

This file contains the following documents:

- 1. Summary of application (in plain language)
 - English
 - Alternative Language (Spanish)
- 2. First notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
 - English
 - Alternative Language (Spanish)
- 3. Second notice (NAPD-Notice of Preliminary Decision)
 - English
 - Alternative Language (Spanish)
- 4. Application materials
- 5. Draft permit
- 6. Technical summary or fact sheet

Este archivo contiene los siguientes documentos:

- 1. Resumen de la solicitud (en lenguaje sencillo)
 - Inglés
 - Idioma alternativo (español)
- 2. Primer aviso (NORI, Aviso de Recepción de Solicitud e Intención de Obtener un Permiso)
 - Inglés
 - Idioma alternativo (español)
- 3. Segundo aviso (NAPD, Aviso de Decisión Preliminar)
 - Inglés
 - Idioma alternativo (español)
- 4. Materiales de la solicitud
- 5. Proyecto de permiso
- 6. Resumen técnico u hoja de datos

DOMESTIC WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

The City of Navasota (CN600690747) operates the City of Navasota Wastewater Treatment Facility (RN101608131), a wastewater treatment facility. The facility is located at 108 N Peeples, in Navasota, Grimes County, Texas 77868. Renewal to discharge 1.8 million gallons per day of treated domestic wastewater.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand ($CBOD_5$), total suspended solids (TTS), ammonia nitrogen ($NH_3 - N$), and Escherichia coli. Additional potential pollutants are included in the Domestic Technical Report 1.0. Section 7 in the permit application package. Domestic wastewater is treated by an aeration basin followed by a clarifier before effluent is chlorinated in a contact basin.

AGUAS RESIDUALES DOMÉSTICAS /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

La Ciudad de Navasota (CN600690747) opera La Planta de Tratamiento de Aguas Residuales de la Ciudad de Navasota (RN101608131), un planta de tratamiento de aguas residuales. La instalación está ubicada en 108 N Peeples, en Navasota, Condado de Grimes, Texas 77868. renovación para descargar 1.8 millones de galones por día de aguas residuales domésticas tratadas.

Se espera que las descargas de la instalación contengan demanda bioquímica de oxígeno carbonáceo a cinco días ($CBOD_5$), sólidos suspendidos totales (TTS), nitrógeno amoniacal (NH_3 -N) y Escherichia coli. Los contaminantes potenciales adicionales están incluidos en el Informe Técnico Doméstico 1.0, Sección 7, en el paquete de solicitud del permiso. aguas residuales domésticas. está tratado por un basin de aireación seguido por un clarificador antes de que el efluente sea clorado en un tanque de contacto.

DOMESTIC WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

The City of Navasota (CN600690747) operates the City of Navasota Wastewater Treatment Facility (RN101608131), a wastewater treatment facility. The facility is located at 108 N Peeples, in Navasota, Grimes County, Texas 77868. Renewal to discharge 1.8 million gallons per day of treated domestic wastewater.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand ($CBOD_5$), total suspended solids (TTS), ammonia nitrogen ($NH_3 - N$), and Escherichia coli. Additional potential pollutants are included in the Domestic Technical Report 1.0. Section 7 in the permit application package. Domestic wastewater is treated by an aeration basin followed by a clarifier before effluent is chlorinated in a contact basin.

AGUAS RESIDUALES DOMÉSTICAS /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

La Ciudad de Navasota (CN600690747) opera La Planta de Tratamiento de Aguas Residuales de la Ciudad de Navasota (RN101608131), un planta de tratamiento de aguas residuales. La instalación está ubicada en 108 N Peeples, en Navasota, Condado de Grimes, Texas 77868. renovación para descargar 1.8 millones de galones por día de aguas residuales domésticas tratadas.

Se espera que las descargas de la instalación contengan demanda bioquímica de oxígeno carbonáceo a cinco días ($CBOD_5$), sólidos suspendidos totales (TTS), nitrógeno amoniacal (NH_3 -N) y Escherichia coli. Los contaminantes potenciales adicionales están incluidos en el Informe Técnico Doméstico 1.0, Sección 7, en el paquete de solicitud del permiso. aguas residuales domésticas. está tratado por un basin de aireación seguido por un clarificador antes de que el efluente sea clorado en un tanque de contacto.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL.

PERMIT NO. WQ0010231001

APPLICATION. City of Navasota, P.O. box 910, Navasota, Texas 77868, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010231001 (EPA I.D. No. TX0071790) to authorize the discharge of treated at a volume not to exceed an annual average flow of 1,800,000 gallons per day. The domestic wastewater facility is located at 108 North Peeples Street, near the city of Navasota, in Grimes County, Texas 77868. The discharge route is from the plant site to Cedar Creek; thence to Navasota River Below Lake Limestone. TCEQ received this application on January 27, 2025. The permit application will be available for viewing and copying at Navasota City Hall, 200 East McAlpine Street, Navasota, in Grimes County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-96.100833,30.383611&level=18

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public

interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Navasota at the address stated above or by calling Jennifer Reyna, Public Works Director, at 936-825-6450.

Issuance Date: February 24, 2025

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ0010231001

SOLICITUD. City of Navasota, P.O. Box 910, Navasota, Texas 77868 ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0010231001 (EPA I.D. No. TX 0071790) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio diario de 1,800,000 galones por día. La planta está ubicada 108 North Peeples Street, Navasota, en el Condado de Grimes, Texas. La ruta de descarga es del sitio de la planta a Cedar Creek; de allí al Navasota River abajo Lake Limestone. La TCEQ recibió esta solicitud el 27 de enero de 2025. La solicitud para el permiso estará disponible para leerla y copiarla en Navasota City Hall, 200 East McAlpine Street, Navasota, Grimes County, Texas antes de la fecha de publicación de este aviso en el periódico. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO.

Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. **A menos que la solicitud haya sido referida**

directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono: el nombre del solicitante y número del permiso: la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía

http://www14.tceq.texas.gov/epic/eComment/o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional del City of Navasota a la dirección indicada arriba o llamando a Jennifer Reyna al (936) 825-6450.

Fecha de emission: 24 de febrero de 2025

Texas Commission on Environmental Quality

COMBINED

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT (NORI)

AND

NOTICE OF APPLICATION AND PRELIMINARY DECISION FOR TPDES PERMIT FOR MUNICIPAL WASTEWATER

RENEWAL

PERMIT NO. WQ0010231001

APPLICATION AND PRELIMINARY DECISION. City of Navasota, P.O. box 910, Navasota, Texas 77868, has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010231001, which authorizes the discharge of treated domestic wastewater at an annual average flow not to exceed 1,800,000 gallons per day. TCEQ received this application on January 27, 2025.

PURPOSE OF COMBINED NOTICE. This combined notice corrects the information that was provided in the NORI, specifically, the address of the facility's location has been changed.

The facility is located at 108 North Peeples Street, in the City of Navasota, Grimes County, Texas 77868. The treated effluent is discharged to Cedar Creek, thence to Navasota River Below Lake Limestone in Segment No. 1209 of the Brazos River Basin. The unclassified receiving water use is intermediate aquatic life use for Cedar Creek. The designated uses for Segment No. 1209 are primary contact recreation, public water supply, and high aquatic life use. This link to an electronic map of the site or facility's general location is provided as a public courtesy and is not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-96.100833,30.383611&level=18

The TCEQ Executive Director has completed the technical review of the application and prepared a draft permit. The draft permit, if approved, would establish the conditions under which the facility must operate. The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The permit application, Executive Director's preliminary decision, and draft permit are available for viewing and copying at Navasota City Hall, 200 East McAlpine Street, Navasota, in Grimes County, Texas. The application is available for viewing and copying at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at https://www.tceq.texas.gov/permitting/wastewater/plain-language-summaries-and-public-notices.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting about this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ holds a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting a contested case hearing or reconsideration of the Executive Director's decision. A contested case hearing is a legal proceeding similar to a civil trial in a state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period; and the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period. TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

EXECUTIVE DIRECTOR ACTION. The Executive Director may issue final approval of the application unless a timely contested case hearing request or request for reconsideration is filed. If a timely hearing request or request for reconsideration is filed, the Executive Director will not issue final approval of the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

All written public comments and public meeting requests must be submitted to the Office of the Chief Clerk, MC 105, Texas Commission on Environmental Quality, P.O. Box 13087, Austin, TX 78711-3087 or electronically at www.tceq.texas.gov/goto/comment within 30 days from the date of newspaper publication of this notice.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. Public comments and requests must be submitted either electronically at www.tceq.texas.gov/goto/comment, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC 105, P.O. Box 13087, Austin, Texas 78711-3087. Any personal information you submit to the TCEQ will become part of the agency's record; this includes email addresses. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Navasota at the address stated above or by calling Jennifer Reyna, Public Works Director, at 936-825-6450.

Issuance Date: December 9, 2025

Comisión De Calidad Ambiental Del Estado De Texas

COMBINADO

AVISO DE RECEPCIÓN DE SOLICITUD E INTENCIÓN DE OBTENER UN PERMISO DE CALIDAD DEL AGUA (NORI)

Y

AVISO DE SOLICITUD Y DECISIÓN PRELIMINAR PARA EL PERMISO TPDES PARA AGUAS RESIDUALES MUNICIPALES

RENOVACIÓN

PERMISO NO. WQ 0010231001

SOLICITUD Y DECISIÓN PRELIMINAR. City of Navasota, P.O. box 910, Navasota, Texas 77868 solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) una renovación para autorizar the discharge of treated domestic wastewater at an annual average flow not to exceed 1,800,000 gallons per day. La TCEQ recibió esta solicitud el January 27, 2025.

PROPÓSITO DEL AVISO CONJUNTO. Este aviso combinado corrige la información proporcionada en el NORI; en concreto, se modificó la dirección de la instalación.

La planta está ubicada en 108 North Peeples Street, in the City of Navasota, Grimes County, Texas 77868. El efluente tratado es descargado al Cedar Creek thence to Navasota River Below Lake Limestone en el Segmento No.1209 de la Cuenca del Río Brazos River Basin. Los usos no clasificados de las aguas receptoras son intermediate usos de la vida acuática para Cedar Creek. Los usos designados para el Segmento No. 1209 son Recreación de contacto primario, suministro público de agua y uso elevado de vida acuática. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-96.100833,30.383611&level=18

El Director Ejecutivo de la TCEQ ha completado la revisión técnica de la solicitud y ha preparado un borrador del permiso. El borrador del permiso, si es aprobado, establecería las condiciones bajo las cuales la instalación debe operar. El Director Ejecutivo ha tomado una decisión preliminar que si este permiso es emitido, cumple con todos los requisitos normativos y legales. La solicitud del permiso, la decisión preliminar del Director Ejecutivo y el borrador del permiso están disponibles para leer y copiar en Navasota City Hall, 200 East McAlpine Street, Navasota, in Grimes County, Texas. La solicitud está disponible para su consulta y reproducción a través del siguiente enlace: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

AVISO DE IDIOMA ALTERNATIVO. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud.

El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO.

Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO. USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso para descargar aguas residuales sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

ACCIÓN DEL DIRECTOR EJECUTIVO. El Director Ejecutivo puede emitir una aprobación final de la solicitud a menos que exista un pedido antes del plazo de vencimiento de una audiencia administrativa de lo contencioso o se ha presentado un pedido de reconsideración. Si un pedido ha llegado antes del plazo de vencimiento de la audiencia o el pedido de reconsideración ha sido presentado, el Director Ejecutivo no emitirá una aprobación final sobre el permiso y enviará la solicitud y el pedido a los Comisionados de la TECQ para consideración en una reunión programada de la Comisión.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

Todos los comentarios escritos del público y los pedidos una reunión deben ser presentados durante los 30 días después de la publicación del aviso a la Oficina del Secretario Principal, MC 105, TCEQ, P.O. Box 13087, Austin, TX 78711-3087 or por el internet a https://www.tceq.texas.gov/goto/comment. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia.

INFORMACIÓN DISPONIBLE EN LÍNEA. Para obtener detalles sobre el estado de la solicitud, visite la Base de Datos Integrada de los Comisionados en https://www.tceq.texas.gov/goto/cid/. Busque en la base de datos utilizando el número de permiso para esta solicitud, que se proporciona en la parte superior de este aviso.

CONTACTOS E INFORMACIÓN DE LA AGENCIA. Los comentarios y solicitudes públicas deben enviarse electrónicamente a https://www.tceq.texas.gov/goto/comment, o por escrito a Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Cualquier información personal que envíe a al TCEQ pasará a formar parte del registro de la agencia; esto incluye las direcciones de correo electrónico. Para obtener más información sobre esta solicitud de permiso o el proceso de permisos, llame al Programa de Educación Pública de la TCEQ, sin cargo, al 1-800-687-4040 o visite su sitio web en https://www.tceq.texas.gov/agency/decisions/participation/permitting-participation. Si desea información en español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional del City of Navasota a la dirección indicada arriba o llamando a Jennifer Reyna, Public Works Director, 936-825-6450.

Fecha de emisión 9 de diciembre de 2025

Brooke T. Paup, *Chairwoman*Bobby Janecka, *Commissioner*Catarina R. Gonzales, *Commissioner*Kelly Keel, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

January 27, 2025

Re: Confirmation of Submission of the Renewal without changes for Public Domestic Wastewater Authorization.

Dear Applicant:

This is an acknowledgement that you have successfully completed Renewal without changes for the Public Domestic Wastewater authorization.

ER Account Number: ER110510

Application Reference Number: 746327 Authorization Number: WQ0010231001 Site Name: City of Navasota WWTP

Regulated Entity: RN101608131 - City of Navasota Old Stp

Customer(s): CN600690747 - City of Navasota

Please be aware that TCEQ staff may contact your designated contact for any additional information.

If you have any questions, you may contact the Applications Review and Processing Team by email at WQ-ARPTeam@tceq.texas.gov or by telephone at (512) 239-4671.

Sincerely, Applications Review and Processing Team Water Quality Division

Texas Commission on Environmental Quality

Update Domestic or Industrial Individual Permit WQ0010231001

Site Information (Regulated Entity)

What is the name of the site to be authorized? CITY OF NAVASOTA WWTP

Does the site have a physical address?

Physical Address

Number and Street 108 N PEEPLES ST

City NAVASOTA

 State
 TX

 ZIP
 77868

 County
 GRIMES

 Latitude (N) (##.#####)
 30.383611

 Longitude (W) (-###.#####)
 -96.100833

 Primary SIC Code
 4952

Secondary SIC Code

Primary NAICS Code 221320

Secondary NAICS Code

Regulated Entity Site Information

What is the Regulated Entity's Number (RN)? RN101608131

What is the name of the Regulated Entity (RE)? CITY OF NAVASOTA OLD STP

Does the RE site have a physical address?

Yes

Physical Address

Number and Street 108 N PEEPLES ST

City NAVASOTA

 State
 TX

 ZIP
 77868

 County
 GRIMES

 Latitude (N) (##.####)
 30.382039

 Longitude (W) (-###.#####)
 -96.100288

Facility NAICS Code

What is the primary business of this entity?

DOMESTIC

City of-Customer (Applicant) Information (Owner)

How is this applicant associated with this site?

Owner

What is the applicant's Customer Number (CN)?

CN600690747

Type of Customer

City Government

Full legal name of the applicant:

Legal Name City of Navasota

Texas SOS Filing Number

Federal Tax ID

State Franchise Tax ID
State Sales Tax ID

Local Tax ID

DUNS Number

Number of Employees

Independently Owned and Operated?

I certify that the full legal name of the entity applying for this permit has

been provided and is legally authorized to do business in Texas.

Responsible Authority Contact

Organization Name City of Navasota

Yes

Prefix MRS
First Jennifer

Middle

Last Reyna

Suffix

Credentials

Title Public Works Director

Responsible Authority Mailing Address

Enter new address or copy one from list:

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) PO BOX 910

Routing (such as Mail Code, Dept., or Attn:)

City NAVASOTA

State TX ZIP 77868

Phone (###-###) 9368256450

Extension

Alternate Phone (###-###-###)

Fax (###-###) 9368252403

E-mail jreyna@NAVASOTATX.GOV

Billing Contact

Responsible contact for receiving billing statements:

Select the permittee that is responsible for payment of the annual fee.

CN600690747, City of Navasota

Organization Name CITY OF NAVASOTA

Prefix

First

Middle

Last

Suffix

Credentials

Title

Enter new address or copy one from list:

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) PO BOX 910

Routing (such as Mail Code, Dept., or Attn:)

Attn Heaven Dominguez

City NAVASOTA

State TX ZIP 77868

Phone (###-###) 9368256490

Extension

Alternate Phone (###-###-)

Fax (###-####) 9368256450

E-mail hdominguez@NAVASOTATX.GOV

Application Contact

Person TCEQ should contact for questions about this application:

Same as another contact?

Organization Name Bleyl Engineering

Prefix

First

Middle

Last

Suffix

Credentials EIT

Title Graduate Engineer

Enter new address or copy one from list:

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable)

1722 BROADMOOR DR STE 210

Routing (such as Mail Code, Dept., or Attn:)

Attn Zachary Votaw

City BRYAN
State TX
ZIP 77802

Phone (###-####) 8323745212

Extension

Alternate Phone (###-###-###)

Fax (###-###-###)

E-mail zvotaw@bleylengineering.com

Technical Contact

Person TCEQ should contact for questions about this application:

Same as another contact?

Organization Name Bleyl Engineering

Prefix MR
First Steve

Middle

Last Duncan

Suffix

Credentials PE

Title Senior Director

Enter new address or copy one from list: Application Contact Address

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) 1722 BROADMOOR DR STE 210

Routing (such as Mail Code, Dept., or Attn:)

Attn Steve Duncan

City BRYAN

State TX

ZIP 77802

Phone (###-####) 9792557800

Extension

Alternate Phone (###-###-)

Fax (###-###-###)

E-mail sduncan@bleylengineering.com

DMR Contact

Person responsible for submitting Discharge Monitoring Report

Forms:

Same as another contact?

Organization Name CITY OF NAVASOTA

Prefix

First Matt

Middle

Last Julian

Suffix

Credentials

Title Chief Operator

Enter new address or copy one from list:

Mailing Address:

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable)

PO BOX 910

Routing (such as Mail Code, Dept., or Attn:)

Attn Matt Julian

City

State TX ZIP 77868

Phone (###-####) 9368256450

Extension

Alternate Phone (###-###-###)

Fax (###-###-###)

E-mail mjulian@navasotatx.gov

Section 1# Permit Contact

Permit Contact#: 1

Person TCEQ should contact throughout the permit term.

1) Same as another contact?

Application Contact

2) Organization Name Bleyl Engineering

3) Prefix

4) First Zachary

5) Middle

6) Last Votaw

7) Suffix

8) Credentials EIT

9) Title Graduate Engineer

Mailing Address

10) Enter new address or copy one from list

1722 BROADMOOR DR STE 210 11.1) Mailing Address (include Suite or Bldg. here, if applicable)

Domestic

06/04/2025

11.2) Routing (such as Mail Code, Dept., or Attn:) Attn Zachary Votaw

BRYAN 11.3) City

ΤX 11.4) State 77802 11.5) ZIP

8323745212 12) Phone (###-###-###)

13) Extension

11) Address Type

14) Alternate Phone (###-###-###)

15) Fax (###-###-###)

16) E-mail zvotaw@bleylengineering.com

Owner Information

Owner of Treatment Facility

1) Prefix

2) First and Last Name

3) Organization Name City of Navasota PO BOX 910

4) Mailing Address 5) City Navasota 6) State TX 77868

8) Phone (###-###-) 9368256450

9) Extension

7) Zip Code

10) Email jreyna@navasotatx.gov

11) What is ownership of the treatment facility? Public

Owner of Land (where treatment facility is or will be)

12) Prefix

13) First and Last Name

City of Navasota 14) Organization Name PO BOX 910 15) Mailing Address 16) City Navasota

17) State TX 77868 18) Zip Code

19) Phone (###-###-###) 9368256450

20) Extension

21) Email jreyna@navasotatx.gov

22) Is the landowner the same person as the facility owner or co-Yes

applicant?

General Information Renewal-Amendment

1) Current authorization expiration date:

2) Current Facility operational status: Active

3) Is the facility located on or does the treated effluent cross American No

Indian Land?

4) What is the application type that you are seeking? Renewal without changes

5) Current Authorization type: **Public Domestic Wastewater**

1.8 5.1) What is the proposed total flow in MGD discharged at the facility? 5.2) Select the applicable fee >= 1.0 MGD - Renewal - \$2,015 **TPDES** 6) What is the classification for your authorization? 6.1) What is the EPA Identification Number? TX0071790 6.2) Is the wastewater treatment facility location in the existing permit Yes accurate? 6.3) Are the point(s) of discharge and the discharge route(s) in the Yes existing permit correct? 6.4) City nearest the outfall(s): Navasota **GRIMES** 6.5) County where the outfalls are located: 6.6) Is or will the treated wastewater discharge to a city, county, or state No highway right-of-way, or a flood control district drainage ditch? 6.7) Is the daily average discharge at your facility of 5 MGD or more? No 7) Did any person formerly employed by the TCEQ represent your No company and get paid for service regarding this application? **Public Notice Information**

1) Prefix

2) First and Last Name Zachary Votaw

3) Credential EIT

4) Title **Graduate Engineer**

5) Organization Name **Bleyl Engineering**

6) Mailing Address 1722 BROADMOOR DR

7) Address Line 2 Suite 210

8) City **BRYAN**

9) State ΤX 10) Zip Code 77802

11) Phone (###-###) 8323745212

12) Extension

13) Fax (###-###-###)

14) Email zvotaw@bleylengineering.com

Contact person to be listed in the Notices

15) Prefix

16) First and Last Name Jennifer Reyna

17) Credential

18) Title **Public Works Director**

19) Organization Name City of Navasota 20) Phone (###-###-###) 9368256450

21) Fax (###-####)

22) Email jreyna@navasotatx.gov

Yes

Bilingual Notice Requirements

23) Is a bilingual education program required by the Texas Education Yes

Code at the elementary or middle school nearest to the facility or proposed facility?

23.1) Are the students who attend either the elementary school or the

middle school enrolled in a bilingual education program at that school?

23.2) Do the students at these schools attend a bilingual education No

program at another location?

23.3) Would the school be required to provide a bilingual education program but the school has waived out of this requirement under 19

TAC 89.1205(g)?

23.4) Which language is required by the bilingual program?

No

Spanish

Section 1# Public Viewing Information

County#: 1

GRIMES 1) County

2) Public building name Navasota City Hall

3) Location within the building

4) Physical Address of Building 200 E. McAlpine Street

5) City Navasota

6) Contact Name

7) Phone (###-###-###) 9368256450

8) Extension

9) Is the location open to the public? Yes

Plain Language

1) Plain Language [File Properties]

File Name LANG Plain Language Summary.docx

Hash EC129ABEF89D6CDDA3CC478F682A896AFB2F88950B632EDCFB2C2D0306495D06

MIME-Type application/vnd.openxmlformats-

officedocument.wordprocessingml.document

Supplemental Permit Information Form

1) Supplemental Permit Information Form (SPIF)

[File Properties]

File Name SPIF SPIF Form.docx

Hash 8376DD21F8E07832C8DC224EBF1B68D6661BCA3F578BCEF682A2BA1CB92F7E01

MIME-Type application/vnd.openxmlformats-

officedocument.wordprocessingml.document

Domestic Attachments

1) Attach an 8.5"x11", reproduced portion of the most current and original USGS Topographic Quadrangle Map(s) that meets the 1:24,000 scale.

[File Properties]

File Name MAP_USGS Topographic Map.pdf

E0B94E4E91D5F9D9CABCCE9EDC55CCAF9F3D482398FA3EEC8B8AB5BCFA65E050 Hash

MIME-Type application/pdf

2) I confirm that all required sections of Technical Report 1.0 are

complete and will be included in the Technical Attachment.

Yes

2.1) I confirm that Worksheet 2.0 (Receiving Waters) is complete and included in the Technical Attachment.

Yes

2.2) Are you planning to include Worksheet 2.1 (Stream Physical Characteristics) in the Technical Attachment?

2.3) Are you planning to include Worksheet 4.0 (Pollutant Analyses Requirements) in the Technical Attachment?

2.4) Are you planning to include Worksheet 5.0 (Toxicity Testing Requirements) in the Technical Attachment?

2.5) I confirm that Worksheet 6.0 (Industrial Waste Contribution) is complete and included in the Technical Attachment.

2.6) Are you planning to include Worksheet 7.0 (Class V Injection Well Inventory/Authorization Form) in the Technical Attachment?

2.7) Technical Attachment

[File Properties]

File Name TECH_Technical Report.pdf

Hash 445720DC11EB24ECC362F64D40AA3F347D412C1F3504818E47E03F1BDE43FB50

MIME-Type application/pdf

3) Buffer Zone Map [File Properties]

File Name BUFF_ZM_Buffer Zone Map.pdf

Hash 299536C1731AE52C506590B4CE49DF8DDD49D661F520F3F83FFBECCD138E09B3

MIME-Type application/pdf

4) Flow Diagram [File Properties]

File Name FLDIA_Flow Diagram.pdf

Hash CAB9B00F8A365B6B526F5C5CD9E73449D8AADDAB04A12A511871773EDCB43649

MIME-Type application/pdf

5) Site Drawing[File Properties]

File Name SITEDR_Site Drawing.pdf

Hash 6DAD1849837004346F097B526FB209C646F80675222FFD8F4614608D1E72559A

MIME-Type application/pdf

6) Design Calculations

[File Properties]

File Name DES_CAL_Blank.pdf

Hash 7E328CAB909DD869DBCD2E85F2BF50FB3DF807C92D4844BF66D82258B9473D8A

MIME-Type application/pdf

7) Solids Management Plan

8) Water Balance [File Properties]

File Name WB_Blank.pdf

Hash 7E328CAB909DD869DBCD2E85F2BF50FB3DF807C92D4844BF66D82258B9473D8A

MIME-Type application/pdf

9) Other Attachments

Certification

I certify that I am authorized under 30 Texas Administrative Code 305.44 to sign this document and can provide documentation in proof of such authorization upon request.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations

- 1. I am Jennifer C Reyna, the owner of the STEERS account ER066658.
- 2. I have the authority to sign this data on behalf of the applicant named above.
- 3. I have personally examined the foregoing and am familiar with its content and the content of any attachments, and based upon my personal knowledge and/or inquiry of any individual responsible for information contained herein, that this information is true, accurate, and complete.
- 4. I further certify that I have not violated any term in my TCEQ STEERS participation agreement and that I have no reason to believe that the confidentiality or use of my password has been compromised at any time.
- 5. I understand that use of my password constitutes an electronic signature legally equivalent to my written signature.
- 6. I also understand that the attestations of fact contained herein pertain to the implementation, oversight and enforcement of a state and/or federal environmental program and must be true and complete to the best of my knowledge.
- 7. I am aware that criminal penalties may be imposed for statements or omissions that I know or have reason to believe are untrue or misleading.
- 8. I am knowingly and intentionally signing Update Domestic or Industrial Individual Permit WQ0010231001.
- 9. My signature indicates that I am in agreement with the information on this form, and authorize its submittal to the TCEQ.

OWNER Signature: Jennifer C Reyna OWNER

Customer Number:

Legal Name:

Account Number:

ER066658

Signature IP Address:

Signature Date:

CN600690747

City of Navasota

4.14.57.2

2025-01-27

Signature Hash: 7E59FC77091B5A7C7F136E91B7C30A59218EE58E3DC6AD52EAFE3F1B8EF18FAF
Form Hash Code at time of DE9DA5DF81138B6737F2A8F2D048421FF47FA2303B7885ABC70F49093525344E

Signature:

Fee Payment

Transaction by:

The application fee payment transaction was made by ER066658/Jennifer C Reyna

Paid by:

The application fee was paid by JENNIFER REYNA

Fee Amount:

\$2000.00

Paid Date:

The application fee was paid on 2025-01-27

Transaction/Voucher number:

The transaction number is 582EA000646885 and the voucher number is 744275

Submission

Reference Number: The application reference number is 746327

Submitted by:

The application was submitted by

ER110510/Zachary Votaw

Submitted Timestamp: The application was submitted on 2025-01-27 at

14:45:20 CST

Submitted From: The application was submitted from IP address

195.252.236.24

Confirmation Number: The confirmation number is 622627

Steers Version: The STEERS version is 6.85

Permit Number: The permit number is WQ0010231001

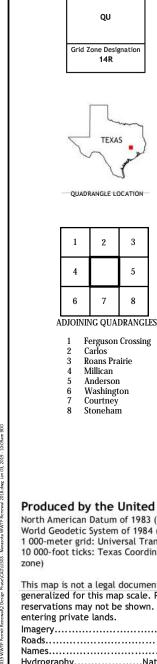
Additional Information

Application Creator: This account was created by Zachary Votaw

DOMESTIC WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

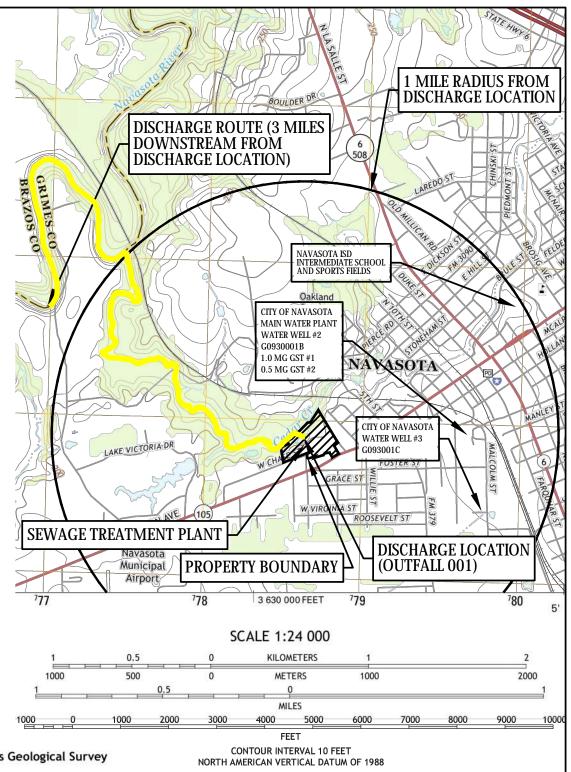
The City of Navasota (CN600690747) operates the City of Navasota Wastewater Treatment Facility (RN101608131), a wastewater treatment facility. The facility is located at 108 N Peeples, in Navasota, Grimes County, Texas 77868. Renewal to discharge 1.8 million gallons per day of treated domestic wastewater.


Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand ($CBOD_5$), total suspended solids (TTS), ammonia nitrogen (NH_3-N), and Escherichia coli. Additional potential pollutants are included in the Domestic Technical Report 1.0. Section 7 in the permit application package. Domestic wastewater is treated by an aeration basin followed by a clarifier before effluent is chlorinated in a contact basin.

AGUAS RESIDUALES DOMÉSTICAS /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

La Ciudad de Navasota (CN600690747) opera La Planta de Tratamiento de Aguas Residuales de la Ciudad de Navasota (RN101608131), un planta de tratamiento de aguas residuales. La instalación está ubicada en 108 N Peeples, en Navasota, Condado de Grimes, Texas 77868. renovación para descargar 1.8 millones de galones por día de aguas residuales domésticas tratadas.


Se espera que las descargas de la instalación contengan demanda bioquímica de oxígeno carbonáceo a cinco días (CBOD $_5$), sólidos suspendidos totales (TTS), nitrógeno amoniacal (NH $_3$ -N) y Escherichia coli. Los contaminantes potenciales adicionales están incluidos en el Informe Técnico Doméstico 1.0, Sección 7, en el paquete de solicitud del permiso. aguas residuales domésticas. está tratado por un basin de aireación seguido por un clarificador antes de que el efluente sea clorado en un tanque de contacto.

NAVASOTA, TX 2016

UTM GRID AND 2016 MAGNETIC NORTH DECLINATION AT CENTER OF SHEET U.S. National Grid 100,000-m Square ID

1° 29' 26 MILS

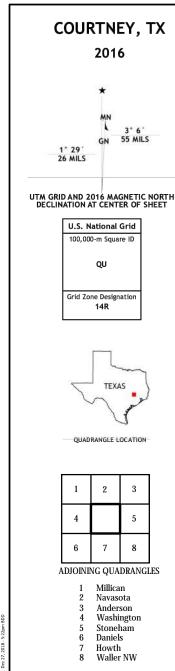
Produced by the United States Geological Survey

North American Datum of 1983 (NAD83) World Geodetic System of 1984 (WGS84). Projection and 1 000-meter grid: Universal Transverse Mercator, Zone 14R 10 000-foot ticks: Texas Coordinate System of 1983 (central

3

5

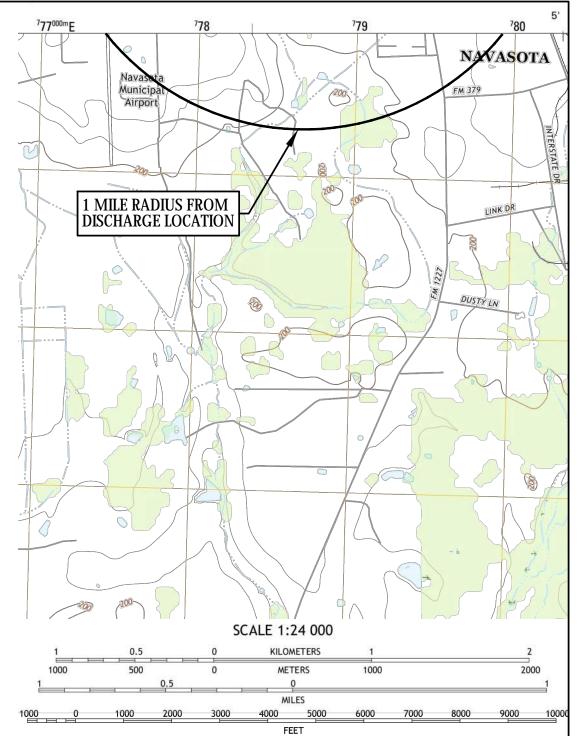
This map is not a legal document. Boundaries may be generalized for this map scale. Private lands within government reservations may not be shown. Obtain permission before entering private lands.


Imagery	NAIP, October 2014
Roads U.S.	Census Bureau, 2014 - 2015
Names	GNIS, 2015
HydrographyNational	Hydrography Dataset, 2014
ContoursNation	al Elevation Dataset, 2004
BoundariesMultiple sources;	see metadata file 1972 - 2015

Wetlands......FWS National Wetlands Inventory 1977 - 2014

This map was produced to conform with the National Geospatial Program US Topo Product Standard, 2011. A metadata file associated with this product is draft version 0.6.19

> USGS TOPOGRAPHIC MAP DOMESTIC ADMINISTRATIVE REPORT 1.0, **ITEM 13.** CITY OF NAVASOTA WASTEWATER TREATMENT PLANT WQ0010231001 SHEET 1 OF 2


BLEYL ENGINEERING

TEXAS

3

5

Produced by the United States Geological Survey

North American Datum of 1983 (NAD83) World Geodetic System of 1984 (WGS84). Projection and 1 000-meter grid: Universal Transverse Mercator, Zone 14R 10 000-foot ticks: Texas Coordinate System of 1983 (central

This map is not a legal document. Boundaries may be generalized for this map scale. Private lands within government reservations may not be shown. Obtain permission before entering private lands.

Imagery	NAIP, October	2014
Roads L	J.S. Census Bureau, 2014 -	2015
Names	GNIS,	2015
HydrographyNatio	nal Hydrography Dataset,	2014
ContoursNa	tional Elevation Dataset,	2004
BoundariesMultiple source	ces; see metadata file 1972 ·	2015

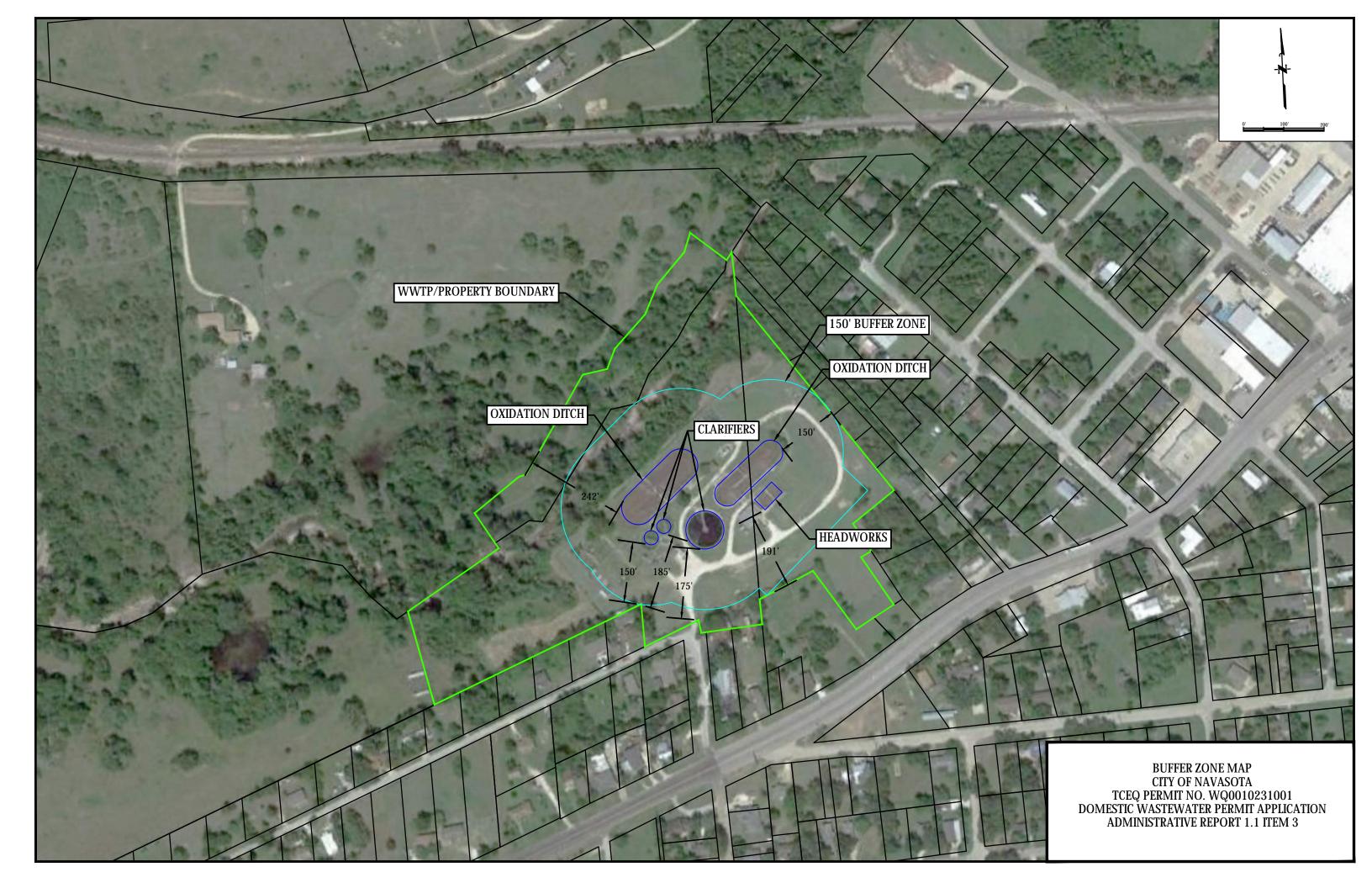
Wetlands......FWS National Wetlands Inventory 1977 - 2014

CONTOUR INTERVAL 10 FEET NORTH AMERICAN VERTICAL DATUM OF 1988

This map was produced to conform with the National Geospatial Program US Topo Product Standard, 2011. A metadata file associated with this product is draft version 0.6.19

> USGS TOPOGRAPHIC MAP DOMESTIC ADMINISTRATIVE REPORT 1.0, **ITEM 13. CITY OF NAVASOTA** WASTEWATER TREATMENT PLANT WQ0010231001 SHEET 2 OF 2

BLEYL ENGINEERING


TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

	1
TCEQ USE ONLY:	
Application type:RenewalMajor Ar	mendmentNinor AmendmentNew
County:	Segment Number:
Admin Complete Date:	_
Agency Receiving SPIF:	
Texas Historical Commission	U.S. Fish and Wildlife
Texas Parks and Wildlife Department	U.S. Army Corps of Engineers
This form applies to TPDES permit application	ns only. (Instructions, Page 53)
	CEQ will mail a copy to each agency as required by e not completely addressed or further information aformation before issuing the permit. Address
Do not refer to your response to any item in the attachment for this form separately from the A application will not be declared administrativel completed in its entirety including all attachmentary be directed to the Water Quality Division's email at WQ-ARPTeam@tceq.texas.gov or by ph	Administrative Report of the application. The ly complete without this SPIF form being ents. Questions or comments concerning this form a Application Review and Processing Team by
The following applies to all applications:	
1. Permittee: <u>City of Navasota</u>	
Permit No. WQ00 <u>10231001</u>	EPA ID No. TX <u>0071790</u>
Address of the project (or a location descripand county):	ption that includes street/highway, city/vicinity,
108 N. Peeples, Navasota, Grimes County, 7	TX 77868-0910

	Provide the name, address, phone and fax number of an individual that can be contacted to answer specific questions about the property.
	Prefix (Mr., Ms., Miss): <u>Mr</u>
	First and Last Name: <u>Zachary Votaw</u>
	Credential (P.E, P.G., Ph.D., etc.): <u>EIT</u>
	Title: <u>Graduate Engineer</u>
	Mailing Address: <u>1722 Broadmoor, Suite 210</u>
	City, State, Zip Code: <u>Bryan, TX 77802</u>
	Phone No.: <u>979-268-1125</u> Ext.: Fax No.:
	E-mail Address: <u>zvotaw@bleylengineering.com</u>
2.	List the county in which the facility is located: <u>Grimes</u>
3.	If the property is publicly owned and the owner is different than the permittee/applicant, please list the owner of the property.
	$\frac{N/A}{}$
1.	Provide a description of the effluent discharge route. The discharge route must follow the flow of effluent from the point of discharge to the nearest major watercourse (from the point of
	discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify
	the classified segment number.
	Discharge to Cedar Creek; thence to the Navasota River below Lake Limestone in segment
	No. 1209 of the Brazos River Basin
5.	Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report).
	Provide original photographs of any structures 50 years or older on the property.
	Does your project involve any of the following? Check all that apply.
	☐ Proposed access roads, utility lines, construction easements
	☐ Visual effects that could damage or detract from a historic property's integrity
	□ Vibration effects during construction or as a result of project design
	☐ Additional phases of development that are planned for the future
	☐ Sealing caves, fractures, sinkholes, other karst features
701	

	☐ Disturbance of vegetation or wetlands
1.	List proposed construction impact (surface acres to be impacted, depth of excavation, sealing of caves, or other karst features):
	No construction planned.
2.	
	<u>None</u>
	HE FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR MENDMENTS TO TPDES PERMITS
3.	List construction dates of all buildings and structures on the property:
	Tick here to enter text
4.	Provide a brief history of the property, and name of the architect/builder, if known.
	Click here to enter text

THE TONMENTAL OUR LEVEL OF THE TONE OF THE

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671.

The following information is required for all renewal, new, and amendment applications.

Section 1. Permitted or Proposed Flows (Instructions Page 43)

A. Existing/Interim I Phase

Design Flow (MGD): 1.8

2-Hr Peak Flow (MGD): 7.5

Estimated construction start date: N/A

Estimated waste disposal start date: N/A

B. Interim II Phase

Design Flow (MGD): Click to enter text.

2-Hr Peak Flow (MGD): Click to enter text.

Estimated construction start date: <u>Click to enter text.</u>

Estimated waste disposal start date: Click to enter text.

C. Final Phase

Design Flow (MGD): Click to enter text.

2-Hr Peak Flow (MGD): Click to enter text.

Estimated construction start date: Click to enter text.

Estimated waste disposal start date: Click to enter text.

D. Current Operating Phase

Provide the startup date of the facility: <u>January 1982</u>

Section 2. Treatment Process (Instructions Page 43)

A. Current Operating Phase

Provide a detailed description of the treatment process. **Include the type of treatment plant, mode of operation, and all treatment units.** Start with the plant's head works and

finish with the point of discharge. Include all sludge processing and drying units. **If more than one phase exists or is proposed, a description of** *each phase* **must be provided**.

Oxidation ditch operated in the extended aeration mode, clarifiers, chlorine disinfection, aerobic digesters, and belt press.

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) of each treatment unit, accounting for *all* phases of operation.

Table 1.0(1) - Treatment Units

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
Oxidation Ditch 1	1	81' x 251' x 8'
Oxidation Ditch 2	1	55' x 205' x 12.5'
Clarifiers 1 & 2	2	47' Dia. x 11'
Clarifier 3	1	90' Dia. x 12'
Disinfection	1	30.5' x 30.5' x 15'
Aerobic Digester	1	31.67' x 31.67' x 16.5'
Belt Press	1	5.3' x 16.3' x 6.8'

C. Process Flow Diagram

Provide flow diagrams for the existing facilities and **each** proposed phase of construction.

Attachment: Technical Report 1.0, Item 2.C

Section 3. Site Information and Drawing (Instructions Page 44)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

• Latitude: <u>30.384583</u>

• Longitude: <u>-96.100389</u>

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

Latitude: N/ALongitude: N/A

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and
- If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Collection System Informatie each uniquely owned collection systems. examples .	ction system, existing	g and new, served by th	is facility, including
Collection System Informatio Collection System Name	n Owner Name	Owner Type	Population Served
City of Navasota Collection System	City of Navasota	Publicly Owned	9000
		Choose an item.	
		Choose an item.	
		Choose an item.	
Is the application for a rene ☐ Yes ☐ No If yes, does the existing per years of being authorized b ☐ Yes ☐ No If yes, provide a detailed di Failure to provide sufficier recommending denial of the	rmit contain a phase to by the TCEQ? scussion regarding th nt justification may i	that has not been const ne continued need for t result in the Executive	tructed within five the unbuilt phase.
Click to enter text.			

Section 5. Closure Plans (Instructions Page 45)

Attachment: Technical Report 1.0, Item 3

Have any treatment units been taken out of service permanently, or will any units be taken out of service in the next five years?

	□ Yes ⊠ No
If ye	es, was a closure plan submitted to the TCEQ?
	□ Yes □ No
If ye	es, provide a brief description of the closure and the date of plan approval.
Clio	ck to enter text.
Sec	ction 6. Permit Specific Requirements (Instructions Page 45)
For	applicants with an existing permit, check the Other Requirements or Special visions of the permit.
A. S	Summary transmittal
	Have plans and specifications been approved for the existing facilities and each proposed phase?
	⊠ Yes □ No
	If yes, provide the date(s) of approval for each phase: <u>Unknown</u>
ļ	Provide information, including dates, on any actions taken to meet a <i>requirement or</i> provision pertaining to the submission of a summary transmittal letter. Provide a copy of an approval letter from the TCEQ, if applicable .
	No approval letter for these facilities is available.
В. І	Buffer zones
I	Have the buffer zone requirements been met?
	⊠ Yes □ No
t	Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the buffer zones.
	A buffer zone variance is in place under the permit issued September 2, 1994 according to 30 TAC Section 309.13(e)(3). Restrictive easements remain in place.

	sul	bes the <i>Other Requirements</i> or <i>Special Provisions</i> section in the existing permit require bmission of any other information or other required actions? Examples include stification of Completion, progress reports, soil monitoring data, etc.
		□ Yes ⊠ No
		yes, provide information below on the status of any actions taken to meet the nditions of an Other Requirement or Special Provision.
	C	lick to enter text.
D.	Gr	it and grease treatment
	1.	Acceptance of grit and grease waste
		Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?
		□ Yes ⊠ No
		If No, stop here and continue with Subsection E. Stormwater Management.
	2.	Grit and grease processing
		Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility.
		Click to enter text.
	3.	Grit disposal
		Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal?
		□ Yes □ No
		If No , contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.

C. Other actions required by the current permit

		Describe the method of grit disposal.
		Click to enter text.
	1	Grease and decanted liquid disposal
	7.	Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335.
		Describe how the decant and grease are treated and disposed of after grit separation.
		Click to enter text.
F	Sta	ormwater management
L.		Applicability
		Does the facility have a design flow of 1.0 MGD or greater in any phase?
		∀es □ No
		Does the facility have an approved pretreatment program, under 40 CFR Part 403?
		□ Yes ⊠ No
		If no to both of the above, then skip to Subsection F, Other Wastes Received.
	2.	MSGP coverage
		Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?
		⊠ Yes □ No
		If yes , please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:
		TXR05 <u>Y680</u> or TXRNE <u>Click to enter text.</u>
		If no, do you intend to seek coverage under TXR050000?
		□ Yes □ No
	<i>3.</i>	Conditional exclusion
		Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?
		□ Yes ⊠ No

	If yes, please explain below then proceed to Subsection F, Other Wastes Received:
	Click to enter text.
4.	Existing coverage in individual permit
	Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?
	□ Yes ⊠ No
	If yes , provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.
	Click to enter text.
5.	Zero stormwater discharge
-	Do you intend to have no discharge of stormwater via use of evaporation or other means?
	□ Yes ⊠ No
	If yes, explain below then skip to Subsection F. Other Wastes Received.
	Click to enter text.
	Note: If there is a potential to discharge any stormwater to surface water in the state as
	the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.
6.	Request for coverage in individual permit
	Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?
	□ Yes ⊠ No
	If yes , provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you

		it to water in the state.
		Click to enter text.
		Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.
F.	Di	scharges to the Lake Houston Watershed
	Do	oes the facility discharge in the Lake Houston watershed?
		□ Yes ⊠ No
		yes, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions. ick to enter text.
G.	Ot	her wastes received including sludge from other WWTPs and septic waste
	1.	Acceptance of sludge from other WWTPs
		Does or will the facility accept sludge from other treatment plants at the facility site?
		□ Yes ⊠ No
		If yes, attach sewage sludge solids management plan. See Example 5 of instructions.
		In addition, provide the date the plant started or is anticipated to start accepting
		sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an
		estimate of the BOD ₅ concentration of the sludge, and the design BOD ₅ concentration of the influent from the collection system. Also note if this information has or has not
		changed since the last permit action.
		Click to enter text.
		Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.
	2.	Acceptance of septic waste
		Is the facility accepting or will it accept septic waste?
		is the racinty accepting of will reaccept septic waste.
		☐ Yes ☒ No
		□ Yes ⊠ No
		☐ Yes ☒ No If yes, does the facility have a Type V processing unit?

intend to divert stormwater to the treatment plant headworks and indirectly discharge

If yes to any of the above, provide the date the plant started or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD₅ concentration of the septic waste, and the design BOD₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

Click to enter text.

Cli	ck to enter to	ext.				

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

3. Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)

Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above?

□ Yes ⊠ No		Yes		No
------------	--	-----	--	----

If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.

Click to enter text.			

Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 50)

Is the facility in operation?

⊠ Yes □ No

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). *Water treatment facilities* discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. **These tables are not applicable for a minor amendment without renewal.** See the instructions for guidance.

Note: The sample date must be within 1 year of application submission.

Table 1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l	<3.0	<3.0	1	Grab	08/21/24 7:48 am
Total Suspended Solids, mg/l	6.6	6.6	1	Grab	08/21/24 10:45 am
Ammonia Nitrogen, mg/l	<0.1	<0.1	1	Grab	08/21/24 9:41 am
Nitrate Nitrogen, mg/l	27.8	27.8	1	Grab	08/19/24 11:31 am
Total Kjeldahl Nitrogen, mg/l	<1.1	<1.1	1	Grab	08/26/24 8:15 am
Sulfate, mg/l	21.4	21.4	1	Grab	08/19/24 11:31 am
Chloride, mg/l	106.9	106.9	1	Grab	08/19/24 11:31 am
Total Phosphorus, mg/l	6.3	6.3	1	Grab	08/23/24 10:17 am
pH, standard units	7.6	7.6	1	Grab	08/19/24 8:28 am
Dissolved Oxygen*, mg/l	6.3	6.3	1	Grab	08/19/24 8:28 am
Chlorine Residual, mg/l	3.7	3.7	1	Grab	8/19/24 8:28 am
E.coli (CFU/100ml) freshwater	7.5	7.5	1	Grab	08/19/24 11:54 am
Entercocci (CFU/100ml) saltwater	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	908.0	908.0	1	Grab	8/21/24 7:36 am
Electrical Conductivity, µmohs/cm, †	N/A	N/A	N/A	N/A	N/A
Oil & Grease, mg/l	<5.1	<5.1	1	Grab	08/26/24 10:28 am
Alkalinity (CaCO ₃)*, mg/l	N/A	N/A	N/A	N/A	N/A

^{*}TPDES permits only †TLAP permits only

Table1.0(3) - Pollutant Analysis for Water Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Suspended Solids, mg/l	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	N/A	N/A	N/A	N/A	N/A
pH, standard units	N/A	N/A	N/A	N/A	N/A
Fluoride, mg/l	N/A	N/A	N/A	N/A	N/A
Aluminum, mg/l	N/A	N/A	N/A	N/A	N/A
Alkalinity (CaCO ₃), mg/l	N/A	N/A	N/A	N/A	N/A

Section 8. Facility Operator (Instructions Page 50)

Facility Operator Name: Matthew P. Julian

Facility Operator's License Classification and Level: Wastewater Treatment Operator, Class B

Facility Operator's License Number: <u>WW0050037</u>

Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 51)

A. WWTP's Biosolids Management Facility Type Check all that apply. See instructions for guidance Design flow>= 1 MGD Serves >= 10,000 people Class I Sludge Management Facility (per 40 CFR § 503.9) \boxtimes Biosolids generator Biosolids end user - land application (onsite) Biosolids end user - surface disposal (onsite) Biosolids end user - incinerator (onsite) **B.** WWTP's Biosolids Treatment Process Check all that apply. See instructions for guidance. \boxtimes Aerobic Digestion Air Drying (or sludge drying beds) Lower Temperature Composting Lime Stabilization **Higher Temperature Composting Heat Drying** Thermophilic Aerobic Digestion **Beta Ray Irradiation** Gamma Ray Irradiation Pasteurization Preliminary Operation (e.g. grinding, de-gritting, blending) \boxtimes Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter) Sludge Lagoon Temporary Storage (< 2 years) Long Term Storage (>= 2 years)

C. Biosolids Management

Methane or Biogas Recovery

Provide information on the *intended* biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize

Other Treatment Process: Click to enter text.

all biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

Biosolids Management

Management Practice	Handler or Preparer Type	Bulk or Bag Container	Amount (dry metric tons)	Pathogen Reduction Options	Vector Attraction Reduction Option
Disposal in Landfill	On-Site Owner or Operator	Bulk	10	Class B: PSRP Aerobic Digestion	Option 5: Aerobic process for 14 days at >40C
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): Click to enter text.

D. Disposal site

Disposal site name: <u>Brazos Valley Solid Waste Management Agency, Inc. (BVSWMA, Inc.)</u> <u>Compost Facility or Twin Oaks Landfill</u>

TCEQ permit or registration number: Compost Facility - 42003 or Twin Oaks Landfill - 2292

County where disposal site is located: <u>Compost Facility – Brazos County or Twin Oaks Landfill – Grimes County</u>

E. Transportation method

Method of transportation (truck, train, pipe, other): Truck

Name of the hauler: <u>City of Navasota</u> Hauler registration number: <u>22338</u>

Sludge is transported as a:

	Liquid □	semi-liquid □	semi-solid □	solid ⊠
--	----------	---------------	--------------	---------

Section 10. Permit Authorization for Sewage Sludge Disposal (Instructions Page 53)

A. Beneficial use authorization

Does the existing permit include authorization for land application of sewage sludge for beneficial use?

□ Yes ⊠ No

If yes, are you requesting to continue this authorization to land apply sewage sludge for beneficial use?

□ Yes □ No

	If yes, is the completed Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451) attached to this permit application (see the instructions for details)?							
	□ Yes □ No							
B.	Sludge processing authorization							
	Does the existing permit include authorization for any of the following sludge processing, storage or disposal options?							
	Sludge Composting		Yes	\boxtimes	No			
	Marketing and Distribution of sludge		Yes	\boxtimes	No			
	Sludge Surface Disposal or Sludge Monofill		Yes	\boxtimes	No			
	Temporary storage in sludge lagoons		Yes	\boxtimes	No			
	If yes to any of the above sludge options and the applicant is requesting to continue this authorization, is the completed Domestic Wastewater Permit Application: Sewage Sludge Technical Report (TCEQ Form No. 10056) attached to this permit application? ☐ Yes ☐ No							
Se	ection 11. Sewage Sludge Lagoons (In	stru	ctions	Page	e 53)			
Do	oes this facility include sewage sludge lagoons?							
	□ Yes ⊠ No							
If	yes, complete the remainder of this section. If no	, proc	eed to S	Section	n 12.			
A.	. Location information							
	The following maps are required to be submitte provide the Attachment Number.	d as p	art of t	he app	olication. For each map,			
	• Original General Highway (County) Map:							
	Attachment: Click to enter text.							
	 USDA Natural Resources Conservation Se 	ervice	Soil Maj) :				
	Attachment: Click to enter text.							
	• Federal Emergency Management Map:							
	Attachment: Click to enter text.							
	• Site map:							
	Attachment: Click to enter text.							
	Discuss in a description if any of the following apply.	exist v	vithin th	ne lago	oon area. Check all that			
	☐ Overlap a designated 100-year frequenc	y floo	d plain					
	☐ Soils with flooding classification							
	□ Overlap an unstable area							
	□ Wetlands							

	Located less than 60 meters from a fault						
	None of the above						
At	tachment: Click to enter text.						
	If a portion of the lagoon(s) is located within the 100-year frequency flood plain, provide the protective measures to be utilized including type and size of protective structures:						
Click	to enter text.						

B. Temporary storage information

Provide the results for the pollutant screening of sludge lagoons. These results are in addition to pollutant results in *Section 7 of Technical Report 1.0.*

Nitrate Nitrogen, mg/kg: Click to enter text.

Total Kjeldahl Nitrogen, mg/kg: Click to enter text.

Total Nitrogen (=nitrate nitrogen + TKN), mg/kg: Click to enter text.

Phosphorus, mg/kg: Click to enter text.

Potassium, mg/kg: Click to enter text.

pH, standard units: Click to enter text.

Ammonia Nitrogen mg/kg: Click to enter text.

Arsenic: Click to enter text.

Cadmium: Click to enter text.

Chromium: Click to enter text.

Copper: Click to enter text.

Lead: Click to enter text.

Mercury: Click to enter text.

Molybdenum: Click to enter text.

Nickel: Click to enter text.

Selenium: Click to enter text.

Zinc: Click to enter text.

Total PCBs: <u>Click to enter text.</u> Provide the following information:

Volume and frequency of sludge to the lagoon(s): <u>Click to enter text.</u>

Total dry tons stored in the lagoons(s) per 365-day period: Click to enter text.

Total dry tons stored in the lagoons(s) over the life of the unit: Click to enter text.

C. Liner information

Does the active/proposed sludge lagoon(s) have a liner with a maximum hydraulic conductivity of $1x10^{-7}$ cm/sec?

		Yes □ No								
	If yes, describe the liner below. Please note that a liner is required.									
	Click	to enter text.								
D.	Site d	evelopment plan								
	Provid	le a detailed description of the methods used to deposit sludge in the lagoon(s):								
	Click	to enter text.								
	Attacl	the following documents to the application.								
 Plan view and cross-section of the sludge lagoon(s) 										
		Attachment: Click to enter text.								
	•	Copy of the closure plan								
		Attachment: Click to enter text.								
	•	Copy of deed recordation for the site								
		Attachment: Click to enter text.								
	•	Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons								
		Attachment: Click to enter text.								
	•	Description of the method of controlling infiltration of groundwater and surface water from entering the site								
		Attachment: Click to enter text.								
	•	Procedures to prevent the occurrence of nuisance conditions								
		Attachment: Click to enter text.								
E.	Groui	ndwater monitoring								
	groun	undwater monitoring currently conducted at this site, or are any wells available for dwater monitoring, or are groundwater monitoring data otherwise available for the e lagoon(s)?								
		Yes □ No								
	types	undwater monitoring data are available, provide a copy. Provide a profile of soil encountered down to the groundwater table and the depth to the shallowest dwater as a separate attachment.								

Attachment: Click to enter text.

Section 12. Authorizations/Compliance/Enforcement (Instructions Page 55)

٨	Additiona	lauthe	wiz	ations
Α.	Auditiona	ı autne	ΠIZ	auons

Yes 🖂

No

Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc?
□ Yes ⊠ No
If yes, provide the TCEQ authorization number and description of the authorization:
Click to enter text.
B. Permittee enforcement status
Is the permittee currently under enforcement for this facility?
⊠ Yes □ No
Is the permittee required to meet an implementation schedule for compliance or enforcement?
⊠ Yes □ No
If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:
Docket Number 2020-0745-MWD-E. The City received a Final Completion of Supplemental Environmental Project letter dated March 29, 2023. The enforcement order is still logged in the system though.
Section 13. RCRA/CERCLA Wastes (Instructions Page 55)
A. RCRA hazardous wastes
Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste?

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

□ Yes ⊠ No

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment: Click to enter text.

Section 14. Signature Page (Instructions Page 34)

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: WQ0010231001

Applicant: City of Navasota

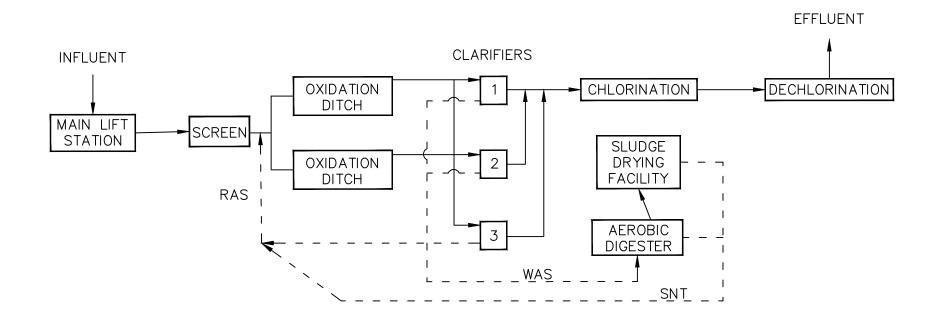
Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

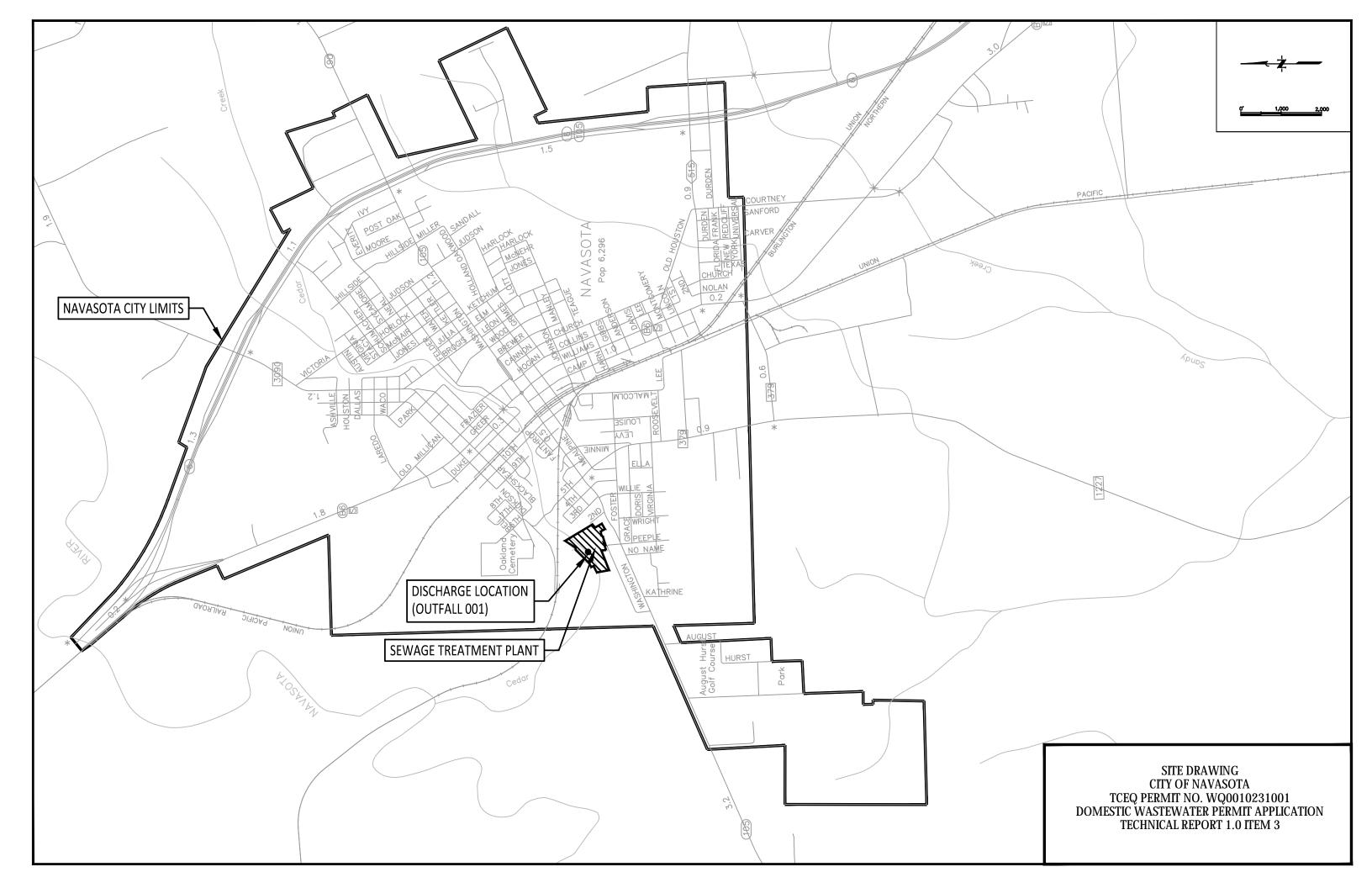
Signatory name ((typed or	printed):	Jennifer Reyna
------------------	-----------	-----------	----------------

Signatory title: Public Works Director


(Use blue ink)	2.702		
Subscribed and Sworn to before	me by the sai	d Jennifer 1	Reuna
on this 22nd	_day of	ANUARY	, 20_25
My commission expires on the_	03 da	y of OCTOBER	, 20_28

Votary Public

[SEAL]


County, Texas

DOMESTIC TECHNICAL REPORT 1.0 ITEM 2.C. PROCESS FLOW DIAGRAM

PROCESS FLOW DIAGRAM
CITY OF NAVASOTA
TCEQ PERMIT NO. WQ0010231001
DOMESTIC WASTEWATER PERMIT APPLICATION
TECHNICAL REPORT 1.0 ITEM 2c

DOMESTIC TECHNICAL REPORT 1.0 ITEM 3 SITE DRAWING

DOMESTIC TECHNICAL REPORT 1.0 ITEM 7 POLLUTANT ANALYSIS REPORT

861 State Hwy 19 P.O. Box 1622 Huntsville, TX 77342-1622 www.chaparrallabs.com Phone: 936-291-1881 Fax: 936-295-1731

Certificate of Analysis

City of Navasota Attn: Matt Julian P.O. Box 910

Navasota, TX 77868

Customer ID: CNAV
Sample ID: 24080626
Date Received: 08/19/2024
Date Reported: 09/05/2024

Project: City of Navasota WWTP **Location:** Grimes County, TX

Analytical Results

Collection Point: Effluent Collected: 08/19/2024 08:24

Sample Type: Grab Collector: MHE

 Parameter
 Result
 Units
 Date/Time
 Analyst
 Bottle
 Method
 QC ID
 Acrd

 HEM (O&G)
 <5.1</td>
 mg/L
 08/26/2024 10:28
 JCG
 -07
 EPA 1664 A
 QC2408546
 NELAP

Collection Point: Effluent Collected: 08/19/2024 08:25

Sample Type: Grab Collector: MHE

<u>Parameter</u>	Result	<u>Units</u>	Date/Time	<u>Analyst</u>	Bottle	Method	<u>QC ID</u>	Acrd
CBOD5	<3.0	mg/L	08/21/2024 07:48	EIB	-01	SM 5210 B	QC2408413	NELAP
TSS	6.6	mg/L	08/21/2024 10:45	JAM	-02	SM 2540 D	QC2408425	NELAP
Ammonia Nitrogen	< 0.1	mg/L	08/21/2024 09:41	JFL	-03	SM 4500-NH3 D	QC2408420	NELAP
Total Kjeldahl Nitrogen	<1.1	mg/L	08/26/2024 08:15	JCG	-03	SM 4500-NH3 C	QC2408541	NELAP
Total Phosphorus	6.3	mg/L	08/23/2024 10:17	JCG	-03	SM 4500-P E	QC2408498	NELAP
Chloride	106.9	mg/L	08/19/2024 11:31	DKH	-04	EPA 300.0	QC2408396	NELAP
Nitrate Nitrogen	27.8	mg/L	08/19/2024 11:31	DKH	-04	EPA 300.0	QC2408397	NELAP
Sulfate	21.4	mg/L	08/19/2024 11:31	DKH	-04	EPA 300.0	QC2408398	NELAP
Total Dissolved Solids	908.0	mg/L	08/21/2024 18:36	DKH	-04	SM 2540 C	QC2408516	NELAP

Collection Point: Effluent Collected: 08/19/2024 08:28

Sample Type: Grab Collector: MHE

<u>Parameter</u>	Result	<u>Units</u>	Date/Time	Analyst	Bottle	Method	QC ID	Acrd
Escherichia coli	7.5	MPN/100mL	08/19/2024 11:54	MHE	-05	SM 9223 B	QC2408399	NELAP
Chlorine, Residual (Total)	3.7	mg/L	08/19/2024 08:28	MHE	-06	SM 4500-Cl F	QC2408501	Field
Dissolved Oxygen	6.3	mg/L	08/19/2024 08:28	MHE	-06	SM 4500-O G	QC2408500	Field
pH	7.6	SU	08/19/2024 08:28	MHE	-06	SM 4500-H+B	QC2408499	Field

Quality Control

 QC ID
 Param
 QC Type
 Result
 Units
 Flag

 QC2408396
 Chloride

Duplicate %RPD 0 %

Thursday, September 5, 2024 Certificate of Analysis Page 1 of 4

861 State Hwy 19 P.O. Box 1622 Huntsville, TX 77342-1622 www.chaparrallabs.com Phone: 936-291-1881 Fax: 936-295-1731

Certificate of Analysis

		Certificate of Analysis		
City of Navasota			Customer ID	: CNAV
Attn: Matt Julian			Sample ID	: 24080626
P.O. Box 910			Date Received	: 08/19/2024
Navasota, TX 7786	58		Date Reported	: 09/05/2024
Project: City of	Navasota WWTP			
Location: Grimes	s County, TX			
		LCS	91.9	%
		Method Blank	< 0.3	mg/L
		MS %R	91.9	%
		MSD %R	102	%
QC2408397	Nitrate Nitrogen			
		Duplicate %RPD	0	%
		LCS	90.4	%
		Method Blank	< 0.1	mg/L
		MS %R	90.5	%
		MSD %R	90.6	%
QC2408398	Sulfate			
		Duplicate %RPD	0	%
		LCS	96	%
		Method Blank	< 0.3	mg/L
		MS %R	96.1	%
		MSD %R	96.1	%
QC2408399	Escherichia coli			
		Method Blank	<1.0	MPN/100mL
		Precision Criteria	Acceptable	
QC2408413	CBOD5			
		Duplicate %RPD	0	%
		Duplicate %RPD	3.1	%
		LCS	102.6	%

Method Blank

0.2

mg/L

861 State Hwy 19 P.O. Box 1622 Huntsville, TX 77342-1622 www.chaparrallabs.com Phone: 936-291-1881 Fax: 936-295-1731

Certificate of Analysis

		Certificate of Analysis			
City of Navasota			Customer ID:	CNAV	
Attn: Matt Julian				pple ID: 24080626	
P.O. Box 910			Date Received:		
Navasota, TX 77868			Date Reported:	09/05/2024	
Project: City of	of Navasota WWTP				
Location: Grim	es County, TX				
QC2408420	Ammonia Nitrogen				
		LCS	98	%	
		Matrix Spike Recovery	98	%	
		Matrix Spike Recovery	92	%	
		Matrix Spike RPD	0	%	
		Matrix Spike RPD	0	%	
		Method Blank	< 0.1	mg/L	
		RPD	0	%	
		RPD	0	%	
QC2408425	TSS				
		Duplicate %RPD	1.7	%	
		Duplicate %RPD	0	%	
		LCS	94	%	
		Method Blank	<2.5	mg/L	
QC2408498	Total Phosphorus				
		Duplicate % RPD	0	%	
		LCS	100	%	
		Method Blank	< 0.01	mg/L	
		MS %R	100	%	
		MSD %R	100	%	
QC2408499	pН				
		Duplicate %RPD	0	%	
QC2408500	Dissolved Oxygen				
		Duplicate %RPD	0	%	
QC2408501	Chlorine, Residual (Total)	Doublests (V DDD	0	0/	
		Duplicate %RPD	0	%	
		LCS	100	%	
		Method Blank	<0.1	mg/L	
QC2408516	Total Dissolved Solids	Duplicate %RPD	0.9	%	
		LCS	102.4	%	
		Method Blank	<5.0	mg/L	
		Method Diank	₹3.0	mg/L	

Thursday, September 5, 2024

Certificate of Analysis Page 3 of 4

861 State Hwy 19 P.O. Box 1622 Huntsville, TX 77342-1622 www.chaparrallabs.com Phone: 936-291-1881 Fax: 936-295-1731

Certificate of Analysis

City of Navasota Customer ID: CNAV Attn: Matt Julian **Sample ID:** 24080626 P.O. Box 910 **Date Received:** 08/19/2024 Navasota, TX 77868 **Date Reported:** 09/05/2024

City of Navasota WWTP **Project:** L

Location: Grime	es County, TX			
QC2408541	Total Kjeldahl Nitrogen			
		Duplicate %RPD	0	%
		LCS	101	%
		Method Blank	<1.1	mg/L
		MS %R	101	%
		MSD %R	101	%
QC2408546	HEM (O&G)			
		Duplicate %RPD	1.9	%
		LCS	96.5	%
		Method Blank	<5.0	mg/L
		MS %R	98	%

The analytical results in this Certificate of Analysis relate only to the samples tested. This Certificate of Analysis, with its corresponding Chain of Custody, completes the data package. This data package may not be reproduced, except in full, without the written approval of Chaparral Laboratories, Inc.

Approved by David H. Veinotte

Laboratory Director

^{(&}lt;) = Result was below quantitation limits.

^{(&}gt;) = Result was above quantitation limits.

Acceptable = meets Precision Criteria

Unacceptable = does not meet Precision Criteria.

Samples analyzed for Oxygen Uptake Rate are diluted to <2% total solids for analysis.

Results reported as mg/kg, %, or CFU/g/TS are calculated on a dry weight basis, unless otherwise noted.

Precision Criteria for Fecal Coliform, Escherichia coli and Enterococci analyses are calculated according to SM 9020 B 8.5.b.

^{*}Note 1: Laboratory Approval by TCEQ

^{*}Note 11: The form TCEQ-10525 (Rev. 11/2023) submitted to Chaparral Laboratories, Inc. is TCEQ's required documentation for all Total Coliform analysis on Drinking Water in the State of Texas. Please refer to the completed form TCEQ-10525 (Rev. 05/2023) for all reporting purposes.

861 State Hwy 19 P.O. Box 1622 Huntsville, TX. 77342 www.chaparrallabs.com reports@chaparrallabs.com Phone: 936-291-1881 FAX: 936-295-1731

rator					CIIIII	Chain of Custony	stouy Necoru	nIC						
CLI-497	Client		Report To	S	Same as Client		Invoice Info	Same as Clie	Client C	COC Page	_	of 1	Collection Code	Code
Name	City of Navasota	avasota				City	City of Navasota			PO#			,	
Attn:	Matt Julian	an				Acc	Accounts Payable		70	Sampler:	1	Theka Listy	Fer	
Address	P.O. Box 910	910				P.O.	P.O. Box 910		Sam Grab	Sample Type Grab		10		Preservative Code 1 = <6 °C
City, State, Zip	Navasota, TX.	, TX. 77868				Nav	Navasota, TX. 77868	58	3 F	3 pt. Comp. 6 pt. Comp.	S 7	Vater	s Amber	2 = H2SO4 3 = HNO3
Phone #	936-825-6450	6450							48	24 Hr. Comp. 48 Hr. Comp.		W	V = VOA $W = Thiowhirlbag$ $5 = 4$	4 = NAOH 5 = HCl
Fax#	936-825-4018	4018											7 =	b = Na2S2O3 7 = On-Site Analysis
E-Mail	wwtp@n	wwtp@navasotatx.gov												8 = Other
Lab Use Only Sample # Bo	nly Bottle #	Project	Collection Point	Sample Type	Matrix Code	Date Collected	Time Collected	Flow (mgd)	Bottle Code	Vol (mls)	Pres. Code		Analysis	
24080626	01	City of Navasota WWTP	EFF	Grab	NP	8-19-27	0725		Р	1000	_		CBOD5	
1	2.0	City of Navasota WWTP	EFF	Grab	N _P	_			Р	1000	_		TSS	
	20	City of Navasota WWTP	EFF	Grab	NP				Р	1000	1, 2	z	NH3N, TKN, T-P	5
	MB	City of Navasota WWTP	EFF	Grab	NP.		(ъ	1000		Chlorid	Chloride, NO3N, SO4, TDS	5 of
	98	City of Navasota WWTP	EFF	Grab	N _P		RIKI		P		1, 6	36	E COLI	age !
	000	City of Navasota WWTP	EFF	Grab	Ą		r -				7	7.6 CL2:		6.7 P
<	40	City of Navasota WWTP	EFF	Grab	NP.	(-	0724	6	GA	2000	1, 2		0&G	
						1								
Sample Conditions as Samples intact: Y Received on Ice: Y		Received from Client N NA N NA If N: Temperature	Reling	Relinquished by		A	Date 8-1527	Time	23	Received by:	d by:		Date	Time
Sample Conditions as Received by Lab	is as Receiv	Nas Received by Lab	e noted											
Samples intact: Received on Ice:	X X	NA Cooler ID # 235								dem		July host	4)9/24	0923
Notes: Cl2 reading before Mn correction:	before Mn	√·O mg/L	Mn correction for Cl2 analysis:	for Cl2 an	alysis:	€3_mg/L	L		Š		1		-	
		20												

861 State Hwy 19 P.O. Box 1622 Huntsville, TX 77342-1622 www.chaparrallabs.com Phone: 936-291-1881 Fax: 936-295-1731

Certificate of Analysis

City of Navasota Attn: Matt Julian P.O. Box 910 Navasota, TX 77868 Customer ID: CNAV
Sample ID: 24100320
Date Received: 10/07/2024
Date Reported: 11/08/2024

Project: City of Navasota WWTP **Location:** Grimes County, TX

Analytical Results

Collection Point: Effluent Collected: 10/07/2024 13:26

Sample Type: Grab Collector: MHE

<u>Parameter</u>	Result	<u>Units</u>	Date/Time	Analyst	Bottle	Method	<u>QC ID</u>	<u>Acrd</u>
Fluoride	0.75	mg/L	10/07/2024 17:46	DKH	-01	EPA 300.0	QC2410489	NELAP
Nitrate Nitrogen	27.2	mg/L	10/07/2024 17:46	DKH	-01	EPA 300.0	QC2410260	NELAP
TCEQ Worksheet 4 Table 1 & 2	See SPL Report			SA	-02	N/A	QC2410541	NELAP

		Quality Control		
<u>QC ID</u>	<u>Param</u>	OC Type	Result	<u>Units</u> <u>Flag</u>
QC2410260	Nitrate Nitrogen			
		Duplicate %RPD	0	%
		LCS	92.7	%
		Method Blank	< 0.1	mg/L
		MS %R	93	%
		MSD %R	93	%
QC2410489	Fluoride			
		Duplicate %RPD	0	%
		LCS	95.2	%
		Method Blank	< 0.05	mg/L
		MS %R	95.9	%
		MSD %R	95.1	%

861 State Hwy 19 P.O. Box 1622 Huntsville, TX 77342-1622 www.chaparrallabs.com Phone: 936-291-1881 Fax: 936-295-1731

Certificate of Analysis

 City of Navasota
 Customer ID: CNAV

 Atm: Matt Julian
 Sample ID: 24100320

 P.O. Box 910
 Date Received: 10/07/2024

 Navasota, TX 77868
 Date Reported: 11/08/2024

Project: City of Navasota WWTP **Location:** Grimes County, TX

Notes:

Initials of SA = Subcontract Analysis sent to SPL for testing.

The analytical results in this Certificate of Analysis relate only to the samples tested. This Certificate of Analysis, with its corresponding Chain of Custody, completes the data package. This data package may not be reproduced, except in full, without the written approval of Chaparral Laboratories, Inc.

(<) = Result was below quantitation limits.

(>) = Result was above quantitation limits.

Acceptable = meets Precision Criteria

 $Unacceptable = does \ not \ meet \ Precision \ Criteria.$

Samples analyzed for Oxygen Uptake Rate are diluted to <2% total solids for analysis.

Results reported as mg/kg, %, or CFU/g/TS are calculated on a dry weight basis, unless otherwise noted.

Precision Criteria for Fecal Coliform, Escherichia coli and Enterococci analyses are calculated according to SM 9020 B 8.5.b.

*Note 1: Laboratory Approval by TCEQ

*Note 11: The form TCEQ-10525 (Rev. 11/2023) submitted to Chaparral Laboratories, Inc. is TCEQ's required documentation for all active PWS Total Coliform analysis on Drinking Water in the State of Texas. Please refer to the completed form TCEQ-10525 (Rev. 11/2023) for all reporting purposes.

Approved by David H. Veinotte Laboratory Director

Page 1 of 1

Project 1120743

Printed

10/23/2024 7:33

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

TABLE OF CONTENTS

This report consists of this Table of Contents and the following pages:

Report Name	<u>Description</u>	<u>Pages</u>
1120743_r03_03_ProjectResults	SPL Kilgore Project P:1120743 C:CLDV Project Results t:304	12
1120743_r10_05_ProjectQC	SPL Kilgore Project P:1120743 C:CLDV Project Quality Control Groups	28
1120743_r99_09_CoC1_of_1	SPL Kilgore CoC CLDV 1120743_1_of_1	4
	Total Pages:	44

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 1 of 45

24 Waterway Avenue, Suite 375 The Woodlands, TX 77380

Office: 903-984-0551 * Fax: 903-984-5914

2.24.10.14

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Printed: 10/23/2024

RESULTS

					Sample I	Results					
	2341273	24100320 NA	VASOTA						Received:	10/08	8/202
No	n-Potable Wate	er	Collected	by: Client	Chaparral	Labs		PO:			
			Taken:	10/07/2024	13	3:26:00					
				Prepared:		10/08/2024	18:16:21	Calculated	10/08/2024	18:16:21	Cz
-	Parameter			Results	Uni	ts RL		Flags	CAS		Bott
	Field C12 Che	ck for CNa		Verified							
	Field Sulfide (Check for CNa		Verified	mg/	L					
				Prepared:		10/23/2024	07:30:00	Analyzed	10/23/2024	07:30:00	W.
-	Parameter			Results	Uni	ts RL		Flags	CAS		Botti
	Check Limits			Completed							
AS	STM D7065-11			Prepared:	1143012	10/15/2024	10:30:00	Analyzed 1143252	10/16/2024	19:12:00	D°
-	Parameter			Results	Uni	ts RL		Flags	CAS		Bott
	Nonylphenol			<32.2	ug/I	32.2	!		25154-52-3		34
Са	lculation			Prepared:		10/14/2024	14:31:34	Calculated	10/14/2024	14:31:34	CA
-	Parameter			Results	Uni	ts RL		Flags	CAS		Bott
C	Trivalent Chro	omium		<0.003	mg/	L 0.00	03		16065-83-1		
EP	'A 200.8 5.4			Prepared:	1142094	10/10/2024	10:00:00	Analyzed 1142309	10/10/2024	17:53:00	JC.
-	Parameter			Results	Uni	ts RL		Flags	CAS		Botti
C	Aluminum, To			0.0357	mg/	L 0.00)2		7429-90-5		2
C	Arsenic, Total			0.00266	mg/				7440-38-2		2
C	Barium, Total			0.0998	mg/				7440-39-3		2
C	Beryllium, To			<0.0005	mg/				7440-41-7		2
C	Cadmium, Tot	tal		<0.0005	mg/				7440-43-9		2
C	Copper, Total Nickel, Total			0.00779 0.0022	mg/				7440-50-8 7440-02-0		2
C C	Selenium, Total	a1		0.0022 <0.002	mg/ mg/				7440-02-0		2'
	seteman, 100	aı		~0.002	mg/	L 0.00	14		1104-49-4		2.

Report Page 2 of 45

2.24.10.14

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Page 2 of 12

Project 1120743

Printed: 10/23/2024

2341273 24100320 NAVASOTA 10/08/2024 Received:

Non-Potable Water Collected by: Client Chaparral Labs PO:

			-	· .								
		Taken:	10/07/2024]	13:26:00							
EF	PA 200.8 5.4		Prepared:	1142094	10/10/20	024	10:00:00	Analyzed	1142309	10/10/2024	17:53:00	JC2
	Parameter		Results	Un	nits	RL		Flag	S	CAS		Bottle
LAC	Zinc, Total		0.0217	mg	g/L	0.005				7440-66-6		27
EF	PA 200.8 5.4		Prepared:	1142094	10/10/20	024	10:00:00	Analyzed	1142657	10/11/2024	16:11:00	ESC
-	Parameter		Results	Un	nits	RL		Flag	S	CAS		Bottle
LAC	Antimony, Total		< 0.003	mg	g/L	0.003				7440-36-0		27
LAC	Chromium, Total		< 0.001	mg		0.001				7440-47-3		27
LAC	Lead, Total		< 0.0005	mg	z/L	0.0005				7439-92-1		27
LAC	Thallium, Total		<0.000966	mg	z/L	0.000966				7440-28-0		27
EF	PA 245.7 2		Prepared:	1142053	10/10/20	024	08:45:00	Analyzed	1142105	10/10/2024	11:21:00	MP
-	Parameter		Results	Un	nits	RL		Flag	S	CAS		Bottle
ELAC	Mercury, Total (low level)		<5.32	ng	/L	5.32				7439-97-6		26
EF	PA 420.4 1		Prepared:	1141839	10/09/20	024	09:15:55	Analyzed	1142185	10/10/2024	11:18:00	AM
-	Parameter		Results	Un	nits	RL		Flag	S	CAS		Bottle
ELAC	Phenolics, Total Recoverable		0.007	mg	z/L	0.005						23
EF	PA 604.1		Prepared:	1141902	10/08/20	024	09:30:00	Analyzed	1142441	10/11/2024	02:39:00	BRU
	Parameter		Results	Un	nits	RL		Flag	S	CAS		Bottle
	Hexachlorophene		<2.46	ug	/L	2.46				70-30-4		24
EF	PA 608.3		Prepared:	1142304	10/10/20	024	11:00:00	Analyzed	1143253	10/15/2024	21:08:00	KAI
-	Parameter		Results	Un	nits	RL		Flag	S	CAS		Bottle
ELAC	4,4-DDD		< 0.00967	ug	/L	0.00967		X		72-54-8		30
ELAC	4,4-DDE		< 0.00967	ug	/L	0.00967				72-55-9		30
ELAC	4,4-DDT		< 0.00967	ug	/L	0.00967				50-29-3		30
LAC	Aldrin		< 0.00967	ug	/L	0.00967		X		309-00-2		30
LAC	Alpha-BHC(hexachlorocyclohexane	e)	< 0.00967	ug	/L	0.00967		X		319-84-6		30
LAC	Beta-BHC(hexachlorocyclohexane)		< 0.00967	ug	/L	0.00967				319-85-7		30
ELAC	Chlordane		<0.193	ug	/L	0.193				57-74-9		30
	Delta-BHC(hexachlorocyclohexane)		< 0.00967							319-86-8		

Report Page 3 of 45

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Page 3 of 12

Project 1120743

Printed:

PO:

10/23/2024

2341273 24100320 NAVASOTA

Non-Potable Water

Collected by: Client

Chaparral Labs 13:26:00 *Received:* 10/08/2024

Taken: 10/07/2024 13:26:0

EP.	PA 608.3	Prepared:	1142304	10/10/2024	11:00:00	Analyzed 1143253	10/15/2024	21:08:00	KA.
	Parameter	Results	Uni	ts RL		Flags	CAS		Bottle
2	Dieldrin	< 0.00967	ug/I	0.00967		X	60-57-1		30
2	Endosulfan I (alpha)	< 0.00967	ug/I	0.00967		X	959-98-8		30
2	Endosulfan II (beta)	< 0.00967	ug/I	0.00967		X	33213-65-9		30
	Endosulfan sulfate	< 0.00967	ug/I	0.00967		X	1031-07-8		30
2	Endrin	< 0.00967	ug/I	0.00967			72-20-8		30
2	Endrin aldehyde	< 0.00967	ug/I	0.00967			7421-93-4		30
2	Gamma-BHC(Lindane)	< 0.00967	ug/I	0.00967		X	58-89-9		30
2	Heptachlor	< 0.00967	ug/I	0.00967		X	76-44-8		30
2	Heptachlor epoxide	<0.00967	ug/I	0.00967		X	1024-57-3		30
2	Toxaphene	<0.193	ug/I	0.193			8001-35-2		30
EP.	PA 608.3	Prepared:	1142312	10/10/2024	11:00:00	Analyzed 1143830	10/15/2024	21:08:00	KA
-	Parameter	Results	Uni	ts RL		Flags	CAS		Bottle
2	PCB-1016	<0.195	ug/I	0.195		XD	12674-11-2		32
2	PCB-1221	<0.193	ug/I	0.193			11104-28-2		32
2	PCB-1232	<0.193	ug/I	0.193			11141-16-5		32
2	PCB-1242	<0.193	ug/I	0.193			53469-21-9		32
2	PCB-1248	<0.193	ug/I	0.193			12672-29-6		32
2	PCB-1254	<0.193	ug/I	0.193			11097-69-1		32
2	PCB-1260	<0.193	ug/I	0.193		XD	11096-82-5		32
2	PCB-1262	<0.193	ug/I	0.193			37324-23-5		32
5	PCB-1268	<0.193	ug/I	0.193			11100-14-4		32
EP.	PA 614	Prepared:	1142311	10/10/2024	11:00:00	Analyzed 1143853	10/17/2024	22:32:00	KA
	Parameter	Results	Uni	ts RL		Flags	CAS		Bottle
2	Azinphos-methyl (Guthion)	<0.0484	ug/I	0.0484			86-50-0		31
2	Demeton	<0.0484	ug/I	0.0484			8065-48-3		31
2	Diazinon	<0.0484	ug/I	0.0484			333-41-5		31
2	Malathion	<0.0484	ug/I	0.0484			121-75-5		31
2	Parathion, ethyl	<0.0484	ug/I	0.0484			56-38-2		31
5	Parathion, methyl	<0.0484	ug/I	0.0484			298-00-0		31

Report Page 4 of 45

The Science of Sure

Page 4 of 12

Project 1120743

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Taken:

Printed: 10/23/2024

2341273 24100320 NAVASOTA 10/08/2024 Received:

13:26:00

Non-Potable Water Collected by: Client Chaparral Labs PO:

10/07/2024

El	PA 615	Prepared:	1142711	10/1	14/2024	10:00:00	Analyzed	1143664	10/19/2024	13:10:00	KA
	Parameter	Results	Ui	nits	RL		Flag	S	CAS		Bottle
ELAC	2,4 Dichlorophenoxyacetic acid	<0.483	ug	/L	0.483				94-75-7		33
ELAC	2,4,5-TP (Silvex)	<0.290	ug	/L	0.290				93-72-1		33
El	PA 617	Prepared:	1142304	10/1	10/2024	11:00:00	Analyzed	1143232	10/15/2024	21:08:00	KA
	Parameter	Results	Ui	nits	RL		Flag	S	CAS		Bottle
	Kelthane (Dicofol)	<0.0484	ug	/L	0.0484		XD		115-32-2		30
	Methoxychlor	< 0.00967	ug	/L	0.00967		X		72-43-5		30
	Mirex	<0.00967	ug	/L	0.00967		X		2385-85-5		30
El	PA 622	Prepared:	1142311	10/1	10/2024	11:00:00	Analyzed	1143851	10/17/2024	22:32:00	KA
	Parameter	Results	Ui	nits	RL		Flag	S	CAS		Bottl
ELAC	Chlorpyrifos	<0.0484	ug	/L	0.0484				2921-88-2		31
El	PA 624.1	Prepared:	1142060	10/0	09/2024	13:03:00	Analyzed	1142060	10/09/2024	13:03:00	MI
,	Parameter	Results	Ui	nits	RL		Flag	S	CAS		Bottl
ELAC	Acrolein	<4.00	ug	/L	4.00				107-02-8		14
LAC	Acrylonitrile	<1.00	ug	/L	1.00				107-13-1		14
El	PA 624.1	Prepared:	1142062	10/0	09/2024	15:39:00	Analyzed	1142062	10/09/2024	15:39:00	MF
,	Parameter	Results	Ui	nits	RL		Flag	S	CAS		Bottl
ELAC	1,1,1-Trichloroethane	<1.00	ug	/L	1.00				71-55-6		16
ELAC	1,1,2,2-Tetrachloroethane	<1.00	ug	/L	1.00				79-34-5		16
ELAC	1,1,2-Trichloroethane	<1.00	ug	/L	1.00				79-00-5		16
ELAC	1,1-Dichloroethane	<1.00	ug	/L	1.00				75-34-3		16
ELAC	1,1-Dichloroethylene	<1.00	ug	/L	1.00				75-35-4		16
ELAC	1,2-Dibromoethane (EDB)	<1.00	ug	/L	1.00				106-93-4		16
ELAC	1,2-Dichloroethane	<1.00	ug	/L	1.00				107-06-2		16
				_							

ug/L

ug/L

ug/L

ug/L

ug/L

1.00

1.00

1.00

1.00

1.00

Report Page 5 of 45

16

16

16

16

16

<1.00

<1.00

<1.00

43.8

5.77

78-87-5

110-75-8

71-43-2

75-27-4

75-25-2

NELAC

NELAC

NELAC

NELAC NELAC 1,2-Dichloropropane

Benzene

Bromoform

2-Chloroethylvinyl ether

Bromodichloromethane

Page 5 of 12

Project 1120743

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Printed: 10/23/2024

PO:

2341273 24100320 NAVASOTA

Non-Potable Water

Collected by: Client

10/07/2024

Taken:

Chaparral Labs 13:26:00 *Received:* 10/08/2024

El	PA 624.1	Prepared:	1142062	10/09/2024	15:39:00	Analyzed 1142062	10/09/2024	15:39:00	MF
	Parameter	Results	Uni	its RL		Flags	CAS		Bottl
LAC	Bromomethane (Methyl Bromi	<1.00	ug/.	L 1.00			74-83-9		16
AC	Carbon Tetrachloride	<1.00	ug/.	L 1.00			56-23-5		16
AC	Chlorobenzene	<1.00	ug/.	L 1.00			108-90-7		16
AC	Chloroethane	<1.12	ug/.	L 1.12			75-00-3		16
AC	Chloroform	33.4	ug/.	L 1.00			67-66-3		16
AC	Chloromethane (Methyl Chloride)	<1.00	ug/.	L 1.00			74-87-3		10
AC	cis-1,3-Dichloropropene	<1.00	ug/.	L 1.00			10061-01-5		16
AC	Dibromochloromethane	28.9	ug/.	L 1.00			124-48- 1		10
AC	Dichloromethane	<1.02	ug/.	L 1.02			75-09-2		10
.AC	Ethylbenzene	<1.00	ug/.	L 1.00			100-41-4		16
.AC	m-Dichlorobenzene (1,3-DCB)	<1.00	ug/.				541-73-1		16
.AC	Methyl ethyl ketone (Butanone)	<1.00	ug/.				78-93-3		16
AC	o-Dichlorobenzene (1,2-DCB)	<1.00	ug/.	L 1.00			95-50-1		16
.AC	p-Dichlorobenzene (1,4-DCB)	<1.00	ug/.	L 1.00			106-46-7		16
AC	Tetrachloroethylene	<1.00	ug/	L 1.00			127-18-4		16
AC	Toluene	<1.00	ug/.	L 1.00			108-88-3		16
AC	trans-1,2-Dichloroethylene	<1.00	ug/.	L 1.00			156-60-5		16
AC	trans-1,3-Dichloropropene	<1.00	ug/.	L 1.00			10061-02-6		16
AC	Trichloroethylene	<1.00	ug/	L 1.00			79-01-6		16
AC	Vinyl chloride	<1.00	ug/.				75-01-4		16
El	PA 624.1	Prepared:	1142062	10/10/2024	13:42:52	Calculated 1142062	10/10/2024	13:42:52	CA
	Parameter	Results	Uni	its RL		Flags	CAS		Bottl
LAC	Trihalomethanes	0.11187	mg	/L 0.001					16
El	PA 625.1	Prepared:	1142237	10/09/2024	15:00:00	Analyzed 1143055	10/14/2024	20:35:00	PN
	Parameter	Results	Uni	its RL		Flags	CAS		Bottl
LAC	1,2,4,5-Tetrachlorobenzene	< 0.969	ug/.	L 0.969			95-94-3		28
AC	1,2,4-Trichlorobenzene	<0.969	ug/.	L 0.969			120-82-1		28
AC	1,2-Dichlorobenzene	<0.969	ug/.	L 0.969			95-50-1		2
AC	1,2-DPH (as azobenzene)	<0.969	ug/.				122-66-7		28
AC	1,3-Dichlorobenzene	<0.969	ug/.	L 0.969			541-73-1		28
			•						

0.969

0.969

ug/L

ug/L

Report Page 6 of 45

28

28

< 0.969

< 0.969

106-46-7

95-95-4

NELAC NELAC 1,4-Dichlorobenzene

2,4,5-Trichlorophenol

Page 6 of 12

Project 1120743

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

> Printed: 10/23/2024

> > PO:

2341273 24100320 NAVASOTA

Non-Potable Water

Collected by: Client

10/07/2024

Taken:

Chaparral Labs 13:26:00

10/08/2024 Received:

EPA 625.1 Prepared: 1142237 10/09/2024 15:00:00 Analyzed 1143055 10/14/2024 20:35:00 PM1 Parameter Results Units RLFlags CASBottle < 0.969 0.969 88-06-2 2,4,6-Trichlorophenol ug/L 28 NELAC < 0.969 120-83-2 NELAC 2,4-Dichlorophenol ug/L 0.969 28 2,4-Dimethylphenol <2.33 ug/L 2.33 SD 105-67-9 28 NELAC 2,4-Dinitrophenol <8.72 ug/L 8.72 51-28-5 28 NFI AC NELAC 2,4-Dinitrotoluene <3.39 ug/L 3.39 121-14-2 28 606-20-2 NELAC 2,6-Dinitrotoluene < 0.969 ug/L 0.969 28 NELAC 2-Chloronaphthalene < 0.969 ug/L 0.969 91-58-7 28 NELAC 2-Chlorophenol < 0.969 ug/L 0.969 95-57-8 28 2-Methylphenol (o-Cresol) <5.04 5.04 95-48-7 28 NELAC ug/L 2-Nitrophenol < 0.969 ug/L 0.969 88-75-5 28 NFI AC 3&4-Methylphenol (m&p-Cresol) <6.01 6.01 **МЕРН34** 28 ug/L NFI AC NELAC 3,3'-Dichlorobenzidine <4.84 ug/L 4.84 91-94-1 28 NELAC 4,6-Dinitro-2-methylphenol <7.75 ug/L 7.75 534-52-1 28 NELAC 4-Bromophenyl phenyl ether < 0.969 ug/L 0.969 101-55-3 28 NELAC 4-Chlorophenyl phenyl ethe < 0.969 ug/L 0.969 7005-72-3 28 4-Nitrophenol < 0.969 0.969 100-02-7 28 NELAC ug/L Acenaphthene < 0.969 0.969 83-32-9 28 NELAC ug/L 208-96-8 NELAC Acenaphthylene < 0.969 ug/L 0.969 28 NELAC Anthracene < 0.969 ug/L 0.969 120-12-7 28 NELAC Benzidine <19.4 ug/L 19.4 92-87-5 28 Benzo(a)anthracene < 0.969 ug/L 0.969 56-55-3 28 NFI AC Benzo(a)pyrene < 0.969 ug/L 0.969 50-32-8 28 NELAC NELAC Benzo(b)fluoranthene < 0.969 ug/L 0.969 205-99-2 28 NELAC Benzo(ghi)perylene < 0.969 ug/L 0.969 191-24-2 28 NELAC Benzo(k)fluoranthene < 0.969 ug/L 0.969 207-08-9 28 Benzyl Butyl phthalate <7.27 ug/L 7.27 85-68-7 28 NFI AC Bis(2-chloroethoxy)methane < 0.969 ug/L 0.969 111-91-1 28 NELAC 111-44-4 Bis(2-chloroethyl)ether < 0.969 0.969 28 NELAC ug/L Bis(2-chloroisopropyl)ether < 0.969 ug/L 0.969 108-60-1 28 NELAC Bis(2-ethylhexyl)phthalate <7.27 7.27 117-81-7 28 NELAC ug/L NELAC Chrysene (Benzo(a)phenanthrene) < 0.969 ug/L 0.969 218-01-9 28 Dibenz(a,h)anthracene < 0.969 0.969 53-70-3 28 ug/L NELAC Diethyl phthalate <5.52 5.52 84-66-2 28 ug/L NELAC Dimethyl phthalate <4.65 4.65 131-11-3 28 NELAC ug/L Di-n-butylphthalate <7.27 ug/L 7.27 84-74-2 28 NELAC

ug/L

0.969

Report Page 7 of 45

28

< 0.969

Di-n-octylphthalate

NELAC

117-84-0

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Page 7 of 12 Project 1120743

Printed: 10/23/2024

2341273 24100320 NAVASOTA 10/08/2024 Received:

Non-Potable Water Collected by: Client Chaparral Labs PO:

> 13:26:00 Taken: 10/07/2024

	PA 632	Prepared:	1142294	10/1	10/2024	11:00:00	Analyzed 1143577	10/17/2024	20:52:00	BR
LAC	Cresols Total	<6.01	ug/	L	6.01			1319-77-3,	etc.	28
	Parameter	Results	Un	its	RL		Flags	CAS		Bottl
El	PA 625.1	Prepared:	1142237	10/0	09/2024	15:00:00	Calculated 1143055	10/16/2024	15:18:52	CA
LAC	Pyridine	<5.23	ug/	L	5.23			110-86-1		28
LAC	Pyrene	< 0.969	ug/	L.	0.969			129-00-0		28
LAC	Phenol	<1.45	ug/	L	1.45			108-95-2		2
LAC	Phenanthrene	< 0.969	ug/	'L	0.969			85-01-8		2
LAC	Pentachlorophenol	< 0.969	ug/	L	0.969			87-86-5		2
LAC	Pentachlorobenzene	< 0.969	ug/		0.969			608-93-5		2
LAC	p-Chloro-m-Cresol (4-Chloro-3-me	<2.33	ug/		2.33			59-50-7		2
LAC	N-Nitrosodiphenylamine (as DPA	<0.969	ug/		0.969			86-30-6		2
LAC	N-Nitrosodi-n-propylamine	<0.969	ug/		0.969			621-64-7		2
LAC	n-Nitroso-di-n-butylamine	<0.969	ug/		0.969			924-16-3		2
LAC	N-Nitrosodimethylamine	<6.78	ug/		6.78			62-75-9		- 1
LAC LAC	n-Nitrosodiethylamine	<0.969 <0.969	ug/ ug/		0.969			55-18-5		2
LAC	Naphthalene Nitrobenzene	<0.969 <0.969	ug/ ug/		0.969			91-20-3 98-95-3		2
LAC	Isophorone	<0.969 <0.969	ug/		0.969 0.969			78-59-1 91-20-3		2
LAC	Indeno(1,2,3-cd)pyrene	<0.969	ug/		0.969			193-39-5		2
LAC	Hexachloroethane	<0.969	ug/		0.969		S	67-72-1		2
LAC	Hexachlorocyclopentadiene	<8.72	ug/		8.72		D	77-47-4		2
LAC	Hexachlorobutadiene	< 0.969	ug/		0.969			87-68-3		2
LAC	Hexachlorobenzene	<0.969	ug/	L	0.969			118-74-1		2
LAC	Fluorene	< 0.969	ug/	L	0.969			86-73-7		2
LAC	Fluoranthene(Benzo(j,k)fluorene)	< 0.969	ug/	'L	0.969			206-44-0		2
	Parameter	Results	Un	its	RL		Flags	CAS		Bot

Report Page 8 of 45

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Page 8 of 12 Project 1120743

Printed: 10/23/2024

								Timed	10/25	0/2027	
ì	2341273 Non-Potable Water			by: Client 10/07/2024	Chaparra 1	l Labs 3:26:00		PO:	Received:	10/08	3/2024
	SM 3500-Cr B-20	011		Prepared:	1141738	10/08/2024	10:30:00	Analyzed 1141738	10/08/2024	10:30:00	ALB
NELAC	Parameter Hexavalent Cl	hromium		Results	Un ug/			Flags	CAS 18540-29-9		Bottle 01
	SM 4500-CN ⁻ E-2	2016		Prepared:	1141810	10/09/2024	07:23:07	Analyzed 1142155	10/10/2024	06:27:00	AME
NELAC	Parameter Cyanide, total			Results <0.005	Un. mg			Flags	CAS		Bottle 22
S	SM 4500-CN G-	-2016		Prepared:		10/15/2024	16:01:25	Calculated	10/15/2024	16:01:25	CAL
NELAC	Parameter Cyanide - Ava	ailable/Amenable		Results <0.005	Un mg			Flags	CAS		Bottle
5	SM 4500-CN G-	-2016		Prepared:	1141921	10/09/2024	14:24:35	Analyzed 1142901	10/15/2024	13:09:00	AME
NELAC	Parameter Cyanide After	r Chlorination		Results <0.005	Un. mg			Flags	CAS		Bottle 25
				S	ample Pr	eparation					
	2341273	24100320 NAVA	SOTA						Received:	10/08	3/2024
				10/07/2024							
				Prepared:		10/08/2024	17:50:08	Calculated	10/08/2024	17:50:08	CAL
z 	LL Mercury T	Test Prep		Verified							
1	ASTM D7065-11			Prepared:	1143012	10/15/2024	10:30:00	Analyzed 1143252	10/16/2024	19:12:00	DWL
z	Nonyl Phenol	Expansion		Entered							34

Report Page 9 of 45

Office: 903-984-0551 * Fax: 903-984-5914

Page 9 of 12

Project 1120743

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Printed: 10/23/2024

2341273 24100320 NAVASOTA

Received:

10/08/2024

)7		

EPA 200.2 2.8		Prepared:	1142094	10/10/2024	10:00:00	Analyzed	1142094	10/10/2024	10:00:00	ESC
Liquid Metals Digest	ion	50/50	ml							12
EPA 245.7 2		Prepared:	1142053	10/10/2024	08:45:00	Analyzed	1142053	10/10/2024	08:45:00	MP.
IELAC Low Level Mercury I	iquid Metals	50/47	ml							18
EPA 420.4 1		Prepared:	1141839	10/09/2024	09:15:55	Analyzed	1141839	10/09/2024	09:15:55	SRJ
NELAC Phenol Distillation		6/6	ml							19
EPA 604.1		Prepared:	1141902	10/08/2024	09:30:00	Analyzed	1141902	10/08/2024	09:30:00	LSN
Hexachlorophene Ext	raction	5/1016	ml							03
EPA 604.1		Prepared:	1141902	10/08/2024	09:30:00	Analyzed	1142441	10/11/2024	02:39:00	BRU
Hexachlorophene Exp	oansion	Entered						70-30-4		24
EPA 608.3		Prepared:	1142304	10/10/2024	11:00:00	Analyzed	1142304	10/10/2024	11:00:00	LSN
Liquid-Liquid Extr. V	V/Hex Ex	1/1034	ml							04
EPA 608.3		Prepared:	1142304	10/10/2024	11:00:00	Analyzed	1143253	10/15/2024	21:08:00	KAI
NELAC TTO Pesticides		Entered								30
EPA 608.3		Prepared:	1142311	10/10/2024	11:00:00	Analyzed	1142311	10/10/2024	11:00:00	LSN
Solvent Extraction		1/1034	ml							04

Report Page 10 of 45

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

24100320 NAVASOTA

2341273

Project 1120743

10/08/2024

Printed: 10/23/2024

Received:

10/07/2024

EPA 608.3	Prepared:	1142312	10/10/2024	11:00:00	Analyzed	1142312	10/10/2024	11:00:00	LS
PCB Liq-Liq Extr. W/Hex Exch.	1/1034	mi	l						04
EPA 608.3	Prepared:	1142312	10/10/2024	11:00:00	Analyzed	1143830	10/15/2024	21:08:00	KA
AC Polychlorinated Biphenyls	Entered								32
EPA 614	Prepared:	1142311	10/10/2024	11:00:00	Analyzed	1143853	10/17/2024	22:32:00	K
Permit Organophos. Pesticides	Entered								3
EPA 615	Prepared:	1142711	10/14/2024	10:00:00	Analyzed	1142711	10/14/2024	10:00:00	LS
AC Esterification of Sample	10/1036	m	l						0:
EPA 615	Prepared:	1142711	10/14/2024	10:00:00	Analyzed	1143664	10/19/2024	13:10:00	K
AC Herbicides by GC	Entered								3.
EPA 617	Prepared:	1142304	10/10/2024	11:00:00	Analyzed	1143232	10/15/2024	21:08:00	K
For use with !PPR only	Entered								30
EPA 622	Prepared:	1142311	10/10/2024	11:00:00	Analyzed	1143851	10/17/2024	22:32:00	KA
AC For use with EXP !CPP only	Entered								3
EPA 624.1	Prepared:	11/2060	10/09/2024	13:03:00	Analyzed	1142060	10/09/2024	13:03:00	M

Report Page 11 of 45

14

Entered

NELAC

Acrolein/Acrylonitrile Exp.

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

24100320 NAVASOTA

2341273

Page 11 of 12

Project

1120743

10/08/2024

Printed: 10/23/2024

Received:

10/07/2024

NELAC	CN Dist After Chlorination	10/5	ml							21
S	SM 4500-CN ⁻ C-2016	Prepared:	1141921	10/09/2024	14:24:35	Analyzed	1141921	10/09/2024	14:24:35	SRJ
NELAC	Cyanide Distillation	10/5	ml							21
S	SM 4500-CN ⁻ C-2016	Prepared:	1141810	10/09/2024	07:23:07	Analyzed	1141810	10/09/2024	07:23:07	AMB
NELAC	Carbaryl/Diuron	Entered								29
1	EPA 632	Prepared:	1142294	10/10/2024	11:00:00	Analyzed	1143577	10/17/2024	20:52:00	BRU
	Liquid-Liquid Extr. W/Hex Ex	1/1034	ml							04
1	EPA 632	Prepared:	1142294	10/10/2024	11:00:00	Analyzed	1142294	10/10/2024	11:00:00	LSM
	Nonylphenol Liq-Liq Extract	1/932	ml							11
1	EPA 625.1	Prepared:	1143012	10/15/2024	10:30:00	Analyzed	1143012	10/15/2024	10:30:00	LSM
Z	Table 2 & 7 Semivolatiles	Entered								28
1	EPA 625.1	Prepared:	1142237	10/09/2024	15:00:00	Analyzed	1143055	10/14/2024	20:35:00	PM1
	Liquid-Liquid Extraction, BNA	1/1032	ml							02
1	EPA 625.1	Prepared:	1142237	10/09/2024	15:00:00	Analyzed	1142237	10/09/2024	15:00:00	LSM
z	Table D-1/D-2 Volatile Expansion	Entered								16
1	EPA 624.1	Prepared:	1142062	10/09/2024	15:39:00	Analyzed	1142062	10/09/2024	15:39:00	MR1

Report Page 12 of 45

Office: 903-984-0551 * Fax: 903-984-5914

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320 Page 12 of 12

Project 1120743

Printed: 10/23/2024

Qualifiers:

D - Duplicate RPD was higher than expected

S - Standard reads lower than desired

X - Standard reads higher than desired.

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

Bill Peery, MS, VP Technical Services

Report Page 13 of 45

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320 Page 1 of 28

Project

1120743

Printed 10/23/2024

								Timed	10/23/201		
Analytical Set	1142155								SM 4	500-CN	ГЕ-201
				В	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Cyanide, total	1141810	ND	0.00238	0.005	mg/L			126868521			
				(CCV						
Doromatar		Reading	Known	Units	Recover%	Limits%		File			
<u>Parameter</u> Cyanide, total		0.511	0.500	mg/L	102	90.0 - 110		126868519			
Cyanide, total		0.511	0.500	mg/L	102	90.0 - 110		126868520			
Cyanide, total		0.510	0.500	mg/L	102	90.0 - 110		126868528			
Cyanide, total		0.508	0.500	mg/L	102	90.0 - 110		126868539			
Cyanide, total		0.516	0.500	mg/L	102	90.0 - 110		126868547			
Cyanide, total		0.510	0.500	mg/L	104	90.0 - 110		126868548			
Cyanide, total		0.520	0.500	mg/L	104	90.0 - 110		126868549			
Cyanide, total		0.524	0.500	mg/L	105	90.0 - 110		126868550			
Cyanide, total		0.498	0.500	mg/L	99.6	90.0 - 110		126868551			
-,		51.125			olicate	70.0					
_				Ī							
Parameter	Sample		Result	Unknown	1		Unit _		RPD		Limit%
Cyanide, total	2339642		ND	ND			mg/L				20.0
Cyanide, total	2341105		ND	ND			mg/L				20.0
				I	ICV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Cyanide, total		0.197	0.200	mg/L	98.5	90.0 - 110		126868518			
				LCS	S Dup						
Parameter Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Cyanide, total	1141810	0.395	0.395		0.400	90.0 - 110	98.8	98.8	mg/L	0	20.0
				Mat	. Spike				S		
Parameter	Sample	Spike	Unknown		Units	Recovery %	Limite %	File			
Cyanide, total	2339642	0.395	ND	0.400	mg/L	98.8	90.0 - 110	126868526			
Cyanide, total	2341105	0.356	ND	0.400	mg/L mg/L	89.0	90.0 - 110	126868530		*	
Juniac, total				000		03.10	7010 110	12000000			
Analytical Set	1142185									EP	A 420.4
				В	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Phenolics, Total Recoverable	1141839	ND	0.003	0.005	mg/L			126868983			
				(CCV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Phenolics, Total Recoverable		0.201	0.200	mg/L	100	90.0 - 110		126868982			
Phenolics, Total Recoverable		0.193	0.200	mg/L	96.5	90.0 - 110		126868991			
Phenolics, Total Recoverable		0.193	0.200	mg/L	95.5	90.0 - 110		126869002			
Phenolics, Total Recoverable		0.191	0.200	mg/L	99.5	90.0 - 110		126869013			
Phenolics, Total Recoverable		0.199	0.200	mg/L	99.0	90.0 - 110		126869016			
nenones, rotal recoverable		0.170	0.200	- மத	JJ.0	JUIU - 11U		120007010			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 14 of 45

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Page 2 of 28

Project 1120743

Printed 10/23/2024

								1111100	10/20/20		
				Dup	licate						
Parameter	Sample		Result	Unknown			Unit		RPD		Limit%
Phenolics, Total Recoverable	2340451		0.022	0.027			mg/L		20.4	*	20.0
Phenolics, Total Recoverable	2340515		0.017	0.014			mg/L		19.4		20.0
				10	CV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Phenolics, Total Recoverable		0.203	0.200	mg/L	102	90.0 - 110		126868981			
				LCS	Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Phenolics, Total Recoverable	1141839	0.217	0.219		0.200	90.0 - 110	108	110	mg/L	0.917	20.0
,				Mat.	Spike				Č		
Parameter	Sample	Spike	Unknown	Known	Units	Recovery %	Limits %	File			
Phenolics, Total Recoverable	2340451	0.228	0.027	0.200	mg/L	100	90.0 - 110	126868988			
Phenolics, Total Recoverable	2340515	0.205	0.014	0.200	mg/L	95.5	90.0 - 110	126868992			
· · · · · · · · · · · · · · · · · · ·	1140001								C) (A	500 CDT	- C 2016
Analytical Set	1142901			DI	anlı				SIVI 4	300-CN	G-2016
					ank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Cyanide After Chlorination	1141921	ND	0.00119	0.0025	mg/L			126885276			
				C	CV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Cyanide After Chlorination		0.499	0.500	mg/L	99.8	90.0 - 110		126885275			
Cyanide After Chlorination		0.509	0.500	mg/L	102	90.0 - 110		126885285			
Cyanide After Chlorination		0.517	0.500	mg/L	103	90.0 - 110		126885296			
Cyanide After Chlorination		0.514	0.500	mg/L	103	90.0 - 110		126885302			
				Dup	licate						
<u>Parameter</u>	Sample		Result	Unknown			Unit		RPD		Limit%
Cyanide After Chlorination	2339642		ND	ND			mg/L				20.0
Cyanide After Chlorination	2341105		ND	0.0014			mg/L		200	*	20.0
				10	CV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Cyanide After Chlorination		0.204	0.200	mg/L	102	90.0 - 110		126885274			
				LCS	Dup						
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Cyanide After Chlorination	1141921	0.198	0.189		0.200	90.0 - 110	99.0	94.5	mg/L	4.65	20.0
				Mat.	Spike						
Parameter	Sample	Spike	Unknown	Known	Units	Recovery %	Limits %	File			
					_						

1141738 SM 3500-Cr B-2011 Analytical Set

95.8

97.8

90.0 - 110

90.0 - 110

126885281

126885284

mg/L

mg/L

Email: Kilgore.ProjectManagement@spllabs.com

2339642

2341105

0.383

0.391

ND

0.0014

Report Page 15 of 45

0.400

0.400

Cyanide After Chlorination

Cyanide After Chlorination

Page 3 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Blank												
Parameter	PrepSet	Reading	MDL	MQL	Units			File				
Hexavalent Chromium	1141738	0.768	0.550	3.00	ug/L			126860529				
Hexavalent Chromium	1141738	ND	0.550	3.00	ug/L			126860538				
Hexavalent Chromium	1141738	1.02	0.550	3.00	ug/L			126860542				
Hexavalent Chromium	1141738	ND	0.550	3.00	ug/L			126860549				
				(ccv							
Parameter_		Reading	Known	Units	Recover%	Limits%		File				
Hexavalent Chromium		84.7	80.0	ug/L	106	90.0 - 110		126860530				
Hexavalent Chromium		85.2	80.0	ug/L	106	90.0 - 110		126860539				
Hexavalent Chromium		83.7	80.0	ug/L	105	90.0 - 110		126860543				
Hexavalent Chromium		84.9	80.0	ug/L	106	90.0 - 110		126860550				
				LC	S Dup							
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%	
Hexavalent Chromium	1141738	82.9	84.4		80.0	85.0 - 115	104	106	ug/L	1.79	15.0	
				ı	MSD							
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%	
Hexavalent Chromium	2340705	76.6	77.9	ND	80.0	70.0 - 130	95.8	97.4	ug/L	1.68	20.0	
		70.0	77.0	1,2		7010 150	70.0	7,	g. 2			
Analytical Set	1142105			AWR	L/LOQ C					EPA	A 245.7 2	
Parameter		Reading	Known	Units	Recover%	Limits%		File				
Mercury, Total (low level)		4.90	5	ng/L	98.0	70.0 - 130		126867812				
wicreary, rotal (low level)		4.50	3	-		70.0 - 150		120007012				
	D 0	B #	1.001		Blank							
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File				
Mercury, Total (low level)	1142053	ND	1.20	5.00	ng/L			126867815				
					ССВ							
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File				
Mercury, Total (low level)	1142053	ND	1.20	5.00	ng/L			126867814				
Mercury, Total (low level)	1142053	ND	1.20	5.00	ng/L			126867826				
Mercury, Total (low level)	1142053	ND	1.20	5.00	ng/L			126867838				
Mercury, Total (low level)	1142105	ND	1.20	5.00	ng/L			126867847				
				(CCV							
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File				
Mercury, Total (low level)		26.0	25	ng/L	104	87.0 - 113		126867813				
Mercury, Total (low level)		24.3	25	ng/L	97.2	87.0 - 113		126867825				
Mercury, Total (low level)		25.5	25	ng/L	102	87.0 - 113		126867837				
Mercury, Total (low level)		24.5	25	ng/L	98.0	87.0 - 113		126867846				
					ICL							

Email: Kilgore.ProjectManagement@spllabs.com

Reading

49.0

Known

50

Recover%

98.0

Limits%

90.0 - 110

File

126867810

Report Page 16 of 45

Units

ng/L

<u>Parameter</u>

Mercury, Total (low level)

Page 4 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

ICV Reading Units Recover% Limits% File Parameter Known Mercury, Total (low level) 25.8 25 ng/L 103 90.0 - 110 126867811 LCS Dup <u>Parameter</u> PrepSet LCSLCSD Known Limits% LCS% LCSD% Units RPD Limit% 1142053 26.5 26.5 25.0 76.0 - 115 106 50.0 Mercury, Total (low level) 106 ng/L 0 MSD MSD% RPD Parameter Sample MSMSDUNK Known Limits MS%Units Limit%Mercury, Total (low level) 2339936 21.2 19.8 ND 26.6 63.0 - 111 79.7 74.4 ng/L 6.83 18.0 Mercury, Total (low level) 2340373 20.5 21.9 ND 26.6 63.0 - 111 77.1 82.3 6.60 18.0 ng/L

Blank

Analytical Set 1142309 EPA 200.8 5.4

<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units		File
Aluminum, Total	1142094	ND	0.00199	0.002	mg/L		126873074
Arsenic, Total	1142094	ND	0.00025	0.0005	mg/L		126873074
Barium, Total	1142094	ND	0.000348	0.002	mg/L		126873074
Beryllium, Total	1142094	ND	0.0000605	0.0005	mg/L		126873074
Cadmium, Total	1142094	ND	0.000095	0.0005	mg/L		126873074
Copper, Total	1142094	ND	0.0005	0.001	mg/L		126873074
Nickel, Total	1142094	ND	0.0005	0.001	mg/L		126873074
Selenium, Total	1142094	ND	0.000728	0.002	mg/L		126873074
Silver, Total	1142094	ND	0.0000628	0.0002	mg/L		126873074
Zinc, Total	1142094	ND	0.0025	0.005	mg/L		126873074
				cc	:V		
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%	File
Aluminum, Total		0.0501	0.05	mg/L	100	90.0 - 110	126873077
Aluminum, Total		0.0491	0.05	mg/L	98.2	90.0 - 110	126873088
Aluminum, Total		0.0479	0.05	mg/L	95.8	90.0 - 110	126873099
Arsenic, Total		0.0507	0.05	mg/L	101	90.0 - 110	126873077
Arsenic, Total		0.0493	0.05	mg/L	98.6	90.0 - 110	126873088
Arsenic, Total		0.048	0.05	mg/L	96.0	90.0 - 110	126873099
Arsenic, Total		0.0491	0.05	mg/L	98.2	90.0 - 110	126873109
Arsenic, Total		0.0507	0.05	mg/L	101	90.0 - 110	126873120
Arsenic, Total		0.0533	0.05	mg/L	107	90.0 - 110	126873129
Barium, Total		0.0509	0.05	mg/L	102	90.0 - 110	126873077
Barium, Total		0.0492	0.05	mg/L	98.4	90.0 - 110	126873088
Barium, Total		0.0477	0.05	mg/L	95.4	90.0 - 110	126873099
Beryllium, Total		0.0496	0.05	mg/L	99.2	90.0 - 110	126873077
Beryllium, Total		0.0485	0.05	mg/L	97.0	90.0 - 110	126873088
Beryllium, Total		0.0485	0.05	mg/L	97.0	90.0 - 110	126873099
Beryllium, Total		0.0511	0.05	mg/L	102	90.0 - 110	126873109
Beryllium, Total		0.0487	0.05	mg/L	97.4	90.0 - 110	126873120
Beryllium, Total		0.0504	0.05	mg/L	101	90.0 - 110	126873129
Cadmium, Total		0.0496	0.05	mg/L	99.2	90.0 - 110	126873077

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 17 of 45

Page 5 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

			`			
<u>Parameter</u>	Reading	Known	Units	Recover%	Limits%	File
Cadmium, Total	0.0493	0.05	mg/L	98.6	90.0 - 110	126873088
Cadmium, Total	0.0492	0.05	mg/L	98.4	90.0 - 110	126873099
Cadmium, Total	0.0524	0.05	mg/L	105	90.0 - 110	126873109
Cadmium, Total	0.0496	0.05	mg/L	99.2	90.0 - 110	126873120
Cadmium, Total	0.0508	0.05	mg/L	102	90.0 - 110	126873129
Copper, Total	0.0508	0.05	mg/L	102	90.0 - 110	126873077
Copper, Total	0.0498	0.05	mg/L	99.6	90.0 - 110	126873088
Copper, Total	0.0491	0.05	mg/L	98.2	90.0 - 110	126873099
Nickel, Total	0.0494	0.05	mg/L	98.8	90.0 - 110	126873077
Nickel, Total	0.0482	0.05	mg/L	96.4	90.0 - 110	126873088
Nickel, Total	0.0471	0.05	mg/L	94.2	90.0 - 110	126873099
Nickel, Total	0.0512	0.05	mg/L	102	90.0 - 110	126873109
Nickel, Total	0.0486	0.05	mg/L	97.2	90.0 - 110	126873120
Nickel, Total	0.0519	0.05	mg/L	104	90.0 - 110	126873129
Selenium, Total	0.0513	0.05	mg/L	103	90.0 - 110	126873077
Selenium, Total	0.0505	0.05	mg/L	101	90.0 - 110	126873088
Selenium, Total	0.0498	0.05	mg/L	99.6	90.0 - 110	126873099
Selenium, Total	0.0501	0.05	mg/L	100	90.0 - 110	126873109
Selenium, Total	0.0528	0.05	mg/L	106	90.0 - 110	126873120
Selenium, Total	0.0511	0.05	mg/L	102	90.0 - 110	126873129
Silver, Total	0.047	0.05	mg/L	94.0	90.0 - 110	126873077
Silver, Total	0.046	0.05	mg/L	92.0	90.0 - 110	126873088
Silver, Total	0.0456	0.05	mg/L	91.2	90.0 - 110	126873099
Silver, Total	0.0492	0.05	mg/L	98.4	90.0 - 110	126873109
Silver, Total	0.0467	0.05	mg/L	93.4	90.0 - 110	126873120
Silver, Total	0.0474	0.05	mg/L	94.8	90.0 - 110	126873129
Zinc, Total	0.0485	0.05	mg/L	97.0	90.0 - 110	126873077
Zinc, Total	0.0498	0.05	mg/L	99.6	90.0 - 110	126873088
Zinc, Total	0.0467	0.05	mg/L	93.4	90.0 - 110	126873099
Zinc, Total	0.0523	0.05	mg/L	105	90.0 - 110	126873109
Zinc, Total	0.050	0.05	mg/L	100	90.0 - 110	126873120
Zinc, Total	0.052	0.05	mg/L	104	90.0 - 110	126873129
			ı	CV		
Parameter	Reading	Known	Units	Recover%	Limits%	File
Aluminum, Total	0.0504	0.05	mg/L	101	90.0 - 110	126873057
Arsenic, Total	0.0504	0.05	mg/L	101	90.0 - 110	126873057
Barium, Total	0.0509	0.05	mg/L	102	90.0 - 110	126873057
Beryllium, Total	0.051	0.05	mg/L	102	90.0 - 110	126873057
Cadmium, Total	0.0502	0.05	mg/L	100	90.0 - 110	126873057
Copper, Total	0.0511	0.05	mg/L	102	90.0 - 110	126873057
Nickel, Total	0.0505	0.05	mg/L	101	90.0 - 110	126873057
Selenium, Total	0.0508	0.05	mg/L	102	90.0 - 110	126873057
Silver, Total	0.0469	0.05	mg/L	93.8	90.0 - 110	126873057
Zinc, Total	0.0508	0.05	mg/L	102	90.0 - 110	126873057

CCV

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 18 of 45

Page 6 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

LCS Dup												
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%	
Aluminum, Total	1142094	0.560	0.574		0.500	85.0 - 115	112	115	mg/L	2.47	20.0	
Arsenic, Total	1142094	0.488	0.495		0.500	85.0 - 115	97.6	99.0	mg/L	1.42	20.0	
Barium, Total	1142094	0.493	0.495		0.500	85.0 - 115	98.6	99.0	mg/L	0.405	20.0	
Beryllium, Total	1142094	0.195	0.197		0.200	85.0 - 115	97.5	98.5	mg/L	1.02	20.0	
Cadmium, Total	1142094	0.253	0.258		0.250	85.0 - 115	101	103	mg/L	1.96	20.0	
Copper, Total	1142094	0.505	0.509		0.500	85.0 - 115	101	102	mg/L	0.789	20.0	
Nickel, Total	1142094	0.501	0.504		0.500	85.0 - 115	100	101	mg/L	0.597	20.0	
Selenium, Total	1142094	0.499	0.507		0.500	85.0 - 115	99.8	101	mg/L	1.59	20.0	
Silver, Total	1142094	0.0947	0.0958		0.100	85.0 - 115	94.7	95.8	mg/L	1.15	20.0	
Zinc, Total	1142094	0.496	0.500		0.500	85.0 - 115	99.2	100	mg/L	0.803	20.0	
				MRL	Check							
Parameter Parameter		Reading	Known	Units	Recover%	Limits%		File				
Copper, Total		0.001	0.001	mg/L	100	25.0 - 175		126873058				
				М	SD							
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%	
Aluminum, Total	2339936	0.572	0.574	0.006	0.500	70.0 - 130	113	114	mg/L	0.353	20.0	
Arsenic, Total	2339936	0.504	0.490	0.000398	0.500	70.0 - 130	101	97.9	mg/L	2.82	20.0	
Barium, Total	2339936	0.545	0.541	0.036	0.500	70.0 - 130	102	101	mg/L	0.789	20.0	
Beryllium, Total	2339936	0.196	0.194	ND	0.200	70.0 - 130	98.0	97.0	mg/L	1.03	20.0	
Cadmium, Total	2339936	0.253	0.249	ND	0.250	70.0 - 130	101	99.6	mg/L	1.59	20.0	
Copper, Total	2339936	0.492	0.489	ND	0.500	70.0 - 130	98.4	97.8	mg/L	0.612	20.0	
Nickel, Total	2339936	0.485	0.479	0.00101	0.500	70.0 - 130	96.8	95.6	mg/L	1.25	20.0	
Selenium, Total	2339936	0.496	0.488	0.000951	0.500	70.0 - 130	99.0	97.4	mg/L	1.63	20.0	
Silver, Total	2339936	0.0945	0.0928	ND	0.100	70.0 - 130	94.5	92.8	mg/L	1.82	20.0	
Zinc, Total	2339936	0.489	0.473	ND	0.500	70.0 - 130	97.8	94.6	mg/L	3.33	20.0	
Aluminum, Total	2341171	1.83	1.77	1.20	0.500	70.0 - 130	126	114	mg/L	10.0	20.0	
Arsenic, Total	2341171	0.491	0.499	0.00299	0.500	70.0 - 130	97.6	99.2	mg/L	1.63	20.0	
Barium, Total	2341171	0.596	0.601	0.102	0.500	70.0 - 130	98.8	99.8	mg/L	1.01	20.0	
Beryllium, Total	2341171	0.183	0.185	ND	0.200	70.0 - 130	91.5	92.5	mg/L	1.09	20.0	
Cadmium, Total	2341171	0.236	0.237	0.000471	0.250	70.0 - 130	94.2	94.6	mg/L	0.424	20.0	
Copper, Total	2341171	0.589	0.587	0.129	0.500	70.0 - 130	92.0	91.6	mg/L	0.436	20.0	
Nickel, Total	2341171	0.502	0.499	0.0575	0.500	70.0 - 130	88.9	88.3	mg/L	0.677	20.0	
Selenium, Total	2341171	0.366	0.364	0.00474	0.500	70.0 - 130	72.3	71.9	mg/L	0.555	20.0	
Silver, Total	2341171	0.0849	0.0862	0.000215	0.100	70.0 - 130	84.7	86.0	mg/L	1.52	20.0	
Zinc, Total	2341171	0.909	0.895	0.476	0.500	70.0 - 130	86.6	83.8	mg/L	3.29	20.0	

Analytical Set 1142657 EPA 200.8 5.4

Blank

Parameter PrepSet Reading MDLMQLUnits File Antimony, Total 1142094 ND 0.000847 0.003 mg/L 126879939 Chromium, Total 0.000392 0.001 mg/L 126879939 1142094 ND Lead, Total 126879939 1142094 ND 0.000549 0.001 mg/L Lead, Total 1142657 ND 0.000549 0.001 mg/L 126879990

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 19 of 45

Page 7 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Blank												
Parameter	PrepSet	Reading	MDL	MQL	Units			File				
Lead, Total	1142657	ND	0.000549	0.001	mg/L			126880020				
Lead, Total	1142657	ND	0.000549	0.001	mg/L			126880050				
Lead, Total	1142657	ND	0.000549	0.001	mg/L			126880079				
Thallium, Total	1142094	ND	0.000966	0.001	mg/L			126879939				
,					cv							
Parameter		Reading	Known	Units	Recover%	Limits%		File				
Antimony, Total		0.0478	0.05	mg/L	95.6	90.0 - 110		126879927				
Antimony, Total		0.0478	0.05	mg/L	95.6	90.0 - 110		126879935				
Antimony, Total		0.0476	0.05	mg/L	95.2	90.0 - 110		126879944				
Antimony, Total		0.0466	0.05	mg/L	93.2	90.0 - 110		126879954				
Chromium, Total		0.0506	0.05	mg/L	101	90.0 - 110		126879927				
Chromium, Total		0.0504	0.05	mg/L	101	90.0 - 110		126879935				
Chromium, Total		0.0501	0.05	mg/L	100	90.0 - 110		126879944				
Chromium, Total		0.0505	0.05	mg/L	101	90.0 - 110		126879954				
Lead, Total		0.0515	0.05	mg/L	103	90.0 - 110		126879927				
Lead, Total		0.0508	0.05	mg/L	102	90.0 - 110		126879935				
Lead, Total		0.0511	0.05	mg/L	102	90.0 - 110		126879944				
Lead, Total		0.049	0.05	mg/L	98.0	90.0 - 110		126879954				
Lead, Total		0.0482	0.05	mg/L	96.4	90.0 - 110		126880007				
Lead, Total		0.0485	0.05	mg/L	97.0	90.0 - 110		126880018				
Lead, Total		0.0492	0.05	mg/L	98.4	90.0 - 110		126880028				
Lead, Total		0.0489	0.05	mg/L	97.8	90.0 - 110		126880039				
Lead, Total		0.0503	0.05	mg/L	101	90.0 - 110		126880049				
Lead, Total		0.0484	0.05	mg/L	96.8	90.0 - 110		126880059				
Lead, Total		0.0473	0.05	mg/L	94.6	90.0 - 110		126880070				
Lead, Total		0.0496	0.05	mg/L	99.2	90.0 - 110		126880080				
Lead, Total		0.0486	0.05	mg/L	97.2	90.0 - 110		126880091				
Lead, Total		0.0474	0.05	mg/L	94.8	90.0 - 110		126880102				
Thallium, Total		0.0504	0.05	mg/L	101	90.0 - 110		126879927				
Thallium, Total		0.0491	0.05	mg/L	98.2	90.0 - 110		126879935				
Thallium, Total		0.0495	0.05	mg/L	99.0	90.0 - 110		126879944				
Thallium, Total		0.0474	0.05	mg/L	94.8	90.0 - 110		126879954				
				Dir.	SPKD							
<u>Parameter</u>	Sample	DSPK	DSPKD	UNK	Known	Limits%	DSPK%	DSPKD%	Units	RPD	Limit%	
Lead, Total	2341758	0.500	0.497	ND	0.500	70.0 - 130	100	99.4	mg/L	0.602	30.0	
Lead, Total	2341770	0.494	0.487	ND	0.500	70.0 - 130	98.8	97.4	mg/L	1.43	30.0	
Lead, Total	2341780	0.493	0.512	0.00764	0.500	70.0 - 130	97.1	101	mg/L	3.78	30.0	
Lead, Total	2341790	0.492	0.495	0.00157	0.500	70.0 - 130	98.1	98.7	mg/L	0.608	30.0	
Lead, Total	2341800	0.485	0.497	0.000662	0.500	70.0 - 130	97.0	99.4	mg/L	2.44	30.0	
Lead, Total	2341811	0.490	0.500	ND	0.500	70.0 - 130	98.0	100	mg/L	2.02	30.0	
Lead, Total	2341821	0.496	0.501	ND	0.500	70.0 - 130	99.2	100	mg/L	1.00	30.0	
				Direc	t SPK							

Email: Kilgore.ProjectManagement@spllabs.com

Sample

DSPK

Known

Limits%

DSPK%

Report Page 20 of 45

UNK

Units

Parameter

Page 8 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Direct SPK UNK Parameter Sample **DSPK** Known Limits% DSPK% Units 70.0 - 130 Lead, Total 2341758 0.500 ND 0.500 100 30.0 mg/L 0.494 ND 0.500 70.0 - 130 98.8 30.0 Lead, Total 2341770 mg/L Lead, Total 2341780 0.493 0.00764 0.500 70.0 - 130 97.1 30.0 mg/L Lead, Total 2341790 0.492 0.00157 0.500 70.0 - 130 98.1 30.0 mg/L 2341800 0.000662 Lead, Total 0.485 0.500 70.0 - 130 97.0 30.0 mg/L 0.500 70.0 - 130 98.0 30.0 2341811 0.490 ND Lead, Total mg/L Lead, Total 2341821 0.496 ND 0.500 70.0 - 130 99.2 30.0 mg/L ICV Reading Known Units Recover% Limits% File Parameter 0.0504 0.05 mg/L 101 90.0 - 110 126879920 Antimony, Total 0.0511 0.05 mg/L 102 90.0 - 110 126879920 Chromium, Total 102 Lead, Total 0.0511 0.05 mg/L 90.0 - 110 126879920 Thallium, Total 0.0495 99.0 90.0 - 110 126879920 0.05 mg/L LCS Dup Parameter PrepSet LCSLCSD Known Limits% LCS% LCSD% Units RPD Limit% Antimony, Total 1142094 0.471 0.475 0.500 85.0 - 115 94.2 95.0 mg/L 0.846 20.0 Chromium, Total 1142094 0.468 0.483 0.500 85.0 - 115 93.6 96.6 mg/L 3.15 20.0 Lead, Total 1142094 0.461 0.463 0.500 85.0 - 115 92.2 92.6 mg/L 0.433 20.0 Lead, Total 1142657 0.466 0.460 0.500 85.0 - 115 93.2 92.0 1.30 20.0 mg/L 1142657 0.466 0.481 0.500 85.0 - 115 93.2 96.2 Lead, Total mg/L 3.17 20.0 Lead, Total 1142657 0.466 0.464 0.500 85.0 - 115 93.2 92.8 0.430 20.0 mg/L Lead, Total 1142657 0.466 0.484 0.500 85.0 - 115 93.2 96.8 3.79 20.0 mg/L Thallium, Total 1142094 0.480 0.483 0.500 85.0 - 115 96.6 0.623 20.0 96.0 mg/L MRL Check Units Recover% Limits% File Parameter Reading Known Lead, Total 0.000959 0.001 mg/L 95.9 25.0 - 175 126879921 MSD Sample MS MSD UNK Known Limits MS%MSD% Units RPD Limit% Parameter 70.0 - 130 Antimony, Total 2339936 0.485 0.477 ND 0.500 97.0 95.4 mg/L 1.66 20.0 0.481 0.000558 70.0 - 130 Chromium, Total 2339936 0.478 0.500 95.5 96.1 0.626 20.0 mg/L 70.0 - 130 Lead, Total 2339936 0.446 0.447 ND 0.500 89.2 89.4 mg/L 0.224 20.0 Thallium, Total 2339936 0.469 0.470 ND 0.500 70.0 - 130 93.8 94.0 0.213 20.0 mg/L

Analytical Set 1142060 EPA 624.1

0.500

0.500

0.500

0.500

BFB

70.0 - 130

70.0 - 130

70.0 - 130

70.0 - 130

93.2

105

83.2

87.8

95.4

86.8

84.0

88.2

File

126866829

126866829

Limits% Parameter Sample RefMass Reading BFB Mass 173 1142060 174 0 - 2.00 0 0.0 BFB Mass 174 1142060 95.0 7665 55.2 50.0 - 100

2341171

2341171

2341171

2341171

0.467

0.673

0.418

0.439

0.478

0.581

0.422

0.441

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 21 of 45

2.33

19.2

0.957

0.455

mg/L

mg/L

mg/L

mg/L

20.0

20.0

20.0

20.0

0.00116

0.00181

0.147

Antimony, Total

Chromium, Total

Thallium, Total

Lead, Total

Page 9 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

BFB												
Parameter	Sample	RefMass	Reading	%	Limits%			File				
BFB Mass 175	1142060	174	579	7.6	5.00 - 9.00			126866829				
BFB Mass 176	1142060	174	7503	97.9	95.0 - 101			126866829				
BFB Mass 177	1142060	176	476	6.3	5.00 - 9.00			126866829				
BFB Mass 50	1142060	95.0	2719	19.6	15.0 - 40.0			126866829				
BFB Mass 75	1142060	95.0	7572	54.6	30.0 - 60.0			126866829				
BFB Mass 95	1142060	95.0	13878	100.0	100 - 100			126866829				
BFB Mass 96	1142060	95.0	934	6.7	5.00 - 9.00			126866829				
DI D 1410.55 70	1142000	93.0	<i>73</i> 4		3.00 - 3.00 ank			120000029				
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File				
Acrolein	1142060	ND	2.33	4.00	ug/L			126866833				
Acrylonitrile	1142060	ND	0.998	1.00	ug/L			126866833				
•				IS A	reas							
<u>Parameter</u>	Sample	Туре	Reading	CCVISM		High		File	PrepSet			
1,4-DichlorobenzeneD4 (ISTD)	1142060	LCS	78990	81560	40780	122300		126866830	1142060			
1,4-DichlorobenzeneD4 (ISTD)	1142060	LCS Dup	78330	81560	40780	122300		126866831	1142060			
1,4-DichlorobenzeneD4 (ISTD)	1142060	Blank	68440	81560	40780	122300		126866833	1142060			
ChlorobenzeneD5 (ISTD)	1142060	LCS	166500	167700	83830	251500		126866830	1142060			
ChlorobenzeneD5 (ISTD)	1142060	LCS Dup	158600	167700	83830	251500		126866831	1142060			
ChlorobenzeneD5 (ISTD)	1142060	Blank	167900	167700	83830	251500		126866833	1142060)		
1,4-DichlorobenzeneD4 (ISTD)	2340587	MS	75330	81560	40780	122300		126866838	1142060)		
1,4-DichlorobenzeneD4 (ISTD)	2340587	MSD	78820	81560	40780	122300		126866839	1142060)		
ChlorobenzeneD5 (ISTD)	2340587	MS	154500	167700	83830	251500		126866838	1142060)		
ChlorobenzeneD5 (ISTD)	2340587	MSD	165800	167700	83830	251500		126866839	1142060)		
1,4-DichlorobenzeneD4 (ISTD)	2341273	Unknown	65640	81560	40780	122300		126866836	1142060)		
ChlorobenzeneD5 (ISTD)	2341273	Unknown	160600	167700	83830	251500		126866836	1142060)		
				IS Re	tTime							
<u>Parameter</u>	Sample	Туре	Reading	CCVISM	Low	High		File	PrepSet			
1,4-DichlorobenzeneD4 (ISTD)	1142060	LCS	11.97	11.97	11.91	12.03		126866830	1142060)		
1,4-DichlorobenzeneD4 (ISTD)	1142060	LCS Dup	11.97	11.97	11.91	12.03		126866831	1142060)		
1,4-DichlorobenzeneD4 (ISTD)	1142060	Blank	11.97	11.97	11.91	12.03		126866833	1142060)		
ChlorobenzeneD5 (ISTD)	1142060	LCS	9.597	9.591	9.531	9.651		126866830	1142060)		
ChlorobenzeneD5 (ISTD)	1142060	LCS Dup	9.597	9.591	9.531	9.651		126866831	1142060)		
ChlorobenzeneD5 (ISTD)	1142060	Blank	9.597	9.591	9.531	9.651		126866833	1142060)		
1,4-DichlorobenzeneD4 (ISTD)	2340587	MS	11.97	11.97	11.91	12.03		126866838	1142060)		
1,4-DichlorobenzeneD4 (ISTD)	2340587	MSD	11.96	11.97	11.91	12.03		126866839	1142060)		
ChlorobenzeneD5 (ISTD)	2340587	MS	9.591	9.591	9.531	9.651		126866838	1142060)		
ChlorobenzeneD5 (ISTD)	2340587	MSD	9.591	9.591	9.531	9.651		126866839	1142060			
1,4-DichlorobenzeneD4 (ISTD)	2341273	Unknown		11.97	11.91	12.03		126866836	1142060			
ChlorobenzeneD5 (ISTD)	2341273	Unknown		9.591	9.531	9.651		126866836	1142060			
. /					Dup							
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%	
Acrolein	1142060	27.7	28.2		40.0	60.0 - 140	69.2	70.5	ug/L	1.86	30.0	
									2			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 22 of 45

Page 10 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

LCS Dup LCSD% Parameter PrepSet LCS LCSD Known Limits% LCS% Units RPD Limit% Acrylonitrile 1142060 43.9 47.5 40.0 60.0 - 140 110 119 ug/L 7.86 30.0 MSD Sample MS MSD UNK Known Limits MS% MSD% Units RPD Limit% Parameter 2340587 33.2 28.4 ND 200 40.0 - 160 16.6 * 14.2 * 15.6 60.0 Acrolein ug/L Acrylonitrile 2340587 196 194 ND 200 40.0 - 160 98.0 97.0 1.03 60.0 ug/L Surrogate Reading Parameter Sample Type Known Units Recover% Limits% File 1,2-DCA-d4 (SURR) 1142060 LCS 20.1 20.0 ug/L 100 70.0 - 130 126866830 70.0 - 130 1,2-DCA-d4 (SURR) 1142060 LCS Dup 20.4 20.0 ug/L 102 126866831 1,2-DCA-d4 (SURR) 1142060 Blank 20.2 20.0 ug/L 101 70.0 - 130 126866833 Bromofluorobenzene (SURR) 1142060 20.4 20.0 ug/L 102 70.0 - 130 126866830 Bromofluorobenzene (SURR) 1142060 LCS Dup 19.9 20.0 ug/L 99.5 70.0 - 130 126866831 Bromofluorobenzene (SURR) 1142060 Blank 21.5 20.0 ug/L 108 70.0 - 130 126866833 Dibromofluoromethane (SURR) 1142060 LCS 20.4 20.0 ug/L 102 70.0 - 130 126866830 Dibromofluoromethane (SURR) 1142060 LCS Dup 20.4 20.0 ug/L 102 70.0 - 130 126866831 Dibromofluoromethane (SURR) 1142060 Blank 196 20.0 ug/L 98.0 70.0 - 130 126866833 TolueneD8 (SURR) 1142060 LCS 20.0 20.0 ug/L 100 70.0 - 130 126866830 TolueneD8 (SURR) 1142060 LCS Dup 19.9 ug/L 99.5 70.0 - 130 126866831 TolueneD8 (SURR) 1142060 Blank 19.6 20.0 ug/L 98.0 70.0 - 130 126866833 1,2-DCA-d4 (SURR) 2340587 MS 20.1 20.0 100 70.0 - 130 126866838 ug/L 1,2-DCA-d4 (SURR) 2340587 **MSD** 19.9 20.0 ug/L 99.5 70.0 - 130 126866839 Bromofluorobenzene (SURR) 2340587 MS 19.8 20.0 ug/L 99.0 70.0 - 130 126866838 Bromofluorobenzene (SURR) 2340587 MSD 20.4 20.0 ug/L 102 70.0 - 130 126866839 20.2 101 70.0 - 130 126866838 Dibromofluoromethane (SURR) 2340587 MS 20.0 ug/L Dibromofluoromethane (SURR) 2340587 MSD 19.9 99.5 70.0 - 130 126866839 20.0 ug/L TolueneD8 (SURR) 2340587 MS 19.8 20.0 ug/L 99.0 70.0 - 130 126866838 19.9 99.5 TolueneD8 (SURR) 2340587 MSD 20.0 70.0 - 130 126866839 ug/L 1,2-DCA-d4 (SURR) 2341273 Unknown 20.6 20.0 ug/L 103 70.0 - 130 126866836 Bromofluorobenzene (SURR) 2341273 Unknown 21.9 20.0 ug/L 110 70.0 - 130 126866836 Dibromofluoromethane (SURR) 2341273 20.7 20.0 104 70.0 - 130 Unknown ug/L 126866836 TolueneD8 (SURR) 70.0 - 130 2341273 Unknown 20.0 20.0 ug/L 100 126866836

Analytical Set 1142062 EPA 624.1

BFB

Parameter Sample RefMass Reading % Limits% File BFB Mass 173 1142062 174 0.0 0 - 2.00126866848 BFB Mass 174 1142062 95.0 7665 55.2 50.0 - 100 126866848 BFB Mass 175 1142062 174 579 7.6 5.00 - 9.00 126866848 BFB Mass 176 1142062 174 7503 97.9 95.0 - 101 126866848 BFB Mass 177 1142062 176 476 6.3 5.00 - 9.00 126866848 BFB Mass 50 1142062 95.0 2719 19.6 15.0 - 40.0 126866848 BFB Mass 75 1142062 95.0 7572 54.6 30.0 - 60.0 126866848 BFB Mass 95 1142062 95.0 13878 100.0 100 - 100 126866848

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 23 of 45

Sample

1142062

RefMass

95.0

Reading

934

%

6.7

The Science of Sure

Page 11 of 28

Project 1120743

Printed 10/23/2024

File

File

126866849

126866850

126866852

126866849

126866850

126866852

126866854

126866855

126866854

126866848

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Parameter

BFB Mass 96

Blank PrepSet Reading MDL MQL Units File Parameter 1142062 ND 0.531 1.00 ug/L 126866852 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1142062 ND 0.563 1.00 ug/L 126866852 1,1-Dichloroethane 1142062 ND 0.593 1.00 ug/L 126866852 1,1-Dichloroethylene 1142062 ND 0.574 1.00 ug/L 126866852 1,2-Dibromoethane (EDB) 126866852 1142062 ND 0.562 1.00 ug/L 1,2-Dichloroethane 1142062 ND 0.590 1.00 126866852 ug/L 1,2-Dichloropropane 1142062 ND 0.615 1.00 ug/L 126866852 1142062 ND 0.453 1.00 ug/L 126866852 Benzene Bromodichloromethane 1142062 ND 0.409 1.00 ug/L 126866852 126866852 Bromoform 1142062 ND 0.500 1.00 ug/L Carbon Tetrachloride 1142062 ND 0.299 126866852 1.00 ug/L Chlorobenzene 1142062 ND 0.558 1.00 126866852 ug/L Chloroethane 1142062 ND 1.12 1.12 ug/L 126866852 Chloroform 1142062 ND 0.463 1.00 ug/L 126866852 Chloromethane (Methyl Chloride) 1142062 ND 0.811 1.00 ug/L 126866852 cis-1,3-Dichloropropene 1142062 ND 0.660 1.00 ug/L 126866852 126866852 Dibromochloromethane 1142062 ND 0.311 1.00 ug/L ND 1.02 1.02 126866852 Dichloromethane 1142062 ug/L ND 0.498 Ethylbenzene 1142062 1.00 126866852 ug/L m-Dichlorobenzene (1,3-DCB) 1142062 ND 0.619 1.00 ug/L 126866852 Methyl ethyl ketone (Butanone) 1142062 ND 0.742 1.00 ug/L 126866852 0.532 126866852 o-Dichlorobenzene (1,2-DCB) 1142062 ND 1.00 ug/L 0.837 126866852 p-Dichlorobenzene (1,4-DCB) 1142062 ND 1.00 ug/L Tetrachloroethylene 1142062 ND 0.607 126866852 1.00 ug/L ug/L Toluene 1142062 ND 0.655 1.00 126866852 ND 0.701 126866852 trans-1,2-Dichloroethylene 1142062 1.00 ug/L trans-1,3-Dichloropropene 1142062 ND 0.627 1.00 ug/L 126866852 Trichloroethylene ND 126866852 1142062 0.521 1.00 ug/L ND 0.702 1.00 126866852 Vinyl chloride 1142062 ug/L

BFB

Limits%

5.00 - 9.00

LCS Dup 78330 81560 40780 122300 1,4-DichlorobenzeneD4 (ISTD) 1142062 1,4-DichlorobenzeneD4 (ISTD) Blank 68440 81560 40780 122300 1142062 167700 ChlorobenzeneD5 (ISTD) LCS 166500 83830 1142062 ChlorobenzeneD5 (ISTD) 1142062 LCS Dup 158600 167700 83830 ChlorobenzeneD5 (ISTD) 1142062 Blank 167900 167700 83830

Sample

Email: Kilgore.ProjectManagement@spllabs.com

1142062

251500 251500 251500 81560 2340587 MS 75330 40780 122300 1,4-DichlorobenzeneD4 (ISTD) 81560 40780 1,4-DichlorobenzeneD4 (ISTD) 2340587 MSD 78820 122300 ChlorobenzeneD5 (ISTD) 2340587 MS 154500 167700 83830 251500

Type

LCS

Report Page 24 of 45

PrepSet

1142062

1142062

1142062

1142062

1142062

1142062

1142062

1142062

1142062

IS Areas

Low

40780

High

122300

CCVISM

81560

Reading

78990

Parameter

1,4-DichlorobenzeneD4 (ISTD)

Page 12 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

IS Areas

Parameter ChlorobenzeneD5 (ISTD) 1,4-DichlorobenzeneD4 (ISTD)	Sample 2340587 2341273	Type MSD Unknown	Reading 165800 62510	CCVISM 167700 81560	Low 83830 40780	High 251500 122300		File 126866855 126866858	PrepSet 114206 114206	52	
ChlorobenzeneD5 (ISTD)	2341273	Unknown	154500	167700	83830	251500		126866858	114206	2	
				IS Re	tTime						
<u>Parameter</u>	Sample	Туре	Reading	CCVISM	Low	High		File	PrepSe	t	
1,4-DichlorobenzeneD4 (ISTD)	1142062	LCS	11.97	11.97	11.91	12.03		126866849	114206	2	
1,4-DichlorobenzeneD4 (ISTD)	1142062	LCS Dup	11.97	11.97	11.91	12.03		126866850	114206	2	
1,4-DichlorobenzeneD4 (ISTD)	1142062	Blank	11.97	11.97	11.91	12.03		126866852	114206	2	
ChlorobenzeneD5 (ISTD)	1142062	LCS	9.597	9.591	9.531	9.651		126866849	114206	2	
ChlorobenzeneD5 (ISTD)	1142062	LCS Dup	9.597	9.591	9.531	9.651		126866850	114206	2	
ChlorobenzeneD5 (ISTD)	1142062	Blank	9.597	9.591	9.531	9.651		126866852	114206	2	
1,4-DichlorobenzeneD4 (ISTD)	2340587	MS	11.97	11.97	11.91	12.03		126866854	114206	2	
1,4-DichlorobenzeneD4 (ISTD)	2340587	MSD	11.96	11.97	11.91	12.03		126866855	114206	2	
ChlorobenzeneD5 (ISTD)	2340587	MS	9.591	9.591	9.531	9.651		126866854	114206	2	
ChlorobenzeneD5 (ISTD)	2340587	MSD	9.591	9.591	9.531	9.651		126866855	114206	2	
1,4-DichlorobenzeneD4 (ISTD)	2341273	Unknown	11.97	11.97	11.91	12.03		126866858	114206	2	
ChlorobenzeneD5 (ISTD)	2341273	Unknown	9.597	9.591	9.531	9.651		126866858	114206	2	
				LCS	Dup						
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
1,1,1-Trichloroethane	1142062	20.4	20.3		20.0	70.0 - 130	102	102	ug/L	0	21.0
1,1,2,2-Tetrachloroethane	1142062	22.2	21.9		20.0	60.0 - 140	111	110	ug/L	0.905	36.0
1,1,2-Trichloroethane	1142062	20.6	21.1		20.0	70.0 - 130	103	106	ug/L	2.87	27.0
1,1-Dichloroethane	1142062	21.3	21.5		20.0	70.0 - 130	106	108	ug/L	1.87	24.0
1,1-Dichloroethylene	1142062	20.3	20.4		20.0	50.0 - 150	102	102	ug/L	0	40.0
1,2-Dibromoethane (EDB)	1142062	19.8	20.2		20.0	78.4 - 122	99.0	101	ug/L	2.00	30.0
1,2-Dichloroethane	1142062	19.4	20.2		20.0	70.0 - 130	97.0	101	ug/L	4.04	29.0
1,2-Dichloropropane	1142062	20.2	21.0		20.0	35.0 - 165	101	105	ug/L	3.88	69.0
Benzene	1142062	20.2	20.3		20.0	65.0 - 135	101	102	ug/L	0.985	33.0
Bromodichloromethane	1142062	21.2	21.8		20.0	65.0 - 135	106	109	ug/L	2.79	34.0
Bromoform	1142062	20.2	21.1		20.0	70.0 - 130	101	106	ug/L	4.83	25.0
Bromomethane (Methyl Bromi	1142062	16.5	16.6		20.0	15.0 - 185	82.5	83.0	ug/L	0.604	90.0
Carbon Tetrachloride	1142062	20.8	21.2		20.0	70.0 - 130	104	106	ug/L	1.90	26.0
Chlorobenzene	1142062	19.6	20.2		20.0	65.0 - 135	98.0	101	ug/L	3.02	29.0
Chloroethane	1142062	14.8	15.5		20.0	40.0 - 160	74.0	77.5	ug/L	4.62	47.0
Chloroform	1142062	20.8	21.2		20.0	70.0 - 135	104	106	ug/L	1.90	32.0
Chloromethane (Methyl Chloride)	1142062	13.9	14.2		20.0	0.100 - 205	69.5	71.0	ug/L	2.14	472
cis-1,3-Dichloropropene	1142062	20.4	20.9		20.0	25.0 - 175	102	104	ug/L	1.94	79.0
Dibromochloromethane	1142062	17.8	18.6		20.0	70.0 - 135	89.0	93.0	ug/L	4.40	30.0
Dichloromethane	1142062	21.2	21.2		20.0	60.0 - 140	106	106	ug/L	0	192
Ethylbenzene	1142062	19.1	19.7		20.0	60.0 - 140	95.5	98.5	ug/L	3.09	34.0
m-Dichlorobenzene (1,3-DCB)	1142062	19.6	19.6		20.0	70.0 - 130	98.0	98.0	ug/L	0	24.0
Methyl ethyl ketone (Butanone)	1142062	23.8	25.0		20.0	62.3 - 136	119	125	ug/L	4.92	30.0
o-Dichlorobenzene (1,2-DCB)	1142062	20.2	20.1		20.0	65.0 - 135	101	100	ug/L	0.995	31.0

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 25 of 45

Page 13 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

LCS Dup LCSDLCS% LCSD% RPD Parameter PrepSet LCSKnown Limits% Units Limit% 1142062 20.7 20.2 20.0 65.0 - 135 104 101 ug/L 31.0 p-Dichlorobenzene (1,4-DCB) 2.93 19.6 20.0 70.0 - 130 98.0 98.0 Tetrachloroethylene 1142062 19.6 ug/L 0 23.0 Toluene 1142062 19.1 19.5 20.0 70.0 - 130 95.5 97.5 ug/L 2.07 22.0 trans-1,2-Dichloroethylene 1142062 19.6 19.5 20.0 70.0 - 130 98.0 97.5 ug/L 0.512 27.0 trans-1,3-Dichloropropene 20.0 50.0 - 150 95.0 ug/L 1142062 19.0 19.3 96.5 1.57 52.0 20.8 20.0 65.0 - 135 99.5 104 4.42 29.0 Trichloroethylene 1142062 19.9 ug/L 20.0 5.00 - 195 Vinyl chloride 1142062 16.0 16.0 80.0 80.0 ug/L 100 MSD Parameter Sample MSMSDUNKKnown Limits MS%MSD%Units RPD Limit%

1,1,1-Trichloroethane	2340587	120	110	11.2	100	52.0 - 162	109	98.8	ug/L	9.63	36.0
1,1,2,2-Tetrachloroethane	2340587	117	115	11.2	100	46.0 - 157	106	104	ug/L	1.91	61.0
1,1,2-Trichloroethane	2340587	114	108	11.2	100	52.0 - 150	103	96.8	ug/L	6.01	45.0
1,1-Dichloroethane	2340587	120	112	11.2	100	59.0 - 155	109	101	ug/L	7.63	40.0
1,1-Dichloroethylene	2340587	115	107	11.2	100	0.100 - 234	104	95.8	ug/L	8.02	32.0
1,2-Dibromoethane (EDB)	2340587	112	106	11.2	100	49.3 - 120	101	94.8	ug/L	6.13	30.0
1,2-Dichloroethane	2340587	110	105	11.2	100	49.0 - 155	98.8	93.8	ug/L	5.19	49.0
1,2-Dichloropropane	2340587	116	106	11.2	100	0.100 - 210	105	94.8	ug/L	10.0	55.0
Benzene	2340587	115	106	11.2	100	37.0 - 151	104	94.8	ug/L	9.06	61.0
Bromodichloromethane	2340587	126	118	2.65	100	35.0 - 155	123	115	ug/L	6.70	56.0
Bromoform	2340587	123	121	11.2	100	45.0 - 169	112	110	ug/L	1.81	42.0
Bromomethane (Methyl Bromi	2340587	91.5	85.8	11.2	100	0.100 - 242	80.3	74.6	ug/L	7.36	61.0
Carbon Tetrachloride	2340587	124	114	11.2	100	70.0 - 140	113	103	ug/L	9.28	41.0
Chlorobenzene	2340587	113	106	11.2	100	37.0 - 160	102	94.8	ug/L	7.12	53.0
Chloroethane	2340587	84.2	77.7	11.2	100	14.0 - 230	73.0	66.5	ug/L	9.32	78.0
Chloroform	2340587	125	116	5.30	100	51.0 - 138	120	111	ug/L	7.81	54.0
Chloromethane (Methyl Chloride)	2340587	78.0	73.9	11.2	100	0.100 - 273	66.8	62.7	ug/L	6.33	60.0
cis-1,3-Dichloropropene	2340587	111	103	11.2	100	0.100 - 227	99.8	91.8	ug/L	8.35	58.0
Dibromochloromethane	2340587	109	105	8.20	100	53.0 - 149	101	96.8	ug/L	4.05	50.0
Dichloromethane	2340587	117	109	1.30	100	0.100 - 221	116	108	ug/L	7.16	28.0
Ethylbenzene	2340587	114	106	11.2	100	37.0 - 162	103	94.8	ug/L	8.10	63.0
m-Dichlorobenzene (1,3-DCB)	2340587	114	109	11.2	100	59.0 - 156	103	97.8	ug/L	4.99	43.0
Methyl ethyl ketone (Butanone)	2340587	127	131	11.2	100	0.100 - 211	116	120	ug/L	3.40	30.0
o-Dichlorobenzene (1,2-DCB)	2340587	118	114	11.2	100	18.0 - 190	107	103	ug/L	3.82	57.0
p-Dichlorobenzene (1,4-DCB)	2340587	117	115	11.2	100	18.0 - 190	106	104	ug/L	1.91	57.0
Tetrachloroethylene	2340587	108	106	11.2	100	64.0 - 148	96.8	94.8	ug/L	2.09	39.0
Toluene	2340587	111	104	11.2	100	47.0 - 150	99.8	92.8	ug/L	7.27	41.0
trans-1,2-Dichloroethylene	2340587	111	107	11.2	100	54.0 - 156	99.8	95.8	ug/L	4.09	45.0
trans-1,3-Dichloropropene	2340587	105	98.8	11.2	100	17.0 - 183	93.8	87.6	ug/L	6.84	86.0
Trichloroethylene	2340587	116	110	11.2	100	70.0 - 157	105	98.8	ug/L	5.89	48.0
Vinyl chloride	2340587	82.6	77.3	11.2	100	0.100 - 251	71.4	66.1	ug/L	7.71	66.0

Surrogate

Units Limits% File<u>Parameter</u> Sample Type Reading Known Recover% 1,2-DCA-d4 (SURR) 1142062 LCS 20.1 20.0 ug/L 100 70.0 - 130 126866849

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 26 of 45

Page 14 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Surrogate											
Parameter	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
1,2-DCA-d4 (SURR)	1142062	LCS Dup	20.4	20.0	ug/L	102	70.0 - 130	126866850			
1,2-DCA-d4 (SURR)	1142062	Blank	20.2	20.0	ug/L	101	70.0 - 130	126866852			
Bromofluorobenzene (SURR)	1142062	LCS	20.4	20.0	ug/L	102	70.0 - 130	126866849			
Bromofluorobenzene (SURR)	1142062	LCS Dup	19.9	20.0	ug/L	99.5	70.0 - 130	126866850			
Bromofluorobenzene (SURR)	1142062	Blank	21.5	20.0	ug/L	108	70.0 - 130	126866852			
Dibromofluoromethane (SURR)	1142062	LCS	20.4	20.0	ug/L	102	70.0 - 130	126866849			
Dibromofluoromethane (SURR)	1142062	LCS Dup	20.4	20.0	ug/L	102	70.0 - 130	126866850			
Dibromofluoromethane (SURR)	1142062	Blank	19.6	20.0	ug/L	98.0	70.0 - 130	126866852			
TolueneD8 (SURR)	1142062	LCS	20.0	20.0	ug/L	100	70.0 - 130	126866849			
TolueneD8 (SURR)	1142062	LCS Dup	19.9	20.0	ug/L	99.5	70.0 - 130	126866850			
TolueneD8 (SURR)	1142062	Blank	19.6	20.0	ug/L	98.0	70.0 - 130	126866852			
1,2-DCA-d4 (SURR)	2340587	MS	20.1	20.0	ug/L	100	70.0 - 130	126866854			
1,2-DCA-d4 (SURR)	2340587	MSD	19.9	20.0	ug/L	99.5	70.0 - 130	126866855			
Bromofluorobenzene (SURR)	2340587	MS	19.8	20.0	ug/L	99.0	70.0 - 130	126866854			
Bromofluorobenzene (SURR)	2340587	MSD	20.4	20.0	ug/L	102	70.0 - 130	126866855			
Dibromofluoromethane (SURR)	2340587	MS	20.2	20.0	ug/L	101	70.0 - 130	126866854			
Dibromofluoromethane (SURR)	2340587	MSD	19.9	20.0	ug/L	99.5	70.0 - 130	126866855			
TolueneD8 (SURR)	2340587	MS	19.8	20.0	ug/L	99.0	70.0 - 130	126866854			
TolueneD8 (SURR)	2340587	MSD	19.9	20.0	ug/L	99.5	70.0 - 130	126866855			
1,2-DCA-d4 (SURR)	2341273	Unknown	20.3	20.0	ug/L	102	70.0 - 130	126866858			
Bromofluorobenzene (SURR)	2341273	Unknown	22.3	20.0	ug/L	112	70.0 - 130	126866858			
Dibromofluoromethane (SURR)	2341273	Unknown		20.0	ug/L	100	70.0 - 130	126866858			
TolueneD8 (SURR)	2341273	Unknown	19.8	20.0	ug/L	99.0	70.0 - 130	126866858			
Analytical Set	1142441									El	PA 604.1
				ВІ	ank						
Parameter Parame	PrepSet	Reading	MDL	MQL	Units			File			
Hexachlorophene	1141902	ND	0.890	2.50	ug/L			126875232			
				C	CCV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Hexachlorophene		5420	5000	ug/L	108	70.0 - 130		126875231			
Hexachlorophene		5320	5000	ug/L	106	70.0 - 130		126875237			
Hexachlorophene		5470	5000	ug/L	109	70.0 - 130		126875240			
Hexachlorophene		5450	5000	ug/L	109	70.0 - 130		126875243			
•				LCS	5 Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Hexachlorophene	1141902	38.6	42.2		50.0	25.5 - 145	77.2	84.4	ug/L	8.91	50.0
Томиноторнене					50.0	2010 110	,,, <u>-</u>	· · · · · · · · · · · · · · · · · · ·	49.2		
Analytical Set	1143055									El	PA 625.1
				Bl	ank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
1,2,4,5-Tetrachlorobenzene	1142237	ND	0.517	1.00	ug/L			126888793			
1,2,4-Trichlorobenzene	1142237	ND	0.720	1.00	ug/L			126888793			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 27 of 45

The Science of Sure

Page 15 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

ы	an	k
---	----	---

				Bl	ank
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units
1,2-Dichlorobenzene	1142237	ND	0.598	1.00	ug/L
1,2-DPH (as azobenzene)	1142237	ND	0.695	1.00	ug/L
1,3-Dichlorobenzene	1142237	ND	0.686	1.00	ug/L
1,4-Dichlorobenzene	1142237	ND	0.633	1.00	ug/L
2,4,5-Trichlorophenol	1142237	ND	0.734	1.00	ug/L
2,4,6-Trichlorophenol	1142237	ND	0.704	1.00	ug/L
2,4-Dichlorophenol	1142237	ND	0.567	1.00	ug/L
2,4-Dimethylphenol	1142237	ND	2.32	2.40	ug/L
2,4-Dinitrophenol	1142237	ND	8.07	9.00	ug/L
2,4-Dinitrotoluene	1142237	ND	3.35	3.50	ug/L
2,6-Dinitrotoluene	1142237	ND	0.675	1.00	ug/L
2-Chloronaphthalene	1142237	ND	0.333	1.00	ug/L
2-Chlorophenol	1142237	ND	0.367	1.00	ug/L
2-Methylphenol (o-Cresol)	1142237	ND	5.13	5.20	ug/L
2-Nitrophenol	1142237	ND	0.495	1.00	ug/L
3&4-Methylphenol (m&p-Cresol)	1142237	ND	6.15	6.20	ug/L
3,3'-Dichlorobenzidine	1142237	ND	4.79	5.00	ug/L
4,6-Dinitro-2-methylphenol	1142237	ND	7.88	8.00	ug/L
4-Bromophenyl phenyl ether	1142237	ND	0.311	1.00	ug/L
4-Chlorophenyl phenyl ethe	1142237	ND	0.281	1.00	ug/L
4-Nitrophenol	1142237	ND	0.932	1.00	ug/L
Acenaphthene	1142237	ND	0.139	1.00	ug/L
Acenaphthylene	1142237	ND	0.202	1.00	ug/L
Anthracene	1142237	ND	0.538	1.00	ug/L
Benzidine	1142237	ND	19.9	20.0	ug/L
Benzo(a)anthracene	1142237	ND	0.627	1.00	ug/L
Benzo(a)pyrene	1142237	ND	0.478	1.00	ug/L
Benzo(b)fluoranthene	1142237	ND	0.517	1.00	ug/L
Benzo(ghi)perylene	1142237	ND	0.750	1.00	ug/L
Benzo(k)fluoranthene	1142237	ND	0.763	1.00	ug/L
Benzyl Butyl phthalate	1142237	0.760	0.696	7.50	ug/L
Bis(2-chloroethoxy)methane	1142237	ND	0.312	1.00	ug/L
Bis(2-chloroethyl)ether	1142237	ND	0.434	1.00	ug/L
Bis(2-chloroisopropyl)ether	1142237	ND	0.448	1.00	ug/L
Bis(2-ethylhexyl)phthalate	1142237	ND	1.63	7.50	ug/L
Chrysene (Benzo(a)phenanthrene)	1142237	ND	0.575	1.00	ug/L
Dibenz(a,h)anthracene	1142237	ND	0.872	1.00	ug/L
Diethyl phthalate	1142237	ND	0.721	5.70	ug/L
Dimethyl phthalate	1142237	ND	0.497	4.80	ug/L
Di-n-butylphthalate	1142237	ND	0.834	7.50	ug/L
Di-n-octylphthalate	1142237	0.880	0.782	1.00	ug/L
Fluoranthene(Benzo(j,k)fluorene)	1142237	ND	0.772	1.00	ug/L
Fluorene	1142237	ND	0.512	1.00	ug/L
Hexachlorobenzene	1142237	ND	0.187	1.00	ug/L
Hexachlorobutadiene	1142237	ND	0.618	1.00	ug/L

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 28 of 45

The Science of Sure

Page 16 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

				E	Blank		
Parameter	PrepSet	Reading	MDL	MQL	Units		File
Hexachlorocyclopentadiene	1142237	ND	8.69	9.00	ug/L		126888793
Hexachloroethane	1142237	ND	0.789	1.00	ug/L		126888793
Indeno(1,2,3-cd)pyrene	1142237	ND	0.793	1.00	ug/L		126888793
Isophorone	1142237	ND	0.468	1.00	ug/L		126888793
Naphthalene	1142237	ND	0.387	1.00	ug/L		126888793
Nitrobenzene	1142237	ND	0.390	1.00	ug/L		126888793
n-Nitrosodiethylamine	1142237	ND	0.282	1.00	ug/L		126888793
N-Nitrosodimethylamine	1142237	ND	6.64	7.00	ug/L		126888793
n-Nitroso-di-n-butylamine	1142237	ND	0.403	1.00	ug/L		126888793
N-Nitrosodi-n-propylamine	1142237	ND	0.777	1.00	ug/L		126888793
N-Nitrosodiphenylamine (as DPA	1142237	ND	0.427	1.00	ug/L		126888793
p-Chloro-m-Cresol (4-Chloro-3-me	1142237	ND	2.35	2.40	ug/L		126888793
Pentachlorobenzene	1142237	ND	0.420	1.00	ug/L		126888793
Pentachlorophenol	1142237	0.900	0.129	1.00	ug/L		126888793
Phenanthrene	1142237	ND	0.624	1.00	ug/L		126888793
Phenol	1142237	ND	1.50	1.50	ug/L		126888793
Pyrene	1142237	ND	0.587	1.00	ug/L		126888793
Pyridine	1142237	ND	5.33	5.40	ug/L		126888793
					CCV		
Parameter		Reading	Known	Units	Recover%	Limits%	File
1,2,4,5-Tetrachlorobenzene		46400	50000	ug/L	92.8	60.0 - 140	126888792
1,2,4-Trichlorobenzene		47600	50000	ug/L	95.2	61.0 - 130	126888792
1,2-Dichlorobenzene		51800	50000	ug/L	104	60.0 - 140	126888792
1,2-DPH (as azobenzene)		50000	50000	ug/L	100	60.0 - 140	126888792
1,3-Dichlorobenzene		51100	50000	ug/L	102	60.0 - 140	126888792
1,4-Dichlorobenzene		50600	50000	ug/L	101	60.0 - 140	126888792
2,4,5-Trichlorophenol		52500	50000	ug/L	105	69.0 - 130	126888792
2,4,6-Trichlorophenol		48500	50000	ug/L	97.0	69.0 - 130	126888792
2,4-Dichlorophenol		50100	50000	ug/L	100	64.0 - 130	126888792
2,4-Dimethylphenol		47400	50000	ug/L	94.8	58.0 - 130	126888792
2,4-Dinitrophenol		44700	50000	ug/L	89.4	39.0 - 173	126888792
2,4-Dinitrotoluene		61600	50000	ug/L	123	53.0 - 130	126888792
2,6-Dinitrotoluene		57500	50000	ug/L	115	68.0 - 137	126888792
2-Chloronaphthalene		45800	50000	ug/L	91.6	70.0 - 130	126888792
2-Chlorophenol		50700	50000	ug/L	101	55.0 - 130	126888792
2-Methylphenol (o-Cresol)		48400	50000	ug/L	96.8	60.0 - 140	126888792
2-Nitrophenol		50600	50000	ug/L	101	61.0 - 163	126888792
3&4-Methylphenol (m&p-Cresol)		49100	50000	ug/L	98.2	60.0 - 140	126888792
3,3'-Dichlorobenzidine		74000	50000	ug/L	148	18.0 - 213	126888792
4,6-Dinitro-2-methylphenol		49800	50000	ug/L	99.6	56.0 - 130	126888792
4-Bromophenyl phenyl ether		51900	50000	ug/L	104	70.0 - 130	126888792
4-Chlorophenyl phenyl ethe		51100	50000	ug/L	102	57.0 - 145	126888792
4-Nitrophenol		46600	50000	ug/L	93.2	35.0 - 135	126888792
A		52700	50000		107	70.0 120	10/000700

Email: Kilgore.ProjectManagement@spllabs.com

53700

107

70.0 - 130

126888792

Report Page 29 of 45

ug/L

50000

Acenaphthene

Page 17 of 28

Project 1120743

Printed 10/23/2024

File

126888792

126888792

126888792

126888792

126888792

126888792

126888792

126888792

126888792

126888792

126888792

126888792

126888792

126888792

126888792

126888792

126888791

File

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Parameter

Anthracene

Acenaphthylene

Benzidine 34900 50000 ug/L 69.8 20.0 - 180 126888792 Benzo(a)anthracene 60200 50000 ug/L 120 42.0 - 133 126888792 32.0 - 148 Benzo(a)pyrene 52000 50000 ug/L 104 126888792 48400 50000 96.8 Benzo(b)fluoranthene ug/L 42.0 - 140 126888792 Benzo(ghi)perylene 49400 50000 ug/L 98.8 13.0 - 195 126888792 52800 126888792 Benzo(k)fluoranthene 50000 ug/L 106 25.0 - 146 57600 50000 115 43.0 - 140 126888792 Benzyl Butyl phthalate ug/L 49900 50000 ug/L 99.8 52.0 - 164 126888792 Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether 48800 50000 ug/L 97.6 52.0 - 130 126888792 Bis(2-chloroisopropyl)ether 52300 50000 ug/L 105 63.0 - 139 126888792 64700 ug/L 50000 129 43.0 - 137 126888792 Bis(2-ethylhexyl)phthalate Chrysene (Benzo(a)phenanthrene) 65400 50000 ug/L 131 44.0 - 140 126888792 49000 98.0 126888792 Dibenz(a,h)anthracene 50000 ug/L 13.0 - 200 56600 50000 113 47.0 - 130 126888792 Diethyl phthalate ug/L 55500 50000 ug/L 111 50.0 - 130 126888792 Dimethyl phthalate Di-n-butylphthalate 55600 50000 ug/L 111 52.0 - 130 126888792 Di-n-octylphthalate 56300 50000 ug/L 113 21.0 - 132 126888792 103 51600 50000 ug/L 47.0 - 130 126888792 Fluoranthene(Benzo(j,k)fluorene) Fluorene 54800 50000 ug/L 110 70.0 - 130 126888792 Hexachlorobenzene 55700 50000 ug/L 111 38.0 - 142 126888792 ug/L Hexachlorobutadiene 46700 50000 93.4 68.0 - 130 126888792 Hexachlorocyclopentadiene 32800 50000 ug/L 65.6 60.0 - 140 126888792 Hexachloroethane 50900 50000 ug/L 102 55.0 - 130 126888792 47700 126888792 Indeno(1,2,3-cd)pyrene 50000 ug/L 95.4 13.0 - 151 53900 50000 108 52.0 - 180 Isophorone ug/L 126888792

Reading

52200

54100

Known

50000

50000

DFTPP

100

101

93.4

104

106

114

91.4

106

101

96.4

104

92.2

93.6

94.4

70.0 - 130

54.0 - 158

60.0 - 140

60.0 - 140

60.0 - 140

59.0 - 170

60.0 - 140

68.0 - 130

60.0 - 140

42.0 - 152

67.0 - 130

48.0 - 130

70.0 - 130

60.0 - 140

CCV

Units

ug/L

ug/L

Recover%

104

108

Limits%

60.0 - 130

58.0 - 130

 Parameter
 RefMass
 Reading
 %
 Limits%

 DFTPP Mass 127
 627107
 198
 34941
 49.8
 40.0 - 60.0

50200

50300

46700

52200

52800

56800

45700

53000

50400

48200

51900

46100

46800

47200

50000

50000

50000

50000

50000

50000

50000

50000

50000

50000

50000

50000

50000

50000

ug/L

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 30 of 45

Naphthalene

Nitrobenzene

n-Nitrosodiethylamine

Pentachlorobenzene

Pentachlorophenol

Phenanthrene

Phenol

Pyrene

Pyridine

N-Nitrosodimethylamine

n-Nitroso-di-n-butylamine

N-Nitrosodi-n-propylamine

N-Nitrosodiphenylamine (as DPA

p-Chloro-m-Cresol (4-Chloro-3-me

Page 18 of 28

Project 1120743

Printed 10/23/2024

File

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Parameter

DFTPP

Limits%

RefMass Reading

T the thirt con		1101111400	recuaning	, 0	Ellille, o			1 110			
DFTPP Mass 197	627107	198	0	0.0	0 - 1.00			126888791			
DFTPP Mass 198	627107	198	70226	100.0	100 - 100			126888791			
DFTPP Mass 199	627107	198	4736	6.7	5.00 - 9.00			126888791			
DFTPP Mass 275	627107	198	16239	23.1	10.0 - 30.0			126888791			
DFTPP Mass 365	627107	198	2511	3.6	1.00 - 100			126888791			
DFTPP Mass 441	627107	443	6877	78.8	0 - 100			126888791			
DFTPP Mass 442	627107	198	45688	65.1	40.0 - 100			126888791			
DFTPP Mass 443	627107	442	8722	19.1	17.0 - 23.0			126888791			
DFTPP Mass 51	627107	198	21736	31.0	30.0 - 60.0			126888791			
DFTPP Mass 68	627107	69.0	0	0.0	0 - 2.00			126888791			
DFTPP Mass 69	627107	198	24136	34.4	0 - 100			126888791			
DFTPP Mass 70	627107	69.0	139	0.6	0 - 2.00			126888791			
				LCS	Dup						
_					-						
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
1,2,4,5-Tetrachlorobenzene	1142237	13.3	11.8		25.0	27.5 - 85.5	53.2	47.2	ug/L	12.0	50.0
1,2,4-Trichlorobenzene	1142237	11.4	11.0		25.0	44.0 - 142	45.6	44.0	ug/L	3.57	50.0
1,2-Dichlorobenzene	1142237	11.6	11.0		25.0	23.0 - 81.8	46.4	44.0	ug/L	5.31	50.0
1,2-DPH (as azobenzene)	1142237	22.1	18.6		25.0	12.6 - 110	88.4	74.4	ug/L	17.2	50.0
1,3-Dichlorobenzene	1142237	10.8	10.2		25.0	21.1 - 80.5	43.2	40.8	ug/L	5.71	50.0
1,4-Dichlorobenzene	1142237	11.0	10.6		25.0	21.4 - 76.9	44.0	42.4	ug/L	3.70	50.0
2,4,5-Trichlorophenol	1142237	18.6	14.4		25.0	51.3 - 109	74.4	57.6	ug/L	25.5	50.0
2,4,6-Trichlorophenol	1142237	18.1	15.3		25.0	37.0 - 144	72.4	61.2	ug/L	16.8	58.0
2,4-Dichlorophenol	1142237	18.5	16.3		25.0	39.0 - 135	74.0	65.2	ug/L	12.6	50.0
2,4-Dimethylphenol	1142237	3.52	9.52		25.0	23.0 - 120	14.1 *	38.1	ug/L	92.0 *	68.0
2,4-Dinitrophenol	1142237	12.7	11.0		25.0	0.100 - 191	50.8	44.0	ug/L	14.3	132
2,4-Dinitrotoluene	1142237	21.4	17.4		25.0	39.0 - 139	85.6	69.6	ug/L	20.6	42.0
2,6-Dinitrotoluene	1142237	20.9	17.3		25.0	50.0 - 158	83.6	69.2	ug/L	18.8	48.0
2-Chloronaphthalene	1142237	16.9	15.0		25.0	60.0 - 120	67.6	60.0	ug/L	11.9	24.0
2-Chlorophenol	1142237	17.3	16.1		25.0	23.0 - 134	69.2	64.4	ug/L	7.19	61.0
2-Methylphenol (o-Cresol)	1142237	14.4	14.3		25.0	38.9 - 76.1	57.6	57.2	ug/L	0.697	50.0
2-Nitrophenol	1142237	18.0	16.2		25.0	29.0 - 182	72.0	64.8	ug/L	10.5	55.0
3&4-Methylphenol (m&p-Cresol)	1142237	13.2	12.9		25.0	33.0 - 70.4	52.8	51.6	ug/L	2.30	50.0
3,3'-Dichlorobenzidine	1142237	23.2	19.4		25.0	0.100 - 262	92.8	77.6	ug/L	17.8	108
4,6-Dinitro-2-methylphenol	1142237	16.8	13.2		25.0	0.100 - 181	67.2	52.8	ug/L	24.0	203
4-Bromophenyl phenyl ether	1142237	20.0	16.9		25.0	53.0 - 127	80.0	67.6	ug/L	16.8	43.0
4-Chlorophenyl phenyl ethe	1142237	18.6	15.9		25.0	25.0 - 158	74.4	63.6	ug/L	15.7	61.0
4-Nitrophenol	1142237	7.60	6.56		25.0	0.100 - 132	30.4	26.2	ug/L	14.8	131
Acenaphthene	1142237	19.5	16.6		25.0	47.0 - 145	78.0	66.4	ug/L	16.1	48.0
Acenaphthylene	1142237	19.7	17.0		25.0	33.0 - 145	78.8	68.0	ug/L	14.7	74.0

Email: Kilgore.ProjectManagement@spllabs.com

1142237

1142237

1142237

1142237

1142237

21.6

1.46

21.4

19.6

20.1

25.0

25.0

25.0

25.0

25.0

27.0 - 133 86.4

0.100 - 36.9 5.84

85.6

78.4

80.4

33.0 - 143

17.0 - 163

24.0 - 159

74.4

6.72

69.2

66.0

64.4

Report Page 31 of 45

14.9

14.0

21.2

17.2

22.1

66.0

90.0

53.0

72.0

71.0

ug/L

ug/L

ug/L

ug/L

ug/L

18.6

1.68

17.3

16.5

16.1

Anthracene

Benzidine

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(a)pyrene

Page 19 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

LCS Dup											
Parameter_	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Benzo(ghi)perylene	1142237	22.2	19.3		25.0	0.100 - 219	88.8	77.2	ug/L	14.0	97.0
Benzo(k)fluoranthene	1142237	17.8	14.8		25.0	11.0 - 162	71.2	59.2	ug/L	18.4	63.0
Benzyl Butyl phthalate	1142237	20.7	16.7		25.0	0.100 - 152	82.8	66.8	ug/L	21.4	60.0
Bis(2-chloroethoxy)methane	1142237	19.1	16.7		25.0	33.0 - 184	76.4	66.8	ug/L	13.4	54.0
Bis(2-chloroethyl)ether	1142237	17.4	15.8		25.0	12.0 - 158	69.6	63.2	ug/L	9.64	108
Bis(2-chloroisopropyl)ether	1142237	16.1	14.8		25.0	36.0 - 166	64.4	59.2	ug/L	8.41	76.0
Bis(2-ethylhexyl)phthalate	1142237	21.3	16.5		25.0	8.00 - 158	85.2	66.0	ug/L	25.4	82.0
Chrysene (Benzo(a)phenanthrene)	1142237	21.7	17.8		25.0	17.0 - 168	86.8	71.2	ug/L	19.7	87.0
Dibenz(a,h)anthracene	1142237	22.9	18.7		25.0	0.100 - 227	91.6	74.8	ug/L	20.2	126
Diethyl phthalate	1142237	23.1	19.5		25.0	0.100 - 120	92.4	78.0	ug/L	16.9	100
Dimethyl phthalate	1142237	21.0	17.9		25.0	0.100 - 120	84.0	71.6	ug/L	15.9	183
Di-n-butylphthalate	1142237	23.8	20.6		25.0	1.00 - 120	95.2	82.4	ug/L	14.4	47.0
Di-n-octylphthalate	1142237	16.0	13.0		25.0	4.00 - 146	64.0	52.0	ug/L	20.7	69.0
Fluoranthene(Benzo(j,k)fluorene)	1142237	19.4	17.8		25.0	26.0 - 137	77.6	71.2	ug/L	8.60	66.0
Fluorene	1142237	21.2	18.5		25.0	59.0 - 121	84.8	74.0	ug/L	13.6	38.0
Hexachlorobenzene	1142237	20.2	17.2		25.0	0.100 - 152	80.8	68.8	ug/L	16.0	55.0
Hexachlorobutadiene	1142237	8.30	8.05		25.0	24.0 - 120	33.2	32.2	ug/L	3.06	62.0
Hexachlorocyclopentadiene	1142237	4.69	2.75		25.0	3.97 - 68.7	18.8	11.0	ug/L	52.3 *	50.0
Hexachloroethane	1142237	9.30	8.99		25.0	40.0 - 120	37.2 *	36.0 *	ug/L	3.28	52.0
Indeno(1,2,3-cd)pyrene	1142237	23.2	19.2		25.0	0.100 - 171	92.8	76.8	ug/L	18.9	99.0
Isophorone	1142237	19.1	16.5		25.0	21.0 - 196	76.4	66.0	ug/L	14.6	93.0
Naphthalene	1142237	15.4	14.3		25.0	21.0 - 133	61.6	57.2	ug/L	7.41	65.0
Nitrobenzene	1142237	18.1	16.3		25.0	35.0 - 180	72.4	65.2	ug/L	10.5	62.0
n-Nitrosodiethylamine	1142237	18.2	16.9		25.0	18.0 - 100	72.8	67.6	ug/L	7.41	50.0
N-Nitrosodimethylamine	1142237	13.6	12.6		25.0	30.2 - 74.9	54.4	50.4	ug/L	7.63	50.0
n-Nitroso-di-n-butylamine	1142237	20.3	17.2		25.0	48.4 - 98.5	81.2	68.8	ug/L	16.5	50.0
N-Nitrosodi-n-propylamine	1142237	19.2	16.9		25.0	0.100 - 230	76.8	67.6	ug/L	12.7	87.0
N-Nitrosodiphenylamine (as DPA	1142237	21.8	18.5		25.0	49.3 - 94.2	87.2	74.0	ug/L	16.4	50.0
p-Chloro-m-Cresol (4-Chloro-3-me	1142237	19.7	17.5		25.0	22.0 - 147	78.8	70.0	ug/L	11.8	70.0
Pentachlorobenzene	1142237	17.4	14.8		25.0	39.3 - 93.7	69.6	59.2	ug/L	16.1	50.0
Pentachlorophenol	1142237	15.3	12.9		25.0	14.0 - 176	61.2	51.6	ug/L	17.0	86.0
Phenanthrene	1142237	21.9	18.9		25.0	54.0 - 120	87.6	75.6	ug/L	14.7	39.0
Phenol	1142237	9.11	8.27		25.0	5.00 - 120	36.4	33.1	ug/L	9.50	64.0
Pyrene	1142237	21.1	17.4		25.0	52.0 - 120	84.4	69.6	ug/L	19.2	49.0
Pyridine	1142237	8.92	10.6		25.0	11.2 - 50.6	35.7	42.4	ug/L	17.2	50.0
				Surr	ogate						
Parameter_	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
2,4,6-Tribromophenol	627231	CCV	48100	100000	ug/L	48.1	10.0 - 150	126888792			
2-Fluorophenol-SURR	627231	CCV	49600	100000	ug/L	49.6	10.0 - 150	126888792			
4-Terphenyl-d14-SURR	627231	CCV	40200	50000	ug/L	80.4	30.0 - 150	126888792			
Nitrobenzene-d5-SURR	627231	CCV	48800	50000	ug/L	97.6	30.0 - 150	126888792			
Phenol-d6-SURR	627231	CCV	50900	100000	ug/L	50.9	10.0 - 150	126888792			
2,4,6-Tribromophenol	1142237	Blank	41.2	100	ug/L	41.2	10.0 - 150	126888793			
2,4,6-Tribromophenol	1142237	LCS	60.6	100	ug/L	60.6	10.0 - 150	126888794			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 32 of 45

Page 20 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Surrogate											
<u>Parameter</u>	Sample	Type	Reading	Known	Units	Recover%	Limits%	File			
2,4,6-Tribromophenol	1142237	LCS Dup	50.4	100	ug/L	50.4	10.0 - 150	126888795			
2-Fluorophenol-SURR	1142237	Blank	34500	100000	ug/L	34.5	10.0 - 150	126888793			
2-Fluorophenol-SURR	1142237	LCS	42300	100000	ug/L	42.3	10.0 - 150	126888794			
2-Fluorophenol-SURR	1142237	LCS Dup	40300	100000	ug/L	40.3	10.0 - 150	126888795			
4-Terphenyl-d14-SURR	1142237	Blank	27900	50000	ug/L	55.8	30.0 - 150	126888793			
4-Terphenyl-d14-SURR	1142237	LCS	34400	50000	ug/L	68.8	30.0 - 150	126888794			
4-Terphenyl-d14-SURR	1142237	LCS Dup	29200	50000	ug/L	58.4	30.0 - 150	126888795			
Nitrobenzene-d5-SURR	1142237	Blank	31100	50000	ug/L	62.2	30.0 - 150	126888793			
Nitrobenzene-d5-SURR	1142237	LCS	35000	50000	ug/L	70.0	30.0 - 150	126888794			
Nitrobenzene-d5-SURR	1142237	LCS Dup	31600	50000	ug/L	63.2	30.0 - 150	126888795			
Phenol-d6-SURR	1142237	Blank	24800	100000	ug/L	24.8	10.0 - 150	126888793			
Phenol-d6-SURR	1142237	LCS	32100	100000	ug/L	32.1	10.0 - 150	126888794			
Phenol-d6-SURR	1142237	LCS Dup	29500	100000	ug/L	29.5	10.0 - 150	126888795			
2,4,6-Tribromophenol	2341273	Unknown	40.1	96.9	ug/L	41.4	10.0 - 150	126888796			
2-Fluorophenol-SURR	2341273	Unknown	32.2	96.9	ug/L	33.2	10.0 - 150	126888796			
4-Terphenyl-d14-SURR	2341273	Unknown	27.5	48.4	ug/L	56.8	30.0 - 150	126888796			
Nitrobenzene-d5-SURR	2341273	Unknown	28.5	48.4	ug/L	58.9	30.0 - 150	126888796			
Phenol-d6-SURR	2341273	Unknown	24.3	96.9	ug/L	25.1	10.0 - 150	126888796			
Analytical Set	1143232										

Ana	alytical Set	1143232]	EPA 617	
					В	lank							
<u>Parameter</u>		PrepSet	Reading	MDL	MQL	Units			File				
Kelthane (Dicofol)		1142304	ND	3.52	5.00	ug/L			126895550				
Methoxychlor		1142304	ND	0.897	1.00	ug/L			126895550				
Mirex		1142304	ND	0.905	1.00	ug/L			126895550				
	ccv												
<u>Parameter</u>			Reading	Known	Units	Recover%	Limits%		File				
Kelthane (Dicofol)			47.9	50.0	ug/L	95.7	70.0 - 130		126895549				
Kelthane (Dicofol)			317	100	ug/L	317	70.0 - 130	*	126895556				
Methoxychlor			27.6	25.0	ug/L	110	70.0 - 130		126895549				
Methoxychlor			84.5	50.0	ug/L	169	70.0 - 130	*	126895556				
Mirex			24.9	25.0	ug/L	99.7	70.0 - 130		126895549				
Mirex			69.1	50.0	ug/L	138	70.0 - 130	*	126895556				
					LCS	5 Dup							
<u>Parameter</u>		PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%	
Kelthane (Dicofol)		1142304	110	165		100	0.100 - 137	110	165 *	ug/L	40.0 *	30.0	
Methoxychlor		1142304	92.5	89.8		100	21.5 - 151	92.5	89.8	ug/L	2.96	30.0	
Mirex		1142304	63.7	71.3		100	11.6 - 140	63.7	71.3	ug/L	11.3	30.0	
					Suri	rogate							
<u>Parameter</u>		Sample	Туре	Reading	Known	Units	Recover%	Limits%	File				
Decachlorobiphenyl			CCV	25.3	100	ug/L	25.3	10.0 - 150	126895549				
Decachlorobiphenyl			CCV	68.9	100	ug/L	68.9	10.0 - 150	126895556				
Tetrachloro-m-Xylen	e (Surr)		CCV	21.0	100	ug/L	21.0	10.0 - 150	126895549				

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 33 of 45

Page 21 of 28

Project 1120743

PrepSet

626989

626989

1143012

1143012

1143012

1143012

1143012

1143012

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Tetrachloro-m-Xylene (Surr)

Surrogate
<u>Parameter</u> Sample Type Reading Known Units

2341273

Unknown

Units Recover% Limits% File CCV Tetrachloro-m-Xylene (Surr) 58.1 100 ug/L 58.1 10.0 - 150 126895556 1142304 Blank 51.5 100 ug/L 51.5 10.0 - 150 126895550 Decachlorobiphenyl Decachlorobiphenyl 1142304 LCS 61.3 100 ug/L 61.3 10.0 - 150 126895551 Decachlorobiphenyl 1142304 LCS Dup 67.4 100 ug/L 67.4 10.0 - 150 126895552 Tetrachloro-m-Xylene (Surr) 1142304 Blank 47.7 100 ug/L 47.7 10.0 - 150 126895550 47.1 100 47.1 10.0 - 150 Tetrachloro-m-Xylene (Surr) 1142304 LCS ug/L 126895551 Tetrachloro-m-Xylene (Surr) 1142304 LCS Dup 46.9 100 ug/L 46.9 10.0 - 150 126895552 Decachlorobiphenyl 30.7 2341273 Unknown 0.0297 0.0967 ug/L 10.0 - 150 126895555

0.0379

Analytical Set 1143252 ASTM D7065-11

39.2

10.0 - 150

126895555

Blank

ug/L

0.0967

PrepSet Parameter Reading MDL MOL Units File Nonylphenol 1143012 ND 5.00 30.0 ug/L 126896485 CCV Units Recover% File Parameter Reading Known Limits% 154000 150000 ug/L 103 70.0 - 130 126896484 Nonylphenol IS Areas Туре Reading **CCVISM** Low High File Parameter Sample 626989 CCV 1080000 1080000 540000 1620000 126896484 Acenaphthene-d10-ISTD CCV 1470000 734900 2205000 126896484 Phenanthrene-d10-ISTD 626989 1470000 Acenaphthene-d10-ISTD 1143012 Blank 665100 1080000 540000 1620000 126896485 Acenaphthene-d10-ISTD 1143012 LCS 655900 1080000 540000 1620000 126896486

Acenaphthene-d10-ISTD LCS Dup 892100 1080000 540000 1620000 1143012 126896487 Phenanthrene-d10-ISTD 1143012 Blank 935400 1470000 734900 2205000 126896485 Phenanthrene-d10-ISTD 1143012 LCS 867100 1470000 734900 2205000 126896486 Phenanthrene-d10-ISTD 1143012 LCS Dup 1202000 1470000 734900 2205000 126896487 Acenaphthene-d10-ISTD 2341273 Unknown 789200 1080000 540000 1620000 126896491

Acenaphthene-d10-ISTD	2341273	Unknown	789200	1080000	540000	1620000	126896491	1143012
Phenanthrene-d10-ISTD	2341273	Unknown	1147000	1470000	734900	2205000	126896491	1143012
				IS Re	tTime			
<u>Parameter</u>	Sample	Туре	Reading	CCVISM	Low	High	File	PrepSet
Acenaphthene-d10-ISTD	626989	CCV	6.254	6.254	6.194	6.314	126896484	626989
Phenanthrene-d10-ISTD	626989	CCV	7.445	7.445	7.385	7.505	126896484	626989
Acenaphthene-d10-ISTD	1143012	Blank	6.254	6.254	6.194	6.314	126896485	1143012
Acenaphthene-d10-ISTD	1143012	LCS	6.254	6.254	6.194	6.314	126896486	1143012
Acenaphthene-d10-ISTD	1143012	LCS Dup	6.253	6.254	6.194	6.314	126896487	1143012
Phenanthrene-d10-ISTD	1143012	Blank	7.445	7.445	7.385	7.505	126896485	1143012
Phenanthrene-d10-ISTD	1143012	LCS	7.445	7.445	7.385	7.505	126896486	1143012
Phenanthrene-d10-ISTD	1143012	LCS Dup	7.445	7.445	7.385	7.505	126896487	1143012
Acenaphthene-d10-ISTD	2341273	Unknown	6.253	6.254	6.194	6.314	126896491	1143012
Phenanthrene-d10-ISTD	2341273	Unknown	7.445	7.445	7.385	7.505	126896491	1143012

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 34 of 45

Page 22 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

LCS Dup LCS% LCSD% Parameter PrepSet LCS LCSD Known Limits% Units RPD Limit% 1143012 56.0 - 112 72.7 ug/L Nonylphenol 109 147 150 98.0 29.6 30.0 Surrogate Sample Туре Reading Known Units Recover% Limits% File Parameter 4-Nonylphenol-SURR 626989 CCV 27600 25000 ug/L 110 50.0 - 130 126896484 4-Nonylphenol-SURR 1143012 Blank 19700 25000 ug/L 78.8 50.0 - 130 126896485 4-Nonylphenol-SURR 1143012 LCS 19900 25000 ug/L 79.6 50.0 - 130 126896486 4-Nonylphenol-SURR 1143012 LCS Dup 18400 25000 ug/L 73.6 50.0 - 130 126896487

4-Nonylphenol-SURR 2341273 Unknown 20.8 ug/L 77.6 50.0 - 130 126896491 26.8 1143253 EPA 608.3 **Analytical Set** Blank MDL **MQL** Units File Parameter PrepSet Reading 4,4-DDD 1142304 ND 0.731 1.00 ug/L 126896493 4,4-DDE 1142304 ND 0.361 1.00 ug/L 126896493 4,4-DDT ND 0.862 1.00 126896493 1142304 ug/L Aldrin 1142304 ND 0.260 1.00 ug/L 126896493 0.280 126896493 Alpha-BHC(hexachlorocyclohexane) 1142304 ND 1.00 ug/L ND 0.579 1.00 126896493 Beta-BHC(hexachlorocyclohexane) 1142304 ug/L Delta-BHC(hexachlorocyclohexane) 1142304 ND 0.898 1.00 ug/L 126896493 Dieldrin 1142304 ND 0.162 1.00 ug/L 126896493 Endosulfan I (alpha) 1142304 ND 0.679 1.00 ug/L 126896493 Endosulfan II (beta) 1142304 ND 0.356 1.00 ug/L 126896493 Endosulfan sulfate 1142304 ND 0.588 1.00 ug/L 126896493 Endrin 1142304 ND 0.538 1.00 ug/L 126896493 Endrin aldehyde 1142304 ND 0.699 1.00 ug/L 126896493 Gamma-BHC(Lindane) 1142304 ND 0.385 1.00 ug/L 126896493 Heptachlor 1142304 ND 0.207 1.00 ug/L 126896493 Heptachlor epoxide 1142304 ND 0.660 1.00 ug/L 126896493 Toxaphene 1142304 ND 0.169 0.200 ug/L 126896493 CCV Reading Recover% Limits% File Parameter Known Units 75.0 - 125 126896492 4,4-DDD 26.1 25.0 ug/L 104 50.0 78.3 157 75.0 - 125 126896499 4,4-DDD ug/L 4,4-DDE 31.8 25.0 127 75.0 - 125 126896492 ug/L 75.0 - 125 4,4-DDE 73.4 50.0 ug/L 147 126896499 4,4-DDT 26.0 25.0 ug/L 104 75.0 - 125 126896492 4,4-DDT 71.0 50.0 ug/L 142 75.0 - 125 126896499 98.4 75.0 - 125 Aldrin 24.6 25.0 ug/L 126896492 Aldrin 68.8 50.0 ug/L 138 75.0 - 125 126896499 Alpha-BHC(hexachlorocyclohexane) 25.1 25.0 ug/L 100 75.0 - 125 126896492 Alpha-BHC(hexachlorocyclohexane) 73.0 50.0 ug/L 146 75.0 - 125 126896499 75.0 - 125 Beta-BHC(hexachlorocyclohexane) 26.0 25.0 ug/L 104 126896492 Beta-BHC(hexachlorocyclohexane) 74.7 50.0 ug/L 149 75.0 - 125 126896499

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 35 of 45

Page 23 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

ccv											
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Delta-BHC(hexachlorocyclohexane)		25.9	25.0	ug/L	104	75.0 - 125		126896492			
Delta-BHC(hexachlorocyclohexane)		77.3	50.0	ug/L	155	75.0 - 125	*	126896499			
Dieldrin		25.3	25.0	ug/L	101	75.0 - 125		126896492			
Dieldrin		68.1	50.0	ug/L	136	75.0 - 125	*	126896499			
Endosulfan I (alpha)		25.3	25.0	ug/L	101	75.0 - 125		126896492			
Endosulfan I (alpha)		67.3	50.0	ug/L	135	75.0 - 125	*	126896499			
Endosulfan II (beta)		25.3	25.0	ug/L	101	75.0 - 125		126896492			
Endosulfan II (beta)		64.6	50.0	ug/L	129	75.0 - 125	*	126896499			
Endosulfan sulfate		25.6	25.0	ug/L	102	75.0 - 125		126896492			
Endosulfan sulfate		77.2	50.0	ug/L	154	75.0 - 125	*	126896499			
Endrin		25.4	25.0	ug/L	102	75.0 - 125		126896492			
Endrin		71.3	50.0	ug/L	143	75.0 - 125	*	126896499			
Endrin aldehyde		25.3	25.0	ug/L	101	75.0 - 125		126896492			
Endrin aldehyde		58.2	50.0	ug/L	116	75.0 - 125		126896499			
Gamma-BHC(Lindane)		24.9	25.0	ug/L	99.6	75.0 - 125		126896492			
Gamma-BHC(Lindane)		81.3	50.0	ug/L	163	75.0 - 125	*	126896499			
Heptachlor		24.9	25.0	ug/L	99.6	75.0 - 125		126896492			
Heptachlor		68.0	50.0	ug/L	136	75.0 - 125	*	126896499			
Heptachlor epoxide		25.3	25.0	ug/L	101	75.0 - 125		126896492			
Heptachlor epoxide		70.2	50.0	ug/L	140	75.0 - 125	*	126896499			
				LCS	5 Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
4,4-DDD	1142304	79.9	80.4		100	31.0 - 141	79.9	80.4	ug/L	0.624	39.0
4,4-DDE	1142304	64.0	70.1		100	30.0 - 145	64.0	70.1	ug/L	9.10	35.0
4,4-DDT	1142304	64.1	71.0		100	25.0 - 160	64.1	71.0	ug/L	10.2	42.0
Aldrin	1142304	48.8	53.9		100	42.0 - 140	48.8	53.9	ug/L	9.93	35.0
Alpha-BHC(hexachlorocyclohexane)	1142304	80.6	72.2		100	37.0 - 140	80.6	72.2	ug/L	11.0	36.0
Beta-BHC(hexachlorocyclohexane)	1142304	87.4	76.9		100	17.0 - 147	87.4	76.9	ug/L	12.8	44.0
Delta-BHC(hexachlorocyclohexane)	1142304	86.9	76.7		100	19.0 - 140	86.9	76.7	ug/L	12.5	52.0
Dieldrin	1142304	71.9	69.6		100	36.0 - 146	71.9	69.6	ug/L	3.25	49.0
Endosulfan I (alpha)	1142304	71.7	67.6		100	45.0 - 153	71.7	67.6	ug/L	5.89	28.0
Endosulfan II (beta)	1142304	44.2	41.2		100	0.100 - 202	44.2	41.2	ug/L	7.03	53.0
Endosulfan sulfate	1142304	78.9	72.1		100	26.0 - 144	78.9	72.1	ug/L	9.01	38.0
Endrin	1142304	76.9	72.4		100	30.0 - 147	76.9	72.4	ug/L	6.03	48.0
Endrin aldehyde	1142304	61.9	56.2		100	37.6 - 158	61.9	56.2	ug/L	9.65	30.0
Gamma-BHC(Lindane)	1142304	85.1	71.5		100	32.0 - 140	85.1	71.5	ug/L	17.4	39.0
Heptachlor	1142304	53.1	54.4		100	34.0 - 140	53.1	54.4	ug/L	2.42	43.0
Heptachlor epoxide	1142304	75.1	70.3		100	37.0 - 142	75.1	70.3	ug/L	6.60	26.0
				Surr	ogate						
<u>Parameter</u>	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
Decachlorobiphenyl		CCV	25.3	100	ug/L	25.3	0.100 - 144	126896492			
Decachlorobiphenyl		CCV	68.9	100	ug/L	68.9	0.100 - 144	126896499			
Tetrachloro-m-Xylene (Surr)		CCV	21.0	100	ug/L	21.0	0.100 - 107	126896492			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 36 of 45

Page 24 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

Surrogate Parameter Sample Type Reading Known Units Recover% Limits% File CCV 0.100 - 107 126896499 Tetrachloro-m-Xylene (Surr) 58.1 100 ug/L 58.1 Blank 1142304 51.5 100 ug/L 51.5 0.100 - 144126896493 Decachlorobiphenyl Decachlorobiphenyl 1142304 LCS 61.3 100 ug/L 61.3 0.100 - 144 126896494 Decachlorobiphenyl 1142304 LCS Dup 67.4 100 ug/L 67.4 0.100 - 144 126896495 Tetrachloro-m-Xylene (Surr) 1142304 Blank 47.7 100 ug/L 47.7 0.100 - 107126896493 47.1 100 47.1 0.100 - 107 126896494 Tetrachloro-m-Xylene (Surr) 1142304 LCS ug/L Tetrachloro-m-Xylene (Surr) 1142304 LCS Dup 46.9 100 ug/L 46.9 0.100 - 107 126896495 Decachlorobiphenyl 30.7 0.100 - 144 2341273 Unknown 0.0297 0.0967 ug/L 126896498 2341273 Unknown 0.0379 0.0967 39.2 0.100 - 107 126896498 Tetrachloro-m-Xylene (Surr) ug/L 1143577 **EPA 632 Analytical Set** Blank Parameter PrepSet Reading MDL MOL Units File Carbaryl (Sevin) 1142294 ND 66.1 2500 ug/L 126904131 Diuron 1142294 459 44.4 45.0 ug/L 126904131 CCV Recover% Parameter Reading Known Units Limits% File ug/L 1070 1000 107 70.0 - 130 126904130 Carbaryl (Sevin) 70.0 - 130 126904134 Carbaryl (Sevin) 1070 1000 ug/L 107 Carbaryl (Sevin) 1070 1000 ug/L 107 70.0 - 130 126904138 ug/L 126904142 Carbaryl (Sevin) 1040 1000 104 70.0 - 130 70.0 - 130 1000 112 Carbaryl (Sevin) 1120 ug/L 126904146 Carbaryl (Sevin) 1150 1000 ug/L 115 70.0 - 130 126904150 Carbaryl (Sevin) 1180 1000 ug/L 118 70.0 - 130 126904154 ug/L Diuron 1020 1000 102 70.0 - 130 126904130 Diuron 1020 1000 ug/L 102 70.0 - 130 126904134 Diuron 1050 1000 ug/L 105 70.0 - 130 126904138 Diuron 1050 1000 ug/L 105 70.0 - 130 126904142 Diuron 1060 1000 ug/L 106 70.0 - 130 126904146 Diuron 1130 1000 ug/L 113 70.0 - 130 126904150 Diuron 1150 1000 ug/L 115 70.0 - 130 126904154 LCS Dup LCS% LCSD% RPD Parameter PrepSet LCS LCSD Known Limits% Units Limit% 1142294 982 1020 1000 17.1 - 131 98.2 102 3.80 30.0 Carbaryl (Sevin) ug/L 27.8 1142294 375 278 1000 0.100 - 138 37.5 Diuron ug/L 29.7 30.0 **EPA 615 Analytical Set** 1143664

Email: Kilgore.ProjectManagement@spllabs.com

PrepSet

1142711

1142711

Reading

25.2

ND

MDL

15.9

8.93

Blank

Units

ug/L

ug/L

Report Page 37 of 45

File

126907218

126907218

MQL

50.0

30.0

Parameter

2,4,5-TP (Silvex)

2,4 Dichlorophenoxyacetic acid

Page 25 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

								1111100	10/20/201		
				C	CCV						
Parameter Parame		Reading	Known	Units	Recover%	Limits%		File			
2,4 Dichlorophenoxyacetic acid		147	150	ug/L	97.8	80.0 - 115		126907217			
2,4 Dichlorophenoxyacetic acid		125	150	ug/L	83.5	80.0 - 115		126907224			
2,4,5-TP (Silvex)		149	150	ug/L	99.2	80.0 - 115		126907217			
2,4,5-TP (Silvex)		134	150	ug/L	89.6	80.0 - 115		126907224			
				LC	5 Dup						
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
2,4 Dichlorophenoxyacetic acid	1142711	70.7	72.5		100	0.100 - 319	70.7	72.5	ug/L	2.51	30.0
2,4,5-TP (Silvex)	1142711	79.7	66.9		100	0.100 - 244	79.7	66.9	ug/L	17.5	30.0
				Sur	rogate						
<u>Parameter</u>	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
2,4-Dichlorophenylacetic Acid		CCV	159	200	ug/L	79.5	0.100 - 313	126907217			
2,4-Dichlorophenylacetic Acid		CCV	144	200	ug/L	72.0	0.100 - 313	126907224			
2,4-Dichlorophenylacetic Acid	1142711	Blank	131	200	ug/L	65.5	0.100 - 313	126907218			
2,4-Dichlorophenylacetic Acid	1142711	LCS	90.5	200	ug/L	45.2	0.100 - 313	126907219			
2,4-Dichlorophenylacetic Acid	1142711	LCS Dup	134	200	ug/L	67.0	0.100 - 313	126907220			
2,4-Dichlorophenylacetic Acid	2341273	Unknown	1.45	1.93	ug/L	75.1	0.100 - 313	126907223			
Analytical Set	1143830									Е	PA 608.3

2,4-Dichlorophenylac	etic Acid	2341273	Unknown	1.45	1.93	ug/L	75.1	0.100 - 313	126907223			
Ana	llytical Set	1143830									El	PA 608.3
					E	Blank						
Parameter		PrepSet	Reading	MDL	MQL	Units			File			
PCB-1016		1142312	ND	0.202	0.202	ug/L			126911481			
PCB-1221		1142312	ND	0.143	0.200	ug/L			126911481			
PCB-1232		1142312	ND	0.143	0.200	ug/L			126911481			
PCB-1242		1142312	ND	0.192	0.200	ug/L			126911481			
PCB-1248		1142312	ND	0.143	0.200	ug/L			126911481			
PCB-1254		1142312	ND	0.143	0.200	ug/L			126911481			
PCB-1260		1142312	ND	0.161	0.200	ug/L			126911481			
PCB-1262		1142312	ND	0.198	0.200	ug/L			126911481			
PCB-1268		1142312	ND	0.143	0.200	ug/L			126911481			
						CCV						
Parameter			Reading	Known	Units	Recover%	Limits%		File			
PCB-1016			1310	1000	ug/L	131	80.0 - 115	*	126911480			
PCB-1016			1690	1000	ug/L	169	80.0 - 115	*	126911488			
PCB-1016			1560	1000	ug/L	156	80.0 - 115	*	126911491			
PCB-1260			1190	1000	ug/L	119	80.0 - 115	*	126911480			
PCB-1260			1370	1000	ug/L	137	80.0 - 115	*	126911488			
PCB-1260			1220	1000	ug/L	122	80.0 - 115	*	126911491			
					LC	S Dup						
<u>Parameter</u>		PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
PCB-1016		1142312	972	653		1000	39.8 - 135	97.2	65.3	ug/L	39.3 *	30.0
PCB-1260		1142312	863	612		1000	36.1 - 134	86.3	61.2	ug/L	34.0 *	30.0

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 38 of 45

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320 Page 26 of 28

Project 1120743

Printed 10/23/2024

								Printed	10/23/202	24	
				Surr	rogate						
Donomaton	Campla	Torre	Dooding		-	Recover%	Limits%	File			
<u>Parameter</u>	Sample 1142312	<i>Type</i> Blank	Reading 51.5	Known 100	Units ug/L	51.5	10.0 - 200	126911481			
Decachlorobiphenyl	1142312	Blank	31.3 47.7	100	•	31.3 47.7	10.0 - 200	126911481			
Tetrachloro-m-Xylene (Surr)		Unknown	0.0297		ug/L						
Decachlorobiphenyl	2341273 2341273			0.0967	ug/L	30.7	10.0 - 200	126911486			
Tetrachloro-m-Xylene (Surr)	2341273	Unknown	0.0379	0.0967	ug/L	39.2	10.0 - 200	126911486			
Analytical Set	1143851										EPA 622
				Bl	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Chlorpyrifos	1142311	ND	0.0904	50.0	ug/L			126911848			
				c	CCV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Chlorpyrifos		993	1000	ug/L	99.3	48.0 - 150		126911847			
Chlorpyrifos		1020	1000	ug/L	102	48.0 - 150		126911857			
Chlorpyrifos		1260	1000	ug/L	126	48.0 - 150		126911861			
				LCS	5 Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Chlorpyrifos	1142311	602	583		1000	0.100 - 128	60.2	58.3	ug/L	3.21	30.0
				Surr	ogate						
Parameter Parameter	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
Tributylphosphate	•	CCV	1010	1000	ug/L	101	0.100 - 115	126911847			
Tributylphosphate		CCV	948	1000	ug/L	94.8	0.100 - 115	126911857			
Tributylphosphate		CCV	966	1000	ug/L	96.6	0.100 - 115	126911861			
Triphenylphosphate		CCV	1010	1000	ug/L	101	0.100 - 115	126911847			
Triphenylphosphate		CCV	820	1000	ug/L	82.0	0.100 - 115	126911857			
Triphenylphosphate		CCV	1230	1000	ug/L	123 *	0.100 - 115	126911861			
Tributylphosphate	1142311	Blank	617	1000	ug/L	61.7	0.100 - 115	126911848			
Tributylphosphate	1142311	LCS	524	1000	ug/L	52.4	0.100 - 115	126911849			
Tributylphosphate	1142311	LCS Dup	535	1000	ug/L	53.5	0.100 - 115	126911850			
Triphenylphosphate	1142311	Blank	568	1000	ug/L	56.8	0.100 - 115	126911848			
Triphenylphosphate	1142311	LCS	458	1000	ug/L	45.8	0.100 - 115	126911849			
Triphenylphosphate	1142311	LCS Dup	432	1000	ug/L	43.2	0.100 - 115	126911850			
Analytical Set	1143853										EPA 614
•				В	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Azinphos-methyl (Guthion)	1142311	ND	41.4	50.0	ug/L			126911883			
Demeton	1142311	ND	31.9	50.0	ug/L			126911883			
Diazinon	1142311	ND	19.7	50.0	ug/L			126911883			
Malathion	1142311	ND	24.8	50.0	ug/L			126911883			
Parathion, ethyl	1142311	ND	23.9	50.0	ug/L			126911883			
n at a t	1140011		25.4	50.0	~			40.5044000			

Email: Kilgore.ProjectManagement@spllabs.com

1142311 ND

27.4

ug/L

Report Page 39 of 45

126911883

50.0

Parathion, methyl

Page 27 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

				c	cv						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Azinphos-methyl (Guthion)		967	1000	ug/L	96.7	37.5 - 164		126911882			
Azinphos-methyl (Guthion)		909	1000	ug/L	90.9	37.5 - 164		126911892			
Azinphos-methyl (Guthion)		1060	1000	ug/L	106	37.5 - 164		126911896			
Demeton		976	1000	ug/L	97.6	58.6 - 150		126911882			
Demeton		1010	1000	ug/L	101	58.6 - 150		126911892			
Demeton		909	1000	ug/L	90.9	58.6 - 150		126911896			
Diazinon		971	1000	ug/L	97.1	65.4 - 138		126911882			
Diazinon		1050	1000	ug/L	105	65.4 - 138		126911892			
Diazinon		1240	1000	ug/L	124	65.4 - 138		126911896			
Malathion		992	1000	ug/L	99.2	49.5 - 160		126911882			
Malathion		1030	1000	ug/L	103	49.5 - 160		126911892			
Malathion		1090	1000	ug/L	109	49.5 - 160		126911896			
Parathion, ethyl		962	1000	ug/L	96.2	56.0 - 142		126911882			
Parathion, ethyl		1000	1000	ug/L	100	56.0 - 142		126911892			
Parathion, ethyl		839	1000	ug/L	83.9	56.0 - 142		126911896			
Parathion, methyl		978	1000	ug/L	97.8	12.6 - 194		126911882			
Parathion, methyl		1030	1000	ug/L	103	12.6 - 194		126911892			
Parathion, methyl		683	1000	ug/L	68.3	12.6 - 194		126911896			
					Dup						
Danomacton	Duan Cat	LCC	LCSD		•	Timita0/	I CCOV	LCCD0/	Timien	DDD	T ::40/
Parameter A simple a mothed (Guthian)	PrepSet	LCS			Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Azinphos-methyl (Guthion)	1142311	818	637 401		1000	0.100 - 155	81.8 42.9	63.7 40.1	ug/L	24.9 6.75	30.0
Demeton Diazinon	1142311	429 556			1000 1000	0.100 - 109		40.1 59.1	ug/L		30.0
Malathion	1142311 1142311	556 591	591 575		1000	0.100 - 125 0.100 - 130		57.5	ug/L ug/L	6.10 2.74	30.0 30.0
Parathion, ethyl	1142311	619	621		1000	0.100 - 130	61.9	62.1		0.323	30.0
Parathion, methyl	1142311	633	608		1000	0.100 - 122 0.100 - 131		60.8	ug/L	4.03	30.0
raraunon, memyi	1142311	033	000	_		0.100 - 151	03.3	00.8	ug/L	4.03	30.0
				Surr	ogate						
<u>Parameter</u>	Sample	Type	Reading	Known	Units	Recover%	Limits%	File			
Tributylphosphate		CCV	1010	2000	ug/L	50.5	0.100 - 106	126911882			
Tributylphosphate		CCV	948	2000	ug/L	47.4	0.100 - 106	126911892			
Tributylphosphate		CCV	966	2000	ug/L	48.3	0.100 - 106	126911896			
Triphenylphosphate		CCV	1010	2000	ug/L	50.5	0.100 - 172	126911882			
Triphenylphosphate		CCV	820	2000	ug/L	41.0	0.100 - 172	126911892			
Triphenylphosphate		CCV	1230	2000	ug/L	61.5	0.100 - 172	126911896			
Tributylphosphate	1142311	Blank	617	2000	ug/L	30.8	0.100 - 106	126911883			
Tributylphosphate	1142311	LCS	524	2000	ug/L	26.2	0.100 - 106	126911884			
Tributylphosphate	1142311	LCS Dup	535	2000	ug/L	26.8	0.100 - 106	126911885			
Triphenylphosphate	1142311	Blank	568	2000	ug/L	28.4	0.100 - 172	126911883			
Triphenylphosphate	1142311	LCS	458	2000	ug/L	22.9	0.100 - 172	126911884			
Triphenylphosphate	1142311	LCS Dup	432	2000	ug/L	21.6	0.100 - 172	126911885			
Tributylphosphate	2341273	Unknown	0.470	1.93	ug/L	24.4	0.100 - 106	126911888			
Triphenylphosphate	2341273	Unknown	0.361	1.93	ug/L	18.7	0.100 - 172	126911888			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 40 of 45

Page 28 of 28

Project 1120743

Printed 10/23/2024

CLDV-G

Chaparral Labs Jessica Collins 861 Hwy 19 Huntsville, TX 77320

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); CCV - Continuing Calibration Verification used to prepare the curve; typically a mid-range concentration; verifies the continued validity of the calibration curve); MSD - Matrix Spike Duplicate (replicate of the

matrix spike; same solution and amount of target analyte added to the MS is added to a third aliquot of sample; quantifies matrix bias and precision.); LCS Dup - Laboratory Control Sample Duplicate (replicate LCS; analyzed when there is insufficient sample for duplicate or MSD; quantifies accuracy and precision.); BFB -

Bromofluorobenzene, GC/MS Tuning Compound (mass intensity used as tuning acceptance criteria.); Surrogate - Surrogate (mimics the analyte of interest but is unlike

to be found in environmental samples; added to analytical samples for QC purposes. **ANSI/ASQC E4 1994, Ref #4 TRADE QA Resources Guide.); IS Areas - Internal Standard Area (The area of the internal stadard relative to a check standard. Internal Standard is a known concentration of an analyte(s) that is not a sample component or standard that is added to the sample and standard and is used to measure the relative responses of other analytes in the same sample or standard.); IS RetTime - Internal Standard Retention Time (the time the internal standard comes off the column. Internal Standard is a known concentration of an analyte(s) that is not a sample component or standard that is added to the sample and standard and is used to measure the relative responses of other analytes in the same sample or standard.); CCB - Continuing Calibration Blank; ICV - Initial Calibration Verification; AWRL/LOQ C - Ambient Water Reporting Limit/LOQ Check Std; MRL Check - Minimum Reporting Limit Check Std; DFTPP - GC/MS Tuning Compound

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 41 of 45

2

CHAIN OF CUSTODY

vy 19 nile, TX 77328		734	
Vict. Shart Hold	SAAE	Accordings Acry to sitt de Lag.	EPA =24 ((\$40 days)
2	H2SO4 to	oH <2 GlQt w/Tef-lined lid	
	NYPE	Nonyl Physiol Expansion	45(TM 177065-1) (14.0 days):
	H2SO4 to p	oH <2 Amber Glass 250 mL w	/Teflon lined lid
W / 40	Hone	Phonolics, Fetal Recoverable	EPA 420.4 (29.0 days)
0	Z No bot	tle required	
	CKLM	Check Limits	
WIW Short Hold	Cr+3	Law alent Characteris	Collaboration FAS 10005-85-1 (1100 days)
	HgKı	CL Menniny Levi Prop	
1	FINO3 to p	H < Polyethylene 500 mL fo	r Metals
MT Ic	*AgM	Silver, Total	EPA 200 x 5.4 CAS: 7440-22-4 (180 days)
\$27.47	*AIM	Allemnam, feral	1 PA 209.8 5 4 CAS:7429-96-3 (180 days)
52 L 0	*AsM	Amorti, Tutul	EPA 306,8 5 4 C AS (7446-38-7 (180 days)
AFI W	"BaM	Ourum, Totai	(PA 30H N 5 41C NS/744H-34-3 (180 days)
WT is	*BeM	Bervitium, Total	FPA 209.8 5.4 CAS.7410-41-7 (180 days)
\$77.30	•CdM	Cadimura, Teral	FitA 2068 5.4 CAS 7446-43-9 (180 days)
VEC 0	*CaM	Christman, Total	6 if A 2005 A 5 4 € A 5: 7440 → 7-3 (180 days)
VEZ 16	*CuM	Соррет, Теча!	EPA 2008 5 4 CAS 9440-30-8 (180 days)
NUL III	"NBM	Nukri, Tetal	1 PA 2004 8 5 4 G AS (MH0-4Q-4) (180 days)
NET 14	"I'hM	Lod, Iotal	LPA 200 x 5 + C AS 743 (493-1 (180 days)
Sz I nc	*SbM	Antimon: Tubif	@PA 2003 5.4 € A3:7440-3r-@ (180 Juys)
XF 7 (0)	*SaM	Schman, Total	hr/A 2004 5.4.CAS 7.82~l+ 2.(180 days)
N# Eng	*TIM	Phathum, I nel	FPA 20018 5.4 CAS 7440-38-0 (180 days)
VII M	*ZnM	Zine, Fotal	BPA 2008 5 4 CAS 7040-06 存(180 如火)
	301TL	Liquid Metair Digestora	EPA_5002_2K+180 days)

Child Cossi Region 2030 Went Grand Parkway M Rusy TX 17449
Report Page 43 of 45

124017

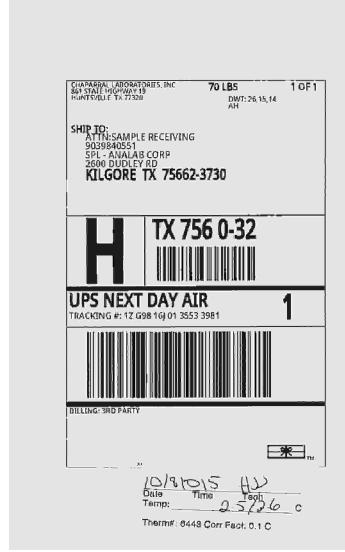
<u>t laanuun tkini alim ini niini ilaani aan kanna kanna liili</u>

2

1120743 CoC Print Group 001 of 001

2nd0Dudies lid kilpine, foras 15m2 Office 901-984-0551 * Lax 901-984-5914

C.


parrai Labs ica Collins PWY 29 itsville, TX ;			CLDV-C 734		
		ID2V	fable 6-170-2 Volatile Expansion	([FA 624.1 () 00 days)	
] Glass	s/clean	metals w/HCl		
N22 W		"Hill	Marcary , Total (low testa)	□14 345 7 2 € AS-7434-47-6 (40.0 doys)	
VEL II		2451	Low Level Mercury Liquid Metals	EPA 3457 2 190 m digat	
	2 NaOi	H to pl	1>12 Polyethylene 250 mL/s	umber	
W*/ W		CNn	C∨mide, Intel	SM AS00-CN F-20Te / 1-1 0 devet	
\$87.00		CN-A	Connide - Available Amenable	SN14500-CN * C-2010+14-9 disver	
0.11					
	1 Polye	ethylen	e Quart Hesavalem Chromius	SM 4500-CN ** G-20(6+1-20 days) SM 5506-CY+4-20(1 CAS 19540-22-2-1)	H dus n i
WYR	1 Polye Short Hold as comment.	othylen Cr+6 Rein	e Quart Hesavalem Chromian quodust	SM1350(eC)+14.20[1] ("AS 1954(c.2%-9]) (Smusiwed	
AF7 1c ar Chudhuan Time	Short Hold Us Comment.	Cr+6 Relin	e Quart Hesavalam Chromian	SM1380641714-2011 (1AS 14540-27-24) (1 (Remained Protect Sum	00 dusa) 1/07(n/mm
A77 1c an Creadman Fime	1 Polye Short Hold as comment.	Cr+6 Relin	e Quart Hesavalem Chromian quodust	SM 35064 (14-2011 CAS 18540-29-9 (14) Remained Profiled Surra Section 1	
APC 10 Fime	Short Hold Short Hold State Comments Crimed Same CLI Signification Current Same	Cr+6 Relin	e Quart Hexavalem Chrominas quoshort 1077/minor CLI	SM 350/GCF (C2011 CAS 19540-29-9) (1) Bensived Profess Sum Segment Profess Sum Andy Owens - SPL, Inc.	le/Minlann
APC 10 Fime	Short Hold Short Hold State Comments Primary Survey Primary Survey Primary Survey	Cr+6 Relin	e Quart Hexavalem Chrominas quoshort 1077/minor CLI	SM 35064 (14-2011 CAS 18540-29-9 (14) Remained Profiled Surra Section 1	le/Minlann
A/7 1c as Chadagan Time	Short Hold Us Common CLI Signature Princed Some CLI Signature Princed Some	Cr+6 Relin	e Quart Hexavalem Chremina mushed 1077-prior Little our	SM 350(40) (F4-2011 (FAS 18540):20-9 (T4 (FAS 18540	1/47/hdmm ±/47/hp.m
APP 10 Evanderiori Fime	Short Hold Us Comments Primed Some CLI Signature Primed Some CLI Primed Some	Cr+6 Relin	e Quart Hexavalem Chremina mushed 1077-prior Little our	SM 350/GCF (G2011 CAS 18640);20-9 (1) (Remained Product Sum Andy Owens - SPL, Inc., Significant Sum Product Sum Product Sum Andy Owens - SPL, Inc., Significant Sum Product Sum Product Sum Product Sum Product Sum Product Sum	1/47/hdmm ±/47/hp.m
APC 10 Fime	Prince CL Stand Some CL Signature CL	Cr+6 Relin	te Quart Hexavalem Chromina mushed 107/min C L I 177/min	SM 35064 (1 H-2011 ("AS 18540-20-9 (1 (Artification Artification

Oulf Coost Region: 2000 West Grand Parkers, N Early TX 77449
Report Page 44 of 45

Frameworks: INPLIES and L. L. 2000 V. G.

224074

2

Chaparral Laboratories, Inc.

861 State Hwy 19 P.O. Box 1622 Huntsville, TX. 77342 www.chaparrallabs.com reports@chaparrallabs.com Phone: 936-291-1881 FAX: 936-295-1731

oratos.						Chain o	Chain of Custody Record	₹eco1	<u>a</u>							
CLI-727 COC Page	ge 1 of 1	Report to:		1		Sample Type	Bottle Code	\dashv	_	Preservative Code		Lab remarks:				
Client: City of Navasota	sota					3 pt. Comp.	GA = Glass Amber	ber 1 = <6 °C	°C							
						24 Hr. Comp	,	2 = H2	NO3 RIL	ÌÌ						
Address: P.O.Box 910		Invoicing to:	0:			48 Ftt. Comp.	p. w = imownificag		4 = NaOH RIL							
City, State, Zip: Navasota, TX 77868	₹ 77868					Matrix Code D = Drinking	g Water	6 = Na 7 = On	6 = Na2S2O3 7 = On-Site Analysis	ysis						
	0	PO#				NP = Non-Pot Water S = Solids/Soil	ot Water	9 = ED	8 = Other RIL - 9 = EDA RIL -							
Project ID: City of N	City of Navasota WWTP			P	Project Address:		107-105 Peeples St, Navasota, TX 77868	vasota, T	X 7786	·		Co	Collection Schedule:			
Sampled by: MHE	Key/Combo:	0:		1	Wier Angle:		Operator Name:		Matt Julian	ian		Or	Operator Cell:	979-324-2998	86	
Lab Use Only		Sample			Date	Time	Flow	Bottle	Vol	Pres.						
Sample # Bottle #	Collection Point	Type	Matrix	Col	Collected	Collected			_	Code			Analysis			1
24100320 01	Effluent	Grab	NP	10/	10/7/24	1326		<u> </u>	500	-			Fluoride, NO3N	2		
4 02	Effluent	Grab	NP		4	*		(Various) ((Various) ((Various)		TCE	TCEQ Worksheet 4 Permit Tables*	nit Tables*		1
																1
																18
	9															of 4
																48
																ład
																F
														i		1
Sample Conditions as Received from Client (in field): Samples Intact: Y N NA Received on Ice: Y	from Client (in field): Received on Ice: Y N N		Relinquished by:	by:		Date:		Time:		R	Received by:		Date:		Time:	
		\alpha \alpha \alpha	1	1	any	,	iohlay	14	Shhl							
CLI Thermometer ID:	Č				1							>				
Sample Conditions as Received by Lab:	Becaused on Ice: (V) N NA									L	Contin	Uma	10/7/24	124	1445	
Kilson			s: TCEQ	Worksh	eet 4 Permi	Tables comp	Notes: TCEQ Worksheet 4 Permit Tables comprised of Tables 4.0(1), 4.0(2)A, 4.0(2)B, 4.0(2)C, 4.0(2)D, 4.0(2)E), 4.0(2),	A, 4.0(2)B, 4.0(2)C, 4.0(2)D, 4.0(2)	B				
Corrected Temperature:		\d^\d^\d														
																١

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

• • • • • • • • • • • • • • • • • • • •
Section 1. Domestic Drinking Water Supply (Instructions Page 64)
Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge?
□ Yes ⊠ No
If no , proceed it Section 2. If yes , provide the following:
Owner of the drinking water supply: Click to enter text.
Distance and direction to the intake: <u>Click to enter text.</u>
Attach a USGS map that identifies the location of the intake.
Attachment: Click to enter text.
Section 2. Discharge into Tidally Affected Waters (Instructions Page 64)
Does the facility discharge into tidally affected waters?
□ Yes ⊠ No
If no , proceed to Section 3. If yes , complete the remainder of this section. If no, proceed to Section 3.
A. Receiving water outfall
Width of the receiving water at the outfall, in feet: Click to enter text.
B. Oyster waters
Are there oyster waters in the vicinity of the discharge?
□ Yes □ No
If yes, provide the distance and direction from outfall(s).
Click to enter text.
C. Sea grasses
Are there any sea grasses within the vicinity of the point of discharge?
□ Yes □ No
If yes, provide the distance and direction from the outfall(s).
Click to enter text.

Is the discharge directly into (or within 300 feet of) a classified segment? Yes ⊠ No If yes, this Worksheet is complete. **If no**, complete Sections 4 and 5 of this Worksheet. Section 4. **Description of Immediate Receiving Waters (Instructions Page 65)** Name of the immediate receiving waters: Cedar Creek A. Receiving water type Identify the appropriate description of the receiving waters. \boxtimes Stream Freshwater Swamp or Marsh Lake or Pond Surface area, in acres: Click to enter text. Average depth of the entire water body, in feet: Click to enter text. Average depth of water body within a 500-foot radius of discharge point, in feet: Click to enter text. Man-made Channel or Ditch Open Bay Tidal Stream, Bayou, or Marsh Other, specify: Click to enter text. **B.** Flow characteristics If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area *upstream* of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one). Intermittent - dry for at least one week during most years Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses Perennial - normally flowing Check the method used to characterize the area upstream (or downstream for new dischargers). USGS flow records Historical observation by adjacent landowners \boxtimes Personal observation Other, specify: Click to enter text.

Classified Segments (Instructions Page 64)

Section 3.

	List the names of all perennial streams that join the receiving water within three miles downstream of the discharge point.							
		ota River						
D.	Downs	stream characteristics						
		receiving water characteristics char rge (e.g., natural or man-made dams	_	ithin three miles downstream of the ds, reservoirs, etc.)?				
	\boxtimes	Yes □ No						
	If yes,	discuss how.						
		Creek discharges into the Navasota Riverteam of the discharge point.	er app	proximately 1.6 miles (~0.97 miles radially)				
Е.	E. Normal dry weather characteristics							
		•	body	during normal dry weather conditions.				
		water. Thick vegetation on the banks.						
	Date a	nd time of observation: <u>01/07/2025</u>						
	Was th	e water body influenced by stormwa	ater r	unoff during observations?				
		Yes □ No						
Se	ection	5. General Characteristics Page 66)	s of	the Waterbody (Instructions				
Α.	Upstre	am influences						
		mmediate receiving water upstream nced by any of the following? Check		ne discharge or proposed discharge site at apply.				
		Oil field activities	\boxtimes	Urban runoff				
		Upstream discharges	\boxtimes	Agricultural runoff				
		Septic tanks		Other(s), specify: Click to enter text.				

C. Downstream perennial confluences

B. Waterbody uses Observed or evidences of the following uses. Check all that apply. Livestock watering Contact recreation Irrigation withdrawal Non-contact recreation Navigation Fishing Industrial water supply Domestic water supply Park activities Other(s), specify: Click to enter text. C. Waterbody aesthetics Check one of the following that best describes the aesthetics of the receiving water and the surrounding area. Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored Common Setting: not offensive; developed but uncluttered; water may be colored

Offensive: stream does not enhance aesthetics; cluttered; highly developed;

or turbid

dumping areas; water discolored

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.1: STREAM PHYSICAL CHARACTERISTICS

Required for new applications, major facilities, and applications adding an outfall.

Worksheet 2.1 is not required for discharges to intermittent streams or discharges directly to (or within 300 feet of) a classified segment.

Section 1. General Information (Instructions Page 66)
Date of study: <u>June 4, 1993</u> Time of study: <u>5:00 PM</u>
Stream name: <u>Cedar Creek</u>
Location: <u>Downstream Reach; Navasota, Texas</u>
Type of stream upstream of existing discharge or downstream of proposed discharge (check one).
$oxed{oxed}$ Perennial $oxed{\Box}$ Intermittent with perennial pools
Section 2. Data Collection (Instructions Page 66)
Number of stream bends that are well defined: 4
Number of stream bends that are moderately defined: 11
Number of stream bends that are poorly defined: 8
Number of riffles: <u>10</u>
Evidence of flow fluctuations (check one):
□ Minor ⊠ moderate □ severe
Indicate the observed stream uses and if there is evidence of flow fluctuations or channel obstruction/modification.
Woody debris, log jams, unmodified

Stream transects

In the table below, provide the following information for each transect downstream of the existing or proposed discharges. Use a separate row for each transect.

Table 2.1(1) - Stream Transect Records

Stream type at transect	Transect location	Water surface	Stream depths (ft) at 4 to 10 points along each
Select riffle, run, glide, or pool. See Instructions, Definitions section.		width (ft)	transect from the channel bed to the water surface. Separate the measurements with commas.
riffle	~1/8 mile	15	0.167,0.083, 0.083, 0.500
		10	0.10.,0.000, 0.000, 0.000
run	~1/4 mile	10	0.333, 0.417, 0.333, 0.333, 0.417
run	~3/8 mile	12	0.833, 1.250, 1.250, 0.833, 0.417
glide	~1/2 mile	18	1.333, 0.583, 0.417, 0.500, 0.833
Choose an item.			

Section 3. Summarize Measurements (Instructions Page 66)

Streambed slope of entire reach, from USGS map in feet/feet: o.oo6

Approximate drainage area above the most downstream transect (from USGS map or county highway map, in square miles): <u>0.04</u>

Length of stream evaluated, in feet: 2,640

Number of lateral transects made: 4

Average stream width, in feet: 10

Average stream depth, in feet: 1

Average stream velocity, in feet/second: 0.65

Instantaneous stream flow, in cubic feet/second: 2.10

Indicate flow measurement method (type of meter, floating chip timed over a fixed distance, etc.): floating chip

Size of pools (large, small, moderate, none): moderate

Maximum pool depth, in feet: 3.5

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Toxic Pollutants (Instructions Page 78)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab ⊠ Composite □

Date and time sample(s) collected: 10/07/24 - 13:26

Table 4.0(1) - Toxics Analysis

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrylonitrile	<1.00	<1.00	1	50
Aldrin	< 0.00967	< 0.00967	1	0.01
Aluminum	35.7	35.7	1	2.5
Anthracene	< 0.969	< 0.969	1	10
Antimony	<3	<3	1	5
Arsenic	2.66	2.66	1	0.5
Barium	99.8	99.8	1	3
Benzene	<1.00	<1.00	1	10
Benzidine	<19.4	<19.4	1	50
Benzo(a)anthracene	< 0.969	<0.969	1	5
Benzo(a)pyrene	< 0.969	<0.969	1	5
Bis(2-chloroethyl)ether	< 0.969	< 0.969	1	10
Bis(2-ethylhexyl)phthalate	<7.27	<7.27	1	10
Bromodichloromethane	43.8	43.8	1	10
Bromoform	5.77	5.77	1	10
Cadmium	<0.5	<0.5	1	1
Carbon Tetrachloride	<1.00	<1.00	1	2
Carbaryl	<2.42	<2.42	1	5
Chlordane*	<0.193	<0.193	1	0.2
Chlorobenzene	<1.00	<1.00	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Chlorodibromomethane	43.8	43.8	1	10
Chloroform	33.4	33.4	1	10
Chlorpyrifos	<0.0484	<0.0484	1	0.05
Chromium (Total)	<1	<1	1	3
Chromium (Tri) (*1)	<3	<3	1	N/A
Chromium (Hex)	<3	<3	1	3
Copper	7.79	7.79	1	2
Chrysene	<0.969	< 0.969	1	5
p-Chloro-m-Cresol	<2.33	<2.33	1	10
4,6-Dinitro-o-Cresol	<7.75	<7.75	1	50
p-Cresol	<2.33	<2.33	1	10
Cyanide (*2)	< 0.005	< 0.005	1	10
4,4'- DDD	< 0.00967	< 0.0967	1	0.1
4,4'- DDE	< 0.00967	< 0.0967	1	0.1
4,4'- DDT	< 0.00967	< 0.0967	1	0.02
2,4-D	<0.483	<0.483	1	0.7
Demeton (O and S)	<0.0484	<0.0484	1	0.2
Diazinon	<0.0484	<0.0484	1	0.5
1,2-Dibromoethane	<1.00	<1.00	1	10
m-Dichlorobenzene	<1.00	<1.00	1	10
o-Dichlorobenzene	<1.00	<1.00	1	10
p-Dichlorobenzene	<1.00	<1.00	1	10
3,3'-Dichlorobenzidine	<4.84	<4.84	1	5
1,2-Dichloroethane	<1.00	<1.00	1	10
1,1-Dichloroethylene	<1.00	<1.00	1	10
Dichloromethane	<1.02	<1.02	1	20
1,2-Dichloropropane	<1.00	<1.00	1	10
1,3-Dichloropropene	<1.00	<1.00	1	10
Dicofol	< 0.0484	<0.0484	1	1
Dieldrin	< 0.00967	<0.00967	1	0.02
2,4-Dimethylphenol	<2.33	<2.33	1	10
Di-n-Butyl Phthalate	<7.27	<7.27	1	10
Diuron	<0.0435	<0.0435	1	0.09

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Endosulfan I (alpha)	< 0.00967	< 0.00967	1	0.01
Endosulfan II (beta)	< 0.00967	< 0.00967	1	0.02
Endosulfan Sulfate	< 0.00967	< 0.00967	1	0.1
Endrin	< 0.00967	< 0.00967	1	0.02
Ethylbenzene	<1.00	<1.00	1	10
Fluoride	750	750	1	500
Guthion	<0.0484	< 0.0484	1	0.1
Heptachlor	< 0.00967	< 0.00967	1	0.01
Heptachlor Epoxide	< 0.00967	< 0.00967	1	0.01
Hexachlorobenzene	< 0.969	< 0.969	1	5
Hexachlorobutadiene	< 0.969	< 0.969	1	10
Hexachlorocyclohexane (alpha)	< 0.00967	< 0.00967	1	0.05
Hexachlorocyclohexane (beta)	< 0.00967	< 0.00967	1	0.05
gamma-Hexachlorocyclohexane	< 0.00967	< 0.00967	1	0.05
(Lindane)				
Hexachlorocyclopentadiene	<8.72	<8.72	1	10
Hexachloroethane	< 0.969	< 0.969	1	20
Hexachlorophene	<10.0	<10.0	1	10
Lead	<0.5	<0.5	1	0.5
Malathion	<0.0484	< 0.0484	1	0.1
Mercury	< 0.00532	< 0.00532	1	0.005
Methoxychlor	< 0.00967	< 0.00967	1	2
Methyl Ethyl Ketone	<1.00	<1.00	1	50
Mirex	< 0.00967	< 0.00967	1	0.02
Nickel	2.2	2.2	1	2
Nitrate-Nitrogen	27,800	27,800	1	100
Nitrobenzene	< 0.969	< 0.969	1	10
N-Nitrosodiethylamine	<6.78	<6.78	1	20
N-Nitroso-di-n-Butylamine	<0.969	<0.969	1	20
Nonylphenol	<32.2	<32.2	1	333
Parathion (ethyl)	<0.0484	<0.0484	1	0.1
Pentachlorobenzene	<0.969	<0.969	1	20
Pentachlorophenol	< 0.969	<0.969	1	5

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Phenanthrene	< 0.969	< 0.969	1	10
Polychlorinated Biphenyls (PCB's) (*3)	<1.353	<1.353	1	1.4
Pyridine	<5.23	<5.23	1	20
Selenium	<2	<2	1	5
Silver	<0.2	<0.2	1	0.5
1,2,4,5-Tetrachlorobenzene	< 0.969	<0.969	1	20
1,1,2,2-Tetrachloroethane	<1.00	<1.00	1	10
Tetrachloroethylene	<1.00	<1.00	1	10
Thallium	< 0.966	<0.966	1	0.5
Toluene	<1.00	<1.00	1	10
Toxaphene	<0.193	<0.193	1	0.3
2,4,5-TP (Silvex)	<0.290	<0.290	1	0.3
Tributyltin (see instructions for explanation)	N/A	N/A	N/A	0.01
1,1,1-Trichloroethane	<1.00	<1.00	1	10
1,1,2-Trichloroethane	<1.00	<1.00	1	10
Trichloroethylene	<1.00	<1.00	1	10
2,4,5-Trichlorophenol	< 0.969	<0.969	1	50
TTHM (Total Trihalomethanes)	0.11187	0.11187	1	10
Vinyl Chloride	<1.00	<1.00	1	10
Zinc	21.7	21.7	1	5

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

^(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab ⊠ Composite □

Date and time sample(s) collected: 10/07/24 - 13:26

Table 4.0(2)A - Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Antimony	<3	<3	1	5
Arsenic	2.66	2.66	1	0.5
Beryllium	<0.5	<0.5	1	0.5
Cadmium	<0.5	<0.5	1	1
Chromium (Total)	<1	<1	1	3
Chromium (Hex)	<3	<3	1	3
Chromium (Tri) (*1)	<3	<3	1	N/A
Copper	7.79	7.79	1	2
Lead	<0.5	<0.5	1	0.5
Mercury	< 0.00532	< 0.00532	1	0.005
Nickel	2.2	2.2	1	2
Selenium	<2	<2	1	5
Silver	<0.2	<0.2	1	0.5
Thallium	< 0.966	< 0.966	1	0.5
Zinc	21.7	21.7	1	5
Cyanide (*2)	<5	<5	1	10
Phenols, Total	<1.45	<1.45	1	10

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)B - Volatile Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrolein	<4.00	<4.00	1	50
Acrylonitrile	<1.00	<1.00	1	50
Benzene	<1.00	<1.00	1	10
Bromoform	5.77	5.77	1	10
Carbon Tetrachloride	<1.00	<1.00	1	2
Chlorobenzene	<1.00	<1.00	1	10
Chlorodibromomethane	28.9	28.9	1	10
Chloroethane	<1.12	<1.12	1	50
2-Chloroethylvinyl Ether	<1.00	<1.00	1	10
Chloroform	33.4	33.4	1	10
Dichlorobromomethane [Bromodichloromethane]	43.8	43.8	1	10
1,1-Dichloroethane	<1.00	<1.00	1	10
1,2-Dichloroethane	<1.00	<1.00	1	10
1,1-Dichloroethylene	<1.00	<1.00	1	10
1,2-Dichloropropane	<1.00	<1.00	1	10
1,3-Dichloropropylene	<1.00	<1.00	1	10
[1,3-Dichloropropene]				
1,2-Trans-Dichloroethylene	<1.00	<1.00	1	10
Ethylbenzene	<1.00	<1.00	1	10
Methyl Bromide	<1.00	<1.00	1	50
Methyl Chloride	<1.00	<1.00	1	50
Methylene Chloride	<1.00	<1.00	1	20
1,1,2,2-Tetrachloroethane	<1.00	<1.00	1	10
Tetrachloroethylene	<1.00	<1.00	1	10
Toluene	<1.00	<1.00	1	10
1,1,1-Trichloroethane	<1.00	<1.00	1	10
1,1,2-Trichloroethane	<1.00	<1.00	1	10
Trichloroethylene	<1.00	<1.00	1	10
Vinyl Chloride	<1.00	<1.00	1	10

Table 4.0(2)C - Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
2-Chlorophenol	<0.969	< 0.969	1	10
2,4-Dichlorophenol	<0.969	< 0.969	1	10
2,4-Dimethylphenol	<2.33	<2.33	1	10
4,6-Dinitro-o-Cresol	<7.75	<7.75	1	50
2,4-Dinitrophenol	<8.72	<8.72	1	50
2-Nitrophenol	<0.969	< 0.969	1	20
4-Nitrophenol	<0.969	< 0.969	1	50
P-Chloro-m-Cresol	<2.33	<2.33	1	10
Pentalchlorophenol	<0.969	< 0.969	1	5
Phenol	<1.45	<1.45	1	10
2,4,6-Trichlorophenol	<0.969	< 0.969	1	10

Table 4.0(2)D - Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acenaphthene	<0.969	< 0.969	1	10
Acenaphthylene	<0.969	<0.969	1	10
Anthracene	<0.969	<0.969	1	10
Benzidine	<19.4	<19.4	1	50
Benzo(a)Anthracene	<0.969	< 0.969	1	5
Benzo(a)Pyrene	< 0.969	< 0.969	1	5
3,4-Benzofluoranthene	<0.969	<0.969	1	10
Benzo(ghi)Perylene	<0.969	< 0.969	1	20
Benzo(k)Fluoranthene	<0.969	< 0.969	1	5
Bis(2-Chloroethoxy)Methane	<0.969	< 0.969	1	10
Bis(2-Chloroethyl)Ether	<0.969	<0.969	1	10
Bis(2-Chloroisopropyl)Ether	< 0.969	<0.969	1	10
Bis(2-Ethylhexyl)Phthalate	<7.27	<7.27	1	10
4-Bromophenyl Phenyl Ether	<0.969	<0.969	1	10
Butyl benzyl Phthalate	<7.27	<7.27	1	10
2-Chloronaphthalene	<0.969	< 0.969	1	10
4-Chlorophenyl phenyl ether	<0.969	< 0.969	1	10
Chrysene	< 0.969	< 0.969	1	5
Dibenzo(a,h)Anthracene	<0.969	< 0.969	1	5
1,2-(o)Dichlorobenzene	<1.00	<1.00	1	10
1,3-(m)Dichlorobenzene	<1.00	<1.00	1	10
1,4-(p)Dichlorobenzene	<1.00	<1.00	1	10
3,3-Dichlorobenzidine	<4.84	<4.84	1	5
Diethyl Phthalate	<5.52	<5.52	1	10
Dimethyl Phthalate	<4.65	<4.65	1	10
Di-n-Butyl Phthalate	<7.27	<7.27	1	10
2,4-Dinitrotoluene	<3.39	<3.39	1	10
2,6-Dinitrotoluene	<0.969	< 0.969	1	10
Di-n-Octyl Phthalate	<0.969	< 0.969	1	10
1,2-Diphenylhydrazine (as Azobenzene)	<0.969	<0.969	1	20
Fluoranthene	<0.969	< 0.969	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Fluorene	<0.969	< 0.969	1	10
Hexachlorobenzene	< 0.969	< 0.969	1	5
Hexachlorobutadiene	<0.969	< 0.969	1	10
Hexachlorocyclo-pentadiene	<8.72	<8.72	1	10
Hexachloroethane	< 0.969	< 0.969	1	20
Indeno(1,2,3-cd)pyrene	< 0.969	< 0.969	1	5
Isophorone	< 0.969	< 0.969	1	10
Naphthalene	< 0.969	< 0.969	1	10
Nitrobenzene	< 0.969	< 0.969	1	10
N-Nitrosodimethylamine	<6.78	<6.78	1	50
N-Nitrosodi-n-Propylamine	<0.969	< 0.969	1	20
N-Nitrosodiphenylamine	<0.969	< 0.969	1	20
Phenanthrene	<0.969	< 0.969	1	10
Pyrene	<0.969	<0.969	1	10
1,2,4-Trichlorobenzene	<0.969	<0.969	1	10

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Aldrin	< 0.00967	< 0.00967	1	0.01
alpha-BHC (Hexachlorocyclohexane)	< 0.00967	< 0.00967	1	0.05
beta-BHC (Hexachlorocyclohexane)	< 0.00967	< 0.00967	1	0.05
gamma-BHC (Hexachlorocyclohexane)	<0.00967	<0.00967	1	0.05
delta-BHC (Hexachlorocyclohexane)	< 0.00967	< 0.00967	1	0.05
Chlordane	<0.193	<0.193	1	0.2
4,4-DDT	< 0.00967	< 0.00967	1	0.02
4,4-DDE	< 0.00967	< 0.00967	1	0.1
4,4,-DDD	< 0.00967	< 0.00967	1	0.1
Dieldrin	< 0.00967	< 0.00967	1	0.02
Endosulfan I (alpha)	< 0.00967	< 0.00967	1	0.01
Endosulfan II (beta)	< 0.00967	< 0.00967	1	0.02
Endosulfan Sulfate	< 0.00967	< 0.00967	1	0.1
Endrin	< 0.00967	< 0.00967	1	0.02
Endrin Aldehyde	< 0.00967	< 0.00967	1	0.1
Heptachlor	< 0.00967	< 0.00967	1	0.01
Heptachlor Epoxide	< 0.00967	< 0.00967	1	0.01
PCB-1242	<0.193	<0.193	1	0.2
PCB-1254	<0.193	<0.193	1	0.2
PCB-1221	<0.193	<0.193	1	0.2
PCB-1232	<0.193	<0.193	1	0.2
PCB-1248	<0.193	<0.193	1	0.2
PCB-1260	<0.193	<0.193	1	0.2
PCB-1016	<0.195	<0.195	1	0.2
Toxaphene	<0.193	<0.193	1	0.3

^{*} For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Section 3. Dioxin/Furan Compounds A. Indicate which of the following compounds from may be present in the influent from a contributing industrial user or significant industrial user. Check all that apply. 2,4,5-trichlorophenoxy acetic acid Common Name 2,4,5-T, CASRN 93-76-5 2-(2,4,5-trichlorophenoxy) propanoic acid Common Name Silvex or 2,4,5-TP, CASRN 93-72-1 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate Common Name Erbon, CASRN 136-25-4 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate Common Name Ronnel, CASRN 299-84-3 2,4,5-trichlorophenol Common Name TCP, CASRN 95-95-4 hexachlorophene Common Name HCP, CASRN 70-30-4 For each compound identified, provide a brief description of the conditions of its/their presence at the facility. Click to enter text.

В.	Do you know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin
	(TCDD) or any congeners of TCDD may be present in your effluent?

□ Yes ⊠ No

If **yes**, provide a brief description of the conditions for its presence.

Click to enter text.

C.	If any of the compounds in Subsection A or B are present, complete Table 4.0(2)F.
	For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab ☐ Composite ☐ Date and time sample(s) collected: Click to enter text.

Table 4.0(2)F - Dioxin/Furan Compounds

Compound	Toxic Equivalenc y Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1					10
1,2,3,7,8 PeCDD	0.5					50
2,3,7,8 HxCDDs	0.1					50
1,2,3,4,6,7,8 HpCDD	0.01					50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05					50
2,3,4,7,8 PeCDF	0.5					50
2,3,7,8 HxCDFs	0.1					50
2,3,4,7,8 HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					0.5
PCB 81	0.0003					0.5
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total						

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: TOXICITY TESTING REQUIREMENTS

The following **is required** for facilities with a current operating design flow of **1.0 MGD or greater**, with an EPA-approved **pretreatment** program (or those required to have one under 40 CFR Part 403), or are required to perform Whole Effluent Toxicity testing. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Required Tests (Instructions Page 88)

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic: <u>18</u> 48-hour Acute: 9

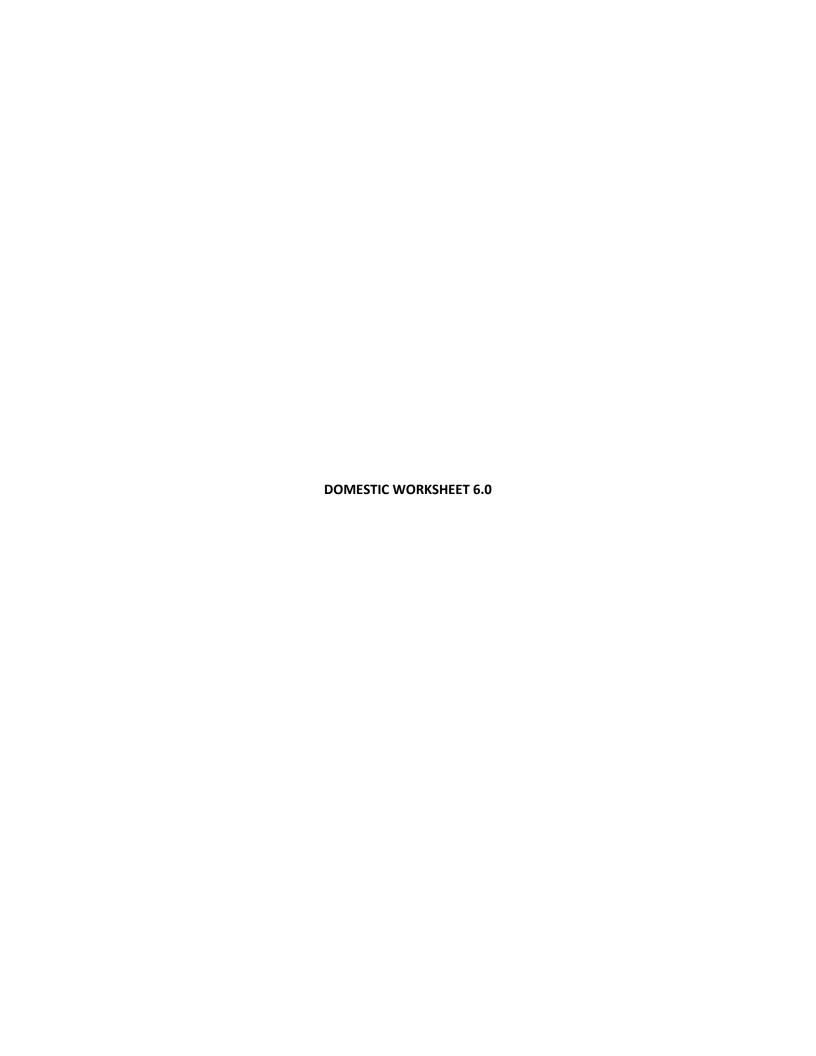
Section 2. Toxicity Reduction Evaluations (TREs)

Has this facility	completed a	TRE in the	past four	and a half	f years?	Or is the	facility	currently
performing a TI	RE?							

⊠ Yes □ No

If yes, describe the progress to date, if applicable, in identifying and confirming the toxicant.

Started in March 2023 and completed in June 2024. The toxicant was NH3N caused sludge going septic due to a broken clarifier. The clarifier has since been fixed.


Section 3. Summary of WET Tests

If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed.

Table 5.0(1) Summary of WET Tests

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal
3 rd QTR 2020	Ceriodaphnia Dubia	100	100
	Pimephales Promelas	100	100
4 th QTR 2020	Ceriodaphnia Dubia	100	100
	Pimephales Promelas	100	100
1st QTR 2021	Ceriodaphnia Dubia	100	100
	Pimephales Promelas	100	100
2 nd QTR 2021	Ceriodaphnia Dubia	100	100
	Pimephales Promelas	100	100
3rd QTR 2021	Ceriodaphnia Dubia	100	100
	Pimephales Promelas	100	100
4 th QTR 2021	Ceriodaphnia Dubia	75	0
	Pimephales Promelas	42	42
1st QTR 2022	Ceriodaphnia Dubia	100	100
	Pimephales Promelas	100	100
2 nd QTR 2022	Ceriodaphnia Dubia	100	100
	Pimephales Promelas	100	100
3rd QTR 2022	Ceriodaphnia Dubia	100	100
	Pimephales Promelas	100	100
4 th QTR 2022	Ceriodaphnia Dubia	100	100
	Pimephales Promelas	100	100
1st QTR 2023	Ceriodaphnia Dubia	100	100
	Pimephales Promelas	100	100
2 nd QTR 2023	Ceriodaphnia Dubia	100	100
	Pimephales Promelas	100	100
3 rd QTR 2023	Ceriodaphnia Dubia	100	100
	Pimephales Promelas	100	100
4 th QTR 2023	Ceriodaphnia Dubia	100	32
	Pimephales Promelas	100	100

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal
1st QTR 2024	Ceriodaphnia Dubia	Not available	Not available
	Pimephales Promelas		
2 nd QTR 2024	Ceriodaphnia Dubia	100	100
	Pimephales Promelas	100	100
3 rd QTR 2024	Ceriodaphnia Dubia	100	100
	Pimephales Promelas	100	100
4th QTR 2024	Ceriodaphnia Dubia	100	100
	Pimephales Promelas	100	100

DOMESTIC WASTEWATER PERMIT APPLICATION **WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION**

The following is required for all publicly owned treatment works.

All POTWs (Instructions Page 89) Section 1.

A. Industrial users (IUs)

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs - non-categorical, and Other IUs.

If there are no users, enter 0 (zero). Categorical IUs:

Number of IUs: 2

Average Daily Flows, in MGD: <u>0.066</u>

Significant IUs - non-categorical:

Number of IUs: 1

Average Daily Flows, in MGD: o.o

Other IUs:

Number of IUs: 2

Average Daily Flows, in MGD: <u>0.001068</u>

B. Treatment plant interference

In the past three years, has your POTW experienced treatment plant interference (see instructions)?

Yes 🖂 No

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

Click to enter text.

	In the past three years, has your POTW experienced pass through (see instructions)?
	□ Yes ⊠ No
	If yes , identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.
	Click to enter text.
D.	Pretreatment program
	Does your POTW have an approved pretreatment program?
	□ Yes ⊠ No
	If yes, complete Section 2 only of this Worksheet.
	Is your POTW required to develop an approved pretreatment program?
	□ Yes ⊠ No
	If yes, complete Section 2.c. and 2.d. only, and skip Section 3.
	If no to either question above , skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.
Se	ection 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 90)
A.	Substantial modifications
	Have there been any substantial modifications to the approved pretreatment program that have not been submitted to the TCEQ for approval according to <i>40 CFR §403.18</i> ?
	□ Yes ⊠ No
	If yes , identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.
	Click to enter text.

C. Treatment plant pass through

	n any non-substantial nave not been submitte			
□ Yes ▷				
	all non-substantial mo ourpose of the modific		at have not been	submitted to TCEQ,
Click to enter t	ext.			
C. Effluent paran	neters above the MAL			
monitoring du	, list all parameters me ring the last three year nmeters Above the MAL			
Pollutant	Concentration	MAL	Units	Date
D. Industrial use	r interruptions			
	IU, or other IU caused or pass throughs) at yo			
□ Yes ▷			1	
If yes , identify	the industry, describe s, and probable pollut		including dates,	duration, description
Click to enter	text.			

B. Non-substantial modifications

Section 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 90)

			-
Λ.	General	intorm	ation
Α.	tenerar		auwn

Company Name: NOV Grant Prideco

SIC Code: 3498/4429

Contact name: Gabriel Luna

Address: <u>9475 FM 1227</u>

City, State, and Zip Code: Navasota, Texas 77868

Telephone number: <u>936-825-9190</u> Email address: Click to enter text.

B. Process information

Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).

Process wastewater is used to cool hot pipe. Non-process water is used to cool electronics and for sanitary disposal.							

C. Product and service information

Provide a description of the principal product(s) or services performed.

The principal products and services performed include the manufacture of drill pipe and accessories.					

D. Flow rate information

See the Instructions for definitions of "process" and "non-process wastewater."

Process Wastewater:

Discharge, in gallons/day: 12,763

Discharge Type:

☐ Continuous ☐ Batch ☐ Intermittent

Non-Process Wastewater:

Discharge, in gallons/day: 20,000

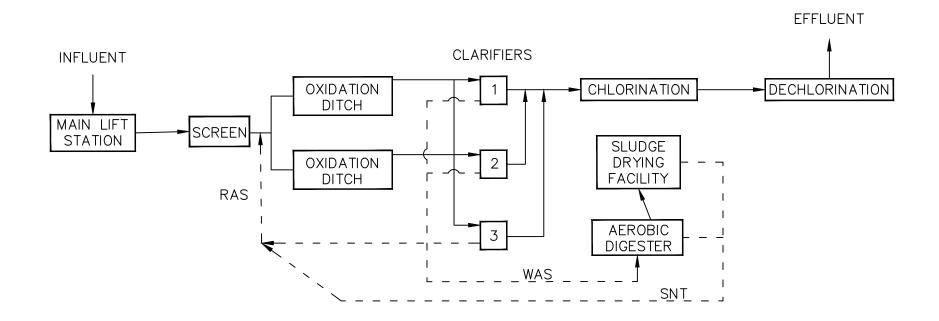
Discharge Type:

☐ Continuous ☐ Batch ☐ Intermittent

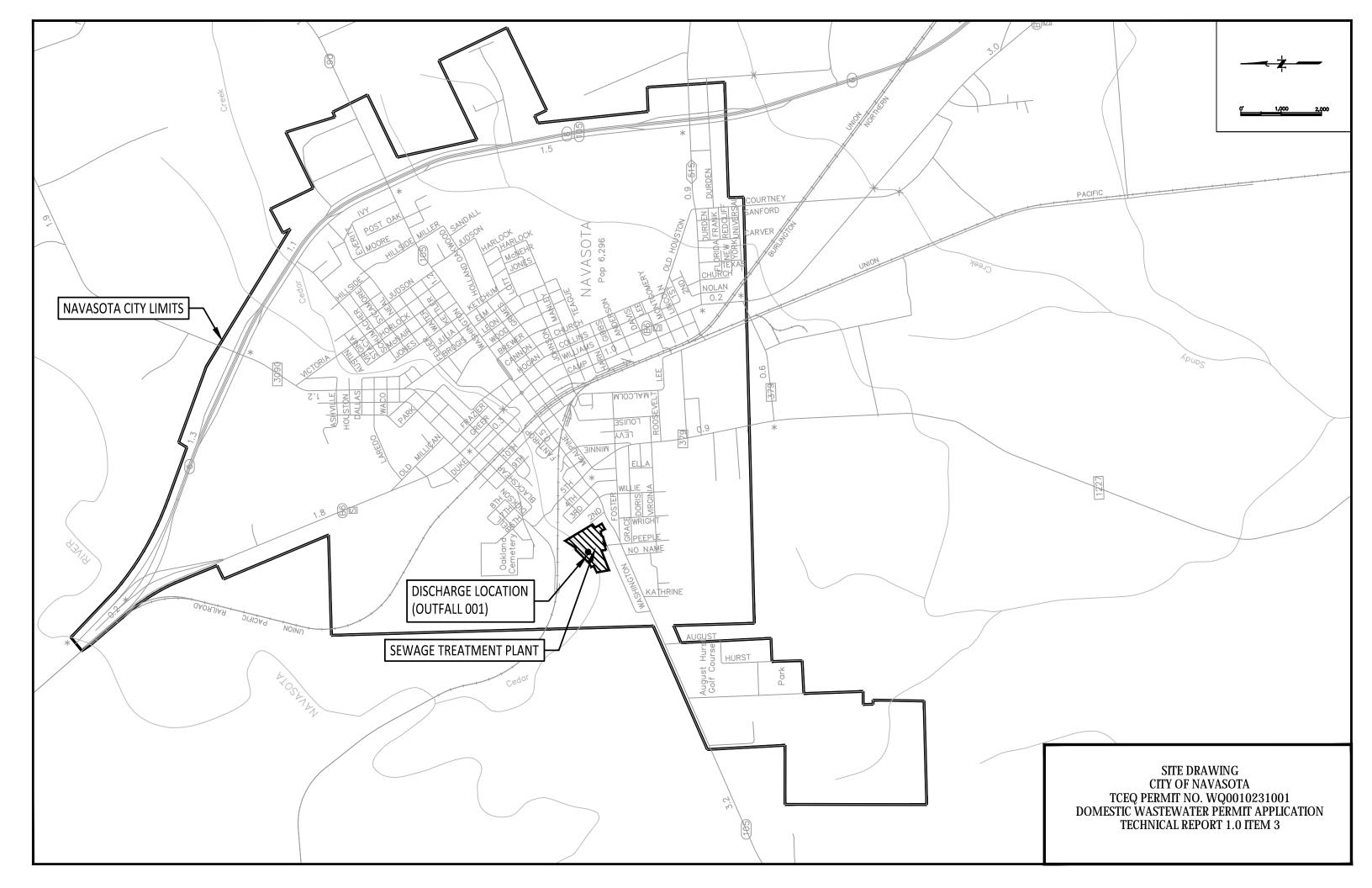
E.	Pretreatment standards						
	Is the SIU or CIU subject to technically based local limits as defined in the <i>i</i> nstructions?						
	⊠ Yes □ No						
	Is the SIU or CIU subject to categorical pretreatment standards found in 40 CFR Parts 405-471?						
	⊠ Yes □ No						
	If subject to categorical pretreatment standards, indicate the applicable category and subcategory for each categorical process.						
	Category: Subcategories: 40 CFR 433: 433.17						
	Click or tap here to enter text. Click to enter text.						
	Category: Click to enter text.						
	Subcategories: <u>Click to enter text.</u>						
	Category: Click to enter text.						
	Subcategories: <u>Click to enter text.</u>						
	Category: Click to enter text.						
	Subcategories: <u>Click to enter text.</u>						
	Category: Click to enter text.						
	Subcategories: <u>Click to enter text.</u>						
F.	Industrial user interruptions						
	Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years?						
	□ Yes ⊠ No						
	If yes , identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants.						
	Click to enter text.						

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST OF COMMON DEFICIENCIES

Below is a list of common deficiencies found during the administrative review of domestic wastewater permit applications. To ensure the timely processing of this application, please review the items below and indicate by checking Yes that each item is complete and in accordance applicable rules at 30 TAC Chapters 21, 281, and 305. If an item is not required this application, indicate by checking N/A where appropriate. Please do not submit the application until the items below have been addressed.


application and the items below have been addressed.				
Core Data Form (TCEQ Form No. 10400) (Required for all application types. Must be completed in its entirety Note: Form may be signed by applicant representative.)		Yes		
Correct and Current Industrial Wastewater Permit Application Form (TCEQ Form Nos. 10053 and 10054. Version dated 6/25/2018 or late		Yes		
Water Quality Permit Payment Submittal Form (Page 19) (Original payment sent to TCEQ Revenue Section. See instructions fo	r mai	iling ad	⊠ dress	Yes
7.5 Minute USGS Quadrangle Topographic Map Attached (Full-size map if seeking "New" permit. 8 ½ x 11 acceptable for Renewals and Amendments)				Yes
Current/Non-Expired, Executed Lease Agreement or Easement	\boxtimes	N/A		Yes
Landowners Map (See instructions for landowner requirements)			\boxtimes	Yes
 Things to Know: All the items shown on the map must be labeled. The applicant's complete property boundaries must be do boundaries of contiguous property owned by the applicant. The applicant cannot be its own adjacent landowner. You landowners immediately adjacent to their property, regar from the actual facility. If the applicant's property is adjacent to a road, creek, or on the opposite side must be identified. Although the proapplicant's property boundary, they are considered potent if the adjacent road is a divided highway as identified on map, the applicant does not have to identify the landown the highway. 	nt. mus dless strea pertitially the U	t identi s of how m, the les are i affecto JSGS to	ify the value of the tenton of t	e they are owners djacent to ndowners. aphic
Landowners Cross Reference List (See instructions for landowner requirements)				Yes
Landowners Labels or USB Drive attached (See instructions for landowner requirements)		N/A		Yes
Original signature per 30 TAC § 305.44 – Blue Ink Preferred (If signature page is not signed by an elected official or principle execution of signature authority/delegation letter must be attached)	cutiv	e office	r,	Yes

Plain Language Summary


Yes

PROCESS FLOW DIAGRAM
CITY OF NAVASOTA
TCEQ PERMIT NO. WQ0010231001
DOMESTIC WASTEWATER PERMIT APPLICATION
TECHNICAL REPORT 1.0 ITEM 2c

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ0010231001

SOLICITUD. City of Navasota, P.O. Box 910, Navasota, TX 77868 ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0010231001 (EPA I.D. No. TX 0071790) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio diario de 1,800,000 galones por día. La planta está ubicada 108 North Peeples Street, Navasota, TX 77868 en el Condado de Grimes, Texas. La ruta de descarga es del sitio de la planta a Cedar Creek; de allí al Navasota River abajo Lake Limestone. La TCEQ recibió esta solicitud el 27 de enero de 2025. La solicitud para el permiso estará disponible para leerla y copiarla en Navasota City Hall, 200 East McAlpine Street, Navasota, Grimes County, Texas antes de la fecha de publicación de este aviso en el periódico. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud. https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. **A menos que la solicitud haya sido referida**

directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono: el nombre del solicitante y número del permiso: la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía

http://www14.tceq.texas.gov/epic/eComment/o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional del City of Navasota a la dirección indicada arriba o llamando a Jennifer Reyna al (936) 825-6450.

Fecha de emission:

Brandon Maldonado

From: Zachary Votaw <zvotaw@bleylengineering.com>

Sent: Monday, February 10, 2025 9:22 AM

To: Brandon Maldonado
Cc: Steve Duncan

Subject: RE: Application to Renew Permit No. WQ0010231001 - Notice of Deficiency Letter

Attachments: Municipal Discharge Renewal Spanish NORI.docx

Please see attached. Let me know if you need anything else.

Thanks,

Zachary Votaw, EIT Bleyl Engineering

TBPE Firm No. 678 O: 979 268 1125 M: 832 374 5212

From: Brandon Maldonado <Brandon.Maldonado@tceq.texas.gov>

Sent: Friday, February 7, 2025 5:02 PM

To: Zachary Votaw <zvotaw@bleylengineering.com> **Cc:** Steve Duncan <sduncan@bleylengineering.com>

Subject: RE: Application to Renew Permit No. WQ0010231001 - Notice of Deficiency Letter

Hello.

At the top left corner there should be a tab called "Viewing". Clicking it should allow you to change it to "Editing". Also, I believe that the text outside of the first and last paragraph may be permanently locked since those are the only sections meant to be edited. If it gives you a notification that you can't change to editing, try clicking on the first or last paragraph and see if it changes. I have attached another copy of the file just in case the first one had an issue.

Please let me know if you have any other issues.

Regards,

Brandon Maldonado

Texas Commission on Environmental Quality Water Quality Division 512-239-4331

Brandon.Maldonado@tceq.texas.gov

How is our customer service? Fill out our online customer satisfaction survey at www.tceq.texas.gov/customersurvey

From: Zachary Votaw <<u>zvotaw@bleylengineering.com</u>>

Sent: Friday, February 7, 2025 7:13 AM

To: Brandon Maldonado < Brandon. Maldonado@tceq.texas.gov >

Cc: Steve Duncan < sduncan@bleylengineering.com >

Subject: RE: Application to Renew Permit No. WQ0010231001 - Notice of Deficiency Letter

Brandon,

The Word document you sent is locked so I can't edit it. Can you send an unlocked one?

Thanks,

Zachary Votaw, EIT Bleyl Engineering TBPE Firm No. 678

O: 979 268 1125 M: 832 374 5212

From: Brandon Maldonado < Brandon. Maldonado@tceq.texas.gov >

Sent: Thursday, February 6, 2025 4:55 PM

To: Zachary Votaw <<u>zvotaw@bleylengineering.com</u>> **Cc:** Steve Duncan <sduncan@bleylengineering.com>

Subject: Application to Renew Permit No. WQ0010231001 - Notice of Deficiency Letter

Dear Mr. Zachary Votaw

The attached Notice of Deficiency (NOD) letter sent on <u>February 6, 2025</u>, requests additional information needed to declare the application administratively complete. Please send complete response to my attention by <u>February 20, 2025</u>.

Please let me know if you have any questions.

Regards,

Brandon Maldonado

Texas Commission on Environmental Quality Water Quality Division 512-239-4331 Brandon.Maldonado@tceq.texas.gov

How is our customer service? Fill out our online customer satisfaction survey at www.tceq.texas.gov/customersurvey

This message contains confidential information and is intended only for the individual named. If you are not the named addressee you should not disseminate, distribute or copy this e-mail. Please notify the sender immediately by e-mail if you have received this e-mail by mistake and delete this e-mail from your system. E-mail transmission cannot be guaranteed to be secure or error-free as information could be

intercepted, corrupted, lost, destroyed, arrive late or incomplete, or contain viruses. The sender therefore does not accept liability for any errors or omissions in the contents of this message, which arise as a result of e-mail transmission. If verification is required please request a hard-copy version. This message contains confidential information and is intended only for the individual named. If you are not the named addressee you should not disseminate, distribute or copy this e-mail. Please notify the sender immediately by e-mail if you have received this e-mail by mistake and delete this e-mail from your system. E-mail transmission cannot be guaranteed to be secure or error-free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete, or contain viruses. The sender therefore does not accept liability for any errors or omissions in the contents of this message, which arise as a result of e-mail transmission. If verification is required please request a hard-copy version.

TPDES PERMIT NO. WQ0010231001 [For TCEQ office use only - EPA I.D. No. TX0071790]

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY P.O. Box 13087 Austin, Texas 78711-3087

This is a renewal that replaces TPDES Permit No. WQ0010231001 issued on June 4, 2020.

PERMIT TO DISCHARGE WASTES

under provisions of Section 402 of the Clean Water Act and Chapter 26 of the Texas Water Code

City of Navasota

whose mailing address is

P.O. box 910 Navasota, Texas 77868

is authorized to treat and discharge wastes from the City of Navasota Wastewater Treatment Facility, SIC Code 4952

located at 108 North Peeples Street, in the City of Navasota, Grimes County, Texas 77868

to Cedar Creek, thence to Navasota River Below Lake Limestone in Segment No. 1209 of the Brazos River Basin

only according to effluent limitations, monitoring requirements, and other conditions set forth in this permit, as well as the rules of the Texas Commission on Environmental Quality (TCEQ), the laws of the State of Texas, and other orders of the TCEQ. The issuance of this permit does not grant to the permittee the right to use private or public property for conveyance of wastewater along the discharge route described in this permit. This includes, but is not limited to, property belonging to any individual, partnership, corporation, or other entity. Neither does this permit authorize any invasion of personal rights nor any violation of federal, state, or local laws or regulations. It is the responsibility of the permittee to acquire property rights as may be necessary to use the discharge route.

This permit shall expire at midnight, three years from the date of issuance.

ISSUED DATE:		
	_	For the Commission

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

Outfall Number 001

1. During the period beginning upon the date of issuance and lasting through the date of expiration, the permittee is authorized to discharge subject to the following effluent limitations:

The annual average flow of effluent shall not exceed 1.8 million gallons per day (MGD), nor shall the average discharge during any two-hour period (2-hour peak) exceed 5,208 gallons per minute.

Effluent Characteristic	Discharge Limitations			Min. Self-Monitoring Requirements		
	Daily Avg	7-day Avg	Daily Max	Single Grab	Report Daily	Avg. & Daily Max.
	mg/l (lbs/day)	mg/l	mg/l	mg/l	Measurement Frequency	Sample Type
Flow, MGD	Report	N/A	Report	N/A	Continuous	Totalizing Meter
Carbonaceous Biochemical Oxygen Demand (5-day)	10 (150)	15	25	35	Two/week	Composite
Total Suspended Solids	15 (225)	25	40	60	Two/week	Composite
Ammonia Nitrogen	3 (45)	6	10	15	Two/week	Composite
Total Dissolved Solids*	Report (Report)	N/A	Report	N/A	One/week	Composite
Chloride*	Report (Report)	N/A	Report	N/A	One/week	Composite
<i>E. coli</i> , colony-forming units or most probable number per 100 ml	126	N/A	399	N/A	One/week	Grab

^{*}See Other Requirement No. 7

- 2. The effluent shall contain a total chlorine residual of at least 1.0 mg/l after a detention time of at least 20 minutes (based on peak flow) and shall be monitored daily by grab sample. The permittee shall dechlorinate the chlorinated effluent to less than 0.1 mg/l total chlorine residual and shall monitor total chlorine residual daily by grab sample after the dechlorination process. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.
- 3. The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample.
- 4. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.
- 5. Effluent monitoring samples shall be taken at the following location(s): Following the final treatment unit.
- 6. The effluent shall contain a minimum dissolved oxygen of 4.0 mg/l and shall be monitored twice per week by grab sample.
- 7. The annual average flow and maximum 2-hour peak flow shall be reported monthly.

DEFINITIONS AND STANDARD PERMIT CONDITIONS

As required by Title 30 Texas Administrative Code (TAC) Chapter 305, certain regulations appear as standard conditions in waste discharge permits. 30 TAC § 305.121 - 305.129 (relating to Permit Characteristics and Conditions) as promulgated under the Texas Water Code (TWC) §§ 5.103 and 5.105, and the Texas Health and Safety Code (THSC) §§ 361.017 and 361.024(a), establish the characteristics and standards for waste discharge permits, including sewage sludge, and those sections of 40 Code of Federal Regulations (CFR) Part 122 adopted by reference by the Commission. The following text includes these conditions and incorporates them into this permit. All definitions in TWC § 26.001 and 30 TAC Chapter 305 shall apply to this permit and are incorporated by reference. Some specific definitions of words or phrases used in this permit are as follows:

1. Flow Measurements

- a. Annual average flow the arithmetic average of all daily flow determinations taken within the preceding 12 consecutive calendar months. The annual average flow determination shall consist of daily flow volume determinations made by a totalizing meter, charted on a chart recorder and limited to major domestic wastewater discharge facilities with one million gallons per day or greater permitted flow.
- b. Daily average flow the arithmetic average of all determinations of the daily flow within a period of one calendar month. The daily average flow determination shall consist of determinations made on at least four separate days. If instantaneous measurements are used to determine the daily flow, the determination shall be the arithmetic average of all instantaneous measurements taken during that month. Daily average flow determination for intermittent discharges shall consist of a minimum of three flow determinations on days of discharge.
- c. Daily maximum flow the highest total flow for any 24-hour period in a calendar month.
- d. Instantaneous flow the measured flow during the minimum time required to interpret the flow measuring device.
- e. 2-hour peak flow (domestic wastewater treatment plants) the maximum flow sustained for a two-hour period during the period of daily discharge. The average of multiple measurements of instantaneous maximum flow within a two-hour period may be used to calculate the 2-hour peak flow.
- f. Maximum 2-hour peak flow (domestic wastewater treatment plants) the highest 2-hour peak flow for any 24-hour period in a calendar month.

2. Concentration Measurements

- a. Daily average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar month, consisting of at least four separate representative measurements.
 - i. For domestic wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values in the previous four consecutive month period consisting of at least four measurements shall be utilized as the daily average concentration.

- ii. For all other wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values taken during the month shall be utilized as the daily average concentration.
- 7-day average concentration the arithmetic average of all effluent samples, composite
 or grab as required by this permit, within a period of one calendar week, Sunday through
 Saturday.
- c. Daily maximum concentration the maximum concentration measured on a single day, by the sample type specified in the permit, within a period of one calendar month.
- d. Daily discharge the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in terms of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the sampling day. For pollutants with limitations expressed in other units of measurement, the daily discharge is calculated as the average measurement of the pollutant over the sampling day.
 - The daily discharge determination of concentration made using a composite sample shall be the concentration of the composite sample. When grab samples are used, the daily discharge determination of concentration shall be the arithmetic average (weighted by flow value) of all samples collected during that day.
- e. Bacteria concentration (*E. coli* or Enterococci) Colony Forming Units (CFU) or Most Probable Number (MPN) of bacteria per 100 milliliters effluent. The daily average bacteria concentration is a geometric mean of the values for the effluent samples collected in a calendar month. The geometric mean shall be determined by calculating the nth root of the product of all measurements made in a calendar month, where n equals the number of measurements made; or, computed as the antilogarithm of the arithmetic mean of the logarithms of all measurements made in a calendar month. For any measurement of bacteria equaling zero, a substituted value of one shall be made for input into either computation method. If specified, the 7-day average for bacteria is the geometric mean of the values for all effluent samples collected during a calendar week.
- f. Daily average loading (lbs/day) the arithmetic average of all daily discharge loading calculations during a period of one calendar month. These calculations must be made for each day of the month that a parameter is analyzed. The daily discharge, in terms of mass (lbs/day), is calculated as (Flow, MGD x Concentration, mg/l x 8.34).
- g. Daily maximum loading (lbs/day) the highest daily discharge, in terms of mass (lbs/day), within a period of one calendar month.

3. Sample Type

a. Composite sample - For domestic wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (a). For industrial wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (b).

- b. Grab sample an individual sample collected in less than 15 minutes.
- 4. Treatment Facility (facility) wastewater facilities used in the conveyance, storage, treatment, recycling, reclamation and/or disposal of domestic sewage, industrial wastes, agricultural wastes, recreational wastes, or other wastes including sludge handling or disposal facilities under the jurisdiction of the Commission.
- 5. The term "sewage sludge" is defined as solid, semi-solid, or liquid residue generated during the treatment of domestic sewage in 30 TAC Chapter 312. This includes the solids that have not been classified as hazardous waste separated from wastewater by unit processes.
- 6. The term "biosolids" is defined as sewage sludge that has been tested or processed to meet Class A, Class AB, or Class B pathogen standards in 30 TAC Chapter 312 for beneficial use.
- 7. Bypass the intentional diversion of a waste stream from any portion of a treatment facility.

MONITORING AND REPORTING REQUIREMENTS

1. Self-Reporting

Monitoring results shall be provided at the intervals specified in the permit. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall conduct effluent sampling and reporting in accordance with 30 TAC §§ 319.4 - 319.12. Unless otherwise specified, effluent monitoring data shall be submitted each month, to the Enforcement Division (MC 224), by the 20th day of the following month for each discharge which is described by this permit whether or not a discharge is made for that month. Monitoring results must be submitted online using the NetDMR reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. Monitoring results must be signed and certified as required by Monitoring and Reporting Requirements No. 10.

As provided by state law, the permittee is subject to administrative, civil and criminal penalties, as applicable, for negligently or knowingly violating the Clean Water Act (CWA); TWC §§ 26, 27, and 28; and THSC § 361, including but not limited to knowingly making any false statement, representation, or certification on any report, record, or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or noncompliance, or falsifying, tampering with or knowingly rendering inaccurate any monitoring device or method required by this permit or violating any other requirement imposed by state or federal regulations.

2. Test Procedures

- a. Unless otherwise specified in this permit, test procedures for the analysis of pollutants shall comply with procedures specified in 30 TAC §§ 319.11 319.12. Measurements, tests, and calculations shall be accurately accomplished in a representative manner.
- b. All laboratory tests submitted to demonstrate compliance with this permit must meet the requirements of 30 TAC § 25, Environmental Testing Laboratory Accreditation and Certification.

3. Records of Results

a. Monitoring samples and measurements shall be taken at times and in a manner so as to be representative of the monitored activity.

- b. Except for records of monitoring information required by this permit related to the permittee's sewage sludge or biosolids use and disposal activities, which shall be retained for a period of at least five years (or longer as required by 40 CFR Part 503), monitoring and reporting records, including strip charts and records of calibration and maintenance, copies of all records required by this permit, records of all data used to complete the application for this permit, and the certification required by 40 CFR § 264.73(b)(9) shall be retained at the facility site, or shall be readily available for review by a TCEQ representative for a period of three years from the date of the record or sample, measurement, report, application or certification. This period shall be extended at the request of the Executive Director.
- c. Records of monitoring activities shall include the following:
 - i. date, time and place of sample or measurement;
 - ii. identity of individual who collected the sample or made the measurement.
 - iii. date and time of analysis;
 - iv. identity of the individual and laboratory who performed the analysis;
 - v. the technique or method of analysis; and
 - vi. the results of the analysis or measurement and quality assurance/quality control records.

The period during which records are required to be kept shall be automatically extended to the date of the final disposition of any administrative or judicial enforcement action that may be instituted against the permittee.

4. Additional Monitoring by Permittee

If the permittee monitors any pollutant at the location(s) designated herein more frequently than required by this permit using approved analytical methods as specified above, all results of such monitoring shall be included in the calculation and reporting of the values submitted on the approved self-report form. Increased frequency of sampling shall be indicated on the self-report form.

5. Calibration of Instruments

All automatic flow measuring or recording devices and all totalizing meters for measuring flows shall be accurately calibrated by a trained person at plant start-up and as often thereafter as necessary to ensure accuracy, but not less often than annually unless authorized by the Executive Director for a longer period. Such person shall verify in writing that the device is operating properly and giving accurate results. Copies of the verification shall be retained at the facility site and/or shall be readily available for review by a TCEQ representative for a period of three years.

6. Compliance Schedule Reports

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of the permit shall be submitted no later than 14 days following each schedule date to the Regional Office and the Enforcement

Division (MC 224).

7. Noncompliance Notification

- a. In accordance with 30 TAC § 305.125(9) any noncompliance which may endanger human health or safety, or the environment shall be reported by the permittee to the TCEQ. Except as allowed by 30 TAC § 305.132, report of such information shall be provided orally or by facsimile transmission (FAX) to the Regional Office within 24 hours of becoming aware of the noncompliance. A written submission of such information shall also be provided by the permittee to the Regional Office and the Enforcement Division (MC 224) within five working days of becoming aware of the noncompliance. For Publicly Owned Treatment Works (POTWs), effective December 21, 2025, the permittee must submit the written report for unauthorized discharges and unanticipated bypasses that exceed any effluent limit in the permit using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. The written submission shall contain a description of the noncompliance and its cause; the potential danger to human health or safety, or the environment; the period of noncompliance, including exact dates and times; if the noncompliance has not been corrected, the time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance, and to mitigate its adverse effects.
- b. The following violations shall be reported under Monitoring and Reporting Requirement 7.a.:
 - i. Unauthorized discharges as defined in Permit Condition 2(g).
 - ii. Any unanticipated bypass that exceeds any effluent limitation in the permit.
 - iii. Violation of a permitted maximum daily discharge limitation for pollutants listed specifically in the Other Requirements section of an Industrial TPDES permit.
- c. In addition to the above, any effluent violation which deviates from the permitted effluent limitation by more than 40% shall be reported by the permittee in writing to the Regional Office and the Enforcement Division (MC 224) within 5 working days of becoming aware of the noncompliance.
- d. Any noncompliance other than that specified in this section, or any required information not submitted or submitted incorrectly, shall be reported to the Enforcement Division (MC 224) as promptly as possible. For effluent limitation violations, noncompliances shall be reported on the approved self-report form.
- 8. In accordance with the procedures described in 30 TAC §§ 35.301 35.303 (relating to Water Quality Emergency and Temporary Orders) if the permittee knows in advance of the need for a bypass, it shall submit prior notice by applying for such authorization.
- 9. Changes in Discharges of Toxic Substances
 - All existing manufacturing, commercial, mining, and silvicultural permittees shall notify the Regional Office, orally or by facsimile transmission within 24 hours, and both the Regional Office and the Enforcement Division (MC 224) in writing within five (5) working days, after becoming aware of or having reason to believe:

- a. That any activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic pollutant listed at 40 CFR Part 122, Appendix D, Tables II and III (excluding Total Phenols) which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. One hundred micrograms per liter (100 μ g/L);
 - ii. Two hundred micrograms per liter (200 μ g/L) for acrolein and acrylonitrile; five hundred micrograms per liter (500 μ g/L) for 2,4-dinitrophenol and for 2-methyl-4,6-dinitrophenol; and one milligram per liter (1 mg/L) for antimony;
 - iii. Five (5) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.
- b. That any activity has occurred or will occur which would result in any discharge, on a nonroutine or infrequent basis, of a toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. Five hundred micrograms per liter (500 μ g/L);
 - ii. One milligram per liter (1 mg/L) for antimony;
 - iii. Ten (10) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.

10. Signatories to Reports

All reports and other information requested by the Executive Director shall be signed by the person and in the manner required by 30 TAC § 305.128 (relating to Signatories to Reports).

- 11. All POTWs must provide adequate notice to the Executive Director of the following:
 - a. Any new introduction of pollutants into the POTW from an indirect discharger which would be subject to CWA § 301 or § 306 if it were directly discharging those pollutants;
 - b. Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of issuance of the permit; and
 - c. For the purpose of this paragraph, adequate notice shall include information on:
 - i. The quality and quantity of effluent introduced into the POTW; and
 - ii. Any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW.

PERMIT CONDITIONS

1. General

- a. When the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in an application or in any report to the Executive Director, it shall promptly submit such facts or information.
- b. This permit is granted on the basis of the information supplied and representations made by the permittee during action on an application, and relying upon the accuracy and completeness of that information and those representations. After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked, in whole or in part, in accordance with 30 TAC Chapter 305, Subchapter D, during its term for good cause including, but not limited to, the following:
 - i. Violation of any terms or conditions of this permit;
 - ii. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts; or
 - iii. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.
- c. The permittee shall furnish to the Executive Director, upon request and within a reasonable time, any information to determine whether cause exists for amending, revoking, suspending or terminating the permit. The permittee shall also furnish to the Executive Director, upon request, copies of records required to be kept by the permit.

2. Compliance

- a. Acceptance of the permit by the person to whom it is issued constitutes acknowledgment and agreement that such person will comply with all the terms and conditions embodied in the permit, and the rules and other orders of the Commission.
- b. The permittee has a duty to comply with all conditions of the permit. Failure to comply with any permit condition constitutes a violation of the permit and the Texas Water Code or the Texas Health and Safety Code, and is grounds for enforcement action, for permit amendment, revocation, or suspension, or for denial of a permit renewal application or an application for a permit for another facility.
- c. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of the permit.
- d. The permittee shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal or other permit violation that has a reasonable likelihood of adversely affecting human health or the environment.
- e. Authorization from the Commission is required before beginning any change in the permitted facility or activity that may result in noncompliance with any permit requirements.
- f. A permit may be amended, suspended and reissued, or revoked for cause in accordance

with 30 TAC §§ 305.62 and 305.66 and TWC§ 7.302. The filing of a request by the permittee for a permit amendment, suspension and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.

- g. There shall be no unauthorized discharge of wastewater or any other waste. For the purpose of this permit, an unauthorized discharge is considered to be any discharge of wastewater into or adjacent to water in the state at any location not permitted as an outfall or otherwise defined in the Other Requirements section of this permit.
- h. In accordance with 30 TAC § 305.535(a), the permittee may allow any bypass to occur from a TPDES permitted facility which does not cause permitted effluent limitations to be exceeded or an unauthorized discharge to occur, but only if the bypass is also for essential maintenance to assure efficient operation.
- i. The permittee is subject to administrative, civil, and criminal penalties, as applicable, under TWC §§ 7.051 7.075 (relating to Administrative Penalties), 7.101 7.111 (relating to Civil Penalties), and 7.141 7.202 (relating to Criminal Offenses and Penalties) for violations including, but not limited to, negligently or knowingly violating the federal CWA §§ 301, 302, 306, 307, 308, 318, or 405, or any condition or limitation implementing any sections in a permit issued under the CWA § 402, or any requirement imposed in a pretreatment program approved under the CWA §§ 402 (a)(3) or 402 (b)(8).

3. Inspections and Entry

- a. Inspection and entry shall be allowed as prescribed in the TWC Chapters 26, 27, and 28, and THSC § 361.
- b. The members of the Commission and employees and agents of the Commission are entitled to enter any public or private property at any reasonable time for the purpose of inspecting and investigating conditions relating to the quality of water in the state or the compliance with any rule, regulation, permit or other order of the Commission. Members, employees, or agents of the Commission and Commission contractors are entitled to enter public or private property at any reasonable time to investigate or monitor or, if the responsible party is not responsive or there is an immediate danger to public health or the environment, to remove or remediate a condition related to the quality of water in the state. Members, employees, Commission contractors, or agents acting under this authority who enter private property shall observe the establishment's rules and regulations concerning safety, internal security, and fire protection, and if the property has management in residence, shall notify management or the person then in charge of his presence and shall exhibit proper credentials. If any member, employee, Commission contractor, or agent is refused the right to enter in or on public or private property under this authority, the Executive Director may invoke the remedies authorized in TWC § 7.002. The statement above, that Commission entry shall occur in accordance with an establishment's rules and regulations concerning safety, internal security, and fire protection, is not grounds for denial or restriction of entry to any part of the facility, but merely describes the Commission's duty to observe appropriate rules and regulations during an inspection.

4. Permit Amendment and/or Renewal

- a. The permittee shall give notice to the Executive Director as soon as possible of any planned physical alterations or additions to the permitted facility if such alterations or additions would require a permit amendment or result in a violation of permit requirements. Notice shall also be required under this paragraph when:
 - i. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in accordance with 30 TAC § 305.534 (relating to New Sources and New Dischargers); or
 - ii. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants that are subject neither to effluent limitations in the permit, nor to notification requirements in Monitoring and Reporting Requirements No. 9; or
 - iii. The alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan.
- b. Prior to any facility modifications, additions, or expansions that will increase the plant capacity beyond the permitted flow, the permittee must apply for and obtain proper authorization from the Commission before commencing construction.
- c. The permittee must apply for an amendment or renewal at least 180 days prior to expiration of the existing permit in order to continue a permitted activity after the expiration date of the permit. If an application is submitted prior to the expiration date of the permit, the existing permit shall remain in effect until the application is approved, denied, or returned. If the application is returned or denied, authorization to continue such activity shall terminate upon the effective date of the action. If an application is not submitted prior to the expiration date of the permit, the permit shall expire and authorization to continue such activity shall terminate.
- d. Prior to accepting or generating wastes which are not described in the permit application or which would result in a significant change in the quantity or quality of the existing discharge, the permittee must report the proposed changes to the Commission. The permittee must apply for a permit amendment reflecting any necessary changes in permit conditions, including effluent limitations for pollutants not identified and limited by this permit.
- e. In accordance with the TWC § 26.029(b), after a public hearing, notice of which shall be given to the permittee, the Commission may require the permittee, from time to time, for good cause, in accordance with applicable laws, to conform to new or additional conditions.
- f. If any toxic effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is promulgated under CWA § 307(a) for a toxic pollutant which is present in the discharge and that standard or prohibition is more stringent than any limitation on the pollutant in this permit, this permit shall be modified or revoked and reissued to conform to the toxic effluent standard or prohibition. The permittee shall comply with effluent standards or prohibitions established under CWA § 307(a) for toxic pollutants within the time provided in the

regulations that established those standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.

5. Permit Transfer

- a. Prior to any transfer of this permit, Commission approval must be obtained. The Commission shall be notified in writing of any change in control or ownership of facilities authorized by this permit. Such notification should be sent to the Applications Review and Processing Team (MC 148) of the Water Quality Division.
- b. A permit may be transferred only according to the provisions of 30 TAC § 305.64 (relating to Transfer of Permits) and 30 TAC § 50.133 (relating to Executive Director Action on Application or WQMP update).

6. Relationship to Hazardous Waste Activities

This permit does not authorize any activity of hazardous waste storage, processing, or disposal that requires a permit or other authorization pursuant to the Texas Health and Safety Code.

7. Relationship to Water Rights

Disposal of treated effluent by any means other than discharge directly to water in the state must be specifically authorized in this permit and may require a permit pursuant to TWC Chapter 11.

8. Property Rights

A permit does not convey any property rights of any sort, or any exclusive privilege.

9. Permit Enforceability

The conditions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstances, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

10. Relationship to Permit Application

The application pursuant to which the permit has been issued is incorporated herein; provided, however, that in the event of a conflict between the provisions of this permit and the application, the provisions of the permit shall control.

11. Notice of Bankruptcy

- a. Each permittee shall notify the Executive Director, in writing, immediately following the filing of a voluntary or involuntary petition for bankruptcy under any chapter of Title 11 (Bankruptcy) of the United States Code (11 USC) by or against:
 - i. the permittee;
 - ii. an entity (as that term is defined in 11 USC, § 101(14)) controlling the permittee or listing the permit or permittee as property of the estate; or
 - iii. an affiliate (as that term is defined in 11 USC, § 101(2)) of the permittee.

- b. This notification must indicate:
 - i. the name of the permittee;
 - ii. the permit number(s);
 - iii. the bankruptcy court in which the petition for bankruptcy was filed; and
 - iv. the date of filing of the petition.

OPERATIONAL REQUIREMENTS

- 1. The permittee shall at all times ensure that the facility and all of its systems of collection, treatment, and disposal are properly operated and maintained. This includes, but is not limited to, the regular, periodic examination of wastewater solids within the treatment plant by the operator in order to maintain an appropriate quantity and quality of solids inventory as described in the various operator training manuals and according to accepted industry standards for process control. Process control, maintenance, and operations records shall be retained at the facility site, or shall be readily available for review by a TCEQ representative, for a period of three years.
- 2. Upon request by the Executive Director, the permittee shall take appropriate samples and provide proper analysis in order to demonstrate compliance with Commission rules. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall comply with all applicable provisions of 30 TAC Chapter 312 concerning sewage sludge or biosolids use and disposal and 30 TAC §§ 319.21 319.29 concerning the discharge of certain hazardous metals.
- 3. Domestic wastewater treatment facilities shall comply with the following provisions:
 - a. The permittee shall notify the Domestic Permits Team, Domestic Wastewater Section (MC 148) of the Water Quality Division, in writing, of any facility expansion at least 90 days prior to conducting such activity.
 - b. The permittee shall submit a closure plan for review and approval to the Domestic Permits Team, Domestic Wastewater Section (MC 148) of the Water Quality Division, for any closure activity at least 90 days prior to conducting such activity. Closure is the act of permanently taking a waste management unit or treatment facility out of service and includes the permanent removal from service of any pit, tank, pond, lagoon, surface impoundment and/or other treatment unit regulated by this permit.
- 4. The permittee is responsible for installing prior to plant start-up, and subsequently maintaining, adequate safeguards to prevent the discharge of untreated or inadequately treated wastes during electrical power failures by means of alternate power sources, standby generators, and/or retention of inadequately treated wastewater.
- 5. Unless otherwise specified, the permittee shall provide a readily accessible sampling point and, where applicable, an effluent flow measuring device or other acceptable means by which effluent flow may be determined.
- 6. The permittee shall remit an annual water quality fee to the Commission as required by 30

TAC Chapter 21. Failure to pay the fee may result in revocation of this permit under TWC § 7.302(b)(6).

7. Documentation

For all written notifications to the Commission required of the permittee by this permit, the permittee shall keep and make available a copy of each such notification under the same conditions as self-monitoring data are required to be kept and made available. Except for information required for TPDES permit applications, effluent data, including effluent data in permits, draft permits and permit applications, and other information specified as not confidential in 30 TAC §§ 1.5(d), any information submitted pursuant to this permit may be claimed as confidential by the submitter. Any such claim must be asserted in the manner prescribed in the application form or by stamping the words confidential business information on each page containing such information. If no claim is made at the time of submission, information may be made available to the public without further notice. If the Commission or Executive Director agrees with the designation of confidentiality, the TCEQ will not provide the information for public inspection unless required by the Texas Attorney General or a court pursuant to an open records request. If the Executive Director does not agree with the designation of confidentiality, the person submitting the information will be notified.

- 8. Facilities that generate domestic wastewater shall comply with the following provisions; domestic wastewater treatment facilities at permitted industrial sites are excluded.
 - a. Whenever flow measurements for any domestic sewage treatment facility reach 75% of the permitted daily average or annual average flow for three consecutive months, the permittee must initiate engineering and financial planning for expansion and/or upgrading of the domestic wastewater treatment and/or collection facilities. Whenever the flow reaches 90% of the permitted daily average or annual average flow for three consecutive months, the permittee shall obtain necessary authorization from the Commission to commence construction of the necessary additional treatment and/or collection facilities. In the case of a domestic wastewater treatment facility which reaches 75% of the permitted daily average or annual average flow for three consecutive months, and the planned population to be served or the quantity of waste produced is not expected to exceed the design limitations of the treatment facility, the permittee shall submit an engineering report supporting this claim to the Executive Director of the Commission.

If in the judgment of the Executive Director the population to be served will not cause permit noncompliance, then the requirement of this section may be waived. To be effective, any waiver must be in writing and signed by the Director of the Enforcement Division (MC 219) of the Commission, and such waiver of these requirements will be reviewed upon expiration of the existing permit; however, any such waiver shall not be interpreted as condoning or excusing any violation of any permit parameter.

b. The plans and specifications for domestic sewage collection and treatment works associated with any domestic permit must be approved by the Commission and failure to secure approval before commencing construction of such works or making a discharge is a violation of this permit and each day is an additional violation until approval has been secured.

- c. Permits for domestic wastewater treatment plants are granted subject to the policy of the Commission to encourage the development of area-wide waste collection, treatment, and disposal systems. The Commission reserves the right to amend any domestic wastewater permit in accordance with applicable procedural requirements to require the system covered by this permit to be integrated into an area-wide system, should such be developed; to require the delivery of the wastes authorized to be collected in, treated by or discharged from said system, to such area-wide system; or to amend this permit in any other particular to effectuate the Commission's policy. Such amendments may be made when the changes required are advisable for water quality control purposes and are feasible on the basis of waste treatment technology, engineering, financial, and related considerations existing at the time the changes are required, exclusive of the loss of investment in or revenues from any then existing or proposed waste collection, treatment or disposal system.
- 9. Domestic wastewater treatment plants shall be operated and maintained by sewage plant operators holding a valid certificate of competency at the required level as defined in 30 TAC Chapter 30.
- 10. For Publicly Owned Treatment Works (POTWs), the 30-day average (or monthly average) percent removal for BOD and TSS shall not be less than 85%, unless otherwise authorized by this permit.
- 11. Facilities that generate industrial solid waste as defined in 30 TAC § 335.1 shall comply with these provisions:
 - a. Any solid waste, as defined in 30 TAC § 335.1 (including but not limited to such wastes as garbage, refuse, sludge from a waste treatment, water supply treatment plant or air pollution control facility, discarded materials, discarded materials to be recycled, whether the waste is solid, liquid, or semisolid), generated by the permittee during the management and treatment of wastewater, must be managed in accordance with all applicable provisions of 30 TAC Chapter 335, relating to Industrial Solid Waste Management.
 - b. Industrial wastewater that is being collected, accumulated, stored, or processed before discharge through any final discharge outfall, specified by this permit, is considered to be industrial solid waste until the wastewater passes through the actual point source discharge and must be managed in accordance with all applicable provisions of 30 TAC Chapter 335.
 - c. The permittee shall provide written notification, pursuant to the requirements of 30 TAC § 335.8(b)(1), to the Corrective Action Section (MC 127) of the Remediation Division informing the Commission of any closure activity involving an Industrial Solid Waste Management Unit, at least 90 days prior to conducting such an activity.
 - d. Construction of any industrial solid waste management unit requires the prior written notification of the proposed activity to the Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division. No person shall dispose of industrial solid waste, including sludge or other solids from wastewater treatment processes, prior to fulfilling the deed recordation requirements of 30 TAC § 335.5.
 - e. The term "industrial solid waste management unit" means a landfill, surface impoundment, waste-pile, industrial furnace, incinerator, cement kiln, injection well,

container, drum, salt dome waste containment cavern, or any other structure vessel, appurtenance, or other improvement on land used to manage industrial solid waste.

- f. The permittee shall keep management records for all sludge (or other waste) removed from any wastewater treatment process. These records shall fulfill all applicable requirements of 30 TAC § 335 and must include the following, as it pertains to wastewater treatment and discharge:
 - i. Volume of waste and date(s) generated from treatment process;
 - ii. Volume of waste disposed of on-site or shipped off-site;
 - iii. Date(s) of disposal;
 - iv. Identity of hauler or transporter;
 - v. Location of disposal site; and
 - vi. Method of final disposal.

The above records shall be maintained on a monthly basis. The records shall be retained at the facility site, or shall be readily available for review by authorized representatives of the TCEQ for at least five years.

12. For industrial facilities to which the requirements of 30 TAC § 335 do not apply, sludge and solid wastes, including tank cleaning and contaminated solids for disposal, shall be disposed of in accordance with THSC § 361.

TCEO Revision 06/2020

SLUDGE PROVISIONS

The permittee is authorized to dispose of sludge only at a Texas Commission on Environmental Quality (TCEQ) authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge. The disposal of sludge or biosolids by land application on property owned, leased or under the direct control of the permittee is a violation of the permit unless the site is authorized with the TCEQ. This provision does not authorize Distribution and Marketing of Class A or Class AB Biosolids. This provision does not authorize the permittee to land apply biosolids on property owned, leased or under the direct control of the permittee.

SECTION I. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE OR BIOSOLIDS LAND APPLICATION

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC § 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge or biosolids.
- 2. In all cases, if the person (permit holder) who prepares the sewage sludge supplies the sewage sludge to another person for land application use or to the owner or lease holder of the land, the permit holder shall provide necessary information to the parties who receive the sludge to assure compliance with these regulations.
- 3. The land application of processed or unprocessed chemical toilet waste, grease trap waste, grit trap waste, milk solids, or similar non-hazardous municipal or industrial solid wastes, or any of the wastes listed in this provision combined with biosolids, WTP residuals or domestic septage is prohibited unless the grease trap waste is added at a fats, oil and grease (FOG) receiving facility as part of an anaerobic digestion process.

B. Testing Requirements

1. Sewage sludge or biosolids shall be tested annually in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I [Toxicity Characteristic Leaching Procedure (TCLP)] or other method that receives the prior approval of the TCEQ for the contaminants listed in 40 CFR Part 261.24, Table 1. Sewage sludge or biosolids failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal. Following failure of any TCLP test, the management or disposal of sewage sludge or biosolids at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge or biosolids no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division and the Regional Director (MC Region 9) within seven (7) days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped, and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Permitting and Registration Support Division (MC 129), Texas Commission on Environmental Quality, P.O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. The permittee shall submit the following information in an annual report to the TCEQ by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through TCEQ's website. If the permittee requests and obtains an electronic reporting waiver, the annual report can be submitted in hard copy to the TCEQ Regional Office (MC Region 9) and the Enforcement Division (MC 224).

2. Biosolids shall not be applied to the land if the concentration of the pollutants exceeds the pollutant concentration criteria in Table 1. The frequency of testing for pollutants in Table 1 is found in Section I.C. of this permit.

TABLE 1

<u>Pollutant</u>	<u>Ceiling Concentration</u> (<u>Milligrams per kilogram</u>)*
Arsenic	75
Cadmium	85
Chromium	3000
Copper	4300
Lead	840
Mercury	57
Molybdenum	75
Nickel	420
PCBs	49
Selenium	100
Zinc	7500

^{*} Dry weight basis

3. Pathogen Control

All sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site must be treated by one of the following methods to ensure that the sludge meets either the Class A, Class AB or Class B biosolids pathogen requirements.

a. For sewage sludge to be classified as Class A biosolids with respect to pathogens, the density of fecal coliform in the sewage sludge must be less than 1,000 most probable number (MPN) per gram of total solids (dry weight basis), or the density of Salmonella sp. bacteria in the sewage sludge must be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met:

<u>Alternative 1</u> - The temperature of the sewage sludge that is used or disposed shall be maintained at or above a specific value for a period of time. See 30 TAC § 312.82(a)(3)(A) for specific information;

Alternative 5 (PFRP) - Sewage sludge that is used or disposed of must be treated in one of the Processes to Further Reduce Pathogens (PFRP) described in 40 CFR Part 503, Appendix B. PFRP include composting, heat drying, heat treatment, and thermophilic aerobic digestion; or

Alternative 6 (PFRP Equivalent) - Sewage sludge that is used or disposed of must be treated in a process that has been approved by the U. S. Environmental Protection Agency as being equivalent to those in Alternative 5.

b. For sewage sludge to be classified as Class AB biosolids with respect to pathogens, the density of fecal coliform in the sewage sludge must be less than 1,000 MPN per gram of total solids (dry weight basis), or the density of *Salmonella* sp. bacteria in the sewage sludge be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met:

<u>Alternative 2</u> - The pH of the sewage sludge that is used or disposed shall be raised to above 12 std. units and shall remain above 12 std. units for 72 hours.

The temperature of the sewage sludge shall be above 52° Celsius for 12 hours or longer during the period that the pH of the sewage sludge is above 12 std. units.

At the end of the 72-hour period during which the pH of the sewage sludge is above 12 std. units, the sewage sludge shall be air dried to achieve a percent solids in the sewage sludge greater than 50%; or

Alternative 3 - The sewage sludge shall be analyzed for enteric viruses prior to pathogen treatment. The limit for enteric viruses is less than one Plaque-forming Unit per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC § 312.82(a)(2)(C)(i-iii) for specific information. The sewage sludge shall be analyzed for viable helminth ova prior to pathogen treatment. The limit for viable helminth ova is less than one per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC § 312.82(a)(2)(C)(iv-vi) for specific information; or

<u>Alternative 4</u> - The density of enteric viruses in the sewage sludge shall be less than one Plaque-forming Unit per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. The density of viable helminth ova in the sewage sludge shall be less than one per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed.

- c. Sewage sludge that meets the requirements of Class AB biosolids may be classified a Class A biosolids if a variance request is submitted in writing that is supported by substantial documentation demonstrating equivalent methods for reducing odors and written approval is granted by the executive director. The executive director may deny the variance request or revoke that approved variance if it is determined that the variance may potentially endanger human health or the environment, or create nuisance odor conditions.
- d. Three alternatives are available to demonstrate compliance with Class B biosolids criteria.

Alternative 1

- i. A minimum of seven random samples of the sewage sludge shall be collected within 48 hours of the time the sewage sludge is used or disposed of during each monitoring episode for the sewage sludge.
- ii. The geometric mean of the density of fecal coliform in the samples collected shall be less than either 2,000,000 MPN per gram of total solids (dry weight basis) or 2,000,000 Colony Forming Units per gram of total solids (dry weight basis).

<u>Alternative 2</u> - Sewage sludge that is used or disposed of shall be treated in one of the Processes to Significantly Reduce Pathogens (PSRP) described in 40 CFR Part 503, Appendix B, so long as all of the following requirements are met by the generator of the sewage sludge.

- i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;
- ii. An independent Texas Licensed Professional Engineer must make a certification to the generator of a sewage sludge that the wastewater treatment facility generating the sewage sludge is designed to achieve one of the PSRP at the permitted design loading of the facility. The certification need only be repeated if the design loading of the facility is increased. The certification shall include a statement indicating the design meets all the applicable standards specified in Appendix B of 40 CFR Part 503;
- iii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iv. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review; and
- v. If the sewage sludge is generated from a mixture of sources, resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the PSRP, and shall meet the certification, operation, and record keeping requirements of this paragraph.

<u>Alternative 3</u> - Sewage sludge shall be treated in an equivalent process that has been approved by the U.S. Environmental Protection Agency, so long as all of the following requirements are met by the generator of the sewage sludge.

i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;

- ii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iii. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review;
- iv. The Executive Director will accept from the U.S. Environmental Protection Agency a finding of equivalency to the defined PSRP; and
- v. If the sewage sludge is generated from a mixture of sources resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the Processes to Significantly Reduce Pathogens, and shall meet the certification, operation, and record keeping requirements of this paragraph.

In addition to the Alternatives 1 - 3, the following site restrictions must be met if Class B biosolids are land applied:

- i. Food crops with harvested parts that touch the biosolids/soil mixture and are totally above the land surface shall not be harvested for 14 months after application of biosolids.
- ii. Food crops with harvested parts below the surface of the land shall not be harvested for 20 months after application of biosolids when the biosolids remain on the land surface for 4 months or longer prior to incorporation into the soil.
- iii. Food crops with harvested parts below the surface of the land shall not be harvested for 38 months after application of biosolids when the biosolids remain on the land surface for less than 4 months prior to incorporation into the soil.
- iv. Food crops, feed crops, and fiber crops shall not be harvested for 30 days after application of biosolids.
- v. Domestic livestock shall not be allowed to graze on the land for 30 days after application of biosolids.
- vi. Turf grown on land where biosolids are applied shall not be harvested for 1 year after application of the biosolids when the harvested turf is placed on either land with a high potential for public exposure or a lawn.
- vii. Public access to land with a high potential for public exposure shall be restricted for 1 year after application of biosolids.

- viii. Public access to land with a low potential for public exposure shall be restricted for 30 days after application of biosolids.
- ix. Land application of biosolids shall be in accordance with the buffer zone requirements found in 30 TAC § 312.44.

4. Vector Attraction Reduction Requirements

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site shall be treated by one of the following Alternatives 1 through 10 for vector attraction reduction.

- <u>Alternative 1</u> The mass of volatile solids in the sewage sludge shall be reduced by a minimum of 38%.
- Alternative 2 If Alternative 1 cannot be met for an anaerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge anaerobically in the laboratory in a bench-scale unit for 40 additional days at a temperature between 30° and 37° Celsius. Volatile solids must be reduced by less than 17% to demonstrate compliance.
- Alternative 3 If Alternative 1 cannot be met for an aerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge with percent solids of two percent or less aerobically in the laboratory in a bench-scale unit for 30 additional days at 20° Celsius. Volatile solids must be reduced by less than 15% to demonstrate compliance.
- Alternative 4 The specific oxygen uptake rate (SOUR) for sewage sludge treated in an aerobic process shall be equal to or less than 1.5 milligrams of oxygen per hour per gram of total solids (dry weight basis) at a temperature of 20° Celsius.
- Alternative 5 Sewage sludge shall be treated in an aerobic process for 14 days or longer. During that time, the temperature of the sewage sludge shall be higher than 40° Celsius and the average temperature of the sewage sludge shall be higher than 45° Celsius.
- Alternative 6 The pH of sewage sludge shall be raised to 12 or higher by alkali addition and, without the addition of more alkali shall remain at 12 or higher for two hours and then remain at a pH of 11.5 or higher for an additional 22 hours at the time the sewage sludge is prepared for sale or given away in a bag or other container.
- Alternative 7 The percent solids of sewage sludge that does not contain unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 75% based on the moisture content and total solids prior to mixing with other materials. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

Alternative 8 -

The percent solids of sewage sludge that contains unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 90% based on the moisture content and total solids prior to mixing with other materials at the time the sludge is used. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

Alternative 9 -

- i. Biosolids shall be injected below the surface of the land.
- ii. No significant amount of the biosolids shall be present on the land surface within one hour after the biosolids are injected.
- iii. When sewage sludge that is injected below the surface of the land is Class A or Class AB with respect to pathogens, the biosolids shall be injected below the land surface within eight hours after being discharged from the pathogen treatment process.

Alternative 10-

- i. Biosolids applied to the land surface or placed on a surface disposal site shall be incorporated into the soil within six hours after application to or placement on the land.
- ii. When biosolids that are incorporated into the soil is Class A or Class AB with respect to pathogens, the biosolids shall be applied to or placed on the land within eight hours after being discharged from the pathogen treatment process.

C. Monitoring Requirements

Toxicity Characteristic Leaching Procedure - annually (TCLP) Test
PCBs - annually

All metal constituents and fecal coliform or *Salmonella* sp. bacteria shall be monitored at the appropriate frequency shown below, pursuant to 30 TAC § 312.46(a)(1):

Amount of biosolids (*)

metric tons per 365-day period Monitoring Frequency

o to less than 290 Once/Year

290 to less than 1,500 Once/Quarter

1,500 to less than 15,000 Once/Two Months

15,000 or greater Once/Month

(*) The amount of bulk biosolids applied to the land (dry wt. basis).

Representative samples of sewage sludge shall be collected and analyzed in accordance with the methods referenced in 30 TAC § 312.7

Identify each of the analytic methods used by the facility to analyze enteric viruses, fecal coliforms, helminth ova, *Salmonella* sp., and other regulated parameters.

Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.

Identify the nature of material generated by the facility (such as a biosolid for beneficial use or land-farming, or sewage sludge or biosolids for disposal at a monofill) and whether the material is ultimately conveyed off-site in bulk or in bags.

SECTION II. REQUIREMENTS SPECIFIC TO BULK SEWAGE SLUDGE OR BIOSOLIDS FOR APPLICATION TO THE LAND MEETING CLASS A, CLASS AB or B PATHOGEN REDUCTION AND THE CUMULATIVE LOADING RATES IN TABLE 2, OR CLASS B PATHOGEN REDUCTION AND THE POLLUTANT CONCENTRATIONS IN TABLE 3

For those permittees meeting Class A, Class AB or B pathogen reduction requirements and that meet the cumulative loading rates in Table 2 below, or the Class B pathogen reduction requirements and contain concentrations of pollutants below listed in Table 3, the following conditions apply:

A. Pollutant Limits

Table 2

	Cumulative Pollutant Loading Rate
<u>Pollutant</u>	(pounds per acre)*
Arsenic	36
Cadmium	35
Chromium	2677
Copper	1339
Lead	268
Mercury	15
Molybdenum	Report Only
Nickel	375
Selenium	89
Zinc	2500

Table 3

Monthly Average		
Concentration		
(milligrams per kilogram)*		
41		
39		
1200		
1500		
300		
17		
Report Only		
420		
36		
2800		

^{*}Dry weight basis

B. Pathogen Control

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, a reclamation site, shall be treated by either Class A, Class AB or Class B biosolids pathogen reduction requirements as defined above in Section I.B.3.

C. Management Practices

- 1. Bulk biosolids shall not be applied to agricultural land, forest, a public contact site, or a reclamation site that is flooded, frozen, or snow-covered so that the bulk sewage sludge enters a wetland or other waters in the State.
- 2. Bulk biosolids not meeting Class A requirements shall be land applied in a manner which complies with Applicability in accordance with 30 TAC §312.41 and the Management Requirements in accordance with 30 TAC § 312.44.
- 3. Bulk biosolids shall be applied at or below the agronomic rate of the cover crop.
- 4. An information sheet shall be provided to the person who receives bulk Class A or AB biosolids sold or given away. The information sheet shall contain the following information:
 - a. The name and address of the person who prepared the Class A or AB biosolids that are sold or given away in a bag or other container for application to the land.
 - b. A statement that application of the biosolids to the land is prohibited except in accordance with the instruction on the label or information sheet.
 - c. The annual whole sludge application rate for the biosolids application rate for the biosolids that does not cause any of the cumulative pollutant loading rates in Table 2 above to be exceeded, unless the pollutant concentrations in Table 3 found in Section II above are met.

D. Notification Requirements

- 1. If bulk biosolids are applied to land in a State other than Texas, written notice shall be provided prior to the initial land application to the permitting authority for the State in which the bulk biosolids are proposed to be applied. The notice shall include:
 - a. The location, by street address, and specific latitude and longitude, of each land application site.
 - b. The approximate time period bulk biosolids will be applied to the site.
 - c. The name, address, telephone number, and National Pollutant Discharge Elimination System permit number (if appropriate) for the person who will apply the bulk biosolids.

E. Record Keeping Requirements

The documents will be retained at the facility site and/or shall be readily available for review by a TCEQ representative. The person who prepares bulk sewage sludge or a biosolids material shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative for a period of <u>five years</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply.

- 1. The concentration (mg/kg) in the sludge of each pollutant listed in Table 3 above and the applicable pollutant concentration criteria (mg/kg), or the applicable cumulative pollutant loading rate and the applicable cumulative pollutant loading rate limit (lbs/ac) listed in Table 2 above.
- 2. A description of how the pathogen reduction requirements are met (including site restrictions for Class AB and Class B biosolids, if applicable).
- 3. A description of how the vector attraction reduction requirements are met.
- 4. A description of how the management practices listed above in Section II.C are being met.
- 5. The following certification statement:
 - "I certify, under penalty of law, that the applicable pathogen requirements in 30 TAC § 312.82(a) or (b) and the vector attraction reduction requirements in 30 TAC § 312.83(b) have been met for each site on which bulk biosolids are applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices have been met. I am aware that there are significant penalties for false certification including fine and imprisonment."
- 6. The recommended agronomic loading rate from the references listed in Section II.C.3. above, as well as the actual agronomic loading rate shall be retained. The person who applies bulk biosolids shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative <u>indefinitely</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply:
 - a. A certification statement that all applicable requirements (specifically listed) have been met, and that the permittee understands that there are significant penalties for false certification including fine and imprisonment. See 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii), as applicable, and to the permittee's specific sludge treatment activities.
 - b. The location, by street address, and specific latitude and longitude, of each site on which biosolids are applied.
 - c. The number of acres in each site on which bulk biosolids are applied.
 - d. The date and time biosolids are applied to each site.
 - e. The cumulative amount of each pollutant in pounds/acre listed in Table 2 applied to each site.
 - f. The total amount of biosolids applied to each site in dry tons.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

F. Reporting Requirements

The permittee shall submit the following information in an annual report to the TCEQ by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through TCEQ's website. If the permittee requests and obtains an electronic reporting waiver, the annual report can be submitted in hard copy to the TCEQ Regional Office (MC Region 9) and the Enforcement Division (MC 224).

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. Identify the nature of material generated by the facility (such as a biosolid for beneficial use or land-farming, or sewage sludge for disposal at a monofill) and whether the material is ultimately conveyed off-site in bulk or in bags.
- 3. Results of tests performed for pollutants found in either Table 2 or 3 as appropriate for the permittee's land application practices.
- 4. The frequency of monitoring listed in Section I.C. that applies to the permittee.
- 5. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 6. PCB concentration in sludge or biosolids in mg/kg.
- 7. Identity of hauler(s) and TCEQ transporter number.
- 8. Date(s) of transport.
- 9. Texas Commission on Environmental Quality registration number, if applicable.
- 10. Amount of sludge or biosolids disposal dry weight (lbs/acre) at each disposal site.
- 11. The concentration (mg/kg) in the sludge of each pollutant listed in Table 1 (defined as a monthly average) as well as the applicable pollutant concentration criteria (mg/kg) listed in Table 3 above, or the applicable pollutant loading rate limit (lbs/acre) listed in Table 2 above if it exceeds 90% of the limit.
- 12. Level of pathogen reduction achieved (Class A, Class AB or Class B).
- 13. Alternative used as listed in Section I.B.3.(a. or b.). Alternatives describe how the pathogen reduction requirements are met. If Class B biosolids, include information on how site restrictions were met.
- 14. Identify each of the analytic methods used by the facility to analyze enteric viruses, fecal coliforms, helminth ova, *Salmonella* sp., and other regulated parameters.
- 15. Vector attraction reduction alternative used as listed in Section I.B.4.
- 16. Amount of sludge or biosolids transported in dry tons/year.

- 17. The certification statement listed in either 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii) as applicable to the permittee's sludge or biosolids treatment activities, shall be attached to the annual report.
- 18. When the amount of any pollutant applied to the land exceeds 90% of the cumulative pollutant loading rate for that pollutant, as described in Table 2, the permittee shall report the following information as an attachment to the annual report.
 - a. The location, by street address, and specific latitude and longitude.
 - b. The number of acres in each site on which bulk biosolids are applied.
 - c. The date and time bulk biosolids are applied to each site.
 - d. The cumulative amount of each pollutant (i.e., pounds/acre) listed in Table 2 in the bulk biosolids applied to each site.
 - e. The amount of biosolids (i.e., dry tons) applied to each site.

The above records shall be maintained on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION III. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE OR BIOSOLIDS DISPOSED IN A MUNICIPAL SOLID WASTE LANDFILL

- A. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC § 330 and all other applicable state and federal regulations to protect public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present. The permittee shall ensure that the sewage sludge meets the requirements in 30 TAC § 330 concerning the quality of the sludge or biosolids disposed in a municipal solid waste landfill.
- B. If the permittee generates sewage sludge and supplies that sewage sludge or biosolids to the owner or operator of a municipal solid waste landfill (MSWLF) for disposal, the permittee shall provide to the owner or operator of the MSWLF appropriate information needed to be in compliance with the provisions of this permit.
- C. Sewage sludge or biosolids shall be tested annually in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I (Toxicity Characteristic Leaching Procedure) or other method, which receives the prior approval of the TCEQ for contaminants listed in Table 1 of 40 CFR § 261.24. Sewage sludge or biosolids failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal.

Following failure of any TCLP test, the management or disposal of sewage sludge or biosolids at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge or biosolids no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division and the Regional Director (MC Region 9) of the appropriate TCEQ field office within 7 days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped, and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Permitting and Registration Support Division (MC 129), Texas Commission on Environmental Quality, P. O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. This annual report shall be submitted to the TCEQ Regional Office (MC Region 9) and the Enforcement Division (MC 224), by September 30 of each year.

- D. Sewage sludge or biosolids shall be tested as needed, in accordance with the requirements of 30 TAC Chapter 330.
- E. Record Keeping Requirements

The permittee shall develop the following information and shall retain the information for five years.

- 1. The description (including procedures followed and the results) of all liquid Paint Filter Tests performed.
- 2. The description (including procedures followed and results) of all TCLP tests performed.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

F. Reporting Requirements

The permittee shall submit the following information in an annual report to the TCEQ by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through TCEQ's website. If the permittee requests and obtains an electronic reporting waiver, the annual report can be submitted in hard copy to the TCEQ Regional Office (MC Region 9) and the Enforcement Division (MC 224).

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 3. Annual sludge or biosolids production in dry tons/year.
- 4. Amount of sludge or biosolids disposed in a municipal solid waste landfill in dry tons/year.
- 5. Amount of sludge or biosolids transported interstate in dry tons/year.
- 6. A certification that the sewage sludge or biosolids meets the requirements of 30 TAC § 330 concerning the quality of the sludge disposed in a municipal solid waste landfill.
- 7. Identity of hauler(s) and transporter registration number.
- 8. Owner of disposal site(s).
- 9. Location of disposal site(s).
- 10. Date(s) of disposal.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION IV. REQUIREMENTS APPLYING TO SLUDGE OR BIOSOLIDS TRANSPORTED TO ANOTHER FACILITY FOR FURTHER PROCESSING

These provisions apply to sludge or biosolids that is transported to another wastewater treatment facility or facility that further processes sludge or biosolids. These provisions are intended to allow transport of sludge or biosolids to facilities that have been authorized to accept sludge or biosolids. These provisions do not limit the ability of the receiving facility to determine whether to accept the sludge or biosolids, nor do they limit the ability of the receiving facility to request additional testing or documentation.

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC Chapter 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge.
- 2. Sludge or biosolids may only be transported using a registered transporter or using an approved pipeline.

B. Record Keeping Requirements

- 1. For sludge transported by an approved pipeline, the permittee must maintain records of the following:
 - a. the amount of sludge or biosolids transported;
 - b. the date of transport;
 - c. the name and TCEQ permit number of the receiving facility or facilities;
 - d. the location of the receiving facility or facilities;
 - e. the name and TCEQ permit number of the facility that generated the waste; and
 - f. copy of the written agreement between the permittee and the receiving facility to accept sludge or biosolids.
- 2. For sludge or biosolids transported by a registered transporter, the permittee must maintain records of the completed trip tickets in accordance with 30 TAC § 312.145(a)(1)-(7) and amount of sludge or biosolids transported.
- 3. The above records shall be maintained on-site on a monthly basis and shall be made available to the TCEQ upon request. These records shall be retained for at least five years.

C. Reporting Requirements

The permittee shall submit the following information in an annual report to the TCEQ by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through TCEQ's website. If the permittee requests and obtains an electronic reporting waiver, the annual report can be submitted in hard copy to the TCEQ Regional Office (MC Region 9) and the Enforcement Division (MC 224).

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. the annual sludge or biosolids production;
- 3. the amount of sludge or biosolids transported;
- 4. the owner of each receiving facility;
- 5. the location of each receiving facility; and
- 6. the date(s) of disposal at each receiving facility.

TCEQ Revision 06/2020

OTHER REQUIREMENTS

- 1. The permittee shall employ or contract with one or more licensed wastewater treatment facility operators or wastewater system operations companies holding a valid license or registration according to the requirements of 30 TAC Chapter 30, Occupational Licenses and Registrations, and in particular 30 TAC Chapter 30, Subchapter J, Wastewater Operators and Operations Companies.
 - This Category B facility must be operated by a chief operator or an operator holding a Class B license or higher. The facility must be operated a minimum of five days per week by the licensed chief operator or an operator holding the required level of license or higher. The licensed chief operator or operator holding the required level of license or higher must be available by telephone or pager seven days per week. Where shift operation of the wastewater treatment facility is necessary, each shift that does not have the on-site supervision of the licensed chief operator must be supervised by an operator in charge who is licensed not less than one level below the category for the facility.
- 2. The facility is not located in the Coastal Management Program boundary.
- 3. There is no mixing zone established for this discharge to an intermittent stream with perennial pools. Chronic toxic criteria apply at the point of discharge.
- 4. The permittee shall comply with the requirements of 30 TAC § 309.13(a) through (d). The permittee provided a buffer zone variance under the permit issued on September 2, 1994 according to 30 TAC § 309.13 (e)(3). The permittee shall maintain the restrictive easements.
- 5. The permittee shall provide facilities for the protection of its wastewater treatment facility from a 100-year flood.
- 6. In accordance with 30 TAC § 319.9, a permittee that has at least twelve months of uninterrupted compliance with its bacteria limit may notify the commission in writing of its compliance and request a less frequent measurement schedule. To request a less frequent schedule, the permittee shall submit a written request to the TCEQ Domestic Wastewater Section (MC 148) for each phase that includes a different monitoring frequency. The request must contain all of the reported bacteria values (Daily Avg. and Daily Max/Single Grab) for the twelve consecutive months immediately prior to the request. If the Executive Director finds that a less frequent measurement schedule is protective of human health and the environment, the permittee may be given a less frequent measurement schedule. For this permit, one/week may be reduced to two/month. A violation of any bacteria limit by a facility that has been granted a less frequent measurement schedule will require the permittee to return to the standard frequency schedule and submit written notice to the TCEO Domestic Wastewater Section (MC 148). The permittee may not apply for another reduction in measurement frequency for at least 24 months from the date of the last violation. The Executive Director may establish a more frequent measurement schedule if necessary to protect human health or the environment.
- 7. The reporting requirements for Total Dissolved Solids and Total Chloride at Outfall 001 will expire at the expiration of this permit. The reported values will be evaluated, and the reporting requirements may be reinstated, or an effluent limit added at the next permit action.

CONTRIBUTING INDUSTRIES AND PRETREATMENT REQUIREMENTS

- 1. The following pollutants may not be introduced into the treatment facility:
 - a. Pollutants which create a fire or explosion hazard in the publicly owned treatment works (POTW), including, but not limited to, waste streams with a closed-cup flash point of less than 140° Fahrenheit (60° Celsius) using the test methods specified in 40 CFR § 261.21;
 - b. Pollutants which will cause corrosive structural damage to the POTW, but in no case shall there be discharges with a pH lower than 5.0 standard units, unless the works are specifically designed to accommodate such discharges;
 - c. Solid or viscous pollutants in amounts which will cause obstruction to the flow in the POTW, resulting in Interference;
 - d. Any pollutant, including oxygen-demanding pollutants (e.g., biochemical oxygen demand), released in a discharge at a flow rate and/or pollutant concentration which will cause Interference with the POTW;
 - e. Heat in amounts which will inhibit biological activity in the POTW, resulting in Interference, but in no case shall there be heat in such quantities that the temperature at the POTW treatment plant exceeds 104° Fahrenheit (40° Celsius) unless the Executive Director, upon request of the POTW, approves alternate temperature limits;
 - f. Petroleum oil, nonbiodegradable cutting oil, or products of mineral oil origin in amounts that will cause Interference or Pass Through;
 - g. Pollutants which result in the presence of toxic gases, vapors, or fumes within the POTW in a quantity that may cause acute worker health and safety problems; and
 - h. Any trucked or hauled pollutants except at discharge points designated by the POTW.
- 2. The permittee shall require any indirect discharger to the treatment works to comply with the reporting requirements of Sections 204(b), 307, and 308 of the Clean Water Act, including any requirements established under 40 CFR Part 403 [rev. Federal Register/ Vol. 70/ No. 198/ Friday, October 14, 2005/ Rules and Regulations, pages 60134-60798].
- 3. The permittee shall provide adequate notification to the Executive Director, care of the Domestic Wastewater Section (MC 148) of the Water Quality Division, within 30 days subsequent to the permittee's knowledge of either of the following:
 - a. Any new introduction of pollutants into the treatment works from an indirect discharger which would be subject to Sections 301 and 306 of the Clean Water Act if it were directly discharging those pollutants; and
 - b. Any substantial change in the volume or character of pollutants being introduced into the treatment works by a source introducing pollutants into the treatment works at the time of issuance of the permit.

Any notice shall include information on the quality and quantity of effluent to be introduced into the treatment works and any anticipated impact of the change on the quality or quantity of effluent to be discharged from the POTW.

Revised July 2007

BIOMONITORING REQUIREMENTS

CHRONIC BIOMONITORING REQUIREMENTS: FRESHWATER

The provisions of this section apply to Outfall 001 for whole effluent toxicity (WET) testing.

- 1. Scope, Frequency, and Methodology
 - a. The permittee shall test the effluent for toxicity in accordance with the provisions below. Such testing will determine if an appropriately dilute effluent sample adversely affects the survival, reproduction, or growth of the test organisms.
 - b. The permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified in this part of this permit and in accordance with "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms," fourth edition (EPA-821-R-02-013) or its most recent update:
 - 1) Chronic static renewal survival and reproduction test using the water flea (*Ceriodaphnia dubia*) (Method 1002.0). This test should be terminated when 60% of the surviving adults in the control produce three broods or at the end of eight days, whichever occurs first. This test shall be conducted once per quarter.
 - 2) Chronic static renewal 7-day larval survival and growth test using the fathead minnow (*Pimephales promelas*) (Method 1000.0). A minimum of five replicates with eight organisms per replicate shall be used in the control and in each dilution. This test shall be conducted once per quarter.

The permittee must perform and report a valid test for each test species during the prescribed reporting period. An invalid test must be repeated during the same reporting period. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. The permittee shall use five effluent dilution concentrations and a control in each toxicity test. These effluent dilution concentrations are 32%, 42%, 56%, 75%, and 100% effluent. The critical dilution, defined as 100% effluent, is the effluent concentration representative of the proportion of effluent in the receiving water during critical low flow or critical mixing conditions.
- d. This permit may be amended to require a WET limit, a chemical-specific effluent limit, a best management practice, or other appropriate actions to address toxicity. The permittee may be required to conduct a toxicity reduction evaluation (TRE) after multiple toxic events.
- e. Testing Frequency Reduction
 - 1) If none of the first four consecutive fathead minnow quarterly tests demonstrates significant toxicity, the permittee may submit this

- information in writing and, upon approval, reduce the testing frequency to once per year.
- 2) If one or more of the first four consecutive quarterly fathead minnow tests demonstrates significant toxicity, the permittee shall continue quarterly testing until this permit is reissued. If a testing frequency reduction had been previously granted and a subsequent test demonstrates significant toxicity, the permittee shall resume a quarterly testing frequency for that species until this permit is reissued.
- f. Should a water flea test fail (i.e., demonstrate significant toxicity), the testing frequency for the water flea increases to monthly until three consecutive tests pass (i.e., do not demonstrate significant toxicity), at which time the testing frequency of once per quarter resumes. If three or more failures are demonstrated during the permit term, a WET limit will be included in the subsequently reissued permit. If three or more failures are demonstrated during the permit term for the water flea, a WET limit will be included in the subsequently reissued permit. Any two lethal failures in a three-month period will require the permittee to initiate a TRE (see Part 5. Toxicity Reduction Evaluation).

2. Required Toxicity Testing Conditions

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control and all effluent dilutions, which fail to meet the following criteria:
 - 1) a control mean survival of 80% or greater;
 - 2) a control mean number of water flea neonates per surviving adult of 15 or greater;
 - 3) a control mean dry weight of surviving fathead minnow larvae of 0.25 mg or greater;
 - a control coefficient of variation percent (CV%) of 40 or less in between replicates for the young of surviving females in the water flea test; and the growth and survival endpoints in the fathead minnow test;
 - a critical dilution CV% of 40 or less for the young of surviving females in the water flea test; and the growth and survival endpoints for the fathead minnow test. However, if statistically significant lethal or nonlethal effects are exhibited at the critical dilution, a CV% greater than 40 shall not invalidate the test;
 - 6) a percent minimum significant difference of 47 or less for water flea reproduction; and
 - 7) a percent minimum significant difference of 30 or less for fathead minnow growth.
- b. Statistical Interpretation

- 1) For the water flea survival test, the statistical analyses used to determine if there is a significant difference between the control and an effluent dilution shall be the Fisher's exact test as described in the manual referenced in Part 1.b.
- 2) For the water flea reproduction test and the fathead minnow larval survival and growth tests, the statistical analyses used to determine if there is a significant difference between the control and an effluent dilution shall be in accordance with the manual referenced in Part 1.b..
- 3) The permittee is responsible for reviewing test concentration-response relationships to ensure that calculated test-results are interpreted and reported correctly. The document entitled "Method Guidance and Recommendation for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136)" (EPA 821-B-00-004) provides guidance on determining the validity of test results.
- 4) If significant lethality is demonstrated (that is, there is a statistically significant difference in survival at the critical dilution when compared to the survival in the control), the conditions of test acceptability are met, and the survival of the test organisms are equal to or greater than 80% in the critical dilution and all dilutions below that, then the permittee shall report a survival No Observed Effect Concentration (NOEC) of not less than the critical dilution for the reporting requirements.
- 5) The NOEC is defined as the greatest effluent dilution at which no significant effect is demonstrated. The Lowest Observed Effect Concentration (LOEC) is defined as the lowest effluent dilution at which a significant effect is demonstrated. A significant effect is defined as a statistically significant difference between the survival, reproduction, or growth of the test organism in a specified effluent dilution when compared to the survival, reproduction, or growth of the test organism in the control (0% effluent).
- 6) The use of NOECs and LOECs assumes either a monotonic (continuous) concentration-response relationship or a threshold model of the concentration-response relationship. For any test result that demonstrates a non-monotonic (non-continuous) response, the NOEC should be determined based on the guidance manual referenced in Item 3.
- 7) Pursuant to the responsibility assigned to the permittee in Part 2.b.3), test results that demonstrate a non-monotonic (non-continuous) concentration-response relationship may be submitted, prior to the due date, for technical review. The guidance manual referenced in Item 3 will be used when making a determination of test acceptability.
- 8) TCEQ staff will review test results for consistency with rules, procedures, and permit requirements.
- c. Dilution Water

- 1) Dilution water used in the toxicity tests must be the receiving water collected at a point upstream of the discharge point as close as possible to the discharge point but unaffected by the discharge. Where the toxicity tests are conducted on effluent discharges to receiving waters that are classified as intermittent streams, or where the toxicity tests are conducted on effluent discharges where no receiving water is available due to zero flow conditions, the permittee shall:
 - a) substitute a synthetic dilution water that has a pH, hardness, and alkalinity similar to that of the closest downstream perennial water unaffected by the discharge; or
 - b) use the closest downstream perennial water unaffected by the discharge.
- 2) Where the receiving water proves unsatisfactory as a result of pre-existing instream toxicity (i.e. fails to fulfill the test acceptance criteria of Part 2.a.), the permittee may substitute synthetic dilution water for the receiving water in all subsequent tests provided the unacceptable receiving water test met the following stipulations:
 - a) a synthetic lab water control was performed (in addition to the receiving water control) which fulfilled the test acceptance requirements of Part 2.a;
 - b) the test indicating receiving water toxicity was carried out to completion (i.e., 7 days); and
 - c) the permittee submitted all test results indicating receiving water toxicity with the reports and information required in Part 3.
- 3) The synthetic dilution water shall consist of standard, moderately hard, reconstituted water. Upon approval, the permittee may substitute other appropriate dilution water with chemical and physical characteristics similar to that of the receiving water.

d. Samples and Composites

- 1) The permittee shall collect a minimum of three composite samples from Outfall 001. The second and third composite samples will be used for the renewal of the dilution concentrations for each toxicity test.
- 2) The permittee shall collect the composite samples such that the samples are representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged on an intermittent basis.
- 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the first composite sample. The holding time for any subsequent composite sample shall not exceed 72 hours.

Samples shall be maintained at a temperature of o-6 degrees Centigrade during collection, shipping, and storage.

- 4) If Outfall 001 ceases discharging during the collection of effluent samples, the requirements for the minimum number of effluent samples, the minimum number of effluent portions, and the sample holding time are waived during that sampling period. However, the permittee must have collected an effluent composite sample volume sufficient to complete the required toxicity tests with renewal of the effluent. When possible, the effluent samples used for the toxicity tests shall be collected on separate days if the discharge occurs over multiple days. The sample collection duration and the static renewal protocol associated with the abbreviated sample collection must be documented in the full report.
- 5) The effluent samples shall not be dechlorinated after sample collection.

3. Reporting

All reports, tables, plans, summaries, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated whether carried to completion or not.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 1 forms provided with this permit.
 - 1) Annual biomonitoring test results are due on or before January 20th for biomonitoring conducted during the previous 12-month period.
 - 2) Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.
 - Quarterly biomonitoring test results are due on or before April 20th, July 20th, October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.
 - 4) Monthly biomonitoring test results are due on or before the 20th day of the month following sampling.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the water flea, Parameter TLP3B, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) For the water flea, Parameter TOP3B, report the NOEC for survival.
 - 3) For the water flea, Parameter TXP3B, report the LOEC for survival.

- 4) For the water flea, Parameter TWP3B, enter a "1" if the NOEC for reproduction is less than the critical dilution; otherwise, enter a "o."
- 5) For the water flea, Parameter TPP3B, report the NOEC for reproduction.
- 6) For the water flea, Parameter TYP3B, report the LOEC for reproduction.
- 7) For the fathead minnow, Parameter TLP6C, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
- 8) For the fathead minnow, Parameter TOP6C, report the NOEC for survival.
- 9) For the fathead minnow, Parameter TXP6C, report the LOEC for survival.
- For the fathead minnow, Parameter TWP6C, enter a "1" if the NOEC for growth is less than the critical dilution; otherwise, enter a "0."
- 11) For the fathead minnow, Parameter TPP6C, report the NOEC for growth.
- 12) For the fathead minnow, Parameter TYP6C, report the LOEC for growth.
- d. Enter the following codes for fathead minnow retests only:
 - 1) For retest number 1, Parameter 22415, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) For retest number 2, Parameter 22416, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."

4. <u>Persistent Toxicity</u>

The requirements of this Part apply only when a test demonstrates a significant effect at the critical dilution. Significant lethality and significant effect were defined in Part 2.b. Significant sublethality is defined as a statistically significant difference in growth/reproduction at the critical dilution when compared to the growth/reproduction in the control.

- a. The permittee shall conduct a total of 2 additional tests (retests) for any species that demonstrates a significant effect (lethal or sublethal) at the critical dilution. The two retests shall be conducted monthly during the next two consecutive months. The permittee shall not substitute either of the two retests in lieu of routine toxicity testing. All reports shall be submitted within 20 days of test completion. Test completion is defined as the last day of the test.
- b. If the retests are performed due to a demonstration of significant lethality, and one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall initiate the TRE requirements as specified in Part 5. The provisions of Part 4.a. are suspended upon completion of the two retests and submittal of the TRE action plan and schedule defined in Part 5.

- If neither test demonstrates significant lethality and the permittee is testing under the reduced testing frequency provision of Part 1.e., the permittee shall return to a quarterly testing frequency for that species.
- c. If the two retests are performed due to a demonstration of significant sublethality, and one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall again perform two retests as stipulated in Part 4.a.
- d. If the two retests are performed due to a demonstration of significant sublethality, and neither test demonstrates significant lethality, the permittee shall continue testing at the quarterly frequency.
- e. Regardless of whether retesting for lethal or sublethal effects, or a combination of the two, no more than one retest per month is required for a species.

5. <u>Toxicity Reduction Evaluation</u>

- a. Within 45 days of the retest that demonstrates significant lethality, or within 45 days of being so instructed due to multiple toxic events, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, or within 90 days of being so instructed due to multiple toxic events, the permittee shall submit a TRE action plan and schedule for conducting a TRE. The plan shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analyses to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall describe an approach for the reduction or elimination of lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:
 - Specific Activities The TRE action plan shall specify the approach the 1) permittee intends to utilize in conducting the TRE, including toxicity characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Toxicity Identification Evaluation: Characterization of Chronically Toxic Effluents, Phase I" (EPA/600/6-91/005F) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aquatic Toxicity Identification Evaluations, Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-

- 92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;
- 2) Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures, and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects a specific pollutant and source of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;
- Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
- 4) Project Organization The TRE action plan should describe the project staff, project manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:
 - 1) results and interpretation of any chemical-specific analyses for the identified and suspected pollutant performed during the quarter;
 - 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;
 - any data and substantiating documentation which identifies the pollutant(s) and source of effluent toxicity;
 - 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
 - 5) any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to meet no significant lethality at the critical dilution; and
 - any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.
- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing

- using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive months with at least monthly testing. At the end of the 12 months, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply as a result of corrective actions taken by the permittee. Corrective actions are defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

- g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 28 months from the last test day of the retest that confirmed significant lethal effects at the critical dilution. The permittee may petition the Executive Director (in writing) for an extension of the 28-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE. The report shall provide information pertaining to the specific control mechanism selected that will, when implemented, result in the reduction of effluent toxicity to no significant lethality at the critical dilution. The report shall also provide a specific corrective action schedule for implementing the selected control mechanism.
- h. Based on the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements, where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and specify a chemical-specific limit.
- i. Copies of any and all required TRE plans and reports shall also be submitted to the U.S. EPA Region 6 office, 6WQ-PO.

TABLE 1 (SHEET 1 OF 4)

BIOMONITORING REPORTING

CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION

		Da	ate Time	Da	ate Time	
Dates and Tim	nes No. 1	FROM:		TO:		
Composites Collected	No. 2	FROM:		TO:		
	No. 3	FROM:		TO:		
Test initiated	l:		am/	pm		date
Diluti	on water used	l:	Receiving wat	er	Synthetic D	ilution water
	NUMBER	R OF YOUNG	PRODUCED I	PER ADULT A	T END OF TE	EST
			Percent	effluent		
REP	0%	32%	42%	56%	75%	100%
A						

	Percent effluent						
REP	0%	32%	42%	56%	75%	100%	
A							
В							
С							
D							
Е							
F							
G							
Н							
I							
J							
Survival Mean							
Total Mean							
CV%*							
PMSD							

^{*}Coefficient of Variation = standard deviation x 100/mean (calculation based on young of the surviving adults)

Designate males (M), and dead females (D), along with number of neonates (x) released prior to death.

TABLE 1 (SHEET 2 OF 4)

CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION TEST

1. Dunnett's Procedure or Steel's Many-One Rank Test or Wilcoxon Rank Sum Test (with Bonferroni adjustment) or t-test (with Bonferroni adjustment) as appropriate:

Is the mean number of young produced per adult significantly less than the number of young per adult in the control for the % effluent corresponding to significant nonlethal effects?

CRITICAL DILUTION (100%):	YES	NO
---------------------	--------	-----	----

PERCENT SURVIVAL

	Percent effluent					
Time of Reading	0%	32%	42%	56%	75%	100%
24h						
48h						
End of Test		_			_	

2. Fisher's Exact Test:

Is the mean survival at test end significantly less than the control survival for the % effluent corresponding to lethality?

CRITICAL DILUTION (100%):	YES	NO

- 3. Enter percent effluent corresponding to each NOEC\LOEC below:
 - a.) NOEC survival = ______% effluent
 - b.) LOEC survival = _____ % effluent
 - c.) NOEC reproduction = ______% effluent
 - d.) LOEC reproduction = _____ % effluent

Time

Date

TABLE 1 (SHEET 3 OF 4)

BIOMONITORING REPORTING

FATHEAD MINNOW LARVAE GROWTH AND SURVIVAL

Date Time

Dates and Times Composites	No. 1 FR	OM:			TO:		
Collected	No. 2 FR	No. 2 FROM: TO:					
	No. 3 FR	OM:		7	го:		
Test initiated: _				am/pm			date
Dilution wa	ter used:	R	Receiving v	water		Synthetic di	ilution water
		FATHEAD	MINNO	W GROW	ΓΗ DATA		
Effluent Concentration	Avera	ge Dry We	ight in rep	olicate cha	mbers	Mean Dry	CV%*
Concentration	A	В	С	D	E	Weight	
0%							
32%							
42%							
56%							
75%							
100%							
PMSD				·			
Bonferroni a	rocedure or S adjustment) of dry weight (g the % efflue	Steel's Man or t-test (w growth) at nt correspo	y-One Ra ith Bonfe 7 days sig onding to	nk Test or rroni adjus nificantly significant	stment) a less than nonleth		e:
	CRITICAL	L DILUTIC)N (100)	%):	YES _	NO	

TABLE 1 (SHEET 4 OF 4)

BIOMONITORING REPORTING

FATHEAD MINNOW GROWTH AND SURVIVAL TEST

FATHEAD MINNOW SURVIVAL DATA

Effluent Concentration	Percent Survival in replicate chambers				Mean percent survival		CV%*		
	A	В	С	D	E	24h	48h	7 day	2170
0%									
32%									
42%									
56%									
75%									
100%	-		_	-	_	_	_		

^{*} Coefficient of Variation = standard deviation x 100/mean

	•						
2.	Dunnett's Procedure or Steel's Many-One Rank Test or Wilcoxon Rank Sum Test (with Bonferroni adjustment) or t-test (with Bonferroni adjustment) as appropriate:						
	Is the mean survival at 7 days significantly less than the control survival for the % effluent corresponding to lethality?						
	CRITICAL DILUTION (100%):YESNO						
3.	Enter percent effluent corresponding to each NOEC\LOEC below:						
	a.) NOEC survival =% effluent						
	b.) LOEC survival =% effluent						
	c.) NOEC growth =% effluent						
	d.) LOEC growth = % effluent						

24-HOUR ACUTE BIOMONITORING REQUIREMENTS: FRESHWATER

The provisions of this section apply to Outfall 001 for whole effluent toxicity (WET) testing.

1. <u>Scope, Frequency, and Methodology</u>

- a. The permittee shall test the effluent for lethality in accordance with the provisions in this section. Such testing will determine compliance with Texas Surface Water Quality Standard 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival of the appropriate test organisms in 100% effluent for a 24-hour period.
- b. The toxicity tests specified shall be conducted once per six months. The permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified in this section of the permit and in accordance with "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms," fifth edition (EPA-821-R-02-012) or its most recent update:
 - 1) Acute 24-hour static toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.
 - 2) Acute 24-hour static toxicity test using the fathead minnow (*Pimephales promelas*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.

A valid test result must be submitted for each reporting period. The permittee must report, and then repeat, an invalid test during the same reporting period. The repeat test shall include the control and the 100% effluent dilution and use the appropriate number of organisms and replicates, as specified above. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. In addition to an appropriate control, a 100% effluent concentration shall be used in the toxicity tests. Except as discussed in item 2.b., the control and dilution water shall consist of standard, synthetic, moderately hard, reconstituted water.
- d. This permit may be amended to require a WET limit, a Best Management Practice (BMP), Chemical-Specific (CS) limits, or other appropriate actions to address toxicity. The permittee may be required to conduct a Toxicity Reduction Evaluation after multiple toxic events.
- e. As the dilution series specified in the Chronic Biomonitoring Requirements includes a 100% effluent concentration, the results from those tests may fulfill the requirements of this Section; any tests performed in the proper time interval may be substituted. Compliance will be evaluated as specified in item a. The 50% survival in 100% effluent for a 24-hour period standard applies to all tests utilizing a 100% effluent dilution, regardless of whether the results are submitted to comply with the minimum testing frequency defined in item b.

2. Required Toxicity Testing Conditions

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control, if the control fails to meet a mean survival equal to or greater than 90%.
- b. Dilution Water In accordance with item 1.c., the control and dilution water shall normally consist of standard, synthetic, moderately hard, reconstituted water. If the permittee utilizes the results of a chronic test to satisfy the requirements in item 1.e., the permittee may use the receiving water or dilution water that meets the requirements of item 2.a as the control and dilution water.

c. Samples and Composites

- 1) The permittee shall collect one composite sample from Outfall 001.
- 2) The permittee shall collect the composite sample such that the sample is representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged.
- 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the composite sample. The sample shall be maintained at a temperature of o-6 degrees Centigrade during collection, shipping, and storage.
- 4) If Outfall 001 ceases discharging during the collection of the effluent composite sample, the requirements for the minimum number of effluent portions are waived. However, the permittee must have collected a composite sample volume sufficient for completion of the required test. The abbreviated sample collection, duration, and methodology must be documented in the full report.
- 5) The effluent sample shall not be dechlorinated after sample collection.

3. Reporting

All reports, tables, plans, summaries, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 2 forms provided with this permit.
 - 1) Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.

- 2) Quarterly biomonitoring test results are due on or before April 20th, July 20th, and October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the water flea, Parameter TIE3D, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."
 - 2) For the fathead minnow, Parameter TIE6C, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."
- d. Enter the following codes for retests only:
 - 1) For retest number 1, Parameter 22415, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."
 - 2) For retest number 2, Parameter 22416, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."

4. <u>Persistent Mortality</u>

The requirements of this part apply when a toxicity test demonstrates significant lethality, which is defined as a mean mortality of 50% or greater of organisms exposed to the 100% effluent concentration for 24 hours.

- a. The permittee shall conduct 2 additional tests (retests) for each species that demonstrates significant lethality. The two retests shall be conducted once per week for 2 weeks. Five effluent dilution concentrations in addition to an appropriate control shall be used in the retests. These effluent concentrations are 6%, 13%, 25%, 50% and 100% effluent. The first retest shall be conducted within 15 days of the laboratory determination of significant lethality. All test results shall be submitted within 20 days of test completion of the second retest. Test completion is defined as the 24th hour.
- b. If one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall initiate the TRE requirements as specified in Part 5.

5. <u>Toxicity Reduction Evaluation</u>

- a. Within 45 days of the retest that demonstrates significant lethality, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, the permittee

shall submit a TRE action plan and schedule for conducting a TRE. The plan shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analyses to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall lead to the successful elimination of significant lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:

- 1) Specific Activities - The TRE action plan shall specify the approach the permittee intends to utilize in conducting the TRE, including toxicity characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures" (EPA/600/6-91/003) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aguatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;
- Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects specific pollutant and source of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;
- 3) Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
- 4) Project Organization The TRE Action Plan should describe the project staff, project manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the

progress of the TRE. The quarterly TRE activities reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:

- 1) results and interpretation of any chemical-specific analyses for the identified and suspected pollutant performed during the quarter;
- 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;
- any data and substantiating documentation that identifies the pollutant and source of effluent toxicity;
- 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
- 5) any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to eliminate significant lethality; and
- 6) any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.
- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive weeks with at least weekly testing. At the end of the 12 weeks, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply as a result of corrective actions taken by the permittee. Corrective actions are defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

- g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 18 months from the last test day of the retest that demonstrates significant lethality. The permittee may petition the Executive Director (in writing) for an extension of the 18-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE. The report shall specify the control mechanism that will, when implemented, reduce effluent toxicity as specified in Part 5.h. The report shall also specify a corrective action schedule for implementing the selected control mechanism. A copy of the TRE final report shall also be submitted to the U.S. EPA Region 6 office.
- h. Within 3 years of the last day of the test confirming toxicity, the permittee shall comply with 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival of the test organism in 100% effluent at the end of 24-hours. The permittee may petition the Executive Director (in writing) for an extension of the 3-year limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE.

The permittee may be exempted from complying with 30 TAC § 307.6(e)(2)(B) upon proving that toxicity is caused by an excess, imbalance, or deficiency of dissolved salts. This exemption excludes instances where individually toxic components (e.g., metals) form a salt compound. Following the exemption, this permit may be amended to include an ion-adjustment protocol, alternate species testing, or single species testing.

- i. Based upon the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and specify a chemical-specific limit.
- j. Copies of any and all required TRE plans and reports shall also be submitted to the U.S. EPA Region 6 office, 6WQ-PO.

TABLE 2 (SHEET 1 OF 2)

WATER FLEA SURVIVAL

GENERAL INFORMATION

	Time	Date
Composite Sample Collected		
Test Initiated		

PERCENT SURVIVAL

Time	Don			Percent	t effluent		
Time	Rep	0%	6%	13%	25%	50%	100%
	A						
	В						
o 4h	С						
24h	D						
	E						
	MEAN						

Enter perc	ent effluent corr	esponding to	the LC50	below:

24 hour LC50 = _____% effluent

TABLE 2 (SHEET 2 OF 2)

FATHEAD MINNOW SURVIVAL

GENERAL INFORMATION

	Time	Date
Composite Sample Collected		
Test Initiated		

PERCENT SURVIVAL

Time	Don	Percent effluent					
Time	Rep	0%	6%	13%	25%	50%	100%
24h	A						
	В						
	С						
	D						
	Е						
	MEAN						

Enton.		offluor+		. dina +	ດ ∔ໄດດ T	C = 0	halarırı
Enter	bercent	emuem	correspon	iame to	o me r	んちひ	below:

24 hour LC50 = _____% effluent

FACT SHEET AND EXECUTIVE DIRECTOR'S PRELIMINARY DECISION

For draft Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010231001, EPA I.D. No. TX0071790, to discharge to water in the state.

Issuing Office: Texas Commission on Environmental Quality

P.O. Box 13087

Austin, Texas 78711-3087

Applicant: City of Navasota

P.O. box 910

Navasota, Texas 77868

Prepared By: Sujata Sinha

Domestic Permits Team

Domestic Wastewater Section (MC 148)

Water Quality Division

(512) 239-1963

Date: November 20, 2025

Permit Action: Renewal

1. EXECUTIVE DIRECTOR RECOMMENDATION

The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The draft permit includes an expiration date of **three years from the date of issuance**.

2. APPLICANT ACTIVITY

The applicant has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of the existing permit that authorizes the discharge of treated domestic wastewater at an annual average flow not to exceed 1.8 million gallons per day (MGD). The existing wastewater treatment facility serves the City of Navasota.

3. FACILITY AND DISCHARGE LOCATION

The plant site is located at 108 North Peeples Street, in the City of Navasota, Grimes County, Texas 77868.

Outfall Location:

Outfall Number	Latitude	Longitude	
001	30.383878 N	96.101176 W	

The treated effluent is discharged to Cedar Creek, thence to Navasota River Below Lake Limestone in Segment No. 1209 of the Brazos River Basin. The unclassified receiving water use is intermediate aquatic life use for Cedar Creek. The designated uses for Segment No. 1209 are primary contact recreation, public water supply, and high aquatic life use.

4. TREATMENT PROCESS DESCRIPTION AND SEWAGE SLUDGE DISPOSAL

The City of Navasota Wastewater Treatment Facility is an activated sludge process plant operated in the extended aeration mode. Treatment units include a bar screen, two oxidation ditches, three final clarifiers, two aerobic sludge digesters, a belt filter press, a chlorine contact chamber, and a dechlorination chamber. The facility is in operation.

Sludge generated from the treatment facility is hauled by a registered transporter and disposed of at a TCEQ-permitted landfill, Twin Oaks Landfill, MSW Permit No. 2292, in Grimes County. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

5. INDUSTRIAL WASTE CONTRIBUTION

The draft permit includes pretreatment requirements that are appropriate for a facility of this size and complexity. The facility does not appear to receive significant industrial wastewater contributions. The WWTP receives process wastewater from two significant industrial user (SIU). The process wastewater flow from the SIU contributes less than 0.3673% of the WWTP current maximum hydraulic capacity. The POTW has not experienced any instances of pass through or interference, therefore, at this time, the TCEQ is not requiring the permittee to develop a pretreatment program.

6. SUMMARY OF SELF-REPORTED EFFLUENT ANALYSES

The following is a summary of the applicant's effluent monitoring data for the period September 2023 through September 2025. The average of Daily Average value is computed by the averaging of all 30-day average values for the reporting period for each parameter: flow, five-day carbonaceous biochemical oxygen demand (CBOD $_5$), total suspended solids (TSS), ammonia nitrogen (NH $_3$ -N), Total Dissolved Solids (TDS), and Total Chloride (Cl). The average of Daily Average value for *Escherichia coli* (*E. coli*) in colony-forming units (CFU) or most probable number (MPN) per 100 ml is calculated via geometric mean.

<u>Parameter</u>	Average of Daily Avg
Flow, MGD	0.70
CBOD ₅ , mg/l	3.8
TSS, mg/l	4.7
NH_3 -N, mg/l	1.5
TDS, mg/l	N/A*
Total Cl, mg/L	114
E. coli, CFU or MPN per 100 ml	2

^{*}Analytical data for TDS was not present in the Integrated Compliance Information System database.

7. DRAFT PERMIT CONDITIONS AND MONITORING REQUIREMENTS

The effluent limitations and monitoring requirements for those parameters that are limited in the draft permit are as follows:

A. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

The annual average flow of effluent shall not exceed 1.8 MGD, nor shall the average discharge during any two-hour period (2-hour peak) exceed 5,208 gallons per minute (gpm).

<u>Parameter</u>	30-Day Average		<u>7-Day</u>	<u>Daily</u>
	- •		<u>Average</u>	<u>Maximum</u>
	<u>mg/l</u>	<u>lbs/day</u>	<u>mg/l</u>	<u>mg/l</u>
CBOD_5	10	150	15	25
TSS	15	225	25	40
NH_3 -N	3	45	6	10
DO (minimum)	4.0	N/A	N/A	N/A
TDS	Report	Report	N/A	Report
Cl, Total	Report	Report	N/A	Report
E. coli, CFU or MPN	126	N/A	N/A	399
per 100 ml		•		

The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.

The effluent shall contain a total chlorine residual of at least 1.0 mg/l after a detention time of at least 20 minutes (based on peak flow) and shall be monitored daily by grab sample. The permittee shall dechlorinate the chlorinated effluent to less than 0.1 mg/l total chlorine residual and shall monitor total chlorine residual daily by grab sample after the dechlorination process. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.

Monitoring Requirement
Continuous
Two/week
Two/week
Two/week
One/week
One/week
Two/week
One/week

B. SEWAGE SLUDGE REQUIREMENTS

The draft permit includes Sludge Provisions according to the requirements of 30 TAC Chapter 312, Sludge Use, Disposal, and Transportation. Sludge generated from the treatment facility is hauled by a registered transporter and disposed of at a TCEQ-permitted landfill, Twin Oaks Landfill, MSW Permit No. 2292, in Grimes County. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

C. PRETREATMENT REQUIREMENTS

Permit requirements for pretreatment are based on TPDES regulations contained in 30 TAC Chapter 305, which references 40 Code of Federal Regulations (CFR) Part 403, "General Pretreatment Regulations for Existing and New Sources of Pollution" [rev. Federal Register/ Vol. 70/ No. 198/ Friday, October 14, 2005/ Rules and Regulations, pages 60134-60798]. The permit includes specific requirements that establish responsibilities of local government, industry, and the public to implement the standards to control pollutants which pass through or interfere with treatment processes in publicly owned treatment works or which may contaminate the sewage sludge. This permit has appropriate pretreatment language for a facility of this size and complexity.

D. WHOLE EFFLUENT TOXICITY (BIOMONITORING) REQUIREMENTS

- (1) The draft permit includes chronic freshwater biomonitoring requirements as follows. The permit requires five dilutions in addition to the control (0% effluent) to be used in the toxicity tests. These additional effluent concentrations shall be 32%, 42%, 56%, 75%, and 100%. The low-flow effluent concentration (critical dilution) is defined as 100% effluent. The critical dilution is in accordance with the "Aquatic Life Criteria" section of the "Water Quality Based Effluent Limitations/Conditions" section.
 - (a) Chronic static renewal survival and reproduction test using the water flea (*Ceriodaphnia dubia*). The frequency of the testing is once per quarter for at least the first year of testing, after which the permittee may apply for a testing frequency reduction.
 - (b) Chronic static renewal 7-day larval survival and growth test using the fathead minnow (*Pimephales promelas*). The frequency of the testing is once per quarter for at least the first year of testing, after which the permittee may apply for a testing frequency reduction.
- (2) The draft permit includes the following minimum 24-hour acute freshwater biomonitoring requirements at a frequency of once per six:
 - (a) Acute 24-hour static toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*).
 - (b) Acute 24-hour static toxicity test using the fathead minnow (*Pimephales promelas*).

E. BUFFER ZONE REQUIREMENTS

The permittee shall comply with the requirements of 30 TAC § 309.13(a) through (d). The permittee provided a buffer zone variance under the permit issued on September 2, 1994 according to 30 TAC § 309.13 (e)(3). The permittee shall maintain the restrictive easements.

F. SUMMARY OF CHANGES FROM APPLICATION

None.

G. SUMMARY OF CHANGES FROM EXISTING PERMIT

The Standard Permit Conditions, Sludge Provisions, Other Requirements, and Biomonitoring sections of the draft permit have been updated. Pretreatment requirements have been continued in the draft permit.

For Publicly Owned Treatment Works (POTWs), effective December 21, 2025, the permittee must submit the written report for unauthorized discharges and unanticipated bypasses that exceed any effluent limit in the permit using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

A three-year permit will be issued based on failure of the water flea Whole Effluent Toxicity (WET) testing (Biomonitoring).

The draft permit includes all updates based on the 30 TAC § 312 rule change effective April 23, 2020.

8. DRAFT PERMIT RATIONALE

A. TECHNOLOGY-BASED EFFLUENT LIMITATIONS/CONDITIONS

Regulations promulgated in Title 40 of the CFR require that technology-based limitations be placed in wastewater discharge permits based on effluent limitations guidelines, where applicable, or on best professional judgment (BPJ) in the absence of guidelines.

Effluent limitations for maximum and minimum pH are in accordance with 40 CFR § 133.102(c) and 30 TAC § 309.1(b).

B. WATER QUALITY SUMMARY AND COASTAL MANAGEMENT PLAN

(1) WATER QUALITY SUMMARY

The treated effluent is discharged to to Cedar Creek, thence to Navasota River Below Lake Limestone in Segment No. 1209 of the Brazos River Basin. The unclassified receiving water use is intermediate aquatic life use for Cedar Creek. The designated uses for Segment No. 1209 are primary contact recreation, public water supply, and high aquatic life use. The effluent limitations in the draft permit will maintain and protect the existing instream uses. All determinations are preliminary and subject to additional review and/or revisions.

The Houston Toad (Bufo houstonensis Sanders), an endangered, aquatic-dependent species of critical concern, occurs within the Segment 1209 watershed as well as the 12070103 United States Geological Survey hydrologic unit code. This determination is based on the United States Fish and Wildlife Service's (USFWS) biological opinion on the State of Texas authorization of the TPDES (September 14, 1998, October 21, 1998 update). To make this determination for TPDES permits, TCEQ and EPA only consider aquatic or aquatic-dependent species occurring in

watersheds of critical concern or high priority as listed in Appendix A of the USFWS biological opinion. The determination is subject to reevaluation due to subsequent updates or amendments to the biological opinion. Species distribution information for the Segment 1209 watershed is provided by the USFWS and documents the toad's presence solely in the vicinity of Running Creek in Leon County, which is farther up the watershed from the facility associated with this permit action. Based upon this information, it is determined that the facility's discharge is not expected to impact the Houston Toad. The permit does not require EPA review with respect to the presence of endangered or threatened species.

Segment No. 1209 is not currently listed on the state's inventory of impaired and threatened waters (the 2024 CWA § 303(d) list).

One finalized Total Maximum Daily Load (TMDL) Project is applicable to Segment 1209: Two Total Maximum Daily Loads for Indicator Bacteria in the Navasota River below Lake Limestone (Project No. 111). On August 28, 2019, the Texas Commission on Environmental Quality (TCEQ) adopted Two Total Maximum Daily Loads for Indicator Bacteria in the Navasota River below Lake Limestone. The USEPA approved the TMDLs on October 25, 2019. The TMDL addresses elevated levels of bacteria in one classified segment (Navasota River Below Lake Limestone – 1209, Assessment Units (AUs) _03 and _05) in this watershed. This project takes a watershed approach, but the TMDL only applies to AU 1209_03 and the assessment units and additional unclassified segments upstream of it (1209_04, 1209_05, 1209_H, 1209G, 1209J, 1209K, and 1209P). The waste load allocation (WLA) for wastewater treatment facilities (WWTFs) was established as the final permitted flow for each facility multiplied by the geometric mean criterion for bacteria multiplied by a conversion factor (to get to units per day). The allocated loads were calculated for E. coli. Future growth from existing or new permitted sources is not limited by these TMDLs as long as the sources do not exceed the limits provided. To ensure that effluent limitations for this discharge are consistent with the WLAs provided in the TMDL, a concentration-based effluent limitation of 126 CFU or MPN per 100 mL for E. coli has been continued in the draft permit.

The pollutant analysis of treated effluent provided by the permittee in the application indicated 611 mg/l TDS, 21 mg/l sulfate, and 107 mg/l chloride present in the effluent. The segment criteria for Segment No. 1209 are 600 mg/l for TDS, 100 mg/l for sulfate, and 140 mg/l for chlorides. Based on dissolved solids screening, no additional limits or monitoring requirements are needed for total dissolved solids, chloride, or sulfate. **TDS and chloride reporting and monitoring requirements will continue**. See Attachment A of this Fact Sheet.

The effluent limitations and conditions in the draft permit comply with EPA-approved portions of the 2018 Texas Surface Water Quality Standards (TSWQS), 30 TAC §§ 307.1 - 307.10, effective March 1, 2018; 2014 TSWQS, effective March 6, 2014; 2010 TSWQS, effective July 22, 2010; and 2000 TSWQS, effective July 26, 2000.

(2) CONVENTIONAL PARAMETERS

Effluent limitations for the conventional effluent parameters (i.e., Five-Day Biochemical Oxygen Demand or Five-Day Carbonaceous Biochemical Oxygen Demand, Ammonia Nitrogen, etc.) are based on stream standards and waste load allocations for water quality-limited streams as established in the TSWQS and the State of Texas Water Quality Management Plan (WQMP).

The effluent limitations in the draft permit have been reviewed for consistency with the WQMP. The existing effluent limitations are consistent with the approved WQMP.

The effluent limitations in the draft permit meet the requirements for secondary treatment and the requirements for disinfection according to 30 TAC Chapter 309, Subchapter A: Effluent Limitations.

(3) COASTAL MANAGEMENT PLAN

The facility is not located in the Coastal Management Program boundary.

C. WATER QUALITY-BASED EFFLUENT LIMITATIONS/CONDITIONS

(1) GENERAL COMMENTS

The Texas Surface Water Quality Standards (30 TAC Chapter 307) state that surface waters will not be toxic to man, or to terrestrial or aquatic life. The methodology outlined in the "Procedures to Implement the Texas Surface Water Quality Standards" is designed to ensure compliance with 30 TAC Chapter 307. Specifically, the methodology is designed to ensure that no source will be allowed to discharge any wastewater that: (1) results in instream aquatic toxicity; (2) causes a violation of an applicable narrative or numerical state water quality standard; (3) results in the endangerment of a drinking water supply; or (4) results in aquatic bioaccumulation that threatens human health.

(2) AQUATIC LIFE CRITERIA

(a) SCREENING

Water quality-based effluent limitations are calculated from freshwater aquatic life criteria found in Table 1 of the Texas Surface Water Quality Standards (30 TAC Chapter 307).

There is no mixing zone for this discharge directly to an intermittent stream with perennial pools; acute and chronic freshwater criteria apply at the end of pipe. The following critical effluent percentages are being used:

Acute Effluent % 100% Chronic Effluent % 100%

Waste load allocations (WLAs) are calculated using the above estimated effluent percentages, criteria outlined in the Texas Surface Water Quality Standards, and partitioning coefficients for metals (when appropriate and designated in the implementation procedures). The WLA is the end-ofpipe effluent concentration that can be discharged when, after mixing in the receiving stream, instream numerical criteria will not be exceeded. From the WLA, a long-term average (LTA) is calculated using a log normal probability distribution, a given coefficient of variation (0.6), and a 90th percentile confidence level. The LTA is the long-term average effluent concentration for which the WLA will never be exceeded using a selected percentile confidence level. The lower of the two LTAs (acute and chronic) is used to calculate a daily average and daily maximum effluent limitation for the protection of aquatic life using the same statistical considerations with the 99th percentile confidence level and a standard number of monthly effluent samples collected (12). Assumptions used in deriving the effluent limitations include segment values for hardness, chlorides, pH, and TSS according to the segment-specific values contained in the TCEQ guidance document "Procedures to Implement the Texas Surface Water Quality Standards." The segment values are 54 mg/l for hardness (as calcium carbonate), 44mg/l chlorides, 7.1 standard units for pH, and 17 mg/l for TSS. For additional details on the calculation of water quality-based effluent limitations, refer to the TCEQ guidance document.

TCEQ practice for determining significant potential is to compare the reported analytical data against percentages of the calculated daily average water quality-based effluent limitation. Permit limitations are required when analytical data reported in the application exceeds 85% of the calculated daily average water quality-based effluent limitation. Monitoring and reporting is required when analytical data reported in the application exceeds 70% of the calculated daily average water quality-based effluent limitation. See Attachment B of this Fact Sheet.

(b) PERMIT ACTION

Analytical data reported in the application was screened against calculated water quality-based effluent limitations for the protection of aquatic life. Reported analytical data does not exceed 70% of the calculated daily average water quality-based effluent limitations for aquatic life protection.

(3) AQUATIC ORGANISM BIOACCUMULATION CRITERIA

(a) SCREENING

Navasota River Below Lake Limestone

Water quality-based effluent limitations for the protection of human health are calculated using criteria for the consumption of freshwater fish tissue (and drinking water) found in Table 2 of the Texas Surface Water Quality Standards (30 TAC Chapter 307). Freshwater fish tissue bioaccumulation (and drinking water) criteria are applied at the edge of the human health mixing zone. The human health mixing zone for this discharge is identical to the aquatic life mixing zone. TCEQ uses the mass balance equation to estimate dilution at the edge of the human health mixing zone during average flow conditions. The estimated dilution at the edge of the human health mixing zone is calculated using the permitted flow of 1..8 MGD and the harmonic mean flow of 56.74 cfs for Navasota River Below Lake Limestone. The following critical effluent percentage is being used:

Human Health Effluent %: 4.68%

Cedar Creek

Water quality-based effluent limitations for the protection of human health are calculated using criteria for the consumption of freshwater fish tissue (and drinking water) found in Table 2 of the Texas Surface Water Quality Standards (30 TAC Chapter 307). Freshwater fish tissue bioaccumulation (and drinking water) criteria are applied at the edge of the human health mixing zone. The human health mixing zone for this discharge is identical to the aquatic life mixing zone. TCEQ uses the mass balance equation to estimate dilution at the edge of the human health mixing zone during average flow conditions. The estimated dilution at the edge of the human health mixing zone is calculated using the permitted flow of 1.8 MGD and the harmonic mean flow of 0.1 cfs for Cedar Creek. The following critical effluent percentage is being used:

Human Health Effluent %: 96.5%

96.5%

Water quality-based effluent limitations for human health protection against the consumption of fish tissue are calculated using the same procedure as outlined for calculation of water quality-based effluent limitations for aquatic life protection. A 99th percentile confidence level in the long-term average calculation is used with only one long-term average value being calculated.

Significant potential is again determined by comparing reported analytical data against 70% and 85% of the calculated daily average water quality-based effluent limitation. See Attachment B of this Fact Sheet.

(b) PERMIT ACTION

Reported analytical data does not exceed 70% of the calculated daily average water quality-based effluent limitation for human health protection.

(4) DRINKING WATER SUPPLY PROTECTION

(a) SCREENING

Water Quality Segment No. 1209, which receives the discharge from this facility, is designated as a public water supply. The screening procedure used to calculate water quality-based effluent limitations and determine the need for effluent limitations or monitoring requirements is identical to the procedure outlined in the aquatic organism bioaccumulation section of this fact sheet. Criteria used in the calculation of water quality-based effluent limitations for the protection of a drinking water supply are outlined in Table 2 (Water and Fish) of the Texas Surface Water Quality Standards (30 TAC Chapter 307). These criteria are developed from either drinking water maximum contaminant level (MCL) criteria outlined in 30 TAC Chapter 290 or from the combined human health effects of exposure to consumption of fish tissue and ingestion of drinking water.

(b) PERMIT ACTION

Criteria in the "Water and Fish" section of Table 2 do not distinguish if the criteria is based on a drinking water standard or the combined effects of ingestion of drinking water and fish tissue. Effluent limitations or monitoring requirements to protect the drinking water supply (and other human health effects) were previously calculated and outlined in the aquatic organism bioaccumulation criteria section of this fact sheet.

(5) WHOLE EFFLUENT TOXICITY (BIOMONITORING) CRITERIA

(a) SCREENING

TCEQ has determined that there may be pollutants present in the effluent that may have the potential to cause toxic conditions in the receiving stream. Whole effluent biomonitoring is the most direct measure of potential toxicity that incorporates the effects of synergism of effluent components and receiving stream water quality characteristics. Biomonitoring of the effluent is, therefore, required as a condition of this permit to assess potential toxicity.

The existing permit includes chronic freshwater biomonitoring requirements. A summary of the biomonitoring testing for the facility indicates that in the past three years, the permittee performed twenty-two chronic tests, with one demonstration of significant toxicity (i.e., one failure) by the water flea.

A reasonable potential (RP) determination was performed for the fathead minnow in accordance with 40 CFR §122.44(d)(1)(ii) to determine whether the discharge will reasonably be expected to cause or contribute to an exceedance of a state water quality standard or criterion within that standard. The RP determination is based on representative data from the previous three years of chronic WET testing. This determination was performed in accordance with the methodology outlined in the TCEQ letter to the EPA dated December 28, 2015, and approved by the EPA in a

letter dated December 28, 2015.

(b) PERMIT ACTION

The test species are appropriate to measure the toxicity of the effluent consistent with the requirements of the State water quality standards. The biomonitoring frequency has been established to reflect the likelihood of ambient toxicity and to provide data representative of the toxic potential of the facility's discharge. This permit may be reopened to require effluent limits, additional testing, and/or other appropriate actions to address toxicity if biomonitoring data show actual or potential ambient toxicity to be the result of the permittee's discharge to the receiving stream or water body.

With zero failures by the fathead minnow, a determination of no RP was made. WET limits are not required. This test species is eligible for the testing frequency reduction.

With the failure by the water flea, a three-year permit will be issued in accordance with the methodology referenced above. This test species is ineligible for the testing frequency reduction.

(6) WHOLE EFFLUENT TOXICITY CRITERIA (24-HOUR ACUTE)

(a) SCREENING

The existing permit includes 24-hour acute freshwater biomonitoring language. A summary of the biomonitoring testing for the facility indicates that in the past three years, the permittee has performed twelve 24-hour acute tests, with zero demonstrations of significant lethality (i.e., zero failures).

(b) PERMIT ACTION

The draft permit includes 24-hour 100% acute biomonitoring tests for the life of the permit.

9. WATER QUALITY VARIANCE REQUESTS

No variance requests have been received.

10. PROCEDURES FOR FINAL DECISION

When an application is declared administratively complete, the Chief Clerk sends a letter to the applicant advising the applicant to publish the Notice of Receipt of Application and Intent to Obtain Permit in the newspaper. In addition, the Chief Clerk instructs the applicant to place a copy of the application in a public place for review and copying in the county where the facility is or will be located. This application will be in a public place throughout the comment period. The Chief Clerk also mails this notice to any interested persons and, if required, to landowners identified in the permit application. This notice informs the public about the application and provides that an interested person may file

comments on the application or request a contested case hearing or a public meeting.

Once a draft permit is completed, it is sent, along with the Executive Director's preliminary decision, as contained in the technical summary or fact sheet, to the Chief Clerk. At that time, the Notice of Application and Preliminary Decision will be mailed to the same people and published in the same newspaper as the prior notice. This notice sets a deadline for making public comments. The applicant must place a copy of the Executive Director's preliminary decision and draft permit in the public place with the application.

Any interested person may request a public meeting on the application until the deadline for filing public comments. A public meeting is intended for the taking of public comment and is not a contested case proceeding.

After the public comment deadline, the Executive Director prepares a response to all significant public comments on the application or the draft permit raised during the public comment period. The Chief Clerk then mails the Executive Director's response to comments and final decision to people who have filed comments, requested a contested case hearing, or requested to be on the mailing list. This notice provides that if a person is not satisfied with the Executive Director's response and decision, they can request a contested case hearing or file a request to reconsider the Executive Director's decision within 30 days after the notice is mailed.

The Executive Director will issue the permit unless a written hearing request or request for reconsideration is filed within 30 days after the Executive Director's response to comments and final decision is mailed. If a hearing request or request for reconsideration is filed, the Executive Director will not issue the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting. If a contested case hearing is held, it will be a legal proceeding similar to a civil trial in state district court.

If the Executive Director calls a public meeting or the Commission grants a contested case hearing as described above, the Commission will give notice of the date, time, and place of the meeting or hearing. If a hearing request or request for reconsideration is made, the Commission will consider all public comments in making its decision and shall either adopt the Executive Director's response to public comments or prepare its own response.

For additional information about this application, contact Sujata Sinha at (512) 239-1963.

11. ADMINISTRATIVE RECORD

The following items were considered in developing the draft permit:

A. PERMIT(S)

TPDES Permit No. WO0010231001 issued on June 4, 2020.

B. APPLICATION

Application received on January 27, 2025, and additional information received

on February 10, 2025.

C. MEMORANDA

Interoffice Memoranda from the Water Quality Assessment Section of the TCEQ Water Quality Division. Interoffice Memorandum from the Pretreatment Team of the TCEQ Water Quality Division.

D. MISCELLANEOUS

Federal Clean Water Act § 402; Texas Water Code § 26.027; 30 TAC Chapters 30, 305, 309, 312, and 319; Commission policies; and U.S. Environmental Protection Agency guidelines.

Texas Surface Water Quality Standards, 30 TAC §§ 307.1 - 307.10.

Procedures to Implement the Texas Surface Water Quality Standards (IP), Texas Commission on Environmental Quality, June 2010, as approved by the U.S. Environmental Protection Agency, and the IP, January 2003, for portions of the 2010 IP not approved by the U.S. Environmental Protection Agency.

Texas 2024 Clean Water Act Section 303(d) List, Texas Commission on Environmental Quality, June 26, 2024; approved by the U.S. Environmental Protection Agency on November 13, 2024.

Texas Natural Resource Conservation Commission, Guidance Document for Establishing Monitoring Frequencies for Domestic and Industrial Wastewater Discharge Permits, Document No. 98-001.000-OWR-WQ, May 1998.

Two Total Maximum Daily Loads for Indicator Bacteria in the Navasota River below Lake Limestone (TMDL Project No. 111).

Attachment A: Screening Calculations for Total Dissolved Solids, Chloride, and Sulfate

Screen the Perennial Pool Characteristics of the Stream

Applicant Name: City of Navasota - Navasota Sewage Treatment Plant

Permit Number, Outfall: 10231-001, Outfall 001

Segment Number: 1209

Enter values needed for screening:			Data Source (edit if different)
		MG	Data doui de (eule il ulliferent)
QE - Average effluent flow	1.8	D	
QS - Stream harmonic mean flow	0.10	cfs	Critical conditions memo
QE - Average effluent flow	2.7850	cfs	Calculated
CA - TDS - ambient segment		mg/	
concentration	235	L	2010 IP, Appendix D
CA - chloride - ambient segment		mg/	
concentration	44	L	2010 IP, Appendix D
CA - sulfate - ambient segment		mg/	
concentration	42	L	2010 IP, Appendix D
		mg/	
CC - TDS - segment criterion	600	L	2018 TSWQS, Appendix A
		mg/	
CC - chloride - segment criterion	140	L,	2018 TSWQS, Appendix A
	400	mg/	2010 TSMOS Assessed: A
CC - sulfate - segment criterion	100	L	2018 TSWQS, Appendix A
CF TDC average efficient		/	and of Francisco considerated and distributed
CE - TDS - average effluent	611	mg/	avg of 5 composite samples and 1 grab
concentration	611	L ,	sample
CE - chloride - average effluent	46-	mg/	
concentration	107	L,	Permit application
CE - sulfate - average effluent		mg/	
concentration	21	L	Permit application

Screening Equation

 $CC \ge [(QS)(CA) + (QE)(CE)]/[QE + QS]$

No further screening for TDS needed if:	597.97	≤	600
No further screening for chloride			
needed if:	104.82	≤	140
No further screening for sulfate			
needed if:	21.73	≤	100

Permit Limit Calculations

TDS

Calculate the WLA	WLA= [CC(LTA = WLA		613.11		
Calculate the LTA	0.93			570.19	
Calculate the daily average	Daily Avg.	= LTA *	1.47	838.18	
Calculate the daily maximum	Daily Max.		1773.29		
Calculate 70% of the daily average	70% of Da Avg. = 85% of Da	•	586.72		
Calculate 85% of the daily average	Avg. =	•		712.45	
No permit limitations needed if:	611	≤	586.72		
Reporting needed if:	611	>	586.72	but ≤	712.45
Permit limits may be needed if:	611	>			

Reporting needed for TDS

<u>Chlo</u>ride

Cilioriac					
Calculate the WLA	WLA= [CC(QE+QS) - (QS)(CA)]/QE	143.45	
	LTA = WLA	*			
Calculate the LTA	0.93			133.41	
Calculate the daily average	Daily Avg.	= LTA *	1.47	196.11	
Calculate the daily maximum	Daily Max.	= LTA ³	* 3.11	414.89	
	70% of Dai	ly			
Calculate 70% of the daily average	Avg. =			137.27	
	85% of Dai	ly			
Calculate 85% of the daily average	Avg. =			166.69	
No permit limitations needed if:	107	≤	137.27		
Reporting needed if:	107	>	137.27	but ≤	166.69
Permit limits may be needed if:	107	>	166.69		

No permit limitations needed for chloride

<u>Sulfate</u>

Calculate the WLA	WLA= [CC(QE+QS) - (QS)(CA)]/QE LTA = WLA *	102.08
Calculate the LTA	0.93	94.94
Calculate the daily average	Daily Avg. = LTA * 1.47	139.56
Calculate the daily maximum	Daily Max. = LTA * 3.11	295.25
	70% of Daily	
Calculate 70% of the daily average	Avg. =	97.69

Calculate 85% of the daily average	85% of Dai Avg. =	ly		118.62	
No permit limitations needed if:	21	≤	97.69		
Reporting needed if:	21	>	97.69	but ≤	118.62
Permit limits may be needed if:	21	>	118.62		

No permit limitations needed for sulfate

Attachment B: Calculated Water Quality Based Effluent Limitations

The water quality-based effluent limitations developed below are calculated using:

Table 1, 2014 Texas Surface Water Quality Standards (30 TAC 307) for Freshwater Aquatic Life Table 2, 2018 Texas Surface Water Quality Standards for Human Health, Incidental Fishery "Procedures to Implement the Texas Surface Water Quality Standards," TCEQ, June 2010

PERMIT INFORMATION

Permittee Name:	City of Navasota
TPDES Permit No.:	WQ0010231001
Outfall No.:	001
Prepared by:	Sujata Sinha
Date:	11/10/2025

DISCHARGE INFORMATION

Intermittent Receiving Waterbody:	Cedar Cree	k
Segment No.:	1209	
TSS (mg/L):	17	
pH (Standard Units):	7.1	
Hardness (mg/L as CaCO₃):	54	
Chloride (mg/L):	44	
Effluent Flow for Aquatic Life (MGD):		
Critical Low Flow [7Q2] (cfs):	0	
% Effluent for Chronic Aquatic Life:	100	
% Effluent for Acute Aquatic Life:	100	
Effluent Flow for Human Health (MGD):	1.8	
Harmonic Mean Flow (cfs):	0.1	
% Effluent for Human Health:	96.534	

CALCULATE DISSOLVED FRACTION (AND ENTER WATER EFFECT RATIO IF APPLICABLE):

Stream/River Metal	Intercep t (b)	Slope (m)	Partition Coefficie nt (Kp)	Dissolve d Fraction (Cd/Ct)	Source	Water Effect Ratio (WER)	Source
							Assum
Aluminum	N/A	N/A	N/A	1.00	Assumed	1.00	ed
			60502.3				Assum
Arsenic	5.68	-0.73	6	0.493		1.00	ed
			162028.				Assum
Cadmium	6.60	-1.13	99	0.266		1.00	ed
			237510.			•	Assum
Chromium (total)	6.52	-0.93	33	0.199		1.00	ed

			237510.				Assum
Chromium (trivalent)	6.52	-0.93	33	0.199		1.00	ed
							Assum
Chromium (hexavalent)	N/A	N/A	N/A	1.00	Assumed	1.00	ed
			128667.				Assum
Copper	6.02	-0.74	18	0.314		1.00	ed
			292173.				Assum
Lead	6.45	-0.80	53	0.168		1.00	ed
							Assum
Mercury	N/A	N/A	N/A	1.00	Assumed	1.00	ed
			97419.1				Assum
Nickel	5.69	-0.57	0	0.376		1.00	ed
							Assum
Selenium	N/A	N/A	N/A	1.00	Assumed	1.00	ed
			129609.				Assum
Silver	6.38	-1.03	73	0.312		1.00	ed
			173254.			•	Assum
Zinc	6.10	-0.70	99	0.253		1.00	ed

AQUATIC LIFE

CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

CALCULATE DAILY AVERAGE AND DAILY	FW	FW						
	Acute	Chronic					Daily	Daily
Davido de la companya della companya della companya de la companya de la companya della companya	Criterion	Criterion	WLAa ((1)	WLAC	LTAa	LTAC	Avg.	Max.
Parameter	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Aluminum	3.0	N/A	3.00	N/A	1.72	N/A	2.52	5.34
Aluminum	991	N/A	991	N/A	568	N/A	834	1765
Arsenic	340	150	690	304	395	234	344	728
Cadmium	4.7	0.160	17.7	0.602	10.1	0.463	0.681	1.44
Carbaryl	2.0	N/A	2.00	N/A	1.15	N/A	1.68	3.56
Chlordane	2.4	0.004	2.40	0.00400	1.38	0.0030 8	0.0045 2	0.0095 7
Chlorpyrifos	0.083	0.041	0.0830	0.0410	0.0476	0.0316	0.0464	0.0981
Chromium (+3)	344	45	1733	225	993	174	255	539
Chromium (+6)	15.7	10.6	15.7	10.6	9.00	8.16	11.9	25.3
Copper	7.9	5.6	25.3	17.8	14.5	13.7	20.1	42.6
Cyanide (free)	45.8	10.7	45.8	10.7	26.2	8.24	12.1	25.6
						0.0007	0.0011	0.0023
4,4'-DDT	1.1	0.001	1.10	0.00100	0.630	70	3	9
Demeton	N/A	0.1	N/A	0.100	N/A	0.0770	0.113	0.239
Diazinon	0.17	0.17	0.170	0.170	0.0974	0.131	0.143	0.302
Dicofol	59.3	19.8	59.3	19.8	34.0	15.2	22.4	47.4
						0.0015	0.0022	0.0047
Dieldrin	0.24	0.002	0.240	0.00200	0.138	4	6	8
Diuron	210	70	210	70.0	120	53.9	79.2	167
Endosulfan I (alpha)	0.22	0.056	0.220	0.0560	0.126	0.0431	0.0633	0.134
Endosulfan II (beta)	0.22	0.056	0.220	0.0560	0.126	0.0431	0.0633	0.134
Endosulfan sulfate	0.22	0.056	0.220	0.0560	0.126	0.0431	0.0633	0.134
						0.0015	0.0022	0.0047
Endrin	0.086	0.002	0.0860	0.00200	0.0493	0.0077	6	8
Guthion	N/A	0.01	N/A	0.0100	N/A	0.0077 0	0.0113	0.0239
Gathen	14//	0.01	14,71	0.0100	14,71	0.0030	0.0045	0.0095
Heptachlor	0.52	0.004	0.520	0.00400	0.298	8	2	7
Hexachlorocyclohexane (Lindane)	1.126	0.08	1.13	0.0800	0.645	0.0616	0.0905	0.191
Lead	33	1.28	196	7.63	112	5.88	8.63	18.2
						0.0077		
Malathion	N/A	0.01	N/A	0.0100	N/A	0	0.0113	0.0239
Mercury	2.4	1.3	2.40	1.30	1.38	1.00	1.47	3.11
Methoxychlor	N/A	0.03	N/A	0.0300	N/A	0.0231	0.0339	0.0718

						0.0007	0.0011	0.0023
Mirex	N/A	0.001	N/A	0.00100	N/A	70	3	9
Nickel	278	30.9	738	82.0	423	63.2	92.8	196
Nonylphenol	28	6.6	28.0	6.60	16.0	5.08	7.47	15.8
Parathion (ethyl)	0.065	0.013	0.0650	0.0130	0.0372	0.0100	0.0147	0.0311
Pentachlorophenol	9.6	7.4	9.65	7.40	5.53	5.70	8.12	17.1
Phenanthrene	30	30	30.0	30.0	17.2	23.1	25.2	53.4
Polychlorinated Biphenyls (PCBs)	2.0	0.014	2.00	0.0140	1.15	0.0108	0.0158	0.0335
Selenium	20	5	20.0	5.00	11.5	3.85	5.65	11.9
Silver	0.8	N/A	9.98	N/A	5.72	N/A	8.41	17.7
				0.00020		0.0001	0.0002	0.0004
Toxaphene	0.78	0.0002	0.780	0	0.447	54	26	78
Tributyltin (TBT)	0.13	0.024	0.130	0.0240	0.0745	0.0185	0.0271	0.0574
2,4,5 Trichlorophenol	136	64	136	64.0	77.9	49.3	72.4	153
Zinc	70	70	274	277	157	213	231	488

HUMAN HEALTH (APPLIES FOR INCIDENTAL FRESHWATER FISH TISSUE)

CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

CALCULATE DAILY AVERAGE AND DAILY MAX	Incident				
	al Fish			Daily	Daily
Parameter	Criterion (μg/L)	WLAh (μg/L)	LTAh (μg/L)	Avg. (μg/L)	Max. (μg/L)
Acrylonitrile	1150	1191	1108	1628	3445
Acrylonitrile	1.147E-	0.00011	0.00011	0.00016	0.00034
Aldrin	04	9	1	2	3
Anthracene	13170	13643	12688	18651	39459
Antimony	10710	11095	10318	15167	32088
Arsenic	N/A	N/A	N/A	N/A	N/A
Barium	N/A	N/A	N/A	N/A	N/A
Benzene	5810	6019	5597	8228	17407
Benzidine	1.07	1.11	1.03	1.51	3.20
Benzo(a)anthracene	0.25	0.259	0.241	0.354	0.749
Benzo(a)pyrene	0.025	0.0259	0.0241	0.0354	0.0749
Bis(chloromethyl)ether	2.745	2.84	2.64	3.88	8.22
Bis(2-chloroethyl)ether	428.3	444	413	606	1283
Bis(2-ethylhexyl) phthalate [Di(2-ethylhexyl)					
phthalate]	75.5	78.2	72.7	106	226
Bromodichloromethane [Dichlorobromomethane]	2750	2849	2649	3894	8239
Bromoform [Tribromomethane]	10600	10981	10212	15011	31759
Cadmium	N/A	N/A	N/A	N/A	N/A
Carbon Tetrachloride	460	477	443	651	1378
Chlordane	0.025	0.0259	0.0241	0.0354	0.0749
Chlorobenzene	27370	28353	26368	38761	82004
Chlorodibromomethane	2/3/0	20333	20308	36701	82004
[Dibromochloromethane]	1830	1896	1763	2591	5482
Chloroform [Trichloromethane]	76970	79734	74152	109003	230613
Chromium (hexavalent)	5020	5200	4836	7109	15040
Chrysene	25.2	26.1	24.3	35.6	75.5
Cresols [Methylphenols]	93010	96350	89605	131719	278672
Cyanide (free)	N/A	N/A	N/A	N/A	N/A
4,4'-DDD	0.02	0.0207	0.0193	0.0283	0.0599
4,4'-DDE	0.0013	0.00135	0.00125	0.00184	0.00389
4,4'-DDT	0.004	0.00414	0.00385	0.00566	0.0119
2,4'-D	N/A	N/A	N/A	N/A	N/A
Danitol [Fenpropathrin]	4730	4900	4557	6698	14171
1,2-Dibromoethane [Ethylene Dibromide]	42.4	43.9	40.8	60.0	127

<i>m</i> -Dichlorobenzene [1,3-Dichlorobenzene]	5950	6164	5732	8426	17827
o-Dichlorobenzene [1,2-Dichlorobenzene]	32990	34175	31782	46720	98843
p-Dichlorobenzene [1,4-Dichlorobenzene]	N/A	N/A	N/A	N/A	N/A
3,3'-Dichlorobenzidine	22.4	23.2	21.6	31.7	67.1
1,2-Dichloroethane	3640	3771	3507	5154	10905
1,1-Dichloroethylene [1,1-Dichloroethene]	551140	570930	530965	780517	1651299
Dichloromethane [Methylene Chloride]	133330	138117	128449	188820	399477
1,2-Dichloropropane	2590	2683	2495	3667	7760
1,3-Dichloropropene [1,3-					
Dichloropropylene]	1190	1233	1146	1685	3565
Dicofol [Kelthane]	3	3.11	2.89	4.24	8.98
Dieldrin	2.0E-04	0.00020 7	0.00019 3	0.00028 3	0.00059 9
2,4-Dimethylphenol	84360	87389	81272	119469	252755
Di- <i>n</i> -Butyl Phthalate	924	957	890	1308	2768
Di-11-Butyl Fittilalate	324	337	830	0.00000	0.00000
Dioxins/Furans [TCDD Equivalents]	7.97E-07	8.26E-07	7.68E-07	11	24
Endrin	0.2	0.207	0.193	0.283	0.599
Epichlorohydrin	20130	20853	19393	28507	60312
Ethylbenzene	18670	19340	17987	26440	55938
	1.68E+0	1740323	1618500	2379195	5033536
Ethylene Glycol	8	20	58	84	79
Fluoride	N/A	N/A	N/A	N/A	N/A
Heptachlor	0.001	0.00104	0.00096 3	0.00141	0.00299
Heptachlor Epoxide	0.001	0.00300	0.00279	0.00141	0.00233
Hexachlorobenzene	0.0029	0.00300	0.00279	0.00410	0.0203
Hexachlorobutadiene	2.2	2.28	2.12	3.11	6.59
Hexachlorocyclohexane (alpha)	0.084	0.0870	0.0809	0.118	0.251
Hexachlorocyclohexane (beta)	2.6	2.69	2.50	3.68	7.78
Hexachlorocyclohexane (gamma) [Lindane]	3.41	3.53	3.29	4.82	10.2
Hexachlorocyclopentadiene	116	120	112	164	347
Hexachloroethane	23.3	24.1	22.4	32.9	69.8
Hexachlorophene	29	30.0	27.9	41.0	86.8
4,4'-Isopropylidenediphenol [Bisphenol A]	159820	165559	153970	226335	478845
Lead	38.3	237	220	323	684
Mercury	0.122	0.126	0.118	0.172	0.365
Methoxychlor	30	31.1	28.9	42.4	89.8
	9.92E+0	1027619		1404858	2972183
Methyl Ethyl Ketone	6	4	9556861	4	6
Methyl tert-butyl ether [MTBE]	104820	108584	100983	148444	314056
Nickel	11400	31367	29171	42881	90722
Nitrate-Nitrogen (as Total Nitrogen)	N/A	N/A	N/A	N/A	N/A
Nitrobenzene	18730	19403	18044	26525	56117
N-Nitrosodiethylamine	21	21.8	20.2	29.7	62.9
N-Nitroso-di- <i>n</i> -Butylamine	42	43.5	40.5	59.4	125
Pentachlorobenzene	3.55	3.68	3.42	5.02	10.6
Pentachlorophenol	2.9	3.00	2.79	4.10	8.68
Polychlorinated Biphenyls [PCBs]	6.40E-03	0.00663	0.00617	0.00906	0.0191
Pyridine	9470	9810	9123	13411	28373
Selenium	N/A	N/A	N/A	N/A	N/A
1,2,4,5-Tetrachlorobenzene	2.4	2.49	2.31	3.39	7.19
1,1,2,2-Tetrachloroethane	263.5	273	254	373	789
Tetrachloroethylene [Tetrachloroethylene]	2800	2901	2698	3965	8389
Thallium	2.3	2.38	2.22	3.25	6.89
Toluene	N/A	N/A	N/A	N/A	N/A

Toxaphene	0.11	0.114	0.106	0.155	0.329
2,4,5-TP [Silvex]	3690	3822	3555	5225	11055
				1110792	2350044
1,1,1-Trichloroethane	7843540	8125175	7556413	7	4
1,1,2-Trichloroethane	1660	1720	1599	2350	4973
Trichloroethylene [Trichloroethene]	719	745	693	1018	2154
2,4,5-Trichlorophenol	18670	19340	17987	26440	55938
TTHM [Sum of Total Trihalomethanes]	N/A	N/A	N/A	N/A	N/A
Vinyl Chloride	165	171	159	233	494

CALCULATE 70% AND 85% OF DAILY AVERAGE EFFLUENT LIMITATIONS:

	70% of Daily	85% of Daily
Aquatic Life	Avg.	Avg.
Parameter	(μg/L)	(μg/L)
Aldrin	1.76	2.14
Aluminum	584	709
Arsenic	241	292
Cadmium	0.476	0.578
Carbaryl	1.17	1.43
Chlordane	0.00316	0.00384
Chlorpyrifos	0.0324	0.0394
Chromium (+3)	178	216
Chromium (+6)	8.39	10.1
Copper	14.1	17.1
Cyanide (free)	8.47	10.2
	0.00079	0.00096
4,4'-DDT	2	2
Demeton	0.0792	0.0962
Diazinon	0.100	0.121
Dicofol	15.6	19.0
Dieldrin	0.00158	0.00192
Diuron	55.4	67.3
Endosulfan (alpha)	0.0443	0.0538
Endosulfan (beta)	0.0443	0.0538
Endosulfan sulfate	0.0443	0.0538
Endrin	0.00158	0.00192
Guthion	0.00792	0.00962
Heptachlor	0.00316	0.00384
Hexachlorocyclohexane (Lindane)	0.0633	0.0769
Lead	6.04	7.34
Malathion	0.00792	0.00962
Mercury	1.03	1.25
Methoxychlor	0.0237	0.0288
Mirex	0.00079	0.00096
Nickel	64.9	78.9
		
Nonylphenol Parathian (athyl)	5.22 0.0103	6.34 0.0125
Parathion (ethyl)		
Pentachlorophenol Phononthropo	5.68	6.90
Phenanthrene	17.6	21.4
Polychlorinated Biphenyls (PCBs)	0.0110	0.0134
Selenium	3.96	4.81
Silver	5.88	7.14

	0.00015	0.00019
Toxaphene	8	2
Tributyltin (TBT)	0.0190	0.0230
2,4,5 Trichlorophenol	50.7	61.5
Zinc	161	196
	70% of	85% of
	Daily	Daily
Human Health	Avg.	Avg.
Parameter	(μg/L)	(μg/L)
Acrylonitrile	1140	1384
Aldrin	0.00011	0.00013 8
Anthracene	13055	15853
Antimony	10617	12892
Arsenic	N/A	N/A
Barium	N/A	N/A
Benzene	5759	6993
Benzidine	1.06	1.28
Benzo(a)anthracene	0.247	0.300
Benzo(a)pyrene	0.0247	0.0300
Bis(chloromethyl)ether	2.72	3.30
Bis(2-chloroethyl)ether	424	515
Bis(2-ethylhexyl) phthalate [Di(2-ethylhexyl)	424	313
phthalate]	74.8	90.8
Bromodichloromethane		
[Dichlorobromomethane]	2726	3310
Bromoform [Tribromomethane]	10508	12759
Cadmium	N/A	N/A
Carbon Tetrachloride	456	553
Chlordane	0.0247	0.0300
Chlorobenzene	27132	32946
Chlorodibromomethane	1014	2202
[Dibromochloromethane]	1814	2202
Chronium (house short)	76302	92653
Chromium (hexavalent)	4976	6042
Chrysene Crossels [Mathylphonels]	24.9	30.3 111961
Cresols [Methylphenols]	92203	
Cyanide (free) 4,4'-DDD	N/A 0.0198	N/A
4,4'-DDE	0.0198	0.0240 0.00156
4,4'-DDT	0.00128	0.00136
2,4'-D	0.00390 N/A	
Danitol [Fenpropathrin]	4688	N/A 5693
1,2-Dibromoethane [Ethylene Dibromide]	4088	51.0
m-Dichlorobenzene [1,3-Dichlorobenzene]		
o-Dichlorobenzene [1,2-Dichlorobenzene]	5898 32704	7162 39712
p-Dichlorobenzene [1,4-Dichlorobenzene]		
3,3'-Dichlorobenzidine	N/A 22.2	N/A 26.9
1,2-Dichloroethane	3608	4381
1,1-Dichloroethylene [1,1-Dichloroethene]	546362	663440
Dichloromethane [Methylene Chloride]	132174	160497
1,2-Dichloropropane	2567	3117
1,3-Dichloropropane [1,3-	2307	311/
Dichloropropylene]	1179	1432
Dicofol [Kelthane]	2.97	3.61

	0.00019	0.00024
Dieldrin	8	0
2,4-Dimethylphenol	83628	101549
Di-n-Butyl Phthalate	915	1112
Dioxins/Furans [TCDD Equivalents]	7.90E-07	9.59E-07
Endrin	0.198	0.240
Epichlorohydrin	19955	24231
Ethylbenzene	18508	22474
•	1665437	2022316
Ethylene Glycol	09	46
Fluoride	N/A	N/A
	0.00099	
Heptachlor	1	0.00120
Heptachlor Epoxide	0.00287	0.00349
Hexachlorobenzene	0.00674	0.00818
Hexachlorobutadiene	2.18	2.64
Hexachlorocyclohexane (alpha)	0.0832	0.101
Hexachlorocyclohexane (beta)	2.57	3.12
Hexachlorocyclohexane (gamma) [Lindane]	3.38	4.10
Hexachlorocyclopentadiene	114	139
Hexachloroethane	23.0	28.0
Hexachlorophene	28.7	34.9
4,4'-Isopropylidenediphenol [Bisphenol A]	158434	192384
Lead	226	275
Mercury	0.120	0.146
Methoxychlor	29.7	36.1
		1194129
Methyl Ethyl Ketone	9834009	1194129 7
Methyl Ethyl Ketone Methyl tert-butyl ether [MTBE]	9834009 103911	
		7
Methyl tert-butyl ether [MTBE]	103911	7 126178
Methyl <i>tert</i> -butyl ether [MTBE] Nickel	103911 30017	7 126178 36449
Methyl <i>tert</i> -butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen)	103911 30017 N/A	7 126178 36449 N/A
Methyl <i>tert</i> -butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene	103911 30017 N/A 18567	7 126178 36449 N/A 22546
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine	103911 30017 N/A 18567 20.8	7 126178 36449 N/A 22546 25.2
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine	103911 30017 N/A 18567 20.8 41.6	7 126178 36449 N/A 22546 25.2 50.5
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene	103911 30017 N/A 18567 20.8 41.6 3.51	7 126178 36449 N/A 22546 25.2 50.5 4.27
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol	103911 30017 N/A 18567 20.8 41.6 3.51 2.87	7 126178 36449 N/A 22546 25.2 50.5 4.27 3.49
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs]	103911 30017 N/A 18567 20.8 41.6 3.51 2.87 0.00634	7 126178 36449 N/A 22546 25.2 50.5 4.27 3.49 0.00770
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine	103911 30017 N/A 18567 20.8 41.6 3.51 2.87 0.00634 9387	7 126178 36449 N/A 22546 25.2 50.5 4.27 3.49 0.00770 11399
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium	103911 30017 N/A 18567 20.8 41.6 3.51 2.87 0.00634 9387 N/A	7 126178 36449 N/A 22546 25.2 50.5 4.27 3.49 0.00770 11399 N/A
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene	103911 30017 N/A 18567 20.8 41.6 3.51 2.87 0.00634 9387 N/A 2.37	7 126178 36449 N/A 22546 25.2 50.5 4.27 3.49 0.00770 11399 N/A 2.88
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane	103911 30017 N/A 18567 20.8 41.6 3.51 2.87 0.00634 9387 N/A 2.37 261	7 126178 36449 N/A 22546 25.2 50.5 4.27 3.49 0.00770 11399 N/A 2.88 317
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene] Thallium	103911 30017 N/A 18567 20.8 41.6 3.51 2.87 0.00634 9387 N/A 2.37 261 2775	7 126178 36449 N/A 22546 25.2 50.5 4.27 3.49 0.00770 11399 N/A 2.88 317 3370 2.76
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene] Thallium Toluene	103911 30017 N/A 18567 20.8 41.6 3.51 2.87 0.00634 9387 N/A 2.37 261 2775 2.28 N/A	7 126178 36449 N/A 22546 25.2 50.5 4.27 3.49 0.00770 11399 N/A 2.88 317 3370 2.76 N/A
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene] Thallium Toluene Toxaphene	103911 30017 N/A 18567 20.8 41.6 3.51 2.87 0.00634 9387 N/A 2.37 261 2775 2.28 N/A 0.109	7 126178 36449 N/A 22546 25.2 50.5 4.27 3.49 0.00770 11399 N/A 2.88 317 3370 2.76 N/A 0.132
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene] Thallium Toluene Toxaphene 2,4,5-TP [Silvex]	103911 30017 N/A 18567 20.8 41.6 3.51 2.87 0.00634 9387 N/A 2.37 261 2775 2.28 N/A 0.109 3658	7 126178 36449 N/A 22546 25.2 50.5 4.27 3.49 0.00770 11399 N/A 2.88 317 3370 2.76 N/A 0.132 4441
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene] Thallium Toluene Toxaphene 2,4,5-TP [Silvex] 1,1,1-Trichloroethane	103911 30017 N/A 18567 20.8 41.6 3.51 2.87 0.00634 9387 N/A 2.37 261 2775 2.28 N/A 0.109 3658 7775549	7 126178 36449 N/A 22546 25.2 50.5 4.27 3.49 0.00770 11399 N/A 2.88 317 3370 2.76 N/A 0.132 4441 9441738
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene] Thallium Toluene Toxaphene 2,4,5-TP [Silvex] 1,1,1-Trichloroethane 1,1,2-Trichloroethane	103911 30017 N/A 18567 20.8 41.6 3.51 2.87 0.00634 9387 N/A 2.37 261 2775 2.28 N/A 0.109 3658 7775549 1645	7 126178 36449 N/A 22546 25.2 50.5 4.27 3.49 0.00770 11399 N/A 2.88 317 3370 2.76 N/A 0.132 4441 9441738 1998
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene] Thallium Toluene Toxaphene 2,4,5-TP [Silvex] 1,1,1-Trichloroethane Trichloroethylene [Trichloroethene]	103911 30017 N/A 18567 20.8 41.6 3.51 2.87 0.00634 9387 N/A 2.37 261 2775 2.28 N/A 0.109 3658 7775549 1645 712	7 126178 36449 N/A 22546 25.2 50.5 4.27 3.49 0.00770 11399 N/A 2.88 317 3370 2.76 N/A 0.132 4441 9441738 1998 865
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene] Thallium Toluene Toxaphene 2,4,5-TP [Silvex] 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene [Trichloroethene] 2,4,5-Trichloroethane	103911 30017 N/A 18567 20.8 41.6 3.51 2.87 0.00634 9387 N/A 2.37 261 2775 2.28 N/A 0.109 3658 7775549 1645 712 18508	7 126178 36449 N/A 22546 25.2 50.5 4.27 3.49 0.00770 11399 N/A 2.88 317 3370 2.76 N/A 0.132 4441 9441738 1998 865 22474
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene] Thallium Toluene Toxaphene 2,4,5-TP [Silvex] 1,1,1-Trichloroethane Trichloroethylene [Trichloroethene]	103911 30017 N/A 18567 20.8 41.6 3.51 2.87 0.00634 9387 N/A 2.37 261 2775 2.28 N/A 0.109 3658 7775549 1645 712	7 126178 36449 N/A 22546 25.2 50.5 4.27 3.49 0.00770 11399 N/A 2.88 317 3370 2.76 N/A 0.132 4441 9441738 1998 865

HUMAN HEALTH ONLY

The water quality-based effluent limitations developed below are calculated using:

Table 2, 2018 Texas Surface Water Quality Standards for Human Health "Procedures to Implement the Texas Surface Water Quality Standards," TCEQ, June 2010

PERMIT INFORMATION

Permittee Name:	City of Navasota
TPDES Permit No.:	WQ0010231001
Outfall No.:	001
Prepared by:	Sujata Sinha
Date:	11/10/2025

DISCHARGE INFORMATION

CALCULATE DISSOLVED FRACTION (AND ENTER WATER EFFECT RATIO IF APPLICABLE):

			Partition	Dissolved		Water Effect	
	Intercept	Slope	Coefficie	Fraction		Ratio	
Stream/River Metal	(b)	(m)	nt (Kp)	(Cd/Ct)	Source	(WER)	Source
	• •			, -			Assume
Aluminum	N/A	N/A	N/A	1.00	Assumed	1.00	d
							Assume
Arsenic	5.68	-0.73	60502.36	0.493		1.00	d
			162028.9				Assume
Cadmium	6.60	-1.13	9	0.266		1.00	d
			237510.3				Assume
Chromium (total)	6.52	-0.93	3	0.199		1.00	d
			237510.3				Assume
Chromium (trivalent)	6.52	-0.93	3	0.199		1.00	d
							Assume
Chromium (hexavalent)	N/A	N/A	N/A	1.00	Assumed	1.00	d
			128667.1				Assume
Copper	6.02	-0.74	8	0.314		1.00	d
			292173.5				Assume
Lead	6.45	-0.80	3	0.168		1.00	d
							Assume
Mercury	N/A	N/A	N/A	1.00	Assumed	1.00	d
							Assume
Nickel	5.69	-0.57	97419.10	0.376		1.00	d
							Assume
Selenium	N/A	N/A	N/A	1.00	Assumed	1.00	d
	<u></u>		129609.7				Assume
Silver	6.38	-1.03	3	0.312		1.00	d
	<u></u>		173254.9				Assume
Zinc	6.10	-0.70	9	0.253		1.00	d

HUMAN HEALTH

CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

		Daily	Daily			
	Water	Criterion	WLAh	LTAh	Avg.	Max.
Parameter	and Fish	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)

	Criterion (μg/L)					
Acrylonitrile	1.0	115	2458	2286	3360	7109
	-	1.147E-				
Aldrin	1.146E-05	05	0.000245	0.000228	0.000335	0.000709
Anthracene	1109	1317	28149	26179	38483	81416
Antimony	6	1071	22891	21289	31294	66208
Arsenic	10	N/A	N/A	N/A	N/A	N/A
Barium	2000	N/A	N/A	N/A	N/A	N/A
Benzene	5	581	12418	11549	16977	35917
Benzidine	0.0015	0.107	2.29	2.13	3.13	6.62
Benzo(a)anthracene	0.024	0.025	0.534	0.497	0.730	1.54
Benzo(a)pyrene	0.0025	0.0025	0.0534	0.0497	0.0730	0.154
Bis(chloromethyl)ether	0.0024	0.2745	5.87	5.46	8.02	16.9
Bis(2-chloroethyl)ether	0.60	42.83	915	851	1250	2646
Bis(2-ethylhexyl) phthalate [Di(2-ethylhexyl) phthalate]	6	7.55	161	150	220	466
Bromodichloromethane	<u> </u>	7.55	101	130	220	400
[Dichlorobromomethane]	10.2	275	5878	5467	8036	17002
Bromoform [Tribromomethane]	66.9	1060	22656	21070	30972	65527
Cadmium	5	N/A	N/A	N/A	N/A	N/A
Carbon Tetrachloride	4.5	46	983	914	1343	2842
Chlordane	0.0025	0.0025	0.0534	0.0497	0.0730	0.154
Chlorobenzene	100	2737	58499	54404	79973	169196
Chlorodibromomethane						
[Dibromochloromethane]	7.5	183	3911	3637	5346	11311
Chloroform [Trichloromethane]	70	7697	164511	152995	224902	475814
Chromium (hexavalent)	62	502	10729	9978	14667	31031
Chrysene	2.45	2.52	53.9	50.1	73.6	155
Cresols [Methylphenols]	1041	9301	198794	184878	271770	574970
Cyanide (free)	200	N/A	N/A	N/A	N/A	N/A
4,4'-DDD	0.002	0.002	0.0427	0.0397	0.0583	0.123
4,4'-DDE	0.00013	0.00013	0.00278	0.00259	0.00380	0.00805
4,4'-DDT	0.0004	0.0004	0.00855	0.00795	0.0116	0.0247
2,4'-D	70	N/A	N/A	N/A	N/A	N/A
Danitol [Fenpropathrin]	262	473	10110	9402	13820	29240
1,2-Dibromoethane [Ethylene Dibromide]	0.17	4.24	90.6	84.3	123	262
<i>m</i> -Dichlorobenzene [1,3-Dichlorobenzene]	322	595	12717	11827	17385	36781
o-Dichlorobenzene [1,2-Dichlorobenzene]	600	3299	70511	65575	96395	203938
<i>p</i> -Dichlorobenzene [1,4-Dichlorobenzene]	75	N/A	N/A	N/A	N/A	N/A
3,3'-Dichlorobenzidine	0.79	2.24	47.9	44.5	65.4	138
1,2-Dichloroethane	5	364	7780	7235	10635	22500
1,1-Dichloroethylene [1,1-Dichloroethene]	7	55114	1177976	1095518	1610411	3407060
Diable as as other as [NAsthades a Chlevide]						
Dichioromethane [wethylene Chloride]	5	13333	284972	265024	389585	824224
Dichloromethane [Methylene Chloride] 1,2-Dichloropropane		13333 259		265024 5148	389585 7567	
. ,	5		284972			16010
1,2-Dichloropropane	5 5	259	284972 5536 2543 6.41	5148	7567	824224 16010 7355 18.5
1,2-Dichloropropane 1,3-Dichloropropene [1,3-Dichloropropylene]	5 5 2.8	259 119	284972 5536 2543	5148 2365	7567 3476	16010 7355 18.5
1,2-Dichloropropane 1,3-Dichloropropene [1,3-Dichloropropylene] Dicofol [Kelthane]	5 5 2.8 0.30	259 119 0.30	284972 5536 2543 6.41	5148 2365 5.96	7567 3476 8.76	16010 7355 18.5 0.00123
1,2-Dichloropropane 1,3-Dichloropropene [1,3-Dichloropropylene] Dicofol [Kelthane] Dieldrin	5 5 2.8 0.30 2.0E-05	259 119 0.30 2.0E-05	284972 5536 2543 6.41 0.000427	5148 2365 5.96 0.000397	7567 3476 8.76 0.000583	16010 7355
1,2-Dichloropropane 1,3-Dichloropropene [1,3-Dichloropropylene] Dicofol [Kelthane] Dieldrin 2,4-Dimethylphenol Di-n-Butyl Phthalate	5 5 2.8 0.30 2.0E-05 444 88.9	259 119 0.30 2.0E-05 8436 92.4	284972 5536 2543 6.41 0.000427 180306 1975 0.000001	5148 2365 5.96 0.000397 167685 1837	7567 3476 8.76 0.000583 246496 2700 0.000002	16010 7355 18.5 0.00123 521500 5713
1,2-Dichloropropane 1,3-Dichloropropene [1,3-Dichloropropylene] Dicofol [Kelthane] Dieldrin 2,4-Dimethylphenol Di- <i>n</i> -Butyl Phthalate Dioxins/Furans [TCDD Equivalents]	5 2.8 0.30 2.0E-05 444 88.9 7.80E-08	259 119 0.30 2.0E-05 8436 92.4 7.97E-08	284972 5536 2543 6.41 0.000427 180306 1975 0.000001 7	5148 2365 5.96 0.000397 167685 1837 0.0000016	7567 3476 8.76 0.000583 246496 2700 0.000002 4	16010 7355 18.5 0.00123 521500 5713 0.0000050
1,2-Dichloropropane 1,3-Dichloropropene [1,3-Dichloropropylene] Dicofol [Kelthane] Dieldrin 2,4-Dimethylphenol Di-n-Butyl Phthalate	5 5 2.8 0.30 2.0E-05 444 88.9	259 119 0.30 2.0E-05 8436 92.4	284972 5536 2543 6.41 0.000427 180306 1975 0.000001	5148 2365 5.96 0.000397 167685 1837	7567 3476 8.76 0.000583 246496 2700 0.000002	16010 7359 18.9 0.00123 521500 5713

700

1867

39904

37111

54553

115415

Ethylbenzene

Fthyl Chool	46744	1.68E+07	35907383 7	333938668	4908898 41	10385492 57
Ethyl Glycol Fluoride	4000	1.08E+07 N/A	N/A	N/A	N/A	
Heptachlor	8.0E-05	0.0001	0.00214	0.00199	0.00292	0.00618
Heptachlor Epoxide	0.00029	0.00029	0.00620	0.00133	0.00232	0.0179
Hexachlorobenzene	0.00023	0.00023	0.0145	0.0135	0.0198	0.0419
Hexachlorobutadiene	0.21	0.0000	4.70	4.37	6.42	13.5
Hexachlorocyclohexane (alpha)	0.0078	0.0084	0.180	0.167	0.245	0.519
Hexachlorocyclohexane (beta)	0.0078	0.0004	5.56	5.17	7.59	16.0
Hexachlorocyclohexane (gamma) [Lindane]	0.13	0.341	7.29	6.78	9.96	21.0
Hexachlorocyclopentadiene	10.7	11.6	248	231	339	718
Hexachloroethane	1.84	2.33	49.8	46.3	68.0	143
Hexachlorophene	2.05	2.90	62.0	57.7	84.8	179
4,4'-Isopropylidenediphenol [Bisphenol A]	1092	15982	341590	317679	466988	987981
Lead	1.15	3.83	488	454	667	1411
Mercury	0.0122	0.0122	0.261	0.243	0.357	0.755
Methoxychlor	2.92	3.0	64.1	59.6	87.6	185
тетохусто.	2.32	3.0	01.1	33.0	2898587	103
Methyl Ethyl Ketone	13865	9.92E+05	21202455	19718283	6	61323860
Methyl tert-butyl ether [MTBE]	15	10482	224036	208353	306278	647977
Nickel	332	1140	64718	60188	88476	187184
Nitrate-Nitrogen (as Total Nitrogen)	10000	N/A	N/A	N/A	N/A	N/A
Nitrobenzene	45.7	1873	40032	37230	54728	115785
N-Nitrosodiethylamine	0.0037	2.1	44.9	41.8	61.4	129
N-Nitroso-di- <i>n</i> -Butylamine	0.119	4.2	89.8	83.5	122	259
Pentachlorobenzene	0.348	0.355	7.59	7.06	10.3	21.9
Pentachlorophenol	0.22	0.29	6.20	5.77	8.48	17.9
Polychlorinated Biphenyls [PCBs]	6.4E-04	6.4E-04	0.0137	0.0127	0.0186	0.0394
Pyridine	23	947	20241	18824	27671	58542
Selenium	50	N/A	N/A	N/A	N/A	N/A
1,2,4,5-Tetrachlorobenzene	0.23	0.24	5.13	4.77	7.01	14.8
1,1,2,2-Tetrachloroethane	1.64	26.35	563	524	770	1629
Tetrachloroethylene [Tetrachloroethylene]	5	280	5985	5566	8182	17310
Thallium	0.12	0.23	4.92	4.58	6.73	14.2
Toluene	1000	N/A	N/A	N/A	N/A	N/A
Toxaphene	0.011	0.011	0.235	0.219	0.321	0.681
2,4,5-TP [Silvex]	50	369	7887	7335	10782	22811
					2291853	
1,1,1-Trichloroethane	200	784354	16764345	15590841	6	48487515
1,1,2-Trichloroethane	5	166	3548	3300	4851	10263
Trichloroethylene [Trichloroethene]	5	71.9	1537	1429	2100	4444
2,4,5-Trichlorophenol	1039	1867	39904	37111	54553	115415
TTHM [Sum of Total Trihalomethanes]	80	N/A	N/A	N/A	N/A	N/A
Vinyl Chloride	0.23	16.5	353	328	482	1020

CALCULATE 70% AND 85% OF DAILY AVERAGE EFFLUENT LIMITATIONS:

	70% of Daily	85% of Daily
Human Health	Avg.	Avg.
Parameter	(μg/L)	(μg/L)
Acrylonitrile	2352	2856
Aldrin	0.000234	0.000284
Anthracene	26938	32710
Antimony	21905	26599
Arsenic	N/A	N/A

Barium	N/A	N/A
Benzene	11883	14430
Benzidine	2.19	2.66
Benzo(a)anthracene	0.511	0.620
Benzo(a)pyrene	0.0511	0.0620
Bis(chloromethyl)ether	5.61	6.81
Bis(2-chloroethyl)ether	875	1062
Bis(2-ethylhexyl) phthalate [Di(2-ethylhexyl)	073	1002
phthalate]	154	187
Bromodichloromethane		
[Dichlorobromomethane]	5625	6830
Bromoform [Tribromomethane]	21680	26326
Cadmium	N/A	N/A
Carbon Tetrachloride	940	1141
Chlordane	0.0511	0.0620
Chlorobenzene	55981	67977
Chlorodibromomethane		
[Dibromochloromethane]	3742	4544
Chloroform [Trichloromethane]	157431	191166
Chromium (hexavalent)	10266	12466
Chrysene	51.5	62.5
Cresols [Methylphenols]	190239	231004
Cyanide (free)	N/A	N/A
4,4'-DDD	0.0408	0.0495
4,4'-DDE	0.00266	0.00323
4,4'-DDT	0.00812	0.00986
2,4'-D	N/A	N/A
Danitol [Fenpropathrin]	9674	11747
1,2-Dibromoethane [Ethylene Dibromide]	86.1	104
<i>m</i> -Dichlorobenzene [1,3-Dichlorobenzene]	12169	14777
o-Dichlorobenzene [1,2-Dichlorobenzene]	67476	81935
<i>p</i> -Dichlorobenzene [1,4-Dichlorobenzene]	N/A	N/A
3,3'-Dichlorobenzidine	45.7	55.5
1,2-Dichloroethane	7444	9039
1,1-Dichloroethylene [1,1-Dichloroethene]	1127287	1368849
Dichloromethane [Methylene Chloride]	272709	331147
1,2-Dichloropropane	5296	6431
1,3-Dichloropropene [1,3-Dichloropropylene]	2433	2954
Dicofol [Kelthane]	6.13	7.44
Dieldrin	0.000408	0.000495
2,4-Dimethylphenol	172547	209521
Di- <i>n</i> -Butyl Phthalate	1890	2295
	0.000001	0.000002
Dioxins/Furans [TCDD Equivalents]	7	0
Endrin	0.408	0.495
Epichlorohydrin	41173	49996
Ethylbenzene	38187	46370
	34362288	41725636
Ethyl Glycol	8	4
Fluoride	N/A	N/A
Heptachlor	0.00204	0.00248
Heptachlor Epoxide	0.00593	0.00720
Hexachlorobenzene	0.0138	0.0168
Hexachlorobutadiene	4.49	5.45
Hexachlorocyclohexane (alpha)	0.171	0.208
Hexachlorocyclohexane (beta)	5.31	6.45

Hexachlorocyclohexane (gamma) [Lindane]	6.97	8.46
Hexachlorocyclopentadiene	237	288
Hexachloroethane	47.6	57.8
Hexachlorophene	59.3	72.0
4,4'-Isopropylidenediphenol [Bisphenol A]	326891	396939
Lead	466	566
Mercury	0.249	0.303
Methoxychlor	61.3	74.4
Methyl Ethyl Ketone	20290113	24637994
Methyl tert-butyl ether [MTBE]	214394	260336
Nickel	61933	75204
Nitrate-Nitrogen (as Total Nitrogen)	N/A	N/A
Nitrobenzene	38309	46518
N-Nitrosodiethylamine	42.9	52.1
N-Nitroso-di- <i>n</i> -Butylamine	85.4	103
Pentachlorobenzene	7.21	8.75
Pentachlorophenol	5.93	7.20
Polychlorinated Biphenyls [PCBs]	0.0130	0.0158
Pyridine	19369	23520
Selenium	N/A	N/A
1,2,4,5-Tetrachlorobenzene	4.90	5.95
1,1,2,2-Tetrachloroethane	539	654
Tetrachloroethylene [Tetrachloroethylene]	5727	6954
Thallium	4.71	5.72
Toluene	N/A	N/A
Toxaphene	0.224	0.272
2,4,5-TP [Silvex]	7547	9164
1,1,1-Trichloroethane	16042975	19480755
1,1,2-Trichloroethane	3395	4123
Trichloroethylene [Trichloroethene]	1470	1785
2,4,5-Trichlorophenol	38187	46370
TTHM [Sum of Total Trihalomethanes]	N/A	N/A
Vinyl Chloride	337	409