	(15-136)						
860-70887-1	Outfall 001	76	119						
LCS 860-154669/4-A	Lab Control Sample	95	136						
LCSD 860-154669/5-A	Lab Control Sample Dup	83	132						
MB 860-154669/1-A	Method Blank	87	128						

Surrogate Legend

TCX = Tetrachloro-m-xylene (Surr)

DCB = DCB Decachlorobiphenyl (Surr)

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-152033/9

Matrix: Water

Analysis Batch: 152033

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acrolein	0.011	U	0.050	0.011	mg/L			03/28/24 10:55	1
Acrylonitrile	0.014	U	0.050	0.014	mg/L			03/28/24 10:55	1
Benzene	0.00046	U	0.0010	0.00046	mg/L			03/28/24 10:55	1
Carbon tetrachloride	0.00090	U	0.0050	0.00090	mg/L			03/28/24 10:55	1
Chlorobenzene	0.00046	U	0.0010	0.00046	mg/L			03/28/24 10:55	1
1,2,4-Trichlorobenzene	0.0018	U	0.0050	0.0018	mg/L			03/28/24 10:55	1
1,2-Dichloroethane	0.00037	U	0.0010	0.00037	mg/L			03/28/24 10:55	1
1,1,1-Trichloroethane	0.00059	U	0.0050	0.00059	mg/L			03/28/24 10:55	1
1,1-Dichloroethane	0.00064	U	0.0010	0.00064	mg/L			03/28/24 10:55	1
1,1,2-Trichloroethane	0.00041	U	0.0010	0.00041	mg/L			03/28/24 10:55	1
1,2-Dibromoethane	0.0010	U	0.0050	0.0010	mg/L			03/28/24 10:55	1
1,1,2,2-Tetrachloroethane	0.00047	U	0.0010	0.00047	mg/L			03/28/24 10:55	1
Chloroethane	0.0020	U	0.010	0.0020	mg/L			03/28/24 10:55	1
2-Chloroethyl vinyl ether	0.00075	U	0.0050	0.00075	mg/L			03/28/24 10:55	1
Chloroform	0.00046	U	0.0010	0.00046	mg/L			03/28/24 10:55	1
1,2-Dichlorobenzene	0.00043	U	0.0010	0.00043	mg/L			03/28/24 10:55	1
1,3-Dichlorobenzene	0.00041	U	0.0010	0.00041	mg/L			03/28/24 10:55	1
1,4-Dichlorobenzene	0.00045	U	0.0010	0.00045	mg/L			03/28/24 10:55	1
1,1-Dichloroethene	0.00074	U	0.0010	0.00074	mg/L			03/28/24 10:55	1
trans-1,2-Dichloroethene	0.00037	U	0.0010	0.00037	mg/L			03/28/24 10:55	1
1,2-Dichloropropane	0.00056	U	0.0050	0.00056	mg/L			03/28/24 10:55	1
Ethylbenzene	0.00039	U	0.0010	0.00039	mg/L			03/28/24 10:55	1
2-Butanone	0.0083	U	0.050	0.0083	mg/L			03/28/24 10:55	1
Methylene Chloride	0.0017	U	0.0050	0.0017	mg/L			03/28/24 10:55	1
Chloromethane	0.0020	U	0.010	0.0020	mg/L			03/28/24 10:55	1
Bromomethane	0.0014	U	0.0050	0.0014	mg/L			03/28/24 10:55	1
Bromoform	0.00063	U	0.0050	0.00063	mg/L			03/28/24 10:55	1
Bromodichloromethane	0.00055	U	0.0010	0.00055	mg/L			03/28/24 10:55	1
Chlorodibromomethane	0.00055	U	0.0050	0.00055	mg/L			03/28/24 10:55	1
Hexachlorobutadiene	0.00063	U	0.0050	0.00063	mg/L			03/28/24 10:55	1
Naphthalene	0.0014	U	0.010	0.0014	mg/L			03/28/24 10:55	1
Tetrachloroethene	0.00066	U	0.0010	0.00066	mg/L			03/28/24 10:55	1
Toluene	0.00048	U	0.0010	0.00048	mg/L			03/28/24 10:55	1
Trichloroethene	0.0015	U	0.0050	0.0015	mg/L			03/28/24 10:55	1
Vinyl chloride	0.00043	U	0.0020	0.00043	mg/L			03/28/24 10:55	1
1,3-Dichloropropylene	0.0013	U	0.0050	0.0013	mg/L			03/28/24 10:55	1
cis-1,3-Dichloropropene	0.0011	U	0.0050	0.0011				03/28/24 10:55	1
Trihalomethanes, Total	0.00063	U	0.0050	0.00063	-			03/28/24 10:55	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		63 - 144		03/28/24 10:55	1
4-Bromofluorobenzene (Surr)	106		74 - 124		03/28/24 10:55	1
Dibromofluoromethane (Surr)	107		75 - 131		03/28/24 10:55	1
Toluene-d8 (Surr)	103		80 - 120		03/28/24 10:55	1

Eurofins Houston

Page 15 of 61

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 860-152033/3

Matrix: Water

Analysis Batch: 152033

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS LCS			%Rec
Analyte	Added	Result Qualifie	r Unit	D %Rec	Limits
Acrolein	0.250	0.284	mg/L	114	60 - 140
Acrylonitrile	0.500	0.528	mg/L	106	60 - 140
Benzene	0.0500	0.0480	mg/L	96	75 - 125
Carbon tetrachloride	0.0500	0.0497	mg/L	99	70 - 125
Chlorobenzene	0.0500	0.0490	mg/L	98	82 - 135
1,2,4-Trichlorobenzene	0.0500	0.0624	mg/L	125	75 - 135
1,2-Dichloroethane	0.0500	0.0473	mg/L	95	72 - 130
1,1,1-Trichloroethane	0.0500	0.0509	mg/L	102	70 - 130
1,1-Dichloroethane	0.0500	0.0509	mg/L	102	71 - 130
1,1,2-Trichloroethane	0.0500	0.0493	mg/L	99	75 - 130
1,2-Dibromoethane	0.0500	0.0509	mg/L	102	73 - 125
1,1,2,2-Tetrachloroethane	0.0500	0.0515	mg/L	103	74 - 125
Chloroethane	0.0500	0.0576	mg/L	115	60 - 140
2-Chloroethyl vinyl ether	0.0500	0.0536	mg/L	107	50 - 150
Chloroform	0.0500	0.0506	mg/L	101	70 - 121
1,2-Dichlorobenzene	0.0500	0.0507	mg/L	101	75 - 125
1,3-Dichlorobenzene	0.0500	0.0522	mg/L	104	75 - 125
1,4-Dichlorobenzene	0.0500	0.0500	mg/L	100	75 - 125
1,1-Dichloroethene	0.0500	0.0541	mg/L	108	50 - 150
trans-1,2-Dichloroethene	0.0500	0.0526	mg/L	105	75 - 125
1,2-Dichloropropane	0.0500	0.0489	mg/L	98	74 - 125
Ethylbenzene	0.0500	0.0533	mg/L	107	75 - 125
2-Butanone	0.250	0.264	mg/L	106	60 - 140
Methylene Chloride	0.0500	0.0464	mg/L	93	71 - 125
Chloromethane	0.0500	0.0435	mg/L	87	60 - 140
Bromomethane	0.0500	0.0437	mg/L	87	60 - 140
Bromoform	0.0500	0.0507	mg/L	101	70 - 130
Bromodichloromethane	0.0500	0.0512	mg/L	102	75 - 125
Chlorodibromomethane	0.0500	0.0553	mg/L	111	73 - 125
Hexachlorobutadiene	0.0500	0.0554	mg/L	111	75 - 125
Naphthalene	0.0500	0.0566	mg/L	113	70 - 130
Tetrachloroethene	0.0500	0.0501	mg/L	100	71 - 125
Toluene	0.0500	0.0496	mg/L	99	75 - 130
Trichloroethene	0.0500	0.0491	mg/L	98	75 - 135
Vinyl chloride	0.0500	0.0563	mg/L	113	60 - 140
cis-1,3-Dichloropropene	0.0500	0.0526	mg/L	105	74 - 125

LCS LCS	
---------	--

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		63 - 144
4-Bromofluorobenzene (Surr)	103		74 - 124
Dibromofluoromethane (Surr)	100		75 ₋ 131
Toluene-d8 (Surr)	100		80 - 120

Eurofins Houston

Page 16 of 61

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 860-152033/4

Matrix: Water

Analysis Batch: 152033

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

•	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acrolein	0.250	0.269		mg/L		108	60 - 140	6	25
Acrylonitrile	0.500	0.483		mg/L		97	60 - 140	9	25
Benzene	0.0500	0.0459		mg/L		92	75 - 125	5	25
Carbon tetrachloride	0.0500	0.0467		mg/L		93	70 - 125	6	25
Chlorobenzene	0.0500	0.0470		mg/L		94	82 - 135	4	25
1,2,4-Trichlorobenzene	0.0500	0.0563		mg/L		113	75 - 135	10	25
1,2-Dichloroethane	0.0500	0.0451		mg/L		90	72 - 130	5	25
1,1,1-Trichloroethane	0.0500	0.0470		mg/L		94	70 - 130	8	25
1,1-Dichloroethane	0.0500	0.0477		mg/L		95	71 - 130	7	25
1,1,2-Trichloroethane	0.0500	0.0476		mg/L		95	75 - 130	4	25
1,2-Dibromoethane	0.0500	0.0491		mg/L		98	73 - 125	3	25
1,1,2,2-Tetrachloroethane	0.0500	0.0475		mg/L		95	74 - 125	8	25
Chloroethane	0.0500	0.0582		mg/L		116	60 - 140	1	25
2-Chloroethyl vinyl ether	0.0500	0.0513		mg/L		103	50 - 150	4	25
Chloroform	0.0500	0.0478		mg/L		96	70 - 121	6	25
1,2-Dichlorobenzene	0.0500	0.0480		mg/L		96	75 - 125	5	25
1,3-Dichlorobenzene	0.0500	0.0488		mg/L		98	75 - 125	7	25
1,4-Dichlorobenzene	0.0500	0.0470		mg/L		94	75 - 125	6	25
1,1-Dichloroethene	0.0500	0.0495		mg/L		99	50 - 150	9	25
trans-1,2-Dichloroethene	0.0500	0.0493		mg/L		99	75 - 125	6	25
1,2-Dichloropropane	0.0500	0.0473		mg/L		95	74 - 125	3	25
Ethylbenzene	0.0500	0.0504		mg/L		101	75 - 125	6	25
2-Butanone	0.250	0.238		mg/L		95	60 - 140	11	25
Methylene Chloride	0.0500	0.0446		mg/L		89	71 - 125	4	25
Chloromethane	0.0500	0.0418		mg/L		84	60 - 140	4	25
Bromomethane	0.0500	0.0455		mg/L		91	60 - 140	4	25
Bromoform	0.0500	0.0486		mg/L		97	70 - 130	4	25
Bromodichloromethane	0.0500	0.0500		mg/L		100	75 - 125	2	25
Chlorodibromomethane	0.0500	0.0537		mg/L		107	73 - 125	3	25
Hexachlorobutadiene	0.0500	0.0496		mg/L		99	75 - 125	11	25
Naphthalene	0.0500	0.0498		mg/L		100	70 - 130	13	25
Tetrachloroethene	0.0500	0.0476		mg/L		95	71 - 125	5	25
Toluene	0.0500	0.0477		mg/L		95	75 - 130	4	25
Trichloroethene	0.0500	0.0478		mg/L		96	75 - 135	3	25
Vinyl chloride	0.0500	0.0530		mg/L		106	60 - 140	6	25
cis-1,3-Dichloropropene	0.0500	0.0513		mg/L		103	74 - 125	2	25

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		63 - 144
4-Bromofluorobenzene (Surr)	102		74 - 124
Dibromofluoromethane (Surr)	99		75 - 131
Toluene-d8 (Surr)	100		80 - 120

Eurofins Houston

Page 17 of 61

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 860-70887-1 MS

Matrix: Water

Analysis Batch: 152033

Client Sample ID: Outfall 001

Prep Type: Total/NA

Australia	•	Sample	Spike		MS	1114	_	0/ 🗖	%Rec	
Analyte	Result 0.011	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	
Acrolein	0.011		0.250	0.237		mg/L		95	50 - 150	
Acrylonitrile			0.500	0.465		mg/L		93	50 - 150	
Benzene	0.00046		0.0500	0.0465		mg/L		93	66 - 142	
Carbon tetrachloride	0.00090		0.0500	0.0484		mg/L		97	62 - 125	
Chlorobenzene	0.00046		0.0500	0.0480		mg/L		96	60 - 133	
1,2,4-Trichlorobenzene	0.0018		0.0500	0.0625		mg/L		125	75 - 135	
1,2-Dichloroethane	0.00037		0.0500	0.0447		mg/L		89	68 - 127	
1,1,1-Trichloroethane	0.00059		0.0500	0.0494		mg/L		99	75 - 125	
1,1-Dichloroethane	0.00064		0.0500	0.0485		mg/L		97	72 - 125	
1,1,2-Trichloroethane	0.00041		0.0500	0.0473		mg/L		95	75 - 127	
1,2-Dibromoethane	0.0010	U	0.0500	0.0490		mg/L		98	73 - 125	
1,1,2,2-Tetrachloroethane	0.00047	U	0.0500	0.0489		mg/L		98	74 - 125	
Chloroethane	0.0020	U	0.0500	0.0466		mg/L		93	60 - 140	
2-Chloroethyl vinyl ether	0.00075	U	0.0500	0.0487		mg/L		97	50 - 150	
Chloroform	0.00046	U	0.0500	0.0487		mg/L		97	70 - 130	
1,2-Dichlorobenzene	0.00043	U	0.0500	0.0507		mg/L		101	75 - 125	
1,3-Dichlorobenzene	0.00041	U	0.0500	0.0527		mg/L		105	75 - 125	
1,4-Dichlorobenzene	0.00045	U	0.0500	0.0497		mg/L		99	75 - 125	
1,1-Dichloroethene	0.00074	U	0.0500	0.0515		mg/L		103	59 - 172	
trans-1,2-Dichloroethene	0.00037	U	0.0500	0.0503		mg/L		101	75 - 125	
1,2-Dichloropropane	0.00056	U	0.0500	0.0472		mg/L		94	74 - 125	
Ethylbenzene	0.00059	J	0.0500	0.0532		mg/L		105	75 - 125	
2-Butanone	0.0083	U	0.250	0.230		mg/L		92	60 - 140	
Methylene Chloride	0.0017	U	0.0500	0.0440		mg/L		88	75 - 125	
Chloromethane	0.0020	U	0.0500	0.0377		mg/L		75	60 - 140	
Bromomethane	0.0014	U	0.0500	0.0360		mg/L		72	60 - 140	
Bromoform	0.00063	U	0.0500	0.0490		mg/L		98	75 - 125	
Bromodichloromethane	0.00055	U	0.0500	0.0501		mg/L		100	75 - 125	
Chlorodibromomethane	0.00055	U	0.0500	0.0543		mg/L		109	73 - 125	
Hexachlorobutadiene	0.00063	U	0.0500	0.0626		mg/L		125	75 - 125	
Naphthalene	0.0014	U	0.0500	0.0555		mg/L		111	70 - 130	
Tetrachloroethene	0.00066	U	0.0500	0.0500		mg/L		100	71 - 125	
Toluene	0.00048		0.0500	0.0497		mg/L		99	59 - 139	
Trichloroethene	0.0015		0.0500	0.0485		mg/L		97	62 - 137	
Vinyl chloride	0.00043		0.0500	0.0495		mg/L		99	60 - 140	
cis-1,3-Dichloropropene	0.0011		0.0500	0.0515		mg/L		103	74 - 125	

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		63 - 144
4-Bromofluorobenzene (Surr)	105		74 - 124
Dibromofluoromethane (Surr)	100		75 ₋ 131
Toluene-d8 (Surr)	100		80 - 120

Page 18 of 61

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-152882/1-A

Matrix: Water

Analysis Batch: 153021

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 152882

Analysis Batch: 153021								Prep Batch:	152882
Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	0.0013		0.010	0.0013		=	04/02/24 15:31		
1,2-Dichlorobenzene	0.0016		0.010	0.0016	-		04/02/24 15:31		1
1,3-Dichlorobenzene	0.0014		0.010	0.0014	-			04/03/24 15:49	1
1,4-Dichlorobenzene	0.0016		0.010	0.0016			04/02/24 15:31	04/03/24 15:49	1
Acenaphthene	0.0014	U	0.0057	0.0014	-			04/03/24 15:49	1
Benzidine	0.0048	U	0.020	0.0048	-		04/02/24 15:31	04/03/24 15:49	1
1,2,4-Trichlorobenzene	0.0016		0.0050	0.0016				04/03/24 15:49	1
Hexachlorobenzene	0.00031		0.0050	0.00031	-		04/02/24 15:31		1
Hexachloroethane	0.00053		0.0048	0.00053	-		04/02/24 15:31		1
2,4,5-Trichlorophenol	0.0020		0.010	0.0020			04/02/24 15:31		,
Bis(2-chloroethyl)ether	0.0022		0.010	0.0022	-		04/02/24 15:31		1
2-Chloronaphthalene	0.00046		0.0050	0.00046	-			04/03/24 15:49	1
2,4,6-Trichlorophenol	0.0014		0.0050	0.0014				04/03/24 15:49	1
p-Chloro-m-cresol	0.0016		0.0050	0.0016	-			04/03/24 15:49	1
2-Chlorophenol	0.00065		0.0050	0.00065	•			04/03/24 15:49	
3,3'-Dichlorobenzidine	0.00034		0.0050	0.00034				04/03/24 15:49	
2,4-Dichlorophenol	0.00031		0.0050	0.00031	U			04/03/24 15:49	1
2,4-Dimethylphenol	0.00065		0.0050	0.00065	-			04/03/24 15:49	
2,4-Dinitrotoluene	0.0013		0.010	0.0013				04/03/24 15:49	
1,2-Diphenylhydrazine	0.0015		0.010	0.0015	-			04/03/24 15:49	1
Fluoranthene	0.0016		0.0050	0.0016	-			04/03/24 15:49	1
4-Bromophenyl phenyl ether	0.00026		0.0050	0.00026				04/03/24 15:49	
4-Chlorophenyl phenyl ether	0.0013		0.010	0.0013	-			04/03/24 15:49	1
o-Cresol	0.0016		0.010	0.0016	-		04/02/24 15:31		1
Bis(2-chloroethoxy)methane	0.0018		0.010	0.0018				04/03/24 15:49	'
m & p - Cresol	0.0026		0.010	0.0026	-		04/02/24 15:31		1
bis (2-chloroisopropyl) ether	0.0028		0.010	0.0028	-		04/02/24 15:31		
Hexachlorobutadiene	0.00024		0.0010	0.00024				04/03/24 15:49	
Hexachlorocyclopentadiene	0.0046		0.010	0.0046	•			04/03/24 15:49	1
Isophorone	0.0016		0.0050	0.0016	-			04/03/24 15:49	1
Naphthalene	0.00054		0.0025	0.00054				04/03/24 15:49	· · · · · · · · · 1
Nitrobenzene	0.0017		0.0050	0.0017	-			04/03/24 15:49	1
4-Nitrophenol	0.0049		0.0072	0.0049	-			04/03/24 15:49	1
2-Nitrophenol	0.0017		0.010	0.0017				04/03/24 15:49	· · · · · · · · · · · · · · · · · · ·
4,6-Dinitro-o-cresol	0.0014		0.010	0.0014	-			04/03/24 15:49	
N-Nitrosodimethylamine	0.0020		0.010	0.0020	•		04/02/24 15:31		1
N-Nitrosodiphenylamine	0.0018		0.010	0.0018				04/03/24 15:49	
N-Nitrosodi-n-propylamine	0.0029		0.010	0.0029				04/03/24 15:49	1
Pentachlorophenol	0.00023		0.010	0.00023	-			04/03/24 15:49	1
Phenol	0.00042		0.0045	0.00042				04/03/24 15:49	· · · · · · · · · · · · · · · · · · ·
Bis(2-ethylhexyl) phthalate	0.00028		0.0050	0.00028	-			04/03/24 15:49	1
Butyl benzyl phthalate	0.00034		0.0050	0.00034	-			04/03/24 15:49	
Di-n-butyl phthalate	0.00025		0.0050	0.00025				04/03/24 15:49	
Di-n-octyl phthalate	0.00023		0.0050	0.00023	-			04/03/24 15:49	,
Diethyl phthalate	0.0016		0.0050	0.00037	-			04/03/24 15:49	,
Dimethyl phthalate	0.00030		0.0025	0.00030				04/03/24 15:49	
Benzo[a]anthracene	0.00030		0.0023	0.00030	-			04/03/24 15:49	1
Benzo[a]pyrene	0.00017		0.0050	0.00017	_			04/03/24 15:49	1

Eurofins Houston

4/19/2024

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 860-152882/1-A

Matrix: Water

Analysis Batch: 153021

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 152882

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[b]fluoranthene	0.0020	U	0.010	0.0020	mg/L		04/02/24 15:31	04/03/24 15:49	1
Benzo[k]fluoranthene	0.00038	U	0.0050	0.00038	mg/L		04/02/24 15:31	04/03/24 15:49	1
Chrysene	0.00022	U	0.0050	0.00022	mg/L		04/02/24 15:31	04/03/24 15:49	1
Acenaphthylene	0.0014	U	0.010	0.0014	mg/L		04/02/24 15:31	04/03/24 15:49	1
Anthracene	0.0015	U	0.0057	0.0015	mg/L		04/02/24 15:31	04/03/24 15:49	1
Benzo[g,h,i]perylene	0.0027	U	0.010	0.0027	mg/L		04/02/24 15:31	04/03/24 15:49	1
Fluorene	0.0016	U	0.0050	0.0016	mg/L		04/02/24 15:31	04/03/24 15:49	1
Phenanthrene	0.0014	U	0.010	0.0014	mg/L		04/02/24 15:31	04/03/24 15:49	1
Dibenz(a,h)anthracene	0.00025	U	0.0050	0.00025	mg/L		04/02/24 15:31	04/03/24 15:49	1
Indeno[1,2,3-cd]pyrene	0.0023	U	0.010	0.0023	mg/L		04/02/24 15:31	04/03/24 15:49	1
Pyrene	0.00018	U	0.0050	0.00018	mg/L		04/02/24 15:31	04/03/24 15:49	1
2,4-Dinitrophenol	0.0016	U	0.010	0.0016	mg/L		04/02/24 15:31	04/03/24 15:49	1
2,6-Dinitrotoluene	0.0016	U	0.0050	0.0016	mg/L		04/02/24 15:31	04/03/24 15:49	1
N-Nitrosodi-n-butylamine	0.0015	U	0.010	0.0015	mg/L		04/02/24 15:31	04/03/24 15:49	1
N-Nitrosodiethylamine	0.0018	U	0.010	0.0018	mg/L		04/02/24 15:31	04/03/24 15:49	1
Nonylphenol	0.010	U	0.010	0.010	mg/L		04/02/24 15:31	04/03/24 15:49	1
Pentachlorobenzene	0.0011	U	0.010	0.0011	mg/L		04/02/24 15:31	04/03/24 15:49	1
Pyridine	0.0026	U	0.010	0.0026	mg/L		04/02/24 15:31	04/03/24 15:49	1
Total Cresols	0.0026	U	0.010	0.0026	mg/L		04/02/24 15:31	04/03/24 15:49	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	75	31 - 132	04/02/24 15:31 0	4/03/24 15:49	1
2-Fluorobiphenyl (Surr)	81	29 - 112	04/02/24 15:31 0	14/03/24 15:49	1
2-Fluorophenol (Surr)	41	28 ₋ 114	04/02/24 15:31 0	14/03/24 15:49	1
Nitrobenzene-d5 (Surr)	90	15 - 314	04/02/24 15:31 0	14/03/24 15:49	1
p-Terphenyl-d14 (Surr)	104	20 - 141	04/02/24 15:31 0	14/03/24 15:49	1
Phenol-d5 (Surr)	29	8 - 424	04/02/24 15:31 0	14/03/24 15:49	1

Lab Sample ID: LCS 860-152882/2-A

Matrix: Water

Analysis Batch: 153021

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 152882

Analysis Batch: 153021							Prep Batch: 152882
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2,4,5-Tetrachlorobenzene	0.0400	0.0256		mg/L		64	41 - 125
1,2-Dichlorobenzene	0.0400	0.0264		mg/L		66	60 - 140
1,3-Dichlorobenzene	0.0400	0.0257		mg/L		64	60 - 140
1,4-Dichlorobenzene	0.0400	0.0262		mg/L		66	19 - 121
Acenaphthene	0.0400	0.0308		mg/L		77	60 - 132
Benzidine	0.0400	0.0048	U *-	mg/L		8	25 - 125
1,2,4-Trichlorobenzene	0.0400	0.0252		mg/L		63	57 - 130
Hexachlorobenzene	0.0400	0.0303		mg/L		76	8 - 142
Hexachloroethane	0.0400	0.0247		mg/L		62	55 - 120
2,4,5-Trichlorophenol	0.0400	0.0290		mg/L		73	35 - 111
Bis(2-chloroethyl)ether	0.0400	0.0306		mg/L		76	43 - 126
2-Chloronaphthalene	0.0400	0.0282		mg/L		70	65 - 120
2,4,6-Trichlorophenol	0.0400	0.0295		mg/L		74	52 - 129
p-Chloro-m-cresol	0.0400	0.0285		mg/L		71	41 - 128
2-Chlorophenol	0.0400	0.0249		mg/L		62	36 - 120

Page 20 of 61

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 860-152882/2-A

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 152882

Analysis Batch: 153021	Spike	LCS	LCS				Prep Batch: 15288 %Rec
Analyte	Added	Result	Qualifier U	Init	D	%Rec	Limits
3,3'-Dichlorobenzidine	0.0400	0.0351	r	ng/L		88	18 - 213
2,4-Dichlorophenol	0.0400	0.0281		ng/L		70	53 - 122
2,4-Dimethylphenol	0.0400	0.0381		ng/L		95	42 - 120
2,4-Dinitrotoluene	0.0400	0.0363		ng/L		91	48 - 127
1,2-Diphenylhydrazine	0.0400	0.0384		ng/L		96	28 - 136
Fluoranthene	0.0400	0.0389		ng/L		97	43 - 121
4-Bromophenyl phenyl ether	0.0400	0.0304		ng/L		76	65 - 120
4-Chlorophenyl phenyl ether	0.0400	0.0302		ng/L		76	38 - 145
o-Cresol	0.0400	0.0216		ng/L		54	14 - 176
Bis(2-chloroethoxy)methane	0.0400	0.0298		ng/L		75	49 - 165
m & p - Cresol	0.0400	0.0235		ng/L		56	14 - 176
bis (2-chloroisopropyl) ether	0.0400	0.0223		ng/L ng/L		92	63 - 139
Hexachlorobutadiene	0.0400	0.0303		ng/L		59	38 - 120
Hexachlorocyclopentadiene	0.0400	0.0293		ng/L		73	41 - 125
Isophorone				_		73 79	47 - 180
<mark>'</mark>	0.0400	0.0315		ng/L			
Naphthalene	0.0400	0.0294		ng/L		73	36 - 120
Nitrobenzene	0.0400	0.0317		ng/L		79	54 - 158
4-Nitrophenol	0.0400	0.0140		ng/L		35	13 - 129
2-Nitrophenol	0.0400	0.0290		ng/L		72	45 - 167
4,6-Dinitro-o-cresol	0.0400	0.0382		ng/L		96	53 - 130
N-Nitrosodimethylamine	0.0400	0.0147		ng/L		37	20 - 125
N-Nitrosodiphenylamine	0.0400	0.0353		ng/L		88	2 - 196
N-Nitrosodi-n-propylamine	0.0400	0.0335		ng/L		84	14 - 198
Pentachlorophenol	0.0400	0.0266		ng/L		67	38 - 152
Phenol	0.0400	0.0116		ng/L		29	17 - 120
Bis(2-ethylhexyl) phthalate	0.0400	0.0444	r	ng/L		111	29 - 137
Butyl benzyl phthalate	0.0400	0.0428	r	ng/L		107	12 - 140
Di-n-butyl phthalate	0.0400	0.0417	ŗ	ng/L		104	8 - 120
Di-n-octyl phthalate	0.0400	0.0516	r	ng/L		129	19 - 132
Diethyl phthalate	0.0400	0.0341	r	ng/L		85	17 - 120
Dimethyl phthalate	0.0400	0.0317	r	ng/L		79	25 - 120
Benzo[a]anthracene	0.0400	0.0365	r	ng/L		91	42 - 133
Benzo[a]pyrene	0.0400	0.0433	r	ng/L		108	32 - 148
Benzo[b]fluoranthene	0.0400	0.0403	r	ng/L		101	42 - 140
Benzo[k]fluoranthene	0.0400	0.0402		ng/L		100	25 - 146
Chrysene	0.0400	0.0349		ng/L		87	44 - 140
Acenaphthylene	0.0400	0.0307		ng/L		77	54 - 126
Anthracene	0.0400	0.0377		ng/L		94	43 - 120
Benzo[g,h,i]perylene	0.0400	0.0389		ng/L		97	13 - 195
Fluorene	0.0400	0.0324		ng/L		81	70 - 120
Phenanthrene	0.0400	0.0360		ng/L		90	65 - 120
Dibenz(a,h)anthracene	0.0400	0.0422		ng/L		105	16 - 200
Indeno[1,2,3-cd]pyrene	0.0400	0.0417		ng/L		104	13 - 151
Pyrene	0.0400	0.0404		ng/L		101	70 - 120
2,4-Dinitrophenol	0.0400	0.0227		ng/L		57	12 - 173
2,6-Dinitrotoluene	0.0400	0.0227		ng/L		80	68 - 137
N-Nitrosodi-n-butylamine	0.0400	0.0321				69	33 - 141
•	0.0400	0.0277		ng/L		73	30 - 160
N-Nitrosodiethylamine				ng/L			
Pentachlorobenzene	0.0400	0.0259	r	ng/L		65	25 - 131

Eurofins Houston

4/19/2024

Page 21 of 61

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 860-152882/2-A

Matrix: Water Analysis Batch: 153021

Analyte

Pyridine

:h: 153021

Prep Type: Total/NA Prep Batch: 152882

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	74		31 - 132
2-Fluorobiphenyl (Surr)	69		29 - 112
2-Fluorophenol (Surr)	36		28 - 114
Nitrobenzene-d5 (Surr)	77		15 - 314
p-Terphenyl-d14 (Surr)	88		20 - 141
Phenol-d5 (Surr)	25		8 - 424
p-Terphenyl-d14 (Surr)	88		2

Lab Sample ID: LCSD 860-152882/3-A

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Prep Type: Total/NA
Prep Batch: 152882

Analysis Batch: 153021	Spike	LCSD LCSD)		Prep Ba	atch: 18	52882 RPD
Analyte	Added	Result Quali		D %Rec	Limits	RPD	Limit
1,2,4,5-Tetrachlorobenzene	0.0400	0.0262	mg/L	66	41 - 125	2	30
1,2-Dichlorobenzene	0.0400	0.0259	mg/L	65	60 - 140	2	30
1,3-Dichlorobenzene	0.0400	0.0254	mg/L	63	60 - 140	1	30
1,4-Dichlorobenzene	0.0400	0.0261	mg/L	65	19 - 121	1	30
Acenaphthene	0.0400	0.0317	mg/L	79	60 - 132	3	29
Benzidine	0.0400	0.0048 U*-	mg/L	10	25 - 125	20	30
1,2,4-Trichlorobenzene	0.0400	0.0242	mg/L	60	57 - 130	4	30
Hexachlorobenzene	0.0400	0.0321	mg/L	80	8 - 142	6	30
Hexachloroethane	0.0400	0.0242	mg/L	60	55 - 120	2	30
2,4,5-Trichlorophenol	0.0400	0.0300	mg/L	75	35 - 111	3	30
Bis(2-chloroethyl)ether	0.0400	0.0320	mg/L	80	43 - 126	5	30
2-Chloronaphthalene	0.0400	0.0286	mg/L	71	65 - 120	1	15
2,4,6-Trichlorophenol	0.0400	0.0302	mg/L	76	52 - 129	2	30
p-Chloro-m-cresol	0.0400	0.0286	mg/L	71	41 - 128	0	30
2-Chlorophenol	0.0400	0.0254	mg/L	64	36 - 120	2	30
3,3'-Dichlorobenzidine	0.0400	0.0380	mg/L	95	18 - 213	8	30
2,4-Dichlorophenol	0.0400	0.0282	mg/L	70	53 - 122	0	30
2,4-Dimethylphenol	0.0400	0.0378	mg/L	95	42 - 120	1	30
2,4-Dinitrotoluene	0.0400	0.0384	mg/L	96	48 - 127	6	25
1,2-Diphenylhydrazine	0.0400	0.0398	mg/L	100	28 - 136	4	30
Fluoranthene	0.0400	0.0415	mg/L	104	43 - 121	6	30
4-Bromophenyl phenyl ether	0.0400	0.0317	mg/L	79	65 - 120	4	26
4-Chlorophenyl phenyl ether	0.0400	0.0306	mg/L	77	38 - 145	1	30
o-Cresol	0.0400	0.0221	mg/L	55	14 - 176	2	30
Bis(2-chloroethoxy)methane	0.0400	0.0295	mg/L	74	49 - 165	1	30
m & p - Cresol	0.0400	0.0234	mg/L	59	14 - 176	4	30
bis (2-chloroisopropyl) ether	0.0400	0.0369	mg/L	92	63 - 139	0	30
Hexachlorobutadiene	0.0400	0.0233	mg/L	58	38 - 120	1	30
Hexachlorocyclopentadiene	0.0400	0.0299	mg/L	75	41 - 125	2	30
Isophorone	0.0400	0.0315	mg/L	79	47 - 180	0	30
Naphthalene	0.0400	0.0287	mg/L	72	36 - 120	3	30
Nitrobenzene	0.0400	0.0311	mg/L	78	54 - 158	2	30
4-Nitrophenol	0.0400	0.0159	mg/L	40	13 - 129	13	30

Eurofins Houston

4/19/2024

2

4

6

9

11

13

14

13

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 860-152882/3-A

Matrix: Water

Analysis Batch: 153021

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 152882

	Spike LCSD LCSD					%Rec	Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2-Nitrophenol	0.0400	0.0288		mg/L		72	45 - 167	1	30
4,6-Dinitro-o-cresol	0.0400	0.0423		mg/L		106	53 - 130	10	30
N-Nitrosodimethylamine	0.0400	0.0149		mg/L		37	20 - 125	1	30
N-Nitrosodiphenylamine	0.0400	0.0379		mg/L		95	2 - 196	7	30
N-Nitrosodi-n-propylamine	0.0400	0.0336		mg/L		84	14 - 198	0	30
Pentachlorophenol	0.0400	0.0279		mg/L		70	38 - 152	5	30
Phenol	0.0400	0.0121		mg/L		30	17 - 120	4	30
Bis(2-ethylhexyl) phthalate	0.0400	0.0474		mg/L		119	29 - 137	7	30
Butyl benzyl phthalate	0.0400	0.0457		mg/L		114	12 - 140	7	30
Di-n-butyl phthalate	0.0400	0.0442		mg/L		110	8 - 120	6	28
Di-n-octyl phthalate	0.0400	0.0551	*+	mg/L		138	19 - 132	7	30
Diethyl phthalate	0.0400	0.0356		mg/L		89	17 - 120	4	30
Dimethyl phthalate	0.0400	0.0324		mg/L		81	25 - 120	2	30
Benzo[a]anthracene	0.0400	0.0391		mg/L		98	42 - 133	7	30
Benzo[a]pyrene	0.0400	0.0458		mg/L		115	32 - 148	6	30
Benzo[b]fluoranthene	0.0400	0.0426		mg/L		107	42 - 140	6	30
Benzo[k]fluoranthene	0.0400	0.0436		mg/L		109	25 - 146	8	30
Chrysene	0.0400	0.0380		mg/L		95	44 - 140	9	30
Acenaphthylene	0.0400	0.0309		mg/L		77	54 - 126	1	30
Anthracene	0.0400	0.0398		mg/L		100	43 - 120	5	30
Benzo[g,h,i]perylene	0.0400	0.0409		mg/L		102	13 - 195	5	30
Fluorene	0.0400	0.0330		mg/L		82	70 - 120	2	23
Phenanthrene	0.0400	0.0377		mg/L		94	65 - 120	5	30
Dibenz(a,h)anthracene	0.0400	0.0449		mg/L		112	16 - 200	6	30
Indeno[1,2,3-cd]pyrene	0.0400	0.0439		mg/L		110	13 - 151	5	30
Pyrene	0.0400	0.0430		mg/L		107	70 - 120	6	30
2,4-Dinitrophenol	0.0400	0.0238		mg/L		59	12 - 173	5	30
2,6-Dinitrotoluene	0.0400	0.0334		mg/L		83	68 - 137	4	29
N-Nitrosodi-n-butylamine	0.0400	0.0275		mg/L		69	33 - 141	1	30
N-Nitrosodiethylamine	0.0400	0.0291		mg/L		73	30 - 160	0	30
Pentachlorobenzene	0.0400	0.0265		mg/L		66	25 - 131	2	30
Pyridine	0.0800	0.00794	J	mg/L		10	5 - 94	11	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	83		31 - 132
2-Fluorobiphenyl (Surr)	72		29 - 112
2-Fluorophenol (Surr)	38		28 - 114
Nitrobenzene-d5 (Surr)	78		15 - 314
p-Terphenyl-d14 (Surr)	98		20 - 141
Phenol-d5 (Surr)	28		8 - 424

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Lab Sample ID: MB 860-154669/1-A

Matrix: Water

Analyte

PCB-1016

Analysis Batch: 154783

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 154669

MB MB Result Qualifier RL MDL Unit Prepared Analyzed 0.000013 U 0.00010 0.000013 mg/L 04/13/24 06:30 04/15/24 09:59

Eurofins Houston

4/19/2024

Page 23 of 61

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC) (Continued)

MB MB

Lab Sample ID: MB 860-154669/1-A

Matrix: Water

Analysis Batch: 154783

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 154669

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1221	0.000013	U	0.00010	0.000013	mg/L		04/13/24 06:30	04/15/24 09:59	1
PCB-1232	0.000013	U	0.00010	0.000013	mg/L		04/13/24 06:30	04/15/24 09:59	1
PCB-1242	0.000013	U	0.00010	0.000013	mg/L		04/13/24 06:30	04/15/24 09:59	1
PCB-1248	0.000013	U	0.00010	0.000013	mg/L		04/13/24 06:30	04/15/24 09:59	1
PCB-1254	0.0000078	U	0.00010	0.0000078	mg/L		04/13/24 06:30	04/15/24 09:59	1
PCB-1260	0.0000078	U	0.00010	0.0000078	mg/L		04/13/24 06:30	04/15/24 09:59	1
Polychlorinated biphenyls, Total	0.00010	U	0.00010	0.00010	mg/L		04/13/24 06:30	04/15/24 09:59	1
	MB	МВ							

Surrogate	%Recovery Qualifi	er Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene (Surr)	87	18 - 126	04/13/24 06:30	04/15/24 09:59	1
DCB Decachlorobiphenyl (Surr)	128	15 - 136	04/13/24 06:30	04/15/24 09:59	1

Lab Sample ID: LCS 860-154669/4-A

Matrix: Water

Analysis Batch: 154783

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 154669

%Rec

Spike LCS LCS Analyte Added Result Qualifier Unit D %Rec Limits PCB-1016 0.00100 0.000951 95 61 - 103 mg/L PCB-1260 0.00100 0.00112 mg/L 112 37 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene (Surr)	95		18 - 126
DCB Decachlorobiphenyl (Surr)	136		15 - 136

Lab Sample ID: LCSD 860-154669/5-A

Matrix: Water

Analysis Batch: 154783

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 154669

7 that you battern 10-11 00								op B		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		Spike	LCSD	LCSD				%Rec		RPD	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
PCB-1016	 	0.00100	0.000849		mg/L		85	61 - 103	11	24	
PCB-1260		0.00100	0.00110		mg/L		110	37 - 130	1	28	

LCSD LCSD

Surrogate	%Recovery Qualitier	Limits
Tetrachloro-m-xylene (Surr)	83	18 - 126
DCB Decachlorobiphenyl (Surr)	132	15 - 136

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 860-152429/23

Matrix: Water

Analysis Batch: 152429

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.071	U	0.50	0.071	mg/L			03/31/24 11:58	1
Chloride	0.25	U	0.50	0.25	mg/L			03/31/24 11:58	1
Fluoride	0.10	U	0.50	0.10	mg/L			03/31/24 11:58	1
Sulfate	0.20	U	0.50	0.20	mg/L			03/31/24 11:58	1

Eurofins Houston

Page 24 of 61

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 860-152429/24

Analysis Batch: 152429

Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromide	10.0	10.3		mg/L		103	90 - 110	
Chloride	10.0	9.39		mg/L		94	90 - 110	
Fluoride	10.0	10.8		mg/L		108	90 - 110	
Sulfate	10.0	10.1		mg/L		101	90 - 110	

Lab Sample ID: LCSD 860-152429/25

Matrix: Water

Analysis Batch: 152429

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromide	10.0	10.3		mg/L		103	90 - 110	0	20
Chloride	10.0	9.43		mg/L		94	90 - 110	0	20
Fluoride	10.0	10.8		mg/L		108	90 - 110	0	20
Sulfate	10.0	10.2		mg/L		102	90 - 110	1	20

Lab Sample ID: MB 860-152430/23

Matrix: Water

Analysis Batch: 152430

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.039	U	0.10	0.039	mg/L			03/31/24 11:58	1
Nitrite as N	0.029	U	0.10	0.029	mg/L			03/31/24 11:58	1
Nitrate Nitrite as N	0.039	U	0.10	0.039	mg/L			03/31/24 11:58	1

Lab Sample ID: MB 860-152430/59

Matrix: Water

Analysis Batch: 152430

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.039	U	0.10	0.039	mg/L			03/29/24 22:21	1
Nitrite as N	0.029	U	0.10	0.029	mg/L			03/29/24 22:21	1
Nitrate Nitrite as N	0.039	П	0.10	0.039	ma/l			03/29/24 22:21	1

Analysis Batch: 152430

Lab Sample ID: LCS 860-152430/24 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Buton. 102400									
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Nitrate as N	10.0	10.5		mg/L		105	80 - 120		_
Nitrite as N	10.0	10.4		mg/L		104	80 - 120		

Lab Sample ID: LCSD 860-152430/25

Matrix: Water

Analysis Batch: 152430

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate as N	10.0	10.5		mg/L		105	80 - 120	0	20
Nitrite as N	10.0	10.4		mg/L		104	80 - 120	0	20

Eurofins Houston

4/19/2024

Spike

Added

0.500

0.500

Client: Messer LLC Job ID: 860-70887-1

LLCS LLCS

0.497

0.416

Result Qualifier

mg/L

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LLCS 860-152430/7

Matrix: Water

Analysis Batch: 152430

Analyte

Nitrate as N

Nitrite as N

Client Sample ID: Lab Control Sample Prep Type: Total/NA

50 - 150

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 666544

Prep Type: Total/NA

Prep Batch: 666544

Prep Type: Total/NA

%Rec Unit %Rec Limits mg/L 99 50 - 150

83

Method: 1631E - Mercury, Low Level (CVAFS)

Lab Sample ID: MB 400-666544/3-A

Matrix: Water

Analysis Batch: 666639

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.20 U 0.50 0.20 ng/L 04/01/24 16:00 04/02/24 09:53 Mercury

Lab Sample ID: LCS 400-666544/4-A

Matrix: Water

Analysis Batch: 666639

Spike LCS LCS %Rec Analyte Added Result Qualifier Limits

Mercury 5.00 4.98 ng/L 100 79 - 121

Lab Sample ID: LCSD 400-666544/5-A

Matrix: Water

Analysis Batch: 666639

Prep Batch: 666544 LCSD LCSD %Rec **RPD** Spike Added RPD Limit Analyte Result Qualifier Unit D %Rec Limits 5.00 Mercury 4.99 100 20 ng/L 79 - 121 0

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 860-152924/1-A

Matrix: Water

Analysis Batch: 153111

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 152924

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.0030	U	0.020	0.0030	mg/L		04/02/24 18:00	04/03/24 19:06	1
Antimony	0.0011	U	0.0020	0.0011	mg/L		04/02/24 18:00	04/03/24 19:06	1
Arsenic	0.00034	U	0.0040	0.00034	mg/L		04/02/24 18:00	04/03/24 19:06	1
Barium	0.00029	U	0.0040	0.00029	mg/L		04/02/24 18:00	04/03/24 19:06	1
Beryllium	0.00015	U	0.0020	0.00015	mg/L		04/02/24 18:00	04/03/24 19:06	1
Cadmium	0.00026	U	0.0020	0.00026	mg/L		04/02/24 18:00	04/03/24 19:06	1
Chromium	0.00033	U	0.0040	0.00033	mg/L		04/02/24 18:00	04/03/24 19:06	1
Cobalt	0.00026	U	0.0020	0.00026	mg/L		04/02/24 18:00	04/03/24 19:06	1
Copper	0.00069	U	0.0040	0.00069	mg/L		04/02/24 18:00	04/03/24 19:06	1
Iron	0.0020	U	0.020	0.0020	mg/L		04/02/24 18:00	04/03/24 19:06	1
Lead	0.00014	U	0.0020	0.00014	mg/L		04/02/24 18:00	04/03/24 19:06	1
Magnesium	0.0092	U	0.10	0.0092	mg/L		04/02/24 18:00	04/03/24 19:06	1
Manganese	0.00016	U	0.0020	0.00016	mg/L		04/02/24 18:00	04/03/24 19:06	1
Molybdenum	0.00016	U	0.0020	0.00016	mg/L		04/02/24 18:00	04/03/24 19:06	1
Nickel	0.00049	U	0.0020	0.00049	mg/L		04/02/24 18:00	04/03/24 19:06	1
Selenium	0.00069	U	0.0020	0.00069	mg/L		04/02/24 18:00	04/03/24 19:06	1
Silver	0.00012	U	0.0020	0.00012	mg/L		04/02/24 18:00	04/03/24 19:06	1

Eurofins Houston

Page 26 of 61 4/19/2024

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 860-152924/1-A

Matrix: Water

Analysis Batch: 153111

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Prep Batch: 152924

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	0.00022	U	0.0020	0.00022	mg/L		04/02/24 18:00	04/03/24 19:06	1
Tin	0.00033	U	0.0020	0.00033	mg/L		04/02/24 18:00	04/03/24 19:06	1
Titanium	0.00042	U	0.0040	0.00042	mg/L		04/02/24 18:00	04/03/24 19:06	1
Zinc	0.00089	U	0.0040	0.00089	mg/L		04/02/24 18:00	04/03/24 19:06	1

Lab Sample ID: MB 860-152924/1-A

Matrix: Water

Analysis Batch: 153322

MB MB

MB MB

Prep Type: Total Recoverable Prep Batch: 152924

MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac Silver 0.00012 U 0.0020 0.00012 mg/L 04/02/24 18:00 04/04/24 13:02

Lab Sample ID: MB 860-152924/1-A

Matrix: Water

Analysis Batch: 153356

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Boron 0.0025 U 0.010 0.0025 mg/L 04/02/24 18:00 04/04/24 17:48

Lab Sample ID: LCS 860-152924/2-A

Matrix: Water

Analysis Batch: 153111

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 152924

Prep Batch: 152924

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	0.500	0.493		mg/L		99	85 - 115	
Antimony	0.100	0.0894		mg/L		89	85 - 115	
Arsenic	0.100	0.0941		mg/L		94	85 - 115	
Barium	0.100	0.0893		mg/L		89	85 - 115	
Beryllium	0.100	0.0987		mg/L		99	85 - 115	
Cadmium	0.100	0.0942		mg/L		94	85 - 115	
Chromium	0.100	0.0963		mg/L		96	85 - 115	
Cobalt	0.100	0.0952		mg/L		95	85 - 115	
Copper	0.100	0.0949		mg/L		95	85 - 115	
Iron	0.500	0.472		mg/L		94	85 - 115	
Lead	0.100	0.0928		mg/L		93	85 - 115	
Magnesium	2.50	2.38		mg/L		95	85 - 115	
Manganese	0.100	0.0970		mg/L		97	85 - 115	
Molybdenum	0.100	0.0930		mg/L		93	85 - 115	
Nickel	0.100	0.0948		mg/L		95	85 - 115	
Selenium	0.100	0.0945		mg/L		94	85 - 115	
Thallium	0.100	0.0904		mg/L		90	85 - 115	
Tin	0.100	0.0919		mg/L		92	85 - 115	
Titanium	0.100	0.0946		mg/L		95	85 - 115	
Zinc	0.100	0.0958		mg/L		96	85 - 115	

Eurofins Houston

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 860-152924/2-A			Client Sample ID: Lab Control Sample						
Matrix: Water					F	rep Ty	pe: Total	Recoverable	
Analysis Batch: 153322							Prep Ba	atch: 152924	
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Silver	0.0500	0.0467		mg/L		93	85 - 115		

Lab Sample ID: LCS 860-152924/2-A			Clie	nt Sar	nple ID	: Lab Control Sample	,	
Matrix: Water					P	rep Ty	pe: Total Recoverable	•
Analysis Batch: 153356							Prep Batch: 152924	
-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Boron	0.100	0.0880		ma/l		88	85 - 115	•

Lab Sample ID: LCSD 860-152924/3-A			(Client Sa	ample	ID: Lab	Control	Sample	Dup
Matrix: Water					F	rep Ty	pe: Total	Recove	erable
Analysis Batch: 153111							Prep Ba	atch: 1	52924
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	0.500	0.487		mg/L		97	85 - 115	1	20
Antimony	0.100	0.0910		mg/L		91	85 - 115	2	20
Arsenic	0.100	0.0946		mg/L		95	85 - 115	1	20
Barium	0.100	0.0904		mg/L		90	85 - 115	1	20
Beryllium	0.100	0.0981		mg/L		98	85 - 115	1	20
Cadmium	0.100	0.0944		mg/L		94	85 - 115	0	20
Chromium	0.100	0.0966		mg/L		97	85 - 115	0	20
Cobalt	0.100	0.0954		mg/L		95	85 - 115	0	20
Copper	0.100	0.0951		mg/L		95	85 - 115	0	20
Iron	0.500	0.468		mg/L		94	85 - 115	1	20
Lead	0.100	0.0934		mg/L		93	85 - 115	1	20
Magnesium	2.50	2.34		mg/L		94	85 - 115	1	20
Manganese	0.100	0.0971		mg/L		97	85 - 115	0	20
Molybdenum	0.100	0.0940		mg/L		94	85 - 115	1	20
Nickel	0.100	0.0952		mg/L		95	85 - 115	0	20
Selenium	0.100	0.0949		mg/L		95	85 - 115	0	20
Silver	0.0500	0.0429		mg/L		86	85 - 115	3	20
Thallium	0.100	0.0910		mg/L		91	85 - 115	1	20
Tin	0.100	0.0928		mg/L		93	85 - 115	1	20
Titanium	0.100	0.0926		mg/L		93	85 - 115	2	20
Zinc	0.100	0.0958		mg/L		96	85 - 115	0	20

Lab Sample ID: LCSD 860-152924/3-A Matrix: Water		C	Client Sa	•		Control			
Analysis Batch: 153322							Prep Ba	atch: 1	52924
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Silver	0.0500	0.0477		mg/L		95	85 - 115	2	20

Lab Sample ID: LCSD 860-152924/3-A			Client Sample ID: Lab Control Sample Dup							
Matrix: Water		Prep Type: Total Recoverable								
Analysis Batch: 153356			Prep Batch:						52924	
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Boron	0.100	0.0898		mg/L		90	85 - 115	2	20	

Eurofins Houston

4/19/2024

Page 28 of 61

2

3

4

6

8

10

12

14

16

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: 1664B - HEM and SGT-HEM

Lab Sample ID: MB 860-153724/1 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 153724

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte D Prepared HEM 5.0 04/08/24 11:12 1.6 U 1.6 mg/L

Lab Sample ID: LCS 860-153724/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 153724

Spike LCS LCS %Rec Added Result Qualifier D %Rec Limits Analyte Unit HEM 40.0 40.7 mg/L 102 78 - 114

Lab Sample ID: LCSD 860-153724/3 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 153724

Spike LCSD LCSD %Rec RPD Added Result Qualifier Limits RPD Limit Analyte Unit %Rec HEM 40.0 41.2 103 78 - 114 18 mg/L

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 860-153225/137 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 153225

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Ammonia 0.051 U 0.10 0.051 mg/L 04/03/24 19:52

Lab Sample ID: MB 860-153225/179 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 153225

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Ammonia 0.051 U 0.10 0.051 mg/L 04/03/24 22:12

Lab Sample ID: LCS 860-153225/180

Matrix: Water

Analysis Batch: 153225

LCS LCS Spike %Rec Added Result Qualifier Analyte Unit %Rec Limits Ammonia 1.00 0.966 97 90 - 110 mg/L

Lab Sample ID: LCSD 860-153225/181 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 153225

LCSD LCSD **RPD** Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit 1.00 0.979 98 Ammonia mg/L 90 - 110

Eurofins Houston

4/19/2024

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: LLCS 860-153225/140 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 153225

Spike LLCS LLCS %Rec Result Qualifier Added %Rec Limits Analyte Unit Ammonia 0.100 0.0910 J mg/L 91 50 - 150

Method: 351.2 - Nitrogen, Total Kjeldahl

Lab Sample ID: MB 860-152741/32-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 153251

MB MB

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.20 0.089 mg/L 04/01/24 20:31 04/03/24 11:57 0.089 U Nitrogen, Kjeldahl

Lab Sample ID: MB 860-152741/4-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 153251

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 0.20 04/01/24 20:31 04/03/24 11:05 Nitrogen, Kjeldahl 0.089 U 0.089 mg/L

Lab Sample ID: LCS 860-152741/33-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 153251

LCS LCS Spike %Rec Added Analyte Result Qualifier Unit %Rec Limits

Nitrogen, Kjeldahl 2.00 1.93 96 90 - 110 mg/L

Lab Sample ID: LCSD 860-152741/34-A

Matrix: Water

Analysis Batch: 153251

LCSD LCSD %Rec **RPD** Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Nitrogen, Kjeldahl 2.00 2.00 mg/L 90 - 110

Lab Sample ID: LLCS 860-152741/5-A

Matrix: Water

Analysis Batch: 153251

Prep Batch: 152741 LLCS LLCS Spike %Rec Added Analyte Result Qualifier Unit %Rec Limits Nitrogen, Kjeldahl 0.200 0.240 120 50 - 150 mg/L

Method: 365.1 - Phosphorus, Total

Lab Sample ID: MB 860-154088/40 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 154088

MB MB

MDL Unit Result Qualifier RL Prepared Analyzed Dil Fac Phosphorus Total 0.014 U 0.020 0.014 mg/L 04/09/24 18:25

Eurofins Houston

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 152741

Prep Batch: 152741

Prep Batch: 152741

Prep Type: Total/NA

Prep Batch: 152741

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: 365.1 - Phosphorus, Total (Continued)

Lab Sample ID: LCS 860-154088/41 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154088

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit %Rec 90 - 110 Phosphorus Total 0.250 0.257 mg/L 103

Lab Sample ID: LCSD 860-154088/42 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 154088

RPD Spike LCSD LCSD %Rec Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 0.250 Phosphorus Total 0.271 mg/L 108 90 - 110 5 20

Method: 7196A - Chromium, Hexavalent

Lab Sample ID: MB 860-151876/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 151876

MB MB Result Qualifier RL **MDL** Unit Dil Fac **Analyte** Prepared Analyzed 0.010 Cr (VI) 0.0034 U 0.0034 mg/L 03/27/24 12:02

Lab Sample ID: LCS 860-151876/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 151876

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Cr (VI) 0.200 0.191 96 85 - 115 mg/L

Lab Sample ID: LCSD 860-151876/5 Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 151876

LCSD LCSD **RPD** Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Cr (VI) 0.200 0.191 mg/L 85 - 115 20

Method: 8000 - COD

Lab Sample ID: MB 860-154031/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 154031

MB MB Result Qualifier RL MDL Unit Prepared Analyzed **Chemical Oxygen Demand** 3.4 U 20 3.4 mg/L 04/09/24 20:17

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 860-154031/4 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154031

LCS LCS Spike %Rec Added Limits Result Qualifier Unit %Rec 100 110 mg/L Chemical Oxygen Demand 110 90 - 110

Eurofins Houston

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: OIA-1677 - Cyanide, Available (Flow Injection)

Lab Sample ID: MB 410-489850/17

Matrix: Water

Analysis Batch: 489850

MB MB

Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed 04/02/24 15:45 Cyanide, Available 0.0050 U 0.0060 0.0050 mg/L

Lab Sample ID: LCS 410-489850/16

Matrix: Water

Analysis Batch: 489850

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 0.0500 Cyanide, Available 0.0472 mg/L 94 82 - 132

Method: SM 2120B - Color, Colorimetric

Lab Sample ID: MB 860-153543/3

Matrix: Water

Analysis Batch: 153543

MB MB

Result Qualifier RL **MDL** Unit Dil Fac **Analyte** Prepared Analyzed Color, Apparent 5.0 U 5.0 5.0 Color Units 03/28/24 17:00 Color, True 5.0 U 5.0 5.0 Color Units 03/28/24 17:00 0.10 0.10 S.U. 03/28/24 17:00 pН na

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 860-152609/9

Matrix: Water

Analysis Batch: 152609

MB MB									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	4.0	U	4.0	4.0	mg/L			03/29/24 16:09	1
Bicarbonate Alkalinity as CaCO3	4.0	U	4.0	4.0	mg/L			03/29/24 16:09	1
Carbonate Alkalinity as CaCO3	4.0	U	4.0	4.0	mg/L			03/29/24 16:09	1
Hydroxide Alkalinity	4.0	U	4.0	4.0	mg/L			03/29/24 16:09	1
Phenolphthalein Alkalinity	4.0	U	4.0	4.0	mg/L			03/29/24 16:09	1

Lab Sample ID: LCS 860-152609/10

Matrix: Water

Analysis Batch: 152609

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit %Rec Limits Alkalinity 250 235 mg/L 94 85 - 115

Lab Sample ID: LCSD 860-152609/11

Matrix: Water

Analysis Batch: 152609

LCSD LCSD **RPD** Spike %Rec Added Analyte Result Qualifier Unit D %Rec Limits RPD Limit Alkalinity 250 236 mg/L 94 85 - 115

Eurofins Houston

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 860-152828/1 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 152828

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte D Prepared 5.0 04/02/24 12:40 **Total Dissolved Solids** 5.0 U 5.0 mg/L

Lab Sample ID: LCS 860-152828/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 152828

Spike LCS LCS %Rec Added Result Qualifier D %Rec Limits Analyte Unit 1000 1110 80 - 120 **Total Dissolved Solids** mg/L 111

Lab Sample ID: LCSD 860-152828/3 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 152828

Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Limits **RPD** Limit Analyte Unit %Rec Total Dissolved Solids 1000 1110 80 - 120 mg/L

Lab Sample ID: LLCS 860-152828/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 152828

Spike LLCS LLCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 5.00 6.00 mg/L 120 50 - 150

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 860-152929/1 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 152929

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Total Suspended Solids 4.0 U 4.0 4.0 mg/L 04/02/24 18:32

Lab Sample ID: LCS 860-152929/2

Matrix: Water

Analysis Batch: 152929

LCS LCS Spike %Rec Added Result Qualifier Analyte Unit %Rec Limits Total Suspended Solids 100 112 mg/L 112 80 - 120

Lab Sample ID: LCSD 860-152929/3 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 152929

LCSD LCSD **RPD** Spike %Rec Added Result Qualifier Unit %Rec Limits **RPD** Limit Total Suspended Solids 100 112 mg/L 112 80 - 120

Eurofins Houston

4/19/2024

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: SM 4500 CI G - Chlorine, Residual

Lab Sample ID: MB 860-152922/3 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 152922

MB MB

Analyzed Result Qualifier RL **MDL** Unit Dil Fac Analyte D Prepared 0.050 04/02/24 18:15 Chlorine, Total Residual 0.050 U 0.050 mg/L

Lab Sample ID: LCS 860-152922/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 152922

Spike LCS LCS %Rec Added Result Qualifier D %Rec Limits Analyte Unit 0.250 85 - 115 Chlorine, Total Residual 0.257 mg/L 103

Lab Sample ID: LCSD 860-152922/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 152922

Spike LCSD LCSD %Rec RPD Added Result Qualifier Limits RPD Analyte Unit %Rec Limit Chlorine, Total Residual 0.250 0.244 98 85 - 115 20 mg/L

Method: SM 4500 S2 D - Sulfide, Total

Lab Sample ID: MB 860-153135/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 153135

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Sulfide 0.040 U 0.10 0.040 mg/L 04/03/24 18:05

Lab Sample ID: LCS 860-153135/4 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 153135

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit Limits Sulfide 1.00 1.05 mg/L 105 90 - 110

Lab Sample ID: LCSD 860-153135/5 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 153135

LCSD LCSD RPD Spike %Rec Added Result Qualifier RPD Analyte Unit %Rec Limits Limit Sulfide 1.00 20 1.04 104 90 - 110 mg/L

Method: SM 4500 SO3 B - Sulfite

Lab Sample ID: MB 860-153341/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 153341

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Sulfite 5.0 U 5.0 04/04/24 17:40 5.0 mg/L

Eurofins Houston

4/19/2024

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: SM 4500 SO3 B - Sulfite (Continued)

Lab Sample ID: LCS 860-153341/2 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 153341

Spike LCS LCS %Rec Result Qualifier Added Limits Analyte Unit %Rec 80 - 120 Sulfite 10.0 9.00 mg/L 90

Lab Sample ID: LCSD 860-153341/3

Matrix: Water

Analysis Batch: 153341

RPD Spike LCSD LCSD %Rec Added Result Qualifier Unit D %Rec Limits RPD Limit Analyte Sulfite 10.0 90 80 - 120 9.00 mg/L n

Lab Sample ID: 860-70887-1 DU Client Sample ID: Outfall 001 **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 153341

Sample Sample DU DU RPD Result Qualifier Result Qualifier RPD Limit Analyte Unit Sulfite 5.0 U HF 5.0 U 20 mg/L

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: SCB 860-153612/2 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 153612

SCB SCB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Biochemical Oxygen Demand 0.894 0.0000020 0.0000020 mg/L 03/28/24 12:09

Lab Sample ID: USB 860-153612/1

Matrix: Water

Analysis Batch: 153612

USB USB

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Biochemical Oxygen Demand 0.120 0.0000020 0.0000020 mg/L 03/28/24 12:06

Lab Sample ID: LCS 860-153612/3

Matrix: Water

Analysis Batch: 153612

LCS LCS Spike %Rec Added Result Qualifier Analyte Unit %Rec Limits Biochemical Oxygen Demand 198 185 93 85 - 115 mg/L

Method: SM 5310C - TOC

Lab Sample ID: MB 860-153920/21 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 153920

MB MB Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Total Organic Carbon 0.50 U 10 0.50 mg/L 04/08/24 21:09

Eurofins Houston

4/19/2024

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: SM 5310C - TOC (Continued)

Lab Sample ID: MB 860-153920/55

Matrix: Water

Analysis Batch: 153920

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 1.0 04/09/24 05:44 Total Organic Carbon 0.50 U 0.50 mg/L

Lab Sample ID: LCS 860-153920/22

Matrix: Water

Analysis Batch: 153920

Spike LCS LCS %Rec Added Result Qualifier D %Rec Limits Analyte Unit 5.00 90 - 110 **Total Organic Carbon** 5.03 mg/L 101

Lab Sample ID: LCS 860-153920/56

Matrix: Water

Analysis Batch: 153920

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit %Rec Total Organic Carbon 5.00 5.10 90 - 110 mg/L

Lab Sample ID: LCSD 860-153920/23

Matrix: Water

Analysis Batch: 153920

Spike LCSD LCSD %Rec **RPD** Added Analyte Result Qualifier Unit %Rec Limits **RPD** Limit Total Organic Carbon 5.32 5.00 mg/L 106 90 - 110

Lab Sample ID: LCSD 860-153920/57

Matrix: Water

Analysis Batch: 153920

LCSD LCSD RPD Spike %Rec Added Limits Analyte Result Qualifier Unit %Rec **RPD** Limit Total Organic Carbon 5.00 5.35 mg/L 107 90 - 110

Lab Sample ID: LLCS 860-153920/24

Matrix: Water

Analysis Batch: 153920

Spike LLCS LLCS %Rec Added Result Qualifier Analyte Unit D %Rec Limits 1.09 **Total Organic Carbon** 1.00 mg/L 109 50 - 150

Method: SM5210B CBOD - Carbonaceous BOD, 5 Day

Lab Sample ID: SCB 860-153613/2

Matrix: Water

Analysis Batch: 153613

SCB SCB

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Carbonaceous Biochemical Oxygen 0.840 0.0000020 0.0000020 mg/L 03/28/24 14:58

Demand

Eurofins Houston

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

QC Sample Results

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method: SM5210B CBOD - Carbonaceous BOD, 5 Day (Continued)

Lab Sample ID: USB 860-153613/1 **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 153613

USB USB

Result Qualifier Analyte RL **MDL** Unit Prepared Analyzed Dil Fac 0.0000020 0.0000020 mg/L 03/28/24 14:56 Carbonaceous Biochemical Oxygen 0.0000020 U

Demand

Lab Sample ID: LCS 860-153613/3

Matrix: Water

Analysis Batch: 153613

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits 198 106 85 - 115 Carbonaceous Biochemical 210 mg/L

Oxygen Demand

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

GC/MS VOA

Analysis Batch: 152033

Lab Sample ID 860-70887-1	Client Sample ID Outfall 001	Prep Type Total/NA	Matrix Water	Method 624.1	Prep Batch
MB 860-152033/9	Method Blank	Total/NA	Water	624.1	
LCS 860-152033/3	Lab Control Sample	Total/NA	Water	624.1	
LCSD 860-152033/4	Lab Control Sample Dup	Total/NA	Water	624.1	
860-70887-1 MS	Outfall 001	Total/NA	Water	624.1	

GC/MS Semi VOA

Prep Batch: 152882

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	625	
MB 860-152882/1-A	Method Blank	Total/NA	Water	625	
LCS 860-152882/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 860-152882/3-A	Lab Control Sample Dup	Total/NA	Water	625	

Analysis Batch: 153021

Lab Sample ID 860-70887-1	Outfall 001	Prep Type Total/NA	Matrix Water	Method 625.1	Prep Batch 152882
MB 860-152882/1-A	Method Blank	Total/NA	Water	625.1	152882
LCS 860-152882/2-A	Lab Control Sample	Total/NA	Water	625.1	152882
LCSD 860-152882/3-A	Lab Control Sample Dup	Total/NA	Water	625.1	152882

GC Semi VOA

Prep Batch: 154669

Lab Sample ID 860-70887-1	Client Sample ID Outfall 001	Prep Type Total/NA	Matrix Water	Method 608	Prep Batch
MB 860-154669/1-A	Method Blank	Total/NA	Water	608	
LCS 860-154669/4-A	Lab Control Sample	Total/NA	Water	608	
LCSD 860-154669/5-A	Lab Control Sample Dup	Total/NA	Water	608	

Analysis Batch: 154783

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	608.3	154669
MB 860-154669/1-A	Method Blank	Total/NA	Water	608.3	154669
LCS 860-154669/4-A	Lab Control Sample	Total/NA	Water	608.3	154669
LCSD 860-154669/5-A	Lab Control Sample Dup	Total/NA	Water	608.3	154669

HPLC/IC

Analysis Batch: 152429

Lab Sample ID 860-70887-1	Client Sample ID Outfall 001	Prep Type Total/NA	Matrix Water	Method 300.0	Prep Batch
MB 860-152429/23	Method Blank	Total/NA	Water	300.0	
LCS 860-152429/24	Lab Control Sample	Total/NA	Water	300.0	
LCSD 860-152429/25	Lab Control Sample Dup	Total/NA	Water	300.0	

Analysis Batch: 152430

Lab Sample ID 860-70887-1	Client Sample ID Outfall 001	Prep Type Total/NA	Matrix Water	Method 300.0	Prep Batch
MB 860-152430/23	Method Blank	Total/NA	Water	300.0	
MB 860-152430/59	Method Blank	Total/NA	Water	300.0	

Eurofins Houston

Page 38 of 61 4/19/2024

3

4

5

7

9

10

12

1 /

15

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

HPLC/IC (Continued)

Analysis Batch: 152430 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 860-152430/24	Lab Control Sample	Total/NA	Water	300.0	
LCSD 860-152430/25	Lab Control Sample Dup	Total/NA	Water	300.0	
LLCS 860-152430/7	Lab Control Sample	Total/NA	Water	300.0	

Metals

Prep Batch: 152924

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total Recoverable	Water	200.8	
MB 860-152924/1-A	Method Blank	Total Recoverable	Water	200.8	
LCS 860-152924/2-A	Lab Control Sample	Total Recoverable	Water	200.8	
LCSD 860-152924/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	

Analysis Batch: 153111

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total Recoverable	Water	200.8	152924
MB 860-152924/1-A	Method Blank	Total Recoverable	Water	200.8	152924
LCS 860-152924/2-A	Lab Control Sample	Total Recoverable	Water	200.8	152924
LCSD 860-152924/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	152924

Analysis Batch: 153322

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total Recoverable	Water	200.8	152924
MB 860-152924/1-A	Method Blank	Total Recoverable	Water	200.8	152924
LCS 860-152924/2-A	Lab Control Sample	Total Recoverable	Water	200.8	152924
LCSD 860-152924/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	152924

Analysis Batch: 153356

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total Recoverable	Water	200.8	152924
MB 860-152924/1-A	Method Blank	Total Recoverable	Water	200.8	152924
LCS 860-152924/2-A	Lab Control Sample	Total Recoverable	Water	200.8	152924
LCSD 860-152924/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	152924

Prep Batch: 666544

Lab Sample ID 860-70887-1	Client Sample ID Outfall 001	Prep Type Total/NA	Matrix Water	Method 1631E	Prep Batch
MB 400-666544/3-A	Method Blank	Total/NA	Water	1631E	
LCS 400-666544/4-A	Lab Control Sample	Total/NA	Water	1631E	
LCSD 400-666544/5-A	Lab Control Sample Dup	Total/NA	Water	1631E	

Analysis Batch: 666639

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	1631E	666544
MB 400-666544/3-A	Method Blank	Total/NA	Water	1631E	666544
LCS 400-666544/4-A	Lab Control Sample	Total/NA	Water	1631E	666544
LCSD 400-666544/5-A	Lab Control Sample Dup	Total/NA	Water	1631E	666544

Eurofins Houston

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

General Chemistry

				4040
Analy	/SIS	Batch	า: 15	1048

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	7196A	

Analysis Batch: 151876

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1 MB 860-151876/3	Outfall 001 Method Blank	Total/NA Total/NA	Water Water	7196A 7196A	
LCS 860-151876/4	Lab Control Sample	Total/NA	Water	7196A	
LCSD 860-151876/5	Lab Control Sample Dup	Total/NA	Water	7196A	

Prep Batch: 152129

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	BOD Prep	

Analysis Batch: 152166

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	Nitrogen.Org	

Prep Batch: 152194

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	BOD Prep	

Analysis Batch: 152539

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	360.1	

Analysis Batch: 152609

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	SM 2320B	
MB 860-152609/9	Method Blank	Total/NA	Water	SM 2320B	
LCS 860-152609/10	Lab Control Sample	Total/NA	Water	SM 2320B	
LCSD 860-152609/11	Lab Control Sample Dup	Total/NA	Water	SM 2320B	

Prep Batch: 152741

Lab Sample ID 860-70887-1	Client Sample ID Outfall 001	Prep Type Total/NA	Matrix Water	Method 351.2	Prep Batch
MB 860-152741/32-A	Method Blank	Total/NA	Water	351.2	
MB 860-152741/4-A	Method Blank	Total/NA	Water	351.2	
LCS 860-152741/33-A	Lab Control Sample	Total/NA	Water	351.2	
LCSD 860-152741/34-A	Lab Control Sample Dup	Total/NA	Water	351.2	
LLCS 860-152741/5-A	Lab Control Sample	Total/NA	Water	351.2	

Analysis Batch: 152828

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	SM 2540C	
MB 860-152828/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 860-152828/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 860-152828/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	
LLCS 860-152828/4	Lab Control Sample	Total/NA	Water	SM 2540C	

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

General Chemistry

Analysis Batch: 152922

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	SM 4500 CI G	
MB 860-152922/3	Method Blank	Total/NA	Water	SM 4500 CI G	
LCS 860-152922/4	Lab Control Sample	Total/NA	Water	SM 4500 CI G	
LCSD 860-152922/5	Lab Control Sample Dup	Total/NA	Water	SM 4500 CI G	

Analysis Batch: 152929

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	SM 2540D	
MB 860-152929/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 860-152929/2	Lab Control Sample	Total/NA	Water	SM 2540D	
LCSD 860-152929/3	Lab Control Sample Dup	Total/NA	Water	SM 2540D	

Analysis Batch: 153135

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	SM 4500 S2 D	
MB 860-153135/3	Method Blank	Total/NA	Water	SM 4500 S2 D	
LCS 860-153135/4	Lab Control Sample	Total/NA	Water	SM 4500 S2 D	
LCSD 860-153135/5	Lab Control Sample Dup	Total/NA	Water	SM 4500 S2 D	

Analysis Batch: 153225

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	350.1	
MB 860-153225/137	Method Blank	Total/NA	Water	350.1	
MB 860-153225/179	Method Blank	Total/NA	Water	350.1	
LCS 860-153225/180	Lab Control Sample	Total/NA	Water	350.1	
LCSD 860-153225/181	Lab Control Sample Dup	Total/NA	Water	350.1	
LLCS 860-153225/140	Lab Control Sample	Total/NA	Water	350.1	

Analysis Batch: 153251

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	351.2	152741
MB 860-152741/32-A	Method Blank	Total/NA	Water	351.2	152741
MB 860-152741/4-A	Method Blank	Total/NA	Water	351.2	152741
LCS 860-152741/33-A	Lab Control Sample	Total/NA	Water	351.2	152741
LCSD 860-152741/34-A	Lab Control Sample Dup	Total/NA	Water	351.2	152741
LLCS 860-152741/5-A	Lab Control Sample	Total/NA	Water	351.2	152741

Analysis Batch: 153341

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Bat
860-70887-1	Outfall 001	Total/NA	Water	SM 4500 SO3 B
MB 860-153341/1	Method Blank	Total/NA	Water	SM 4500 SO3 B
LCS 860-153341/2	Lab Control Sample	Total/NA	Water	SM 4500 SO3 B
LCSD 860-153341/3	Lab Control Sample Dup	Total/NA	Water	SM 4500 SO3 B
860-70887-1 DU	Outfall 001	Total/NA	Water	SM 4500 SO3 B

Analysis Batch: 153543

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	SM 2120B	
MB 860-153543/3	Method Blank	Total/NA	Water	SM 2120B	
LCS 860-153543/4	Lab Control Sample	Total/NA	Water	SM 2120B	
LCSD 860-153543/5	Lab Control Sample Dup	Total/NA	Water	SM 2120B	

Eurofins Houston

Page 41 of 61 4/19/2024

3

4

6

7

9

10

12

13

14

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

General Chemistry

Analysis Batch: 153612

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	SM 5210B	152129
SCB 860-153612/2	Method Blank	Total/NA	Water	SM 5210B	
USB 860-153612/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 860-153612/3	Lab Control Sample	Total/NA	Water	SM 5210B	

Analysis Batch: 153613

ı	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
8	860-70887-1	Outfall 001	Total/NA	Water	SM5210B CBOD	152194
	SCB 860-153613/2	Method Blank	Total/NA	Water	SM5210B CBOD	
ι	USB 860-153613/1	Method Blank	Total/NA	Water	SM5210B CBOD	
I	LCS 860-153613/3	Lab Control Sample	Total/NA	Water	SM5210B CBOD	

Analysis Batch: 153724

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	1664B	
MB 860-153724/1	Method Blank	Total/NA	Water	1664B	
LCS 860-153724/2	Lab Control Sample	Total/NA	Water	1664B	
LCSD 860-153724/3	Lab Control Sample Dup	Total/NA	Water	1664B	

Analysis Batch: 153920

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	SM 5310C	
MB 860-153920/21	Method Blank	Total/NA	Water	SM 5310C	
MB 860-153920/55	Method Blank	Total/NA	Water	SM 5310C	
LCS 860-153920/22	Lab Control Sample	Total/NA	Water	SM 5310C	
LCS 860-153920/56	Lab Control Sample	Total/NA	Water	SM 5310C	
LCSD 860-153920/23	Lab Control Sample Dup	Total/NA	Water	SM 5310C	
LCSD 860-153920/57	Lab Control Sample Dup	Total/NA	Water	SM 5310C	
LLCS 860-153920/24	Lab Control Sample	Total/NA	Water	SM 5310C	

Analysis Batch: 154031

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	8000	
MB 860-154031/3	Method Blank	Total/NA	Water	8000	
LCS 860-154031/4	Lab Control Sample	Total/NA	Water	8000	

Analysis Batch: 154088

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-70887-1	Outfall 001	Total/NA	Water	365.1	<u> </u>
MB 860-154088/40	Method Blank	Total/NA	Water	365.1	
LCS 860-154088/41	Lab Control Sample	Total/NA	Water	365.1	
LCSD 860-154088/42	Lab Control Sample Dup	Total/NA	Water	365.1	

Analysis Batch: 489850

Lab Sample ID 860-70887-1	Client Sample ID Outfall 001	Prep Type Total/NA	Matrix Water	Method OIA-1677	Prep Batch
MB 410-489850/17	Method Blank	Total/NA	Water	OIA-1677	
LCS 410-489850/16	Lab Control Sample	Total/NA	Water	OIA-1677	

Eurofins Houston

Page 42 of 61

Lab Chronicle

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Client Sample ID: Outfall 001

Date Collected: 03/27/24 08:30 Date Received: 03/27/24 14:30 Lab Sample ID: 860-70887-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	5 mL	5 mL	152033	03/28/24 11:14		EET HOU
Total/NA	Prep	625			1000 mL	1.00 mL	152882	04/02/24 15:31		EET HOU
Total/NA	Analysis	625.1		1	1 mL	1 mL	153021	04/03/24 22:32	PXS	EET HOU
Total/NA	Prep	608			1000 mL	1 mL	154669	04/13/24 06:30		EET HOU
Total/NA	Analysis	608.3		1			154783	04/15/24 11:50		EET HOU
Total/NA	Analysis	300.0		1			152429	03/31/24 19:26		EET HOU
Total/NA	Analysis	300.0		1			152430	03/31/24 19:26	A1S	EET HOU
Total/NA	Prep	1631E			40 mL	40 mL	666544	04/01/24 15:00		EET PEN
T-1-1/NIA	A	40045					Completed:	04/02/24 08:50		
Total/NA	Analysis	1631E		1			666639	04/02/24 12:15		EET PEN
Total Recoverable	Prep	200.8		1	50 mL	50 mL	152924	04/02/24 18:00		EET HOU
Total Recoverable	Analysis	200.8		1			153111	04/03/24 20:14		EET HOU
Total Recoverable Total Recoverable	Prep Analysis	200.8 200.8		1	50 mL	50 mL	152924 153322	04/02/24 18:00 04/04/24 13:15		EET HOU
Total Recoverable	•			'	EO mal	50 ml				
Total Recoverable	Prep Analysis	200.8 200.8		1	50 mL	50 mL	152924 153356	04/02/24 18:00 04/04/24 18:09		EET HOU
Total/NA	Analysis	1664B		1	950 mL	1000 mL	153724	04/08/24 11:12		EET HOL
Total/NA	Analysis	350.1		1	10 mL	10 mL	153225	04/03/24 23:28		EET HOU
	•			'				04/03/24 23:28		
Total/NA Total/NA	Prep Analysis	351.2 351.2		1	20 mL	20 mL	152741 153251	04/01/24 20:31		EET HOU
Total/NA	Analysis	360.1		1			152539	03/31/24 14:09		EET HOU
Total/NA	Analysis	365.1		2	10 mL	10 mL	154088	04/09/24 19:34		EET HOL
Total/NA	•	7196A		1	25 mL	25 mL	151876	03/27/24 19:03		EET HOL
	Analysis				23 IIIL	23 IIIL				
Total/NA	Analysis	7196A		1			151048	04/08/24 19:28		EET HOU
Total/NA	Analysis	8000		1	2 mL	2 mL	154031	04/09/24 20:17		EET HOL
Total/NA	Analysis	Nitrogen,Org		1			152166	04/05/24 18:57	SC	EET HOU
Total/NA	Analysis	OIA-1677		1			489850	04/02/24 16:02	UJE2	ELLE
Total/NA	Analysis	SM 2120B		1	50 mL	50 mL	153543	03/28/24 17:00	YG	EET HOU
Total/NA	Analysis	SM 2320B		1			152609	03/29/24 18:25	SC	EET HOU
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	152828	04/02/24 12:40	FN	EET HOU
Total/NA	Analysis	SM 2540D		1	1000 mL	1000 mL	152929	04/02/24 18:33	FN	EET HOU
Total/NA	Analysis	SM 4500 CI G		1	10 mL	10 mL	152922	04/02/24 18:16	SCI	EET HOU
Total/NA	Analysis	SM 4500 S2 D		1	7.5 mL	7.5 mL	153135	04/03/24 18:05	SCI	EET HOU
Total/NA	Analysis	SM 4500 SO3 B		1	50 mL	50 mL	153341	04/04/24 17:40	SCI	EET HOL
Total/NA	Prep	BOD Prep					152129	03/28/24 10:11		EET HOL
Total/NA	Analysis	SM 5210B		1	200 mL	300 mL	153612	03/28/24 12:46		EET HOL
Total/NA	Analysis	SM 5310C		1	40 mL	40 mL	153920	04/09/24 06:59	YG	EET HOU
Total/NA	Prep	BOD Prep					152194	03/28/24 12:52	HN	EET HOL
Total/NA	Analysis	SM5210B CBOD		1	200 mL	300 mL	153613	03/28/24 15:34		EET HOU

Eurofins Houston

3

4

7

0

10

12

14

Lab Chronicle

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

EET PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Envirodyne = Envirodyne Laboratories, 11011 Brooklet Street Suite 230, Houston, TX 77099

1

3

4

5

9

10

12

Accreditation/Certification Summary

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-00759	08-03-24
Florida	NELAP	E871002	06-30-24
Louisiana (All)	NELAP	03054	06-30-24
Oklahoma	NELAP	1306	08-31-24
Oklahoma	State	2023-139	08-31-24
Texas	NELAP	T104704215	06-30-24
Texas	TCEQ Water Supply	T104704215	12-28-25
USDA	US Federal Programs	525-23-79-79507	03-20-26

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Dat	
A2LA	Dept. of Defense ELAP	0001.01	11-30-24	
A2LA	ISO/IEC 17025	0001.01	11-30-24	
Alabama	State	43200	01-31-25	
Alaska	State	PA00009	06-30-24	
Alaska (UST)	State	17-027	02-28-25	
Arizona	State	AZ0780	03-12-25	
Arkansas DEQ	State	88-00660	08-09-24	
California	State	2792	11-30-24	
Colorado	State	PA00009	06-30-24	
Connecticut	State	PH-0746	06-30-25	
DE Haz. Subst. Cleanup Act (HSCA)	State	019-006 (PA cert)	01-31-25	
Delaware (DW)	State	N/A	01-31-25	
Florida	NELAP	E87997	06-30-25	
Georgia (DW)	State	C048	01-31-25	
Hawaii	State	N/A	01-31-25	
Illinois	NELAP	200027	01-31-25	
Iowa	State	361	03-01-24 *	
Kansas	NELAP	E-10151	10-31-24	
Kentucky (DW)	State	KY90088	12-31-24	
Kentucky (UST)	State	0001.01	11-30-24	
Kentucky (WW)	State	KY90088	12-31-23 *	
Louisiana (All)	NELAP	02055	06-30-24	
Maine	State	2019012	03-12-25	
Maryland	State	100	06-30-25	
Massachusetts	State	M-PA009	06-30-24	
Michigan	State	9930	01-31-25	
Minnesota	NELAP	042-999-487	12-31-24	
Mississippi	State	023	01-31-25	
Missouri	State	450	01-31-25	
Montana (DW)	State	0098	01-01-25	
Nebraska	State	NE-OS-32-17	01-31-25	
New Hampshire	NELAP	2730	01-10-25	
New Jersey	NELAP	PA011	06-30-24	
New York	NELAP	10670	04-01-25	
North Carolina (DW)	State	42705	07-31-24	
North Carolina (WW/SW)	State	521	12-31-24	
Oklahoma	NELAP	9804	08-31-24	

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Eurofins Houston

Accreditation/Certification Summary

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Oregon	NELAP	PA200001	09-11-24
Pennsylvania	NELAP	36-00037	04-07-24
Quebec Ministry of Environment and Fight against Climate Change	PALA	507	09-16-24
Rhode Island	State	LAO00338	12-30-24
South Carolina	State	89002	01-31-24 *
Tennessee	State	02838	01-31-25
Texas	NELAP	T104704194-23-46	08-31-24
USDA	US Federal Programs	525-22-298-19481	10-25-25
Vermont	State	VT - 36037	10-28-24
Virginia	NELAP	460182	06-14-25
Washington	State	C457	04-11-24
West Virginia (DW)	State	9906 C	01-31-25
West Virginia DEP	State	055	07-31-24
Wyoming	State	8TMS-L	01-31-25
Wyoming (UST)	A2LA	0001.01	11-30-24

Laboratory: Eurofins Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alabama	State	40150	06-30-24
ANAB	ISO/IEC 17025	L2471	02-22-26
Arkansas DEQ	State	88-00689	08-01-24
California	State	2510	06-30-24
Florida	NELAP	E81010	06-30-24
Georgia	State	E81010(FL)	06-30-24
Illinois	NELAP	200041	10-09-24
Kansas	NELAP	E-10253	10-31-24
Kentucky (UST)	State	53	06-30-24
Louisiana (All)	NELAP	30976	06-30-24
Louisiana (DW)	State	LA017	12-31-24
North Carolina (WW/SW)	State	314	12-31-24
Oklahoma	NELAP	9810	08-31-24
Pennsylvania	NELAP	68-00467	01-31-25
South Carolina	State	96026	06-30-24
Tennessee	State	TN02907	06-30-24
Texas	NELAP	T104704286	09-30-24
US Fish & Wildlife	US Federal Programs	A22340	06-30-24
USDA	US Federal Programs	FLGNV23001	01-08-26
USDA	US Federal Programs	P330-21-00056	05-17-24
Virginia	NELAP	460166	06-14-24
West Virginia DEP	State	136	03-31-25

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	EPA	EET HOU
625.1	Semivolatile Organic Compounds (GC/MS)	EPA	EET HOU
608.3	Polychlorinated Biphenyls (PCBs) (GC)	EPA	EET HOU
300.0	Anions, Ion Chromatography	EPA	EET HOU
1631E	Mercury, Low Level (CVAFS)	EPA	EET PEN
200.8	Metals (ICP/MS)	EPA	EET HOU
1664B	HEM and SGT-HEM	1664B	EET HOU
350.1	Nitrogen, Ammonia	EPA	EET HOU
351.2	Nitrogen, Total Kjeldahl	EPA	EET HOU
360.1	Oxygen, Dissolved	EPA	EET HOU
365.1	Phosphorus, Total	EPA	EET HOU
7196A	Chromium, Hexavalent	SW846	EET HOU
7196A	Chromium, Trivalent (Colorimetric)	SW846	EET HOU
3000	COD	Hach	EET HOU
Nitrogen,Org	Nitrogen, Organic	EPA	EET HOU
DIA-1677	Cyanide, Available (Flow Injection)	OI CORP	ELLE
SM 2120B	Color, Colorimetric	SM	EET HOU
SM 2320B	Alkalinity	SM	EET HOU
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET HOU
SM 2540D	Solids, Total Suspended (TSS)	SM	EET HOU
SM 4500 CI G	Chlorine, Residual	SM	EET HOU
SM 4500 S2 D	Sulfide, Total	SM	EET HOU
SM 4500 SO3 B	Sulfite	SM	EET HOU
SM 5210B	BOD, 5-Day	SM	EET HOU
SM 5310C	TOC	SM	EET HOU
SM5210B CBOD	Carbonaceous BOD, 5 Day	SM	EET HOU
Subcontract	Surfactants	None	Envirodyne
631E	Preparation, Mercury, Low Level	EPA	EET PEN
8.00	Preparation, Total Recoverable Metals	EPA	EET HOU
51.2	Nitrogen, Total Kjeldahl	EPA	EET HOU
08	Liquid-Liquid Extraction (Separatory Funnel)	EPA	EET HOU
325	Liquid-Liquid Extraction	EPA	EET HOU
BOD Prep	Preparation, BOD	SM	EET HOU

Protocol References:

1664B = EPA-821-98-002

EPA = US Environmental Protection Agency

Hach = Hach Company

None = None

OI CORP = OI Corporation Instrument Manual.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

EET PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Envirodyne = Envirodyne Laboratories, 11011 Brooklet Street Suite 230, Houston, TX 77099

Sample Summary

Client: Messer LLC Job ID: 860-70887-1

Project/Site: Messer Gas ASU Permit Renewal 3-27-24

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-70887-1	Outfall 001	Water	03/27/24 08:30	03/27/24 14:30

a

19 April 2024

Eurofins Houston Lance Tigrett 4147 Greenbriar Dr. Stafford, TX 77477

Messer Gas ASU Permit Renewal 2024

Enclosed are the results of analyses for samples received by the laboratory on 28-Mar-24 08:59. The analytical data provided relates only to the samples as received in this laboratory report.

ELI certifies that all results are NELAP compliant and performed in accordance with the referenced method except as noted in the Case Narrative or as noted with a qualifier. Any reproductions of this laboratory report should be in full and only with the written authorization from the client.

The total number of pages in this report is 5

Thank you for selecting ELI for your analytical needs. If you have any questions regarding this report, please contact us.

Sincerely,

Julie Peterson

Client Services Representative

Certificate No: T104704265-22-20

Client: Eurofins Houston

 Project:
 Messer Gas ASU Permit Renewal 2024
 Reported:

 Work Order:
 24D0471
 19-Apr-24 16:20

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Outfall 001 (860-70887-1)	24D0471-01	Water	27-Mar-24 08:30	28-Mar-24 08:59

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dorm

Page 2 of 5

Client: Eurofins Houston

Project: Messer Gas ASU Permit Renewal 2024
Work Order: 24D0471

Reported:

19-Apr-24 16:20

Outfall 001 (860-70887-1)

24D0471-01 (Water) Sampled: 27-Mar-24 08:30

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Analyst	Notes
			Envirod	yne Labo	ratories, I	nc.				
Wet Chemistry										
Surfactants	< 0.10	0.10	mg/L	1	B4C5759	29-Mar-24	29-Mar-24 08:30	SM5540 C	JMM	

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Silven

Julie Peterson, Client Services Representative

Page 3 of 5

Client: Eurofins Houston

Project: Messer Gas ASU Permit Renewal 2024

Work Order: 24D0471

Reported: 19-Apr-24 16:20

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B4C5759 - Inorganics										
Blank (B4C5759-BLK1)				Prepared &	Analyzed:	29-Mar-24				
Surfactants	< 0.10	0.10	mg/L							
LCS (B4C5759-BS1)				Prepared &	Analyzed:	29-Mar-24				
Surfactants	0.900		mg/L	1.00		90.0	90-110			
Duplicate (B4C5759-DUP1)	Sour	ce: 24D0471-	01	Prepared &	Analyzed:	29-Mar-24				
Surfactants	< 0.10	0.10	mg/L		< 0.10			0	20	
Reference (B4C5759-SRM1)				Prepared &	Analyzed:	29-Mar-24				
Surfactants	0.0800		mg/L	0.100		80.0	0-200			

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Derm

Julie Peterson, Client Services Representative

Page 4 of 5

Client: Eurofins Houston

Project: Messer Gas ASU Permit Renewal 2024

Work Order: 24D0471

Reported: 19-Apr-24 16:20

Notes and Definitions

- ND Analyte NOT DETECTED at or above the reporting limit
- < Result is less than the RL
- a Analyte not available for TNI/NELAP accreditation
- n Not accredited

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Speren

Page 5 of 5

Eurofins Houston とよいのいしょう	Chain of Custody Record	ody Record		: ≎	🔆 eurofins Environment Testing
Client Information (Sub Contract Lab)	Sampler:	Lab PM: Tigrett, Lance	Carrier Tracking No(s)		COC No: 860-109229.1
	Phone:	E-Mail: Lance.Tigrett@et.eurofinsus.com	State of Origin: Texas	Page:	Page: Page 1 of 1
Company: Envirodyne Laboratories		Accreditations Required (See note): NELAP - Texas		Job#:	Job #: 860-70887-1
Address: 11011 Brooklet Street Suite 230,	Due Date Requested: 4/2/2024		Analysis Requested	Prese	Preservation Codes:
City: Houston Stato Zio:	TAT Requested (days):			N - O - C	N - None B - NaOH C - Zn Acetate D - Nitric Acid P - Na2O4S
Zare, 2.p. TX, 77099 Bhox, 17099	# C G				aHSO4 R - Na2S203 eOH C - H2S203
rnone.	PO#	(0		G - Ar H - As	G - Amchlor S - H2S04 H - Ascorbic Acid L Assert
Email:	#OM	(oN		COLUMB	
Project Name: Messer Gas ASU Permit Renewal 2024	Project#. 86006711	10 59		rainei L-EDA	ď
Site;	SSOW#;	y) as		of cor	
Osmulo Identification Client ID 11 ob 101	Sample Type Sample (C=comb.	Matrix (Wester		19dmuM lsto	Special Institutefican Meter
	Preserva			1	opecial methodis/note.
Outfall 001 (860-70887-1)	\vdash	Water		-	
	Central				
Note: Since laboratory accreditations are subject to change. Eurofins Environmen	nt Testing South Central. LLC places the ownership of	f method, analyte & accreditation compliance upor	our subcontract laboratories. This	s sample shipment is forw	arded under chain-of-custody. If the
laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/rests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, LLC.	above for analysis/tests/matrix being analyzed, the samentral, LLC attention immediately. If all requested accr	nples must be shipped back to the Eurofins Enviror reditations are current to date, return the signed C	nment Testing South Central, LLC I: hain of Custody attesting to said co	laboratory or other instruction in the compliance to Eurofins Envi	tions will be provided. Any changes to ironment Testing South Central, LLC.
Possible Hazard Identification Unconfirmed		Sample Disposal (A fee	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Mor	oles are retained long	nger than 1 month)
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	Special Instructions/QC Requirements/	Requirements:		
Empty Kit-Relinquished by:	Date:	Time:	Method of Shipment	oment.	
Relinquished by:	8/24 0859	Company Received by:	Dat	Date/Time:	Company
Relinquished by:		Company Received by:	Dat	Date/Time:	Company
	Date/Time:	Company Received by:	-6	3/28/14 (1)	OBS9 Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No		Cooler Temperature(s) °C and other Remarks:	and Other Remarks: 2.7 2.7	1 1124Y	

	Custody Seals Infact: Custody Seal No.	Relinguished by Relinguished B	Relinguished by	Empty Kit Relinquished by	Deliverable Requested I, II, III IV Other (specity)	Brit	Possible Linear Idealine						OVTFALL COI		Sample Identification	Site:	Messer Gas ASU Permit Renewal 2024	Emait: ani.qafisheh@messer-us.com	Phone:	TX, 77571	City: Conte	Address: 11605 Strang Rd	Company: Messer LLC	Client Contact Rami Qafisheh	Client Information	Stafford, TX 7/4/// Phone (281) 240-4200	4145 Greenbriar Dr	Edigins Houston
	1	Date/Time:	7-24/	Date:		Poison B Unknown 🔲							3-27-24 0830	١.	Sample Date Time	SSOW#	Project #: 86006711	WO #	*	Compliance Project: A Yes	TAT Requested (days):	Due Date Requested:		i	Sampler B. SmITH		Chain	
		438 Company	1125 Messe			Radiological							% Water	Preservation Code:	Sample Matrix Type (www.new Sesolid, (C=comp, ownsaucci G=grab) BT-Tasse, A-Air)					∆ No			PWSID:				Chain of Custody Record	
	Cooler Temperature(s) °C	Received by	1	Time.	Special Instructions/QC	Sample Disposal (A fee	!						× × ×	XXN B CBS	Field Filtered Perform MS/I 1631E Mercui 1677 -Available SM4500_S2_D 350.1 351.2, 36	MSD () ry, Low CN -Sulfid	(es or Level	No) (GVAF	S)				Α	E-Mail: Lance.Tigrett@et.eurofinsus.com	Tigrett, Lance 860-70		ecord	
	°C and Other Remarks:	1 teres	That	Method	Requireme	Disposal E							x	NUNN	5310C Total C 2320B, 300_OF 2120B, 4500_C 200.8 Custom 608.3_PCB, 62	RGFM_1 L_G, 51 List 22 5.1 624	28D, 30 540C, 7 2 Analy	7196A, 7196A, 7196A	7196A_	CR3	THMs		Analysis Requested	om	70887 Chain of Custody			
	-	Date/Time:	Date/Time:	Method of Shipment:		nples	Соп	C/F·+0				Te	X X X X Fie	A N	2549D (TSS), 1664B_NP HE SM4500SO3_B 360.1 SM5210B Total Number	Sulfit Sulfit B_Calc,	e SM52 ntaine	10B_CI	BODCa	n in c		Pr	Job	Page				
Ver: 01/16/2019		1430 Company	C 25 Company			are retained longer than 1 month) Archive For Months	Corrected Temp: >)	222				Temp: 67	Field pH: 7. 9		Special Instructions/Note:	Other	24	lice V Acetone DI Water V MCAA FOTA W PH 4-5	ā. :⊣os	ΣO.	NaOH None NaOH O AsNaO2 Zn Acetate P Na2045	Codes:	Job #:		ю No: ,0-27818-9638,1		eurofins	

ompany Ompany

Date/Time:

}

sceived by:

Сотрапу Company Company

Sico

2824

Date/Time: Date/Time:

Time:

Method of Shipmerit

Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing South Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratory or other instruction that shaped back to the Eurofins Environment Testing South Central, LLC laboratory or other instructional analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC attention in mediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Enganne.

Sample Disposal (A fee may be assessed if samples are retained to Return To Client Disposal By Lab

Special Instructions/QC Requirements:

Primary Deliverable Rank: 2

Deliverable Requested: I, II, III, IV, Other (specify)

Empty Kit Relinquished by

telinquished by:

elinquished by:

elinquished by

ડ

ossible Hazard Identification

nconfirmed

Return To Client

2000

Cooler Temperature(s) °C and Other Remarks;

Received by: Received by:

Date/F

15 16

Custody Seals Intact: Δ Yes Δ-No 4/19/2024

Custody Seal No.:

Outfall 001 (860-70887-1)

Environment Testing

eurofins

Chain of Custody Record

COC No: 860-109543.1

State of Origin: Texas

Lance. Tigrett@et.eurofinsus.com Accreditations Required (See note): NELAP - Texas

Lab PM: Tigrett, Lance

Sampler

Client Information (Sub Contract Lab)

Phone: 281-240-4200 Stafford, TX 77477

Eurofins Environment Testing Southeast

Shipping/Receiving

Client Contact:

3355 McLemore Drive,

Pensacola State, Zip: FL, 32514

K

Eurofins Houston 🐺

4145 Greenbriar Dr

Phone:

E-Mail:

- TSP Dodecahydrate

G - Amchlor H - Ascorbic Acid

|- |ce

F - MeOH

U - Acetone V - MCAA W - pH 4-5 Y - Trizma

J - DI Water K - EDTA L - EDA

631E/1631E_Prep Mercury, Low Level (CVAFS)

Matrix

Sample

(€≍Çomp,

G=grab) Aype

Sample (C-company)

Sample Date

Sample Identification - Client ID (Lab ID)

eriorm MS/MSD (Yes or No)

Project #: 86006711

Project Name: Messer Gas ASU Permit Renewal 3-27-24

850-474-1001(Ťel) 850-478-2671(Fax)

₩O₩

SSOW#:

N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 S - H2SO4

A - HCL B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4

M - Hexane

Preservation Codes:

Analysis Requested

'AT Requested (days): Due Date Requested: 4/3/2024

860-70887-1 Page: Page 1 òf 1

Z - other (specify)

Other:

Special Instructions/Note:

Water

Central

3/27/24

1

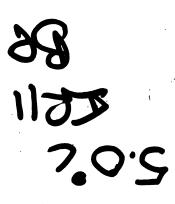
2

4

5

6

Ω


9

44

12

10

15

. 1. 3. BFM 1. 3. BFM

MANAM SS - 184 PRIORITY OVERNIGHT ASN9 SX

Ced Typy 3660 4992, Thek. 7757 3660 4992,

4145 Greenbriar Dr Stafford, TX 77477

Chain of Custody Record

eurofins |

Environment Testing

Phone: 281-240-4200												_						
Client Information (Sub Contract Lab)	Sampler:		Lab PM Tigrett		се								ing No(3):			COC No: 860-109547.1	
Client Contact: Shipping/Receiving	Phone:		E-Mail: Lance	Tiare	ett@e	et.eurof	finsus.	com			State o Texas		n:				Page: Page 1 of 1	
Company:	· · · · · · · · · · · · · · · · · · ·		A	ccredi	tations	Require			_							1	Job#:	
Eurofins Lancaster Laboratories Environm	Due Date Requested:			NELA	P - 16	exas											860-70887-1 Preservation Code	
Address: 2425 New Holland Pike, ,	4/3/2024						A	Analy	sis	Requ	uest	ed				ľ	A - HCI	M - Hexane
City:	TAT Requested (days):		2 1											1			B - NaOH	N - None O - AsNaO2
Lancaster State, Zip:	_		0000													麗.	D - Nitric Acid	P - Na2O4S Q - Na2SO3
PA, 17601			1														E - NaMSU4	R - Na2S2O3
Phone: [717-656-2300(Tel)	PO #:		1														G - Amenior	S - H2SO4 T - TSP Dodecahyd
Email:	WO #:	,		or No).												35	I - Ice J - DI Water	U - Acetone V - MCAA W - pH 4-5
Project Name:	Project #:		2	S OF												aine	K-EDIA	Y - Trizma
Messer Gas ASU Permit Renewal 3-27-24 Site:	B6006711 SSOW#:			Sample ISD (Ye												containers	Other:	Z - other (specify)
<u> </u>				NSD NS												6		
Sample Identification - Client ID (Lab ID)	Sample Date Time	Type (We'	water, solid, sste/oll, ue, A=Air)	Perform MS/MSD (Yes	1677											Total Number	Special in	structions/Note:
	\sim	Preservation C	ode:	\propto		386		生物	183			Q49 8	8 6		45	\bowtie	A STATE OF THE STA	AND THE PARTY OF T
Outfall 001 (860-70887-1)	3/27/24 08:30 Centr	1 00	ater	+	X			-			-			-		1		-
				+-	+						\dashv		+	+-				
				-	-	+	-	-	-		+	-	-	-				
				+	1-	-			-		-	-	_	-		250		
									<u></u>			_						
			1													100		
				\top												織		
				1				+			\neg	\dashv	\neg	_		o.		
				╁	+	\vdash	-	+	-		-	+	+	+			-	
																Sag	1	
Note: Since laboratory accreditations are subject to change, Eurofins En laboratory does not currently maintain accreditation in the State of Origin accreditation status should be brought to Eurofins Environment Testing:	listed above for analysis/tests/matrix b	eing analyzed, the sample	s must be	shipp	ed bac	ck to the	Eurofin	ns Envin	onmen	t Testia	ng Sou	ith Ce	stral, LL	C labora	atory o	or other	ner instructions will be	provided. Any chang
Possible Hazard Identification				Sa					may					oles ar	e reta	aine	ed longer than 1 i	month)
Unconfirmed						Return				_	ispos	al By	Lab		\square_A	rchi	ive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rai	ık: 2		Sp	pecial	l Instru	ctions	/QC R	equir	emen	ts:							
Empty Kit Relinquished by:	Date:			Time	:							Metho	d of Shi	pment:				
Relinquished by:		Comp			Rec	eived by	y:					_		ate/Time				Сотрапу
Relinquished by:	Date/Time:	9 отр	any		Rec	eived by	¥:						D	ste/Time	-			Company
Relinquished by:	Date/Time:	Comp	any		Rec	eived by	у:	-		\rightarrow			D	ate/Time	ha	Z	1- 1270	Company +
Custody Seals Intact: Custody Seal No.:				-	Con	oler Tem	peratur	e(s) °C	and Ot	her Re	marks	:	10	7/	011	1/2	4 11100	1000
A Vas. A No.					1	10111		-1-, 0					1/.:	ا لہ	_ /		(:6	<i>1.</i> U

NY

Ver: 06/08/2021

Page 58 of 61

4/19/2024

Client: Messer LLC Job Number: 860-70887-1

Login Number: 70887 List Source: Eurofins Houston

List Number: 1

Creator: Torres, Sandra

Creator. Torres, Sandra		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.1
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
here are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

Login Sample Receipt Checklist

Client: Messer LLC Job Number: 860-70887-1

Login Number: 70887 List Source: Eurofins Lancaster Laboratories Environment Testing, LLC

List Number: 2 List Creation: 03/29/24 10:38 AM

Creator: Santiago, Nathaniel

Question	Answer	Comment
The cooler's custody seal is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature acceptable, where thermal pres is required (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV:Container Temp acceptable, where thermal pres is required (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact.	N/A	
VOA sample vials do not have headspace >6mm in diameter (none, if from WV)?	N/A	

Client: Messer LLC Job Number: 860-70887-1

List Source: Eurofins Pensacola
List Number: 3
List Creation: 03/30/24 02:44 PM

Creator: Earnest, Tamantha

Creator: Earnest, Tamantha		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	5.0°C IR11
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

5

7 8

10

12

14

ANALYTICAL REPORT

PREPARED FOR

Attn: Rami Qafisheh Messer LLC 11605 Strang Rd. La Porte, Texas 77571

Generated 4/15/2024 8:16:42 PM

JOB DESCRIPTION

Messer Gas ASU Permit Renewal 4-3-24

JOB NUMBER

860-71363-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Authorized for release by

Lance Tigrett, Project Manager II Lance.Tigrett@et.eurofinsus.com (979)484-9088

Eurofins Houston is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of

4/15/2024

4/15/2024 8:16:42 PM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	6
Detection Summary	8
Client Sample Results	9
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	35
_ab Chronicle	40
Certification Summary	41
Method Summary	43
Sample Summary	44
Chain of Custody	45
Receipt Checklists	49

3

4

6

9

10

12

14

Definitions/Glossary

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Qualifier	Qualifier Description
*_	LCS and/or LCSD is outside acceptance limits, low biased.
*+	LCS and/or LCSD is outside acceptance limits, high biased.
*4	LCC/LCCD DDD avecade control limits

LCS/LCSD RPD exceeds control limits.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. .I

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. J

U Indicates the analyte was analyzed for but not detected.

Metals

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier	Qualifier Description
^2	Calibration Blank (ICB and/or CCB) is outside acceptance limits.
В	Compound was found in the blank and sample.

F1 MS and/or MSD recovery exceeds control limits.

Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time. HF

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly	used abbreviations ma	y or may not be	present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery %R **CFL** Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent

Eurofins Houston

Page 4 of 51 4/15/2024

Definitions/Glossary

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Too Numerous To Count

Glossary (Continued)

TNTC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Messer LLC Job ID: 860-71363-1

Project: Messer Gas ASU Permit Renewal 4-3-24

Job ID: 860-71363-1 Eurofins Houston

Job Narrative 860-71363-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 4/3/2024 1:40 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 13.0°C.

Subcontract Work

Method Surfactants: This method was subcontracted to Envirodyne Laboratories. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 625.1: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 860-154157 and analytical batch 860-154258 recovered outside control limits for the following analyte: Pyridine.

Method 625.1: The laboratory control sample and the laboratory control sample duplicate (LCS/LCSD) for preparation batch 860-154157 and analytical batch 860-154258 recovered outside control limits for the following analyte: Benzidine. Benzidine has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. Batch precision also exceeded control limits for this analyte. These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The instrument blank/CCB for analytical batch 860-153142 contained Chloride greater than the method detection limit (MDL), and were not reanalyzed because associated sample(s) results were greater than 10X the value found in the instrument blank/CCB. The data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Method 200.8 - Total Recoverable: The following sample was diluted to bring the concentration of target analytes within the calibration range: Outfall 001 (860-71363-1). Elevated reporting limits (RLs) are provided.

Method 200.8 - Total Recoverable: The following sample was diluted to bring the concentration of target analytes within the calibration range: Outfall 001 (860-71363-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 2320B: The instrument blank/CCB and method blank for analytical batch 860-154745 contained Bicarbonate Alkalinity greater than the reporting limit (RL) and were not reanalyzed because associated sample(s) results were greater than 10X the value found in the instrument blank/CCB. The data have been qualified and reported.

Method 2320B: The method blank for analytical batch 860-154745 contained Bicarbonate Alkalinity above the reporting limit (RL). Associated sample(s) were not re-extracted and/or re-analyzed because results were greater than 10X the value found in the

Eurofins Houston

Page 6 of 51 4/15/2024

3

4

5

7

8

11

12

Case Narrative

Client: Messer LLC Job ID: 860-71363-1

Project: Messer Gas ASU Permit Renewal 4-3-24

Job ID: 860-71363-1 (Continued)

Eurofins Houston

method blank.

Method 365.1_NP: The matrix spike (MS) and/or matrix spike duplicate (MSD) recovery for analytical batch 860-154643 was outside control limits for the following analyte(s): Phosphorus. Results may be biased high because this analyte is a common laboratory solvent and contaminant.

Method 4500_CL_G: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 860-154024 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

9

-

6

8

9

11

14

Detection Summary

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Client Sample ID: Outfall 001

Lab Sample ID: 860-71363-1

Sample Analysis Not Complete.

This Detection Summary does not include radiochemical test results.

6

8

9

11

4 A

Client Sample Results

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Client Sample ID: Outfall 001

Date Collected: 04/03/24 08:00 Date Received: 04/03/24 13:40 Lab Sample ID: 860-71363-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acrolein	0.011	U	0.050	0.011	mg/L			04/05/24 16:50	1
Acrylonitrile	0.014	U	0.050	0.014	mg/L			04/05/24 16:50	1
Benzene	0.00046	U	0.0010	0.00046	mg/L			04/05/24 16:50	1
Carbon tetrachloride	0.00090	U	0.0050	0.00090	mg/L		>	04/05/24 16:50	1
Chlorobenzene	0.00046	U	0.0010	0.00046	mg/L			04/05/24 16:50	1
1,2,4-Trichlorobenzene	0.0018	U	0.0050	0.0018	mg/L			04/05/24 16:50	1
1,2-Dichloroethane	0.00037	U	0.0010	0.00037	mg/L			04/05/24 16:50	1
1,1,1-Trichloroethane	0.00059	U	0.0050	0.00059	mg/L			04/05/24 16:50	1
1,1-Dichloroethane	0.00064	U	0.0010	0.00064	mg/L			04/05/24 16:50	1
1,1,2-Trichloroethane	0.00041	U	0.0010	0.00041	mg/L			04/05/24 16:50	1
1,2-Dibromoethane	0.0010	U	0.0050	0.0010	mg/L			04/05/24 16:50	1
1,1,2,2-Tetrachloroethane	0.00047	U	0.0010	0.00047	mg/L			04/05/24 16:50	1
Chloroethane	0.0020	U	0.010	0.0020	mg/L			04/05/24 16:50	1
2-Chloroethyl vinyl ether	0.00075	U	0.0050	0.00075	mg/L			04/05/24 16:50	1
Chloroform	0.054		0.0010	0.00046	mg/L			04/05/24 16:50	1
1,2-Dichlorobenzene	0.00043	U	0.0010	0.00043	mg/L			04/05/24 16:50	1
1,3-Dichlorobenzene	0.00041	U	0.0010	0.00041	mg/L			04/05/24 16:50	1
1,4-Dichlorobenzene	0.00045	U	0.0010	0.00045	mg/L			04/05/24 16:50	1
1,1-Dichloroethene	0.00074	Ù.	0.0010	0.00074	mg/L			04/05/24 16:50	1
trans-1,2-Dichloroethene	0.00037	U	0.0010	0.00037	mg/L			04/05/24 16:50	1
1,2-Dichloropropane	0.00056	W.	0.0050	0.00056	mg/L			04/05/24 16:50	1
Ethylbenzene	0.00039	Ú	0.0010	0.00039	mg/L			04/05/24 16:50	1
2-Butanone	0.0083	U	0.050	0.0083	mg/L			04/05/24 16:50	1
Methylene Chloride	0.0017	U	0.0050	0.0017	mg/L			04/05/24 16:50	1
Chloromethane	0.0020	U	0.010	0.0020	mg/L			04/05/24 16:50	1
Bromomethane	0.0014	U	0.0050	0.0014	mg/L			04/05/24 16:50	1
Bromoform	0.00063	U	0.0050	0.00063	mg/L			04/05/24 16:50	1
Bromodichloromethane	0.0060		0.0010	0.00055	mg/L			04/05/24 16:50	1
Chlorodibromomethane	0.0012	J	0.0050	0.00055	mg/L			04/05/24 16:50	1
Hexachlorobutadiene	0.00063	U	0.0050	0.00063	mg/L			04/05/24 16:50	1
Naphthalene	0.0014	U	0.010	0.0014	mg/L			04/05/24 16:50	1
Tetrachloroethene	0.00066	U	0.0010	0.00066	mg/L			04/05/24 16:50	1
Toluene	0.00048	U	0.0010	0.00048	mg/L			04/05/24 16:50	1
Trichloroethene	0.0015	U	0.0050	0.0015	mg/L			04/05/24 16:50	1
Vinyl chloride	0.00043	U	0.0020	0.00043	mg/L			04/05/24 16:50	1
1,3-Dichloropropylene	0.0013	U	0.0050	0.0013	mg/L			04/05/24 16:50	1
cis-1,3-Dichloropropene	0.0011	U	0.0050	0.0011	mg/L			04/05/24 16:50	1
Trihalomethanes, Total	0.061		0.0050	0.00063	-			04/05/24 16:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

١	Surrogate	%Recovery	Qualifier	Limits	Prep	pared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	102		63 - 144			04/05/24 16:50	1
	4-Bromofluorobenzene (Surr)	101		74 - 124			04/05/24 16:50	1
	Dibromofluoromethane (Surr)	105		75 - 131			04/05/24 16:50	1
	Toluene-d8 (Surr)	101		80 - 120			04/05/24 16:50	1

Method: EPA 625.1 - Semivola	atile Organic Compounds	(GC/MS)	
Analyte	Result Qualifier	RL	MDL Unit

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	0.0013	U	0.010	0.0013	mg/L		04/10/24 15:48	04/11/24 20:22	1
1,2-Dichlorobenzene	0.0016	U	0.010	0.0016	mg/L		04/10/24 15:48	04/11/24 20:22	1
1,3-Dichlorobenzene	0.0014	U	0.010	0.0014	mg/L		04/10/24 15:48	04/11/24 20:22	1

Eurofins Houston

Page 9 of 51 4/15/2024

Client Sample Results

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Client Sample ID: Outfall 001

Lab Sample ID: 860-71363-1 Date Collected: 04/03/24 08:00

Matrix: Water Date Received: 04/03/24 13:40

0.0016 0.0014 0.0048 0.0016 0.00031 0.0020 0.0022 0.00046 0.0014 0.0016 0.00065 0.00031 0.00065 0.0013 0.0015	U	0.010 0.0057 0.020 0.0050 0.0050 0.0048 0.010 0.010 0.0050 0.0050 0.0050 0.0050		mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	04/10/24 15:48 04/10/24 15:48 04/10/24 15:48 04/10/24 15:48 04/10/24 15:48 04/10/24 15:48 04/10/24 15:48 04/10/24 15:48 04/10/24 15:48 04/10/24 15:48	04/11/24 20:22 04/11/24 20:22 04/11/24 20:22 04/11/24 20:22 04/11/24 20:22 04/11/24 20:22 04/11/24 20:22	
0.0048 0.0016 0.00031 0.00053 0.0020 0.0022 0.00046 0.0014 0.0016 0.00065 0.00031 0.00065 0.00031	U *- *1 U U U U U U U U U U U U U U U U U U U	0.020 0.0050 0.0050 0.0048 0.010 0.010 0.0050 0.0050 0.0050	0.0048 0.0016 0.00031 0.00053 0.0020 0.0022 0.00046 0.0014 0.0016	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	04/10/24 15:48 04/10/24 15:48 04/10/24 15:48 04/10/24 15:48 04/10/24 15:48 04/10/24 15:48 04/10/24 15:48	04/11/24 20:22 04/11/24 20:22 04/11/24 20:22 04/11/24 20:22 04/11/24 20:22 04/11/24 20:22 04/11/24 20:22	
0.0016 0.00031 0.00053 0.0020 0.0022 0.00046 0.0014 0.0016 0.00065 0.00031 0.00065 0.00031	U U U U U U U U U U	0.0050 0.0050 0.0048 0.010 0.010 0.0050 0.0050 0.0050	0.0016 0.00031 0.00053 0.0020 0.0022 0.00046 0.0014 0.0016	mg/L mg/L mg/L mg/L mg/L mg/L	04/10/24 15:48 04/10/24 15:48 04/10/24 15:48 04/10/24 15:48 04/10/24 15:48 04/10/24 15:48	04/11/24 20:22 04/11/24 20:22 04/11/24 20:22 04/11/24 20:22 04/11/24 20:22 04/11/24 20:22	
0.00031 0.00053 0.0020 0.0022 0.00046 0.0014 0.0016 0.00065 0.00034 0.00031 0.00065 0.0013	U U U U U U U U U	0.0050 0.0048 0.010 0.010 0.0050 0.0050 0.0050	0.00031 0.00053 0.0020 0.0022 0.00046 0.0014 0.0016	mg/L mg/L mg/L mg/L mg/L	04/10/24 15:48 04/10/24 15:48 04/10/24 15:48 04/10/24 15:48 04/10/24 15:48	04/11/24 20:22 04/11/24 20:22 04/11/24 20:22 04/11/24 20:22 04/11/24 20:22	
0.00053 0.0020 0.0022 0.00046 0.0014 0.0016 0.00065 0.00034 0.00031 0.00065 0.0013	U U U U U U U U	0.0048 0.010 0.010 0.0050 0.0050 0.0050	0.00053 0.0020 0.0022 0.00046 0.0014 0.0016	mg/L mg/L mg/L mg/L mg/L	04/10/24 15:48 04/10/24 15:48 04/10/24 15:48 04/10/24 15:48	04/11/24 20:22 04/11/24 20:22 04/11/24 20:22 04/11/24 20:22	
0.0020 0.0022 0.00046 0.0014 0.0016 0.00065 0.00031 0.00065 0.0013	U U U U U U U U	0.010 0.010 0.0050 0.0050 0.0050 0.0050	0.00053 0.0020 0.0022 0.00046 0.0014 0.0016	mg/L mg/L mg/L mg/L mg/L	04/10/24 15:48 04/10/24 15:48 04/10/24 15:48	04/11/24 20:22 04/11/24 20:22 04/11/24 20:22	
0.0022 0.00046 0.0014 0.0016 0.00065 0.00034 0.00065 0.0013	U U U U U U	0.010 0.0050 0.0050 0.0050 0.0050	0.0020 0.0022 0.00046 0.0014 0.0016	mg/L mg/L mg/L mg/L	04/10/24 15:48 04/10/24 15:48	04/11/24 20:22 04/11/24 20:22	
0.00046 0.0014 0.0016 0.00065 0.00034 0.00065 0.0013	U U U U U	0.0050 0.0050 0.0050 0.0050	0.0022 0.00046 0.0014 0.0016	mg/L mg/L mg/L	04/10/24 15:48	04/11/24 20:22	
0.0014 0.0016 0.00065 0.00034 0.00031 0.00065 0.0013	U U U U	0.0050 0.0050 0.0050	0.0014 0.0016	mg/L			
0.0016 0.00065 0.00034 0.00031 0.00065 0.0013	U U U U	0.0050 0.0050	0.0014 0.0016	mg/L	04/10/24 15:48	04/44/04 00 00	
0.0016 0.00065 0.00034 0.00031 0.00065 0.0013	U U U U	0.0050 0.0050	0.0016	-		04/11/24 20:22	
0.00065 0.00034 0.00031 0.00065 0.0013	U U U	0.0050					
0.00034 0.00031 0.00065 0.0013	U U			-	04/10/24 15:48		
0.00031 0.00065 0.0013	U	0.5000	0.00034				
0.00065 0.0013		0.0050	0.00031	-	04/10/24 15:48	04/11/24 20:22	
0.0013	U	0.0050	0.00065	-	04/10/24 15:48		
	/	0.010	0.0013				
0.0010	~ /	0.010	0.0015	-	04/10/24 15:48	04/11/24 20:22	
0.0016	.//	0.0050	0.0016	-	04/10/24 15:48		
0.00016	1	0.0050	0.00016			04/11/24 20:22	
0.00020	\(\) \(\) \	0.0030	0.00020	-	04/10/24 15:48	04/11/24 20:22	
				· ·			
	, X Y						
				-			
				· ·			
·/				-			
				-			
				-			
				-			
				-			
				-			
				-			
				•			
				-			
				-			
		0.0050		-			
		0.0050		-	04/10/24 15:48	04/11/24 20:22	
		0.0050			04/10/24 15:48	04/11/24 20:22	
0.00030	U	0.0025	0.00030	mg/L	04/10/24 15:48	04/11/24 20:22	
0.00017	U	0.0050	0.00017	mg/L	04/10/24 15:48	04/11/24 20:22	
0.00036	U	0.0050	0.00036	mg/L	04/10/24 15:48	04/11/24 20:22	
0.0020	U	0.010	0.0020	mg/L	04/10/24 15:48	04/11/24 20:22	
0.00038	U	0.0050			04/10/24 15:49	0.4/44/0.4.00.00	
0.00022	11	0.0050		J. –	JT/ 10/24 1J.40	04/11/24 20:22	
	0.0018 0.0026 0.0018 0.00024 0.0046 0.0016 0.00054 0.0017 0.0049 0.0017 0.0018 0.0029 0.00023 0.00042 0.00028 0.00034 0.00025 0.00037 0.0016 0.00030 0.00017 0.00036 0.0020 0.00038	0.0016 U 0.0018 U 0.0026 U 0.0018 U 0.00024 U 0.00046 U 0.0016 U 0.00054 U 0.0017 U 0.0014 U 0.0014 U 0.0020 U 0.0018 U 0.00023 U 0.00023 U 0.00028 U 0.00025 U*+ 0.00037 U*+ 0.0016 U 0.00030 U 0.00030 U 0.00031 U 0.00030 U 0.00031 U	0.0018 U 0.010 0.0026 U 0.010 0.0018 U 0.010 0.00024 U 0.0010 0.0046 U 0.010 0.0016 U 0.0050 0.0017 U 0.0050 0.0049 U 0.0072 0.0017 U 0.010 0.0014 U 0.010 0.0020 U 0.010 0.0029 U 0.010 0.00023 U 0.010 0.00024 U 0.0045 0.00028 U 0.0050 0.00034 U 0.0050 0.00037 U*+ 0.0050 0.00030 U 0.0050 0.00036 U 0.0050 0.00037 U 0.0050 0.00036 U 0.0050 0.00037 U 0.0050 0.00036 U 0.0050 0.00037 U 0.0050 0.00030 U 0.0050 0.00030 U 0.0050 0.00020 U 0.010	0.0018 U 0.010 0.0026 0.0026 U 0.010 0.0026 0.0018 U 0.010 0.0018 0.00024 U 0.0010 0.00024 0.0046 U 0.010 0.0046 0.0016 U 0.0050 0.0016 0.00054 U 0.0025 0.00054 0.0017 U 0.0050 0.0017 0.0049 U 0.0072 0.0049 0.0017 U 0.010 0.0017 0.0014 U 0.010 0.0014 0.0020 U 0.010 0.0020 0.0018 U 0.010 0.0029 0.00023 U 0.010 0.0023 0.00042 U 0.0045 0.00023 0.00028 U 0.0050 0.00028 0.00034 U 0.0050 0.00034 0.00037 U*+ 0.0050 0.00037 0.00030 U 0.0050 0.00030 0.00031 U 0.0050 0.00030 0.00036 U 0.0050 0.00036 0.00020 U 0.0010 0.0025<	0.0018 U 0.010 0.0018 mg/L 0.0026 U 0.010 0.0026 mg/L 0.0018 U 0.010 0.0018 mg/L 0.00024 U 0.0010 0.00024 mg/L 0.0046 U 0.010 0.0046 mg/L 0.0016 U 0.0050 0.0016 mg/L 0.00054 U 0.0025 0.00054 mg/L 0.0017 U 0.0050 0.0017 mg/L 0.0049 U 0.0072 0.0049 mg/L 0.0017 U 0.010 0.0017 mg/L 0.0017 U 0.010 0.0014 mg/L 0.0014 U 0.010 0.0014 mg/L 0.0020 U 0.010 0.0020 mg/L 0.0018 U 0.010 0.0029 mg/L 0.00023 U 0.010 0.0023 mg/L 0.00042 U 0.0045 0.00042 mg/L 0.00034 U 0.0050 0.00028 mg/L 0.00034 U 0.0050 0.00034 mg/L 0.00037 U*+ 0.0050 0.00037 mg/L 0.00030 U 0.0050 0.00030 mg/L 0.00031 U 0.0050 0.000	0.0018 U 0.010 0.0018 mg/L 04/10/24 15:48 0.0026 U 0.010 0.0026 mg/L 04/10/24 15:48 0.0018 U 0.010 0.0018 mg/L 04/10/24 15:48 0.00024 U 0.0010 0.00024 mg/L 04/10/24 15:48 0.0046 U 0.010 0.0046 mg/L 04/10/24 15:48 0.0016 U 0.0050 0.0016 mg/L 04/10/24 15:48 0.0017 U 0.0052 0.00054 mg/L 04/10/24 15:48 0.0017 U 0.0050 0.0017 mg/L 04/10/24 15:48 0.0017 U 0.0050 0.0017 mg/L 04/10/24 15:48 0.0017 U 0.0050 0.0017 mg/L 04/10/24 15:48 0.0017 U 0.010 0.0017 mg/L 04/10/24 15:48 0.0014 U 0.010 0.0014 mg/L 04/10/24 15:48 0.0018 U 0.010	0.0018 U 0.010 0.0018 mg/L 04/10/24 15:48 04/11/24 20:22 0.0026 U 0.010 0.0026 mg/L 04/10/24 15:48 04/11/24 20:22 0.0018 U 0.010 0.0018 mg/L 04/10/24 15:48 04/11/24 20:22 0.0024 U 0.0010 0.0046 mg/L 04/10/24 15:48 04/11/24 20:22 0.0046 U 0.010 0.0046 mg/L 04/10/24 15:48 04/11/24 20:22 0.0016 U 0.0050 0.0016 mg/L 04/10/24 15:48 04/11/24 20:22 0.0017 U 0.0050 0.0017 mg/L 04/10/24 15:48 04/11/24 20:22 0.0017 U 0.0050 0.0017 mg/L 04/10/24 15:48 04/11/24 20:22 0.0017 U 0.0050 0.0017 mg/L 04/10/24 15:48 04/11/24 <th< td=""></th<>

Eurofins Houston

Client Sample Results

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Client Sample ID: Outfall 001

Date Collected: 04/03/24 08:00 Date Received: 04/03/24 13:40 Lab Sample ID: 860-71363-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Anthracene	0.0015	U	0.0057	0.0015	mg/L		04/10/24 15:48	04/11/24 20:22	1
Benzo[g,h,i]perylene	0.0027	U	0.010	0.0027	mg/L		04/10/24 15:48	04/11/24 20:22	1
Fluorene	0.0016	U	0.0050	0.0016	mg/L		04/10/24 15:48	04/11/24 20:22	1
Phenanthrene	0.0014	U	0.010	0.0014	mg/L	4//	04/10/24 15:48	04/11/24 20:22	1
Dibenz(a,h)anthracene	0.00025	U	0.0050	0.00025	mg/L	0	04/10/24 15:48	04/11/24 20:22	1
Indeno[1,2,3-cd]pyrene	0.0023	U	0.010	0.0023	mg/L	//	04/10/24 15:48	04/11/24 20:22	1
Pyrene	0.00018	U	0.0050	0.00018	mg/L		04/10/24 15:48	04/11/24 20:22	1
2,4-Dinitrophenol	0.0016	U	0.010	0.0016	mg/L		04/10/24 15:48	04/11/24 20:22	1
2,6-Dinitrotoluene	0.0016	U	0.0050	0.0016	mg/L		04/10/24 15:48	04/11/24 20:22	1
N-Nitrosodi-n-butylamine	0.0015	U	0.010	0.0015	mg/L		04/10/24 15:48	04/11/24 20:22	1
N-Nitrosodiethylamine	0.0018	U	0.010	0.0018	mg/L		04/10/24 15:48	04/11/24 20:22	1
Nonylphenol	0.010	U	0.010	0.010	mg/L		04/10/24 15:48	04/11/24 20:22	1
Pentachlorobenzene	0.0011	U	0.010	0.0011	mg/L		04/10/24 15:48	04/11/24 20:22	1
Pyridine	0.0026	U *1	0.010	0.0026	mg/L		04/10/24 15:48	04/11/24 20:22	1
Total Cresols	0.0026	U	0.010	0.0026	mg/L		04/10/24 15:48	04/11/24 20:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	85		31 - 132				04/10/24 15:48	04/11/24 20:22	1
2-Fluorobiphenyl (Surr)	76		29 - 112				04/10/24 15:48	04/11/24 20:22	1
2-Fluorophenol (Surr)	34		28 - 114				04/10/24 15:48	04/11/24 20:22	1
Nitrobenzene-d5 (Surr)	82		15 - 314				04/10/24 15:48	04/11/24 20:22	1
p-Terphenyl-d14 (Surr)	95	^	20 - 141				04/10/24 15:48	04/11/24 20:22	1
Phenol-d5 (Surr)	24		8 - 424				04/10/24 15:48	04/11/24 20:22	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.071	U	0.50	0.071	mg/L			04/03/24 22:19	1
Nitrate as N	4.3		0.10	0.039	mg/L			04/03/24 22:19	1
Chloride	360		0.50	0.25	mg/L			04/03/24 22:19	1
Nitrite as N	0.029	U	0.10	0.029	mg/L			04/03/24 22:19	1
Fluoride	0.70		0.50	0.10	mg/L			04/03/24 22:19	1
Nitrate Nitrite as N	4.3		0.10	0.039	mg/L			04/03/24 22:19	1
Sulfate	360		0.50	0.20	mg/L			04/03/24 22:19	1

Method: EPA 1631E - Mercury	, Low Level (CVA	AFS)						
Analyte	Result Qualit	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	15	0.50	0.20	ng/L		04/08/24 14:05	04/09/24 13:44	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.19		0.020	0.0030	mg/L		04/10/24 12:00	04/10/24 21:07	1
Antimony	0.0013	J	0.0020	0.0011	mg/L		04/10/24 12:00	04/10/24 21:07	1
Arsenic	0.0045		0.0040	0.00034	mg/L		04/10/24 12:00	04/10/24 21:07	1
Barium	0.17		0.0040	0.00029	mg/L		04/10/24 12:00	04/10/24 21:07	1
Beryllium	0.00015	U	0.0020	0.00015	mg/L		04/10/24 12:00	04/10/24 21:07	1
Boron	0.35		0.10	0.025	mg/L		04/10/24 12:00	04/11/24 13:19	10
Cadmium	0.00026	U	0.0020	0.00026	mg/L		04/10/24 12:00	04/10/24 21:07	1
Chromium	0.0026	J	0.0040	0.00033	mg/L		04/10/24 12:00	04/10/24 21:07	1
Cobalt	0.00065	J	0.0020	0.00026	mg/L		04/10/24 12:00	04/10/24 21:07	1
Copper	0.042		0.0040	0.00069	mg/L		04/10/24 12:00	04/10/24 21:07	1

Eurofins Houston

4

6

8

10

11

13

14

Le

Client Sample Results

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Client Sample ID: Outfall 001

Lab Sample ID: 860-71363-1 Date Collected: 04/03/24 08:00

Matrix: Water

Date Received: 04/03/24	1 13:40							
Method: EPA 200.8 - M	letals (ICP/MS) - To	tal Recovei	rable (Contir	nued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
Iron	0.80		0.020	0.0020	mg/L	04/10/24 12:00	04/10/24 21:07	1
Lead	0.00059	J	0.0020	0.00014	mg/L	04/10/24 12:00	04/10/24 21:07	•
Magnesium	16		2.0	0.18	mg/L	04/10/24 12:00	04/10/24 21:11	20
Manganese	0.035		0.0020	0.00016	mg/L	04/10/24 12:00	04/10/24 21:07	•
Molybdenum	0.0086		0.0020	0.00016	mg/L	04/10/24 12:00	04/10/24 21:07	•
Nickel	0.016		0.0020	0.00049	mg/L	04/10/24 12:00	04/10/24 21:07	
Selenium	0.00095	J	0.0020	0.00069	mg/L	04/10/24 12:00	04/10/24 21:07	•
Silver	0.00012	U	0.0020	0.00012	mg/L	04/10/24 12:00	04/10/24 21:07	1
Thallium	0.00022	U	0.0020	0.00022	mg/L	04/10/24 12:00	04/10/24 21:07	
Tin	0.00040	J	0.0020	0.00033	/mg/L	04/10/24 12:00	04/10/24 21:07	1
Titanium	0.0018	J	0.0040	0.00042	mg/L	04/10/24 12:00	04/10/24 21:07	
Zinc	0.017		0.00404	0.00080	ma/l	04/10/24 12:00	04/10/24 21:07	

Titanium	0.0018	J	0.0040	0.00042	mg/L		04/10/24 12:00	04/10/24 21:07	1
Zinc	0.017		0.0040	0.00089	mg/L		04/10/24 12:00	04/10/24 21:07	1
General Chemistry				b					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (1664B)	1.9	J	5.0	1.6	mg/L			04/12/24 15:05	1
Ammonia (EPA 350.1)	0.051	U	0.10	0.051	mg/L			04/11/24 10:53	1
Nitrogen, Kjeldahl (EPA 351.2)	2.9		0.20	0.089	mg/L		04/08/24 19:05	04/09/24 14:44	1
Oxygen, Dissolved (EPA 360.1)	9.9	HF	1.0	1.0	mg/L			04/08/24 16:30	1
Phosphorus Total (EPA 365.1)	3.2	F1	0.10	0.072	mg/L			04/12/24 13:05	5
Cr (VI) (SW846 7196A)	0.0040	7//	0.010	0.0034	mg/L			04/03/24 18:19	1
Chemical Oxygen Demand (Hach 8000)	55	***************************************	20	3.4	mg/L			04/11/24 21:15	1
Cyanide, Available (OI CORP OIA-1677)	0.0055	J	0.0060	0.0050	mg/L			04/08/24 14:03	1
Color, Apparent (SM 2120B)	30		10	10	Color Units			04/03/24 18:45	2
Color, True (SM 2120B)	15		5.0	5.0	Color Units			04/03/24 18:45	1
pH (SM 2120B)	8.1		0.10	0.10	S.U.			04/03/24 18:45	2
Alkalinity (SM 2320B)	130		4.0	4.0	mg/L			04/14/24 13:14	1
Bicarbonate Alkalinity as CaCO3 (SM 2320B)	130	B ^2	4.0	4.0	mg/L			04/14/24 13:14	1
Carbonate Alkalinity as CaCO3 (SM 2320B)	4.0	U	4.0	4.0	mg/L			04/14/24 13:14	1
Hydroxide Alkalinity (SM 2320B)	4.0	U	4.0	4.0	mg/L			04/14/24 13:14	1
Phenolphthalein Alkalinity (SM 2320B)	4.0	U	4.0	4.0	mg/L			04/14/24 13:14	1
Total Dissolved Solids (SM 2540C)	1400		20	20	mg/L			04/08/24 11:13	1
Total Suspended Solids (SM 2540D)	16		4.0	4.0	mg/L			04/09/24 19:40	1
Chlorine, Total Residual (SM 4500 CI G)	0.88	HF F1	0.10	0.10	mg/L			04/09/24 19:26	2
Sulfide (SM 4500 S2 D)	0.040	U	0.10	0.040	mg/L			04/08/24 17:25	1
Sulfite (SM 4500 SO3 B)	5.0	U HF	5.0	5.0	mg/L			04/09/24 18:52	1
Biochemical Oxygen Demand (SM 5210B)	3.0	U	3.0	3.0	mg/L		04/04/24 10:55	04/04/24 13:49	1
Total Organic Carbon (SM 5310C)	12		1.0	0.50	mg/L			04/11/24 04:35	1
Carbonaceous Biochemical Oxygen Demand (SM5210B CBOD)	6.0	U	6.0	6.0	mg/L		04/04/24 17:01	04/04/24 17:24	1

Surrogate Summary

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(63-144)	(74-124)	(75-131)	(80-120)
860-71363-1	Outfall 001	102	101	105	101
LCS 860-153406/3	Lab Control Sample	86	100	88	98
LCSD 860-153406/4	Lab Control Sample Dup	84	99	90	96
MB 860-153406/9	Method Blank	99	100	99	101 🅢
Surrogato Logond					

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco	very (Accep	tance Limits
		ТВР	FBP	2FP	NBZ	TPHd14	PHL
Lab Sample ID	Client Sample ID	(31-132)	(29-112)	(28-114)	(15-314)	(20-141)	(8-424)
860-71363-1	Outfall 001	85	76	34	82	95	24
LCS 860-154157/2-A	Lab Control Sample	90	76	41	80	99	29
LCSD 860-154157/3-A	Lab Control Sample Dup	92	84	41	86	108	30
MB 860-154157/1-A	Method Blank	69	78	35	88	110	23

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

Eurofins Houston

Page 13 of 51

9

3

4

6

9

11

13

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: 624.1 - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 860-153406/9

Matrix: Water

Analysis Batch: 153406

Client Sample ID: Method Blank

Prepared	Analyzed	Dil Fac
	04/05/24 12:19	
	04/05/24 12:19	
	04/05/24 12:19	
	04/05/24 12:19	
	04/05/24 12:19	•
	04/05/24 12:19	•
	04/05/24 12:19	
	04/05/24 12:19	
	04/05/24 12:19	•
	04/05/24 12:19	
	04/05/24 12:19	•
	04/05/24 12:19	•
	04/05/24 12:19	
	0 1/00/2 1 12110	

I	
I	
I	
l	
l	

Analyte Res	ult Qual	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acrolein 0.0)11 U	0.050	0.011	mg/L			04/05/24 12:19	1
Acrylonitrile 0.0)14 U	0.050	0.014	mg/L			04/05/24 12:19	1
Benzene 0.000)46 U	0.0010	0.00046	mg/L		>	04/05/24 12:19	1
Carbon tetrachloride 0.000	90 U	0.0050	0.00090	mg/L	, ()		04/05/24 12:19	1
Chlorobenzene 0.000)46 U	0.0010	0.00046	mg/L			04/05/24 12:19	1
1,2,4-Trichlorobenzene 0.00	18 U	0.0050	0.0018	mg/L			04/05/24 12:19	1
1,2-Dichloroethane 0.000	37 U	0.0010	0.00037	mg/L			04/05/24 12:19	1
1,1,1-Trichloroethane 0.000)59 U	0.0050	0.00059	mg/L			04/05/24 12:19	1
1,1-Dichloroethane 0.000	064 U	0.0010	0.00064	mg/L			04/05/24 12:19	1
1,1,2-Trichloroethane 0.000)41 U	0.0010	0.00041	mg/L			04/05/24 12:19	1
1,2-Dibromoethane 0.00	10 U	0.0050	0.0010	mg/L			04/05/24 12:19	1
1,1,2,2-Tetrachloroethane 0.000	147 U	0.0010	0.00047	mg/L			04/05/24 12:19	1
Chloroethane 0.00	20 U	0.010	0.0020	mg/L			04/05/24 12:19	1
2-Chloroethyl vinyl ether 0.000	75 U	0.0050	0.00075	mg/L			04/05/24 12:19	1
Chloroform 0.000)46 U	0.0010	0.00046	mg/L			04/05/24 12:19	1
1,2-Dichlorobenzene 0.000	43 U	0.0010	0.00043	mg/L			04/05/24 12:19	1
1,3-Dichlorobenzene 0.000	41 U 🗸	0.0010	0.00041	mg/L			04/05/24 12:19	1
1,4-Dichlorobenzene 0.000)45 U	0.0010	0.00045	mg/L			04/05/24 12:19	1
1,1-Dichloroethene 0.000	74 U	0.0010	0.00074	mg/L			04/05/24 12:19	1
trans-1,2-Dichloroethene 0.000	37 U	0.0010	0.00037	mg/L			04/05/24 12:19	1
1,2-Dichloropropane 0.000	156 U	0.0050	0.00056	mg/L			04/05/24 12:19	1
Ethylbenzene 0.000	39 U	0.0010	0.00039	mg/L			04/05/24 12:19	1
2-Butanone 0.00	183 U	0.050	0.0083	mg/L			04/05/24 12:19	1
Methylene Chloride 0.00	17 U	0.0050	0.0017	mg/L			04/05/24 12:19	1
Chloromethane 0.00	20 U	0.010	0.0020	mg/L			04/05/24 12:19	1
Bromomethane 0.00	14 U	0.0050	0.0014	mg/L			04/05/24 12:19	1
Bromoform 0.000	63 U	0.0050	0.00063	mg/L			04/05/24 12:19	1
Bromodichloromethane 0.000)55 U	0.0010	0.00055	mg/L			04/05/24 12:19	1
Chlorodibromomethane 0.000)55 U	0.0050	0.00055	mg/L			04/05/24 12:19	1
Hexachlorobutadiene 0.000	63 U	0.0050	0.00063	mg/L			04/05/24 12:19	1
Naphthalene 0.00	14 U	0.010	0.0014	mg/L			04/05/24 12:19	1
Tetrachloroethene 0.000	066 U	0.0010	0.00066	mg/L			04/05/24 12:19	1
Toluene 0.000	148 U	0.0010	0.00048	mg/L			04/05/24 12:19	1
Trichloroethene 0.00	15 U	0.0050	0.0015	mg/L			04/05/24 12:19	1
Vinyl chloride 0.000)43 U	0.0020	0.00043	mg/L			04/05/24 12:19	1
1,3-Dichloropropylene 0.00	13 U	0.0050	0.0013	mg/L			04/05/24 12:19	1
cis-1,3-Dichloropropene 0.00)11 U	0.0050	0.0011	mg/L			04/05/24 12:19	1
				mg/L				

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		63 - 144		04/05/24 12:19	1
4-Bromofluorobenzene (Surr)	100		74 - 124		04/05/24 12:19	1
Dibromofluoromethane (Surr)	99		75 - 131		04/05/24 12:19	1
Toluene-d8 (Surr)	101		80 - 120		04/05/24 12:19	1

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 860-153406/3

Matrix: Water

Analysis Batch: 153406

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	%Rec	%Rec Limits	
Acrolein	0.250	0.209		mg/L		84	60 - 140	
Acrylonitrile	0.500	0.407		mg/L		81	60 - 140	
Benzene	0.0500	0.0507		mg/L/	>	101	75 - 125	
Carbon tetrachloride	0.0500	0.0563		mg/L		113	70 - 125	
Chlorobenzene	0.0500	0.0533		mg/L/		107	82 - 135	
1,2,4-Trichlorobenzene	0.0500	0.0520		mg/L		104	75 - 135	
1,2-Dichloroethane	0.0500	0.0435	~ (C)	mg/L		87	72 - 130	
1,1,1-Trichloroethane	0.0500	0.0520		mg/L		104	70 - 130	
1,1-Dichloroethane	0.0500	0.0483		mg/L		97	71 - 130	
1,1,2-Trichloroethane	0.0500	0.0480	🗸	mg/L		96	75 - 130	
1,2-Dibromoethane	0.0500	0.0517		mg/L		103	73 - 125	
1,1,2,2-Tetrachloroethane	0.0500	0.0448		mg/L		90	74 - 125	
Chloroethane	0.0500	0.0462		mg/L		92	60 - 140	
2-Chloroethyl vinyl ether	0.0500	0.0527		mg/L		105	50 - 150	
Chloroform	0.0500	0.0463		mg/L		93	70 - 121	
1,2-Dichlorobenzene	0.0500	0.0539		mg/L		108	75 - 125	
1,3-Dichlorobenzene	0.0500	0.0559		mg/L		112	75 - 125	
1,4-Dichlorobenzene	0.0500	0.0521		mg/L		104	75 - 125	
1,1-Dichloroethene	0.0500	0.0548		mg/L		110	50 - 150	
trans-1,2-Dichloroethene	0.0500	0.0563		mg/L		113	75 - 125	
1,2-Dichloropropane	0.0500	0.0492		mg/L		98	74 - 125	
Ethylbenzene	0.0500	0.0586		mg/L		117	75 - 125	
2-Butanone	0.250	0.213		mg/L		85	60 - 140	
Methylene Chloride	0.0500	0.0481		mg/L		96	71 - 125	
Chloromethane	0.0500	0.0486		mg/L		97	60 - 140	
Bromomethane	0.0500	0.0458		mg/L		92	60 - 140	
Bromoform	0.0500	0.0549		mg/L		110	70 - 130	
Bromodichloromethane	0.0500	0.0516		mg/L		103	75 - 125	
Chlorodibromomethane	0.0500	0.0535		mg/L		107	73 - 125	
Hexachlorobutadiene	0.0500	0.0624		mg/L		125	75 - 125	
Naphthalene	0.0500	0.0491		mg/L		98	70 - 130	
Tetrachloroethene	0.0500	0.0599		mg/L		120	71 - 125	
Toluene	0.0500	0.0551		mg/L		110	75 - 130	
Trichloroethene	0.0500	0.0567		mg/L		113	75 - 135	
Vinyl chloride	0.0500	0.0508		mg/L		102	60 - 140	
cis-1,3-Dichloropropene	0.0500	0.0546		mg/L		109	74 - 125	

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	86		63 - 144
4-Bromofluorobenzene (Surr)	100		74 - 124
Dibromofluoromethane (Surr)	88		75 - 131
Toluene-d8 (Surr)	98		80 - 120

Eurofins Houston

Page 15 of 51

Spike

Client: Messer LLC Job ID: 860-71363-1

LCSD LCSD

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 860-153406/4

Matrix: Water

Naphthalene

Toluene

Tetrachloroethene

Trichloroethene

cis-1,3-Dichloropropene

Vinyl chloride

Analysis Batch: 153406

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

104

110

104

106

90

105

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

70 - 130

71 - 125

75 - 130

75 - 135

60 - 140

74 - 125

%Rec

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acrolein	0.250	0.210		mg/L	_	84	60 - 140	0	25
Acrylonitrile	0.500	0.414		mg/L		83	60 - 140	2	25
Benzene	0.0500	0.0473		mg/L/	\Rightarrow	95	75 - 125	7	25
Carbon tetrachloride	0.0500	0.0526	<	mg/L		105	70 - 125	7	25
Chlorobenzene	0.0500	0.0497		mg/L		99	82 - 135	7	25
1,2,4-Trichlorobenzene	0.0500	0.0526		mg/L		105	75 - 135	1	25
1,2-Dichloroethane	0.0500	0.0415	~ 0	mg/L		83	72 - 130	5	25
1,1,1-Trichloroethane	0.0500	0.0492		mg/L		98	70 - 130	6	25
1,1-Dichloroethane	0.0500	0.0458		mg/L		92	71 - 130	5	25
1,1,2-Trichloroethane	0.0500	0.0462		mg/L		92	75 - 130	4	25
1,2-Dibromoethane	0.0500	0.0502		mg/L		100	73 - 125	3	25
1,1,2,2-Tetrachloroethane	0.0500	0.0445		mg/L		89	74 - 125	1	25
Chloroethane	0.0500	0.0407		mg/L		81	60 - 140	13	25
2-Chloroethyl vinyl ether	0.0500	0.0507		mg/L		101	50 - 150	4	25
Chloroform	0.0500	0.0447		mg/L		89	70 - 121	4	25
1,2-Dichlorobenzene	0.0500	0.0520		mg/L		104	75 - 125	4	25
1,3-Dichlorobenzene	0.0500	0.0544		mg/L		109	75 - 125	3	25
1,4-Dichlorobenzene	0.0500	0.0501		mg/L		100	75 - 125	4	25
1,1-Dichloroethene	0.0500	0.0508		mg/L		102	50 - 150	8	25
trans-1,2-Dichloroethene	0.0500	0.0534		mg/L		107	75 - 125	5	25
1,2-Dichloropropane	0.0500	0.0472		mg/L		94	74 - 125	4	25
Ethylbenzene	0.0500	0.0548		mg/L		110	75 - 125	7	25
2-Butanone	0.250	0.215		mg/L		86	60 - 140	1	25
Methylene Chloride	0.0500	0.0469		mg/L		94	71 - 125	2	25
Chloromethane	0.0500	0.0435		mg/L		87	60 - 140	11	25
Bromomethane	0.0500	0.0421		mg/L		84	60 - 140	8	25
Bromoform	0.0500	0.0541		mg/L		108	70 - 130	2	25
Bromodichloromethane	0.0500	0.0494		mg/L		99	75 - 125	4	25
Chlorodibromomethane	0.0500	0.0517		mg/L		103	73 - 125	3	25
Hexachlorobutadiene	0.0500	0.0607		mg/L		121	75 - 125	3	25

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.0520

0.0552

0.0518

0.0529

0.0451

0.0526

LCSD	LCSD
LCSD	LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	84		63 - 144
4-Bromofluorobenzene (Surr)	99		74 - 124
Dibromofluoromethane (Surr)	90		75 - 131
Toluene-d8 (Surr)	96		80 - 120

Eurofins Houston

Page 16 of 51

RPD

25

25

25

25

25

25

6

7

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-154157/1-A

Matrix: Water Analysis Batch: 154258

Client Sam	ple ID:	M	ethe	od Blank
	Prep	Ту	oe:	Total/NA
	_	_		

Prep Batch: 154157

Dil Fac	Analyzed
1	4/11/24 16:49
1	4/11/24 16:49
1	4/11/24 16:49
1	4/11/24 16:49
1	4/11/24 16:49
1	4/11/24 16:49
1	4/11/24 16:49
1	4/11/24 16:49
1	4/11/24 16:49
1	1/11/2/ 16:40

Analysis Batch: 154258		мь						Prep Batch:	15415
Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2,4,5-Tetrachlorobenzene	0.0013	U	0.010	0.0013	mg/L		04/10/24 15:48	04/11/24 16:49	
1,2-Dichlorobenzene	0.0016	U	0.010	0.0016	mg/L		04/10/24 15:48	04/11/24 16:49	
1,3-Dichlorobenzene	0.0014	U	0.010	0.0014	mg/L		04/10/24 15:48	04/11/24 16:49	
1,4-Dichlorobenzene	0.0016	U	0.010	0.0016			04/10/24 15:48	04/11/24 16:49	
Acenaphthene	0.0014	U	0.0057	0.0014	0 \\/	//	04/10/24 15:48	04/11/24 16:49	
Benzidine	0.0048	U	0.020	0.0048			04/10/24 15:48	04/11/24 16:49	
1,2,4-Trichlorobenzene	0.0016		0.0050	0.0016	. //. 7/. 1.32			04/11/24 16:49	
Hexachlorobenzene	0.00031	U	0.0050	///			04/10/24 15:48	04/11/24 16:49	
Hexachloroethane	0.00053	U	0.0048	0.00053	// -			04/11/24 16:49	
2,4,5-Trichlorophenol	0.0020		0.010	0.0020			04/10/24 15:48	04/11/24 16:49	
Bis(2-chloroethyl)ether	0.0022	U	0.010 🕥	0.0022	-		04/10/24 15:48	04/11/24 16:49	
2-Chloronaphthalene	0.00046		0.0050	0.00046	J			04/11/24 16:49	
2,4,6-Trichlorophenol	0.0014		0.0050	0.0014				04/11/24 16:49	
p-Chloro-m-cresol	0.0016		0.0050	0.0016	-			04/11/24 16:49	
2-Chlorophenol	0.00065		0.0050	0.00065	J			04/11/24 16:49	
3,3'-Dichlorobenzidine	0.00034		0.0050	0.00034				04/11/24 16:49	
2,4-Dichlorophenol	0.00031	.// \/	0.0050	0.00031	J			04/11/24 16:49	
2,4-Dimethylphenol	0.00065		0.0050	0.00065	J			04/11/24 16:49	
2,4-Dinitrotoluene	0.0013		0.010	0.0013	.			04/11/24 16:49	
1,2-Diphenylhydrazine	0.0015	\ //	0.010	0.0015	ū			04/11/24 16:49	
Fluoranthene	0.0016	A Y	0.0050	0.0016	-			04/11/24 16:49	
4-Bromophenyl phenyl ether	0.00026		0.0050	0.00026				04/11/24 16:49	
4-Chlorophenyl phenyl ether	0.0013		0.010	0.0013	-			04/11/24 16:49	
o-Cresol	0.0016		0.010	0.0016	J			04/11/24 16:49	
Bis(2-chloroethoxy)methane	0.0018		0.010	0.0018				04/11/24 16:49	
m & p - Cresol	0.0026		0.010	0.0026	-			04/11/24 16:49	
bis (2-chloroisopropyl) ether	0.0018		0.010	0.0018	J			04/11/24 16:49	
Hexachlorobutadiene	0.00024		0.0010	0.00024				04/11/24 16:49	
Hexachlorocyclopentadiene	0.0046		0.010	0.0046	J			04/11/24 16:49	
Isophorone	0.0016		0.0050	0.0016	J			04/11/24 16:49	
Naphthalene	0.00054		0.0025	0.00054	.			04/11/24 16:49	
Nitrobenzene	0.0017		0.0050	0.0017	ū			04/11/24 16:49	
4-Nitrophenol	0.0049		0.0072	0.0049	-			04/11/24 16:49	
2-Nitrophenol	0.0017		0.010	0.0017				04/11/24 16:49	
4,6-Dinitro-o-cresol	0.0014		0.010	0.0014	-			04/11/24 16:49	
N-Nitrosodimethylamine	0.0020		0.010	0.0020				04/11/24 16:49	
N-Nitrosodiphenylamine	0.0018		0.010	0.0018				04/11/24 16:49	
N-Nitrosodi-n-propylamine	0.0029		0.010	0.0029				04/11/24 16:49	
Pentachlorophenol	0.00023		0.010	0.00023	-			04/11/24 16:49	
Phenol	0.00042		0.0045	0.00042				04/11/24 16:49	
Bis(2-ethylhexyl) phthalate	0.00028		0.0050	0.00028	-			04/11/24 16:49	
Butyl benzyl phthalate	0.00026		0.0050	0.00034	-			04/11/24 16:49	
Di-n-butyl phthalate	0.00025		0.0050	0.00025				04/11/24 16:49	
Di-n-octyl phthalate	0.00023		0.0050	0.00023	-			04/11/24 16:49	
Diethyl phthalate	0.00037		0.0050	0.00037	-			04/11/24 16:49	
Dimethyl phthalate	0.00030		0.0025	0.00030				04/11/24 16:49	
Benzo[a]anthracene	0.00030		0.0023	0.00030	-			04/11/24 16:49	
					-				
Benzo[a]pyrene	0.00036	U	0.0050	0.00036	my/L		04/10/24 15:48	04/11/24 16:49	

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 860-154157/1-A

Matrix: Water

Analysis Batch: 154258

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 154157

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[b]fluoranthene	0.0020	U	0.010	0.0020	mg/L		04/10/24 15:48	04/11/24 16:49	1
Benzo[k]fluoranthene	0.00038	U	0.0050	0.00038	mg/L		04/10/24 15:48	04/11/24 16:49	1
Chrysene	0.00022	U	0.0050	0.00022	mg/L		04/10/24 15:48	04/11/24 16:49	1
Acenaphthylene	0.0014	U	0.010	0.0014	mg/L		04/10/24 15:48	04/11/24 16:49	1
Anthracene	0.0015	U	0.0057	0.0015	mg/L	17	04/10/24 15:48	04/11/24 16:49	1
Benzo[g,h,i]perylene	0.0027	U	0.010	0.0027	mg/L		04/10/24 15:48	04/11/24 16:49	1
Fluorene	0.0016	U	0.0050	0.0016	mg/L)		04/10/24 15:48	04/11/24 16:49	1
Phenanthrene	0.0014	U	0.010	0.0014	mg/L		04/10/24 15:48	04/11/24 16:49	1
Dibenz(a,h)anthracene	0.00025	U	0.0050	0.00025	mg/L		04/10/24 15:48	04/11/24 16:49	1
Indeno[1,2,3-cd]pyrene	0.0023	U	0.010	0.0023	mg/L		04/10/24 15:48	04/11/24 16:49	1
Pyrene	0.00018	U	0.0050	0.00018	mg/L		04/10/24 15:48	04/11/24 16:49	1
2,4-Dinitrophenol	0.0016	U	0.010	0.0016	mg/L		04/10/24 15:48	04/11/24 16:49	1
2,6-Dinitrotoluene	0.0016	U	0.0050	0.0016	mg/L		04/10/24 15:48	04/11/24 16:49	1
N-Nitrosodi-n-butylamine	0.0015	U	0.010	0.0015	mg/L		04/10/24 15:48	04/11/24 16:49	1
N-Nitrosodiethylamine	0.0018	U	0.010	0.0018	mg/L		04/10/24 15:48	04/11/24 16:49	1
Nonylphenol	0.010	U	0.010	0.010	mg/L		04/10/24 15:48	04/11/24 16:49	1
Pentachlorobenzene	0.0011	U 📈	0.010	0.0011	mg/L		04/10/24 15:48	04/11/24 16:49	1
Pyridine	0.0026	Y 📎	0.010	0.0026	mg/L		04/10/24 15:48	04/11/24 16:49	1
Total Cresols	0.0026	Ú	0.010	0.0026	mg/L		04/10/24 15:48	04/11/24 16:49	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	69	31 - 132	04/10/24 15:48	04/11/24 16:49	1
2-Fluorobiphenyl (Surr)	78	29 - 112	04/10/24 15:48	04/11/24 16:49	1
2-Fluorophenol (Surr)	35	28 - 114	04/10/24 15:48	04/11/24 16:49	1
Nitrobenzene-d5 (Surr)	88	15 - 314	04/10/24 15:48	04/11/24 16:49	1
p-Terphenyl-d14 (Surr)	110	20 - 141	04/10/24 15:48	04/11/24 16:49	1
Phenol-d5 (Surr)	23	8 - 424	04/10/24 15:48	04/11/24 16:49	1

Lab Sample ID: LCS 860-154157/2-A

Matrix: Water

Analysis Batch: 154258

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 154157**

/ many one Date in 10 1200							op Datom . o o .
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2,4,5-Tetrachlorobenzene	0.0400	0.0288		mg/L		72	41 - 125
1,2-Dichlorobenzene	0.0400	0.0278		mg/L		69	60 - 140
1,3-Dichlorobenzene	0.0400	0.0273		mg/L		68	60 - 140
1,4-Dichlorobenzene	0.0400	0.0277		mg/L		69	19 - 121
Acenaphthene	0.0400	0.0330		mg/L		83	60 - 132
Benzidine	0.0400	0.00703	J *-	mg/L		18	25 - 125
1,2,4-Trichlorobenzene	0.0400	0.0271		mg/L		68	57 - 130
Hexachlorobenzene	0.0400	0.0356		mg/L		89	8 - 142
Hexachloroethane	0.0400	0.0262		mg/L		65	55 - 120
2,4,5-Trichlorophenol	0.0400	0.0341		mg/L		85	35 - 111
Bis(2-chloroethyl)ether	0.0400	0.0310		mg/L		77	43 - 126
2-Chloronaphthalene	0.0400	0.0321		mg/L		80	65 - 120
2,4,6-Trichlorophenol	0.0400	0.0334		mg/L		83	52 - 129
p-Chloro-m-cresol	0.0400	0.0323		mg/L		81	41 - 128
2-Chlorophenol	0.0400	0.0258		mg/L		65	36 - 120

Eurofins Houston

Page 18 of 51

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 860-154157/2-A	Client Sample ID: Lab Control Sample
-----------------------------------	--------------------------------------

Matrix:	Water		
----------------	-------	--	--

Prep Type: Total/NA Prep Batch: 154157

Analysis Batch: 154258	Online	1.00	LCS			Prep Batch: 1541
Analyte	Spike Added		Qualifier	Unit	D %Rec	%Rec Limits
3,3'-Dichlorobenzidine	0.0400	0.0364	Qualifier	mg/L	— 5 /81(ec 91	18 - 213
2,4-Dichlorophenol	0.0400	0.0303		mg/L	76	53 - 122
2,4-Dimethylphenol	0.0400	0.0303		mg/L	102	42 - 120
2,4-Dinitrotoluene	0.0400	0.0408		mg/L	98	48 - 127
	0.0400	0.0391	<		109	28 - 136
1,2-Diphenylhydrazine		0.0434		mg/L		
Fluoranthene	0.0400			mg/L	104	43 - 121
4-Bromophenyl phenyl ether	0.0400	0.0361	\sim 0	mg/L	90	65 - 120
4-Chlorophenyl phenyl ether	0.0400	0.0349		mg/L	87	38 - 145
o-Cresol	0.0400	0.0218		mg/L	55	14 - 176
Bis(2-chloroethoxy)methane	0.0400	0.0305	*	mg/L	76	49 - 165
m & p - Cresol	0.0400	0.0216		mg/L	54	14 - 176
bis (2-chloroisopropyl) ether	0.0400	0.0347		mg/L	87	63 - 139
Hexachlorobutadiene	0.0400	0.0269		mg/L	67	38 - 120
Hexachlorocyclopentadiene	0.0400	0.0345		mg/L	86	41 - 125
Isophorone	0.0400	0.0328		mg/L	82	47 - 180
Naphthalene	0.0400	0.0298		mg/L	74	36 - 120
Nitrobenzene	0.0400	0.0326		mg/L	82	54 - 158
4-Nitrophenol	0.0400	0.0153		mg/L	38	13 - 129
2-Nitrophenol	0.0400	0.0306		mg/L	76	45 - 167
4,6-Dinitro-o-cresol	0.0400	0.0433		mg/L	108	53 - 130
N-Nitrosodimethylamine	0.0400	0.0138		mg/L	34	20 - 125
N-Nitrosodiphenylamine	0.0400	0.0344		mg/L	86	2 - 196
N-Nitrosodi-n-propylamine	0.0400	0.0332		mg/L	83	14 - 198
Pentachlorophenol	0.0400	0.0271		mg/L	68	38 - 152
Phenol	0.0400	0.0140		mg/L	35	17 - 120
Bis(2-ethylhexyl) phthalate	0.0400	0.0460		mg/L	115	29 - 137
Butyl benzyl phthalate	0.0400	0.0449		mg/L	112	12 - 140
Di-n-butyl phthalate	0.0400	0.0456		mg/L	114	8 - 120
Di-n-octyl phthalate	0.0400	0.0529		mg/L	132	19 - 132
Diethyl phthalate	0.0400	0.0387		mg/L	97	17 - 120
Dimethyl phthalate	0.0400	0.0362		mg/L	91	25 - 120
Benzo[a]anthracene	0.0400	0.0396		mg/L	99	42 - 133
Benzo[a]pyrene	0.0400	0.0453		mg/L	113	32 - 148
Benzo[b]fluoranthene	0.0400	0.0429		mg/L	107	42 - 140
Benzo[k]fluoranthene	0.0400	0.0437		mg/L	109	25 - 146
Chrysene	0.0400	0.0394		mg/L	98	44 - 140
Acenaphthylene	0.0400	0.0329		mg/L	82	54 - 126
Anthracene	0.0400	0.0418		mg/L	104	43 - 120
Benzo[g,h,i]perylene	0.0400	0.0429		mg/L	107	13 - 195
Fluorene	0.0400	0.0370		mg/L	92	70 - 120
Phenanthrene	0.0400	0.0370		mg/L	101	65 ₋ 120
	0.0400	0.0466		_	117	16 - 200
Dibenz(a,h)anthracene				mg/L		13 - 151
Indeno[1,2,3-cd]pyrene	0.0400	0.0464		mg/L	116	
Pyrene	0.0400	0.0442		mg/L	110	70 - 120
2,4-Dinitrophenol	0.0400	0.0251		mg/L	63	12 - 173
2,6-Dinitrotoluene	0.0400	0.0365		mg/L	91	68 - 137
N-Nitrosodi-n-butylamine	0.0400	0.0295		mg/L	74	33 - 141
N-Nitrosodiethylamine	0.0400	0.0354		mg/L	88	30 - 160
Pentachlorobenzene	0.0400	0.0301		mg/L	75	25 - 131

Eurofins Houston

4/15/2024

Page 19 of 51

Spike

Added

0.0400

Client: Messer LLC Job ID: 860-71363-1

LCS LCS

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 860-154157/2-A

Matrix: Water

2,4-Dinitrotoluene

Analyte

Pyridine

Analysis Batch: 154258

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 154157

%Rec

Result Qualifier Unit %Rec Limits 0.00827 J mg/L 21 5 - 94

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	90		31 - 132
2-Fluorobiphenyl (Surr)	76		29 - 112
2-Fluorophenol (Surr)	41		28 - 114
Nitrobenzene-d5 (Surr)	80		15 - 314
p-Terphenyl-d14 (Surr)	99		20 - 141
Phenol-d5 (Surr)	29		8 - 424

Lab Sample ID: LCSD 860-154157/3-A

Client Sample ID: Lab Control Sample Dup

102

48 - 127

4

25

Prep Type: Total/NA

Prep Batch: 154157

Matrix: Water Analysis Batch: 154258 Spike LCSD LCSD %Rec **RPD** Added Analyte Result Qualifier Unit %Rec Limits **RPD** Limit 0.0400 0.0305 1,2,4,5-Tetrachlorobenzene mg/L 76 41 - 125 6 30 1,2-Dichlorobenzene 0.0400 0.0275 69 60 - 140 30 mg/L 0.0400 0.0275 69 30 1.3-Dichlorobenzene mg/L 60 - 140 1,4-Dichlorobenzene 0.0400 0.0278 mg/L 69 19 - 121 30 0.0400 Acenaphthene 0.0364 91 60 - 132 10 29 mg/L 0.0400 0.0048 U*-*1 Benzidine mg/L 9 25 - 125 67 30 1.2.4-Trichlorobenzene 0.0400 0.0264 66 57 - 130 3 30 mg/L Hexachlorobenzene 0.0400 0.0362 mg/L 90 8 - 142 2 30 Hexachloroethane 0.0400 0.0267 67 55 - 120 2 30 mg/L 0.0400 89 35 - 111 30 2,4,5-Trichlorophenol 0.0357 mg/L 5 Bis(2-chloroethyl)ether 0.0400 0.0330 mg/L 82 43 - 126 6 30 2-Chloronaphthalene 0.0400 0.0343 86 65 - 120 mg/L 15 2,4,6-Trichlorophenol 0.0400 0.0357 89 52 - 129 30 mg/L 0.0400 0.0339 85 41 - 128 30 p-Chloro-m-cresol mg/L 2-Chlorophenol 0.0400 0.0262 mg/L 65 36 - 120 30 3,3'-Dichlorobenzidine 0.0400 0.0383 96 18 - 213 5 30 mg/L 2,4-Dichlorophenol 0.0400 0.0310 mg/L 77 53 - 122 2 30 0.0400 0.0428 107 42 - 120 30 2,4-Dimethylphenol mg/L 5

1,2-Diphenylhydrazine 0.0400 0.0490 123 28 - 136 12 30 mg/L 0.0400 Fluoranthene 0.0441 mg/L 110 43 - 121 6 30 4-Bromophenyl phenyl ether 0.0400 0.0371 mg/L 93 65 - 120 3 26 0.0400 0.0370 93 38 - 145 30 4-Chlorophenyl phenyl ether mg/L 6 o-Cresol 0.0400 0.0224 mg/L 56 14 - 176 3 30 Bis(2-chloroethoxy)methane 0.0400 0.0323 mg/L 81 49 - 165 6 30 m & p - Cresol 0.0400 0.0230 mg/L 57 14 - 176 30 0.0382 95 63 - 139 10 30 bis (2-chloroisopropyl) ether 0.0400 mg/L Hexachlorobutadiene 0.0400 0.0258 65 38 - 120 4 30 mg/L

0.0407

mg/L

0.0400

Hexachlorocyclopentadiene 0.0400 0.0388 mg/L 97 41 - 12512 30 Isophorone 0.0400 0.0355 mg/L 89 47 - 180 8 30 Naphthalene 0.0400 0.0305 76 36 - 120 2 30 mg/L Nitrobenzene 0.0400 0.0339 mg/L 85 54 - 158 30 4-Nitrophenol 0.0400 0.0158 mg/L 13 - 129 30

Eurofins Houston

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 860-154157/3-A

Matrix: Water

Analysis Batch: 154258

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 154157

Analyte	Allalysis Batch. 134230	Spike	I Cen	LCCD				%Rec	atem. 1	RPD
2-Nitrophenol 0.0400 0.0306 mg/L 77 45-167 0 4,6-Dinitro-o-cresol 0.0400 0.0459 mg/L 115 53-130 6 N-Nitrosodimethylamine 0.0400 0.0352 mg/L 33 20-125 5 N-Nitrosodimethylamine 0.0400 0.0352 mg/L 90 14-198 7 Pentachlorophenol 0.0400 0.0358 mg/L 90 14-198 7 Pentachlorophenol 0.0400 0.0458 mg/L 36 17-120 4 Bis(2-ethylhexyl) phthalate 0.0400 0.0533 mg/L 36 17-120 4 Bis(2-ethylhexyl) phthalate 0.0400 0.0533 mg/L 133 29-137 14 Butyl benzyl phthalate 0.0400 0.0688 ** mg/L 122 8.120 7 Di-n-octyl phthalate 0.0400 0.0488 ** mg/L 152 19-132 14 Diethyl phthalate 0.0400 0.0488 ** mg/L <	Analyte	•			Unit	D	%Rec		RPD	Limit
4,6-Dinitro-o-cresol 0.0400 0.0459 mg/L 315 53 - 130 6 N-Nitrosodimethylamine 0.0400 0.0352 mg/L 33 20 - 125 5 N-Nitrosodimethylamine 0.0400 0.0352 mg/L 88 2 - 196 2 N-Nitrosodi-n-propylamine 0.0400 0.0358 mg/L 90 14 - 198 7 Pentachlorophenol 0.0400 0.0278 mg/L 36 17 - 120 4 Phenol 0.0400 0.0531 mg/L 133 29 - 137 14 Bis(2-ethylhexyl) phthalate 0.0400 0.0512 mg/L 128 12 - 140 13 Di-n-butyl phthalate 0.0400 0.0512 mg/L 122 8 - 120 7 Di-n-cytl phthalate 0.0400 0.0606 ** mg/L 152 19 - 132 14 Diethyl phthalate 0.0400 0.0399 mg/L 100 17 - 120 3 Dimethyl phthalate 0.0400 0.0381 mg/L						_ =				30
N-Nitrosodimethylamine N-Nitrosodiphenylamine N-Nitrosodiphylamine N-Nit		0.0400					115		6	30
N-Nitrosodi-n-propylamine 0.0400 0.0358 mg/L 90 14.198 7 Pentachlorophenol 0.0400 0.0278 mg/L 70 38.152 3 Pentachlorophenol 0.0400 0.0146 mg/L 36 17.120 4 Bis(2-ethylhexyl) phthalate 0.0400 0.0531 mg/L 133 29.137 14 Butyl benzyl phthalate 0.0400 0.0512 mg/L 128 12.140 13 Din-butyl phthalate 0.0400 0.0686 mg/L 122 8.120 7 Din-octyl phthalate 0.0400 0.0686 mg/L 152 19.132 14 Din-butyl phthalate 0.0400 0.0686 mg/L 152 19.132 14 Din-butyl phthalate 0.0400 0.0381 mg/L 152 19.132 14 Din-butyl phthalate 0.0400 0.0381 mg/L 152 19.132 14 Din-butyl phthalate 0.0400 0.0381 mg/L 152 25.120 5 Benzo(a)anthracene 0.0400 0.0481 mg/L 105 42.133 6 Benzo(a)pyrene 0.0400 0.0482 mg/L 100 32.143 6 Benzo(b)fluoranthene 0.0400 0.0482 mg/L 110 25.146 0 Chrysene 0.0400 0.0438 mg/L 110 25.146 0 Chrysene 0.0400 0.0438 mg/L 110 25.146 0 Chrysene 0.0400 0.0438 mg/L 110 25.146 5 Anthracene 0.0400 0.0438 mg/L 105 43.120 5 Benzo(g),hijpeylene 0.0400 0.0438 mg/L 110 13.195 2 Benzo(g),hijpeylene 0.0400 0.0408 mg/L 105 65.120 4 Dibenz(a,h)anthracene 0.0400 0.0488 mg/L 120 13.151 3 Pyrene 0.0400 0.0488 mg/L 120 13.151 3 Pyrene 0.0400 0.0478 mg/L 120 13.151 3 Pyrene 0.0400 0.0404 mg/L 18 70.1210 7 2,4-Dinitrosodi-n-butylamine 0.0400 0.0374 mg/L 94 68.137 2 2,6-Dinitrosodi-n-butylamine 0.0400 0.0303 mg/L 81 33.141 9 N-Nitrosodi-n-butylamine 0.0400 0.0308 mg/L 77 25.131 2	N-Nitrosodimethylamine	0.0400	0.0132			\	33	20 - 125	5	30
Pentachlorophenol 0.0400 0.0278 mg/L 70 38.152 3 3 3 3 3 3 3 3 3	N-Nitrosodiphenylamine	0.0400	0.0352		mg/L)×	88	2 - 196	2	30
Pentachlorophenol 0.0400 0.0278 mg/L 70 38 - 152 3 Phenol 0.0400 0.0146 mg/L 36 17 - 120 4 Bis(2-ethylhexyl) phthalate 0.0400 0.0531 mg/L 133 29 - 137 14 Butyl benzyl phthalate 0.0400 0.0512 mg/L 128 12 - 140 13 Di-n-butyl phthalate 0.0400 0.0606 ** mg/L 152 19 - 132 14 Dien-butyl phthalate 0.0400 0.0606 ** mg/L 152 19 - 132 14 Dien-butyl phthalate 0.0400 0.0399 mg/L 100 17 - 120 3 Dienzolp phthalate 0.0400 0.0381 mg/L 152 19 - 132 14 Dienzolp phthalate 0.0400 0.0381 mg/L 100 17 - 120 3 Diimethyl phthalate 0.0400 0.0419 mg/L 105 42 - 133 6 Benzo[a]anthracene 0.0400 0.0	N-Nitrosodi-n-propylamine	0.0400	0.0358		mg/L/		90	14 - 198	7	30
Bis(2-ethylhexyl) phthalate	Pentachlorophenol	0.0400	0.0278		mg/L		70	38 - 152	3	30
Butyl benzyl phthalate 0.0400 0.0512 mg/L 128 12.140 13	Phenol	0.0400	0.0146		mg/L		36	17 - 120	4	30
Di-n-butyl phthalate 0.0400 0.0488 *+ mg/L 122 8 . 120 7 Di-n-octyl phthalate 0.0400 0.0606 *+ mg/L 152 19 . 132 14 Diethyl phthalate 0.0400 0.0399 mg/L 100 17 . 120 3 Dimethyl phthalate 0.0400 0.0381 mg/L 105 42 . 133 6 Benzo[a]anthracene 0.0400 0.0419 mg/L 105 42 . 133 6 Benzo[a]pyrene 0.0400 0.0482 mg/L 120 32 . 148 6 Benzo[b]fluoranthene 0.0400 0.0482 mg/L 119 42 . 140 11 Benzo[k]fluoranthene 0.0400 0.0438 mg/L 110 25 . 146 0 Chrysene 0.0400 0.0438 mg/L 110 25 . 146 0 Chrysene 0.0400 0.0347 mg/L 87 54 . 126 5 Anthracene 0.0400 0.0438 mg/L	Bis(2-ethylhexyl) phthalate	0.0400	0.0531		mg/L		133	29 - 137	14	30
Di-n-ocyl phthalate 0.0400 0.0606 *+ mg/L 152 19 - 132 14 Diethyl phthalate 0.0400 0.0399 mg/L 100 17 - 120 3 Dimethyl phthalate 0.0400 0.0381 mg/L 95 25 - 120 5 Benzo[a]anthracene 0.0400 0.0419 mg/L 105 42 - 133 6 Benzo[a]apyrene 0.0400 0.0482 mg/L 110 5 - 120 5 Benzo[b]fluoranthene 0.0400 0.0476 mg/L 110 42 - 140 11 Benzo[b]fluoranthene 0.0400 0.0438 mg/L 110 25 - 146 0 Chrysene 0.0400 0.0438 mg/L 105 44 - 140 6 Chrysene 0.0400 0.0347 mg/L 87 54 - 126 5 Anthracene 0.0400 0.0438 mg/L 109 43 - 120 5 Benzo[g,h,i)perylene 0.0400 0.0439 mg/L 10	Butyl benzyl phthalate	0.0400	0.0512		mg/L		128	12 - 140	13	30
Diethyl phthalate 0.0400 0.0399 mg/L 100 17 - 120 3 Dimethyl phthalate 0.0400 0.0381 mg/L 95 25 - 120 5 Benzo[a]anthracene 0.0400 0.0419 mg/L 105 42 - 133 6 Benzo[a]pyrene 0.0400 0.0482 mg/L 120 32 - 148 6 Benzo[b]fluoranthene 0.0400 0.0482 mg/L 119 42 - 140 11 Benzo[k]fluoranthene 0.0400 0.0438 mg/L 110 25 - 146 0 Chrysene 0.0400 0.0438 mg/L 110 44 - 140 6 Acenaphthylene 0.0400 0.0347 mg/L 87 54 - 126 5 Anthracene 0.0400 0.0438 mg/L 109 43 - 120 5 Benzo[g,h,i]perylene 0.0400 0.0438 mg/L 10 13 - 195 2 Fluorene 0.0400 0.0439 mg/L 10 65 - 120	Di-n-butyl phthalate	0.0400	0.0488	*+	mg/L		122	8 - 120	7	28
Diethyl phthalate 0.0400 0.0399 mg/L 100 17 - 120 3 Dimethyl phthalate 0.0400 0.0381 mg/L 95 25 - 120 5 Benzo[a]anthracene 0.0400 0.0419 mg/L 105 42 - 133 6 Benzo[a]pyrene 0.0400 0.0482 mg/L 120 32 - 148 6 Benzo[b]fluoranthene 0.0400 0.0482 mg/L 119 42 - 140 11 Benzo[k]fluoranthene 0.0400 0.0438 mg/L 110 25 - 146 0 Chrysene 0.0400 0.0438 mg/L 110 44 - 140 6 Acenaphthylene 0.0400 0.0347 mg/L 87 54 - 126 5 Anthracene 0.0400 0.0438 mg/L 109 43 - 120 5 Benzo[g,h,i]perylene 0.0400 0.0438 mg/L 10 13 - 195 2 Fluorene 0.0400 0.0439 mg/L 10 13 - 195	Di-n-octyl phthalate	0.0400	0.0606	*+	mg/L		152	19 - 132	14	30
Benzo[a]anthracene 0.0400 0.0419 mg/L 105 42 ـ 133 6 Benzo[a]pyrene 0.0400 0.0482 mg/L 120 32 ـ 148 6 Benzo[b]fluoranthene 0.0400 0.0476 mg/L 119 42 ـ 140 11 Benzo[k]fluoranthene 0.0400 0.0438 mg/L 110 25 ـ 146 0 Chrysene 0.0400 0.0419 mg/L 105 44 ـ 140 6 Acenaphthylene 0.0400 0.0347 mg/L 87 54 ـ 126 5 Anthracene 0.0400 0.0438 mg/L 109 43 . 120 5 Benzo[g,h,i]perylene 0.0400 0.0438 mg/L 109 43 . 120 5 Benzo[g,h,i]perylene 0.0400 0.0439 mg/L 110 13 . 195 2 Fluorene 0.0400 0.0394 mg/L 199 70 . 120 6 Phenanthrene 0.0400 0.0488 mg/L 122 16 . 200	Diethyl phthalate	0.0400	0.0399				100	17 - 120	3	30
Benzo[a]pyrene 0.0400 0.0482 mg/L 120 32 - 148 6 Benzo[b]fluoranthene 0.0400 0.0476 mg/L 119 42 - 140 11 Benzo[k]fluoranthene 0.0400 0.0438 mg/L 110 25 - 146 0 0 0.0478 0.	Dimethyl phthalate	0.0400	0.0381		mg/L		95	25 - 120	5	30
Benzolbjfluoranthene 0.0400 0.0476 mg/L 119 42 - 140 11 Benzolkjfluoranthene 0.0400 0.0438 mg/L 110 25 - 146 0 Chrysene 0.0400 0.0419 mg/L 105 44 - 140 6 Acenaphthylene 0.0400 0.0347 mg/L 87 54 - 126 5 Anthracene 0.0400 0.0438 mg/L 109 43 - 120 5 Benzolg,h,ilperylene 0.0400 0.0439 mg/L 110 13 - 195 2 Fluorene 0.0400 0.0394 mg/L 99 70 - 120 6 Phenanthrene 0.0400 0.0420 mg/L 105 65 - 120 4 Dibenz(a,h)anthracene 0.0400 0.0488 mg/L 122 16 - 200 4 Indeno[1,2,3-cd]pyrene 0.0400 0.0478 mg/L 120 13 - 151 3 Pyrene 0.0400 0.0474 mg/L 118 70 - 120 <t< td=""><td>Benzo[a]anthracene</td><td>0.0400</td><td>0.0419</td><td></td><td>mg/L</td><td></td><td>105</td><td>42 - 133</td><td>6</td><td>30</td></t<>	Benzo[a]anthracene	0.0400	0.0419		mg/L		105	42 - 133	6	30
Benzolkifituoranthene 0.0400 0.0438 mg/L 110 25-146 0 Chrysene 0.0400 0.0419 mg/L 105 44-140 6 Acenaphthylene 0.0400 0.0347 mg/L 87 54-126 5 Anthracene 0.0400 0.0438 mg/L 109 43-120 5 Benzo[g,h,i]perylene 0.0400 0.0439 mg/L 110 13-195 2 Fluorene 0.0400 0.0394 mg/L 99 70-120 6 Phenanthrene 0.0400 0.0420 mg/L 105 65-120 4 Dibenz(a,h)anthracene 0.0400 0.0488 mg/L 122 16-200 4 Indeno[1,2,3-cd]pyrene 0.0400 0.0478 mg/L 120 13-151 3 Pyrene 0.0400 0.0474 mg/L 118 70-120 7 2,4-Dinitrophenol 0.0400 0.0374 mg/L 94 68-137 2 <tr< td=""><td>Benzo[a]pyrene</td><td>0.0400</td><td>0.0482</td><td></td><td>mg/L</td><td></td><td>120</td><td>32 - 148</td><td>6</td><td>30</td></tr<>	Benzo[a]pyrene	0.0400	0.0482		mg/L		120	32 - 148	6	30
Chrysene 0.0400 0.0419 mg/L 105 44 - 140 6 Acenaphthylene 0.0400 0.0347 mg/L 87 54 - 126 5 Anthracene 0.0400 0.0438 mg/L 109 43 - 120 5 Benzo[g,h,i]perylene 0.0400 0.0439 mg/L 110 13 - 195 2 Fluorene 0.0400 0.0394 mg/L 99 70 - 120 6 Phenanthrene 0.0400 0.0420 mg/L 105 65 - 120 4 Dibenz(a,h)anthracene 0.0400 0.0488 mg/L 122 16 - 200 4 Indeno[1,2,3-cd]pyrene 0.0400 0.0478 mg/L 120 13 - 151 3 Pyrene 0.0400 0.0474 mg/L 118 70 - 120 7 2,4-Dinitrophenol 0.0400 0.0268 mg/L 67 12 - 173 7 2,6-Dinitrotoluene 0.0400 0.0323 mg/L 81 33 - 141 9	Benzo[b]fluoranthene	0.0400	0.0476		mg/L		119	42 - 140	11	30
Acenaphthylene 0.0400 0.0347 mg/L 87 54 - 126 5 Anthracene 0.0400 0.0438 mg/L 109 43 - 120 5 Benzo[g,h,i]perylene 0.0400 0.0439 mg/L 110 13 - 195 2 Fluorene 0.0400 0.0394 mg/L 99 70 - 120 6 Phenanthrene 0.0400 0.0420 mg/L 105 65 - 120 4 Dibenz(a,h)anthracene 0.0400 0.0488 mg/L 122 16 - 200 4 Indeno[1,2,3-cd]pyrene 0.0400 0.0478 mg/L 120 13 - 151 3 Pyrene 0.0400 0.0474 mg/L 118 70 - 120 7 2,4-Dinitrophenol 0.0400 0.0268 mg/L 67 12 - 173 7 2,6-Dinitrotoluene 0.0400 0.0323 mg/L 81 33 - 141 9 N-Nitrosodiethylamine 0.0400 0.0366 mg/L 91 30 - 160 3 Pentachlorobenzene 0.0400 0.0308 mg/L 77 </td <td>Benzo[k]fluoranthene</td> <td>0.0400</td> <td>0.0438</td> <td></td> <td>mg/L</td> <td></td> <td>110</td> <td>25 - 146</td> <td>0</td> <td>30</td>	Benzo[k]fluoranthene	0.0400	0.0438		mg/L		110	25 - 146	0	30
Anthracene 0.0400 0.0438 mg/L 109 43 - 120 5 Benzo[g,h,i]perylene 0.0400 0.0439 mg/L 110 13 - 195 2 Fluorene 0.0400 0.0394 mg/L 99 70 - 120 6 Phenanthrene 0.0400 0.0420 mg/L 105 65 - 120 4 Dibenz(a,h)anthracene 0.0400 0.0488 mg/L 122 16 - 200 4 Indeno[1,2,3-cd]pyrene 0.0400 0.0478 mg/L 120 13 - 151 3 Pyrene 0.0400 0.0474 mg/L 118 70 - 120 7 2,4-Dinitrophenol 0.0400 0.0268 mg/L 67 12 - 173 7 2,6-Dinitrotoluene 0.0400 0.0374 mg/L 94 68 - 137 2 N-Nitrosodi-n-butylamine 0.0400 0.0323 mg/L 81 33 - 141 9 N-Nitrosodiethylamine 0.0400 0.0366 mg/L 91 30 - 160 3 Pentachlorobenzene 0.0400 0.0308 mg/L	Chrysene	0.0400	0.0419		mg/L		105	44 - 140	6	30
Benzo[g,h,i]perylene 0.0400 0.0439 mg/L 110 13 - 195 2 Fluorene 0.0400 0.0394 mg/L 99 70 - 120 6 Phenanthrene 0.0400 0.0420 mg/L 105 65 - 120 4 Dibenz(a,h)anthracene 0.0400 0.0488 mg/L 122 16 - 200 4 Indeno[1,2,3-cd]pyrene 0.0400 0.0478 mg/L 120 13 - 151 3 Pyrene 0.0400 0.0474 mg/L 118 70 - 120 7 2,4-Dinitrophenol 0.0400 0.0268 mg/L 67 12 - 173 7 2,6-Dinitrotoluene 0.0400 0.0374 mg/L 94 68 - 137 2 N-Nitrosodi-n-butylamine 0.0400 0.0323 mg/L 81 33 - 141 9 N-Nitrosodiethylamine 0.0400 0.0366 mg/L 91 30 - 160 3 Pentachlorobenzene 0.0400 0.0308 mg/L 77 25	Acenaphthylene	0.0400	0.0347		mg/L		87	54 - 126	5	30
Fluorene 0.0400 0.0394 mg/L 99 70 - 120 6 Phenanthrene 0.0400 0.0420 mg/L 105 65 - 120 4 Dibenz(a,h)anthracene 0.0400 0.0488 mg/L 122 16 - 200 4 Indeno[1,2,3-cd]pyrene 0.0400 0.0478 mg/L 120 13 - 151 3 Pyrene 0.0400 0.0474 mg/L 118 70 - 120 7 2,4-Dinitrophenol 0.0400 0.0268 mg/L 67 12 - 173 7 2,6-Dinitrotoluene 0.0400 0.0374 mg/L 94 68 - 137 2 N-Nitrosodi-n-butylamine 0.0400 0.0323 mg/L 81 33 - 141 9 N-Nitrosodiethylamine 0.0400 0.0366 mg/L 91 30 - 160 3 Pentachlorobenzene 0.0400 0.0308 mg/L 77 25 - 131 2	Anthracene	0.0400	0.0438		mg/L		109	43 - 120	5	30
Phenanthrene 0.0400 0.0420 mg/L 105 65 - 120 4 Dibenz(a,h)anthracene 0.0400 0.0488 mg/L 122 16 - 200 4 Indeno[1,2,3-cd]pyrene 0.0400 0.0478 mg/L 120 13 - 151 3 Pyrene 0.0400 0.0474 mg/L 118 70 - 120 7 2,4-Dinitrophenol 0.0400 0.0268 mg/L 67 12 - 173 7 2,6-Dinitrotoluene 0.0400 0.0374 mg/L 94 68 - 137 2 N-Nitrosodi-n-butylamine 0.0400 0.0323 mg/L 81 33 - 141 9 N-Nitrosodiethylamine 0.0400 0.0366 mg/L 91 30 - 160 3 Pentachlorobenzene 0.0400 0.0308 mg/L 77 25 - 131 2	Benzo[g,h,i]perylene	0.0400	0.0439		mg/L		110	13 - 195	2	30
Dibenz(a,h)anthracene 0.0400 0.0488 mg/L 122 16 - 200 4 Indeno[1,2,3-cd]pyrene 0.0400 0.0478 mg/L 120 13 - 151 3 Pyrene 0.0400 0.0474 mg/L 118 70 - 120 7 2,4-Dinitrophenol 0.0400 0.0268 mg/L 67 12 - 173 7 2,6-Dinitrotoluene 0.0400 0.0374 mg/L 94 68 - 137 2 N-Nitrosodi-n-butylamine 0.0400 0.0323 mg/L 81 33 - 141 9 N-Nitrosodiethylamine 0.0400 0.0366 mg/L 91 30 - 160 3 Pentachlorobenzene 0.0400 0.0308 mg/L 77 25 - 131 2	Fluorene	0.0400	0.0394		mg/L		99	70 - 120	6	23
Indeno[1,2,3-cd]pyrene 0.0400 0.0478 mg/L 120 13 - 151 3 Pyrene 0.0400 0.0474 mg/L 118 70 - 120 7 2,4-Dinitrophenol 0.0400 0.0268 mg/L 67 12 - 173 7 2,6-Dinitrotoluene 0.0400 0.0374 mg/L 94 68 - 137 2 N-Nitrosodi-n-butylamine 0.0400 0.0323 mg/L 81 33 - 141 9 N-Nitrosodiethylamine 0.0400 0.0366 mg/L 91 30 - 160 3 Pentachlorobenzene 0.0400 0.0308 mg/L 77 25 - 131 2	Phenanthrene	0.0400	0.0420		mg/L		105	65 - 120	4	30
Pyrene 0.0400 0.0474 mg/L 118 70 - 120 7 2,4-Dinitrophenol 0.0400 0.0268 mg/L 67 12 - 173 7 2,6-Dinitrotoluene 0.0400 0.0374 mg/L 94 68 - 137 2 N-Nitrosodi-n-butylamine 0.0400 0.0323 mg/L 81 33 - 141 9 N-Nitrosodiethylamine 0.0400 0.0366 mg/L 91 30 - 160 3 Pentachlorobenzene 0.0400 0.0308 mg/L 77 25 - 131 2	Dibenz(a,h)anthracene	0.0400	0.0488		mg/L		122	16 - 200	4	30
2,4-Dinitrophenol 0.0400 0.0268 mg/L 67 12 - 173 7 2,6-Dinitrotoluene 0.0400 0.0374 mg/L 94 68 - 137 2 N-Nitrosodi-n-butylamine 0.0400 0.0323 mg/L 81 33 - 141 9 N-Nitrosodiethylamine 0.0400 0.0366 mg/L 91 30 - 160 3 Pentachlorobenzene 0.0400 0.0308 mg/L 77 25 - 131 2	Indeno[1,2,3-cd]pyrene	0.0400	0.0478		mg/L		120	13 - 151	3	30
2,6-Dinitrotoluene 0.0400 0.0374 mg/L 94 68 - 137 2 N-Nitrosodi-n-butylamine 0.0400 0.0323 mg/L 81 33 - 141 9 N-Nitrosodiethylamine 0.0400 0.0366 mg/L 91 30 - 160 3 Pentachlorobenzene 0.0400 0.0308 mg/L 77 25 - 131 2	Pyrene	0.0400	0.0474		mg/L		118	70 - 120	7	30
N-Nitrosodi-n-butylamine 0.0400 0.0323 mg/L 81 33 - 141 9 N-Nitrosodiethylamine 0.0400 0.0366 mg/L 91 30 - 160 3 Pentachlorobenzene 0.0400 0.0308 mg/L 77 25 - 131 2	2,4-Dinitrophenol	0.0400	0.0268		mg/L		67	12 - 173	7	30
N-Nitrosodiethylamine 0.0400 0.0366 mg/L 91 30 - 160 3 Pentachlorobenzene 0.0400 0.0308 mg/L 77 25 - 131 2	2,6-Dinitrotoluene	0.0400	0.0374		mg/L		94	68 - 137	2	29
Pentachlorobenzene 0.0400 0.0308 mg/L 77 25 - 131 2	N-Nitrosodi-n-butylamine	0.0400	0.0323		mg/L		81	33 - 141	9	30
, and the second	N-Nitrosodiethylamine	0.0400	0.0366		mg/L		91	30 - 160	3	30
Pyridine 0.0400 0.00467 J *1 mg/L 12 5 - 94 56	Pentachlorobenzene	0.0400	0.0308		mg/L		77	25 - 131	2	30
	Pyridine	0.0400	0.00467	J *1	mg/L		12	5 - 94	56	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	92		31 - 132
2-Fluorobiphenyl (Surr)	84		29 - 112
2-Fluorophenol (Surr)	41		28 - 114
Nitrobenzene-d5 (Surr)	86		15 - 314
p-Terphenyl-d14 (Surr)	108		20 - 141
Phenol-d5 (Surr)	30		8 - 424

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 860-153142/3

Matrix: Water

Analysis Batch: 153142

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.50 04/03/24 19:31 0.071 U 0.071 mg/L **Bromide**

Eurofins Houston

Page 21 of 51

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 860-153142/3

Matrix: Water

Analysis Batch: 153142

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	0.25	U	0.50	0.25	mg/L			04/03/24 19:31	1
Fluoride	0.10	U	0.50	0.10	mg/L			04/03/24 19:31	1
Sulfate	0.20	U	0.50	0.20	mg/L		^	04/03/24 19:31	1

Lab Sample ID: LCS 860-153142/4

Matrix: Water

Analysis Batch: 153142

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier L	Jnit D	%Rec	Limits	
Bromide	10.0	10.6	n	ng/L	106	90 - 110	
Chloride	10.0	9.24	n	ng/L	92	90 - 110	
Fluoride	10.0	10.6	n	ng/L	106	90 - 110	
Sulfate	10.0	9.19	n	ng/L	92	90 - 110	

Lab Sample ID: LCSD 860-153142/5

Matrix: Water

Analysis Batch: 153142

Client Sample ID: Lab Control Sample Dup

0/ Baa

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		KPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromide	10.0	10.5		mg/L		105	90 - 110	1	20
Chloride	10.0	9.25		mg/L		92	90 - 110	0	20
Fluoride	10.0	10.6		mg/L		106	90 - 110	0	20
Sulfate	10.0	9.23		mg/L		92	90 - 110	0	20

Lab Sample ID: LLCS 860-153142/7

Matrix: Water

Analysis Batch: 153142

Client Sample ID: Lab Control Sai	nple
Prep Type: Tota	il/NA

		Spike	LLCS	LLCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromide		0.500	0.465	J	mg/L		93	50 - 150	
Chloride	> /	0.500	0.575		mg/L		115	50 - 150	
Fluoride		0.500	0.420	J	mg/L		84	50 - 150	

Lab Sample ID: MB 860-153143/3

Matrix: Water

Analysis Batch: 153143

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Nitrate as N	0.039	U	0.10	0.039 mg/L		04/03/24 19:31	1
Nitrite as N	0.029	U	0.10	0.029 mg/L		04/03/24 19:31	1
Nitrate Nitrite as N	0.039	U	0.10	0.039 mg/L		04/03/24 19:31	1

MB MB

Lab Sample ID: LCS 860-153143/4

Matrix: Water

Analysis Batch: 153143

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Allalysis Datcii. 100170								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate as N	10.0	10.3		mg/L		103	80 - 120	
Nitrite as N	10.0	10.3		ma/l		103	80 - 120	

Eurofins Houston

Page 22 of 51

4/15/2024

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCSD 860-153143/5

Matrix: Water

Analysis Batch: 153143

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 667323

Prep Type: Total/NA

-	Spike	LCSD	LCSD			%Rec		RPD
Analyte	Added	Result	Qualifier	Unit I	O %Rec	Limits	RPD	Limit
Nitrate as N	10.0	10.3		mg/L	103	80 - 120	0	20
Nitrite as N	10.0	10.3		mg/L	103	80 - 120	0	20
_								

Method: 1631E - Mercury, Low Level (CVAFS)

Lab Sample ID: MB 400-667323/4-A

Matrix: Water

Analysis Batch: 667418

MB MB

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 667323**

Result Qualifier MDL Unit Analyte RL Prepared Analyzed Dil Fac 0.20 U 0.50 0.20 ng/L 04/08/24 16:00 04/09/24 10:10 Mercury

Lab Sample ID: LCS 400-667323/5-A

Matrix: Water

Analysis Batch: 667418

Spike LCS LCS %Rec Added Result Qualifier Limits

Analyte Mercury 5.00 4.64 ng/L 79 - 121

Lab Sample ID: LCSD 400-667323/6-A

Matrix: Water Prep Type: Total/NA **Analysis Batch: 667418 Prep Batch: 667323** LCSD LCSD %Rec Spike **RPD** Added Limit Analyte Result Qualifier Unit %Rec Limits **RPD** 5.00 Mercury 4.69 94 79 - 121 20 ng/L

Lab Sample ID: MRL 400-667323/3-A

Matrix: Water

Analyte

Mercury

Analysis Batch: 667418

Prep Batch: 667323 Spike MRL MRL %Rec Added Result Qualifier Unit %Rec Limits 0.500 0.493 J 99 75 - 125 ng/L

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 860-154112/1-A

Matrix: Water

Analysis Batch: 154173

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 154112

7 many one Battern 10 1110								. Top Datom	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.0030	U	0.020	0.0030	mg/L		04/10/24 12:00	04/10/24 19:57	1
Antimony	0.0011	U	0.0020	0.0011	mg/L		04/10/24 12:00	04/10/24 19:57	1
Arsenic	0.00034	U	0.0040	0.00034	mg/L		04/10/24 12:00	04/10/24 19:57	1
Barium	0.00029	U	0.0040	0.00029	mg/L		04/10/24 12:00	04/10/24 19:57	1
Beryllium	0.00015	U	0.0020	0.00015	mg/L		04/10/24 12:00	04/10/24 19:57	1
Cadmium	0.00026	U	0.0020	0.00026	mg/L		04/10/24 12:00	04/10/24 19:57	1
Chromium	0.00033	U	0.0040	0.00033	mg/L		04/10/24 12:00	04/10/24 19:57	1
Cobalt	0.00026	U	0.0020	0.00026	mg/L		04/10/24 12:00	04/10/24 19:57	1
Copper	0.00069	U	0.0040	0.00069	mg/L		04/10/24 12:00	04/10/24 19:57	1
Iron	0.0020	U	0.020	0.0020	mg/L		04/10/24 12:00	04/10/24 19:57	1

Eurofins Houston

Page 23 of 51

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 860-154112/1-A

Matrix: Water

Analysis Batch: 154173

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 154112

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Prep Batch: 154112

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	0.00014	U	0.0020	0.00014	mg/L		04/10/24 12:00	04/10/24 19:57	1
Magnesium	0.0092	U	0.10	0.0092	mg/L		04/10/24 12:00	04/10/24 19:57	1
Manganese	0.00016	U	0.0020	0.00016	mg/L		04/10/24 12:00	04/10/24 19:57	1
Molybdenum	0.00016	U	0.0020	0.00016	mg/L		04/10/24 12:00	04/10/24 19:57	1
Nickel	0.00049	U	0.0020	0.00049	mg/L	7	04/10/24 12:00	04/10/24 19:57	1
Selenium	0.00069	U	0.0020	0.00069	mg/L		04/10/24 12:00	04/10/24 19:57	1
Silver	0.00012	U	0.0020	0.00012	mg/L)		04/10/24 12:00	04/10/24 19:57	1
Thallium	0.00022	U	0.0020	0.00022	mg/L		04/10/24 12:00	04/10/24 19:57	1
Tin	0.00033	U	0.0020	0.00033	mg/L		04/10/24 12:00	04/10/24 19:57	1
Titanium	0.00042	U	0.0040	0.00042	mg/L		04/10/24 12:00	04/10/24 19:57	1
Zinc	0.00089	U	0.0040	0.00089	mg/L		04/10/24 12:00	04/10/24 19:57	1
			. 11						

Lab Sample ID: MB 860-154112/1-A

Matrix: Water

Analysis Batch: 154352

MB MB

Result Qualifier Analyte **MDL** Unit Prepared Analyzed Dil Fac Boron 0.0025 U 0.010 0.0025 mg/L 04/10/24 12:00 04/11/24 12:58

Lab Sample ID: LCS 860-154112/2-A **Matrix: Water**

Analysis Batch: 154173

	Client Sample ID: Lab Control Sample
	Prep Type: Total Recoverable
	Prep Batch: 154112
S	%Rec

Analysis Batch: 15	41/3	Spike	LCS	LCS				%Rec
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum		0.500	0.487		mg/L		97	85 - 115
Antimony	(<i>()</i> / ₁ ~	0.100	0.0985		mg/L		99	85 - 115
Arsenic		0.100	0.0959		mg/L		96	85 - 115
Barium		0.100	0.0938		mg/L		94	85 - 115
Beryllium) 💥	0.100	0.0982		mg/L		98	85 - 115
Cadmium	>	0.100	0.103		mg/L		103	85 - 115
Chromium		0.100	0.0937		mg/L		94	85 - 115
Cobalt		0.100	0.0930		mg/L		93	85 - 115
Copper		0.100	0.0932		mg/L		93	85 - 115
Iron		0.500	0.483		mg/L		97	85 - 115
Lead		0.100	0.0962		mg/L		96	85 - 115
Magnesium		2.50	2.37		mg/L		95	85 - 115
Manganese		0.100	0.0946		mg/L		95	85 - 115
Molybdenum		0.100	0.0996		mg/L		100	85 - 115
Nickel		0.100	0.0930		mg/L		93	85 - 115
Selenium		0.100	0.0956		mg/L		96	85 - 115
Silver		0.0500	0.0502		mg/L		100	85 - 115
Thallium		0.100	0.0968		mg/L		97	85 - 115
Tin		0.100	0.101		mg/L		101	85 - 115
Titanium		0.100	0.0920		mg/L		92	85 - 115
Zinc		0.100	0.0963		mg/L		96	85 - 115

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 860-154112/2-A

Matrix: Water

Analyte

Boron

Analysis Batch: 154352

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 154112

Spike LCS LCS %Rec Added Result Qualifier Unit Limits %Rec 0.100 0.0934 mg/L 93 85 - 115

Lab Sample ID: LCSD 860-154112/3-A

Matrix: Water

Client Sample ID: Lab Control Sample Dup **Prep Type: Total Recoverable**

Analysis Batch: 15	54173							Prep Ba	atch: 1	
		Spike	LCSD	LCSD				%Rec		RPD
Analyte		Added	Result	Qualifier U	nit	D	%Rec	Limits	RPD	Limit
Aluminum		0.500	0.493	m	ng/L		99	85 - 115	1	20
Antimony		0.100	0.0990	m	ng/L		99	85 - 115	0	20
Arsenic		0.100	0.0962	m	ng/L		96	85 - 115	0	20
Barium		0.100	0.0934	m	ng/L		93	85 - 115	1	20
Beryllium		0.100	0.0973	m	ng/L		97	85 - 115	1	20
Cadmium		0.100	0.103	m	ng/L		103	85 - 115	0	20
Chromium		0.100	0.0936	m	ng/L		94	85 - 115	0	20
Cobalt		0.100	0.0936	m	ng/L		94	85 - 115	1	20
Copper		0.100	0.0937	m	ng/L		94	85 - 115	1	20
Iron	. 4	0.500	0.477	m	ng/L		95	85 - 115	1	20
Lead		0.100	0.0966	m	ng/L		97	85 - 115	0	20
Magnesium		2.50	2.39	m	ng/L		96	85 - 115	1	20
Manganese		0.100	0.0941	m	ıg/L		94	85 - 115	1	20
Molybdenum		0.100	0.0998	m	ng/L		100	85 - 115	0	20
Nickel		0.100	0.0934	m	ng/L		93	85 - 115	0	20
Selenium		0.100	0.0967	m	ng/L		97	85 - 115	1	20
Silver		0.0500	0.0498	m	ng/L		100	85 - 115	1	20
Thallium		0.100	0.0967	m	ng/L		97	85 - 115	0	20
Tin		0.100	0.101	m	ng/L		101	85 - 115	0	20
Titanium		0.100	0.0917	m	ng/L		92	85 - 115	0	20
Zinc		0.100	0.0968	m	ng/L		97	85 - 115	0	20

Lab Sample ID: LCSD 860-154112/3-A

Matrix: Water

Analysis Batch: 154352

Client Sample ID: Lab Control Sample Dup

Prep Type: Total Recoverable Prep Batch: 154112

Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Boron 0.100 0.0959 mg/L 96 85 - 115 3

Method: 1664B - HEM and SGT-HEM

Lab Sample ID: MB 860-154578/1

Matrix: Water

Analysis Batch: 154578

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 5.0 04/12/24 15:05 HEM 1.6 U 1.6 mg/L

Eurofins Houston

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: 1664B - HEM and SGT-HEM (Continued)

Lab Sample ID: LCS 860-154578/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water Analysis Batch: 154578

Spike LCS LCS %Rec

Added Result Qualifier Limits Analyte Unit %Rec HEM 40.0 41.0 mg/L 102 78 - 114

Lab Sample ID: LCSD 860-154578/3

Matrix: Water

Analysis Batch: 154578

RPD Spike LCSD LCSD %Rec Added Result Qualifier Unit D %Rec Limits RPD Limit Analyte HEM 40.0 39.4 mg/L 99 78 - 114 9 18

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 860-154343/73

Matrix: Water

Analysis Batch: 154343

MB MB Result Qualifier RL **MDL** Unit Dil Fac **Analyte** Prepared Analyzed 0.10 04/11/24 12:10 Ammonia 0.051 U 0.051 mg/L

Lab Sample ID: LCS 860-154343/74

Matrix: Water

Analysis Batch: 154343

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Ammonia 1.00 0.959 96 90 - 110 mg/L

Lab Sample ID: LCSD 860-154343/75

Matrix: Water

Analysis Batch: 154343

LCSD LCSD **RPD** Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Ammonia 1.00 0.972 mg/L 90 - 110 20

Method: 351.2 - Nitrogen, Total Kjeldahl

Lab Sample ID: MB 860-153831/32-A Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 153982

Prep Batch: 153831 MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Nitrogen, Kjeldahl 0.089 U 0.20 0.089 mg/L 04/08/24 19:05 04/09/24 14:51

Lab Sample ID: MB 860-153831/4-A

Matrix: Water

Analysis Batch: 153982

MB MB

Result Qualifier RL MDL Unit Prepared Analyzed Nitrogen, Kjeldahl 0.089 U 0.20 0.089 mg/L 04/08/24 19:05 04/09/24 14:38

Eurofins Houston

4/15/2024

Prep Type: Total/NA

Prep Batch: 153831

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: 351.2 - Nitrogen, Total Kjeldahl (Continued)

Lab Sample ID: LCS 860-153831/33-A				Clie	nt Sai	mple ID	: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 153982							Prep Batch: 153831
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Nitrogen, Kjeldahl	2.00	2.00		mg/L		100	90 - 110

Lab Sample ID: LCS 860-153831/6-A		Client Sample ID: Lab Control Sample
Matrix: Water		Prep Type: Total/NA
Analysis Batch: 153982		Prep Batch: 153831
	Spike	LCS LCS %Rec
Analyte	Added	Result Qualifier Unit D %Rec Limits
Nitrogen, Kjeldahl	2.00	2.01 mg/L 101 90 - 110

Lab Sample ID: LCSD 860-153831/34-A			× (Client Sam	ple	ID: Lab	Control	Sample	Dup
Matrix: Water		9					Prep Ty	pe: Tot	al/NA
Analysis Batch: 153982	1						Prep Ba	tch: 1	3831
_	Spike (LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrogen, Kjeldahl	2.00	1.98		mg/L	_	99	90 - 110	1	20
	4//)8								

Matrix: water Analysis Batch: 153982							Prep ly Prep Ba		
•	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrogen, Kjeldahl	2.00	1.98		mg/L		99	90 - 110	2	20

Lab Sample ID: LLCS 860-153831/5-A				Clie	nt Saı	mple ID	: Lab Control Sar	nple
Matrix: Water							Prep Type: Tota	ıl/NA
Analysis Batch: 153982							Prep Batch: 153	3831
	Spike	LLCS	LLCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrogen, Kjeldahl	0.200	0.224		mg/L		112	50 - 150	

Method: 365.1 - Phosphorus, Total

Lab Sample ID: LCSD 860-153831/7-A

Lab Sample ID: MB 860-154643/16	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 154643	

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phosphorus Total	0.014	U	0.020	0.014	mg/L			04/12/24 12:55	1

Lab Sample ID: LCS 860-154643/17 Matrix: Water Analysis Batch: 154643		C	•	Lab Control Sample Prep Type: Total/NA
	Spike	LCS LCS		%Rec

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Phosphorus Total	0.250	0.262		mg/L		105	90 - 110	

4/15/2024

Client Sample ID: Lab Control Sample Dup

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: 365.1 - Phosphorus, Total (Continued)

Lab Sample ID: LCSD 860-154643/18 Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 154643

RPD Spike LCSD LCSD %Rec Added Result Qualifier Unit %Rec Limits RPD Limit Analyte 90 - 110 Phosphorus Total 0.250 0.264 mg/L 106

Lab Sample ID: 860-71363-1 MS

Matrix: Water

Analysis Batch: 154643

Sample Sample Spike MS MS %Rec Added Result Qualifier Result Qualifier Unit D %Rec Limits Analyte 3.2 F1 1.25 90 - 110 Phosphorus Total 4.48 mg/L 104

Lab Sample ID: 860-71363-1 MSD

Matrix: Water

Analysis Batch: 154643

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Result Qualifier Limits RPD Analyte Unit %Rec Limit Phosphorus Total 3.2 F1 1.25 4.58 F1 90 - 110 20 mg/L

Method: 7196A - Chromium, Hexavalent

Lab Sample ID: MB 860-153082/3

Matrix: Water

Analysis Batch: 153082

МВ МВ

Lab Sample ID: LCS 860-153082/4

Matrix: Water

Analysis Batch: 153082

Lab Sample ID: LCSD 860-153082/5

Matrix: Water

Analysis Batch: 153082

LCSD LCSD RPD Spike %Rec Added RPD Analyte Result Qualifier Unit %Rec Limits Limit Cr (VI) 0.200 20 0.189 94 mg/L 85 - 115

Method: 8000 - COD

Lab Sample ID: MB 860-154414/3

Matrix: Water

Analysis Batch: 154414

 MB Analyte
 Result Qualifier
 RL MDL Unit
 D Prepared
 Analyzed Analyzed O4/11/24 21:15
 Dil Fac

 Chemical Oxygen Demand
 3.4 U
 20
 3.4 mg/L
 04/11/24 21:15
 1

Eurofins Houston

4/15/2024

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Outfall 001

Client Sample ID: Outfall 001

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: 8000 - COD (Continued)

Lab Sample ID: LCS 860-154414/4

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 154414

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit %Rec **Chemical Oxygen Demand** 100 107 mg/L 107 90 - 110

Method: OIA-1677 - Cyanide, Available (Flow Injection)

Lab Sample ID: MB 410-491900/34

Matrix: Water

Analysis Batch: 491900

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

MDL Result Qualifier RL Unit Prepared Analyzed Dil Fac 0.0060 Cyanide, Available 0.0050 U 0.0050 mg/L 04/08/24 13:33

Lab Sample ID: LCS 410-491900/33

Matrix: Water

Analysis Batch: 491900

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit %Rec 0.0500 Cyanide, Available 0.0507 mg/L 101 82 - 132

Lab Sample ID: LCSD 410-491900/17

Matrix: Water

Analysis Batch: 491900

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Cyanide, Available 0.0500 0.0470 mg/L 94 82 - 132

Method: SM 2120B - Color, Colorimetric

Lab Sample ID: MB 860-153545/3

Matrix: Water

Analysis Batch: 153545

Client Sample ID: Method Blank **Prep Type: Total/NA**

MB MB

MB MB

Result Qualifier Analyte RL **MDL** Unit Prepared Analyzed Dil Fac Color, Apparent 5.0 U 5.0 5.0 Color Units 04/03/24 18:45 Color, True 5.0 U 5.0 5.0 Color Units 04/03/24 18:45 0.10 0.10 S.U. 04/03/24 18:45 na

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 860-154745/2

Matrix: Water

Analysis Batch: 154745

_	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	4.0	U	4.0	4.0	mg/L			04/14/24 10:55	1
Bicarbonate Alkalinity as CaCO3	6.93		4.0	4.0	mg/L			04/14/24 10:55	1
Carbonate Alkalinity as CaCO3	4.0	U	4.0	4.0	mg/L			04/14/24 10:55	1
Hydroxide Alkalinity	4.0	U	4.0	4.0	mg/L			04/14/24 10:55	1
Phenolphthalein Alkalinity	4.0	U	4.0	4.0	mg/L			04/14/24 10:55	1

Eurofins Houston

Client Sample ID: Method Blank

Prep Type: Total/NA

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: SM 2320B - Alkalinity (Continued)

Lab Sample ID: LCS 860-154745/3 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 154745

Spike LCS LCS %Rec Result Qualifier Added Limits Analyte Unit %Rec Alkalinity 250 254 mg/L 102 85 - 115

Lab Sample ID: LCSD 860-154745/4

Matrix: Water

Analysis Batch: 154745

RPD Spike LCSD LCSD %Rec Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 250 Alkalinity 255 mg/L 102 85 - 115 n

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 860-153725/1 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 153725

MB MB **MDL** Unit Result Qualifier RL Dil Fac Analyte Prepared Analyzed 04/08/24 11:13 **Total Dissolved Solids** 5.0 U 5.0 5.0 mg/L

Lab Sample ID: LCS 860-153725/2

Matrix: Water

Analysis Batch: 153725

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 1000 1110 80 - 120 mg/L

Lab Sample ID: LCSD 860-153725/3

Matrix: Water

Analysis Batch: 153725

LCSD LCSD **RPD** Spike %Rec Analyte Added Result Qualifier Unit Limits **RPD** Limit Total Dissolved Solids 1000 1110 mg/L 80 - 120

Lab Sample ID: LLCS 860-153725/4

Matrix: Water

Analysis Batch: 153725

LLCS LLCS Spike %Rec Added Analyte Result Qualifier Unit %Rec Limits Total Dissolved Solids 5.00 6.00 120 50 - 150 mg/L

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 860-154025/1

Matrix: Water

Analysis Batch: 154025

MB MB Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 4.0 U 4 0 04/09/24 19:40 Total Suspended Solids 4.0 mg/L

Eurofins Houston

4/15/2024

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: SM 2540D - Solids, Total Suspended (TSS) (Continued)

Lab Sample ID: LCS 860-154025/2 Matrix: Water Analysis Batch: 154025			Clie	ent Saı	mple ID	: Lab Control Sample Prep Type: Total/NA	
•	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Total Suspended Solids	100	112		mg/L		112	80 - 120		
Lah Sample ID: LCSD 860-154025/3			C	liont Sa	mnla	ID: I al	o Control	Sample	Dun

Lab Sample ID: LCSD 860-154025/3			Client Sa	mple	ID: Lab	Control	Sample	a Dup
Matrix: Water			~ / C	<i>)</i>		Prep Ty	pe: Tot	al/NA
Analysis Batch: 154025			1					
	Spike	LCSD	LCSD			%Rec		RPD
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit
Total Suspended Solids	100	111	mg/L		111	80 - 120	1	10

Method: SM 4500 CI G - Chlorine, Residual

Lab Sample ID: LCS 860-154024/4

Lab Sample ID: LCSD 860-154024/5

Lab Sample ID: 860-71363-1 MSD

Lab Sample ID: MB 860-154024/3 Matrix: Water Analysis Batch: 154024								ple ID: Method Prep Type: To	
	MB	MB							
Analyte	Result	Qualifier 4/	/ RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorine, Total Residual	0.050	U	0.050	0.050	mg/L			04/09/24 19:26	1

Matrix: Water Analysis Batch: 154024							Prep Ty	pe: Total/N	1
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chlorine, Total Residual	0.250	0.244		mg/L		98	85 - 115		

Matrix: Water							Prep Ty	pe: Tot	al/NA
Analysis Batch: 154024									
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chlorine, Total Residual	0.250	0.232		mg/L		93	85 - 115	5	20

Lab Sample ID: 860-71363-1 MS	Client Sample ID: Outfall 001
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 154024	

	Sample Sample	Spike	MS	MS				%Rec
Analyte	Result Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chlorine, Total Residual	0.88 HF F1	0.500	1.25	F1	mg/L		74	90 - 110

Matrix: water Analysis Batch: 154024									Prep ly	pe: 10t	al/NA
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chlorine, Total Residual	0.88	HF F1	0.500	1.23	F1	mg/L		69	90 - 110	2	20

Eurofins Houston

4/15/2024

Client Sample ID: Outfall 001

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: SM 4500 S2 D - Sulfide, Total

Lab Sample ID: MB 860-153820/3

Matrix: Water

Analysis Batch: 153820

MB MB Analyte

Analyzed Result Qualifier RL **MDL** Unit Dil Fac D Prepared 0.10 04/08/24 17:25 Sulfide 0.040 U 0.040 mg/L

LCS LCS

LCSD LCSD

1.06

Result Qualifier

MDL Unit

LCS LCS

LCSD LCSD

10.0

Result Qualifier

10.0

Result Qualifier

5.0 mg/L

1.06

Result Qualifier

Unit

mg/L

Unit

mg/L

Unit

mg/L

Unit

mg/L

Spike

Added

1.00

Spike

Added

1.00

Spike

Added

10.0

Spike

Added

10.0

RL

5.0

Lab Sample ID: LCS 860-153820/4

Matrix: Water

Analysis Batch: 153820

Analyte

Sulfide

Lab Sample ID: LCSD 860-153820/5 **Matrix: Water**

Analysis Batch: 153820

Analyte

Sulfide

Method: SM 4500 SO3 B - Sulfite

Lab Sample ID: MB 860-154018/1

Matrix: Water

Analysis Batch: 154018

Analyte

Sulfite

Lab Sample ID: LCS 860-154018/2

Matrix: Water

Analysis Batch: 154018

Analyte

Sulfite

Lab Sample ID: LCSD 860-154018/3

Matrix: Water

Analysis Batch: 154018

Analyte

Sulfite Method: SM 5210B - BOD, 5-Day

Lab Sample ID: SCB 860-154588/2

Matrix: Water

Analysis Batch: 154588

SCB SCB

Biochemical Oxygen Demand

Result Qualifier 0.990

мв мв Result Qualifier

5.0 U

MDL Unit 0.0000020 0.0000020 mg/L

Prepared

Analyzed

04/04/24 10:56

Eurofins Houston

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

D %Rec

106

%Rec

Prepared

100

%Rec

100

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample Dup

%Rec

Limits

90 - 110

%Rec

Limits

90 - 110

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec

Limits

%Rec

Limits

80 - 120

Client Sample ID: Method Blank

80 - 120

Analyzed

04/09/24 18:52

Prep Type: Total/NA

RPD

RPD

RPD

Limit

Dil Fac

20

RPD

Limit

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: SM 5210B - BOD, 5-Day (Continued)

Lab Sample ID: USB 860-154588/1 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 154588

USB USB

MB MB

Result Qualifier **MDL** Unit Analyzed Dil Fac Analyte RL D Prepared 0.0000020 04/04/24 10:42 **Biochemical Oxygen Demand** 0.0000020 U 0.0000020 mg/L

Lab Sample ID: LCS 860-154588/3 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 154588

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits

198 Biochemical Oxygen Demand 200 mg/L 101 85 - 115

Method: SM 5310C - TOC

Lab Sample ID: MB 860-154300/27 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 154300

MDL Unit Result Qualifier RL Dil Fac Analyte Prepared Analyzed Total Organic Carbon 0.50 U 1.0 0.50 mg/L 04/11/24 00:48

Lab Sample ID: LCS 860-154300/28

Matrix: Water

Analysis Batch: 154300

LCS LCS Spike %Rec Added Analyte Result Qualifier Unit %Rec Limits **Total Organic Carbon** 5.00 5.11 102 90 - 110

mg/L

Lab Sample ID: LCSD 860-154300/29

Matrix: Water

Analysis Batch: 154300

LCSD LCSD **RPD** Spike Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Total Organic Carbon 5.10 mg/L 102 90 - 110

Method: SM5210B CBOD - Carbonaceous BOD, 5 Day

Lab Sample ID: SCB 860-154301/2 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154301

SCB SCB

Result Qualifier **MDL** Unit Prepared Analyzed Dil Fac Carbonaceous Biochemical Oxygen 0.930 0.0000020 0.0000020 mg/L 04/04/24 17:02

Demand

Lab Sample ID: USB 860-154301/1 **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 154301

USB USB

Analyzed Result Qualifier RI **MDL** Unit Dil Fac Analyte Prepared 0.0000020 0.0000020 mg/L 04/04/24 16:59 Carbonaceous Biochemical Oxygen 0.0000020 U

Demand

Eurofins Houston

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

%Rec

Prep Type: Total/NA

Prep Type: Total/NA

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method: SM5210B CBOD - Carbonaceous BOD, 5 Day (Continued)

Lab Sample ID: LCS 860-154301/3

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Matrix: Water** Analysis Batch: 154301

LCS LCS %Rec Spike Added Result Qualifier Unit Analyte D %Rec Limits Carbonaceous Biochemical 198 194 98 85 - 115

Oxygen Demand

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

GC/MS VOA

Analysis Batch: 153406

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	624.1	
MB 860-153406/9	Method Blank	Total/NA	Water	624.1	
LCS 860-153406/3	Lab Control Sample	Total/NA	Water	624.1	
LCSD 860-153406/4	Lab Control Sample Dup	Total/NA	Water	624.1	

GC/MS Semi VOA

Prep Batch: 154157

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	625	
MB 860-154157/1-A	Method Blank	Total/NA	Water	625	
LCS 860-154157/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 860-154157/3-A	Lab Control Sample Dup	Total/NA	Water	625	

Analysis Batch: 154258

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	625.1	154157
MB 860-154157/1-A	Method Blank	Total/NA	Water	625.1	154157
LCS 860-154157/2-A	Lab Control Sample	Total/NA	Water	625.1	154157
LCSD 860-154157/3-A	Lab Control Sample Dup	Total/NA	Water	625.1	154157

HPLC/IC

Analysis Batch: 153142

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	300.0	
MB 860-153142/3	Method Blank	Total/NA	Water	300.0	
LCS 860-153142/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 860-153142/5	Lab Control Sample Dup	Total/NA	Water	300.0	
LLCS 860-153142/7	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 153143

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	300.0	
MB 860-153143/3	Method Blank	Total/NA	Water	300.0	
LCS 860-153143/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 860-153143/5	Lab Control Sample Dup	Total/NA	Water	300.0	

Metals

Prep Batch: 154112

Lab Sample ID 860-71363-1	Client Sample ID Outfall 001	Prep Type Total Recoverable	Matrix Water	Method 200.8	Prep Batch
MB 860-154112/1-A	Method Blank	Total Recoverable	Water	200.8	
LCS 860-154112/2-A	Lab Control Sample	Total Recoverable	Water	200.8	
LCSD 860-154112/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	

Analysis Batch: 154173

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total Recoverable	Water	200.8	154112
860-71363-1	Outfall 001	Total Recoverable	Water	200.8	154112
MB 860-154112/1-A	Method Blank	Total Recoverable	Water	200.8	154112

Eurofins Houston

3

6

Q

10

12

14

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Metals (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 860-154112/2-A	Lab Control Sample	Total Recoverable	Water	200.8	154112
LCSD 860-154112/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	154112

Analysis Batch: 154352

Lab Sample ID	Client Sample ID	Prep Type Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total Recoverable Water	200.8	154112
MB 860-154112/1-A	Method Blank	Total Recoverable Water	200.8	154112
LCS 860-154112/2-A	Lab Control Sample	Total Recoverable Water	200.8	154112
LCSD 860-154112/3-A	Lab Control Sample Dup	Total Recoverable Water	200.8	154112

Prep Batch: 667323

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	1631E	
MB 400-667323/4-A	Method Blank	Total/NA	Water	1631E	
LCS 400-667323/5-A	Lab Control Sample	Total/NA	Water	1631E	
LCSD 400-667323/6-A	Lab Control Sample Dup	Total/NA	Water	1631E	
MRL 400-667323/3-A	Lab Control Sample	Total/NA	Water	1631E	

Analysis Batch: 667418

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	1631E	667323
MB 400-667323/4-A	Method Blank	Total/NA	Water	1631E	667323
LCS 400-667323/5-A	Lab Control Sample	Total/NA	Water	1631E	667323
LCSD 400-667323/6-A	Lab Control Sample Dup	Total/NA	Water	1631E	667323
MRL 400-667323/3-A	Lab Control Sample	Total/NA	Water	1631E	667323

General Chemistry

Analysis Batch: 153082

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	7196A	
MB 860-153082/3	Method Blank	Total/NA	Water	7196A	
LCS 860-153082/4	Lab Control Sample	Total/NA	Water	7196A	
LCSD 860-153082/5	Lab Control Sample Dup	Total/NA	Water	7196A	

Prep Batch: 153239

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	BOD Prep	

Prep Batch: 153333

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	BOD Prep	

Analysis Batch: 153545

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	SM 2120B	
860-71363-1	Outfall 001	Total/NA	Water	SM 2120B	
MB 860-153545/3	Method Blank	Total/NA	Water	SM 2120B	
LCS 860-153545/4	Lab Control Sample	Total/NA	Water	SM 2120B	
LCSD 860-153545/5	Lab Control Sample Dup	Total/NA	Water	SM 2120B	

Eurofins Houston

Page 36 of 51 4/15/2024

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

General Chemistry

Analysis Batch: 153725

Lab Sample ID 860-71363-1	Client Sample ID Outfall 001	Prep Type Total/NA	Matrix Water	Method SM 2540C	Prep Batch
MB 860-153725/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 860-153725/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 860-153725/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	
LLCS 860-153725/4	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 153803

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	360.1	

Analysis Batch: 153820

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	SM 4500 S2 D	
MB 860-153820/3	Method Blank	Total/NA	Water	SM 4500 S2 D	
LCS 860-153820/4	Lab Control Sample	Total/NA	Water	SM 4500 S2 D	
LCSD 860-153820/5	Lab Control Sample Dup	Total/NA	Water	SM 4500 S2 D	

Prep Batch: 153831

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	351.2	
MB 860-153831/32-A	Method Blank	Total/NA	Water	351.2	
MB 860-153831/4-A	Method Blank	Total/NA	Water	351.2	
LCS 860-153831/33-A	Lab Control Sample	Total/NA	Water	351.2	
LCS 860-153831/6-A	Lab Control Sample	Total/NA	Water	351.2	
LCSD 860-153831/34-A	Lab Control Sample Dup	Total/NA	Water	351.2	
LCSD 860-153831/7-A	Lab Control Sample Dup	Total/NA	Water	351.2	
LLCS 860-153831/5-A	Lab Control Sample	Total/NA	Water	351.2	

Analysis Batch: 153982

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	351.2	153831
MB 860-153831/32-A	Method Blank	Total/NA	Water	351.2	153831
MB 860-153831/4-A	Method Blank	Total/NA	Water	351.2	153831
LCS 860-153831/33-A	Lab Control Sample	Total/NA	Water	351.2	153831
LCS 860-153831/6-A	Lab Control Sample	Total/NA	Water	351.2	153831
LCSD 860-153831/34-A	Lab Control Sample Dup	Total/NA	Water	351.2	153831
LCSD 860-153831/7-A	Lab Control Sample Dup	Total/NA	Water	351.2	153831
LLCS 860-153831/5-A	Lab Control Sample	Total/NA	Water	351.2	153831

Analysis Batch: 154018

Lab Sample ID 860-71363-1	Client Sample ID Outfall 001	Prep Type Total/NA	Matrix Water	Method SM 4500 SO3 B	Prep Batch
MB 860-154018/1	Method Blank	Total/NA	Water	SM 4500 SO3 B	
LCS 860-154018/2	Lab Control Sample	Total/NA	Water	SM 4500 SO3 B	
LCSD 860-154018/3	Lab Control Sample Dup	Total/NA	Water	SM 4500 SO3 B	

Analysis Batch: 154024

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	SM 4500 CI G	
MB 860-154024/3	Method Blank	Total/NA	Water	SM 4500 CI G	
LCS 860-154024/4	Lab Control Sample	Total/NA	Water	SM 4500 CI G	

Eurofins Houston

Page 37 of 51 4/15/2024

2

3

4

6

7

9

10

46

13

14

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

General Chemistry (Continued)

Analysis Batch: 154024 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 860-154024/5	Lab Control Sample Dup	Total/NA	Water	SM 4500 CI G	
860-71363-1 MS	Outfall 001	Total/NA	Water	SM 4500 CI G	
860-71363-1 MSD	Outfall 001	Total/NA	Water	SM 4500 CI G	

Analysis Batch: 154025

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	SM 2540D	
MB 860-154025/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 860-154025/2	Lab Control Sample	Total/NA	Water	SM 2540D	
LCSD 860-154025/3	Lab Control Sample Dup	Total/NA	Water	SM 2540D	

Analysis Batch: 154300

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	SM 5310C	
MB 860-154300/27	Method Blank	Total/NA	Water	SM 5310C	
LCS 860-154300/28	Lab Control Sample	Total/NA	Water	SM 5310C	
LCSD 860-154300/29	Lab Control Sample Dup	Total/NA	Water	SM 5310C	

Analysis Batch: 154301

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	SM5210B CBOD	153333
SCB 860-154301/2	Method Blank	Total/NA	Water	SM5210B CBOD	
USB 860-154301/1	Method Blank	Total/NA	Water	SM5210B CBOD	
LCS 860-154301/3	Lab Control Sample	Total/NA	Water	SM5210B CBOD	

Analysis Batch: 154343

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	350.1	
MB 860-154343/73	Method Blank	Total/NA	Water	350.1	
LCS 860-154343/74	Lab Control Sample	Total/NA	Water	350.1	
LCSD 860-154343/75	Lab Control Sample Dup	Total/NA	Water	350.1	

Analysis Batch: 154414

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	8000	
MB 860-154414/3	Method Blank	Total/NA	Water	8000	
LCS 860-154414/4	Lab Control Sample	Total/NA	Water	8000	

Analysis Batch: 154578

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	1664B	
MB 860-154578/1	Method Blank	Total/NA	Water	1664B	
LCS 860-154578/2	Lab Control Sample	Total/NA	Water	1664B	
LCSD 860-154578/3	Lab Control Sample Dup	Total/NA	Water	1664B	

Analysis Batch: 154588

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	SM 5210B	153239
SCB 860-154588/2	Method Blank	Total/NA	Water	SM 5210B	
USB 860-154588/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 860-154588/3	Lab Control Sample	Total/NA	Water	SM 5210B	

Eurofins Houston

Page 38 of 51 4/15/2024

3

4

6

9

10

12

1 1

15

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

General Chemistry

Analysis Batch: 154643

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001	Total/NA	Water	365.1	
MB 860-154643/16	Method Blank	Total/NA	Water	365.1	
LCS 860-154643/17	Lab Control Sample	Total/NA	Water	365.1	
LCSD 860-154643/18	Lab Control Sample Dup	Total/NA	Water	365.1	
860-71363-1 MS	Outfall 001	Total/NA	Water	365.1	
860-71363-1 MSD	Outfall 001	Total/NA	Water	365.1	

Analysis Batch: 154745

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batcl	h
860-71363-1	Outfall 001	Total/NA	Water	SM 2320B	_
MB 860-154745/2	Method Blank	Total/NA	Water	SM 2320B	
LCS 860-154745/3	Lab Control Sample	Total/NA	Water	SM 2320B	
LCSD 860-154745/4	Lab Control Sample Dup	Total/NA	Water	SM 2320B	

Analysis Batch: 491900

Lab Sample ID	Client Sample ID	Pre	p Type	Matrix	Method	Prep Batch
860-71363-1	Outfall 001		al/NA	Water	OIA-1677	
MB 410-491900/34	Method Blank	4///> Tota	al/NA	Water	OIA-1677	
LCS 410-491900/33	Lab Control Sample	Tota	al/NA	Water	OIA-1677	
LCSD 410-491900/17	Lab Control Sample Dup	Tota	al/NA	Water	OIA-1677	

-

3

4

6

8

9

11

12

1 4

Lab Chronicle

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Client Sample ID: Outfall 001

Date Collected: 04/03/24 08:00 Date Received: 04/03/24 13:40 Lab Sample ID: 860-71363-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	5 mL	5 mL	153406	04/05/24 16:50	AK1	EET HOU
Total/NA	Prep	625			1000 mL	1.00 mL	154157	04/10/24 15:48	DR	EET HOU
Total/NA	Analysis	625.1		1	1 mL	1 mL	154258	04/11/24 20:22	LPL	EET HOU
Total/NA	Analysis	300.0		1			153142	04/03/24 22:19	A1S	EET HOU
Total/NA	Analysis	300.0		1		\$	153143	04/03/24 22:19	A1S	EET HOU
Total/NA	Prep	1631E			40 mL	40 mL	667323	04/08/24 14:05	VLC	EET PEN
							Completed:	04/09/24 09:00		
Total/NA	Analysis	1631E		1			667418	04/09/24 13:44	VLC	EET PEN
Total Recoverable	Prep	200.8		40	50 mL	50 mL	154112	04/10/24 12:00		EET HOU
Total Recoverable	Analysis	200.8		10	- 4		154352	04/11/24 13:19		EET HOU
Total Recoverable Total Recoverable	Prep Analysis	200.8 200.8		1	50 mL	50 mL	154112 154173	04/10/24 12:00 04/10/24 21:07		EET HOU
Total Recoverable	Analysis	200.8		, ,	50 mL	50 mL	154173	04/10/24 21:07		EET HOU
Total Recoverable	Prep Analysis	200.8		20	30 IIIL	30 IIIL	154112	04/10/24 12:00	DP	EET HOU
Total/NA	Analysis	1664B		~"Q\	7 1000 mL	1000 mL	154578	04/12/24 15:05		EET HOU
Total/NA	Analysis	350.1	. <	1	10 mL	10 mL	154343	04/11/24 10:53		EET HOU
Total/NA	Prep	351.2		>	20 mL	20 mL	153831	04/08/24 19:05		EET HOU
Total/NA	Analysis	351.2		1	20 1112	20 1112	153982	04/09/24 14:44		EET HOU
Total/NA	Analysis	360.1	App.	1			153803	04/08/24 16:30	HN	EET HOU
Total/NA	Analysis	365.1		5	10 mL	10 mL	154643	04/12/24 13:05	HN	EET HOU
Total/NA	Analysis	7196A		1	25 mL	25 mL	153082	04/03/24 18:19	SCI	EET HOU
Total/NA	Analysis	8000		1	2 mL	2 mL	154414	04/11/24 21:15	ALL	EET HOU
Total/NA	Analysis	OJA-1677		1			491900	04/08/24 14:03	UJE2	ELLE
Total/NA	Analysis	SM 2120B		2	50 mL	50 mL	153545	04/03/24 18:45	YG	EET HOU
Total/NA	Analysis	SM 2120B		1	50 mL	50 mL	153545	04/03/24 18:45	YG	EET HOU
Total/NA	Analysis	SM 2320B		1			154745	04/14/24 13:14	RY	EET HOU
Total/NA	Analysis	SM 2540C		1	50 mL	200 mL	153725	04/08/24 11:13	FN	EET HOU
Total/NA	Analysis	SM 2540D		1	1000 mL	1000 mL	154025	04/09/24 19:40	SA	EET HOU
Total/NA	Analysis	SM 4500 CI G		2	10 mL	10 mL	154024	04/09/24 19:26	SCI	EET HOU
Total/NA	Analysis	SM 4500 S2 D		1	7.5 mL	7.5 mL	153820	04/08/24 17:25	SCI	EET HOU
Total/NA	Analysis	SM 4500 SO3 B		1	50 mL	50 mL	154018	04/09/24 18:52	SCI	EET HOU
Total/NA	Prep	BOD Prep					153239	04/04/24 10:55		EET HOU
Total/NA	Analysis	SM 5210B		1	200 mL	300 mL	154588	04/04/24 13:49		EET HOU
Total/NA	Analysis	SM 5310C		1	40 mL	40 mL	154300	04/11/24 04:35	YG	EET HOU
Total/NA	Prep	BOD Prep					153333	04/04/24 17:01	ALL	EET HOU
Total/NA	Analysis	SM5210B CBOD		1	100 mL	300 mL	154301	04/04/24 17:24	ALL	EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

EET PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Eurofins Houston

2

4

9

11

13

Accreditation/Certification Summary

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-00759	08-03-24
Florida	NELAP	E871002	06-30-24
Louisiana (All)	NELAP	03054	06-30-24
Oklahoma	NELAP	1306	08-31-24
Oklahoma	State	2023-139	08-31-24
Texas	NELAP	T104704215	06-30-24
Texas	TCEQ Water Supply	T104704215	12-28-25
USDA	US Federal Programs	525-23-79-79507	03-20-26

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

_				
Authority	Program	Identification Number	Expiration Date	
A2LA	Dept. of Defense ELAP	0001.01	11-30-24	
A2LA	ISO/IEC 17025	0001.01	11-30-24	
Alabama	State	43200	01-31-25	
Alaska	State	PA00009	06-30-24	
Alaska (UST)	State	17-027	02-28-25	
Arizona	State	AZ0780	03-12-25	
Arkansas DEQ	State	88-00660	08-09-24	
California	State ♦	2792	11-30-24	
Colorado	State	PA00009	06-30-24	
Connecticut	State	PH-0746	06-30-25	
DE Haz. Subst. Cleanup Act (HSCA)	State	019-006 (PA cert)	01-31-25	
Delaware (DW)	State	N/A	01-31-25	
Florida	NELAP	E87997	06-30-25	
Georgia (DW)	State	C048	01-31-25	
Hawaii	State	N/A	01-31-25	
Illinois (///)	NELAP	200027	01-31-25	
lowa	State	361	03-01-24 *	
Kansas	NELAP	E-10151	10-31-24	
Kentucky (DW)	State	KY90088	12-31-24	
Kentucky (UST)	State	0001.01	11-30-24	
Kentucky (WW)	State	KY90088	12-31-23 *	
Louisiana (All)	NELAP	02055	06-30-24	
Maine	State	2019012	03-12-25	
Maryland	State	100	06-30-24	
Massachusetts	State	M-PA009	06-30-24	
Michigan	State	9930	01-31-25	
Minnesota	NELAP	042-999-487	12-31-24	
Mississippi	State	023	01-31-25	
Missouri	State	450	01-31-25	
Montana (DW)	State	0098	01-01-25	
Nebraska	State	NE-OS-32-17	01-31-25	
New Hampshire	NELAP	2730	01-10-25	
New Jersey	NELAP	PA011	06-30-24	
New York	NELAP	10670	04-01-25	
North Carolina (DW)	State	42705	07-31-24	
North Carolina (WW/SW)	State	521	12-31-24	
Oklahoma	NELAP	9804	08-31-24	

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins Houston

4/15/2024

2

3

4

6

0

9

10

12

1 *A*

Accreditation/Certification Summary

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program		Identification Number	Expiration Date
Oregon	NELAP		PA200001	09-11-24
Pennsylvania	NELAP		36-00037	01-31-25
Quebec Ministry of Environment and Fight against Climate Change	PALA		507	09-16-24
Rhode Island	State		LAO00338	12-30-24
South Carolina	State		89002	01-31-24 *
Tennessee	State		02838	01-31-25
Texas	NELAP		T104704194-23-46	08-31-24
USDA	US Federal Programs		525-22-298-19481	10-25-25
Vermont	State		VT - 36037	10-28-24
Virginia	NELAP		460182	06-14-25
Washington	State		C457	04-11-24
West Virginia (DW)	State		9906 C	01-31-25
West Virginia DEP	State	41	055	07-31-24
Wyoming	State		8TMS-L	01-31-25
Wyoming (UST)	A2LA		0001.01	11-30-24

Laboratory: Eurofins Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alabama	State	40150	06-30-24
ANAB	ISO/IEC 17025	L2471	02-22-26
Arkansas DEQ	State	88-00689	08-01-24
California	State	2510	06-30-24
Florida	NELAP	E81010	06-30-24
Georgia	State	E81010(FL)	06-30-24
Illinois	NELAP	200041	10-09-24
Kansas	NELAP	E-10253	10-31-24
Kentucky (UST)	State	53	06-30-24
Louisiana (All)	NELAP	30976	06-30-24
Louisiana (DW)	State	LA017	12-31-24
North Carolina (WW/SW)	State	314	12-31-24
Oklahoma	NELAP	9810	08-31-24
Pennsylvania	NELAP	68-00467	01-31-25
South Carolina	State	96026	06-30-24
Tennessee	State	TN02907	06-30-24
Texas	NELAP	T104704286	09-30-24
US Fish & Wildlife	US Federal Programs	A22340	06-30-24
USDA	US Federal Programs	FLGNV23001	01-08-26
USDA	US Federal Programs	P330-21-00056	05-17-24
Virginia	NELAP	460166	06-14-24
West Virginia DEP	State	136	03-31-25

4/15/2024

Eurofins Houston

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Method Summary

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	EPA	EET HOU
625.1	Semivolatile Organic Compounds (GC/MS)	EPA	EET HOU
300.0	Anions, Ion Chromatography	EPA	EET HOU
1631E	Mercury, Low Level (CVAFS)	EPA	EET PEN
200.8	Metals (ICP/MS)	EPA	EET HOU
1664B	HEM and SGT-HEM	1664B	EET HOU
350.1	Nitrogen, Ammonia	EPA	EET HOU
351.2	Nitrogen, Total Kjeldahl	EPA	EET HOU
360.1	Oxygen, Dissolved	EPA	EET HOU
365.1	Phosphorus, Total	EPA	EET HOU
7196A	Chromium, Hexavalent	SW846	EET HOU
8000	COD	Hach	EET HOU
OIA-1677	Cyanide, Available (Flow Injection)	OI CORP	ELLE
SM 2120B	Color, Colorimetric	SM	EET HOU
SM 2320B	Alkalinity	SM	EET HOU
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET HOU
SM 2540D	Solids, Total Suspended (TSS)	SM	EET HOU
SM 4500 CI G	Chlorine, Residual	SM	EET HOU
SM 4500 S2 D	Sulfide, Total	SM	EET HOU
SM 4500 SO3 B	Sulfite	SM	EET HOU
SM 5210B	BOD, 5-Day	SM	EET HOU
SM 5310C	TOC	SM	EET HOU
SM5210B CBOD	Carbonaceous BOD, 5 Day	SM	EET HOU
1631E	Preparation, Mercury, Low Level	EPA	EET PEN
200.8	Preparation, Total Recoverable Metals	EPA	EET HOU
351.2	Nitrogen, Total Kjeldahl	EPA	EET HOU
625	Liquid-Liquid Extraction	EPA	EET HOU
BOD Prep	Preparation, BOD	SM	EET HOU

Protocol References:

1664B = EPA-821-98-002

EPA = US Environmental Protection Agency

Hach = Hach Company

OI CORP = OI Corporation Instrument Manual.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

EET PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Eurofins Houston

4/15/2024

Sample Summary

Client: Messer LLC Job ID: 860-71363-1

Project/Site: Messer Gas ASU Permit Renewal 4-3-24

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-71363-1	Outfall 001	Water	04/03/24 08:00	04/03/24 13:40

Due Date Requested: Date Time Project A Yes A No	Eurofins Houston 4145 Greenbriar Dr 4145 Greenbriar Dr Stafford TX 77477 Phone (281) 240-4200 Phone (281) 240-4200 Client Information Rent Contact Rami Qafisheh
	Chain of Cu
Field Filtered Sample (Yes or No)	Chain of Custody Record ALBERS Lab PM: Tigrett, Lance E-Mall: Lance, Tigrett@et.eu
X Z 2320B, 300_ORGFM_28D, 300_ORGFMS, TON YS S S S S S S S S	860-71363 Chain of Custody
Vertical Policy Part Par	
Preservation Codes: A HCL N Mexame B NaOL SM5210B_Calc, SM5210B_CBLC, Acctate P Na2OLS D Niftic Acid Q Na2SO3 E NaCHOR T TSP Dodecahydrate L Col Water W PHACA	eurofins -nv ment festing COC No: 860-27818-9638 1 Page:

Chain of Custody Record

Environment
Testir
_

Relinquished by: Date/Time:	(so the	1 A NA	Relinquished by: Date/ lime	industried by	Empty Kit Relinguished by	equested: I, II, III, IV, Other (specify)	Possible Hazard Identification Unconfirmed		Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing South Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing South Central, LLC.				- State -			Outfall 001 (860-71363-1) 4/		Sample Identification - Client ID (Lab ID)		Site: SSOW#	Project Name: Project Name: Project Name: 86006711	Email: WO#:	Phone: 850-474-1001(Tel) 850-478-2671(Fax)	State, Zip: FL, 32514		Address: Due Dat 3355 McLemore Drive, 4/10/20	Company: Eurofins Environment Testing Southeast,	Client Contact Shipping/Receiving	formation (Sub Contract Lab)	Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Phone: 281-240-4200
	ne:	ne:	7/4/2	_	Date	Primary Deliverable Rank: 2	_		South Central, LLC places the owners alysis/tests/matrix being analyzed, th attention immediately. If all requeste		 <			<i>(</i>	\$	4/3/24 08:00 Central	/-\	┺			711		, and		TAT Requested (days):	Due Date Requested: 4/10/2024				Chain of Custody Record
	Company	Company	Company		Time:	S	Ü		ship of method, analyte & a le samples must be shippe a accreditations are curre							Water		Fie	Matrix (W=water, S=solid, S=solid, P, O=waste/oil, eld Filtered	1 10.4		- C - W-20	(o)				Accrec NEL	Lance.Tig	Tigrett, Lance	stody Reco
	Received by:	Received by:	Received by:	-	CD.	Special Instructions/QC Requirements	Return To Client	ample Disposed (A fee may be	accreditation compliance upon our subcon ed back to the Eurofins Environment Testir int to date, return the signed Chain of Cust							×		163	31E/1631E_P	man yenyan	named Silver was	y magazi	evel (C			Analysis Red	NELAP - Texas	rett@et.eurofinsus.com	ince	ord
	Date/Time:	Date/Time:		DateTime	Method of Shipment:	ents:	Disposal By Lab	accessed if complex a	ntract laboratories. This sampling South Central, LLC laborate ody attesting to said complian																	Requested		Texas	Carrier Hacking Ivo(s).	
	,w	y.	5/24 931				ree may be assessed it samples are retained longer than 1 month; I Disposal By Lab Archive For Mon	re retained langer than	le shipment is forwarded under ory or other instructions will be ce to Eurofins Environment Te		**(***	N.	669		1	Ν	X	To	otal Number	of co	OR CHIE WHEN	Chronic Paris	G - Amchlor H - Ascorbic Acid	D - Nitric Acid E - NaHSO4 F - MeOH	B - NaOH C - Zn Acetate	Preservation Codes:	Job #: 860-71363-1	Page 1 of 1	860-111376.1	💸 eurofins
	Company	Company	Company	Company			Months	1 month)	r chain-of-custody. If the provided. Any changes to sting South Central, LLC.									pecial Instructions/Note:			Y - Trizma Z - other (specify)	V - MCAA W - pH 4-5		Q - Na2SO3 R - Na2S2O3	N - None O - AsNaO2 P - Na2O4S	odes: M - Hexane				S Environment Testing

32514

https://www.fedex.com/shipping/shipAction.handle?met

EXP 01/24 號

4/4/24, 3:12 PM

FedEx Ship Manager - Print Your Label(s)

Car

-placed: Cleared:

A05:01 APA 20 - 197 THƏIMRƏVO YTIROIRA

1758 2641 2703

PENSACOLA FL 32514

STATEON IXTINIT TO BENJAMIN WHATLEY EUROFINS PENSACOLA 3355 MCLEMORE DRIVE 3355 MCLEMORE DRIVE

סורו פפווטבע

Page 47 of 51

4/15/2024

Eurofins Houston

4145 Greenbriar Dr Stafford, TX 77477 Phone: 281-240-4200

Chain of Custody Record

🔆 eurofins

Environment Testing

110110. 201 240 4200									_										
Client Information (Sub Contract Lab)	Sampler:			Lab Pi Tigre	vi: tt, Lan	ice					Carrier Tr	acking N	lo(s):		COC No: 860-111265.1				
Client Contact:			E-Mail							State of C	Origin:			Page:					
Shipping/Receiving						Tigrett@et.eurofinsus.com Texas Page 1 of 1 Accreditations Required (See note) Job #.													
Company: Eurofins Lancaster Laboratories Environm					NELA			Oil 850/ 2	/	0	/				860-71363-1				
Address:	Due Date Requests	d:						Λ		/ _{Dan}	ueste				Preservation Co				
2425 New Holland Pike, , , , , , , , , , , , , , , , , , ,	4/10/2024 TAT Requested (da	ivs):				1		An	lalysis	Req	ueste	1			A - HCL	M - Hexane N - None			
Lancaster]	.,-,.						401)~					3	B - NaOH C - Zn Acetate	O - AsNaO2 P - Na2O4S			
State, Zip:]	- 1		4	$(\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $		1						D - Nitric Acid E - NaHSQ4	Q - Na2SO3					
Phone:	PO #:			$\overline{}$				4							F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4			
717-656-2300(Tel)					(ON										H - Ascorbic Acid	T - TSP Dodecahydrate U - Acetone			
Email:	WO #:				0 0										I - Ice J - DI Water	V - MCAA W - pH 4-5			
Project Name:	Project #:			6	Yes									containers	K - EDTA L - EDA	Y - Trizma			
Messer Gas ASU Permit Renewal 2024	86006711 SSOW#:	_			Yes (EJ CZ	Z - other (specify) Other:				
Site:	550VV#:				Itered Sample (Yes or An MS/MSD (Yes or No)	1								100					
			Sample	Matrix	Wys									ja ja					
			Type	Www.	Filtered rm MS/I									Total Number					
		Sample	(C=Comp, o-	B=solid, -waste/oil,	Field Filte Perform I	1677								le to					
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab) BT-TI Preservation			╀							Sam of C	1	Special II	nstructions/Note:			
Outfall 004 (REQ 74353 4)	4/3/24	08.00		Vater .		1													
Outfall 001 (860-71363-1)	4/3/24	Central	Y	vvaler	-	×		\dashv		-				13					
		1/1/2																	
		1																	
	7																		
C																			
					П									1					
Note: Since laboratory accreditations are subject to change, Eurofins Environment laboratory does not currently maintain accreditation in the State of Origin listed all accreditation status should be brought to Eurofins Environment Testing South Ce	oove for analysis/tests	/matrix being	analyzed, the sample	es must be	shipped	d back	to the Eu	rofins En	vironmen	t Testin	South C	entral, Ll	LC laborato	ry or othe	er instructions will be p	rovided. Any changes to			
Possible Hazard Identification					Sa			•						e retai	ned longer than	1 month)			
Unconfirmed							Return T	_			Disposal	By Lai	b L	Arc	chive For	Months			
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	2		Sp	ecial	Instruc	tions/Q	C Requ	iiremei	nts:								
Empty Kit Relinquished by:		Date:			Time:						Me	thod of S	Shipment:						
Relinquished by:	Date/Time:	1	Com	pany		Reci	eived by:			_			Date/Time:			Company			
Relinquished by:	Date/Time:	-	Com	pany		Bed	elved by:						Date/Time:			Company			
Relinquished by:	Date/Time:		Com	pany		Reci	eived by	n					1772	4 6	7140	Company FT			
Custody Seals Intact: Custody Seal No.:	Ţ					Cool	ler Tempe	erature(s)	°C and C	Other Re	marks:	14.	-43	7	0-4,0				
7 162 7 IAO						-						11 1		//	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ver: 06/08/2021			

Client: Messer LLC Job Number: 860-71363-1

Login Number: 71363 List Source: Eurofins Houston

List Number: 1

Creator: Torres, Sandra

Creator: Torres, Sandra		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	13.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

2

4

9

11

13

14

Client: Messer LLC

List Source: Eurofins Lancaster Laboratories Environment Testing, LLC Login Number: 71363 List Number: 2 List Creation: 04/05/24 01:24 PM

Creator: McCaskey, Jonathan

Question	Answer	Comment
The cooler's custody seal is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature acceptable, where thermal pres is required (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV:Container Temp acceptable, where thermal pres is required (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact	N/A	
VOA sample vials do not have headspace >6mm in diameter (none, if from WV)?	N/A	

Job Number: 860-71363-1

List Source: Eurofins Pensacola
List Number: 3
List Creation: 04/05/24 06:19 PM

Creator: Earnest, Tamantha

Client: Messer LLC

Creator: Earnest, Tamantna		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.4°C IR8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins Houston

12

14

16

ANALYTICAL REPORT

PREPARED FOR

Attn: Rami Qafisheh Messer LLC 11605 Strang Rd. La Porte, Texas 77571

Generated 4/25/2024 1:15:04 PM

JOB DESCRIPTION

Messer Gas ASU Permit Renewal 4-9-24

JOB NUMBER

860-71662-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

. Lance Tight Generated 4/25/2024 1:15:04 PM

Authorized for release by Lance Tigrett, Project Manager II Lance.Tigrett@et.eurofinsus.com (979)484-9088

4

5

6

0

4 O

11

12

13

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	6
Detection Summary	8
Client Sample Results	10
Surrogate Summary	15
QC Sample Results	16
QC Association Summary	39
Lab Chronicle	45
Certification Summary	47
Method Summary	49
Sample Summary	50
Subcontract Data	51
Chain of Custody	57
Receipt Checklists	62

-5

4

6

8

10

10

13

15

Definitions/Glossary

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Qualifiers

GC/MS VOA

U Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Qualifier	Qualifier Description
*_	LCS and/or LCSD is outside acceptance limits, low biased.
*1	LCS/LCSD RPD exceeds control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
S1-	Surrogate recovery exceeds control limits, low biased.
U	Indicates the analyte was analyzed for but not detected.

GC Semi VOA

ualifier Description

U Indicates the analyte was analyzed for but not detected.

Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent

HPLC/IC

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.
Metals	

	Qualifier	Qualifier Description				
	В	Compound was found in the blank and sample.				
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.				
	U	Indicates the analyte was analyzed for but not detected.				
Construction of the second of						

General Chemistry

Qualifier	Qualifier Description
HF	Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.

Glossary

ND

NEG

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated

Eurofins Houston

Page 4 of 65 4/25/2024

3

_

-

6

7

10

10

13

1.6

Definitions/Glossary

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Too Numerous To Count

Glossary (Continued)

TNTC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Eurofins Houston

Case Narrative

Client: Messer LLC Job ID: 860-71662-1

Project: Messer Gas ASU Permit Renewal 4-9-24

Job ID: 860-71662-1 Eurofins Houston

Job Narrative 860-71662-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 4/9/2024 3:06 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice.

Subcontract Work

Method Surfactants: This method was subcontracted to Envirodyne Laboratories. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 625.1: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: Outfall Samples (860-71662-1). These results have been reported and qualified.

Method 625.1: The laboratory control sample and the laboratory control sample duplicate (LCS/LCSD) for preparation batch 860-154889 and analytical batch 860-155030 recovered outside control limits for the following analyte: Benzidine. Benzidine has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. Batch precision also exceeded control limits for this analyte. These results have been reported and qualified.

Method 625.1: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 860-154889 and analytical batch 860-155030 recovered outside control limits for the following analyte: Pyridine.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

PCB9

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The instrument blank/CCB for analytical batch 860-153949 contained Chloride greater than the method detection limit (MDL), and were not reanalyzed because associated sample(s) results were greater than 10X the value found in the instrument blank/CCB. The data have been reported.

Method 300_ORGFM_28D: The instrument blank/CCB for analytical batch 860-155395 contained Chloride greater than the method detection limit (MDL), and were not reanalyzed because associated sample(s) results were greater than 10X the value found in the instrument blank/CCB. The data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Method 200.8 - Total Recoverable: The method blank for preparation batch 860-154494 and analytical batch 860-154594 contained Silver, Magnesium, Manganese, NIckel, Boron and Chromium above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

Eurofins Houston

Page 6 of 65 4/25/2024

5

8

11

12

Case Narrative

Client: Messer LLC Job ID: 860-71662-1

Project: Messer Gas ASU Permit Renewal 4-9-24

Job ID: 860-71662-1 (Continued)

Eurofins Houston

Method 200.8 - Total Recoverable: The following sample was diluted to bring the concentration of target analytes within the calibration range: Outfall Samples (860-71662-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 2540D: Insufficient sample volume was available to perform a sample duplicate (DUP) associated with analytical batch 860-154860.

Method SM5210B_CBODCal: The following sample underdepleted: Outfall Samples (860-71662-1). Results have been reported and may be biased high.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Houston

Page 7 of 65 4/25/2024

Detection Summary

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Client Sample ID: Outfall Samples

Lab Sample ID: 860-71662-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloroform	0.059		0.0010	0.00046	mg/L		624.1	Total/NA
Bromodichloromethane	0.0050		0.0010	0.00055	mg/L	1	624.1	Total/NA
Trihalomethanes, Total	0.064		0.0050	0.00063	mg/L	1	624.1	Total/NA
Nitrate as N	5.1		0.10	0.039	mg/L	1	300.0	Total/NA
Chloride	320		0.50	0.25	mg/L	1	300.0	Total/NA
Fluoride	2.6		0.50	0.10	mg/L	1	300.0	Total/NA
Nitrate Nitrite as N	5.1		0.10	0.039	mg/L	1	300.0	Total/NA
Sulfate	320		0.50	0.20	mg/L	1	300.0	Total/NA
Mercury	18		0.50	0.20	ng/L	1	1631E	Total/NA
Aluminum	0.19		0.020	0.0030	mg/L	1	200.8	Total
								Recoverable
Arsenic	0.0052		0.0040	0.00034	mg/L	1	200.8	Total
Parium	0.19		0.0040	0.00000	ma/l	1	200.8	Recoverable
Barium	0.19		0.0040	0.00029	mg/L	ı	200.6	Total Recoverable
Boron	0.32	В	0.010	0.0025	mg/L	1	200.8	Total
					3.			Recoverable
Chromium	0.0031	JB	0.0040	0.00033	mg/L	1	200.8	Total
								Recoverable
Cobalt	0.00085	J	0.0020	0.00026	mg/L	1	200.8	Total
Conner	0.036		0.0040	0.00069	mall	1	200.8	Recoverable
Copper	0.036		0.0040	0.00009	IIIg/L	'	200.6	Total Recoverable
Iron	0.61		0.020	0.0020	mg/L	1	200.8	Total
					3.			Recoverable
Lead	0.00039	J	0.0020	0.00014	mg/L	1	200.8	Total
								Recoverable
Magnesium	17	В	2.0	0.18	mg/L	20	200.8	Total
Manganese	0.024	R	0.0020	0.00016	ma/l	1	200.8	Recoverable Total
Wanganese	0.024	В	0.0020	0.00010	mg/L	'	200.0	Recoverable
Molybdenum	0.0078		0.0020	0.00016	mg/L	1	200.8	Total
								Recoverable
Nickel	0.018	В	0.0020	0.00049	mg/L	1	200.8	Total
								Recoverable
Selenium	0.0020		0.0020	0.00069	mg/L	1	200.8	Total Recoverable
Silver	0.00022	JB	0.0020	0.00012	ma/l	1	200.8	Total
	0.00022	0.5	0.0020	0.00012	g/L	·	200.0	Recoverable
Titanium	0.0026	J	0.0040	0.00042	mg/L	1	200.8	Total
								Recoverable
Zinc	0.018		0.0040	0.00089	mg/L	1	200.8	Total
LIENA	0.0		5.0	4.0		4	10045	Recoverable
HEM Nitrogram Kieldahl	2.6	J	5.0		mg/L	1	1664B	Total/NA
Nitrogen, Kjeldahl	3.0	ПЕ	0.20	0.089	=	1	351.2	Total/NA
Oxygen, Dissolved		HF	1.0		mg/L	1	360.1	Total/NA
Phosphorus Total	3.4		0.10	0.072		5	365.1	Total/NA
Chemical Oxygen Demand	86		20		mg/L	1	8000	Total/NA
Nitrogen, Organic	3.0		0.20	0.061		1	Nitrogen,Org	Total/NA
Cyanide, Available	0.0061		0.0060	0.0050		1	OIA-1677	Total/NA
Color, Apparent	30		10		Color Units	2	SM 2120B	Total/NA
Color, True	na		10		Color Units	2	SM 2120B	Total/NA
pH	8.6		0.10		S.U.	2	SM 2120B	Total/NA
Alkalinity	210		4.0		mg/L	1	SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	210		4.0	4.0	mg/L	1	SM 2320B	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Houston

Page 8 of 65

4/25/2024

Detection Summary

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Client Sample ID: Outfall Samples (Continued)

Lab Sample ID: 860-71662-1

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Total Dissolved Solids	1300	20	20	mg/L		SM 2540C	Total/NA
Total Suspended Solids	9.8	4.0	4.0	mg/L	1	SM 2540D	Total/NA
Chlorine, Total Residual	1.1 HF	0.10	0.10	mg/L	2	SM 4500 CI G	Total/NA
Total Organic Carbon	13	1.0	0.50	mg/L	1	SM 5310C	Total/NA

4

5

_

8

10

11

13

15

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Client Sample ID: Outfall Samples

Date Collected: 04/09/24 09:00 Date Received: 04/09/24 15:06 Lab Sample ID: 860-71662-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acrolein	0.011	U	0.050	0.011	mg/L			04/10/24 12:56	1
Acrylonitrile	0.014	U	0.050	0.014	mg/L			04/10/24 12:56	1
Benzene	0.00046	U	0.0010	0.00046	mg/L			04/10/24 12:56	1
Carbon tetrachloride	0.00090	U	0.0050	0.00090	mg/L			04/10/24 12:56	1
Chlorobenzene	0.00046	U	0.0010	0.00046	mg/L			04/10/24 12:56	1
1,2,4-Trichlorobenzene	0.0018	U	0.0050	0.0018	mg/L			04/10/24 12:56	1
1,2-Dichloroethane	0.00037	U	0.0010	0.00037	mg/L			04/10/24 12:56	1
1,1,1-Trichloroethane	0.00059	U	0.0050	0.00059	mg/L			04/10/24 12:56	1
1,1-Dichloroethane	0.00064	U	0.0010	0.00064	mg/L			04/10/24 12:56	1
1,1,2-Trichloroethane	0.00041	U	0.0010	0.00041	mg/L			04/10/24 12:56	1
1,2-Dibromoethane	0.0010	U	0.0050	0.0010	mg/L			04/10/24 12:56	1
1,1,2,2-Tetrachloroethane	0.00047	U	0.0010	0.00047	mg/L			04/10/24 12:56	1
Chloroethane	0.0020	U	0.010	0.0020	mg/L			04/10/24 12:56	1
2-Chloroethyl vinyl ether	0.00075	U	0.0050	0.00075	mg/L			04/10/24 12:56	1
Chloroform	0.059		0.0010	0.00046	mg/L			04/10/24 12:56	1
1,2-Dichlorobenzene	0.00043	U	0.0010	0.00043	mg/L			04/10/24 12:56	1
1,3-Dichlorobenzene	0.00041	U	0.0010	0.00041	mg/L			04/10/24 12:56	1
1,4-Dichlorobenzene	0.00045	U	0.0010	0.00045	mg/L			04/10/24 12:56	1
1,1-Dichloroethene	0.00074	U	0.0010	0.00074	mg/L			04/10/24 12:56	1
trans-1,2-Dichloroethene	0.00037	U	0.0010	0.00037	mg/L			04/10/24 12:56	1
1,2-Dichloropropane	0.00056	U	0.0050	0.00056	mg/L			04/10/24 12:56	1
Ethylbenzene	0.00039	U	0.0010	0.00039	mg/L			04/10/24 12:56	1
2-Butanone	0.0083	U	0.050	0.0083	mg/L			04/10/24 12:56	1
Methylene Chloride	0.0017	U	0.0050	0.0017	mg/L			04/10/24 12:56	1
Chloromethane	0.0020	U	0.010	0.0020	mg/L			04/10/24 12:56	1
Bromomethane	0.0014	U	0.0050	0.0014	mg/L			04/10/24 12:56	1
Bromoform	0.00063	U	0.0050	0.00063	mg/L			04/10/24 12:56	1
Bromodichloromethane	0.0050		0.0010	0.00055	mg/L			04/10/24 12:56	1
Chlorodibromomethane	0.00055	U	0.0050	0.00055	mg/L			04/10/24 12:56	1
Hexachlorobutadiene	0.00063	U	0.0050	0.00063	mg/L			04/10/24 12:56	1
Naphthalene	0.0014	U	0.010	0.0014	mg/L			04/10/24 12:56	1
Tetrachloroethene	0.00066	U	0.0010	0.00066	mg/L			04/10/24 12:56	1
Toluene	0.00048	U	0.0010	0.00048	mg/L			04/10/24 12:56	1
Trichloroethene	0.0015	U	0.0050	0.0015	mg/L			04/10/24 12:56	1
Vinyl chloride	0.00043	U	0.0020	0.00043	mg/L			04/10/24 12:56	1
1,3-Dichloropropylene	0.0013	U	0.0050	0.0013	mg/L			04/10/24 12:56	1
cis-1,3-Dichloropropene	0.0011	U	0.0050	0.0011	mg/L			04/10/24 12:56	1
Trihalomethanes, Total	0.064		0.0050	0.00063	mg/L			04/10/24 12:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		63 - 144		04/10/24 12:56	1
4-Bromofluorobenzene (Surr)	98		74 - 124		04/10/24 12:56	1
Dibromofluoromethane (Surr)	114		75 - 131		04/10/24 12:56	1
Toluene-d8 (Surr)	100		80 - 120		04/10/24 12:56	1

Mothod: EDA 625 1	- Samiyalətilə Organic	Compounds (GC/MS)

monour = 1710 = 01									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	0.0013	U	0.010	0.0013	mg/L		04/15/24 15:37	04/16/24 21:44	1
1,2-Dichlorobenzene	0.0016	U	0.010	0.0016	mg/L		04/15/24 15:37	04/16/24 21:44	1
1,3-Dichlorobenzene	0.0014	U	0.010	0.0014	mg/L		04/15/24 15:37	04/16/24 21:44	1

Eurofins Houston

Page 10 of 65

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Client Sample ID: Outfall Samples

Acenaphthylene

Date Collected: 04/09/24 09:00
Date Received: 04/09/24 15:06

Matrix: Water

Lab Sample ID: 860-71662-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.0016	U	0.010	0.0016	mg/L		04/15/24 15:37	04/16/24 21:44	
Acenaphthene	0.0014	U	0.0057	0.0014	mg/L		04/15/24 15:37	04/16/24 21:44	,
Benzidine	0.0048	U *- *1	0.020	0.0048	mg/L		04/15/24 15:37	04/16/24 21:44	,
1,2,4-Trichlorobenzene	0.0016	U	0.0050	0.0016	mg/L		04/15/24 15:37	04/16/24 21:44	
Hexachlorobenzene	0.00031	U	0.0050	0.00031	mg/L		04/15/24 15:37	04/16/24 21:44	
Hexachloroethane	0.00053	U	0.0048	0.00053	mg/L		04/15/24 15:37	04/16/24 21:44	
2,4,5-Trichlorophenol	0.0020	U	0.010	0.0020	mg/L		04/15/24 15:37	04/16/24 21:44	
Bis(2-chloroethyl)ether	0.0022	U	0.010	0.0022			04/15/24 15:37	04/16/24 21:44	
2-Chloronaphthalene	0.00046	U	0.0050	0.00046			04/15/24 15:37	04/16/24 21:44	
2,4,6-Trichlorophenol	0.0014		0.0050	0.0014			04/15/24 15:37	04/16/24 21:44	
p-Chloro-m-cresol	0.0016		0.0050	0.0016			04/15/24 15:37	04/16/24 21:44	
2-Chlorophenol	0.00065		0.0050	0.00065			04/15/24 15:37	04/16/24 21:44	
3,3'-Dichlorobenzidine	0.00034		0.0050	0.00034			04/15/24 15:37	04/16/24 21:44	
2,4-Dichlorophenol	0.00031		0.0050	0.00031			04/15/24 15:37	04/16/24 21:44	
2,4-Dimethylphenol	0.00065		0.0050	0.00065	•		04/15/24 15:37	04/16/24 21:44	
2,4-Dinitrotoluene	0.0013		0.010	0.0013			04/15/24 15:37	04/16/24 21:44	
1,2-Diphenylhydrazine	0.0015		0.010	0.0015			04/15/24 15:37	04/16/24 21:44	
Fluoranthene	0.0016		0.0050	0.0016			04/15/24 15:37	04/16/24 21:44	
4-Bromophenyl phenyl ether	0.00026		0.0050	0.00026			04/15/24 15:37	04/16/24 21:44	
4-Chlorophenyl phenyl ether	0.0020		0.0030	0.00020			04/15/24 15:37	04/16/24 21:44	
o-Cresol	0.0016		0.010	0.0016			04/15/24 15:37	04/16/24 21:44	
Bis(2-chloroethoxy)methane	0.0018		0.010	0.0018			04/15/24 15:37	04/16/24 21:44	
m & p - Cresol	0.0018		0.010	0.0018				04/16/24 21:44	
·							04/15/24 15:37		
bis (2-chloroisopropyl) ether	0.0018		0.010	0.0018			04/15/24 15:37	04/16/24 21:44	
Hexachlorobutadiene	0.00024		0.0010	0.00024			04/15/24 15:37	04/16/24 21:44	
Hexachlorocyclopentadiene	0.0046		0.010	0.0046			04/15/24 15:37	04/16/24 21:44	
Isophorone	0.0016		0.0050	0.0016			04/15/24 15:37	04/16/24 21:44	
Naphthalene	0.00054		0.0025	0.00054			04/15/24 15:37	04/16/24 21:44	
Nitrobenzene	0.0017		0.0050	0.0017	-		04/15/24 15:37	04/16/24 21:44	
4-Nitrophenol	0.0049		0.0072	0.0049			04/15/24 15:37	04/16/24 21:44	
2-Nitrophenol	0.0017		0.010	0.0017	-		04/15/24 15:37	04/16/24 21:44	
4,6-Dinitro-o-cresol	0.0014		0.010	0.0014	-		04/15/24 15:37	04/16/24 21:44	
N-Nitrosodimethylamine	0.0020		0.010	0.0020			04/15/24 15:37	04/16/24 21:44	
N-Nitrosodiphenylamine	0.0018		0.010	0.0018			04/15/24 15:37	04/16/24 21:44	
N-Nitrosodi-n-propylamine	0.0029		0.010	0.0029	•		04/15/24 15:37	04/16/24 21:44	
Pentachlorophenol	0.00023		0.010	0.00023			04/15/24 15:37	04/16/24 21:44	
Phenol	0.00042		0.0045	0.00042	-		04/15/24 15:37	04/16/24 21:44	
Bis(2-ethylhexyl) phthalate	0.00028		0.0050	0.00028	mg/L		04/15/24 15:37	04/16/24 21:44	
Butyl benzyl phthalate	0.00034	U	0.0050	0.00034			04/15/24 15:37	04/16/24 21:44	
Di-n-butyl phthalate	0.00025	U	0.0050	0.00025	mg/L		04/15/24 15:37	04/16/24 21:44	
Di-n-octyl phthalate	0.00037	U	0.0050	0.00037	mg/L		04/15/24 15:37	04/16/24 21:44	
Diethyl phthalate	0.0016	U	0.0050	0.0016			04/15/24 15:37	04/16/24 21:44	
Dimethyl phthalate	0.00030	U	0.0025	0.00030	mg/L		04/15/24 15:37	04/16/24 21:44	
Benzo[a]anthracene	0.00017	U	0.0050	0.00017	mg/L		04/15/24 15:37	04/16/24 21:44	
Benzo[a]pyrene	0.00036	U	0.0050	0.00036	mg/L		04/15/24 15:37	04/16/24 21:44	
Benzo[b]fluoranthene	0.0020	U	0.010	0.0020	mg/L		04/15/24 15:37	04/16/24 21:44	
Benzo[k]fluoranthene	0.00038	U	0.0050	0.00038	mg/L		04/15/24 15:37	04/16/24 21:44	
Chrysene	0.00022	U	0.0050	0.00022	mg/L		04/15/24 15:37	04/16/24 21:44	
							0.4/4.5/0.4.4.5.0.5	0.4/4.0/0.4.04.4.4	

Eurofins Houston

04/16/24 21:44

04/15/24 15:37

0.010

0.0014 mg/L

0.0014 U

3

5

8

10

12

14

15

1 (

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Client Sample ID: Outfall Samples

Date Collected: 04/09/24 09:00
Date Received: 04/09/24 15:06

Lab Sample ID: 860-71662-1 Matrix: Water

atei

Method: EPA 625.1 - Semivolatil	e Organic Compounds	(GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Anthracene	0.0015	U	0.0057	0.0015	mg/L		04/15/24 15:37	04/16/24 21:44	1
Benzo[g,h,i]perylene	0.0027	U	0.010	0.0027	mg/L		04/15/24 15:37	04/16/24 21:44	1
Fluorene	0.0016	U	0.0050	0.0016	mg/L		04/15/24 15:37	04/16/24 21:44	1
Phenanthrene	0.0014	U	0.010	0.0014	mg/L		04/15/24 15:37	04/16/24 21:44	1
Dibenz(a,h)anthracene	0.00025	U	0.0050	0.00025	mg/L		04/15/24 15:37	04/16/24 21:44	1
Indeno[1,2,3-cd]pyrene	0.0023	U	0.010	0.0023	mg/L		04/15/24 15:37	04/16/24 21:44	1
Pyrene	0.00018	U	0.0050	0.00018	mg/L		04/15/24 15:37	04/16/24 21:44	1
2,4-Dinitrophenol	0.0016	U	0.010	0.0016	mg/L		04/15/24 15:37	04/16/24 21:44	1
2,6-Dinitrotoluene	0.0016	U	0.0050	0.0016	mg/L		04/15/24 15:37	04/16/24 21:44	1
N-Nitrosodi-n-butylamine	0.0015	U	0.010	0.0015	mg/L		04/15/24 15:37	04/16/24 21:44	1
N-Nitrosodiethylamine	0.0018	U	0.010	0.0018	mg/L		04/15/24 15:37	04/16/24 21:44	1
Nonylphenol	0.010	U	0.010	0.010	mg/L		04/15/24 15:37	04/16/24 21:44	1
Pentachlorobenzene	0.0011	U	0.010	0.0011	mg/L		04/15/24 15:37	04/16/24 21:44	1
Pyridine	0.0026	U *1	0.010	0.0026	mg/L		04/15/24 15:37	04/16/24 21:44	1
Total Cresols	0.0026	U	0.010	0.0026	mg/L		04/15/24 15:37	04/16/24 21:44	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analy	zed Dil Fac
2,4,6-Tribromophenol (Surr)	78		31 - 132	04/15/24 15:37 04/16/24	1 21:44 1
2-Fluorobiphenyl (Surr)	58		29 - 112	04/15/24 15:37 04/16/24	1 21:44 1
2-Fluorophenol (Surr)	19	S1-	28 - 114	04/15/24 15:37 04/16/24	1 21:44 1
Nitrobenzene-d5 (Surr)	50		15 - 314	04/15/24 15:37 04/16/24	1 21:44 1
p-Terphenyl-d14 (Surr)	83		20 - 141	04/15/24 15:37 04/16/24	1 21:44 1
Phenol-d5 (Surr)	14		8 - 424	04/15/24 15:37 04/16/24	1 21:44 1

Method: EPA 608.3 - Polych	orinated Bipheny	yls (PCBs) (GC)
----------------------------	------------------	-----------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	0.000013	U	0.00010	0.000013	mg/L		04/13/24 06:30	04/15/24 12:27	1
PCB-1221	0.000013	U	0.00010	0.000013	mg/L		04/13/24 06:30	04/15/24 12:27	1
PCB-1232	0.000013	U	0.00010	0.000013	mg/L		04/13/24 06:30	04/15/24 12:27	1
PCB-1242	0.000013	U	0.00010	0.000013	mg/L		04/13/24 06:30	04/15/24 12:27	1
PCB-1248	0.000013	U	0.00010	0.000013	mg/L		04/13/24 06:30	04/15/24 12:27	1
PCB-1254	0.0000078	U	0.00010	0.0000078	mg/L		04/13/24 06:30	04/15/24 12:27	1
PCB-1260	0.0000078	U	0.00010	0.0000078	mg/L		04/13/24 06:30	04/15/24 12:27	1
Polychlorinated biphenyls, Total	0.00010	U	0.00010	0.00010	mg/L		04/13/24 06:30	04/15/24 12:27	1
Surrogate	%Recovery	Qualifier	l imite				Prenared	Analyzod	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene (Surr)	63		18 - 126	04/13/24 06:30	04/15/24 12:27	1
DCB Decachlorobiphenyl (Surr)	124		15 - 136	04/13/24 06:30	04/15/24 12:27	1

Method: EPA 300.0	Anions, Ion (Chromatog	graphy
-------------------	---------------	-----------	--------

Method. Li A 300.0 - Allions,	ion omomatograp	, iiy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.071	U	0.50	0.071	mg/L			04/10/24 12:48	1
Nitrate as N	5.1		0.10	0.039	mg/L			04/10/24 12:48	1
Chloride	320		0.50	0.25	mg/L			04/10/24 12:48	1
Nitrite as N	0.029	U	0.10	0.029	mg/L			04/10/24 12:48	1
Fluoride	2.6		0.50	0.10	mg/L			04/18/24 20:36	1
Nitrate Nitrite as N	5.1		0.10	0.039	mg/L			04/10/24 12:48	1
Sulfate	320		0.50	0.20	mg/L			04/10/24 12:48	1

Eurofins Houston

3

<u>5</u>

7

9

10

12

1 1

15

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Client Sample ID: Outfall Samples

Date Collected: 04/09/24 09:00 Date Received: 04/09/24 15:06 Lab Sample ID: 860-71662-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	18		0.50	0.20	ng/L		04/14/24 14:30	04/16/24 12:08	1
Method: EPA 200.8 - Meta	Is (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	0.19		0.020	0.0030	mg/L		04/12/24 11:00	04/12/24 19:26	
Antimony	0.0011	U	0.0020	0.0011	mg/L		04/12/24 11:00	04/12/24 19:26	
Arsenic	0.0052		0.0040	0.00034	mg/L		04/12/24 11:00	04/12/24 19:26	
Barium	0.19		0.0040	0.00029	mg/L		04/12/24 11:00	04/12/24 19:26	
Beryllium	0.00015	U	0.0020	0.00015	mg/L		04/12/24 11:00	04/12/24 19:26	
Boron	0.32	В	0.010	0.0025	mg/L		04/12/24 11:00	04/12/24 19:26	
Cadmium	0.00026	U	0.0020	0.00026	mg/L		04/12/24 11:00	04/12/24 19:26	
Chromium	0.0031	JB	0.0040	0.00033	mg/L		04/12/24 11:00	04/12/24 19:26	
Cobalt	0.00085	J	0.0020	0.00026	mg/L		04/12/24 11:00	04/12/24 19:26	
Copper	0.036		0.0040	0.00069	mg/L		04/12/24 11:00	04/12/24 19:26	
Iron	0.61		0.020	0.0020	mg/L		04/12/24 11:00	04/12/24 19:26	
Lead	0.00039	J	0.0020	0.00014	mg/L		04/12/24 11:00	04/12/24 19:26	
Magnesium	17	В	2.0	0.18	mg/L		04/12/24 11:00	04/12/24 19:31	2
Manganese	0.024	В	0.0020	0.00016	mg/L		04/12/24 11:00	04/12/24 19:26	
Molybdenum	0.0078		0.0020	0.00016	mg/L		04/12/24 11:00	04/12/24 19:26	
Nickel	0.018	В	0.0020	0.00049	mg/L		04/12/24 11:00	04/12/24 19:26	
Selenium	0.0020		0.0020	0.00069	mg/L		04/12/24 11:00	04/12/24 19:26	
Silver	0.00022	JB	0.0020	0.00012	mg/L		04/12/24 11:00	04/12/24 19:26	
Thallium	0.00022	U	0.0020	0.00022	mg/L		04/12/24 11:00	04/12/24 19:26	
Tin	0.00033	U	0.0020	0.00033	mg/L		04/12/24 11:00	04/12/24 19:26	
Titanium	0.0026	J	0.0040	0.00042	mg/L		04/12/24 11:00	04/12/24 19:26	
Zinc	0.018		0.0040	0.00089	mg/L		04/12/24 11:00	04/12/24 19:26	

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (1664B)	2.6	J	5.0	1.6	mg/L			04/15/24 10:04	1
Ammonia (EPA 350.1)	0.051	U	0.10	0.051	mg/L			04/15/24 13:17	
Nitrogen, Kjeldahl (EPA 351.2)	3.0		0.20	0.089	mg/L		04/11/24 22:39	04/12/24 18:35	•
Oxygen, Dissolved (EPA 360.1)	9.4	HF	1.0	1.0	mg/L			04/17/24 11:00	
Phosphorus Total (EPA 365.1)	3.4		0.10	0.072	mg/L			04/12/24 22:15	Ę
Sulfite (SM 4500 SO3 B-2011)	1.5	U HF	5.0	1.5	mg/L			04/25/24 09:40	,
Cr (VI) (SW846 7196A)	0.0034	U	0.010	0.0034	mg/L			04/09/24 16:40	
Cr (III) (SW846 7196A)	0.0034	U	0.010	0.0034	mg/L			04/19/24 15:47	
Chemical Oxygen Demand (Hach 8000)	86		20	3.4	mg/L			04/16/24 18:03	•
Nitrogen, Organic (EPA Nitrogen,Org)	3.0		0.20	0.061	mg/L			04/18/24 09:10	
Cyanide, Available (OI CORP OIA-1677)	0.0061		0.0060	0.0050	mg/L			04/16/24 10:38	
Color, Apparent (SM 2120B)	30		10	10	Color Units			04/10/24 16:00	2
Color, True (SM 2120B)	na		10	10	Color Units			04/10/24 16:00	2
pH (SM 2120B)	8.6		0.10	0.10	S.U.			04/10/24 16:00	2
Alkalinity (SM 2320B)	210		4.0	4.0	mg/L			04/17/24 01:51	•
Bicarbonate Alkalinity as CaCO3 (SM 2320B)	210		4.0	4.0	mg/L			04/17/24 01:51	
Carbonate Alkalinity as CaCO3 (SM 2320B)	4.0	U	4.0	4.0	mg/L			04/17/24 01:51	

Eurofins Houston

_

3

5

1

9

12

14

15

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Client Sample ID: Outfall Samples

Lab Sample ID: 860-71662-1 Date Collected: 04/09/24 09:00

Matrix: Water Date Received: 04/09/24 15:06

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hydroxide Alkalinity (SM 2320B)	4.0	U	4.0	4.0	mg/L			04/17/24 01:51	1
Phenolphthalein Alkalinity (SM 2320B)	4.0	U	4.0	4.0	mg/L			04/17/24 01:51	1
Total Dissolved Solids (SM 2540C)	1300		20	20	mg/L			04/16/24 18:30	1
Total Suspended Solids (SM 2540D)	9.8		4.0	4.0	mg/L			04/15/24 13:51	1
Chlorine, Total Residual (SM 4500 CI G)	1.1	HF	0.10	0.10	mg/L			04/12/24 16:27	2
Sulfide (SM 4500 S2 D)	0.040	U	0.10	0.040	mg/L			04/16/24 15:46	1
Biochemical Oxygen Demand (SM 5210B)	12	U	12	12	mg/L		04/09/24 19:00	04/09/24 22:15	1
Total Organic Carbon (SM 5310C)	13		1.0	0.50	mg/L			04/16/24 16:39	1
Carbonaceous Biochemical Oxygen Demand (SM5210B CBOD)	30	U	30	30	mg/L		04/09/24 17:09	04/09/24 17:50	1

Surrogate Summary

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Su	rrogate Rec
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(63-144)	(74-124)	(75-131)	(80-120)
860-71662-1	Outfall Samples	105	98	114	100
LCS 860-154047/3	Lab Control Sample	94	99	94	96
LCSD 860-154047/4	Lab Control Sample Dup	90	100	92	97
MB 860-154047/10	Method Blank	100	100	104	100

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

_		Percent Surrogate Recovery (Acceptance Limits)							
		ТВР	FBP	2FP	NBZ	TPHd14	PHL		
Lab Sample ID	Client Sample ID	(31-132)	(29-112)	(28-114)	(15-314)	(20-141)	(8-424)		
860-71662-1	Outfall Samples	78	58	19 S1-	50	83	14		
LCS 860-154889/2-A	Lab Control Sample	102	86	53	87	91	35		
LCSD 860-154889/3-A	Lab Control Sample Dup	108	97	54	93	98	36		
MB 860-154889/1-A	Method Blank	101	95	45	101	103	30		

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		TCX1	DCB1					
Lab Sample ID	Client Sample ID	(18-126)	(15-136)					
860-71662-1	Outfall Samples	63	124					
LCS 860-154669/4-A	Lab Control Sample	95	136					
LCSD 860-154669/5-A	Lab Control Sample Dup	83	132					
MB 860-154669/1-A	Method Blank	87	128					

TCX = Tetrachloro-m-xylene (Surr)

DCB = DCB Decachlorobiphenyl (Surr)

Eurofins Houston

Client: Messer LLC Job ID: 860-71662-1

RL

0.050

MDL Unit

0.011 mg/L

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 624.1 - Volatile Organic Compounds (GC/MS)

MB MB

0.011 U

Result Qualifier

Lab Sample ID: MB 860-154047/10

Analysis Batch: 154047

Matrix: Water

Analyte

Acrolein

Naphthalene

Toluene

Tetrachloroethene

Trichloroethene

1,3-Dichloropropylene

cis-1,3-Dichloropropene

Trihalomethanes, Total

Vinyl chloride

Client Sample ID: Method Blank Prep Type: Total/NA

repared	Analyzed	Dil Fac

04/10/24 09:28

04/10/24 09:28

04/10/24 09:28

04/10/24 09:28

04/10/24 09:28

04/10/24 09:28

04/10/24 09:28

04/10/24 09:28

04/10/24 09:28

Acrylonitrile	0.014	U	0.050	0.014	mg/L	04/10/24 09:28	1
Benzene	0.00046	U	0.0010	0.00046	mg/L	04/10/24 09:28	1
Carbon tetrachloride	0.00090	U	0.0050	0.00090	mg/L	04/10/24 09:28	1
Chlorobenzene	0.00046	U	0.0010	0.00046	mg/L	04/10/24 09:28	1
1,2,4-Trichlorobenzene	0.0018	U	0.0050	0.0018	mg/L	04/10/24 09:28	1
1,2-Dichloroethane	0.00037	U	0.0010	0.00037	mg/L	04/10/24 09:28	1
1,1,1-Trichloroethane	0.00059	U	0.0050	0.00059	mg/L	04/10/24 09:28	1
1,1-Dichloroethane	0.00064	U	0.0010	0.00064	mg/L	04/10/24 09:28	1
1,1,2-Trichloroethane	0.00041	U	0.0010	0.00041	mg/L	04/10/24 09:28	1
1,2-Dibromoethane	0.0010	U	0.0050	0.0010	mg/L	04/10/24 09:28	1
1,1,2,2-Tetrachloroetha	ne 0.00047	U	0.0010	0.00047	mg/L	04/10/24 09:28	1
Chloroethane	0.0020	U	0.010	0.0020	mg/L	04/10/24 09:28	1
2-Chloroethyl vinyl ethe	er 0.00075	U	0.0050	0.00075	mg/L	04/10/24 09:28	1
Chloroform	0.00046	U	0.0010	0.00046	mg/L	04/10/24 09:28	1
1,2-Dichlorobenzene	0.00043	U	0.0010	0.00043	mg/L	04/10/24 09:28	1
1,3-Dichlorobenzene	0.00041	U	0.0010	0.00041	mg/L	04/10/24 09:28	1
1,4-Dichlorobenzene	0.00045	U	0.0010	0.00045	mg/L	04/10/24 09:28	1
1,1-Dichloroethene	0.00074	U	0.0010	0.00074	mg/L	04/10/24 09:28	1
trans-1,2-Dichloroether	e 0.00037	U	0.0010	0.00037	mg/L	04/10/24 09:28	1
1,2-Dichloropropane	0.00056	U	0.0050	0.00056	mg/L	04/10/24 09:28	1
Ethylbenzene	0.00039	U	0.0010	0.00039	mg/L	04/10/24 09:28	1
2-Butanone	0.0083	U	0.050	0.0083	mg/L	04/10/24 09:28	1
Methylene Chloride	0.0017	U	0.0050	0.0017	mg/L	04/10/24 09:28	1
Chloromethane	0.0020	U	0.010	0.0020	mg/L	04/10/24 09:28	1
Bromomethane	0.0014	U	0.0050	0.0014	mg/L	04/10/24 09:28	1
Bromoform	0.00063	U	0.0050	0.00063	mg/L	04/10/24 09:28	1
Bromodichloromethane	0.00055	U	0.0010	0.00055	mg/L	04/10/24 09:28	1
Chlorodibromomethane	0.00055	U	0.0050	0.00055	mg/L	04/10/24 09:28	1
Hexachlorobutadiene	0.00063	U	0.0050	0.00063	mg/L	04/10/24 09:28	1

MB MB

0.0014 U

0.00066 U

0.00048 U

0.0015 U

0.00043 U

0.0013 U

0.0011 U

0.00063 U

Surrogate	%Recovery	Qualifier L	imits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	60	3 - 144		04/10/24 09:28	1
4-Bromofluorobenzene (Surr)	100	74	4 - 124		04/10/24 09:28	1
Dibromofluoromethane (Surr)	104	75	5 - 131		04/10/24 09:28	1
Toluene-d8 (Surr)	100	80	0 - 120		04/10/24 09:28	1

0.010

0.0010

0.0010

0.0050

0.0020

0.0050

0.0050

0.0050

0.0014 mg/L

0.00066 mg/L

0.00048 mg/L

0.0015 mg/L

0.00043 mg/L

0.0013 mg/L

0.0011 mg/L

0.00063 mg/L

Eurofins Houston

Spike

Client: Messer LLC Job ID: 860-71662-1

LCS LCS

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 860-154047/3

Matrix: Water

Analysis Batch: 154047

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec

	•					
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits	
Acrolein	0.250	0.280	mg/L	112	60 - 140	
Acrylonitrile	0.500	0.456	mg/L	91	60 - 140	
Benzene	0.0500	0.0487	mg/L	97	75 - 125	
Carbon tetrachloride	0.0500	0.0539	mg/L	108	70 - 125	
Chlorobenzene	0.0500	0.0512	mg/L	102	82 - 135	
1,2,4-Trichlorobenzene	0.0500	0.0503	mg/L	101	75 - 135	
1,2-Dichloroethane	0.0500	0.0475	mg/L	95	72 - 130	
1,1,1-Trichloroethane	0.0500	0.0499	mg/L	100	70 - 130	
1,1-Dichloroethane	0.0500	0.0481	mg/L	96	71 - 130	
1,1,2-Trichloroethane	0.0500	0.0506	mg/L	101	75 - 130	
1,2-Dibromoethane	0.0500	0.0530	mg/L	106	73 - 125	
1,1,2,2-Tetrachloroethane	0.0500	0.0483	mg/L	97	74 - 125	
Chloroethane	0.0500	0.0427	mg/L	85	60 - 140	
2-Chloroethyl vinyl ether	0.0500	0.0560	mg/L	112	50 - 150	
Chloroform	0.0500	0.0457	mg/L	91	70 - 121	
1,2-Dichlorobenzene	0.0500	0.0544	mg/L	109	75 - 125	
1,3-Dichlorobenzene	0.0500	0.0544	mg/L	109	75 - 125	
1,4-Dichlorobenzene	0.0500	0.0512	mg/L	102	75 - 125	
1,1-Dichloroethene	0.0500	0.0560	mg/L	112	50 - 150	
trans-1,2-Dichloroethene	0.0500	0.0536	mg/L	107	75 - 125	
1,2-Dichloropropane	0.0500	0.0501	mg/L	100	74 - 125	
Ethylbenzene	0.0500	0.0546	mg/L	109	75 - 125	
2-Butanone	0.250	0.247	mg/L	99	60 - 140	
Methylene Chloride	0.0500	0.0448	mg/L	90	71 - 125	
Chloromethane	0.0500	0.0443	mg/L	89	60 - 140	
Bromomethane	0.0500	0.0559	mg/L	112	60 - 140	
Bromoform	0.0500	0.0526	mg/L	105	70 - 130	
Bromodichloromethane	0.0500	0.0521	mg/L	104	75 - 125	
Chlorodibromomethane	0.0500	0.0543	mg/L	109	73 - 125	
Hexachlorobutadiene	0.0500	0.0576	mg/L	115	75 - 125	
Naphthalene	0.0500	0.0501	mg/L	100	70 - 130	
Tetrachloroethene	0.0500	0.0560	mg/L	112	71 - 125	
Toluene	0.0500	0.0518	mg/L	104	75 - 130	
Trichloroethene	0.0500	0.0541	mg/L	108	75 - 135	
Vinyl chloride	0.0500	0.0466	mg/L	93	60 - 140	
cis-1,3-Dichloropropene	0.0500	0.0555	mg/L	111	74 - 125	

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		63 - 144
4-Bromofluorobenzene (Surr)	99		74 - 124
Dibromofluoromethane (Surr)	94		75 ₋ 131
Toluene-d8 (Surr)	96		80 - 120

Eurofins Houston

5

0

0

10

12

14

15

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 860-154047/4

Matrix: Water

Analysis Batch: 154047

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acrolein	0.250	0.265		mg/L		106	60 - 140	6	25
Acrylonitrile	0.500	0.431		mg/L		86	60 - 140	6	25
Benzene	0.0500	0.0452		mg/L		90	75 - 125	7	25
Carbon tetrachloride	0.0500	0.0513		mg/L		103	70 - 125	5	25
Chlorobenzene	0.0500	0.0493		mg/L		99	82 - 135	4	25
1,2,4-Trichlorobenzene	0.0500	0.0487		mg/L		97	75 - 135	3	25
1,2-Dichloroethane	0.0500	0.0456		mg/L		91	72 - 130	4	25
1,1,1-Trichloroethane	0.0500	0.0475		mg/L		95	70 - 130	5	25
1,1-Dichloroethane	0.0500	0.0451		mg/L		90	71 - 130	6	25
1,1,2-Trichloroethane	0.0500	0.0480		mg/L		96	75 - 130	5	25
1,2-Dibromoethane	0.0500	0.0528		mg/L		106	73 - 125	0	25
1,1,2,2-Tetrachloroethane	0.0500	0.0469		mg/L		94	74 - 125	3	25
Chloroethane	0.0500	0.0403		mg/L		81	60 - 140	6	25
2-Chloroethyl vinyl ether	0.0500	0.0533		mg/L		107	50 - 150	5	25
Chloroform	0.0500	0.0430		mg/L		86	70 - 121	6	25
1,2-Dichlorobenzene	0.0500	0.0532		mg/L		106	75 - 125	2	25
1,3-Dichlorobenzene	0.0500	0.0529		mg/L		106	75 - 125	3	25
1,4-Dichlorobenzene	0.0500	0.0499		mg/L		100	75 - 125	2	25
1,1-Dichloroethene	0.0500	0.0537		mg/L		107	50 - 150	4	25
trans-1,2-Dichloroethene	0.0500	0.0492		mg/L		98	75 - 125	9	25
1,2-Dichloropropane	0.0500	0.0469		mg/L		94	74 - 125	7	25
Ethylbenzene	0.0500	0.0522		mg/L		104	75 - 125	5	25
2-Butanone	0.250	0.236		mg/L		94	60 - 140	5	25
Methylene Chloride	0.0500	0.0432		mg/L		86	71 - 125	4	25
Chloromethane	0.0500	0.0416		mg/L		83	60 - 140	6	25
Bromomethane	0.0500	0.0532		mg/L		106	60 - 140	5	25
Bromoform	0.0500	0.0523		mg/L		105	70 - 130	1	25
Bromodichloromethane	0.0500	0.0497		mg/L		99	75 - 125	5	25
Chlorodibromomethane	0.0500	0.0529		mg/L		106	73 - 125	3	25
Hexachlorobutadiene	0.0500	0.0544		mg/L		109	75 - 125	6	25
Naphthalene	0.0500	0.0506		mg/L		101	70 - 130	1	25
Tetrachloroethene	0.0500	0.0536		mg/L		107	71 - 125	4	25
Toluene	0.0500	0.0499		mg/L		100	75 - 130	4	25
Trichloroethene	0.0500	0.0514		mg/L		103	75 - 135	5	25
Vinyl chloride	0.0500	0.0432		mg/L		86	60 - 140	8	25
cis-1,3-Dichloropropene	0.0500	0.0526		mg/L		105	74 - 125	5	25

.CSD	LCSD
	_00

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	90		63 - 144
4-Bromofluorobenzene (Surr)	100		74 - 124
Dibromofluoromethane (Surr)	92		75 - 131
Toluene-d8 (Surr)	97		80 - 120

Eurofins Houston

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-154889/1-A

Matrix: Water

Client Sample ID: Method Blank **Prep Type: Total/NA**

nalyzed	Dil Fac	
6/24 13:18	1	
6/24 13:18	1	
6/24 13:18	1	
6/24 13:18	1	
6/24 13:18	1	
6/24 13:18	1	<u> </u>
6/24 13:18	1	
6/24 13:18	1	
6/24 13:18	1	
6/24 13:18	1	
6/24 13:18	1	
6/24 13:18	1	
6/24 13:18	1	
6/24 13:18	1	
6/24 13:18	1	
6/24 13:18	1	
6/24 13:18	1	
6/04 40.40	4	

Analysis Batch: 155030	MR	MB						Prep Batch:	. 104005
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	0.0013		0.010	0.0013		— <u> </u>	04/15/24 15:37	04/16/24 13:18	1
1,2-Dichlorobenzene	0.0016		0.010	0.0016			04/15/24 15:37	04/16/24 13:18	1
1,3-Dichlorobenzene	0.0014		0.010	0.0014	-		04/15/24 15:37	04/16/24 13:18	1
1,4-Dichlorobenzene	0.0016		0.010	0.0016			04/15/24 15:37	04/16/24 13:18	1
Acenaphthene	0.0014		0.0057	0.0014	-		04/15/24 15:37	04/16/24 13:18	1
Benzidine	0.0048		0.020		mg/L		04/15/24 15:37	04/16/24 13:18	1
1,2,4-Trichlorobenzene	0.0016		0.0050	0.0016	.		04/15/24 15:37	04/16/24 13:18	1
Hexachlorobenzene	0.00031		0.0050	0.00031	mg/L		04/15/24 15:37	04/16/24 13:18	1
Hexachloroethane	0.00053		0.0048	0.00053	=		04/15/24 15:37	04/16/24 13:18	1
2,4,5-Trichlorophenol	0.0020		0.010		mg/L		04/15/24 15:37	04/16/24 13:18	
Bis(2-chloroethyl)ether	0.0022		0.010	0.0022	-		04/15/24 15:37	04/16/24 13:18	. 1
2-Chloronaphthalene	0.0022		0.0050	0.0022	mg/L		04/15/24 15:37	04/16/24 13:18	1
	0.0014		0.0050	0.0014			04/15/24 15:37	04/16/24 13:18	
2,4,6-Trichlorophenol	0.0014			0.0014			04/15/24 15:37	04/16/24 13:18	1
p-Chloro-m-cresol	0.00065		0.0050						-
2-Chlorophenol			0.0050	0.00065			04/15/24 15:37	04/16/24 13:18	1
3,3'-Dichlorobenzidine	0.00034		0.0050	0.00034			04/15/24 15:37	04/16/24 13:18	1
2,4-Dichlorophenol	0.00031		0.0050	0.00031	mg/L		04/15/24 15:37	04/16/24 13:18	1
2,4-Dimethylphenol	0.00065		0.0050	0.00065			04/15/24 15:37	04/16/24 13:18	
2,4-Dinitrotoluene	0.0013		0.010	0.0013			04/15/24 15:37	04/16/24 13:18	1
1,2-Diphenylhydrazine	0.0015		0.010	0.0015			04/15/24 15:37	04/16/24 13:18	1
Fluoranthene	0.0016		0.0050	0.0016	.		04/15/24 15:37	04/16/24 13:18	
4-Bromophenyl phenyl ether	0.00026		0.0050	0.00026			04/15/24 15:37	04/16/24 13:18	1
4-Chlorophenyl phenyl ether	0.0013		0.010	0.0013	-		04/15/24 15:37	04/16/24 13:18	1
o-Cresol	0.0016		0.010	0.0016			04/15/24 15:37	04/16/24 13:18	1
Bis(2-chloroethoxy)methane	0.0018		0.010	0.0018			04/15/24 15:37	04/16/24 13:18	1
m & p - Cresol	0.0026		0.010	0.0026			04/15/24 15:37	04/16/24 13:18	1
bis (2-chloroisopropyl) ether	0.0018	U	0.010	0.0018			04/15/24 15:37	04/16/24 13:18	1
Hexachlorobutadiene	0.00024	U	0.0010	0.00024	mg/L		04/15/24 15:37	04/16/24 13:18	1
Hexachlorocyclopentadiene	0.0046	U	0.010	0.0046	mg/L		04/15/24 15:37	04/16/24 13:18	1
Isophorone	0.0016	U	0.0050	0.0016	mg/L		04/15/24 15:37	04/16/24 13:18	1
Naphthalene	0.00054	U	0.0025	0.00054	mg/L		04/15/24 15:37	04/16/24 13:18	1
Nitrobenzene	0.0017	U	0.0050	0.0017	mg/L		04/15/24 15:37	04/16/24 13:18	1
4-Nitrophenol	0.0049	U	0.0072	0.0049	mg/L		04/15/24 15:37	04/16/24 13:18	1
2-Nitrophenol	0.0017	U	0.010	0.0017	mg/L		04/15/24 15:37	04/16/24 13:18	1
4,6-Dinitro-o-cresol	0.0014	U	0.010	0.0014	mg/L		04/15/24 15:37	04/16/24 13:18	1
N-Nitrosodimethylamine	0.0020	U	0.010	0.0020	mg/L		04/15/24 15:37	04/16/24 13:18	1
N-Nitrosodiphenylamine	0.0018	U	0.010	0.0018	mg/L		04/15/24 15:37	04/16/24 13:18	1
N-Nitrosodi-n-propylamine	0.0029	U	0.010	0.0029	mg/L		04/15/24 15:37	04/16/24 13:18	1
Pentachlorophenol	0.00023	U	0.010	0.00023	mg/L		04/15/24 15:37	04/16/24 13:18	1
Phenol	0.00042	U	0.0045	0.00042	mg/L		04/15/24 15:37	04/16/24 13:18	1
Bis(2-ethylhexyl) phthalate	0.00028	U	0.0050	0.00028	mg/L		04/15/24 15:37	04/16/24 13:18	1
Butyl benzyl phthalate	0.00034	U	0.0050	0.00034	mg/L		04/15/24 15:37	04/16/24 13:18	1
Di-n-butyl phthalate	0.00025	U	0.0050	0.00025	mg/L		04/15/24 15:37	04/16/24 13:18	1
Di-n-octyl phthalate	0.00037	U	0.0050	0.00037			04/15/24 15:37	04/16/24 13:18	1
Diethyl phthalate	0.0016		0.0050	0.0016	-		04/15/24 15:37	04/16/24 13:18	1
Dimethyl phthalate	0.00030		0.0025	0.00030			04/15/24 15:37	04/16/24 13:18	1
Benzo[a]anthracene	0.00017		0.0050	0.00017	-		04/15/24 15:37	04/16/24 13:18	1
Benzo[a]pyrene	0.00036		0.0050	0.00036	=		04/15/24 15:37	04/16/24 13:18	1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 860-154889/1-A

Matrix: Water

Analysis Batch: 155030

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 154889

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[b]fluoranthene	0.0020	U	0.010	0.0020	mg/L		04/15/24 15:37	04/16/24 13:18	1
Benzo[k]fluoranthene	0.00038	U	0.0050	0.00038	mg/L		04/15/24 15:37	04/16/24 13:18	1
Chrysene	0.00022	U	0.0050	0.00022	mg/L		04/15/24 15:37	04/16/24 13:18	1
Acenaphthylene	0.0014	U	0.010	0.0014	mg/L		04/15/24 15:37	04/16/24 13:18	1
Anthracene	0.0015	U	0.0057	0.0015	mg/L		04/15/24 15:37	04/16/24 13:18	1
Benzo[g,h,i]perylene	0.0027	U	0.010	0.0027	mg/L		04/15/24 15:37	04/16/24 13:18	1
Fluorene	0.0016	U	0.0050	0.0016	mg/L		04/15/24 15:37	04/16/24 13:18	1
Phenanthrene	0.0014	U	0.010	0.0014	mg/L		04/15/24 15:37	04/16/24 13:18	1
Dibenz(a,h)anthracene	0.00025	U	0.0050	0.00025	mg/L		04/15/24 15:37	04/16/24 13:18	1
Indeno[1,2,3-cd]pyrene	0.0023	U	0.010	0.0023	mg/L		04/15/24 15:37	04/16/24 13:18	1
Pyrene	0.00018	U	0.0050	0.00018	mg/L		04/15/24 15:37	04/16/24 13:18	1
2,4-Dinitrophenol	0.0016	U	0.010	0.0016	mg/L		04/15/24 15:37	04/16/24 13:18	1
2,6-Dinitrotoluene	0.0016	U	0.0050	0.0016	mg/L		04/15/24 15:37	04/16/24 13:18	1
N-Nitrosodi-n-butylamine	0.0015	U	0.010	0.0015	mg/L		04/15/24 15:37	04/16/24 13:18	1
N-Nitrosodiethylamine	0.0018	U	0.010	0.0018	mg/L		04/15/24 15:37	04/16/24 13:18	1
Nonylphenol	0.010	U	0.010	0.010	mg/L		04/15/24 15:37	04/16/24 13:18	1
Pentachlorobenzene	0.0011	U	0.010	0.0011	mg/L		04/15/24 15:37	04/16/24 13:18	1
Pyridine	0.0026	U	0.010	0.0026	mg/L		04/15/24 15:37	04/16/24 13:18	1
Total Cresols	0.0026	U	0.010	0.0026	mg/L		04/15/24 15:37	04/16/24 13:18	1

MB MB

Surrogate	%Recovery	Qualifier Limit	5	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	101	31 - 1	32	04/15/24 15:37	04/16/24 13:18	1
2-Fluorobiphenyl (Surr)	95	29 - 1	12	04/15/24 15:37	04/16/24 13:18	1
2-Fluorophenol (Surr)	45	28 - 1	14	04/15/24 15:37	04/16/24 13:18	1
Nitrobenzene-d5 (Surr)	101	15 _ 3	14	04/15/24 15:37	04/16/24 13:18	1
p-Terphenyl-d14 (Surr)	103	20 - 1	41	04/15/24 15:37	04/16/24 13:18	1
Phenol-d5 (Surr)	30	8 - 4	24	04/15/24 15:37	04/16/24 13:18	1

Lab Sample ID: LCS 860-154889/2-A

Matrix: Water

Analysis Batch: 155030

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 154889

Spike LCS LCS %Rec Analyte Added Result Qualifier Limits Unit D %Rec 1,2,4,5-Tetrachlorobenzene 0.0400 0.0326 82 41 - 125 mg/L 0.0400 0.0295 74 1,2-Dichlorobenzene 60 - 140 mg/L 1,3-Dichlorobenzene 0.0400 0.0286 mg/L 72 60 - 140 1,4-Dichlorobenzene 0.0400 0.0290 mg/L 72 19 - 121 Acenaphthene 0.0400 0.0353 mg/L 88 60 - 132Benzidine 0.0400 0.00511 J*-13 25 - 125 mg/L 1,2,4-Trichlorobenzene 0.0400 0.0306 mg/L 77 57 - 130 Hexachlorobenzene 0.0400 0.0367 mg/L 92 8 - 142 0.0400 0.0254 64 55 - 120 Hexachloroethane mg/L 2,4,5-Trichlorophenol 0.0400 0.0354 89 mg/L 35 - 111 Bis(2-chloroethyl)ether 0.0400 0.0363 91 43 - 126 mg/L 2-Chloronaphthalene 0.0400 0.0342 85 65 - 120 mg/L 2,4,6-Trichlorophenol 0.0400 0.0362 90 52 - 129 mg/L p-Chloro-m-cresol 0.0400 0.0331 mg/L 83 41 - 128 0.0400 2-Chlorophenol 0.0298 mg/L 75 36 - 120

Page 20 of 65

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 860-154889/2-A

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 154889

Analysis Batch: 155030					Prep Batch: 15488
•	Spike	LCS	LCS		%Rec
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
3,3'-Dichlorobenzidine	0.0400	0.0280	mg/L	70	18 - 213
2,4-Dichlorophenol	0.0400	0.0359	mg/L	90	53 - 122
2,4-Dimethylphenol	0.0400	0.0418	mg/L	105	42 - 120
2,4-Dinitrotoluene	0.0400	0.0378	mg/L	94	48 - 127
1,2-Diphenylhydrazine	0.0400	0.0350	mg/L	87	28 - 136
Fluoranthene	0.0400	0.0396	mg/L	99	43 - 121
4-Bromophenyl phenyl ether	0.0400	0.0370	mg/L	92	65 - 120
4-Chlorophenyl phenyl ether	0.0400	0.0371	mg/L	93	38 - 145
o-Cresol	0.0400	0.0256	mg/L	64	14 - 176
Bis(2-chloroethoxy)methane	0.0400	0.0328	mg/L	82	49 - 165
m & p - Cresol	0.0400	0.0246	mg/L	62	14 - 176
bis (2-chloroisopropyl) ether	0.0400	0.0327	mg/L	82	63 - 139
Hexachlorobutadiene	0.0400	0.0289	mg/L	72	38 - 120
Hexachlorocyclopentadiene	0.0400	0.0274	mg/L	68	41 - 125
Isophorone	0.0400	0.0336	mg/L	84	47 - 180
Naphthalene	0.0400	0.0335	mg/L	84	36 - 120
Nitrobenzene	0.0400	0.0342	mg/L	85	54 - 158
4-Nitrophenol	0.0400	0.0131	mg/L	33	13 - 129
2-Nitrophenol	0.0400	0.0347	mg/L	87	45 - 167
4,6-Dinitro-o-cresol	0.0400	0.0414	mg/L	104	53 - 130
N-Nitrosodimethylamine	0.0400	0.0192	mg/L	48	20 - 125
N-Nitrosodiphenylamine	0.0400	0.0362	mg/L	91	2 - 196
N-Nitrosodi-n-propylamine	0.0400	0.0325	mg/L	81	14 - 198
Pentachlorophenol	0.0400	0.0288	mg/L	72	38 - 152
Phenol	0.0400	0.0155	mg/L	39	17 - 120
Bis(2-ethylhexyl) phthalate	0.0400	0.0386	mg/L	97	29 - 137
Butyl benzyl phthalate	0.0400	0.0377	mg/L	94	12 - 140
Di-n-butyl phthalate	0.0400	0.0392	mg/L	98	8 - 120
Di-n-octyl phthalate	0.0400	0.0459	mg/L	115	19 - 132
Diethyl phthalate	0.0400	0.0362	mg/L	91	17 - 120
Dimethyl phthalate	0.0400	0.0350	mg/L	88	25 - 120
	0.0400	0.0353	_	88	42 - 133
Benzo[a]anthracene			mg/L		
Benzo[a]pyrene	0.0400	0.0407	mg/L	102	32 - 148
Benzo[b]fluoranthene	0.0400	0.0384	mg/L	96	42 - 140 25 - 146
Benzo[k]fluoranthene	0.0400	0.0383	mg/L	96	
Chrysene	0.0400	0.0339	mg/L	85	44 - 140
Acenaphthylene	0.0400	0.0336	mg/L	84	54 - 126
Anthracene	0.0400	0.0383	mg/L	96	43 - 120
Benzo[g,h,i]perylene	0.0400	0.0359	mg/L	90	13 - 195
Fluorene	0.0400	0.0374	mg/L	93	70 - 120
Phenanthrene	0.0400	0.0368	mg/L	92	65 - 120
Dibenz(a,h)anthracene	0.0400	0.0382	mg/L	95	16 - 200
Indeno[1,2,3-cd]pyrene	0.0400	0.0382	mg/L	95	13 - 151
Pyrene	0.0400	0.0373	mg/L	93	70 - 120
2,4-Dinitrophenol	0.0400	0.0260	mg/L	65	12 - 173
2,6-Dinitrotoluene	0.0400	0.0359	mg/L	90	68 - 137
N-Nitrosodi-n-butylamine	0.0400	0.0308	mg/L	77	33 - 141
N-Nitrosodiethylamine	0.0400	0.0409	mg/L	102	30 - 160
Pentachlorobenzene	0.0400	0.0342	mg/L	86	25 - 131

Eurofins Houston

3

5

6

0

10

12

14

15

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 860-154889/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Prep Batch: 154889** Analysis Batch: 155030

	Бріке	LUS	LUS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Pyridine	 0.0800	0.0230		mg/L		29	5 - 94	

	LCS	LUS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	102		31 - 132
2-Fluorobiphenyl (Surr)	86		29 - 112
2-Fluorophenol (Surr)	53		28 - 114
Nitrobenzene-d5 (Surr)	87		15 - 314
p-Terphenyl-d14 (Surr)	91		20 - 141
Phenol-d5 (Surr)	35		8 - 424

Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 860-154889/3-A

Matrix: Water							Prep T	ype: To	al/NA
Analysis Batch: 155030							Prep E	Batch: 1	54889
	Spike	LCSD LC	SD				%Rec		RPD
Analyte	Added	Result Qu	alifier l	Jnit	D	%Rec	Limits	RPD	Limit
1,2,4,5-Tetrachlorobenzene	0.0400	0.0368	r	ng/L		92	41 - 125	12	30
1,2-Dichlorobenzene	0.0400	0.0327	r	mg/L		82	60 - 140	10	30
1,3-Dichlorobenzene	0.0400	0.0313	r	mg/L		78	60 - 140	9	30
1,4-Dichlorobenzene	0.0400	0.0321	r	mg/L		80	19 - 121	10	30
Acenaphthene	0.0400	0.0398	r	mg/L		100	60 - 132	12	29
Benzidine	0.0400	0.0048 U*	- *1 r	mg/L		8	25 - 125	45	30
1,2,4-Trichlorobenzene	0.0400	0.0335	r	mg/L		84	57 - 130	9	30

1,3-Dichlorobenzene	0.0400	0.0313	mg/L	78	60 - 140	9	30
1,4-Dichlorobenzene	0.0400	0.0321	mg/L	80	19 - 121	10	30
Acenaphthene	0.0400	0.0398	mg/L	100	60 - 132	12	29
Benzidine	0.0400	0.0048 U *- *1	mg/L	8	25 - 125	45	30
1,2,4-Trichlorobenzene	0.0400	0.0335	mg/L	84	57 - 130	9	30
Hexachlorobenzene	0.0400	0.0406	mg/L	101	8 - 142	10	30
Hexachloroethane	0.0400	0.0289	mg/L	72	55 - 120	13	30
2,4,5-Trichlorophenol	0.0400	0.0391	mg/L	98	35 - 111	10	30
Bis(2-chloroethyl)ether	0.0400	0.0389	mg/L	97	43 - 126	7	30
2-Chloronaphthalene	0.0400	0.0385	mg/L	96	65 - 120	12	15
2,4,6-Trichlorophenol	0.0400	0.0409	mg/L	102	52 - 129	12	30
p-Chloro-m-cresol	0.0400	0.0368	mg/L	92	41 - 128	11	30
2-Chlorophenol	0.0400	0.0325	mg/L	81	36 - 120	9	30
3,3'-Dichlorobenzidine	0.0400	0.0297	mg/L	74	18 - 213	6	30
2,4-Dichlorophenol	0.0400	0.0397	mg/L	99	53 - 122	10	30
2,4-Dimethylphenol	0.0400	0.0480	mg/L	120	42 - 120	14	30
2,4-Dinitrotoluene	0.0400	0.0415	mg/L	104	48 - 127	9	25
1,2-Diphenylhydrazine	0.0400	0.0392	mg/L	98	28 - 136	11	30
Fluoranthene	0.0400	0.0424	mg/L	106	43 - 121	7	30
4-Bromophenyl phenyl ether	0.0400	0.0405	mg/L	101	65 - 120	9	26
4-Chlorophenyl phenyl ether	0.0400	0.0417	mg/L	104	38 - 145	12	30
o-Cresol	0.0400	0.0275	mg/L	69	14 - 176	7	30
Bis(2-chloroethoxy)methane	0.0400	0.0369	mg/L	92	49 - 165	12	30
m & p - Cresol	0.0400	0.0270	mg/L	67	14 - 176	9	30
bis (2-chloroisopropyl) ether	0.0400	0.0366	mg/L	92	63 - 139	11	30
Hexachlorobutadiene	0.0400	0.0332	mg/L	83	38 - 120	14	30
Hexachlorocyclopentadiene	0.0400	0.0353	mg/L	88	41 - 125	25	30
Isophorone	0.0400	0.0379	mg/L	95	47 - 180	12	30
Naphthalene	0.0400	0.0374	mg/L	94	36 - 120	11	30
Nitrobenzene	0.0400	0.0379	mg/L	95	54 - 158	10	30
4-Nitrophenol	0.0400	0.0133	mg/L	33	13 - 129	2	30

Eurofins Houston

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 860-154889/3-A

Matrix: Water

Analysis Batch: 155030

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 154889

	Spike	LCSD LCS	SD			%Rec		RPD
Analyte	Added	Result Qua	alifier Unit	D	%Rec	Limits	RPD	Limit
2-Nitrophenol	0.0400	0.0395	mg/L		99	45 - 167	13	30
4,6-Dinitro-o-cresol	0.0400	0.0458	mg/L		114	53 - 130	10	30
N-Nitrosodimethylamine	0.0400	0.0192	mg/L		48	20 - 125	0	30
N-Nitrosodiphenylamine	0.0400	0.0390	mg/L		98	2 - 196	7	30
N-Nitrosodi-n-propylamine	0.0400	0.0367	mg/L		92	14 - 198	12	30
Pentachlorophenol	0.0400	0.0304	mg/L		76	38 - 152	5	30
Phenol	0.0400	0.0162	mg/L		40	17 - 120	4	30
Bis(2-ethylhexyl) phthalate	0.0400	0.0428	mg/L		107	29 - 137	10	30
Butyl benzyl phthalate	0.0400	0.0419	mg/L		105	12 - 140	11	30
Di-n-butyl phthalate	0.0400	0.0431	mg/L		108	8 - 120	10	28
Di-n-octyl phthalate	0.0400	0.0495	mg/L		124	19 - 132	8	30
Diethyl phthalate	0.0400	0.0395	mg/L		99	17 - 120	9	30
Dimethyl phthalate	0.0400	0.0387	mg/L		97	25 - 120	10	30
Benzo[a]anthracene	0.0400	0.0382	mg/L		96	42 - 133	8	30
Benzo[a]pyrene	0.0400	0.0442	mg/L		110	32 - 148	8	30
Benzo[b]fluoranthene	0.0400	0.0421	mg/L		105	42 - 140	9	30
Benzo[k]fluoranthene	0.0400	0.0406	mg/L		101	25 - 146	6	30
Chrysene	0.0400	0.0371	mg/L		93	44 - 140	9	30
Acenaphthylene	0.0400	0.0377	mg/L		94	54 - 126	11	30
Anthracene	0.0400	0.0414	mg/L		104	43 - 120	8	30
Benzo[g,h,i]perylene	0.0400	0.0396	mg/L		99	13 - 195	10	30
Fluorene	0.0400	0.0423	mg/L		106	70 - 120	12	23
Phenanthrene	0.0400	0.0399	mg/L		100	65 - 120	8	30
Dibenz(a,h)anthracene	0.0400	0.0423	mg/L		106	16 - 200	10	30
Indeno[1,2,3-cd]pyrene	0.0400	0.0419	mg/L		105	13 - 151	9	30
Pyrene	0.0400	0.0410	mg/L		103	70 - 120	10	30
2,4-Dinitrophenol	0.0400	0.0288	mg/L		72	12 - 173	10	30
2,6-Dinitrotoluene	0.0400	0.0396	mg/L		99	68 - 137	10	29
N-Nitrosodi-n-butylamine	0.0400	0.0342	mg/L		85	33 - 141	10	30
N-Nitrosodiethylamine	0.0400	0.0445	mg/L		111	30 - 160	8	30
Pentachlorobenzene	0.0400	0.0383	mg/L		96	25 - 131	11	30
Pyridine	0.0800	0.0126 *1	mg/L		16	5 - 94	58	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	108		31 _ 132
2-Fluorobiphenyl (Surr)	97		29 - 112
2-Fluorophenol (Surr)	54		28 - 114
Nitrobenzene-d5 (Surr)	93		15 - 314
p-Terphenyl-d14 (Surr)	98		20 - 141
Phenol-d5 (Surr)	36		8 - 424

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Lab Sample ID: MB 860-154669/1-A

Matrix: Water

Analysis Batch: 154783

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 154669

MB MB Result Qualifier Analyte RLMDL Unit Prepared Analyzed Dil Fac PCB-1016 0.000013 U 0.00010 0.000013 mg/L 04/13/24 06:30 04/15/24 09:59

Eurofins Houston

4/25/2024

Page 23 of 65

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC) (Continued)

87

128

Lab Sample ID: MB 860-154669/1-A Client Sample ID: Method Blank **Matrix: Water**

Prep Type: Total/NA Analysis Batch: 154783 **Prep Batch: 154669**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1221	0.000013	U	0.00010	0.000013	mg/L		04/13/24 06:30	04/15/24 09:59	1
PCB-1232	0.000013	U	0.00010	0.000013	mg/L		04/13/24 06:30	04/15/24 09:59	1
PCB-1242	0.000013	U	0.00010	0.000013	mg/L		04/13/24 06:30	04/15/24 09:59	1
PCB-1248	0.000013	U	0.00010	0.000013	mg/L		04/13/24 06:30	04/15/24 09:59	1
PCB-1254	0.0000078	U	0.00010	0.0000078	mg/L		04/13/24 06:30	04/15/24 09:59	1
PCB-1260	0.0000078	U	0.00010	0.0000078	mg/L		04/13/24 06:30	04/15/24 09:59	1
Polychlorinated biphenyls, Total	0.00010	U	0.00010	0.00010	mg/L		04/13/24 06:30	04/15/24 09:59	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Lab Sample ID: LCS 860-154669/4-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Analysis Batch: 154783 Prep Batch: 154669 Spike LCS LCS %Rec

18 - 126

15 - 136

Analyte Added Result Qualifier Unit %Rec Limits D PCB-1016 0.00100 95 61 - 103 0.000951 mg/L PCB-1260 0.00100 0.00112 mg/L 112 37 - 130

LCS LCS %Recovery Qualifier Surrogate Limits 18 - 126 Tetrachloro-m-xylene (Surr) 95 DCB Decachlorobiphenyl (Surr) 136 15 - 136

Lab Sample ID: LCSD 860-154669/5-A Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Tetrachloro-m-xylene (Surr)

DCB Decachlorobiphenyl (Surr)

Analysis Batch: 154783						Prep Batch: 1546				
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
PCB-1016	0.00100	0.000849		mg/L		85	61 - 103	11	24	
PCB-1260	0.00100	0.00110		mg/L		110	37 - 130	1	28	

LCSD LCSD Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene (Surr) 83 18 - 126 DCB Decachlorobiphenyl (Surr) 132 15 - 136

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 860-153949/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 153949

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.071	U	0.50	0.071	mg/L			04/09/24 21:36	1
Chloride	0.25	U	0.50	0.25	mg/L			04/09/24 21:36	1
Fluoride	0.10	U	0.50	0.10	mg/L			04/09/24 21:36	1
Sulfate	0.20	U	0.50	0.20	mg/L			04/09/24 21:36	1

Eurofins Houston

Page 24 of 65

04/13/24 06:30

04/13/24 06:30

04/15/24 09:59

04/15/24 09:59

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 860-153949/4

Analysis Batch: 153949

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits **Bromide** 10.0 10.6 mg/L 106 90 - 110 Chloride 10.0 9.51 mg/L 95 90 - 110 Fluoride 10.0 10.9 mg/L 90 - 110 109 Sulfate 10.4 90 - 110 10.0 mg/L 104

Lab Sample ID: LLCS 860-153949/7 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 153949

	Spike	LLCS	LLCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromide	0.500	0.544		mg/L		109	50 - 150	
Chloride	0.500	0.616		mg/L		123	50 - 150	
Fluoride	0.500	0.458	J	mg/L		92	50 - 150	
Sulfate	0.500	0.366	J	mg/L		73	50 - 150	

Lab Sample ID: MB 860-153950/3 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 153950

Prep Type: Total/NA MB MB

Dil Fac Analyte Result Qualifier RLMDL Unit Analyzed D Prepared Nitrate as N 0.039 U 0.10 0.039 04/09/24 21:36 Nitrite as N 0.029 U 0.10 04/09/24 21:36 0.029 mg/L Nitrate Nitrite as N 0.039 U 0.10 0.039 mg/L 04/09/24 21:36

Lab Sample ID: LCS 860-153950/4 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 153950

	Spike	LCS	LCS			%Rec		
Analyte	Added	Result	Qualifier U	nit D	%Rec	Limits		
Nitrate as N	10.0	10.6	m	g/L	106	80 - 120		
Nitrite as N	10.0	10.6	m	g/L	106	80 - 120		

Lab Sample ID: LCSD 860-153950/5 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 153950

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Nitrate as N	10.0	10.7		mg/L		107	80 - 120	1	20	
Nitrite as N	10.0	10.5		mg/L		105	80 - 120	1	20	

Lab Sample ID: MB 860-154575/3 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 154575

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.071	U	0.50	0.071	mg/L			04/12/24 15:31	1
Chloride	0.25	U	0.50	0.25	mg/L			04/12/24 15:31	1
Fluoride	0.10	U	0.50	0.10	mg/L			04/12/24 15:31	1
Sulfate	0.20	U	0.50	0.20	mg/L			04/12/24 15:31	1

Eurofins Houston

Prep Type: Total/NA

Page 25 of 65

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 860-154575/4

Matrix: Water

Analysis Batch: 154575

7 manyolo Batolii 10 1010								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromide	10.0	10.7		mg/L		107	90 - 110	 _
Chloride	10.0	9.53		mg/L		95	90 - 110	
Fluoride	10.0	10.9		mg/L		109	90 - 110	

Lab Sample ID: LCSD 860-154575/5

Sulfate

Analysis Batch: 154575

Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

10.0

mg/L

	Бріке	FC2D	LC2D				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromide	10.0	10.7		mg/L		107	90 - 110	0	20
Chloride	10.0	9.57		mg/L		96	90 - 110	0	20
Fluoride	10.0	10.9		mg/L		109	90 - 110	0	20
Sulfate	10.0	10.0		mg/L		100	90 - 110	0	20

Lab Sample ID: LLCS 860-154575/7

Matrix: Water

Analysis Batch: 154575

	Spike	LLCS	LLCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromide	0.500	0.537		mg/L		107	50 - 150	
Chloride	0.500	0.605		mg/L		121	50 - 150	
Fluoride	0.500	0.463	J	mg/L		93	50 - 150	
Sulfate	0.500	0.330	J	mg/L		66	50 - 150	

Lab Sample ID: MB 860-154576/3

Matrix: Water

Analysis Batch: 154576

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.039	U	0.10	0.039	mg/L			04/12/24 15:31	1
Nitrite as N	0.029	U	0.10	0.029	mg/L			04/12/24 15:31	1
Nitrate Nitrite as N	0.039	U	0.10	0.039	mg/L			04/12/24 15:31	1

Lab Sample ID: LCS 860-154576/4

Matrix: Water

Analysis Batch: 154576								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate as N	10.0	10.6		mg/L		106	80 - 120	
Nitrite as N	10.0	10.5		ma/L		105	80 - 120	

Lab Sample ID: LCSD 860-154576/5

Matrix: Water

Analysis Batch: 154576

7									
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate as N	10.0	10.6		mg/L		106	80 - 120	0	20
Nitrite as N	10.0	10.5		mg/L		105	80 - 120	0	20

Eurofins Houston

Page 26 of 65

Client Sample ID: Lab Control Sample

90 - 110

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 860-155395/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analyte Bromide Chloride Fluoride

Sulfate

Analysis Batch: 155395

МВ	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0.071	U	0.50	0.071	mg/L			04/17/24 23:46	1
0.25	U	0.50	0.25	mg/L			04/17/24 23:46	1
0.10	U	0.50	0.10	mg/L			04/17/24 23:46	1
0.20	U	0.50	0.20	mg/L			04/17/24 23:46	1

Lab Sample ID: MB 860-155395/62 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 155395

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.071	U	0.50	0.071	mg/L			04/18/24 09:26	1
Chloride	0.25	U	0.50	0.25	mg/L			04/18/24 09:26	1
Fluoride	0.10	U	0.50	0.10	mg/L			04/18/24 09:26	1
Sulfate	0.20	U	0.50	0.20	ma/l			04/18/24 09:26	1

Lab Sample ID: LCS 860-155395/63 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 155395

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromide	10.0	10.0	-	mg/L		100	90 - 110	
Chloride	10.0	9.07		mg/L		91	90 - 110	
Fluoride	10.0	10.4		mg/L		104	90 - 110	
Sulfate	10.0	9.95		mg/L		99	90 - 110	

Lab Sample ID: LCSD 860-155395/64 **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 155395

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromide	10.0	10.0		mg/L		100	90 - 110	0	20
Chloride	10.0	9.05		mg/L		91	90 - 110	0	20
Fluoride	10.0	10.4		mg/L		104	90 - 110	0	20
Sulfate	10.0	9.91		ma/L		99	90 - 110	0	20

Lab Sample ID: LLCS 860-155395/7 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 155395

-	Spike	LLCS	LLCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromide	0.500	0.545		mg/L		109	50 - 150	
Chloride	0.500	0.617		mg/L		123	50 - 150	
Fluoride	0.500	0.469	J	mg/L		94	50 - 150	
Sulfate	0.500	0.371	J	mg/L		74	50 - 150	

Eurofins Houston

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 1631E - Mercury, Low Level (CVAFS)

Lab Sample ID: MB 400-668082/3-A

Matrix: Water Analysis Batch: 668339

Prep Type: Total/NA Prep Batch: 668082 MB MB Dil Fac Result Qualifier RLMDL Unit Prepared Analyzed 0.20 U 0.50 0.20 ng/L 04/14/24 16:00 04/16/24 10:21

Lab Sample ID: LCS 400-668082/4-A

Matrix: Water

Analyte

Mercury

Analysis Batch: 668339

	Spike	LCS	LCS			%Rec
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits
Mercury	5.00	4.72	ng/L		94	79 - 121

Lab Sample ID: LCSD 400-668082/5-A

Matrix: Water							Prep '	Type: To	tal/NA	
Analysis Batch: 668339					Prep Batch: 668082					
	S	oike LCSI	LCSD				%Rec		RPD	
Analyte	Ac	ded Resul	t Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Mercury		5.00 4.5	7	ng/L		91	79 - 121	3	20	

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 860-154494/1-	·A	CII							Client Sample ID: Method Blank				
Matrix: Water							Prep T	ype: Total Reco	verable				
Analysis Batch: 154594								Prep Batch:	h: 154494				
	MB	MB											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac				
Aluminum	0.0030	U	0.020	0.0030	mg/L		04/12/24 11:00	04/12/24 18:38	1				
Antimony	0.0011	U	0.0020	0.0011	mg/L		04/12/24 11:00	04/12/24 18:38	1				
Arsenic	0.00034	U	0.0040	0.00034	mg/L		04/12/24 11:00	04/12/24 18:38	1				
Parium	0.00020		0.0040	0.00020	ma/l		04/12/24 11:00	04/12/24 18:38	1				

Aluminum	0.0030	U	0.020	0.0030	mg/L	04/12/24 11:00	04/12/24 18:38	1
Antimony	0.0011	U	0.0020	0.0011	mg/L	04/12/24 11:00	04/12/24 18:38	1
Arsenic	0.00034	U	0.0040	0.00034	mg/L	04/12/24 11:00	04/12/24 18:38	1
Barium	0.00029	U	0.0040	0.00029	mg/L	04/12/24 11:00	04/12/24 18:38	1
Beryllium	0.00015	U	0.0020	0.00015	mg/L	04/12/24 11:00	04/12/24 18:38	1
Boron	0.00305	J	0.010	0.0025	mg/L	04/12/24 11:00	04/12/24 18:38	1
Cadmium	0.00026	U	0.0020	0.00026	mg/L	04/12/24 11:00	04/12/24 18:38	1
Chromium	0.00104	J	0.0040	0.00033	mg/L	04/12/24 11:00	04/12/24 18:38	1
Cobalt	0.00026	U	0.0020	0.00026	mg/L	04/12/24 11:00	04/12/24 18:38	1
Copper	0.00069	U	0.0040	0.00069	mg/L	04/12/24 11:00	04/12/24 18:38	1
Iron	0.0020	U	0.020	0.0020	mg/L	04/12/24 11:00	04/12/24 18:38	1
Lead	0.00014	U	0.0020	0.00014	mg/L	04/12/24 11:00	04/12/24 18:38	1
Magnesium	0.0139	J	0.10	0.0092	mg/L	04/12/24 11:00	04/12/24 18:38	1
Manganese	0.000303	J	0.0020	0.00016	mg/L	04/12/24 11:00	04/12/24 18:38	1
Molybdenum	0.00016	U	0.0020	0.00016	mg/L	04/12/24 11:00	04/12/24 18:38	1
Nickel	0.000709	J	0.0020	0.00049	mg/L	04/12/24 11:00	04/12/24 18:38	1
Selenium	0.00069	U	0.0020	0.00069	mg/L	04/12/24 11:00	04/12/24 18:38	1
Silver	0.000216	J	0.0020	0.00012	mg/L	04/12/24 11:00	04/12/24 18:38	1
Thallium	0.00022	U	0.0020	0.00022	mg/L	04/12/24 11:00	04/12/24 18:38	1
Tin	0.00033	U	0.0020	0.00033	mg/L	04/12/24 11:00	04/12/24 18:38	1
Titanium	0.00042	U	0.0040	0.00042	mg/L	04/12/24 11:00	04/12/24 18:38	1
Zinc	0.00089	U	0.0040	0.00089	mg/L	04/12/24 11:00	04/12/24 18:38	1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 668082

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 860-154494/2-A Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 154594 **Prep Batch: 154494**

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	0.500	0.496		mg/L		99	85 - 115	
Antimony	0.100	0.0924		mg/L		92	85 - 115	
Arsenic	0.100	0.0993		mg/L		99	85 - 115	
Barium	0.100	0.0975		mg/L		98	85 - 115	
Beryllium	0.100	0.0939		mg/L		94	85 - 115	
Boron	0.100	0.0982		mg/L		98	85 - 115	
Cadmium	0.100	0.0966		mg/L		97	85 - 115	
Chromium	0.100	0.103		mg/L		103	85 - 115	
Cobalt	0.100	0.100		mg/L		100	85 - 115	
Copper	0.100	0.0962		mg/L		96	85 - 115	
Iron	0.500	0.493		mg/L		99	85 - 115	
Lead	0.100	0.0975		mg/L		97	85 - 115	
Magnesium	2.50	2.54		mg/L		102	85 - 115	
Manganese	0.100	0.102		mg/L		102	85 - 115	
Molybdenum	0.100	0.0962		mg/L		96	85 - 115	
Nickel	0.100	0.0990		mg/L		99	85 - 115	
Selenium	0.100	0.0950		mg/L		95	85 - 115	
Silver	0.0500	0.0474		mg/L		95	85 - 115	
Thallium	0.100	0.0991		mg/L		99	85 - 115	
Tin	0.100	0.0959		mg/L		96	85 - 115	
Titanium	0.100	0.0983		mg/L		98	85 - 115	
Zinc	0.100	0.0971		mg/L		97	85 - 115	

Matrix: Water

Client Sample ID: Lab Control Sample Dup **Prep Type: Total Recoverable**

nalysis Batch: 154594		Prep						Batch: 154494		
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Aluminum	0.500	0.496		mg/L		99	85 - 115	0	20	
Antimony	0.100	0.0942		mg/L		94	85 - 115	2	20	
Arsenic	0.100	0.0987		mg/L		99	85 - 115	1	20	
Barium	0.100	0.0975		mg/L		97	85 - 115	0	20	
Beryllium	0.100	0.0939		mg/L		94	85 - 115	0	20	
Boron	0.100	0.0986		mg/L		99	85 - 115	0	20	
Cadmium	0.100	0.0959		mg/L		96	85 - 115	1	20	
Chromium	0.100	0.103		mg/L		103	85 - 115	0	20	
Cobalt	0.100	0.0996		mg/L		100	85 - 115	1	20	
Copper	0.100	0.0961		mg/L		96	85 - 115	0	20	
Iron	0.500	0.488		mg/L		98	85 - 115	1	20	
Lead	0.100	0.0973		mg/L		97	85 - 115	0	20	
Magnesium	2.50	2.53		mg/L		101	85 - 115	1	20	
Manganese	0.100	0.102		mg/L		102	85 - 115	0	20	
Molybdenum	0.100	0.0960		mg/L		96	85 - 115	0	20	
Nickel	0.100	0.0981		mg/L		98	85 - 115	1	20	
Selenium	0.100	0.0982		mg/L		98	85 - 115	3	20	
Silver	0.0500	0.0471		mg/L		94	85 - 115	1	20	
Thallium	0.100	0.0984		mg/L		98	85 - 115	1	20	
Tin	0.100	0.0953		mg/L		95	85 - 115	1	20	
Titanium	0.100	0.0946		mg/L		95	85 - 115	4	20	

Eurofins Houston

Page 29 of 65

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCSD 860-154494/3-A **Matrix: Water**

Analysis Batch: 154594

Client Sample ID: Lab Control Sample Dup **Prep Type: Total Recoverable**

Prep Batch: 154494

Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit D Zinc 0.100 0.0965 97 85 - 115 mg/L 20

Method: 1664B - HEM and SGT-HEM

Lab Sample ID: MB 860-154810/1 Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA

Analysis Batch: 154810 MB MB

Result Qualifier RL MDL Unit Dil Fac Analyte D Prepared Analyzed HEM 1.6 5.0 04/15/24 10:04 U 1.6 mg/L

Lab Sample ID: LCS 860-154810/2 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154810

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits HEM 40.0 38.5 mg/L 78 - 114

Lab Sample ID: LCSD 860-154810/3 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 154810

Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier RPD Unit D %Rec Limits Limit HEM 40.0 41.3 mg/L 103 78 - 114

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 860-154980/139 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154980

мв мв MDL Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Ammonia 0.051 0.10 0.051 mg/L 04/15/24 18:54

Lab Sample ID: MB 860-154980/16 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154980

мв мв Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.051 U 0.10 Ammonia 0.051 mg/L 04/15/24 12:04

Lab Sample ID: LCS 860-154980/17 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 154980

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits 1.00 91 Ammonia 0.906 90 - 110 mg/L

Eurofins Houston

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: LCSD 860-154980/18 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154980

	Spike	LCSD	LCSD			%Rec		RPD
Analyte	Added	Result	Qualifier Ur	nit D	%Rec	Limits	RPD	Limit
Ammonia	1.00	0.925	m	g/L	93	90 - 110	2	20

Lab Sample ID: LLCS 860-154980/142 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154980

_	Spike	LLCS	LLCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Ammonia	0.100	0.103	-	mg/L		103	50 - 150

Method: 351.2 - Nitrogen, Total Kjeldahl

Lab Sample ID: MB 860-154420/4-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154826

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrogen, Kjeldahl	0.089	U	0.20	0.089	mg/L		04/11/24 22:39	04/12/24 18:30	1

Lab Sample ID: MB 860-154420/4-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 155063

	IND IND					
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Nitrogen, Kjeldahl	0.089 U	0.20	0.089 mg/L	04/11/24 22:39	04/16/24 11:00	1

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 860-154420/6-A **Matrix: Water** Prep Type: Total/NA **Prep Batch: 154420**

Analysis Batch: 154826

	Spike	LCS LCS	•			%Rec	
Analyte	Added	Result Qua	alifier Unit	D	%Rec	Limits	
Nitrogen, Kjeldahl	2.00	2.02	mg/L		101	90 - 110	

Lab Sample ID: LCS 860-154420/6-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 155063

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrogen, Kieldahl	2.00	1.93		ma/L		96	90 - 110	_

Lab Sample ID: LCSD 860-154420/7-A Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 154826 **Prep Batch: 154420** Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Nitrogen, Kjeldahl 2.00 2.00 mg/L 100 90 - 110

Prep Batch: 154420

Prep Type: Total/NA Prep Batch: 154420

Prep Batch: 154420

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 351.2 - Nitrogen, Total Kjeldahl (Continued)

Lab Sample ID: LCSD 860-154420/7-A	Client Sample ID: Lab Control Sample Dup
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 155063

Prep Type: Total/NA Prep Batch: 154420 Spike LCSD LCSD babbA Result Qualifier %Rec Limits RPD Limit Unit

0.234

mg/L

117

50 - 150

Analyte Nitrogen, Kjeldahl 2.00 2.03 mg/L 102 90 - 110 20

Lab Sample ID: LLCS 860-154420/5-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Analysis Batch: 154826 Prep Batch: 154420 Spike LLCS LLCS %Rec Result Qualifier Analyte Added Unit D %Rec Limits

0.200

Lab Sample ID: LLCS 860-154420/5-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 155063 **Prep Batch: 154420** LLCS LLCS Spike %Rec

Added Result Qualifier Unit %Rec Limits 0.200 0.181 J Nitrogen, Kjeldahl mg/L 50 - 150

Method: 365.1 - Phosphorus, Total

Lab Sample ID: MB 860-154825/7 Client Sample ID: Method Blank

Matrix: Water

Nitrogen, Kjeldahl

Analysis Batch: 154825

мв мв Dil Fac Analyte Result Qualifier RL MDL Unit Prepared Analyzed Phosphorus Total 0.014 U 0.020 04/12/24 21:05 0.014 mg/L

Lab Sample ID: LCS 860-154825/8 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 154825

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit Limits Phosphorus Total 0.250 0.265 106 90 - 110 mg/L

Lab Sample ID: LCSD 860-154825/9 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154825

LCSD LCSD Spike %Rec RPD Added Result Qualifier %Rec RPD Limit Analyte Unit D Limits 0.250 20 Phosphorus Total 0.265 mg/L 106 90 - 110

Method: 4500 SO3 B-2011 - Sulfite

Lab Sample ID: MB 410-498478/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 498478

Alialysis Dalcii. 430470									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfite	1.5	U	5.0	1.5	mg/L			04/25/24 09:40	1

Eurofins Houston

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: 4500 SO3 B-2011 - Sulfite (Continued)

Lab Sample ID: LCS 410-498478/2

Analysis Batch: 498478

LCS LCS %Rec Spike Analyte babbA Result Qualifier %Rec Limits Unit Sulfite 49.9 45.5 mg/L 91 90 - 110

Lab Sample ID: LCSD 410-498478/3

Matrix: Water

Matrix: Water

Analysis Batch: 498478

Spike LCSD LCSD %Rec RPD Limit Analyte Added Result Qualifier Unit D %Rec Limits RPD Sulfite 49.9 45.0 mg/L 90 90 - 110

Method: 7196A - Chromium, Hexavalent

Lab Sample ID: MB 860-153952/3

Matrix: Water

Analysis Batch: 153952

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Cr (VI) 0.0034 U 0.010 0.0034 mg/L 04/09/24 13:02

Lab Sample ID: LCS 860-153952/4

Matrix: Water

Analysis Batch: 153952

Spike LCS LCS %Rec Added Qualifier Unit %Rec Limits Result Cr (VI) 0.200 0.189 85 - 115 mg/L

Lab Sample ID: LCSD 860-153952/5

Matrix: Water

Analysis Batch: 153952

Spike LCSD LCSD %Rec RPD Added Qualifier Analyte Result Unit %Rec Limits Limit Cr (VI) 0.200 0.189 85 - 115 mg/L 20

Method: 8000 - COD

Lab Sample ID: MB 860-155176/3

Matrix: Water

Analysis Batch: 155176

MR MR

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chemical Oxygen Demand 3.4 Ū 20 3.4 mg/L 04/16/24 18:03

Lab Sample ID: LCS 860-155176/4

Matrix: Water

Analysis Batch: 155176

Spike LCS LCS %Rec Added Result Qualifier Limits Unit %Rec Chemical Oxygen Demand 100 98.0 98 ma/L 90 - 110

Eurofins Houston

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: OIA-1677 - Cyanide, Available (Flow Injection)

Lab Sample ID: MB 410-494838/18 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 494838

мв мв

Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Cyanide, Available 0.0050 U 0.0060 0.0050 mg/L 04/16/24 10:06

Lab Sample ID: LCS 410-494838/16 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 494838

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Cyanide, Available 0.0500 0.0473 mg/L 95 82 - 132

Lab Sample ID: LCSD 410-494838/17 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 494838

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit 0.0500 0.0470 mg/L Cyanide, Available 82 - 132 11

Method: SM 2120B - Color, Colorimetric

Lab Sample ID: MB 860-154628/3 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 154628

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Color, Apparent	5.0	U	5.0	5.0	Color Units			04/10/24 16:00	1
Color, True	5.0	U	5.0	5.0	Color Units			04/10/24 16:00	1
pH	na		0.10	0.10	S.U.			04/10/24 16:00	1

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 860-155576/17 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 155576

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	4.0	U	4.0	4.0	mg/L			04/16/24 23:20	1
Bicarbonate Alkalinity as CaCO3	4.0	U	4.0	4.0	mg/L			04/16/24 23:20	1
Carbonate Alkalinity as CaCO3	4.0	U	4.0	4.0	mg/L			04/16/24 23:20	1
Hydroxide Alkalinity	4.0	U	4.0	4.0	mg/L			04/16/24 23:20	1
Phenolphthalein Alkalinity	4.0	U	4.0	4.0	mg/L			04/16/24 23:20	1

Lab Sample ID: LCS 860-155576/18 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 155576

Analysis batch. 199970								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity	250	248		mg/L		99	85 - 115	

Eurofins Houston

Prep Type: Total/NA

Prep Type: Total/NA

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: SM 2320B - Alkalinity (Continued)

Lab Sample ID: LCSD 860-155576/19 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 155576

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier %Rec Limits RPD Limit Unit Alkalinity 250 241 mg/L 96 85 - 115 20

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 860-155184/1 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 155184

MB MB

Result Qualifier RL MDL Unit Dil Fac Prepared Analyzed 5.0 5.0 U 04/16/24 18:30 **Total Dissolved Solids** 5.0 mg/L

Lab Sample ID: LCS 860-155184/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 155184

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Total Dissolved Solids 1000 988 mg/L 80 - 120

Lab Sample ID: LCSD 860-155184/3 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 155184

Spike LCSD LCSD %Rec RPD Analyte Added Qualifier Unit %Rec RPD Limit Result Total Dissolved Solids 1000 988 mg/L 80 - 120

Lab Sample ID: LLCS 860-155184/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 155184

LLCS LLCS %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 5.00 6.50 130 mg/L 50 - 150

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 860-154860/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 154860

MR MR Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Total Suspended Solids 4.0 4.0 4.0 mg/L 04/15/24 13:51

Lab Sample ID: LCS 860-154860/2 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 154860

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits	7 						
Analyte Added Result Qualifier Unit D %Rec Limits		Spike	LCS LCS				%Rec
	Analyte	Added	Result Qualifi	er Unit	D	%Rec	Limits

Eurofins Houston

Prep Type: Total/NA

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: SM 2540D - Solids, Total Suspended (TSS) (Continued)

Lab Sample ID: LCSD 860-154860/3 Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 154860

Spike LCSD LCSD RPD %Rec Analyte Added Result Qualifier %Rec Limits RPD Limit Unit Total Suspended Solids 100 112 mg/L 112 80 - 120 10 10

Method: SM 4500 CI G - Chlorine, Residual

Lab Sample ID: MB 860-154593/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154593

MB MB Result Qualifier RL MDL Unit Dil Fac D Prepared Analyzed 0.050 0.050 U 04/12/24 16:27 Chlorine, Total Residual 0.050 mg/L

Lab Sample ID: LCS 860-154593/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154593

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Chlorine, Total Residual 0.250 0.238 mg/L 95 85 - 115

Lab Sample ID: LCSD 860-154593/5

Matrix: Water

Analysis Batch: 154593

Spike LCSD LCSD %Rec RPD Analyte Added Qualifier Unit %Rec Limits **RPD** Limit Result 0.250 0.238 Chlorine, Total Residual mg/L 85 - 115 20

Method: SM 4500 S2 D - Sulfide, Total

Lab Sample ID: MB 860-155125/3 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 155125

мв мв

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Sulfide 0.040 U 0.10 0.040 mg/L 04/16/24 15:46

Lab Sample ID: LCS 860-155125/4

Matrix: Water

Analysis Batch: 155125

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit %Rec Limits Sulfide 1.00 1.06 106 90 - 110 mg/L

Lab Sample ID: LCSD 860-155125/5

Matrix: Water

Analysis Batch: 155125

Analysis Batch. 100120									
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfide	1.00	1.06		mg/L		106	90 - 110	0	20

Eurofins Houston

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: SCB 860-154902/2 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 154902

SCB SCB Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Biochemical Oxygen Demand 0.999 0.0000020 0.0000020 mg/L 04/09/24 19:24

Lab Sample ID: USB 860-154902/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154902

USB USB Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Biochemical Oxygen Demand 0.0000020 U 0.0000020 0.0000020 mg/L 04/09/24 19:22

Lab Sample ID: LCS 860-154902/3 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154902

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits Biochemical Oxygen Demand 198 203 mg/L 102 85 - 115

Method: SM 5310C - TOC

Lab Sample ID: MB 860-155277/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 155277

мв мв Analyte Result Qualifier RL MDL Unit Prepared

Dil Fac Analyzed Total Organic Carbon 0.50 U 1.0 0.50 04/16/24 12:22 mg/L

Lab Sample ID: LCS 860-155277/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 155277

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit Total Organic Carbon 5.00 4.86 90 - 110 mg/L

Lab Sample ID: LCSD 860-155277/5 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 155277

LCSD LCSD Spike %Rec RPD Added Result Qualifier RPD Limit Analyte Unit D %Rec Limits 5.00 Total Organic Carbon 4.81 mg/L 90 - 110

Lab Sample ID: LLCS 860-155277/6 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 155277

Spike LLCS LLCS %Rec Analyte babbA Result Qualifier Unit D %Rec Limits **Total Organic Carbon** 1.00 0.875 mg/L 87 50 - 150

Eurofins Houston

QC Sample Results

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method: SM5210B CBOD - Carbonaceous BOD, 5 Day

Lab Sample ID: SCB 860-154901/2 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 154901

-	SCB	SCB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbonaceous Biochemical Oxygen	0.816		0.0000020	0.0000020	mg/L			04/09/24 17:11	1
Demand									

Lab Sample ID: USB 860-154901/1

Matrix: Water

Analysis Batch: 154901

-	USB	USB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbonaceous Biochemical Oxygen	0.0400		0.0000020	0.0000020	mg/L			04/09/24 17:08	1

Demand

Lab Sample ID: LCS 860-154901/3 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 154901

		эріке	LUS	LUS				%Rec	
Analyte		Added	Result	Qualifier L	Jnit	D	%Rec	Limits	
Carbonaceous Biochemical		198	202	n	ng/L		102	85 - 115	

Oxygen Demand

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

GC/MS VOA

Analysis Batch: 154047

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	624.1	
MB 860-154047/10	Method Blank	Total/NA	Water	624.1	
LCS 860-154047/3	Lab Control Sample	Total/NA	Water	624.1	
LCSD 860-154047/4	Lab Control Sample Dup	Total/NA	Water	624.1	

GC/MS Semi VOA

Prep Batch: 154889

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	625	
MB 860-154889/1-A	Method Blank	Total/NA	Water	625	
LCS 860-154889/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 860-154889/3	-A Lab Control Sample Dup	Total/NA	Water	625	

Analysis Batch: 155030

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	625.1	154889
MB 860-154889/1-A	Method Blank	Total/NA	Water	625.1	154889
LCS 860-154889/2-A	Lab Control Sample	Total/NA	Water	625.1	154889
LCSD 860-154889/3-A	Lab Control Sample Dup	Total/NA	Water	625.1	154889

GC Semi VOA

Prep Batch: 154669

Lab Sample ID 860-71662-1	Client Sample ID Outfall Samples	Prep Type Total/NA	Matrix Water	Method 608	Prep Batch
MB 860-154669/1-A	Method Blank	Total/NA	Water	608	
LCS 860-154669/4-A	Lab Control Sample	Total/NA	Water	608	
LCSD 860-154669/5-A	Lab Control Sample Dup	Total/NA	Water	608	

Analysis Batch: 154783

Lab Sample ID 860-71662-1	Client Sample ID Outfall Samples	Prep Type Total/NA	Matrix Water	Method 608.3	Prep Batch 154669
MB 860-154669/1-A	Method Blank	Total/NA	Water	608.3	154669
LCS 860-154669/4-A	Lab Control Sample	Total/NA	Water	608.3	154669
LCSD 860-154669/5-A	Lab Control Sample Dup	Total/NA	Water	608.3	154669

HPLC/IC

Analysis Batch: 153949

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	300.0	
MB 860-153949/3	Method Blank	Total/NA	Water	300.0	
LCS 860-153949/4	Lab Control Sample	Total/NA	Water	300.0	
LLCS 860-153949/7	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 153950

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	300.0	
MB 860-153950/3	Method Blank	Total/NA	Water	300.0	
LCS 860-153950/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 860-153950/5	Lab Control Sample Dup	Total/NA	Water	300.0	

Eurofins Houston

4/25/2024

Page 39 of 65

3

4

6

9

11

12

15

16

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

HPLC/IC

Analy	vsis	Batch:	154575
Allu	,	Datoii.	104010

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 860-154575/3	Method Blank	Total/NA	Water	300.0	
LCS 860-154575/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 860-154575/5	Lab Control Sample Dup	Total/NA	Water	300.0	
LLCS 860-154575/7	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 154576

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 860-154576/3	Method Blank	Total/NA	Water	300.0	
LCS 860-154576/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 860-154576/5	Lab Control Sample Dup	Total/NA	Water	300.0	

Analysis Batch: 155395

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	300.0	
MB 860-155395/3	Method Blank	Total/NA	Water	300.0	
MB 860-155395/62	Method Blank	Total/NA	Water	300.0	
LCS 860-155395/63	Lab Control Sample	Total/NA	Water	300.0	
LCSD 860-155395/64	Lab Control Sample Dup	Total/NA	Water	300.0	
LLCS 860-155395/7	Lab Control Sample	Total/NA	Water	300.0	

Metals

Prep Batch: 154494

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
860-71662-1	Outfall Samples	Total Recoverable	Water	200.8
MB 860-154494/1-A	Method Blank	Total Recoverable	Water	200.8
LCS 860-154494/2-A	Lab Control Sample	Total Recoverable	Water	200.8
LCSD 860-154494/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.8

Analysis Batch: 154594

Lab Sample ID 860-71662-1	Client Sample ID Outfall Samples	Prep Type Total Recoverable	Matrix Water	Method 200.8	Prep Batch 154494
860-71662-1	Outfall Samples	Total Recoverable	Water	200.8	154494
MB 860-154494/1-A	Method Blank	Total Recoverable	Water	200.8	154494
LCS 860-154494/2-A	Lab Control Sample	Total Recoverable	Water	200.8	154494
LCSD 860-154494/3-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	154494

Prep Batch: 668082

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	1631E	
MB 400-668082/3-A	Method Blank	Total/NA	Water	1631E	
LCS 400-668082/4-A	Lab Control Sample	Total/NA	Water	1631E	
LCSD 400-668082/5-A	Lab Control Sample Dup	Total/NA	Water	1631E	

Analysis Batch: 668339

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	1631E	668082
MB 400-668082/3-A	Method Blank	Total/NA	Water	1631E	668082
LCS 400-668082/4-A	Lab Control Sample	Total/NA	Water	1631E	668082
LCSD 400-668082/5-A	Lab Control Sample Dup	Total/NA	Water	1631E	668082

Eurofins Houston

Page 40 of 65

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

General Chemistry

Analy	vsis	Batch:	151	048
Allu	,	Dato		0-10

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	7196A	

Analysis Batch: 152166

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	Nitrogen,Org	

Analysis Batch: 153952

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	7196A	
MB 860-153952/3	Method Blank	Total/NA	Water	7196A	
LCS 860-153952/4	Lab Control Sample	Total/NA	Water	7196A	
LCSD 860-153952/5	Lab Control Sample Dup	Total/NA	Water	7196A	

Prep Batch: 154003

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
		-1: 71:			
860-71662-1	Outfall Samples	Total/NA	Water	BOD Prep	

Prep Batch: 154032

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	BOD Prep	

Prep Batch: 154420

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	351.2	
MB 860-154420/4-A	Method Blank	Total/NA	Water	351.2	
LCS 860-154420/6-A	Lab Control Sample	Total/NA	Water	351.2	
LCSD 860-154420/7-A	Lab Control Sample Dup	Total/NA	Water	351.2	
LLCS 860-154420/5-A	Lab Control Sample	Total/NA	Water	351.2	

Analysis Batch: 154593

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	SM 4500 CI G	
MB 860-154593/3	Method Blank	Total/NA	Water	SM 4500 CI G	
LCS 860-154593/4	Lab Control Sample	Total/NA	Water	SM 4500 CI G	
LCSD 860-154593/5	Lab Control Sample Dup	Total/NA	Water	SM 4500 CI G	

Analysis Batch: 154628

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	SM 2120B	
MB 860-154628/3	Method Blank	Total/NA	Water	SM 2120B	
LCS 860-154628/4	Lab Control Sample	Total/NA	Water	SM 2120B	
LCSD 860-154628/5	Lab Control Sample Dup	Total/NA	Water	SM 2120B	

Analysis Batch: 154810

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	1664B	
MB 860-154810/1	Method Blank	Total/NA	Water	1664B	
LCS 860-154810/2	Lab Control Sample	Total/NA	Water	1664B	
LCSD 860-154810/3	Lab Control Sample Dup	Total/NA	Water	1664B	

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

General Chemistry

Analysis Batch: 154825

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	365.1
MB 860-154825/7	Method Blank	Total/NA	Water	365.1
LCS 860-154825/8	Lab Control Sample	Total/NA	Water	365.1
LCSD 860-154825/9	Lab Control Sample Dup	Total/NA	Water	365.1

Analysis Batch: 154826

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	351.2	154420
MB 860-154420/4-A	Method Blank	Total/NA	Water	351.2	154420
LCS 860-154420/6-A	Lab Control Sample	Total/NA	Water	351.2	154420
LCSD 860-154420/7-A	Lab Control Sample Dup	Total/NA	Water	351.2	154420
LLCS 860-154420/5-A	Lab Control Sample	Total/NA	Water	351.2	154420

Analysis Batch: 154860

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	SM 2540D	
MB 860-154860/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 860-154860/2	Lab Control Sample	Total/NA	Water	SM 2540D	
LCSD 860-154860/3	Lab Control Sample Dup	Total/NA	Water	SM 2540D	

Analysis Batch: 154901

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	SM5210B CBOD	154003
SCB 860-154901/2	Method Blank	Total/NA	Water	SM5210B CBOD	
USB 860-154901/1	Method Blank	Total/NA	Water	SM5210B CBOD	
LCS 860-154901/3	Lab Control Sample	Total/NA	Water	SM5210B CBOD	

Analysis Batch: 154902

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	SM 5210B	154032
SCB 860-154902/2	Method Blank	Total/NA	Water	SM 5210B	
USB 860-154902/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 860-154902/3	Lab Control Sample	Total/NA	Water	SM 5210B	

Analysis Batch: 154980

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	350.1	
MB 860-154980/139	Method Blank	Total/NA	Water	350.1	
MB 860-154980/16	Method Blank	Total/NA	Water	350.1	
LCS 860-154980/17	Lab Control Sample	Total/NA	Water	350.1	
LCSD 860-154980/18	Lab Control Sample Dup	Total/NA	Water	350.1	
LLCS 860-154980/142	Lab Control Sample	Total/NA	Water	350.1	

Analysis Batch: 155063

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 860-154420/4-A	Method Blank	Total/NA	Water	351.2	154420
LCS 860-154420/6-A	Lab Control Sample	Total/NA	Water	351.2	154420
LCSD 860-154420/7-A	Lab Control Sample Dup	Total/NA	Water	351.2	154420
LLCS 860-154420/5-A	Lab Control Sample	Total/NA	Water	351.2	154420

Eurofins Houston

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

General Chemistry

Analy	vsis	Batch	ո։ 1	551	25
,a.	,		•• •	•••	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	SM 4500 S2 D	
MB 860-155125/3	Method Blank	Total/NA	Water	SM 4500 S2 D	
LCS 860-155125/4	Lab Control Sample	Total/NA	Water	SM 4500 S2 D	
LCSD 860-155125/5	Lab Control Sample Dup	Total/NA	Water	SM 4500 S2 D	

Analysis Batch: 155176

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	8000	
MB 860-155176/3	Method Blank	Total/NA	Water	8000	
LCS 860-155176/4	Lab Control Sample	Total/NA	Water	8000	

Analysis Batch: 155184

Lab Sample ID 860-71662-1	Client Sample ID Outfall Samples	Prep Type Total/NA	Matrix Water	Method SM 2540C	Prep Batch
MB 860-155184/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 860-155184/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 860-155184/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	
LLCS 860-155184/4	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 155270

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	360.1	

Analysis Batch: 155277

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	SM 5310C	-
MB 860-155277/3	Method Blank	Total/NA	Water	SM 5310C	
LCS 860-155277/4	Lab Control Sample	Total/NA	Water	SM 5310C	
LCSD 860-155277/5	Lab Control Sample Dup	Total/NA	Water	SM 5310C	
LLCS 860-155277/6	Lab Control Sample	Total/NA	Water	SM 5310C	

Analysis Batch: 155576

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	SM 2320B
MB 860-155576/17	Method Blank	Total/NA	Water	SM 2320B
LCS 860-155576/18	Lab Control Sample	Total/NA	Water	SM 2320B
LCSD 860-155576/19	Lab Control Sample Dup	Total/NA	Water	SM 2320B

Analysis Batch: 494838

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	OIA-1677	
MB 410-494838/18	Method Blank	Total/NA	Water	OIA-1677	
LCS 410-494838/16	Lab Control Sample	Total/NA	Water	OIA-1677	
LCSD 410-494838/17	Lab Control Sample Dup	Total/NA	Water	OIA-1677	

Analysis Batch: 498478

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-71662-1	Outfall Samples	Total/NA	Water	4500 SO3	
				B-2011	
MB 410-498478/1	Method Blank	Total/NA	Water	4500 SO3	
				B-2011	

Eurofins Houston

Page 43 of 65

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

General Chemistry (Continued)

Analysis Batch: 498478 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 410-498478/2	Lab Control Sample	Total/NA	Water	4500 SO3	
				B-2011	
LCSD 410-498478/3	Lab Control Sample Dup	Total/NA	Water	4500 SO3	
				B-2011	

4

6

8

9

11

12

14

15

116

Lab Chronicle

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Client Sample ID: Outfall Samples

Date Collected: 04/09/24 09:00 Date Received: 04/09/24 15:06 Lab Sample ID: 860-71662-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	5 mL	5 mL	154047	04/10/24 12:56	NA	EET HO
Total/NA	Prep	625			1000 mL	1.00 mL	154889	04/15/24 15:37	DR	EET HO
Total/NA	Analysis	625.1		1	1 mL	1 mL	155030	04/16/24 21:44	PXS	EET HO
Total/NA	Prep	608			1000 mL	1 mL	154669	04/13/24 06:30	ВН	EET HO
Total/NA	Analysis	608.3		1			154783	04/15/24 12:27	KM	EET HO
Total/NA	Analysis	300.0		1			153949	04/10/24 12:48	AK1	EET HO
Total/NA	Analysis	300.0		1			153950	04/10/24 12:48	AK1	EET HO
Total/NA	Analysis	300.0		1			155395	04/18/24 20:36	WP	EET HO
Total/NA	Prep	1631E			40 mL	40 mL	668082 Completed:	04/14/24 14:30 04/16/24 09:25 ¹	VLC	EET PE
Total/NA	Analysis	1631E		1			668339	04/16/24 12:08	VLC	EET PE
Total Recoverable	Prep	200.8			50 mL	50 mL	154494	04/12/24 11:00	MD	EET HO
Total Recoverable	Analysis	200.8		1			154594	04/12/24 19:26	DP	EET HC
Total Recoverable	Prep	200.8			50 mL	50 mL	154494	04/12/24 11:00	MD	EET HO
Total Recoverable	Analysis	200.8		20			154594	04/12/24 19:31	DP	EET HC
Total/NA	Analysis	1664B		1	1000 mL	1000 mL	154810	04/15/24 10:04	TB	EET HC
Total/NA	Analysis	350.1		1	10 mL	10 mL	154980	04/15/24 13:17	ADL	EET HO
Total/NA	Prep	351.2			20 mL	20 mL	154420	04/11/24 22:39	SA	EET HO
Total/NA	Analysis	351.2		1			154826	04/12/24 18:35	LD	EET HO
Total/NA	Analysis	360.1		1			155270	04/17/24 11:00	HN	EET HO
Total/NA	Analysis	365.1		5	10 mL	10 mL	154825	04/12/24 22:15	HN	EET HO
Total/NA	Analysis	4500 SO3 B-2011		1	50 mL	50 mL	498478	04/25/24 09:40	UML5	ELLE
Total/NA	Analysis	7196A		1	25 mL	25 mL	153952	04/09/24 16:40	SCI	EET HC
Total/NA	Analysis	7196A		1			151048	04/19/24 15:47	SC	EET HC
Total/NA	Analysis	8000		1	2 mL	2 mL	155176	04/16/24 18:03	HN	EET HC
Total/NA	Analysis	Nitrogen,Org		1			152166	04/18/24 09:10	SC	EET HC
Total/NA	Analysis	OIA-1677		1			494838	04/16/24 10:38	UJE2	ELLE
Total/NA	Analysis	SM 2120B		2	50 mL	50 mL	154628	04/10/24 16:00	YG	EET HC
Total/NA	Analysis	SM 2320B		1			155576	04/17/24 01:51	RY	EET HC
Total/NA	Analysis	SM 2540C		1	50 mL	200 mL	155184	04/16/24 18:30	YG	EET HC
	-			1	1000 mL					EET HC
Total/NA	Analysis	SM 2540D		1		1000 mL	154860	04/15/24 13:51	FN	
Total/NA	Analysis	SM 4500 CI G		2	10 mL	10 mL	154593	04/12/24 16:27	SCI	EET HO
Total/NA	Analysis	SM 4500 S2 D		1	7.5 mL	7.5 mL	155125	04/16/24 15:46	SCI	EET HO
Total/NA	Prep	BOD Prep		4	50 m l	202 1	154032	04/09/24 19:00	ALL	EET HO
Total/NA	Analysis	SM 5210B		1	50 mL	300 mL	154902	04/09/24 22:15	ALL	EET HO
Total/NA	Analysis	SM 5310C		1	40 mL	40 mL	155277	04/16/24 16:39	YG	EET HO
Total/NA	Prep	BOD Prep					154003	04/09/24 17:09	ALL	EET HC
Total/NA	Analysis	SM5210B CBOD ated length of time for the		1	20 mL	300 mL	154901	04/09/24 17:50	ALL	EET HC

......

Eurofins Houston

Lab Chronicle

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

EET PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Envirodyne = Envirodyne Laboratories, 11011 Brooklet Street Suite 230, Houston, TX 77099

3

Λ

5

7

10

111

13

15

16

Accreditation/Certification Summary

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-00759	08-03-24
Florida	NELAP	E871002	06-30-24
Louisiana (All)	NELAP	03054	06-30-24
Oklahoma	NELAP	1306	08-31-24
Oklahoma	State	2023-139	08-31-24
Texas	NELAP	T104704215	06-30-24
Texas	TCEQ Water Supply	T104704215	12-28-25
USDA	US Federal Programs	525-23-79-79507	03-20-26

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
A2LA	Dept. of Defense ELAP	0001.01	11-30-24
A2LA	ISO/IEC 17025	0001.01	11-30-24
Alabama	State	43200	01-31-25
Alaska	State	PA00009	06-30-24
Alaska (UST)	State	17-027	02-28-25
Arizona	State	AZ0780	03-12-25
Arkansas DEQ	State	88-00660	08-09-24
California	State	2792	11-30-24
Colorado	State	PA00009	06-30-24
Connecticut	State	PH-0746	06-30-25
DE Haz. Subst. Cleanup Act (HSCA)	State	019-006 (PA cert)	01-31-25
Delaware (DW)	State	N/A	01-31-25
Florida	NELAP	E87997	06-30-24
Georgia (DW)	State	C048	01-31-25
Hawaii	State	N/A	01-31-25
Illinois	NELAP	200027	01-31-25
lowa	State	361	03-01-24 *
Kansas	NELAP	E-10151	10-31-24
Kentucky (DW)	State	KY90088	12-31-24
Kentucky (UST)	State	0001.01	11-30-24
Kentucky (WW)	State	KY90088	12-31-23 *
Louisiana (All)	NELAP	02055	06-30-24
Maine	State	2019012	03-12-25
Maryland	State	100	06-30-25
Massachusetts	State	M-PA009	06-30-24
Michigan	State	9930	01-31-25
Minnesota	NELAP	042-999-487	12-31-24
Mississippi	State	023	01-31-25
Missouri	State	450	01-31-25
Montana (DW)	State	0098	01-01-25
Nebraska	State	NE-OS-32-17	01-31-25
New Hampshire	NELAP	2730	01-10-25
New Jersey	NELAP	PA011	06-30-24
New York	NELAP	10670	04-01-25
North Carolina (DW)	State	42705	07-31-24
North Carolina (WW/SW)	State	521	12-31-24
Oklahoma	NELAP	9804	08-31-24

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Accreditation/Certification Summary

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Oregon	NELAP	PA200001	09-11-24
Pennsylvania	NELAP	36-00037	01-31-25
Quebec Ministry of Environment and Fight against Climate Change	PALA	507	09-16-24
Rhode Island	State	LAO00338	12-30-24
South Carolina	State	89002	01-31-24 *
Tennessee	State	02838	01-31-25
Texas	NELAP	T104704194-23-46	08-31-24
USDA	US Federal Programs	525-22-298-19481	10-25-25
Vermont	State	VT - 36037	10-28-24
Virginia	NELAP	460182	06-14-25
West Virginia (DW)	State	9906 C	01-31-25
West Virginia DEP	State	055	07-31-24
Wyoming	State	8TMS-L	01-31-25
Wyoming (UST)	A2LA	0001.01	11-30-24

Laboratory: Eurofins Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alabama	State	40150	06-30-24
ANAB	ISO/IEC 17025	L2471	02-22-26
Arkansas DEQ	State	88-00689	08-01-24
California	State	2510	06-30-24
Florida	NELAP	E81010	06-30-24
Georgia	State	E81010(FL)	06-30-24
Illinois	NELAP	200041	10-09-24
Kansas	NELAP	E-10253	10-31-24
Kentucky (UST)	State	53	06-30-24
Louisiana (All)	NELAP	30976	06-30-24
Louisiana (DW)	State	LA017	12-31-24
North Carolina (WW/SW)	State	314	12-31-24
Oklahoma	NELAP	9810	08-31-24
Pennsylvania	NELAP	68-00467	01-31-25
South Carolina	State	96026	06-30-24
Tennessee	State	TN02907	06-30-24
Texas	NELAP	T104704286	09-30-24
US Fish & Wildlife	US Federal Programs	A22340	06-30-24
USDA	US Federal Programs	FLGNV23001	01-08-26
USDA	US Federal Programs	P330-21-00056	05-17-24
Virginia	NELAP	460166	06-14-24
West Virginia DEP	State	136	03-31-25

4/25/2024

2

3

7

0

10

13

14

Eurofins Houston

 $^{^{\}star}\, \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Method Summary

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	EPA	EET HOU
625.1	Semivolatile Organic Compounds (GC/MS)	EPA	EET HOU
608.3	Polychlorinated Biphenyls (PCBs) (GC)	EPA	EET HOU
300.0	Anions, Ion Chromatography	EPA	EET HOU
1631E	Mercury, Low Level (CVAFS)	EPA	EET PEN
8.00	Metals (ICP/MS)	EPA	EET HOU
664B	HEM and SGT-HEM	1664B	EET HOU
50.1	Nitrogen, Ammonia	EPA	EET HOU
51.2	Nitrogen, Total Kjeldahl	EPA	EET HOU
860.1	Oxygen, Dissolved	EPA	EET HOU
865.1	Phosphorus, Total	EPA	EET HOU
500 SO3 B-2011	Sulfite	SM	ELLE
196A	Chromium, Hexavalent	SW846	EET HOU
196A	Chromium, Trivalent (Colorimetric)	SW846	EET HOU
000	COD	Hach	EET HOU
litrogen,Org	Nitrogen, Organic	EPA	EET HOU
DIA-1677	Cyanide, Available (Flow Injection)	OI CORP	ELLE
M 2120B	Color, Colorimetric	SM	EET HOU
M 2320B	Alkalinity	SM	EET HOU
M 2540C	Solids, Total Dissolved (TDS)	SM	EET HOU
M 2540D	Solids, Total Suspended (TSS)	SM	EET HOU
M 4500 CI G	Chlorine, Residual	SM	EET HOU
SM 4500 S2 D	Sulfide, Total	SM	EET HOU
SM 5210B	BOD, 5-Day	SM	EET HOU
M 5310C	TOC	SM	EET HOU
M5210B CBOD	Carbonaceous BOD, 5 Day	SM	EET HOU
Subcontract	Surfactants	None	Envirodyne
631E	Preparation, Mercury, Low Level	EPA	EET PEN
8.00	Preparation, Total Recoverable Metals	EPA	EET HOU
51.2	Nitrogen, Total Kjeldahl	EPA	EET HOU
08	Liquid-Liquid Extraction (Separatory Funnel)	EPA	EET HOU
25	Liquid-Liquid Extraction	EPA	EET HOU
BOD Prep	Preparation, BOD	SM	EET HOU

Protocol References:

1664B = EPA-821-98-002

EPA = US Environmental Protection Agency

Hach = Hach Company

None = None

OI CORP = OI Corporation Instrument Manual.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

EET PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Envirodyne = Envirodyne Laboratories, 11011 Brooklet Street Suite 230, Houston, TX 77099

Eurofins Houston

2

3

6

8

3

11

13

14

16

Sample Summary

Client: Messer LLC Job ID: 860-71662-1

Project/Site: Messer Gas ASU Permit Renewal 4-9-24

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-71662-1	Outfall Samples	Water	04/09/24 09:00	04/09/24 15:06

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

19 April 2024

Eurofins Houston Lance Tigrett 4147 Greenbriar Dr. Stafford, TX 77477

Eurofins

Enclosed are the results of analyses for samples received by the laboratory on 10-Apr-24 09:04. The analytical data provided relates only to the samples as received in this laboratory report.

ELI certifies that all results are NELAP compliant and performed in accordance with the referenced method except as noted in the Case Narrative or as noted with a qualifier. Any reproductions of this laboratory report should be in full and only with the written authorization from the client.

The total number of pages in this report is 5

Thank you for selecting ELI for your analytical needs. If you have any questions regarding this report, please contact us.

Sincerely,

Julie Peterson

Client Services Representative

Certificate No: T104704265-22-20

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Client: Eurofins Houston

 Project:
 Eurofins

 Work Order:
 24D1499

 19-Apr-24 16:30

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
OUTFALL (860-71662-1)	24D1499-01	Water	09-Apr-24 09:00	10-Apr-24 09:04

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Deform

Julie Peterson, Client Services Representative

Page 2 of 5

Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Reported:

4

_

6

9

11

14

16

Client: Eurofins Houston

Project: Eurofins
Work Order: 24D1499

19-Apr-24 16:30

OUTFALL (860-71662-1) 24D1499-01 (Water) Sampled: 09-Apr-24 09:00

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Analyst	Notes
			Envirod	yne Labo	ratories, I	nc.				
Wet Chemistry										
Surfactants	< 0.10	0.10	mg/L	1	B4D5162	16-Apr-24	16-Apr-24 16:30	SM5540 C	JMM	H, Q

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Julie Peterson, Client Services Representative

Page 3 of 5 4/25/2024

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Client: Eurofins Houston

 Project:
 Eurofins

 Work Order:
 24D1499

 19-Apr-24 16:30

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B4D5162 - Inorganics										
Blank (B4D5162-BLK1)				Prepared &	Analyzed:	16-Apr-24				
Surfactants	< 0.10	0.10	mg/L							Q
LCS (B4D5162-BS1)				Prepared &	Analyzed:	16-Apr-24				
Surfactants	0.860		mg/L	1.00		86.0	90-110			Q
Duplicate (B4D5162-DUP1)	Sour	ce: 24D2144-	02	Prepared &	Analyzed:	16-Apr-24				
Surfactants	< 0.10	0.10	mg/L		< 0.10			0	20	Q
Reference (B4D5162-SRM1)				Prepared &	Analyzed:	16-Apr-24				
Surfactants	0.0900		mg/L	0.100		90.0	0-200			Q

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Silver

Page 4 of 5

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Client: Eurofins Houston

 Project:
 Eurofins
 Reported:

 Work Order:
 24D1499
 19-Apr-24 16:30

Notes and Definitions

Q QC did not meet ELI acceptance criteria

H Hold time exceeded

ND Analyte NOT DETECTED at or above the reporting limit

< Result is less than the RL

a Analyte not available for TNI/NELAP accreditation

n Not accredited

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scholen

	Maria Tanana
Chain of Custody Record	110 9-1
5 bhlane	
Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Phone: 281-240-4200	

💸 eurofins | Environment Testing

Company Comp		Sampler.		İ	1 11 11 11						103011	
Processing Pro	Client Information (Sub Contract Lab)			= 1	grett, Lanc	9		100			860-112524.1	
Control Cont	Client Contact Shipping/Receiving	Phone:		Li E	Mail: ince.Tigret	t@et.eurofir	isus.com	Tex	e of Ongin: as		Page: Page 1 of 1	A CONTRACTOR OF THE PERSON AND ADDRESS OF TH
The first control is control in control is control in control is control is control in control is control in	Company: Envirodyne Laboratories			4	Accredita NELAP	itions Required - Texas	(See note):				Job #: 860-71662-1	14
Part	Address: 11011 Brooklet Street Suite 230,	Due Date Requested: 4/15/2024					Analys	is Reque	sted		Preservation	Codes:
The control of the	City: Houston State, Zip: TX 77099	TAT Requested (days):										
Sample (destrifted print) Remail 4-624 Signore	Phone:	PO#.	5.		(0							
Sample Jean Person 14-924 Story St	Email:	WO #:			77101717	s)					81	
Sample Martin M	Project Name: Messer Gas AS! I Permit Renewal 4-9-24	Project #: 86006711				nactan					TO VOLUME TO S	
Sample Identification - Client ID (Lab ID) Sample Date Time Gaptable Interventive Control of Cont	Site:	:#MOSS			CAMPAGE STATE	ng /(s					SARANIERO	
Outfall Samples (800-71662.1) A 49/24 Oerfel A 49/24 Oerfel A 49/24 Oerfel Outfall Samples (800-71662.1) A 49/24 Oerfel A 40/24 Oerfel A 49/24 Oerfel A 49/24 Oerfel A 49/24 Oerfel A 40/24 Oerfel A 49/24 Oerfel A 40/24 Oerfel A 4	Samule Identification - Client ID // ah ID)	100			Field Filtered	SUB (Surfactant						I Instructions/Note:
Outfail Samples (860-71662-1) Outfail Samples (860-71662-1) A 4/9/24 Central A 4/9/24 A 4/9/24 Central Central A 4/9/24 Central	()	\ /	- m	X								
the Stree Becentry accretitions are subject to change. Eurofine Environment Testing South Central, LLC places the coverable of metrod, analysis accretitation as we subject to change. Eurofine Environment Testing South Central, LLC places the coverable of metrod analysis accretitation as are subject to change. Eurofine Environment Testing South Central, LLC askeroline in accretitation in accretitation in accretitation in accretitation in accretitation as a subject to change. Eurofine Environment Testing South Central, LLC askeroline in Environment Testing S	Outfall Samples (860-71662-1)	1	000 otral	Water		×			8/1		1	
Since abcestory excretations are stilled to change, Earder Environment Testing South Certal, LLC patients for mining analyse & accreditation compliance upon or ascordisations are subject to change, Earder Environment Testing South Certal, LLC patients in required accreditation compliance upon or ascordisations are subject to the Europh's Testing South Certai, LLC abstraction with the provided Any changes is a conceptation status a should be brought to Europh's Enrich South Certai, LLC abstraction as a conceptation status a should be brought to Europh's Enrich South Certai, LLC abstraction introductions to accordisation control and the status of compliance to the Europh's Enrich South Certai, LLC abstraction introductions of the Europh's Enrich South Certain, LLC abstraction introductions of the Europh's Enrich South Certain, LLC abstraction introductions of the Europh's Enrich South Certain, LLC abstraction introductions of the Europh's Enrich South Certain, LLC abstraction introductions of the Europh's Enrich South Certain Environment Testing South Certain LLC abstraction introductions of the Europh's Enrich South Certain Environment Testing South Certain LLC abstraction introductions of the Europh's Enrich South Certain LLC abstraction introductions of the Europh's Enrich South Certain Environment Testing South Certain LLC abstraction introductions of the Europh's Enrich South Certain Environment Testing South Certain LLC abstraction introductions of the Europh's Enrich South Certain Environment Testing South		8										
Note: Since laboratory accretistations are subject to change, Eurofine Environment Testing South Central, LLC places the connected and analyse & accretistation complance upon our autocontract laboratory or control and to the control of contro)										
Note Since laboratory accerdiations are subject to change, Eurefins Environment Testing South Central, LLC places the coverants of method, analyse & accrediations can be subject to change, Eurefins Environment Testing South Central, LLC places the coverants of method, analyse & accrediations can be caused for cannot be subject to change, Eurefins Environment Testing South Central, LLC attention inmediately, if all requested accrediations cannot be subject to change and control control in the State of Origin stock of an analyses of the subject to change and control control in the State of Origin stock of an analyses of the subject to change and control control in the State of Origin stock of an analyses of the subject to change and control control in the State of Origin stock of the Control in the State of Origin stock of the Control in the State of Origin stock of the Control in the State of Origin stock of State of Origin stock of State of Control in the State of Origin stock of State of Control in the State of Origin stock of State of Sta										20		
Note Since abcratory accreditations are subject to change, Eurofine Environment Testing South Central, LIC places the normarity of method, analyte & accreditation compliance upon our advocatoral laboratory or claim provided solution of the provid												
Note Since iboratory accreditations are subject to change. Eurofine Environment Testing South Central, LLC places the connectivity of method, analyzed, the sample as accreditation councillance upon our exhibition of control. LLC places the connectivity of method, analyzed, the sample as accreditation councillance upon our exhibition our exhibition states above to en analyzed the sample and the brighted back to the Eurofine Environment Testing South Central, LLC attention mimediately. If all requested accreditations are current to date, to the Eurofine Environment Testing South Central, LLC attention mimediately. If all requested accreditations are current to date, to the Eurofine Environment Testing South Central, LLC attention mimediately. If all requested accreditations are current to date, to the Eurofine Environment Testing South Central, LLC attention mimediately. If all requested accreditations are current to date, to the Eurofine Environment Testing South Central, LLC attention mimediately. If all requested back and the properties of the properties are current to date and the properties of the properties are current to date. The properties are current to date and the properties of the properties are current to date and the properties are current to date. The properties are created and the properties are c								-71				
Vitore Since isboratory accreditations are subject to change, Eurofins Environment Testing South Central, LLC places the ownership of method, analyte & accreditation compliance apon our subportatory accreditation in the State of Origin Testing South Central, LLC places the ownership of method, analyte & accreditation compliance apon our subportatory or other instructions will be provided. Any changes to accreditation nature should be brought to Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditation in the State of Origin Testing South Central, LLC attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attention in the State of Origin Testing South Central, LLC attention immediately. If all requested accreditation in the State of Origin Testing South Central, LLC attention immediately. It all requested accreditation in the State of Origin Testing South Central, LLC attention immediately. If all requested accreditation in the State of Origin Testing South Central, LLC attention in the State of Origin Testing South Central, LLC attention in the State of Origin Testing South Central, LLC attention in the State of Origin Testing South Central, LLC attention in the State of Origin Testing South Central, LLC attention in the State of Origin Central Ce												
Note Since aboratory accreditations are subject to change, Eurofins Environment Testing South Central, LLC places the ownership of method, analyte & accreditation or currently maintain accreditation in the State of Origin lated above for analysis/testsamant's being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC alterution immediately. If all requested accreditation in the State of Origin lated above for analysis/testsamant's being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC alterution immediately. If all requested accreditations are currently and the Early South Central, LLC alterution in the State of Origin lated above for analysis/testsamant's being analyzed, the samples and currently maintain accreditation in the State of Origin lated above for analysis/testsamant's being analyzed, the samples and currently alternated above for analysis/testing the State of Origin lated above for analysis/testing analyzed, the samples and currently analyzed, the Eurofins Environment Testing South Central, LLC alternation in the State of Origin lated above for analyzed, the samples and currently alternated above for analyzed, the Eurofins Environment Testing South Central, LLC alternation in the State of Origin lated above for analyzed, the Eurofins Environment Testing South Central, LLC alternation in the State of Origin Laternation and Environment Testing South Central, LLC alternation in the State of Origin Laternation and Environment Testing South Central, LLC alternation and Environment Testing South Central, LLC alternation and Environment Testing South Central, LLC analyses of Shipment Testing South Central Times. Prince of Special Instructions/OR Sequent Testing South Central Company (Company) Prince of Shipment Testing South Central Company (Company) Prince of Shipment Testing South Central Company (Company) Prince of Shipment Testing South Central Central Central Central Central Central Central Central C					-					-		
Possible Hazard Identification Vote Since laboratory accreditations are subject to change, Eurofins Enhancement of the Change of Programme of the Change of Programme of the Change of Programme of the Change of the C	invironment Testing South Central, LL	C places the c	ownership of metho	J, analyte & s	sccreditation co	mpliance upon	our subcontrac	ct laboratories.	This sample st	nipment is forwarded u	inder chain-of-custody. If the	
equested I, II, III, IV, Other (specify) Primary Deliverable Rank: 2 Special Instructions/QC Requirements: Image: Special Instructions/QC Requirements: Primary Deliverable Rank: 2 Special Instructions/QC Requirements: Itime: Method of Shipment	proceedings of the state of the	South Central, LLC attention immed	iately. If all rec	quested accreditation	ns are currer	nt to date, returningle Dispo	n the signed Ch	nain of Custody	attesting to said	d compliance to	o Eurofins Environmer ained longer tha	nt Testing South Central, LLC.
inquished by: Primary Deliverable Rank: 2 Special Instructions/QC Requirements: Image: Date: Date: Time:	Unconfirmed				1	Return T	o Client	Disp	osal By Lab]	Archive For	Months
inquished by: Date: Time: Method of Shipment. Inquished by: Date/Time: Company Received by: Date/Time: Date/Time: Date/Time: Company Received by: Date/Time: Pate/Time: Company Received by: Date/Time: Pate/Time: Company Received by: Date/Time: Cooler Temperature(s) °C and Other Remarks: S	Deliverable Requested. I, II, III, IV, Other (specify)	Primary Deliverable F	Rank: 2		ď	ecial Instruct	tions/QC Re	quirements:		23/3		
	Empty Kit Relinquished by:	Date			Time:		0	()	Method of Sh	ipment: /		JAN 1
Date/Time: Company Received by: Date/Time: Company Received by: Date/Time: Da	7	Date/Time	hobo	Company		Received by:		/	Δ	4 [10]	124 904	Company (
Date/Time: Company Received by: Date/Time: Configuration: Cooler Temperature(s) °C and Other Remarks: Cooler T	Relinquished by:	Date/Time:		Company		Received by:)		ם	laté/Time:	1 1	Company
Custody Seal No.:	Relinquished by:	Date/Time:		Company		Received by:			Δ	ate/Time:		Company
	1000					Cooler Temp	erature(s) °C ar	nd Other Rema	U	5/5	もけ	7

Custody Seals Intact: Custody Seal No. Δ Yes Δ No	Relinquished by:	Reimousined by Kelley Lope	Empty Kit Relinquished by	Deliverable Requested I II III IV Other (specify)	ant 🗌									(Out fall Samples		Sample Identification	Site:	Project Name: Messer Gas ASU Permit Renewal 2024	Email: rami.qafisheh@messer-us.com	Phone:	TX, 77571	La Porte	Address: 11605 Strang Rd.	Messer LLC	Client Contact Rami Qafisheh	Client Information	Phone (281) 240-4200	- Y =
	Date/Time:	4.9.14 Date/Time	0		Poison B Unknown										4/9/24 0	V	Sample Date	(SSOW#:	Project #: 86006711	WO#:	PO#	Compliance Project:	TAT Requested (days):	Due Date Requested:		Phone: ZeA	Sampler Colla		C
	1 181.92	`{	j ĕ		wn Radiological										०१०० ५	<u> </u>	Sample Sample (C=comp,					Δ Yes Δ No	s):		PWSID:	12	y lopes		Chain of Custody Record
	Company	The Start	Tir												Water	Preservation Code:	Matrix (Wawater Electrical Convention, A-Air) BT=Tresue, A-Air) ET=Tresue, A-Air)	Samp	le (Ye	s or Ne	o)				!	282 E-Mail: Lance Tigrett@et.eurofinsus.com	Lab PM: Tigrett, Lance		stody Red
ρ	<u> </u>	<u> </u>] <u>ii</u>	Special Instructions/QC	Sample Disposal (A fee may Return To Client				+	\bot		ļ				X	Perform MS/A				21			· · ·		igrett(Lance		Ö
Cooler Temperature(s) °C and Other Remarks	Received by:	Necessary of the second of the		al Ins	de Di Retu		-	_	+	+	+	+			×	B	1631E Mercur 1677 -Available		Leve:	CVAF	•)					@et.e			<u>o</u>
етреп	\$ \\ \frac{1}{2} \]	4 6		tructi	le Disposal (A f Return To Client			-	\vdash	┪		+	\vdash		×	CB	SM4600_\$2_D					•				urofir	1 -		
l sture(s	6	14	П	ons/C	al (A	Н		\top	\top	†	1	\top			×	G	350.1 351.2, 36	5.1 HA	CH800	00_NP	COD		_		⊳	ISUS.	860-71		
ိုင်	1	12,			nt fee				+	╅					×		5310C Total O	rganic	Carbo	n (TOC)				Analysis	E	71662		
1 ₹	44	177		Requirements	may										×	z	2320B, 300_OR	GFM_2	8D, 30	0_ORG	FMS, 1	ГОН							
er Rer	8	2		emen	be assessed Disposal E										×	z	2120B, 4600_C	_G, 55	40C, 7	196A, 7	7196A_	CR3			Requested		Chain of		
narks:	5	1	╙	Ś	ispos	Ш						_			×		200.8 Custom	List 22	Analy	les					uest	S	ညီ		
1 1			Method of Shipment		assessed if san Disposal By Lab		\dashv	\dashv			\perp	_			×	z	608.3_PCB, 625					VE+T	eMHT		ed	١	Custody		
		2 . 9	of Shi		if samples 3y Lab		-+	_		+	-	╀			x :	A	2540D (TSS), 2 1664B_NP HE		Calcd	(TDS)	_					1			
	Date/Tim	1/2 Pare 1	ртеп			\vdash	+	+		+		-			x x	z	SM4500SO3 B		<u> </u>										\equiv
}		I'_{2}	l "I		□ are			+	+	+	+-	+			() X	_	360.1 SM5210E			10B_CE	BODCa	ı					'		
}	5				etain: Arch		2 €	<u>,</u> †	+-	+						X	Total Number										ı		
	4 1506 Euro tru	5411.12 Combains			are retained longer than 1 month) Archive For Months	Corrected Temp: 3, 6) 5							Temp:	Field pH.		Special instructions/Note:	Other	N ~	_ =	Amchior S Ascorbic Acid T	NaHSO4 R	B NaOH N None C Zn Acetate P Na204S	eservation Codes:	Job #:	, age:	20 No: 50-27818-9638.1	<u>.</u>	eurofins

141516

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Phone: 281-240-4200	Chain of Custody Record	stody Rec	ord		-	💸 eurofins	Environment Test
Client Information (Sub Contract Lab)	Sampler.	Lab PM: Tigrett, Lance	ance	Carrier Tracking No(s)	J No(s):	COC No: 860-112772.1	
Client Contact. Shipping/Receiving	Phone:	E-Mail: Lance.Ti	E-Mail: Lance.Tigrett@et.eurofinsus.com	State of Origin: Texas		Page: Page 1 of 1	
Company: Eurofins Environment Testing Southeast,		Acc	Accreditations Required (See note): NELAP - Texas			Job #: 860-71662-1	
Address: 3355 McLemore Drive, ,	Due Date Requested: 4/16/2024		Analysis	Analysis Requested		Preservation Codes:	:5
City: Pensacola	TAT Requested (days):						
State, Zip. FL, 32514			(848)				
Phone: 850-474-1001(Tel) 850-478-2671(Fax)	PO#:		vel (CV				
Email:	WO#:				S		
Project Name: Messer Gas ASU Permit Renewal 4-9-24	Project #: 86006711				neniet		
Site:	SSOW#:					Other:	
	Sample Type Sample (C=comp,	Matrix (w=water, S=solid, O=wasteloil, dd	น์ดีน พลเพิ่) Jedmuý Je		
Sample Identification - Client ID (Lab ID)	Sample Date Time G=grab)	BT=Tissue, A=Air) 证 ation Code: X	8				Special Instructions/Note:
Outfall Samples (860-71662-1)	09:00 Central	Water					
	500						
							i I
Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing South Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratory or other instructions will be provided. Any changes to laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, LLC.	Testing South Central, LLC places the ownershi ove for analysis/tests/matrix being analyzed, the itral, LLC attention immediately. If all requested	p of method, analyte 8 samples must be shipp accreditations are curr	e accreditation compliance upon our sub sed back to the Eurofins Environment Te ent to date, return the signed Chain of C	contract laboratories. esting South Central, I ustody attesting to sa	This sample shipmer LLC laboratory or othe iid compliance to Euro	nt is forwarded under cha r instructions will be pro fins Environment Testin	in-of-custody. If the ided. Any changes to South Central, LLC.
Possible Hazard Identification			Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	e assessed if se	amples are retair	ned longer than 1	nonth)
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2		Special Instructions/QC Requirements	Uisposal By Lab ments:		Archive For	Months
Empty Kit Relinquished by:	Date:	Time	ï	Method of	Method of Shipment:		ŀ
Relinquished by:	Date/Time:	Company	Received by:		Pate ("17" (")	M Pal	Company
Relinquished by:	Date/Time:	Company	Received by:		Date/Time:		Company
Relinquished by:	Date/Time:	Company	Received by:		Date/Time:		Company
Custody Seals Intact: Custody Seal No.:			Cooler Temperature(s) °C and Other Remarks:		100 C	50)	

🔆 eurofins | | Environment Testing

Eurofins Houston

4145 Greenbriar Dr Stafford, TX 77477 Phone: 281-240-420

Chain of Custody Record

de eurofins	
	Environment Testing

Phone: 281-240-4200											<u></u>		2						
Client Information (Sub Contract Lab)	Sampler:				ett, L	anc	e					Carrier	Fracking	No(s):			COC No: 860-112752.1		
Client Contact: Shipping/Receiving	Phone:			E-Ma Lan	ce.Ti			eurofins				State of Texas	Origin:				Page: Page 1 of 1		
Company: Eurofins Lancaster Laboratories Environm							ations R	equired (S	ee note	9):							Job #: 860-71662-1		
Address: 2425 New Holland Pike,	Due Date Requested	l;							Ana	alysis	Rea	ueste	ed				Preservation Co	odes:	
City: Lancaster	TAT Requested (day	's):			1												1		
State, Zip: PA, 17601																			
Phone: 717-656-2300(Tel)	PO#																		
Email:	WO #:				or No	No)										90			
Project Name: Messer Gas ASU Permit Renewal 4-9-24	Project #: 86006711					es or l										tainer			
Site	SSOW#				Sampl	ISD (Y										of cor	Other:		
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W-water, S-colld, O-waste/off, BT-Tisque, A-Ak	paua	Perform MS/MSD	1677									Total Number of containers	Special	Instructions	/Note:
		$\geq \leq$	Preserva	tion Code:	X	X	963								(25)	\rightarrow		><<	
Outfall Samples (860-71662-1)	4/9/24	09:00 Central		Water	\mathbb{H}		X			_	\square				+	1			
					H			-		+	\vdash	+	+	\vdash	+	+			
					\forall			+			\vdash	+	+		\dashv				
					Ħ							+	+	\Box					
					П						П			\Box					
					Ш				\Box	_									
					Ш														
Note: Since laboratory accreditations are subject to change, Eurofins Enviro laboratory does not currently maintain accreditation in the State of Origin lis accreditation status should be brought to Eurofins Environment Testing Sou	ted above for analysis/tests/r	matrix being a	nalyzed, the si	imples must b	e ship	ped	back to	the Eurofi	ns Envi	ronment	Testing	South (Central,	LLC lab	oratory	or other	er instructions will be	provided. Any c	changes to
Possible Hazard Identification						Sar	_								s are	_	ned longer than		
Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	ble Rank:	2			Spe		tum To				ispose its:	I By L	ab		Arc	hive For	Months	3
Empty Kit Relinquished by:		Date:			Tin	ne:						M	ethod o	f Shipm	ent:				
Relinquished by:	Date Time: DE 4			Company			Receiv	ed by:						Date/	Time:			Company	
Relinquished by:	Date/Time:			Company			Receiv	ed by:						Date/	Time:			Company	
Relinquished by:	Date/Time;			Company			Receiv)el	a	a.	C	refe		Date/	Time: ーノノー	24	(10130	Company	ET
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No							Cook	Temperat	uri(3)	E anne	ther Re	Mark	: 1).	0				

Ver: 06/08/2021

Eurofins Houston

4145 Greenbriar Dr Stafford, TX 77477

Chain of Custody Record

eurofins

Environment Testing

Phone: 281-240-4200																		
Client Information (Sub Contract Lab)	Sampler			Lab Ph Tigre		nce					Can	ier Track	ing No(s	i):		COC No: 860-116142.	1	
Client Contact:	Phone:			E-Mail								e of Origi	n:			Page:		
Shipping/Receiving				Lanc				rofinsu			Te	cas				Page 1 of 1		
Company:						ditation AP - T		uired (Se	e note):							Job #:		
Eurofins Lancaster Laboratories Environm	In D.t. Bt	J.		$\overline{}$	NEL	4F - 1	exas									860-71662-1	Cadaa	-
Address: 2425 New Holland Pike, ,	Due Date Requeste 4/23/2024								Anal	ysis R	eque	sted				Preservation	Codes:	
City:	TAT Requested (da	ys):			重量					1 1								
Lancaster	-				8 9					1 1					- 5			
State, Zip: PA, 17601					55										8			
Phone:	PO #:		-												8			
717-656-2300(Tel)	WO#:				9													
Email:	VVO #:				No.	2									,			
Project Name:	Project #:				Zes Z	5								1 4				
Messer Gas ASU Permit Renewal 4-9-24	86006711	_		_	묊	6				1					1	Other:		
Site:	SSOW#:				Sample (Yes or No)	3									90			
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Type (Went See (C=comp, O=wa G=grab) BT=Tiest	trix water, colid, ste/oil, us, A=Air)	Field Filtered Sample	SM4500SO3_B									Total Mumber	Specia	ıl Instructions/Note	
		$\geq \leq$	Preservation C	ode:	$\times\!$						BO 30		37 120		2			
Outfall Samples (860-71662-1)	4/9/24	09:00 Central	Wa	ater		X			_							1		
					\perp							$\downarrow \downarrow \downarrow$						
							\top			1								
					\vdash	+	+-	++	_	+	\dashv	+-+	_					
					\vdash	+	+	-	_	+		+	+		- 8			
					Ш													
															100			
					\sqcap		\top					1 1						
Note: Since laboratory accreditations are subject to change, Eurofins Environme laboratory does not currently maintain accreditation in the State of Origin listed a accreditation status should be brought to Eurofins Environment Testing South C	have for analysis/tests	/matrix being :	analyzed the samples	must be	shippi	ed bac	k to the	e Eurofin	s Enviro	nment Te	estina Sa	uth Cent	al LLC	laborato	rv or oth	er instructions will:	be provided. Any change:	s to
Possible Hazard Identification					S	amp	ie Dis	sposal	(A fee	may b	e ass	essed i	samp	oles ar	e reta	ned longer tha	an 1 month)	
Unconfirmed						Ш	Retui	т То С	lient	_	ب Disµ	osal B	/ Lab	L	⊔ _{Ar}	chive For	Months	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	2		S	pecia	al Inst	truction	s/QC F	Require	ments:							
Empty Kit Relinquished by:		Date:			Time	e:		-				Metho	d of Ship	pment:				
Relinquished by:	Date/Time 72	14	Compa	any	1	Re	ceived	by:					Da	te/Time:			Company	
Relinquished by:	Date/Time:]-	Сотра	any		Ra	ceived	by:					Da	ite/Time:			Company	_
Relinquished by:	Date/Time:		Compa	my		Re	ceived	by:	71-				Da	472	41-	4 9:4	OPELL	-
Custody Seals Intact: Custody Seal No.:						Co	oler Te	mperatu	re(s) °C	and Othe	r Rema	rks:	n	29	/ /	(.	23	

Δ Yes Δ No

Ver: 06/08/2021

Client: Messer LLC Job Number: 860-71662-1

Login Number: 71662 List Source: Eurofins Houston

List Number: 1

Creator: Torres, Sandra

Creator: Torres, Sandra		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
here are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
sample collection date/times are provided.	True	
appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
sample Preservation Verified.	True	
here is sufficient vol. for all requested analyses, incl. any requested //S/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
fultiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

2

5

6

1 1

14

14

1 0

16

Client: Messer LLC Job Number: 860-71662-1

Login Number: 71662 List Source: Eurofins Lancaster Laboratories Environment Testing, LLC
List Number: 2 List Creation: 04/11/24 11:54 AM

Creator: Arroyo, Haley

oreator. Arroyo, maley		
Question	Answer	Comment
The cooler's custody seal is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature acceptable, where thermal pres is required (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV:Container Temp acceptable, where thermal pres is required (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact.	N/A	
VOA sample vials do not have headspace >6mm in diameter (none, if from	N/A	

4

6

8

10

12

13

15

16

WV)?

Client: Messer LLC Job Number: 860-71662-1

Login Number: 71662 List Source: Eurofins Lancaster Laboratories Environment Testing, LLC
List Number: 4 List Creation: 04/24/24 11:30 AM

Creator: Santiago, Nathaniel

Question	Answer	Comment
The cooler's custody seal is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature acceptable, where thermal pres is required(=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV:Container Temp acceptable, where thermal pres is required (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact.	N/A	
VOA sample vials do not have headspace >6mm in diameter (none, if from	N/A	

_

3

4

6

8

10

12

14

WV)?

Client: Messer LLC Job Number: 860-71662-1

List Source: Eurofins Pensacola
List Number: 3
List Creation: 04/13/24 02:51 PM

Creator: Earnest, Tamantha

Creator: Earnest, Tamantha		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.7°C IR8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	

True

N/A

2

3

6

8

10

13

15

16

Samples do not require splitting or compositing.

Residual Chlorine Checked.

TR.1.0.5.b – Chemical Information Safety Datasheets

<u>Attachment – T.R.1.0-5.b – Cooling Tower and Boiler Chemicals</u> <u>Information</u>

<u>Product</u>	<u>Use</u>	Chemicals listed in SDS	CAS	Toxicity Data in SDS
3DT394	Water treatment	No hazardous ingredient listed	N/A	Yes
71D5 PLUS	Antifoam	Straight run middle distillate	64741-44-2	Yes
		Hdrotreated light distillate	64742-47-8	
		Polypropylene glcol	25322-69-4	
		1-octanol	111-87-5	
		Fatty alkyl polyglycol	N/A	
		Aliphatic alcohol	N/A	
		Paraffin wax	8002-74-2	
3D TRASAR 3DT198	Water treatment	Sodium tolyltriazole	64665-57-2	Yes, high human hazard.
DOD Free Chlorine	Chlorine analysis	Sodium phosphate, dibasic	7558-79-4	Yes
Reagent		N,N-diethyl-p-phenylenediamine, salt	N/A	
		Disodium ethylenediaminetetraacetic acid (EDTA)	139-33-3	
		Carboxylate salt	N/A	
Liquichlor (Sodium	, , ,		7681-52-9	Yes
hypochlorite)		Sodium hydroxide	1310-73-2	
Sulfuric acid	pH control	Sulfuric acid	7664-93-9	Yes
3DT TRASAR			N/A	Yes
3DT175	treatment	Inorganic Polyphosphate	N/A	
Boilermate 1200S	,		1344-09-8	Yes
	treatment	Potassium hydroxide	1310-58-3	
		Tetrasodium salt of ethylenediaminetetraacetic acid tetrahydrate	13235-36-4	

PRODUCT

3D TRASAR® 3DT198

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME:

3D TRASAR® 3DT198

COMPANY IDENTIFICATION:

Nalco Company 1601 W. Diehl Road Naperville, Illinois 60563-1198

EMERGENCY TELEPHONE NUMBER(S):

(800) 424-9300 (24 Hours) CHEMTREC

NFPA 704M/HMIS RATING

HEALTH: 3/3

FLAMMABILITY:

1/1

INSTABILITY: 0/0 0 = Insignificant 1 = Slight 2 = Moderate 3 = High 4 = Extreme * = Chronic Health Hazard

COMPOSITION/INFORMATION ON INGREDIENTS 2.

Our hazard evaluation has identified the following chemical substance(s) as hazardous. Consult Section 15 for the nature of the hazard(s).

Hazardous Substance(s) Sodium Tolyltriazole

CAS NO

% (w/w)

64665-57-2

30.0 - 60.0

3. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

DANGER

Corrosive. May cause tissue damage. Harmful if swallowed.

Do not get in eyes, on skin or on clothing. Do not take Internally. Use with adequate ventilation. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. After contact with skin, wash immediately with plenty of water. Use a mild soap if available.

Wear a face shield. Wear chemical resistant apron, chemical splash goggles, impervious gloves and boots. Not flammable or combustible. May evolve oxides of carbon (COx) under fire conditions. May evolve oxides of nitrogen (NOx) under fire conditions.

PRIMARY ROUTES OF EXPOSURE:

Eye, Skin

HUMAN HEALTH HAZARDS - ACUTE :

EYE CONTACT:

Corrosive. Will cause eye burns and permanent tissue damage.

SKIN CONTACT:

Corrosive; causes permanent skin damage.

PRODUCT

3D TRASAR® 3DT198

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

SPECIAL PROTECTIVE EQUIPMENT FOR FIRE FIGHTING:

In case of fire, wear a full face positive-pressure self contained breathing apparatus and protective suit.

6. ACCIDENTAL RELEASE MEASURES

PERSONAL PRECAUTIONS:

Restrict access to area as appropriate until clean-up operations are complete. Use personal protective equipment recommended in Section 8 (Exposure Controls/Personal Protection). Stop or reduce any leaks if it is safe to do so. Keep people away from and upwind of spill/leak. Ventilate spill area if possible. Ensure clean-up is conducted by trained personnel only. Do not touch spilled material. Have emergency equipment (for fires, spills, leaks, etc.) readily available. Notify appropriate government, occupational health and safety and environmental authorities.

METHODS FOR CLEANING UP:

SMALL SPILLS: Soak up spill with absorbent material. Place residues in a suitable, covered, properly labeled container. Wash affected area. LARGE SPILLS: Contain liquid using absorbent material, by digging trenches or by diking. Reclaim into recovery or salvage drums or tank truck for proper disposal. Clean contaminated surfaces with water or aqueous cleaning agents. Contact an approved waste hauler for disposal of contaminated recovered material. Dispose of material in compliance with regulations indicated in Section 13 (Disposal Considerations).

ENVIRONMENTAL PRECAUTIONS:

Prevent material from entering sewers or waterways.

7. HANDLING AND STORAGE

HANDLING:

Do not get in eyes, on skin, on clothing. Do not take internally. Use with adequate ventilation. Do not breathe vapors/gases/dust. Avoid generating aerosols and mists. Have emergency equipment (for fires, spills, leaks, etc.) readily available. Ensure all containers are labeled. Do not mix with acids.

STORAGE CONDITIONS:

Protect product from freezing. Store the containers tightly closed. Store separately from acids. Store in suitable labeled containers.

SUITABLE CONSTRUCTION MATERIAL:

Stainless Steel 304, Compatibility with Plastic Materials can vary; we therefore recommend that compatibility is tested prior to use.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

OCCUPATIONAL EXPOSURE LIMITS:

This product does not contain any substance that has an established exposure limit,

ENGINEERING MEASURES:

General ventilation is recommended. Use local exhaust ventilation if necessary to control airborne mist and vapor.

PRODUCT

3D TRASAR® 3DT198

EMERGENCY TELEPHONE NUMBER(S)

(800) 424-9300 (24 Hours) CHEMTREC

10. | STABILITY AND REACTIVITY

STABILITY:

Stable under normal conditions.

HAZARDOUS POLYMERIZATION:

Hazardous polymerization will not occur.

CONDITIONS TO AVOID:

Freezing temperatures.

MATERIALS TO AVOID:

Contact with strong acids (e.g. sulfuric, phosphoric, nitric, hydrochloric, chromic, sulfonic) may generate heat, splattering or boiling and toxic vapors. Contact with strong oxidizers (e.g. chlorine, peroxides, chromates, nitric acid, perchlorate, concentrated oxygen, permanganate) may generate heat, fires, explosions and/or toxic vapors.

HAZARDOUS DECOMPOSITION PRODUCTS:

Under fire conditions:

Oxides of carbon, Oxides of nitrogen

11. TOXICOLOGICAL INFORMATION

The following results are for the product.

ACUTE ORAL TOXICITY:

Species:

Rat

LD50:

640 mg/kg

Test Descriptor:

Product

ACUTE DERMAL TOXICITY:

Species:

Rabbit

LD50:

> 2,000 mg/kg

Test Descriptor:

Product

SENSITIZATION:

This product is not expected to be a sensitizer.

CARCINOGENICITY:

None of the substances in this product are listed as carcinogens by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP) or the American Conference of Governmental Industrial Hygienists (ACGIH).

HUMAN HAZARD CHARACTERIZATION:

Based on our hazard characterization, the potential human hazard is: High

PRODUCT

3D TRASAR® 3DT198

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

The portion in water is expected to be soluble or dispersible.

BIOACCUMULATION POTENTIAL

This preparation or material is not expected to bioaccumulate.

ENVIRONMENTAL HAZARD AND EXPOSURE CHARACTERIZATION

Based on our hazard characterization, the potential environmental hazard is: Moderate

If released into the environment, see CERCLA/SUPERFUND in Section 15.

13. **DISPOSAL CONSIDERATIONS**

If this product becomes a waste, it is not a hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA) 40 CFR 261, since it does not have the characteristics of Subpart C, nor is it listed under Subpart D.

As a non-hazardous waste, it is not subject to federal regulation. Consult state or local regulation for any additional handling, treatment or disposal requirements. For disposal, contact a properly licensed waste treatment, storage, disposal or recycling facility.

14. TRANSPORT INFORMATION

The information in this section is for reference only and should not take the place of a shipping paper (bill of lading) specific to an order. Please note that the proper Shipping Name / Hazard Class may vary by packaging, properties, and mode of transportation. Typical Proper Shipping Names for this product are as follows.

LAND TRANSPORT:

Proper Shipping Name: Technical Name(s):

UN/ID No:

Hazard Class - Primary:

Packing Group:

Flash Point:

CAUSTIC ALKALI LIQUID, N.O.S.

SODIUM TOLYLTRIAZOLE

UN 1719

8

11

Not flammable

AIR TRANSPORT (ICAO/IATA):

Proper Shipping Name:

Technical Name(s):

UN/ID No:

Packing Group:

Hazard Class - Primary:

CAUSTIC ALKALI LIQUID, N.O.S.

SODIUM TOLYLTRIAZOLE

UN 1719

8 П

MARINE TRANSPORT (IMDG/IMO):

Proper Shipping Name: Technical Name(s):

UN/ID No:

CAUSTIC ALKALI LIQUID, N.O.S.

SODIUM TOLYLTRIAZOLE

UN 1719

PRODUCT

3D TRASAR® 3DT198

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

FOOD AND DRUG ADMINISTRATION (FDA) Federal Food, Drug and Cosmetic Act:

When use situations necessitate compliance with FDA regulations, this product is acceptable under: 21 CFR 176.170 Components of paper and paperboard in contact with aqueous and fatty foods and 21 CFR 176.180 Components of paper and paperboard in contact with dry foods.

Limitation: For use only as a corrosion inhibitor at the bronze couch roll at a maximum concentration of 5 ppm as product in the spray flow.

This product has been certified as KOSHER/PAREVE for year-round use EXCEPT FOR THE PASSOVER SEASON by the CHICAGO RABBINICAL COUNCIL.

FEDERAL WATER POLLUTION CONTROL ACT, CLEAN WATER ACT, 40 CFR 401.15 / formerly Sec. 307, 40 CFR 116.4 / formerly Sec. 311 :

This product may contain trace levels (<0.1% for carcinogens, <1% all other substances) of the following substance(s) listed under the regulation. Additional components may be unintentionally present at trace levels.

Substance(s)	Citations	
Sodium Hydroxide	Sec. 311	

CLEAN AIR ACT, Sec. 112 (Hazardous Air Pollutants, as amended by 40 CFR 63), Sec. 602 (40 CFR 82, Class I and II Ozone Depleting Substances):

Substances listed under this regulation are not intentionally added or expected to be present in this product. Listed components may be present at trace levels.

CALIFORNIA PROPOSITION 65:

Substances listed under California Proposition 65 are not intentionally added or expected to be present in this product.

MICHIGAN CRITICAL MATERIALS:

Substances listed under this regulation are not intentionally added or expected to be present in this product. Listed components may be present at trace levels.

STATE RIGHT TO KNOW LAWS:

The following substances are disclosed for compliance with State Right to Know Laws:

Sodium Tolyltriazole Sodium Hydroxide

64665-57**-**2 1310-73**-**2

INTERNATIONAL CHEMICAL CONTROL LAWS:

CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA):

The substance(s) in this preparation are included in or exempted from the Domestic Substance List (DSL),

PRODUCT

3D TRASAR® 3DT198

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

Integrated Risk Information System, U.S. Environmental Protection Agency, Washington, D.C. (TOMES CPSTM CD-ROM Version),
Micromedex, Inc., Englewood, CO.

Annual Report on Carcinogens, National Toxicology Program, U.S. Department of Health and Human Services, Public Health Service.

Title 29 Code of Federal Regulations, Part 1910, Subpart Z, Toxic and Hazardous Substances, Occupational Safety and Health Administration (OSHA), (Ariel Insight™ CD-ROM Version), Ariel Research Corp., Bethesda, MD.

Registry of Toxic Effects of Chemical Šubstances, National Institute for Occupational Safety and Health, Cincinnati, OH, (TOMES CPS™ CD-ROM Version), Micromedex, Inc., Englewood, CO.

Ariel Insight™ (An integrated guide to industrial chemicals covered under major regulatory and advisory programs), North American Module, Western European Module, Chemical Inventories Module and the Generics Module (Ariel Insight™ CD-ROM Version), Ariel Research Corp., Bethesda, MD.

The Teratogen Information System, University of Washington, Seattle, WA (TOMES CPS™ CD-ROM Version), Micromedex, Inc., Englewood, CO.

Prepared By: Product Safety Department

Date issued: 03/10/2011 Version Number: 1.6

Page 2 Date Printed 7/21/15 MSDS No: M00109

Sodium Phosphate, Dibasic

CAS Number: 7558-79-4
Chemical Formula: Na₂HPO_A
GHS Classification: Skin Irrit. 2, H315; Eye Irrit. 2A, H319
Percent Range (Trade Secret): 30.0 - 40.0
Percent Range Units: weight / weight
PEL: 15 mg/m³ as inhalable dust; 5 mg/m³ as respirable dust
TLV: 10 mg/m³ as inhalable dust; 3 mg/m³ as respirable dust

WHMIS Symbols: Not applicable Salt of N.N-Diethyl-p-Phenylenediamine

CAS Number: Confidential Chemical Formula: Confidential CHS Classification: Acute Tox A

GHS Classification: Acute Tox. 4, H302; Eye Irrit. 2, H319; Aquatic Chrn. 3, H412

Percent Range (Trade Secret): < 5.0
Percent Range Units: weight / weight

PEL: 15 mg/m³ as inhalable dust; 5 mg/m³ as respirable dust
TLV: 10 mg/m³ as inhalable dust; 3 mg/m³ as respirable dust
HMIRC Registry Number 8081 Granted: 12/02/24

WHMIS Symbols: Other Toxic Effects

Disodium EDTA

CAS Number: 139-33-3

Page 4 Date Printed 7/21/15 MSDS No. M00109

WHMIS Symbols: Not applicable

4. FIRST AID MEASURES

General Information: In the event of exposure, show this Material Safety Data Sheet and label (where possible) to a doctor

Advice to doctor: Treat symptomatically.

Eye Contact: Immediately flush eyes with water for 15 minutes. Call physician if irritation develops.

Skin Contact (First Aid): Wash skin with soap and plenty of water. Call physician if irritation develops. Remove contaminated clothing,

Inhalation: Remove to fresh air. Give artificial respiration if necessary. If you feel unwell, contact a physician **Ingestion (First Aid):** Never give anything by mouth to an unconscious person. Call physician immediately. Give large quantities of water or milk. If you feel unwell, contact a physician.

5. FIRE FIGHTING MEASURES

Flammable Properties: Material is not classified as flammable according to GHS criteria. Can burn in fire, releasing toxic vapors.

Fire Fighting Instruction: As in any fire, wear self-contained breathing apparatus pressure-demand and full protective gear.

Extinguishing Media: Use media appropriate to surrounding fire conditions

Extinguishing Media NOT To Be Used: Not applicable

Fire / Explosion Hazards: May react violently with: strong oxidizers

Hazardous Combustion Products: Toxic fumes of: carbon monoxide, carbon dioxide. phosphorus oxides nitrogen oxides.

6. ACCIDENTAL RELEASE MEASURES

Spill Response Notice:

Only persons properly qualified to respond to an emergency involving hazardous substances may respond to a spill according to federal regulations (OSHA 29 CFR 1910.120(a)(v)) and per your company's emergency response plan and guidelines/procedures. See Section 13, Special Instructions for disposal assistance. Outside of the US, only persons properly qualified according to state or local regulations should respond to a spill involving chemicals.

Containment Technique: Stop spilled material from being released to the environment. Releases of this material may contaminate the environment.

Clean-up Technique: Scoop up spilled material into a large beaker and dissolve with water. Decontaminate the area of the spill with a soap solution. If permitted by regulation, Flush reacted material to the drain with a large excess of water. Otherwise, Dispose of in accordance with local, state and federal regulations or laws.

Evacuation Procedure: Evacuate as needed to perform spill clean-up. If conditions warrant, increase the size of the evacuation.

DOT Emergency Response Guide Number: Not applicable

7. HANDLING AND STORAGE

Handling: Avoid contact with eyes skin clothing Use with adequate ventilation. Do not breathe dust. Wash thoroughly after handling. Maintain general industrial hygiene practices when using this product.

Storage: Store between 10° and 25°C. Protect from: light moisture heat Keep away from: oxidizers *Flammability Class*; Not applicable

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering Controls: Use general ventilation to minimize exposure to mist, vapor or dust. Maintain general industrial hygiene practices when using this product.

Personal Protective Equipment:

Eye Protection: safety glasses with top and side shields

Skin Protection: nitrile gloves In the EU, the selected gloves must satisfy the specifications of EU Directive 89/686/EEC and standard EN 374 derived from it. lab coat

Page 6 Date Printed 7/21/15 MSDS No: M00109

Hazardous Decomposition: Heating to decomposition releases toxic and/or corrosive fumes of: carbon dioxide carbon monoxide phosphorus oxides nitrogen oxides

Conditions to Avoid: Exposure to light. Excess moisture Heating to decomposition. Contact with oxidizers Poor Ventilation

11. TOXICOLOGICAL INFORMATION

Toxicokinetics, Metabolism and Distribution: No information available for mixture.

Toxicologically Synergistic Products: None reported

Acute Toxicity: Practically Non-toxic Based on classification principles, the classification criteria are not met. Specific Target Organ Toxicity - Single Exposure (STOT-SE): Based on classification principles, the classification criteria are not met.

Specific Target Organ Toxicity - Repeat Exposure (STOT-RE): Based on classification principles, the classification criteria are not met.

Skin Corrosion/Irritation: Irritating to skin.

Eye Damage: Irritating to eyes.

Sensitization: Based on classification principles, the classification criteria are not met.

CMR Effects/Properties (carcinogenic, mutagenic or toxic to reproduction): Based on classification principles, the classification criteria are not met. Summary of findings reported in the literature follow.

Disodium EDTA: Cytogenetic Analysis - Hamster Lung - 200 mg/L

IARC Listed: No

This product does NOT contain any NTP listed chemicals.

This product does NOT contain any OSHA listed carcinogens.

Symptoms/Effects:

Ingestion: DPD LD50 studies revealed decreased locomotor activity, depressed respiration, muscle spasms, loss of righting reflex and death. Autopsies revealed ulcerated stomach, enteritis, gas and congested lungs. Very large doses may cause: gastrointestinal tract irritation diarrhea nausea vomiting irritation of the mouth and esophagus fever lethargy muscular cramps calcium deficiency in the blood kidney damage

Inhalation: Large doses may cause: irritation of nose and throat

Skin Absorption: No effects anticipated

Chronic Effects: DPD may cause allergic skin reactions in some people causing severe skin rashes and itching.

Chronic overexposure may cause low levels of calcium in the blood kidney damage

Medical Conditions Aggravated: Allergy or sensitivity to salts of N,N-Diethyl-p-phenylenediamine Pre-existing: Eye conditions Skin conditions Respiratory conditions

12. ECOLOGICAL INFORMATION

Product Ecological Information: --

No ecological data available for this product. Based on classification principles, not classified as hazardous to the environment.

Method Used for Estimation of Aquatic Toxicity of Mixture Summation Method M-factor (Multiplier) for highly toxic ingredients: 1

Ingredient Ecological Information: Salt of N,N-Diethyl-p-Phenylenediamine: 48 hr Daphnia magna EC50 = 10.8 mg/L; 24 hr NOEC = 3.1 mg/L; 48 hr NOEC = 3.1 mg/L; EDTA, disodium salt: 96 hr Bluegill LC50 = 159 mg/L; 72 hr Green algae ErC50 = 10-100 mg/L.

CEPA categorization for ingredients are as follows:

EDTA, disodium salt: Not persistent, bioaccumulative or inherently toxic to aquatic organisms.

Sodium Phosphate, Dibasic: Persistent, not bioaccumulative and not inherently toxic to aquatic organisms.

13. DISPOSAL CONSIDERATIONS

EPA Waste ID Number: Not applicable

Special Instructions (Disposal): Dilute to 3 to 5 times the volume with cold water. If permitted by regulation, Open cold water tap completely, slowly pour the material to the drain. Allow cold water to run for 5 minutes to completely flush the system. Otherwise, Check with local municipal and state authorities and waste contractors for pertinent local information regarding the proper disposal of chemicals.

Empty Containers: Working in a well-ventilated area, Rinse three times with an appropriate solvent. Collect rinsate and dispose of according to local, state or federal regulations. In the US, rinsate from empty containers is classified as

Page 8 Date Printed 7/21/15 MSDS No; M00109

California Perchlorate Rule CCR Title 22 Chap 33: Not applicable

Trade Secret Registry: New Jersey Trade Secret Registry Number 80100131-5001 (Carboxylate Salt) New Jersey Trade Secret Registry Number 80100131-5002 (DPD Salt) New York Trade Secret Registry Number 478 (DPD Salt) New York Trade Secret Registry Number 479 (Carboxylate Salt) This product complies with Pennsylvania Trade Secret Regulations. This product is registered as a trade secret in the state of Illinois. This product is registered as a trade secret in the state of New York.

National Inventories:

U.S. Inventory Status: All ingredients in this product are listed on the TSCA 8(b) Inventory (40 CFR 710).
CAS Number: Not applicable

Canadian Inventory Status: All ingredients of this product are DSL/NDSL Listed.

EEC Inventory Status: All ingredients used to make this product are listed on EINECS / ELINCS or are placed on the market in quantities less than 10 kg per year.

Australian Inventory (AICS) Status: Exempt. Annual Report Required.

New Zealand Inventory (NZIoC) Status: All components either listed or exempt.

Korean Inventory (KECI) Status: All components of this product are either listed, listed as the anhydrous compound or exempt.

Japan (ENCS) Inventory Status: All components either listed or exempt.

China (PRC) Inventory (MEP) Status: All components either listed or exempt.

16. OTHER INFORMATION

References: TLV's Threshold Limit Values and Biological Exposure Indices for 1992-1993. American Conference of Governmental Industrial Hygienists, 1992. Air Contaminants, Federal Register, Vol. 54, No. 12. Thursday, January 19, 1989. pp. 2332-2983. In-house information. Technical Judgment. Outside Testing. Sax, N. Irving. Dangerous Properties of Industrial Materials, 7th Ed. New York: Van Nostrand Reinhold Co., 1989.

Complete Text of H phrases referred to in Section 3: H302 Harmful if swallowed. Not applicable H315 Causes skin irritation. H319 Causes serious eye irritation. H401 Toxic to aquatic life. H412 Harmful to aquatic life with long lasting effects.

Revision Summary: Substantial revision to comply with EU Reg 1272/2008, Reg 1907/2006 and UN GHS (ST/SG/AC.10/36/Add.3).

Date of MSDS Preparation:

Day: 04

Month: March

Year: 2014

MSDS Prepared: MSDS prepared by Product Compliance Department extension 3350

CCOHS Evaluation Note: This product has been classified and labeled in accordance with the requirements of GHS (ST/SG/AC.10/36/Add.3). It is offered under the interim policy that was established by Health Canada permitting use of GHS-formatted safety data sheets in Canada prior to revision of CPR to GHS. It is offered under exemption from WHMIS labeling as specified in the Controlled Products Regulation (CPR) Section 17.

Legend:

NA - Not Applicable

w/w - weight/weight

ND - Not Determined

w/v - weight/volume

NV - Not Available

v/v - volume/volume

USER RESPONSIBILITY: Each user should read and understand this information and incorporate it in individual site safety programs in accordance with applicable hazard communication standards and regulations.

THE INFORMATION CONTAINED HEREIN IS BASED ON DATA CONSIDERED TO BE ACCURATE. HOWEVER, NO WARRANTY IS EXPRESSED OR IMPLIED REGARDING THE ACCURACY OF THESE DATA OR THE RESULTS TO BE OBTAINED FROM THE USE THEREOF.

HACH COMPANY ©2015

UNIVAR USA INC. ISSUE DATE:2015-07-22 Annotation:

SDS NO:OX76685 VERSION:011 2015-07-22

COMPANY IDENTITY: Univar

PRODUCT IDENTITY: Liquichlor 10-16% (Sodium Hypochlorite 10-16%)

DATE: 07/22/15 PAGE: 2 OF 8

SECTION 4. FIRST AID MEASURES

EYE CONTACT:

If this product enters the eyes, open eyes while under gently running water. Use sufficient force to open eyelids. "Roll" eyes to expose more surface. Minimum flushing is for 15 minutes. Seek immediate medical attention.

SKIN CONTACT:

If the product contaminates the skin, immediately begin decontamination with running water. Minimum flushing is for 15 minutes. Remove contaminated clothing, taking care not to contaminate eyes. If skin becomes irritated and irritation persists, medical attention may be necessary. Wash contaminated clothing before reuse, discard contaminated shoes.

INHALATION:

After high vapor exposure, remove to fresh air. If it is suspected that fumes are still present, the rescuer should wear an appropriate mask or self-contained breathing apparatus. Keep person warm and at rest. breathing is difficult, give oxygen. If breathing has stopped, trained personnel should immediately begin artificial respiration. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband. If the heart has stopped, trained personnel should immediately begin cardiopulmonary resuscitation (CPR). Seek immediate medical attention. In case of inhalation of decomposition products in a fire, symptoms may be delayed. The exposed person may need to be kept under medical surveillance for 48 hours.

SWALLOWING:

If swallowed, CALL PHYSICIAN OR POISON CONTROL CENTER FOR MOST CURRENT INFORMATION. If professional advice is not available, give two glasses of water to drink. DO NOT INDUCE VOMITING. Never induce vomiting or give liquids to someone who is unconscious, having convulsions, or unable to swallow. Seek immediate medical attention.

NOTES TO PHYSICIAN:

There is no specific antidote. Treatment of overexposure should be directed at the control of symptoms and the clinical condition of the patient. Any material aspirated during vomiting may cause lung injury. Therefore, emesis should not be induced mechanically or pharmacologically. If it is considered necessary to evacuate the stomach contents, this should be done by means least likely to cause aspiration (such as: Gastric lavage after endotracheal intubation).

Victims of chemical exposure must be taken for medical attention. Rescuers should be taken for medical attention, if necessary. Take a copy of label and SDS to physician or health professional with victim.

SECTION 5. FIRE FIGHTING MEASURES

FIRE & EXPLOSION PREVENTIVE MEASURES Not Applicable.

EXTINGUISHING MEDIA

Use dry powder, foam, carbon dioxide, water spray, halon, or any "ABC" Class extinguisher.

SPECIAL FIRE FIGHTING PROCEDURES

Water spray may be ineffective on fire but can protect fire-fighters & cool closed containers. Use fog nozzles if water is used. Do not enter confined fire-space without full bunker gear. (Helmet with face shield, bunker coats, gloves & rubber boots). Use NIOSH approved positive-pressure self-contained breathing apparatus.

UNUSUAL EXPLOSION AND FIRE PROCEDURES

Noncombustible.

Isolate from reducers, acids, wood, organic materials, and most metals.

Oxidizer fumes damage lungs. Symptoms may be delayed. Do not breathe fumes.

COMPANY IDENTITY: Univar

DATE: 07/22/15

PRODUCT IDENTITY: Liquichlor 10-16% (Sodium Hypochlorite 10-16%)

PAGE: 4 OF 8

SECTION 7. HANDLING AND STORAGE (CONTINUED)

TANK CAR SHIPMENTS:

Tank cars carrying this product should be loaded and unloaded in strict accordance with tank-car manufacturer's recommendation and all established on-site safety procedures. Appropriate personal protective equipment must be used (see Section 8, Engineering Controls and Personal Protective Equipment.). All loading and unloading equipment must be inspected, prior to each use. Loading and unloading operations must be attended, at all times. Tank cares must be level, brakes must be set or wheels must be locked or blocked prior to loading or unloading. Tank car (for loading) or storage tanks (for unloading) must be verified to be correct for receiving this product and be properly prepared, prior to starting the transfer operations. Hoses must be verified to be in the correct positions, before starting transfer operations. A sample (if required) must be taken and verified (if required) prior to starting transfer operations. All lines must be blown-down and purged before disconnecting them from the tank car or vessel.

PROTECTIVE PRACTICES DURING MAINTENANCE OF CONTAMINATED EQUIPMENT:

Follow practices indicated in Section 6 (Accidental Release Measures). Make certain application equipment is locked and tagged-out safely. Always use this product in areas where adequate ventilation is provided. Collect all rinsates and dispose of according to applicable Federal, State, or local procedures.

SECTION 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

MATERIAL	CAS#	TWA (OSHA)	TLV (ACGIH)
Water	7732-18-5	None Known	None Known
Sodium Hydroxide	1310-73-2	2 mg/m3	None Known
Sodium Hypochlorite	7681-52-9	None Known	None Known

MATERIAL CAS# EINECS# CEILING STEL(OSHA/ACGIH) HAP Sodium Hydroxide 1310-73-2 - 2 mg/m3 None Known No

This product contains no EPA Hazardous Air Pollutants (HAP) in amounts > 0.1%.

RESPIRATORY EXPOSURE CONTROLS

Maintain airborne contaminant concentrations below exposure limits given above. If respiratory protection is needed, use only protection authorized in 29 CFR 1910.134, European Standard EN 149, or applicable State regulations. If adequate ventilation is not available or there is potential for airborne exposure above the exposure limits, a respirator may be worn up to the respirator exposure limitations, check with respirator equipment manufacturer's recommendations/limitations. For a higher level of protection, use positive pressure supplied air respiration protection or Self Contained Breathing Apparatus or if oxygen levels are below 19.5% or are unknown.

EMERGENCY OR PLANNED ENTRY INTO UNKNOWN CONCENTRATIONS OR IDLH CONDITIONS
Positive pressure, full-face piece Self Contained Breathing Apparatus; or positive
pressure, full-face piece Salf Contained Breathing Apparatus with an auxilliary positive
pressure Self Contained Breathing Apparatus.

VENTILATION

LOCAL EXHAUST: Necessary MECHANICAL (GENERAL): Necessary SPECIAL: None OTHER: None Please refer to ACGIH document, "Industrial Ventilation, A Manual of Recommended Practices", most recent edition, for details.

EYE PROTECTION:

Splash goggles or safety glasses. Face-shields are recommended when the operation can generate splashes, sprays or mists.

HAND PROTECTION:

Wear appropriate impervious gloves for routine industrial use. Use impervious gloves for spill response, as stated in Section 6 of this SDS (Accidental Release Measures).

COMPANY IDENTITY: Univar

PRODUCT IDENTITY: Liquichlor 10-16% (Sodium Hypochlorite 10-16%)

DATE: 07/22/15 PAGE: 6 OF 8

SECTION 10. STABILITY & REACTIVITY (CONTINUED)

HAZARDOUS DECOMPOSITION PRODUCTS

Hydrogen Chloride, Phosgene, Sodium Oxide & Hydroxide from heating.

HAZARDOUS POLYMERIZATION Will not occur.

SECTION 11. TOXICOLOGICAL INFORMATION

ACUTE HAZARDS

EYE & SKIN CONTACT:

Severe burns to skin, defatting, dermatitis. Severe burns to eyes, redness, tearing, blurred vision. Liquid can cause severe skin & eye burns. Wash thoroughly after handling.

INHALATION:

Severe respiratory tract irritation may occur. Vapor harmful. The applicable occupational exposure limit value should not be exceeded during any part of the working exposure.

SWALLOWING:

Harmful or fatal if swallowed.

SUBCHRONIC HAZARDS/CONDITIONS AGGRAVATED

CONDITIONS AGGRAVATED:

Sodiumn Hypochlorite, a component of this product, is a sensitizer. Prolonged or repeated skin contact can result in the development of rashes, welts, and other allergy-like symptoms.

CHRONIC HAZARDS

CANCER, REPRODUCTIVE & OTHER CHRONIC HAZARDS:
This product has no carcinogens listed by IARC, NTP, NIOSH,
OSHA or ACGIH, as of this date, greater or equal to 0.1%.

MUTAGENICITY: This product is not reported to produce mutagenic effects in humans. Human mutation data are available for Sodium Hypochlorite (a component of this product); these data were obtained during clinical studies involving specific tissues exposed to relatively high concentrations of this substance. Mutation data, obtained during clinical studies on test animal tissues or micro-organisms are available for Potassium Hydroxide.

EMBRYOTOXICITY: This product is not reported to produce embryotoxic effects in humans.

TERATOGENICITY: This product is not reported to produce teratogenic effects in humans.

REPRODUCTIVE TOXICITY: This product is not reported to cause reproductive effects in humans.

A <u>mutagen</u> is a chemical which causes permanent changes to genetic material (DNA) such that the changes will propagate through generational lines. An <u>embryotoxin</u> is a chemical which causes damage to a developing embryo (such as: within the <u>eight</u> weeks of pregnancy in humans), but the damage does not propagate across generational lines. A <u>teratogen</u> is a chemical which causes damage to a developing fetus, but the damage does not propagate across generational lines. A <u>reproductive toxin</u> is any substance which interferes in any way with the reproductive process.

MAMMALIAN TOXICITY INFORMATION

SODIUM HYDROXIDE:

Eye irritancy (monkey): 1%, 24 hours (severe)
Eye irritancy (rabbit): 500 ml, 24 hours (severe)
Eye irritancy (rabbit): 1% solution (severe)
Eye irritancy (rabbit): 1 mg, 24 hours (severe)
Cytogenic analysis system (grasshopper parenteral): 20 mg
LD50 (interperoneal, mouse): 40 mg/kg
LDLo (oral, rabbit): 500 mg/kg

COMPANY IDENTITY: Univar PRODUCT IDENTITY: 0X76685

DATE: 07/22/15 PAGE: 8 OF 8

SECTION 15. REGULATORY INFORMATION

EPA REGULATION:

SARA SECTION 311/312 HAZARDS: Acute Health

All components of this product are on the TSCA list. This material contains no known products restricted under SARA Title III, Section 313 in amounts greater or equal to 1%.

SARA TITLE III INGREDIENTS	CAS#	EINECS#	WT%	(REG.SECTION)	RQ(LBS)
Sodium Hypochlorite	7681-52-9	-	< 16	(311, 312)	100
Sodium Hydroxide	1310-73-2	-	<= 1.75	(311, 312)	1000

> 625 LB / 284 KG OF THIS PRODUCT IN 1 CONTAINER EXCEEDS THE "RQ" OF SODIUM HYPOCHLORITE. Any release equal to or exceeding the RQ must be reported to the National Response Center (800-424-8802) and appropriate state and local regulatory agencies as described in 40 CFR 302.6 and 40 CFR 355.40 respectively. Failure to report may result in substantial civil and criminal penalties. State & local regulations may be more restrictive than federal regulations.

STATE REGULATIONS:

CALIFORNIA PROPOSITION 65: This product contains no chemicals known to the State of California to cause cancer & reproductive toxicity.

U.S. STATE REGULATED COMPONENTS: COMPONENT Sodium Hypochlorite Sodium Hydroxide	(HAZA AK No Yes	RDOUS S CA No Yes	SUBSTAN FL No Yes	CE LIST IL Yes Yes	rs): Ks No Yes	MA No Yes	MI No Yes	MN No Yes
:OMPONENT	MO	NJ	ND	PA	RI	TX	WV	WI
Sodium Hypochlorite	No	Yes	Yes	No	No	No	No	No
Sodium Hydroxide	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

INTERNATIONAL REGULATIONS

The components of this product are listed on the chemical inventories of the following countries:
Australia (AICS), Canada (DSL, NDSL), China (IECSC), Europe (EINECS, ELINCS),
Japan (METI/CSCL, MHLW/ISHL), South Korea (KECI), New Zealand (NZIOC),
Philippines (PICCS), Switzerland (SWISS), Taiwan (NECSI), USA (TSCA).

CANADA: WORKPLACE HAZARDOUS MATERIALS INFORMATION SYSTEM (WHMIS)

C: Oxidizing Material.
D2B: Irritating to skin / eyes.

Corrosive Material.

SECTION 16. OTHER INFORMATION

HAZARD RATINGS:

HEALTH (NFPA): 3, HEALTH (HMIS): 3, FLAMMABILITY: 0, (Personal Protection Rating to be supplied by user based on use conditions.) This information is intended solely for the use of individuals trained in the NFPA & HMIS hazard rating systems.

EMPLOYEE TRAINING

See Section 2 for Risk & Safety Statements. Employees should be made aware of all hazards of this material (as stated in this SDS) before handling it.

NALCO® 3DT394

Most important symptoms and effects, both acute and delayed

: See Section 11 for more detailed information on health effects and

symptoms.

Section: 5. FIREFIGHTING MEASURES

Suitable extinguishing media

Use extinguishing measures that are appropriate to local

circumstances and the surrounding environment.

Unsuitable extinguishing

None known.

media

Specific hazards during

Not flammable or combustible.

firefighting

Hazardous combustion products

: Carbon oxides

for firefighters

Special protective equipment Use personal protective equipment.

Specific extinguishing

methods

Fire residues and contaminated fire extinguishing water must

be disposed of in accordance with local regulations.

Section: 6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Refer to protective measures listed in sections 7 and 8.

Environmental precautions

: No special environmental precautions required.

Methods and materials for containment and cleaning up 1 Stop leak if safe to do so. Contain spillage, and then collect with non-combustible absorbent material, (e.g. sand, earth,

diatomaceous earth, vermiculite) and place in container for disposal according to local / national regulations (see section 13). Flush away traces with water. For large spills, dike spilled material or otherwise contain material to ensure runoff does not reach a waterway.

Section: 7. HANDLING AND STORAGE

Advice on safe handling

For personal protection see section 8. Wash hands after handling.

Conditions for safe storage

: Keep out of reach of children. Keep container tightly closed. Store in suitable labeled containers. Store separately from oxidizers. Store

separately from bases.

Suitable material

:: Keep in properly labelled containers.

Unsuitable material

: not determined

Section: 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Components with workplace control parameters

NALCO® 3DT394

Partition coefficient: n-

octanol/water

: no data available

Auto-ignition temperature

: no data available

Thermal decomposition

temperature

: no data available

Viscosity, dynamic

: 150 - 400 mPa.s (22.2 °C)

Viscosity, kinematic

: no data available

VOC

: 0 g/l

Section: 10. STABILITY AND REACTIVITY

Chemical stability

: Stable under normal conditions.

Possibility of hazardous

: No dangerous reaction known under conditions of normal use.

reactions

Conditions to avoid

: None known.

Hazardous decomposition

products

: Carbon oxides

Section: 11. TOXICOLOGICAL INFORMATION

exposure

Information on likely routes of : Inhalation, Eye contact, Skin contact

Potential Health Effects

Eyes

: Health injuries are not known or expected under normal use.

Skin

: Health injuries are not known or expected under normal use.

Ingestion

: Health injuries are not known or expected under normal use.

Inhalation

: Health injuries are not known or expected under normal use.

Chronic Exposure

: Health injuries are not known or expected under normal use.

Experience with human exposure

Eye contact

: No symptoms known or expected.

Skin contact

: No symptoms known or expected.

Ingestion

: No symptoms known or expected.

Inhalation

: No symptoms known or expected.

Toxicity

Product

Acute oral toxicity

: no data available

Acute inhalation toxicity

: no data available

NALCO® 3DT394

LC50 Ceriodaphnia dubia: 947 mg/l

Exposure time: 48 h
Test substance: Product

Persistence and degradability

Total Organic Carbon (TOC): 470,000 mg/l

Chemical Oxygen Demand (COD): 230,000 mg/l

Biochemical Oxygen Demand (BOD):

Incubation Period

Value 1,200 mg/l **Test Descriptor**

Product

Mobility

5 d

The environmental fate was estimated using a level III fugacity model embedded in the EPI (estimation program interface) Suite TM, provided by the US EPA. The model assumes a steady state condition between the total input and output. The level III model does not require equilibrium between the defined media. The information provided is intended to give the user a general estimate of the environmental fate of this product under the defined conditions of the models. If released into the environment this material is expected to distribute to the air, water and soil/sediment in the approximate respective percentages;

Air

: <5%

Water

: 10 - 30%

Soil

: 70 - 90%

The portion in water is expected to be soluble or dispersible.

Bioaccumulative potential

no data available

Other information

no data available

Section: 13. DISPOSAL CONSIDERATIONS

Disposal methods

Where possible recycling is preferred to disposal or incineration. If recycling is not practicable, dispose of in compliance with local regulations. Dispose of wastes in an approved waste disposal facility.

approved waste disposal facility.

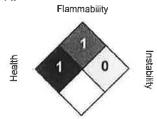
Disposal considerations

: Dispose of as unused product. Empty containers should be taken to an approved waste handling site for recycling or

disposal. Do not re-use empty containers.

Section: 14. TRANSPORT INFORMATION

The shipper/consignor/sender is responsible to ensure that the packaging, labeling, and markings are in compliance with the selected mode of transport.


Land transport (DOT)

Proper shipping name

** PRODUCT IS NOT REGULATED DURING

NALCO® 3DT394

NFPA:

Special hazard.

HMIS III:

HEALTH	1
FLAMMABILITY	1
PHYSICAL HAZARD	0

0 = not significant, 1 =Slight, 2 = Moderate, 3 = High 4 = Extreme, 4 = Chronic

Revision Date

11/10/2014

Version Number

1.0

Prepared By

: Regulatory Affairs

REVISED INFORMATION: Significant changes to regulatory or health information for this revision is indicated by a bar in the left-hand margin of the SDS.

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

For additional copies of an MSDS visit www.nalco.com and request access.

NALCO® 71D5 PLUS

Store in a welf-ventilated place. Keep cool. Store locked up. Disposal:

Dispose of contents/ container to an approved waste disposal

plant.

Other hazards

None known.

Section: 3. COMPOSITION/INFORMATION ON INGREDIENTS

Pure substance/mixture : Mixture	9	
	×	***
Chemical Name	CAS-No.	Concentration: (%)
Straight Run Middle Distillate	64741-44-2	30 - 60
Hydrotreated Light Distillate	64742-47-8	10 - 30
Polypropylene Glycol	25322-69-4	5 - 40
1-Octanol	111-87-5	1 - 5
Fatty Alkyl Polyglycol	Proprietary	1 - 5
Aliphatic alcohol	Proprietary	1 - 5
Paraffin Wax	8002-74-2	1 - 5

Section: 4. FIRST AID MEASURES

In case of eye contact

Rinse with plenty of water. Get medical attention if symptoms occur.

In case of skin contact

Wash off with soap and plenty of water. Get medical attention if symptoms occur.

: Do NOT induce vomiting. Never give anything by mouth to an unconscious person. Aspiration hazard if swallowed - can enter lungs and cause damage. Get medical attention immediately.

If inhaled

If swallowed

: Get medical attention if symptoms occur.

Protection of first-aiders

: In event of emergency assess the danger before taking action. Do not put yourself at risk of injury. If in doubt, contact emergency responders. Use personal protective equipment as required.

Notes to physician

: Treat symptomatically.

Most important symptoms and effects, both acute and delayed

See Section 11 for more detailed information on health effects and symptoms.

Section: 5. FIREFIGHTING MEASURES

Suitable extinguishing media

Use extinguishing measures that are appropriate to local circumstances and the surrounding environment.

Unsuitable extinguishing media

: High volume water jet

Specific hazards during firefighting

Fire Hazard

Keep away from heat and sources of ignition. Flash back possible over considerable distance.

Hazardous combustion

: Carbon oxides

products

NALCO® 71D5 PLUS

Paraffin Wax	8002-74-2	TWA (Fumes)	2 mg/m3	ACGIH
		TWA (Fumes)	2 mg/m3	NIOSH REL

Engineering measures

Effective exhaust ventilation system Maintain air concentrations

below occupational exposure standards.

Personal protective equipment

Eye protection

: Safety glasses

Hand protection

Wear protective gloves.

Gloves should be discarded and replaced if there is any indication of

degradation or chemical breakthrough.

Skin protection

: Wear suitable protective clothing.

Respiratory protection

: When workers are facing concentrations above the exposure limit

they must use appropriate certified respirators.

Hygiene measures

Handle in accordance with good industrial hygiene and safety practice. Remove and wash contaminated clothing before re-use. Wash face, hands and any exposed skin thoroughly after handling.

Section: 9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance

: Liquid

Colour

: clear

Odour

hydrocarbon-like

Flash point

; 92 °C

Method: ASTM D 93, Pensky-Martens closed cup

pН

: Not applicable.

Odour Threshold

no data available

Melting point/freezing point

₹ PRECIPITATION POINT: 10 °C

POUR POINT: -45 °C, ASTM D-1177

range

Initial boiling point and boiling : 132.2 °C Method: ASTM D 86

Evaporation rate

no data available

Flammability (solid, gas)

: no data available

Upper explosion limit Lower explosion limit : no data available

no data available

Vapour pressure

5.1 mm Hg (37.8 °C)

Relative vapour density

; no data available

Relative density

0.84 (25 °C) ASTM D-1298

Density

0.84 g/cm3 7.0 lb/gal

Water solubility

insoluble

Solubility in other solvents

no data available

NALCO® 71D5 PLUS

Product

Acute oral toxicity

: LD50 rat > 15,380 mg/kg

Test substance Similar Product

Acute inhalation toxicity

Acute toxicity estimate: 3.38 mg/l

Exposure time: 4 h

Acute dermal toxicity

: LD50 rabbit: > 3,038 mg/kg

Test substance: Similar Product

Skin corrosion/irritation

Species: Rabbit

Result: 3.1

Method: Draize Test

Test substance:Similar Product

Serious eye damage/eye

irritation

Species: rabbit

Result: 6.0

Method: Draize Test

Test substance: Similar Product

Respiratory or skin

sensitization

: no data available

Carcinogenicity

IARC

No component of this product present at levels greater than or

equal to 0.1% is identified as probable, possible or confirmed

human carcinogen by IARC.

OSHA

No component of this product present at levels greater than or

equal to 0.1% is identified as a carcinogen or potential

carcinogen by OSHA.

NTP

No component of this product present at levels greater than or

equal to 0.1% is identified as a known or anticipated carcinogen

by NTP.

Reproductive effects

; no data available

Germ cell mutagenicity

no data available

STOT - single exposure

Teratogenicity

: no data available

0 1

: no data available

STOT - repeated exposure

: no data available

Aspiration toxicity

🤰 no data available

Section: 12. ECOLOGICAL INFORMATION

Ecotoxicity

Environmental Effects

: Toxic to aquatic life with long lasting effects.

NALCO® 71D5 PLUS

Species: Ceriodaphnia dubia Test substance: Product

Components

Toxicity to algae

Hydrotreated Light Distillate

EC50 : > 1,000 mg/l Exposure time: 48 h

Components

Toxicity to bacteria

Hydrotreated Light Distillate

> 1,000 mg/l

Persistence and degradability

The organic portion of this preparation is expected to be inherently biodegradable.

Total Organic Carbon (TOC): 195,870 mg/l

Chemical Oxygen Demand (COD): 2,200,000 mg/l

Biochemical Oxygen Demand (BOD):

Incubation Period

Value

Test Descriptor

102,440 mg/l Product

OECD 301 D (Closed Bottle) 28 Day 70-80%

Mobility

The environmental fate was estimated using a level III fugacity model embedded in the EPI (estimation program interface) Suite TM, provided by the US EPA. The model assumes a steady state condition between the total input and output. The level III model does not require equilibrium between the defined media. The information provided is intended to give the user a general estimate of the environmental fate of this product under the defined conditions of the models. If released into the environment this material is expected to distribute to the air, water and soil/sediment in the approximate respective percentages;

Air : 10 - 30% Water : 30 - 50% Soil : 30 - 50%

The portion in water is expected to be soluble or dispersible.

Bioaccumulative potential

This preparation or material is not expected to bioaccumulate.

Other information

no data available

Section: 13. DISPOSAL CONSIDERATIONS

If this product becomes a waste, it is not a hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA) 40 CFR 261, since it does not have the characteristics of Subpart C, nor is it listed under Subpart D.

Disposal methods

: The product should not be allowed to enter drains, water courses or the soil. Where possible recycling is preferred to disposal or incineration. If recycling is not practicable, dispose of in compliance with local regulations. Dispose of wastes in

NALCO® 71D5 PLUS

SARA 313

This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

California Prop 65

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

INTERNATIONAL CHEMICAL CONTROL LAWS:

TOXIC SUBSTANCES CONTROL ACT (TSCA)

The substances in this preparation are included on or exempted from the TSCA 8(b) Inventory (40 CFR 710)

CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA)

The substance(s) in this preparation are included in or exempted from the Domestic Substance List (DSL).

AUSTRALIA

All substances in this product comply with the National Industrial Chemicals Notification & Assessment Scheme (NICNAS).

CHINA

All substances in this product comply with the Provisions on the Environmental Administration of New Chemical Substances and are listed on or exempt from the Inventory of Existing Chemical Substances China (IECSC).

EUROPE

The substances in this preparation have been reviewed for compliance with the EINECS or ELINCS inventories.

JAPAN

All substances in this product comply with the Law Regulating the Manufacture and Importation Of Chemical Substances and are listed on the Existing and New Chemical Substances list (ENCS).

KOREA

All substances in this product comply with the Toxic Chemical Control Law (TCCL) and are listed on the Existing Chemicals List (ECL)

NEW ZEALAND

All substances in this product comply with the Hazardous Substances and New Organisms (HSNO) Act 1996,and are listed on or are exempt from the New Zealand Inventory of Chemicals.

PHILIPPINES

All substances in this product comply with the Republic Act 6969 (RA 6969) and are listed on the Philippines Inventory of Chemicals & Chemical Substances (PICCS).

Section: 16. OTHER INFORMATION

Page 1 of 8

COMPANY IDENTITY: Univar PRODUCT IDENTITY: SULFUR SULFURIC ACID 93%

SDS NUMBER:

CDS-2441

SDS DATE: 01/15/2015 ORIGINAL: 01/15/2015

SAFETY DATA SHEET

This Safety Data Sheet conforms to ANSI Z400.5, and to the format requirements of the Global Harmonizing System.

THIS SDS COMPLIES WITH 29 CFR 1910.1200 (HAZARD COMMUNICATION STANDARD)

IMPORTANT: Read this SDS before handling & disposing of this product.

Pass this information on to employees, customers, & users of this product.

SECTION 1. IDENTIFICATION OF THE SUBSTANCE OR MIXTURE AND OF THE SUPPLIER

PRODUCT IDENTITY: SULFURIC ACID 93% PRODUCT USES: Mineral Acid

17425 NE Union Hill Road

COMPANY IDENTITY: Univar COMPANY ADDRESS: 17425 COMPANY CITY: Redmon COMPANY PHONE: 1-425-

COMPANY CITY: Redmond, WA 98052

COMPANY PHONE: 1-425-889-3400

EMERGENCY PHONES: CHEMTREC: 1-800-424-9300 (USA)

CANUTEC: 1-613-996-6666 (CANADA)

SECTION 2. HAZARDS IDENTIFICATION

DANGER!!

2.1 HAZARD STATEMENTS: (CAT = Hazard Category)
(H200S) PHYSICAL: Corrosive To Metals:
H290 MAY BE CORROSIVE TO METALS.(CAT:1)
(H300S) HEALTH: Skin Corrosion/Irritation:
H314 CAUSES SEVERE SKIN BURNS AND EYE DAMAGE.(CAT:1)
(H300S) HEALTH: Acute Toxicity, Inhalation:
H332 HARMFUL IF INHALED.(CAT:4)

P501 Dispose of contents/container to an approved waste disposal plant.

SEE SECTIONS 8, 11 & 12 FOR TOXICOLOGICAL INFORMATION.

Page 3 of 8

COMPANY IDENTITY: PRODUCT IDENTITY: Univar

SULFURIC ACID 93%

SDS NUMBER: CDS-2441 SDS DATE: 01/15/2015 ORIGINAL: 01/15/2015

SECTION 5. FIRE FIGHTING MEASURES (CONTINUED)

5.4 SPECIFIC HAZARDS OF CHEMICAL & HAZARDOUS COMBUSTION PRODUCTS:

SLIGHTLY COMBUSTIBLE!

Reacts with most metals producing hydrogen which is extremely flammable & may explode. Keep container tightly closed. Isolate from oxidizers, alkalis, heat, & open flame. Applying to hot surfaces requires special precautions. Closed containers may explode if exposed to extreme heat. Continue all label precautions!

SECTION 6. ACCIDENTAL RELEASE MEASURES

- 6.1 SPILL AND LEAK RESPONSE AND ENVIRONMENTAL PRECAUTIONS:
 Uncontrolled releases should be responded to by trained personnel using pre-planned procedures. Proper protective equipment should be used. In case of a spill, clear the affected area, protect people, and respond with trained personnel. ELIMINATE all ignition sources (no smoking, flares, sparks, or flames in immediate area). Prevent additional discharge of material, if possible to do so without hazard. For large spillse, implement cleanup procedures and, if in public area, advise authorities.
- 6.2 PERSONAL PRECAUTIONS, PROTECTIVE EQUIPMENT, EMERGENCY PROCEDURES:
 The proper personal protective equipment for incidental releases (such as: 1 Liter of the product released in a well-ventilated area), use impermeable gloves, they should be Level B: triple-gloves (rubber gloves and nitrile gloves over latex gloves), chemical resistant suit and boots, hard-hat, and Self-Contained Breathing Apparatus specific for the material release, use impermeable gloves, specific for the material release, use impermeable gloves, specific for the material handled, chemically resistant and boots, and hard hat. Self-Contained Breathing Apparatus or respirator may be required where engineering controls are not adequate or conditions for potential exposure potential airborne concentrations in accordance with latest OSHA and/or ANSI
- 6.3 ENVIRONMENTAL PRECAUTIONS: 3 ENVIRONMENTAL PRECAUTIONS:
 Stop spill at source. Construct temporary dikes of dirt, sand, or any appropriate readily available material to prevent spreading of the material. Close or cap valves and/or block or plug hole in leaking container and transfer to another container. Keep from entering storm sewers and ditches which lead to waterways, and if necessary, call the local fire or police department for immediate emergency assistance.
- 6.4 METHODS AND MATERIAL FOR CONTAINMENT & CLEAN-UP:
 Absorb spilled liquid with polypads or other suitable absorbent materials. If necessary, neutralize using suitable buffering material, (acid with soda ash or base with phosphoric acid), and test area with litmus paper to confirm neutralization. Clean up with non-combustible absorbent (such as: sand, soil, and so on). Shovel up and place all spill residue in suitable containers. dispose of at an appropriate waste disposal facility according to current applicable laws and regulations and product characteristics at time of disposal (see Section 13 Disposal Considerations).

SECTION 7. HANDLING AND STORAGE

- 7.1 PRECAUTIONS FOR SAFE HANDLING: I PRECAUTIONS FOR SAFE HANDLING:
 Isolate from oxidizers, alkalis, heat, & open flame. Use only with adequate ventilation.
 Do not get in eyes, on skin or clothing. Wear OSHA Standard full face shield. Consult Safety
 Equipment Supplier. Wear goggles, face shield, gloves, apron & footwear impervious to material.
 Wash clothing before reuse. Continue all label precautions! NEVER pour water into this
 substance. When dissolving or diluting, always add it slowly to the water.
- 7.2 CONDITIONS FOR SAFE STORAGE, INCLUDING ANY INCOMPATIBILITIES:
 Keep separated from strong oxidants, strong bases, combustible & reducing substances, metals, food & feedstuffs, incompatible materials. May be stored in stainless steel containers.
 See: Section 10, <Materials to Avoid>. Do not store above 49 C/120 F.
 Keep container tightly closed & upright when not in use to prevent leakage.
 Reacts with most metals producing hydrogen which is extremely flammable & may explode.
 Wear full face shield, gloves & full protective clothing when opening or handling.
 When empty, drain completely, replace bungs securely.
- .3 NONBULK: CONTAINERS:
 Store containers in a cool, dry location, away from direct sunlight, sources of intense heat, or where freezing is possible. Material should be stored in secondary containers or in a diked area, as appropriate. Store containers away from incompatible chemicals (see Section 10, Stability and Reactivity). Post warning and "NO SMOKING" signs in storage and use areas, as appropriate. Empty containers should be handled with care. Never store food, feed, or drinking water in containers which held this product.

Page 5 of 8

COMPANY IDENTITY: Univar PRODUCT IDENTITY: SULFURIC ACID 93% SDS NUMBER: CDS-2441

SDS DATE: 01/15/2015 ORIGINAL: 01/15/2015

SECTION 8. EXPOSURE CONTROLS/PERSONAL PROTECTION (CONTINUED)

VENTILATION

LOCAL EXHAUST: Necessary MECHANICAL (GENERAL): Necessary SPECIAL: None OTHER: Please refer to ACGIH document, "Industrial Ventilation, A Manual of Recommended Practices", most recent edition, for details. None

8.3 INDIVIDUAL PROTECTION MEASURES, SUCH AS PERSONAL PROTECTIVE EQUIPMENT:

SAFETY PROTECTION:

Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists or dusts. If contact is possible, chemical splash goggles should be worn, when a higher degree of protection is necessary, use splash goggles or safety glasses. Face-shields are recommended when the operation can generate splashes, sprays or mists.

HAND PROTECTION: HAND PROTECTION:
Use gloves chemically resistant to this material. Preferred examples: Butyl rubber, Chlorinated Polyethylene, Polyethylene, Ethyl vinyl alcohol laminate ("EVAL"), Polyvinyl alcohol ("PVA"). Examples of acceptable glove barrier materials include: Natural rubber ("latex"), Neoprene, Nitrile/butadiene rubber ("nitril") or ("NBR"), Polyvinyl chloride ("PVC") or "vinyl"), Viton. Chemical-resistant, impervious gloves complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary. Considering the parameters specified by the glove manufacturer, check during use that the gloves are still retaining their protective properties. It should be noted that the time to breakthrough for any glove material may be different for different glove manufacturers. In the case of mixtures, consisting of several substances, the protection time of the gloves cannot be accurately estimated.

BODY PROTECTION:

Use body protection appropriate for task. Cover-all, rubber aprons, or chemical protective clothing made from impervious materials are generally acceptable, depending on the task.

WORK & HYGIENIC PRACTICES: Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using toilet facilities and at the end of the working period. Provide readily accessible eye wash stations & safety showers. Remove clothing that becomes contaminated. Destroy contaminated leather articles. Launder or discard contaminated clothing.

SECTION 9. PHYSICAL & CHEMICAL PROPERTIES

```
APPEARANCE:
ODOR:
ODOR:
ODOR THRESHOLD:
pH (Neutrality):
MELTING POINT/FREEZING POINT:
BOILING RANGE (IBP,Dry Point):
FLASH POINT (TEST METHOD):
EVAPORATION RATE (n-Butyl Acetate=1):
FLAMMABILITY CLASSIFICATION:
LOWER FLAMMABLE LIMIT IN AIR (% by vol):
UPPER FLAMMABLE LIMIT IN AIR (% by vol):
VAPOR PRESSURE (mm of Hg)@20 C
VAPOR DENSITY (air=1):
GRAVITY @ 68/68F / 20/20C:
DENSITY:
SPECIFIC GRAVITY (Water=1):
     APPEARANCE:
                                                                                                                                                                                                          Oily Liquid, Water-White to slightly yelloow
                                                                                                                                                                                                         Not Available
                                                                                                                                                                                                        -29 C / -20 F
276 to 281 C / 528 to 538 F
Not Applicable
Not Applicable
                                                                                                                                                                                                         10.0 (Lowest Component)
                                                                                                                                                                                                         Not Available
                                                                                                                                                                                                         < 0.3
3.4
DENSITY:

SPECIFIC GRAVITY (Water=1):

POUNDS/GALLON:

WATER SOLUBILITY:

PARTITION COEFFICIENT (n-Octane/Water):

AUTO IGNITION TEMPERATURE:

NOT

DECOMPOSITION TEMPERATURE:

NOT

VOCS (>0.044 Lbs/Sq In):

TOTAL VOC'S (TVOC)*:

NONEXEMPT VOC'S (CVOC)*:

HAZARDOUS AIR POLLUTANTS (HAPS):

NONEXEMPT VOC PARTIAL PRESSURE (mm of Hg @ 20 C) 0.00

VISCOSITY @ 100 C (ASTM D445):

* Using CARB (California Air Resources Board Rules).
                                                                                                                                                                                                         1.830
                                                                                                                                                                                                        1.835
15.3
                                                                                                                                                                                                         Complete
                                                                                                                                                                                                        Not Available
Not Applicable
                                                                                                                                                                                                      Not Available

0.0 Vol% /0.0 g/L / 0.000 Lbs/Gal

0.0 Vol% /0.0 g/L / 0.000 Lbs/Gal

0.0 Vol% /0.0 g/L / 0.000 Lbs/Gal

0.0 Wt% /0.0 g/L / 0.000 Lbs/Gal
                                                                                                                                                                                                       0.0
                                                                                                                                                                                                        Not Available
```

Page 7 of 8

COMPANY IDENTITY: Univar PRODUCT IDENTITY: SULFUR

SULFURIC ACID 93%

SDS NUMBER:

CDS-2441

SDS DATE: 01/15/2015 ORIGINAL: 01/15/2015

SECTION 11. TOXICOLOGICAL INFORMATION (CONTINUED)

A MUTAGEN is a chemical which causes permanent changes to genetic material (DNA) such that the changes will propagate across generational lines. An EMBRYOTOXIN is a chemical which causes damage to a developing embryo (such as: within the first 8 weeks of pregnancy in humans), but the damage does not propagate across generational lines. A TERATOGEN is a chemical which causes damage to a developing fetus, but the damage does not propagate across generational lines. A REPRODUCTIVE TOXIN is any substance which interferes in any way with the reproductive process.

11.4 MAMMALIAN TOXICITY INFORMATION

LD50 (Oral, Acute): LC50 / 2 hours:

2140 mg/kg (Rat) 510 mg/m 3 (Rat), 320 mg/m 3 (Mouse)

SECTION 12. ECOLOGICAL INFORMATION

12.1 ALL WORK PRACTICES MUST BE AIMED AT ELIMINATING ENVIRONMENTAL CONTAMINATION.

12.2 EFFECT OF MATERIAL ON PLANTS AND ANIMALS:
This product may be harmful or fatal to plant and animal life if released into the environment. Refer to Section 11 (Toxicological Information) for further data on the effects of this product's components on test animals.

12.3 EFFECT OF MATERIAL ON AQUATIC LIFE:
The substance is harmful to aquatic organisms.
LC50 / 48 hours:
49 mg/L, Tap Water, 20 C (Bluegill sunfish)
LC50 / 48 hours:
100 - 330 mg/L, Aerated Water (Flounder)

12.4 MOBILITY IN SOIL
Mobility of this material has not been determined.

12.5 DEGRADABILITY This product is completely biodegradable.

Bioaccumulation of this product has not been determined.

SECTION 13. DISPOSAL CONSIDERATIONS

Processing, use or contamination may change the waste disposal requirements. Do not dispose of on land, in surface waters, or in storm drains. Waste should be recycled or disposed of in accordance with regulations. Large amounts should be collected for reuse or consigned to licensed hazardous waste haulers for disposal. ALL DISPOSAL MUST BE IN ACCORDANCE WITH ALL FEDERAL, STATE, PROVINCIAL, AND LOCAL REGULATIONS. IF IN DOUBT, CONTACT PROPER AGENCIES. EPA CHARACTERISTIC: D002

SECTION 14. TRANSPORT INFORMATION

MARINE POLLUTANT: NO

DOT/TDG SHIP NAME: UN1830, Sulfuric acid, 8, PG-II
DRUM LABEL: (CORROSIVE)
IATA / ICAO: UN1830, Sulfuric acid, 8, PG-II
IMO / IMDG: UN1830, Sulfuric acid, 8, PG-II
EMERGENCY RESPONSE GUIDEBOOK NUMBER: 137

NALCO Water

SAFETY DATA SHEET

3D TRASAR™ 3DT175

Section: 1. PRODUCT AND COMPANY IDENTIFICATION

Product name : 3D TRASAR™ 3DT175

Other means of identification : Not applicable.

Recommended use : COOLING WATER TREATMENT

Restrictions on use : Refer to available product literature or ask your local Sales Representative for

restrictions on use and dose limits.

Company : Nalco Company

1601 W. Diehl Road

Naperville, Illinois 60563-1198

USA

TEL: (630)305-1000

Emergency telephone

number

: (800) 424-9300 (24 Hours) CHEMTREC

Issuing date : 09/09/2016

Section: 2. HAZARDS IDENTIFICATION

GHS Classification

Skin irritation : Category 2
Eye irritation : Category 2A

Specific target organ toxicity

- single exposure

Category 3 (Respiratory system)

GHS Label element

Hazard pictograms :

Signal Word : Warning

Hazard Statements : Causes skin irritation.

Causes serious eye irritation. May cause respiratory irritation.

Precautionary Statements : Prevention:

Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray. Wash skin thoroughly after handling. Use only outdoors or in a well-ventilated area. Wear protective gloves/ eye protection/ face protection.

gioves/ eye protection/ race protection

Response:

IF ON SKIN: Wash with plenty of soap and water.IF INHALED: Remove person to fresh air and keep comfortable for breathing. Call a POISON CENTER or

doctor/ physician if you feel unwell.

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.If skin irritation occurs: Get

medical advice/attention.If eye irritation persists: Get medical advice/

3D TRASAR™ 3DT175

attention. Take off contaminated clothing and wash before reuse.

Other hazards : None known.

Section: 3. COMPOSITION/INFORMATION ON INGREDIENTS

Chemical Name CAS-No. Concentration: (%)

Inorganic PhosphateProprietary10 - 30Inorganic PolyphosphateProprietary5 - 10

Section: 4. FIRST AID MEASURES

In case of eye contact : Rinse immediately with plenty of water, also under the eyelids, for at least 15

minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

Get medical attention.

In case of skin contact : Wash off immediately with plenty of water for at least 15 minutes. Use a mild

soap if available. Get medical attention if irritation develops and persists.

If swallowed : Rinse mouth. Get medical attention if symptoms occur.

If inhaled : Remove to fresh air. Treat symptomatically. Get medical attention if symptoms

occur.

Protection of first-aiders : In event of emergency assess the danger before taking action. Do not put

yourself at risk of injury. If in doubt, contact emergency responders. Use

personal protective equipment as required.

Notes to physician : Treat symptomatically.

Most important symptoms and effects, both acute and

delayed

See Section 11 for more detailed information on health effects and symptoms.

Section: 5. FIREFIGHTING MEASURES

Suitable extinguishing media : Use extinguishing measures that are appropriate to local circumstances and the

surrounding environment.

Unsuitable extinguishing

media

None known.

Specific hazards during

firefighting

Not flammable or combustible.

Hazardous combustion

products

Decomposition products may include the following materials: Carbon oxides

nitrogen oxides (NOx) Sulphur oxides Oxides of phosphorus

Special protective equipment:

for firefighters

Use personal protective equipment.

Specific extinguishing

methods

: Fire residues and contaminated fire extinguishing water must be disposed of in

accordance with local regulations. In the event of fire and/or explosion do not

breathe fumes.

3D TRASAR™ 3DT175

Section: 6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures Ensure adequate ventilation. Ensure clean-up is conducted by trained personnel

only. Refer to protective measures listed in sections 7 and 8.

Environmental precautions : Do not allow contact with soil, surface or ground water.

Methods and materials for containment and cleaning up

Stop leak if safe to do so. Contain spillage, and then collect with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and place in container for disposal according to local / national regulations (see section 13). For large spills, dike spilled material or otherwise contain material to ensure runoff does not reach a waterway. Flush away traces with water.

Section: 7. HANDLING AND STORAGE

Advice on safe handling : Avoid contact with skin and eyes. Do not breathe

dust/fume/gas/mist/vapours/spray. Wash hands thoroughly after handling. Use

only with adequate ventilation.

Conditions for safe storage : Keep out of reach of children. Keep container tightly closed. Store in suitable

labelled containers.

Suitable material : The following compatibility data is suggested based on similar product data

and/or industry experience: Compatibility with Plastic Materials can vary; we

therefore recommend that compatibility is tested prior to use.

Unsuitable material : not determined

Section: 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Components with workplace control parameters

Contains no substances with occupational exposure limit values.

Engineering measures : Good general ventilation should be sufficient to control worker exposure to

airborne contaminants.

Personal protective equipment

Eye protection : Safety glasses with side-shields

Hand protection : Wear the following personal protective equipment:

Standard glove type.

Gloves should be discarded and replaced if there is any indication of

degradation or chemical breakthrough.

Skin protection : Wear suitable protective clothing.

Respiratory protection : When workers are facing concentrations above the exposure limit they must use

appropriate certified respirators.

Hygiene measures : Handle in accordance with good industrial hygiene and safety practice. Remove

3D TRASAR™ 3DT175

and wash contaminated clothing before re-use. Wash face, hands and any exposed skin thoroughly after handling.

Section: 9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance Liquid

Colour light yellow, dark yellow

Odour odourless

Flash point > 93.3 °C, Estimated

рΗ 11.2

Odour Threshold no data available

Melting point/freezing point FREEZING POINT:, No data available.

Initial boiling point and boiling:

range

no data available

Evaporation rate no data available Flammability (solid, gas) no data available Upper explosion limit no data available Lower explosion limit no data available Vapour pressure no data available Relative vapour density no data available Relative density 1.37, (15.5 °C),

Density 11.4 lb/gal

Water solubility completely soluble Solubility in other solvents no data available

Partition coefficient: n-

octanol/water

no data available

Auto-ignition temperature no data available Thermal decomposition no data available

temperature

Viscosity, dynamic no data available Viscosity, kinematic no data available Molecular weight no data available

VOC 0 %, Calculation method

Section: 10. STABILITY AND REACTIVITY

Chemical stability Stable under normal conditions.

Possibility of hazardous

reactions

No dangerous reaction known under conditions of normal use.

3D TRASAR™ 3DT175

Conditions to avoid None known.

Incompatible materials Acids

Contact with strong acids (e.g. sulfuric, phosphoric, nitric, hydrochloric, chromic,

sulfonic) may generate heat, splattering or boiling and toxic vapors.

Hazardous decomposition

products

Decomposition products may include the following materials:

Carbon oxides

nitrogen oxides (NOx)

Sulphur oxides

Oxides of phosphorus

Section: 11. TOXICOLOGICAL INFORMATION

exposure

Information on likely routes of : Inhalation, Eye contact, Skin contact

Potential Health Effects

Eyes Causes serious eye irritation.

Skin Causes skin irritation.

Ingestion Health injuries are not known or expected under normal use.

Inhalation May cause respiratory tract irritation. May cause nose, throat, and lung irritation.

Chronic Exposure Health injuries are not known or expected under normal use.

Experience with human exposure

Eye contact Redness, Pain, Irritation

Skin contact Redness, Irritation

Ingestion No symptoms known or expected.

Inhalation Respiratory irritation, Cough

Toxicity

Product

Acute oral toxicity Acute toxicity estimate: > 5,000 mg/kg

Acute inhalation toxicity no data available

Acute dermal toxicity Acute toxicity estimate: > 5,000 mg/kg

Skin corrosion/irritation no data available Serious eye damage/eye no data available

irritation

Respiratory or skin

sensitization

no data available

Carcinogenicity no data available

3D TRASAR™ 3DT175

Reproductive effects : no data available
Germ cell mutagenicity : no data available
Teratogenicity : no data available
STOT - single exposure : no data available
STOT - repeated exposure : no data available
Aspiration toxicity : no data available

Section: 12. ECOLOGICAL INFORMATION

Ecotoxicity

Environmental Effects : This product has no known ecotoxicological effects.

Product

Toxicity to fish : LC50 Fathead Minnow: 1,875 mg/l

Exposure time: 96 hrs Test substance: Product

NOEC Fathead Minnow: 1,250 mg/l

Exposure time: 96 hrs Test substance: Product

LC50 Rainbow Trout: 2,152 mg/l

Exposure time: 96 hrs Test substance: Product

NOEC Rainbow Trout: 1,080 mg/l

Exposure time: 96 hrs Test substance: Product

Toxicity to daphnia and other

aquatic invertebrates

EC50 Ceriodaphnia dubia: 1,875 mg/l

Exposure time: 48 hrs Test substance: Product

LC50 Ceriodaphnia dubia: 1,875 mg/l

Exposure time: 48 hrs Test substance: Product

NOEC Ceriodaphnia dubia: 1,250 mg/l

Exposure time: 48 hrs Test substance: Product

EC50 Daphnia magna: 2,265 mg/l

Exposure time: 48 hrs Test substance: Product

LC50 Daphnia magna: 2,265 mg/l

Exposure time: 48 hrs Test substance: Product

NOEC Daphnia magna: 1,800 mg/l

3D TRASAR™ 3DT175

Exposure time: 48 hrs Test substance: Product

Persistence and degradability

The organic portion of this preparation is expected to be inherently biodegradable.

Total Organic Carbon (TOC): 41,000 mg/l

Chemical Oxygen Demand (COD): 100,000 mg/l

Biochemical Oxygen Demand (BOD):

Incubation Period Value Test Descriptor

5 d 420 mg/l Product

Mobility

The environmental fate was estimated using a level III fugacity model embedded in the EPI (estimation program interface) Suite TM, provided by the US EPA. The model assumes a steady state condition between the total input and output. The level III model does not require equilibrium between the defined media. The information provided is intended to give the user a general estimate of the environmental fate of this product under the defined conditions of the models.

If released into the environment this material is expected to distribute to the air, water and soil/sediment in the approximate respective percentages;

Air : <5% Water : 30 - 50% Soil : 50 - 70%

The portion in water is expected to be soluble or dispersible.

Bioaccumulative potential

This preparation or material is not expected to bioaccumulate.

Other information

no data available

Section: 13. DISPOSAL CONSIDERATIONS

If this product becomes a waste, it is not a hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA) 40 CFR 261, since it does not have the characteristics of Subpart C, nor is it listed under Subpart D.

Disposal methods : Where possible recycling is preferred to disposal or

incineration. If recycling is not practicable, dispose of in compliance with local regulations. Dispose of wastes in an

approved waste disposal facility.

Disposal considerations : Dispose of as unused product. Empty containers should be

taken to an approved waste handling site for recycling or

disposal. Do not re-use empty containers.

Section: 14. TRANSPORT INFORMATION

3D TRASAR™ 3DT175

The shipper/consignor/sender is responsible to ensure that the packaging, labeling, and markings are in compliance with the selected mode of transport.

Land transport (DOT)

Proper shipping name : PRODUCT IS NOT REGULATED DURING TRANSPORTATION

Air transport (IATA)

Proper shipping name : PRODUCT IS NOT REGULATED DURING TRANSPORTATION

Sea transport (IMDG/IMO)

Proper shipping name : PRODUCT IS NOT REGULATED DURING TRANSPORTATION

Section: 15. REGULATORY INFORMATION

EPCRA - Emergency Planning and Community Right-to-Know Act

CERCLA Reportable Quantity

This material does not contain any components with a CERCLA RQ.

SARA 304 Extremely Hazardous Substances Reportable Quantity

This material does not contain any components with a section 304 EHS RQ.

SARA 311/312 Hazards : Acute Health Hazard

SARA 302 : No chemicals in this material are subject to the reporting requirements

of SARA Title III, Section 302.

SARA 313 : This material does not contain any chemical components with known

CAS numbers that exceed the threshold (De Minimis) reporting levels

established by SARA Title III, Section 313.

California Prop 65

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

INTERNATIONAL CHEMICAL CONTROL LAWS:

TOXIC SUBSTANCES CONTROL ACT (TSCA)

The substances in this preparation are included on or exempted from the TSCA 8(b) Inventory (40 CFR 710)

CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA)

The substance(s) in this preparation are included in or exempted from the Domestic Substance List (DSL).

Section: 16. OTHER INFORMATION

SAFETY DATA SHEET

3D TRASAR™ 3DT175

NFPA: Flammability Instability Health

Special hazard.

HMIS III:

HEALTH	2
FLAMMABILITY	1
PHYSICAL HAZARD	0

0 = not significant, 1 = Slight, 2 = Moderate, 3 = High 4 = Extreme, * = Chronic

Revision Date : 09/09/2016

Version Number : 1.3

Prepared By : Regulatory Affairs

REVISED INFORMATION: Significant changes to regulatory or health information for this revision is indicated by a bar in the left-hand margin of the SDS.

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text. For additional copies of an SDS visit www.nalco.com and request access.

SAFETY DATA SHEET

1. Product and Company Identification

Product identifier BOILERMATE 1200S

Other means of identification

Recommended use

Recommended restrictions

Manufacturer

Not available

Boiler Water Treatment

None known.

Miura America Co., Ltd. 2200 Steven B Smith Blvd

Rockmart, GA 30153 U.S.A. Phone: 678-685-0929 Toll Free: 1-888-309-557 Fax: 678-685-0930

Emergency Phone: 1-800-424-9300 (CHEMTREC)

2. Hazards Identification

Physical hazardsCorrosive to metalsCategory 1Health hazardsSkin corrosion/irritationCategory 1

Serious eye damage/eye irritation Category 1

Specific target organ toxicity, single exposure Category 3 respiratory tract irritation

Environmental hazards Not classified.

OSHA defined hazards Not classified.

Label elements

Signal word Danger

Hazard statement May be corrosive to metals.

Causes severe skin burns and eye damage.

May cause respiratory irritation.

Precautionary statement

Prevention Keep only in original container.

Do not breathe mist or vapor. Wash thoroughly after handling.

Use only outdoors or in a well-ventilated area.

Wear protective gloves/protective clothing/eye protection/face protection.

Response Absorb spillage to prevent material damage.

If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and

easy to do. Continue rinsing.

If on skin (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower.

Wash contaminated clothing before reuse.

If swallowed: Rinse mouth. Do NOT induce vomiting.

If inhaled: Remove person to fresh air and keep comfortable for breathing.

Immediately call a poison center/doctor. Specific treatment (see this label).

Storage Store in corrosive resistant container with a resistant inner liner.

Store in a well-ventilated place. Keep container tightly closed.

Store locked up.

Disposal Dispose of contents/container in accordance with local/regional/national/international regulations.

Hazard(s) not otherwise classified (HNOC)

None known.

Supplemental information 100% of the mixture consists of component(s) of unknown acute inhalation toxicity.

3. Composition/Information on Ingredients

Mixture

#17331 Page: 1 of 8 Issue date 08-July-2015

Chemical name	Common name and synonyms	CAS number	%					
Silicic acid, sodium salt		1344-09-8	10 - 30					
Potassium hydroxide		1310-58-3	3 - 7					
Tetrasodium salt of ethylenediaminetetracetic acid tetrahydrate		13235-36-4	1 - 5					
Composition comments	US GHS: The exact percentage (concentration) of secret in accordance with paragraph (i) of §1910		withheld as a trade					
	4. First Aid Measures							
Inhalation If inhaled: Remove person to fresh air and keep comfortable for breathing. Immediately call a poison center/doctor.								
Skin contact	If on skin (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower. Immediately call a poison center/doctor. Specific treatment (see product label). Wash contaminated clothing before reuse.							
Eye contact	If in eyes: Rinse cautiously with water for several easy to do. Continue rinsing. Immediately call a p		ct lenses, if present and					
Ingestion	If swallowed: Rinse mouth. Do NOT induce vomi	ting. Immediately call a p	oison center/doctor.					
Most important symptoms/effects, acute and delayed	Burning pain and severe corrosive skin damage. Causes serious eye damage. Symptoms may include stinging, tearing, redness, swelling, and blurred vision. Permanent eye damage including blindness could result.							
Indication of immediate medical attention and special treatment needed	Treat patient symptomatically.							
General information	If you feel unwell, seek medical advice (show the personnel are aware of the material(s) involved, this safety data sheet to the doctor in attendance gloves and chemical splash goggles. Keep out of	and take precautions to p . Avoid contact with eyes	rotect themselves. Show					
	5. Fire Fighting Measures							
Suitable extinguishing media	Water fog. Foam. Dry chemical powder. Carbon	dioxide (CO2).						
Unsuitable extinguishing media	Not available.	. ,						
Specific hazards arising from the chemical	Firefighters should wear a self-contained breathing	ng apparatus.						
Special protective equipment and precautions for firefighters	Firefighters should wear full protective clothing in	cluding self contained br	eathing apparatus.					
Fire-fighting equipment/instructions	Move containers from fire area if you can do so v							
Specific methods	Use standard firefighting procedures and conside							
Hazardous combustion products	May include and are not limited to: Oxides of nitro Oxides of sulfur.	ogen. Oxides of potassiu	m. Oxides of sodium.					
Explosion data Sensitivity to mechanical impact	Not available.							
Sensitivity to static discharge	Not available.							
3	6. Accidental Release Measur	res						
Personal precautions,	Keep people away from and upwind of spill/leak.	Keep out of low areas	o not touch damaged					
protective equipment and emergency procedures	containers or spilled material unless wearing app or vapor. Ensure adequate ventilation. Local auth cannot be contained. For personal protection, se	propriate protective clothin norities should be advised	ng. Do not breathe mist					
Methods and materials for containment and cleaning up	Stop leak if you can do so without risk. Dike the splastic sheet to prevent spreading. Absorb in version containers. Never return spills to original containersidual contamination. Following product recover waterways, sewer, basements or confined areas.	miculite, dry sand or eartl ers for re-use. Clean surf ery, flush area with water.	n and place into ace thoroughly to remove Prevent entry into					
Environmental precautions	Do not discharge into lakes, streams, ponds or p	ublic waters.						

7. Handling and Storage

Precautions for safe handling DANGER -- CORROSIVE

Avoid contact with eyes, skin and clothing.

Do not breathe mist or vapor.

Wear appropriate personal protective equipment.

Use only with adequate ventilation.

Avoid prolonged exposure.

Observe good industrial hygiene practices.

Wash thoroughly after handling. When using do not eat or drink.

Conditions for safe storage, including any incompatibilities

Store in a closed container.

Store in corrosive resistant container with a resistant inner liner.

Store in a cool, dry place out of direct sunlight.

Store away from incompatible materials (see Section 10 of the SDS).

Keep out of the reach of children.

Store locked up.

8. Exposure Controls/Personal Protection

Occupational exposure limits

US. ACGIH Threshold Limit Values

ComponentsTypeValuePotassium hydroxide (CASCeiling2 mg/m3

1310-58-3)

US. NIOSH: Pocket Guide to Chemical Hazards

ComponentsTypeValuePotassium hydroxide (CASTWA2 mg/m3

1310-58-3)

Biological limit values No biological exposure limits noted for the ingredient(s).

Exposure quidelines Chemicals listed in section 3 that are not listed here do not have established limit values for

ACGIH or OSHA PEL.

Appropriate engineering

controls

Ensure adequate ventilation.

Individual protection measures, such as personal protective equipment

Eye/face protection Wear chemical goggles.

Skin protection

Hand protection Impervious gloves. Confirm with reputable supplier first.

Other As required by employer code.

Respiratory protection Where exposure guideline levels may be exceeded, use an approved NIOSH respirator.

Thermal hazards Not applicable.

General hygiene considerations

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks

and immediately after handling the product. When using do not eat or drink.

9. Physical and Chemical Properties

Appearance Transparent
Physical state Liquid.
Form Liquid
Color Colorless
Odor Very little
Odor threshold Not available.

pH 11.7 (1% water solution)

Melting point/freezing point <= 23 °F (<= -5 °C)

Initial boiling point and boiling > 212 °F (> 100 °C)

range

Pour point Not available.

Specific gravity 1.25

Partition coefficient (n-octanol/water)

Not available.

Flash point Not available.

Evaporation rate Not available.

#17331 Page: 3 of 8 Issue date 08-July-2015

Flammability (solid, gas) Not applicable.

Upper/lower flammability or explosive limits Not available. Flammability limit - lower

Not available. Flammability limit - upper

(%)

Explosive limit - lower (%)

Not available. Explosive limit - upper (%) Not available.

Vapor pressure Not available. Not available. Vapor density Relative density Not available.

Not available. Solubility(ies) Not available. **Auto-ignition temperature** Not available. **Decomposition temperature**

Not available **Viscosity**

10. Stability and Reactivity

Reacts violently with acids. This product may react with strong oxidizing agents. Reactivity

Possibility of hazardous

reactions

Hazardous polymerization does not occur.

Chemical stability Stable under recommended storage conditions.

Conditions to avoid Do not mix with other chemicals.

Oxidizing agents. Acids. Caustics. Reducing agents. Organic materials. Incompatible materials

Hazardous decomposition

products

May include and are not limited to: Oxides of potassium. Oxides of sodium. Oxides of nitrogen.

Oxides of sulfur.

11. Toxicological Information

Eye, Skin contact, Inhalation, Ingestion. Routes of exposure

Information on likely routes of exposure

Ingestion Causes digestive tract burns.

Inhalation May cause irritation to the respiratory system.

Causes severe skin burns. Skin contact Eye contact Causes serious eye damage.

Symptoms related to the

Burning pain and severe corrosive skin damage.

physical, chemical and toxicological characteristics Causes serious eye damage. Symptoms may include stinging, tearing, redness, swelling, and

blurred vision. Permanent eye damage including blindness could result.

Information on toxicological effects

May cause respiratory irritation. Acute toxicity

Components **Species Test Results**

Potassium hydroxide (CAS 1310-58-3)

Acute

Inhalation

LC50 Not available

Oral

LD50 Rat 214 mg/kg

Silicic acid, sodium salt (CAS 1344-09-8)

Acute

Dermal

LD50 Rabbit 4640 mg/kg

Inhalation

LC50 Not available

Oral

LD50 Mouse 1100 mg/kg

> Rat 1153 mg/kg

Components Species Test Results

Tetrasodium salt of ethylenediaminetetracetic acid tetrahydrate (CAS 13235-36-4)

Acute Dermal

LD50 Not available

Inhalation

LC50 Not available

Oral

LD50 Rat 945 mg/kg

Skin corrosion/irritation Causes severe skin burns and eye damage.

Exposure minutes Not available.
Erythema value Not available.
Oedema value Not available.

Serious eye damage/eye

irritation

Causes serious eye damage.

Corneal opacity value Not available.

Iris lesion value Not available.

Conjunctival reddening Not available.

value

Conjunctival oedema value Not available.

Recover days Not available.

Respiratory or skin sensitization

Respiratory sensitization Not available.

Skin sensitization This product is not expected to cause skin sensitization.

Germ cell mutagenicity

Mutagenicity

Not classified.

Not classified.

Carcinogenicity

Not classified.

Reproductive toxicity

Not classified.

Teratogenicity

Not classified.

Specific target organ toxicity -

single exposure

Respiratory tract irritation.

Specific target organ toxicity -

repeated exposure

Not classified.

Aspiration hazard Not classified.

Chronic effects Prolonged inhalation may be harmful.

Further information Not available.

Name of Toxicologically
Synergistic Products

Not available.

12. Ecological Information

Ecotoxicity See below

Components Species Test Results

Potassium hydroxide (CAS 1310-58-3)

Aquatic

Fish LC50 Western mosquitofish (Gambusia affinis) 80 mg/l, 96 hours

Silicic acid, sodium salt (CAS 1344-09-8)

Aquatic

Crustacea EC50 Water flea (Ceriodaphnia dubia) 0.28 - 0.57 mg/l, 48 hours
Fish LC50 Western mosquitofish (Gambusia affinis) 1800 mg/l, 96 hours

Tetrasodium salt of ethylenediaminetetracetic acid tetrahydrate (CAS 13235-36-4)

Aquatic

Fish LC50 Bluegill (Lepomis macrochirus) 472 - 500 mg/l, 96 hours

Persistence and degradability No data is available on the degradability of this product.

Bioaccumulative potential No data available.

Mobility in soil No data available.

Mobility in general Not available.

Other adverse effects

No other adverse environmental effects (e.g. ozone depletion, photochemical ozone creation

potential, endocrine disruption, global warming potential) are expected from this component.

13. Disposal Considerations

Disposal instructions

Dispose of contents/container in accordance with local/regional/national/international regulations.

Local disposal regulations

Dispose in accordance with all applicable regulations.

Hazardous waste code

The waste code should be assigned in discussion between the user, the producer and the waste

disposal company.

Waste from residues / unused

products

Empty containers or liners may retain some product residues. This material and its container must

be disposed of in a safe manner (see: Disposal instructions).

Contaminated packaging Empty containers should be taken to an approved waste handling site for recycling or disposal.

Since emptied containers may retain product residue, follow label warnings even after container is

emptied.

14. Transport Information

General Canada: TDG Proof of Classification: In accordance with Part 2.2.1 (SOR/2014-152) of the

Transportation of Dangerous Goods Regulations, we certify that the classification of this product is correct as of the SDS date of issue. If applicable, the technical name and the classification of

the product will appear below.

U.S. Department of Transportation (DOT)

Basic shipping requirements:

UN number UN1760

Proper shipping name Corrosive liquids, n.o.s. (Potassium hydroxide)

Hazard class 8
Packing group III

Special provisions IB3, T7, TP1, TP28

Packaging exceptions 154

Transportation of Dangerous Goods (TDG - Canada)

Basic shipping requirements:

UN number UN1760

Proper shipping name CORROSIVE LIQUID, N.O.S. (Potassium hydroxide)

Hazard class 8
Packing group III
Special provisions 16

DOT

TDG

15. Regulatory Information

Canadian federal regulations

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the SDS contains all the information required by the Controlled Products Regulations.

Canada WHMIS Ingredient Disclosure: Threshold limits

Potassium hydroxide (CAS 1310-58-3) 1 %

WHMIS status Controlled

#17331 Page: 6 of 8 Issue date 08-July-2015

WHMIS classification WHMIS labeling

Class E - Corrosive Material

US federal regulations

This product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication

Standard, 29 CFR 1910.1200.

TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D)

Not regulated.

US CWA Section 311 Hazardous Substances: Listed substance

Potassium hydroxide (CAS 1310-58-3)

Listed.

CERCLA Hazardous Substance List (40 CFR 302.4)

Potassium hydroxide (CAS 1310-58-3) Listed.

Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130)

Not regulated.

Clean Air Act (CAA) Section 112 Hazardous Air Pollutants (HAPs) List

Not regulated.

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Hazard categories Immediate Hazard - Yes

Delayed Hazard - No Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No

Hazardous substance

SARA 302 Extremely

No

hazardous substance

SARA 311/312 Hazardous No

chemical

SARA 313 (TRI reporting)

Not regulated.

Other federal regulations

Clean Water Act (CWA)

Section 112(r) (40 CFR

68.130)

Safe Drinking Water Act

(SDWA)

Food and Drug Not regulated.

Administration (FDA)

US state regulations This product does not contain a chemical known to the State of California to cause cancer, birth

Listed.

defects or other reproductive harm.

US - California Hazardous Substances (Director's): Listed substance

Not regulated.

Potassium hydroxide (CAS 1310-58-3)

US - California Proposition 65 - Carcinogens & Reproductive Toxicity (CRT): Listed substance

Not listed.

US - Illinois Chemical Safety Act: Listed substance

Potassium hydroxide (CAS 1310-58-3) Listed.

US - Louisiana Spill Reporting: Listed substance

Potassium hydroxide (CAS 1310-58-3) Listed.

US - Minnesota Haz Subs: Listed substance

Potassium hydroxide (CAS 1310-58-3) Listed.

US - New Jersey RTK - Substances: Listed substance

Potassium hydroxide (CAS 1310-58-3) Listed.

US - New York Release Reporting: Hazardous Substances: Listed substance

Potassium hydroxide (CAS 1310-58-3) Listed.

US - Texas Effects Screening Levels: Listed substance

Potassium hydroxide (CAS 1310-58-3) Listed. Silicic acid, sodium salt (CAS 1344-09-8) Listed. Tetrasodium salt of ethylenediaminetetracetic acid Listed.

tetrahydrate (CAS 13235-36-4) US. Massachusetts RTK - Substance List

> Potassium hydroxide (CAS 1310-58-3) Listed.

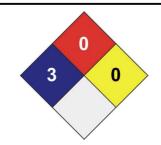
US. Pennsylvania RTK - Hazardous Substances

Potassium hydroxide (CAS 1310-58-3) Listed.

US. Rhode Island RTK

Potassium hydroxide (CAS 1310-58-3) Listed.

Inventory status


Country(s) or region	Inventory name	On inventory (yes/no)*
Canada	Domestic Substances List (DSL)	Yes
Canada	Non-Domestic Substances List (NDSL)	No
United States & Puerto Rico	Toxic Substances Control Act (TSCA) Inventory	Yes

*A "Yes" indicates that all components of this product comply with the inventory requirements administered by the governing country(s)

16. Other Information

LEGEND	
Severe	4
Serious	3
Moderate	2
Slight	1
Minimal	0

Disclaimer

Information contained herein was obtained from sources considered technically accurate and reliable. While every effort has been made to ensure full disclosure of product hazards, in some cases data is not available and is so stated. Since conditions of actual product use are beyond control of the supplier, it is assumed that users of this material have been fully trained according to the requirements of all applicable legislation and regulatory instruments. No warranty, expressed or implied, is made and supplier will not be liable for any losses, injuries or consequential damages which may result from the use of or reliance on any information contained in this document.

Issue date 08-July-2015 Effective date 08-July-2015

Further information For an updated SDS, please contact the supplier/manufacturer listed on the first page of the

document.

Dell Tech Laboratories, Ltd. Phone: (519) 858-5021 Prepared by

This Safety Data Sheet was prepared to comply with the current OSHA Hazard Communication Other information Standard (HCS) adoption of the Globally Harmonized System of Classification and Labeling of

Chemicals (GHS).

This SDS conforms to the ANSI Z400.1/Z129.1-2010 Standard.

Leah Whallon

From: Wagner, Andrea <andrea.wagner@aecom.com>

Sent: Wednesday, May 29, 2024 2:29 PM

To: Leah Whallon; rami.qafisheh@messer-us.com

Cc: Philipp Sieber; Dhiman, Divya; Shihada, Huda; Hunter Armstrong; Gill Craig **Subject:** RE: Application to Amend Permit No. WQ0005108000; Messer LLC; La Porte Air

Separation Unit

Attachments: AR.1.1.-1a Adjacent Landowner Map.pdf; AR.1.1.1 - Landowner map cross-reference

list.docx; AR1.1.1b_Adjacent Landowner Labels - 4 SETS.docx

Follow Up Flag: Follow up Flag Status: Flagged

Leah Whallon,

Thank you for clarifying the request. It was our prior understanding that only the downstream landowners were needed but we have updated the landowner map, associated list, and associated mailing labels, as requested, to add upstream landowners to the previously depicted downstream landowners. Please let us know if you have additional questions. Thank you!

Andrea Wagner

Project Manager, Compliance Services M +1 609-213-7245 andrea.wagner@aecom.com

Click here to connect with me on LinkedIn

AECOM

625 West Ridge Pike, Suite E-100 Conshohocken, Pennsylvania 19428, United States aecom.com

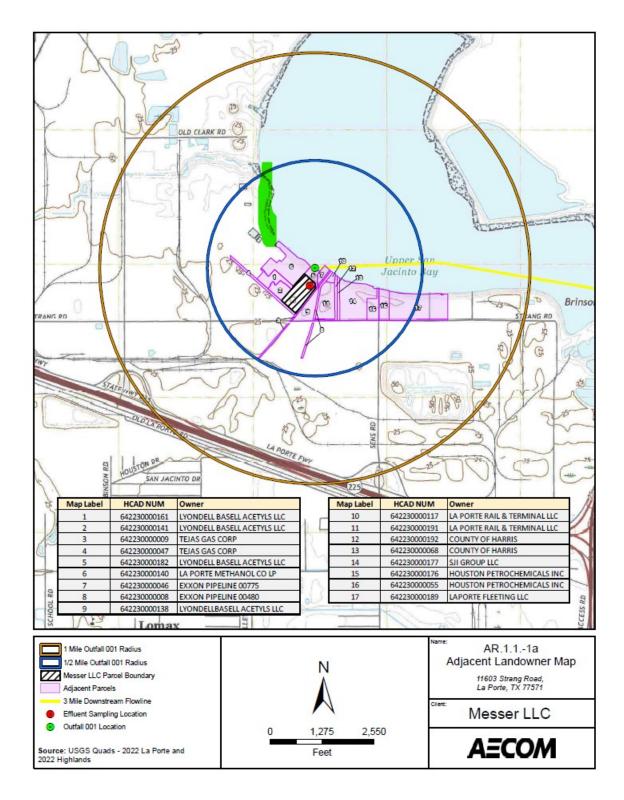
Delivering a better world

<u>LinkedIn</u> | <u>Twitter</u> | <u>Facebook</u> | <u>Instagram</u>

From: Leah Whallon < Leah. Whallon@Tceq. Texas. Gov>

Sent: Wednesday, May 22, 2024 2:32 PM

To: Wagner, Andrea <andrea.wagner@aecom.com>; rami.qafisheh@messer-us.com


Cc: Philipp Sieber <philipp.sieber@messer-us.com>; Dhiman, Divya <Divya.Dhiman@aecom.com>; Shihada, Huda

<huda.shihada@aecom.com>; Hunter Armstrong <Hunter.Armstrong@messer-us.com>; Gill Craig <gill.craig@messer-us.com>

Subject: RE: Application to Amend Permit No. WQ0005108000; Messer LLC; La Porte Air Separation Unit

Thank you, Andrea.

I'm reviewing the response and there are still some affected landowners missing from the map and list. Not all landowners along the shoreline in the one half mile radius are shown. I've highlighted this area in green in the image below. Please provide an updated landowner map, list, and mailing labels that include all affected landowners. Please provide the complete response by May 29, 2024.

Please let me know if you have any questions.

Thank you,

How is our customer service? Fill out our online customer satisfaction survey at www.tceq.texas.gov/customersurvey

From: Wagner, Andrea <andrea.wagner@aecom.com>

Sent: Friday, May 17, 2024 5:34 AM

To: Leah Whallon <Leah.Whallon@Tceq.Texas.Gov>; rami.qafisheh@messer-us.com

Cc: Philipp Sieber < philipp.sieber@messer-us.com; Dhiman, Divya < Divya.Dhiman@aecom.com; Shihada, Huda < huda.shihada@aecom.com; Hunter Armstrong < Hunter.Armstrong@messer-us.com; Gill Craig < gill.craig@messer-us.com; Gill <a href="mailto:gill.craig@mess

Subject: RE: Application to Amend Permit No. WQ0005108000; Messer LLC; La Porte Air Separation Unit

Dear Leah Whallon,

Please find attached a letter in response to your requests as well as associated attachments. Let us know if you have questions. Thank you!

Andrea Wagner

Project Manager, Compliance Services M +1 609-213-7245 andrea.wagner@aecom.com

Click here to connect with me on LinkedIn

AECOM

625 West Ridge Pike, Suite E-100 Conshohocken, Pennsylvania 19428, United States aecom.com

Delivering a better world

LinkedIn | Twitter | Facebook | Instagram

From: Leah Whallon < Leah. Whallon@Tceq.Texas.Gov >

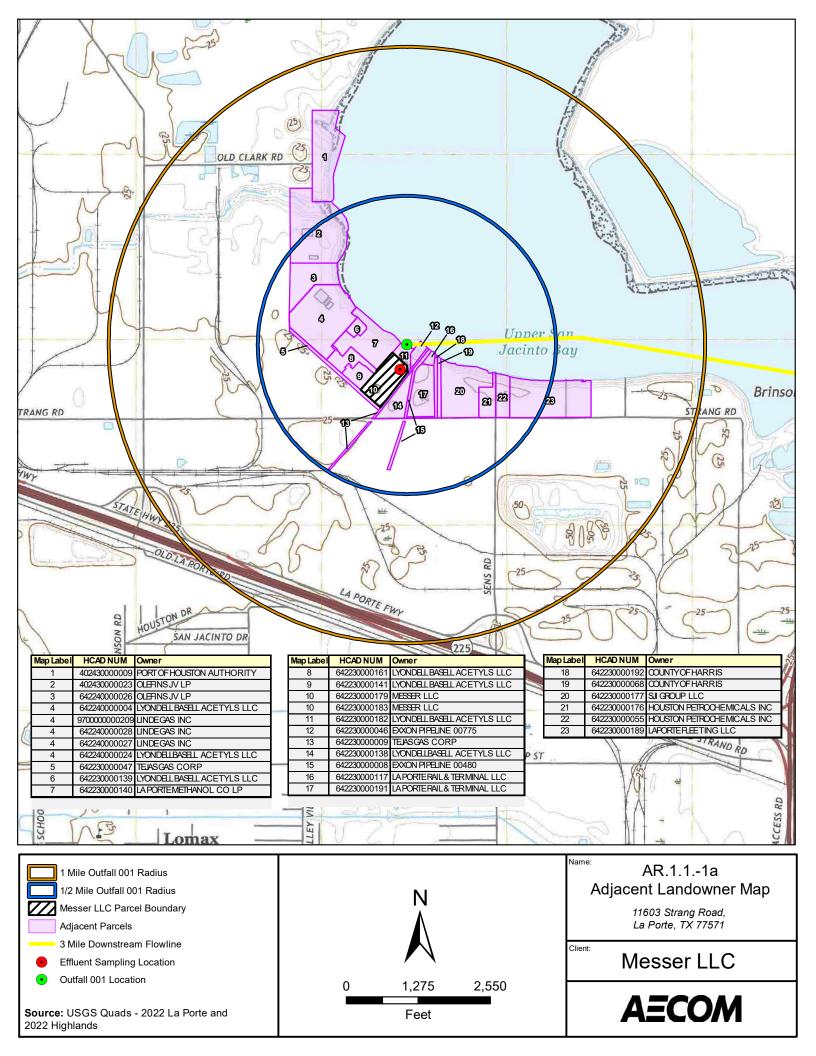
Sent: Friday, May 3, 2024 5:10 PM **To:** rami.gafisheh@messer-us.com

Cc: Wagner, Andrea < andrea.wagner@aecom.com >

Subject: Application to Amend Permit No. WQ0005108000; Messer LLC; La Porte Air Separation Unit

Good Afternoon,

Please see the attached Notice of Deficiency letter dated May 3, 2024 requesting additional information needed to declare the application administratively complete. Please send the complete response by May 17, 2024.


Please let me know if you have any questions.

Thank you,

Leah Whallon
Texas Commission on Environmental Quality
Water Quality Division
512-239-0084
leah.whallon@tceq.texas.gov

How is our customer service? Fill out our online customer satisfaction survey at www.tceq.texas.gov/customersurvey

AR.1.1.1 – Adjacent Landowner Cross-reference List

Map ID	Adjacent Landowner Name	Adjacent Landowner Address				
1	Port of Houston Authority	111 EAST LOOP N				
	,	HOUSTON TX 77029-4326				
2	Olefins JV LP	1221 MCKINNEY ST				
		HOUSTON TX 77010-2011				
3	Olefins JV LP	1221 MCKINNEY ST				
		HOUSTON TX 77010-2011				
4	LyondellBasell Acetyls LLC	ATTN TAX DEPT				
		PO BOX 3646				
		HOUSTON TX 77253-3646				
4	Linde Gas Inc	10 RIVERVIEW DR				
		DANBURY CT 06810-6268				
4	Linde Gas Inc	575 MOUNTAIN AVE				
		NEW PROVIDENCE NJ 07974-2097				
4	Linde Gas Inc	10 RIVERVIEW DR				
		DANBURY CT 06810-6268				
4	LyondellBasell Acetyls LLC	1221 MCKINNEY ST STE 300				
		HOUSTON TX 77010-2036				
5	Tejas Gas Corp	PROPERTY TAX DEPT				
		500 DALLAS ST STE 100				
		HOUSTON TX77002-4804				
6	LyondellBasell Acetyls LLC	Lyondell chemical CO				
		1221 McKinney St STE 300				
		Houston TX 77010-2036				
7	La Porte Methanol CO LP	MILLENNUUM CHEMICALS TAX DEPT				
		PO BOX 3646				
		HOUSTON TX 77253-36				
8	LyondellBasell Acetyls LLC	Lyondell chemical CO				
		1221 McKinney St STE 300				
		Houston TX 77010-2036				
9	LyondellBasell Acetyls LLC	Lyondell chemical CO				
		1221 McKinney St STE 300				
		Houston TX 77010-2036				
10	Messer LLC (parent facility)	200 SOMERSET CORPORATE BLVD STE 6000				
		BRIDGEWATER NJ 08807-2862				
10	Messer LLC (parent facility)	200 SOMERSET CORPORATE BLVD STE 6000				
		BRIDGEWATER NJ 08807-2862				
11	LyondellBasell Acetyls LLC	LYONDELLBASELL ACETYLS LLC				
		ATTN TAX DEPT				
		PO BOX 3646				
		HOUSTON TX 77253-3646				
12	Exxon Pipeline 00775	EXXON PIPELINE 00775				
		PO BOX 53				

		HOUSTON TX 77001-0053
13	Toigs Cas Carp	PROPERTY TAX DEPT
	Tejas Gas Corp	500 DALLAS ST STE 100
		HOUSTON TX77002-4804
14	LyondellBasell Acetyls LLC	ATTN TAX DEPT
	Lyondenbasen Acetyis LLC	PO BOX 3646
		HOUSTON TX 77253-3646
15	Exxon Pipeline 00480	EXXON PIPELINE 00480
	Exxon Fipeline 00480	PO BOX 53
		HOUSTON TX 77001-0053
16	La Porte Rail and Terminal LLC	LA PORTE RAIL & TERMINAL LLC
		12501 STRANG RD
		LA PORTE TX 77571-8704
17	La Porte Rail and Terminal LLC	LA PORTE RAIL & TERMINAL LLC
		12501 STRANG RD
		LA PORTE TX 77571-8704
18	County of Harris	COUNTY OF HARRIS
		PO BOX 1525
		HOUSTON TX 77251-1525
19	County of Harris	COUNTY OF HARRIS
		PO BOX 1525
		HOUSTON TX 77251-1525
20	SJI Group LLC	SJI GROUP LLC
		302 E VIEJO DR
		FRIENDSWOOD TX 77546-5547
21	Houston Petrochemicals Inc.	HOUSTON PETROCHEMICALS INC
		PO BOX 144
		LA PORTE TX 77572-0144
22	Houston Petrochemicals Inc.	HOUSTON PETROCHEMICALS INC
		PO BOX 144
		LA PORTE TX 77572-0144
23	LaPorte Fleeting LLC	LAPORTE FLEETING LLC
		C/O TURN SERVICES LLC
		9100 SAFETY DR
		CONVENT LA 70723-2232

LYONDELLBASELL ACETYLS LLC LYONDELL CHEMICAL CO 1221 MCKINNEY ST STE 300 HOUSTON TX 77010-2036 EXXON PIPELINE 00775 PO BOX 53 HOUSTON TX 77001-0053 TEJAS GAS CORP PROPERTY TAX DEPT 500 DALLAS ST STE 100 HOUSTON TX77002-4804

LYONDELLBASELL ACETYLS LLC LYONDELL CHEMICAL CO 1221 MCKINNEY ST STE 300 HOUSTON TX 77010-2036

EXXON PIPELINE 00775 PO BOX 53 HOUSTON TX 77001-0053 TEJAS GAS CORP PROPERTY TAX DEPT 500 DALLAS ST STE 100 HOUSTON TX77002-4804

LYONDELLBASELL ACETYLS LLC LYONDELL CHEMICAL CO 1221 MCKINNEY ST STE 300 HOUSTON TX 77010-2036

EXXON PIPELINE 00775 PO BOX 53 HOUSTON TX 77001-0053 TEJAS GAS CORP PROPERTY TAX DEPT 500 DALLAS ST STE 100 HOUSTON TX77002-4804

LYONDELLBASELL ACETYLS LLC LYONDELL CHEMICAL CO 1221 MCKINNEY ST STE 300 HOUSTON TX 77010-2036 EXXON PIPELINE 00775 PO BOX 53 HOUSTON TX 77001-0053 TEJAS GAS CORP PROPERTY TAX DEPT 500 DALLAS ST STE 100 HOUSTON TX77002-4804

LA PORT METHANOL CO LP MILLENNUUM CHEMICALS TAX DEPT PO BOX 3646 HOUSTON TX 77253-36 LA PORT METHANOL CO LP MILLENNUUM CHEMICALS TAX DEPT PO BOX 3646 HOUSTON TX 77253-36

LYONDELLBASELL ACETYLS LLC ATTN TAX DEPT PO BOX 3646 HOUSTON TX 77253-3646

LA PORT METHANOL CO LP MILLENNUUM CHEMICALS TAX DEPT PO BOX 3646 HOUSTON TX 77253-36 LYONDELLBASELL ACETYLS LLC ATTN TAX DEPT PO BOX 3646 HOUSTON TX 77253-3646

LYONDELLBASELL ACETYLS LLC ATTN TAX DEPT PO BOX 3646 HOUSTON TX 77253-3646

LA PORT METHANOL CO LP MILLENNUUM CHEMICALS TAX DEPT PO BOX 3646 HOUSTON TX 77253-36 LYONDELLBASELL ACETYLS LLC ATTN TAX DEPT PO BOX 3646 HOUSTON TX 77253-3646 LA PORTE RAIL & TERMINALS LLC 12501 STRANG RD LA PORTE TX 77571-8704 LA PORTE RAIL & TERMINALS LLC 12501 STRANG RD LA PORTE TX 77571-8704 LA PORTE RAIL & TERMINALS LLC 12501 STRANG RD LA PORTE TX 77571-8704 LA PORTE RAIL & TERMINALS LLC 12501 STRANG RD LA PORTE TX 77571-8704

COUNTY OF HARRIS PO BOX 1525 HOUSTON TX 77251-1525 COUNTY OF HARRIS PO BOX 1525 HOUSTON TX 77251-1525 COUNTY OF HARRIS PO BOX 1525 HOUSTON TX 77251-1525

COUNTY OF HARRIS PO BOX 1525 HOUSTON TX 77251-1525 SJI GROUP LLC 302 E VIEJO DR FRIENDSWOOD TX 77546-5547

SJI GROUP LLC 302 E VIEJO DR FRIENDSWOOD TX 77546-5547

SJI GROUP LLC 302 E VIEJO DR FRIENDSWOOD TX 77546-5547 SJI GROUP LLC 302 E VIEJO DR FRIENDSWOOD TX 77546-5547 HOUSTON PETROCHEMICALS INC. PO BOX 144 LA PORTE TX 77572-0144

HOUSTON PETROCHEMICALS INC. PO BOX 144 LA PORTE TX 77572-0144 HOUSTON PETROCHEMICALS INC. PO BOX 144 LA PORTE TX 77572-0144 HOUSTON PETROCHEMICALS INC. PO BOX 144 LA PORTE TX 77572-0144

LA PORTE FLEETING LLC C/O TURN SERVICES LLC 9100 SAFETY DR CONVENT LA 70723-2232 LA PORTE FLEETING LLC C/O TURN SERVICES LLC 9100 SAFETY DR CONVENT LA 70723-2232 LA PORTE FLEETING LLC C/O TURN SERVICES LLC 9100 SAFETY DR CONVENT LA 70723-2232

LA PORTE FLEETING LLC C/O TURN SERVICES LLC 9100 SAFETY DR CONVENT LA 70723-2232 PORT OF HOUSTON AUTHORITY 111 EAST LOOP N HOUSTON TX 77029-4326 PORT OF HOUSTON AUTHORITY 111 EAST LOOP N HOUSTON TX 77029-4326

PORT OF HOUSTON AUTHORITY 111 EAST LOOP N HOUSTON TX 77029-4326 PORT OF HOUSTON AUTHORITY 111 EAST LOOP N HOUSTON TX 77029-4326 OLEFINS JV LP 1221 MCKINNEY ST HOUSTON TX 77010-2011

OLEFINS JV LP 1221 MCKINNEY ST HOUSTON TX 77010-2011 OLEFINS JV LP 1221 MCKINNEY ST HOUSTON TX 77010-2011 OLEFINS JV LP 1221 MCKINNEY ST HOUSTON TX 77010-2011

LINDE GAS INC 10 REVIERVIEW DR DANBURY CT 06810-6268 LINDE GAS INC 10 REVIERVIEW DR DANBURY CT 06810-6268 LINDE GAS INC 10 REVIERVIEW DR DANBURY CT 06810-6268 LINDE GAS INC 10 REVIERVIEW DR DANBURY CT 06810-6268 LINDE GAS INC 575 MOUNTAIN AVE NEW PROVIDENCE NJ 07974-2097 LINDE GAS INC 575 MOUNTAIN AVE NEW PROVIDENCE NJ 07974-2097

LINDE GAS INC 575 MOUNTAIN AVE NEW PROVIDENCE NJ 07974-2097 LINDE GAS INC 575 MOUNTAIN AVE NEW PROVIDENCE NJ 07974-2097

AECOM

May 17, 2024

Via E-mail to <u>Leah.Whallon@Tceq.Texas.Gov</u>

Leah Whallon
Applications Review and Processing Team, MC-148
Water Quality Division
Texas Commission on Environmental Quality
12100 Park 35 Circle
Austin, Texas 78753

RE: Response to Letter Dated May 3, 2024

Application to Amend Permit No.: WQ0005108000 (EPA I.D. No. TX0135101)

Applicant Name: Messer LLC (CN603509266)

Site name: Messer La Porte Air Separation Unit (RN110995396)

Type of Application: Major amendment with renewal

Ms. Whallon:

On behalf of Messer LLC, please find attached the information requested in your letter dated May 3, 2024, along with associated responses to each request below in bold text.

1. Administrative Report 1.1, Affected Landowner Information
The affected landowner map does not identify the downstream landowners along the shore for one-half mile in each direction from the outfall. Please provide a revised landowner map that also includes the downstream landowners. Please also provide an updated cross referenced landowner list and the landowner list formatted for mailing labels (Avery 5160) in a Microsoft Word document.

Please find attached the following requested files:

- PDF version of "Attachment AR.1.1.-1a Adjacent landowner Map" (updated as requested);
- Microsoft Word version of an updated "Attachment AR.1.1.1 landowner map crossreference list;"
- PDF version of an updated "Attachment AR.1.1.1 landowner map cross-reference list;"
- Microsoft Word version of updated "Attachment AR1.1.1b Adjacent Landowner Labels – 4 SETS;" and,
- PDF version of updated "Attachment AR1.1.1b Adjacent Landowner Labels 4 SETS."

2. The following is a portion of the NORI which contains information relevant to your application. Please read it carefully and indicate if it contains any errors or omissions. The complete notice will be sent to you once the application is declared administratively complete.

APPLICATION. Messer LLC, 11605 Strang Road, La Porte, Texas 77571, which owns an air separation plant, has applied to the Texas Commission on Environmental Quality (TCEQ) to amend Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0005108000 (EPA I.D. No. TX0135101) to authorize reduction of the copper effluent limits. The facility is located at 11605 Strang Road, near the city of La Porte, in Harris County, Texas 77571. The discharge route is from the plant site to directly to San Jacinto Bay. TCEQ received this application on April 26, 2024. The permit application will be available for viewing and copying at La Porte Public Library, 600 South Broadway Street, La Porte, in Harris County, Texas prior to the date this notice is published in the newspaper. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-95.053333,29.704444&level=18

Further information may also be obtained from Messer LLC at the address stated above or by calling Rami Qafisheh, La Porte Zone Production Manager, at 409-240-9150.

The information provided above is primarily confirmed. However, Messer is requesting "a reduction/elimination of copper effluent limits in the renewed permit." So, see below the proposed phrasing to add "/elimination" in the fourth line below:

APPLICATION. Messer LLC, 11605 Strang Road, La Porte, Texas 77571, which owns an air separation plant, has applied to the Texas Commission on Environmental Quality (TCEQ) to amend Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0005108000 (EPA I.D. No. TX0135101) to authorize reduction/elimination of the copper effluent limits. The facility is located at 11605 Strang Road, near the city of La Porte, in Harris County, Texas 77571. The discharge route is from the plant site to directly to San Jacinto Bay. TCEQ received this application on April 26, 2024. The permit application will be available for viewing and copying at La Porte Public Library, 600 South Broadway Street, La Porte, in Harris County, Texas prior to the date this notice is published in the newspaper. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-95.053333,29.704444&level=18

Further information may also be obtained from Messer LLC at the address stated above or by calling Rami Qafisheh, La Porte Zone Production Manager, at 409-240-9150.

3. The application indicates that public notices in Spanish are required. After confirming the portion of the NORI above does not contain any errors or omissions,

please use the attached template to translate the NORI into Spanish. Only the first and last paragraphs are unique to this application and require translation. Please provide the translated Spanish NORI in a Microsoft Word document.

Please find attached a Microsoft Word version of "Industrial Discharge Renewal Spanish NORI."

Should you have any questions or require additional information, please contact me at (609) 213-7245 or andrea.wagner@aecom.com.

Sincerely,

Andrea Wagner

Andrew Wagner

Project Manager, AECOM

Attachments: Attachment AR.1.1.-1a Adjacent landowner Map (PDF)

Attachment AR.1.1.1 – landowner map cross-reference list (Microsoft Word)

Attachment AR.1.1.1 – landowner map cross-reference list (PDF)

Attachment AR1.1.1b - Adjacent Landowner Labels - 4 SETS (Microsoft Word)

Attachment AR1.1.1b – Adjacent Landowner Labels – 4 SETS (PDF) Industrial Discharge Renewal Spanish NORI (Microsoft Word)

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECEPCIÓN DE LA SOLICITUD Y LA INTENCIÓN DE OBTENER CALIDAD DEL AGUA PERMISO MODIFICACION

PERMISO NO	O. WQoo
------------	---------

SOLICITUD. Messer LLC, 11605 Strang Road, La Porte, Texas 7757, propietario de una planta de separación de aire, ha solicitado a la Comisión de Calidad Ambiental de Texas (TCEQ) enmendar el Permiso No. WQ0005108000 (EPA I.D. No. TX0135101) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la reducción/eliminación de los limites de efluentes de cobre. La planta está ubicada en el 11605 Strang Road, cerca de la ciudad de La Porte, en el Condado de Harris, Texas 77571. La ruta de descarga es desde el sitio de la planta hasta directamente a la Bahia de San Jacinto. La TCEQ recibió esta solicitud el día 26 de Abril de 2024. La solicitud para el permiso estará disponible para leerla y copiarla en la Biblioteca Publica de La Porte, 600 South Broadway Street, La Porte, en el Condado de Harris, antes de la fecha de publicación de este aviso en el periódico. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-95.053333,29.704444&level=18

Include the following non-italicized sentence if the facility is located in the Coastal Management Program boundary and is an application for a major amendment which will increase the pollutant loads to coastal waters or would result in relocation of an outfall to a critical areas, or a renewal with such a major amendment. The Coastal Management Program boundary is the area along the Texas Coast of the Gulf of México as depicted on the map in 31 TAC §503.1 and includes part or all of the following counties: Cameron, Willacy, Kenedy, Kleberg, Nueces, San Patricio, Aransas, Refugio, Calhoun, Victoria, Jackson, Matagorda, Brazoria, Galveston, Harris, Chambers, Jefferson y Orange. If the application is for amendment that does not meet the above description or a renewal without such a major amendment, do not include the sentence: El Director Ejecutivo de la TCEQ ha revisado esta medida para ver si está de acuerdo con los objetivos y las regulaciones del Programa de Administración Costero de Texas (CMP) de acuerdo con las regulaciones del Consejo Coordinador de la Costa (CCC) y ha determinado que la acción es conforme con las metas y regulaciones pertinentes del CMP.

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO

CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada

anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía http://www14.tceq.texas.gov/epic/eComment/ o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional por parte de Messer LLC en la dirección indicada arriba o llamando a Rami Qafisheh, Gerente de Produccion Zona de La Porte al 409-240-9150.

n 1 1 '''	_	$\overline{}$							•			7	7
Fecha de emisión	11	I)	Λī	to.	n	\mathbf{O}	tı.	ce	10	: C1	10	а	1
i cena de cimisión	Į	$\boldsymbol{\mathcal{L}}$	uı		ηц	\cdot	LU	UU	w	Jυ	$\iota \circ$	u	•