

This file contains the following documents:

- 1. Summary of application (in plain language)
 - English
 - Alternative Language (Spanish)
- 2. First Notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
 - English
 - Alternative Language (Spanish)
- 3. Application materials

Este archivo contiene los siguientes documentos:

- 1. Resumen en lenguaje sencillo (PLS, por sus siglas en inglés) de la actividad propuesta
 - Inglés
 - Idioma alternativo (español)
- 2. Primer aviso (NORI, por sus siglas en inglés)
 - Inglés
 - Idioma alternativo (español)
- 3. Solicitud original

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

New Braunfels Utilities (CN600522957) operates the South Kuehler wastewater treatment plant (RN102078011), an activated sludge process plant operated in the complete mix mode. The facility is located at 1608 Coco Drive, in the City of New Braunfels, Comal County, Texas 78130.

This application is for a renewal to discharge at an annual average flow of 15,400,000 gallons per day of treated domestic wastewater.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), ammonia nitrogen (NH₃-N), total phosphorus, and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a bar screen, aeration basins, final clarifiers, sludge digesters, a belt filter press, chlorine contact chambers and a dechlorination chamber.

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no son representaciones federales exigibles de la solicitud de permiso.

New Braunfels Utilities (CN600522957) opera la planta de tratamiento de aguas residuales de South Kuehler (RN102078011), una planta de procesamiento de lodos activados que opera en modo de mezcla completa. La planta está ubicada en Coco Drive 1608, en la ciudad de New Braunfels, condado de Comal, Texas 78130.

Esta solicitud es para una renovación para descargar un flujo promedio anual de 15,400,000 galones por día de aguas residuales domésticas tratadas.

Se espera que las descargas de la instalación contengan la demanda bioquímica de oxígeno carbonoso de cinco días (CBOD₅), sólidos suspendidos totales (TSS), nitrógeno amoniacal (NH₃-N), fósforo total y *Escherichia coli*. Se incluyen otros contaminantes potenciales en el Informe Técnico Doméstico 1.0, Sección 7, Análisis de Contaminantes del Efluente Tratado, y la Hoja de Trabajo Doméstica 4.0 de la solicitud de permiso. Las aguas residuales domésticas se tratan en una planta de lodos activados, cuyas unidades de tratamiento incluyen un tamiz de barras, tanques de aireación, clarificadores finales, digestores de lodos, un filtro prensa de banda, cámaras de contacto con cloro y una cámara de decloración.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL.

PERMIT NO. WQ0010232001

APPLICATION. New Braunfels Utilities, 263 Main Plaza, New Braunfels, Texas 78131, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010232001 (EPA I.D. No. TX0067881) to authorize the discharge of treated wastewater at a volume not to exceed an annual average flow of 15,400,000 gallons per day. The domestic wastewater treatment facility is located at 1608 Coco Drive, in the city of New Braunfels, in Comal County, Texas 78130. The discharge route is from the plant site via Outfall 001 and Outfall 002 to an unnamed tributary of the Guadalupe River; thence to the Guadalupe River Below Comal River. TCEQ received this application on October 14, 2025. The permit application will be available for viewing and copying at New Braunfels Utilities, Customer Solutions Center, Front Desk, 1488 South Seguin Avenue, New Braunfels, in Comal County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage:

https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-98.098109,29.686472&level=18

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a

public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from New Braunfels Utilities at the address stated above or by calling Mr. Brent Lundmark, Water Treatment & Compliance Manager, at 830-608-8900.

Issuance Date: October 30, 2025

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ0010232001

SOLICITUD. New Braunfels Utilities, 263 Main Plaza, New Braunfels, Texas 78131, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0010232001 (EPA I.D. No. TX0067881) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio anual de 15,400,000 galones por día. La planta está ubicada en 1608 Coco Drive, en la ciudad de New Braunfels, en el Condado de Comal, Texas 78130. La ruta de descarga es del sitio de la planta a través de Outfall 001 v Outfall 002 un afluente sin nombre del río Guadalupe; de allí al río Guadalupe debajo del río Comal. La TCEQ recibió esta solicitud el 14 de octubre de 2025. La solicitud para el permiso estará disponible para leerla y copiarla en New Braunfels Utilities, Customer Solutions Center, Recepción, 1488 South Seguin Avenue, New Braunfels, en el Condado de Comal, Texas antes de la fecha de publicación de este aviso en el periódico. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-98.098109,29.686472&level=18

AVISO DE IDIOMA ALTERNATIVO. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar

la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión.

La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia

administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Además, puede pedir que la TCEQ ponga su nombre en una o más de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos del solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envía por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

INFORMACIÓN DISPONIBLE EN LÍNEA. Para detalles sobre el estado de la solicitud, favor de visitar la Base de Datos Integrada de los Comisionados en www.tceq.texas.gov/goto/cid. Para buscar en la base de datos, utilizar el número de permiso para esta solicitud que aparece en la parte superior de este aviso.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía http://www14.tceq.texas.gov/epic/eComment/o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional del New Braufels Utilities a la dirección indicada arriba o llamando a Sr. Brent Lundmark, Gerente de Tratamiento de Agua y Cumplimiento, al 830-608-8900.

Fecha de emisión: 29 de Octubre de 2025

Brooke T. Paup, *Chairwoman*Catarina R. Gonzales, *Commissioner*Tonya R. Miller, *Commissioner*Kelly Keel, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

October 14, 2025

Dear Applicant:

Re: Confirmation of Submission of the Domestic Renewal Wastewater Individual

Permit Application

This is an acknowledgment that you have successfully completed the Industrial Wastewater Individual Permit Application.

ER Account Number: ER111548

Application Reference Number: 787906 Authorization Number: WQ0010232001

Site Name: South Kuehler WWTP Regulated Entity: RN102078011

Customer(s): New Braunfels Utilities

Please be aware that TCEQ staff may contact your designated contact for any additional information.

If you have any questions, you may contact the Applications Review and Processing Team by email at WQ-ARPTeam@tceq.texas.gov or by telephone at (512) 239-4671.

Sincerely,

Applications Review and Processing Team Water Quality Division

Texas Commission on Environmental Quality

Update Domestic or Industrial Individual Permit WQ0010232001

Site Information (Regulated Entity)

What is the name of the site to be authorized? SOUTH KUEHLER WWTP

Does the site have a physical address?

Physical Address

Number and Street 1608 COCO DR

City NEW BRAUNFELS

 State
 TX

 ZIP
 78130

 County
 COMAL

 Latitude (N) (##.#####)
 29.686472

 Longitude (W) (-###.#####)
 -98.098109

Primary SIC Code 4952

Secondary SIC Code

Primary NAICS Code 221320

Secondary NAICS Code

Regulated Entity Site Information

What is the Regulated Entity's Number (RN)? RN102078011

What is the name of the Regulated Entity (RE)? SOUTH KUEHLER WWTP

Does the RE site have a physical address?

Physical Address

Number and Street 1608 COCO DR
City NEW BRAUNFELS

 State
 TX

 ZIP
 78130

 County
 COMAL

 Latitude (N) (##.#####)
 29.686472

 Longitude (W) (-###.#####)
 -98.098109

Facility NAICS Code

What is the primary business of this entity?

DOMESTIC

New Bra-Customer (Applicant) Information (Owner)

How is this applicant associated with this site?

What is the applicant's Customer Number (CN)?

Type of Customer

Other Government

Full legal name of the applicant:

Legal Name New Braunfels Utilities

Texas SOS Filing Number

Federal Tax ID

State Franchise Tax ID

State Sales Tax ID

Local Tax ID

DUNS Number 38346169
Number of Employees 101-250

Independently Owned and Operated?

I certify that the full legal name of the entity applying for this permit has been provided and is legally authorized to do business in Texas.

Yes

Responsible Authority Contact

Organization Name New Braunfels Utilities

Prefix MR
First Mark

Middle

Last Steelman

Suffix

Credentials

Title Chief Operations Officer

Responsible Authority Mailing Address

Enter new address or copy one from list:

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) 263 MAIN PLZ

Routing (such as Mail Code, Dept., or Attn:)

City NEW BRAUNFELS

State TX ZIP 78130

Phone (###-####) 8306298415

Extension

Alternate Phone (###-###-###)

Fax (###-###-###)

E-mail msteelman@NBUTEXAS.COM

Billing Contact

Responsible contact for receiving billing statements:

Select the permittee that is responsible for payment of the annual fee. CN600522957, New Braunfels Utilities

Organization Name NEW BRAUNFELS UTILITIES

Prefix MR First Brent

Middle

Last Lundmark

Suffix

Credentials

Title WATER TREATMENT & COMPLIANCE

MANAGER

Enter new address or copy one from list:

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) 1922 KUEHLER AVE

Routing (such as Mail Code, Dept., or Attn:)

City NEW BRAUNFELS

State TX ZIP 78130

Phone (###-####) 8306088900

Extension

Alternate Phone (###-###-###)

Fax (###-###-###)

E-mail BLUNDMARK@NBUTEXAS.COM

Application Contact

Person TCEQ should contact for questions about this application:

Same as another contact?

Organization Name NEW BRAUNFELS UTILITIES

Prefix MR
First BRENT

Middle

Last LUNDMARK

Suffix

Credentials

Title WATER TREATMENT & COMPLIANCE

MANAGER

Enter new address or copy one from list: Billing Contact

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) 1922 KUEHLER AVE

Routing (such as Mail Code, Dept., or Attn:)

City NEW BRAUNFELS

State TX ZIP 78130

Phone (###-####) 8306088900

Extension

Alternate Phone (###-###-###)

Fax (###-###-###)

E-mail BLUNDMARK@NBUTEXAS.COM

Technical Contact

Person TCEQ should contact for questions about this application:

Same as another contact?

Organization Name Quiddity Engineering

Prefix MR
First Jonathan

Middle

Last Nguyen

Suffix

Credentials

Title Permitting Specialist

Enter new address or copy one from list:

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable)

912 S CAPITAL OF TEXAS HWY STE

300

Routing (such as Mail Code, Dept., or Attn:)

City WEST LAKE HILLS

State TX ZIP 78746

Phone (###-####) 5126855156

Extension

Alternate Phone (###-###-###)

Fax (###-###-###)

E-mail jnguyen@quiddity.com

DMR Contact

Person responsible for submitting Discharge Monitoring Report Forms:

Same as another contact?

Billing Contact

Organization Name NEW BRAUNFELS UTILITIES

Prefix MR First Brent

Middle

Last Lundmark

Suffix Credentials

Title WATER TREATMENT & COMPLIANCE

MANAGER

Enter new address or copy one from list:

Mailing Address:

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) 1922 KUEHLER AVE

Routing (such as Mail Code, Dept., or Attn:)

City NEW BRAUNFELS

State TX ZIP 78130

Phone (###-###) 8306088900

Extension

Alternate Phone (###-###-###)

Fax (###-###-)

E-mail BLUNDMARK@NBUTEXAS.COM

Section 1# Permit Contact

Permit Contact#: 1

Person TCEQ should contact throughout the permit term.

1) Same as another contact? CN600522957, New Braunfels Utilities

2) Organization Name

New Braunfels Utilities

3) Prefix MR
4) First Mark

5) Middle

6) Last Steelman

7) Suffix

8) Credentials

9) Title Chief Operations Officer

Mailing Address

10) Enter new address or copy one from list

11) Address Type Domestic11.1) Mailing Address (include Suite or Bldg. here, if applicable)263 MAIN PLZ

11.2) Routing (such as Mail Code, Dept., or Attn:)

11.3) City NEW BRAUNFELS

11.4) State TX
11.5) ZIP 78130
12) Phone (###-####) 8306298415

13) Extension

14) Alternate Phone (###-###-###)

15) Fax (###-###-###)

16) E-mail msteelman@nbutexas.com

Section 2# Permit Contact

Permit Contact#: 2

Person TCEQ should contact throughout the permit term.

1) Same as another contact? Billing Contact

2) Organization Name NEW BRAUNFELS UTILITIES

3) Prefix MR
4) First Brent

5) Middle

6) Last Lundmark

7) Suffix

8) Credentials

9) Title WATER TREATMENT & COMPLIANCE

MANAGER

Mailing Address

10) Enter new address or copy one from list

11) Address Type Domestic

11.1) Mailing Address (include Suite or Bldg. here, if applicable) 1922 KUEHLER AVE

11.2) Routing (such as Mail Code, Dept., or Attn:)

11.3) City NEW BRAUNFELS

 11.4) State
 TX

 11.5) ZIP
 78130

12) Phone (###-####) 8306088900

13) Extension

14) Alternate Phone (###-###-###)

15) Fax (###-###-###)

16) E-mail blundmark@nbutexas.com

Owner Information

Owner of Treatment Facility

1) Prefix 2) First and Last Name 3) Organization Name New Braunfels Utilities 4) Mailing Address 263 Main Plaza **New Braunfels** 5) City TX 6) State 78130 7) Zip Code 8306088900 8) Phone (###-###-###) 9) Extension 10) Email blundmark@nbutexas.com 11) What is ownership of the treatment facility? **Public** Owner of Land (where treatment facility is or will be) 12) Prefix 13) First and Last Name 14) Organization Name New Braunfels Utilities 263 Main Plaza 15) Mailing Address **New Braunfels** 16) City ΤX 17) State 78130 18) Zip Code 8306088900 19) Phone (###-###-###) 20) Extension 21) Email blundmark@nbutexas.com Yes 22) Is the landowner the same person as the facility owner or coapplicant? General Information Renewal-Amendment 04/30/2026 1) Current authorization expiration date: 2) Current Facility operational status: Active 3) Is the facility located on or does the treated effluent cross American No Indian Land? 4) What is the application type that you are seeking? Renewal without changes 5) Current Authorization type: Public Domestic Wastewater 5.1) What is the proposed total flow in MGD discharged at the facility? 15.4 >= 1.0 MGD - Renewal - \$2,015 5.2) Select the applicable fee **TPDES** 6) What is the classification for your authorization? TX0067881 6.1) What is the EPA Identification Number? 6.2) Is the wastewater treatment facility location in the existing permit Yes accurate? 6.3) Are the point(s) of discharge and the discharge route(s) in the Yes existing permit correct? **New Braunfels** 6.4) City nearest the outfall(s): 6.5) County where the outfalls are located: COMAL

6.6) Is or will the treated wastewater discharge to a city, county, or state highway right-of-way, or a flood control district drainage ditch?

6.7) Is the daily average discharge at your facility of 5 MGD or more?

6.7.1) Provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge:

7) Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?

No

Yes

COMAL|GONZALES|GUADALUPE|DE

WITT

Yes

7.1) List each person formerly employed by the TCEQ who represented your company and was paid for service regarding the application:

Jonathan Nguyen

Public Notice Information

Individual Publishing the Notices

1) Prefix MS

2) First and Last Name Becca Graham

Credential

4) Title Enterprise Communication Manager

5) Organization Name New Braunfels Utilities

6) Mailing Address 263 MAIN PLZ

7) Address Line 2

8) City NEW BRAUNFELS

9) State TX 10) Zip Code 78130

11) Phone (###-####) 8306298400

12) Extension

13) Fax (###-####)

14) Email communications@nbutexas.com

Contact person to be listed in the Notices

15) Prefix MR

16) First and Last Name Brent Lundmark

17) Credential

18) Title Water Treatment & Compliance

Manager

19) Organization Name New Braunfels Utilities

20) Phone (###-###+) 8306088900

21) Fax (###-###-###)

22) Email blundmark@nbutexas.com

Bilingual Notice Requirements

23) Is a bilingual education program required by the Texas Education

Yes

Code at the elementary or middle school nearest to the facility or

proposed facility?

23.1) Are the students who attend either the elementary school or the Mes middle school enrolled in a bilingual education program at that school?

23.2) Do the students at these schools attend a bilingual education No

program at another location?

23.3) Would the school be required to provide a bilingual education

No

program but the school has waived out of this requirement under 19 TAC 89.1205(g)?

23.4) Which language is required by the bilingual program? Spanish

Section 1# Public Viewing Information

County#: 1

1) County COMAL

2) Public building name

New Braunfels Utilities Customer

Solutions Center

3) Location within the building Front Desk

4) Physical Address of Building 1488 South Seguin Avenue

5) City
New Braunfels
6) Contact Name
Becca Graham

7) Phone (###-####) 8306298400

8) Extension

9) Is the location open to the public?

Plain Language

Plain Language
 [File Properties]

File Name LANG_01 A - PLS.pdf

Hash 8D72D8C649A5B11E50BB1D39085D8744996C2F6FC89B617D6B9019E36DACE922

MIME-Type application/pdf

Supplemental Permit Information Form

1) Supplemental Permit Information Form (SPIF)

[File Properties]

File Name SPIF_02 B - SPIF.pdf

Hash 940D7C624BCCF582FCE79F8CDBFF22420D9FE04EB731D8129FDE40941BDA3220

MIME-Type application/pdf

Domestic Attachments

1) Attach an 8.5"x11", reproduced portion of the most current and original USGS Topographic Quadrangle Map(s) that meets the 1:24,000 scale.

[File Properties]

File Name MAP_03 C - USGS.pdf

Hash D58BB590291AA1746CBFEA31103506534686BE3C5DA20742465A96BA2CEF6292

MIME-Type application/pdf

2) I confirm that all required sections of Technical Report 1.0 are Yes complete and will be included in the Technical Attachment.

2.1) I confirm that Worksheet 2.0 (Receiving Waters) is complete and Yes

included in the Technical Attachment.

2.2) Are you planning to include Worksheet 2.1 (Stream Physical No Characteristics) in the Technical Attachment?

2.3) Are you planning to include Worksheet 4.0 (Pollutant Analyses Yes

Requirements) in the Technical Attachment?

2.4) Are you planning to include Worksheet 5.0 (Toxicity Testing Yes Requirements) in the Technical Attachment?

2.5) I confirm that Worksheet 6.0 (Industrial Waste Contribution) is Yes complete and included in the Technical Attachment.

2.6) Are you planning to include Worksheet 7.0 (Class V Injection Well No Inventory/Authorization Form) in the Technical Attachment?

2.7) Technical Attachment

[File Properties]

File Name TECH_04 D - App Tech Report.pdf

Hash 51E373B047F4BA1EBBDEC938C8A726E0FEB3D0C667F77E93909A751060A9B604

MIME-Type application/pdf

3) Buffer Zone Map

4) Flow Diagram

[File Properties]

File Name FLDIA_05 E - Flow Schematics.pdf

Hash 2F8BB26D43351E07FB8FE5731C7783CCF3701B9CE49FC0A04763F394DD10DC8E

MIME-Type application/pdf

5) Site Drawing [File Properties]

File Name SITEDR_06 F - Service Area Map.pdf

Hash BE13F2F03A9524F6DD626093068C81A43FCADA5314B78B7B0A2C4DCD3244C230

MIME-Type application/pdf

6) Design Calculations

[File Properties]

File Name DES_CAL_07 G - Treatment Units.pdf

Hash 5BD0BCC087369F26EC0E4E27468C9DC093DE2A9C26FF8C14C686D971F8686CDD

MIME-Type application/pdf

7) Solids Management Plan

8) Water Balance

9) Other Attachments

[File Properties]

File Name OTHER 08 H - Core Data Form.pdf

Hash 1F8C8A675F3D20E054A0D22AD85D27E549B90117E8ED1A5AD7DE5B492230D83C

MIME-Type application/pdf

[File Properties]

File Name OTHER_09 I - Effluent Analysis.pdf

Hash FEC3C0946ACEE6A0E48EC69323415C157214AFC2EA13A0F828DB28CD828AC969

MIME-Type application/pdf

Certification

I certify that I am authorized under 30 Texas Administrative Code 305.44 to sign this document and can provide documentation in proof of such authorization upon request.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

- 1. I am Mark Steelman, the owner of the STEERS account ER111548.
- 2. I have the authority to sign this data on behalf of the applicant named above.
- 3. I have personally examined the foregoing and am familiar with its content and the content of any attachments, and based upon my personal knowledge and/or inquiry of any individual responsible for information contained herein, that this information is true, accurate, and complete.
- 4. I further certify that I have not violated any term in my TCEQ STEERS participation agreement and that I have no reason to believe that the confidentiality or use of my password has been compromised at any time.
- 5. I understand that use of my password constitutes an electronic signature legally equivalent to my written signature.
- 6. I also understand that the attestations of fact contained herein pertain to the implementation, oversight and enforcement of a state and/or federal environmental program and must be true and complete to the best of my knowledge.
- 7. I am aware that criminal penalties may be imposed for statements or omissions that I know or have reason to believe are untrue or misleading.

8. I am knowingly and intentionally signing Update Domestic or Industrial Individual Permit WQ0010232001.

9. My signature indicates that I am in agreement with the information on this form, and authorize its submittal to the TCEQ.

OWNER Signature: Mark Steelman OWNER

Customer Number: CN600522957

Legal Name: New Braunfels Utilities

Account Number: ER111548
Signature IP Address: 98.6.230.166
Signature Date: 2025-10-14

Signature Hash: 4D2A734B6D84C4B22A2049192537B2644133C91C074D81CAED34B325F30A4816
Form Hash Code at time 5B8CCDDA7A8010DFB51B17D6722C87FACECCCF792CC1024D9F61C16E12ED3020

of Signature:

Fee Payment

Transaction by:

The application fee payment transaction was

made by ER111548/Mark Steelman

Paid by: The application fee was paid by MARK

STEELMAN

Fee Amount: \$2000.00

Paid Date: The application fee was paid on 2025-10-14

Transaction/Voucher number: The transaction number is 582EA000689192 and

the voucher number is 787838

Submission

Reference Number: The application reference number is 787906

Submitted by: The application was submitted by ER111548/Mark

Steelman

Submitted Timestamp: The application was submitted on 2025-10-14 at

14:04:59 CDT

Submitted From: The application was submitted from IP address

98.6.230.166

Confirmation Number: The confirmation number is 685009

Steers Version: The STEERS version is 6.93

Permit Number: The permit number is WQ0010232001

Additional Information

Application Creator: This account was created by Huan J Nguyen

ATTACHMENT H

CORE DATA FORM

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)

☐ New Perr	nit, Registra	tion or Authorization	(Core Data Form	should be s	ubmitte	d with the p	prog	ram application.)			
□ Renewal	(Core Data F	orm should be subm	itted with the rene	ewal form)] 0	ther			
2. Customer Reference Number (if issued) Follow this link for CN or RN not Central Reg					numbei	rs in	3. Regulated Entity Reference Number (if issued) RN 102078011				
4. General Cu		Customer				r Informat	tion	Updates (mm/dd/	vvvv)		
☐ New Custon		ا 🔀 Verifiable with the Te	Jpdate to Customeras Secretary of S					nge in Regulated Ent : Accounts)	nty Owne	ership	
		bmitted here may						·	with th	e Texas Sec	retary of State
		ller of Public Acco	-	omatican	y Du sco	. 011 111114	75 6	arreme and active		e rexus see	ctury of state
6. Customer	Legal Nam	e (If an individual, pr	int last name first	: eg: Doe, Jo	ohn)			If new Customer,	enter pre	evious Custom	<u>ner below:</u>
New Braunfels	Utilities										
7. TX SOS/CP	A Filing Nu	ımber	8. TX State Ta	IX ID (11 di	gits)		9. Federal Tax ID 10. DUNS Number applicable)		,,		
								(9 digits)			
								746001783		38346169	
11. Type of C	ustomer:	☐ Corpora	ation			☐ In	divic	lual	Partne	rship: 🗌 Gei	neral 🗌 Limited
Government:	⊠ City □ C	ounty 🗌 Federal 🗀	Local	Other		☐ Sc	Sole Proprietorship				
12. Number	of Employe	ees						13. Independer	ntly Ow	ned and Op	erated?
0-20	21-100] 101-250 🛮 251	-500 🗌 501 ar	nd higher				⊠ Yes	□ No		
14. Customer	r Role (Prop	oosed or Actual) – as	it relates to the Re	egulated En	tity liste	ed on this fo	orm.	Please check one of	the follo	wing	
Owner Occupation	al Licensee	Operator Responsible Pa	_	er & Operat CP/BSA Appl				Other:			
15. Mailing	263 Main	Plaza									
Address:											
	City	New Braunfels		State	TX	ZIF	•	78130		ZIP + 4	
16. Country I	Mailing Info	ormation (if outside	· USA)			17. E-Ma	il Ad	ddress (if applicabl	e)		1
						blundmar	k@n	butexas.com			

TCEQ-10400 (11/22) Page 1 of 3

18. Telephone Number			19. Extension or (Code		20. F	ax Number (if a	applicable)	
830) 608-8900						() -		
ECTION III:	Regula	ated Entit	y Inform	ation					
1. General Regulated E	ntity Informa	tion (If 'New Regulo	ated Entity" is select	ed, a new pe	rmit applica	ition is d	lso required.)		
New Regulated Entity	Update to	Regulated Entity Na	me 🛮 Update to	Regulated I	ntity Inform	ation			
he Regulated Entity Na s Inc, LP, or LLC).	me submitte	d may be updated	d, in order to mee	t TCEQ Cor	e Data Sta	ndards	(removal of o	rganization	al endings such
2. Regulated Entity Nar	ne (Enter nam	e of the site where t	he regulated action	is taking pla	ce.)				
outh Kuehler Wastewater 1	reatment Plar	it							
3. Street Address of he Regulated Entity:	1608 Coco I	Drive							
No PO Boxes)									
(NOTO BOXES)	City	New Braunfels	State	TX	ZIP	7813	0	ZIP + 4	
4. County	Comal	•				•			
		If no Street	Address is provide	ed, fields 2	5-28 are re	quired	•		
25. Description to									
Physical Location:	N/A								
6. Nearest City	<u> </u>					State		Nea	rest ZIP Code
lew Braunfels						TX		7813	30
atitude/Longitude are i ised to supply coordinat	-				ata Stando	ards. (G	eocoding of th	ne Physical	Address may b
27. Latitude (N) In Decim	ıal:	29.686472		28. Lo	ongitude (\	V) In D	ecimal:	-98.0981	09
Degrees	Minutes	Se	econds	Degre	es		Minutes		Seconds
29. Primary SIC Code	30.	Secondary SIC Co	de	31. Primar	v NAICS C	ode	32. Seco	ndary NAI	CS Code
(4 digits)	(4 d	igits)		(5 or 6 digit	-		(5 or 6 dig	gits)	

TCEQ-10400 (11/22) Page 2 of 3

221320

ΤX

ZIP

78130

() -

38. Fax Number (if applicable)

ZIP + 4

State

37. Extension or Code

33. What is the Primary Business of this entity? (Do not repeat the SIC or NAICS description.)

New Braunfels

blundmark@nbutexas.com

263 Main Plaza

City

4952

34. Mailing

35. E-Mail Address:

(830)608-8900

36. Telephone Number

Address:

treatment of domestic wastewater

		ructions for additional					y the updates submitted on this
☐ Dam Safety		Districts	Edwards Aquifer		Emissions Inv	entory Air	Industrial Hazardous Wast
☐ Municipal Solid Waste		New Source	OSSF		☐ Petroleum Storag		☐ PWS
Sludge		Storm Water	☐ Title V Air	Tires			Used Oil
☐ Voluntary Clear	nup	TXR05R076 Wastewater	☐ Wastewater Agricu	lture 🔲	Water Rights		Other:
		WQ0010232001					
ECTION	IV: Pr	eparer Inf	<u>formation</u>	•			
10. Name: Joi	nathan Nguy	en		41. Title:	Permit Spec	cialist	
12. Telephone Nu	mber	43. Ext./Code	44. Fax Number	45. E-Mail /	Address		
512) 685-5156			() - jnguyen@quiddity.c				
. By my signature b	elow, I certif		_				and that I have signature authorith and that I have signature authorith and the land and the lan
Company: New Braunfels Utilities				Job Title: Water T		atment and Compliance Manager	
Name (In Print): Brent Lundmark						Phone:	(830) 608- 8900
Signature:						Date:	

TCEQ-10400 (11/22) Page 3 of 3

ATTACHMENT A

PLAIN LANGUAGE SUMMARY

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

New Braunfels Utilities (CN600522957) operates the South Kuehler wastewater treatment plant (RN102078011), an activated sludge process plant operated in the complete mix mode. The facility is located at 1608 Coco Drive, in the City of New Braunfels, Comal County, Texas 78130.

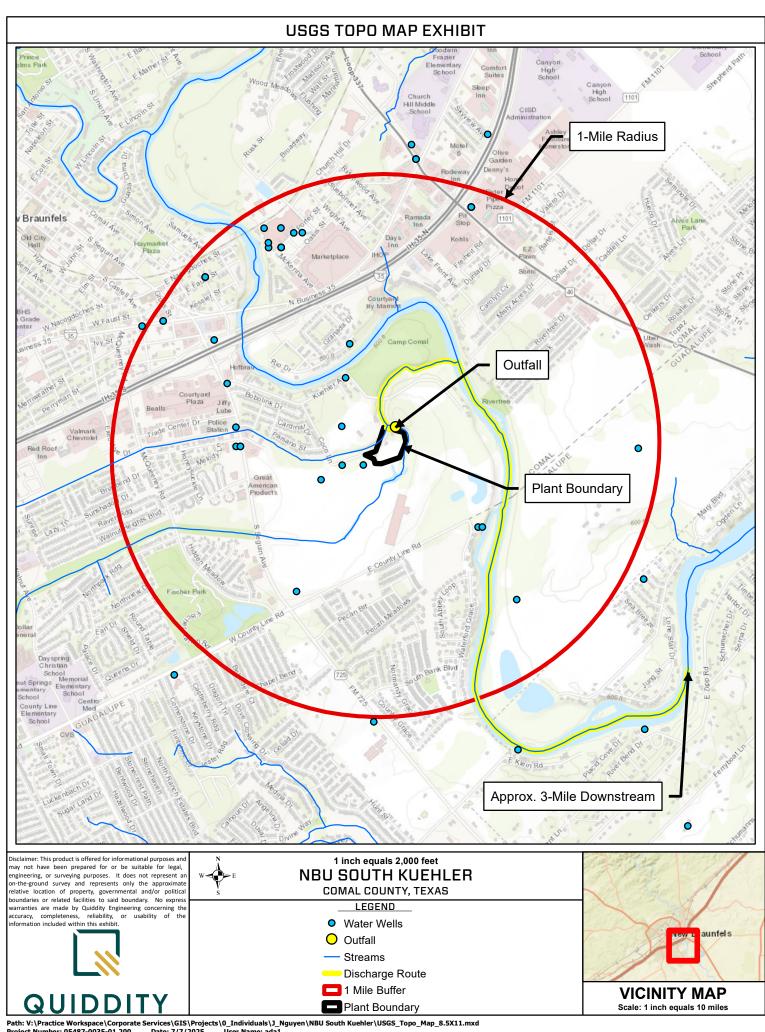
This application is for a renewal to discharge at an annual average flow of 15,400,000 gallons per day of treated domestic wastewater.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand ($CBOD_5$), total suspended solids (TSS), ammonia nitrogen (NH_3 -N), total phosphorus, and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a bar screen, aeration basins, final clarifiers, sludge digesters, a belt filter press, chlorine contact chambers and a dechlorination chamber.

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no son representaciones federales exigibles de la solicitud de permiso.

New Braunfels Utilities (CN600522957) opera la planta de tratamiento de aguas residuales de South Kuehler (RN102078011), una planta de procesamiento de lodos activados que opera en modo de mezcla completa. La planta está ubicada en Coco Drive 1608, en la ciudad de New Braunfels, condado de Comal, Texas 78130.

Esta solicitud es para una renovación para descargar un flujo promedio anual de 15,400,000 galones por día de aguas residuales domésticas tratadas.


Se espera que las descargas de la instalación contengan la demanda bioquímica de oxígeno carbonoso de cinco días (CBOD₅), sólidos suspendidos totales (TSS), nitrógeno amoniacal (NH₃-N), fósforo total y *Escherichia coli*. Se incluyen otros contaminantes potenciales en el Informe Técnico Doméstico 1.0, Sección 7, Análisis de Contaminantes del Efluente Tratado, y la Hoja de Trabajo Doméstica 4.0 de la solicitud de permiso. Las aguas residuales domésticas se tratan en una planta de lodos activados, cuyas unidades de tratamiento incluyen un tamiz de barras, tanques de aireación, clarificadores finales, digestores de lodos, un filtro prensa de banda, cámaras de contacto con cloro y una cámara de decloración.

ATTACHMENT C

USGS MAP

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

ATTACHMENT B

SUPPLEMENTAL PERMIT INFORMATION FORM

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

TCEQ USE ONLY:	
Application type:RenewalMajor A	AmendmentNinor AmendmentNew
County:	Segment Number:
Admin Complete Date:	
Agency Receiving SPIF:	
Texas Historical Commission	U.S. Fish and Wildlife
Texas Parks and Wildlife Department	
This form applies to TPDES permit application	one only (Instructions Dago 53)
our agreement with EPA. If any of the items a	TCEQ will mail a copy to each agency as required by re not completely addressed or further information information before issuing the permit. Address
application will not be declared administrative completed in its entirety including all attachm	Administrative Report of the application. The ely complete without this SPIF form being nents. Questions or comments concerning this form's Application Review and Processing Team by
The following applies to all applications:	
1. Permittee: <u>New Braunfels Utilities</u>	
Permit No. WQ00 <u>10232001</u>	EPA ID No. TX <u>0067881</u>
and county):	ription that includes street/highway, city/vicinity,
1608 Coco Drive, in the City of New Brau	nfels, Comal County, Texas 78130
Provide the name, address, phone and fax answer specific questions about the prope	number of an individual that can be contacted to rty.
Prefix (Mr., Ms., Miss): Mr.	
First and Last Name: <u>Jonathan Nguyen</u>	
Credential (P.E, P.G., Ph.D., etc.):	to enter text.
Title: <u>Permitting Specialist</u>	

	City, St	ate, Zip Code: <u>Austin, TX 78746</u>
	Phone	No.: <u>512-685-5156</u> Ext.: Fax No.:
	E-mail	Address: jnguyen@quiddity.com
2.	List the	e county in which the facility is located: <u>Comal</u>
3.	please	property is publicly owned and the owner is different than the permittee/applicant, list the owner of the property. The ist the permittee.
4.	of efflu dischar	e a description of the effluent discharge route. The discharge route must follow the flow ent from the point of discharge to the nearest major watercourse (from the point of the rege to a classified segment as defined in 30 TAC Chapter 307). If known, please identify saffied segment number.
		utfall 001 and 002 to an unnamed tributary of the Guadalupe River, then to the dupe River Below Comal River in Segment No. 1804 of the Guadalupe River Basin
5.	plotted route f	provide a separate 7.5-minute USGS quadrangle map with the project boundaries and a general location map showing the project area. Please highlight the discharge rom the point of discharge for a distance of one mile downstream. (This map is ed in addition to the map in the administrative report).
	Provide	e original photographs of any structures 50 years or older on the property.
	Does y	our project involve any of the following? Check all that apply.
	\boxtimes	Proposed access roads, utility lines, construction easements
		Visual effects that could damage or detract from a historic property's integrity
		Vibration effects during construction or as a result of project design
	\boxtimes	Additional phases of development that are planned for the future
		Sealing caves, fractures, sinkholes, other karst features
		Disturbance of vegetation or wetlands
1.	of cave	oposed construction impact (surface acres to be impacted, depth of excavation, sealing s, or other karst features): ves or karst features will be affected. Approximately 10 acres will be used for future sion.
2.		ne existing disturbances, vegetation, and land use: ng land use is for the wastewater treatment plant.
TH	E FOLL	OWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR

AMENDMENTS TO TPDES PERMITS

Mailing Address: 912 South Capital of Texas Hwy, Suite 130

3.	List construction dates of all buildings and structures on the property:
	N/A

4. Provide a brief history of the property, and name of the architect/builder, if known.

N/A

ATTACHMENT D

APPLICATION TECHNICAL REPORT 1.0-2.0-4.0-5.0-6.0

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

THE TONMENTAL OUR LEVEL OF THE TON THE

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671.

The following information is required for all renewal, new, and amendment applications.

Section 1. Permitted or Proposed Flows (Instructions Page 43)

A. Existing/Interim I Phase

Design Flow (MGD): 4.2

2-Hr Peak Flow (MGD): 12.6

Estimated construction start date: Click to enter text.

Estimated waste disposal start date: Click to enter text.

B. Interim II Phase

Design Flow (MGD): 9.3

2-Hr Peak Flow (MGD): 27.9

Estimated construction start date: August 2032

Estimated waste disposal start date: October 2033

C. Final Phase

Design Flow (MGD): 15.4

2-Hr Peak Flow (MGD): 46.2

Estimated construction start date: August 2038

Estimated waste disposal start date: October 2039

D. Current Operating Phase

Provide the startup date of the facility: Unknown

Section 2. Treatment Process (Instructions Page 43)

A. Current Operating Phase

Provide a detailed description of the treatment process. **Include the type of treatment plant, mode of operation, and all treatment units.** Start with the plant's head works and finish with the point of discharge. Include all sludge processing and drying units. **If more than one phase exists or is proposed, a description of** *each phase* **must be provided.**

See Attachment G – Treatment Process and Units

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) of each treatment unit, accounting for *all* phases of operation.

Table 1.0(1) - Treatment Units

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
See Attachment G		

C. Process Flow Diagram

Provide flow diagrams for the existing facilities and each proposed phase of construction.

Attachment: Attachment E

Section 3. Site Information and Drawing (Instructions Page 44)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

• Latitude: 29.687351 (001), 29.686405 (002)

• Longitude: <u>-98.097869 (001)</u>, <u>-98.099436 (002)</u>

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

Latitude: <u>N/A</u>Longitude: <u>N/A</u>

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and
- If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Attachment: Attachment F

Provide the name **and** a description of the area served by the treatment facility.

The South Kuehler plant serves central and south New Braunfels.

Collection System Information **for wastewater TPDES permits only**: Provide information for each **uniquely owned** collection system, existing and new, served by this facility, including satellite collection systems. **Please see the instructions for a detailed explanation and examples.**

Collection System Information

Collection System Name	Owner Name	Owner Type	Population Served
South Kuehler	NBU	Publicly Owned	~38,000

Section 4. Unbuilt Phases (Instructions Page 45)

Is the application for a renewal of a permit that contains an unbuilt phase or phases?

ĭ Yes □ No	
If yes , does the existing permit contain a phase that has not been constructed within fivears of being authorized by the TCEQ?	ve
⊠ Yes □ No	
If yes, provide a detailed discussion regarding the continued need for the unbuilt phase Failure to provide sufficient justification may result in the Executive Director recommending denial of the unbuilt phase or phases.	•
Development has slowed in the past few years but is picking up. Future expansion will accept flo from the North Kuehler plant. The North Kuehler permit will be canceled when the expansion of the South Kuehler plant is completed.	
Section 5. Closure Plans (Instructions Page 45)	
Have any treatment units been taken out of service permanently, or will any units be taken out of service in the next five years?	æn
□ Yes ⊠ No	
If yes, was a closure plan submitted to the TCEQ?	
□ Yes □ No	
If yes, provide a brief description of the closure and the date of plan approval.	
N/A	
Section 6. Permit Specific Requirements (Instructions Page 45)	
For applicants with an existing permit, check the Other Requirements or Special Provisions of the permit.	
A. Summary transmittal	
Have plans and specifications been approved for the existing facilities and each propphase?	osed
⊠ Yes □ No	
If yes, provide the date(s) of approval for each phase: <u>Unknown for Interim I</u>	
Provide information, including dates, on any actions taken to meet a <i>requirement or provision</i> pertaining to the submission of a summary transmittal letter. Provide a co an approval letter from the TCEQ, if applicable .	py of
Summary transmittal will be approved for the Interim II and Final phases prior to constructi	on.
B. Buffer zones	
Have the buffer zone requirements been met?	
⊠ Yes □ No	
Provide information below, including dates, on any actions taken to meet the conditi the buffer zone. If available, provide any new documentation relevant to maintaining buffer zones.	

	O	dor abatement plan approved for all phases on December 2020.					
C.	Ot	her actions required by the current permit					
Does the <i>Other Requirements</i> or <i>Special Provisions</i> section in the existing permit require submission of any other information or other required actions? Examples include Notification of Completion, progress reports, soil monitoring data, etc.							
		⊠ Yes □ No					
	-	yes, provide information below on the status of any actions taken to meet the additions of an <i>Other Requirement</i> or <i>Special Provision</i> .					
	N	otice of Completion will be submitted prior to startup of each future phase and outfall relocation.					
D.	Gr	it and grease treatment					
	1.	Acceptance of grit and grease waste					
		Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?					
		□ Yes ⊠ No					
		If No, stop here and continue with Subsection E. Stormwater Management.					
	2.	Grit and grease processing					
		Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility.					
		N/A					
	<i>3.</i>	Grit disposal					
		Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal?					
		□ Yes □ No					
		If No , contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.					
		Describe the method of grit disposal.					
		N/A					
	4.	Grease and decanted liquid disposal					
		Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335.					
		Describe how the decant and grease are treated and disposed of after grit separation.					
		N/A					

1.	Applicability
	Does the facility have a design flow of 1.0 MGD or greater in any phase?
	⊠ Yes □ No
	Does the facility have an approved pretreatment program, under 40 CFR Part 403?
	⊠ Yes □ No
	If no to both of the above, then skip to Subsection F, Other Wastes Received.
2.	MSGP coverage
	Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?
	⊠ Yes □ No
	If yes , please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:
	TXR05 <u>Ro76</u> or TXRNE <u>Click to enter text.</u>
	If no, do you intend to seek coverage under TXR050000?
	□ Yes □ No
<i>3.</i>	Conditional exclusion
	Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?
	□ Yes ⊠ No
	If yes, please explain below then proceed to Subsection F, Other Wastes Received:
	N/A
4.	Existing coverage in individual permit
	Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?
	□ Yes ⊠ No
	If yes , provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.
	N/A
5.	Zero stormwater discharge
	Do you intend to have no discharge of stormwater via use of evaporation or other means?
	□ Yes ⊠ No
	If yes, explain below then skip to Subsection F. Other Wastes Received.
	N/A

E. Stormwater management

Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.

6. Request for coverage in individual permit

Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?

□ Yes ⊠ No

If yes, provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state.

N/A

Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.

F. Discharges to the Lake Houston Watershed

Does the facility discharge in the Lake Houston watershed?

□ Yes ⊠ No

If yes, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions. N/A

G. Other wastes received including sludge from other WWTPs and septic waste

1. Acceptance of sludge from other WWTPs

Does or will the facility accept sludge from other treatment plants at the facility site?

⊠ Yes □ No

If yes, attach sewage sludge solids management plan. See Example 5 of the instructions.

In addition, provide the date the plant started or is anticipated to start accepting sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an estimate of the BOD_5 concentration of the sludge, and the design BOD_5 concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

The plant receives sludge from the North Kuehler WWTF (WQ0010232003).

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

2. Acceptance of septic waste

Is the facility accepting or will it accept septic waste?

□ Yes ⋈ No

□ Yes ⋈ No
 If yes, does the facility have a Type V processing unit?
 □ Yes □ No
 If yes, does the unit have a Municipal Solid Waste permit?
 □ Yes □ No

If yes to any of the above, provide the date the plant started or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD₅ concentration of the septic waste, and the design BOD₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

N/A

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

3. Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)

Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above?

□ Yes ⊠ No

If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.

N/A

Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 50)

Is the facility in operation?

⊠ Yes □ No

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). *Water treatment facilities* discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. **These tables are not applicable for a minor amendment without renewal.** See the instructions for guidance.

Note: The sample date must be within 1 year of application submission.

Table1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l	3.9	3.9	1	Comp	8-29-25/0700
Total Suspended Solids, mg/l	2.93	3.6	8	Comp	8-1-25, 8-6-25, 8-8-25, 8-13-25, 8-15-25, 8-20- 25, 8-22-25, 8- 28-25/0700
Ammonia Nitrogen, mg/l	0	0	5	Comp	8-1-25, 8-8-25, 8-15-25, 8-22- 25, 8-28- 25/0700
Nitrate Nitrogen, mg/l	26.7	26.7	1	Comp	8-5-25/0700
Total Kjeldahl Nitrogen, mg/l	2.0	2.0	1	Comp	8-5-25/0700
Sulfate, mg/l	80.0	80.0	1	Comp	8-5-25/0700
Chloride, mg/l	173.0	173.0	1	Comp	8-5-25/0700
Total Phosphorus, mg/l	2.31	2.45	8	Comp	8-1-25, 8-6-25, 8-8-25, 8-13-25, 8-15-25, 8-20- 25, 8-22-25, 8- 28-25/0700
pH, standard units	7.0	7.0	1	Grab	8-4-25/0830
Dissolved Oxygen*, mg/l	6.28	6.28	1	Grab	8-4-25/0830
Chlorine Residual, mg/l	2.53	4.0	28	Grab	8-1 thru 8-28- 25/ 1230
<i>E.coli</i> (CFU/100ml) freshwater	23.8	23.8	1	Grab	8-4-25/0830
Entercocci (CFU/100ml) saltwater	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	559	559	1	Grab	8-4-25/0830
Electrical Conductivity, µmohs/cm, †	1150	1150	1	Grab	8-4-25/0830
Oil & Grease, mg/l	<5.0	<5.0	1	Grab	8-4-25/1251
Alkalinity (CaCO ₃)*, mg/l	62.0	62.0	1	Comp	8-29-25/0700

^{*}TPDES permits only †TLAP permits only

Table1.0(3) - Pollutant Analysis for Water Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Suspended Solids, mg/l	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	N/A	N/A	N/A	N/A	N/A
pH, standard units	N/A	N/A	N/A	N/A	N/A
Fluoride, mg/l	N/A	N/A	N/A	N/A	N/A
Aluminum, mg/l	N/A	N/A	N/A	N/A	N/A

Pollutant	Average Conc.		No. of Samples		Sample Date/Time
Alkalinity (CaCO ₃), mg/l	N/A	N/A	N/A	N/A	N/A

Section 8. Facility Operator (Instructions Page 50)

Facility Operator Name: Jamie Alvarez, Sr.

Facility Operator's License Classification and Level: A

Facility Operator's License Number: WW0059401

Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 51)

A. WWTP's Biosolids Management Facility Type

Check all that apply. See	instructions for	guidance
---------------------------	------------------	----------

- \boxtimes Design flow>= 1 MGD
- \boxtimes Serves >= 10,000 people
- ☐ Class I Sludge Management Facility (per 40 CFR § 503.9)
- ⊠ Biosolids generator
 □
- ☐ Biosolids end user land application (onsite)
- ☐ Biosolids end user surface disposal (onsite)
- ☐ Biosolids end user incinerator (onsite)

B. WWTP's Biosolids Treatment Process

	α 1 1 11	. 1 .		•			C	. 1	
-	Check all	that	annly		inetr	uctions	tor	mudance	2
		111611	(11)1)1V.	.)((111.511	เมเบบบา	1 () 1	211111111111111111111111111111111111111	

- ☐ Air Drying (or sludge drying beds)
- ☐ Lower Temperature Composting
- ☐ Lime Stabilization
- ☐ Higher Temperature Composting
- ☐ Heat Drying
- ☐ Thermophilic Aerobic Digestion
- ☐ Beta Ray Irradiation
- ☐ Gamma Ray Irradiation
- □ Pasteurization
- ☐ Preliminary Operation (e.g. grinding, de-gritting, blending)
- Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter)
- □ Sludge Lagoon

Temporary Storage (< 2 years)
Long Term Storage (>= 2 years)
Methane or Biogas Recovery
Other Treatment Process: Click to enter text.

C. Biosolids Management

Provide information on the *intended* biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize all biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

Biosolids Management

Management Practice	Handler or Preparer Type	Bulk or Bag Container	Amount (dry metric tons)	Pathogen Reduction Options	Vector Attraction Reduction Option
Disposal in Landfill	Off-site Third-Party Preparer	Bulk	150.54	Choose an item.	Choose an item.

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): N/A

D. Disposal site

Disposal site name: Mesquite Creek Landfill
TCEQ permit or registration number: 48029
County where disposal site is located: Comal

E. Transportation method

Method of transportation (truck, train, pipe, other): Truck

Name of the hauler: <u>Residuals Transport</u>

Hauler registration number: 24346

Sludge is transported as a:

Liquid \square semi-liquid \square semi-solid \boxtimes solid \square

Section 10. Permit Authorization for Sewage Sludge Disposal (Instructions Page 53)

A. Beneficial use authorization

Does the existing permit include authorization for land application of sewage sludge for beneficial use?

□ Yes ⊠ No

If yes, are you requesting to continue this authorization to land apply sewage sludge for beneficial use?

	□ Yes □ No					
	If yes, is the completed Application for Permi (TCEQ Form No. 10451) attached to this permidetails)?					1
	□ Yes □ No					
B.	Sludge processing authorization					
	Does the existing permit include authorization storage or disposal options?	for an	y of the	follov	ving sludge processing,	
	Sludge Composting		Yes	\boxtimes	No	
	Marketing and Distribution of sludge		Yes	\boxtimes	No	
	Sludge Surface Disposal or Sludge Monofill		Yes	\boxtimes	No	
	Temporary storage in sludge lagoons		Yes	\boxtimes	No	
	If yes to any of the above sludge options and to authorization, is the completed Domestic Was Technical Report (TCEQ Form No. 10056) atta	tewate	r Permi	it Appl	lication: Sewage Sludge	ī
	□ Yes □ No					
Se	ection 11. Sewage Sludge Lagoons (I	nstru	ctions	Page	e 53)	ı
	oes this facility include sewage sludge lagoons?			8		
	□ Yes ⊠ No					
If y	yes, complete the remainder of this section. If n	o, proc	eed to S	Section	12.	
A.	Location information					
	The following maps are required to be submitt provide the Attachment Number.	ed as p	art of t	he app	olication. For each map,	
	 Original General Highway (County) Map: 					
	Attachment: <u>N/A</u>					
	 USDA Natural Resources Conservation S 	ervice	Soil Ma	p:		
	Attachment: <u>N/A</u>					
	• Federal Emergency Management Map:					
	Attachment: <u>N/A</u>					
	• Site map:					
	Attachment: <u>N/A</u>					
	Discuss in a description if any of the following apply.	exist v	vithin tl	ne lago	oon area. Check all that	
	Overlap a designated 100-year frequen	cy floo	d plain			
	☐ Soils with flooding classification					
	☐ Overlap an unstable area					

		Wetlands						
		Located less than 60 meters from a fault						
		None of the above						
	Attachment: <u>N/A</u>							
	If a portion of the lagoon(s) is located within the 100-year frequency flood plain, provide the protective measures to be utilized including type and size of protective structures:							
	N/A							
В.	Tempo	rary storage information						
		e the results for the pollutant screening of sludge lagoons. These results are in n to pollutant results in <i>Section 7 of Technical Report 1.0.</i>						
	Nitr	ate Nitrogen, mg/kg: <u>N/A</u>						
	Tot	al Kjeldahl Nitrogen, mg/kg: <u>N/A</u>						
	Tot	al Nitrogen (=nitrate nitrogen + TKN), mg/kg: <u>N/A</u>						
	Pho	sphorus, mg/kg: <u>N/A</u>						
	Pota	assium, mg/kg: <u>N/A</u>						
	pН,	standard units: <u>N/A</u>						
	Am	monia Nitrogen mg/kg: <u>N/A</u>						
	Ars	enic: <u>N/A</u>						
	Cad	mium: <u>N/A</u>						
	Chr	omium: <u>N/A</u>						
	Cop	oper: <u>N/A</u>						
	Lea	d: <u>N/A</u>						
	Mer	cury: <u>N/A</u>						
	Mol	ybdenum: <u>N/A</u>						
	Nicl	kel: <u>N/A</u>						
	Sele	enium: <u>N/A</u>						
	Zino	:: <u>N/A</u>						
	Tot	al PCBs: <u>N/A</u>						
	Provide	e the following information:						
	Vol	ume and frequency of sludge to the lagoon(s): N/A						
	Tot	al dry tons stored in the lagoons(s) per 365-day period: <u>N/A</u>						
	Tot	al dry tons stored in the lagoons(s) over the life of the unit: N/A						
C.		nformation						
		ne active/proposed sludge lagoon(s) have a liner with a maximum hydraulic etivity of 1x10-7 cm/sec?						
		Yes D No						

N	T/A	
Sit	e dev	elopment plan
Pro	ovide	a detailed description of the methods used to deposit sludge in the lagoon(s):
N	/A	
At	tach t	he following documents to the application.
	• Pl	an view and cross-section of the sludge lagoon(s)
	A	ttachment: <u>N/A</u>
	• C	opy of the closure plan
	A	ttachment: <u>N/A</u>
	• C	opy of deed recordation for the site
	A	ttachment: <u>N/A</u>
	• Si	ze of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons
	A	ttachment: <u>N/A</u>
		escription of the method of controlling infiltration of groundwater and surface rater from entering the site
	A	ttachment: <u>N/A</u>
	• P1	rocedures to prevent the occurrence of nuisance conditions
	A	ttachment: <u>N/A</u>
Gr	ound	water monitoring
gre	oundv	dwater monitoring currently conducted at this site, or are any wells available for vater monitoring, or are groundwater monitoring data otherwise available for the agoon(s)?
		Yes □ No
ty	pes en	dwater monitoring data are available, provide a copy. Provide a profile of soil countered down to the groundwater table and the depth to the shallowest water as a separate attachment.
	Attac	chment: <u>N/A</u>
cti	on 1	2. Authorizations/Compliance/Enforcement (Instructions
CU		Page 55)

authorization, sludge permit, etc?

Yes □ No

If yes, provide the TCEQ authorization number and description of the authorization:

Does the permittee have additional authorizations for this facility, such as reuse

K	euse – R10232001	I
В.	Permittee enforcement status	
	Is the permittee currently under enforcement for this facility?	
	□ Yes ⊠ No	
	Is the permittee required to meet an implementation schedule for compliance or enforcement?	
	□ Yes ⊠ No	
	If yes to either question, provide a brief summary of the enforcement, the implement schedule, and the current status:	ıtation
N	T/A	
<u> </u>		

Section 13. RCRA/CERCLA Wastes (Instructions Page 55)

A. RCRA hazardous wastes

Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste?

□ Yes ⊠ No

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

□ Yes ⊠ No

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment: N/A

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

Domestic Drinking Water Supply (Instructions Page 64) Section 1. Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge? Yes 🖂 No If **no**, proceed it Section 2. **If yes**, provide the following: Owner of the drinking water supply: N/A Distance and direction to the intake: N/A Attach a USGS map that identifies the location of the intake. Attachment: N/A Discharge into Tidally Affected Waters (Instructions Page Section 2. 64) Does the facility discharge into tidally affected waters? Yes 🖂 No If **no**, proceed to Section 3. **If yes**, complete the remainder of this section. If no, proceed to Section 3. A. Receiving water outfall Width of the receiving water at the outfall, in feet: N/A **B.** Oyster waters Are there oyster waters in the vicinity of the discharge? Yes □ No **If yes**, provide the distance and direction from outfall(s). N/A C. Sea grasses Are there any sea grasses within the vicinity of the point of discharge? Yes □ No **If yes,** provide the distance and direction from the outfall(s). N/A

Section 3. Classified Segments (Instructions Page 64)

Is the discharge directly into (or within 300 feet of) a classified segment?

	□ Ye	s 🗵 No
If y	y es , this	s Worksheet is complete.
If 1	no, com	plete Sections 4 and 5 of this Worksheet.
Se	ction	4. Description of Immediate Receiving Waters (Instructions Page 65)
Na	me of th	ne immediate receiving waters: <u>tributary of Guadalupe River</u>
A.	Receiv	ing water type
	Identify	y the appropriate description of the receiving waters.
	\boxtimes	Stream
		Freshwater Swamp or Marsh
		Lake or Pond
		Surface area, in acres: Click to enter text.
		Average depth of the entire water body, in feet: Click to enter text.
		Average depth of water body within a 500-foot radius of discharge point, in feet: <u>Click to enter text.</u>
		Man-made Channel or Ditch
		Open Bay
		Tidal Stream, Bayou, or Marsh
		Other, specify: <u>Click to enter text.</u>
B.	Flow c	haracteristics
	existing	eam, man-made channel or ditch was checked above, provide the following. For g discharges, check one of the following that best characterizes the area <i>upstream</i> discharge. For new discharges, characterize the area <i>downstream</i> of the discharge one).
	\boxtimes	Intermittent - dry for at least one week during most years
	□ mai	Intermittent with Perennial Pools - enduring pools with sufficient habitat to ntain significant aquatic life uses
		Perennial - normally flowing
	Check dischar	the method used to characterize the area upstream (or downstream for new gers).
		USGS flow records
		Historical observation by adjacent landowners
	\boxtimes	Personal observation
		Other, specify: <u>Click to enter text.</u>

C. Downstream perennial confluences

downstream of the discharge point. **Guadalupe River** D. Downstream characteristics Do the receiving water characteristics change within three miles downstream of the discharge (e.g., natural or man-made dams, ponds, reservoirs, etc.)? Yes \boxtimes No If yes, discuss how. N/A E. Normal dry weather characteristics Provide general observations of the water body during normal dry weather conditions. Discharge to a dry creek Date and time of observation: 8/6/25 Was the water body influenced by stormwater runoff during observations? Yes 🖾 General Characteristics of the Waterbody (Instructions Section 5. **Page 66)** A. Upstream influences Is the immediate receiving water upstream of the discharge or proposed discharge site influenced by any of the following? Check all that apply. Oil field activities Urban runoff Agricultural runoff Upstream discharges Other(s), specify: Click to enter text. Septic tanks **B.** Waterbody uses Observed or evidences of the following uses. Check all that apply. Livestock watering Contact recreation Irrigation withdrawal \boxtimes Non-contact recreation Fishing **Navigation** Domestic water supply Industrial water supply Other(s), specify: Click to enter text. Park activities

List the names of all perennial streams that join the receiving water within three miles

C. Waterbody aesthetics

Check one of the following that best describes the aesthetics of the receiving water and the surrounding area.

Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional
 Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored
 Common Setting: not offensive; developed but uncluttered; water may be colored or turbid
 Offensive: stream does not enhance aesthetics; cluttered; highly developed; dumping areas; water discolored

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Toxic Pollutants (Instructions Page 78)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab ⊠ Composite ⊠

Date and time sample(s) collected: 8-5-25 @ 1252 - Grab and 0700 - Comp

Table 4.0(1) - Toxics Analysis

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrylonitrile	<1	<1	1	50
Aldrin	<0.01	< 0.01	1	0.01
Aluminum	200	200	1	2.5
Anthracene	<1	<1	1	10
Antimony	<5	<5	1	5
Arsenic	0.6	0.6	1	0.5
Barium	14	14	1	3
Benzene	<0.3	<0.3	1	10
Benzidine	<1	<1	1	50
Benzo(a)anthracene	<1	<1	1	5
Benzo(a)pyrene	<1	<1	1	5
Bis(2-chloroethyl)ether	<1	<1	1	10
Bis(2-ethylhexyl)phthalate	<3	<3	1	10
Bromodichloromethane	20.5	20.5	1	10
Bromoform	0.487	0.487	1	10
Cadmium	<1	<1	1	1
Carbon Tetrachloride	<0.3	<0.3	1	2
Carbaryl	<0.001	< 0.001	1	5
Chlordane*	<0.06	<0.06	1	0.2
Chlorobenzene	<0.3	<0.3	1	10
Chlorodibromomethane	6.79	6.79	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Chloroform	42.9	42.9	1	10
Chlorpyrifos	<0.01	< 0.01	1	0.05
Chromium (Total)	<3	<3	1	3
Chromium (Tri) (*1)	<3	<3	1	N/A
Chromium (Hex)	<3	<3	1	3
Copper	13	13	1	2
Chrysene	<1	<1	1	5
p-Chloro-m-Cresol	<2	<2	1	10
4,6-Dinitro-o-Cresol	<2	<2	1	50
p-Cresol	<2	<2	1	10
Cyanide (*2)	<10	<10	1	10
4,4'- DDD	<0.01	< 0.01	1	0.1
4,4'- DDE	<0.01	< 0.01	1	0.1
4,4'- DDT	<0.01	< 0.01	1	0.02
2,4-D	<0.512	<0.512	1	0.7
Demeton (O and S)	<0.01	< 0.01	1	0.20
Diazinon	<0.01	< 0.01	1	0.5/0.1
1,2-Dibromoethane	<0.3	<0.3	1	10
m-Dichlorobenzene	<0.3	<0.3	1	10
o-Dichlorobenzene	<0.3	<0.3	1	10
p-Dichlorobenzene	<0.3	<0.3	1	10
3,3'-Dichlorobenzidine	<1	<1	1	5
1,2-Dichloroethane	<0.3	<0.3	1	10
1,1-Dichloroethylene	<0.3	<0.3	1	10
Dichloromethane	<2.5	<2.5	1	20
1,2-Dichloropropane	<0.3	<0.3	1	10
1,3-Dichloropropene	<0.3	<0.3	1	10
Dicofol	<0.1	<0.1	1	1
Dieldrin	<0.01	< 0.01	1	0.02
2,4-Dimethylphenol	<1	<1	1	10
Di-n-Butyl Phthalate	<3	<3	1	10
Diuron	<0.03	<0.03	1	0.09
Endosulfan I (alpha)	<0.01	< 0.01	1	0.01

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Endosulfan II (beta)	<0.01	<0.01	1	0.02
Endosulfan Sulfate	<0.01	<0.01	1	0.1
Endrin	<0.01	<0.01	1	0.02
Ethylbenzene	<0.3	<0.3	1	10
Fluoride	400	400	1	500
Guthion	<0.01	<0.01	1	0.1
Heptachlor	<0.01	<0.01	1	0.01
Heptachlor Epoxide	<0.01	<0.01	1	0.01
Hexachlorobenzene	<1	<1	1	5
Hexachlorobutadiene	<1	<1	1	10
Hexachlorocyclohexane (alpha)	<0.01	<0.01	1	0.05
Hexachlorocyclohexane (beta)	< 0.01	<0.01	1	0.05
gamma-Hexachlorocyclohexane	< 0.01	< 0.01	1	0.05
(Lindane)				
Hexachlorocyclopentadiene	<1	<1	1	10
Hexachloroethane	<1	<1	1	20
Hexachlorophene	<1	<1	1	10
Lead	<0.5	<0.5	1	0.5
Malathion	<0.01	<0.01	1	0.1
Mercury	< 0.005	< 0.005	1	0.005
Methoxychlor	<0.02	<0.02	1	2
Methyl Ethyl Ketone	<5	<5	1	50
Mirex	<0.01	<0.01	1	0.02
Nickel	<2	<2	1	2
Nitrate-Nitrogen	26700	26700	1	100
Nitrobenzene	<1	<1	1	10
N-Nitrosodiethylamine	<2	<2	1	20
N-Nitroso-di-n-Butylamine	<1	<1	1	20
Nonylphenol	<68.7	<68.7	1	333
Parathion (ethyl)	<0.01	<0.01	1	0.1
Pentachlorobenzene	<1	<1	1	20
Pentachlorophenol	<1	<1	1	5
Phenanthrene	<1	<1	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Polychlorinated Biphenyls (PCB's) (*3)	<0.2	<0.2	1	0.2
Pyridine	<1	<1	1	20
Selenium	<5	<5	1	5
Silver	<0.5	<0.5	1	0.5
1,2,4,5-Tetrachlorobenzene	<1	<1	1	20
1,1,2,2-Tetrachloroethane	<0.3	<0.3	1	10
Tetrachloroethylene	<0.6	<0.6	1	10
Thallium	<0.5	<0.5	1	0.5
Toluene	<0.6	<0.6	1	10
Toxaphene	<0.3	<0.3	1	0.3
2,4,5-TP (Silvex)	<0.3	<0.3	1	0.3
Tributyltin (see instructions for explanation)	N/A	N/A	N/A	0.01
1,1,1-Trichloroethane	<0.3	<0.3	1	10
1,1,2-Trichloroethane	<0.3	<0.3	1	10
Trichloroethylene	<0.6	<0.6	1	10
2,4,5-Trichlorophenol	<1	<1	1	50
TTHM (Total Trihalomethanes)	70.6	70.6	1	10
Vinyl Chloride	<0.3	<0.3	1	10
Zinc	27	27	1	5

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

^(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab ⊠ Composite ⊠

Date and time sample(s) collected: 8-5-25 @ 1252 - Grab and 0700 - Comp

Table 4.0(2)A - Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Antimony	<5	<5	1	5
Arsenic	0.6	0.6	1	0.5
Beryllium	<0.5	<0.5	1	0.5
Cadmium	<1	<1	1	1
Chromium (Total)	<3	<3	1	3
Chromium (Hex)	<3	<3	1	3
Chromium (Tri) (*1)	<3	<3	1	N/A
Copper	13	13	1	2
Lead	<0.5	<0.5	1	0.5
Mercury	< 0.005	< 0.005	1	0.005
Nickel	<2	<2	1	2
Selenium	<5	<5	1	5
Silver	<0.5	<0.5	1	0.5
Thallium	0.5	0.5	1	0.5
Zinc	27	27	1	5
Cyanide (*2)	<10	<10	1	10
Phenols, Total	20	20	1	10

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)B - Volatile Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrolein	<5	<5	1	50
Acrylonitrile	<1	<1	1	50
Benzene	<0.3	<0.3	1	10
Bromoform	0.487	0.487	1	10
Carbon Tetrachloride	<0.3	<0.3	1	2
Chlorobenzene	<0.3	<0.3	1	10
Chlorodibromomethane	6.79	6.79	1	10
Chloroethane	<1	<1	1	50
2-Chloroethylvinyl Ether	<6	<6	1	10
Chloroform	42.9	42.9	1	10
Dichlorobromomethane [Bromodichloromethane]	20.5	20.5	1	10
1,1-Dichloroethane	<0.3	<0.3	1	10
1,2-Dichloroethane	<0.3	<0.3	1	10
1,1-Dichloroethylene	<0.3	<0.3	1	10
1,2-Dichloropropane	<0.3	<0.3	1	10
1,3-Dichloropropylene	<0.3	<0.3	1	10
[1,3-Dichloropropene]				
1,2-Trans-Dichloroethylene	<0.3	<0.3	1	10
Ethylbenzene	<0.3	<0.3	1	10
Methyl Bromide	<1	<1	1	50
Methyl Chloride	<1	<1	1	50
Methylene Chloride	<2.5	<2.5	1	20
1,1,2,2-Tetrachloroethane	<10	<10	1	10
Tetrachloroethylene	<0.6	<0.6	1	10
Toluene	<0.3	<0.3	1	10
1,1,1-Trichloroethane	<0.3	<0.3	1	10
1,1,2-Trichloroethane	<0.3	<0.3	1	10
Trichloroethylene	<0.6	<0.6	1	10
Vinyl Chloride	<0.3	<0.3	1	10

Table 4.0(2)C - Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
2-Chlorophenol	<1	<1	1	10
2,4-Dichlorophenol	<1	<1	1	10
2,4-Dimethylphenol	<1	<1	1	10
4,6-Dinitro-o-Cresol	<2	<2	1	50
2,4-Dinitrophenol	<2	<2	1	50
2-Nitrophenol	<1	<1	1	20
4-Nitrophenol	<2	<2	1	50
P-Chloro-m-Cresol	<3	<3	1	10
Pentalchlorophenol	<1	<1	1	5
Phenol	<1	<1	1	10
2,4,6-Trichlorophenol	<1	<1	1	10

Table 4.0(2)D - Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acenaphthene	<1	<1	1	10
Acenaphthylene	<1	<1	1	10
Anthracene	<1	<1	1	10
Benzidine	<1	<1	1	50
Benzo(a)Anthracene	<1	<1	1	5
Benzo(a)Pyrene	<1	<1	1	5
3,4-Benzofluoranthene	<1	<1	1	10
Benzo(ghi)Perylene	<1	<1	1	20
Benzo(k)Fluoranthene	<1	<1	1	5
Bis(2-Chloroethoxy)Methane	<1	<1	1	10
Bis(2-Chloroethyl)Ether	<1	<1	1	10
Bis(2-Chloroisopropyl)Ether	<1	<1	1	10
Bis(2-Ethylhexyl)Phthalate	<3	<3	1	10
4-Bromophenyl Phenyl Ether	<1	<1	1	10
Butyl benzyl Phthalate	<3	<3	1	10
2-Chloronaphthalene	<1	<1	1	10
4-Chlorophenyl phenyl ether	<1	<1	1	10
Chrysene	<1	<1	1	5
Dibenzo(a,h)Anthracene	<1	<1	1	5
1,2-(o)Dichlorobenzene	<3	<3	1	10
1,3-(m)Dichlorobenzene	<3	<3	1	10
1,4-(p)Dichlorobenzene	<3	<3	1	10
3,3-Dichlorobenzidine	<1	<1	1	5
Diethyl Phthalate	<3	<3	1	10
Dimethyl Phthalate	<3	<3	1	10
Di-n-Butyl Phthalate	<3	<3	1	10
2,4-Dinitrotoluene	<1	<1	1	10
2,6-Dinitrotoluene	<1	<1	1	10
Di-n-Octyl Phthalate	<3	<3	1	10
1,2-Diphenylhydrazine (as Azobenzene)	<1	<1	1	20
Fluoranthene	<1	<1	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Fluorene	<1	<1	1	10
Hexachlorobenzene	<1	<1	1	5
Hexachlorobutadiene	<1	<1	1	10
Hexachlorocyclo-pentadiene	<1	<1	1	10
Hexachloroethane	<1	<1	1	20
Indeno(1,2,3-cd)pyrene	<1	<1	1	5
Isophorone	<1	<1	1	10
Naphthalene	<1	<1	1	10
Nitrobenzene	<1	<1	1	10
N-Nitrosodimethylamine	<1	<1	1	50
N-Nitrosodi-n-Propylamine	<1	<1	1	20
N-Nitrosodiphenylamine	<1	<1	1	20
Phenanthrene	<1	<1	1	10
Pyrene	<1	<1	1	10
1,2,4-Trichlorobenzene	<1	<1	1	10

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Aldrin	<0.01	<0.01	1	0.01
alpha-BHC (Hexachlorocyclohexane)	<0.01	<0.01	1	0.05
beta-BHC (Hexachlorocyclohexane)	<0.01	<0.01	1	0.05
gamma-BHC (Hexachlorocyclohexane)	<0.01	<0.01	1	0.05
delta-BHC (Hexachlorocyclohexane)	<0.01	<0.01	1	0.05
Chlordane	<0.06	< 0.06	1	0.2
4,4-DDT	<0.01	<0.01	1	0.02
4,4-DDE	<0.01	<0.01	1	0.1
4,4,-DDD	<0.01	<0.01	1	0.1
Dieldrin	<0.01	<0.01	1	0.02
Endosulfan I (alpha)	<0.01	<0.01	1	0.01
Endosulfan II (beta)	<0.01	<0.01	1	0.02
Endosulfan Sulfate	<0.01	<0.01	1	0.1
Endrin	<0.01	<0.01	1	0.02
Endrin Aldehyde	<0.01	<0.01	1	0.1
Heptachlor	<0.01	< 0.01	1	0.01
Heptachlor Epoxide	<0.01	<0.01	1	0.01
PCB-1242	<0.1	<0.1	1	0.2
PCB-1254	<0.1	<0.1	1	0.2
PCB-1221	<0.1	<0.1	1	0.2
PCB-1232	<0.1	<0.1	1	0.2
PCB-1248	<0.1	<0.1	1	0.2
PCB-1260	<0.1	<0.1	1	0.2
PCB-1016	<0.1	<0.1	1	0.2
Toxaphene	<0.3	<0.3	1	0.3

^{*} For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Section 3. Dioxin/Furan Compounds A. Indicate which of the following compounds from may be present in the influent from a contributing industrial user or significant industrial user. Check all that apply. 2,4,5-trichlorophenoxy acetic acid Common Name 2,4,5-T, CASRN 93-76-5 2-(2,4,5-trichlorophenoxy) propanoic acid Common Name Silvex or 2,4,5-TP, CASRN 93-72-1 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate Common Name Erbon, CASRN 136-25-4 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate Common Name Ronnel, CASRN 299-84-3 2,4,5-trichlorophenol Common Name TCP, CASRN 95-95-4 hexachlorophene Common Name HCP, CASRN 70-30-4 For each compound identified, provide a brief description of the conditions of its/their presence at the facility. Click to enter text.

B.	Do you know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin
	(TCDD) or any congeners of TCDD may be present in your effluent?

Yes □ No

If **yes**, provide a brief description of the conditions for its presence.

Click to enter	text.			

C.	If any of the compounds in Subsection A ${f or}$ B are present, complete Table 4.0(2)F.
	For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab □ Composite □

Date and time sample(s) collected: Click to enter text.

Table 4.0(2)F - Dioxin/Furan Compounds

Compound	Toxic Equivalenc y Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1					10
1,2,3,7,8 PeCDD	0.5					50
2,3,7,8 HxCDDs	0.1					50
1,2,3,4,6,7,8 HpCDD	0.01					50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05					50
2,3,4,7,8 PeCDF	0.5					50
2,3,7,8 HxCDFs	0.1					50
2,3,4,7,8 HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					0.5
PCB 81	0.0003					0.5
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total						

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: TOXICITY TESTING REQUIREMENTS

The following **is required** for facilities with a current operating design flow of **1.0 MGD or greater**, with an EPA-approved **pretreatment** program (or those required to have one under 40 CFR Part 403), or are required to perform Whole Effluent Toxicity testing. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Required Tests (Instructions Page 88)

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic: <u>N/A</u> 48-hour Acute: 16

Section 2. Toxicity Reduction Evaluations (TREs)

Has this facility completed a TRE in the past four and a	half years? Or is the facility currently
performing a TRE?	•

Yes	\square	No
168		110

If yes, describe the progress to date, if applicable, in identifying and confirming the toxicant.

N/A			

Section 3. Summary of WET Tests

If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed.

Table 5.0(1) Summary of WET Tests

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal
Submitted via DMR			

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works.

Section 1. All POTWs (Instructions Page 89)

A. Industrial users (IUs)

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

If there are no users, enter 0 (zero).

Categorical IUs:

Number of IUs: <u>o</u>

Average Daily Flows, in MGD: <u>o</u>

Significant IUs – non-categorical:

Number of IUs: <u>o</u>

Average Daily Flows, in MGD: <u>o</u>

Other IUs:

Number of IUs: <u>o</u>

Average Daily Flows, in MGD: <u>o</u>

B. Treatment plant interference

In the past three years, has your POTW experienced treatment plant interference (see instructions)?

□ Yes ⊠ No

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

N/A

C. Treatment plant pass through

In the past three years, has your POTW experienced pass through (see instructions)?

□ Yes ⊠ No

If yes, identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.

<u>N/A</u>

D. Pretreatment program

	Does your POTW have an approved pretreatment program?
	⊠ Yes □ No
	If yes, complete Section 2 only of this Worksheet.
	Is your POTW required to develop an approved pretreatment program?
	□ Yes □ No
	If yes, complete Section 2.c. and 2.d. only, and skip Section 3.
	If no to either question above , skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.
E.	Service Area Map
	Attach a map indicating the service area of the POTW. The map should include the applicant's service area boundaries and the location of any known industrial users discharging to the POTW. Please see the instructions for guidance.
	Attachment: Attachment E
Se	ction 2. POTWs with Approved Programs or Those Required to
	Develop a Program (Instructions Page 90)
A.	Substantial modifications
	Have there been any substantial modifications to the approved pretreatment program that have not been submitted to the TCEQ for approval according to <i>40 CFR §403.18</i> ?
	□ Yes ⊠ No
	If yes , identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.
	N/A
B.	Non-substantial modifications
	Have there been any non-substantial modifications to the approved pretreatment program that have not been submitted to TCEQ for review and acceptance?
	□ Yes ⊠ No
	If yes, identify all non-substantial modifications that have not been submitted to TCEQ, including the purpose of the modification.
	<u>N/A</u>
C.	Effluent parameters above the MAL
	In Table 6.0(1), list all parameters measured above the MAL in the POTW's effluent monitoring during the last three years. Submit an attachment if necessary.
Tal	nle 6 0(1) – Parameters Ahove the MAI

MAL

Units

Concentration

Pollutant

N/A

Date

	Has any SIU, CIU, or other IU caused or contributed to any problems (excluding interferences or pass throughs) at your POTW in the past three years?
	□ Yes ⊠ No
	If yes , identify the industry, describe each episode, including dates, duration, description of the problems, and probable pollutants.
	N/A
Se	ection 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 90)
Α.	General information
	Company Name: <u>N/A</u>
	SIC Code: N/A
	Contact name: <u>N/A</u>
	Address: <u>N/A</u>
	City, State, and Zip Code: <u>N/A</u>
	Telephone number: <u>N/A</u>
	Email address: <u>N/A</u>
B.	Process information
	Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).
	N <u>/A</u>
C	Product and service information
C.	Provide a description of the principal product(s) or services performed.
	N/A
	11/11
D.	Flow rate information
	See the Instructions for definitions of "process" and "non-process wastewater."
	Process Wastewater:
	Discharge, in gallons/day: <u>N/A</u>
	Discharge Type: □ Continuous □ Batch □ Intermittent
	Non-Process Wastewater:
	Discharge, in gallons/day: <u>N/A</u>
	Discharge Type: Continuous Ratch Intermittent

E. Pretreatment standards

D. Industrial user interruptions

Is the SIU or CIU subject to technically based local limits as defined in the *i*nstructions?

	□ Yes □ No
	Is the SIU or CIU subject to categorical pretreatment standards found in 40 CFR Parts 405 - 471 ?
	□ Yes □ No
	If subject to categorical pretreatment standards , indicate the applicable category and subcategory for each categorical process.
	Category: Subcategories: <u>N/A</u>
	Click or tap here to enter text. N/A
	Category: <u>N/A</u>
	Subcategories: <u>N/A</u>
F.	Industrial user interruptions
	Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years?
	□ Yes □ No
	If yes , identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants.
	N <u>/A</u>

ATTACHMENT I

EFFLUENT ANALYSIS

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

POLLUTION CONTROL SERVICES

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information			
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08052531 Matrix: Non-Potable Water Date/Time Taken: 8/5/2025 0700	PCS Sample #: 810676 Page 1 of 2 Date/Time Received: 8/5/2025 08:45 Report Date: 8/20/2025 Approved by: Chuck Wallgren, President			

Test Description	Result	Units	RL	Analysis Date/Time	Method	Analyst
Chloride_IC	173	mg/L	5	08/06/2025 09:39	EPA 300.0	JAS
Nitrate-N_IC	26.7	mg/L	0.5	08/06/2025 06:33	EPA 300.0	JAS
Sulfate IC	80	mg/L	5	08/06/2025 09:39	EPA 300.0	JAS
Fluoride_IC	0.40	mg/L	0.50	08/06/2025 09:39	EPA 300.0	JAS
Pesticides 617	S	ee Attached	[DHL	
604.1 Hexachlorophene	S	ee Attached			DHL	
Semi Volatiles 625	S	ee Attached		_	DHL	-
Pesticides 608	S	ee Attached	l		DHL	

Test Description	Precision	Quality As Limit	surance Sumn LCL	nary MS	MSD	UCL	LCS	LCS Limit	Blank	
Chloride IC	<1	10	95	95	95	102	93	85 - 115	Diank	
Nitrate-N IC	<1	20	70	93	93	130	102	85 - 115		
Sulfate IC	<1	10	94	94	94	101	94	85 - 115		
Fluoride_IC	4	10	87	91	94	105	92	85 - 115		
Pesticides 617	See Attach	ned Repor	t for Qualit	y Assura	nce Inforn	nation				
604.1 Hexachlorophene	See Attacl	ned Repor	t for Qualit	y Assura	nce Inforn	nation				
Semi Volatiles 625	See Attack	ned Repor	t for Qualit	y Assura	nce Inforn	nation				
Pesticides 608	See Attach	ned Repor	t for Qualit	y Assura	nce Inforn	nation				

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested.
All data is reported on an 'As Is' basis unless designated as 'Dry Wt'.
RL = Reporting Limits

www.pcslab.net chuck@pcslab.net 1532 Universal City Blvd Main: 210-340-0343
Universal City, TX 78148-3318 Fax: 210-658-7903

POLLUTION CONTROL SERVICES

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information			
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08052531 Matrix: Non-Potable Water Date/Time Taken: 8/5/2025 0700	PCS Sample #: 810676 Page 2 of 2 Date/Time Received: 8/5/2025 08:45 Report Date: 8/20/2025			

Test Description	Result Units RL	Analysis Date/Time Method	Analyst
Pesticides 632	See Attached	DHL	
Pesticide 1657	See Attached	DHL	
Herbicides 615	See Attached	SPL	

Test Description	Quality Assurance Summary Precision Limit LCL MS MSD UCL LCS LCS Limit Blank
Pesticides 632	See Attached Report for Quality Assurance Information
Pesticide 1657	See Attached Report for Quality Assurance Information
Herbicides 615	See Attached Report for Quality Assurance Information

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested.

All data is reported on an 'As Is' basis unless designated as 'Dry Wt'.

RL = Reporting Limits

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information				
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08052532 Matrix: Non-Potable Water Date/Time Taken: 8/5/2025 0700	PCS Sample #: 810677 Page 1 of 1 Date/Time Received: 8/5/2025 08:45 Report Date: 8/12/2025 Approved by: Chuck Wallgren, President				

Test Description	Result	Units	RL	Analysis Date/Time	Method	Analyst
Ammonia-N (ISE)	<0.1	mg/L	0.1	08/05/2025 12:25	SM 4500-NH3 D	CLH
Kjeldahl-N, Total	2	mg/L	1	08/08/2025 09:30	SM 4500-N B/C	PML

		Quality As	surance Sum	nary					
Test Description	Precision	Limit	LCL	MS	MSD	UCL	LCS	LCS Limit	Blank
Ammonia-N (ISE)	3	10	80	96	98	120	100	85 - 115	
Kjeldahl-N, Total	2	10	90	100	98	109	106	85 - 115	<1

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested. All data is reported on an 'As Is' basis unless designated as 'Dry Wt'. RL = Reporting Limits

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08052533 Matrix: Non-Potable Water Date/Time Taken: 08/05/2025 0700	PCS Sample #: 810678 Page 1 of 2 Date/Time Received: 08/05/2025 08:45 Report Date: 08/25/2025 Approved by: Chuck Wallgren, President

T (D	D14	TT24-	DI	Amala	usia Data	/Time o	Moth	d	Amalwat	
Test Description	Result	Units	RL		sis Date		Metho		Analyst	
Arsenic/ICP MS	0.0006	mg/L	0.0005	08/08	8/2025 0	8:38	EPA 200	0.8	DJL	
Barium/ICP (Total)	0.014	mg/L	0.003	08/1	1/2025 1	2:07	EPA 200	0.7 / 6010 B	DJL	
Cadmium/ICP (Total)	< 0.001	mg/L	0.001	08/1	1/2025_1	2:07	EPA 200	0.7 / 6010 B	DJL	
Chromium/ICP (Total)	< 0.003	mg/L	0.003	08/1	1/2025 1	2:07	EPA 200	0.7 / 6010 B	DJL	
Copper/ICP (Total)	0.013	mg/L	0.002	08/1	1/2025 1	2:07	EPA 200	0.7 / 6010 B	DJL	
Lead/ICP MS	< 0.0005	mg/L	0.0005	08/0	8/2025 0	8:38	EPA 200	0.8	DJL	
Aluminum/ICP (Total)	0.200	mg/L	0.0025	08/1	1/2025 1	5:00	EPA 200	0.7 / 6010 B	DJL	
Beryllium/ICP (Total)	< 0.0005	mg/L	0.0005	08/1	1/2025 1	2:07	EPA 200	0.7 / 6010 B	DJL	
Test Description	Precision	Quality As Limit	ssurance Summ LCL	ary MS	MSD	UCL	LCS	LCS Limit	Blank	AV.
Arsenic/ICP MS	<1	20	70	102	102	130	98	85 - 115		
Barium/ICP (Total)	<1	20	75	93	93	125	100	85 - 115		
Cadmium/ICP (Total)	<1	20	75	99	99	125	100	85 - 115		
1 (TOP (T)		20		1.0.0	4.0.0	105	105	0.5 44.5		

Test Description	Precision	Limit	LCL	MS	MSD	UCL	LCS	LCS Limit	Blank
Arsenic/ICP MS	<1	20	70	102	102	130	98	85 - 115	
Barium/ICP (Total)	<1	20	75	93	93	125	100	85 - 115	
Cadmium/ICP (Total)	<1	20	75	99	99	125	100	85 - 115	
Chromium/ICP (Total)	<1	20	75	100	100	125	105	85 - 115	
Copper/ICP (Total)	10	20	75	104	95	125	105	85 - 115	
Lead/ICP MS	1	20	70	100	102	130	101	85 - 115	
Aluminum/ICP (Total)	<1	20	75	99	99	125	100	85 - 115	
Beryllium/ICP (Total)	<1	20	75	100	100	125	100	85 - 115	

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested. All data is reported on an 'As Is' basis unless designated as 'Dry Wt'.

RL = Reporting Limits

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08052533 Matrix: Non-Potable Water Date/Time Taken: 08/05/2025 0700	PCS Sample #: 810678 Page 2 of 2 Date/Time Received: 08/05/2025 08:45 Report Date: 08/25/2025

Test Description	Result	Units	RL	Analysis Date/Time	Method	Analyst
Trivalent Chromium	< 0.003	mg/L	N/A	08/11/2025 12:07	Calculation	DJL
Hexavalent Chrome	< 0.003	mg/L	0.003	08/05/2025 13:10	SM 3500-Cr B	DJL
Nickel/ICP (Total)	< 0.002	mg/L	0.002	08/11/2025 12:07	EPA 200.7 / 6010 B	DJL
Zinc/ICP (Total)	0.027	mg/L	0.005	08/11/2025 12:07	EPA 200.7 / 6010 B	DJL
Antimony/ICP MS	< 0.005	mg/L	0.005	08/08/2025 08:38	EPA 200.8	DJL
Thallium/ICP MS	0.0005	mg/L	0.0005	08/08/2025 08:38	EPA 200.8	DJL
Selenium/ICP MS	< 0.005	mg/L	0.005	08/08/2025 08:38	EPA 200.8	DJL
Silver/ICP MS	< 0.0005	mg/L	0.0005	08/08/2025 08:38	EPA 200.8	DJL
Test Description	Precision		ssurance Summa LCL	MS MSD UCL	LCS LCS Limit	Blank

Test Description	Precision	Quality As Limit	surance Sumn LCL	nary MS	MSD	UCL	LCS	LCS Limit	Blank
Trivalent Chromium	N/A	N/A	N/A			N/A			
Hexavalent Chrome	<1	20	75	80	80	125	100	85 - 115	
Nickel/ICP (Total)	<1	20	75	97	97	125	105	85 - 115	
Zinc/ICP (Total)	<1	20	75	106	106	125	105	85 - 115	
Antimony/ICP MS	<1	20	70	101	101	130	99	85 - 115	
Thallium/ICP MS	2	20	70	95	96	130	95	85 - 115	
Selenium/ICP MS	1	20	70	102	100	130	99	85 - 115	
Silver/ICP MS	<1	20	70	95	95	130	101	85 - 115	

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested.

All data is reported on an 'As Is' basis unless designated as 'Dry Wt'

RL = Reporting Limits

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information				
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08042527 Matrix: Non-Potable Water Date/Time Taken: 8/4/2025 1251	PCS Sample #: 810679 Page 1 of 1 Date/Time Received: 8/5/2025 08:45 Report Date: 8/13/2025 Approved by: Chuck Wallgren, President				

Test Description	Result	Units	RL	Analysis Date/Time	Method	Analyst	
Oil and Grease (H.E.M.)	<5.0	mg/L	5	08/12/2025 10:30	EPA 1664 Rev	EMV	

		Quality As	surance Sum	mary						
Test Description	Precision	Limit	LCL	MS	MSD	<u>UCL</u>	LCS	LCS Limit	Blank	
Oil and Grease (H.E.M.)	3	18	N/A	N/A	N/A	N/A	94	78 - 114		

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested. All data is reported on an 'As Is' basis unless designated as 'Dry Wt'. $RL = Reporting\ Limits$

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08042528 Matrix: Non-Potable Water Date/Time Taken: 8/4/2025 1252	PCS Sample #: 810680 Page 1 of 1 Date/Time Received: 8/5/2025 08:45 Report Date: 8/15/2025 Approved by: Chuck Wallgren, President

Test Description	Result Units	- KL	Alialysis Date/Time	Methon	Anaiysi
Volatiles 624	See Attached			DHL	
Quality Statement: All supporting quality do	ata adhered to data quality object	ctives and tes	t results meet the requiremen	ts of NFI AC unless otherwise	noted as flagged
exceptions or in a case narrative attachment				is by NELAC unless otherwise	noieu us jiuggeu
			These analytical results relate		
				Is' basis unless designated as 'Dr	y Wt'.
			RL = Reporting Limits		

Web Site: www.pcslab.net eMail: chuck@pcslab.net

CONTROL SERVICES POLLUTION

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08042529 Matrix: Non-Potable Water Date/Time Taken: 8/4/2025 1253	PCS Sample #: 810681 Page 1 of 1 Date/Time Received: 8/5/2025 08:45 Report Date: 8/15/2025 Approved by: Chuck Wallgren, President

Test Description	Flag	Result	Units	RL	Analysis Date/Time	Method	Analyst
Cyanide, Amenable		e Attached				DHL	n
Quality Statement: All supporting of exceptions or in a case narrative att						ts of NELAC unless otherwi	se noted as flagged
+ Subcontract Work - NELAP Certified	Lab				These analytical results relate All data is reported on an 'As I RL = Reporting Limits		'Dry Wt'.

Web Site: www.pcslab.net eMail: chuck@pcslab.net

Result

Units

Analyst

Report of Sample Analysis

Analysis Date/Time

Method

Client Information	Sample Information	Laboratory Information
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08042530 Matrix: Non-Potable Water Date/Time Taken: 8/4/2025 1254	PCS Sample #: 810682 Page 1 of 1 Date/Time Received: 8/5/2025 08:45 Report Date: 8/20/2025 Approved by: Chuck Wallgren, President

RI.

Phenols	See Attached	SPL
I		
Quality Statement: All sur	propring quality data adhered to data quality objectives and to	st results meet the requirements of NELAC unless otherwise noted as flagged
	rative attachment. Reports with full quality data deliverables	
	я	These analytical results relate only to the sample tested. All data is reported on an 'As Is' basis unless designated as 'Dry Wt'. RL = Reporting Limits
Web Site: www neeleb not	1522 Universal City P	Ivd Suite 100 210 240 0242 EAV # 210 659 7002

Web Site: www.pcslab.net eMail: chuck@pcslab.net

Test Description

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08042526 Matrix: Non-Potable Water Date/Time Taken: 8/4/2025 1250	PCS Sample #: 810683 Page 1 of 1 Date/Time Received: 8/5/2025 08:45 Report Date: 8/22/2025 Approved by: Chuck Wallgren, President

Test Description	Result	Units	RL	Analysis Date/Time	Method	Analyst	
Mercury/CVAFS	< 0.000005	mg/L	0.000005	08/22/2025 14:56	EPA 245.7	DJL	

Test Description	Precision	Quality As Limit	surance Sumn LCL	nary MS	MSD	UCL	LCS	LCS Limit	Blank
Mercury/CVAFS	11	20	70	97	84	130	123	70 - 130	<1.8ng/L

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested.

All data is reported on an 'As Is' basis unless designated as 'Dry Wt'.

RL = Reporting Limits

Chain of Custody Number

810676

MULTIPLE SAMPLE ANALYSIS REQUEST AND CHAIN OF CUSTODY FORM

Stamp 1st sample and COC as same number

CUSTOMER INFORMATION					REPORT INFORMATION									
Name: New Braunfels Utilities					Attention: Trish Soechting									k: (830) 626-1361
		. FF	· rr				Requested Analysis							
Colle	eted By:	Haritz	Harris 7					iç					50	Instructions/Comments:
1		Matrix			Container	ex. Herb	_	r, Tr	اءا			et)	Ηξ	*Al, Ba, Be, Cd, Cr, Cu, Ni, Zn, SbMS, AsMS, PbMS, SeMS, AgMS, TlMS
orine mg/L	te or M	ater; NPW-Non-		er		, 604.1 Hk 7, 632, SV	TK	НехС	TEM	24		9	evel	
dual Chi	posi N	/W-Wastewater;	Туре	quin	Preservative	403N, 1	Ä,	1s*	J) (I	C	Ą.	lou	v L	
Field Field						SO4, Cl, 1 Pest 1657	NH	Meta	FO	Λ0	CS	Phe	Lov	PCS Sample Number
t:	■ C	DW 🖪 NPW WW 🗖 Soil	PIG.											810676
005	∐G □	Sludge 🗌 LW	 0	9	☐ IČE ☐	$ \wedge $								□S □B □N □HEM Other:
t:		l WW □ Soil	⊡ P □G		☐ H ₂ SO ₄ ☐ HNO ₃ ☐ H ₂ PO ₄ ☐ NaOH									810677
005		Sludge 🗖 LW	□ o	1	DICE D	. 1	$ \wedge $							□S □B □N □HEM Other:
t: 700		DW INPW Soil	⊡ P □G		□H ₂ SO ₄ □HNO ₃ □H ₃ PO ₄ □NaOH									810678
700] Sludge 🗖 LW] Other		2	□ ICE □	25								□S □B □N □HEM Other:
t: 5 \] WW 🗖 Soil	₽G		□ H ₃ PO ₄ □ NaOH				\vee					8 1 0 6 7 9
:		Other	□ 0	1		20				,				
t: -5-2-		l WW∏ Soil	□P ⊡G		□H₃PO₄ □ NaOH					V				810680
:] Other	□ 0	4	\- <u></u>	-				\wedge				□S □B □N □HEM Other:
t: 5-3] WW 🔲 Soil	☑P □G		□ H ₂ SO ₄ □ HNO ₃ □ H ₃ PO ₄ □ NaOH						V			810681
l:] Other	□ 0	1	DICE D	•								□S □B □N □HEM Other:
rt: 5-4		WW ☐ Soil	□P ☑G											810682
:] Other	□ 0	1	□ ICE □									□S □B □N □HEM Other:
rt: } 5 O]WW □ Soil	□P □G		☐ H ₂ SO ₄ ☐ HNO ₃ ☐ H ₃ PO ₄ ☐ NaOH								\checkmark	810683
l:	IIIG [Sludge []LW	Ō	4	DICE D_	•								□S □B □N □HEM Other:
· · · · · · · · · · · · · · · · · · ·				8 Hrs	s. □ < 16 Hrs. □ < 24 H	Irs. 🗆 :	5 days	☐ Oth	ег:		Rush (Charge:	s Auth	orized by:
Sample Archive/Disposal: □ Laboratory Standard □ Hold for client pick up Relinquished By: □ Date: □ Date:						s, O=	Other							пier ID:
Dat	e: 080	Time:										_		Time:
Dat	e:	Time:		८ हम	Received By:	ran	Gus	ller	_			Date	8	-5-25 Time: 08:15
	Time t: 700 t: 700	Time t: Co G G G G G G G G G G G G G	Collected By:	Collected By:	Collected By:	Attention: Trish Soechting	Collected By:	Attention: Trish Soechting						

1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318 Facsimilie 210.658.7903 210.340.0343

2508071

CHAIN OF CUSTODY & SUBCONTRACT TRACKING SHEET

\times			471				
	TO:	DH	L Analytic	al 📜	Relinquished bŷ: I	Lauren Clay	
	280	230	0 Double (Creek Dr	Date/Time: 8	3/5/2025 @ 1500	
		Rou	ınd Rock, T	£			
	3+5 V(Date/Time: 8	3/6/25 0912	
	PCS#	<i>‡</i>	Date	Time	Analysis Requested	Pres T. A	т.
21	8106		08/05/2025	0700	604.1 Hexachlorophene	Ice Std	
bl.			Parameter (Semi Volatiles 625		
- 19	8106	/6	Variable Resident	Barrier		,	
	810676			. 	Pesticide 1657		
					Pesticides 608		
	8106	76			Pesticides 617		
1	8106	0676			Pesticides 632	281	
12	8106	80	08/04/2025	1252	Volatiles 624	Ice Std	
3	810681 08/04/2025 1253			1253	Cyanide, Amenable	NaOH Std	
			n.		ź.	***	
	•	*	7				
	Com	mont	g/Special Ir	etructions	5.0'C Them #78,	Wie Fal Ex	-
	Com		s/Special II	istructions	s. or y (negri a 70)	M. F.	_
					*		
	Unle	ss oth	nerwise req	uested, se	nd results and invoice to:		
	#S	Chr	ick Wallgro	en e		¥	12
v v			lution Cont		es	*	
					d, Suite 100		
			versal City				
				<i>y</i>	$\cap Q$	*	
	Auth	orize	d by: 📝	Mu	allen I	Date: 8.5-25	
			1) u		
900			. /	J	61		

August 15, 2025

Chuck Wallgren
Pollution Control Services
1532 Universal City Blvd. #100
Universal City, TX 78148

TEL: (210) 394-4570

FAX: Order No.: 2508071

RE: PCS 810676, 810680-810681

Dear Chuck Wallgren:

DHL Analytical, Inc. received 3 samples on 08/06/2025 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative and all estimated uncertainties of results are within method specifications.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Karyn Lane

Laboratory Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211 - TX-C25-00106

Table of Contents

Miscellaneous Documents	3
CaseNarrative 2508071	6
WorkOrderSampleSummary 2508071	7
Analytical Report 2508071	8
AnalyticalOCSummaryReport 2508071 1	15

ACTWGT: 55.00 LB CAD: 112447368/INET4535 DIMS: 26x15x15 IN BILL SENDER **DHL ANALYTICAL RECEIVING** ROUND ROCK TX 78664 (512) 388-8222 REF: 2300 DOUBLE CREEK (210) 340-0343 1532 UNIVERSAL CITY BLVD. #100 DHL ANALYTICAL JNIVERSAL CITY, TX 78148 JNITED STATES US ORIGIN ID:NIRA CHUCK WALLGREN

58GJ2/E4ED/59F2

AUG 10:30A PRIORITY OVERNIGHT 90 WED 8833 3122 0974 78664

Jewelry, precious metals, negotiable instruments and other items listed in our Service Guide. Written claims must be filled ideclared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$1,000, e.g. other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from

TX-US

After printing this label:

CONSIGNEE COPY - PLEASE PLACE IN FRONT OF POUCH

1. Fold the printed page along the horizontal line.

2. Place Isbel in shipping pouch and affix if to your shipment.

delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document fedex.com. EedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on

within strict time limits, see current FedEx Service Guide.

Sample Receipt Checklist

Client Name: Pollution Control Services		Date Receive	d: 8/6/2025	
Work Order Number: 2508071		Received by:	EL	
5	3			it.
Checklist completed by: 8/7/2025		Reviewed by:	Ve	8/7/2025
Signature Date			Initials	Date
Carrier name:	FedEx 1day			
			-	
Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Present	
Custody seals intact on shipping container/cooler?	Yes	No 🗆	Not Present 🗹	
Custody seals intact on sample bottles?	Yes 🗌	No 🗆	Not Present	n 📆
Chain of custody present?	Yes 🗹	No 🗌		
Chain of custody signed when relinquished and received?	Yes 🗹	No 📮		
Chain of custody agrees with sample labels?	Yes 🗹	No 🗂	2 11	
Samples in proper container/pottle?	Yes 🗸	No 🗌		
Sample containers intact?	Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗹	No 📶		10
All samples received within holding time?	Yes 🗹	No 🗌		
Water - VOA vials have zero headspace?	Yes 🗹	No 🗆 N	lo VOA vials submitted	☐ NA ☐
Water - pH<2 acceptable upon receipt?	Yes	No 🗌 N	IA ✓ LOT #4*	
*	Adjusted?		Checked by	- 1
Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt?	Yes 🗹	No 🗆 N	IA ☐ LOT # 170)28
*	Adjusted?	10	Checked by	- The Thin
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌		
Cooler # 1				
Temp °C 5.0 ℃		1 1 1	The Control of the Co	30
Seal Intact NP	80		N. T. S. C.	
Any No response must be detailed in the comments section below.		11 0 Mail 1	726. # 	
Client contacted: Date contacted:		Pers	on contacted:	
Contacted by: Regarding:				
			ar ar a management in the second	e manga daga adam (d. 100 te te) (de te
Comments:	5 × 508 =	= 3	2247 - 2 - 0	
THE CONTRACT OFFICE OF STREET			CHE MAN TO STATE	
Corrective Action:	3 3 0 34 C 38603			a m Marka araba
			7	

CLIENT: Pollution Control Services

Project: PCS 810676, 810680-810681

Lab Order: 2508071

CASE NARRATIVE

Date: 15-Aug-25

Samples were analyzed using the methods outlined in the following references:

ASTM, EPA and Standard Methods.

The compounds Diuron and Hexachlorophene by LCMS are not NELAP Certified.

Several compounds for Pesticides Analysis are not NELAP Certified.

The compounds Dicofol and Nonylphenol in Water Analysis are not NELAP Certified.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives except where noted in the following. For Total and Amenable Cyanide Analysis, the recoveries of the Matrix Spike and Matrix Spike Duplicate (2508088-01 MS/MSD) were below the method control limits. These are flagged accordingly in the QC Summary Report. The associated LCS was within method control limits. No further corrective action was taken.

For Volatiles Analysis, there was no recovery of 2-Chloroethylvinylether for the Matrix Spike and Matrix Spike Duplicate (2508050-02 MS/MSD) due to method specified preservation. These are flagged accordingly in the QC Summary Report. This compound was within method control limits in the associated LCS. No further corrective action was taken.

For Pesticides Analysis, the recovery of N-Nitrosodimethylamine and the RPD of Endrin aldehyde for the Matrix Spike Duplicate (2508006-01 MSD) were outside of the method control limits. These are flagged accordingly in the QC Summary Report. These compounds were within method control limits in the associated LCS/MS. No further corrective action was taken.

Date: 15-Aug-25

CLIENT:

Pollution Control Services

Project:

PCS 810676, 810680-810681

Lab Order:

2508071

Work Order Sample Summary

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
2508071-01	810676		08/05/25 07:00 AM	08/06/2025
2508071-02	810680		08/04/25 12:52 PM	08/06/2025
2508071-03	810681		08/04/25 12:53 PM	08/06/2025

CLIENT: Pollution Control Services

Project: PCS 810676, 810680-810681

Project No: Lab Order:

2508071

Client Sample ID: 810676

Lab ID: 2508071-01

Date: 15-Aug-25

Collection Date: 08/05/25 07:00 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
DIURON-HEXACHLOROPHENE E	BY LCMS	E	32				Analyst: RA
Diuron	<0.0000298	0.0000298	0.0000794	N	mg/L	1	08/15/25 11:18 AM
Hexachlorophene	<0.000993	0.000993	0.00497	N	mg/L	1	08/15/25 11:18 AM
Surr: Carbazole	59.7	0	35-145		%REC	1	08/15/25 11:18 AM
625.1 PCB BY GC/MS		E6:	25.1				Analyst: DEW
Aroclor 1016	<0.0000989	0.0000989	0.000198		mg/L	1	08/11/25 02:14 PM
Aroclor 1221	<0.0000989	0.0000989	0.000198		mg/L	1	08/11/25 02:14 PM
Aroclor 1232	<0.0000989	0.0000989	0.000198		mg/L	1	08/11/25 02:14 PM
Aroclor 1242	<0.0000989	0.0000989	0.000198		mg/L	1	08/11/25 02:14 PM
Aroclor 1248	<0.0000989	0.0000989	0.000198		mg/L	1	08/11/25 02:14 PM
Aroclor 1254	<0.0000989	0.0000989	0.000198		mg/L	1	08/11/25 02:14 PM
Aroclor 1260	<0.0000989	0.0000989	0.000198		mg/L	1	08/11/25 02:14 PM
Total PCBs	<0.000989	0.0000989	0.000198		mg/L	1	08/11/25 02:14 PM
Surr: 2-Fluorobiphenyl	88.7	0	43-116		%REC	1	08/11/25 02:14 PM
Surr: 4-Terphenyl-d14	107	0	33-141		%REC	1	08/11/25 02:14 PM
625.1 SEMIVOLATILE WATER		E6:	25.1				Analyst: DEW
Anthracene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Benzidine	<0.000978	0.000978	0.00391		mg/L	1	08/11/25 09:11 PM
Benzo[a]anthracene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Benzo[a]pyrene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Bis(2-chloroethyl)ether	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Bis(2-ethylhexyl)phthalate	< 0.00293	0.00293	0.00587		mg/L	1	08/11/25 09:11 PM
Chrysene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
4,6-Dinitro-o-cresol	< 0.00196	0.00196	0.00391		mg/L	1	08/11/25 09:11 PM
o-Cresol	< 0.00196	0.00196	0.00391		mg/L	1	08/11/25 09:11 PM
p-Chloro-m-Cresol	< 0.00196	0.00196	0.00391		mg/L	1	08/11/25 09:11 PM
m,p-Cresols	< 0.00196	0.00196	0.00391		mg/L	1	08/11/25 09:11 PM
3,3´-Dichlorobenzidine	< 0.000978	0.000978	0.00489		mg/L	1	08/11/25 09:11 PM
2,4-Dimethylphenol	< 0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Di-n-butyl phthalate	< 0.00293	0.00293	0.00587		mg/L	1	08/11/25 09:11 PM
Hexachlorobenzene	< 0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Hexachlorobutadiene	< 0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Hexachlorocyclopentadiene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Hexachloroethane	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Nitrobenzene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
N-Nitrosodiethylamine	< 0.00196	0.00196	0.00391		mg/L	1	08/11/25 09:11 PM
N-Nitrosodi-n-butylamine	<0.000978	0.000978	0.00391		mg/L	1	08/11/25 09:11 PM
Pentachlorobenzene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
 - RL Reporting Limit
 - N Parameter not NELAP certified

Pollution Control Services

Project: PCS 810676, 810680-810681

Project No:

CLIENT:

Lab Order: 2508071

Date: 15-Aug-25

Client Sample ID: 810676

Lab ID: 2508071-01

Collection Date: 08/05/25 07:00 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
625.1 SEMIVOLATILE WATER		E62	5.1			Analyst: DEW
Pentachlorophenol	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Phenanthrene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Pyridine	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
1,2,4,5-Tetrachlorobenzene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
2,4,5-Trichlorophenol	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
2-Chlorophenol	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
2,4-Dichlorophenol	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
2,4-Dinitrophenol	< 0.00196	0.00196	0.00391	mg/L	1	08/11/25 09:11 PM
2-Nitrophenol	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
4-Nitrophenol	< 0.00196	0.00196	0.00391	mg/L	1	08/11/25 09:11 PM
Phenol	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
2,4,6-Trichlorophenol	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Acenaphthene	< 0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Acenaphthylene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Benzo[b]fluoranthene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Benzo[g,h,i]perylene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Benzo[k]fluoranthene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Bis(2-chloroethoxy)methane	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PN
Bis(2-chloroisopropyl)ether	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
4-Bromophenyl phenyl ether	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Butyl benzyl phthalate	< 0.00293	0.00293	0.00587	mg/L	1	08/11/25 09:11 PN
2-Chloronaphthalene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
4-Chlorophenyl phenyl ether	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Dibenz[a,h]anthracene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PN
Diethyl phthalate	< 0.00293	0.00293	0.00587	mg/L	1	08/11/25 09:11 PM
Dimethyl phthalate	< 0.00293	0.00293	0.00587	mg/L	1	08/11/25 09:11 PM
2,4-Dinitrotoluene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
2,6-Dinitrotoluene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Di-n-octyl phthalate	< 0.00293	0.00293	0.00587	mg/L	1	08/11/25 09:11 PM
1,2-Diphenylhydrazine	< 0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PN
Fluoranthene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PN
Fluorene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PN
Indeno[1,2,3-cd]pyrene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Isophorone	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PN
Naphthalene	< 0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
N-Nitrosodimethylamine	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
N-Nitrosodi-n-propylamine	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PN
N-Nitrosodiphenylamine	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PN

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

Date: 15-Aug-25

CLIENT:

Pollution Control Services

Project:

PCS 810676, 810680-810681

Project No:

Lab Order: 2508071 Client Sample ID: 810676

Lab ID: 2508071-01

Collection Date: 08/05/25 07:00 AM

Matrix: AQUEOUS

Analyses	Result	Result MDL RL			Units	DF	Date Analyzed
625.1 SEMIVOLATILE WATER		E6	25.1				Analyst: DEW
Pyrene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
1,2,4-Trichlorobenzene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Surr: 2,4,6-Tribromophenol	115	0	10-123		%REC	1	08/11/25 09:11 PM
Surr: 2-Fluorobiphenyl	84.8	0	43-116		%REC	1	08/11/25 09:11 PM
Surr: 2-Fluorophenol	47.0	0	21-100		%REC	1	08/11/25 09:11 PM
Surr: 4-Terphenyl-d14	82.8	0	33-141		%REC	1	08/11/25 09:11 PM
Surr: Nitrobenzene-d5	88.0	0	35-115		%REC	1	08/11/25 09:11 PM
Surr: Phenol-d5	32.0	0	10-94		%REC	1	08/11/25 09:11 PM
625.1 PESTICIDE BY GC/MS		E6	25.1				Analyst: DEW
4,4´-DDD	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
4,4'-DDE	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
4,4´-DDT	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
Aldrin	<0.00000989	0.00000989	0.00000989		mg/L	1	08/11/25 09:03 PM
alpha-BHC (Hexachlorocyclohexane)	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
beta-BHC (Hexachlorocyclohexane)	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
Carbaryl	<0.00000989	0.00000989	0.0000297	N	mg/L	1	08/11/25 09:03 PM
Chlordane	<0.0000593	0.0000593	0.000198	N	mg/L	1	08/11/25 09:03 PM
Chlorpyrifos	<0.00000989	0.00000989	0.0000297	N	mg/L	1	08/11/25 09:03 PM
delta-BHC (Hexachlorocyclohexane)	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
Diazinon	<0.00000989	0.00000989	0.0000297	N	mg/L	1	08/11/25 09:03 PM
Dieldrin	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
Endosulfan I	<0.00000989	0.00000989	0.00000989		mg/L	1	08/11/25 09:03 PM
Endosulfan II	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
Endosulfan sulfate	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
Endrin	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
Endrin aldehyde	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
gamma-BHC (Lindane)	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
Guthion (Azinphosmethyl)	<0.00000989	0.00000989	0.0000297	N	mg/L	1	08/11/25 09:03 PM
Heptachlor	<0.00000989	0.00000989	0.00000989		mg/L	1	08/11/25 09:03 PM
Heptachlor epoxide	<0,00000989	0.00000989	0.00000989		mg/L	1	08/11/25 09:03 PM
Malathion	<0.00000989	0.00000989	0.0000297	N	mg/L	1	08/11/25 09:03 PM
Methoxychlor	<0.0000198	0.0000198	0.0000198	N	mg/L	1	08/11/25 09:03 PM
Mirex	<0.00000989	0.00000989	0.0000198	N	mg/L	1	08/11/25 09:03 PM
Parathion, ethyl	<0.00000989	0.00000989	0.0000297	N	mg/L	1	08/11/25 09:03 PM
Toxaphene	<0.000297	0.000297	0.000297		mg/L	1	08/11/25 09:03 PM
Demeton (O & S)	<0.00000989	0.00000989	0.0000297	N	mg/L	1	08/11/25 09:03 PM

Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Spike Recovery outside control limits

Sample Result or QC discussed in the Case Narrative

TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

Parameter not NELAP certified

CLIENT: Pollution Control Services

Project: PCS 810676, 810680-810681

Project No:

Lab Order: 2508071

Date: 15-Aug-25

Client Sample ID: 810676

Lab ID: 2508071-01

Collection Date: 08/05/25 07:00 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
625.1 PESTICIDE BY GC/MS		E62	25.1				Analyst: DEW
Surr: 2-Fluorobiphenyl	70.3	0	43-116		%REC	1	08/11/25 09:03 PM
Surr: 4-Terphenyl-d14	95.8	0	33-141		%REC	1	08/11/25 09:03 PM
DICOFOL IN WATER BY ASTM ME	THOD	D5812-96MOD					Analyst: DEW
Dicofol	<0.000198	0.000198	0.000396	N	mg/L	1	08/11/25 09:03 PM
NONYLPHENOL IN WATER BY AS	STM METHOD <0.0685	D706 0.0685	55-17 0.0978	N	mg/L	i	Analyst: DEW 08/11/25 09:11 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAP certified

Date: 15-Aug-25

CLIENT:

Pollution Control Services

Project:

PCS 810676, 810680-810681

Project No: Lab Order:

2508071

Client Sample ID: 810680

Lab ID: 2508071-02

Collection Date: 08/04/25 12:52 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
624.1 VOLATILES WATER		E624	4.1				Analyst: JVR
Acrylonitrile	<0.00100	0.00100	0.00300		mg/L	1	08/07/25 06:04 PM
Benzene	<0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Bromodichloromethane	0.0205	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Bromoform	0.000487	0.000300	0.00100	J	mg/L	1	08/07/25 06:04 PM
Carbon tetrachloride	<0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Chlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Chlorodibromomethane	0.00679	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Chloroform	0.0429	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
1,2-Dibromoethane	<0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
1,3-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
1,2-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
1,4-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
1,2-Dichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PN
1,1-Dichloroethene	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Methylene chloride (DCM)	< 0.00250	0.00250	0.00500		mg/L	1	08/07/25 06:04 PM
1,2-Dichloropropane	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PN
1,3-Dichloropropene (cis)	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PN
1,3-Dichloropropene (trans)	<0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PN
Ethylbenzene	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PN
Methyl ethyl ketone	< 0.00500	0.00500	0.0150		mg/L	1	08/07/25 06:04 PM
1,1,2,2-Tetrachloroethane	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PN
Tetrachloroethene	< 0.000600	0.000600	0.00200		mg/L	1	08/07/25 06:04 PN
Toluene	< 0.000600	0.000600	0.00200		mg/L	1	08/07/25 06:04 PM
1,1,1-Trichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
1,1,2-Trichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Trichloroethene	< 0.000600	0.000600	0.00100		mg/L	1	08/07/25 06:04 PM
TTHM (Total Trihalomethanes)	0.0706	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Vinyl chloride	<0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Acrolein	< 0.00500	0.00500	0,0150		mg/L	1	08/07/25 06:04 PM
Chloroethane	<0.00100	0.00100	0.00500		mg/L	1	08/07/25 06:04 PM
2-Chloroethylvinylether	<0.00600	0.00600	0.0100		mg/L	1	08/07/25 06:04 PN
1,1-Dichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PN
Methyl bromide	< 0.00100	0.00100	0.00500		mg/L	1	08/07/25 06:04 PM
Methyl chloride	<0.00100	0.00100	0.00500		mg/L	1	08/07/25 06:04 PN
trans-1,2-Dichloroethylene	< 0.000300	0.000300	0.00200		mg/L	1	08/07/25 06:04 PN
Surr: 1,2-Dichloroethane-d4	107	0	72-119		%REC	1	08/07/25 06:04 PN
Surr: 4-Bromofluorobenzene	99.6	0	76-119		%REC	1	08/07/25 06:04 PN
Surr: Dibromofluoromethane	106	0	85-115		%REC	1	08/07/25 06:04 PN

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

Pollution Control Services

Project: PCS 810676, 810680-810681

Project No:

CLIENT:

Lab Order: 2508071

Date: 15-Aug-25

Client Sample ID: 810680

Lab ID: 2508071-02

Collection Date: 08/04/25 12:52 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
624.1 VOLATILES WATER		E624.1					Analyst: JVR
Surr: Toluene-d8	96.1	0	81-120		%REC	1	08/07/25 06:04 PM

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

CLIENT: Pollution Control Services

Project: PCS 810676, 810680-810681

Project No:

Lab Order: 2508071

Date: 15-Aug-25

Client Sample ID: 810681

Lab ID: 2508071-03

Collection Date: 08/04/25 12:53 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
CYANIDE - WATER SAMPLE		M4500-	CN E				Analyst: CAE
Cyanide, Amenable to Chlorination	<0.0100	0.0100	0.0200		mg/L	1	08/12/25 10:33 AM
Cyanide, Total	<0.0100	0.0100	0.0200		mg/L	1	08/12/25 10:33 AM

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

Date: 15-Aug-25

CLIENT:

Pollution Control Services

Work Order: 2508071

Project: PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID: LCMS2 250815A

Project: PCS 810	0676, 810680-81068	l			Kump	i L	CN152_23	20012	1	
The QC data in batch 121933	applies to the following	samples: 2508	3071-01A							
Sample ID: MB-121933	Batch ID: 121933		TestNo:	E632			Units:	mg/L		
SampType: MBLK	Run ID: LCMS2	_250815A	Analysis	Date: 8/15/2	:025 10:44	:32 AM	Prep Date:	8/12/2	2025	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit ⁹	%RPD F	RPDLimi	t Qual
Diuron	<0.0000300	0.0000800								N
Hexachlorophene	<0.00100	0.00500								N
Surr: Carbazole	5.56		10.00		55.6	35	145			
Sample ID: LCS-121933	Batch ID: 121933		TestNo:	E632			Units:	mg/L		
SampType: LCS	Run ID: LCMS2	2_250815A	Analysis	Date: 8/15/2	2025 10:55	:48 AM	Prep Date:	8/12/	2025	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit ^o	%RPD I	RPDLimi	it Qual
Diuron	0.00162	0.0000800	0.00200	0	80.8	35	145			N
Hexachlorophene	0.00130	0.00500	0.00200	0	64.8	35	145			N
Surr: Carbazole	5.75		10.00		57.5	35	145			
Sample ID: LCSD-121933	Batch ID: 121933		TestNo:	E632			Units:	mg/L		
SampType: LCSD	Run ID: LCMS	2_250815A	Analysis	s Date: 8/15/2	2025 11:07	:07 AM	Prep Date:	8/12/	2025	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit '	%RPD I	RPDLim	it Qual
Diuron	0.00167	0.0000800	0.00200	0	83.3	35	145	3.11	30	N
Hexachlorophene	0.00127	0.00500	0.00200	0	63.6	35	145	1.81	30	Ν
Surr: Carbazole	5.83		10.00		58.3	35	145	0	0	

Δ	lifiers
CHIA	muers

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 1 of 21

Project:

Pollution Control Services

Work Order:

2508071

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS10_250811C

Sample ID: LCS-12	21881 R	atch ID:	121881		TestNo). Es	25.1		Units:	mg/L	
SampType: LCS		Run ID:		0_250811C			23. i 1/2025 11:42	·00 AM	Prep Date:	8/8/2025	
		CONTID.									
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLi	mit Qua
4,4´-DDD			.000287	0.0000200	0.000400	0	71.8	0.1	135		
4,4'-DDE			.000283	0.0000200	0.000400	0	70.6	19	120		
4,4'-DDT			.000311	0.0000200	0.000400	0	77.8	0.1	171		
Aldrin			.000253	0.0000100	0.000400	0	63.2	7	152		
alpha-BHC (Hexach	-	•	.000330	0.0000200	0.000400	0	82.4	42	108		
beta-BHC (Hexachle	procyclohexane)) (.000337	0.0000200	0.000400	0	84.2	42	131		
Carbaryl		C	.000338	0.0000300	0.000400	0	84.6	38	168		N
Chlorpyrifos		C	.000371	0.0000300	0.000400	0	92.8	42	131		N
delta-BHC (Hexachl	orocyclohexane) (.000310	0.0000200	0.000400	0	77.6	0.1	120		
Diazinon		C	.000360	0.0000300	0.000400	0	89.9	52	120		N
Dieldrin		C	.000321	0.0000200	0.000400	0	80.4	44	119		
Endosulfan I		C	.000314	0.0000100	0.000400	0	78.6	47	128		
Endosulfan II		C	.000313	0.0000200	0.000400	0	78.1	52	125		
Endosulfan sulfate			.000312	0.0000200	0.000400	0	78.0	0.1	120		
Endrin			.000338	0.0000200	0.000400	0	84.5	50	151		
Endrin aldehyde			.000323	0.0000200	0.000400	0	80.7	0.1	189		
gamma-BHC (Linda	no)		.000323	0.0000200	0.000400	0	78.4	41	111		
Guthion (Azinphosm	•		.000313	0.0000200	0.000400	0	91.8	44	193	25	N
	ietriyi <i>)</i>					0	67.2	0,1	172		14
Heptachlor			.000269	0.0000100	0.000400						
Heptachlor epoxide			.000294	0.0000100	0.000400	0	73.4	71	120		
Malathion			.000419	0.0000300	0.000400	0	105	56	161		N
Methoxychlor			.000298	0.0000200	0.000400	0	74.6	38	156		N
Mirex			.000249	0.0000200	0.000400	0	62.3	27	131		N
Parathion, ethyl			.000443	0.0000300	0.000400	0	111	13	184		N
Demeton (O & S)		C	.000354	0.0000300	0.000400	0	88.4	28	154		N
Surr: 2-Fluorobipl	nenyl		2.91		4.000		72.8	43	116		
Surr: 4-Terphenyl	-d14		3.23		4.000		80.8	33	141		
Sample ID: MB-12	1 881 B	atch ID:	121881		TestNo	o: E6 :	25.1		Units:	mg/L	
SampType: MBLK	R	Run ID:	GCMS1	0_250811C	Analys	sis Date: 8/1	1/2025 2:50:	00 PM	Prep Date:	8/8/2025	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLi	imit Qua
4,4'-DDD		<(.0000100	0.0000200							
4,4'-DDE		<0	.0000100	0.0000200							
4,4'-DDT			.0000100	0.0000200							
Aldrin			.0000100	0.0000100							
alpha-BHC (Hexach	lorocyclobovane		.0000100	0.0000200							
beta-BHC (Hexachle	•	•	.0000100	0.0000200							
Carbaryl	nooyolollexalle)		.0000100	0.0000200							٨
Chlordane			.00000100	0.0000300							N
Qualifiers: B	Analyte detecte					Dilution Fac				B .	
J	Analyte detecte					Method Dete				Page 2	2 of 21
ND	Not Detected a		od Detection	on Limit	R		accepted cont				
RL	Reporting Limi	it			S		ery outside co				
Ј	Analyte detecte	ed betwee	n SDL and I	RL	N	Parameter no	ot NELAP cert	ified			

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS10_250811C

Sample ID: MB-121881	Batch ID:	121881		TestNo:	E625	5.1		Units:	mg/L	
SampType: MBLK	Run ID:	GCMS10	_250811C	Analysis	Date: 8/11/	2025 2:50:	00 PM	Prep Date:	8/8/2025	
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLir	mit Qu
Chlorpyrifos	<0.	0000100	0.0000300							N
delta-BHC (Hexachlorocyclohexan	e) <0.	0000100	0.0000200							
Diazinon	<0.	0000100	0.0000300							N
Dieldrin	<0.	0000100	0.0000200							
Endosulfan I	<0.	0000100	0.0000100							
Endosulfan II	<0.	0000100	0.0000200							
Endosulfan sulfate	<0.	0000100	0.0000200							
Endrin	<0.	0000100	0.0000200							
Endrin aldehyde	<0.	0000100	0.0000200							
gamma-BHC (Lindane)	<0.	0000100	0.0000200							
Guthion (Azinphosmethyl)	<0.	0000100	0.0000300							N
Heptachlor	<0.	0000100	0.0000100							
Heptachlor epoxide	<0.	0000100	0.0000100							
Malathion	<0.	0000100	0.0000300							N
Methoxychlor		0000200	0.0000200							N
Mirex		0000100	0.0000200							N
Parathion, ethyl		0000100	0.0000300							Ν
Toxaphene		.000300	0.000300							
Demeton (O & S)		0000100	0.0000300							Ν
Surr: 2-Fluorobiphenyl	-	3.12		4.000		78.0	43	116		
Surr: 4-Terphenyl-d14		3.55		4,000		88.9	33	141		
Sample ID: 2508006-01AMS	Batch ID:	121881		TestNo:	E625	5.1		Units:	mg/L	
SampType: MS	Run ID:	GCMS1	0_250811C	Analysis	s Date: 8/11	/2025 10:19	9:00 PM	Prep Date:	8/8/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit 9	%RPD RPDLir	mit Qu
4,4´-DDD	0	.00324	0.000178	0.00355	0	91.1	0.1	145		
4,4'-DDE	0	.00257	0.000178	0.00355	0	72.4	4	136		
4,4'-DDT	0	.00238	0.000178	0.00355	0	67.0	0.1	203		
Aldrin	0	.00279	0.0000888	0.00355	0	78.6	0.1	166		
alpha-BHC (Hexachlorocyclohexar	ne) 0	.00313	0.000178	0.00355	0	88.1	31	121		
beta-BHC (Hexachlorocyclohexane	•	.00346	0.000178	0.00355	0	97.5	24	149		
Carbaryl	•	.00422	0.000266	0.00355	0	119	41	195		N
Chlorpyrifos		.00374	0.000266	0.00355	0	105	32	149		
delta-BHC (Hexachlorocyclohexan		.00317	0.000178	0.00355	0	89.1	0.1	120		
Diazinon	•	.00409	0.000266	0.00355	0	115	40	141		1
Dieldrin		.00356	0.000178	0.00355	0	100	29	136		·
Endosulfan I		.00336	0.000178	0.00355	0	91.9	24	159		
Endosulfan II		.00320	0.000178	0.00355	0	103	30	163		
						93.8	0.1	120		
Endocultan cultato										
Endosulfan sulfate Endrin		.00333 .00374	0.000178 0.000178	0.00355 0.00355	0 0	105	23	187		

Qualifiers:

B Analyte detected in the associated Method Blank

 $J \qquad \text{Analyte detected between MDL and } RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 3 of 21

Pollution Control Services

Work Order:

Sample ID: 2508006-01AMS

2508071

Project:

PCS 810676, 810680-810681

Batch ID: 121881

ANALYTICAL QC SUMMARY REPORT

RunID:

E625.1

GCMS10_250811C

mg/L

Units:

SampType: MS Run		n ID: GCMS10_250811C		Analysis Date: 8/11/2025 10:19:00 PM				Prep Date: 8/8/2025			
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit	t Qual
Endrin aldehyde	0.	000177	0.000178	0.00355	0	4.97	0.1	209			
gamma-BHC (Lindane)	0.	.00286	0.000178	0.00355	0	80.5	16	128			
Guthion (Azinphosmethyl)	0.	.00439	0.000266	0.00355	0	124	4	226			Ν
Heptachlor	0.	.00293	0.0000888	0.00355	0	82.6	0.1	192			
Heptachlor epoxide	0.	.00294	0.0000888	0.00355	0	82.9	26	155			
Malathion	0.	.00487	0.000266	0.00355	0	137	47	190			Ν
Methoxychlor	0.	.00232	0.000178	0.00355	0	65.4	14	174			N
Mirex	0.	.00252	0.000178	0.00355	0	71.0	6	154			N
Parathion, ethyl	0	.00612	0.000266	0.00355	0	172	24	192			Ν
Demeton (O & S)	0	.00482	0.000266	0.00355	0	136	27	189			Ν
Surr: 2-Fluorobiphenyl		27.5		35.52		77.3	43	116			
Surr: 4-Terphenyl-d14		32.1		35.52		90.3	33	141			
Sample ID: 2508006-01AMSD Ba	atch ID:	121881		TestN	o: E6 2	25.1		Units:	mg/	L	
SampType: MSD R	un ID:	GCMS1	0_250811C	Analy	sis Date: 8/1	1/2025 10:56	6:00 PM	Prep Date	: 8/8/	2025	
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD	RPDLimi	t Qua
4,4´-DDD	0	.00344	0.000189	0.00378	0	91.0	0.1	145	6.12	50	
4,4'-DDE	0	.00285	0.000189	0.00378	0	75.5	4	136	10,4	50	
4,4'-DDT	0	.00251	0.000189	0.00378	0	66.4	0.1	203	5.21	50	
Aldrin	0	.00288	0.0000945	0.00378	0	76.2	0.1	166	3.10	50	
alpha-BHC (Hexachlorocyclohexane) 0	.00314	0.000189	0.00378	0	83.0	31	121	0.265	50	
beta-BHC (Hexachlorocyclohexane)	0	.00347	0.000189	0.00378	0	91.7	24	149	0.149	50	
Carbaryl	0	.00422	0.000284	0.00378	0	112	41	195	0.060	50	N
Chlorpyrifos	0	.00394	0.000284	0.00378	0	104	32	149	5.32	50	Ν
delta-BHC (Hexachlorocyclohexane)	0	.00324	0.000189	0.00378	0	85.6	0.1	120	2.18	50	
Diazinon	0	.00405	0.000284	0.00378	0	107	40	141	0.961	50	Ν
Dieldrin	0	.00341	0.000189	0.00378	0	90.3	29	136	4.33	50	
Endosulfan I	0	.00342	0.0000945	0.00378	0	90.6	24	159	4.78	50	
Endosulfan II	0	.00348	0.000189	0.00378	0	92.0	30	163	5.42	50	
Endosulfan sulfate	0	.00340	0.000189	0.00378	0	90.0	0.1	120	2.03	50	
Endrin	0	.00391	0.000189	0.00378	0	103	23	187	4.39	50	
Endrin aldehyde	0.	000575	0.000189	0.00378	0	15.2	0.1	209	106	50	R
gamma-BHC (Lindane)	0	.00295	0.000189	0.00378	0	78.0	16	128	3.16	50	
Guthion (Azinphosmethyl)	0	.00440	0.000284	0.00378	0	116	4	226	0.095	50	Ν
Heptachlor	0	.00303	0.0000945	0.00378	0	80.1	0.1	192	3.18	50	
Heptachlor epoxide	0	.00298	0.0000945	0.00378	0	78.8	26	155	1.17	50	
Malathion	0	.00494	0.000284	0.00378	0	131	47	190	1.49	50	Ν
Methoxychlor	0	.00224	0.000189	0.00378	0	59.3	14	174	3.50	50	N
		00000	0.000189	0.00378	0	70.3	6	154	5.22	50	N
Mirex	U	.00266	0.000109	0.00376	U	70.0	•				

TestNo:

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit RL

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

R S Spike Recovery outside control limits

Parameter not NELAP certified

Page 4 of 21

Pollution Control Services

Work Order: 2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS10_250811C

Sample ID: 2508006-01AMSD	Batch ID:	121881		TestNo): E6 :	25.1		Units:	mg/l	-	
SampType: MSD	Run ID:	GCMS1	0_250811C	Analys	is Date: 8/1	1/2025 10:56	:00 PM	Prep Date	: 8/8/2	2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimi	t Qual
Demeton (O & S)		0.00491	0.000284	0.00378	0	130	27	189	1.77	50	N
Surr: 2-Fluorobiphenyl		28.1		37.81		74.4	43	116	0	0	
Surr: 4-Terphenyl-d14		33.3		37.81		88.1	33	141	0	0	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 5 of 21

Project:

Pollution Control Services

Work Order:

2508071

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS10_250811D

Sample ID: LCS-121881-DICO	Batch ID:	121881		TestNo:	D58	12-96mod		Units:	mg/L	
SampType: LCS	Run ID:	GCMS10	_250811D	Analysis	Date: 8/11	/2025 1:36:	00 PM	Prep Date:	8/8/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLi	mit Qua
Dicofol		0.000983	0.000400	0.00100	0	98.3	22	180		N
Sample ID: MB-121881	Batch ID:	121881		TestNo:	D58	12-96mod		Units:	mg/L	
SampType: MBLK	Run ID:	GCMS10	_250811D	Analysis	Date: 8/11	/2025 2:50:	00 PM	Prep Date:	8/8/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLi	mit Qua
Dicofol		0.000200	0.000400							N

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

Analyte detected between SDL and RL

Dilution Factor DF

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAP certified N

Page 6 of 21

Project:

Pollution Control Services

Work Order:

2508071

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS8_250811A

•									
The QC data in batch 121881 ap	oplies to the	following s	amples: 2508	3071-01C					
Sample ID: LCS-121881-PCB	Batch ID:	121881		TestNo	E62	5.1		Units:	mg/L
SampType: LCS	Run ID:	GCMS8	_250811A	Analysi	s Date: 8/11	/2025 1:14:	00 PM	Prep Date:	8/8/2025
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qua
Aroclor 1016	C	.00408	0.000200	0.00400	0	102	37	130	
Aroclor 1260	C	.00451	0.000200	0.00400	0	113	19	130	
Total PCBs	C	.00859	0.000200	0.00800	0	107	19	130	
Surr: 2-Fluorobiphenyl		3.59		4.000		89.7	43	116	
Surr: 4-Terphenyl-d14		4.12		4.000		103	33	141	
Sample ID: MB-121881	Batch ID:	121881		TestNo	E62	5.1		Units:	mg/L
SampType: MBLK	Run ID:	GCMS8	_250811A	Analysi	s Date: 8/11	/2025 1:44:	00 PM	Prep Date:	8/8/2025
Analyte		Result	RL.	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qua
Aroclor 1016	<0	.000100	0.000200						
Aroclor 1221	<0	.000100	0.000200						
Aroclor 1232	<0	.000100	0.000200						
Aroclor 1242	<0	.000100	0.000200						
Aroclor 1248	<0	.000100	0.000200						
Aroclor 1254	<0	.000100	0.000200						
Aroclor 1260	<0	.000100	0.000200						
		.000.00	0.000-00						
Total PCBs		.000100	0.000200						
Total PCBs Surr: 2-Fluorobiphenyl				4.000		96.7	43	116	

Qualifiers

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
- R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAP certified

Page 7 of 21

Project:

Pollution Control Services

Work Order:

2508071

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_250811C

Sample ID: LCS-121909	Batch ID: 121909			TestNo	E625	5.1		Units:	mg/L	
SampType: LCS	Run ID:	GCMS	9_250811C	Analys	is Date: 8/11	2025 5:07:	00 PM	Prep Date: 8/11/2025		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qu	
Benzidine	(0.0226	0.00400	0.0400	0	56.6	5	125		
Benzo[a]anthracene	(0.0339	0.00200	0.0400	0	84.7	33	143		
Benzo[a]pyrene	(0.0369	0.00200	0.0400	0	92.2	17	163		
Chrysene	(0.0347	0.00200	0.0400	0	86.7	17	168		
2,4-Dimethylphenol	(0.0331	0.00200	0.0400	0	82.6	32	120		
4,6-Dinitro-o-cresol	(0.0335	0.00400	0.0400	0	83.7	10	181		
m,p-Cresols	(0.0305	0.00400	0.0400	0	76.2	10	125		
o-Cresol	(0.0296	0.00400	0.0400	0	74.0	25	125		
p-Chloro-m-Cresol	(0.0332	0.00400	0.0400	0	82.9	22	147		
Hexachlorobenzene	(0.0348	0.00200	0.0400	0	87.0	10	152		
Hexachlorobutadiene	(0.0286	0.00200	0.0400	0	71.6	24	120		
Hexachloroethane	(0.0301	0.00200	0.0400	0	75.4	40	120		
Nitrobenzene	(0.0341	0.00200	0.0400	0	85.2	35	180		
N-Nitrosodiethylamine	(0.0338	0.00400	0.0400	0	84.4	20	125		
N-Nitrosodi-n-butylamine	(0.0389	0.00400	0.0400	0	97.3	20	125		
Pentachlorobenzene	(0.0364	0.00200	0.0400	0	91.1	40	140		
Pentachlorophenol	(0.0362	0.00200	0.0400	0	90.4	14	176		
Phenanthrene		0.0345	0.00200	0.0400	0	86.2	54	120		
Pyridine	(0.0137	0.00200	0.0400	0	34.2	10	75		
1,2,4,5-Tetrachlorobenzene	(0.0332	0.00200	0.0400	0	83.1	30	140		
2,4,5-Trichlorophenol		0.0378	0.00200	0.0400	0	94.6	25	125		
2-Chlorophenol		0.0305	0.00200	0.0400	0	76.2	23	134		
2,4-Dichlorophenol		0.0352	0.00200	0.0400	0	87.9	39	135		
2,4-Dinitrophenol	(0.0194	0.00400	0.0400	0	48.5	10	191		
2-Nitrophenol		0.0361	0.00200	0.0400	0	90.2	-29	182		
4-Nitrophenol		0.0274	0.00400	0.0400	0	68.4	10	132		
Phenol	(0.0173	0.00200	0.0400	0	43.2	5	120		
2,4,6-Trichlorophenol	(0.0395	0.00200	0.0400	0	98.8	37	144		
Acenaphthene	(0.0337	0.00200	0.0400	0	84.2	47	145		
Acenaphthylene		0.0372	0.00200	0.0400	0	92.9	33	145		
Anthracene		0.0353	0.00200	0.0400	0	88.2	27	133		
Benzo[b]fluoranthene		0.0366	0.00200	0.0400	0	91.4	24	159		
Benzo[g,h,i]perylene		0.0347	0.00200	0.0400	0	86.6	10	219		
Benzo[k]fluoranthene		0.0338	0.00200	0.0400	0	84.6	11	162		
Bis(2-chloroethoxy)methane		0.0341	0.00200	0.0400	0	85.3	33	184		
Bis(2-chloroethyl)ether		0.0322	0.00200	0.0400	0	80.6	12	158		
Bis(2-chloroisopropyl)ether		0.0321	0.00200	0.0400	0	80.2	36	166		
Bis(2-ethylhexyl)phthalate		0.0357	0.00200	0.0400	0	89.2	10	158		
4-Bromophenyl phenyl ether		0.0347	0.00200	0.0400	0	86.7	53	127		
Butyl benzyl phthalate		0.0377	0.00200	0.0400	0	93.2	10	152		

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
 - S Spike Recovery outside control limits
 - N Parameter not NELAP certified

Page 8 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_250811C

Sample ID: LCS-121909	Batch ID:	121909		TestNo	E625	5.1		Units:	mg/L
SampType: LCS	Run ID:	GCMS9	_250811C	Analys	is Date: 8/11	2025 5:07:	00 PM	Prep Date:	8/11/2025
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qua
2-Chloronaphthalene		0.0332	0.00200	0.0400	0	83.0	60	120	
4-Chlorophenyl phenyl ether		0.0313	0.00200	0.0400	0	78.2	25	158	
Dibenz[a,h]anthracene		0.0350	0.00200	0.0400	0	87.6	10	125	
3,3'-Dichlorobenzidine		0.0329	0.00500	0.0400	0	82.4	10	262	
Diethyl phthalate		0.0328	0.00600	0.0400	0	82.0	10	120	
Dimethyl phthalate		0.0333	0.00600	0.0400	0	83.2	10	120	
Di-n-butyl phthalate		0.0415	0.00600	0.0400	0	104	10	120	*
2,4-Dinitrotoluene		0.0340	0.00200	0.0400	0	85.1	39	139	
2,6-Dinitrotoluene		0.0342	0.00200	0.0400	0	85.5	50	158	
Di-n-octyl phthalate		0.0351	0.00600	0.0400	0	87.8	10	146	
1,2-Diphenylhydrazine		0.0370	0.00200	0.0400	0	92.5	40	140	
Fluoranthene		0.0368	0.00200	0.0400	0	92.0	26	137	
Fluorene		0.0334	0.00200	0.0400	0	83.6	59	121	
Hexachlorocyclopentadiene		0.0348	0.00200	0.0400	0	87.1	8	130	
ndeno[1,2,3-cd]pyrene		0.0336	0.00200	0.0400	0	84.0	10	171	
sophorone		0.0364	0.00200	0.0400	0	91.0	21	196	
Naphthalene		0.0322	0.00200	0.0400	0	80.6	21	133	
N-Nitrosodimethylamine		0.0148	0.00200	0.0400	0	37.1	10	125	
N-Nitrosodi-n-propylamine		0.0383	0.00200	0.0400	0	95.8	10	230	
N-Nitrosodiphenylamine		0.0353	0.00200	0.0400	0	88.3	20	125	
Pyrene		0.0330	0.00200	0.0400	0	82.5	52	120	
1,2,4-Trichlorobenzene		0.0298	0.00200	0.0400	0	74.4	44	142	
Surr: 2,4,6-Tribromophenol		85.2	0.00200	80.00	ŭ	106	10	123	
Surr: 2-Fluorobiphenyl		65.4		80.00		81.8	43	116	
Surr: 2-Fluorophenol		44.8		80.00		56.0	21	100	
Surr: 4-Terphenyl-d14		59.6		80.00		74.5	33	141	
Surr: Nitrobenzene-d5		70.4		80.00		88.0	35	115	
Surr: Phenol-d5		33.4		80.00		41.8	10	94	
	5								
Sample ID: MB-121909	Batch ID:	121909		TestNo				Units:	mg/L
SampType: MBLK	Run ID:	GCMS9	_250811C	Analys	sis Date: 8/11	/2025 6:13:	UU PIVI	Prep Date:	8/11/2025
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLin	nit HighLimit %	6RPD RPDLimit Qu
Benzidine	<	0.00100	0.00400						
Benzo[a]anthracene		0.00100	0.00200						
Benzo[a]pyrene	<	0.00100	0.00200						
Chrysene	<	0.00100	0.00200						
2,4-Dimethylphenol	<	0.00100	0.00200						
4,6-Dinitro-o-cresol	<	0.00200	0.00400						
m,p-Cresols	<	0.00200	0.00400						
o-Cresol	<	0.00200	0.00400						
Qualifiers: B Analyte de	tected in the a	senciated N	lethod Blank	DF	Dilution Facto	NF.			
	tected in the a				Method Detec				Page 9 of 2

- Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- Analyte detected between SDL and RL
- MDL Method Detection Limit
 - R RPD outside accepted control limits
 - Spike Recovery outside control limits S
 - Parameter not NELAP certified

Page 9 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_250811C

Sample ID: MB-121909	Batch ID: 121909)	TestNo	E625	5.1		Units:	mg/L
SampType: MBLK	Run ID: GCMS	9_250811C	Analys	s Date: 8/11	/2025 6:13:	00 PM	Prep Date:	8/11/2025
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD RPDLimit Qual
p-Chloro-m-Cresol	<0.00200	0.00400						
Hexachlorobenzene	<0.00100	0.00200						
Hexachlorobutadiene	<0.00100	0.00200						
Hexachloroethane	<0.00100	0.00200						
Nitrobenzene	<0.00100	0.00200						
N-Nitrosodiethylamine	<0.00200	0.00400						
N-Nitrosodi-n-butylamine	<0.00100	0.00400						
Pentachlorobenzene	<0.00100	0.00200						
Pentachlorophenol	<0.00100	0.00200						
Phenanthrene	<0.00100	0.00200						
Pyridine	<0.00100	0.00200						
1,2,4,5-Tetrachlorobenzene	<0.00100	0.00200						
2,4,5-Trichlorophenol	<0.00100	0.00200						
2-Chlorophenol	<0.00100	0.00200						
2,4-Dichlorophenol	<0.00100	0.00200						
2,4-Dinitrophenol	<0.00200	0.00400						
2-Nitrophenol	<0.00100	0.00200						
4-Nitrophenol	<0.00200	0.00400						
Phenol	<0.00100	0.00200						
2,4,6-Trichlorophenol	<0.00100	0.00200						
Acenaphthene	<0.00100	0.00200						
Acenaphthylene	<0.00100	0.00200						
Anthracene Benzo[b]fluoranthene	<0.00100 <0.00100	0.00200 0.00200						
	<0.00100	0.00200						
Benzo[g,h,i]perylene Benzo[k]fluoranthene	<0.00100	0.00200						
Bis(2-chloroethoxy)methane	<0.00100	0.00200						
Bis(2-chloroethyl)ether	<0.00100	0.00200						
Bis(2-chloroisopropyl)ether	<0.00100	0.00200						
Bis(2-ethylhexyl)phthalate	<0.00300	0.00600						
4-Bromophenyl phenyl ether	<0.00100	0.00200						
Butyl benzyl phthalate	<0.00300	0.00600						
2-Chloronaphthalene	<0.00100	0.00200						
4-Chlorophenyl phenyl ether	<0.00100	0.00200						
Dibenz[a,h]anthracene	<0.00100	0.00200						
3,3'-Dichlorobenzidine	<0.00100	0.00500						
Diethyl phthalate	<0.00300	0.00600						
Dimethyl phthalate	<0.00300	0.00600						
Di-n-butyl phthalate	<0.00300	0.00600						
2,4-Dinitrotoluene	<0.00100	0.00200						
2,6-Dinitrotoluene	<0.00100	0.00200						

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - RPD outside accepted control limits
 - S Spike Recovery outside control limits
 - N Parameter not NELAP certified

Page 10 of 21

Project:

Pollution Control Services

Work Order:

2508071

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_250811C

Sample ID: MB-121909	Batch ID:	121909		TestNo:	E62	25.1		Units:	mg/L
SampType: MBLK	Run ID:	GCMS9_	250811C	Analysis	Date: 8/1	1/2025 6:13:	00 PM	Prep Date:	8/11/2025
Analyte	R	esult	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD RPDLimit Qu
Di-n-octyl phthalate	<0,	00300	0.00600						
1,2-Diphenylhydrazine	<0.	.00100	0.00200						
Fluoranthene	<0.	.00100	0.00200						
Fluorene	<0.	.00100	0.00200						
Hexachlorocyclopentadiene	<0.	.00100	0.00200						
Indeno[1,2,3-cd]pyrene	<0.	.00100	0.00200						
Isophorone	<0.	.00100	0.00200						
Naphthalene	<0.	.00100	0.00200						
N-Nitrosodimethylamine	<0.	.00100	0.00200						
N-Nitrosodi-n-propylamine	<0.	.00100	0.00200						
N-Nitrosodiphenylamine	<0.	.00100	0.00200						
Pyrene	<0.	.00100	0.00200						
1,2,4-Trichlorobenzene	<0.	.00100	0.00200						
Surr: 2,4,6-Tribromophenol		84.4		80.00		106	10	123	
Surr: 2-Fluorobiphenyl	(69.4		80.00		86.8	43	116	
Surr: 2-Fluorophenol		40.8		80.00		51.0	21	100	
Surr: 4-Terphenyl-d14	(65.8		80.00		82.2	33	141	
Surr: Nitrobenzene-d5		73.0		80.00		91.2	35	115	
Surr: Phenol-d5		26.6		80.00		33.2	10_	94	
Sample ID: 2508006-01AMS	Batch ID:	121909		TestNo	E62	25.1		Units:	mg/L

Sample ID: 2508006-01AMS	Batch ID:	121909		TestNo	: E62 :	5.1		Units:	mg/L
SampType: MS	Run ID:	GCMS	_250811C	Analys	is Date: 8/11	/2025 9:55:	00 PM	Prep Date:	8/11/2025
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qu
Benzidine	(0.0266	0.0380	0.380	0	7.00	5	125	
Benzo[a]anthracene		0.351	0.0190	0.380	0	92.4	33	143	
Benzo[a]pyrene		0.398	0.0190	0.380	0	105	17	163	
Chrysene		0.363	0.0190	0.380	0	95.8	17	168	
2,4-Dimethylphenol		0.362	0.0190	0.380	0	95.4	32	120	
4,6-Dinitro-o-cresol		0.395	0.0380	0.380	0	104	10	181	
m,p-Cresols		0.415	0.0380	0.380	0.0214	104	10	125	
o-Cresol		0.356	0.0380	0.380	0	93.7	25	125	
p-Chloro-m-Cresol		0.348	0.0380	0.380	0	91.8	22	147	
Hexachlorobenzene		0.370	0.0190	0.380	0	97.6	10	152	
Hexachlorobutadiene		0.302	0.0190	0.380	0	79.6	24	120	
Hexachloroethane		0.297	0.0190	0.380	0	78.4	40	120	
Nitrobenzene		0.353	0.0190	0.380	0	93.1	35	180	
N-Nitrosodiethylamine		0.367	0.0380	0.380	0	96.8	20	125	
N-Nitrosodi-n-butylamine		0.409	0.0380	0.380	0	108	20	125	
Pentachlorobenzene		0.391	0.0190	0.380	0	103	40	140	
Pentachlorophenol		0.416	0.0190	0.380	0	110	14	176	

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J

ND Not Detected at the Method Detection Limit

Reporting Limit RL

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 11 of 21

RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAP certified

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_250811C

Sample ID: 2508006-01AMS	Batch ID: 12190	9	TestNo	E625	5.1		Units:	mg/L
SampType: MS	Run ID: GCMS	9_250811C	Analys	is Date: 8/11	/2025 9:55:	00 PM	Prep Date:	8/11/2025
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit ⁴	%RPD RPDLimit Qua
Phenanthrene	0.351	0.0190	0.380	0	92.4	54	120	
Pyridine	0.259	0.0190	0.380	0	68.4	10	75	
1,2,4,5-Tetrachlorobenzene	0.334	0.0190	0.380	0	88.1	30	140	
2,4,5-Trichlorophenol	0.387	0,0190	0.380	0	102	25	125	
2-Chlorophenol	0.337	0.0190	0.380	0	88.9	23	134	
2,4-Dichlorophenol	0.373	0.0190	0.380	0	98.2	39	135	
2,4-Dinitrophenol	0.319	0.0380	0.380	0	84.0	10	191	
2-Nitrophenol	0.385	0.0190	0.380	0	102	29	182	
4-Nitrophenol	0.383	0.0380	0.380	0	101	10	132	
Phenol	0.358	0.0190	0.380	0.0363	84.8	5	120	
2,4,6-Trichlorophenol	0.410	0.0190	0.380	0	108	37	144	
Acenaphthene	0.340	0.0190	0.380	0	89.6	47	145	
Acenaphthylene	0.374	0.0190	0.380	0	98.6	33	145	
Anthracene	0.357	0.0190	0.380	0	94.0	27	133	
Benzo[b]fluoranthene	0.387	0.0190	0.380	0	102	24	159	
Benzo[g,h,i]perylene	0.392	0.0190	0.380	0	103	10	219	
Benzo[k]fluoranthene	0.354	0.0190	0.380	0	93.4	11	162	
Bis(2-chloroethoxy)methane	0.350	0.0190	0.380	0	92.2	33	184	
Bis(2-chloroethyl)ether	0.331	0.0190	0.380	0	87.1	12	158	
Bis(2-chloroisopropyl)ether	0.310	0.0190	0.380	0	81.6	36	166	
Bis(2-ethylhexyl)phthalate	0.409	0.0569	0.380	0	108	10	158	
4-Bromophenyl phenyl ether	0.369	0.0190	0.380	0	97.3	53	127	
Butyl benzyl phthalate	0.405	0.0569	0.380	0	107	10	152	
2-Chloronaphthalene	0.335	0.0190	0.380	0	88.3	60	120	
4-Chlorophenyl phenyl ether	0.317	0.0190	0.380	0	83.5	25	158	
Dibenz[a,h]anthracene	0.412	0.0190	0.380	0	109	10	125	
3,3'-Dichlorobenzidine	0.239	0.0474	0.380	0	62.8	10	262	
Diethyl phthalate	0.328	0.0569	0.380	0	86.4	10	120	
Dimethyl phthalate	0.340	0.0569	0.380	0	89.6	10	120	
Di-n-butyl phthalate	0.420	0.0569	0.380	0	111	10	120	
2,4-Dinitrotoluene	0.343	0.0190	0.380	0	90.4	39	139	
2,6-Dinitrotoluene	0.353	0.0190	0.380	0	93.0	50	158	
Di-n-octyl phthalate	0.388	0.0569	0.380	0	102	10	146	
1,2-Diphenylhydrazine	0.390	0.0190	0.380	0	103	40	140	
Fluoranthene	0.362	0.0190	0.380	0	95.5	26	137	
Fluorene	0.333	0.0190	0.380	0	87.8	59	121	
Hexachlorocyclopentadiene	0.357	0.0190	0.380	0	94.2	8	130	
Indeno[1,2,3-cd]pyrene	0.381	0.0190	0.380	0	100	10	171	
Isophorone	0.373	0.0190	0.380	0	98.4	21	196	
Naphthalene	0.324	0.0190	0.380	0	85.4	21	133	
N-Nitrosodimethylamine	0.331	0.0190	0.380	0	87.4	10	125	

Qualifiers:

- B Analyte detected in the associated Method Blank
- $J \qquad \text{Analyte detected between MDL and } RL$
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAP certified

Page 12 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_250811C

Batch ID: 1219	09	TestNo	E62	5.1		Units:	mg/L	
Run ID: GCMS9_250811C		Analysis Date: 8/11/2025 9:55:00 PM			00 PM	Prep Date: 8/11/2025		
Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qua
0.397	0.0190	0.380	0	105	10	230		
0.370	0.0190	0.380	0	97.5	20	125		
0.335	0.0190	0.380	0	88.2	52	120		
0.304	0.0190	0.380	0	80.0	44	142		
913		759.0		120	10	123		
641		759.0		84.5	43	116		
689		759.0		90.8	21	100		
639		759.0		84.2	33	141		
712		759.0		93.8	35	115		
694		759.0		91.5	10	94		
Batch ID: 1219	09	TestNo	D: E62 :	5.1		Units:	mg/L	
Run ID: GCMS9_250811C		Analysis Date: 8/11/2025 10:17			2:00 PM Prep Date: 8/11/2025			
Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD R	PDLimit Qua
0.0262	0.0356	0.356	0	7.35	5	125	1.55	50
0.331	0.0178	0.356	0	93.1	33	143	5.67	50
0.379	0.0178	0.356	0	107	17	163	4.96	50
0.337	0.0178	0.356	0	94.7	17	168	7.53	50
0.345	0.0178	0.356	0	96.8	32	120	4.87	50
0.378	0.0356	0.356	0	106	10	181	4.39	50
0.414	0.0356	0.356	0.0214	110	10	125	0.090	50
0.344	0.0356	0.356	0	96.6	25	125	3.43	50
0.332	0.0356	0.356	0	93.3	22	147	4.81	50
0.354	0.0178	0.356	0	99.6	10	152	4.40	50
0.289	0.0178	0.356	0	81.1	24	120	4.63	50
0.289	0.0178	0.356	0	81.3	40	120	2.73	50
0.347	0.0178	0.356	0	97.6	35	180	1.71	50
0.358	0.0356	0.356	0	101	20	125	2.58	50
	0.0356	0.356	0	112	20	125	2.56	50
	0.0178		0	109	40	140	1.19	50
		0.356	0	108	14	176	7.99	50
			0	93.9	54	120	4.82	39
			0	71.0	10	75	2.70	50
			_					50
								50
							3.00	50
								50
								50
0.372		0.356	0	104	29	182	3.61	50
				107	~~		4.0.	
	Run ID: Result 0.397 0.370 0.304 913 641 689 639 712 694 Batch ID: 1219 Run ID: CCN Result 0.0262 0.331 0.379 0.345 0.379 0.344 0.358 0.398 0.387 0.384 0.387 0.384 0.398 0.387 0.384 0.398 0.398 0.398 0.397 0.358	Run ID: Result RL 0.397 0.0190 0.370 0.0190 0.335 0.0190 0.304 0.0190 913 641 689 639 712 694 Batch ID: 121909 Run ID: Result RL 0.0262 0.0356 0.331 0.0178 0.379 0.0178 0.379 0.0178 0.379 0.0178 0.379 0.0178 0.379 0.0178 0.379 0.0178 0.379 0.0178 0.379 0.0178 0.379 0.0178 0.379 0.0178 0.379 0.0178 0.379 0.0178 0.379 0.0178 0.379 0.0178 0.379 0.0178 0.378 0.0356 0.341 0.0356 0.342 0.0356 0.354 0.0178 0.289 0.0178 0.289 0.0178 0.289 0.0178 0.289 0.0178 0.398 0.0356	Run ID: Result RL SPK value 0.397 0.0190 0.380 0.370 0.0190 0.380 0.335 0.0190 0.380 0.304 0.0190 0.380 913 759.0 641 759.0 689 759.0 639 759.0 712 759.0 694 759.0 Run ID: GCMS9_250811C Analys Result RL SPK value 0.0262 0.0356 0.356 0.331 0.0178 0.356 0.337 0.0178 0.356 0.337 0.0178 0.356 0.345 0.0178 0.356 0.378 0.0356 0.356 0.344 0.0356 0.356 0.332 0.0356 0.356 0.344 0.0356 0.356 0.354 0.0178 0.356 0.354 0.0178 0.356 0.354	Run ID: Result RL SPK value Ref Val 0.397 0.0190 0.380 0 0.370 0.0190 0.380 0 0.335 0.0190 0.380 0 0.304 0.0190 0.380 0 913 759.0 641 759.0 689 759.0 759.0 639 759.0 759.0 712 759.0 759.0 Run ID: GCMS9_250811C Analysis Date: 8/11 Result RL SPK value Ref Val Run ID: GCMS9_250811C Analysis Date: 8/11 Result RL SPK value Ref Val Run ID: Result RL SPK value Ref Val Result RL SPK value Ref Val Run ID: Result RL SPK value Ref Val Result RL SPK value Ref Val Result RL SPK value Ref Val Run ID	Result RL SPK value Ref Val %REC 0.397 0.0190 0.380 0 105 0.370 0.0190 0.380 0 97.5 0.335 0.0190 0.380 0 88.2 0.304 0.0190 0.380 0 80.0 913 759.0 120 84.5 689 759.0 90.8 84.5 639 759.0 90.8 84.2 712 759.0 93.8 694 759.0 93.8 694 759.0 91.5 Batch ID: 121909 TestNo: E625.1 Run ID: GCMS9_250811C Analysis Bit: 8/11/2025 10:17 Result RL SPK value Ref Val %REC 0.0262 0.0356 0.356 0 7.35 0.331 0.0178 0.356 0 93.1 0.337 0.0178 0.356 0 94.7 0.334	Result RL SPK value Ref Val %REC LowLim 0.397 0.0190 0.380 0 105 10 0.370 0.0190 0.380 0 97.5 20 0.335 0.0190 0.380 0 80.2 52 0.304 0.0190 0.380 0 80.0 44 913 759.0 120 10 641 759.0 84.5 43 689 759.0 84.2 33 712 759.0 93.8 21 639 759.0 91.5 10 10 10 10 Batch ID: 121909 TestNo: E625.1 TestNo: TestNo:	Result RL SPK value Ref Val %REC LowLimit HighLimit	Run ID: GCMS9_250811C Analysis Date: 8/11/2025 9:55: 0 PM Prep Date: 8/11/2025 9:55: 0 PM Prep Date: 8/11/2025 9:55: 0 PM 8/11/2025 9:55: 0 PM 8/11/2025 9:55: 0 PM Prep Date: 8/11/2025 9:55: 0 PM 8/11/2025 9:55: 0 PM Prep Date: 8/11/2025 9:55: 0 PM 8/11/2025 9:55: 0 PM Prep Date: 8/11/2025 9:55: 0 PM Rep D R 0.394 0.0190 0.380 0 97.5 20 120 120 120 120 120 120 120 120 123 1641 759.0 84.5 43 116 44 142 44 142 43 116 44 142 44 116 459.0 84.5 43 116 44 116 459.0 484.5 43 116 44 116 459.0 484.5 43 116 44 116 4759.0 84.2 33 144 44 116 4759.0 93.8 35 115 150 48 43 115 48 117 48 48 1115 48 48 42

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit RL

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAP certified

Page 13 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_250811C

Sample ID: 2508006-01AMSD	Batch ID: 121909		TestNo	E62	5.1		Units:	mg/l	-
SampType: MSD	Run ID: GCMS9	_250811C	Analys	is Date: 8/11	/2025 10:17	7:00 PM	Prep Date:	8/11	/2025
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qua
Phenol	0.347	0.0178	0.356	0.0363	87.3	5	120	3.20	50
2,4,6-Trichlorophenol	0.398	0.0178	0.356	0	112	37	144	2.97	50
Acenaphthene	0.330	0.0178	0.356	0	92.6	47	145	3.08	48
Acenaphthylene	0.365	0.0178	0.356	0	102	33	145	2.55	50
Anthracene	0.340	0.0178	0.356	0	95,5	27	133	4.85	50
Benzo[b]fluoranthene	0.377	0.0178	0.356	0	106	24	159	2.68	50
Benzo[g,h,i]perylene	0.381	0.0178	0.356	0	107	10	219	2.87	50
Benzo[k]fluoranthene	0.330	0.0178	0.356	0	92.7	11	162	7.18	50
Bis(2-chloroethoxy)methane	0.339	0.0178	0.356	0	95.4	33	184	3.07	50
Bis(2-chloroethyl)ether	0.323	0.0178	0.356	0	90.7	12	158	2.44	50
Bis(2-chloroisopropyl)ether	0.304	0.0178	0.356	0	85.5	36	166	1.82	50
Bis(2-ethylhexyl)phthalate	0.376	0.0534	0.356	0	106	10	158	8.44	50
4-Bromophenyl phenyl ether	0.357	0,0178	0.356	0	100	53	127	3.39	43
Butyl benzyl phthalate	0.378	0.0534	0.356	0	106	10	152	6.94	50
2-Chloronaphthalene	0.328	0.0178	0.356	0	92.3	60	120	2.05	24
4-Chlorophenyl phenyl ether	0.306	0.0178	0.356	0	86.0	25	158	3.42	50
Dibenz[a,h]anthracene	0.400	0.0178	0.356	0	112	10	125	3.04	50
3,3'-Dichlorobenzidine	0.196	0.0445	0.356	0	55.2	10	262	19.3	50
Diethyl phthalate	0.314	0.0534	0.356	0	88.2	10	120	4.43	50
Dimethyl phthalate	0.328	0.0534	0.356	0	92.2	10	120	3.51	50
Di-n-butyl phthalate	0.390	0.0534	0.356	0	109	10	120	7.56	47
2,4-Dinitrotoluene	0.329	0.0178	0.356	0	92.5	39	139	4.08	42
2,6-Dinitrotoluene	0.343	0.0178	0.356	0	96.3	50	158	2.94	48
Di-n-octyl phthalate	0.366	0.0534	0.356	0	103	10	146	5.84	50
1,2-Diphenylhydrazine	0.379	0.0178	0.356	0	107	40	140	2.85	50
Fluoranthene	0.337	0.0178	0.356	0	94.7	26	137	7.32	50
Fluorene	0.323	0.0178	0.356	0	90.8	59	121	3.13	38
Hexachlorocyclopentadiene	0.355	0.0178	0.356	0	99.8	8	130	0.652	50
Indeno[1,2,3-cd]pyrene	0.368	0.0178	0.356	0	103	10	171	3.34	50
Isophorone	0.360	0.0178	0.356	0	101	21	196	3.67	50
Naphthalene	0.312	0.0178	0.356	0	87.7	21	133	3.71	50
N-Nitrosodimethylamine	<0.00890	0.0178	0.356	0	0	10	125	0	50 5
N-Nitrosodi-n-propylamine	0.387	0.0178	0.356	0	109	10	230	2.49	50
N-Nitrosodiphenylamine	0.352	0.0178	0.356	0	98.8	20	125	5.10	50
Pyrene	0.324	0.0178	0.356	0	91.0	52	120	3.36	49
1,2,4-Trichlorobenzene	0.290	0.0178	0.356	0	81.6	44	142	4.51	50
Surr: 2,4,6-Tribromophenol	870		711.7		122	10	123	0	0
Surr: 2-Fluorobiphenyl	619		711.7		87.0	43	116	0	0
Surr: 2-Fluorophenol	658		711.7		92.5	21	100	0	0
Surr: 4-Terphenyl-d14	598		711.7		84.0	33	141	0	0
Surr: Nitrobenzene-d5	683		711.7		96.0	35	115	0	0

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
 - S Spike Recovery outside control limits
 - N Parameter not NELAP certified

Page 14 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_250811C

Sample ID: 2508006-01AMSD SampType: MSD	Batch ID: Run ID:	121909 GCMS9	_250811C	TestNo Analys		625.1 11/2025 10:17	:00 PM	Units: Prep Date	mg/l : 8/11	_ /2025
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qua
Surr: Phenol-d5		660		711.7		92.8	10	94	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 15 of 21

Pollution Control Services

Work Order:

Project:

2508071

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_250811D

Sample ID: LCS-121909-NP	Batch ID:	121909		TestNo:	D706	55-17		Units:	mg/L	
SampType: LCS	Run ID:	GCMS9_	250811D	Analysis	Date: 8/11	2025 5:51:	00 PM	Prep Date:	8/11/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit 9	%RPD RPDLimi	t Qua
Nonyiphenol		1.21	0.100	1.00	0	121	40	140		N
Sample ID: MB-121909	Batch ID:	121909		TestNo:	D706	55-17		Units:	mg/L	
SampType: MBLK	Run ID:	GCMS9_	_250811D	Analysis	Date: 8/11	/2025 6:13:	00 PM	Prep Date:	8/11/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD RPDLimi	t Qua
Nonylphenol	<	0.0700	0.100							N

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J

ND Not Detected at the Method Detection Limit

RL Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAP certified

Page 16 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS5_250807B

The QC data in batch 121875 ap	plies to the f	ollowing s	samples: 250	8071-02A					
Sample ID: LCS-121875	Batch ID:	121875		TestNo	E624	1.1		Units:	mg/L
SampType: LCS	Run ID:	GCMS5	_250807B	Analys	is Date: 8/7/2	2025 11:09:	MA 00	Prep Date:	8/7/2025
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Benzene	(0.0255	0.00100	0.0232	0	110	65	135	
Carbon tetrachloride	(0.0256	0.00100	0.0232	0	110	70	130	
Chlorobenzene	(0.0237	0.00100	0.0232	0	102	35	135	
Chloroform	(0.0256	0.00100	0.0232	0	110	70	135	
Chlorodibromomethane	(0.0235	0.00100	0.0232	0	101	70	135	
1,2-Dibromoethane	(0.0232	0.00100	0.0232	0	99.9	60	140	
1,2-Dichloroethane	(0.0264	0.00100	0.0232	0	114	70	130	
1,1-Dichloroethene	(0.0246	0.00100	0.0232	0	106	50	150	
Methyl ethyl ketone		0.105	0.0150	0.116	0	90.4	60	140	
Tetrachloroethene	(0.0236	0.00200	0.0232	0	102	70	130	
Trichloroethene	(0.0248	0.00100	0.0232	0	107	65	135	
1,1,1-Trichloroethane	(0.0264	0.00100	0.0232	0	114	70	130	
TTHM (Total Trihalomethanes)	(0.0973	0.00100	0.0928	0	105	60	140	
Vinyl chloride	(0.0261	0.00100	0.0232	0	112	5	195	
Acrolein	(0.0477	0.0150	0.0580	0	82.2	60	140	
Acrylonitrile	(0.0448	0.00300	0.0464	0	96.5	60	140	
1,1,2,2-Tetrachloroethane	(0.0233	0.00100	0.0232	0	100	60	140	
Bromoform	(0.0220	0.00100	0.0232	0	95.0	65	135	
Chloroethane	(0.0243	0.00500	0.0232	0	105	40	160	
2-Chloroethylvinylether	(0.0251	0.0100	0.0232	0	108	5	225	
Bromodichloromethane		0.0262	0.00100	0.0232	0	113	65	135	
1,1-Dichloroethane		0.0252	0.00100	0.0232	0	108	70	130	
1,2-Dichloropropane	(0.0255	0.00100	0.0232	0	110	35	165	
1,3-Dichloropropene (cis)		0.0254	0.00100	0.0232	0	109	25	175	
1,3-Dichloropropene (trans)		0.0253	0.00100	0.0232	0	109	50	150	
Ethylbenzene		0.0236	0.00100	0.0232	0	102	60	140	
Methyl bromide		0.0250	0.00500	0.0232	0	108	15	185	
Methyl chloride	(0.0251	0.00500	0.0232	0	108	5	205	
Methylene chloride (DCM)		0.0247	0.00500	0.0232	0	107	60	140	
Toluene		0.0252	0.00200	0.0232	0	108	70	130	
trans-1,2-Dichloroethylene		0.0244	0.00200	0.0232	0	105	70	130	
1,1,2-Trichloroethane		0.0249	0.00100	0.0232	0	107	70	130	
1,2-Dichlorobenzene		0.0232	0.00100	0.0232	0	100	65	135	
1,3-Dichlorobenzene		0.0232	0.00100	0.0232	0	100	70	130	
1,4-Dichlorobenzene		0.0233	0.00100	0.0232	0	100	65	135	
Surr: 1,2-Dichloroethane-d4	,	208	5.50100	200.0	J	104	72	119	
Surr: 4-Bromofluorobenzene		198		200.0		99.0	76	119	
Surr: Dibromofluoromethane		207		200.0		104	85	115	
Surr: Toluene-d8				200.0		95.3	81	120	
Suit. Toluetie-uo		191		200.0		95.3	01	120	

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
 - S Spike Recovery outside control limits
 - N Parameter not NELAP certified

Page 17 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS5_250807B

Sample ID: MB-121875	Batch ID:	121875		TestNo	E624	\$.1		Units:	mg/L
SampType: MBLK	Run ID:	GCMS5_	250807B	Analys	is Date: 8/7/2	2025 12:00:	00 PM	Prep Date:	8/7/2025
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qua
Benzene	<0.	000300	0.00100						
Carbon tetrachloride	<0.	000300	0.00100						
Chlorobenzene	<0.	000300	0.00100						
Chloroform	<0.	000300	0.00100						
Chlorodibromomethane	<0.	000300	0.00100						
1,2-Dibromoethane	<0.	000300	0.00100						
1,2-Dichloroethane	<0.	000300	0.00100						
1,1-Dichloroethene	<0.	000300	0.00100						
Methyl ethyl ketone	<0	.00500	0.0150						
Tetrachloroethene	<0.	000600	0.00200						
Trichloroethene	<0.	000600	0.00100						
1,1,1-Trichloroethane	<0.	000300	0.00100						
TTHM (Total Trihalomethanes)	<0.	000300	0.00100						
Vinyl chloride	<0.	000300	0.00100						
Acrolein	<0	.00500	0.0150						
Acrylonitrile	<0	.00100	0.00300						
1,1,2,2-Tetrachloroethane	<0.	000300	0.00100						
Bromoform	<0.	000300	0.00100						
Chloroethane	<0	.00100	0.00500						
2-Chloroethylvinylether	<0	.00600	0.0100						
Bromodichloromethane	<0.	000300	0.00100						
1,1-Dichloroethane	<0.	000300	0.00100						
1,2-Dichloropropane	<0.	000300	0.00100						
1,3-Dichloropropene (cis)	<0.	000300	0.00100						
1,3-Dichloropropene (trans)	<0.	000300	0.00100						
Ethylbenzene	<0.	.000300	0.00100						
Methyl bromide	<0	.00100	0.00500						
Methyl chloride	<0	.00100	0.00500						
Methylene chloride (DCM)	<0	.00250	0.00500						
Toluene	<0.	000600	0.00200						
trans-1,2-Dichloroethylene	<0.	000300	0.00200						
1,1,2-Trichloroethane	<0.	.000300	0.00100						
1,2-Dichlorobenzene	<0.	.000300	0.00100						
1,3-Dichlorobenzene		000300	0.00100						
1,4-Dichlorobenzene		000300	0.00100						
Surr: 1,2-Dichloroethane-d4		209		200.0		105	72	119	
Surr: 4-Bromofluorobenzene		196		200.0		98.2	76	119	
Surr: Dibromofluoromethane		210		200.0		105	85	115	
Surr: Toluene-d8		191		200.0		95.3	81	120	

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits Spike Recovery outside control limits

N Parameter not NELAP certified Page 18 of 21

Project:

Pollution Control Services

Work Order:

2508071

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS5_250807B

Sample ID: 2508050-02AMS	Batch ID: 121875		TestNo	E624	1.1		Units:	mg/L
SampType: MS	Run ID: GCMS5	_250807B	Analys	is Date: 8/7/2	2025 4:46:0	0 PM	Prep Date:	8/7/2025
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua
Benzene	0.0265	0.00100	0.0232	0	114	37	151	
Carbon tetrachloride	0.0268	0.00100	0.0232	0	115	70	140	
Chlorobenzene	0.0245	0.00100	0.0232	0	106	37	160	
Chloroform	0.0272	0.00100	0.0232	0	117	51	138	
Chlorodibromomethane	0.0240	0.00100	0.0232	0	104	53	149	
1,2-Dibromoethane	0.0247	0.00100	0.0232	0	107	40	160	
1,2-Dichloroethane	0.0282	0.00100	0.0232	0	122	49	155	
1,1-Dichloroethene	0.0246	0.00100	0.0232	0	106	10	234	
Methyl ethyl ketone	0.125	0.0150	0.116	0	108	40	160	
Tetrachloroethene	0.0245	0.00200	0.0232	0	106	64	148	
Trichloroethene	0.0248	0.00100	0.0232	0	107	70	157	
1,1,1-Trichloroethane	0.0269	0.00100	0.0232	0	116	52	162	
TTHM (Total Trihalomethanes)	0.101	0.00100	0.0928	0	108	40	160	
Vinyl chloride	0.0247	0.00100	0.0232	0	107	10	251	
Acrolein	0.0423	0.0150	0.0580	0	72.9	40	160	
Acrylonitrile	0.0472	0.00300	0.0464	0	102	40	160	
1,1,2,2-Tetrachloroethane	0.0251	0.00100	0.0232	0	108	46	157	
Bromoform	0.0220	0.00100	0.0232	0	94.8	45	169	
Chloroethane	0.0228	0.00500	0.0232	0	98.2	14	230	
2-Chloroethylvinylether	<0.00600	0.0100	0.0232	0	0	5	273	S
Bromodichloromethane	0.0272	0.00100	0.0232	0	117	35	155	
1,1-Dichloroethane	0.0263	0.00100	0.0232	0	113	59	155	
1,2-Dichloropropane	0.0267	0.00100	0.0232	0	115	10	210	
1,3-Dichloropropene (cis)	0.0257	0.00100	0.0232	0	111	10	227	
1,3-Dichloropropene (trans)	0.0260	0.00100	0.0232	0	112	17	183	
Ethylbenzene	0.0243	0.00100	0.0232	0	105	37	162	
Methyl bromide	0.0149	0.00500	0.0232	0	64.1	10	242	
Methyl chloride	0.0225	0.00500	0.0232	0	97.0	5	273	
Methylene chloride (DCM)	0.0255	0.00500	0.0232	0	110	10	221	
Toluene	0.0258	0.00200	0.0232	0	111	47	150	
trans-1,2-Dichloroethylene	0.0250	0.00200	0.0232	0	108	54	156	
1,1,2-Trichloroethane	0.0266	0.00100	0.0232	0	115	52	150	
1,2-Dichlorobenzene	0.0246	0.00100	0.0232	0	106	18	190	
1,3-Dichlorobenzene	0.0245	0.00100	0.0232	0	106	59	156	
1,4-Dichlorobenzene	0.0247	0.00100	0.0232	0	106	18	190	
Surr: 1,2-Dichloroethane-d4	213		200.0		106	72	119	
Surr: 4-Bromofluorobenzene	200		200.0		100	76	119	
Surr: Dibromofluoromethane	212		200.0		106	85	115	
Surr: Toluene-d8	190		200.0		95.1	81	120	

Qua	lifier
-----	--------

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
 - S Spike Recovery outside control limits
 - N Parameter not NELAP certified

Page 19 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS5_250807B

Sample ID: 2508050-02AMSD	Batch ID: 121875		TestNo	E624	1.1		Units:	mg/L		
SampType: MSD	Run ID: GCMS5	_250807B	Analys	is Date: 8/7/2	025 5:11:0	0 PM	Prep Date	8/7/2	025	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit	Qua
Benzene	0.0262	0.00100	0.0232	0	113	37	151	1.03	40	
Carbon tetrachloride	0.0269	0.00100	0.0232	0	116	70	140	0.421	40	
Chlorobenzene	0.0240	0.00100	0.0232	0	103	37	160	2.20	40	
Chloroform	0.0261	0.00100	0.0232	0	113	51	138	4.15	40	
Chlorodibromomethane	0.0233	0.00100	0.0232	0	101	53	149	2.99	40	
1,2-Dibromoethane	0.0243	0.00100	0.0232	0	105	40	160	1.77	40	
1,2-Dichloroethane	0.0274	0.00100	0.0232	0	118	49	155	3.06	40	
1,1-Dichloroethene	0.0248	0.00100	0.0232	0	107	10	234	0.705	32	
Methyl ethyl ketone	0.128	0.0150	0.116	0	110	40	160	2.58	40	
Tetrachioroethene	0.0243	0.00200	0.0232	0	105	64	148	0.931	39	
Trichloroethene	0.0242	0.00100	0.0232	0	104	70	157	2.68	40	
1,1,1-Trichloroethane	0.0270	0.00100	0.0232	0	116	52	162	0.037	36	
TTHM (Total Trihalomethanes)	0.0980	0.00100	0.0928	0	106	40	160	2.51	40	
Vinyl chloride	0.0249	0.00100	0.0232	0	107	10	251	0.600	40	
Acrolein	0.0505	0.0150	0.0580	0	87.1	40	160	17.7	40	
Acrylonitrile	0.0482	0.00300	0.0464	0	104	40	160	2.26	40	
1,1,2,2-Tetrachloroethane	0.0255	0.00100	0.0232	0	110	46	157	1.64	40	
Bromoform	0.0222	0.00100	0.0232	0	95.7	45	169	0.977	40	
Chloroethane	0.0229	0.00500	0.0232	0	98.8	14	230	0.687	40	
2-Chloroethylvinylether	<0.00600	0.0100	0.0232	0	0	5	273	0	40	S
Bromodichloromethane	0.0263	0.00100	0.0232	0	113	35	155	3.34	40	
1,1-Dichloroethane	0.0260	0.00100	0.0232	0	112	59	155	1.33	40	
1,2-Dichloropropane	0.0264	0.00100	0.0232	0	114	10	210	0.855	40	
1,3-Dichloropropene (cis)	0.0253	0.00100	0.0232	0	109	10	227	1.53	40	
1,3-Dichloropropene (trans)	0.0256	0.00100	0.0232	0	110	17	183	1.60	40	
Ethylbenzene	0.0239	0.00100	0.0232	0	103	37	162	1.70	40	
Methyl bromide	0.0188	0.00500	0.0232	0	81.1	10	242	23.4	40	
Methyl chloride	0.0228	0.00500	0.0232	0	98.1	5	273	1.06	40	
Methylene chloride (DCM)	0.0248	0.00500	0.0232	0	107	10	221	2.78	28	
Toluene	0.0262	0.00200	0.0232	0	113	47	150	1.45	40	
trans-1,2-Dichloroethylene	0.0249	0.00200	0.0232	0	107	54	156	0.385	40	
1,1,2-Trichloroethane	0.0263	0.00100	0.0232	0	113	52	150	1.02	40	
1,2-Dichlorobenzene	0.0248	0.00100	0.0232	0	107	18	190	0.559	40	
1,3-Dichlorobenzene	0.0244	0.00100	0.0232	0	105	59	156	0.343	40	
1,4-Dichlorobenzene	0.0242	0.00100	0.0232	0	104	18	190	1.97	40	
Surr: 1,2-Dichloroethane-d4	211		200.0		106	72	119	0	0	
Surr: 4-Bromofluorobenzene	198		200.0		99.0	76	119	0	0	
Surr: Dibromofluoromethane	209		200.0		105	85	115	0	0	
Surr: Toluene-d8	189		200.0		94.4	81	120	0	0	

Qua	li	fi	e	rs
-----	----	----	---	----

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAP certified

Page 20 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

UV/VIS_2_250812B

1.0,000	. 0, 01000									
The QC data in batch 121882 ap	plies to the	following sa	mples: 2508	3071-03A						
Sample ID: MB-121882	Batch ID:	121882		TestNo:	M4:	500-CN E		Units:	mg/L	
SampType: MBLK	Run ID:	UV/VIS_2	_250812B	Analysis	Date: 8/1:	2/2025 10:25:0	MA 00	Prep Date:	8/8/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit	Qua
Cyanide, Amenable to Chlorinati Cyanide, Total		<0.0100 <0.0100	0.0200 0.0200							
Sample ID: LCS-121882	Batch ID:	121882		TestNo:	M4	500-CN E		Units:	mg/L	_
SampType: LCS	Run ID:	UV/VIS_2	_250812B	Analysis	s Date: 8/1	2/2025 10:26:	00 AM	Prep Date:	8/8/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit	Qua
Cyanide, Amenable to Chlorinati	on	0.113	0.0200	0.1000	0	113	80	120		
Cyanide, Total		0.192	0.0200	0.2000	0	95.8	85	115		
Sample ID: 2508088-01CMS	Batch ID:	121882		TestNo:	M4	500-CN E		Units:	mg/L	
SampType: MS	Run ID:	UV/VIS_2	_250812B	Analysis	s Date: 8/1	2/2025 10:34:	MA 00	Prep Date:	8/8/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit	Qua
Cyanide, Total		0.0823	0.0200	0.2000	0	41.1	79	114		s
Sample ID: 2508088-01CMSD	Batch ID:	121882		TestNo:	M4	500-CN E		Units:	mg/L	
SampType: MSD	Run ID:	UV/VIS_2	_250812B	Analysis	s Date: 8/1	2/2025 10:34:	MA 00	Prep Date:	8/8/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit	Qua
Cyanide, Total		0.0799	0.0200	0.2000	0	40.0	79	114		s

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J

Not Detected at the Method Detection Limit

Reporting Limit RL

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified Page 21 of 21

POLLUTION CONTROL SERVICES

1532 Universal City Blvd, Suite 100
Universal City, TX 78148-3318
Facsimilie 210.658.7903
210.340.0343

	CHAIN	OF CUS	STODY & SUBCO	NTRACT TE	RACKING	SHEET	
ΓO: S	PL - Kilgore		Relir	quished by:	Lauren C	llay	
2	500 Dudley I	Rd		Date/Γime:	8/5/2025	@ 1500	
K	ilgore, TX 7	5662	F	Received by:			
_				Date/Time:			Markin 3
			Analysis				
PCS#	Date	Time	Requested			Pres	T. A. T.
310676	08/05/2025	0700	Herbicides 615	24350	086	Ice	Std
310682	08/04/2025	1254	Phenois	2435	_	H ₂ SO ₄	Std
					~ - 1		
						-	
	-						
					167		
					199		
	. (0 . 1.7	L	1			1	
ommei	nts/Special In	struction	s:				
			- 111				
Inless o	therwise requ	uested, se	nd results and invoi	ice to:			
Po 15		rol Servic l City Blv	d, Suite 100				
Uı	niversal City	7X 781	48-3318				
Luthoriz	ed by:	Fern	- Clay	8/6/25	Date: _	8.5.25	
		Au	yvzl	8/6/25	102	5	R
		. 1	U			T:\CoC\Subco	ntmet/810676.docx

Page 1 of 1

Printed

08/28/2025 16:40

PCSL-C

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

TABLE OF CONTENTS

Rerun 2,4-D

This report consists of this Table of Contents and the following pages:

Report Name	Description	<u>Pages</u>
1159759_r02_01_ProjectSamples	SPL Kilgore Project P:1159759 C:PCSL Project Sample Cross Reference t:304	1
1159759_r03_03_ProjectResults	SPL Kilgore Project P:1159759 C:PCSL Project Results t:304	3
1159759_r10_05_ProjectQC	SPL Kilgore Project P:1159759 C:PCSL Project Quality Control Groups	2
1159759_r99_09_CoC1_of_1	SPL Kilgore CoC PCSL 1159759_1_of_1	2
	Total Pages:	8

Email: Kilgore.ProjectManagement@spllabs.com

Survey: How are we doing?

Report Page 1 of 9

SAMPLE CROSS REFERENCE

Printed

8/28/2025

Page 1 of 1 Rerun 24-D

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100

Universal City, TX 78148

Sample	Sample ID	Taken	Time	Received	
2440670	810676	08/05/2025	07:00:00	08/06/2025	

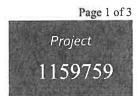
Bottle 01 Client Supplied Amber Glass

Bottle 02 Prepared Bottle: 2 mL Autosampler Vial (Batch 1190175) Volume: 10.00000 mL <- Derived from 01 (976 ml)

	Method EPA 615 EPA 615	Bottle 02 02	PrepSet 1190175 1190175	Preparation 08/12/2025 08/12/2025	QcGroup 1191242 1192963	Analytical 08/19/2025 08/27/2025	
Sample	Sample ID	Taken	Time		Received		
2440671	810682	08/04/2025	12:54:00		08/06/2025		-

Bottle 01 Client supplied H2SO4 Amber Glass

Bottle 02 Prepared Bottle: Phenol TRAACS Autosampler Vial (Batch 1189284) Volume: 6.00000 mL <- Derived from 01 (6 ml)


Method	Bottle	PrepSet	Preparation	QcGroup	Analytical
EPA 420,4 1	02	1189284	08/07/2025	1189947	08/12/2025

Email: Kilgore.ProjectManagement@spllabs.com

PCSL-C

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

Printed:

08/28/2025

Rerun 2,4-D

RESULTS

676							Received:	08/06	/2025
K550549040404						PO:			
00/0	5/2025		J7:00:00						
	Prepared:	1190175	08/12/202:	15:00:00	Analyzed	1191242	08/19/2025	04:05:00	KA.
	Results	Uı	nits RL	,	Flag	s	CAS		Bottle
	<0.300	ug	/L 0.3	00			93-72-1		02
	Prepared:	1190175	08/12/2025	15:00:00	Analyzed	1192963	08/27/2025	20:16:00	KAI
	Results	Uı	nits R.L.	,	Flag	s	CAS		Bottle
vacetic acid	<0.512	ug	/L 0.5	12			94-75-7		02
682							Received:	08/06	5/2025
Collected by:	Client	Pollution	Control Se			PO:			
	4/2025	1	12:54:00						
	Prepared:	1189284	08/07/2023	09:40:28	Analyzed	1189947	08/12/2025	11:13:00	ME
	Results	Uı	nits RL		Flag	s	CAS		Bottle
overable	0.020	mį	z/L 0.0	05					02
	S	ample Pı	eparatio	n					
676							Received:	08/06	5/2025
08/0	5/2025								
	Taken: 08/0 plement to Test Report 2435086 yacetic acid Collected by: Taken: 08/0 plement to Test Report 2435089	Collected by: Client Taken: 08/05/2025 plement to Test Report 2435086 Prepared: Results <0,300 Prepared: Results <0.512 Collected by: Client Taken: 08/04/2025 plement to Test Report 2435089 Prepared: Results OB/04/2025 Prepared: Results OB/04/2025 Prepared: Results OB/04/2025 Prepared: Results OB/04/2025	Collected by: Client Pollution Taken: 08/05/2025 Prepared: 1190175 Results Un 	Collected by: Client	Collected by: Client Pollution Control Se 17:00:00	Collected by: Client Pollution Control Se Taken: 08/05/2025 07:00:00	Collected by: Client Pollution Control Se PO: Taken: 08/05/2025 07:00:00 08/12/2025 15:00:00 Analyzed 1191242	Collected by: Client Pollution Control Se PO: Taken: 08/05/2025 07:00:00	Collected by: Client Pollution Control Se PO: Taken: 08/05/2025 07:00:00

Report Page 3 of 9

Office: 903-984-0551 * Fax: 903-984-5914

PCSL-C

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

Printed:

08/28/2025

2440670 810676

Received:

08/06/2025

2-10070 810070							Received.	00,00,	2025
	08/05/2025								
EPA 615	Prepared:	1190175	08/12/2025	15:00:00	Analyzed	1190175	08/12/2025	15:00:00	SAE
NELAC Esterification of Sample	10/9 7 6	m	l						01
EPA 615	Prepared:	1190175	08/12/2025	15:00:00	Analyzed	1191242	08/19/2025	04:05:00	KAP
NELAC Herbicides by GC	Entered								02
2440671 810682							Received:	08/06/	/2025
	08/04/2025								
EPA 420.4 I	Prepared:	1189284	08/07/2025	09:40:28	Analyzed	1189284	08/07/2025	09:40:28	MEG
NELAC Phenol Distillation	6/6	m	l						01

Office: 903-984-0551 * Fax: 903-984-5914

Printed:

08/28/2025

PCSL-C

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

Qualifiers:

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL), CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

Bill Peery, MS, VP Technical Services

QUALITY CONTROL

PCSL-C

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

Printed 08/28/2025

Analytical Set	1189947									EPA	A 420.4
				В	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Phenolics, Total Recoverable	1189284	ND	0.003	0.005	mg/L			127942832			
					ССВ						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Phenolics, Total Recoverable	1189284	ND	0.003	0.005	mg/L			127942839			
Phenolics, Total Recoverable	1189947	ND	0.003	0.005	mg/L			127942846			
				(ccv						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Phenolics, Total Recoverable		0,202	0.200	mg/L	101	90.0 - 110		127942802			
Phenolics, Total Recoverable		0.196	0.200	mg/L	98.0	90.0 - 110		127942812			
Phenolics, Total Recoverable		0.196	0.200	mg/L	98.0	90.0 - 110		127942823			
Phenolics, Total Recoverable		0.198	0.200	mg/L	99.0	90.0 - 110		127942834			
Phenolics, Total Recoverable		0.182	0.200	mg/L	91.0	90.0 - 110		127942845			
Phenolics, Total Recoverable		0.195	0.200	mg/L	97.5	90.0 - 110		127942847			
				Du	plicate						
Parameter	Sample		Result	Unknow	7		Unit		RPD		Limit
Phenolics, Total Recoverable	2433986		0.022	0.027			mg/L		20.4	•	20.0
					ICV						
Parameter		Reading	Кпошп	Units	Recover%	Limits%		File			
Phenolics, Total Recoverable		0.192	0.200	mg/L	96.0	90.0 - 110		127942801			
				LC	S Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit9
Phenolics, Total Recoverable	1189284	0.199	0.210		0.200	90.0 - 110	99.5	105	mg/L	5.38	20.0
				Mat	. Spike						
Parameter	Sample	Spike	Unknown		Units	Recovery %		File		18	
Phenolics, Total Recoverable	2433986	0.180	0.027	0.200	mg/L	76.5	90.0 - 110	127942838	=		
Analytical Set	1191242										EPA 61
				В	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
2,4 Dichlorophenoxyacetic acid	1190175	21.2	14.8	50.0	ug/L			127968667			
2,4,5-TP (Silvex)	1190175	ND	16.5	30.0	ug/L			127968667			
a a				(CCV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
2,4 Dichlorophenoxyacetic acid		144	142	ug/L	102	80.0 - 115		127968666			
2,4 Dichlorophenoxyacetic acid		148	142	ug/L	104	80.0 - 115		127968670			
2,4 Dichlorophenoxyacetic acid		142	142	ug/L	99.9	80.0 - 115		127968673			
,4,5-TP (Silvex)		148	143	ug/L	103	80.0 - 115		127968666			
,4,5-TP (Silvex)		155	143	ug/L	108	80.0 - 115		127968670			
,4,5-TP (Silvex)		150	143	ug/L	105	80.0 - 115		127968673			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 6 of 9

Page 2 of 2

Printed 08/28/2025

PCSL-C

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

				LCS	Dup						
Parameter	PrepSet	LCS	LCSD		Кломп	Limits%	LCS%	LCSD%	Units	RPD	Limit%
2,4 Dichlorophenoxyacetic acid	1190175	83.7	73.9		94.0	0.100 - 319	89.0	78.6	ug/L	12.4	30.0
2,4,5-TP (Silvex)	1190175	99.1	101		95.0	0.100 - 244	104	106	ug/L	1.90	30.0
				Surr	ogate						
Parameter	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
2,4-Dichlorophenylacetic Acid		CCV	142	93.6	ug/L	152	0.100 - 313	127968666			
2,4-Dichlorophenylacetic Acid		CCV	144	93.6	ug/L	154	0.100 - 313	127968670			
2,4-Dichlorophenylacetic Acid		CCV	140	93.6	ug/L	150	0.100 - 313	127968673			
2,4-Dichlorophenylacetic Acid	1190175	Blank	586	93.6	ug/L	626 *	0.100 - 313	127968667			
2,4-Dichlorophenylacetic Acid	1190175	LCS	337	93.6	ug/L	360 *	0.100 - 313	127968668			
2,4-Dichlorophenylacetic Acid	1190175	LCS Dup	122	93.6	ug/L	130	0.100 - 313	127968669			
Analytical Set	1192963						N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				EPA 615
, mary area. See				c	cv						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
2,4 Dichlorophenoxyacetic acid		149	142	ug/L	105	80.0 - 115		128011163			
2,4 Dichlorophenoxyacetic acid		155	142	ug/L	109	80.0 - 115		128011173			
2,4 Dichlorophenoxyacetic acid		162	142	ug/L	114	80.0 - 115		128011175			
2,4,5-TP (Silvex)		164	143	ug/L	115	80.0 - 115		128011163			
2,4,5-TP (Silvex)		167	143	ug/L	117	80.0 - 115	•	128011173			
2,4,5-TP (Silvex)		171	143	ug/L	119	80.0 - 115		128011175			
Surrogate											
Parameter	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
2,4-Dichlorophenylacetic Acid		CCV	152	93.6	ug/L	162	0.100 - 313	128011163			
2,4-Dichlorophenylacetic Acid		CCV	162	93.6	ug/L	173	0.100 - 313	128011173			
2,4-Dichlorophenylacetic Acid		CCV	164	93.6	ug/L	175	0.100 - 313	128011175			
2,4-Dichlorophenylacetic Acid	2440670	Unknown	2.69	0.959	ug/L	281	0.100 - 313	128011172			

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); CCB - Continuing Calibration Blank; CCV - Continuing Calibration Verification (same standard used to prepare the curve; typically a mid-range concentration; verifies the continued validity of the calibration curve); ICV - Initial Calibration Verification; LCS Dup - Laboratory Control Sample Duplicate (replicate LCS; analyzed when there is insufficient sample for duplicate or MSD; quantifies accuracy and precision.); Surrogate - Surrogate (mimics the analyte of interest but is unlikely to be found in environmental samples; added to analytical samples for QC purposes. **ANSI/ASQC E4 1994 Ref #4 TRADE QA Resources Guide.)

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 7 of 9

SHIP DATE: 05AUG25 ACTWGT: 19:00 LB CAD: 112447368/INET4535 DIMS: 13x15x13 IN ORIGIN ID:NIRA CHUCK WALLGREN (210) 340-0343 1532 UNIVERSAL CITY BLVD, #100 UNIVERSAL CITY, TX 78148
UNITED STATES US
TO SPL LAB KILGORE BILL SENDER SPL LAB KILGORE 58G/2/E4ED/59F2 2600 DUDLEY ROAD KILGORE TX 75662 (903) 984-0551 (NV. PG) WED - 06 AUG 10:30A PRIORITY OVERNIGHT TRK# 8833 3073 1270 **TYRA 75662 XS TYRAG** TX-US SHV

C

Date Temp:

Therm#: 7735 Corr Fact: -0.2 C

After profiting this label CONSCINE SEASONT OF POUCH CONSCINE COPY PLEASE PLACE IN FRONT OF POUCH I Fold the privated page along the horizontal line.

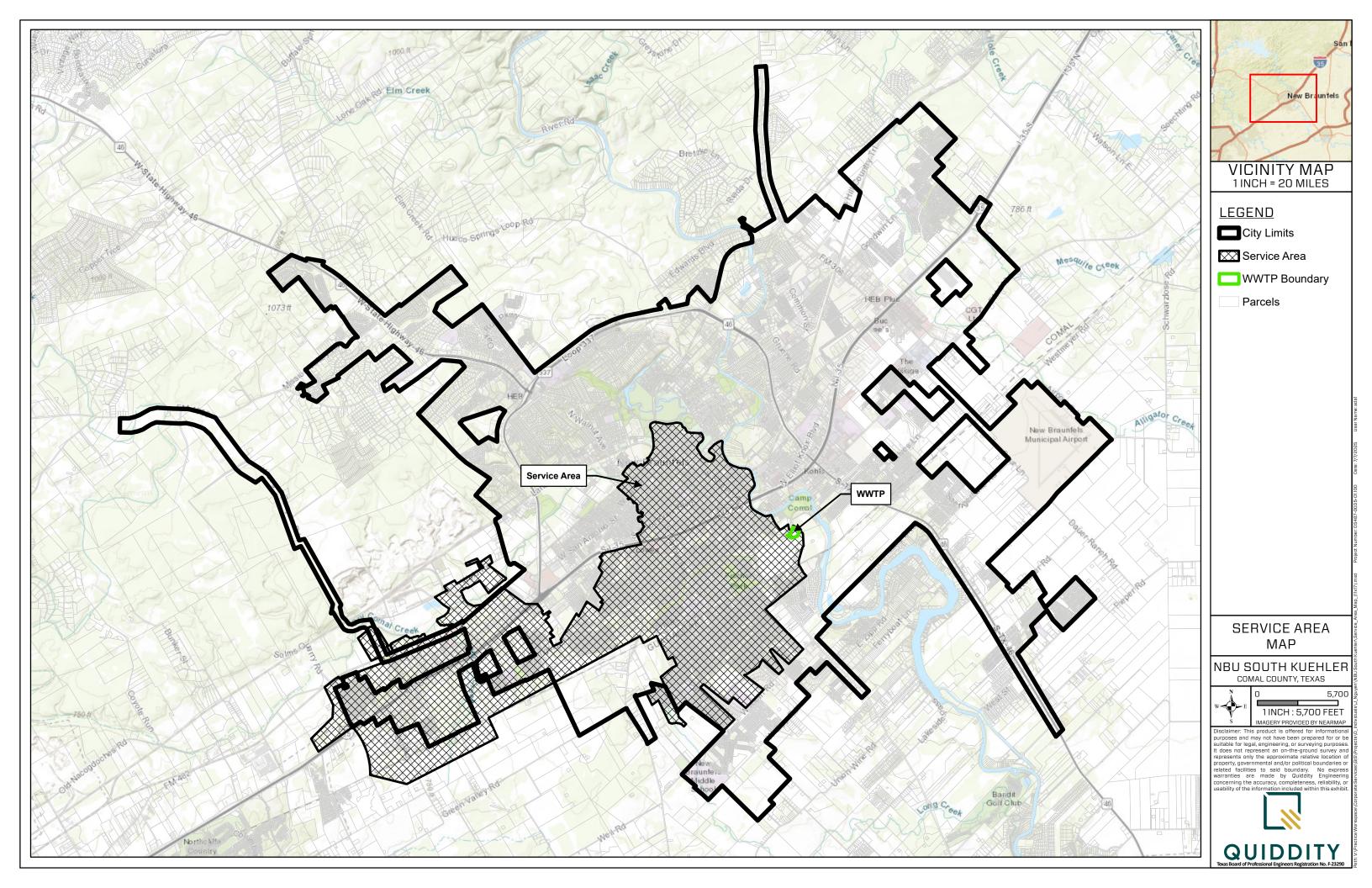
2. Place label in shipping pour hand affor it to your stripment.

other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authoriz declared value. Recovery cannot exceed actual documented loss. Maximum for Items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotlable instruments and other Items listed in our Service Guide. Written claims must be filed your actual loss and file a timely staim. Limitations found in the current fedEx Service Guide apply. Your right to recover fin FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, aveilable on fedex.com. FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, docum

Pollution Control Services

Sample Log-In Checklist

810676


PCS Sample No(s) 81 U b / b 81 0 68 3	COC No.
Client/Company Name: NBU	Checklist Completed by:
Sample Delivery to Lab Via: Client Drop Off Commercial Carrier: Bus UPS Lone S PCS Field Services: Collection/Pick Up Other:	tar FedExUSPS
Sample Kit/Coolers Sample Kit/Cooler? Yes No Sample Kit/Cooler: Intact? Yes No Custody Seals on Sample Kit/Cooler: Not Present If Present, Intact Sample Containers Intact; Unbroken and Not Leaking? Yes No Custody Seals on Sample Bottles: Not Present If Present, Intact COC Present with Shipment or Delivery or Completed at Drop Off? Yes Has COC sample date/time and other pertinent information been provided by Has COC been properly Signed when Received/Relinquished? Yes No Does COC agree with Sample Bottle Information, Bottle Types Preservation All Samples Received before Hold Time Expiration? Yes No Sufficient Sample Volumes for Analysis Requested? Yes No Zero Headspace in VOA Vial? Yes No Sample Preservation: * Cooling: Not Required or Required If cooling required, record temperature of submitted samples Observed/Corre Is Ice Present in Sample Kit/Cooler? Yes No Samples received Lab Thermometer Make and Serial Number: ennoLogic HDHC000015629 Other: Custom Cooling in the Coolin	tact Broken t Broken No client/sampler? Yes:No: , etc.? Yes No ceted U.4 / OC d same day as collected? Yes No
Acid Preserved Sample - If present, is pH <2? Yes No ** Base Preserved Sample - If present, is pH >12? Yes No Tother Preservation: Sample Preservations Checked by: HC Date 8 5 - 25 Ti pH paper used to check sample preservation (PCS log #): Samples Preserved/Adjusted by Lab: Lab # Parameters Preserved	me No me (HEM pH checked at analysis).
Adjusted by Tech/Analyst: Date :Time:	
Notified Date:Time: Method of Contact: At Drop Off: Phone Left Voice Mail E-N Unable to Contact Authorized Laboratory to Proceed : Regarding / Comments:	Mail Fax (Lab Director)
Receiving qualifier needed (requires client notification above) Temp Horner Receiving qualifier entered into LIMS at login Initial/Date: Revision Comments:	olding Time Initails:

ATTACHMENT F

SERVICE AREA MAP

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

ATTACHMENT G

LIST OF TREATMENT UNITS AND PROCESS

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT TREATMENT UNITS AND DIMENSIONS

Interim I Facilities:

The existing (Interim I) New Braunfels Utilities South Kuehler Wastewater Treatment Plant is a single-stage nitrification activated sludge process capable of treating 4.2 MGD average daily flow. It also includes a solids process train with aerobic digesters, thickeners, and dewatering.

A schematic of the Interim I wastewater treatment plant is provided in Attachment E of this application.

Following are the treatment unit volumes and surface areas:

Air Blowers (Firm Capacity)

Process Air = 15,236 scfm Digester Air = 2,140 scfm

Interim II Facilities:

The future (Interim II) New Braunfels Utilities South Kuehler Wastewater Treatment Plant will consist of a common preliminary treatment process train, three secondary treatment process trains (Existing Plant Nos. 1 and 2 and Proposed Plant No. 3), and a common tertiary process train capable of treating a total of 9.3 MGD average daily flow. The preliminary treatment process will consist of mechanical screens, aerated grit chambers, and an influent lift station. For the secondary treatment process, Plant Nos. 1 and 2 are existing single-stage nitrification activated sludge trains, and Plant No. 3 is a proposed enhanced biological phosphorus removal activated sludge train with anoxic, anaerobic, and aeration basins, and secondary clarifiers. The tertiary treatment process will consist of tertiary filtration, UV disinfection, and post-aeration. It will also include three solids process trains (two existing and one proposed) consisting of aerobic digesters, thickeners, and one common dewatering facility.

A schematic of the Interim II wastewater treatment plant is provided in Attachment E of this application.

Following are the treatment unit volumes and surface areas:

Grit Chamber = $17,783 \text{ ft}^3$ Aeration Basins = $740,848 \text{ ft}^3$ Secondary Clarifiers = $26,234 \text{ ft}^3$

Anaerobic Basin = 18,240 ft³ (Plant No. 3 only) Anoxic Selector Basin = 7,220 ft³ (Plant No. 3 only)

Tertiary Granular Dual Media Filters = 5,376 ft² Aerobic Digesters = 391,629 ft³

Air Blowers (Firm Capacity)

Process Air = 26,885 scfm Solids Air = 12,922 scfm

Final Facilities:

The final phase of the New Braunfels Utilities South Kuehler Wastewater Treatment Plant will consist of an existing common preliminary treatment process train, four secondary treatment process trains (Existing Plant Nos. 1, 2, and 3 and Proposed Plant No. 4), and an existing common tertiary process train capable of treating a total of 15.4 MGD average daily flow. The preliminary treatment process will consist of mechanical screens, aerated grit chambers, and an influent lift station. For the secondary treatment process, Plant Nos. 1 and 2 are existing single-stage nitrification activated sludge trains, Plant No. 3 is an existing enhanced biological phosphorus removal activated sludge train, and Plant No. 4 is a proposed enhanced biological phosphorus removal activated sludge train with anoxic, anaerobic, and aeration basins, and secondary clarifiers. The tertiary treatment process will consist of tertiary filtration, UV disinfection, and postaeration. It will also include four solids process trains (three existing and one proposed) consisting of aerobic digesters and thickeners and one common dewatering facility.

A schematic of the Final wastewater treatment plant is provided in Attachment E of this application.

Following are the treatment unit volumes and surface areas:

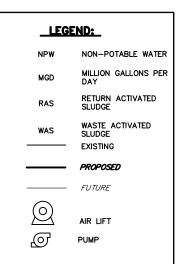
Grit Chamber = $17,783 \text{ ft}^3$ Aeration Basins = $1,331,248 \text{ ft}^3$ Secondary Clarifiers = $41,312 \text{ ft}^3$

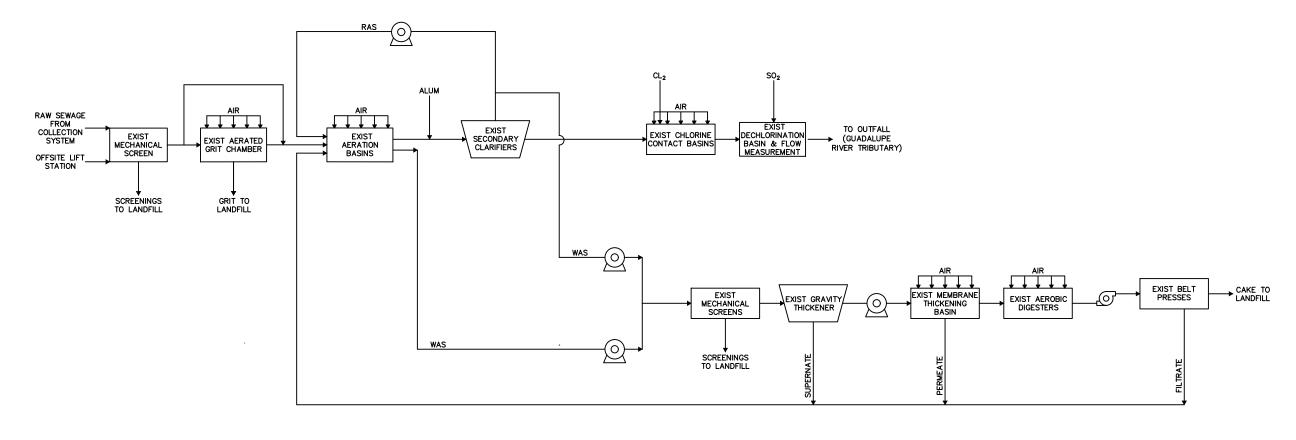
Anaerobic Basin = $72,960 \text{ ft}^3 \text{ (Plant Nos. 3 and 4 only)}$ Anoxic Selector Basin = $28,880 \text{ ft}^3 \text{ (Plant Nos. 3 and 4 only)}$

Tertiary Granular Dual Media Filters = $8,064 \text{ ft}^2$ Aerobic Digesters = $643,629 \text{ ft}^3$

Air Blowers (Firm Capacity)

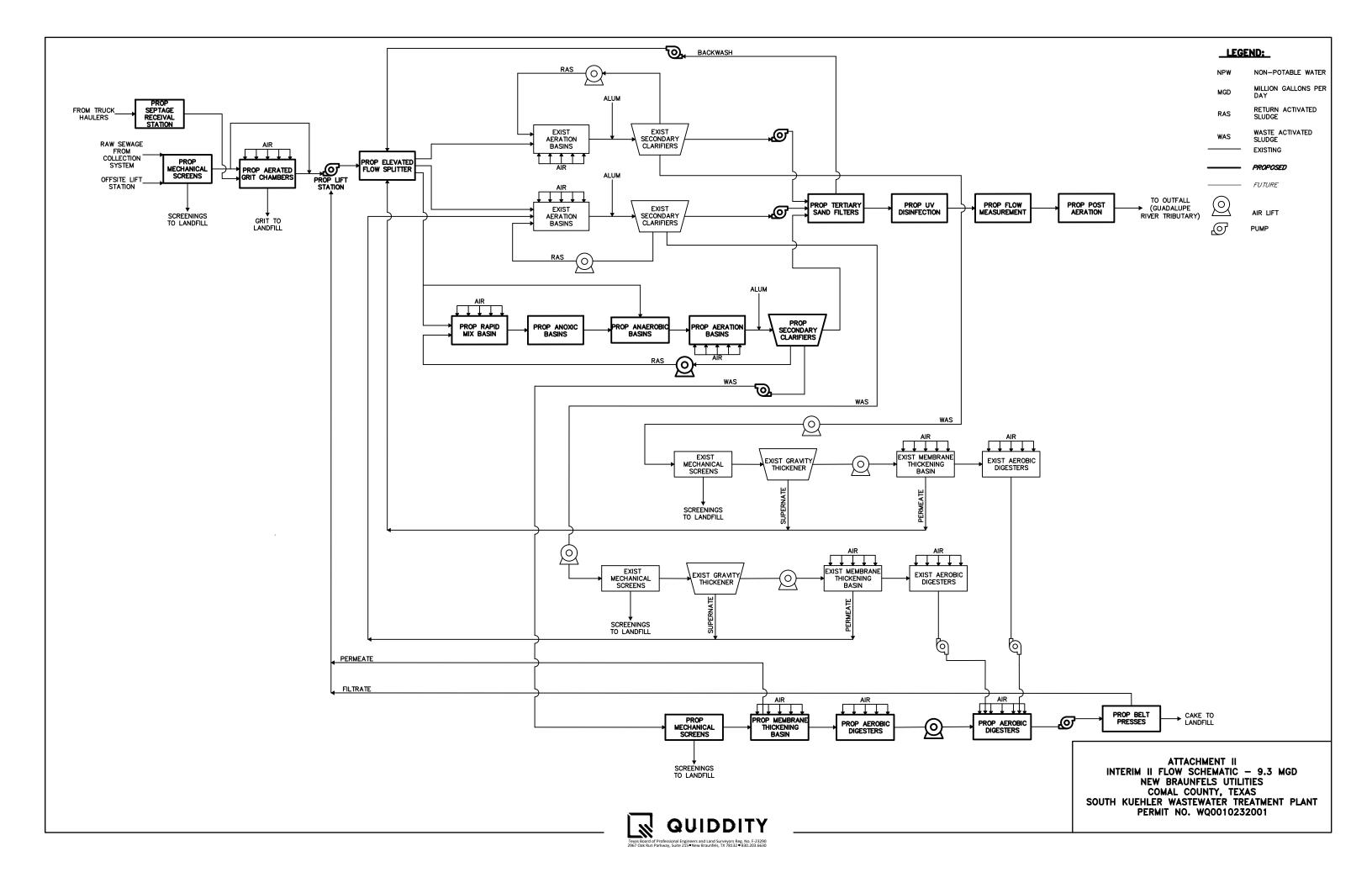
Process Air = 37,047 scfm Solids Air = 20,722 scfm

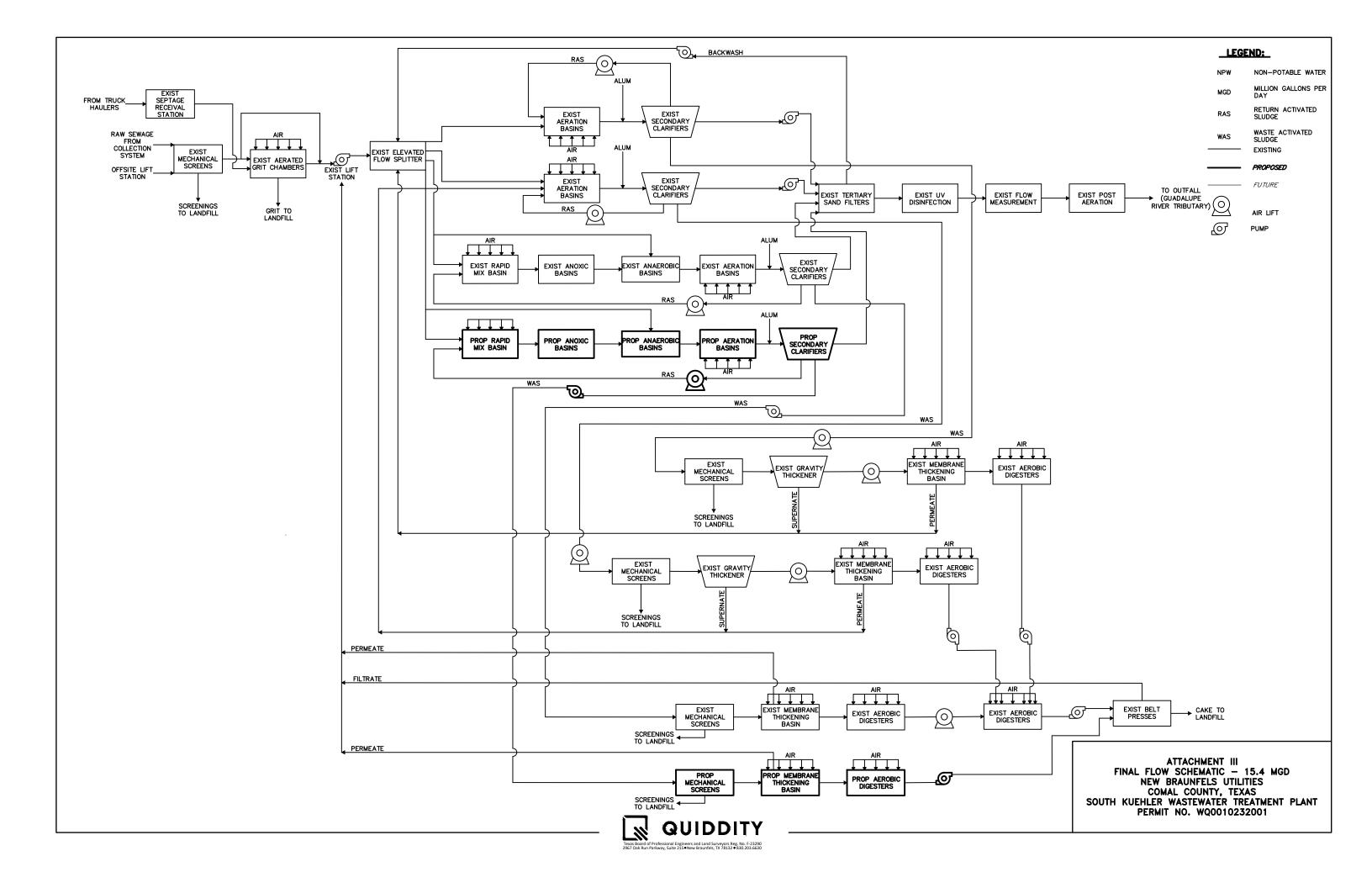



ATTACHMENT E

FLOW SCHEMATICS

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT





Brooke T. Paup, *Chairwoman*Catarina R. Gonzales, *Commissioner*Tonya R. Miller, *Commissioner*Kelly Keel, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

October 14, 2025

Dear Applicant:

Re: Confirmation of Submission of the Domestic Renewal Wastewater Individual

Permit Application

This is an acknowledgment that you have successfully completed the Industrial Wastewater Individual Permit Application.

ER Account Number: ER111548

Application Reference Number: 787906 Authorization Number: WQ0010232001

Site Name: South Kuehler WWTP Regulated Entity: RN102078011

Customer(s): New Braunfels Utilities

Please be aware that TCEQ staff may contact your designated contact for any additional information.

If you have any questions, you may contact the Applications Review and Processing Team by email at WQ-ARPTeam@tceq.texas.gov or by telephone at (512) 239-4671.

Sincerely,

Applications Review and Processing Team Water Quality Division

Texas Commission on Environmental Quality

Update Domestic or Industrial Individual Permit WQ0010232001

Site Information (Regulated Entity)

What is the name of the site to be authorized? SOUTH KUEHLER WWTP

Does the site have a physical address?

Physical Address

Number and Street 1608 COCO DR

City NEW BRAUNFELS

 State
 TX

 ZIP
 78130

 County
 COMAL

 Latitude (N) (##.#####)
 29.686472

 Longitude (W) (-###.#####)
 -98.098109

Primary SIC Code 4952

Secondary SIC Code

Primary NAICS Code 221320

Secondary NAICS Code

Regulated Entity Site Information

What is the Regulated Entity's Number (RN)? RN102078011

What is the name of the Regulated Entity (RE)? SOUTH KUEHLER WWTP

Does the RE site have a physical address?

Physical Address

Number and Street 1608 COCO DR
City NEW BRAUNFELS

 State
 TX

 ZIP
 78130

 County
 COMAL

 Latitude (N) (##.#####)
 29.686472

 Longitude (W) (-###.#####)
 -98.098109

Facility NAICS Code

What is the primary business of this entity?

DOMESTIC

New Bra-Customer (Applicant) Information (Owner)

How is this applicant associated with this site?

What is the applicant's Customer Number (CN)?

Type of Customer

Other Government

Full legal name of the applicant:

Legal Name New Braunfels Utilities

Texas SOS Filing Number

Federal Tax ID

State Franchise Tax ID

State Sales Tax ID

Local Tax ID

DUNS Number 38346169
Number of Employees 101-250

Independently Owned and Operated?

I certify that the full legal name of the entity applying for this permit has been provided and is legally authorized to do business in Texas.

Yes

Responsible Authority Contact

Organization Name New Braunfels Utilities

Prefix MR
First Mark

Middle

Last Steelman

Suffix

Credentials

Title Chief Operations Officer

Responsible Authority Mailing Address

Enter new address or copy one from list:

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) 263 MAIN PLZ

Routing (such as Mail Code, Dept., or Attn:)

City NEW BRAUNFELS

State TX ZIP 78130

Phone (###-####) 8306298415

Extension

Alternate Phone (###-###-###)

Fax (###-###-###)

E-mail msteelman@NBUTEXAS.COM

Billing Contact

Responsible contact for receiving billing statements:

Select the permittee that is responsible for payment of the annual fee. CN600522957, New Braunfels Utilities

Organization Name NEW BRAUNFELS UTILITIES

Prefix MR First Brent

Middle

Last

Suffix

Credentials

Title WATER TREATMENT & COMPLIANCE

MANAGER

Enter new address or copy one from list:

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) 1922 KUEHLER AVE

Routing (such as Mail Code, Dept., or Attn:)

City NEW BRAUNFELS

State TX ZIP 78130

Phone (###-####) 8306088900

Extension

Alternate Phone (###-###-###)

Fax (###-###-###)

E-mail BLUNDMARK@NBUTEXAS.COM

Application Contact

Person TCEQ should contact for questions about this application:

Same as another contact?

Organization Name NEW BRAUNFELS UTILITIES

Prefix MR
First BRENT

Middle

Last

Suffix

Credentials

Title WATER TREATMENT & COMPLIANCE

MANAGER

Enter new address or copy one from list: Billing Contact

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) 1922 KUEHLER AVE

Routing (such as Mail Code, Dept., or Attn:)

City NEW BRAUNFELS

State TX ZIP 78130

Phone (###-####) 8306088900

Extension

Alternate Phone (###-###-###)

Fax (###-###-###)

E-mail BLUNDMARK@NBUTEXAS.COM

Technical Contact

Person TCEQ should contact for questions about this application:

Same as another contact?

Organization Name Quiddity Engineering

Prefix MR
First Jonathan

Middle

Last Nguyen

Suffix

Credentials

Title Permitting Specialist

Enter new address or copy one from list:

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable)

912 S CAPITAL OF TEXAS HWY STE

300

Routing (such as Mail Code, Dept., or Attn:)

City WEST LAKE HILLS

State TX ZIP 78746

Phone (###-####) 5126855156

Extension

Alternate Phone (###-###-###)

Fax (###-###-###)

E-mail jnguyen@quiddity.com

DMR Contact

Person responsible for submitting Discharge Monitoring Report Forms:

Same as another contact?

Billing Contact

Organization Name NEW BRAUNFELS UTILITIES

Prefix MR First Brent

Middle

Last Lundmark

Suffix Credentials

Title WATER TREATMENT & COMPLIANCE

MANAGER

Enter new address or copy one from list:

Mailing Address:

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) 1922 KUEHLER AVE

Routing (such as Mail Code, Dept., or Attn:)

City NEW BRAUNFELS

State TX ZIP 78130

Phone (###-###) 8306088900

Extension

Alternate Phone (###-###-###)

Fax (###-###-)

E-mail BLUNDMARK@NBUTEXAS.COM

Section 1# Permit Contact

Permit Contact#: 1

Person TCEQ should contact throughout the permit term.

1) Same as another contact? CN600522957, New Braunfels Utilities

2) Organization Name New Braunfels Utilities

3) Prefix MR
4) First Mark

5) Middle

6) Last Steelman

7) Suffix

8) Credentials

9) Title Chief Operations Officer

Mailing Address

10) Enter new address or copy one from list

11) Address Type Domestic 263 MAIN PLZ 11.1) Mailing Address (include Suite or Bldg. here, if applicable)

11.2) Routing (such as Mail Code, Dept., or Attn:)

NEW BRAUNFELS 11.3) City

11.4) State TX 78130 11.5) ZIP 8306298415 12) Phone (###-###-###)

13) Extension

14) Alternate Phone (###-###-)

15) Fax (###-###-###)

16) E-mail msteelman@nbutexas.com

Section 2# Permit Contact

Permit Contact#: 2

Person TCEQ should contact throughout the permit term.

1) Same as another contact? **Billing Contact**

2) Organization Name **NEW BRAUNFELS UTILITIES**

MR 3) Prefix 4) First **Brent**

5) Middle

6) Last Lundmark

7) Suffix

8) Credentials

9) Title WATER TREATMENT & COMPLIANCE

MANAGER

Mailing Address

10) Enter new address or copy one from list

11) Address Type Domestic

11.1) Mailing Address (include Suite or Bldg. here, if applicable) 1922 KUEHLER AVE

11.2) Routing (such as Mail Code, Dept., or Attn:)

11.3) City **NEW BRAUNFELS**

11.4) State TX 11.5) ZIP 78130 8306088900

12) Phone (###-###-###)

13) Extension

14) Alternate Phone (###-###-)

15) Fax (###-###-###)

16) E-mail blundmark@nbutexas.com

Owner Information

Owner of Treatment Facility

1) Prefix 2) First and Last Name 3) Organization Name New Braunfels Utilities 4) Mailing Address 263 Main Plaza **New Braunfels** 5) City TX 6) State 78130 7) Zip Code 8306088900 8) Phone (###-###-###) 9) Extension 10) Email blundmark@nbutexas.com 11) What is ownership of the treatment facility? **Public** Owner of Land (where treatment facility is or will be) 12) Prefix 13) First and Last Name 14) Organization Name New Braunfels Utilities 263 Main Plaza 15) Mailing Address **New Braunfels** 16) City ΤX 17) State 78130 18) Zip Code 8306088900 19) Phone (###-###-###) 20) Extension 21) Email blundmark@nbutexas.com Yes 22) Is the landowner the same person as the facility owner or coapplicant? General Information Renewal-Amendment 04/30/2026 1) Current authorization expiration date: 2) Current Facility operational status: Active 3) Is the facility located on or does the treated effluent cross American No Indian Land? 4) What is the application type that you are seeking? Renewal without changes 5) Current Authorization type: Public Domestic Wastewater 5.1) What is the proposed total flow in MGD discharged at the facility? 15.4 >= 1.0 MGD - Renewal - \$2,015 5.2) Select the applicable fee **TPDES** 6) What is the classification for your authorization? TX0067881 6.1) What is the EPA Identification Number? 6.2) Is the wastewater treatment facility location in the existing permit Yes accurate? 6.3) Are the point(s) of discharge and the discharge route(s) in the Yes existing permit correct? **New Braunfels** 6.4) City nearest the outfall(s): 6.5) County where the outfalls are located: COMAL

6.6) Is or will the treated wastewater discharge to a city, county, or state highway right-of-way, or a flood control district drainage ditch?

6.7) Is the daily average discharge at your facility of 5 MGD or more?

6.7.1) Provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge:

7) Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?

No

Yes

COMAL|GONZALES|GUADALUPE|DE

WITT

Yes

7.1) List each person formerly employed by the TCEQ who represented your company and was paid for service regarding the application:

Jonathan Nguyen

Public Notice Information

Individual Publishing the Notices

1) Prefix MS

2) First and Last Name Becca Graham

Credential

4) Title Enterprise Communication Manager

5) Organization Name New Braunfels Utilities

6) Mailing Address 263 MAIN PLZ

7) Address Line 2

8) City NEW BRAUNFELS

9) State TX 10) Zip Code 78130

11) Phone (###-####) 8306298400

12) Extension

13) Fax (###-###)

14) Email communications@nbutexas.com

Contact person to be listed in the Notices

15) Prefix MR

16) First and Last Name Brent Lundmark

17) Credential

18) Title Water Treatment & Compliance Manager

Manage

19) Organization Name New Braunfels Utilities

20) Phone (###-####) 8306088900

21) Fax (###-####)

22) Email blundmark@nbutexas.com

Bilingual Notice Requirements

23) Is a bilingual education program required by the Texas Education

Yes

Code at the elementary or middle school nearest to the facility or

proposed facility?
23.1) Are the students who attend either the elementary school or the

middle school enrolled in a bilingual education program at that school?

23.2) Do the students at these schools attend a bilingual education No program at another location?

23.3) Would the school be required to provide a bilingual education
program but the school has waived out of this requirement under 19

23.4) Which language is required by the bilingual program?

Spanish

Section 1# Public Viewing Information

County#: 1

TAC 89.1205(g)?

1) County COMAL

2) Public building name

New Braunfels Utilities Customer

Solutions Center

Yes

3) Location within the building Front Desk

4) Physical Address of Building 1488 South Seguin Avenue

5) City
New Braunfels
6) Contact Name
Becca Graham

7) Phone (###-####) 8306298400

8) Extension

9) Is the location open to the public?

Plain Language

Plain Language
 [File Properties]

File Name LANG_01 A - PLS.pdf

Hash 8D72D8C649A5B11E50BB1D39085D8744996C2F6FC89B617D6B9019E36DACE922

MIME-Type application/pdf

Supplemental Permit Information Form

1) Supplemental Permit Information Form (SPIF)

[File Properties]

File Name SPIF_02 B - SPIF.pdf

Hash 940D7C624BCCF582FCE79F8CDBFF22420D9FE04EB731D8129FDE40941BDA3220

MIME-Type application/pdf

Domestic Attachments

1) Attach an 8.5"x11", reproduced portion of the most current and original USGS Topographic Quadrangle Map(s) that meets the 1:24,000 scale.

[File Properties]

File Name MAP_03 C - USGS.pdf

Hash D58BB590291AA1746CBFEA31103506534686BE3C5DA20742465A96BA2CEF6292

MIME-Type application/pdf

2) I confirm that all required sections of Technical Report 1.0 are Yes complete and will be included in the Technical Attachment.

2.1) I confirm that Worksheet 2.0 (Receiving Waters) is complete and Yes

included in the Technical Attachment.

2.2) Are you planning to include Worksheet 2.1 (Stream Physical No Characteristics) in the Technical Attachment?

2.3) Are you planning to include Worksheet 4.0 (Pollutant Analyses Yes

Requirements) in the Technical Attachment?

2.4) Are you planning to include Worksheet 5.0 (Toxicity Testing

Yes

Requirements) in the Technical Attachment?

2.5) I confirm that Worksheet 6.0 (Industrial Waste Contribution) is Yes complete and included in the Technical Attachment.

2.6) Are you planning to include Worksheet 7.0 (Class V Injection Well No Inventory/Authorization Form) in the Technical Attachment?

2.7) Technical Attachment

[File Properties]

File Name TECH_04 D - App Tech Report.pdf

Hash 51E373B047F4BA1EBBDEC938C8A726E0FEB3D0C667F77E93909A751060A9B604

MIME-Type application/pdf

3) Buffer Zone Map

4) Flow Diagram

[File Properties]

File Name FLDIA_05 E - Flow Schematics.pdf

Hash 2F8BB26D43351E07FB8FE5731C7783CCF3701B9CE49FC0A04763F394DD10DC8E

MIME-Type application/pdf

5) Site Drawing [File Properties]

File Name SITEDR_06 F - Service Area Map.pdf

Hash BE13F2F03A9524F6DD626093068C81A43FCADA5314B78B7B0A2C4DCD3244C230

MIME-Type application/pdf

6) Design Calculations

[File Properties]

File Name DES_CAL_07 G - Treatment Units.pdf

Hash 5BD0BCC087369F26EC0E4E27468C9DC093DE2A9C26FF8C14C686D971F8686CDD

MIME-Type application/pdf

7) Solids Management Plan

8) Water Balance

9) Other Attachments

[File Properties]

File Name OTHER 08 H - Core Data Form.pdf

Hash 1F8C8A675F3D20E054A0D22AD85D27E549B90117E8ED1A5AD7DE5B492230D83C

MIME-Type application/pdf

[File Properties]

File Name OTHER_09 I - Effluent Analysis.pdf

Hash FEC3C0946ACEE6A0E48EC69323415C157214AFC2EA13A0F828DB28CD828AC969

MIME-Type application/pdf

Certification

I certify that I am authorized under 30 Texas Administrative Code 305.44 to sign this document and can provide documentation in proof of such authorization upon request.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

- 1. I am Mark Steelman, the owner of the STEERS account ER111548.
- 2. I have the authority to sign this data on behalf of the applicant named above.
- 3. I have personally examined the foregoing and am familiar with its content and the content of any attachments, and based upon my personal knowledge and/or inquiry of any individual responsible for information contained herein, that this information is true, accurate, and complete.
- 4. I further certify that I have not violated any term in my TCEQ STEERS participation agreement and that I have no reason to believe that the confidentiality or use of my password has been compromised at any time.
- 5. I understand that use of my password constitutes an electronic signature legally equivalent to my written signature.
- 6. I also understand that the attestations of fact contained herein pertain to the implementation, oversight and enforcement of a state and/or federal environmental program and must be true and complete to the best of my knowledge.
- 7. I am aware that criminal penalties may be imposed for statements or omissions that I know or have reason to believe are untrue or misleading.

8. I am knowingly and intentionally signing Update Domestic or Industrial Individual Permit WQ0010232001.

9. My signature indicates that I am in agreement with the information on this form, and authorize its submittal to the TCEQ.

OWNER Signature: Mark Steelman OWNER

Customer Number: CN600522957

Legal Name: New Braunfels Utilities

Account Number: ER111548
Signature IP Address: 98.6.230.166
Signature Date: 2025-10-14

Signature Hash: 4D2A734B6D84C4B22A2049192537B2644133C91C074D81CAED34B325F30A4816
Form Hash Code at time 5B8CCDDA7A8010DFB51B17D6722C87FACECCCF792CC1024D9F61C16E12ED3020

of Signature:

Fee Payment

Transaction by:

The application fee payment transaction was

made by ER111548/Mark Steelman

Paid by: The application fee was paid by MARK

STEELMAN

Fee Amount: \$2000.00

Paid Date: The application fee was paid on 2025-10-14

Transaction/Voucher number: The transaction number is 582EA000689192 and

the voucher number is 787838

Submission

Reference Number: The application reference number is 787906

Submitted by: The application was submitted by ER111548/Mark

Steelman

Submitted Timestamp: The application was submitted on 2025-10-14 at

14:04:59 CDT

Submitted From: The application was submitted from IP address

98.6.230.166

Confirmation Number: The confirmation number is 685009

Steers Version: The STEERS version is 6.93

Permit Number: The permit number is WQ0010232001

Additional Information

Application Creator: This account was created by Huan J Nguyen

ATTACHMENT H

CORE DATA FORM

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)

☐ New Pern	nit, Registra	tion or Aut	thorization (Core Data Form	should be	submitte	d with	the prog	ram application.)			
□ Renewal	(Core Data F	Form shoul	ld be submit	ted with the ren	ewal form)				Other			
2. Customer Reference Number (if issued) CN 600522957 Follow this link to for CN or RN numl Central Registre						l numbe	rs in	3. Regulated Entity Reference Number (if issued) RN 102078011				
4. General Cu				Inform 5. Effective D			r Infor	mation	Updates (mm/dd/	'vvvv)		
_												
☐ New Custor		Verifiable v		pdate to Custom			otroller	_	nge in Regulated Ent	nty Owne	ership	
									urrent and active	with th	e Texas Sec	retary of State
(SOS) or Texa			-			, 2000						and the second
6. Customer	Legal Nam	e (If an inc	dividual, prii	nt last name firs	t: eg: Doe, J	lohn)			If new Customer,	enter pre	evious Custon	ner below:
New Braunfels	Utilities											
7. TX SOS/CP	A Filing Nu	ımber		8. TX State Ta	ax ID (11 d	igits)			9. Federal Tax ID 10. DUNS Number (if			, ,
									(9 digits)		applicable)	
									746001783		38346169	
11. Type of C	ustomer:		Corporat	ion				Individ	dual	Partne	rship: 🔲 Ge	neral 🗌 Limited
Government:	⊠ City 🔲 C	County 🔲	Federal 🗌	Local 🗌 State [Other			Sole Proprietorship Other:				
12. Number	of Employe	ees					•		13. Independer	ntly Ow	ned and Op	erated?
0-20	21-100	101-250	☑ 251-	500 🗌 501 a	nd higher				⊠ Yes	□ No		
14. Customer	r Role (Prop	oosed or A	ctual) – as i	t relates to the R	egulated Er	ntity liste	ed on th	is form.	Please check one of	the follo	wing	
Owner Occupation	al Licensee	Opera	ator ponsible Par	_	ner & Opera CP/BSA App				Other:			
15. Mailing	263 Main	Plaza										
Address:												
	City	New Bra	unfels		State	TX		ZIP	78130		ZIP + 4	
16. Country I	Mailing Inf	ormation	(if outside	USA)			17. E-	-Mail A	ddress (if applicabl	e)		
							blund	mark@n	butexas.com			

TCEQ-10400 (11/22) Page 1 of 3

18. Telephone Number			19. Extension or (Code		20. F	ax Number (if a	applicable)		
830) 608-8900						() -			
ECTION III:	Regula	ated Entit	y Inform	ation						
1. General Regulated E	ntity Informa	tion (If 'New Regulo	ated Entity" is select	ed, a new pe	rmit applica	ition is d	Ilso required.)			
New Regulated Entity	Update to	Regulated Entity Na	me 🛮 Update to	Regulated I	ntity Inform	ation				
he Regulated Entity Na s Inc, LP, or LLC).	me submitte	d may be updated	d, in order to mee	t TCEQ Cor	e Data Sta	ndards	(removal of o	rganization	al endings such	
2. Regulated Entity Nar	ne (Enter nam	e of the site where t	he regulated action	is taking pla	ce.)					
outh Kuehler Wastewater ⁻	reatment Plar	it								
3. Street Address of he Regulated Entity:	1608 Coco I	Drive								
No PO Boxes)										
ivo i o boxes _j	City	New Braunfels	State	TX	ZIP	7813	0	ZIP + 4		
4. County	Comal	•				•				
		If no Street	Address is provide	ed, fields 2	5-28 are re	quired	•			
25. Description to										
Physical Location:	N/A									
6. Nearest City	<u> </u>					State		Nea	rest ZIP Code	
lew Braunfels						TX		7813	30	
atitude/Longitude are i	-				ata Stando	ards. (G	eocoding of th	ne Physical	Address may b	
27. Latitude (N) In Decim	ıal:	29.686472		28. Lo	ongitude (\	V) In D	ecimal:	-98.0981	09	
Degrees	Minutes	Se	econds	Degre	es		Minutes		Seconds	
29. Primary SIC Code	30.	Secondary SIC Co	de	31. Primar	v NAICS C	ode	32. Seco	ndary NAI	CS Code	
(4 digits)	(4 d	igits)		(5 or 6 digit	-		(5 or 6 dig	gits)		

TCEQ-10400 (11/22) Page 2 of 3

221320

ΤX

ZIP

78130

() -

38. Fax Number (if applicable)

ZIP + 4

State

37. Extension or Code

33. What is the Primary Business of this entity? (Do not repeat the SIC or NAICS description.)

New Braunfels

blundmark@nbutexas.com

263 Main Plaza

City

4952

34. Mailing

35. E-Mail Address:

(830)608-8900

36. Telephone Number

Address:

treatment of domestic wastewater

rm. See the Core Dat		uctions for additional (y the appares submitted on this
☐ Dam Safety		Districts	Edwards Aquifer		Emissions Inv	rentory Air	Industrial Hazardous Wast
☐ Municipal Solid Waste		New Source Review Air	OSSF		Petroleum St	orage Tank	☐ PWS
Sludge		Storm Water	☐ Title V Air	Tires			Used Oil
☐ Voluntary Clean	iup	TXR05R076 Wastewater	☐ Wastewater Agricu	Iture 🔲	☐ Water Rights		Other:
		WQ0010232001					
ECTION 1	[V: Pr	<u>eparer Inf</u>	<u>formation</u>	<u> </u>			
10. Name: Jon	nathan Nguye	en		41. Title:	Permit Spec	ialist	
2. Telephone Nur	nber	43. Ext./Code	44. Fax Number	45. E-Mail /	Address		
512) 685-5156			() -	iddity.com			
. By my signature be	elow, I certify		_				, and that I have signature authori ntified in field 39.
Company: New Braunfels Utilities		Job Title		Water Tre	atment and Cor	npliance Manager	
Name (In Print): Brent Lundmark				1	Phone:	(830) 608- 8900	
						Date:	
Signature:							

TCEQ-10400 (11/22) Page 3 of 3

ATTACHMENT A

PLAIN LANGUAGE SUMMARY

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

New Braunfels Utilities (CN600522957) operates the South Kuehler wastewater treatment plant (RN102078011), an activated sludge process plant operated in the complete mix mode. The facility is located at 1608 Coco Drive, in the City of New Braunfels, Comal County, Texas 78130.

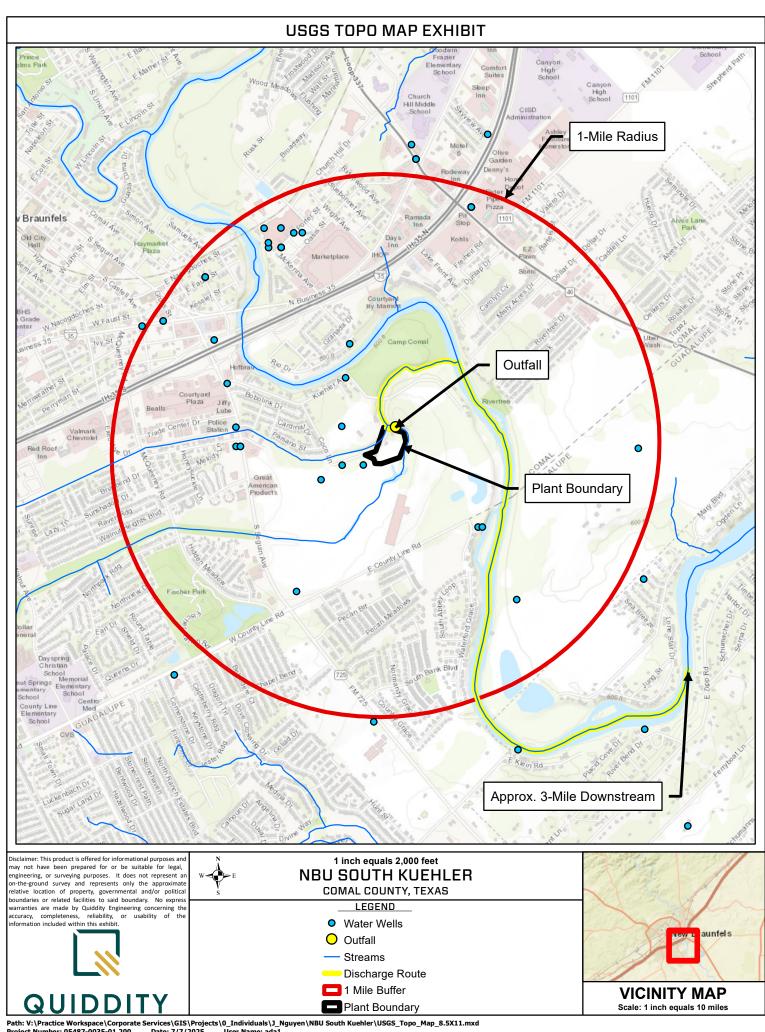
This application is for a renewal to discharge at an annual average flow of 15,400,000 gallons per day of treated domestic wastewater.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand ($CBOD_5$), total suspended solids (TSS), ammonia nitrogen (NH_3 -N), total phosphorus, and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a bar screen, aeration basins, final clarifiers, sludge digesters, a belt filter press, chlorine contact chambers and a dechlorination chamber.

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no son representaciones federales exigibles de la solicitud de permiso.

New Braunfels Utilities (CN600522957) opera la planta de tratamiento de aguas residuales de South Kuehler (RN102078011), una planta de procesamiento de lodos activados que opera en modo de mezcla completa. La planta está ubicada en Coco Drive 1608, en la ciudad de New Braunfels, condado de Comal, Texas 78130.

Esta solicitud es para una renovación para descargar un flujo promedio anual de 15,400,000 galones por día de aguas residuales domésticas tratadas.


Se espera que las descargas de la instalación contengan la demanda bioquímica de oxígeno carbonoso de cinco días (CBOD₅), sólidos suspendidos totales (TSS), nitrógeno amoniacal (NH₃-N), fósforo total y *Escherichia coli*. Se incluyen otros contaminantes potenciales en el Informe Técnico Doméstico 1.0, Sección 7, Análisis de Contaminantes del Efluente Tratado, y la Hoja de Trabajo Doméstica 4.0 de la solicitud de permiso. Las aguas residuales domésticas se tratan en una planta de lodos activados, cuyas unidades de tratamiento incluyen un tamiz de barras, tanques de aireación, clarificadores finales, digestores de lodos, un filtro prensa de banda, cámaras de contacto con cloro y una cámara de decloración.

ATTACHMENT C

USGS MAP

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

ATTACHMENT B

SUPPLEMENTAL PERMIT INFORMATION FORM

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

TCEQ USE ONLY:	
	AmendmentNew
County:	
Admin Complete Date:	
Agency Receiving SPIF:	
Texas Historical Commission	U.S. Fish and Wildlife
Texas Parks and Wildlife Department	
This form applies to TPDES permit application	ons only. (Instructions, Page 53)
our agreement with EPA. If any of the items ar	TCEQ will mail a copy to each agency as required by the not completely addressed or further information information before issuing the permit. Address
	Administrative Report of the application. The ely complete without this SPIF form being nents. Questions or comments concerning this form a Application Review and Processing Team by
The following applies to all applications:	
1. Permittee: <u>New Braunfels Utilities</u>	
Permit No. WQ00 <u>10232001</u>	EPA ID No. TX <u>0067881</u>
and county):	iption that includes street/highway, city/vicinity,
1608 Coco Drive, in the City of New Braur	nfels, Comal County, Texas 78130
Provide the name, address, phone and fax answer specific questions about the proper	number of an individual that can be contacted to rty.
Prefix (Mr., Ms., Miss): <u>Mr.</u>	
First and Last Name: <u>Jonathan Nguyen</u>	
Credential (P.E, P.G., Ph.D., etc.):	to enter text.
Title: <u>Permitting Specialist</u>	

	City, St	ate, Zip Code: <u>Austin, TX 78746</u>						
	Phone	No.: <u>512-685-5156</u> Ext.: Fax No.:						
	E-mail	Address: jnguyen@quiddity.com						
2.	List the	e county in which the facility is located: <u>Comal</u>						
3.	please	property is publicly owned and the owner is different than the permittee/applicant, list the owner of the property. The ist the permittee.						
4.	Provide a description of the effluent discharge route. The discharge route must follow the flow of effluent from the point of discharge to the nearest major watercourse (from the point of discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify the classified segment number.							
		utfall 001 and 002 to an unnamed tributary of the Guadalupe River, then to the dupe River Below Comal River in Segment No. 1804 of the Guadalupe River Basin						
5.	plotted route f	provide a separate 7.5-minute USGS quadrangle map with the project boundaries and a general location map showing the project area. Please highlight the discharge rom the point of discharge for a distance of one mile downstream. (This map is ed in addition to the map in the administrative report).						
	Provide	e original photographs of any structures 50 years or older on the property.						
	Does y	our project involve any of the following? Check all that apply.						
		Proposed access roads, utility lines, construction easements						
		Visual effects that could damage or detract from a historic property's integrity						
		Vibration effects during construction or as a result of project design						
	\boxtimes	Additional phases of development that are planned for the future						
		Sealing caves, fractures, sinkholes, other karst features						
		Disturbance of vegetation or wetlands						
1.	of cave	oposed construction impact (surface acres to be impacted, depth of excavation, sealing s, or other karst features): ves or karst features will be affected. Approximately 10 acres will be used for future sion.						
2.		ne existing disturbances, vegetation, and land use: ng land use is for the wastewater treatment plant.						
TH	E FOLL	OWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR						

AMENDMENTS TO TPDES PERMITS

Mailing Address: 912 South Capital of Texas Hwy, Suite 130

3.	List construction dates of all buildings and structures on the property:
	N/A

4. Provide a brief history of the property, and name of the architect/builder, if known.

N/A

ATTACHMENT D

APPLICATION TECHNICAL REPORT 1.0-2.0-4.0-5.0-6.0

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

THE TONMENTAL OUR LAND

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671.

The following information is required for all renewal, new, and amendment applications.

Section 1. Permitted or Proposed Flows (Instructions Page 43)

A. Existing/Interim I Phase

Design Flow (MGD): 4.2

2-Hr Peak Flow (MGD): 12.6

Estimated construction start date: Click to enter text.

Estimated waste disposal start date: Click to enter text.

B. Interim II Phase

Design Flow (MGD): 9.3

2-Hr Peak Flow (MGD): 27.9

Estimated construction start date: August 2032

Estimated waste disposal start date: October 2033

C. Final Phase

Design Flow (MGD): 15.4

2-Hr Peak Flow (MGD): 46.2

Estimated construction start date: August 2038

Estimated waste disposal start date: October 2039

D. Current Operating Phase

Provide the startup date of the facility: Unknown

Section 2. Treatment Process (Instructions Page 43)

A. Current Operating Phase

Provide a detailed description of the treatment process. Include the type of treatment plant, mode of operation, and all treatment units. Start with the plant's head works and finish with the point of discharge. Include all sludge processing and drying units. If more than one phase exists or is proposed, a description of *each phase* must be provided.

See Attachment G – Treatment Process and Units

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) of each treatment unit, accounting for *all* phases of operation.

Table 1.0(1) - Treatment Units

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
See Attachment G		

C. Process Flow Diagram

Provide flow diagrams for the existing facilities and each proposed phase of construction.

Attachment: Attachment E

Section 3. Site Information and Drawing (Instructions Page 44)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

• Latitude: 29.687351 (001), 29.686405 (002)

• Longitude: <u>-98.097869 (001)</u>, <u>-98.099436 (002)</u>

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

Latitude: N/ALongitude: N/A

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and
- If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Attachment: Attachment F

Provide the name **and** a description of the area served by the treatment facility.

The South Kuehler plant serves central and south New Braunfels.

Collection System Information **for wastewater TPDES permits only**: Provide information for each **uniquely owned** collection system, existing and new, served by this facility, including satellite collection systems. **Please see the instructions for a detailed explanation and examples.**

Collection System Information

Collection System Name	Owner Name	Owner Type	Population Served
South Kuehler	NBU	Publicly Owned	~38,000

Section 4. Unbuilt Phases (Instructions Page 45)

Is the application for a renewal of a permit that contains an unbuilt phase or phases?

ĭ Yes □ No	
If yes , does the existing permit contain a phase that has not been constructed within fivears of being authorized by the TCEQ?	ve
⊠ Yes □ No	
If yes, provide a detailed discussion regarding the continued need for the unbuilt phase Failure to provide sufficient justification may result in the Executive Director recommending denial of the unbuilt phase or phases.	•
Development has slowed in the past few years but is picking up. Future expansion will accept flo from the North Kuehler plant. The North Kuehler permit will be canceled when the expansion of the South Kuehler plant is completed.	
Section 5. Closure Plans (Instructions Page 45)	
Have any treatment units been taken out of service permanently, or will any units be taken out of service in the next five years?	æn
□ Yes ⊠ No	
If yes, was a closure plan submitted to the TCEQ?	
□ Yes □ No	
If yes, provide a brief description of the closure and the date of plan approval.	
N/A	
Section 6. Permit Specific Requirements (Instructions Page 45)	
For applicants with an existing permit, check the Other Requirements or Special Provisions of the permit.	
A. Summary transmittal	
Have plans and specifications been approved for the existing facilities and each propphase?	osed
⊠ Yes □ No	
If yes, provide the date(s) of approval for each phase: <u>Unknown for Interim I</u>	
Provide information, including dates, on any actions taken to meet a <i>requirement or provision</i> pertaining to the submission of a summary transmittal letter. Provide a co an approval letter from the TCEQ, if applicable .	py of
Summary transmittal will be approved for the Interim II and Final phases prior to constructi	on.
B. Buffer zones	
Have the buffer zone requirements been met?	
⊠ Yes □ No	
Provide information below, including dates, on any actions taken to meet the conditi the buffer zone. If available, provide any new documentation relevant to maintaining buffer zones.	

	O	dor abatement plan approved for all phases on December 2020.								
C.	Ot	her actions required by the current permit								
	sul	es the <i>Other Requirements</i> or <i>Special Provisions</i> section in the existing permit require omission of any other information or other required actions? Examples include tification of Completion, progress reports, soil monitoring data, etc.								
		⊠ Yes □ No								
	If yes, provide information below on the status of any actions taken to meet the conditions of an <i>Other Requirement</i> or <i>Special Provision</i> .									
	Notice of Completion will be submitted prior to startup of each future phase and outfall relocat									
D.	Gr	it and grease treatment								
	1.	Acceptance of grit and grease waste								
		Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?								
		□ Yes ⊠ No								
		If No, stop here and continue with Subsection E. Stormwater Management.								
	2.	Grit and grease processing								
		Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility.								
		N/A								
	<i>3.</i>	Grit disposal								
		Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal?								
		□ Yes □ No								
		If No , contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.								
		Describe the method of grit disposal.								
		N/A								
	4.	Grease and decanted liquid disposal								
		Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335.								
		Describe how the decant and grease are treated and disposed of after grit separation.								
		N/A								

1.	Applicability
	Does the facility have a design flow of 1.0 MGD or greater in any phase?
	⊠ Yes □ No
	Does the facility have an approved pretreatment program, under 40 CFR Part 403?
	⊠ Yes □ No
	If no to both of the above, then skip to Subsection F, Other Wastes Received.
2.	MSGP coverage
	Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?
	⊠ Yes □ No
	If yes , please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:
	TXR05 <u>Ro76</u> or TXRNE <u>Click to enter text.</u>
	If no, do you intend to seek coverage under TXR050000?
	□ Yes □ No
<i>3.</i>	Conditional exclusion
	Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?
	□ Yes ⊠ No
	If yes, please explain below then proceed to Subsection F, Other Wastes Received:
	N/A
4.	Existing coverage in individual permit
	Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?
	□ Yes ⊠ No
	If yes , provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.
	N/A
5.	Zero stormwater discharge
	Do you intend to have no discharge of stormwater via use of evaporation or other means?
	□ Yes ⊠ No
	If yes, explain below then skip to Subsection F. Other Wastes Received.
	N/A

E. Stormwater management

Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.

6. Request for coverage in individual permit

Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?

□ Yes ⊠ No

If yes, provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state.

N/A

Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.

F. Discharges to the Lake Houston Watershed

Does the facility discharge in the Lake Houston watershed?

□ Yes ⊠ No

If yes, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions. N/A

G. Other wastes received including sludge from other WWTPs and septic waste

1. Acceptance of sludge from other WWTPs

Does or will the facility accept sludge from other treatment plants at the facility site?

⊠ Yes □ No

If yes, attach sewage sludge solids management plan. See Example 5 of the instructions.

In addition, provide the date the plant started or is anticipated to start accepting sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an estimate of the BOD_5 concentration of the sludge, and the design BOD_5 concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

The plant receives sludge from the North Kuehler WWTF (WQ0010232003).

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

2. Acceptance of septic waste

Is the facility accepting or will it accept septic waste?

□ Yes ⋈ No

□ Yes ⋈ No
 If yes, does the facility have a Type V processing unit?
 □ Yes □ No
 If yes, does the unit have a Municipal Solid Waste permit?
 □ Yes □ No

If yes to any of the above, provide the date the plant started or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD₅ concentration of the septic waste, and the design BOD₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

N/A

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

3. Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)

Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above?

□ Yes ⊠ No

If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.

N/A

Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 50)

Is the facility in operation?

⊠ Yes □ No

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). *Water treatment facilities* discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. **These tables are not applicable for a minor amendment without renewal.** See the instructions for guidance.

Note: The sample date must be within 1 year of application submission.

Table1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l	3.9	3.9	1	Comp	8-29-25/0700
Total Suspended Solids, mg/l	2.93	3.6	8	Comp	8-1-25, 8-6-25, 8-8-25, 8-13-25, 8-15-25, 8-20- 25, 8-22-25, 8- 28-25/0700
Ammonia Nitrogen, mg/l	0	0	5	Comp	8-1-25, 8-8-25, 8-15-25, 8-22- 25, 8-28- 25/0700
Nitrate Nitrogen, mg/l	26.7	26.7	1	Comp	8-5-25/0700
Total Kjeldahl Nitrogen, mg/l	2.0	2.0	1	Comp	8-5-25/0700
Sulfate, mg/l	80.0	80.0	1	Comp	8-5-25/0700
Chloride, mg/l	173.0	173.0	1	Comp	8-5-25/0700
Total Phosphorus, mg/l	2.31	2.45	8	Comp	8-1-25, 8-6-25, 8-8-25, 8-13-25, 8-15-25, 8-20- 25, 8-22-25, 8- 28-25/0700
pH, standard units	7.0	7.0	1	Grab	8-4-25/0830
Dissolved Oxygen*, mg/l	6.28	6.28	1	Grab	8-4-25/0830
Chlorine Residual, mg/l	2.53	4.0	28	Grab	8-1 thru 8-28- 25/ 1230
<i>E.coli</i> (CFU/100ml) freshwater	23.8	23.8	1	Grab	8-4-25/0830
Entercocci (CFU/100ml) saltwater	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	559	559	1	Grab	8-4-25/0830
Electrical Conductivity, µmohs/cm, †	1150	1150	1	Grab	8-4-25/0830
Oil & Grease, mg/l	<5.0	<5.0	1	Grab	8-4-25/1251
Alkalinity (CaCO ₃)*, mg/l	62.0	62.0	1	Comp	8-29-25/0700

^{*}TPDES permits only †TLAP permits only

Table1.0(3) - Pollutant Analysis for Water Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Suspended Solids, mg/l	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	N/A	N/A	N/A	N/A	N/A
pH, standard units	N/A	N/A	N/A	N/A	N/A
Fluoride, mg/l	N/A	N/A	N/A	N/A	N/A
Aluminum, mg/l	N/A	N/A	N/A	N/A	N/A

Pollutant	Average Conc.		No. of Samples		Sample Date/Time
Alkalinity (CaCO ₃), mg/l	N/A	N/A	N/A	N/A	N/A

Section 8. Facility Operator (Instructions Page 50)

Facility Operator Name: Jamie Alvarez, Sr.

Facility Operator's License Classification and Level: A

Facility Operator's License Number: WW0059401

Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 51)

A. WWTP's Biosolids Management Facility Type

Check all that apply. See	instructions for	guidance
---------------------------	------------------	----------

- \boxtimes Design flow>= 1 MGD
- \boxtimes Serves >= 10,000 people
- ☐ Class I Sludge Management Facility (per 40 CFR § 503.9)
- ⊠ Biosolids generator
 □
- ☐ Biosolids end user land application (onsite)
- ☐ Biosolids end user surface disposal (onsite)
- ☐ Biosolids end user incinerator (onsite)

B. WWTP's Biosolids Treatment Process

	α 1 1 11	. 1 .		•			C	. 1	
-	Check all	that	annly		inetr	uctions	tor	mudance	2
		111611	(11)1)1V.	.)((111.511	เมเบบบา	1 () 1	211111111111111111111111111111111111111	

- ☐ Air Drying (or sludge drying beds)
- ☐ Lower Temperature Composting
- ☐ Lime Stabilization
- ☐ Higher Temperature Composting
- ☐ Heat Drying
- ☐ Thermophilic Aerobic Digestion
- ☐ Beta Ray Irradiation
- ☐ Gamma Ray Irradiation
- □ Pasteurization
- ☐ Preliminary Operation (e.g. grinding, de-gritting, blending)
- Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter)
- □ Sludge Lagoon

Temporary Storage (< 2 years)
Long Term Storage (>= 2 years)
Methane or Biogas Recovery
Other Treatment Process: Click to enter text

C. Biosolids Management

Provide information on the *intended* biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize all biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

Biosolids Management

Management Practice	Handler or Preparer Type	Bulk or Bag Container	Amount (dry metric tons)	Pathogen Reduction Options	Vector Attraction Reduction Option
Disposal in Landfill	Off-site Third-Party Preparer	Bulk	150.54	Choose an item.	Choose an item.

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): N/A

D. Disposal site

Disposal site name: Mesquite Creek Landfill
TCEQ permit or registration number: 48029
County where disposal site is located: Comal

E. Transportation method

Method of transportation (truck, train, pipe, other): Truck

Name of the hauler: Residuals Transport

Hauler registration number: 24346

Sludge is transported as a:

Liquid \square semi-liquid \square semi-solid \boxtimes solid \square

Section 10. Permit Authorization for Sewage Sludge Disposal (Instructions Page 53)

A. Beneficial use authorization

Does the existing permit include authorization for land application of sewage sludge for beneficial use?

□ Yes ⊠ No

If yes, are you requesting to continue this authorization to land apply sewage sludge for beneficial use?

		Yes		No							
		Form			oleted Application for Permit for Beneficial Land Use of Sewage Sludge .0451) attached to this permit application (see the instructions for						
		Yes		No							
B.	Sludge	proce	essin	g autho	rization						
			_	permit al optio		thorization	for any	y of the	follov	ving sludge processi	ng,
	Sluc	dge Co	ompo	osting				Yes	\boxtimes	No	
	Mar	keting	g and	l Distrib	ution of sl	udge		Yes	\boxtimes	No	
	Sluc	dge Su	ırfac	e Dispos	al or Slud	ge Monofill		Yes	\boxtimes	No	
	Ten	npora	ry sto	orage in	sludge lag	goons		Yes	\boxtimes	No	
	authori	izatio	n, is	the com	pleted Do i	mestic Was	tewate	r Permi	t Appl	esting to continue th ication: Sewage Slu application?	
		Yes		No							
Se	ction	11.	Sevi	age S	udge La	goons (I	nstru	ctions	Page	- 53)	
						e lagoons?		3(2.022.0	_ ~8		
	☐ Yes		No		. 4.6. 0244.6	c 14600110.					
If v					er of this s	section. If n	o, proc	eed to S	Section	12.	
A	Locatio	n info	orma	ntion							
	The fol	lowin	g ma	ps are r	equired to Number.	be submitt	ed as p	art of t	he app	lication. For each m	ap,
	• (Origin	al G	eneral H	ighway (Co	ounty) Map					
	1	Attacl	hmei	nt: <u>N/A</u>							
	• 1	USDA	Natı	ıral Reso	ources Cor	servation S	Service S	Soil Ma _l) :		
	1	Attacl	hmei	nt: <u>N/A</u>							
	•]	Federa	al Em	nergency	[,] Managem	ent Map:					
	1	Attacl	hmei	nt: <u>N/A</u>							
		Site m	_								
				nt: <u>N/A</u>							
	Discuss apply.	s in a	desc	ription i	f any of th	e following	exist w	vithin th	ne lago	on area. Check all t	nat
		Over	lap a	designa	ited 100-ye	ear frequen	cy floo	d plain			
		Soils	with	floodin	g classifica	ation					
	Overlan an unstable area										

		Wetlands				
		Located less than 60 meters from a fault				
		None of the above				
	Atta	achment: N/A				
	If a portion of the lagoon(s) is located within the 100-year frequency flood plain, prove the protective measures to be utilized including type and size of protective structure					
	N/A					
В.	Tempo	rary storage information				
		e the results for the pollutant screening of sludge lagoons. These results are in n to pollutant results in <i>Section 7 of Technical Report 1.0.</i>				
	Nitr	ate Nitrogen, mg/kg: <u>N/A</u>				
	Tot	al Kjeldahl Nitrogen, mg/kg: <u>N/A</u>				
	Tot	al Nitrogen (=nitrate nitrogen + TKN), mg/kg: <u>N/A</u>				
	Pho	sphorus, mg/kg: <u>N/A</u>				
	Pota	assium, mg/kg: <u>N/A</u>				
	pН,	standard units: <u>N/A</u>				
	Am	monia Nitrogen mg/kg: <u>N/A</u>				
	Ars	enic: <u>N/A</u>				
	Cad	mium: <u>N/A</u>				
	Chr	omium: <u>N/A</u>				
	Cop	oper: <u>N/A</u>				
	Lea	d: <u>N/A</u>				
	Mer	cury: <u>N/A</u>				
	Mol	ybdenum: <u>N/A</u>				
	Nicl	kel: <u>N/A</u>				
	Sele	enium: <u>N/A</u>				
	Zino	:: <u>N/A</u>				
	Tot	al PCBs: <u>N/A</u>				
	Provide	e the following information:				
	Vol	ume and frequency of sludge to the lagoon(s): N/A				
	Tot	al dry tons stored in the lagoons(s) per 365-day period: <u>N/A</u>				
	Tot	al dry tons stored in the lagoons(s) over the life of the unit: N/A				
C.		nformation				
		ne active/proposed sludge lagoon(s) have a liner with a maximum hydraulic etivity of 1x10-7 cm/sec?				
		Yes No				

N	T/A						
Sit	e dev	elopment plan					
Provide a detailed description of the methods used to deposit sludge in the lagoon(s): N/A							
	• Pl	an view and cross-section of the sludge lagoon(s)					
	A	ttachment: <u>N/A</u>					
	• C	opy of the closure plan					
	A	ttachment: <u>N/A</u>					
	• C	opy of deed recordation for the site					
	A	ttachment: <u>N/A</u>					
	• Si	ze of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons					
	A	ttachment: <u>N/A</u>					
		escription of the method of controlling infiltration of groundwater and surface rater from entering the site					
	A	ttachment: <u>N/A</u>					
	• P1	rocedures to prevent the occurrence of nuisance conditions					
	A	ttachment: <u>N/A</u>					
Gr	ound	water monitoring					
gre	oundv	dwater monitoring currently conducted at this site, or are any wells available for vater monitoring, or are groundwater monitoring data otherwise available for the agoon(s)?					
		Yes □ No					
ty	pes en	dwater monitoring data are available, provide a copy. Provide a profile of soil countered down to the groundwater table and the depth to the shallowest water as a separate attachment.					
	Attac	chment: <u>N/A</u>					
cti	on 1	2. Authorizations/Compliance/Enforcement (Instructions					
CU		Page 55)					

authorization, sludge permit, etc?

Yes □ No

If yes, provide the TCEQ authorization number and description of the authorization:

Does the permittee have additional authorizations for this facility, such as reuse

K	euse – R10232001	I
В.	Permittee enforcement status	
	Is the permittee currently under enforcement for this facility?	
	□ Yes ⊠ No	
	Is the permittee required to meet an implementation schedule for compliance or enforcement?	
	□ Yes ⊠ No	
	If yes to either question, provide a brief summary of the enforcement, the implement schedule, and the current status:	ıtation
N	T/A	
<u> </u>		

Section 13. RCRA/CERCLA Wastes (Instructions Page 55)

A. RCRA hazardous wastes

Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste?

□ Yes ⊠ No

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

□ Yes ⊠ No

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment: N/A

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

Domestic Drinking Water Supply (Instructions Page 64) Section 1. Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge? Yes 🖂 No If **no**, proceed it Section 2. **If yes**, provide the following: Owner of the drinking water supply: N/A Distance and direction to the intake: N/A Attach a USGS map that identifies the location of the intake. Attachment: N/A Discharge into Tidally Affected Waters (Instructions Page Section 2. 64) Does the facility discharge into tidally affected waters? Yes 🖂 No If **no**, proceed to Section 3. **If yes**, complete the remainder of this section. If no, proceed to Section 3. A. Receiving water outfall Width of the receiving water at the outfall, in feet: N/A **B.** Oyster waters Are there oyster waters in the vicinity of the discharge? Yes □ No **If yes**, provide the distance and direction from outfall(s). N/A C. Sea grasses Are there any sea grasses within the vicinity of the point of discharge? Yes □ No **If yes**, provide the distance and direction from the outfall(s). N/A

Section 3. Classified Segments (Instructions Page 64)

Is the discharge directly into (or within 300 feet of) a classified segment?

	□ Ye	s 🗵 No
If y	y es , this	s Worksheet is complete.
If 1	no, com	plete Sections 4 and 5 of this Worksheet.
Se	ction	4. Description of Immediate Receiving Waters (Instructions Page 65)
Na	me of th	ne immediate receiving waters: <u>tributary of Guadalupe River</u>
A.	Receiv	ing water type
	Identify	y the appropriate description of the receiving waters.
	\boxtimes	Stream
		Freshwater Swamp or Marsh
		Lake or Pond
		Surface area, in acres: Click to enter text.
		Average depth of the entire water body, in feet: Click to enter text.
		Average depth of water body within a 500-foot radius of discharge point, in feet: <u>Click to enter text.</u>
		Man-made Channel or Ditch
		Open Bay
		Tidal Stream, Bayou, or Marsh
		Other, specify: <u>Click to enter text.</u>
B.	Flow c	haracteristics
	existing	eam, man-made channel or ditch was checked above, provide the following. For g discharges, check one of the following that best characterizes the area <i>upstream</i> discharge. For new discharges, characterize the area <i>downstream</i> of the discharge one).
	\boxtimes	Intermittent - dry for at least one week during most years
	□ mai	Intermittent with Perennial Pools - enduring pools with sufficient habitat to ntain significant aquatic life uses
		Perennial - normally flowing
	Check dischar	the method used to characterize the area upstream (or downstream for new gers).
		USGS flow records
		Historical observation by adjacent landowners
	\boxtimes	Personal observation
		Other, specify: <u>Click to enter text.</u>

C. Downstream perennial confluences

downstream of the discharge point. **Guadalupe River** D. Downstream characteristics Do the receiving water characteristics change within three miles downstream of the discharge (e.g., natural or man-made dams, ponds, reservoirs, etc.)? Yes \boxtimes No If yes, discuss how. N/A E. Normal dry weather characteristics Provide general observations of the water body during normal dry weather conditions. Discharge to a dry creek Date and time of observation: 8/6/25 Was the water body influenced by stormwater runoff during observations? Yes 🖾 General Characteristics of the Waterbody (Instructions Section 5. **Page 66)** A. Upstream influences Is the immediate receiving water upstream of the discharge or proposed discharge site influenced by any of the following? Check all that apply. Oil field activities Urban runoff Agricultural runoff Upstream discharges Other(s), specify: Click to enter text. Septic tanks **B.** Waterbody uses Observed or evidences of the following uses. Check all that apply. Livestock watering Contact recreation Irrigation withdrawal \boxtimes Non-contact recreation Fishing **Navigation** Domestic water supply Industrial water supply Other(s), specify: Click to enter text. Park activities

List the names of all perennial streams that join the receiving water within three miles

C. Waterbody aesthetics

Check one of the following that best describes the aesthetics of the receiving water and the surrounding area.

Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional
 Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored
 Common Setting: not offensive; developed but uncluttered; water may be colored or turbid
 Offensive: stream does not enhance aesthetics; cluttered; highly developed; dumping areas; water discolored

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Toxic Pollutants (Instructions Page 78)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab ⊠ Composite ⊠

Date and time sample(s) collected: 8-5-25 @ 1252 - Grab and 0700 - Comp

Table 4.0(1) - Toxics Analysis

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrylonitrile	<1	<1	1	50
Aldrin	<0.01	< 0.01	1	0.01
Aluminum	200	200	1	2.5
Anthracene	<1	<1	1	10
Antimony	<5	<5	1	5
Arsenic	0.6	0.6	1	0.5
Barium	14	14	1	3
Benzene	<0.3	<0.3	1	10
Benzidine	<1	<1	1	50
Benzo(a)anthracene	<1	<1	1	5
Benzo(a)pyrene	<1	<1	1	5
Bis(2-chloroethyl)ether	<1	<1	1	10
Bis(2-ethylhexyl)phthalate	<3	<3	1	10
Bromodichloromethane	20.5	20.5	1	10
Bromoform	0.487	0.487	1	10
Cadmium	<1	<1	1	1
Carbon Tetrachloride	<0.3	<0.3	1	2
Carbaryl	<0.001	< 0.001	1	5
Chlordane*	<0.06	<0.06	1	0.2
Chlorobenzene	<0.3	<0.3	1	10
Chlorodibromomethane	6.79	6.79	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Chloroform	42.9	42.9	1	10
Chlorpyrifos	<0.01	< 0.01	1	0.05
Chromium (Total)	<3	<3	1	3
Chromium (Tri) (*1)	<3	<3	1	N/A
Chromium (Hex)	<3	<3	1	3
Copper	13	13	1	2
Chrysene	<1	<1	1	5
p-Chloro-m-Cresol	<2	<2	1	10
4,6-Dinitro-o-Cresol	<2	<2	1	50
p-Cresol	<2	<2	1	10
Cyanide (*2)	<10	<10	1	10
4,4'- DDD	<0.01	< 0.01	1	0.1
4,4'- DDE	<0.01	< 0.01	1	0.1
4,4'- DDT	<0.01	<0.01	1	0.02
2,4-D	<0.512	<0.512	1	0.7
Demeton (O and S)	<0.01	<0.01	1	0.20
Diazinon	<0.01	< 0.01	1	0.5/0.1
1,2-Dibromoethane	<0.3	<0.3	1	10
m-Dichlorobenzene	<0.3	<0.3	1	10
o-Dichlorobenzene	<0.3	<0.3	1	10
p-Dichlorobenzene	<0.3	<0.3	1	10
3,3'-Dichlorobenzidine	<1	<1	1	5
1,2-Dichloroethane	<0.3	<0.3	1	10
1,1-Dichloroethylene	<0.3	<0.3	1	10
Dichloromethane	<2.5	<2.5	1	20
1,2-Dichloropropane	<0.3	<0.3	1	10
1,3-Dichloropropene	<0.3	<0.3	1	10
Dicofol	<0.1	<0.1	1	1
Dieldrin	<0.01	< 0.01	1	0.02
2,4-Dimethylphenol	<1	<1	1	10
Di-n-Butyl Phthalate	<3	<3	1	10
Diuron	<0.03	< 0.03	1	0.09
Endosulfan I (alpha)	<0.01	< 0.01	1	0.01

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Endosulfan II (beta)	<0.01	<0.01	1	0.02
Endosulfan Sulfate	<0.01	<0.01	1	0.1
Endrin	<0.01	<0.01	1	0.02
Ethylbenzene	<0.3	<0.3	1	10
Fluoride	400	400	1	500
Guthion	<0.01	<0.01	1	0.1
Heptachlor	<0.01	<0.01	1	0.01
Heptachlor Epoxide	<0.01	<0.01	1	0.01
Hexachlorobenzene	<1	<1	1	5
Hexachlorobutadiene	<1	<1	1	10
Hexachlorocyclohexane (alpha)	< 0.01	<0.01	1	0.05
Hexachlorocyclohexane (beta)	< 0.01	<0.01	1	0.05
gamma-Hexachlorocyclohexane	< 0.01	<0.01	1	0.05
(Lindane)				
Hexachlorocyclopentadiene	<1	<1	1	10
Hexachloroethane	<1	<1	1	20
Hexachlorophene	<1	<1	1	10
Lead	<0.5	<0.5	1	0.5
Malathion	<0.01	<0.01	1	0.1
Mercury	< 0.005	< 0.005	1	0.005
Methoxychlor	<0.02	<0.02	1	2
Methyl Ethyl Ketone	<5	<5	1	50
Mirex	<0.01	<0.01	1	0.02
Nickel	<2	<2	1	2
Nitrate-Nitrogen	26700	26700	1	100
Nitrobenzene	<1	<1	1	10
N-Nitrosodiethylamine	<2	<2	1	20
N-Nitroso-di-n-Butylamine	<1	<1	1	20
Nonylphenol	<68.7	<68.7	1	333
Parathion (ethyl)	<0.01	<0.01	1	0.1
Pentachlorobenzene	<1	<1	1	20
Pentachlorophenol	<1	<1	1	5
Phenanthrene	<1	<1	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Polychlorinated Biphenyls (PCB's) (*3)	<0.2	<0.2	1	0.2
Pyridine	<1	<1	1	20
Selenium	<5	<5	1	5
Silver	<0.5	<0.5	1	0.5
1,2,4,5-Tetrachlorobenzene	<1	<1	1	20
1,1,2,2-Tetrachloroethane	<0.3	<0.3	1	10
Tetrachloroethylene	<0.6	<0.6	1	10
Thallium	<0.5	<0.5	1	0.5
Toluene	<0.6	<0.6	1	10
Toxaphene	<0.3	<0.3	1	0.3
2,4,5-TP (Silvex)	<0.3	<0.3	1	0.3
Tributyltin (see instructions for explanation)	N/A	N/A	N/A	0.01
1,1,1-Trichloroethane	<0.3	<0.3	1	10
1,1,2-Trichloroethane	<0.3	<0.3	1	10
Trichloroethylene	<0.6	<0.6	1	10
2,4,5-Trichlorophenol	<1	<1	1	50
TTHM (Total Trihalomethanes)	70.6	70.6	1	10
Vinyl Chloride	<0.3	<0.3	1	10
Zinc	27	27	1	5

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

^(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab ⊠ Composite ⊠

Date and time sample(s) collected: 8-5-25 @ 1252 - Grab and 0700 - Comp

Table 4.0(2)A - Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Antimony	<5	<5	1	5
Arsenic	0.6	0.6	1	0.5
Beryllium	<0.5	<0.5	1	0.5
Cadmium	<1	<1	1	1
Chromium (Total)	<3	<3	1	3
Chromium (Hex)	<3	<3	1	3
Chromium (Tri) (*1)	<3	<3	1	N/A
Copper	13	13	1	2
Lead	<0.5	<0.5	1	0.5
Mercury	< 0.005	< 0.005	1	0.005
Nickel	<2	<2	1	2
Selenium	<5	<5	1	5
Silver	<0.5	<0.5	1	0.5
Thallium	0.5	0.5	1	0.5
Zinc	27	27	1	5
Cyanide (*2)	<10	<10	1	10
Phenols, Total	20	20	1	10

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)B - Volatile Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrolein	<5	<5	1	50
Acrylonitrile	<1	<1	1	50
Benzene	<0.3	<0.3	1	10
Bromoform	0.487	0.487	1	10
Carbon Tetrachloride	<0.3	<0.3	1	2
Chlorobenzene	<0.3	<0.3	1	10
Chlorodibromomethane	6.79	6.79	1	10
Chloroethane	<1	<1	1	50
2-Chloroethylvinyl Ether	<6	<6	1	10
Chloroform	42.9	42.9	1	10
Dichlorobromomethane [Bromodichloromethane]	20.5	20.5	1	10
1,1-Dichloroethane	<0.3	<0.3	1	10
1,2-Dichloroethane	<0.3	<0.3	1	10
1,1-Dichloroethylene	<0.3	<0.3	1	10
1,2-Dichloropropane	<0.3	<0.3	1	10
1,3-Dichloropropylene	<0.3	<0.3	1	10
[1,3-Dichloropropene]				
1,2-Trans-Dichloroethylene	<0.3	<0.3	1	10
Ethylbenzene	<0.3	<0.3	1	10
Methyl Bromide	<1	<1	1	50
Methyl Chloride	<1	<1	1	50
Methylene Chloride	<2.5	<2.5	1	20
1,1,2,2-Tetrachloroethane	<10	<10	1	10
Tetrachloroethylene	<0.6	<0.6	1	10
Toluene	<0.3	<0.3	1	10
1,1,1-Trichloroethane	<0.3	<0.3	1	10
1,1,2-Trichloroethane	<0.3	<0.3	1	10
Trichloroethylene	<0.6	<0.6	1	10
Vinyl Chloride	<0.3	<0.3	1	10

Table 4.0(2)C - Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
2-Chlorophenol	<1	<1	1	10
2,4-Dichlorophenol	<1	<1	1	10
2,4-Dimethylphenol	<1	<1	1	10
4,6-Dinitro-o-Cresol	<2	<2	1	50
2,4-Dinitrophenol	<2	<2	1	50
2-Nitrophenol	<1	<1	1	20
4-Nitrophenol	<2	<2	1	50
P-Chloro-m-Cresol	<3	<3	1	10
Pentalchlorophenol	<1	<1	1	5
Phenol	<1	<1	1	10
2,4,6-Trichlorophenol	<1	<1	1	10

Table 4.0(2)D - Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acenaphthene	<1	<1	1	10
Acenaphthylene	<1	<1	1	10
Anthracene	<1	<1	1	10
Benzidine	<1	<1	1	50
Benzo(a)Anthracene	<1	<1	1	5
Benzo(a)Pyrene	<1	<1	1	5
3,4-Benzofluoranthene	<1	<1	1	10
Benzo(ghi)Perylene	<1	<1	1	20
Benzo(k)Fluoranthene	<1	<1	1	5
Bis(2-Chloroethoxy)Methane	<1	<1	1	10
Bis(2-Chloroethyl)Ether	<1	<1	1	10
Bis(2-Chloroisopropyl)Ether	<1	<1	1	10
Bis(2-Ethylhexyl)Phthalate	<3	<3	1	10
4-Bromophenyl Phenyl Ether	<1	<1	1	10
Butyl benzyl Phthalate	<3	<3	1	10
2-Chloronaphthalene	<1	<1	1	10
4-Chlorophenyl phenyl ether	<1	<1	1	10
Chrysene	<1	<1	1	5
Dibenzo(a,h)Anthracene	<1	<1	1	5
1,2-(o)Dichlorobenzene	<3	<3	1	10
1,3-(m)Dichlorobenzene	<3	<3	1	10
1,4-(p)Dichlorobenzene	<3	<3	1	10
3,3-Dichlorobenzidine	<1	<1	1	5
Diethyl Phthalate	<3	<3	1	10
Dimethyl Phthalate	<3	<3	1	10
Di-n-Butyl Phthalate	<3	<3	1	10
2,4-Dinitrotoluene	<1	<1	1	10
2,6-Dinitrotoluene	<1	<1	1	10
Di-n-Octyl Phthalate	<3	<3	1	10
1,2-Diphenylhydrazine (as Azobenzene)	<1	<1	1	20
Fluoranthene	<1	<1	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Fluorene	<1	<1	1	10
Hexachlorobenzene	<1	<1	1	5
Hexachlorobutadiene	<1	<1	1	10
Hexachlorocyclo-pentadiene	<1	<1	1	10
Hexachloroethane	<1	<1	1	20
Indeno(1,2,3-cd)pyrene	<1	<1	1	5
Isophorone	<1	<1	1	10
Naphthalene	<1	<1	1	10
Nitrobenzene	<1	<1	1	10
N-Nitrosodimethylamine	<1	<1	1	50
N-Nitrosodi-n-Propylamine	<1	<1	1	20
N-Nitrosodiphenylamine	<1	<1	1	20
Phenanthrene	<1	<1	1	10
Pyrene	<1	<1	1	10
1,2,4-Trichlorobenzene	<1	<1	1	10

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Aldrin	<0.01	<0.01	1	0.01
alpha-BHC (Hexachlorocyclohexane)	<0.01	<0.01	1	0.05
beta-BHC (Hexachlorocyclohexane)	<0.01	<0.01	1	0.05
gamma-BHC (Hexachlorocyclohexane)	<0.01	<0.01	1	0.05
delta-BHC (Hexachlorocyclohexane)	<0.01	<0.01	1	0.05
Chlordane	<0.06	< 0.06	1	0.2
4,4-DDT	<0.01	<0.01	1	0.02
4,4-DDE	<0.01	<0.01	1	0.1
4,4,-DDD	<0.01	<0.01	1	0.1
Dieldrin	<0.01	<0.01	1	0.02
Endosulfan I (alpha)	<0.01	<0.01	1	0.01
Endosulfan II (beta)	<0.01	<0.01	1	0.02
Endosulfan Sulfate	<0.01	<0.01	1	0.1
Endrin	<0.01	<0.01	1	0.02
Endrin Aldehyde	<0.01	<0.01	1	0.1
Heptachlor	<0.01	<0.01	1	0.01
Heptachlor Epoxide	<0.01	<0.01	1	0.01
PCB-1242	<0.1	<0.1	1	0.2
PCB-1254	<0.1	<0.1	1	0.2
PCB-1221	<0.1	<0.1	1	0.2
PCB-1232	<0.1	<0.1	1	0.2
PCB-1248	<0.1	<0.1	1	0.2
PCB-1260	<0.1	<0.1	1	0.2
PCB-1016	<0.1	<0.1	1	0.2
Toxaphene	<0.3	<0.3	1	0.3

^{*} For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Section 3. Dioxin/Furan Compounds A. Indicate which of the following compounds from may be present in the influent from a contributing industrial user or significant industrial user. Check all that apply. 2,4,5-trichlorophenoxy acetic acid Common Name 2,4,5-T, CASRN 93-76-5 2-(2,4,5-trichlorophenoxy) propanoic acid Common Name Silvex or 2,4,5-TP, CASRN 93-72-1 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate Common Name Erbon, CASRN 136-25-4 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate Common Name Ronnel, CASRN 299-84-3 2,4,5-trichlorophenol Common Name TCP, CASRN 95-95-4 hexachlorophene Common Name HCP, CASRN 70-30-4 For each compound identified, provide a brief description of the conditions of its/their presence at the facility. Click to enter text.

B.	Do you know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin
	(TCDD) or any congeners of TCDD may be present in your effluent?

Yes □ No

If **yes**, provide a brief description of the conditions for its presence.

Click to enter	text.			

C.	If any of the compounds in Subsection A ${f or}$ B are present, complete Table 4.0(2)F.
	For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab □ Composite □

Date and time sample(s) collected: Click to enter text.

Table 4.0(2)F - Dioxin/Furan Compounds

Compound	Toxic Equivalenc y Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1					10
1,2,3,7,8 PeCDD	0.5					50
2,3,7,8 HxCDDs	0.1					50
1,2,3,4,6,7,8 HpCDD	0.01					50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05					50
2,3,4,7,8 PeCDF	0.5					50
2,3,7,8 HxCDFs	0.1					50
2,3,4,7,8 HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					0.5
PCB 81	0.0003					0.5
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total						

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: TOXICITY TESTING REQUIREMENTS

The following **is required** for facilities with a current operating design flow of **1.0 MGD or greater**, with an EPA-approved **pretreatment** program (or those required to have one under 40 CFR Part 403), or are required to perform Whole Effluent Toxicity testing. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Required Tests (Instructions Page 88)

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic: <u>N/A</u> 48-hour Acute: 16

Section 2. Toxicity Reduction Evaluations (TREs)

Has this facility completed a TRE in the past	four and a half	years? Or is the	facility currently
performing a TRE?			

Yes	\boxtimes	No
res		100

If yes, describe the progress to date, if applicable, in identifying and confirming the toxicant.

N/A		

Section 3. Summary of WET Tests

If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed.

Table 5.0(1) Summary of WET Tests

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal
Submitted via DMR			

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works.

Section 1. All POTWs (Instructions Page 89)

A. Industrial users (IUs)

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

If there are no users, enter 0 (zero).

Categorical IUs:

Number of IUs: <u>o</u>

Average Daily Flows, in MGD: <u>o</u>

Significant IUs – non-categorical:

Number of IUs: <u>o</u>

Average Daily Flows, in MGD: <u>o</u>

Other IUs:

Number of IUs: <u>o</u>

Average Daily Flows, in MGD: <u>o</u>

B. Treatment plant interference

In the past three years, has your POTW experienced treatment plant interference (see instructions)?

□ Yes ⊠ No

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

N/A

C. Treatment plant pass through

In the past three years, has your POTW experienced pass through (see instructions)?

□ Yes ⊠ No

If yes, identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.

<u>N/A</u>

D. Pretreatment program

	Does your POTW have an approved pretreatment program?
	⊠ Yes □ No
	If yes, complete Section 2 only of this Worksheet.
	Is your POTW required to develop an approved pretreatment program?
	□ Yes □ No
	If yes, complete Section 2.c. and 2.d. only, and skip Section 3.
	If no to either question above , skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.
E.	Service Area Map
	Attach a map indicating the service area of the POTW. The map should include the applicant's service area boundaries and the location of any known industrial users discharging to the POTW. Please see the instructions for guidance.
	Attachment: Attachment E
Se	ction 2. POTWs with Approved Programs or Those Required to
	Develop a Program (Instructions Page 90)
A.	Substantial modifications
	Have there been any substantial modifications to the approved pretreatment program that have not been submitted to the TCEQ for approval according to <i>40 CFR §403.18</i> ?
	□ Yes ⊠ No
	If yes , identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.
	N/A
B.	Non-substantial modifications
	Have there been any non-substantial modifications to the approved pretreatment program that have not been submitted to TCEQ for review and acceptance?
	□ Yes ⊠ No
	If yes, identify all non-substantial modifications that have not been submitted to TCEQ, including the purpose of the modification.
	<u>N/A</u>
C.	Effluent parameters above the MAL
	In Table 6.0(1), list all parameters measured above the MAL in the POTW's effluent monitoring during the last three years. Submit an attachment if necessary.
Tal	nle 6 0(1) – Parameters Ahove the MAI

MAL

Units

Concentration

Pollutant

N/A

Date

	Has any SIU, CIU, or other IU caused or contributed to any problems (excluding interferences or pass throughs) at your POTW in the past three years?
	□ Yes ⊠ No
	If yes , identify the industry, describe each episode, including dates, duration, description of the problems, and probable pollutants.
	N/A
Se	ection 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 90)
Α.	General information
	Company Name: <u>N/A</u>
	SIC Code: N/A
	Contact name: <u>N/A</u>
	Address: <u>N/A</u>
	City, State, and Zip Code: <u>N/A</u>
	Telephone number: <u>N/A</u>
	Email address: <u>N/A</u>
B.	Process information
	Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).
	N <u>/A</u>
C	Product and service information
C.	Provide a description of the principal product(s) or services performed.
	N/A
	11/11
D.	Flow rate information
	See the Instructions for definitions of "process" and "non-process wastewater."
	Process Wastewater:
	Discharge, in gallons/day: <u>N/A</u>
	Discharge Type: □ Continuous □ Batch □ Intermittent
	Non-Process Wastewater:
	Discharge, in gallons/day: <u>N/A</u>
	Discharge Type: Continuous Ratch Intermittent

E. Pretreatment standards

D. Industrial user interruptions

Is the SIU or CIU subject to technically based local limits as defined in the *i*nstructions?

	□ Yes □ No
	Is the SIU or CIU subject to categorical pretreatment standards found in 40 CFR Parts 405 - 471 ?
	□ Yes □ No
	If subject to categorical pretreatment standards , indicate the applicable category and subcategory for each categorical process.
	Category: Subcategories: <u>N/A</u>
	Click or tap here to enter text. N/A
	Category: <u>N/A</u>
	Subcategories: <u>N/A</u>
F.	Industrial user interruptions
	Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years?
	□ Yes □ No
	If yes , identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants.
	N <u>/A</u>

ATTACHMENT I

EFFLUENT ANALYSIS

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information			
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08052531 Matrix: Non-Potable Water Date/Time Taken: 8/5/2025 0700	PCS Sample #: 810676 Page 1 of 2 Date/Time Received: 8/5/2025 08:45 Report Date: 8/20/2025 Approved by: Chuck Wallgren, President			

Test Description	Result	Units	RL	Analysis Date/Time	Method	Analyst
Chloride_IC	173	mg/L	5	08/06/2025 09:39	EPA 300.0	JAS
Nitrate-N_IC	26.7	mg/L	0.5	08/06/2025 06:33	EPA 300.0	JAS
Sulfate IC	80	mg/L	5	08/06/2025 09:39	EPA 300.0	JAS
Fluoride_IC	0.40	mg/L	0.50	08/06/2025 09:39	EPA 300.0	JAS
Pesticides 617	S	ee Attached	[DHL	
604.1 Hexachlorophene	S	ee Attached			DHL	
Semi Volatiles 625	S	ee Attached			DHL	-
Pesticides 608	S	ee Attached	l		DHL	

Test Description	Precision	Quality As Limit	surance Sumn LCL	nary MS	MSD	UCL	LCS	LCS Limit	Blank	
Chloride IC	<1	10	95	95	95	102	93	85 - 115	Diank	
Nitrate-N IC	<1	20	70	93	93	130	102	85 - 115		
Sulfate IC	<1	10	94	94	94	101	94	85 - 115		
Fluoride_IC	4	10	87	91	94	105	92	85 - 115		
Pesticides 617	See Attached Report for Quality Assurance Information									
604.1 Hexachlorophene	See Attacl	ned Repor	t for Qualit	y Assura	nce Inforn	nation				
Semi Volatiles 625	See Attack	ned Repor	t for Qualit	y Assura	nce Inforn	nation				
Pesticides 608	See Attach	ned Repor	t for Qualit	y Assura	nce Inforn	nation				

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested.
All data is reported on an 'As Is' basis unless designated as 'Dry Wt'.
RL = Reporting Limits

www.pcslab.net chuck@pcslab.net 1532 Universal City Blvd Main: 210-340-0343
Universal City, TX 78148-3318 Fax: 210-658-7903

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information			
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08052531 Matrix: Non-Potable Water Date/Time Taken: 8/5/2025 0700	PCS Sample #: 810676 Page 2 of 2 Date/Time Received: 8/5/2025 08:45 Report Date: 8/20/2025			

Test Description	Result Units RL	Analysis Date/Time Method	Analyst
Pesticides 632	See Attached	DHL	
Pesticide 1657	See Attached	DHL	
Herbicides 615	See Attached	SPL	

Test Description	Quality Assurance Summary Precision Limit LCL MS MSD UCL LCS LCS Limit Blank						
Pesticides 632	See Attached Report for Quality Assurance Information						
Pesticide 1657	See Attached Report for Quality Assurance Information						
Herbicides 615	See Attached Report for Quality Assurance Information						

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested.

All data is reported on an 'As Is' basis unless designated as 'Dry Wt'.

RL = Reporting Limits

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08052532 Matrix: Non-Potable Water Date/Time Taken: 8/5/2025 0700	PCS Sample #: 810677 Page 1 of 1 Date/Time Received: 8/5/2025 08:45 Report Date: 8/12/2025 Approved by: Chuck Wallgren, President

Test Description	Result	Units	RL	Analysis Date/Time	Method	Analyst
Ammonia-N (ISE)	<0.1	mg/L	0.1	08/05/2025 12:25	SM 4500-NH3 D	CLH
Kjeldahl-N, Total	2	mg/L	1	08/08/2025 09:30	SM 4500-N B/C	PML

		Quality As	surance Sum	nary					
Test Description	Precision	Limit	LCL	MS	MSD	UCL	LCS	LCS Limit	Blank
Ammonia-N (ISE)	3	10	80	96	98	120	100	85 - 115	
Kjeldahl-N, Total	2	10	90	100	98	109	106	85 - 115	<1

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested. All data is reported on an 'As Is' basis unless designated as 'Dry Wt'. RL = Reporting Limits

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08052533 Matrix: Non-Potable Water Date/Time Taken: 08/05/2025 0700	PCS Sample #: 810678 Page 1 of 2 Date/Time Received: 08/05/2025 08:45 Report Date: 08/25/2025 Approved by: Chuck Wallgren, President

Test Description	Result	Units	RL	Analy	sis Date	/Time	Metho	od	Analyst	
Arsenic/ICP MS	0.0006	mg/L	0.0005	08/08	3/2025 0	8:38	EPA 200).8	DJL	
Barium/ICP (Total)	0.014	mg/L	0.003	08/11	1/2025 1	2:07	EPA 200).7 / 6010 B	DJL	
Cadmium/ICP (Total)	< 0.001	mg/L	0.001	08/11	1/2025_1	2:07	EPA 200	0.7 / 6010 B	DJL	
Chromium/ICP (Total)	< 0.003	mg/L	0.003	08/11	1/2025 1	2:07	EPA 200	0.7 / 6010 B	DJL	
Copper/ICP (Total)	0.013	mg/L	0.002	08/11	1/2025 1	2:07	EPA 200).7 / 6010 B	DJL	
Lead/ICP MS	< 0.0005	mg/L	0.0005	08/08	3/2025 0	8:38	EPA 200).8	DJL	
Aluminum/ICP (Total)	0.200	mg/L	0.0025	08/11	1/2025 1	5:00	EPA 200	0.7 / 6010 B	DJL	
Beryllium/ICP (Total)	< 0.0005	mg/L	0.0005	08/11	1/2025 1	2:07	EPA 200	0.7 / 6010 B	DJL	
Test Description	Precision	Quality As Limit	ssurance Summ LCL	ary MS	MSD	UCL	LCS	LCS Limit	Blank	, i 15.
Arsenic/ICP MS	<1	20	70	102	102	130	98	85 - 115		
Barium/ICP (Total)	<1	20	75	93	93	125	100	85 - 115		
Cadmium/ICP (Total)	<1	20	75	99	99	125	100	85 - 115		
Chromium/ICP (Total)	<1	20	75	100	100	125	105	85 - 115		
Copper/ICP (Total)	10	20	75	104	95	125	105	85 - 115		
I MODINO	1	20	70	100	1.00	120	1.0.1	05 115		

Aluminum/ICP (Total) Beryllium/ICP (Total)	<1	20	75	99	99	125	100	85 - 115
	<1	20	75	100	100	125	100	85 - 115
Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case parative attachment. Reports with full quality data deliverables are available on request.								

70

102

100

130

20

These analytical results relate only to the sample tested. All data is reported on an 'As Is' basis unless designated as 'Dry Wt'. RL = Reporting Limits

85 - 115

Lead/ICP MS

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08052533 Matrix: Non-Potable Water Date/Time Taken: 08/05/2025 0700	PCS Sample #: 810678 Page 2 of 2 Date/Time Received: 08/05/2025 08:45 Report Date: 08/25/2025

Test Description	Result	Units	RL	Analysis Date/Time	Method	Analyst
Trivalent Chromium	< 0.003	mg/L	N/A	08/11/2025 12:07	Calculation	DJL
Hexavalent Chrome	< 0.003	mg/L	0.003	08/05/2025 13:10	SM 3500-Cr B	DJL
Nickel/ICP (Total)	< 0.002	mg/L	0.002	08/11/2025 12:07	EPA 200.7 / 6010 B	DJL
Zinc/ICP (Total)	0.027	mg/L	0.005	08/11/2025 12:07	EPA 200.7 / 6010 B	DJL
Antimony/ICP MS	< 0.005	mg/L	0.005	08/08/2025 08:38	EPA 200.8	DJL
Thallium/ICP MS	0.0005	mg/L	0.0005	08/08/2025 08:38	EPA 200.8	DJL
Selenium/ICP MS	< 0.005	mg/L	0.005	08/08/2025 08:38	EPA 200.8	DJL
Silver/ICP MS	< 0.0005	mg/L	0.0005	08/08/2025 08:38	EPA 200.8	DJL
Test Description	Precision		ssurance Summa LCL	MS MSD UCL	LCS LCS Limit	Blank

Test Description	Precision	Quality As Limit	surance Sumn LCL	nary MS	MSD	UCL	LCS	LCS Limit	Blank
Trivalent Chromium	N/A	N/A	N/A			N/A			
Hexavalent Chrome	<1	20	75	80	80	125	100	85 - 115	
Nickel/ICP (Total)	<1	20	75	97	97	125	105	85 - 115	
Zinc/ICP (Total)	<1	20	75	106	106	125	105	85 - 115	
Antimony/ICP MS	<1	20	70	101	101	130	99	85 - 115	
Thallium/ICP MS	2	20	70	95	96	130	95	85 - 115	
Selenium/ICP MS	1	20	70	102	100	130	99	85 - 115	
Silver/ICP MS	<1	20	70	95	95	130	101	85 - 115	

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested.

All data is reported on an 'As Is' basis unless designated as 'Dry Wt'

RL = Reporting Limits

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08042527 Matrix: Non-Potable Water Date/Time Taken: 8/4/2025 1251	PCS Sample #: 810679 Page 1 of 1 Date/Time Received: 8/5/2025 08:45 Report Date: 8/13/2025 Approved by: Chuck Wallgren, President

Test Description	Result	Units	RL	Analysis Date/Time	Method	Analyst	
Oil and Grease (H.E.M.)	<5.0	mg/L	5	08/12/2025 10:30	EPA 1664 Rev	EMV	

		Quality As	surance Sum	mary						
Test Description	Precision	Limit	LCL	MS	MSD	<u>UCL</u>	LCS	LCS Limit	Blank	
Oil and Grease (H.E.M.)	3	18	N/A	N/A	N/A	N/A	94	78 - 114		

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested. All data is reported on an 'As Is' basis unless designated as 'Dry Wt'. $RL = Reporting\ Limits$

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08042528 Matrix: Non-Potable Water Date/Time Taken: 8/4/2025 1252	PCS Sample #: 810680 Page 1 of 1 Date/Time Received: 8/5/2025 08:45 Report Date: 8/15/2025 Approved by: Chuck Wallgren, President

Test Description	Result Units	- KL	Alialysis Date/Time	Methon	Anaiysi
Volatiles 624	See Attached			DHL	
Quality Statement: All supporting quality do	ata adhered to data quality object	ctives and tes	t results meet the requiremen	ts of NFI AC unless otherwise	noted as flagged
exceptions or in a case narrative attachment				is by NELAC unless otherwise	noieu us jiuggeu
			These analytical results relate		
				Is' basis unless designated as 'Dr	y Wt'.
			RL = Reporting Limits		

Web Site: www.pcslab.net eMail: chuck@pcslab.net

CONTROL SERVICES POLLUTION

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information						
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08042529 Matrix: Non-Potable Water Date/Time Taken: 8/4/2025 1253	PCS Sample #: 810681 Page 1 of 1 Date/Time Received: 8/5/2025 08:45 Report Date: 8/15/2025 Approved by: Chuck Wallgren, President						

Test Description	Flag	Result	Units	RL	Analysis Date/Time	Method	Analyst
Cyanide, Amenable		e Attached				DHL	n
Quality Statement: All supporting of exceptions or in a case narrative att						ts of NELAC unless otherwi	se noted as flagged
+ Subcontract Work - NELAP Certified	Lab				These analytical results relate All data is reported on an 'As I RL = Reporting Limits		'Dry Wt'.

Web Site: www.pcslab.net eMail: chuck@pcslab.net

Result

Units

Analyst

Report of Sample Analysis

Analysis Date/Time

Method

Client Information	Sample Information	Laboratory Information
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08042530 Matrix: Non-Potable Water Date/Time Taken: 8/4/2025 1254	PCS Sample #: 810682 Page 1 of 1 Date/Time Received: 8/5/2025 08:45 Report Date: 8/20/2025 Approved by: Chuck Wallgren, President

RI.

Phenols	See Attached	SPL
I		
Quality Statement: All sur	propring quality data adhered to data quality objectives and to	st results meet the requirements of NELAC unless otherwise noted as flagged
	rative attachment. Reports with full quality data deliverables	
	я	These analytical results relate only to the sample tested. All data is reported on an 'As Is' basis unless designated as 'Dry Wt'. RL = Reporting Limits
Web Site: www neeleb not	1522 Universal City P	Ivd Suite 100 210 240 0242 EAV # 210 659 7002

Web Site: www.pcslab.net eMail: chuck@pcslab.net

Test Description

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information						
Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: SK TCEQ Major Permit Sample ID: Effluent 08042526 Matrix: Non-Potable Water Date/Time Taken: 8/4/2025 1250	PCS Sample #: 810683 Page 1 of 1 Date/Time Received: 8/5/2025 08:45 Report Date: 8/22/2025 Approved by: Chuck Wallgren, President						

Test Description	Result	Units	RL	Analysis Date/Time	Method	Analyst	
Mercury/CVAFS	< 0.000005	mg/L	0.000005	08/22/2025 14:56	EPA 245.7	DJL	

Test Description	Precision	Quality As Limit	surance Sumn LCL	nary MS	MSD	UCL	LCS	LCS Limit	Blank
Mercury/CVAFS	11	20	70	97	84	130	123	70 - 130	<1.8ng/L

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested.

All data is reported on an 'As Is' basis unless designated as 'Dry Wt'.

RL = Reporting Limits

Chain of Custody Number

810676

MULTIPLE SAMPLE ANALYSIS REQUEST AND CHAIN OF CUSTODY FORM

Stamp 1st sample and COC as same number

CUSTOMER INFORMATION REPORT INFORMATION														
		Attention:	Tris	h So	echting		Pho	ne: (8	30) 60	8-89	00		Fax	k: (830) 626-1361
		. FF				Req	ueste	d Ana	lysis					
Colle	eted By:	Haritz	7			615.	is si						50	Instructions/Comments:
1		Matrix			Container	ex. Herb	_	r, Tr	اءا			et)	Ηξ	*Al, Ba, Be, Cd, Cr, Cu, Ni, Zn, SbMS, AsMS, PbMS, SeMS, AgMS, TlMS
orine mg/L	te or M	ater; NPW-Non-		er		, 604.1 Hk 7, 632, SV	TK	НехС	TEM	24		9	evel	
dual Chi	posi N	/W-Wastewater;	Туре	quin	Preservative	403N, 1	Ä,	1s*	J) (I	C	Ą.	lou	v L	
Field Field						SO4, Cl, 1 Pest 1657	NH	Meta	FO	Λ0	CS	Phe	Lov	PCS Sample Number
t:	■ C	DW 🖪 NPW WW 🗖 Soil	PIG.											810676
005	∐G □	Sludge 🗌 LW	 0	9	☐ IČE ☐	$ \wedge $								□S □B □N □HEM Other:
t:		l WW □ Soil	⊡ P □G		☐ H ₂ SO ₄ ☐ HNO ₃ ☐ H ₂ PO ₄ ☐ NaOH									810677
700		Sludge 🗖 LW	□ o	1	DICE D	. 1	$ \wedge $							□S □B □N □HEM Other:
t: 700		DW INPW Soil	⊡ P □G		□H ₂ SO ₄ □HNO ₃ □H ₃ PO ₄ □NaOH									810678
700] Sludge 🗖 LW] Other		2	□ ICE □	25								□S □B □N □HEM Other:
t: 5 \] WW 🗖 Soil	₽G		□ H ₃ PO ₄ □ NaOH				\vee					8 1 0 6 7 9
:		Other	□ 0	1		20				,				
t: -5-2-		l WW∏ Soil	□P ⊡ G		□H₃PO₄ □ NaOH					V				810680
:] Other	□ 0	4	\- <u></u>	-				\wedge				□S □B □N □HEM Other:
t: 5-3] WW 🔲 Soil	☑P □G		□ H ₂ SO ₄ □ HNO ₃ □ H ₃ PO ₄ □ NaOH						V			810681
l:] Other	□ 0	1	DICE D	•								□S □B □N □HEM Other:
rt: 5-4		WW ☐ Soil	□P ☑G											810682
:] Other	□ 0	1	□ ICE □									□S □B □N □HEM Other:
rt: } 5 O]WW □ Soil	□P □G		☐ H ₂ SO ₄ ☐ HNO ₃ ☐ H ₃ PO ₄ ☐ NaOH								\checkmark	810683
l:	IIIG [Sludge []LW	Ō	4	DICE D_	•								□S □B □N □HEM Other:
			□ <	8 Hrs	s. □ < 16 Hrs. □ < 24 H	Irs. 🗆 :	5 days	☐ Oth	ег:		Rush (Charge:	s Auth	orized by:
d Hold for cl	ient pick	Poch Con				s, O=	Other							пier ID:
Dat	e: 080	Time:										_		Time:
Dat	e:	Time:		८ हम	Received By:	ran	Gus	ller	_			Date	8	-5-25 Time: 08:15
	Time t: 700 t: 700	Time t: Co G G G G G G G G G G G G G	Collected By:	Collected By:	Collected By:	Attention: Trish Soechting	Collected By:	Attention: Trish Soechting						

1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318 Facsimilie 210.658.7903 210.340.0343

2508071

CHAIN OF CUSTODY & SUBCONTRACT TRACKING SHEET

\times	TTO:	TATE	.//. r . A 1 . /	. 1	Delin quiched by Toyron Clay					
	TO:		L Analytica		Relinquished by: Lauren Clay					
	260	2300 Double Creek Dr			Date/Time: 8/5/2025 @ 1500					
		Rou	nd Rock, T	X 78664	Received by:					
	365 W				Date/Time: 8/6/25 0916	2				
					Analysis					
	PCS#	£	Date	Time	Requested Pres	T. A. T.				
٥l	8106		08/05/2025	0700	604.1 Hexachlorophene Ice	Std				
0 (8106	76			Semi Volatiles 625					
	8106′	76			Pesticide 1657					
	8106	76	2		Pesticides 608					
	8106′	76		****	Pesticides 617					
7	8106	76	2		Pesticides 632	2322				
12	8106	80	08/04/2025	1252	Volatiles 624	Std				
03	8106	81	08/04/2025	1253	Cyanide, Amenable NaOH	Std				
			72			u				
	•	*	7							
	Comments/Special Instructions: 5.0 C Them #78, vie Fel Ex									

	Unless otherwise requested, send results and invoice to:									
		Chu	ick Wallgre	en		2				
×	Pollution Control Services									
	1532 Universal City Blvd, Suite 100									
	Universal City, TX 78148-3318									
	Authorized by: Date: 8.5-25									
	Auth	orize	a by:	Jun	Date: 8.5-25					
900			. /	J	· (1)					

August 15, 2025

Chuck Wallgren
Pollution Control Services
1532 Universal City Blvd. #100
Universal City, TX 78148

TEL: (210) 394-4570

FAX: Order No.: 2508071

RE: PCS 810676, 810680-810681

Dear Chuck Wallgren:

DHL Analytical, Inc. received 3 samples on 08/06/2025 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative and all estimated uncertainties of results are within method specifications.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Karyn Lane

Laboratory Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211 - TX-C25-00106

Table of Contents

Miscellaneous Documents	3
CaseNarrative 2508071	6
WorkOrderSampleSummary 2508071	7
Analytical Report 2508071	8
AnalyticalOCSummaryReport 2508071 1	5

ACTWGT: 55.00 LB CAD: 112447368/INET4535 DIMS: 26x15x15 IN BILL SENDER **DHL ANALYTICAL RECEIVING** ROUND ROCK TX 78664 (512) 388-8222 REF: 2300 DOUBLE CREEK (210) 340-0343 1532 UNIVERSAL CITY BLVD. #100 DHL ANALYTICAL JNIVERSAL CITY, TX 78148 JNITED STATES US ORIGIN ID:NIRA CHUCK WALLGREN

58GJ2/E4ED/59F2

AUG 10:30A PRIORITY OVERNIGHT 90 WED 8833 3122 0974 78664

Jewelry, precious metals, negotiable instruments and other items listed in our Service Guide. Written claims must be filled ideclared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$1,000, e.g. other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from

TX-US

After printing this label:

CONSIGNEE COPY - PLEASE PLACE IN FRONT OF POUCH

1. Fold the printed page along the horizontal line.

2. Place Isbel in shipping pouch and affix if to your shipment.

delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document fedex.com. EedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on

within strict time limits, see current FedEx Service Guide.

DHL Analytical, Inc.

Sample Receipt Checklist

Work Order Number: 2508071 Checklist completed by: B77/2025	Client Name: Pollution Control Services		Date Received	d: 8/6/2025	
Carrier name: FedEx Iday Carrier name: FedEx Iday Shipping container/cooler in good condition? Yes	Work Order Number: 2508071		Received by:	EL	
Carrier name: FedEx Iday Carrier name: FedEx Iday Shipping container/cooler in good condition? Yes	5	3			it.
Carrier name: FadEx Iday Carrier name: FadEx Iday Shipping container/cooler in good condition?	Checklist completed by: 8/7/2025		Reviewed by:	Ver	8/7/2025
Shipping container/cooler in good condition? Custody seals intact on shipping container/cooler? Yes No No Not Present C Custody seals intact on sample bottles? Chain of custody present? Chain of custody signed when relinquished and received? Chain of custody agrees with sample labels? Samples in proper container/bottle? Samples in proper container/bottle? Sample containers intact? Sufficient sample volume for indicated test? All samples received within holding time? Water - VOA vials have zero headspace? Water - ph<2 acceptable upon receipt? Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? Adjusted? Container/Temp Blank temperature in compliance? Yes No Checked by Checked by Regarding: Comments:	Company			Indials	Date
Custody seals intact on shipping container/cooler? Custody seals intact on sample bottles? Chain of custody present? Chain of custody signed when relinquished and received? Chain of custody agrees with sample labels? Samples in proper container/pottle? Samples in proper container/pottle? Sufficient sample volume for indicated test? All samples received within holding time? Water - VOA vials have zero headspace? Water - pH<2 acceptable upon receipt? Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? Container/Temp Blank temperature in compliance? Yes No Container/Temp Blank temperature in compliance? Container/Temp Blank temperature in compliance? Date contacted: Date contacted: Date contacted: Contracted by: Regarding: Comments:	Carrier name:	FedEx 1day			
Custody seals intact on shipping container/cooler? Custody seals intact on sample bottles? Chain of custody present? Chain of custody signed when relinquished and received? Chain of custody agrees with sample labels? Samples in proper container/pottle? Samples in proper container/pottle? Sufficient sample volume for indicated test? All samples received within holding time? Water - VOA vials have zero headspace? Water - pH<2 acceptable upon receipt? Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? Container/Temp Blank temperature in compliance? Yes No Container/Temp Blank temperature in compliance? Container/Temp Blank temperature in compliance? Date contacted: Date contacted: Date contacted: Contracted by: Regarding: Comments:					
Custody seals intact on sample bottles? Chain of custody present? Chain of custody signed when relinquished and received? Yes No No No No No No No No No N	Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Present	
Chain of custody present? Chain of custody signed when relinquished and received? Chain of custody agrees with sample labels? Samples in proper container/bottle? Samples in proper container/bottle? Sufficient sample volume for indicated test? All samples received within holding time? Water - VOA vials have zero headspace? Water - ph-2 acceptable upon receipt? Water - ph-9 (S) or ph-10 (CN) acceptable upon receipt? Container/Temp Blank temperature in compliance? Yes No	Custody seals intact on shipping container/cooler?	Yes	No 🗆	Not Present 🗹	
Chain of custody signed when relinquished and received? Chain of custody agrees with sample labels? Yes No No Samples in proper container/hottle? Samples in proper container/hottle? Sample containers intact? Yes No	Custody seals intact on sample bottles?	Yes 🗌	No 🗌	Not Present 🗹	n (6)
Chain of custody agrees with sample labels? Samples in proper container/pottle? Samples in proper container/pottle? Samples ontainers intact? Sufficient sample volume for indicated test? Yes No No No No No No No No No N	Chain of custody present?	Yes 🗹	No 🗌		
Samples in proper container/bottle? Sample containers intact? Yes No No Sample containers intact? Sufficient sample volume for indicated test? Yes No No All samples received within holding time? Water - VOA vials have zero headspace? Water - pH<2 acceptable upon receipt? Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? Yes No No No VOA vials submitted NA LOT # Checked by Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? Yes No No NA LOT # 17028 Adjusted? Container/Temp Blank temperature in compliance? Yes No No No Checked by Che	Chain of custody signed when relinquished and received?	Yes 🗹	No 📮		
Sample containers intact? Sufficient sample volume for indicated test? All samples received within holding time? Water - VOA vials have zero headspace? Water - pH<2 acceptable upon receipt? Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? Container/Temp Blank temperature in compliance? Cooler # 1 Temp °C 5.0 Seal Intact NP Any No response must be detailed in the comments section below. Client contacted: Date contacted: Person contacted: Comments:	Chain of custody agrees with sample labels?	Yes 🗹	No 🗍	*	
Sufficient sample volume for indicated test? All samples received within holding time? Water - VOA vials have zero headspace? Water - pH<2 acceptable upon receipt? Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? Container/Temp Blank temperature in compliance? Cooler # 1 Temp °C 5.0 Seal Intact NP Any No response must be detailed in the comments section below. Client contacted: Date contacted: Date contacted: Date contacted: Person contacted: Comments:	Samples in proper container/bottle?	Yes 🗸	No 🗌		
All samples received within holding time? Water - VOA vials have zero headspace? Yes No No No VOA vials submitted NA Water - pH-2 acceptable upon receipt? Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? Yes No No NA LOT # Adjusted? Checked by Ch	Sample containers intact?	Yes 🗹	No 🗌		
Water - VOA vials have zero headspace? Water - pH-2 acceptable upon receipt? Water - ph-9 (S) or ph-10 (CN) acceptable upon receipt? Water - ph-9 (S) or ph-10 (CN) acceptable upon receipt? Yes No NA LOT # Adjusted? Checked by NA LOT # 17028 Adjusted? Checked by Checked by	Sufficient sample volume for indicated test?	Yes 🗹	No 📶		10
Water - pH<2 acceptable upon receipt? Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? Yes ☑ No ☐ NA ☐ LOT # 17028 Adjusted? Checked by ☐ ☐ Checked by ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	All samples received within holding time?	Yes 🗹	No 🗌		
Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? Yes No NA LOT # 17028 Adjusted? Container/Temp Blank temperature in compliance? Yes No No Checked by Check	Water - VOA vials have zero headspace?	Yes 🗹	No 🗌 N	lo VOA vials submitted	☐ NA ☐
Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? Yes No No NA LOT # 17028 Adjusted? NO Checked by Checked by Container/Temp Blank temperature in compliance? Yes No Cooler # 1 Temp °C 5.0 Seal Intact NP Any No response must be detailed in the comments section below. Client contacted: Date contacted: Person contacted: Contacted by: Regarding:	Water - pH<2 acceptable upon receipt?	Yes	No 🗌 N	IA ✓ LOT #d*	
Container/Temp Blank temperature in compliance? Yes No Checked by Carlotted: No No Cooler # 1 Temp °C 5.0 Seal Intact NIP Any No response must be detailed in the comments section below. Client contacted: Date contacted: Person contacted: Contacted by: Regarding:	*	Adjusted?		Checked by	-
Container/Temp Blank temperature in compliance? Yes No Cooler # 1 Temp °C 5.0 Seal Intact NP Any No response must be detailed in the comments section below. Client contacted: Date contacted: Person contacted: Contacted by: Regarding: Comments:	Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt?	Yes 🗹	No 🗆 N	IA LOT # 170)28
Cooler # 1 Temp °C 5.0 Seal Intact NP Any No response must be detailed in the comments section below. Client contacted: Date contacted: Person contacted: Contacted by: Regarding: Comments:	*	Adjusted?	10	Checked by	The same
Temp °C 5.0 Seal Intact NIP Any No response must be detailed in the comments section below. Client contacted: Date contacted: Person contacted: Contacted by: Regarding: Comments:	Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌		~
Seal Intact NP Any No response must be detailed in the comments section below. Client contacted: Date contacted: Person contacted: Contacted by: Regarding: Comments:	Cooler # 1				
Any No response must be detailed in the comments section below. Client contacted: Date contacted: Person contacted: Contacted by: Regarding: Comments:	•		1 1 1	* Arm	36.1
Client contacted: Contacted by: Regarding: Comments:		S		The second	
Contacted by: Regarding: Comments:	Any No response must be detailed in the comments section below.		110 MARIN 2		e
Comments:	Client contacted: Date contacted:		Perso	on contacted:	
Comments:	Contacted by: Regarding:				
				at all a lateral times. I K Serie et al.	Carrier a security of the second
Corrective Action:	Comments:	5 8 8 8 E	- 2	5.232 - 2 -	
Corrective Action:	THE CONTRACT OFFICE OF STREET		0 0 10 0 C 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0	K-004 (0000 0000),000000	
The Company of the Co	Corrective Action:	SOURCE SERVES			a m ponta antari

DHL Analytical. Inc.

CLIENT: Pollution Control Services

Project: PCS 810676, 810680-810681

Lab Order: 2508071

CASE NARRATIVE

Date: 15-Aug-25

Samples were analyzed using the methods outlined in the following references:

ASTM, EPA and Standard Methods.

The compounds Diuron and Hexachlorophene by LCMS are not NELAP Certified.

Several compounds for Pesticides Analysis are not NELAP Certified.

The compounds Dicofol and Nonylphenol in Water Analysis are not NELAP Certified.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives except where noted in the following. For Total and Amenable Cyanide Analysis, the recoveries of the Matrix Spike and Matrix Spike Duplicate (2508088-01 MS/MSD) were below the method control limits. These are flagged accordingly in the QC Summary Report. The associated LCS was within method control limits. No further corrective action was taken.

For Volatiles Analysis, there was no recovery of 2-Chloroethylvinylether for the Matrix Spike and Matrix Spike Duplicate (2508050-02 MS/MSD) due to method specified preservation. These are flagged accordingly in the QC Summary Report. This compound was within method control limits in the associated LCS. No further corrective action was taken.

For Pesticides Analysis, the recovery of N-Nitrosodimethylamine and the RPD of Endrin aldehyde for the Matrix Spike Duplicate (2508006-01 MSD) were outside of the method control limits. These are flagged accordingly in the QC Summary Report. These compounds were within method control limits in the associated LCS/MS. No further corrective action was taken.

DHL Analytical, Inc.

Date: 15-Aug-25

CLIENT:

Pollution Control Services

Project:

PCS 810676, 810680-810681

Lab Order:

2508071

Work Order Sample Summary

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
2508071-01	810676		08/05/25 07:00 AM	08/06/2025
2508071-02	810680		08/04/25 12:52 PM	08/06/2025
2508071-03	810681		08/04/25 12:53 PM	08/06/2025

DHL Analytical, Inc.

CLIENT: Pollution Control Services

Project: PCS 810676, 810680-810681

Project No: Lab Order:

2508071

Client Sample ID: 810676

Lab ID: 2508071-01

Date: 15-Aug-25

Collection Date: 08/05/25 07:00 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
DIURON-HEXACHLOROPHENE E	BY LCMS	E	32				Analyst: RA
Diuron	<0.0000298	0.0000298	0.0000794	N	mg/L	1	08/15/25 11:18 AM
Hexachlorophene	<0.000993	0.000993	0.00497	N	mg/L	1	08/15/25 11:18 AM
Surr: Carbazole	59.7	0	35-145		%REC	1	08/15/25 11:18 AM
625.1 PCB BY GC/MS		E6:	25.1				Analyst: DEW
Aroclor 1016	<0.0000989	0.0000989	0.000198		mg/L	1	08/11/25 02:14 PM
Aroclor 1221	<0.0000989	0.0000989	0.000198		mg/L	1	08/11/25 02:14 PM
Aroclor 1232	<0.0000989	0.0000989	0.000198		mg/L	1	08/11/25 02:14 PM
Aroclor 1242	<0.0000989	0.0000989	0.000198		mg/L	1	08/11/25 02:14 PM
Aroclor 1248	<0.0000989	0.0000989	0.000198		mg/L	1	08/11/25 02:14 PM
Aroclor 1254	<0.0000989	0.0000989	0.000198		mg/L	1	08/11/25 02:14 PM
Aroclor 1260	< 0.0000989	0.0000989	0.000198		mg/L	1	08/11/25 02:14 PM
Total PCBs	<0.000989	0.0000989	0.000198		mg/L	1	08/11/25 02:14 PM
Surr: 2-Fluorobiphenyl	88.7	0	43-116		%REC	1	08/11/25 02:14 PM
Surr: 4-Terphenyl-d14	107	0	33-141		%REC	1	08/11/25 02:14 PM
625.1 SEMIVOLATILE WATER		E6:	25.1				Analyst: DEW
Anthracene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Benzidine	<0.000978	0.000978	0.00391		mg/L	1	08/11/25 09:11 PM
Benzo[a]anthracene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Benzo[a]pyrene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Bis(2-chloroethyl)ether	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Bis(2-ethylhexyl)phthalate	< 0.00293	0.00293	0.00587		mg/L	1	08/11/25 09:11 PM
Chrysene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
4,6-Dinitro-o-cresol	< 0.00196	0.00196	0.00391		mg/L	1	08/11/25 09:11 PM
o-Cresol	< 0.00196	0.00196	0.00391		mg/L	1	08/11/25 09:11 PM
p-Chloro-m-Cresol	< 0.00196	0.00196	0.00391		mg/L	1	08/11/25 09:11 PM
m,p-Cresols	< 0.00196	0.00196	0.00391		mg/L	1	08/11/25 09:11 PM
3,3´-Dichlorobenzidine	< 0.000978	0.000978	0.00489		mg/L	1	08/11/25 09:11 PM
2,4-Dimethylphenol	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Di-n-butyl phthalate	< 0.00293	0.00293	0.00587		mg/L	1	08/11/25 09:11 PM
Hexachlorobenzene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Hexachlorobutadiene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Hexachlorocyclopentadiene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Hexachloroethane	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Nitrobenzene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
N-Nitrosodiethylamine	< 0.00196	0.00196	0.00391		mg/L	1	08/11/25 09:11 PM
N-Nitrosodi-n-butylamine	<0.000978	0.000978	0.00391		mg/L	1	08/11/25 09:11 PM
Pentachlorobenzene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
 - RL Reporting Limit
 - N Parameter not NELAP certified

Pollution Control Services

Project: PCS 810676, 810680-810681

Project No:

CLIENT:

Lab Order: 2508071

Date: 15-Aug-25

Client Sample ID: 810676

Lab ID: 2508071-01

Collection Date: 08/05/25 07:00 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
625.1 SEMIVOLATILE WATER		E62	5.1			Analyst: DEW
Pentachlorophenol	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Phenanthrene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Pyridine	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
1,2,4,5-Tetrachlorobenzene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
2,4,5-Trichlorophenol	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
2-Chlorophenol	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
2,4-Dichlorophenol	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
2,4-Dinitrophenol	< 0.00196	0.00196	0.00391	mg/L	1	08/11/25 09:11 PM
2-Nitrophenol	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
4-Nitrophenol	< 0.00196	0.00196	0.00391	mg/L	1	08/11/25 09:11 PM
Phenol	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
2,4,6-Trichlorophenol	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Acenaphthene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Acenaphthylene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Benzo[b]fluoranthene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Benzo[g,h,i]perylene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Benzo[k]fluoranthene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Bis(2-chloroethoxy)methane	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Bis(2-chloroisopropyl)ether	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
4-Bromophenyl phenyl ether	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Butyl benzyl phthalate	< 0.00293	0.00293	0.00587	mg/L	1	08/11/25 09:11 PM
2-Chloronaphthalene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
4-Chlorophenyl phenyl ether	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Dibenz[a,h]anthracene	< 0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Diethyl phthalate	< 0.00293	0.00293	0.00587	mg/L	1	08/11/25 09:11 PM
Dimethyl phthalate	< 0.00293	0.00293	0.00587	mg/L	1	08/11/25 09:11 PM
2,4-Dinitrotoluene	< 0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
2,6-Dinitrotoluene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Di-n-octyl phthalate	< 0.00293	0.00293	0.00587	mg/L	1	08/11/25 09:11 PM
1,2-Diphenylhydrazine	< 0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Fluoranthene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Fluorene	< 0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Indeno[1,2,3-cd]pyrene	< 0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Isophorone	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
Naphthalene	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
N-Nitrosodimethylamine	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
N-Nitrosodi-n-propylamine	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM
N-Nitrosodiphenylamine	<0.000978	0.000978	0.00196	mg/L	1	08/11/25 09:11 PM

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

Date: 15-Aug-25

CLIENT:

Pollution Control Services

Project:

PCS 810676, 810680-810681

Project No: Lab Order:

2508071

Client Sample ID: 810676

Lab ID: 2508071-01

Collection Date: 08/05/25 07:00 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
625.1 SEMIVOLATILE WATER		E6	25.1				Analyst: DEW
Pyrene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
1,2,4-Trichlorobenzene	<0.000978	0.000978	0.00196		mg/L	1	08/11/25 09:11 PM
Surr: 2,4,6-Tribromophenol	115	0	10-123		%REC	1	08/11/25 09:11 PM
Surr: 2-Fluorobiphenyl	84.8	0	43-116		%REC	1	08/11/25 09:11 PM
Surr: 2-Fluorophenol	47.0	0	21-100		%REC	1	08/11/25 09:11 PM
Surr: 4-Terphenyl-d14	82.8	0	33-141		%REC	1	08/11/25 09:11 PM
Surr: Nitrobenzene-d5	88.0	0	35-115		%REC	1	08/11/25 09:11 PM
Surr: Phenol-d5	32.0	0	10-94		%REC	1	08/11/25 09:11 PM
625.1 PESTICIDE BY GC/MS		E6	25.1				Analyst: DEW
4,4´-DDD	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
4,4'-DDE	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
4,4´-DDT	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
Aldrin	<0.00000989	0.00000989	0.00000989		mg/L	1	08/11/25 09:03 PM
alpha-BHC (Hexachlorocyclohexane)	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
beta-BHC (Hexachlorocyclohexane)	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
Carbaryl	<0.00000989	0.00000989	0.0000297	N	mg/L	1	08/11/25 09:03 PN
Chlordane	< 0.0000593	0.0000593	0.000198	N	mg/L	1	08/11/25 09:03 PN
Chlorpyrifos	<0.00000989	0.00000989	0.0000297	N	mg/L	1	08/11/25 09:03 PN
delta-BHC (Hexachlorocyclohexane)	<0.0000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PN
Diazinon	<0.00000989	0.00000989	0.0000297	N	mg/L	1	08/11/25 09:03 PM
Dieldrin	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
Endosulfan I	<0.00000989	0.00000989	0.00000989		mg/L	1	08/11/25 09:03 PN
Endosulfan II	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PN
Endosulfan sulfate	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PN
Endrin	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
Endrin aldehyde	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PN
gamma-BHC (Lindane)	<0.00000989	0.00000989	0.0000198		mg/L	1	08/11/25 09:03 PM
Guthion (Azinphosmethyl)	<0.00000989	0.00000989	0.0000297	N	mg/L	1	08/11/25 09:03 PN
Heptachlor	<0.00000989	0.00000989	0.00000989		mg/L	1	08/11/25 09:03 PM
Heptachlor epoxide	<0.00000989	0.00000989	0.00000989		mg/L	1	08/11/25 09:03 PM
Malathion	<0.00000989	0.00000989	0.0000297	N	mg/L	1	08/11/25 09:03 PM
Methoxychlor	<0.0000198	0.0000198	0.0000198	N	mg/L	1	08/11/25 09:03 PM
Mirex	<0.00000989	0.00000989	0.0000198	N	mg/L	1	08/11/25 09:03 PM
Parathion, ethyl	<0.00000989	0.00000989	0.0000297	N	mg/L	1	08/11/25 09:03 PM
Toxaphene	< 0.000297	0.000297	0.000297		mg/L	1	08/11/25 09:03 PM
Demeton (O & S)	<0.00000989	0.00000989	0.0000297	N	mg/L	1	08/11/25 09:03 PN

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

CLIENT: Pollution Control Services

Project: PCS 810676, 810680-810681

Project No:

Lab Order: 2508071

Date: 15-Aug-25

Client Sample ID: 810676

Lab ID: 2508071-01

Collection Date: 08/05/25 07:00 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
625.1 PESTICIDE BY GC/MS		E62	25.1				Analyst: DEW
Surr: 2-Fluorobiphenyl	70.3	0	43-116		%REC	1	08/11/25 09:03 PM
Surr: 4-Terphenyl-d14	95.8	0	33-141		%REC	1	08/11/25 09:03 PM
DICOFOL IN WATER BY ASTM ME	THOD	D5812-	96MOD				Analyst: DEW
Dicofol	<0.000198	0.000198	0.000396	N	mg/L	1	08/11/25 09:03 PM
NONYLPHENOL IN WATER BY AS	STM METHOD <0.0685	D706 0.0685	55-17 0.0978	N	mg/L	i	Analyst: DEW 08/11/25 09:11 PM

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

Date: 15-Aug-25

CLIENT:

Pollution Control Services

Project:

PCS 810676, 810680-810681

Project No:

Lab Order: 2508071

Client Sample ID: 810680

Lab ID: 2508071-02

Collection Date: 08/04/25 12:52 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
624.1 VOLATILES WATER		E624	4.1				Analyst: JVR
Acrylonitrile	<0.00100	0.00100	0.00300		mg/L	1	08/07/25 06:04 PM
Benzene	<0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Bromodichloromethane	0.0205	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Bromoform	0.000487	0.000300	0.00100	J	mg/L	1	08/07/25 06:04 PM
Carbon tetrachloride	<0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Chlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Chlorodibromomethane	0.00679	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Chloroform	0.0429	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
1,2-Dibromoethane	<0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
1,3-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
1,2-Dichlorobenzene	<0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
1,4-Dichlorobenzene	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
1,2-Dichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
1,1-Dichloroethene	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Methylene chloride (DCM)	< 0.00250	0.00250	0.00500		mg/L	1	08/07/25 06:04 PM
1,2-Dichloropropane	<0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
1,3-Dichloropropene (cis)	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
1,3-Dichloropropene (trans)	<0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Ethylbenzene	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Methyl ethyl ketone	< 0.00500	0.00500	0.0150		mg/L	1	08/07/25 06:04 PM
1,1,2,2-Tetrachloroethane	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Tetrachloroethene	<0.000600	0.000600	0.00200		mg/L	1	08/07/25 06:04 PM
Toluene	< 0.000600	0.000600	0.00200		mg/L	1	08/07/25 06:04 PM
1,1,1-Trichloroethane	<0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
1,1,2-Trichloroethane	< 0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Trichloroethene	<0.000600	0.000600	0.00100		mg/L	1	08/07/25 06:04 PM
TTHM (Total Trihalomethanes)	0.0706	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Vinyl chloride	<0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PM
Acrolein	<0.00500	0.00500	0.0150		mg/L	1	08/07/25 06:04 PM
Chloroethane	< 0.00100	0.00100	0.00500		mg/L	1	08/07/25 06:04 PN
2-Chloroethylvinylether	<0.00600	0.00600	0.0100		mg/L	1	08/07/25 06:04 PN
1,1-Dichloroethane	<0.000300	0.000300	0.00100		mg/L	1	08/07/25 06:04 PN
Methyl bromide	<0.00100	0.00100	0.00500		mg/L	1	08/07/25 06:04 PN
Methyl chloride	<0.00100	0.00100	0.00500		mg/L	1	08/07/25 06:04 PN
trans-1,2-Dichloroethylene	<0.000300	0.000300	0.00200		mg/L	1	08/07/25 06:04 PN
Surr: 1,2-Dichloroethane-d4	107	0	72-119		%REC	1	08/07/25 06:04 PM
Surr: 4-Bromofluorobenzene	99.6	0	76-119		%REC	1	08/07/25 06:04 PN
Surr: Dibromofluoromethane	106	0	85-115		%REC	1	08/07/25 06:04 PM

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

Pollution Control Services

Project: PCS 810676, 810680-810681

Project No:

CLIENT:

Lab Order: 2508071

Date: 15-Aug-25

Client Sample ID: 810680

Lab ID: 2508071-02

Collection Date: 08/04/25 12:52 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
624.1 VOLATILES WATER		E624	.1				Analyst: JVR
Surr: Toluene-d8	96.1	0	81-120		%REC	1	08/07/25 06:04 PM

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

CLIENT: Pollution Control Services

Project: PCS 810676, 810680-810681

Project No:

Lab Order: 2508071

Date: 15-Aug-25

Client Sample ID: 810681

Lab ID: 2508071-03

Collection Date: 08/04/25 12:53 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
CYANIDE - WATER SAMPLE		M4500-	CN E				Analyst: CAE
Cyanide, Amenable to Chlorination	< 0.0100	0.0100	0.0200		mg/L	1	08/12/25 10:33 AM
Cyanide, Total	<0.0100	0.0100	0.0200		mg/L	1	08/12/25 10:33 AM

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

Date: 15-Aug-25

CLIENT:

Pollution Control Services

Work Order: 2508071

Project: PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

unID: LCMS2 250815A

Project: PCS 810)676, 810680 ₁	-810681				Kunii): L	CN152_23	00813	A	
The QC data in batch 121933	applies to the fo	ollowing sa	amples: 2508	071-01A							
Sample ID: MB-121933	Batch ID:	121933		TestNo:	E632			Units:	mg/l	-	
SampType: MBLK	Run ID:	LCMS2_	250815A	Analysis	Date: 8/15/2	025 10:44	1:32 AM	Prep Date:	8/12	/2025	
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit 🤋	%RPD	RPDLimi	t Qual
Diuron	<0.0	0000300	0.0000800								N
Hexachlorophene	<0	.00100	0.00500								N
Surr: Carbazole		5.56		10.00		55.6	35	145			
Sample ID: LCS-121933	Batch ID:	121933		TestNo:	E632			Units:	mg/l		
SampType: LCS	Run ID:	LCMS2_	250815A	Analysis	Date: 8/15/2	025 10:55	5:48 AM	Prep Date:	8/12	/2025	
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit 9	%RPD	RPDLimi	t Qual
Diuron	0.	.00162	0.0000800	0.00200	0	80.8	35	145			N
Hexachlorophene	0.	.00130	0.00500	0.00200	0	64.8	35	145			N
Surr: Carbazole		5.75		10.00		57.5	35	145			
Sample ID: LCSD-121933	Batch ID:	121933		TestNo:	E632			Units:	mg/l	L	
SampType: LCSD	Run ID:	LCMS2_	250815A	Analysis	Date: 8/15/2	025 11:07	7:07 AM	Prep Date:	8/12	/2025	
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit S	%RPD	RPDLimi	it Qual
Diuron	0.	.00167	0.0000800	0.00200	0	83.3	35	145	3.11	30	Ν
Hexachlorophene	0.	.00127	0.00500	0.00200	0	63.6	35	145	1.81	30	N
Surr: Carbazole		5.83		10.00		58.3	35	145	0	0	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 1 of 21

Project:

Pollution Control Services

Work Order:

2508071

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS10_250811C

Sample ID: LCS-12	21881 R	atch ID:	121881		TestNo). Es	25.1		Units:	mg/L	
SampType: LCS		Run ID:		0_250811C			23. i 1/2025 11:42	·00 AM	Prep Date:	8/8/2025	
		CONTID.									
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLi	mit Qua
4,4´-DDD			.000287	0.0000200	0.000400	0	71.8	0.1	135		
4,4'-DDE			.000283	0.0000200	0.000400	0	70.6	19	120		
4,4'-DDT			.000311	0.0000200	0.000400	0	77.8	0.1	171		
Aldrin			.000253	0.0000100	0.000400	0	63.2	7	152		
alpha-BHC (Hexach	-	•	.000330	0.0000200	0.000400	0	82.4	42	108		
beta-BHC (Hexachle	procyclohexane)) (.000337	0.0000200	0.000400	0	84.2	42	131		
Carbaryl		C	.000338	0.0000300	0.000400	0	84.6	38	168		N
Chlorpyrifos		C	.000371	0.0000300	0.000400	0	92.8	42	131		N
delta-BHC (Hexachl	orocyclohexane) (.000310	0.0000200	0.000400	0	77.6	0.1	120		
Diazinon		C	.000360	0.0000300	0.000400	0	89.9	52	120		N
Dieldrin		C	.000321	0.0000200	0.000400	0	80.4	44	119		
Endosulfan I		C	.000314	0.0000100	0.000400	0	78.6	47	128		
Endosulfan II		C	.000313	0.0000200	0.000400	0	78.1	52	125		
Endosulfan sulfate			.000312	0.0000200	0.000400	0	78.0	0.1	120		
Endrin			.000338	0.0000200	0.000400	0	84.5	50	151		
Endrin aldehyde			.000323	0.0000200	0.000400	0	80.7	0.1	189		
gamma-BHC (Linda	no)		.000323	0.0000200	0.000400	0	78.4	41	111		
Guthion (Azinphosm	•		.000313	0.0000200	0.000400	0	91.8	44	193	25	N
	ietriyi <i>)</i>					0	67.2	0,1	172		14
Heptachlor			.000269	0.0000100	0.000400						
Heptachlor epoxide			.000294	0.0000100	0.000400	0	73.4	71	120		
Malathion			.000419	0.0000300	0.000400	0	105	56	161		N
Methoxychlor			.000298	0.0000200	0.000400	0	74.6	38	156		N
Mirex			.000249	0.0000200	0.000400	0	62.3	27	131		N
Parathion, ethyl			.000443	0.0000300	0.000400	0	111	13	184		N
Demeton (O & S)		C	.000354	0.0000300	0.000400	0	88.4	28	154		N
Surr: 2-Fluorobipl	nenyl		2.91		4.000		72.8	43	116		
Surr: 4-Terphenyl	-d14		3.23		4.000		80.8	33	141		
Sample ID: MB-12	1 881 B	atch ID:	121881		TestNo	o: E6 :	25.1		Units:	mg/L	
SampType: MBLK	R	Run ID:	GCMS1	0_250811C	Analys	sis Date: 8/1	1/2025 2:50:	00 PM	Prep Date:	8/8/2025	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLi	imit Qua
4,4'-DDD		<(.0000100	0.0000200							
4,4'-DDE		<(.0000100	0.0000200							
4,4'-DDT			.0000100	0.0000200							
Aldrin			.0000100	0.0000100							
alpha-BHC (Hexach	lorocyclobovane		.0000100	0.0000200							
beta-BHC (Hexachle	•	•	.0000100	0.0000200							
Carbaryl	nooyolollexalle)		.0000100	0.0000200							٨
Chlordane			.00000100	0.0000300							N
Qualifiers: B	Analyte detecte					Dilution Fac				B .	
J	Analyte detecte					Method Dete				Page 2	2 of 21
ND	Not Detected a		od Detection	on Limit	R		accepted cont				
RL	Reporting Limi	it			S		ery outside co				
Ј	Analyte detecte	ed betwee	n SDL and I	RL	N	Parameter no	ot NELAP cert	ified			

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS10_250811C

Sample ID: MB-121881	Batch ID:	121881		TestNo	: E625	5.1		Units:	mg/L	
SampType: MBLK	Run ID:	GCMS1	0_250811C	Analysi	s Date: 8/11/	2025 2:50:	00 PM	Prep Date:	8/8/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit '	%RPD RPDLi	imit Qu
Chlorpyrifos	<0.	0000100	0.0000300							N
delta-BHC (Hexachlorocyclohexar	ne) <0.	0000100	0.0000200							
Diazinon	<0.	0000100	0.0000300							N
Dieldrin	<0.	0000100	0.0000200							
Endosulfan I	<0.	0000100	0.0000100							
Endosulfan II	<0.	0000100	0.0000200							
Endosulfan sulfate	<0.	0000100	0.0000200							
Endrin	<0.	0000100	0.0000200							
Endrin aldehyde	<0.	0000100	0.0000200							
gamma-BHC (Lindane)	<0.	0000100	0.0000200							
Guthion (Azinphosmethyl)	<0.	0000100	0.0000300							N
Heptachlor	<0.	0000100	0.0000100							
Heptachlor epoxide	<0.	0000100	0.0000100							
Malathion	<0.	0000100	0.0000300							N
Methoxychlor	<0.	0000200	0.0000200							N
Mirex	<0.	0000100	0.0000200							N
Parathion, ethyl	<0.	0000100	0.0000300							N
Toxaphene	<0	.000300	0.000300							
Demeton (O & S)	<0.	0000100	0.0000300							N
Surr: 2-Fluorobiphenyl		3.12		4.000		78.0	43	116		
Surr: 4-Terphenyl-d14		3.55		4.000		88.9	33	141		
Sample ID: 2508006-01AMS	Batch ID:	121881		TestNo	: E625	5.1		Units:	mg/L	
SampType: MS	Run ID:	GCMS1	0_250811C	Analysi	s Date: 8/11	/2025 10:1	9:00 PM	Prep Date:	8/8/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDL	imit Qu
4,4´-DDD	0	.00324	0.000178	0.00355	0	91.1	0.1	145		
4,4'-DDE	0	.00257	0.000178	0.00355	0	72.4	4	136		
4,4'-DDT	0	.00238	0.000178	0.00355	0	67.0	0.1	203		
Aldrin	0	.00279	0.0000888	0.00355	0	78.6	0.1	166		
alpha-BHC (Hexachlorocyclohexa	ne) 0	.00313	0.000178	0.00355	0	88.1	31	121		
beta-BHC (Hexachlorocyclohexan	ie) 0	.00346	0.000178	0.00355	0	97.5	24	149		
Carbaryl	0	.00422	0.000266	0.00355	0	119	41	195		N
Chlorpyrifos	0	.00374	0.000266	0.00355	0	105	32	149		N
delta-BHC (Hexachlorocyclohexar	ne) 0	.00317	0.000178	0.00355	0	89.1	0.1	120		
Diazinon		.00409	0.000266	0.00355	0	115	40	141		N
Dieldrin		.00356	0.000178	0.00355	0	100	29	136		
Endosulfan I		.00326	0.0000888	0.00355	0	91.9	24	159		
Endosulfan II		.00367	0.000178	0.00355	0	103	30	163		
		.00333	0.000178	0.00355	0	93.8	0.1	120		
Endosulfan sulfate	U	.00333								

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

17

Page 3 of 21

Pollution Control Services

Work Order:

Sample ID: 2508006-01AMS

2508071

Project:

PCS 810676, 810680-810681

Batch ID: 121881

ANALYTICAL QC SUMMARY REPORT

RunID:

E625.1

GCMS10_250811C

mg/L

Units:

SampType: MS	Run ID: GCMS10_25081			Analysis Date: 8/11/2025 10:19:00 PM					Prep Date: 8/8/2025			
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD	RPDLimit	t Qual	
Endrin aldehyde		0.000177	0.000178	0.00355	0	4.97	0.1	209				
gamma-BHC (Lindane)		0.00286	0.000178	0.00355	0	80.5	16	128				
Guthion (Azinphosmethyl)		0.00439	0.000266	0.00355	0	124	4	226			N	
Heptachlor		0.00293	0.0000888	0.00355	0	82.6	0.1	192				
Heptachlor epoxide		0.00294	0.0000888	0.00355	0	82.9	26	155				
Malathion		0.00487	0.000266	0.00355	0	137	47	190			N	
Methoxychlor		0.00232	0.000178	0.00355	0	65.4	14	174			N	
Mirex		0.00252	0.000178	0.00355	0	71.0	6	154			N	
Parathion, ethyl		0.00612	0.000266	0.00355	0	172	24	192			Ν	
Demeton (O & S)		0.00482	0.000266	0.00355	0	136	27	189			Ν	
Surr: 2-Fluorobiphenyl		27.5		35.52		77.3	43	116				
Surr: 4-Terphenyl-d14		32.1		35.52		90.3	33	141				
Sample ID: 2508006-01AMSD I	Batch ID	: 121881		TestNo): E62 :	5.1		Units:	mg/			
SampType: MSD	Run ID:	GCMS1	0_250811C	Analys	is Date: 8/11	/2025 10:56	6:00 PM	Prep Date	: 8/8/	2025		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimi	t Qual	
4,4´-DDD		0.00344	0.000189	0.00378	0	91.0	0.1	145	6.12	50		
4,4'-DDE		0.00285	0.000189	0.00378	0	75.5	4	136	10.4	50		
4,4'-DDT		0.00251	0.000189	0.00378	0	66.4	0.1	203	5.21	50		
Aldrin		0.00288	0.0000945	0.00378	0	76.2	0.1	166	3.10	50		
alpha-BHC (Hexachlorocyclohexan	ie)	0.00314	0.000189	0.00378	0	83.0	31	121	0.265	50		
beta-BHC (Hexachlorocyclohexane))	0.00347	0.000189	0.00378	0	91.7	24	149	0.149	50		
Carbaryl		0.00422	0.000284	0.00378	0	112	41	195	0.060	50	N	
Chlorpyrifos		0.00394	0.000284	0.00378	0	104	32	149	5.32	50	Ν	
delta-BHC (Hexachlorocyclohexane	e)	0.00324	0.000189	0.00378	0	85.6	0.1	120	2.18	50		
Diazinon		0.00405	0.000284	0.00378	0	107	40	141	0.961	50	N	
Dieldrin		0.00341	0.000189	0.00378	0	90.3	29	136	4.33	50		
Endosulfan I		0.00342	0.0000945	0.00378	0	90.6	24	159	4.78	50		
Endosulfan II		0.00348	0.000189	0.00378	0	92.0	30	163	5.42	50		
Endosulfan sulfate		0.00340	0.000189	0.00378	0	90.0	0.1	120	2.03	50		
Endrin		0.00391	0.000189	0.00378	0	103	23	187	4.39	50		
Endrin aldehyde		0.000575	0.000189	0.00378	0	15.2	0.1	209	106	50	R	
gamma-BHC (Lindane)		0.00295	0.000189	0.00378	0	78.0	16	128	3.16	50		
Guthion (Azinphosmethyl)		0.00440	0.000284	0.00378	0	116	4	226	0.095	50	N	
Heptachlor		0.00303	0.0000945	0.00378	0	80.1	0.1	192	3.18	50		
Heptachlor epoxide		0.00298	0.0000945	0.00378	0	78.8	26	155	1.17	50		
Malathion		0.00494	0.000284	0.00378	0	131	47	190	1.49	50	Ν	
Methoxychlor		0.00224	0.000189	0.00378	0	59.3	14	174	3.50	50	N	
Mirex		0.00266	0.000189	0.00378	0	70.3	6	154	5.22	50	Ν	
MILOX												

TestNo:

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit RL

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits S Spike Recovery outside control limits

Parameter not NELAP certified

Page 4 of 21

Pollution Control Services

Work Order: 2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS10_250811C

Sample ID: 2508006-01AMSD	Batch ID:	121881		TestNo): E6 :	25.1		Units:	mg/l	-	
SampType: MSD	Run ID:	GCMS1	0_250811C	Analys	is Date: 8/1	1/2025 10:56	:00 PM	Prep Date	: 8/8/2	2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimi	t Qual
Demeton (O & S)		0.00491	0.000284	0.00378	0	130	27	189	1.77	50	N
Surr: 2-Fluorobiphenyl		28.1		37.81		74.4	43	116	0	0	
Surr: 4-Terphenyl-d14		33.3		37.81		88.1	33	141	0	0	

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit RL

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAP certified

Page 5 of 21

Project:

Pollution Control Services

Work Order:

2508071

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS10_250811D

Sample ID: LCS-121881-DICO	Batch ID:	121881		TestNo:	D58	12-96mod		Units:	mg/L	
SampType: LCS	Run ID:	GCMS10	_250811D	Analysis	Date: 8/11	/2025 1:36:	00 PM	Prep Date:	8/8/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit ⁽	%RPD RPDLir	nit Qual
Dicofol		0.000983	0.000400	0.00100	0	98.3	22	180		N
Sample ID: MB-121881	Batch ID:	121881		TestNo:	D58	12-96mod		Units:	mg/L	
SampType: MBLK	Run ID:	GCMS10	_250811D	Analysis	Date: 8/11	/2025 2:50:	00 PM	Prep Date:	8/8/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit '	%RPD RPDLir	nit Qua
Dicofol		:0.000200	0.000400							N

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

Analyte detected between SDL and RL

Dilution Factor DF

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAP certified N

Page 6 of 21

Project:

Pollution Control Services

Work Order:

2508071

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS8_250811A

imit Qua
imit Qua

Qualifiers

- Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- Reporting Limit
- Analyte detected between SDL and RL
- Dilution Factor
- MDL Method Detection Limit
 - RPD outside accepted control limits R

Page 7 of 21

- Spike Recovery outside control limits S
- Parameter not NELAP certified

Project:

Pollution Control Services

Work Order:

2508071

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_250811C

Sample ID: LCS-121909	Batch ID:	121909		TestNo	E625	5.1		Units:	mg/L
SampType: LCS	Run ID:	GCMS9	_250811C	Analys	is Date: 8/11	/2025 5:07:	00 PM	Prep Date:	8/11/2025
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Q
Benzidine		0.0226	0.00400	0.0400	0	56.6	5	125	
Benzo[a]anthracene		0.0339	0.00200	0.0400	0	84.7	33	143	
Benzo[a]pyrene		0.0369	0.00200	0.0400	0	92.2	17	163	
Chrysene		0.0347	0.00200	0.0400	0	86.7	17	168	
2,4-Dimethylphenol		0.0331	0.00200	0.0400	0	82.6	32	120	
4,6-Dinitro-o-cresol		0.0335	0.00400	0.0400	0	83.7	10	181	
m,p-Cresols		0.0305	0.00400	0.0400	0	76.2	10	125	
o-Cresol		0.0296	0.00400	0.0400	0	74.0	25	125	
p-Chloro-m-Cresol		0.0332	0.00400	0.0400	0	82.9	22	147	
Hexachlorobenzene		0.0348	0.00200	0.0400	0	87.0	10	152	
Hexachlorobutadiene		0.0286	0.00200	0.0400	0	71.6	24	120	
-lexachloroethane		0.0301	0.00200	0.0400	0	75.4	40	120	
Nitrobenzene		0.0341	0.00200	0.0400	0	85.2	35	180	
N-Nitrosodiethylamine		0.0338	0.00400	0.0400	0	84.4	20	125	
N-Nitrosodi-n-butylamine		0.0389	0.00400	0.0400	0	97.3	20	125	
Pentachlorobenzene		0.0364	0.00200	0.0400	0	91.1	40	140	
Pentachlorophenol		0.0362	0.00200	0.0400	0	90.4	14	176	
Phenanthrene		0.0345	0.00200	0.0400	0	86.2	54	120	
Pyridine		0.0137	0.00200	0.0400	0	34.2	10	75	
1,2,4,5-Tetrachlorobenzene		0.0332	0.00200	0.0400	0	83,1	30	140	
2,4,5-Trichlorophenol		0.0378	0.00200	0.0400	0	94.6	25	125	
2-Chlorophenol		0.0305	0.00200	0.0400	0	76.2	23	134	
2,4-Dichlorophenol		0.0352	0.00200	0.0400	0	87.9	39	135	
2,4-Dinitrophenol		0.0194	0.00400	0.0400	0	48.5	10	191	
2-Nitrophenol		0.0361	0.00200	0.0400	0	90.2	29	182	
1-Nitrophenol		0.0274	0.00400	0.0400	0	68.4	10	132	
Phenol		0.0173	0.00200	0.0400	0	43.2	5	120	
2,4,6-Trichlorophenol		0.0395	0.00200	0.0400	0	98.8	37	144	
Acenaphthene		0.0337	0.00200	0.0400	0	84.2	47	145	
Acenaphthylene		0.0372	0.00200	0.0400	0	92.9	33	145	
Anthracene		0.0353	0.00200	0.0400	0	88.2	27	133	
Benzo[b]fluoranthene		0.0366	0.00200	0.0400	0	91.4	24	159	
Benzo[g,h,i]perylene		0.0347	0.00200	0.0400	0	86.6	10	219	
Benzo[k]fluoranthene		0.0338	0.00200	0.0400	0	84.6	11	162	
Bis(2-chloroethoxy)methane		0.0341	0.00200	0.0400	0	85.3	33	184	
Bis(2-chloroethyl)ether		0.0322	0.00200	0.0400	0	80.6	12	158	
Bis(2-chloroisopropyl)ether		0.0321	0.00200	0.0400	0	80.2	36	166	
Bis(2-ethylhexyl)phthalate		0.0357	0.00600	0.0400	0	89.2	10	158	
4-Bromophenyl phenyl ether		0.0347	0.00200	0.0400	0	86.7	53	127	
Butyl benzyl phthalate		0.0373	0.00600	0.0400	0	93.2	10	152	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 8 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_250811C

Sample ID: LCS-121909	Batch ID:	121909		TestNo	E625	5.1		Units:	mg/L
SampType: LCS	Run ID:	GCMS9	_250811C	Analys	is Date: 8/11	/2025 5:07:	00 PM	Prep Date:	8/11/2025
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qua
2-Chloronaphthalene	C	0.0332	0.00200	0.0400	0	83.0	60	120	
4-Chlorophenyl phenyl ether	C	0.0313	0.00200	0.0400	0	78.2	25	158	
Dibenz[a,h]anthracene	C	0.0350	0.00200	0.0400	0	87.6	10	125	
3,3'-Dichlorobenzidine	C	0.0329	0.00500	0.0400	0	82.4	10	262	
Diethyl phthalate	C	0.0328	0.00600	0.0400	0	82.0	10	120	
Dimethyl phthalate	C	0.0333	0.00600	0.0400	0	83.2	10	120	
Di-n-butyl phthalate	C	0.0415	0.00600	0.0400	0	104	10	120	*
2,4-Dinitrotoluene	C	0.0340	0.00200	0.0400	0	85,1	39	139	
2,6-Dinitrotoluene	C	0.0342	0.00200	0.0400	0	85.5	50	158	
Di-n-octyl phthalate	C	0.0351	0.00600	0.0400	0	87.8	10	146	
1,2-Diphenylhydrazine	C	0.0370	0.00200	0.0400	0	92.5	40	140	
Fluoranthene	C	0.0368	0.00200	0.0400	0	92.0	26	137	
Fluorene	C	0.0334	0.00200	0.0400	0	83.6	59	121	
Hexachlorocyclopentadiene	C	0.0348	0.00200	0.0400	0	87.1	8	130	
Indeno[1,2,3-cd]pyrene	C	0.0336	0.00200	0.0400	0	84.0	10	171	
Isophorone	C	0.0364	0.00200	0.0400	0	91.0	21	196	
Naphthalene		0.0322	0.00200	0.0400	0	80.6	21	133	
N-Nitrosodimethylamine		0.0148	0.00200	0.0400	0	37.1	10	125	
N-Nitrosodi-n-propylamine		0.0383	0.00200	0.0400	0	95.8	10	230	
N-Nitrosodiphenylamine		0.0353	0.00200	0.0400	0	88.3	20	125	
Pyrene		0.0330	0.00200	0.0400	0	82.5	52	120	
1,2,4-Trichlorobenzene		0.0298	0.00200	0.0400	0	74.4	44	142	
Surr: 2,4,6-Tribromophenol	•	85.2	*******	80.00		106	10	123	
Surr: 2-Fluorobiphenyl		65.4		80.00		81.8	43	116	
Surr: 2-Fluorophenol		44.8		80.00		56.0	21	100	
Surr: 4-Terphenyl-d14		59.6		80.00		74.5	33	141	
Surr: Nitrobenzene-d5		70.4		80.00		88.0	35	115	
Surr: Phenol-d5		33.4		80.00		41.8	10	94	
Sample ID: MB-121909	Batch ID:	121909		TestNo	D: E62 :			Units:	mg/L
SampType: MBLK	Run ID:		_250811C		sis Date: 8/11		00 PM	Prep Date:	8/11/2025
Analyte		Result	RL	SPK value	Ref Val	%REC		nit Highl imit %	6RPD RPDLimit Qu
				01 11 100	1101 101	701120	20112		
Benzidine		0.00100	0.00400						
Benzo[a]anthracene		0.00100	0.00200						
Benzo[a]pyrene		0.00100	0.00200						
Chrysene		0.00100	0.00200						
2,4-Dimethylphenol		0.00100	0.00200						
4,6-Dinitro-o-cresol		0.00200	0.00400						
m,p-Cresols		0.00200	0.00400						
o-Cresol	<(0.00200	0.00400						
Qualifiers: B Analyte de	tected in the as	sociated M	lethod Blank	DF	Dilution Facto	ог			
J Analyte de	tected between	MDL and	RL	MDL	Method Detec	tion Limit			Page 9 of 2

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- MDL Method Detection Limit
- R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAP certified

Page 9 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_250811C

Sample ID: MB-121909	Batch ID: 121909)	TestNo	E625	5.1		Units:	mg/L
SampType: MBLK	Run ID: GCMS	9_250811C	Analys	s Date: 8/11	/2025 6:13:	00 PM	Prep Date:	8/11/2025
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit %	6RPD RPDLimit Qual
p-Chloro-m-Cresol	<0.00200	0.00400						
Hexachlorobenzene	<0.00100	0.00200						
Hexachlorobutadiene	<0.00100	0.00200						
Hexachloroethane	<0.00100	0.00200						
Nitrobenzene	<0.00100	0.00200						
N-Nitrosodiethylamine	<0.00200	0.00400						
N-Nitrosodi-n-butylamine	<0.00100	0.00400						
Pentachlorobenzene	<0.00100	0.00200						
Pentachlorophenol	<0.00100	0.00200						
Phenanthrene	<0.00100	0.00200						
Pyridine	<0.00100	0.00200						
1,2,4,5-Tetrachlorobenzene	<0.00100	0.00200						
2,4,5-Trichlorophenol	<0.00100	0.00200						
2-Chlorophenol	<0.00100	0.00200						
2,4-Dichlorophenol	<0.00100	0.00200						
2,4-Dinitrophenol	<0.00200	0.00400						
2-Nitrophenol	<0.00100	0.00200						
4-Nitrophenol	<0.00200	0.00400						
Phenol	<0.00100	0.00200						
2,4,6-Trichlorophenol	<0.00100	0.00200						
Acenaphthene	<0.00100	0.00200						
Acenaphthylene	<0.00100	0.00200						
Anthracene Benzo[b]fluoranthene	<0.00100 <0.00100	0.00200 0.00200						
	<0.00100	0.00200						
Benzo[g,h,i]perylene Benzo[k]fluoranthene	<0.00100	0.00200						
Bis(2-chloroethoxy)methane	<0.00100	0.00200						
Bis(2-chloroethyl)ether	<0.00100	0.00200						
Bis(2-chloroisopropyl)ether	<0.00100	0.00200						
Bis(2-ethylhexyl)phthalate	<0.00300	0.00600						
4-Bromophenyl phenyl ether	<0.00100	0.00200						
Butyl benzyl phthalate	<0.00300	0.00600						
2-Chloronaphthalene	<0.00100	0.00200						
4-Chlorophenyl phenyl ether	<0.00100	0.00200						
Dibenz[a,h]anthracene	<0.00100	0.00200						
3,3'-Dichlorobenzidine	<0.00100	0.00500						
Diethyl phthalate	<0.00300	0.00600						
Dimethyl phthalate	<0.00300	0.00600						
Di-n-butyl phthalate	<0.00300	0.00600						
2,4-Dinitrotoluene	<0.00100	0.00200						
2,6-Dinitrotoluene	<0.00100	0.00200						

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - RPD outside accepted control limits
 - S Spike Recovery outside control limits
 - N Parameter not NELAP certified

Page 10 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_250811C

Sample ID: MB-121909	Batch ID:	121909		TestNo:	E62	5.1		Units:	mg/L
SampType: MBLK	Run ID:	GCMS9	_250811C	Analysis	Date: 8/11	/2025 6:13:	00 PM	Prep Date:	8/11/2025
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD RPDLimit Qual
Di-n-octyl phthalate	<(0,00300	0.00600						
1,2-Diphenylhydrazine	<(0.00100	0.00200						
Fluoranthene	<(0.00100	0.00200						
Fluorene	<(0.00100	0.00200						
Hexachlorocyclopentadiene	<(0.00100	0.00200						
Indeno[1,2,3-cd]pyrene	<(0.00100	0.00200						
Isophorone	<(0.00100	0.00200						
Naphthalene	<(0.00100	0.00200						
N-Nitrosodimethylamine	<(0.00100	0.00200						
N-Nitrosodi-n-propylamine	<(0.00100	0.00200						
N-Nitrosodiphenylamine	<(0.00100	0.00200						
Pyrene	<(0.00100	0.00200						
1,2,4-Trichlorobenzene	<(0.00100	0.00200						
Surr: 2,4,6-Tribromophenol		84.4		80.00		106	10	123	
Surr: 2-Fluorobiphenyl		69.4		80.00		86.8	43	116	
Surr: 2-Fluorophenol		40.8		80.00		51.0	21	100	
Surr: 4-Terphenyl-d14		65.8		80.00		82.2	33	141	
Surr: Nitrobenzene-d5		73.0		80.00		91.2	35	115	
Surr: Phenol-d5		26.6		80.00		33.2	10	94	
Sample ID: 2508006-01AMS	Batch ID:	121909		TestNo:	E62	25.1		Units:	mg/L

Sample ID: 2508006-01AMS	Batch ID:	121909		TestNo	: E62	5.1		Units:	mg/L
SampType: MS	Run ID:	GCMS9	_250811C	Analysi	s Date: 8/11	/2025 9:55:	00 PM	Prep Date:	8/11/2025
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qu
Benzidine		0.0266	0.0380	0.380	0	7.00	5	125	
Benzo[a]anthracene		0.351	0.0190	0.380	0	92.4	33	143	
Benzo[a]pyrene		0.398	0.0190	0.380	0	105	17	163	
Chrysene		0.363	0.0190	0.380	0	95.8	17	168	
2,4-Dimethylphenol		0.362	0.0190	0.380	0	95.4	32	120	
4,6-Dinitro-o-cresol		0.395	0.0380	0.380	0	104	10	181	
m,p-Cresols		0.415	0.0380	0.380	0.0214	104	10	125	
o-Cresol		0.356	0.0380	0.380	0	93.7	25	125	
p-Chloro-m-Cresol		0.348	0.0380	0.380	0	91.8	22	147	
Hexachlorobenzene		0.370	0.0190	0.380	0	97.6	10	152	
Hexachlorobutadiene		0.302	0.0190	0.380	0	79.6	24	120	
Hexachloroethane		0.297	0.0190	0.380	0	78.4	40	120	
Nitrobenzene		0.353	0.0190	0.380	0	93.1	35	180	
N-Nitrosodiethylamine		0.367	0.0380	0.380	0	96.8	20	125	
N-Nitrosodi-n-butylamine		0.409	0.0380	0.380	0	108	20	125	
Pentachlorobenzene		0.391	0.0190	0.380	0	103	40	140	
Pentachlorophenol		0.416	0.0190	0.380	0	110	14	176	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 11 of 21

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_250811C

Sample ID: 2508006-01AMS	Batch ID;	121909		TestNo	E62	5.1		Units:	mg/L
SampType: MS	Run ID:	GCMS	_250811C	Analys	is Date: 8/11	/2025 9:55:	00 PM	Prep Date:	8/11/2025
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qu
Phenanthrene		0.351	0.0190	0.380	0	92.4	54	120	
Pyridine		0.259	0.0190	0.380	0	68.4	10	75	
1,2,4,5-Tetrachlorobenzene		0.334	0.0190	0.380	0	88.1	30	140	
2,4,5-Trichlorophenol		0.387	0.0190	0.380	0	102	25	125	
2-Chlorophenol		0.337	0.0190	0.380	0	88.9	23	134	
2,4-Dichlorophenol		0.373	0.0190	0.380	0	98.2	39	135	
2,4-Dinitrophenol		0.319	0.0380	0.380	0	84.0	10	191	
2-Nitrophenol		0.385	0.0190	0.380	0	102	29	182	
4-Nitrophenol		0.383	0.0380	0.380	0	101	10	132	
Phenol		0.358	0.0190	0.380	0.0363	84.8	5	120	
2,4,6-Trichlorophenol		0.410	0.0190	0.380	0	108	37	144	
Acenaphthene		0.340	0.0190	0.380	0	89.6	47	145	
Acenaphthylene		0.374	0.0190	0.380	0	98.6	33	145	
Anthracene		0.357	0.0190	0.380	0	94.0	27	133	
Benzo[b]fluoranthene		0.387	0.0190	0.380	0	102	24	159	
Benzo[g,h,i]perylene		0.392	0.0190	0.380	0	103	10	219	
Benzo[k]fluoranthene		0.354	0.0190	0.380	0	93.4	11	162	
Bis(2-chloroethoxy)methane		0.350	0.0190	0.380	0	92.2	33	184	
Bis(2-chloroethyl)ether		0.331	0.0190	0.380	0	87.1	12	158	
Bis(2-chloroisopropyl)ether		0.310	0.0190	0.380	0	81.6	36	166	
Bis(2-ethylhexyl)phthalate		0.409	0.0569	0.380	0	108	10	158	
4-Bromophenyl phenyl ether		0.369	0.0190	0.380	0	97.3	53	127	
Butyl benzyl phthalate		0.405	0.0569	0.380	0	107	10	152	
2-Chloronaphthalene		0.335	0.0190	0.380	0	88.3	60	120	
4-Chlorophenyl phenyl ether		0.317	0.0190	0.380	0	83.5	25	158	
Dibenz[a,h]anthracene		0.412	0.0190	0.380	0	109	10	125	
3,3'-Dichlorobenzidine		0.239	0.0474	0.380	0	62.8	10	262	
Diethyl phthalate		0.328	0.0569	0.380	0	86.4	10	120	
Dimethyl phthalate		0.340	0.0569	0.380	0	89.6	10	120	
Di-n-butyl phthalate		0.420	0.0569	0.380	0	111	10	120	
2,4-Dinitrotoluene		0.343	0.0190	0.380	0	90.4	39	139	
2,6-Dinitrotoluene		0.353	0.0190	0.380	0	93.0	50	158	
Di-n-octyl phthalate		0.388	0.0569	0.380	0	102	10	146	
1,2-Diphenylhydrazine		0.390	0.0190	0.380	0	103	40	140	
Fluoranthene		0.362	0.0190	0.380	0	95.5	26	137	
Fluorene		0.333	0.0190	0.380	0	87.8	59	121	
Hexachlorocyclopentadiene		0.357	0.0190	0.380	0	94.2	8	130	
Indeno[1,2,3-cd]pyrene		0.381	0.0190	0.380	0	100	10	171	
Isophorone		0.373	0.0190	0.380	0	98.4	21	196	
Naphthalene		0.324	0.0190	0.380	0	85.4	21	133	
N-Nitrosodimethylamine		0.331	0.0190	0.380	0	87.4	10	125	

Qualifiers:

- B Analyte detected in the associated Method Blank
- $J \qquad \text{Analyte detected between MDL and } RL$
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAP certified

Page 12 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_250811C

Sample ID: 2508006-01AMS	Batch ID:	121909		TestNo	: E625	5.1		Units:	mg/L	
SampType: MS	Run ID:	GCMS9	_250811C	Analys	is Date: 8/11	/2025 9:55:	00 PM	Prep Date:	8/11/2	025
Analyte	R	esult	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
N-Nitrosodi-n-propylamine	0	.397	0.0190	0.380	0	105	10	230		
N-Nitrosodiphenylamine	0	.370	0.0190	0.380	0	97.5	20	125		
Pyrene	0	.335	0.0190	0.380	0	88.2	52	120		
1,2,4-Trichlorobenzene	0	.304	0.0190	0.380	0	80.0	44	142		
Surr: 2,4,6-Tribromophenol		913		759.0		120	10	123		
Surr: 2-Fluorobiphenyl		641		759.0		84.5	43	116		
Surr: 2-Fluorophenol		689		759.0		90.8	21	100		
Surr: 4-Terphenyl-d14		639		759.0		84.2	33	141		
Surr: Nitrobenzene-d5		712		759.0		93.8	35	115		
Surr: Phenol-d5		694		759.0		91.5	10	94		
Sample ID: 2508006-01AMSD	Batch ID:	121909		TestNo	: E62	5.1		Units:	mg/L	
SampType: MSD	Run ID:	GCMS9	_250811C	Analys	is Date: 8/11	/2025 10:17	:00 PM	Prep Date:	8/11/2	025
Analyte	R	esult	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 🤋	%RPD R	PDLimit Qua
Benzidine	0.	.0262	0.0356	0.356	0	7.35	5	125	1.55	50
Benzo[a]anthracene	0	.331	0.0178	0.356	0	93.1	33	143	5.67	50
Benzo[a]pyrene	O	.379	0.0178	0.356	0	107	17	163	4.96	50
Chrysene	O	.337	0.0178	0.356	0	94.7	17	168	7.53	50
2,4-Dimethylphenol	C	.345	0.0178	0.356	0	96.8	32	120	4.87	50
4,6-Dinitro-o-cresol	C	.378	0.0356	0.356	0	106	10	181	4.39	50
m,p-Cresols	C	.414	0.0356	0.356	0.0214	110	10	125	0.090	50
o-Cresol	C).344	0.0356	0.356	0	96.6	25	125	3.43	50
p-Chloro-m-Cresol	C	0.332	0.0356	0.356	0	93.3	22	147	4.81	50
Hexachlorobenzene	C	.354	0.0178	0.356	0	99.6	10	152	4.40	50
Hexachlorobutadiene	C	.289	0.0178	0.356	0	81.1	24	120	4.63	50
Hexachloroethane	C).289	0.0178	0.356	0	81.3	40	120	2.73	50
Nitrobenzene	C	.347	0.0178	0.356	0	97.6	35	180	1.71	50
N-Nitrosodiethylamine	C	.358	0.0356	0.356	0	101	20	125	2.58	50
N-Nitrosodi-n-butylamine									2.56	50
IN-INILIUSUUI-H-DULYIAHIIHE	C).398	0.0356	0.356	0	112	20	125	2,00	
•).398).387	0.0356 0.0178	0.356 0.356	0 0	112 109	20 4 0	125 14 0	1.19	50
Pentachlorobenzene	C									50 50
Pentachlorobenzene	0).387	0.0178	0.356	0	109	40	140	1.19	
Pentachlorobenzene Pentachlorophenol Phenanthrene	0 0).387).384	0.0178 0.0178	0.356 0.356	0 0	109 108	40 14	140 176	1.19 7.99	50
Pentachlorobenzene Pentachlorophenol Phenanthrene Pyridine	0 0 0).387).384).334	0.0178 0.0178 0.0178	0.356 0.356 0.356	0 0 0	109 108 93.9	40 14 54	140 176 120	1.19 7.99 4.82	50 39
Pentachiorobenzene Pentachiorophenol Phenanthrene Pyridine 1,2,4,5-Tetrachiorobenzene	0 0 0 0).387).384).334).252).322	0.0178 0.0178 0.0178 0.0178	0.356 0.356 0.356 0.356 0.356	0 0 0	109 108 93.9 71.0	40 14 54 10	140 176 120 75	1.19 7.99 4.82 2.70	50 39 50
Pentachiorobenzene Pentachiorophenol Phenanthrene Pyridine 1,2,4,5-Tetrachiorobenzene 2,4,5-Trichiorophenol	C C C C).387).384).334).252).322).375	0.0178 0.0178 0.0178 0.0178 0.0178 0.0178	0.356 0.356 0.356 0.356 0.356	0 0 0 0 0	109 108 93.9 71.0 90.6	40 14 54 10 30	140 176 120 75 140	1.19 7.99 4.82 2.70 3.69	50 39 50 50
Pentachlorobenzene Pentachlorophenol Phenanthrene Pyridine 1,2,4,5-Tetrachlorobenzene 2,4,5-Trichlorophenol 2-Chlorophenol	0 0 0 0 0	0.387 0.384 0.334 0.252 0.322 0.375 0.327	0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178	0.356 0.356 0.356 0.356 0.356 0.356 0.356	0 0 0 0 0 0	109 108 93.9 71.0 90.6 105	40 14 54 10 30 25 23	140 176 120 75 140 125	1.19 7.99 4.82 2.70 3.69 3.34	50 39 50 50 50
Pentachlorobenzene Pentachlorophenol Phenanthrene Pyridine 1,2,4,5-Tetrachlorobenzene 2,4,5-Trichlorophenol 2-Chlorophenol 2,4-Dichlorophenol		0.387 0.384 0.334 0.252 0.322 0.375 0.327 0.358	0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178	0.356 0.356 0.356 0.356 0.356 0.356 0.356	0 0 0 0 0 0	109 108 93.9 71.0 90.6 105 92.0	40 14 54 10 30 25 23 39	140 176 120 75 140 125 134 135	1.19 7.99 4.82 2.70 3.69 3.34 3.00	50 39 50 50 50
Pentachlorobenzene Pentachlorophenol		0.387 0.384 0.334 0.252 0.322 0.375 0.327	0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178	0.356 0.356 0.356 0.356 0.356 0.356 0.356	0 0 0 0 0 0	109 108 93.9 71.0 90.6 105 92.0	40 14 54 10 30 25 23	140 176 120 75 140 125	1.19 7.99 4.82 2.70 3.69 3.34 3.00 4.01	50 39 50 50 50 50

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAP certified

Page 13 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_250811C

Sample ID: 2508006-01AMSD	Batch ID: 121909		TestNo	: E62	5.1		Units:	mg/L	
SampType: MSD	Run ID: GCMS9	_250811C	Analys	is Date: 8/11	/2025 10:17	7:00 PM	Prep Date	8/11/	2025
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qu
Phenol	0.347	0.0178	0.356	0.0363	87.3	5	120	3.20	50
2,4,6-Trichlorophenol	0.398	0.0178	0.356	0	112	37	144	2.97	50
Acenaphthene	0.330	0.0178	0.356	0	92.6	47	145	3.08	48
Acenaphthylene	0.365	0.0178	0.356	0	102	33	145	2.55	50
Anthracene	0.340	0.0178	0.356	0	95.5	27	133	4.85	50
Benzo[b]fluoranthene	0.377	0.0178	0,356	0	106	24	159	2.68	50
Benzo[g,h,i]perylene	0.381	0.0178	0.356	0	107	10	219	2.87	50
Benzo[k]fluoranthene	0.330	0.0178	0.356	0	92.7	11	162	7.18	50
Bis(2-chloroethoxy)methane	0.339	0.0178	0.356	0	95.4	33	184	3.07	50
Bis(2-chloroethyl)ether	0.323	0.0178	0.356	0	90.7	12	158	2.44	50
Bis(2-chloroisopropyl)ether	0.304	0.0178	0.356	0	85.5	36	166	1.82	50
Bis(2-ethylhexyl)phthalate	0.376	0.0534	0.356	0	106	10	158	8.44	50
4-Bromophenyl phenyl ether	0.357	0,0178	0.356	0	100	53	127	3.39	43
Butyl benzyl phthalate	0.378	0.0534	0.356	0	106	10	152	6.94	50
2-Chloronaphthalene	0.328	0.0178	0.356	0	92.3	60	120	2.05	24
4-Chlorophenyl phenyl ether	0.306	0.0178	0.356	0	86.0	25	158	3.42	50
Dibenz[a,h]anthracene	0.400	0.0178	0.356	0	112	10	125	3.04	50
3,3'-Dichlorobenzidine	0.196	0.0445	0.356	0	55.2	10	262	19.3	50
Diethyl phthalate	0.314	0.0534	0.356	0	88.2	10	120	4.43	50
Dimethyl phthalate	0.328	0.0534	0.356	0	92.2	10	120	3.51	50
Di-n-butyl phthalate	0.390	0.0534	0.356	0	109	10	120	7.56	47
2,4-Dinitrotoluene	0.329	0.0178	0.356	0	92.5	39	139	4.08	42
2,6-Dinitrotoluene	0.343	0.0178	0.356	0	96.3	50	158	2.94	48
Di-n-octyl phthalate	0.366	0.0534	0.356	0	103	10	146	5.84	50
1,2-Diphenylhydrazine	0.379	0.0178	0.356	0	107	40	140	2.85	50
Fluoranthene	0.337	0.0178	0.356	0	94.7	26	137	7.32	50
Fluorene	0.323	0.0178	0.356	0	90.8	59	121	3.13	38
Hexachlorocyclopentadiene	0.355	0.0178	0.356	0	99.8	8	130	0.652	50
Indeno[1,2,3-cd]pyrene	0.368	0.0178	0.356	0	103	10	171	3.34	50
Isophorone	0.360	0.0178	0.356	0	101	21	196	3.67	50
Naphthalene	0.312	0.0178	0.356	0	87.7	21	133	3.71	50
N-Nitrosodimethylamine	< 0.00890	0.0178	0.356	0	0	10	125	0	50 8
N-Nitrosodi-n-propylamine	0.387	0.0178	0.356	0	109	10	230	2.49	50
N-Nitrosodiphenylamine	0.352	0.0178	0.356	0	98.8	20	125	5.10	50
Pyrene	0.324	0.0178	0.356	0	91.0	52	120	3.36	49
1,2,4-Trichlorobenzene	0.290	0.0178	0.356	0	81.6	44	142	4.51	50
Surr: 2,4,6-Tribromophenol	870		711.7		122	10	123	0	0
Surr: 2-Fluorobiphenyl	619		711.7		87.0	43	116	0	0
Surr: 2-Fluorophenol	658		711.7		92.5	21	100	0	0
Surr: 4-Terphenyl-d14	598		711.7		84.0	33	141	0	0
Surr: Nitrobenzene-d5	683		711.7		96.0	35	115	0	0

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
 - S Spike Recovery outside control limits
 - N Parameter not NELAP certified

Page 14 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_250811C

Sample ID: 2508006-01AMSD SampType: MSD	Batch ID: Run ID:	121909 GCMS9	_250811C	TestNo: E625.1 Analysis Date: 8/11/2025 10:			:00 PM	Units: Prep Date	mg/l : 8/11	_ /2025
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qua
Surr: Phenol-d5		660		711.7		92.8	10	94	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 15 of 21

Pollution Control Services

Work Order:

Project:

2508071

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_250811D

Sample ID: LCS-121909-NP	Batch ID:	121909		TestNo:	D706	55-17		Units:	mg/L	
SampType: LCS	Run ID:	GCMS9_	250811D	Analysis	Date: 8/11	2025 5:51:	00 PM	Prep Date:	8/11/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit 9	%RPD RPDLimi	t Qua
Nonyiphenol		1.21	0.100	1.00	0	121	40	140		N
Sample ID: MB-121909	Batch ID:	121909		TestNo:	D706	55-17		Units:	mg/L	
SampType: MBLK	Run ID:	GCMS9_	_250811D	Analysis	Date: 8/11	/2025 6:13:	00 PM	Prep Date:	8/11/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD RPDLimi	t Qua
Nonylphenol	<	0.0700	0.100							N

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J

ND Not Detected at the Method Detection Limit

RL Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAP certified

Page 16 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS5_250807B

The QC data in batch 121875 ap	plies to the f	ollowing s	samples: 250	8071-02A					
Sample ID: LCS-121875	Batch ID:	121875		TestNo	E624	1.1		Units:	mg/L
SampType: LCS	Run ID:	GCMS5	_250807B	Analys	is Date: 8/7/2	2025 11:09:	MA 00	Prep Date:	8/7/2025
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Benzene	(0.0255	0.00100	0.0232	0	110	65	135	
Carbon tetrachloride	(0.0256	0.00100	0.0232	0	110	70	130	
Chlorobenzene	(0.0237	0.00100	0.0232	0	102	35	135	
Chloroform	(0.0256	0.00100	0.0232	0	110	70	135	
Chlorodibromomethane	(0.0235	0.00100	0.0232	0	101	70	135	
1,2-Dibromoethane	(0.0232	0.00100	0.0232	0	99.9	60	140	
1,2-Dichloroethane	(0.0264	0.00100	0.0232	0	114	70	130	
1,1-Dichloroethene	(0.0246	0.00100	0.0232	0	106	50	150	
Methyl ethyl ketone		0.105	0.0150	0.116	0	90.4	60	140	
Tetrachloroethene	(0.0236	0.00200	0.0232	0	102	70	130	
Trichloroethene	(0.0248	0.00100	0.0232	0	107	65	135	
1,1,1-Trichloroethane	(0.0264	0.00100	0.0232	0	114	70	130	
TTHM (Total Trihalomethanes)	(0.0973	0.00100	0.0928	0	105	60	140	
Vinyl chloride	(0.0261	0.00100	0.0232	0	112	5	195	
Acrolein	(0.0477	0.0150	0.0580	0	82.2	60	140	
Acrylonitrile	(0.0448	0.00300	0.0464	0	96.5	60	140	
1,1,2,2-Tetrachloroethane	(0.0233	0.00100	0.0232	0	100	60	140	
Bromoform	(0.0220	0.00100	0.0232	0	95.0	65	135	
Chloroethane	(0.0243	0.00500	0.0232	0	105	40	160	
2-Chloroethylvinylether	(0.0251	0.0100	0.0232	0	108	5	225	
Bromodichloromethane		0.0262	0.00100	0.0232	0	113	65	135	
1,1-Dichloroethane		0.0252	0.00100	0.0232	0	108	70	130	
1,2-Dichloropropane	(0.0255	0.00100	0.0232	0	110	35	165	
1,3-Dichloropropene (cis)		0.0254	0.00100	0.0232	0	109	25	175	
1,3-Dichloropropene (trans)		0.0253	0.00100	0.0232	0	109	50	150	
Ethylbenzene		0.0236	0.00100	0.0232	0	102	60	140	
Methyl bromide		0.0250	0.00500	0.0232	0	108	15	185	
Methyl chloride	(0.0251	0.00500	0.0232	0	108	5	205	
Methylene chloride (DCM)		0.0247	0.00500	0.0232	0	107	60	140	
Toluene		0.0252	0.00200	0.0232	0	108	70	130	
trans-1,2-Dichloroethylene		0.0244	0.00200	0.0232	0	105	70	130	
1,1,2-Trichloroethane		0.0249	0.00100	0.0232	0	107	70	130	
1,2-Dichlorobenzene		0.0232	0.00100	0.0232	0	100	65	135	
1,3-Dichlorobenzene		0.0232	0.00100	0.0232	0	100	70	130	
1,4-Dichlorobenzene		0.0233	0.00100	0.0232	0	100	65	135	
Surr: 1,2-Dichloroethane-d4	,	208	5.50100	200.0	J	104	72	119	
Surr: 4-Bromofluorobenzene		198		200.0		99.0	76	119	
Surr: Dibromofluoromethane		207		200.0		104	85	115	
Surr: Toluene-d8				200.0		95.3	81	120	
Suit. Toluetie-uo		191		200.0		95.3	01	120	

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
 - S Spike Recovery outside control limits
 - N Parameter not NELAP certified

Page 17 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS5_250807B

Sample ID: MB-121875	Batch ID:	121875		TestNo	E624	\$.1		Units:	mg/L
SampType: MBLK	Run ID:	GCMS5	_250807B	Analys	is Date: 8/7/2	2025 12:00:	00 PM	Prep Date:	8/7/2025
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	GRPD RPDLimit Qua
Benzene	<0	.000300	0.00100						
Carbon tetrachloride	<0	.000300	0.00100						
Chlorobenzene	<0	.000300	0.00100						
Chloroform	<0	.000300	0.00100						
Chlorodibromomethane	<0	.000300	0.00100						
1,2-Dibromoethane	<0	.000300	0.00100						
1,2-Dichloroethane	<0	.000300	0.00100						
1,1-Dichloroethene	<0	.000300	0.00100						
Methyl ethyl ketone	<(0.00500	0.0150						
Tetrachloroethene	<0	.000600	0.00200						
Trichloroethene	<0	.000600	0.00100						
1,1,1-Trichloroethane	<0	.000300	0.00100						
TTHM (Total Trihalomethanes)	<0	.000300	0.00100						
Vinyl chloride	<0	.000300	0.00100						
Acrolein	<(0.00500	0.0150						
Acrylonitrile	<(0.00100	0.00300						
1,1,2,2-Tetrachloroethane	<0	.000300	0.00100						
Bromoform	<0	0.000300	0.00100						
Chloroethane	<(0.00100	0.00500						
2-Chloroethylvinylether	<(0.00600	0.0100						
Bromodichloromethane	<0	.000300	0.00100						
1,1-Dichloroethane	<0	0.000300	0.00100						
1,2-Dichloropropane	<0	.000300	0.00100						
1,3-Dichloropropene (cis)	<0	0.000300	0.00100						
1,3-Dichloropropene (trans)	<0	.000300	0.00100						
Ethylbenzene	<0	0.000300	0.00100						
Methyl bromide	<(0.00100	0.00500						
Methyl chloride	<(0.00100	0.00500						
Methylene chloride (DCM)	<(0.00250	0.00500						
Toluene	<0	0.000600	0.00200						
trans-1,2-Dichloroethylene	<0	0.000300	0.00200						
1,1,2-Trichloroethane	<0	0.000300	0.00100						
1,2-Dichlorobenzene	<0	0.000300	0.00100						
1,3-Dichlorobenzene	<0	0.000300	0.00100						
1,4-Dichlorobenzene	<0	0.000300	0.00100						
Surr: 1,2-Dichloroethane-d4		209		200.0		105	72	119	
Surr: 4-Bromofluorobenzene		196		200.0		98.2	76	119	
Surr: Dibromofluoromethane		210		200.0		105	85	115	
Surr: Toluene-d8		191		200.0		95.3	81	120	

Qu	al	if	ie	rs:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
 - S Spike Recovery outside control limits
 - N Parameter not NELAP certified

Page 18 of 21

Project:

Pollution Control Services

Work Order: 2508071

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS5_250807B

Sample ID: 2508050-02AMS	Batch ID: 12187	5	TestN	o: E62 4	1.1		Units:	mg/L
SampType: MS	Run ID: GCM	S5_250807B	Analys	sis Date: 8/7/2	2025 4:46:0	0 PM	Prep Date	8/7/2025
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua
Benzene	0.0265	0.00100	0.0232	0	114	37	151	
Carbon tetrachloride	0.0268	0.00100	0.0232	0	115	70	140	
Chlorobenzene	0.0245	0.00100	0.0232	0	106	37	160	
Chloroform	0.0272	0.00100	0.0232	0	117	51	138	
Chlorodibromomethane	0.0240	0.00100	0.0232	0	104	53	149	
1,2-Dibromoethane	0.0247	0.00100	0.0232	0	107	40	160	
1,2-Dichloroethane	0.0282	0.00100	0.0232	0	122	49	155	
1,1-Dichloroethene	0.0246	0.00100	0.0232	0	106	10	234	
Methyl ethyl ketone	0.125	0.0150	0.116	0	108	40	160	
Tetrachloroethene	0.0245	0.00200	0.0232	0	106	64	148	
Trichloroethene	0.0248	0.00100	0.0232	0	107	70	157	
1,1,1-Trichloroethane	0.0269	0.00100	0.0232	0	116	52	162	
TTHM (Total Trihalomethanes)	0.101	0.00100	0.0928	0	108	40	160	
Vinyl chloride	0.0247	0.00100	0.0232	0	107	10	251	
Acrolein	0.0423	0.0150	0.0580	0	72.9	40	160	
Acrylonitrile	0.0472	0.00300	0.0464	0	102	40	160	
1,1,2,2-Tetrachloroethane	0.0251	0.00100	0.0232	0	108	46	157	
Bromoform	0.0220	0.00100	0.0232	0	94.8	45	169	
Chloroethane	0.0228	0.00500	0.0232	0	98.2	14	230	
2-Chloroethylvinylether	<0.00600	0.0100	0.0232	0	0	5	273	S
Bromodichloromethane	0.0272	0.00100	0.0232	0	117	35	155	
1,1-Dichloroethane	0.0263	0.00100	0.0232	0	113	59	155	
1,2-Dichloropropane	0.0267	0.00100	0.0232	0	115	10	210	
1,3-Dichloropropene (cis)	0.0257	0.00100	0.0232	0	111	10	227	
1,3-Dichloropropene (trans)	0.0260	0.00100	0.0232	0	112	17	183	
Ethylbenzene	0.0243	0.00100	0.0232	0	105	37	162	
Methyl bromide	0.0149	0.00500	0.0232	0	64.1	10	242	
Methyl chloride	0.0225	0.00500	0.0232	0	97.0	5	273	
Methylene chloride (DCM)	0.0255	0.00500	0.0232	0	110	10	221	
Toluene	0.0258	0.00200	0.0232	0	111	47	150	
trans-1,2-Dichloroethylene	0.0250	0.00200	0.0232	0	108	54	156	
1,1,2-Trichloroethane	0.0266	0.00100	0.0232	0	115	52	150	
1,2-Dichlorobenzene	0.0246	0.00100	0.0232	0	106	18	190	
1,3-Dichlorobenzene	0.0245	0.00100	0.0232	0	106	59	156	
1,4-Dichlorobenzene	0.0247	0.00100	0.0232	0	106	18	190	
Surr: 1,2-Dichloroethane-d4	213		200.0		106	72	119	
Surr: 4-Bromofluorobenzene	200		200.0		100	76	119	
Surr: Dibromofluoromethane	212		200.0		106	85	115	
Surr: Toluene-d8	190		200.0		95.1	81	120	

Oualifiers:	
Quantities 3.	

- Analyte detected in the associated Method Blank
- Analyte detected between MDL and RL J
- ND Not Detected at the Method Detection Limit
- Reporting Limit
- Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - RPD outside accepted control limits
 - S Spike Recovery outside control limits
 - Parameter not NELAP certified N

Page 19 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS5_250807B

Sample ID: 2508050-02AMSD	Batch ID: 121875		TestNo	E624	1.1		Units:	mg/L		
SampType: MSD	Run ID: GCMS5	_250807B	Analys	is Date: 8/7/2	025 5:11:0	0 PM	Prep Date	8/7/2	025	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit	Qua
Benzene	0.0262	0.00100	0.0232	0	113	37	151	1.03	40	
Carbon tetrachloride	0.0269	0.00100	0.0232	0	116	70	140	0.421	40	
Chlorobenzene	0.0240	0.00100	0.0232	0	103	37	160	2.20	40	
Chloroform	0.0261	0.00100	0.0232	0	113	51	138	4.15	40	
Chlorodibromomethane	0.0233	0.00100	0.0232	0	101	53	149	2.99	40	
1,2-Dibromoethane	0.0243	0.00100	0.0232	0	105	40	160	1.77	40	
1,2-Dichloroethane	0.0274	0.00100	0.0232	0	118	49	155	3.06	40	
1,1-Dichloroethene	0.0248	0.00100	0.0232	0	107	10	234	0.705	32	
Methyl ethyl ketone	0.128	0.0150	0.116	0	110	40	160	2.58	40	
Tetrachioroethene	0.0243	0.00200	0.0232	0	105	64	148	0.931	39	
Trichloroethene	0.0242	0.00100	0.0232	0	104	70	157	2.68	40	
1,1,1-Trichloroethane	0.0270	0.00100	0.0232	0	116	52	162	0.037	36	
TTHM (Total Trihalomethanes)	0.0980	0.00100	0.0928	0	106	40	160	2.51	40	
Vinyl chloride	0.0249	0.00100	0.0232	0	107	10	251	0.600	40	
Acrolein	0.0505	0.0150	0.0580	0	87.1	40	160	17.7	40	
Acrylonitrile	0.0482	0.00300	0.0464	0	104	40	160	2.26	40	
1,1,2,2-Tetrachloroethane	0.0255	0.00100	0.0232	0	110	46	157	1.64	40	
Bromoform	0.0222	0.00100	0.0232	0	95.7	45	169	0.977	40	
Chloroethane	0.0229	0.00500	0.0232	0	98.8	14	230	0.687	40	
2-Chloroethylvinylether	<0.00600	0.0100	0.0232	0	0	5	273	0	40	S
Bromodichloromethane	0.0263	0.00100	0.0232	0	113	35	155	3.34	40	
1,1-Dichloroethane	0.0260	0.00100	0.0232	0	112	59	155	1.33	40	
1,2-Dichloropropane	0.0264	0.00100	0.0232	0	114	10	210	0.855	40	
1,3-Dichloropropene (cis)	0.0253	0.00100	0.0232	0	109	10	227	1.53	40	
1,3-Dichloropropene (trans)	0.0256	0.00100	0.0232	0	110	17	183	1.60	40	
Ethylbenzene	0.0239	0.00100	0.0232	0	103	37	162	1.70	40	
Methyl bromide	0.0188	0.00500	0.0232	0	81.1	10	242	23.4	40	
Methyl chloride	0.0228	0.00500	0.0232	0	98.1	5	273	1.06	40	
Methylene chloride (DCM)	0.0248	0.00500	0.0232	0	107	10	221	2.78	28	
Toluene	0.0262	0.00200	0.0232	0	113	47	150	1.45	40	
trans-1,2-Dichloroethylene	0.0249	0.00200	0.0232	0	107	54	156	0.385	40	
1,1,2-Trichloroethane	0.0263	0.00100	0.0232	0	113	52	150	1.02	40	
1,2-Dichlorobenzene	0.0248	0.00100	0.0232	0	107	18	190	0.559	40	
1,3-Dichlorobenzene	0.0244	0.00100	0.0232	0	105	59	156	0.343	40	
1,4-Dichlorobenzene	0.0242	0.00100	0.0232	0	104	18	190	1.97	40	
Surr: 1,2-Dichloroethane-d4	211		200.0		106	72	119	0	0	
Surr: 4-Bromofluorobenzene	198		200.0		99.0	76	119	0	0	
Surr: Dibromofluoromethane	209		200.0		105	85	115	0	0	
Surr: Toluene-d8	189		200.0		94.4	81	120	0	0	

Qua	li	fi	e	rs
-----	----	----	---	----

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAP certified

Page 20 of 21

Pollution Control Services

Work Order:

2508071

Project:

PCS 810676, 810680-810681

ANALYTICAL QC SUMMARY REPORT

RunID:

UV/VIS_2_250812B

1.0,000	. 0, 01000									
The QC data in batch 121882 ap	plies to the	following sa	mples: 2508	3071-03A						
Sample ID: MB-121882	Batch ID:	121882		TestNo:	M4:	500-CN E		Units:	mg/L	
SampType: MBLK	Run ID:	UV/VIS_2	_250812B	Analysis	Date: 8/1:	2/2025 10:25:0	MA 00	Prep Date:	8/8/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit	Qua
Cyanide, Amenable to Chlorinati Cyanide, Total		<0.0100 <0.0100	0.0200 0.0200							
Sample ID: LCS-121882	Batch ID:	121882		TestNo:	M4	500-CN E		Units:	mg/L	_
SampType: LCS	Run ID:	UV/VIS_2	_250812B	Analysis	s Date: 8/1	2/2025 10:26:	00 AM	Prep Date:	8/8/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit	Qua
Cyanide, Amenable to Chlorinati	on	0.113	0.0200	0.1000	0	113	80	120		
Cyanide, Total		0.192	0.0200	0.2000	0	95.8	85	115		
Sample ID: 2508088-01CMS	Batch ID:	121882		TestNo:	M4	500-CN E		Units:	mg/L	
SampType: MS	Run ID:	UV/VIS_2	_250812B	Analysis	s Date: 8/1	2/2025 10:34:	MA 00	Prep Date:	8/8/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit	Qua
Cyanide, Total		0.0823	0.0200	0.2000	0	41.1	79	114		s
Sample ID: 2508088-01CMSD	Batch ID:	121882		TestNo:	M4	500-CN E		Units:	mg/L	
SampType: MSD	Run ID:	UV/VIS_2	_250812B	Analysis	s Date: 8/1	2/2025 10:34:	MA 00	Prep Date:	8/8/2025	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit	Qua
Cyanide, Total		0.0799	0.0200	0.2000	0	40.0	79	114		s

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J

Not Detected at the Method Detection Limit

Reporting Limit RL

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified Page 21 of 21

POLLUTION CONTROL SERVICES

1532 Universal City Blvd, Suite 100
Universal City, TX 78148-3318
Facsimilie 210.658.7903
210.340.0343

	CHAIN	OF CUS	STODY & SUBCO	NTRACT TE	RACKING	SHEET	
ΓO: S	PL - Kilgore		Relir	quished by:	Lauren C	llay	
2	500 Dudley I	Rd		Date/Γime:	8/5/2025	@ 1500	
K	ilgore, TX 7	5662	F	Received by:			
_				Date/Time:			Markin 3
			Analysis				
PCS#	Date	Time	Requested			Pres	T. A. T.
310676	08/05/2025	0700	Herbicides 615	24350	086	Ice	Std
310682	08/04/2025	1254	Phenois	2435	_	H ₂ SO ₄	Std
					~ - 1		
						-	
	-						
					167		
					199		
	. (6 1.7.	L	1			1	
ommei	nts/Special In	struction	s:				
			- 111				
Inless o	therwise requ	uested, se	nd results and invoi	ice to:			
Po 15		rol Servic l City Blv	d, Suite 100				
Uı	niversal City	7X 781	48-3318				
Luthoriz	ed by:	Fern	- Clay	8/6/25	Date: _	8.5.25	
		Au	yvzl	8/6/25	102	5	R
		. 1	U			T:\CoC\Subco	ntmet/810676.docx

Page 1 of 1

Printed

08/28/2025 16:40

PCSL-C

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

TABLE OF CONTENTS

Rerun 2,4-D

This report consists of this Table of Contents and the following pages:

Report Name	Description	<u>Pages</u>
1159759_r02_01_ProjectSamples	SPL Kilgore Project P:1159759 C:PCSL Project Sample Cross Reference t:304	1
1159759_r03_03_ProjectResults	SPL Kilgore Project P:1159759 C:PCSL Project Results t:304	3
1159759_r10_05_ProjectQC	SPL Kilgore Project P:1159759 C:PCSL Project Quality Control Groups	2
1159759_r99_09_CoC1_of_1	SPL Kilgore CoC PCSL 1159759_1_of_1	2
	Total Pages:	8

Email: Kilgore.ProjectManagement@spllabs.com

Survey: How are we doing?

Report Page 1 of 9

SAMPLE CROSS REFERENCE

Printed

8/28/2025

Page 1 of 1 Rerun 2 4-D

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100

Universal City, TX 78148

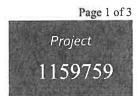
Sample	Sample ID	Taken	Time	Received	
2440670	810676	08/05/2025	07:00:00	08/06/2025	
	Supplied Amber Glass	eatab 1100175\ Volume: 10.00000 ml <	Davised from 01 (076 p		

Bottle 02 Prepared Bottle: 2 mL Autosampler Vial (Batch 1190175) Volume: 10.00000 mL <= Derived from 01 (976 ml)

	Method EPA 615 EPA 615	Bottle 02 02	PrepSet 1190175 1190175	Preparation 08/12/2025 08/12/2025	QcGroup 1191242 1192963	Analytical 08/19/2025 08/27/2025
Sample	Sample ID	Taken	Time		Received	
2440671	810682	08/04/2025	12:54:00		08/06/2025	

Bottle 01 Client supplied H2SO4 Amber Glass

Bottle 02 Prepared Bottle: Phenol TRAACS Autosampler Vial (Batch 1189284) Volume: 6.00000 mL <= Derived from 01 (6 ml)


Method	Bottle	PrepSet	Preparation	QcGroup	Analytical
EPA 420,4 1	02	1189284	08/07/2025	1189947	08/12/2025

Email: Kilgore.ProjectManagement@spllabs.com

PCSL-C

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

Printed:

08/28/2025

Rerun 2,4-D

RESULTS

676							Received:	08/06	/2025
X 5000 Y 5000 Y 5000 Y						PO:			
00/0	5/2025		17:00:00						
	Prepared:	1190175	08/12/202	5 15:00:00	Analyzed	1191242	08/19/2025	04:05:00	KA.
	Results	Uı	nits R.	L	Flag	s	CAS		Bottle
	<0.300	ug	/L 0.:	300			93-72-1		02
	Prepared:	1190175	08/12/202	5 15:00:00	Analyzed	1192963	08/27/2025	20:16:00	KAI
	Results	Uı	nits R.	L	Flag	s	CAS		Bottle
acetic acid	<0.512	ug	/L 0.:	512			94-75-7		02
682							Received:	08/06	5/2025
Collected by:	Client	Pollution	Control Se			PO:			
	4/2025	1	2:54:00						
	Prepared:	1189284	08/07/202	5 09:40:28	Analyzed	1189947	08/12/2025	11:13:00	ME
	Results	Uı	iits R	L	Flag	S	CAS		Bottle
overable	0.020	mį	g/L 0.0	005					02
W	S	ample Pı	eparatio	on	***				
676				4			Received:	08/06	5/2025
08/0	5/2025								
	Taken: 08/0 plement to Test Report 2435086 yacetic acid Collected by: Taken: 08/0 plement to Test Report 2435089 overable	Collected by: Client Taken: 08/05/2025 plement to Test Report 2435086 Prepared: Results <0,300 Prepared: Results <0.512 Collected by: Client Taken: 08/04/2025 plement to Test Report 2435089 Prepared: Results ONOR ONOR ONOR ONOR ONOR ONOR ONOR ONOR	Collected by: Client Pollution Taken: 08/05/2025 (Collement to Test Report 2435086) Prepared: 1190175 Results Un <0.300 ug Prepared: 1190175 Results Un <0.512 ug Collected by: Client Pollution Taken: 08/04/2025 (Collement to Test Report 2435089) Prepared: 1189284 Results Un <0.512 (Collected by: Client Pollution Taken: 08/04/2025) Prepared: 1189284 Results Un <0.020 mg Sample Prepared: 54666	Collected by: Client Pollution Control Section Taken: 08/05/2025 07:00:00	Collected by: Client Pollution Control Se 17:00:00	Collected by: Client Pollution Control Se Taken: 08/05/2025 07:00:00	Collected by: Client Pollution Control Se PO: Taken: 08/05/2025 07:00:00 08/12/2025 15:00:00 Analyzed 1191242	Collected by: Client Pollution Control Se PO: Taken: 08/05/2025 07:00:00	Collected by: Client Pollution Control Se PO: Taken: 08/05/2025 07:00:00

Report Page 3 of 9

Office: 903-984-0551 * Fax: 903-984-5914

PCSL-C

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

Printed:

08/28/2025

2440670 810676

Received:

08/06/2025

2410070 810070							Neceiveu.	00,00	2020
	08/05/2025								
EPA 615	Prepared:	1190175	08/12/2025	15:00:00	Analyzed	1190175	08/12/2025	15:00:00	SAE
NELAC Esterification of Sample	10/976	mi	l						01
EPA 615	Prepared:	1190175	08/12/2025	15:00:00	Analyzed	1191242	08/19/2025	04:05:00	KAP
NELAC Herbicides by GC	Entered								02
2440671 810682							Received:	08/06/	/2025
	08/04/2025								
EPA 420.4 I	Prepared:	1189284	08/07/2025	09:40:28	Analyzed	1189284	08/07/2025	09:40:28	MEG
NELAC Phenol Distillation	6/6	mi	I						01

Office: 903-984-0551 * Fax: 903-984-5914

Printed:

08/28/2025

PCSL-C

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

Qualifiers:

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL), CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

Bill Peery, MS, VP Technical Services

QUALITY CONTROL

PCSL-C

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

Printed 08/28/2025

Analytical Set	1189947									EP	A 420.4
				В	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Phenolics, Total Recoverable	1189284	ND	0.003	0.005	mg/L			127942832			
					ССВ						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Phenolics, Total Recoverable	1189284	ND	0.003	0.005	mg/L			127942839			
Phenolics, Total Recoverable	1189947	ND	0.003	0.005	mg/L			127942846			
				(ccv						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Phenolics, Total Recoverable		0,202	0.200	mg/L	101	90.0 - 110		127942802			
Phenolics, Total Recoverable		0.196	0.200	mg/L	98.0	90.0 - 110		127942812			
Phenolics, Total Recoverable		0.196	0.200	mg/L	98.0	90.0 - 110		127942823			
Phenolics, Total Recoverable		0.198	0.200	mg/L	99.0	90.0 - 110		127942834			
Phenolics, Total Recoverable		0.182	0.200	mg/L	91.0	90.0 - 110		127942845			
Phenolics, Total Recoverable		0.195	0.200	mg/L	97.5	90.0 - 110		127942847			
				Du	plicate						
Parameter	Sample		Result	Unknow	7		Unit		RPD		Limit
Phenolics, Total Recoverable	2433986		0.022	0.027			mg/L		20.4	•	20.0
					ICV						
Parameter		Reading	Кпомп	Units	Recover%	Limits%		File			
Phenolics, Total Recoverable		0.192	0.200	mg/L	96.0	90.0 - 110		127942801			
				LC	S Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit?
Phenolics, Total Recoverable	1189284	0.199	0.210		0.200	90.0 - 110	99.5	105	mg/L	5.38	20.0
				Mat	. Spike						
Parameter	Sample	Spike	Unknown		Units	Recovery %		File		16	
Phenolics, Total Recoverable	2433986	0.180	0.027	0.200	mg/L	76.5	90.0 - 110	127942838	=	•	-4345A
Analytical Set	1191242										EPA 61
				В	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
2,4 Dichlorophenoxyacetic acid	1190175	21.2	14.8	50.0	ug/L			127968667			
2,4,5-TP (Silvex)	1190175	ND	16.5	30.0	ug/L			127968667			
a a				(CCV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
2,4 Dichlorophenoxyacetic acid		144	142	ug/L	102	80.0 - 115		127968666			
2,4 Dichlorophenoxyacetic acid		148	142	ug/L	104	80.0 - 115		127968670			
2,4 Dichlorophenoxyacetic acid		142	142	ug/L	99.9	80.0 - 115		127968673			
,4,5-TP (Silvex)		148	143	ug/L	103	80.0 - 115		127968666			
,4,5-TP (Silvex)		155	143	ug/L	108	80.0 - 115		127968670			
,4,5-TP (Silvex)		150	143	ug/L	105	80.0 - 115		127968673			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 6 of 9

Page 2 of 2

Printed 08/28/2025

PCSL-C

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

	LCS Dup										
Parameter	PrepSet	LCS	LCSD		Кломп	Limits%	LCS%	LCSD%	Units	RPD	Limit%
2,4 Dichlorophenoxyacetic acid	1190175	83.7	73.9		94.0	0.100 - 319	89.0	78.6	ug/L	12.4	30.0
2,4,5-TP (Silvex)	1190175	99.1	101		95.0	0.100 - 244	104	106	ug/L	1.90	30.0
Surrogate											
Parameter	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
2,4-Dichlorophenylacetic Acid		CCV	142	93.6	ug/L	152	0.100 - 313	127968666			
2,4-Dichlorophenylacetic Acid		CCV	144	93.6	ug/L	154	0.100 - 313	127968670			
2,4-Dichlorophenylacetic Acid		CCV	140	93.6	ug/L	150	0.100 - 313	127968673			
2,4-Dichlorophenylacetic Acid	1190175	Blank	586	93.6	ug/L	626 *	0.100 - 313	127968667			
2,4-Dichlorophenylacetic Acid	1190175	LCS	337	93.6	ug/L	360 *	0.100 - 313	127968668			
2,4-Dichlorophenylacetic Acid	1190175	LCS Dup	122	93.6	ug/L	130	0.100 - 313	127968669			
Analytical Set	1192963						N - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				EPA 615
,a.,a.				c	cv						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
2,4 Dichlorophenoxyacetic acid		149	142	ug/L	105	80.0 - 115		128011163			
2,4 Dichlorophenoxyacetic acid		155	142	ug/L	109	80.0 - 115		128011173			
2,4 Dichlorophenoxyacetic acid		162	142	ug/L	114	80.0 - 115		128011175			
2,4,5-TP (Silvex)		164	143	ug/L	115	80.0 - 115		128011163			
2,4,5-TP (Silvex)		167	143	ug/L	117	80.0 - 115	•	128011173			
2,4,5-TP (Silvex)		171	143	ug/L	119	80.0 - 115		128011175			
Surrogate											
Parameter .	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
2,4-Dichlorophenylacetic Acid		CCV	152	93.6	ug/L	162	0.100 - 313	128011163			
2,4-Dichlorophenylacetic Acid		CCV	162	93.6	ug/L	173	0.100 - 313	128011173			
2,4-Dichlorophenylacetic Acid		CCV	164	93.6	ug/L	175	0.100 - 313	128011175			
2,4-Dichlorophenylacetic Acid	2440670	Unknown	2.69	0.959	ug/L	281	0.100 - 313	128011172			

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); CCB - Continuing Calibration Blank; CCV - Continuing Calibration Verification (same standard used to prepare the curve; typically a mid-range concentration; verifies the continued validity of the calibration curve); ICV - Initial Calibration Verification; LCS Dup - Laboratory Control Sample Duplicate (replicate LCS; analyzed when there is insufficient sample for duplicate or MSD; quantifies accuracy and precision.); Surrogate - Surrogate (mimics the analyte of interest but is unlikely to be found in environmental samples; added to analytical samples for QC purposes. **ANSI/ASQC E4 1994 Ref #4 TRADE QA Resources Guide.)

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 7 of 9

SHIP DATE: 05AUG25 ACTWGT: 19:00 LB CAD: 112447368/INET4535 DIMS: 13x15x13 IN ORIGIN ID:NIRA CHUCK WALLGREN (210) 340-0343 1532 UNIVERSAL CITY BLVD, #100 UNIVERSAL CITY, TX 78148
UNITED STATES US
TO SPL LAB KILGORE BILL SENDER SPL LAB KILGORE 58G/2/E4ED/59F2 2600 DUDLEY ROAD KILGORE TX 75662 (903) 984-0551 (NV. PG) WED - 06 AUG 10:30A PRIORITY OVERNIGHT TRK# 8833 3073 1270 **TYRA 75662 XS TYRAG** TX-US SHV

C

Date Temp:

Therm#: 7735 Corr Fact: -0.2 C

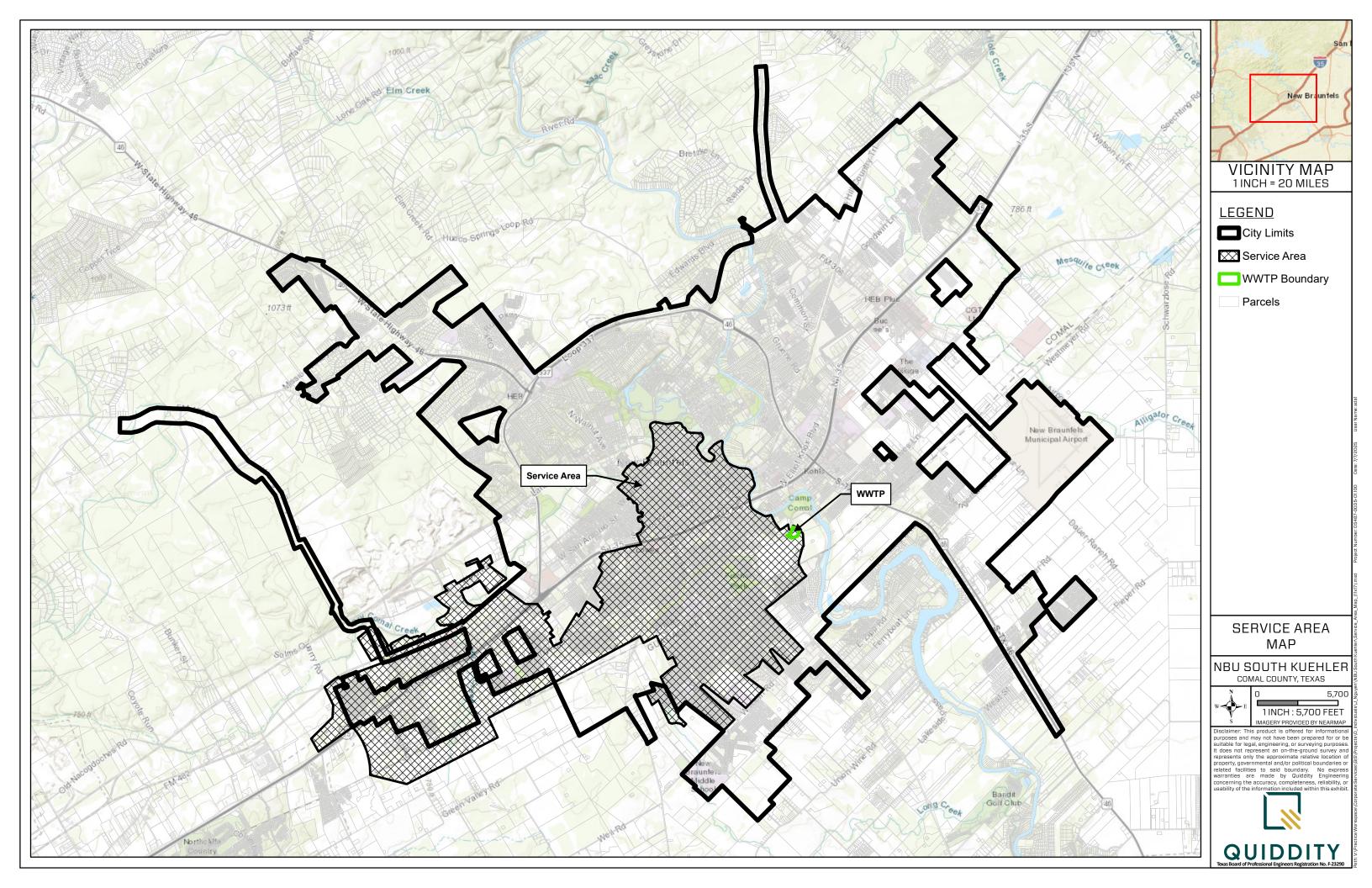
After profiting this label CONSCINE SECULACE IN FRONT OF POUCH CONSCINE COPY - PLEASE PLACE IN FRONT OF POUCH I FOLD THIS PROFILE IN PARTY OF PROFILE IN P

other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authoriz declared value. Recovery cannot exceed actual documented loss. Maximum for Items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotlable instruments and other Items listed in our Service Guide. Written claims must be filed your actual loss and file a timely staim. Limitations found in the current fedEx Service Guide apply. Your right to recover fin FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, aveilable on fedex.com. FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, docum

Pollution Control Services

Sample Log-In Checklist

810676


PCS Sample No(s) 81 U b / b 81 0 68 3	COC No.
Client/Company Name: NBU	Checklist Completed by:
Sample Delivery to Lab Via: Client Drop Off Commercial Carrier: Bus UPS Lone S PCS Field Services: Collection/Pick Up Other:	tar FedExUSPS
Sample Kit/Coolers Sample Kit/Cooler? Yes No Sample Kit/Cooler: Intact? Yes No Custody Seals on Sample Kit/Cooler: Not Present If Present, Intact Sample Containers Intact; Unbroken and Not Leaking? Yes No Custody Seals on Sample Bottles: Not Present If Present, Intact COC Present with Shipment or Delivery or Completed at Drop Off? Yes Has COC sample date/time and other pertinent information been provided by Has COC been properly Signed when Received/Relinquished? Yes No Does COC agree with Sample Bottle Information, Bottle Types Preservation All Samples Received before Hold Time Expiration? Yes No Sufficient Sample Volumes for Analysis Requested? Yes No Zero Headspace in VOA Vial? Yes No Sample Preservation: * Cooling: Not Required or Required If cooling required, record temperature of submitted samples Observed/Corre Is Ice Present in Sample Kit/Cooler? Yes No Samples received Lab Thermometer Make and Serial Number: ennoLogic HDHC000015629 Other: Other: Cooling the cooling to the cooling the cooling to the cooling the cooling to the cooling the coolin	tact Broken t Broken No client/sampler? Yes:No: , etc.? Yes No ceted U.4 / OC d same day as collected? Yes No
Acid Preserved Sample - If present, is pH <2? Yes No ** Base Preserved Sample - If present, is pH >12? Yes No Tother Preservation: Sample Preservations Checked by: HC Date 8 5 - 25 Ti pH paper used to check sample preservation (PCS log #): Samples Preserved/Adjusted by Lab: Lab # Parameters Preserved	me No me (HEM pH checked at analysis).
Adjusted by Tech/Analyst: Date :Time:	
Notified Date:Time: Method of Contact: At Drop Off: Phone Left Voice Mail E-N Unable to Contact Authorized Laboratory to Proceed : Regarding / Comments:	Mail Fax (Lab Director)
Receiving qualifier needed (requires client notification above) Temp Horner Receiving qualifier entered into LIMS at login Initial/Date: Revision Comments:	olding Time Initails:

ATTACHMENT F

SERVICE AREA MAP

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

ATTACHMENT G

LIST OF TREATMENT UNITS AND PROCESS

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT TREATMENT UNITS AND DIMENSIONS

Interim I Facilities:

The existing (Interim I) New Braunfels Utilities South Kuehler Wastewater Treatment Plant is a single-stage nitrification activated sludge process capable of treating 4.2 MGD average daily flow. It also includes a solids process train with aerobic digesters, thickeners, and dewatering.

A schematic of the Interim I wastewater treatment plant is provided in Attachment E of this application.

Following are the treatment unit volumes and surface areas:

Air Blowers (Firm Capacity)

Process Air = 15,236 scfm Digester Air = 2,140 scfm

Interim II Facilities:

The future (Interim II) New Braunfels Utilities South Kuehler Wastewater Treatment Plant will consist of a common preliminary treatment process train, three secondary treatment process trains (Existing Plant Nos. 1 and 2 and Proposed Plant No. 3), and a common tertiary process train capable of treating a total of 9.3 MGD average daily flow. The preliminary treatment process will consist of mechanical screens, aerated grit chambers, and an influent lift station. For the secondary treatment process, Plant Nos. 1 and 2 are existing single-stage nitrification activated sludge trains, and Plant No. 3 is a proposed enhanced biological phosphorus removal activated sludge train with anoxic, anaerobic, and aeration basins, and secondary clarifiers. The tertiary treatment process will consist of tertiary filtration, UV disinfection, and post-aeration. It will also include three solids process trains (two existing and one proposed) consisting of aerobic digesters, thickeners, and one common dewatering facility.

A schematic of the Interim II wastewater treatment plant is provided in Attachment E of this application.

Following are the treatment unit volumes and surface areas:

Grit Chamber = $17,783 \text{ ft}^3$ Aeration Basins = $740,848 \text{ ft}^3$ Secondary Clarifiers = $26,234 \text{ ft}^3$

Anaerobic Basin = 18,240 ft³ (Plant No. 3 only) Anoxic Selector Basin = 7,220 ft³ (Plant No. 3 only)

Tertiary Granular Dual Media Filters = 5,376 ft² Aerobic Digesters = 391,629 ft³

Air Blowers (Firm Capacity)

Process Air = 26,885 scfm Solids Air = 12,922 scfm

Final Facilities:

The final phase of the New Braunfels Utilities South Kuehler Wastewater Treatment Plant will consist of an existing common preliminary treatment process train, four secondary treatment process trains (Existing Plant Nos. 1, 2, and 3 and Proposed Plant No. 4), and an existing common tertiary process train capable of treating a total of 15.4 MGD average daily flow. The preliminary treatment process will consist of mechanical screens, aerated grit chambers, and an influent lift station. For the secondary treatment process, Plant Nos. 1 and 2 are existing single-stage nitrification activated sludge trains, Plant No. 3 is an existing enhanced biological phosphorus removal activated sludge train, and Plant No. 4 is a proposed enhanced biological phosphorus removal activated sludge train with anoxic, anaerobic, and aeration basins, and secondary clarifiers. The tertiary treatment process will consist of tertiary filtration, UV disinfection, and postaeration. It will also include four solids process trains (three existing and one proposed) consisting of aerobic digesters and thickeners and one common dewatering facility.

A schematic of the Final wastewater treatment plant is provided in Attachment E of this application.

Following are the treatment unit volumes and surface areas:

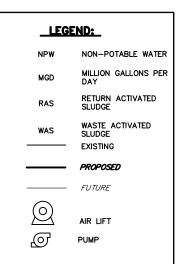
Grit Chamber = $17,783 \text{ ft}^3$ Aeration Basins = $1,331,248 \text{ ft}^3$ Secondary Clarifiers = $41,312 \text{ ft}^3$

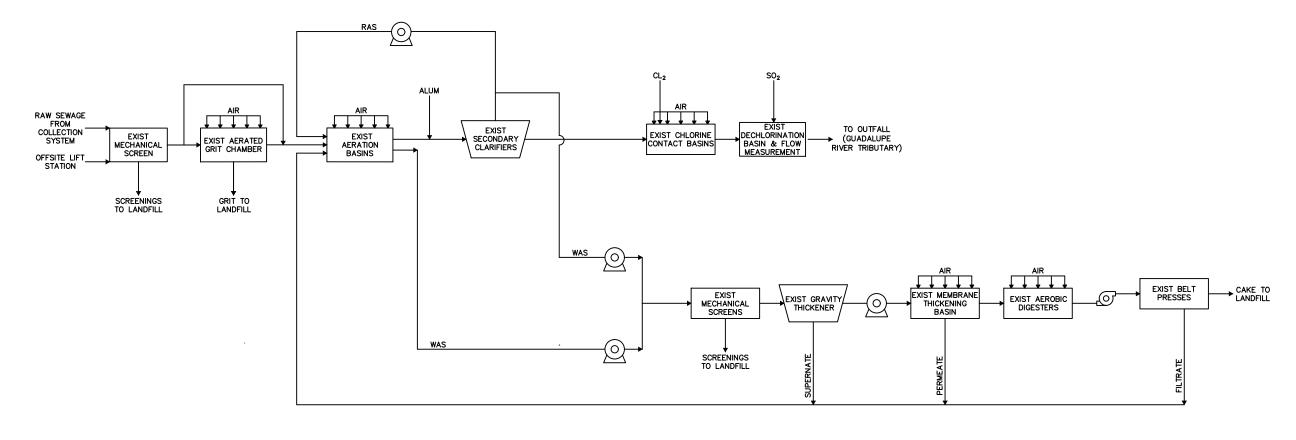
Anaerobic Basin = $72,960 \text{ ft}^3 \text{ (Plant Nos. 3 and 4 only)}$ Anoxic Selector Basin = $28,880 \text{ ft}^3 \text{ (Plant Nos. 3 and 4 only)}$

Tertiary Granular Dual Media Filters = $8,064 \text{ ft}^2$ Aerobic Digesters = $643,629 \text{ ft}^3$

Air Blowers (Firm Capacity)

Process Air = 37,047 scfm Solids Air = 20,722 scfm




ATTACHMENT E

FLOW SCHEMATICS

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

