

This file contains the following documents:

- 1. Summary of application (in plain language)
 - English
 - Alternative Language (Spanish)
- 2. First notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
 - English
 - Alternative Language (Spanish)
- 3. Second notice (NAPD-Notice of Preliminary Decision)
 - English
 - Alternative Language (Spanish)
- 4. Application materials
- 5. Draft permit
- 6. Technical summary or fact sheet

Este archivo contiene los siguientes documentos:

- 1. Resumen de la solicitud (en lenguaje sencillo)
 - Inglés
 - Idioma alternativo (español)
- 2. Primer aviso (NORI, Aviso de Recepción de Solicitud e Intención de Obtener un Permiso)
 - Inglés
 - Idioma alternativo (español)
- 3. Segundo aviso (NAPD, Aviso de Decisión Preliminar)
 - Inglés
 - Idioma alternativo (español)
- 4. Materiales de la solicitud
- 5. Proyecto de permiso
- 6. Resumen técnico u hoja de datos

TCEQ

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

PLAIN LANGUAGE SUMMARY FOR TPDES OR TLAP PERMIT APPLICATIONS

Plain Language Summary Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. Applicants may modify the template as necessary to accurately describe their facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how the applicant will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTIC WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

City of Round Rock (CN600413181), City of Cedar Park (CN600407951), City of Austin (CN600135198), and City of Leander (CN600646012) operate the Brushy Creek Regional West Wastewater Treatment Facility (RN100822592), a plug-flow activated sludge wastewater treatment facility. The facility is located at 1116 East Austin Avenue, in Round Rock, Williamson County, Texas 78664. This application is for a renewal to discharge an annual average flow of 3,000,000 gallons per day of treated domestic wastewater.

Discharges from the facility are expected to contain 5-day carbonaceous biochemical oxygen demand, total suspended solids, ammonia nitrogen, total phosphorus, and *E. coli*. Domestic wastewater is treated by two mechanical fine screens, two aeration basins, two secondary clarifiers, and an ultraviolet disinfection system.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES DOMÉSTICAS /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva federal de la solicitud de permiso.

La cuidad de Round Rock (CN600413181), la cuidad de Cedar Park (CN600407951), la cuidad de Austin (CN600135198) y la cuidad de Leander (CN600646012) operan la instalación de tratamiento de aguas residuales del Brushy Creek Regional West (RN100822592), una instalación de tratamiento de aguas residuales de lodos activados de flujo pistón. La instalación está ubicada en 1116 East Austin Avenue, en la cuidad de Round Rock, Condado de Williamson, Texas 78664. Esta solicitud es para una renovación para descargar un flujo promedio anual de 3,000,000 de galones por día de aguas residuales domésticas tratadas.

Se espera que las descargas de la instalación contengan demanda bioquímica carbonosa de oxígeno de 5 días, sólidos suspendidos totales, nitrógeno amoniacal, fósforo total, y *E. coli*. Aguas residuales domésticas son tratadas por dos cribas finas mecánicas, dos cuencas de aireación, dos clarificadores secundarios y un sistema de desinfección ultravioleta.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL.

PERMIT NO. WQ0010264001

APPLICATION. City of Austin, City of Cedar Park, City of Leander, and City of Round Rock, 221 East Main Street, Round Rock, Texas 78664, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WO0010264001 (EPA I.D. No. TX0075167) to authorize the discharge of treated wastewater at a volume not to exceed an annual average flow of 3,000,000 gallons per day. The domestic wastewater treatment facility is located at 1116 East Austin Avenue, in the city of Round Rock, in Willamson County, Texas 78664. The discharge route is from the plant site directly to Brushy Creek. TCEQ received this application on September 9, 2024. The permit application will be available for viewing and copying at the Utilities and Environmental Services Building, customer service desk, 3400 Sunrise Road, Round Rock, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.666111,30.513888&level=18

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public

interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Austin, City of Cedar Park, City of Leander, and City of Round Rock at the address stated above or by calling Mr. Michael Thane, P.E., Director - Utilities and Environmental Services, City of Round Rock at 512-218-3236.

Issuance Date: October 22, 2024

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ0010264001

SOLICITUD. La ciudad de Round Rock, la cuidad de Austin, la ciudad de Cedar Park, v la ciudad de Leander, 221 East Main Street, Round Rock, Texas 78664, han solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0010264001 (EPA I.D. No. TX0075167) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio anual de 3,000,000 galones por día. La planta está ubicada en 1116 East Austin Avenue, en la cuidad de Round Rock, en el Condado de Williamson, Texas 78664. La ruta de descarga es del sitio de la planta directamente al Brushy Creek. La TCEQ recibió esta solicitud el 9 de septiembre de 2024. La solicitud para el permiso está disponible para leerla y copiarla en el mostrador de atención al cliente del Edificio de Servicios Públicos y Ambientales, 3400 Sunrise Road, Round Rock, Texas. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdesapplications. Este enlace a un mapa electrónico del sitio o la ubicación general de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.666111,30.513888&level=18

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El

propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO

CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono: el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración '[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; v explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de

derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una o más de las listas de correos siguientes (1) la lista de correo permanente para recibir los avisos del solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

CONTACTOS E INFORMACIÓN DE LA TCEQ. Todos los comentarios escritos del público y los para pedidos una reunión debe ser presentado a la Oficina del Secretario Principal, MC 105, TCEQ, P.O. Box 13087, Austin, TX 78711-3087 o por el internet at www.tceq.texas.gov/about/comments.html. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Si necesita más información en Español sobre esta solicitud para un permiso o el proceso del permiso, por favor llame a El Programa de Educación Pública de la TCEQ, sin cobro, al 1-800-687-4040. La información general sobre la TCEQ puede ser encontrada en nuestro sitio de la red: www.tceq.texas.gov.

También se puede obtener información adicional de la ciudad de Round Rock, la cuidad de Austin, la ciudad de Cedar Park, y la ciudad de Leander a la dirección indicada arriba o llamando a Sr. Michael Thane, P.E., Director de Servicios Públicos y Medioambientales, al 512-218-3236.

Fecha de emisión 22 de octubre de 2024

Texas Commission on Environmental Quality

NOTICE OF APPLICATION AND PRELIMINARY DECISION FOR TPDES PERMIT FOR MUNICIPAL WASTEWATER

RENEWAL

PERMIT NO. WQ0010264001

APPLICATION AND PRELIMINARY DECISION. City of Round Rock, City of Cedar Park, City of Austin, and City of Leander, 221 East Main Street, Round Rock, Texas 78664, have applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010264001, which authorizes the discharge of treated domestic wastewater at an annual average flow not to exceed 3,000,000 gallons per day. TCEQ received this application on September 9, 2024.

The facility is located at 1116 East Austin Avenue, in the City of Round Rock, Willamson County, Texas 78664. The treated effluent is discharged directly to Brushy Creek in Segment No. 1244 of the Brazos River Basin. The designated uses for Segment No. 1244 are primary contact recreation, public water supply, aquifer protection, and high aquatic life use. This link to an electronic map of the site or facility's general location is provided as a public courtesy and is not part of the application or notice. For the exact location, refer to the application. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.666667,30513889. &level=18

The TCEQ Executive Director has completed the technical review of the application and prepared a permit draft. The draft permit, if approved, would establish the conditions under which the facility must operate. The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The permit application, Executive Director's preliminary decision, and draft permit are available for viewing and copying at the Utilities and Environmental Services Building, customer service desk, 3400 Sunrise Road, Round Rock, Texas. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permit/tpdes-applications.

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at https://www.tceq.texas.gov/permitting/wastewater/plain-language-summaries-and-public-notices. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/plain-language-summaries-and-public-notices.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting about this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ holds a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting a contested case hearing or reconsideration of the Executive Director's decision. A contested case hearing is a legal proceeding similar to a civil trial in a state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period; and the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period. TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

EXECUTIVE DIRECTOR ACTION. The Executive Director may issue final approval of the application unless a timely contested case hearing request or request for reconsideration is filed. If a timely hearing request or request for reconsideration is filed, the Executive Director will not issue final approval of the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below. All written public comments and public meeting requests must be submitted to the Office of the Chief Clerk, MC 105, Texas Commission on Environmental Ouality,

P.O. Box 13087, Austin, TX 78711-3087 or electronically at $\frac{\text{www.tceq.texas.gov/goto/comment}}{\text{goto days from the date of newspaper}}$ publication of this notice.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. Public comments and requests must be submitted either electronically at www.tceq.texas.gov/goto/comment, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC 105, P.O. Box 13087, Austin, Texas 78711-3087. Any personal information you submit to the TCEQ will become part of the agency's record; this includes email addresses. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Round Rock, City of Cedar Park, City of Austin, and City of Leander at the address stated above or by calling Mr. Michael Thane, P.E., Director - Utilities and Environmental Services, City of Round Rock at 512-218-3236.

Issuance Date: October 9, 2025

Comisión De Calidad Ambiental Del Estado De Texas

AVISO DE LA SOLICITUD Y DECISIÓN PRELIMINAR PARA EL PERMISO DEL SISTEMA DE ELIMINACION DE DESCARGAS DE CONTAMINANTES DE TEXAS (TPDES) PARA AGUAS RESIDUALES MUNICIPALES

RENOVACIÓN

PERMISO NO. WQ0010264001

SOLICITUD Y DECISIÓN PRELIMINAR. La ciudad de Round Rock, la ciudad de Cedar Park, la cuidad de Austin, y la ciudad de Leander, 221 East Main Street, Round Rock, Texas 78664, han solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para la renovación del Permiso No. WQ0010264001 del TPDES, que autoriza la descarga de aguas residuales domésticas tratadas con un flujo promedio anual que no exceda los 3,000,000 de galones por día. La TCEQ recibió esta solicitud el 9 de septiembre de 2024.

La planta está ubicada en 1116 East Austin Avenue, en la cuidad de Round Rock, en el Condado de Williamson, Texas 78664. El efluente tratado es descargado directamente al Brushy Creek en el Segmento No. 1244 de la Cuenca del Río Brazos. Los usos designados para el Segmento No. 1244 son recreación de contacto primario, abastecimiento de agua potable, protección de acuíferos, y usos elevados de la vida acuática. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.666667,30.513889&level=18

El Director Ejecutivo de la TCEQ ha completado la revisión técnica de la solicitud y ha preparado un borrador del permiso. El borrador del permiso, si es aprobado, establecería las condiciones bajo las cuales la instalación debe operar. El Director Ejecutivo ha tomado una decisión preliminar que si este permiso es emitido, cumple con todos los requisitos normativos y legales. La solicitud del permiso, la decisión preliminar del Director Ejecutivo y el borrador del permiso están disponibles para leer y copiar en el mostrador de atención al cliente del Edificio de Servicios Públicos y Ambientales, 3400 Sunrise Road, Round Rock, Texas. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

AVISO DE IDIOMA ALTERNATIVO. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud.

El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO.

Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión.

La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso para descargar aguas residuales sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

ACCIÓN DEL DIRECTOR EJECUTIVO. El Director Ejecutivo puede emitir una aprobación final de la solicitud a menos que exista un pedido antes del plazo de vencimiento de una audiencia administrativa de lo contencioso o se ha presentado un pedido de reconsideración. Si un pedido ha llegado antes del plazo de vencimiento de la audiencia o el pedido de reconsideración ha sido presentado, el Director Ejecutivo no emitirá una aprobación final sobre el permiso y enviará la solicitud y el pedido a los Comisionados de la TECQ para consideración en una reunión programada de la Comisión.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

Todos los comentarios públicos escritos y las solicitudes de reuniones públicas deben enviarse a la Oficina del Secretario Principal, MC 105, TCEQ, P.O. Box 13087, Austin, TX 78711-3087 o electrónicamente a www.tceq.texas.gov/goto/comment dentro de los 30 días a partir de la fecha de publicación de este aviso en el periódico.

INFORMACIÓN DISPONIBLE EN LÍNEA. Para obtener más información sobre el estado de la solicitud, visite la Base de Datos Integrada de Comisionados en www.tceq.texas.gov/goto/cid. Busque en la base de datos el número de permiso de esta solicitud, que se encuentra en la parte superior de este aviso.

CONTACTOS E INFORMACIÓN DE LA AGENCIA. Los comentarios y solicitudes públicas deben enviarse electrónicamente a www.tceq.texas.gov/goto/comment, o por escrito a Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Cualquier información personal que envíe a al TCEQ pasará a formar parte del registro de la agencia; esto incluye las direcciones de correo electrónico. Para obtener más información sobre esta solicitud de permiso o el proceso de permisos, llame al Programa de Educación Pública de la TCEQ, sin cargo, al 1-800-687-4040 o visite su sitio web en www.tceq.texas.gov/goto/pep. Si desea información en español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional de la ciudad de Round Rock, la ciudad de Cedar Park, la cuidad de Austin, y la ciudad de Leander a la dirección indicada arriba o llamando al Sr. Michael Thane, P.E., Director de Servicios Públicos y Medioambientales, al 512-218-3236.

Fecha de emission: el 9 de octubre de 2025

0982-021-01

RECEIVED

SEP 09 2024

TCEQ MAIL CENTER DA

September 9, 2024

Texas Commission on Environmental Quality Water Quality Division Applications Review and Processing Team MC-148 PO Box 13087 Austin, TX 78711

Re:

City of Round Rock (CN600413181), City of Cedar Park (CN600407951), City of Austin

(CN600135198), and City of Leander (CN600646012)

Brushy Creek Regional West Wastewater Treatment Facility (RN100822592)

Application for Renewal of Texas Pollutant Discharge Elimination System (TPDES) Permit No.

WQ0010264001

To Whom It May Concern:

On behalf of City of Round Rock, City of Cedar Park, City of Austin, and City of Leander, Plummer Associates, Inc. (Plummer) submits one original and two copies of a renewal application for the above-referenced permit. The application fee of \$2,015.00 for the Domestic Wastewater Permit Application has been submitted to the Texas Commission on Environmental Quality Cashier's Office (MC-214) under separate cover.

Please feel free to contact me at alewis@plummer.com or (512) 687-2154, if you have any questions regarding this submittal.

Sincerely Yours,

PLUMMER

Ashley Lewis

Water Quality/Permitting Team Leader

asury Iun

Enclosures: Permit Renewal Application (1 original, 2 copies)

cc: Ms. Laurie Hadley, City of Round Rock, City Manger

Ms. Brenda Eviens, City of Cedar Park, City Manager

Ms. Shay Ralls Roalson, City of Austin, Director of Austin Water

Mr. Todd Parton, City of Leander, City Manager

CITY OF ROUND ROCK, CITY OF CEDAR PARK, CITY OF AUSTIN, AND CITY OF LEANDER

BRUSHY CREEK REGIONAL WEST WASTEWATER TREATMENT FACILITY

TPDES PERMIT RENEWAL APPLICATION PERMIT NO. WQ0010264001

SUBMITTED TO: TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SEPTEMBER 2024 PROJECT #: 0982-021-01

CITY OF ROUND ROCK, CITY OF CEDAR PARK, CITY OF AUSTIN, AND CITY OF LEANDER BRUSHY CREEK REGIONAL WEST WASTEWATER TREATMENT FACILITY TPDES PERMIT RENEWAL APPLICATION

TABLE OF CONTENTS

I. ADMINISTRATIVE REPORT

Domestic Administrative Report 1.0 Supplemental Permit Information Form (SPIF)

II. TECHNICAL REPORT

Domestic Technical Report 1.0

Domestic Worksheet 2.0

Domestic Worksheet 4.0

Domestic Worksheet 5.0

Domestic Worksheet 6.0

III. ATTACHMENTS

<u>No.</u>	<u>Description</u>	Reference
Α	Core Data Form	Admin Rpt 1.0, Section 3.C
В	Plain Language Summary	Admin Rpt 1.0, Section 8.F
С	USGS Map	Admin Rpt 1.0, Section 13
D	Process Flow Diagram	Tech Rpt 1.0, Section 2.C
E	Site Drawing	Tech Rpt 1.0, Section 3
F	Pollutant Analysis of Treated Effluent	Tech Rpt 1.0, Section 7; Wks 4.0 Section 1 & 2
G	Summary of WET Test Results	Wks 5.0 Section 3
Н	Effluent Parameters Above the MAL	Wks 6.0 Section 2.C

THE COMMISSION OF THE PROPERTY OF THE PROPERTY

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST

Complete and submit this checklist with the application.

APPLICANT NAME: <u>City of Round Rock, City of Cedar Park, City of Austin, and City of Leander</u> PERMIT NUMBER (If new, leave blank): WQ00<u>10264001</u>

Indicate if each of the following items is included in your application.

	Y	N		Y	N
Administrative Report 1.0	\boxtimes		Original USGS Map	\boxtimes	
Administrative Report 1.1		\boxtimes	Affected Landowners Map		\boxtimes
SPIF	\boxtimes		Landowner Disk or Labels		\boxtimes
Core Data Form	\boxtimes		Buffer Zone Map		\boxtimes
Public Involvement Plan Form		\boxtimes	Flow Diagram	\boxtimes	
Technical Report 1.0	\boxtimes		Site Drawing	\boxtimes	
Technical Report 1.1		\boxtimes	Original Photographs		\boxtimes
Worksheet 2.0	\boxtimes		Design Calculations		\boxtimes
Worksheet 2.1		\boxtimes	Solids Management Plan		\boxtimes
Worksheet 3.0		\boxtimes	Water Balance		\boxtimes
Worksheet 3.1		\boxtimes			
Worksheet 3.2		\boxtimes			
Worksheet 3.3		\boxtimes			
Worksheet 4.0	\boxtimes				
Worksheet 5.0	\boxtimes				
Worksheet 6.0	\boxtimes				
Worksheet 7.0					

For TCEQ Use Only	
Segment Number	County
Expiration Date	Region
Permit Number	

THE TONMENTAL OUR LEVEL OF THE TONE OF THE

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION ADMINISTRATIVE REPORT 1.0

For any questions about this form, please contact the Applications Review and Processing Team at 512-239-4671.

Section 1. Application Fees (Instructions Page 26)

Indicate the amount submitted for the application fee (check only one).

Flow	New/Major Amendment	Renewal
<0.05 MGD	\$350.00 □	\$315.00 □
≥0.05 but <0.10 MGD	\$550.00 □	\$515.00 □
≥0.10 but <0.25 MGD	\$850.00 □	\$815.00 □
≥0.25 but <0.50 MGD	\$1,250.00 □	\$1,215.00
≥0.50 but <1.0 MGD	\$1,650.00 □	\$1,615.00
≥1.0 MGD	\$2,050.00 □	\$2,015.00

Minor Amendment (for any flow) \$150.00 □

Payment	Inform	ation
----------------	--------	-------

Mailed Check/Money Order Number: 10080173

Check/Money Order Amount: \$2,015.00

Name Printed on Check: City of Round Rock

EPAY Voucher Number: <u>N/A</u>

Copy of Payment Voucher enclosed? Yes \square N/A

Section 2. Type of Application (Instructions Page 26)

a.	Check the box next to the appropriate authorization type.		
	\boxtimes	Publicly-Owned Domestic Wastewater	
		Privately-Owned Domestic Wastewater	

☐ Conventional Wastewater Treatment

b. Check the box next to the appropriate facility status.

□ Inactive

c.	Che	eck the box next to the appropriate permit typ	e.			
	\boxtimes	TPDES Permit				
		TLAP				
		TPDES Permit with TLAP component				
		Subsurface Area Drip Dispersal System (SAD	DS)			
d.	Che	eck the box next to the appropriate application	ı typ	e		
		New				
		Major Amendment <i>with</i> Renewal		Minor Amendment <u>with</u> Renewal		
		Major Amendment without Renewal		Minor Amendment <u>without</u> Renewal		
	\boxtimes	Renewal without changes		Minor Modification of permit		
e.	For	amendments or modifications, describe the p	ropo	osed changes: <u>N/A</u>		
f.	For	existing permits:				
	Per	mit Number: WQ00 <u>10264001</u>				
	EPA	A I.D. (TPDES only): TX <u>0075167</u>				
	Exp	oiration Date: <u>3/11/2025</u>				
Se	cti	on 3. Facility Owner (Applicant) a	nd	Co-Applicant Information		
		(Instructions Page 26)				
A.	The	e owner of the facility must apply for the per	rmit.			
	What is the Legal Name of the entity (applicant) applying for this permit?					
	City of Round Rock					
		e legal name must be spelled exactly as filed w legal documents forming the entity.)	ith tì	he Texas Secretary of State, County, or in		
		he applicant is currently a customer with the T nay search for your CN on the TCEQ website				
		CN: <u>600413181</u>				
		at is the name and title of the person signing t cutive official meeting signatory requirements				

Prefix: Ms.

Last Name, First Name: Hadley, Laurie

Tital of the Constant of the C

Title: <u>City Manager</u> Credential:

B. Co-applicant information. Complete this section only if another person or entity is required to apply as a co-permittee.

What is the Legal Name of the co-applicant applying for this permit?

City of Cedar Park

(The legal name must be spelled exactly as filed with the TX SOS, with the County, or in the legal documents forming the entity.)

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at: http://www15.tceq.texas.gov/crpub/

CN: 600407951

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix: Ms. Last Name, First Name: Eivens, Brenda

Title: City Manager Credential:

Provide a brief description of the need for a co-permittee: <u>Co-owner of Brushy Creek Regional West Wastewater Treatment Facility</u>

C. Co-applicant information. Complete this section only if another person or entity is required to apply as a co-permittee.

What is the Legal Name of the co-applicant applying for this permit?

City of Austin

(The legal name must be spelled exactly as filed with the TX SOS, with the County, or in the legal documents forming the entity.)

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at: http://www15.tceq.texas.gov/crpub/

CN: 600135198

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix: Ms. Last Name, First Name: Roalson, Shay Ralls

Title: <u>Director of Austin Water</u> Credential: <u>P.E.</u>

Provide a brief description of the need for a co-permittee: <u>Co-owner of Brushy Creek Regional West Wastewater Treatment Facility</u>

D. Co-applicant information. Complete this section only if another person or entity is required to apply as a co-permittee.

What is the Legal Name of the co-applicant applying for this permit?

City of Leander

(The legal name must be spelled exactly as filed with the TX SOS, with the County, or in the legal documents forming the entity.)

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at: http://www15.tceq.texas.gov/crpub/

CN: 600646012

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in 30 TAC § 305.44.

Prefix: Mr. Last Name, First Name: Parton, Todd

Title: <u>City Manager</u> Credential:

Provide a brief description of the need for a co-permittee: <u>Co-owner of Brushy Creek Regional West Wastewater Treatment Facility</u>

E. Core Data Form

Complete the Core Data Form for each customer and include as an attachment. If the customer type selected on the Core Data Form is **Individual**, complete **Attachment 1** of Administrative Report 1.0. $\underline{\mathbf{A}}$

Section 4. Application Contact Information (Instructions Page 27)

This is the person(s) TCEQ will contact if additional information is needed about this application. Provide a contact for administrative questions and technical questions.

A. Prefix: Mr. Last Name, First Name: Thane, Michael

Title: <u>Director - Utilities and Environmental Services</u> Credential: <u>P.E.</u>

Organization Name: City of Round Rock

Mailing Address: 3400 Sunrise Rd City, State, Zip Code: Round Rock, TX 78665

Phone No.: (512) 218-3236 E-mail Address: mthane@roundrocktexas.gov

Check one or both:

Administrative Contact

Technical Contact

B. Prefix: Ms. Last Name, First Name: Lewis, Ashley

Title: Water Quality/Permitting Team Leader Credential:

Organization Name: <u>Plummer Associates, Inc.</u>

Mailing Address: 8911 N Capital of Texas Hwy, Bldg 1 - Ste 1250 City, State, Zip Code: Austin,

TX 78759

Phone No.: (512) 687-2154 E-mail Address: alewis@plummer.com

Section 5. Permit Contact Information (Instructions Page 27)

Provide the names and contact information for two individuals that can be contacted throughout the permit term.

A. Prefix: Mr. Last Name, First Name: Thane, Michael

Title: Director - Utilities and Environmental Services Credential: P.E.

Organization Name: City of Round Rock

Mailing Address: 3400 Sunrise Rd City, State, Zip Code: Round Rock, TX 78665

Phone No.: (512) 218-3236 E-mail Address: mthane@roundrocktexas.gov

B. Prefix: Mr. Last Name, First Name: Carr, Laton

Title: Principal Utility Engineer - Utilities and Environmental Services Credential: P.E.

Organization Name: City of Round Rock

Mailing Address: 3400 Sunrise Rd City, State, Zip Code: Round Rock, TX 78665

Phone No.: (512) 218-3238 E-mail Address: lcarr@roundrocktexas.gov

Section 6. Billing Contact Information (Instructions Page 27)

The permittee is responsible for paying the annual fee. The annual fee will be assessed to permits *in effect on September 1 of each year*. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (using form TCEQ-20029).

Prefix: Mr. Last Name, First Name: Thane, Michael

Title: <u>Director - Utilities and Environmental Services</u> Credential: <u>P.E.</u>

Organization Name: City of Round Rock

Mailing Address: 3400 Sunrise Rd City, State, Zip Code: Round Rock, TX 78665

Phone No.: (512) 218-3236 E-mail Address: mthane@roundrocktexas.gov

Section 7. DMR/MER Contact Information (Instructions Page 27)

Provide the name and complete mailing address of the person delegated to receive and submit Discharge Monitoring Reports (DMR) (EPA 3320-1) or maintain Monthly Effluent Reports (MER).

Prefix: Mr. Last Name, First Name: Heaps, John

Title: <u>Superintendent – Utilities Services</u> Credential:

Organization Name: City of Round Rock

Mailing Address: 3400 Sunrise Rd City, State, Zip Code: Round Rock, TX 78665

Phone No.: (512) 218-6637 E-mail Address: jheaps@roundrocktexas.gov

Section 8. Public Notice Information (Instructions Page 27)

A. Individual Publishing the Notices

Prefix: Ms. Last Name, First Name: Griesel, Jenni

Title: <u>Project Engineer</u> Credential: <u>P.E.</u>

Organization Name: Plummer Associates, Inc.

Mailing Address: 8911 N Capital of Texas Hwy, Bldg 1 - Ste 1250 City, State, Zip Code: Austin,

TX 78759

Phone No.: (512) 687-2193 E-mail Address: jgriesel@plummer.com

B. Method for Receiving Notice of Receipt and Intent to Obtain a Water Quality Permit Package

Indicate by a check mark the preferred method for receiving the first notice and instructions:

- □ Fax
- □ Regular Mail

C. Contact permit to be listed in the Notices

Prefix: Mr. Last Name, First Name: Thane, Michael

Title: Director - Utilities and Environmental Services Credential: P.E. Organization Name: City of Round Rock Mailing Address: 3400 Sunrise Rd City, State, Zip Code: Round Rock, TX 78665 Phone No.: (512) 218-3236 E-mail Address: mthane@roundrocktexas.gov **D. Public Viewing Information** If the facility or outfall is located in more than one county, a public viewing place for each county must be provided. Public building name: Utilities and Environmental Services Building Location within the building: Customer Service Desk Physical Address of Building: 3400 Sunrise Rd City: Round Rock County: Williamson Contact (Last Name, First Name): Carr, Laton Phone No.: (512) 218-3238 Ext.: E. Bilingual Notice Requirements This information is required for new, major amendment, minor amendment or minor modification, and renewal applications. This section of the application is only used to determine if alternative language notices will be needed. Complete instructions on publishing the alternative language notices will be in your public notice package. Please call the bilingual/ESL coordinator at the nearest elementary and middle schools and obtain the following information to determine whether an alternative language notices are required. 1. Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility? Yes No If **no**, publication of an alternative language notice is not required; **skip to** Section 9 2. Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school? Yes \boxtimes No 3. Do the students at these schools attend a bilingual education program at another location? \boxtimes No Yes 4. Would the school be required to provide a bilingual education program but the school has waived out of this requirement under 19 TAC §89.1205(g)? Yes \boxtimes No

F. Plain Language Summary Template

Complete the Plain Language Summary (TCEQ Form 20972) and include as an attachment.

Attachment: B

G. Public Involvement Plan Form

Complete the Public Involvement Plan Form (TCEQ Form 20960) for each application for a **new permit or major amendment to a permit** and include as an attachment.

Attachment: N/A

Section 9. Regulated Entity and Permitted Site Information (Instructions Page 29)

A. If the site is currently regulated by TCEQ, provide the Regulated Entity Number (RN) issued to this site. **RN** 100822592

Search the TCEQ's Central Registry at http://www15.tceq.texas.gov/crpub/ to determine if the site is currently regulated by TCEQ.

- **B.** Name of project or site (the name known by the community where located):
 - Brushy Creek Regional West Wastewater Treatment Facility
- C. Owner of treatment facility: <u>City of Round Rock, City of Cedar Park, City of Austin, and City of Leander</u>
 - Ownership of Facility: oximes Public oximes Private oximes Both oximes Federal
- **D.** Owner of land where treatment facility is or will be:

Prefix: N/A Last Name, First Name: N/A

Title: <u>N/A</u> Credential: <u>N/A</u>

Organization Name: City of Round Rock, City of Cedar Park, City of Austin, and City of Leander

Mailing Address: 212 E. Main Street City, State, Zip Code: Round Rock, TX 78664

Phone No.: (512) 218-5410 E-mail Address: lhadley@roundrocktexas.gov

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: N/A

E. Owner of effluent disposal site:

Prefix: N/A Last Name, First Name: N/A

Title: N/A Credential: N/A

Organization Name: N/A

Mailing Address: N/A City, State, Zip Code: N/A

Phone No.: N/A E-mail Address: N/A

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: N/A

F. Owner sewage sludge disposal site (if authorization is requested for sludge disposal on

	Title: <u>N/A</u>	Credential: <u>N/A</u>
	Organization Name: <u>N/A</u>	
	Mailing Address: <u>N/A</u>	City, State, Zip Code: <u>N/A</u>
	Phone No.: <u>N/A</u>	E-mail Address: <u>N/A</u>
	If the landowner is not the same pagreement or deed recorded easer	person as the facility owner or co-applicant, attach a lease ment. See instructions.
	Attachment: <u>N/A</u>	
Se	Section 10. TPDES Discharge	e Information (Instructions Page 31)
Α.	A. Is the wastewater treatment facilit	ry location in the existing permit accurate?
	□ Yes ⊠ No	
	If no , or a new permit application 1116 East Austin Avenue, Round Roo	n, please give an accurate description:
	1110 East Austin Avenue, Round Roc	ck, Williamson County, 1X 78004
В.		the discharge route(s) in the existing permit correct?
	⊠ Yes □ No	
		rmit application, provide an accurate description of the rge route to the nearest classified segment as defined in 30
	TAC Chapter 307:	
	N/A	
	City nearest the outfall(s): Round F	Rock
	County in which the outfalls(s) is/	are located: <u>Williamson</u>
C.	C. Is or will the treated wastewater d a flood control district drainage d	ischarge to a city, county, or state highway right-of-way, or itch?
	□ Yes ⊠ No	
	If yes , indicate by a check mark if	:
	☐ Authorization granted	\square Authorization pending <u>N/A</u>
	For new and amendment applicat and the approval letter upon recei	tions, provide copies of letters that show proof of contact pt.
	Attachment: <u>N/A</u>	
D.		verage daily discharge of 5 MGD or more, provide the in 100 statute miles downstream of the point(s) of

Last Name, First Name: N/A

property owned or controlled by the applicant)::

Prefix: N/A

Α.	For TLAPs, is the location of the effluent disposal site in the existing permit accurate?
	□ Yes □ No <u>N/A – Not a TLAP</u>
	If no, or a new or amendment permit application , provide an accurate description of the disposal site location:
	N/A
В.	City nearest the disposal site: $\underline{N/A}$
C.	County in which the disposal site is located: N/A
D.	For TLAPs , describe the routing of effluent from the treatment facility to the disposal site:
	N/A
Е.	For TLAPs , please identify the nearest watercourse to the disposal site to which rainfall runoff might flow if not contained: N/A
Se	ection 12. Miscellaneous Information (Instructions Page 32)
A.	Is the facility located on or does the treated effluent cross American Indian Land?
	□ Yes ⊠ No
В.	If the existing permit contains an onsite sludge disposal authorization, is the location of the sewage sludge disposal site in the existing permit accurate?
	□ Yes □ No ⊠ Not Applicable
	If No, or if a new onsite sludge disposal authorization is being requested in this permit application, provide an accurate location description of the sewage sludge disposal site.
	N/A
C.	Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?
	□ Yes ⊠ No
	If yes, list each person formerly employed by the TCEQ who represented your company and was paid for service regarding the application: $\underline{\rm N/A}$
D.	Do you owe any fees to the TCEQ?
	□ Yes ⊠ No
	If yes , provide the following information:
	Account number: N/A
	Amount past due: N/A

Section 11. TLAP Disposal Information (Instructions Page 32)

- E. Do you owe any penalties to the TCEQ?

 ☐ Yes ☐ No

 If yes, please provide the following information:

 Enforcement order number: N/A
 - Amount past due: N/A

Section 13. Attachments (Instructions Page 33)

Indicate which attachments are included with the Administrative Report. Check all that apply:

- Lease agreement or deed recorded easement, if the land where the treatment facility is located or the effluent disposal site are not owned by the applicant or co-applicant.
- ☐ Original full-size USGS Topographic Map with the following information:
 - Applicant's property boundary
 See Attachment C
 - Treatment facility boundary
 - Labeled point of discharge for each discharge point (TPDES only)
 - Highlighted discharge route for each discharge point (TPDES only)
 - Onsite sewage sludge disposal site (if applicable)
 - Effluent disposal site boundaries (TLAP only)
 - New and future construction (if applicable)
 - 1 mile radius information
 - 3 miles downstream information (TPDES only)
 - All ponds.
- ☐ Attachment 1 for Individuals as co-applicants
- ☑ Other Attachments. Please specify: See Table of Contents

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: <u>WQoo10264001</u> Applicant: <u>City of Round Rock</u>

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory name (typed or printed): <u>Laurie Hadley</u>
Signatory title: City Manager, City of Round Rock
Signature: Raurus Hadley Date: Aug. 23, 2624 (Use blue ink)
Subscribed and Sworn to before me by the said Laure Hudley City Mgv on this

MONIQUE ADAMS
My Notary ID # 126257913
Expires March 22, 2026

County, Texas

Page 12 of 21

EAL

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: <u>WQ0010264001</u> Applicant: <u>City of Cedar Park</u>

Certification:

County, Texas

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory name (typed or printed): <u>Brenda Eivens</u>	
Signatory title: City Manager, City of Cedar Park	
Signature: Mwda 2vv Date: 8/15/2024 (Use blue ink)	W Att
Subscribed and Sworn to before me by the said Brenda Elvens on this 15+h day of Hugust, 2024. My commission expires on the 25+h day of June, 2025.	
DEBRA HARGROVE My Notary ID # 10899977 Expires June 25, 2025 [SEAL]	

Signatory name (typed or printed): Shav Ralls Roalson

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: WQ0010264001

Applicant: City of Austin

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory	title: <u>Director of Aust</u>	in Water, City	of Austin			
Signature	(Use blue ink)	Polon		Date: 7/31	12024	
	(Use blue ink)					
	ed and Sworn to befo	re me by the	said Shay	Ralls 1	Roalson	
on this	The second secon	day of	day of Ju	NP.	, 20 <mark>24</mark> .	
My comm	nission expires on the	2 2121	_day ofday			

Deborn X. Ockleton

County, Texas

Notary ID St

Commission Expires
June 21, 2025

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: WQ0010264001

Applicant: City of Leander

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

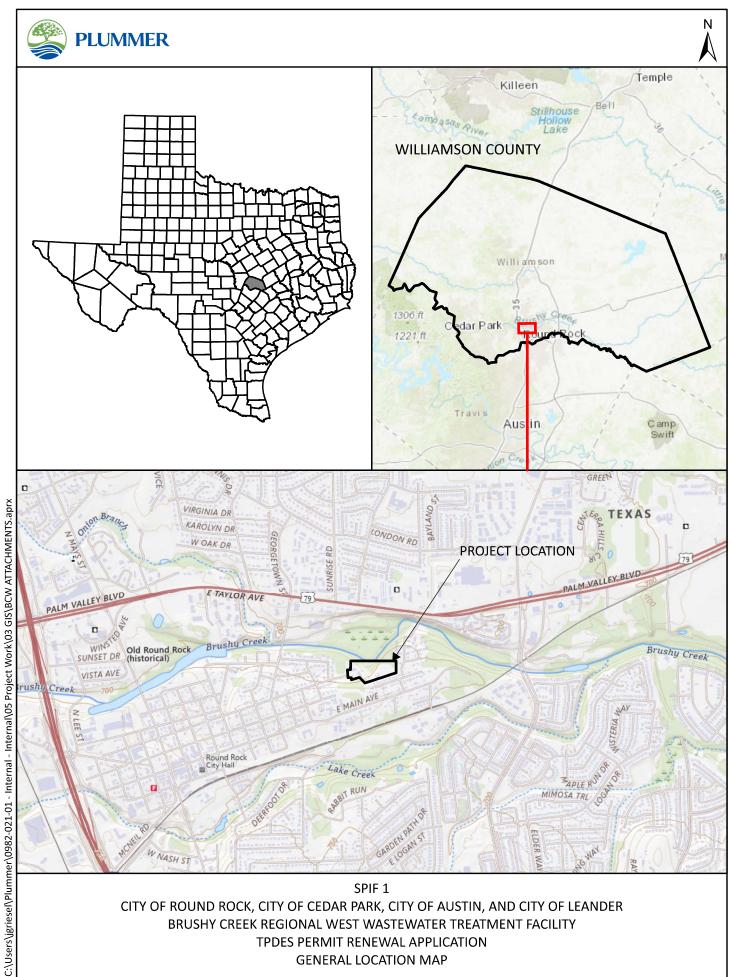
I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory name (typed or printed): <u>Todd Parton</u>	
Signatory title: City Manager, City of Leander	
Signature: (Use blue ink)	Date: 4/30/2024
Subscribed and Sworn to before me by the said on this day of	Todd Parton
	May 20 28.
Notary Public	[SEAL]
County, Texas	OF 30-30-202 MILLING OF 30-30-202 MILLING OF 3492 A STATE OF THE STATE

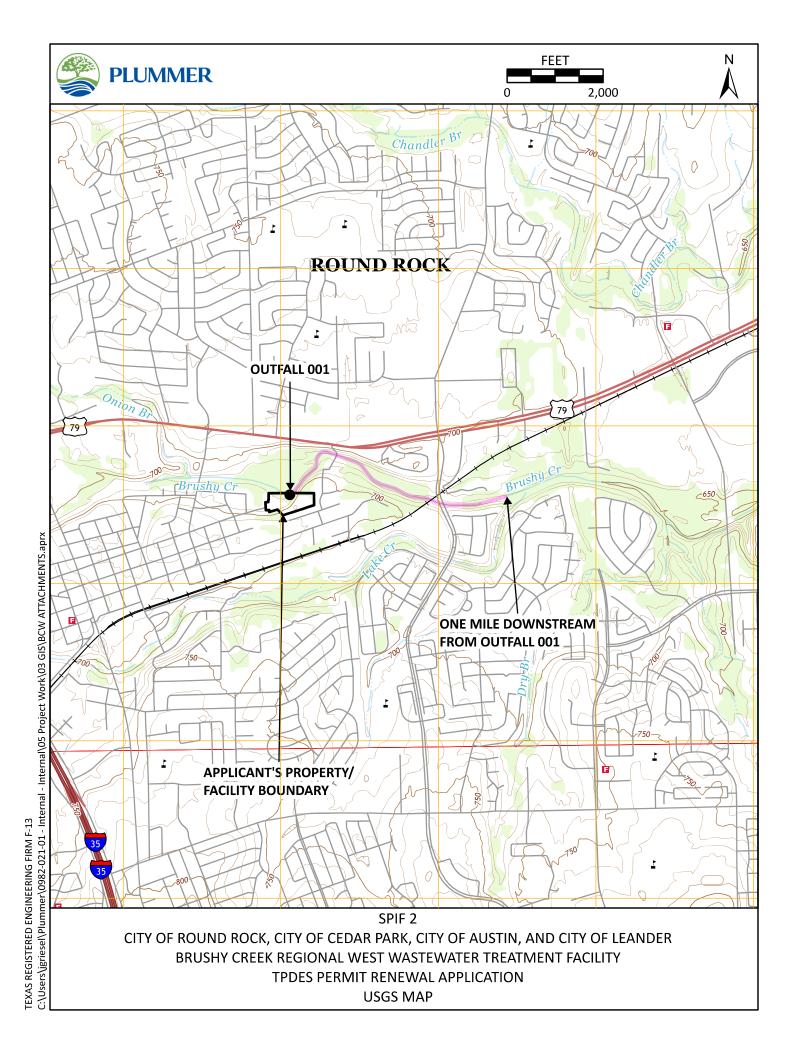
TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

TCEQ USE ONLY:	
Application type:RenewalMajor AmendmentMinor AmendmentNew	
County: Segment Number:	
Admin Complete Date:	
Agency Receiving SPIF:	
Texas Historical Commission U.S. Fish and Wildlife	
Texas Parks and Wildlife Department U.S. Army Corps of Engineers	
This form applies to TPDES permit applications only. (Instructions, Page 53)	
Complete this form as a separate document. TCEQ will mail a copy to each agency as required by our agreement with EPA. If any of the items are not completely addressed or further information is needed, we will contact you to provide the information before issuing the permit. Address each item completely.	
Do not refer to your response to any item in the permit application form. Provide each attachment for this form separately from the Administrative Report of the application. The application will not be declared administratively complete without this SPIF form being completed in its entirety including all attachments. Questions or comments concerning this form may be directed to the Water Quality Division's Application Review and Processing Team by email at	


Provide the name, address, phone and fax number of an individual that can be contacted to answer specific questions about the property.		
Prefix (Mr., Ms., Miss): Mr.		
First and Last Name: <u>Michael Thane</u>		
Credential (P.E, P.G., Ph.D., etc.): <u>P.E.</u>		
Title: <u>Director - Utilities and Environmental Services</u>		
Mailing Address: <u>3400 Sunrise Rd</u>		
City, State, Zip Code: Round Rock, TX 78665		
Phone No.: <u>(512) 218-3236</u> Ext.: <u>N/A</u> Fax No.: <u>(512) 218-5563</u>		
E-mail Address: <u>mthane@roundrocktexas.gov</u>		
List the county in which the facility is located: Williamson		
If the property is publicly owned and the owner is different than the permittee/applicant,		
please list the owner of the property. N/A - Property owners and permittees/applicants are the same.		
11/11 Troperty owners and permittees, applicants are the same.		
Provide a description of the effluent discharge route. The discharge route must follow the flow		
of effluent from the point of discharge to the nearest major watercourse (from the point of		
discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify the classified segment number.		
Directly to Brushy Creek in Segment No. 1244 of the Brazos River Basin		
Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report). See SPIF 1 and SPIF 2		
Provide original photographs of any structures 50 years or older on the property. <u>N/A</u>		
Does your project involve any of the following? Check all that apply. None apply.		
□ Proposed access roads, utility lines, construction easements		
□ Visual effects that could damage or detract from a historic property's integrity		
□ Vibration effects during construction or as a result of project design		
☐ Additional phases of development that are planned for the future		
☐ Sealing caves, fractures, sinkholes, other karst features		
□ Disturbance of vegetation or wetlands		

2.3.


4.

5.

1.	List proposed construction impact (surface acres to be impacted, depth of excavation, sealing
	of caves, or other karst features):
	N/A
2.	Describe existing disturbances, vegetation, and land use:
	Existing disturbances and land use are typical for a wastewater treatment facility of this
	size.
ты	E FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR
	ENDMENTS TO TPDES PERMITS
3.	List construction dates of all buildings and structures on the property:
	N/A
4.	Provide a brief history of the property, and name of the architect/builder, if known.
	N/A

TPDES PERMIT RENEWAL APPLICATION **GENERAL LOCATION MAP**

THE TONMENTAL OURS

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671.

The following information is required for all renewal, new, and amendment applications.

Section 1. Permitted or Proposed Flows (Instructions Page 43)

A. Existing/Interim I Phase

Design Flow (MGD): <u>3.0</u> 2-Hr Peak Flow (MGD): <u>9.0</u>

Estimated construction start date: <u>Existing</u>
Estimated waste disposal start date: <u>Existing</u>

B. Interim II Phase

Design Flow (MGD): N/A

2-Hr Peak Flow (MGD): <u>N/A</u>

Estimated construction start date: <u>N/A</u>
Estimated waste disposal start date: N/A

C. Final Phase

Design Flow (MGD): <u>N/A</u> 2-Hr Peak Flow (MGD): N/A

Estimated construction start date: <u>N/A</u>
Estimated waste disposal start date: <u>N/A</u>

D. Current Operating Phase

Provide the startup date of the facility: 1978

Section 2. Treatment Process (Instructions Page 43)

A. Process Description

Provide a detailed description of the treatment process. **Include the type of treatment plant, mode of operation, and all treatment units.** Start with the plant's head works and

finish with the point of discharge. Include all sludge processing and drying units. **If more than one phase exists or is proposed, a description of** *each phase* **must be provided**.

Wastewater treatment is a plug-flow activated sludge wastewater treatment facility that includes two mechanical fine screens, two aeration basins, two secondary clarifiers, and an ultraviolet disinfection system prior to discharging into Brushy Creek Segment No. 1244. The aeration basins are equipped with fine bubble membranes diffusers with floor coverage of up to 20% in the first 5 of 6 zones in one bull's eye; and the first 3 of 5 zones in the second bull's eye. The plant includes return activated sludge, scum, and waste activated air lift pumps. Sludge is returned from the bottom of the clarifier to the aeration basins. Waste activated sludge is taken from the aeration basin and conveyed to the Brushy Creek Regional East Wastewater Treatment Facility (same Owner and Operator as this facility) to allow centralized dewatering for the two plants.

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) of each treatment unit, accounting for *all* phases of operation.

Table 1.0(1) - Treatment Units

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
Selector Basins	2	1 - 17,624 ft³, 15 ft D x 17'-0" W
		1 - 21,032 ft³, 15 ft D x 16'-7" W
Aeration Basins	2	1 - 61,685 ft ³ , 15 ft D x 17'-0" W
		1 - 73, 956 ft ³ , 15 ft D x 16'-7" W
Clarifiers	2	1 - 80 ft Diameter, 15 ft SWD
		1 - 103 ft Diameter, 15 ft SWD
UV Disinfection System	1	36.5 ft L x 2.33 ft W x 1.21 ft D

C. Process Flow Diagram

Provide flow diagrams for the existing facilities and **each** proposed phase of construction.

Attachment: D

Section 3. Site Information and Drawing (Instructions Page 44)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

• Latitude: <u>30.514557</u>

• Longitude: <u>-97.665391</u>

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

Latitude: N/ALongitude: N/A

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and

Attachment: <u>E</u>			
Provide the name and a des	scription of the area se	rved by the treatment	facility.
The facility serves portions of District (MUD), Brushy Cree			Municipal Utility
Collection System Informat each uniquely owned colle satellite collection systems examples .	ction system, existing	and new, served by th	is facility, including
Collection System Information			
Collection System Name	Owner Name	Owner Type	Population Serve
West Round Rock	City of Round Rock	Publicly Owned	5,000
Cedar Park	City of Cedar Park	Publicly Owned	5,000
North Austin	City of Austin	Publicly Owned	5,000
Leander	City of Leander	Publicly Owned	5,000
Fern Bluffs MUD	Fern Bluffs Municipal Utility District	Publicly Owned	2,000
Brushy Creek MUD	Brushy Creek Municipal Utility District	Publicly Owned	6,000
Section 4. Unbuilt I Is the application for a rene □ Yes □ No If yes, does the existing peryears of being authorized being being authorized being being authorized being bein	Phases (Instruction was a permit that contain a phase the py the TCEQ?	ontains an unbuilt pha nat has not been cons e continued need for t	tructed within five the unbuilt phase.

If sludge disposal is authorized in the permit, the boundaries of the land application or

disposal site.

Section 5. Closure Plans (Instructions Page 45)
Have any treatment units been taken out of service permanently, or will any units be taken out of service in the next five years?
□ Yes ⊠ No
If yes, was a closure plan submitted to the TCEQ?
□ Yes □ No <u>N/A</u>
If yes, provide a brief description of the closure and the date of plan approval.
N/A
Section 6. Permit Specific Requirements (Instructions Page 45)
For applicants with an existing permit, check the Other Requirements or Special Provisions of the permit.
A. Summary transmittal
Have plans and specifications been approved for the existing facilities and each proposed phase?
⊠ Yes □ No
If yes, provide the date(s) of approval for each phase: 5/14/2014
Provide information, including dates, on any actions taken to meet a requirement or
<i>provision</i> pertaining to the submission of a summary transmittal letter. Provide a copy of an approval letter from the TCEQ, if applicable .
an approval letter from the TCEQ, if applicable. The summary transmittal letter for the existing phase was submitted 3/28/2014 and approved by
an approval letter from the TCEQ, if applicable.
an approval letter from the TCEQ, if applicable. The summary transmittal letter for the existing phase was submitted 3/28/2014 and approved by
an approval letter from the TCEQ, if applicable. The summary transmittal letter for the existing phase was submitted 3/28/2014 and approved by TCEQ on 5/14/2014.

Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the

buffer zones.

	he permittees comply with a nuisance odor prevention plan in accordance with 30 TAC§ 09.13(e)(2) approved on May 14, 2014. (TCEQ Log No. 0414/004).
Ot	her actions required by the current permit
Do su	bes the <i>Other Requirements</i> or <i>Special Provisions</i> section in the existing permit require bmission of any other information or other required actions? Examples include of tification of Completion, progress reports, soil monitoring data, etc.
	□ Yes ⊠ No
	yes, provide information below on the status of any actions taken to meet the nditions of an <i>Other Requirement</i> or <i>Special Provision</i> .
N	<u>/A</u>
Gr	it and grease treatment
1.	Acceptance of grit and grease waste
	Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?
	□ Yes ⊠ No
	If No, stop here and continue with Subsection E. Stormwater Management.
2.	Grit and grease processing
	Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility.
	N/A
3.	Grit disposal
	Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal?
	\square Yes \square No $\underline{N/A}$
	If No , contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.

C.

D.

		Describe the method of grit disposal.
		N/A
	4.	Grease and decanted liquid disposal
		Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335.
		Describe how the decant and grease are treated and disposed of after grit separation.
		N <u>/A</u>
Ε.	Sto	ormwater management
	1.	Applicability
		Does the facility have a design flow of 1.0 MGD or greater in any phase?
		⊠ Yes □ No
		Does the facility have an approved pretreatment program, under 40 CFR Part 403?
		⊠ Yes □ No
		If no to both of the above, then skip to Subsection F, Other Wastes Received.
	2.	MSGP coverage
		Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?
		⊠ Yes □ No
		If yes , please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:
		TXR05 FR27 or TXRNE
		If no, do you intend to seek coverage under TXR050000?
		□ Yes □ No <u>N/A</u>
	3.	Conditional exclusion
		Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?
		□ Yes ⊠ No
		If yes, please explain below then proceed to Subsection F, Other Wastes Received:
		N/A

4.	Existing coverage in individual permit
	Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?
	□ Yes ⊠ No
	If yes , provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.
	N/A
5.	Zero stormwater discharge
	Do you intend to have no discharge of stormwater via use of evaporation or other means?
	□ Yes ⊠ No
	If yes, explain below then skip to Subsection F. Other Wastes Received.
	N/A
	Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.
<i>6.</i>	Request for coverage in individual permit
	Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?
	□ Yes ⊠ No
	If yes, provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state.
	N/A

Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.

F. Discharges to the Lake Houston Watershed

Does the facility discharge in the Lake Houston watershed?

		□ Yes ⊠ No
	If y <u>N/</u>	yes, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions. $\underline{\mathbf{A}}$
G.	Ot	her wastes received including sludge from other WWTPs and septic waste
	1.	Acceptance of sludge from other WWTPs
		Does or will the facility accept sludge from other treatment plants at the facility site?
		□ Yes ⊠ No
		If yes, attach sewage sludge solids management plan. See Example 5 of the instructions.
		In addition, provide the date the plant started or is anticipated to start accepting sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an
		estimate of the BOD_5 concentration of the sludge, and the design BOD_5 concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.
		N/A
		Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.
	2.	Acceptance of septic waste
		Is the facility accepting or will it accept septic waste?
		□ Yes ⊠ No
		If yes, does the facility have a Type V processing unit?
		□ Yes ⊠ No
		If yes, does the unit have a Municipal Solid Waste permit?

If yes to any of the above, provide the date the plant started or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD_5 concentration of the septic waste, and the design BOD_5 concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

□ Yes ⊠

<u>N/A</u>			

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

3. Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)

Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above?

□ Yes ⊠ No

If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.

N/A			

Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 50)

Is the facility in operation?

⊠ Yes □ No

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). *Water treatment facilities* discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. **These tables are not applicable for a minor amendment without renewal.** See the instructions for guidance.

Note: The sample date must be within 1 year of application submission.

Table1.0(2) - Pollutant Analysis for Wastewater Treatment FacilitiesSee Attachment F

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l	1.58	2.94	9	Comp	4/1 - 4/30/ 2024
Total Suspended Solids, mg/l	2.5	2.5	9	Comp	4/1 - 4/30/ 2024
Ammonia Nitrogen, mg/l	0.266	0.672	9	Comp	4/1 - 4/30/ 2024
Nitrate Nitrogen, mg/l	11.1	12.6	3	Comp.	2/28 - 7/23/ 2024
Total Kjeldahl Nitrogen, mg/l	4.73	4.73	1	Comp.	8/26/2024 11:59 PM

Sulfate, mg/l	47.4	47.4	1	Comp.	7/23/2024 11:59 PM
Chloride, mg/l	211	211	1	Comp.	7/23/2024 11:59 PM
Total Phosphorus, mg/l	0.209	0.247	2	Comp.	2/28/24 5/8/2024
pH, standard units	7.11	6.87 - 7.6	30	Grab	4/1 - 4/30/ 2024
Dissolved Oxygen*, mg/l	7.87	7.21 (Min)	30	Grab	4/1 - 4/30/ 2024
Chlorine Residual, mg/l	N/A	N/A	N/A	N/A	N/A
E.coli (CFU/100ml) freshwater	4.79	12.2	3	Grab	4/1 - 4/30/ 2024
Entercocci (CFU/100ml) saltwater	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	625	625	1	Comp.	7/23/2024 11:59 PM
Electrical Conductivity, µmohs/cm, †	N/A	N/A	N/A	N/A	N/A
Oil & Grease, mg/l	<1.42	2.11	2	Grab	2/28/24 5/8/24
Alkalinity (CaCO ₃)*, mg/l	128	128	1	Comp.	7/23/2024 11:59 PM

^{*}TPDES permits only

Table1.0(3) - Pollutant Analysis for Water Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Suspended Solids, mg/l	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	N/A	N/A	N/A	N/A	N/A
pH, standard units	N/A	N/A	N/A	N/A	N/A
Fluoride, mg/l	N/A	N/A	N/A	N/A	N/A
Aluminum, mg/l	N/A	N/A	N/A	N/A	N/A
Alkalinity (CaCO ₃), mg/l	N/A	N/A	N/A	N/A	N/A

Section 8. Facility Operator (Instructions Page 50)

Facility Operator Name: Tom Villanueva

Facility Operator's License Classification and Level: Wastewater Class B; Class A License Pending

Facility Operator's License Number: WWoo46666; Class A License Pending

[†]TLAP permits only

Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 51)

A. WWTP's Biosolids Management Facility Type

	7,1
Che	ck all that apply. See instructions for guidance
\boxtimes	Design flow>= 1 MGD
\boxtimes	Serves >= 10,000 people
\boxtimes	Class I Sludge Management Facility (per 40 CFR § 503.9)
\boxtimes	Biosolids generator
	Biosolids end user – land application (onsite)
	Biosolids end user – surface disposal (onsite)
	Biosolids end user – incinerator (onsite)
ww	TP's Biosolids Treatment Process
Che	ck all that apply. See instructions for guidance.
	Aerobic Digestion
	Air Drying (or sludge drying beds)
	Lower Temperature Composting
	Lime Stabilization
	Higher Temperature Composting
	Heat Drying
	Thermophilic Aerobic Digestion
	Beta Ray Irradiation
	Gamma Ray Irradiation
	Pasteurization
	Preliminary Operation (e.g. grinding, de-gritting, blending)
	Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter)
	Sludge Lagoon
	Temporary Storage (< 2 years)
	Long Term Storage (>= 2 years)
	Methane or Biogas Recovery
⊠ East	Other Treatment Process: <u>Waste activated sludge is transported to Brushy Creek Regional Wastewater Treatment Facility</u> , which is also owned and operated by the applicant.

C. Biosolids Management

B.

Provide information on the *intended* biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize

all biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

Biosolids Management

Management Practice	Handler or Preparer Type		Amount (ary	Pathogen Reduction Options	Vector Attraction Reduction Option
Other	Off-site Handler or Preparer	Not Applicable	N/A	N/A	N/A

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): <u>Waste activated sludge is transported to Brushy Creek Regional East Wastewater Treatment Facility, which is also owned and operated by the applicant.</u>

D. Disposal site

Disposal site name: Brushy Creek Regional East Wastewater Treatment Facility

TCEQ permit or registration number: <u>WQ0010264002</u>

County where disposal site is located: Williamson

E. Transportation method

Method of transportation (truck, train, pipe, other): Pipe

Name of the hauler: N/A

Hauler registration number: N/A

Sludge is transported as a:

Liquid \boxtimes	semi-liquid \square	semi-solid □	solid □
--------------------	-----------------------	--------------	---------

Section 10. Permit Authorization for Sewage Sludge Disposal (Instructions Page 53)

A. Beneficial use authorization

Does th	e existing	permit	include	authori	ization	for	land	applicat	tion c	of sewa	ıge	sludge	for
benefici	al use?												

□ Yes ⊠ No

If yes, are you requesting to continue this authorization to land apply sewage sludge for beneficial use?

 \square Yes \square No N/A

If yes, is the completed Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451) attached to this permit application (see the instructions for details)?

□ Yes □ No <u>N/A</u>

B. Sludge processing authorization

Does the existing permit include authorization for any of the following sludge processing, storage or disposal options?

Sludge Composting		Yes	\boxtimes	No	
Marketing and Distribution of sludge		Yes	\boxtimes	No	
Sludge Surface Disposal or Sludge Monofill		Yes	\boxtimes	No	
Temporary storage in sludge lagoons		Yes	\boxtimes	No	
If yes to any of the above sludge options and the authorization, is the completed Domestic Waste Technical Report (TCEQ Form No. 10056) attack □ Yes ☒ No	wate	r Permi	Appl	lication: Sewage Slu	
☐ 168 ☑ NO					
Section 11. Sewage Sludge Lagoons (Ins	stru	ctions	Page	e 53)	
Does this facility include sewage sludge lagoons?					
□ Yes ⊠ No					
f yes, complete the remainder of this section. If no,	proc	eed to S	ection	12.	
A. Location information					
The following maps are required to be submitted provide the Attachment Number.	d as p	art of th	ne app	lication. For each ma	ap,
 Original General Highway (County) Map: 					
Attachment: <u>N/A</u>					
 USDA Natural Resources Conservation Ser 	rvice	Soil Map):		
Attachment: <u>N/A</u>					
 Federal Emergency Management Map: 					
Attachment: <u>N/A</u>					
• Site map:					
Attachment: <u>N/A</u>					
Discuss in a description if any of the following eapply.	xist v	vithin th	e lago	oon area. Check all th	ıat
☐ Overlap a designated 100-year frequency	floo	d plain			
\square Soils with flooding classification					
☐ Overlap an unstable area					
□ Wetlands					
☐ Located less than 60 meters from a fault					
□ None of the above					
Attachment: <u>N/A</u>					
If a portion of the lagoon(s) is located within the the protective measures to be utilized including					.e
N/A					

B. Temporary storage information

Provide the results for the pollutant screening of sludge lagoons.	These results are in
addition to pollutant results in Section 7 of Technical Report 1.0.	

Nitrate Nitrogen, mg/kg: N/A

Total Kjeldahl Nitrogen, mg/kg: N/A

Total Nitrogen (=nitrate nitrogen + TKN), mg/kg: N/A

Phosphorus, mg/kg: N/A

Potassium, mg/kg: <u>N/A</u>

pH, standard units: N/A

Ammonia Nitrogen mg/kg: <u>N/A</u>

Arsenic: N/A

Cadmium: <u>N/A</u>

Chromium: N/A

Copper: <u>N/A</u>

Lead: N/A

Mercury: <u>N/A</u>

Molybdenum: N/A

Nickel: N/A

Selenium: N/A

Zinc: N/A

Total PCBs: N/A

Provide the following information:

Volume and frequency of sludge to the lagoon(s): N/A

Total dry tons stored in the lagoons(s) per 365-day period: N/A

Total dry tons stored in the lagoons(s) over the life of the unit: N/A

C. Liner information

Does the active/proposed sludge lagoon(s) have a liner with a maximum hydraulic conductivity of $1x10^{-7}$ cm/sec?

Yes	No	N/A

If yes, describe the liner below. Please note that a liner is required.

<u>N/A</u>			

D. Site development plan

Provide a detailed description of the methods used to deposit sludge in the lagoon(s):

N/A
Attach the following documents to the application.
 Plan view and cross-section of the sludge lagoon(s)
Attachment: N/A
Copy of the closure plan
Attachment: <u>N/A</u>
 Copy of deed recordation for the site
Attachment: <u>N/A</u>
• Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons
Attachment: <u>N/A</u>
 Description of the method of controlling infiltration of groundwater and surface water from entering the site
Attachment: <u>N/A</u>
 Procedures to prevent the occurrence of nuisance conditions
Attachment: N/A
Groundwater monitoring
Is groundwater monitoring currently conducted at this site, or are any wells available for groundwater monitoring, or are groundwater monitoring data otherwise available for the sludge lagoon(s)?
□ Yes □ No <u>N/A</u>
If groundwater monitoring data are available, provide a copy. Provide a profile of soil types encountered down to the groundwater table and the depth to the shallowest groundwater as a separate attachment.
Attachment: N/A
ction 12. Authorizations/Compliance/Enforcement (Instructions Page 55)
Additional authorizations
Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc?
□ Yes ⊠ No
If yes, provide the TCEQ authorization number and description of the authorization:
/A
Parmittae enforcement status

E.

Is the permittee currently under enforcement for this facility?	
□ Yes ⊠ No	
Is the permittee required to meet an implementation schedule for compliance or enforcement?	
□ Yes ⊠ No	
If yes to either question, provide a brief summary of the enforcement, the implement schedule, and the current status:	entation _
N/A	

Section 13. RCRA/CERCLA Wastes (Instructions Page 55)

A. RCRA hazardous wastes

Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste?

□ Yes ⊠ No

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

□ Yes ⊠ No

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment: N/A

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25*, *Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the Signature Page section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Laurie Hadley

Title: City Manager, City of Round Rock

Signature: 7

All laboratory tests performed must meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the Signature Page section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Brenda Eivens

Title: City Manager, City of Cedar Park

Signature:

gri

All laboratory tests performed must meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - o performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the Signature Page section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Shay Ralls Roalson

Title: Director of Austin Water, City of Austin

Signature: 1/2/2009

All laboratory tests performed must meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ; or
 - located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the Signature Page section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Todd Parton

Title: City Manager, City of Leander

Signature: 🚣

Date: 7/31/2014

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

Section 1. Domestic Drinking Water Supply (Instructions Page 64)
Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge?
□ Yes ⊠ No
If no , proceed it Section 2. If yes , provide the following:
Owner of the drinking water supply: $\underline{N/A}$
Distance and direction to the intake: N/A
Attach a USGS map that identifies the location of the intake.
Attachment: <u>N/A</u>
Section 2. Discharge into Tidally Affected Waters (Instructions Page 64)
Does the facility discharge into tidally affected waters?
□ Yes ⊠ No
If no , proceed to Section 3. If yes , complete the remainder of this section. If no, proceed to Section 3.
A. Receiving water outfall
Width of the receiving water at the outfall, in feet: $\underline{N/A}$
B. Oyster waters
Are there oyster waters in the vicinity of the discharge?
□ Yes □ No <u>N/A</u>
If yes, provide the distance and direction from outfall(s).
N/A
C. Sea grasses
Are there any sea grasses within the vicinity of the point of discharge?
□ Yes □ No <u>N/A</u>
If yes, provide the distance and direction from the outfall(s).
N/A

Is the discharge directly into (or within 300 feet of) a classified segment? Yes □ No **If yes**, this Worksheet is complete. **If no**, complete Sections 4 and 5 of this Worksheet. Section 4. **Description of Immediate Receiving Waters (Instructions Page 65)** Name of the immediate receiving waters: N/A A. Receiving water type Identify the appropriate description of the receiving waters. Stream Freshwater Swamp or Marsh Lake or Pond Surface area, in acres: Average depth of the entire water body, in feet: Average depth of water body within a 500-foot radius of discharge point, in feet: Man-made Channel or Ditch Open Bay Tidal Stream, Bayou, or Marsh Other, specify: **B.** Flow characteristics If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area *upstream* of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one). Intermittent - dry for at least one week during most years Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses Perennial - normally flowing Check the method used to characterize the area upstream (or downstream for new dischargers). USGS flow records Historical observation by adjacent landowners Personal observation Other, specify:

Classified Segments (Instructions Page 64)

Section 3.

		e names of all perennial strea tream of the discharge point.		oin the receiving water within three miles
	N/A			
D.	Downs	stream characteristics		
		receiving water characteristi rge (e.g., natural or man-mad Yes 🗆 No		within three miles downstream of the onds, reservoirs, etc.)?
	If yes,	discuss how.		
	N/A			
E.		al dry weather characteristic e general observations of the		dy during normal dry weather conditions.
	Data	nd time of observation:		
			tormustor	r runoff during observations?
	was th		torniwater	Tunon during observations:
	ш	Yes □ No		
Se	ection	5. General Character Page 66)	ristics o	of the Waterbody (Instructions
Α.	Upstre	eam influences		
	Is the i			the discharge or proposed discharge site that apply.
		Oil field activities		l Urban runoff
		Upstream discharges		l Agricultural runoff
		Septic tanks	П	Other(s), specify:

C. Downstream perennial confluences

B. Waterbody uses Observed or evidences of the following uses. Check all that apply. Livestock watering Contact recreation Irrigation withdrawal Non-contact recreation **Fishing Navigation** Domestic water supply Industrial water supply Park activities Other(s), specify: C. Waterbody aesthetics Check one of the following that best describes the aesthetics of the receiving water and the surrounding area. Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored Common Setting: not offensive; developed but uncluttered; water may be colored or turbid Offensive: stream does not enhance aesthetics; cluttered; highly developed; dumping areas; water discolored

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Toxic Pollutants (Instructions Page 78)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab ⊠ Composite ⊠

Date and time sample(s) collected: See Attachment F

Table 4.0(1) - Toxics Analysis

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrylonitrile	<50	<50	1	50
Aldrin	<0.01	<0.01	1	0.01
Aluminum	29.5	31.8	2	2.5
Anthracene	<10	<10	1	10
Antimony	<5	<5	2	5
Arsenic	1.0	<2	2	0.5
Barium	41.9	44.0	2	3
Benzene	<10	<10	1	10
Benzidine	<50	<50	1	50
Benzo(a)anthracene	<5	<5	1	5
Benzo(a)pyrene	<5	<5	1	5
Bis(2-chloroethyl)ether	<10	<10	1	10
Bis(2-ethylhexyl)phthalate	<10	<10	1	10
Bromodichloromethane	<10	<10	1	10
Bromoform	<10	<10	1	10
Cadmium	<1	<1	2	1
Carbon Tetrachloride	<2	<2	1	2
Carbaryl	<5	<5	1	5
Chlordane*	<0.2	<0.2	1	0.2
Chlorobenzene	<10	<10	1	10
Chlorodibromomethane	<10	<10	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Chloroform	<10	<10	1	10
Chlorpyrifos	<0.05	<0.05	1	0.05
Chromium (Total)	<3	<3	2	3
Chromium (Tri) (*1)	<3	<3	2	N/A
Chromium (Hex)	<3	<3	2	3
Copper	3.75	4.19	2	2
Chrysene	<5	<5	1	5
p-Chloro-m-Cresol	<10	<10	1	10
4,6-Dinitro-o-Cresol	<50	<50	1	50
p-Cresol	<10	<10	1	10
Cyanide (*2)	<10	<10	2	10
4,4'- DDD	<0.1	<0.1	1	0.1
4,4'- DDE	<0.1	<0.1	1	0.1
4,4'- DDT	<0.02	<0.02	1	0.02
2,4-D	0.776	0.776	1	0.7
Demeton (O and S)	<0.2	<0.2	1	0.20
Diazinon	<0.1	<0.1	1	0.5/0.1
1,2-Dibromoethane	<10	<10	1	10
m-Dichlorobenzene	<10	<10	1	10
o-Dichlorobenzene	<10	<10	1	10
p-Dichlorobenzene	<10	<10	1	10
3,3'-Dichlorobenzidine	<5	<5	1	5
1,2-Dichloroethane	<10	<10	1	10
1,1-Dichloroethylene	<10	<10	1	10
Dichloromethane	<20	<20	1	20
1,2-Dichloropropane	<10	<10	1	10
1,3-Dichloropropene	<10	<10	1	10
Dicofol	<1	<1	1	1
Dieldrin	<0.02	<0.02	1	0.02
2,4-Dimethylphenol	<10	<10	1	10
Di-n-Butyl Phthalate	<10	<10	1	10
Diuron	<0.09	<0.09	1	0.09
Endosulfan I (alpha)	<0.01	<0.01	1	0.01

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Endosulfan II (beta)	<0.02	<0.02	1	0.02
Endosulfan Sulfate	<0.1	<0.1	1	0.1
Endrin	<0.02	<0.02	1	0.02
Ethylbenzene	<10	<10	1	10
Fluoride	<500	<500	2	500
Guthion	<0.1	<0.1	1	0.1
Heptachlor	<0.01	<0.01	1	0.01
Heptachlor Epoxide	<0.01	<0.01	1	0.01
Hexachlorobenzene	<5	<5	1	5
Hexachlorobutadiene	<10	<10	1	10
Hexachlorocyclohexane (alpha)	< 0.05	<0.05	1	0.05
Hexachlorocyclohexane (beta)	< 0.05	<0.05	1	0.05
gamma-Hexachlorocyclohexane	< 0.05	< 0.05	1	0.05
(Lindane)				
Hexachlorocyclopentadiene	<10	<10	1	10
Hexachloroethane	<20	<20	1	20
Hexachlorophene	<10	<10	1	10
Lead	<0.5	<0.5	2	0.5
Malathion	<0.1	<0.1	1	0.1
Mercury	< 0.005	< 0.005	2	0.005
Methoxychlor	<2	<2	1	2
Methyl Ethyl Ketone	<50	<50	1	50
Mirex	<0.02	<0.02	1	0.02
Nickel	<2.5	<3	2	2
Nitrate-Nitrogen	11,100	12,600	3	100
Nitrobenzene	<10	<10	1	10
N-Nitrosodiethylamine	<20	<20	1	20
N-Nitroso-di-n-Butylamine	<20	<20	1	20
Nonylphenol	<333	<333	1	333
Parathion (ethyl)	<0.1	<0.1	1	0.1
Pentachlorobenzene	<20	<20	1	20
Pentachlorophenol	<5	<5	1	5
Phenanthrene	<10	<10	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Polychlorinated Biphenyls (PCB's) (*3)	<0.2	<0.2	1	0.2
Pyridine	<20	<20	1	20
Selenium	<5	<5	2	5
Silver	<0.75	<1	2	0.5
1,2,4,5-Tetrachlorobenzene	<20	<20	1	20
1,1,2,2-Tetrachloroethane	<10	<10	1	10
Tetrachloroethylene	<10	<10	1	10
Thallium	<0.5	<0.5	2	0.5
Toluene	<10	<10	1	10
Toxaphene	<0.3	<0.3	1	0.3
2,4,5-TP (Silvex)	0.914	0.914	1	0.3
Tributyltin (see instructions for explanation)	N/A	N/A	N/A	0.01
1,1,1-Trichloroethane	<10	<10	1	10
1,1,2-Trichloroethane	<10	<10	1	10
Trichloroethylene	<10	<10	1	10
2,4,5-Trichlorophenol	<50	<50	1	50
TTHM (Total Trihalomethanes)	<10	<10	1	10
Vinyl Chloride	<10	<10	1	10
Zinc	38.9	41.7	2	5

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

^(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab ⊠ Composite ⊠

Date and time sample(s) collected: See Attachment F

Table 4.0(2)A - Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Antimony	<5	<5	2	5
Arsenic	1.0	<2	2	0.5
Beryllium	<0.5	<0.5	2	0.5
Cadmium	<1	<1	2	1
Chromium (Total)	<3	<3	2	3
Chromium (Hex)	<3	<3	2	3
Chromium (Tri) (*1)	<3	<3	2	N/A
Copper	3.75	4.19	2	2
Lead	<0.5	<0.5	2	0.5
Mercury	< 0.005	<0.005	2	0.005
Nickel	<2.5	<3	2	2
Selenium	<5	<5	2	5
Silver	< 0.75	<1	2	0.5
Thallium	<0.5	<0.5	2	0.5
Zinc	38.9	41.7	2	5
Cyanide (*2)	<10	<10	2	10
Phenols, Total	<10	<10	2	10

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)B - Volatile Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrolein	<50	<50	1	50
Acrylonitrile	<50	<50	1	50
Benzene	<10	<10	1	10
Bromoform	<10	<10	1	10
Carbon Tetrachloride	<2	<2	1	2
Chlorobenzene	<10	<10	1	10
Chlorodibromomethane	<10	<10	1	10
Chloroethane	<50	<50	1	50
2-Chloroethylvinyl Ether	<10	<10	1	10
Chloroform	<10	<10	1	10
Dichlorobromomethane [Bromodichloromethane]	<10	<10	1	10
1,1-Dichloroethane	<10	<10	1	10
1,2-Dichloroethane	<10	<10	1	10
1,1-Dichloroethylene	<10	<10	1	10
1,2-Dichloropropane	<10	<10	1	10
1,3-Dichloropropylene	<10	<10	1	10
[1,3-Dichloropropene]				
1,2-Trans-Dichloroethylene	<10	<10	1	10
Ethylbenzene	<10	<10	1	10
Methyl Bromide	<50	<50	1	50
Methyl Chloride	<50	<50	1	50
Methylene Chloride	<20	<20	1	20
1,1,2,2-Tetrachloroethane	<10	<10	1	10
Tetrachloroethylene	<10	<10	1	10
Toluene	<10	<10	1	10
1,1,1-Trichloroethane	<10	<10	1	10
1,1,2-Trichloroethane	<10	<10	1	10
Trichloroethylene	<10	<10	1	10
Vinyl Chloride	<10	<10	1	10

Table 4.0(2)C - Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
2-Chlorophenol	<10	<10	1	10
2,4-Dichlorophenol	<10	<10	1	10
2,4-Dimethylphenol	<10	<10	1	10
4,6-Dinitro-o-Cresol	<50	<50	1	50
2,4-Dinitrophenol	<50	<50	1	50
2-Nitrophenol	<20	<20	1	20
4-Nitrophenol	<50	<50	1	50
P-Chloro-m-Cresol	<10	<10	1	10
Pentalchlorophenol	<5	<5	1	5
Phenol	<10	<10	1	10
2,4,6-Trichlorophenol	<10	<10	1	10

Table 4.0(2)D - Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acenaphthene	<10	<10	1	10
Acenaphthylene	<10	<10	1	10
Anthracene	<10	<10	1	10
Benzidine	<50	<50	1	50
Benzo(a)Anthracene	<5	<5	1	5
Benzo(a)Pyrene	<5	<5	1	5
3,4-Benzofluoranthene	<10	<10	1	10
Benzo(ghi)Perylene	<20	<20	1	20
Benzo(k)Fluoranthene	<5	<5	1	5
Bis(2-Chloroethoxy)Methane	<10	<10	1	10
Bis(2-Chloroethyl)Ether	<10	<10	1	10
Bis(2-Chloroisopropyl)Ether	<10	<10	1	10
Bis(2-Ethylhexyl)Phthalate	<10	<10	1	10
4-Bromophenyl Phenyl Ether	<10	<10	1	10
Butyl benzyl Phthalate	<10	<10	1	10
2-Chloronaphthalene	<10	<10	1	10
4-Chlorophenyl phenyl ether	<10	<10	1	10
Chrysene	<5	<5	1	5
Dibenzo(a,h)Anthracene	<5	<5	1	5
1,2-(o)Dichlorobenzene	<10	<10	1	10
1,3-(m)Dichlorobenzene	<10	<10	1	10
1,4-(p)Dichlorobenzene	<10	<10	1	10
3,3-Dichlorobenzidine	<5	<5	1	5
Diethyl Phthalate	<10	<10	1	10
Dimethyl Phthalate	<10	<10	1	10
Di-n-Butyl Phthalate	<10	<10	1	10
2,4-Dinitrotoluene	<10	<10	1	10
2,6-Dinitrotoluene	<10	<10	1	10
Di-n-Octyl Phthalate	<10	<10	1	10
1,2-Diphenylhydrazine (as Azobenzene)	<20	<20	1	20
Fluoranthene	<10	<10	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Fluorene	<10	<10	1	10
Hexachlorobenzene	<5	<5	1	5
Hexachlorobutadiene	<10	<10	1	10
Hexachlorocyclo-pentadiene	<10	<10	1	10
Hexachloroethane	<20	<20	1	20
Indeno(1,2,3-cd)pyrene	<5	<5	1	5
Isophorone	<10	<10	1	10
Naphthalene	<10	<10	1	10
Nitrobenzene	<10	<10	1	10
N-Nitrosodimethylamine	<50	<50	1	50
N-Nitrosodi-n-Propylamine	<20	<20	1	20
N-Nitrosodiphenylamine	<20	<20	1	20
Phenanthrene	<10	<10	1	10
Pyrene	<10	<10	1	10
1,2,4-Trichlorobenzene	<10	<10	1	10

Table 4.0(2)E - Pesticides

AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
<0.01	<0.01	1	0.01
<0.05	<0.05	1	0.05
<0.05	<0.05	1	0.05
<0.05	<0.05	1	0.05
<0.05	<0.05	1	0.05
<0.2	<0.2	1	0.2
<0.02	<0.02	1	0.02
<0.1	<0.1	1	0.1
<0.1	<0.1	1	0.1
<0.02	<0.02	1	0.02
<0.01	<0.01	1	0.01
<0.02	<0.02	1	0.02
<0.1	<0.1	1	0.1
<0.02	<0.02	1	0.02
<0.1	<0.1	1	0.1
< 0.01	< 0.01	1	0.01
< 0.01	<0.01	1	0.01
<0.2	<0.2	1	0.2
<0.2	<0.2	1	0.2
<0.2	<0.2	1	0.2
<0.2	<0.2	1	0.2
<0.2	<0.2	1	0.2
<0.2	<0.2	1	0.2
<0.2	<0.2	1	0.2
<0.3	<0.3	1	0.3
	Effluent Conc. (μg/l) <0.01 <0.05 <0.05 <0.05 <0.02 <0.02 <0.1 <0.02 <0.01 <0.02 <0.01 <0.02 <0.1 <0.02 <0.1 <0.02 <0.1 <0.02 <0.1 <0.02 <0.1 <0.02 <0.1 <0.02 <0.1 <0.02 <0.1 <0.01 <0.01 <0.02 <0.1 <0.01 <0.01 <0.01 <0.01 <0.02 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.	Effluent Conc. (μg/l) Effluent Conc. (μg/l) <0.01	Effluent Conc. (μg/l) Effluent Conc. (μg/l) Samples <0.01

^{*} For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Section 3. Dioxin/Furan Compounds

Α.		te which of the following compounds from may be present in the influent from a buting industrial user or significant industrial user. Check all that apply.
		2,4,5-trichlorophenoxy acetic acid
		Common Name 2,4,5-T, CASRN 93-76-5
		2-(2,4,5-trichlorophenoxy) propanoic acid
		Common Name Silvex or 2,4,5-TP, CASRN 93-72-1
		2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate
		Common Name Erbon, CASRN 136-25-4
		0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate
		Common Name Ronnel, CASRN 299-84-3
		2,4,5-trichlorophenol
		Common Name TCP, CASRN 95-95-4
		hexachlorophene
		Common Name HCP, CASRN 70-30-4
	For ea	ch compound identified, provide a brief description of the conditions of its/their
	presei	ace at the facility.
	presei N/A	
В.	N/A Do yo	u know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin O) or any congeners of TCDD may be present in your effluent?
В.	N/A Do yo (TCDI	u know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin o) or any congeners of TCDD may be present in your effluent? Yes No
В.	Do yo (TCDI	u know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin O) or any congeners of TCDD may be present in your effluent?
В.	N/A Do yo (TCDI	u know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin o) or any congeners of TCDD may be present in your effluent? Yes No
В.	Do yo (TCDI	u know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin o) or any congeners of TCDD may be present in your effluent? Yes No
В.	Do yo (TCDI	u know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin o) or any congeners of TCDD may be present in your effluent? Yes No

C.	If any of the compounds in Subsection A ${f or}$ B are present, complete Table 4.0(2)F.
	For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab □ Composite □

Date and time sample(s) collected: N/A

Table 4.0(2)F - Dioxin/Furan Compounds

Compound	Toxic Equivalenc y Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1					10
1,2,3,7,8 PeCDD	0.5					50
2,3,7,8 HxCDDs	0.1					50
1,2,3,4,6,7,8 HpCDD	0.01					50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05					50
2,3,4,7,8 PeCDF	0.5					50
2,3,7,8 HxCDFs	0.1					50
2,3,4,7,8 HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					0.5
PCB 81	0.0003					0.5
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total						

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: TOXICITY TESTING REQUIREMENTS

The following **is required** for facilities with a current operating design flow of **1.0 MGD or greater**, with an EPA-approved **pretreatment** program (or those required to have one under 40 CFR Part 403), or are required to perform Whole Effluent Toxicity testing. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Required Tests (Instructions Page 88)

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic: <u>See Attachment G</u> 48-hour Acute: <u>See Attachment G</u>

Section 2. Toxicity Reduction Evaluations (TREs)

Has this facility completed a TRE in the past four and a half years? Or is the facility performing a TRE?	currently
□ Yes ⊠ No	
If yes, describe the progress to date, if applicable, in identifying and confirming the	toxicant.
N/A	

Section 3. Summary of WET Tests

If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed.

Table 5.0(1) Summary of WET Tests

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal
	See Attachment G		

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works.

Section 1. All POTWs (Instructions Page 89)

A. Industrial users (IUs)

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

If there are no users, enter 0 (zero). Categorical IUs: Number of IUs: o

Average Daily Flows, in MGD: <u>o</u>

Significant IUs - non-categorical:

Number of IUs: o

Average Daily Flows, in MGD: o

Other IUs:

Number of IUs: o

Average Daily Flows, in MGD: o

B. Treatment plant interference

In the past three years, has your POTW experienced treatment plant interference (see instructions)?

□ Yes ⊠ No

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

N/A			

	In the past three years, has your POTW experienced pass through (see instructions)?
	□ Yes ⊠ No
	If yes , identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.
	N/A
D.	Pretreatment program
	Does your POTW have an approved pretreatment program?
	⊠ Yes □ No
	If yes, complete Section 2 only of this Worksheet.
	Is your POTW required to develop an approved pretreatment program?
	□ Yes □ No <u>N/A</u>
	If yes, complete Section 2.c. and 2.d. only, and skip Section 3.
	If no to either question above , skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.
E.	Service Area Map
	Attach a map indicating the service area of the POTW. The map should include the applicant's service area boundaries and the location of any known industrial users discharging to the POTW. Please see the instructions for guidance.
	Attachment: N/A
Se	ection 2. POTWs with Approved Programs or Those Required to
50	Develop a Program (Instructions Page 90)
A.	Substantial modifications
	Have there been any substantial modifications to the approved pretreatment program that have not been submitted to the TCFO for approval according to 40 CFR 8403 18?

C. Treatment plant pass through

If yes, identify the modifications that have not been submitted to TCEQ, including the

□ Yes ⊠ No

purpose of the modification.

B. Non-substantia	al modifications			
	en any non-substantial nave not been submitte			
□ Yes ⊠				
	all non-substantial mo ourpose of the modific		at have not been	submitted to TCEQ,
N/A	r			
_	neters above the MAL			
In Table 6.0(1),	, list all parameters me	easured above		
In Table 6.0(1), monitoring du	, list all parameters me ring the last three year	easured above		
In Table 6.0(1), monitoring dur Table 6.0(1) - Para	, list all parameters me ring the last three year nmeters Above the MAL	easured above rs. Submit an a	attachment if nec	essary.
In Table 6.0(1), monitoring dur Table 6.0(1) - Para Pollutant	, list all parameters me ring the last three year meters Above the MAL Concentration	easured above		
In Table 6.0(1), monitoring dur Table 6.0(1) - Para	, list all parameters me ring the last three year meters Above the MAL Concentration	easured above rs. Submit an a	attachment if nec	essary.
In Table 6.0(1), monitoring dur Table 6.0(1) - Para Pollutant	, list all parameters me ring the last three year meters Above the MAL Concentration	easured above rs. Submit an a	attachment if nec	essary.
In Table 6.0(1), monitoring dur Table 6.0(1) - Para Pollutant	, list all parameters me ring the last three year meters Above the MAL Concentration	easured above rs. Submit an a	attachment if nec	essary.
In Table 6.0(1), monitoring dur Table 6.0(1) - Para Pollutant	, list all parameters me ring the last three year meters Above the MAL Concentration	easured above rs. Submit an a	attachment if nec	essary.

D. Industrial user interruptions

Has any SIU, CIU, or other IU caused or contributed to any problems (excluding interferences or pass throughs) at your POTW in the past three years?

□ Yes ⊠ No

If yes, identify the industry, describe each episode, including dates, duration, description of the problems, and probable pollutants.

	N/A
Se	ction 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 90)
Α.	General information Company Name: N/A
	SIC Code: <u>N/A</u> Contact name: <u>N/A</u> Address: <u>N/A</u>
	City, State, and Zip Code: <u>N/A</u> Telephone number: <u>N/A</u>
	Email address: <u>N/A</u>
В.	Process information Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).
	N/A
C.	Product and service information Provide a description of the principal product(s) or services performed.
	N/A

	See the Instructions for definitions of "process" and "non-process wastewater."
	Process Wastewater:
	Discharge, in gallons/day: <u>N/A</u>
	Discharge Type: \square Continuous \square Batch \square Intermittent
	Non-Process Wastewater:
	Discharge, in gallons/day: <u>N/A</u>
	Discharge Type: Continuous Batch Intermittent
E.	Pretreatment standards
	Is the SIU or CIU subject to technically based local limits as defined in the <i>i</i> nstructions?
	□ Yes □ No
	Is the SIU or CIU subject to categorical pretreatment standards found in 40 CFR Parts 405 - 471 ?
	□ Yes □ No
	If subject to categorical pretreatment standards , indicate the applicable category and subcategory for each categorical process.
	Category: Subcategories: <u>N/A</u>
	N/A
	Category: <u>N/A</u>
	Subcategories: <u>N/A</u>
	Category: <u>N/A</u>
	Subcategories: <u>N/A</u>
	Category: <u>N/A</u>
	Subcategories: <u>N/A</u>
	Category: <u>N/A</u>
	Subcategories: <u>N/A</u>
F.	Industrial user interruptions
	Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years?
	□ Yes ⊠ No
	If yes , identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants.
	N/A

CITY OF ROUND ROCK, CITY OF CEDAR PARK, CITY OF AUSTIN, AND CITY OF LEANDER BRUSHY CREEK REGIONAL WEST WASTEWATER TREATMENT FACILITY TPDES PERMIT RENEWAL APPLICATION

TABLE OF ATTACHMENTS

No.	<u>Description</u>	<u>Reference</u>
Α	Core Data Form	Admin Rpt 1.0, Section 3.C
В	Plain Language Summary	Admin Rpt 1.0, Section 8.F
С	USGS Map	Admin Rpt 1.0, Section 13
D	Process Flow Diagram	Tech Rpt 1.0, Section 2.C
E	Site Drawing	Tech Rpt 1.0, Section 3
F	Pollutant Analysis of Treated Effluent	Tech Rpt 1.0, Section 7; Wks 4.0 Section 1 & 2
G	Summary of WET Test Results	Wks 5.0 Section 3
Н	Effluent Parameters Above the MAL	Wks 6.0 Section 2.C

ATTACHMENT A

Core Data Form
Admin Rpt 1.0, Section 3.C

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)							
New Permit, Registration or Authorization (<i>Core Da</i>	ta Form should be submitted with	the program application.)					
Renewal (Core Data Form should be submitted with	Other Change in Ownership						
2. Customer Reference Number (if issued)	Follow this link to search for CN or RN numbers in	3. Regulated Entity Reference Number (if issued)					
CN 600413181	Central Registry**	RN 100822592					
SECTION II: Customer Information							
4. General Customer Information 5. Effe	5. Effective Date for Customer Information Updates (mm/dd/yyyy) 11/12/20						
☐ New Customer ☐ Update to	Customer Information	Change in Regulated Entity Ownership					

Change in Legal Name (Verifiable with the Texas Secretary of State or Texas Comptroller of Public Accounts) The Customer Name submitted here may be updated automatically based on what is current and active with the Texas Secretary of State (SOS) or Texas Comptroller of Public Accounts (CPA). **6. Customer Legal Name** (If an individual, print last name first: eg: Doe, John) If new Customer, enter previous Customer below: City of Round Rock 7. TX SOS/CPA Filing Number 8. TX State Tax ID (11 digits) 9. Federal Tax ID 10. DUNS Number (if applicable) (9 digits) ☐ Corporation Individual Partnership: General Limited 11. Type of Customer: Government: City County Federal Local State Other ☐ Sole Proprietorship Other: 12. Number of Employees 13. Independently Owned and Operated? ☐ 0-20 ☐ 21-100 ☐ 101-250 ☐ 251-500 ☐ 501 and higher ☐ Yes ⊠ No 14. Customer Role (Proposed or Actual) – as it relates to the Regulated Entity listed on this form. Please check one of the following Owner & Operator Owner Operator Other: Occupational Licensee Responsible Party 212 East Main Street 15. Mailing Address: City Round Rock State ZIP 78664 ZIP + 45245 16. Country Mailing Information (if outside USA) 17. E-Mail Address (if applicable) Ihadley@roundrocktexas.gov 18. Telephone Number 19. Extension or Code 20. Fax Number (if applicable)

TCEQ-10400 (11/22) Page 1 of 3

(512) 218-5410		(512) 218-7097
------------------	--	----------------

SECTION III: Regulated Entity Information

21. General Regulated Entity Information (If 'New Regulated Entity" is selected, a new permit application is also required.)											
☐ New Regulated Entity	Update to	Regulated Entity	Name	Update to	o Regula	ed Entity	/ Informa	ation			
The Regulated Entity Name submitted may be updated, in order to meet TCEQ Core Data Standards (removal of organizational endings such as Inc, LP, or LLC).											
22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)											
Brushy Creek Regional West Wastewaster Treatment Facility											
23. Street Address of the Regulated Entity:	1116 East A	1116 East Austin Avenue									
(No PO Boxes)		1									
(NO PO BOXES)	City	Round Rock	S	State	TX	ZIF	P	7866	1	ZIP + 4	
24. County	Williamson										
		If no Stre	et Addr	ess is provid	ed, field	ls 25-28	are rec	quired.			
25. Description to											
Physical Location:											
26. Nearest City		State Nearest ZIP Code									
Round Rock	TX 78664										
Latitude/Longitude are required and may be added/updated to meet TCEQ Core Data Standards. (Geocoding of the Physical Address may be used to supply coordinates where none have been provided or to gain accuracy).											
_	-	-	-				Standaı	rds. (G	eocoding of th	ne Physical	Address may be
_	es where no	-	-		ccuracy					ne Physical	Address may be
used to supply coordinate	es where no	-	-	d or to gain d	accuracy 28	·).				ne Physical	Address may be Seconds
used to supply coordinate 27. Latitude (N) In Decima	al: Minutes	-	orovided	d or to gain d	accuracy 28	.). 3. Longit			ecimal:	ne Physical	
27. Latitude (N) In Decima	al: Minutes	ne have been p	Seconds	d or to gain c	28	.). 3. Longit	tude (W	') In De	Minutes 40	ne Physical	Seconds 0
27. Latitude (N) In Decimal Degrees	Minutes 30.	ne have been p	Seconds	d or to gain c	28	D. Longite egrees	tude (W	') In De	Minutes 40	ndary NAI	Seconds 0
27. Latitude (N) In Decimal Degrees 30 29. Primary SIC Code	Minutes 30.	ne have been p 30 Secondary SIC	Seconds	d or to gain c	28 De 31. Prid	D. Longite egrees	tude (W	') In De	Minutes 40 32. Seco	ndary NAI	Seconds 0
27. Latitude (N) In Decimal Degrees 30 29. Primary SIC Code (4 digits)	Minutes 30. (4 d	30 Secondary SIC igits)	Seconds Code	s 50	28 Do 31. Prin (5 or 6	egrees mary NA	97 AICS Coo	') In De	Minutes 40 32. Seco	ndary NAI	Seconds 0
used to supply coordinate 27. Latitude (N) In Decima Degrees 30 29. Primary SIC Code (4 digits) 4952	Minutes 30. (4 d	30 Secondary SIC igits)	Seconds Code	s 50	28 Do 31. Prin (5 or 6	egrees mary NA	97 AICS Coo	') In De	Minutes 40 32. Seco	ndary NAI	Seconds 0
used to supply coordinate 27. Latitude (N) In Decima Degrees 30 29. Primary SIC Code (4 digits) 4952 33. What is the Primary B Treatment of domestic waste	Minutes 30. (4 d	30 Secondary SIC igits)	Seconds Code	s 50	28 Do 31. Prin (5 or 6	egrees mary NA	97 AICS Coo	') In De	Minutes 40 32. Seco	ndary NAI	Seconds 0
used to supply coordinate 27. Latitude (N) In Decima Degrees 30 29. Primary SIC Code (4 digits) 4952 33. What is the Primary B Treatment of domestic waste	Minutes 30. (4 d	30 Secondary SIC igits)	Seconds Code	s 50	28 Do 31. Prin (5 or 6	egrees mary NA	97 AICS Coo	') In De	Minutes 40 32. Seco	ndary NAI	Seconds 0
used to supply coordinate 27. Latitude (N) In Decima Degrees 30 29. Primary SIC Code (4 digits) 4952 33. What is the Primary B Treatment of domestic waste	Minutes 30. (4 d	30 Secondary SIC igits)	Seconds Code	s 50	28 Do 31. Prin (5 or 6	egrees mary NA digits)	97 AICS Coo	') In De	Minutes 40 32. Seco (5 or 6 dig	ndary NAI	Seconds 0
used to supply coordinate 27. Latitude (N) In Decima Degrees 30 29. Primary SIC Code (4 digits) 4952 33. What is the Primary B Treatment of domestic waste	Minutes 30. (4 d Business of t ewater 3400 Sunri	30 Secondary SIC igits) this entity? (D	Seconds Code	s 50 State	31. Prii (5 or 6 221320 NAICS d	egrees mary NA digits)	97 AICS Coo	de	Minutes 40 32. Seco (5 or 6 dig	indary NAI	Seconds 0 CS Code
27. Latitude (N) In Decimal Degrees 30 29. Primary SIC Code (4 digits) 4952 33. What is the Primary E Treatment of domestic waster 34. Mailing Address: 35. E-Mail Address:	Minutes 30. (4 d Business of t ewater 3400 Sunri	30 Secondary SIC igits) this entity? (E	Seconds Code On not rep	s 50 State	31. Prii (5 or 6 221320 NAICS d	egrees mary NA digits)	97 AICS Cod	7) In De	Minutes 40 32. Seco (5 or 6 dig	endary NAI gits)	Seconds 0 CS Code
27. Latitude (N) In Decimal Degrees 30 29. Primary SIC Code (4 digits) 4952 33. What is the Primary E Treatment of domestic waster 34. Mailing Address:	Minutes 30. (4 d Business of t ewater 3400 Sunri	30 Secondary SIC igits) this entity? (E	Seconds Code On not rep	s 50 State	31. Prii (5 or 6 221320 NAICS d	egrees mary NA digits)	97 AICS Coo	7) In De	Minutes 40 32. Secon (5 or 6 dig)	endary NAI gits)	Seconds 0 CS Code

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

TCEQ-10400 (11/22) Page 2 of 3

☐ Dam Safety		Districts	Edwards Aquife	er [Emissions Inventory Air		Industrial Hazardous Wast	
☐ Municipal Solid	d Waste 1 °	New Source	OSSF	[Petroleum Stora	ge Tank	□ pws	
Sludge	[Storm Water	☐ Title V Air		Tires		Used Oil	
☐ Voluntary Clea	anup [✓ Wastewater	er Wastewater Agriculture		Water Rights		Other:	
	V	VQ0010264001						
	enni Griesel	3. Ext./Code	44. Fax Number	41. Title:	Project Enginee	er		
10. Name: Je 12. Telephone Nu 512) 687-2193		s. Ext./Code	44. Fax Number	45. E-Mai		er		
12. Telephone Nu 512) 687-2193 ECTION By my signature b	V: Auth	orized S	ignature	45. E-Mai	il Address lummer.com	d complete		
12. Telephone Nu 512) 687-2193 ECTION By my signature be submit this form or	V: Auth	orized S the best of my kno tity specified in Sec	ignature wledge, that the inform	45. E-Mai	il Address lummer.com	d complete		
12. Telephone Nu 512) 687-2193 ECTION By my signature b	V: Authoelow, I certify, to n behalf of the en	the best of my kno tity specified in Sec Rock	ignature wledge, that the inform	jgriesel@p	il Address Jummer.com this form is true an updates to the ID n City Manager	d complete	e, and that I have signature authorit intified in field 39.	

TCEQ-10400 (11/22) Page 3 of 3

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked page 1)	lease describe in space provided.)				
New Permit, Registration or Authorization (Co	ore Data Form should be submitted with	the program application.)			
Renewal (Core Data Form should be submitte	d with the renewal form)	Other Change in Ownership			
2. Customer Reference Number (if issued)	Follow this link to search for CN or RN numbers in	3. Regulated Entity Reference Number (if issued)			
CN 600407951	Central Registry**	RN 100822592			
SECTION II: Customer I	Information				
4. General Customer Information 5. Effective Date for Customer Information Updates (mm/dd/yyyy) 11/12/20					

4. General Cu	Customer Information 5. Effective Date for Customer Inform					rmation l	mation Updates (mm/dd/yyyy)				11/12/2024	
☐ New Customer ☐ Update to Customer Information ☐ Change in Regu								egulated Ent	ity Owne	ership		
Change in Legal Name (Verifiable with the Texas Secretary of State or Texas Comptroller of Public Accounts)												
The Custome	r Name submitted here may l	be updated aut	tomatically	base	d on v	what is cu	ırrent	and active	with th	e Texas Secr	etary of State	
(SOS) or Texa	s Comptroller of Public Accou	ınts (CPA).										
6. Customer I	Legal Name (If an individual, pri	nt last name first	: eg: Doe, Jol	hn)			<u>If new</u>	v Customer, e	enter pre	evious Custome	er below:	
City of Cedar Pa	ark											
7. TX SOS/CP	A Filing Number	8. TX State Ta	ax ID (11 digi	its)			9. Fe	deral Tax II)	10. DUNS N	Number (if	
							(9 dig	its)		applicable)		
11. Type of C	ustomer: Corpora	tion				Individ	ual		Partne	rship: 🗌 Gen	eral 🗌 Limited	
Government:	City County Federal	Local State	Other			☐ Sole Proprietorship ☐ Other:						
12. Number o	of Employees						13. lr	ndependen	tly Owi	ned and Operated?		
0-20	21-100 🗌 101-250 🔀 251-	500 🔲 501 ar	nd higher				☐ Ye	es [⊠ No			
14. Customer	Role (Proposed or Actual) – as i	t relates to the Re	egulated Enti	ity liste	ed on t	this form. F	Please o	check one of	the follo	wing		
Owner	☐ Operator		er & Operato					Other:				
Occupation	al Licensee Responsible Pa	rty 🔲 VC	CP/BSA Applic	cant								
15 Mailing	450 Cypress Creek Road											
15. Mailing	Bldg 1											
Address:	City Cedar Park		State	TX		ZIP	78613	3		ZIP + 4	3000	
				1								
16. Country N	Mailing Information (if outside	USA)			17. E-Mail Address (if applicable)							
					brenda.eivens@cedarparktexas.gov							
18. Telephone Number 19. Extension or Co					ode			20. Fax N	umber ((if applicable)		

TCEQ-10400 (11/22) Page 1 of 3

(512) 401-5010		(512) 250-8602
------------------	--	------------------

SECTION III: Regulated Entity Information

21. General Regulated En	tity Informa	ation (If 'New Reg	gulated Entity" is s	elected, a new p	permit applica	tion is also required.)		
☐ New Regulated Entity	☐ New Regulated Entity ☐ Update to Regulated Entity Name ☐ Update to Regulated Entity Information							
The Regulated Entity Name submitted may be updated, in order to meet TCEQ Core Data Standards (removal of organizational endings such as Inc, LP, or LLC).								
22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)								
Brushy Creek Regional West Wastewaster Treatment Facility								
23. Street Address of the Regulated Entity:	1116 East A	1116 East Austin Avenue						
(No PO Boxes)	City	Round Rock	State	TX	ZIP	78664	ZIP + 4	
24. County	Williamson		·	·			•	
	1	If no Stre	et Address is pro	ovided, fields ?	25-28 are re	quired.		
25. Description to								
Physical Location:								
26. Nearest City		State Nearest ZIP Code						
Daniel Danie	TX 78664							
Round Rock								
Latitude/Longitude are re used to supply coordinate	-	-			Data Standa	rds. (Geocoding of t	the Physical	Address may be
Latitude/Longitude are re	es where no	-		ain accuracy).		rds. (Geocoding of t	the Physical	Address may be
Latitude/Longitude are re used to supply coordinate	es where no	-		ain accuracy).	ongitude (W		the Physical	Address may be Seconds
Latitude/Longitude are reused to supply coordinate 27. Latitude (N) In Decim Degrees 30	al: Minutes	one have been p	Seconds 50	ain accuracy).	ongitude (W	/) In Decimal: Minutes)	Seconds 0
Latitude/Longitude are reused to supply coordinate 27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code	Minutes 30.	30 Secondary SIC	Seconds 50	28. L Degri	ees 97 Ory NAICS Co	/) In Decimal: Minutes 40 32. Sec	ondary NAIC	Seconds 0
Latitude/Longitude are reused to supply coordinate 27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits)	Minutes 30.	one have been p	Seconds 50	28. L Degri 31. Prima (5 or 6 dig	ees 97 Ory NAICS Co	/) In Decimal: Minutes 40	ondary NAIC	Seconds 0
Latitude/Longitude are reused to supply coordinate 27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits) 4952	Minutes 30.	30 Secondary SIC	Seconds 50 Code	28. L Degri 31. Prima (5 or 6 dig)	ees 97 ary NAICS Co	/) In Decimal: Minutes 40 32. Sec	ondary NAIC	Seconds 0
Latitude/Longitude are reused to supply coordinate 27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits) 4952 33. What is the Primary E	Minutes 30. (4 d	30 Secondary SIC	Seconds 50 Code	28. L Degri 31. Prima (5 or 6 dig)	ees 97 ary NAICS Co	/) In Decimal: Minutes 40 32. Sec	ondary NAIC	Seconds 0
Latitude/Longitude are reused to supply coordinate 27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits) 4952	Minutes 30. (4 d	30 Secondary SIC	Seconds 50 Code	28. L Degri 31. Prima (5 or 6 dig)	ees 97 ary NAICS Co	/) In Decimal: Minutes 40 32. Sec	ondary NAIC	Seconds 0
Latitude/Longitude are reused to supply coordinate 27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits) 4952 33. What is the Primary E	Minutes 30. (4 d	30 Secondary SIC digits)	Seconds 50 Code	28. L Degri 31. Prima (5 or 6 dig)	ees 97 ary NAICS Co	/) In Decimal: Minutes 40 32. Sec	ondary NAIC	Seconds 0
Latitude/Longitude are reused to supply coordinate 27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits) 4952 33. What is the Primary E Treatment of domestic waste	Minutes 30. (4 d	30 Secondary SIC digits)	Seconds 50 Code	28. L Degri 31. Prima (5 or 6 dig)	ees 97 ary NAICS Co	/) In Decimal: Minutes 40 32. Sec	ondary NAIC	Seconds 0
Latitude/Longitude are reused to supply coordinate 27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits) 4952 33. What is the Primary E Treatment of domestic waste	Minutes 30. (4 d	30 Secondary SIC digits)	Seconds 50 Code	28. L Degri 31. Prima (5 or 6 dig)	ees 97 ary NAICS Co	/) In Decimal: Minutes 40 32. Sec	ondary NAIC	Seconds 0
Latitude/Longitude are reused to supply coordinate 27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits) 4952 33. What is the Primary E Treatment of domestic waste	Minutes 30. (4 d Business of t ewater 3400 Sunr	30 Secondary SIC digits) this entity? (Digits Road	Seconds 50 Code State	28. L Degri 31. Prima (5 or 6 dig) 221320	ees 97 ary NAICS Co its)	/) In Decimal: Minutes 4(de 32. Sec (5 or 6 c	ondary NAIC	Seconds 0 CS Code
Latitude/Longitude are reused to supply coordinate 27. Latitude (N) In Decim Degrees 30 29. Primary SIC Code (4 digits) 4952 33. What is the Primary E Treatment of domestic waste 34. Mailing Address:	Minutes 30. (4 d Business of t ewater 3400 Sunr	30 Secondary SIC digits) this entity? (Digits Road	Seconds 50 Code State	28. L Degri 31. Prima (5 or 6 dig) 221320 IC or NAICS desc	ees 97 ary NAICS Co its) ription.)	/) In Decimal: Minutes 4(de 32. Sec (5 or 6 c	ondary NAIC	Seconds 0 CS Code

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

TCEQ-10400 (11/22) Page 2 of 3

☐ Dam Safety		Districts	Edwards Aquifer		Emissions Inv	entory Air	/ Air		
☐ Municipal S	olid Waste	New Source Review Air	OSSF		Petroleum St	orage Tank		PWS	
Sludge		Storm Water	☐ Title V Air		Tires			Used Oil	
☐ Voluntary C	leanup		☐ Wastewater Agricul	ture	Water Rights			Other:	
		WQ0010264001							
SECTION IV: Preparer Information									
40. Name:	Jenni Griesel			41. Title:	Project Engi	neer	-		
42. Telephone	Number	43. Ext./Code	44. Fax Number	45. E-Mail	Address				
(512)687-2193			() -	jgriesel@plu	ummer.com				
SECTION	V: Au	thorized S	<u>ignature</u>						
6. By my signatur	SECTION V: Authorized Signature 6. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority of submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.								
Company:	City of Ced	dar Park		Job Title:	City Mana	ger			
Name (In Print):	Brenda Eiv	vens .				Phone:	(512) 401- 5010	
Signature:	Pru	nda Erres		-	KW	Date:	8	15/2094	

TCEQ-10400 (11/22) Page 3 of 3

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please desc	cribe in space provided.)							
New Permit, Registration or Authorization (Core Data Form should be submitted with the program application.)								
Renewal (Core Data Form should be submitted with the	Other Change in Ownership							
2. Customer Reference Number (if issued)	Follow this link to search for CN or RN numbers in	3. Regulated Entity Reference Number (if issued)						
CN 600135198	Central Registry**	RN 100822592						
SECTION II: Customer Infor	SECTION II: Customer Information							

4. General Cu	ieneral Customer Information 5. Effective Date for Customer Information Updates (mm/dd/yyyy)							11/12/2024			
_											11/12/2024
New Custor			pdate to Custome				0	egulated Ent	ity Owne	ership	
∐Change in L	egal Name	(Verifiable with the Tex	as Secretary of St	tate or Texas	s Compt	troller of Public	: Accoui	nts)			
The Custome	r Name s	ubmitted here may l	be updated aut	omatically	based	on what is c	urrent	and active	with th	e Texas Seci	retary of State
(SOS) or Texa	s Comptr	oller of Public Accou	ints (CPA).								
6. Customer	Legal Nan	ne (If an individual, pri	nt last name first:	eg: Doe, Jo	hn)		<u>If nev</u>	w Customer, e	enter pre	evious Custom	er below:
City of Austin											
7. TX SOS/CPA Filing Number 8. TX State Tax ID (11			x ID (11 dig	gits)		9. Fe	deral Tax II	D	10. DUNS	Number (if	
							(0.4)			applicable)	
							(9 dig	gits)			
11. Type of C	ustomer:	☐ Corporat	ion			☐ Individ	dual		Partne	rship: 🗌 Ger	neral Limited
		County Federal	Local State	Other		Sole Proprietorship Other:					
L2. Number o	of Employ	rees .				13. Independently Owned and Operated?					
0-20	21-100	101-250 251-	500 🛚 501 an	d higher			☐ Ye	es [⊠ No		
14. Custome	r Role (Pro	pposed or Actual) – as i	t relates to the Re	gulated Ent	tity liste	d on this form.	Please	check one of	the follo	wing	
⊠Owner ☐Occupationa	al Licensee	Operator Responsible Par	_	er & Operato P/BSA Appli				Other:			
15. Mailing	625 East	10th Street									
13. Maiiiig	Suite 800)									
Address:	City	Austin		State	TX	ZIP	7870	1	ZIP + 4		2612
	City	, (436111		Jule			7070				2012
L6. Country I	Mailing In	formation (if outside	USA)			17. E-Mail Address (if applicable)					
						shay.roalson@	austint	exas.gov			
18. Telephon	e Numbe	r	19.	Extension	n or Co	Code 20. Fax Number (if applicable)					
25. Extension of											

TCEQ-10400 (11/22) Page 1 of 3

(512) 972-0108	(512) 972-0111
------------------	----------------

SECTION III: Regulated Entity Information

21. General Regulated En	tity Informa	ation (If 'New Reg	ulated Entity" is s	elected, a new	permit applica	ition is also r	equired.)		
☐ New Regulated Entity ☐ Update to Regulated Entity Name ☐ Update to Regulated Entity Information									
The Regulated Entity Nan as Inc, LP, or LLC).	ne submitte	d may be upda	ted, in order to i	neet TCEQ C	ore Data Sta	ndards (ren	noval of or	ganization	al endings such
22. Regulated Entity Nam	e (Enter nam	ne of the site wher	e the regulated ac	tion is taking p	lace.)				
Brushy Creek Regional West \	Wastewaster	Treatment Facility	1						
23. Street Address of the Regulated Entity:	1116 East A	ustin Avenue							
(No PO Boxes)	City	Round Rock	State	TX	ZIP	78664		ZIP + 4	
24. County	Williamson								
		If no Stree	et Address is pro	vided, fields	25-28 are re	quired.			
25. Description to									
Physical Location:									
26. Nearest City						State		Nea	rest ZIP Code
Round Rock						TX		7866	54
Latitude/Longitude are re used to supply coordinate	-	-				ırds. (Geoco	oding of th	e Physical	Address may be
27. Latitude (N) In Decima	al:			28.	Longitude (\	V) In Decim	al:		
Degrees	Minutes		Seconds	Deg	rees	Mi	nutes		Seconds
30		30	50		97		40		0
29. Primary SIC Code (4 digits)		Secondary SIC	Code	31. Prim (5 or 6 di	ary NAICS Co	ode	32. Seco (5 or 6 dig	ndary NAIC	CS Code
4952				221320					
33. What is the Primary B	usiness of t	this entity? (Do	o not repeat the SI	C or NAICS des	cription.)				
Treatment of domestic waste	water								
34. Mailing	3400 Sunr	ise Road							
Address:									
	City	Round Rock	State	тх	ZIP	78665		ZIP + 4	2398
35. E-Mail Address:	mth	nane@roundrockt	exas.gov						1
36. Telephone Number			37. Extension	or Code	38. F	ax Number	(if applicat	ole)	
(
(512) 218-3236					(512) 218-5563			

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

TCEQ-10400 (11/22) Page 2 of 3

☐ Dam Safety		Districts	L Edwards Aquifer		_ Emissions inve	ntory Air	Industrial Hazardous Waste
Municipal Solic	d Waste	New Source	□ OSSF		Petroleum Stor	age Tank	□PWS
Sludge		Storm Water	☐ Title V Air		Tires	- N	Used Oil
☐ Voluntary Clea	nup	⊠ Wastewater	☐ Wastewater Agric	culture [Water Rights		Other:
SECTION	IV: P	reparer In	<u>formation</u>			14400-1	
40. Name : Je	nni Griesel		***	41. Title:	Project Engin	eer	
42. Telephone Nu	mber	43. Ext./Code	44. Fax Number	45. E-Mail	Address		
(512)687-2193			-() =	jgriesel@pl	ummer.com		
6. By my signature to submit this form or	below, I certing behalf of t	he entity specified in Se		required for the u	updates to the ID	numbers ide	, and that I have signature authority ntified in field 39.
Company:	City of A	Austin		Job Title:	Director of A	Austin Water	
Name (In Print):	Shay Ra	lls Roalson				Phone:	(512) 972-0108

7/31/2024

Date:

Thay Palls Polon

Signature:

TCEQ-10400 (11/22) Page 3 of 3

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked	please describe in space provided.)				
New Permit, Registration or Authorization (Core Data Form should be submitted with	the program application.)			
Renewal (Core Data Form should be submitt	ted with the renewal form)	Other Change in Ownership			
2. Customer Reference Number (if issued)	Follow this link to search for CN or RN numbers in	3. Regulated Entity Reference Number (if issued) RN 100822592			
CN 600646012	Central Registry**				
SECTION II: Customer	<u>Information</u>				
4. General Customer Information	5. Effective Date for Customer Infor	mation Updates (mm/dd/yyyy)	11/12/2024		

4. General Cu	istomer Inf	formation	5. Effective D	Date for Cu	ıstome	r Infor	rmation	Update	es (mm/dd/	′уууу)		11/12/2024
New Custor		_	Update to Custom					0	gulated Ent	tity Own	ership	
☐Change in Le	egal Name (\	Verifiable with the 1	Texas Secretary of S	State or Tex	as Com _l	ptroller	r of Public	Accoun	its)			
		bmitted here ma	•	tomatical	ly base	d on v	vhat is c	urrent	and active	with th	e Texas Secr	etary of State
(SOS) or Texa	s Comptro	ller of Public Acc	ounts (CPA).									
6. Customer I	Legal Name	e (If an individual, p	orint last name firs	t: eg: Doe, J	ohn)			<u>If new</u>	Customer,	enter pre	evious Custome	er below:
City of Leander												
7. TX SOS/CP	A Filing Nu	mber	8. TX State T	ax ID (11 d	igits)			9. Federal Tax ID 10. D			10. DUNS I	Number (if
								(9 dig	its)		applicable)	
								(3 0.8	1637			
11. Type of C	11. Type of Customer: Corporation					[Individ	vidual Partnershi		ership: 🗌 Gen	eral 🔲 Limited	
Government:	vernment: 🛛 City 🗌 County 📗 Federal 🗎 Local 🔲 State 🔲 Other 💮 Sole Proprietorship 💮 Other:											
12. Number o	of Employe	es				,		13. lr	ndepender	ntly Ow	ned and Ope	rated?
0-20 2	0-20											
14. Customer	Role (Prop	osed or Actual) – a	s it relates to the R	Regulated Er	ntity list	ed on t	his form.	Please c	heck one of	the follo	wing	
Owner		Operator	_	ner & Opera					☐ Other:			
Occupationa	al Licensee	Responsible F	Party	CP/BSA App	licant				_ other.			
	201 N. Bru	ushy Street										
15. Mailing												
Address:	City	Leander		State	TX		ZIP	78641	1		ZIP + 4	
	Git,							700.2	-			
16. Country N	Mailing Info	ormation (if outsid	de USA)			17. E	E-Mail Ac	dress	(if applicabl	le)		
N/A iturner@leandertx.gov												
N/A		18. Telephone Number 19. Extension or Code 20. Fax Number (if applicable)										

TCEQ-10400 (11/22) Page 1 of 3

(512) 528-2929		() -
------------------	--	-------

SECTION III: Regulated Entity Information

21. General Regulated Ent	ity Informa	tion (If 'New Reg	gulated Entity" is selec	cted, a new pe	ermit applica	ation is also	required.)		
☐ New Regulated Entity ☐ Update to Regulated Entity Name ☐ Update to Regulated Entity Information									
The Regulated Entity Namas Inc, LP, or LLC).	ne submitted	d may be upda	ted, in order to me	et TCEQ Cor	e Data Sta	ndards (re	emoval of or	ganization	al endings such
22. Regulated Entity Name	e (Enter nam	e of the site wher	re the regulated action	n is taking pla	ce.)				
Brushy Creek Regional West V	Vastewaster 1	Treatment Facility	1						
23. Street Address of the Regulated Entity:	1116 East A	ustin Avenue							
(No PO Boxes)	City	Round Rock	State	TX	ZIP	78664		ZIP + 4	
24. County	Williamson								
		If no Stre	et Address is provid	ded, fields 2	5-28 are re	equired.			
25. Description to									
Physical Location:									
26. Nearest City						State		Nea	rest ZIP Code
Latitude/Longitude are re used to supply coordinate	-	-	-		ata Stando	ards. (Geo	coding of th	e Physical .	Address may be
27. Latitude (N) In Decima	nl:			28. Lo	ongitude (\	W) In Deci	mal:		
Degrees	Minutes		Seconds	Degre	es	N	Minutes		Seconds
30	:	30	50		97		40		0
29. Primary SIC Code	30.	Secondary SIC	Code	31. Primar	y NAICS C	ode	32. Seco	ndary NAIC	CS Code
(4 digits)	(4 di	gits)		(5 or 6 digit	s)		(5 or 6 dig	gits)	
4952				221320					
33. What is the Primary B	usiness of t	his entity? (D	o not repeat the SIC o	r NAICS descri	ption.)				
Treatment of domestic waster	water								
34. Mailing									
34. Ivialiling	3400 Sunri	se Road							
	3400 Sunri	se Road							
Address:	3400 Sunri	Round Rock	State	тх	ZIP	78665		ZIP + 4	2398
Address: 35. E-Mail Address:	City	Τ		тх	ZIP	78665		ZIP + 4	2398
	City	Round Rock					er (if applicab		2398
35. E-Mail Address:	City	Round Rock	texas.gov		38.				2398

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

TCEQ-10400 (11/22) Page 2 of 3

		Districts	Edwards Aquifer		Emissions Inventory Air	Industrial Hazardous Waste
Municipal Sol	id Waste	New Source Review Air	OSSF		Petroleum Storage Tank	PWS
Sludge		Storm Water	☐ Title V Air		Tires	Used Oil
☐ Voluntary Cle	anup	⊠ Wastewater	☐ Wastewater Agrice	ulture [Water Rights	Other:
		WQ0010264001				
SECTION	IV: Pre	eparer Inf	<u>ormation</u>			
40. Name:	enni Griesel			41. Title:	Project Engineer	
42. Telephone N	umber	43. Ext./Code	44. Fax Number	45. E-Mail	Address	
(512)687-2193			1) -	jgriesel@plu	ummer.com	,
ECTION	V: Au	thorized S	<u>ignature</u>	•		
	Mark I mark to compare a compare of					
6. By my signature	n behalf of the	to the best of my know entity specified in Sec	wledge, that the informat tion II, Field 6 and/or as re	on provided in tequired for the u	his form is true and complet pdates to the ID numbers id	e, and that I have signature authority entified in field 39.
6. By my signature	city of Lea	entity specified in Sec	wledge, that the informat tion II, Field 6 and/or as re	on provided in the undergraph of the undergraph	his form is true and complet pdates to the ID numbers id City Manager	e, and that I have signature authority entified in field 39.
6. By my signature o submit this form o	n behalf of the	entity specified in Seci	wledge, that the informat tion II, Field 6 and/or as re	equired for the u	pdates to the ID numbers id	e, and that I have signature authority entified in field 39. (512) 528-2929

TCEQ-10400 (11/22)

ATTACHMENT B

Plain Language Summary Admin Rpt 1.0, Section 8.F

TCEQ

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

PLAIN LANGUAGE SUMMARY FOR TPDES OR TLAP PERMIT APPLICATIONS

Plain Language Summary Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. Applicants may modify the template as necessary to accurately describe their facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how the applicant will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTIC WASTEWATER/STORMWATER

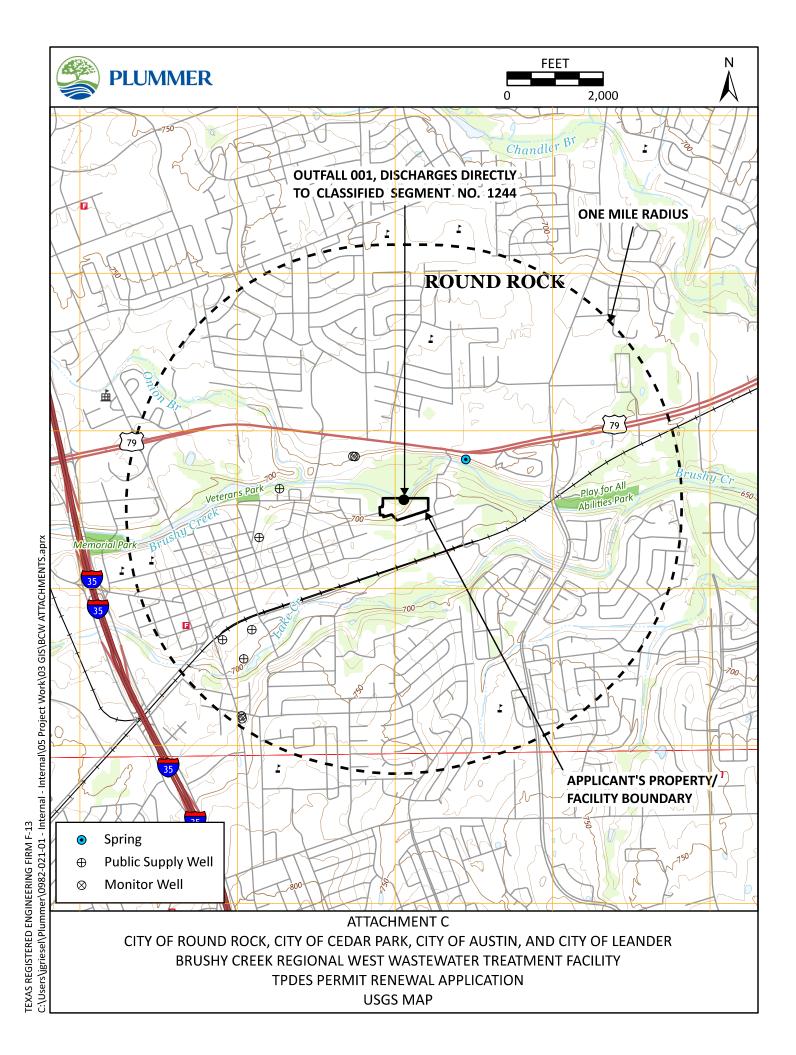
The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

City of Round Rock (CN600413181), City of Cedar Park (CN600407951), City of Austin (CN600135198), and City of Leander (CN600646012) operate the Brushy Creek Regional West Wastewater Treatment Facility (RN100822592), a plug-flow activated sludge wastewater treatment facility. The facility is located at 1116 East Austin Avenue, in Round Rock, Williamson County, Texas 78664. This application is for a renewal to discharge an annual average flow of 3,000,000 gallons per day of treated domestic wastewater.

Discharges from the facility are expected to contain 5-day carbonaceous biochemical oxygen demand, total suspended solids, ammonia nitrogen, total phosphorus, and *E. coli*. Domestic wastewater is treated by two mechanical fine screens, two aeration basins, two secondary clarifiers, and an ultraviolet disinfection system.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES DOMÉSTICAS /AGUAS PLUVIALES


El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva federal de la solicitud de permiso.

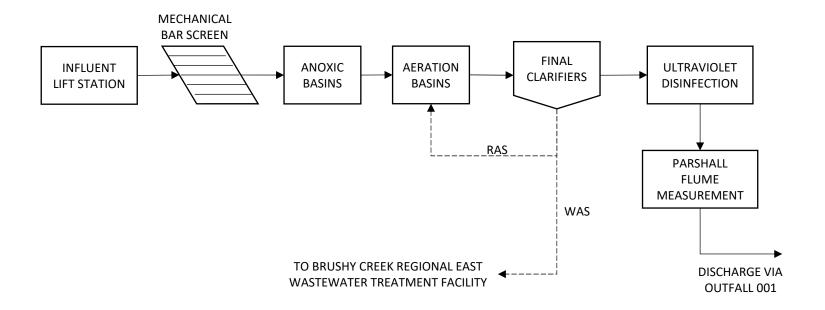
La cuidad de Round Rock (CN600413181), la cuidad de Cedar Park (CN600407951), la cuidad de Austin (CN600135198) y la cuidad de Leander (CN600646012) operan la instalación de tratamiento de aguas residuales del Brushy Creek Regional West (RN100822592), una instalación de tratamiento de aguas residuales de lodos activados de flujo pistón. La instalación está ubicada en 1116 East Austin Avenue, en la cuidad de Round Rock, Condado de Williamson, Texas 78664. Esta solicitud es para una renovación para descargar un flujo promedio anual de 3,000,000 de galones por día de aguas residuales domésticas tratadas.

Se espera que las descargas de la instalación contengan demanda bioquímica carbonosa de oxígeno de 5 días, sólidos suspendidos totales, nitrógeno amoniacal, fósforo total, y *E. coli*. Aguas residuales domésticas son tratadas por dos cribas finas mecánicas, dos cuencas de aireación, dos clarificadores secundarios y un sistema de desinfección ultravioleta.

ATTACHMENT C

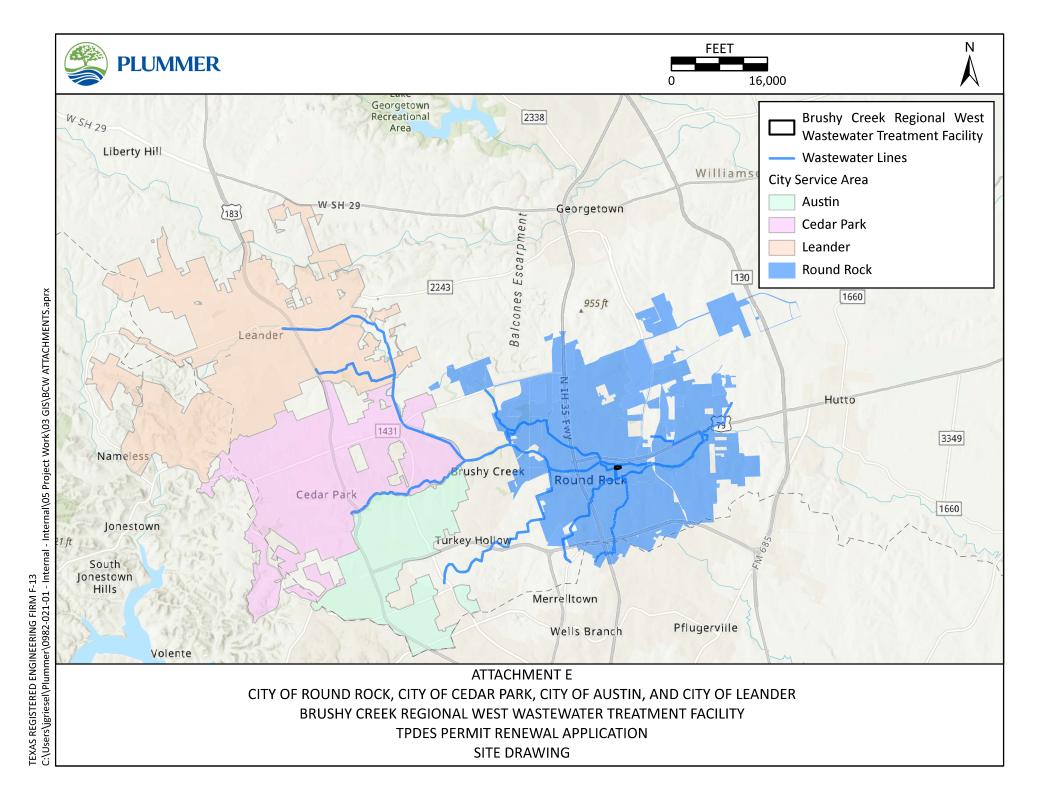
USGS Map Admin Rpt 1.0, Section 13

ATTACHMENT D


Process Flow Diagram
Tech Rpt 1.0, Section 2.C

LEGEND

—— FLOW STREAM, LIQUIDS


---- FLOW STREAM, SOLIDS

ATTACHMENT D CITY OF ROUND ROCK, CITY OF CEDAR PARK, CITY OF AUSTIN, AND CITY OF LEANDER BRUSHY CREEK REGIONAL WEST WASTEWATER TREATMENT FACILITY TPDES PERMIT RENEWAL APPLICATION PROCESS FLOW DIAGRAM

ATTACHMENT E

Site Drawing
Tech Rpt 1.0, Section 3

ATTACHMENT F

Pollutant Analysis of Treated Effluent
Tech Rpt 1.0, Section 7; Wks 4.0 Section 1 & 2

March 22, 2024

Ryan Bornn CITY OF ROUND ROCK 2008 Enterprise ROUND ROCK, Texas 78664

TEL: (512) 218-5561

FAX: Order No.: 2402342

RE: IPP West Plant SHORT QTR

Dear Ryan Bornn:

DHL Analytical, Inc. received 6 sample(s) on 2/27/2024 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-23-29

Table of Contents

Miscellaneous Documents	3
CaseNarrative 2402342	21
WorkOrderSampleSummary 2402342	22
PrepDatesReport 2402342	23
AnalyticalDatesReport 2402342	24
Analytical Report 2402342	25
AnalyticalQCSummaryReport 2402342	31
Subcontract Report 2402342	48

2300 Double Creek Dr. Round Rock, TX 78664

Phone 512.388.8222

Web: www.dhlanalytical.com

Email: login@dhlanalytical.com

CHAIN-OF-CUSTODY

LAB USE ONLY CLIENT: City of Round Rock DATE: 02/27/2024 **DHL WORKORDER #:** ADDRESS: 3400 Sunrise Rd., Round Rock, TX 78665 PO#: EMAIL: rbornn@roundrocktexas.gov PHONE: 512-218-6636 PROJECT LOCATION OR NAME: DATA REPORTED TO: rbornn@roundRocktexas.gov IPP West Plant SHORT OTR Im Villanuar ADDITIONAL REPORT COPIES TO: kharris@roundrocktexas.gov COLLECTOR: CLIENT PROJECT # W=WATER SE=SEDIMENT HERB 8321 CT PHOS CT AMMONIA CT METALS 6020 CT 200.8 CT DISS. METALS CT Authorize 5% surcharge PRESERVATION 8082 🗆 608.3 🗆 PCB 8270 🗀 625.1 🗅 TCLP-METALS | RCRA 8 | TX-11 | Pb | □ 9001 010H □ 9001 H4L □ 5001 H4. PEST 8270 C 625.1 C O-P PEST 8270 C TCLP-SVOC () VOC () PEST () HERB () for TRRP report? P=PAINT L=LIQUID Lab BTEX [] MTBE [] [METHOD 8260] SL=SLUDGE ☐ Yes S=SOIL Use OC 8260 □ VOC 624.1 □ □HAN 8270 □ HOLD PAH□ GRO BO15 C DRO B015 Only SO=SOLID RCRA 8 TX11 D. NaOH [] DHL Collection Collection Container Matrix HNG **✓** Field Sample I.D. HCL Date Time Type Lab# **FIELD NOTES** jo LLg-HCL Influent Grab 1 12:00 W G 02/27/24 CR(VI) ICE Influent Grab 1 р 02/27/24 12:00 W Relinguished, By: (Sign) LAB USE ONLY THERMO #: **TURN AROUND TIME** (CALL FIRST FOR RUSH) RECEIVING TEMP (°C): IF >6°C, ARE SAMPLES ON ICE AND JUST COLLECTED? YES / NO RUSH-1 DAY□ RUSH-2 DAY□ CUSTODY SEALS ON ICE CHEST: BROKEN DINTACT MOTUSED RUSH-3 DAY□ CARRIER: ☐ LSO ☐ FEDEX ☐ UPS ☐ COURIER ☐ HAND DELIVERED Relinquished By: (Sign) DATE/TIME Received by: NORMAL ✓ OTHER □ DUE DATE

☐ DHL DISPOSAL @ \$10.00 each

CLIENT: City of Round Rock

2300 Double Creek Dr. Round Rock, TX 78664 Phone 512.388.8222

Web: www.dhlanalytical.com

CHAIN-OF-CUSTODY

ADDRESS: 3400 Sunrise	<u>Rd., F</u>	Round Ro	ck, TX 78	<u>8665</u>		PC)#:														_D	HL \	NO	RK	ORI	DER	#:		- ('		× 10×
PHONE: 512-218-6636		EMAIL: rb			texas.gov	PR	OIF	CT	וחר	٠Δ٦	וחו	N O	R N	ΔΜ	F.																
DATA REPORTED TO: rb												-		AIV!					`	IPI							,	ГС	-		
ADDITIONAL REPORT COI	PIES TO	: kharris	@roundr	ocktez	xas.gov	_	IEN'	_		_	_										C	OLL	ECT	_	-	1/	<u>^^\</u>	V:	<u>((a</u>	NJE	W.
Authorize 5% surcharge		W=WATE	R	SE=SE	DIMENT		PRE	SEF	RVA	TIC	N		١	<u>,</u>		1			9	. <u>:</u>	3	딯	lι		ď	[_	٦			1	
for TRRP report?	Lab	L=LIQUID		P=PAI	NT				10	֓֞֞֞֞֞֞֞֞֞֞֞֩֞֩֞֩֞֞֩֞֞֩֞֞֞֞֡֓֡֡֡֡֡	✓	- 1:	z }	5				182				Įĝ		ERBC	0	3		- [١	
☐ Yes ☐ No	Use	S=SOIL		SL=SL	UDGE	ξ.	4	ı		١ڠ	Š	S		[] _		9		ES	270					ĕ	ξ	AG RE	8		ı	1	
	Only	SO=SOLID)			ie.	H ₃ PO ₄	ı	- [.	Zn Acetate 📙	SE	Ş	ž 5		14.1	523	MA					1	["	J PES	28	ğ	티			1	
Field Sample I.D.	DHL Lab#	Collection Date	Collection Time	Matrix	Container Type	# of Contai	H	HNO ₃	H ₂ SO ₄	NaOH LI Zn	ICE < UNPRE	ANALYSES	BIEX C. MIBELLIMERROD SZBUJ	GRO MIS CHARLES CONTRACTOR CONTRA	VOC 8260 □ VOC 624.1 □	SVOC 8270 [] SVOC 625.1 []	PAN 8270 🏻 HOLD PAH	PEST 8270 □ 625.1 □ O-P PEST 8270 □	PCB 8082 (1 608.3 (1	NERB 8321 LI PROS LI AMMONIA LI	RCBA 8 D TX11	PHE HEX CHROM	ANIONS 300 [] 9056 []	TCLP-SVOC () VOC () PEST () HERB ()	TCLP-METALS ☐ RCRA 8 ☐ TX-11 ☐ Pb ☐	RCI CI IGN CI DGAS CI OIL&GREASE CI	TOS 🗆 TSS 🗀 % MOIST 🗅 CYANIDE 🗅	LL Hg			FIELD NOTES
Effluent Grab 1	02	02/27/24	23:59	W	G		V				$\sqrt{}$	T															,	丒	Ι.	\perp	LLg-HCL
Effluent Grab 1	4	02/27/24	23:59	W	P	1					$\sqrt{\ }$	L																			CR(VI) ICE
											7	L								$oldsymbol{\perp}$		L					⊥	丄	\perp		
											250000											L									
												L							\perp												
											Z-1002	L																\perp			
											and the second																				
											200	L	\perp						\perp		$oldsymbol{\perp}$	L						\perp	\perp		
											2000000				L			\perp		\perp								ᆚ			
									$oldsymbol{\perp}$			L					Ш	\perp	Ĺ	\perp	丄	L						$oldsymbol{\perp}$		$oldsymbol{\perp}$	
												L								\perp	L						\perp	\bot	丄		
											and the same	L																\perp			
										Ι			I																		
						16		n					Ι															$oldsymbol{oldsymbol{oldsymbol{oldsymbol{\square}}}$			
Relinguished By: (Sign)			DATE/TIME	١ //	Receiv		Hall	Mess	n)			TUF			UND FOR			- 1			ONL	Y MP	(°C):	:	4	. 3	9 (C	Т	HEI	rмо#: 78
Relinguished By Sign	1	last.	DATE/TIME	-10	Receip	ed/6	Y	1,			RUS	SH-1	DA	Y□	RUSI	H-2	DAY														ED? YES INO
MMUKAMIO?	S 011.	<i>28/11/</i> 29	y Udi	10	KUW	11	\mathcal{M}	μ		╛					DAY																TACT MOT USED
Relinquished By: (Sign)		· · · · · ·	DATE/TIME		Receiv	ed b	γ:			7		IORI		- 🗸	01	ΓHE	R 🗆	- 1	ARF	RIER:		LSO	□ F	EDE	ΧC	UP	s 🗆	COL	JRIE	RG	HAND DELIVERED
										- 1	DILL	E DV	TE																		

☐ DHL DISPOSAL @ \$10.00 each

CHAIN-OF-CUSTODY

Web: www.dhlanalytical.com Email: login@dhlanalytical.com

										-			,																	PAG	<u> t .</u>	1 OF I
CLIENT: City of Round								: 02	/29)/2	:02	4										LAE	US	E C	N	Y			$\overline{}$	u	_	2740
ADDRESS: 3400 Sunrise	Rd., I	Round Ro	ck, TX 7	8665		PC) #	:														DH	. W	OR	ΚО	RD	ER	#:	L	٦-	D,	2342
PHONE: 512-218-6636		EMAIL: r	ornn@rou	ındrocl	ktexas.gov	PR	OJE	EÇT	LO	^A	TIC	N C	OR I	VΔI	MF-											· · · · · · · · · · · · · · · · · · ·						
DATA REPORTED TO: rbo														***		IP	N S	/es	t Sh	or	Q	r.										
ADDITIONAL REPORT CO	PIES TO			ockte	xas.gov	CLI	EN	T P	ROJ	EC	.T#	ŧ										COI	LE(TО	R:	-	ī	0	M	J	11	lane
Authorize 5% surcharge		W=WATE		SE=SE	DIMENT		PR	ESEF	RVA	TIC	NC			0		П		0	10	0	LS C	П		II.	Ţ	<u>.</u>		\overline{A}	T		Т	
for TRRP report?	, -u-	L=LIQUID		P=PAI						믺	Ø		3	9			l	1827	189	ONIA	META	Ш	ğ				2		-	-	ı	
☐ Yes ☐ No		S=SOIL		SL=SL	UDGE	2	O ₄			tat	≪	S	00 82	亨		7	۱,	P P.55	\$270	AMM	DISS	Ш					A GRE	8		-	- [
	Only	SO=SOLID)	-		Ē	Н₃РО₄ □			١	ESE	۲۷S	METH	8	25	177	PAH		90	000	0.80	\parallel		֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		8	5	<u> </u>	1	-	l	
Field Sample I.D.	DHL Lab#	Collection Date	Collection Time	Matrix	Container Type	발		HNO ₃	H ₂ SO ₄	NaOH < Zn Acetate □	ICE SUNPRESERVED	ANALYSES	BTEX () MTBE () [METHOD 8260]	TPH 1005 CT TPH 1006 CT HOLD 1006 CT	GRO BOIS (1) DRO 8015 (1)	VOC 8260 CI VOC 624.1	PAK 8270 HOLD PAH	PEST 8270 C 625.1 C O-P PEST 8270 C	PCS 8082 🗆 608.3 🗆 PCS 8270 🗆 625,1	HERB 8321 🗆 T PHOS 🗀 AMMONIA 🗇	METALS 6020 🗆 200.8 🗀 DISS. METALS 🗇	RCNA 8 - TX11 -	PHI HEX CHROMI ALKALINITY CODE	Classe I some same		ICLP-METALS LI RCRA 8 LI TX-11 LI Pb LI	RCI LIGN LIDEAS	TDS C TSS C % MOIST C CYANIDE	Total Phenol			FIELD NOTES
Influent Grab 1	03	02/27/24	12:00	W		3			√	✓	✓												I		Ι	Ţ	<u>/</u> ,	<u>/[</u> ,	1	$oldsymbol{\mathbb{T}}$	\Box	O&G H2SO4
Influent Grab 2	<u> </u>	02/27/24	18:00	W		3		Ŀ	✓ \		✓				\perp	\perp	\perp	┸								,	<u> </u>	小				Cyanide NaOH
Influent Grab 3		02/27/24		W	Varies	3		<u></u>	_		✓											┙			\perp	,	/\	/ v		\perp		VOC ICE
Influent Grab 4	V	02/28/24	06:00	W	Varies	3	_	<u></u>	√ \.	4	✓						┸	L				┙	\perp	⊥		V	<u> </u>	∕\√	4	丄	\bot	
													\perp	_		\perp		\perp				\perp	\perp	\perp	\perp	┙	┙	\perp			$oldsymbol{\perp}$	
				ļ		Ш			_				_									\perp	\perp	┸	\perp	\perp	\perp		\bot	\perp	$oldsymbol{\perp}$	
						Ш		\dashv	_	\perp						\perp	1_	丄				┙	ᆚ	_	\perp	┸	┛	\perp	\perp	丄		
							_	_	4	4	_		4		\perp	\bot	_	╀	Ц		4	4	\perp	4	_	4	4	\bot	4	4	4	
						$\vdash \vdash$	\dashv	\dashv	+	4	-		\dashv	4	_	+	+	╁	_	_	-	+	+	+	+	\perp	\perp	+	+	+	\dashv	
						Н	\dashv	\dashv	\dashv	\dashv			+	\dashv	+	+	╀	╁	!	-	\dashv	+	+	+	+	+	+	+	+	-	+	
				-		H	\dashv	\dashv	+	\dashv	\dashv	H	\dashv	\dashv	+	+	+	╂	\vdash	_	\dashv	+	+	+	+	+	┿	+	+	+	\dashv	
	ļ					\vdash	\dashv	+	+	+	-	H	\dashv	\dashv	+	+	+	╁	Н	Н	\dashv	+	+	+	+	+	+	+	+	十	+	
						\Box	┪	\dashv	+	+	- 1	lŀ	\dashv	\dashv	+	+	+	╁	Н	\dashv	╅	+	╁	+	+	\dagger	+	十	+	十	+	
						П	\dashv		+	7	-		寸	┪	十	十	T	十	П	T	7	十		\dagger	\dagger	+	+	十	\dagger	十	\dagger	
							1	\top		7	1		7	寸	十	十	T	T	Н		7	\dagger	T	✝	T	T	\dagger	十	十	十	\dagger	
Relinquished By: (Sign)			DATE/TIME	1.24	Receiv Suj		Will		T YO			(CAI	LL F	IRS	OUN T FO	R R	JSH)	LAE	EIV	NG	TEM	-	-						.6	0	
Relinguished By: (Sign) Relinquished By: (Sign)	800	29/1004	DATE/TIME DATE/TIME		Receiv	Δ	1	للا	<u>4</u>	-	1		RU MA	SH-	3 DA	NY			CUS CAF	тог	DY SI	ALS	ON	ICE	CHE	EST:		BRC	OKE	N E	IN C	TED? YES / NO ITACT IN NOT USED THAND DELIVERED
														-					L													

☐ DHL DISPOSAL @ \$10.00 each

CHAIN-OF-CUSTODY

Web: www.dhlanalytical.com
Email: login@dhlanalytical.com

	4 A I	_ Y T I	CAL			Em	ail:	log	in@	Pdf	ılaı	nal	ytic	al.c	om														PA	GE_	1 OF 1	information
CLIENT: City of Round	Rock					DΑ	TE:	02	2/2	9/2	202	24									L	AB	USE	0	VLY	•					07. O	
ADDRESS: 3400 Sunrise		Round Ro	ck, TX 7	8665		P)#:															HL	wc	RK	OR	DEF	₹#:	مل	_ \	(0	2342	
PHONE: 512-218-6636		EMAIL: rbo			gov	DD.	O I E	CT	100	~ A T	10	NI C	א פר	NAN	4 C -																	
DATA REPORTED TO: rbc	rnn@	roundroc	ktexas.go	ov		FK	OJE	Ç I	LU	UM I	IŲ	IA C	<i>/</i> K I	4MIV	IE.	IPP	W	est	Sh	ort	Qtı	: .					and the same					
ADDITIONAL REPORT CO	PIES TO	: kharris	@roundr	ockte	cas.gov	CL	IEN'	r Pr	ROJ	EC	Γ#										C	OLI	.EC	ΓOF	E: /	70v	nl	[i]	Cin	ı je		
Authorize 5% surcharge		W=WATE	R	SE=SE	DIMENT		PRE				N			ä				ā	110	0	150			Ī.,	04	N	7					
for TRRP report?	LUN	L=LIQUID		P=PAI				1		<u>ا</u> ا			3	8				T 827	290	5	ZĘ	Шĝ		ERB	1	3543			- 1			1
☐ Yes ☐ No		S=SOIL		SL=SL	UDGE	LS	Q V	1		etat	Š	ES	90 82	릴,	٦Ŀ] 🖁	l.,	P PES	8270	§	ots.			Ē	Ĕ	LAGR	CYA		-			
	Only	SO=SOLID		, i		ine	H ₃ PO ₄	-		심	ESE	r.vs	Ŧ	900	624.1	Ç 625	¥	ů	8	50 0	2 2		8	6	8	Ö	OIST			ı		
Field Sample I.D.	DHL Lab#	Collection Date	Collection Time	Matrix	Container Type	# of Containers		HNO ₃	H₂SO₄	NaOH < Zr	ICE < UNPRESERVED <	ANALYSES	BTEX () MTBE () [METHOD 8260]	TPH 1005 (2) TPH 1006 (2) HOLD 1006 (2)	VOC 2256 C VOC 624.1	SVOC 8270 🗅 SVOC 625.1	PAN 8270 THOLD PAH	PEST 8270 C 625.1 C 0-P PEST 8270 C	PCS 8082 🗆 608.3 🗆 PCS 4270 🗀 625.1 🗅	HERB 8321 () T PHOS () AMMONIA ()	METALS 6020 (1) 200.8 (1) DISS. METALS (1)	BUT HEX CHROM TAKALINITY CODE	ANIONS 300 9056	TCLP-SVOC (VOC () PEST () HERB ()	TCLP-METALS RCRA 8 TX-11 Pb	RCI 🗆 IGN 🗆 DGAS 🗅 OIL&GREASE	TOS CITSS CI % MIC	Total Phenol			FIELD NOTE	s
Effluent Grab 1	04	02/27/24	23:59	W	Varies	3			✓ .	√,	7			\Box							T			Π		1	✓	✓		\Box	O&G H2SO4	
Effluent Grab 2		02/28/24		W	Varies			,	√	✓	4							L					L		L	✓	✓	✓			Cyanide NaOH	
Effluent Grab 3		02/28/24	12:00	W	Varies	3			✓ !	<u>√</u>	4				丄	L					丄	丄	L	┖	L	✓	✓	✓			VOC ICE	
Effluent Grab 4	V	02/28/24	18:00	W	Varies	3			<u> </u>	✓ .	4		_		\perp	_	L		Ш	\bot		丄	$oldsymbol{ol}}}}}}}}}}}}}}}}}$	L		✓	\checkmark	✓		\bot		
							\sqcup	\perp	_	\perp			\perp		_	_	L		Ш		\perp	1	┸	L		Ш						
		_						4	_	4		I	\perp	_	\perp	_			Ш	_	\perp	┸	1	Ļ	L				\dashv	_		
							\sqcup	4	\perp	4	STATE OF THE PARTY	I	4	\perp	_	1	_	Ш		_	\perp	┸	丄	L	L	Ш			_	\dashv		
							\sqcup	4	_	4	-	ļ	4	4	┸	\perp	L		Ш	_	4	┸	1	L	L	Ш			_	_		
							Ш	4	4	4	-		_	\bot	_	1	L		Щ	_	_	┸	⊥	L	_	Ц			_	\dashv		
							4	4	4	4	- I		_	4	4	┸	Ļ		Ш	_	_	\bot	\perp	L	<u> </u>	Ш			_	_		
,								4	4	4	4		4	\bot	4	4	L	L	Ш	_		4	╄	╙	<u> </u>	Ш		_	4	_		
							4	4	+	4	_		\dashv	\perp	\perp	4	_	Щ		4	4	╄.	╀	L	L	Ш			4	_		
							\dashv	4	\dashv	4			\dashv	_	\bot	4		Ц	Ш	\dashv	4	╀	╄	L	<u> </u>	\square		_	4	4		
							\dashv	4	_	4	_	ŀ	4	_	+	4		Н	Ш	4	_	_	-	<u> </u>		Ш		_	-	_		
							\dashv	4	-	4	_	ŀ	\dashv	4	_	_		Ш		4	- -	4	 	<u> </u>	<u> </u>	L	_		4	-		
Relinguished BV: (Sign)			DATE/TIME		Casai			_	$\frac{2}{1}$	+			ᆜ					Щ			ᆚ	丄	<u>_</u>	<u>L.</u>								_
1/2			2.2	iay.	Receiv	M		H	pr	\rightarrow				ARO IRST							ON!		{*C):	0	5	0	. (1.6	THE	RMO#: 78	
Relinquished By: (Sign)	01	2 /21	DATE/TIME	MATA	Receiv	ed b	X	ا ا	,		RU!	SH-		AY 🗆			DAY														//	
MUMIL STUMA	12	04290	DATE/TIME	(4/Q)	40	<u> </u>	ψV	<u>~</u>	U	\dashv	_			SH-3				,													TACT MOTU	- 1
Rélinquished By: (Sign)			DATE/ HME		Receiv	ea b	γ:					NOR E D			70	HE	.к ∟	<u> </u>	CAR	KIEF	:: ப	r.s0	ЦF	-EDE	X L	JŲP	S L	J CO	URI	EK E	HAND DELIVER	ED

☐ DHL DISPOSAL @ \$10.00 each

CHAIN-OF-CUSTODY

Web: www.dhlanalytical.com
Email: login@dhlanalytical.com

ANALY	/ TICAL			Ema	ail: le	ogiı	1@0	dhla	ana	lytic	cal.c	om	1												F	PAG	6E 1	0	1
CLIENT: City of Round Rock				DA	TE:	02/2	29/20)24										L	AB (USE	01	VLY			$\overline{}$	١,		071	\sim 1
ADDRESS:3400 Sunrise Rd., Rou	ınd Rock, TX 7	8665		PC			:											0	HL'	wo	RK	ORI	DER	₹ #: €	\angle	<u> </u>	\mathcal{O}	234	12
PHONE: EN	VAIL: rbornn@rou	ndrockte	xas.gov	PR) IF	~T I	OC/	ΔTIC)N	ΩR	NAN	/F·	TD	DΙ	ATE	ст	CLI	מר'	T C	\+r									
DATA REPORTED TO: rbornn@roi													11	r v	ند ۷	31	311						_			A .			
ADDITIONAL REPORT COPIES TO: k				_	ENT				10			_		_					OLL	ECT	OR	7	10)(^	\underline{V}	il.	10	100-	•
- I I	=WATER		DIMENT		PRES	SER1					2	ı	1		0.0	25.1	힣				0	100	_		١		-		
1 200	LIQUID	P=PAI			미	ŀ	#	₩		[092	9	ı	\vdash	┨	EST 82	900	NOM	E	۱È	$\ \ $	HERB	11:0	REASE	ANDE	l		١		
	SOIL	SL=SL	UDGE	ers	H₃PO₄ □		Ceta	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	SES		Ĭ	باي	2 2	┨┇	0-P	68 827	313				EST	ů	OILAG	5 2	037	ate	- [
Only SC	D=SOLID	٦		ia.	Ŧ]		Zn Acetate	l Š	ŀ	ME	H 1006	8	26.24 20.05	8	5.1	٦	T PHOS SAMMONIA (9056	2	RCRA	O SV:	MOIS	٠ ا				
	collection Collection		Container	Containers		<u></u>		17	ANALYSES	BTEX [] MTBE [] [METHOD 8250]	□ 9001 G10H □ 9001 H41 □ 5001 H41	GRO BO15 C DRO 8015 C	VOC #268 □ VOC 624.1 □ SVOC 8270 □ SVOC 625.4	PAH 8270 ☐ HOLD PAH ☐	PEST 8270 □ 625.1 □ O-P PEST 8270 □	909		METALS SUZO U ZUG. SINDS. METALS U	PHI HEX CHROMI ALXALINITY CODE	ANIONS 300 9056	TCLP-SVOC [] VOC [] PEST [] HERB []	TCLP-METALS RCRA 8 TX-11 Pb	RCI CI IGN CI DGAS CI OIL&GREASE CI	TOS 🗆 TSS 🗆 % MOIST 🗅 CYANIDE 🗇	Organics E.	Flouride Nitrate			
Field Sample I.D. Lab#	Date Time	Matrix	Туре	# of Co	립		NaOH 🗆	<u>□</u>		S C	H 1005	0 601	00.827	H 8270	5T 827	8 8082	HERB 8321	2 8	H	NONS 3	D-SVC	P-ME	0 18	ST C	rgai	ogr		FICI D	HOTEC
Influent Comp 05 0	12.00	W	n				- 2	븑	1		٩	5	3 8	12	8	2	-	_	<u>T</u>	₹ 	<u>ا ۲</u>	2	٤	P. (<u> </u>	<u> </u>	+	FIELD	
	02/28/24 12:00	$\frac{W}{W}$	P P	1	- *	4	╁	1/		\vdash	+	+	+	╁	Н	-	7	4	╁	╁	┢	Н	\dashv	\dashv	+	+		24 Hr. 24 Hr.	
	2/28/24 12:00	$\frac{1}{W}$	P P	+	-	┩	+	<u>\</u>		\vdash	\dashv	+	+	+	H	\dashv	*	+	+	╁╌	${\dagger}$	Н	H	\dashv	十.	7	\dashv	24 Hr.	
imident comp * 0.	2/28/24 12.00	 ''	F	-	\dashv	+	1	┿		H	\dashv	+	╁	✝	Н	\dashv	\dashv	╅	+	╁	T	Н	\exists	\dashv	十	+	\dagger	24 Hr.	
		1	Ì		十	十	+	T		П	\top	十	十	T	П	1	1	+	T	T	T	П	T	十	十	十	十	<u> </u>	Gomp
			l		\top	十	1	T		П	\neg	T	十	T		\exists	十	T	十	Τ	Г			T	T	T	1		
					1	T	T	T					T				T	T	T	T					T				
							I					I																	
				Ц	_	\perp	_	Ļ		Ш	_	4	\perp	丄			4	\bot	┸	$oldsymbol{\perp}$	_	Ц		\perp	4	_	_		
		<u> </u>		\Box	_	+	+	Ļ		\vdash	\dashv	-	4	╄	H	\dashv	+	╀	\perp		┡	Н		_	+	+	+		
		<u> </u>			+	+	+	1		\vdash	+	+	+	╀	H	4	\perp	+	+-	╀	H	Н	\dashv	\dashv	+	+	+		
		╁		\vdash	+	╁	╁	╀		H	+	+	╫	╁	Н		+	+	╁	╁		Н	\dashv	\dashv	+	+	+		
				\dashv	+	+	+	╁		H	+	╁	+	╁	Н	\dashv	+	+	+	╁		Н		\dashv	+	+	+		
		-				+	+	T		Н	\dashv	+	+	t	Н	\dashv	\dagger	十	t	t	 -	Н		十	+	T	\dagger	***************************************	
Relinquished By (Sign)	DATE/TIM		Beceiv	ed/by	///		^	T	TI	URN	ARC	UN	ID TI	ME		LAB	USE	ONL	.Y	<u> </u>	<u> </u>					1	LHE	RMO #:	
1 le	2.28.		xx Unil	<u> </u>	M	M	28		(C/	ALL I	IRST	FO	R RI	JSH)		REC	EIVII	IG T	EMP	(°C)	:	0.	<u>5°</u>	1	_(را. (0°(18
Relinguished By: (Sign)	DATE/TIME	_	Receiv	ed by	7: ! .	ī		RI	USH		AY□			DA'															1 NO
<u> </u>	<u> 2624 09,05</u>		Lun	M	M	\underline{u}		1			JSH-																	TACT 🖭	
Relinquished By: (Sign)	DATE/TIM		Receiv	ed by	<i>r</i> :					DATE	AL [/ :] (HTC	R	, 	CAR	RIER	: 🗆	LSO		EDE	XΓ	J UP	S 🗆	COL	URIE	RE	HAND DE	LIVERED

☐ DHL DISPOSAL @ \$10.00 each

CHAIN-OF-CUSTODY

PAGE 1 OF 1

Web: www.dhlanalytical.com
Email: login@dhlanalytical.com

CLIENT: City of Round	Rock					DA	TE:		02/	29/	202	4									LA	BU	ISE	ON	LY			$\overline{}$. ,			W	$\overline{}$
ADDRESS: 3400 Sunrise	Rd., I	Round Ro	ck, TX 7	8665		P	D#:														DI	HL V	VO	RKO	DRE	ER	#:	4	4	0.	メン	5 Y ?	-
PHONE:		EMAIL: rb			exas.gov		~	^+		~ · ·					_		. D. T	A 7 17	om	OTT						,,,							
DATA REPORTED TO: rb	ornn@	roundro	cktexas.g	ov		PK	OJE	Ç I	LO	CA	ΗŲ	IN C	KI	NAIV	E:	11	'P \	WE.	51	SHO	JK	1 (etr.										
ADDITIONAL REPORT CO					xas.gov	CL	IEN'	ΓP	ROJ	EC	T #										CC	LLE	СТ	OR		10	W	lil	10	inc)	a		
Authorize 5% surcharge		W=WATE	₹	SE=SE	DIMENT		PRE	SE	RVA	TIC	NC	П		<u>.</u>	Т	Τ	П	0	미	0 0	П	ᇢ	1		٥	_[Т	T	T			
for TRRP report?	Lab	L=LIQUID		P=PAI	NT					미	√		ᇎ	100		\vdash		182	8	META		ğ		ERBC	ģ	358	<u> </u>	1					
☐ Yes ☐ No	Use	S=SOIL		SL=SL	UDGE	2	o ₄		ı	ţ	₹VE		8	릴	. _	L	$ $ $_{\perp} $	PES	\$270	AMA DISS.	Ш	F	H	Ē	Ë	A.G.R.	§		a				
	Only	SO=SOLID		_		ine	품			Zn Acetate 🗆	ESE	X	Ĕ	9 8	34.1	C 625.	¥	ᆲ	刜	씱댩	1	Ž	ا و	D PES	₹ 2	ĕ	盲	B	e E				
Field Sample I.D.	DHL Lab#	Collection Date	Collection Time	Matrix	Container Type	# of Conta	HCL ☐ H ₃ PO ₄ I	HNO3	H ₂ SO₄		ICE < UNPRESERVE	ANALYSES	BTEX () MTBE () [METHOD 8260]	TPH 1005 (**) TPH 1006 (**) HOLD 1006 (**)	VOC 8260 □ VOC 624.1 □	SVOC 8270 🗀 SVOC 625.1	PAK 8270 🗆 HOLD PAH	PEST 8270 □ 625.1 □ O-P PEST 8270 □	PCB 8082 ☐ 608.3 ☐ PCB 8270 ☐ 625.1 ☐	HERB 8321 FPHOY < AMMONIA () METALS 6020 () 200.8 DISS. METALS ()	RCM 8 TX11 C	PH□ HEX CHROM□ ALKALINITY□ COD□	ARIONS 300 🗆 9056 🗅	TCLP-SVOC () VOC () PEST () HERB ()	TCLP-METALS C) RCRA 8 C) TX-11 C) P6 C)	RCI 🗆 IGN 🗆 DGAS 🗅 OIL&GREASE 🗆	TOS 🗆 TSS 🗆 🛠 MOIST 🗅 CYANIDE 🗅	Organics E. 632	Flouride Nitrate		FIEL	D NO	TES
Effluent Comp	06	02/28/24	23:59	W	P	1		✓			V					Π				√	\Box							I	L		24]	Hr. (Comp
Effluent Comp		02/28/24	23:59	W	P	1			✓		✓				\perp	L			,								\perp	丄	\perp	┸	24	Hr. (Comp
Effluent Comp	4	02/28/24	23:59	W	P	1					✓						Ш						Ш					_ ✓	1		24	Hr. (Comp
							Ш		_	_			\perp		_	L	Ш						Ш			_[L					
							Ш							\perp	$oldsymbol{\perp}$	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	Ц		\perp		$oldsymbol{ol}}}}}}}}}}}}}}}}}$						\perp	\perp	┸	┸			
								\Box	_	_			_	\perp	\perp	<u> </u>		_			L					_		\bot	\perp	\perp			
							Ц		4	_		L	_	\bot	↓_	<u> </u>		_	\perp		L	Щ			_	_	4	\perp	╀	┸			
							Ш	\dashv	\dashv	4	_		4	\bot	_	<u> </u>	Щ	_	4	_	1_				_	4	4	4	1	4			
							Н	4	_	4	_		4	_	╄	_		_	4	_					4	4	_	+	╀	_			
						Н	Н	4		4	-1		4	4	+	┿	Щ	\dashv	\dashv	4	┪		-		_	4	+	- -	+	+			
						_	$\vdash \vdash$	_	4	_	-4	-	\dashv	_	+-	┼	Н	-	+	-	╀-	Н	\dashv		\dashv	\dashv	+	+	╀	+			
							\vdash	-	\dashv	\dashv	_	-	\dashv	+	+-	╁	\vdash	\dashv	+	+	╀	\vdash	\square	\dashv	\dashv	+	+	+	╀	┿			
		<u> </u>		-		Н	\vdash	-	\dashv	-	-		+	+	+	\vdash	\vdash	\dashv	+	+	+-	Н	\vdash	\dashv	\dashv	\dashv	+	+	+	+			
						H	H	\dashv	-	ᅱ	_	ŀ	\dashv	-	╀	╁	Н	\dashv	+	+	╀	Н	-	_	\dashv	+	+	+	+	╁			
					/	\vdash	\vdash	\dashv	╅	-	-	1	╁	+	+	-	Н	\dashv	+	╁	╁╌		\dashv	_	+	+	+	╌	+	╫			
Relinquished By: (Sign)			DATE/TIME		// Recgiv	v ed∕b	<u> </u>		$\frac{1}{2}$	ᅱ		<u> </u>	RN.	ARO	INF	TIR	<u>Ш</u> ЛЕ	+	AP	USE C)NI Y	<u></u>							<u> </u>	HEP	MO #:		
1/2		$-\frac{2}{3}$	1924/	34-1	Minit			les	X	,	(IRST				- 1		EIVING			(°C):	:	0:	20	C.(<u>۷.۷</u>	0	// LIC	МО п.	78	
Relinguished By (Sign)	1	11	DATE/TIME		Receiv	ed b	y:	1	,/		RU	SH-:	l DA	YΠ	RUS	H-2	DAY	o	F >€	°C, A	RE S	AMF	PLES								D? '	res /	10
MUMITELLANDO	n 02	1291262	4 09:0	15_	4W	Y	<u> </u>		C					SH-3																			USED
Retifiquished By: (Sign)		ı i	DATE/TIME		' Receiv	ed b	ıγ:					NOR E D		L ([<u>7</u>] 0	THE	R□		CAR	RIER:	Πt	so I	□ F(EDE	ΧÖ	UP:		COU	RIEF	R 🖾	HANE	DELIN	ERED

☐ DHL DISPOSAL @ \$10.00 each

Date	Time	Location	Type	Parameter	Bottle/Preservative	Flow(MGD)	Tech (Initial)	Comments
Day 1	1200	Influent	Grab	Oil and Grease Phenols Cyanide	1-250ml Amber w/H2SO4 1-250ml Amber 1-250ml Plastic w/NaOH	1.54	10	
				LL Hg Chromium VI	1-500 ml glass w/HCl 1-250ml plastic	weg		

Date	Time	Location	Type	Parameter	Bottle/Preservative	Flow(MGD)	Tech (Initial)	Comments
Day 1	1800	Influent	Grab	Oil and Grease Phenols Cyanide	1-250ml Amber w/H2SO4 1-250ml Amber 1-250ml Plastic w/NaOH	2.05	AV	

Date	nme	location	Туре	Parameter	Bottle/Preservative	Flow(MGD)	Tech (Initial)	Comments
Day 1	2359	Effluent	Grab	Oil and Grease Phenols Cyanide	1-250ml Amber w/H2SO4 1-250ml Amber 1-250ml Plastic w/NaOH	1.75		
				LL Hg	1-SOO ml glass w/HCl		1	
				Chromium VI	1-2S0ml plastic		•	

Date	Time	Location	Туре	Parameter	Bottle/Preservative	Flow(MGD)	Tech (Initial)	Comments
Day 1	2359	Influent	Grab		1-250ml Amber w/H25O4 1-250ml Amber	1 37	1	
Day 1	2333	iiiideiit	Glab	Cyanide 	1-250ml Plastic w/NaOH	(-) [14	4

Date	Time	Location	Туре	Parameter	Bottle/Preservative	Flow(MGD)	Tech (Initial)	Comments
Day 2	0600	Influent	Grab	Oil and Grease Phenols Cyanide	1-250ml Amber w/H2SO4 1-250ml Amber 1-250ml Plastic w/NaOH	. 892	1	

Date	Time	Location	Type	Parameter	Bottle/Preservative	Flow (MGD)	Tech (Initial)	Comments
Day 2	0600	Effluent	Grab	Oil and Grease Phenols Cyanide	1-250ml Amber w/H2SO4 1-250ml Amber 1-250ml Plastic w/NaOH	,892	1	

Date	Time	Location	Туре	Parameter	Bottle/Preservative	Flow (MGD)	Tech (Initial)	Comments
Day2	1200	Effluent	Grab	Oil and Grease Phenols Cyanide	1-250ml Amber w/H2SO4 1-250ml Amber 1-250ml Plastic w/NaOH	1.27	1	

Date	Time	Location	Type	Parameter	Bottle/Preservative	Flow(MGD)	Tech (Initial)	Comments
Day2	1800	Effluent	Grab	Oil and Grease Phenols Cyanide	1-250ml Amber w/H2SO4 1-250ml Amber 1-250ml Plastic w/NaOH	1.32	4	

Date	Time	Location	Туре	Parameter	Bottle/Preservative	Flow(MGD)	Tech (Initial)	Comments
	Start		,					
Day 1-	at	Effluent	Comp					
	MIDNIGHT			See				
	Off			Metals (plus Mn & Mo)	1-S00ml plastic w/HNO3	1 70	P	
Day 2 -	at	Effluent	Comp	Phosphorous	1-250ml plastic w/H2SO4	1-13	1/	
	MIDNIGHT			Fluoride/Nitrate	1-250ml plastic			

Day 1

		Sample Re	eceipt Chec	klist			
Client Name: CITY O	F ROUND ROCK			Date Rece	eived: 2/27/2024		
Work Order Number:	2402342			Received	by: KAO		
	5						
Charlist completed b	u. (a	0/07/0004		.	. 54		
Checklist completed b	Signature	2/27/2024 Date		Reviewed	by: Off	2/2	27/2024 Date
	!					I	
	Carı	rier name: <u>Ha</u>	and Delivered				
Shipping container/cod	oler in good condition?	Ye	es 🗹	No 🗌	Not Present [
Custody seals intact o	n shipping container/cooler?	Ye	es 🗌	No 🗌	Not Present	7	
Custody seals intact o	n sample bottles?	Ye	es 🗌	No 🗌	Not Present	/	
Chain of custody pres	ent?	Ye	es 🗹	No 🗌			
Chain of custody signe	ed when relinquished and received?	Ye	es 🗸	No 🗌			
Chain of custody agree	es with sample labels?	Υe	es 🗸	No 🗌			
Samples in proper cor	ntainer/bottle?	Ye	es 🗸	No 🗌			
Sample containers into	act?	Ye	es 🗸	No 🗌			
Sufficient sample volu	me for indicated test?	Υe	es 🗸	No 🗌			
All samples received v	vithin holding time?	Υe	es 🗸	No 🗌			
Water - VOA vials hav	e zero headspace?	Υe	es 🗌	No 🗌	No VOA vials sul	bmitted 🗹	NA 🗌
Water - pH<2 acceptal	·	Υe	es 🗌	No 🗌	NA ☑ LOT	#	
		Ac	ljusted?		Checked by		
Water - ph>9 (S) or ph	>10 (CN) acceptable upon receipt?	Υe	es 🗌	No 🗌	NA ☑ LOT	#	
		Ac	ljusted?		Checked by		
Container/Temp Blank	temperature in compliance?		es 🗸	No 🗌	man.		The second second second (
Cooler#	1						
Temp °C	4.1						
Seal Intact	NP						
Any No response mus	t be detailed in the comments section	below.	Milester versions assume specifics			errorrer searches consiste a consiste	
Client contacted:	Date conta	acted:	The second secon	Pe	erson contacted:		WARRING TO THE RESERVE TO THE RESERV
Contacted by:	Regarding				***************************************		
Comments:							MORPHOGRAPHICAL HALL BOLLEY LONG
		***************************************	PNL VISIONS VI	emperatura endan ne di colonia i sociali di colonia abundada			
Corrective Action:		The second secon	And Assessment 14 to	PRIEST ACCIONAL SANIARISMA SANIARISMA della condense con		PPORT OF ANY PPORT STATE STATES AND	

	Sample	Receipt Chec	KIISL					
Client Name: CITY OF ROUND ROCK			Date Received: 2/27/2024					
Work Order Number: 2402342			Received	by: KAO				
Checklist completed by:	~~ 2/28/2024			by:	2/28/2024			
Signature	Date	PERSONAL MANAGEMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT		Initials (1)	Date			
	Carrier hame:	Hand Delivered						
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present				
Custody seals intact on shipping container/cooler?		Yes	No 🗌	Not Present 🗹				
Custody seals intact on sample bottles?		Yes	No 🗌	Not Present 🗹				
Chain of custody present?		Yes 🗹	No 🗌					
Chain of custody signed when relinquished and receiv	ved?	Yes 🗹	No 🗌					
Chain of custody agrees with sample labels?		Yes 🗸	No 🗌					
Samples in proper container/bottle?		Yes 🗸	No 🗌					
Sample containers intact?		Yes 🗹	No 🗌					
Sufficient sample volume for indicated test?		Yes 🗸	No 🗌					
All samples received within holding time?		Yes 🗹	No 🗌					
Water - VOA vials have zero headspace?		Yes 🗌	No 🗆	No VOA vials submitted	d 🗹 NA 🗌			
Water - pH<2 acceptable upon receipt?		Yes	No 🗌	NA ✓ LOT#				
		Adjusted?		Checked by				
Water - ph>9 (S) or ph>10 (CN) acceptable upon rece	eipt?	Yes	No 🗌	NA ✓ LOT#				
		Adjusted?		Checked by				
Container/Temp Blank temperature in compliance?		Yes 🗹	No 🗌		remental des remontes como esta desta desta desta desta de la como			
Cooler# 1								
Temp °C 4.3								
Seal Intact NP								
Any No response must be detailed in the comments s	section below.			TO SECURE SECURE SECURE SECURE SECURE SECURE SECURE				
Client contacted: Date	contacted:		Pe	erson contacted:				
Contacted by: Rega	arding:							
Comments:					****			
Corrective Action:		7 7 70 70 70 70 70 70 70 70 70 70 70 70						

Day 3
Sample Receipt Checklist

Client Name: CITY OF ROUND ROCK

Work Order Number: 2402342

Sample Receipt Checklist

Date Received: 2/27/2024

Received by: KAO

	2402342	-		Received by: KAO						
Checklist completed t	ov: (<i>></i>	2/29/2	024	Reviewed	by:	2/29/2024			
Oneokiist completed t	Signatur	e	Da			Initials	Date			
			Carrier name	e: <u>Hand Delive</u>	<u>red</u>					
Shipping container/co	ooler in go	od condition?		Yes 🗸	No 🗌	Not Present				
Custody seals intact o	on shippir	ng container/co	oler?	Yes	No 🗌	Not Present 🗹				
Custody seals intact o	on sample	bottles?		Yes	No 🗌	Not Present 🗹				
Chain of custody pres	sent?			Yes 🗸	No 🗌					
Chain of custody sign	ed when	relinquished an	d received?	Yes 🗸	No 🗌					
Chain of custody agre	es with s	ample labels?		Yes 🗸	No 🗌					
Samples in proper co	ntainer/bo	ottle?		Yes 🗸	No 🗌					
Sample containers int	tact?			Yes 🗸	No 🗌					
Sufficient sample volu	ume for in	dicated test?		Yes 🗹	No 🗌					
All samples received	within hol	ding time?		Yes 🗸	No 🗌					
Water - VOA vials hav	ve zero h	eadspace?		Yes 🗌	No 🗌	No VOA vials subm	itted 🗹 NA 🗌			
Water - pH<2 accepta	able upon	receipt?		Yes 🗹	No 🗌	NA ☐ LOT#	13171			
				Adjusted?	no	Checked by	20			
Water - ph>9 (S) or pl	h>10 (CN) acceptable up	oon receipt?	Yes 🗸	No 🗌	NA ☐ LOT#	12798			
				Adjusted?	no	Checked by	и			
Container/Temp Blanl	k tempera	ature in complia	nce?	Yes 🗹	No 🗌					
Cooler#	1	2								
Temp °C	0.5	0.6								
Seal Intact	NP	NP								
Any No response mus	st be deta	iled in the com	ments section below.							
Client contacted:			Date contacted:		Pe	erson contacted:				
Contacted by:			Regarding:							
Comments:										
			y i 1988 km ka katananana katan salam, salad sa katanananananan " koroni sakabababan ka salamba	Million A conflictation have prove consequences are consequences as an			and a state of the			
Corrective Action:										
Someotive Action.		THE PARTY OF THE P		TOTOTOTOTO STOPPORT SHEETING SOLD SAMESTIC AND A SAMESTIC SAME ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT ASSESSMEN	declaración factor of filance star, y academic e term electrological	Substitution of the American Committee of the Committee o	MA THANKS THE			

CLIENT: CITY OF ROUND ROCK

Project: IPP West Plant SHORT QTR

Lab Order: 2402342

CASE NARRATIVE

Date: 22-Mar-24

Samples were analyzed using the methods outlined in the following references:

Method E200.8 - Metals Analysis

Method E300 - Anions Analysis

Method E1664A - Oil & Grease Analysis

Method E625.1 - Semivolatile Organics Analysis

Method M4500-CN E - Cyanide Analysis

Method M3500-Cr B - Hexavalent Chromium Analysis

Method M3500-Cr B - Trivalent Chromium (calculation) (this calculation is not NELAP certified)

Method M4500-P E - Total Phosphorus Analysis

Sub-contract - Mercury analysis by method E245.7. Analyzed at Pollution Control Services.

LOG IN

The samples were received and log-in performed on 2/27/24 through 2/29/24. A total of 6 samples were received. The samples arrived in good condition and were properly packaged. A composite of the samples was performed in the laboratory at time of analysis for Oil and Grease, Cyanide and Semivolatile Organics.

OIL & GREASE ANALYSIS

For Oil & Grease analysis performed on 3/6/24 Oil & Grease was detected below the reporting limit in the method blank (MB-114341). Sample Influent Grabs 1-4 was detected greater than 10 times the amount in the blank and sample Effluent Grabs 1-4 was below detection limits. No further corrective actions were taken.

For Oil & Grease analysis an MS was not performed due to insufficient sample volume. An LCS/LCSD was performed instead.

Date: 22-Mar-24

CLIENT: CITY OF ROUND ROCK
Project: IPP West Plant SHORT QTR

Lab Order: 2402342

Work Order Sample Summary

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
2402342-01	Influent Grab 1		02/27/24 12:00 PM	02/27/2024
2402342-02	Effluent Grab 1		02/27/24 11:59 PM	02/28/2024
2402342-03	Influent Grabs 1-4		02/28/24 06:00 AM	02/29/2024
2402342-04	Effluent Grabs 1-4		02/28/24 06:00 PM	02/29/2024
2402342-05	Influent Comp		02/28/24 12:00 PM	02/29/2024
2402342-06	Effluent Comp		02/28/24 11:59 PM	02/29/2024

Lab Order: 2402342

Client: CITY OF ROUND ROCK

Project: IPP West Plant SHORT QTR

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2402342-01A	Influent Grab 1	02/27/24 12:00 PM	Aqueous	M3500-Cr B	Hexachrom Prep Water	02/28/24 10:28 AM	114226
	Influent Grab 1	02/27/24 12:00 PM	Aqueous	M3500-Cr B	Hexachrom Prep Water	02/28/24 10:28 AM	114226
2402342-02A	Effluent Grab 1	02/27/24 11:59 PM	Aqueous	M3500-Cr B	Hexachrom Prep Water	02/28/24 10:28 AM	114226
	Effluent Grab 1	02/27/24 11:59 PM	Aqueous	M3500-Cr B	Hexachrom Prep Water	02/28/24 10:28 AM	114226
2402342-03A	Influent Grabs 1-4	02/28/24 06:00 AM	Aqueous	M4500-CN E	Cyanide Water Prep	03/01/24 09:10 AM	114271
2402342-03B	Influent Grabs 1-4	02/28/24 06:00 AM	Aqueous	E625_PR	Semivol Extraction for 625.1	03/05/24 09:37 AM	114319
2402342-03C	Influent Grabs 1-4	02/28/24 06:00 AM	Aqueous	E1664	1664 Prep	03/06/24 08:53 AM	114341
2402342-04A	Effluent Grabs 1-4	02/28/24 06:00 PM	Aqueous	M4500-CN E	Cyanide Water Prep	03/01/24 09:10 AM	114271
2402342-04B	Effluent Grabs 1-4	02/28/24 06:00 PM	Aqueous	E625_PR	Semivol Extraction for 625.1	03/05/24 09:37 AM	114319
2402342-04C	Effluent Grabs 1-4	02/28/24 06:00 PM	Aqueous	E1664	1664 Prep	03/06/24 08:53 AM	114341
2402342-05A	Influent Comp	02/28/24 12:00 PM	Aqueous	E200.8_PR	Aq Digestion for Metals: ICP-MS	03/05/24 07:31 AM	114311
2402342-05B	Influent Comp	02/28/24 12:00 PM	Aqueous	M4500-P E	T-Phosphorus Prep Water	03/05/24 09:11 AM	114317
2402342-05C	Influent Comp	02/28/24 12:00 PM	Aqueous	E300	Anion Preparation	02/29/24 04:17 PM	114265
2402342-06A	Effluent Comp	02/28/24 11:59 PM	Aqueous	E200.8_PR	Aq Digestion for Metals: ICP-MS	03/05/24 07:31 AM	114311
2402342-06B	Effluent Comp	02/28/24 11:59 PM	Aqueous	M4500-P E	T-Phosphorus Prep Water	03/05/24 09:11 AM	114317
2402342-06C	Effluent Comp	02/28/24 11:59 PM	Aqueous	E300	Anion Preparation	02/29/24 04:17 PM	114265

Lab Order: 2402342

Client: CITY OF ROUND ROCK

Project: IPP West Plant SHORT QTR

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2402342-01A	Influent Grab 1	Aqueous	M3500-Cr B	Hexavalent Chromium-Water	114226	1	02/28/24 10:38 AM	UV/VIS_2_240228B
	Influent Grab 1	Aqueous	M3500-Cr B	Hexavalent Chromium-Water	114226	1	02/28/24 10:36 AM	UV/VIS_2_240228B
2402342-01B	Influent Grab 1	Aqueous	E245.7	Mercury Low Level	R132039	1	03/15/24 08:54 AM	SUB_240315A
2402342-02A	Effluent Grab 1	Aqueous	M3500-Cr B	Hexavalent Chromium-Water	114226	1	02/28/24 10:38 AM	UV/VIS_2_240228B
	Effluent Grab 1	Aqueous	M3500-Cr B	Hexavalent Chromium-Water	114226	1	02/28/24 10:41 AM	UV/VIS_2_240228B
2402342-02B	Effluent Grab 1	Aqueous	E245.7	Mercury Low Level	R132039	1	03/15/24 08:54 AM	SUB_240315A
2402342-03A	Influent Grabs 1-4	Aqueous	M4500-CN E	Cyanide - Water Sample	114271	1	03/01/24 03:31 PM	UV/VIS_2_240301B
2402342-03B	Influent Grabs 1-4	Aqueous	E625.1	625.1 Semivolatile Water	114319	1	03/05/24 10:00 PM	GCMS9_240305E
2402342-03C	Influent Grabs 1-4	Aqueous	E1664A	Total Oil & Grease	114341	1	03/06/24 05:00 PM	WC_240306C
2402342-04A	Effluent Grabs 1-4	Aqueous	M4500-CN E	Cyanide - Water Sample	114271	1	03/01/24 03:31 PM	UV/VIS_2_240301B
2402342-04B	Effluent Grabs 1-4	Aqueous	E625.1	625.1 Semivolatile Water	114319	1	03/05/24 09:15 PM	GCMS9_240305E
2402342-04C	Effluent Grabs 1-4	Aqueous	E1664A	Total Oil & Grease	114341	1	03/06/24 05:00 PM	WC_240306C
2402342-05A	Influent Comp	Aqueous	E200.8	Total Recoverable Metals: ICP-MS	114311	1	03/06/24 12:00 PM	ICP-MS5_240306B
2402342-05B	Influent Comp	Aqueous	M4500-P E	Total Phosphorus	114317	10	03/05/24 01:11 PM	UV/VIS_2_240305B
2402342-05C	Influent Comp	Aqueous	E300	Anions by IC method - Water	114265	1	02/29/24 08:33 PM	IC2_240229A
2402342-06A	Effluent Comp	Aqueous	E200.8	Total Recoverable Metals: ICP-MS	114311	1	03/06/24 11:00 AM	ICP-MS5_240306B
2402342-06B	Effluent Comp	Aqueous	M4500-P E	Total Phosphorus	114317	1	03/05/24 01:03 PM	UV/VIS_2_240305B
2402342-06C	Effluent Comp	Aqueous	E300	Anions by IC method - Water	114265	1	02/29/24 08:51 PM	IC2_240229A

CLIENT: CITY OF ROUND ROCK Client Sample ID: Influent Grab 1

Project: IPP West Plant SHORT QTR Lab ID: 2402342-01

Project No: Collection Date: 02/27/24 12:00 PM

Lab Order: 2402342 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF Date Analyzed
MERCURY LOW LEVEL		E24	5.7	Analyst: SUB		
Mercury	0.0130	0.00500	0.00500		μg/L	1 03/15/24 08:54 AM
HEXAVALENT CHROMIUM-WATER		M3500-CR B				Analyst: JS
Chromium (Hex)	<3.00	3.00	3.00		μg/L	1 02/28/24 10:36 AM
Chromium (Tri)	<3.00	3.00	3.00	N	μg/L	1 02/28/24 10:36 AM

Qualifiers: * Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 22-Mar-24

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: CITY OF ROUND ROCK Client Sample ID: Effluent Grab 1

Project: IPP West Plant SHORT QTR Lab ID: 2402342-02

Project No: Collection Date: 02/27/24 11:59 PM

Lab Order: 2402342 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed		
MERCURY LOW LEVEL		E245.7					Analyst: SUB		
Mercury	<0.00500	0.00500	0.00500		μg/L	1	03/15/24 08:54 AM		
HEXAVALENT CHROMIUM-WATER		M3500-	CR B				Analyst: JS		
Chromium (Hex)	<3.00	3.00	3.00		μg/L	1	02/28/24 10:38 AM		
Chromium (Tri)	<3.00	3.00	3.00	N	μg/L	1	02/28/24 10:38 AM		

Qualifiers: * Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 22-Mar-24

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: CITY OF ROUND ROCK Client Sample ID: Influent Grabs 1-4

Project: IPP West Plant SHORT QTR Lab ID: 2402342-03

Project No: Collection Date: 02/28/24 06:00 AM

Lab Order: 2402342 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed		
TOTAL OIL & GREASE		E1664A				Analyst: CF			
Oil & Grease	23100	1410	5030		μg/L	1	03/06/24 05:00 PM		
625.1 SEMIVOLATILE WATER		E625.1					Analyst: DEW		
Total Phenol (Calculated)	13.0	7.12	89.0	J	μg/L	1	03/05/24 10:00 PM		
Surr: 2,4,6-Tribromophenol	87.3	0	10-123		%REC	1	03/05/24 10:00 PM		
Surr: 2-Fluorophenol	43.0	0	21-100		%REC	1	03/05/24 10:00 PM		
Surr: Phenol-d5	30.0	0	10-94		%REC	1	03/05/24 10:00 PM		
CYANIDE - WATER SAMPLE		M4500-	CN E			Analyst: SMA			
Cyanide, Available	<10.0	10.0	10.0		μg/L	1	03/01/24 03:31 PM		
Cyanide, Total	<10.0	10.0	10.0		μg/L	1	03/01/24 03:31 PM		

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 22-Mar-24

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: CITY OF ROUND ROCK Client Sample ID: Effluent Grabs 1-4

Project: IPP West Plant SHORT QTR Lab ID: 2402342-04

Project No: Collection Date: 02/28/24 06:00 PM

Lab Order: 2402342 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
TOTAL OIL & GREASE		E166	4A			Analyst: CF
Oil & Grease	<1450	1450	5170	μg/L	1	03/06/24 05:00 PM
625.1 SEMIVOLATILE WATER		E625	5.1			Analyst: DEW
Total Phenol (Calculated)	< 0.792	0.792	9.90	μg/L	1	03/05/24 09:15 PM
Surr: 2,4,6-Tribromophenol	84.8	0	10-123	%REC	1	03/05/24 09:15 PM
Surr: 2-Fluorophenol	47.2	0	21-100	%REC	1	03/05/24 09:15 PM
Surr: Phenol-d5	31.0	0	10-94	%REC	1	03/05/24 09:15 PM
CYANIDE - WATER SAMPLE		M4500-	CN E			Analyst: SMA
Cyanide, Available	<10.0	10.0	10.0	μg/L	1	03/01/24 03:31 PM
Cyanide, Total	<10.0	10.0	10.0	μg/L	1	03/01/24 03:31 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 22-Mar-24

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: CITY OF ROUND ROCK Client Sample ID: Influent Comp

Project: IPP West Plant SHORT QTR
Lab ID: 2402342-05

Project No: Collection Date: 02/28/24 12:00 PM

Lab Order: 2402342 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TOTAL RECOVERABLE METAL	S: ICP-MS	E200.	8				Analyst: SP
Aluminum, Total	83.7	2.50	30.0		μg/L	1	03/06/24 12:00 PM
Antimony, Total	3.36	2.50	2.50		μg/L	1	03/06/24 12:00 PM
Arsenic, Total	0.998	0.500	5.00	J	μg/L	1	03/06/24 12:00 PM
Barium, Total	51.7	3.00	10.0		μg/L	1	03/06/24 12:00 PM
Beryllium, Total	<0.500	0.500	1.00		μg/L	1	03/06/24 12:00 PM
Cadmium, Total	<1.00	1.00	1.00		μg/L	1	03/06/24 12:00 PM
Chromium, Total	<3.00	3.00	5.00		μg/L	1	03/06/24 12:00 PM
Copper, Total	29.6	2.00	10.0		μg/L	1	03/06/24 12:00 PM
Lead, Total	<0.500	0.500	1.00		μg/L	1	03/06/24 12:00 PM
Manganese	19.9	0.500	2.00		μg/L	1	03/06/24 12:00 PM
Molybdenum	2.31	1.00	5.00	J	μg/L	1	03/06/24 12:00 PM
Nickel, Total	2.25	2.00	10.0	J	μg/L	1	03/06/24 12:00 PM
Selenium, Total	<5.00	5.00	5.00		μg/L	1	03/06/24 12:00 PM
Silver, Total	< 0.500	0.500	2.00		μg/L	1	03/06/24 12:00 PM
Thallium, Total	<0.500	0.500	1.50		μg/L	1	03/06/24 12:00 PM
Zinc, Total	58.4	5.00	5.00		μg/L	1	03/06/24 12:00 PM
ANIONS BY IC METHOD - WATE	R	E300)				Analyst: RA
Fluoride	105	100	400	J	μg/L	1	02/29/24 08:33 PM
Nitrate-N	<100	100	500		μg/L	1	02/29/24 08:33 PM
TOTAL PHOSPHORUS		M4500-	PΕ				Analyst: KES
Phosphorus	6850	400	1000		μg/L	10	03/05/24 01:11 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 22-Mar-24

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: CITY OF ROUND ROCK Client Sample ID: Effluent Comp
Project: IPP West Plant SHORT QTR Lab ID: 2402342-06

Project No: Collection Date: 02/28/24 11:59 PM

Lab Order: 2402342 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TOTAL RECOVERABLE METAL	S: ICP-MS	E200.	8				Analyst: SP
Aluminum, Total	31.8	2.50	30.0		μg/L	1	03/06/24 11:00 AM
Antimony, Total	<2.50	2.50	2.50		μg/L	1	03/06/24 11:00 AM
Arsenic, Total	1.01	0.500	5.00	J	μg/L	1	03/06/24 11:00 AM
Barium, Total	44.0	3.00	10.0		μg/L	1	03/06/24 11:00 AM
Beryllium, Total	<0.500	0.500	1.00		μg/L	1	03/06/24 11:00 AM
Cadmium, Total	<1.00	1.00	1.00		μg/L	1	03/06/24 11:00 AM
Chromium, Total	<3.00	3.00	5.00		μg/L	1	03/06/24 11:00 AM
Copper, Total	3.31	2.00	10.0	J	μg/L	1	03/06/24 11:00 AM
Lead, Total	<0.500	0.500	1.00		μg/L	1	03/06/24 11:00 AM
Manganese	10.3	0.500	2.00		μg/L	1	03/06/24 11:00 AM
Molybdenum	2.95	1.00	5.00	J	μg/L	1	03/06/24 11:00 AM
Nickel, Total	<2.00	2.00	10.0		μg/L	1	03/06/24 11:00 AM
Selenium, Total	<5.00	5.00	5.00		μg/L	1	03/06/24 11:00 AM
Silver, Total	< 0.500	0.500	2.00		μg/L	1	03/06/24 11:00 AM
Thallium, Total	< 0.500	0.500	1.50		μg/L	1	03/06/24 11:00 AM
Zinc, Total	41.7	5.00	5.00		μg/L	1	03/06/24 11:00 AM
ANIONS BY IC METHOD - WATE	R	E300)				Analyst: RA
Fluoride	199	100	400	J	μg/L	1	02/29/24 08:51 PM
Nitrate-N	10300	100	500		μg/L	1	02/29/24 08:51 PM
TOTAL PHOSPHORUS		M4500-l	PE				Analyst: KES
Phosphorus	171	40.0	100		μg/L	1	03/05/24 01:03 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 22-Mar-24

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

Date: 22-Mar-24

CLIENT: CITY OF ROUND ROCK

Work Order: 2402342

ANALYTICAL QC SUMMARY REPORT

Project: IPP West Plant SHORT QTR RunID: ICP-MS5_240306B

Sample ID: MB-114311 SampType: MBLK	Batch ID: Run ID:	114311 ICP-MS5	_240306B	TestNo: Analysis	E200 Date: 3/6/2	0.8 2024 10:50:	00 AM	Units: Prep Date:	μg/L 3/5/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	: HighLimit ⁹	%RPD RPDLimit Qu
Aluminum, Total		<10.0	30.0						
Antimony, Total	•	<0.800	2.50						
Arsenic, Total		<2.00	5.00						
Barium, Total		<3.00	10.0						
Beryllium, Total	•	<0.300	1.00						
Cadmium, Total	•	<0.300	1.00						
Chromium, Total		<2.00	5.00						
Copper, Total		<2.00	10.0						
Lead, Total	•	<0.300	1.00						
Manganese		<2.00	2.00						
Molybdenum		<2.00	5.00						
Nickel, Total		<3.00	10.0						
Selenium, Total		<2.00	5.00						
Silver, Total		<1.00	2.00						
Thallium, Total	•	<0.500	1.50						
Zinc, Total		<2.00	5.00						
Sample ID: LCS-114311	Batch ID:	114311	·	TestNo:	E20	0.8		Units:	μg/L
SampType: LCS	Run ID:	ICP-MS5	240306B	Analysis	Date: 3/6/2	2024 10:53:	00 AM	Prep Date:	3/5/2024

Sample ID: LCS-114311	Batch ID:	114311		restivo): E20 (0.8		Units:	μg/L	
SampType: LCS	Run ID:	ICP-MS	5_240306B	Analys	is Date: 3/6/2	2024 10:53:	00 AM	Prep Date:	3/5/20	024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD F	RPDLimit Qual
Aluminum, Total		4980	30.0	5000	0	99.6	85	115		
Antimony, Total		202	2.50	200.0	0	101	85	115		
Arsenic, Total		201	5.00	200.0	0	100	85	115		
Barium, Total		197	10.0	200.0	0	98.3	85	115		
Beryllium, Total		199	1.00	200.0	0	99.6	85	115		
Cadmium, Total		196	1.00	200.0	0	98.2	85	115		
Chromium, Total		196	5.00	200.0	0	98.2	85	115		
Copper, Total		202	10.0	200.0	0	101	85	115		
Lead, Total		197	1.00	200.0	0	98.3	85	115		
Manganese		199	2.00	200.0	0	99.4	85	115		
Molybdenum		198	5.00	200.0	0	98.9	85	115		
Nickel, Total		201	10.0	200.0	0	101	85	115		
Selenium, Total		206	5.00	200.0	0	103	85	115		
Silver, Total		199	2.00	200.0	0	99.5	85	115		
Thallium, Total		204	1.50	200.0	0	102	85	115		
Zinc, Total		201	5.00	200.0	0	100	85	115		

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 1 of 17

Work Order: 2402342

ANALYTICAL QC SUMMARY REPORT

Project: IPP West Plant SHORT QTR

RunID: ICP-MS5_240306B

Sample ID: LCSD-114311	Batch ID: 114311		TestNo): E20	0.8		Units:	μg/L	
SampType: LCSD	Run ID: ICP-MS	S5_240306B	Analys	is Date: 3/6/ 2	2024 10:55:	00 AM	Prep Date:	3/5/2	024
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD I	RPDLimit Qual
Aluminum, Total	4990	30.0	5000	0	99.9	85	115	0.270	15
Antimony, Total	203	2.50	200.0	0	101	85	115	0.443	15
Arsenic, Total	201	5.00	200.0	0	100	85	115	0.019	15
Barium, Total	198	10.0	200.0	0	99.2	85	115	0.989	15
Beryllium, Total	201	1.00	200.0	0	101	85	115	1.02	15
Cadmium, Total	197	1.00	200.0	0	98.7	85	115	0.517	15
Chromium, Total	197	5.00	200.0	0	98.4	85	115	0.214	15
Copper, Total	203	10.0	200.0	0	101	85	115	0.318	15
Lead, Total	197	1.00	200.0	0	98.7	85	115	0.422	15
Manganese	200	2.00	200.0	0	99.8	85	115	0.415	15
Molybdenum	198	5.00	200.0	0	99.2	85	115	0.298	15
Nickel, Total	203	10.0	200.0	0	101	85	115	0.607	15
Selenium, Total	206	5.00	200.0	0	103	85	115	0.149	15
Silver, Total	199	2.00	200.0	0	99.6	85	115	0.122	15
Thallium, Total	203	1.50	200.0	0	101	85	115	0.506	15
Zinc, Total	202	5.00	200.0	0	101	85	115	0.614	15
Sample ID: 2402342-06A SD	Batch ID: 114311		TestNo): E20	0.8		Units:	μg/L	
SampType: SD	Run ID: ICP-MS	S5_240306B	Analys	is Date: 3/6/2	2024 11:03:	00 AM	Prep Date:	3/5/2	024
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD I	RPDLimit Qual
Aluminum	<50.0	150	0	31.83				0	10
Antimony	<4.00	12.5	0	0				0	10
Arsenic	<10.0	25.0	0	1.005				0	10
Barium	43.6	50.0	0	44.03				1.02	10
Beryllium	<1.50	5.00	0	0				0	10
Cadmium	<1.50	5.00	0	0				0	10
Chromium	<10.0	25.0	0	0				0	10
Copper	<10.0	50.0	0	3.312				0	10
Lead	<1.50	5.00	0	0				0	10
Manganese	10.7	10.0	0	10.31				4.09	10
Molybdenum	<10.0	25.0	0	2.950				0	10
Nickel	<15.0	50.0	0	0				0	10
Selenium	<10.0	25.0	0	0				0	10
Silver	·F 00	10.0	0	0				0	10
	< 5.00	10.0	U	U				U	. •
Thallium	<5.00 <2.50	7.50	0	0				0	10

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 2 of 17

Work Order: 2402342

ANALYTICAL QC SUMMARY REPORT

Project: IPP West Plant SHORT QTR

RunID: ICP-MS5_240306B

Sample ID: 2402342-06A PDS	Batch ID: 114311		TestNo	: E20 0	0.8		Units:	μg/L
SampType: PDS	Run ID: ICP-MS	5_240306B	Analys	is Date: 3/6/2	2024 11:28:	00 AM	Prep Date:	3/5/2024
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Aluminum	4810	30.0	5000	31.83	95.6	75	125	
Antimony	180	2.50	200.0	0	90.2	75	125	
Arsenic	200	5.00	200.0	1.005	99.7	75	125	
Barium	247	10.0	200.0	44.03	101	75	125	
Beryllium	209	1.00	200.0	0	105	75	125	
Cadmium	203	1.00	200.0	0	101	75	125	
Chromium	206	5.00	200.0	0	103	75	125	
Copper	208	10.0	200.0	3.312	102	75	125	
Lead	204	1.00	200.0	0	102	75	125	
Manganese	209	2.00	200.0	10.31	99.4	75	125	
Molybdenum	204	5.00	200.0	2.950	101	75	125	
Nickel	208	10.0	200.0	0	104	75	125	
Selenium	200	5.00	200.0	0	99.8	75	125	
Silver	207	2.00	200.0	0	103	75	125	
Thallium	212	1.50	200.0	0	106	75	125	
Zinc	240	5.00	200.0	41.66	99.2	75	125	
Sample ID: 2402342-06A MS	Batch ID: 114311		TestNo	: E20 0	n 8		Units:	μg/L
Sample 15. 2402342-00A WIS	Datem D. 114311		ICSUNC		0.0		Orinto.	1.0
SampType: MS		5_240306B		is Date: 3/6/2		00 AM	Prep Date:	
		5_240306B RL					Prep Date:	3/5/2024
SampType: MS	Run ID: ICP-MS		Analys	is Date: 3/6/2	2024 11:32:		Prep Date:	
SampType: MS Analyte	Run ID: ICP-MS Result	RL	Analys SPK value	is Date: 3/6/2	%REC	LowLim	Prep Date:	3/5/2024
SampType: MS Analyte Aluminum, Total	Run ID: ICP-MS Result 5160	RL 30.0	Analys SPK value 5000	Ref Val 31.83	%REC 103	LowLim	Prep Date:	3/5/2024
SampType: MS Analyte Aluminum, Total Antimony, Total	Run ID: ICP-MS Result 5160 214	RL 30.0 2.50	Analys SPK value 5000 200.0	Ref Val 31.83	%REC 103 107	LowLim 70 70	Prep Date: it HighLimit 130 130	3/5/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total	Run ID: ICP-MS Result 5160 214 203	RL 30.0 2.50 5.00	Analys SPK value 5000 200.0 200.0	Ref Val 31.83 0 1.005	%REC 103 107 101	70 70 70	Prep Date: it HighLimit 130 130 130	3/5/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total	Run ID: ICP-MS Result 5160 214 203 249	RL 30.0 2.50 5.00 10.0	SPK value 5000 200.0 200.0 200.0	Ref Val 31.83 0 1.005 44.03	%REC 103 107 101 103	70 70 70 70 70	Prep Date: it HighLimit 130 130 130 130	3/5/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total	Run ID: ICP-MS Result 5160 214 203 249 209	RL 30.0 2.50 5.00 10.0 1.00	SPK value 5000 200.0 200.0 200.0 200.0 200.0	Ref Val 31.83 0 1.005 44.03 0	%REC 103 107 101 103 104	70 70 70 70 70 70	Prep Date: it HighLimit 130 130 130 130 130 130	3/5/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total	Run ID: ICP-MS Result 5160 214 203 249 209 200	RL 30.0 2.50 5.00 10.0 1.00	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 31.83 0 1.005 44.03 0	%REC 103 107 101 103 104 100	70 70 70 70 70 70 70	Prep Date: it HighLimit 130 130 130 130 130 130 130 130	3/5/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total	Run ID: ICP-MS Result 5160 214 203 249 209 200 204	RL 30.0 2.50 5.00 10.0 1.00 1.00 5.00	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 31.83 0 1.005 44.03 0 0	%REC 103 107 101 103 104 100 102	70 70 70 70 70 70 70 70	Prep Date: it HighLimit 130 130 130 130 130 130 130 130 130	3/5/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total	Run ID: ICP-MS Result 5160 214 203 249 209 200 204 208	RL 30.0 2.50 5.00 10.0 1.00 1.00 5.00 10.0	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 31.83 0 1.005 44.03 0 0 3.312	%REC 103 107 101 103 104 100 102 102	70 70 70 70 70 70 70 70 70	Prep Date: it HighLimit 130 130 130 130 130 130 130 130 130 130	3/5/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total	Run ID: Result 5160 214 203 249 209 200 204 208 203	RL 30.0 2.50 5.00 10.0 1.00 5.00 10.0 1.00	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 31.83 0 1.005 44.03 0 0 3.312 0	%REC 103 107 101 103 104 100 102 102 102	70 70 70 70 70 70 70 70 70 70	Prep Date: it HighLimit 130 130 130 130 130 130 130 130 130 130	3/5/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Manganese	Run ID: Result 5160 214 203 249 209 200 204 208 203 213	RL 30.0 2.50 5.00 10.0 1.00 1.00 5.00 10.0 1.00 2.00	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 31.83 0 1.005 44.03 0 0 3.312 0 10.31	%REC 103 107 101 103 104 100 102 102 102 101	70 70 70 70 70 70 70 70 70 70	Prep Date: it HighLimit 130 130 130 130 130 130 130 130 130 130	3/5/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Manganese Molybdenum	Run ID: Result 5160 214 203 249 209 200 204 208 203 213 210	RL 30.0 2.50 5.00 10.0 1.00 5.00 10.0 2.00 5.00	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 31.83 0 1.005 44.03 0 0 3.312 0 10.31 2.950	%REC 103 107 101 103 104 100 102 102 102 101 104	70 70 70 70 70 70 70 70 70 70 70	Prep Date: it HighLimit 130 130 130 130 130 130 130 130 130 130	3/5/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Manganese Molybdenum Nickel, Total	Run ID: Result 5160 214 203 249 209 200 204 208 203 213 210 202	RL 30.0 2.50 5.00 10.0 1.00 5.00 10.0 2.00 5.00 10.0	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 31.83 0 1.005 44.03 0 0 3.312 0 10.31 2.950 0	%REC 103 107 101 103 104 100 102 102 101 104 101	70 70 70 70 70 70 70 70 70 70 70 70	Prep Date: it HighLimit 130 130 130 130 130 130 130 13	3/5/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Manganese Molybdenum Nickel, Total Selenium, Total	Run ID: Result 5160 214 203 249 209 200 204 208 203 213 210 202 203	RL 30.0 2.50 5.00 10.0 1.00 1.00 5.00 10.0 2.00 5.00 10.0 5.00	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 31.83 0 1.005 44.03 0 0 3.312 0 10.31 2.950 0 0	%REC 103 107 101 103 104 100 102 102 101 104 101 104 101 102	70 70 70 70 70 70 70 70 70 70 70 70	Prep Date: it HighLimit 130 130 130 130 130 130 130 13	3/5/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Manganese Molybdenum Nickel, Total Selenium, Total Silver, Total	Run ID: Result 5160 214 203 249 209 200 204 208 203 213 210 202 203 207	RL 30.0 2.50 5.00 10.0 1.00 5.00 10.0 1.00 2.00 5.00 10.0 5.00 2.00 5.00	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 31.83 0 1.005 44.03 0 0 3.312 0 10.31 2.950 0 0	%REC 103 107 101 103 104 100 102 102 101 104 101 102 101 104 101 102 101 104	70 70 70 70 70 70 70 70 70 70 70 70 70	Prep Date: it HighLimit 130 130 130 130 130 130 130 130 130 130	3/5/2024

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

 $R \quad \ RPD \ outside \ accepted \ control \ \ limits$

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 3 of 17

Work Order: 2402342

ANALYTICAL QC SUMMARY REPORT

Project: IPP West Plant SHORT QTR

RunID: ICP-MS5_240306B

Sample ID: 2402342-06A MSD	Batch ID:	114311		TestNo	o: E2	8.00		Units:	μg/L	
SampType: MSD	Run ID:	ICP-MS	5_240306B	Analys	sis Date: 3/6	6/2024 11:35:0	00 AM	Prep Date:	3/5/2	024
Analyte	İ	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Aluminum, Total		5160	30.0	5000	31.83	103	70	130	0.059	15
Antimony, Total		212	2.50	200.0	0	106	70	130	0.770	15
Arsenic, Total		205	5.00	200.0	1.005	102	70	130	1.05	15
Barium, Total		253	10.0	200.0	44.03	104	70	130	1.33	15
Beryllium, Total		209	1.00	200.0	0	104	70	130	0.077	15
Cadmium, Total		204	1.00	200.0	0	102	70	130	1.58	15
Chromium, Total		205	5.00	200.0	0	102	70	130	0.460	15
Copper, Total		211	10.0	200.0	3.312	104	70	130	1.19	15
Lead, Total		206	1.00	200.0	0	103	70	130	1.42	15
Manganese		216	2.00	200.0	10.31	103	70	130	1.30	15
Molybdenum		213	5.00	200.0	2.950	105	70	130	1.57	15
Nickel, Total		205	10.0	200.0	0	102	70	130	1.42	15
Selenium, Total		202	5.00	200.0	0	101	70	130	0.888	15
Silver, Total		207	2.00	200.0	0	103	70	130	0.159	15
Thallium, Total		214	1.50	200.0	0	107	70	130	2.03	15
Zinc, Total		243	5.00	200.0	41.66	101	70	130	0.467	15

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

 $R \quad \ RPD \ outside \ accepted \ control \ \ limits$

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 4 of 17

Work Order: 2402342

ANALYTICAL QC SUMMARY REPORT

Project: IPP West Plant SHORT QTR

RunID: ICP-MS5_240306B

Sample ID: ICV-240306	Batch ID:	R131805	5	TestNo	E200	0.8		Units:	μg/L	•
SampType: ICV	Run ID:	ICP-MS	5_240306B	Analys	is Date: 3/6/2	2024 10:02:	00 AM	Prep Date	e:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Aluminum, Total		2420	30.0	2500	0	96.9	90	110		
Antimony, Total		103	2.50	100.0	0	103	90	110		
Arsenic, Total		101	5.00	100.0	0	101	90	110		
Barium, Total		101	10.0	100.0	0	101	90	110		
Beryllium, Total		103	1.00	100.0	0	103	90	110		
Cadmium, Total		102	1.00	100.0	0	102	90	110		
Chromium, Total		102	5.00	100.0	0	102	90	110		
Copper, Total		103	10.0	100.0	0	103	90	110		
Lead, Total		100	1.00	100.0	0	100	90	110		
Manganese		101	2.00	100.0	0	101	90	110		
Molybdenum		98.1	5.00	100.0	0	98.1	90	110		
Nickel, Total		105	10.0	100.0	0	105	90	110		
Selenium, Total		103	5.00	100.0	0	103	90	110		
Silver, Total		101	2.00	100.0	0	101	90	110		
Thallium, Total		99.2	1.50	100.0	0	99.2	90	110		
Zinc, Total		104	5.00	100.0	0	104	90	110		
Sample ID: CCV1-240306	Batch ID:	R131805	;	TestNo): E20 0	0.8		Units:	μg/L	
SampType: CCV	Run ID:	ICP-MS	5_240306B	Analys	is Date: 3/6/2	2024 10:43:	00 AM	Prep Date	e:	
Analyte		Result								RPDLimit Qual
1		resuit	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	
Aluminum, Total		4950	30.0	SPK value 5000	Ref Val	%REC 99.0	LowLim 90	it HighLimit 110	%RPD	
									%RPD	
Aluminum, Total		4950	30.0	5000	0	99.0	90	110	: %RPD	
Aluminum, Total Antimony, Total		4950 203	30.0 2.50	5000 200.0	0	99.0 102	90 90	110 110	: %RPD	
Aluminum, Total Antimony, Total Arsenic, Total		4950 203 200	30.0 2.50 5.00	5000 200.0 200.0	0 0 0	99.0 102 99.9	90 90 90	110 110 110	: %RPD	
Aluminum, Total Antimony, Total Arsenic, Total Barium, Total		4950 203 200 199	30.0 2.50 5.00 10.0	5000 200.0 200.0 200.0	0 0 0	99.0 102 99.9 99.3	90 90 90 90	110 110 110 110	: %RPD	
Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total		4950 203 200 199 197	30.0 2.50 5.00 10.0 1.00	5000 200.0 200.0 200.0 200.0	0 0 0 0	99.0 102 99.9 99.3 98.3	90 90 90 90 90	110 110 110 110 110	: %RPD	
Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total		4950 203 200 199 197 196	30.0 2.50 5.00 10.0 1.00	5000 200.0 200.0 200.0 200.0 200.0	0 0 0 0 0	99.0 102 99.9 99.3 98.3 98.1	90 90 90 90 90 90	110 110 110 110 110 110	: %RPD	
Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total		4950 203 200 199 197 196 195	30.0 2.50 5.00 10.0 1.00 1.00 5.00	5000 200.0 200.0 200.0 200.0 200.0 200.0	0 0 0 0 0 0	99.0 102 99.9 99.3 98.3 98.1	90 90 90 90 90 90	110 110 110 110 110 110 110	: %RPD	
Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total		4950 203 200 199 197 196 195 202	30.0 2.50 5.00 10.0 1.00 1.00 5.00	5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0	0 0 0 0 0 0	99.0 102 99.9 99.3 98.3 98.1 97.4 101	90 90 90 90 90 90 90	110 110 110 110 110 110 110 110	: %RPD	
Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total		4950 203 200 199 197 196 195 202 196	30.0 2.50 5.00 10.0 1.00 1.00 5.00 10.0	5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	0 0 0 0 0 0 0	99.0 102 99.9 99.3 98.3 98.1 97.4 101 97.8	90 90 90 90 90 90 90 90	110 110 110 110 110 110 110 110 110	: %RPD	
Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Manganese Molybdenum		4950 203 200 199 197 196 195 202 196 198	30.0 2.50 5.00 10.0 1.00 1.00 5.00 10.0 1.00 2.00 5.00	5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	0 0 0 0 0 0 0	99.0 102 99.9 99.3 98.3 98.1 97.4 101 97.8 98.8	90 90 90 90 90 90 90 90	110 110 110 110 110 110 110 110 110	: %RPD	
Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Manganese Molybdenum Nickel, Total		4950 203 200 199 197 196 195 202 196 198 198 200	30.0 2.50 5.00 10.0 1.00 5.00 10.0 1.00 2.00 5.00 10.0	5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	0 0 0 0 0 0 0 0	99.0 102 99.9 99.3 98.3 98.1 97.4 101 97.8 98.8 99.0	90 90 90 90 90 90 90 90 90 90	110 110 110 110 110 110 110 110 110 110	: %RPD	
Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Manganese Molybdenum Nickel, Total Selenium, Total		4950 203 200 199 197 196 195 202 196 198 198 200 205	30.0 2.50 5.00 10.0 1.00 5.00 10.0 2.00 5.00 10.0 5.00	5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	0 0 0 0 0 0 0 0 0	99.0 102 99.9 99.3 98.3 98.1 97.4 101 97.8 98.8 99.0 100	90 90 90 90 90 90 90 90 90 90	110 110 110 110 110 110 110 110 110 110	: %RPD	
Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Manganese Molybdenum Nickel, Total		4950 203 200 199 197 196 195 202 196 198 198 200	30.0 2.50 5.00 10.0 1.00 5.00 10.0 1.00 2.00 5.00 10.0	5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	0 0 0 0 0 0 0 0	99.0 102 99.9 99.3 98.3 98.1 97.4 101 97.8 98.8 99.0	90 90 90 90 90 90 90 90 90 90	110 110 110 110 110 110 110 110 110 110	: %RPD	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 5 of 17

Work Order: 2402342

ANALYTICAL QC SUMMARY REPORT

Project: IPP West Plant SHORT QTR RunID: ICP-MS5_240306B

Sample ID: CCV2-240306	Batch ID:	R131805	5	TestNo): E20 0	0.8		Units:	μg/L	-
SampType: CCV	Run ID:	ICP-MS	5_240306B	Analys	is Date: 3/6/2	2024 11:37:	00 AM	Prep Date) :	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Aluminum, Total		5010	30.0	5000	0	100	90	110		
Antimony, Total		205	2.50	200.0	0	102	90	110		
Arsenic, Total		200	5.00	200.0	0	99.8	90	110		
Barium, Total		199	10.0	200.0	0	99.5	90	110		
Beryllium, Total		202	1.00	200.0	0	101	90	110		
Cadmium, Total		198	1.00	200.0	0	99.2	90	110		
Chromium, Total		201	5.00	200.0	0	100	90	110		
Copper, Total		207	10.0	200.0	0	104	90	110		
Lead, Total		197	1.00	200.0	0	98.6	90	110		
Manganese		201	2.00	200.0	0	100	90	110		
Molybdenum		200	5.00	200.0	0	99.9	90	110		
Nickel, Total		206	10.0	200.0	0	103	90	110		
Selenium, Total		206	5.00	200.0	0	103	90	110		
Silver, Total		206	2.00	200.0	0	103	90	110		
Thallium, Total		204	1.50	200.0	0	102	90	110		
Zinc, Total		202	5.00	200.0	0	101	90	110		
Sample ID: CCV3-240306	Batch ID:	R131805	5	TestNo): E20 0	0.8		Units:	μg/L	-
Sample ID: CCV3-240306 SampType: CCV	Batch ID: Run ID:		5 5_240306B		E200 is Date: 3/6/2		00 PM	Units: Prep Date		-
	Run ID:							Prep Date	e:	RPDLimit Qual
SampType: CCV	Run ID:	ICP-MS	5_240306B	Analys	is Date: 3/6/2	2024 12:05:		Prep Date	e:	
SampType: CCV Analyte	Run ID:	ICP-MS:	5_240306B RL	Analys	is Date: 3/6/2	%REC	LowLimi	Prep Date	e:	
SampType: CCV Analyte Aluminum, Total	Run ID:	ICP-MS: Result	RL 30.0	Analys SPK value	is Date: 3/6/2 Ref Val	%REC	LowLimi	Prep Date it HighLimit	e:	
SampType: CCV Analyte Aluminum, Total Antimony, Total	Run ID:	ICP-MS: Result 5000 206	RL 30.0 2.50	Analys SPK value 5000 200.0	is Date: 3/6/2 Ref Val 0 0	%REC 100 103	LowLimi 90 90	Prep Date It HighLimit 110 110	e:	
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total	Run ID:	Result 5000 206 202	RL 30.0 2.50 5.00	Analys SPK value 5000 200.0 200.0	Ref Val 0 0 0	%REC 100 103 101	90 90 90	Prep Date It HighLimit 110 110 110	e:	
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total	Run ID:	Result 5000 206 202 201	RL 30.0 2.50 5.00 10.0	Analys SPK value 5000 200.0 200.0 200.0	Ref Val 0 0 0 0	%REC 100 103 101 100	90 90 90 90 90	Prep Date It HighLimit 110 110 110 110	e:	
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total	Run ID:	Result 5000 206 202 201 200	RL 30.0 2.50 5.00 10.0 1.00	SPK value 5000 200.0 200.0 200.0 200.0 200.0	Ref Val 0 0 0 0 0 0	%REC 100 103 101 100 99.8	90 90 90 90 90 90	Prep Date It HighLimit 110 110 110 110 110 110	e:	
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total	Run ID:	Result 5000 206 202 201 200 201	RL 30.0 2.50 5.00 10.0 1.00	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0	o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 100 103 101 100 99.8 100	90 90 90 90 90 90 90	Prep Date 110 110 110 110 110 110 110 110 110	e:	
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total	Run ID:	ICP-MS: Result 5000 206 202 201 200 201 201	RL 30.0 2.50 5.00 10.0 1.00 5.00	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	o O O O O O O O O O O O O O O O O O O O	%REC 100 103 101 100 99.8 100 101	90 90 90 90 90 90 90 90	Prep Date It HighLimit 110 110 110 110 110 110 110 110	e:	
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total	Run ID:	Result 5000 206 202 201 200 201 201 210	RL 30.0 2.50 5.00 10.0 1.00 5.00 10.0	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	0 0 0 0 0 0 0 0	%REC 100 103 101 100 99.8 100 101 105	90 90 90 90 90 90 90 90 90	Prep Date 110 110 110 110 110 110 110 110 110 1	e:	
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total	Run ID:	Result 5000 206 202 201 200 201 201 210 196	RL 30.0 2.50 5.00 10.0 1.00 5.00 10.0 1.00 5.00 10.0	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	0 0 0 0 0 0 0 0 0	%REC 100 103 101 100 99.8 100 101 105 98.0	90 90 90 90 90 90 90 90 90	Prep Date It HighLimit 110 110 110 110 110 110 110 1	e:	
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Manganese	Run ID:	Result 5000 206 202 201 200 201 201 210 196 200	RL 30.0 2.50 5.00 10.0 1.00 1.00 5.00 10.0 1.00 2.00	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	0 0 0 0 0 0 0 0 0 0	%REC 100 103 101 100 99.8 100 101 105 98.0 100	90 90 90 90 90 90 90 90 90 90	Prep Date it HighLimit 110 110 110 110 110 110 110 1	e:	
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Manganese Molybdenum	Run ID:	Result 5000 206 202 201 200 201 201 210 196 200 203	RL 30.0 2.50 5.00 10.0 1.00 1.00 5.00 10.0 1.00 2.00 5.00	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	sis Date: 3/6/2 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 100 103 101 100 99.8 100 101 105 98.0 100 101	90 90 90 90 90 90 90 90 90 90	Prep Date it HighLimit 110 110 110 110 110 110 110 110 110 1	e:	
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Chromium, Total Lead, Total Manganese Molybdenum Nickel, Total	Run ID:	Result 5000 206 202 201 200 201 201 210 196 200 203 207	RL 30.0 2.50 5.00 10.0 1.00 5.00 10.0 1.00 2.00 5.00 10.0	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	o O O O O O O O O O O O O O O O O O O O	%REC 100 103 101 100 99.8 100 101 105 98.0 100 101 104	90 90 90 90 90 90 90 90 90 90 90	Prep Date It HighLimit 110 110 110 110 110 110 110 110 110 1	e:	
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Chromium, Total Lead, Total Manganese Molybdenum Nickel, Total Selenium, Total	Run ID:	Result 5000 206 202 201 200 201 201 210 196 200 203 207 207	RL 30.0 2.50 5.00 10.0 1.00 1.00 5.00 10.0 1.00 5.00 10.0 5.00 5.0	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	o Date: 3/6/2 Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 100 103 101 100 99.8 100 101 105 98.0 100 101 104 104	90 90 90 90 90 90 90 90 90 90 90	Prep Date It HighLimit 110 110 110 110 110 110 110 110 110 1	e:	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 6 of 17

CLIENT: CITY OF ROUND ROCK ANALYTICAL QC SUMMARY REPORT

Work Order: 2402342

GCMS9_240305E **RunID: Project:** IPP West Plant SHORT QTR

The QC data in batch 114319 ap	plies to the	following sa	amples: 240	2342-03B, 2402	2342-04B				
Sample ID: LCS-114319	Batch ID:	114319		TestNo	E62	5.1		Units:	μg/L
SampType: LCS	Run ID:	GCMS9_	240305E	Analysi	s Date: 3/5/	2024 5:08:0	0 PM	Prep Date:	3/5/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qua
Total Phenol (Calculated)		21.0	10.0	40.00	0	52.4	5	120	
Surr: 2,4,6-Tribromophenol		70.8		80.00		88.5	10	123	
Surr: 2-Fluorophenol		50.0		80.00		62.5	21	100	
Surr: Phenol-d5		36.2		80.00		45.2	10	94	
Sample ID: MB-114319	Batch ID:	114319		TestNo	E62	5.1		Units:	μg/L
SampType: MBLK	Run ID:	GCMS9_	240305E	Analysi	s Date: 3/5/ 2	2024 7:00:0	0 PM	Prep Date:	3/5/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qua
Total Phenol (Calculated)		<2.00	10.0						
Surr: 2,4,6-Tribromophenol		68.4		80.00		85.5	10	123	
Surr: 2-Fluorophenol		41.4		80.00		51.8	21	100	
Surr: Phenol-d5		26.4		80.00		33.0	10	94	

Qualifiers: Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits Page 7 of 17

Spike Recovery outside control limits

Parameter not NELAP certified

37

Work Order: 2402342

ANALYTICAL QC SUMMARY REPORT

Project: IPP West Plant SHORT QTR RunID

RunID: GCMS9_240305E

Sample ID: ICV-240305 SampType: ICV	Batch ID: Run ID:	R131801 GCMS9_2	240305E	TestNo Analysi		5.1 2024 4:46:0	D PM	Units: Prep Date	μg/L	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Total Phenol (Calculated)		2500	10.0	2500	0	100	70	130		
Surr: 2,4,6-Tribromophenol		2560		2500		102	70	130		
Surr: 2-Fluorophenol		2620		2500		105	70	130		
Surr: Phenol-d5		2670		2500		107	70	130		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 8 of 17

ANALYTICAL QC SUMMARY REPORT

Work Order: 2402342

Project: IPP West Plant SHORT QTR RunID: WC_240306C

		(
The QC data in batch 114341	applies to the	following s	amples: 240)2342-03C, 240	2342-04C					
Sample ID: MB-114341	Batch ID:	114341		TestNo	E16	64A		Units:	μg/L	
SampType: MBLK	Run ID:	WC_240)306C	Analysi	s Date: 3/6/2	2024 5:00:0	0 PM	Prep Date:	3/6/202	4
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	PDLimit Qua
Oil & Grease		1800	5000							
Sample ID: LCS-114341	Batch ID:	114341		TestNo	E16	64A		Units:	μg/L	
SampType: LCS	Run ID:	WC_240)306C	Analysi	s Date: 3/6/2	2024 5:00:0	0 PM	Prep Date:	3/6/202	4
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	PDLimit Qua
Oil & Grease		34400	5000	40000	0	86.0	78	114		
Sample ID: LCSD-114341	Batch ID:	114341		TestNo	E16	64A		Units:	μg/L	
SampType: LCSD	Run ID:	WC_240)306C	Analysi	s Date: 3/6/2	2024 5:00:0	0 PM	Prep Date:	3/6/202	4
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	PDLimit Qua
Oil & Grease		38900	5000	40000	0	97.3	78	114	12.3	18

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

 $\begin{array}{ll} S & \text{Spike Recovery outside control limits} \\ N & \text{Parameter not NELAP certified} \end{array}$

Page 9 of 17

Work Order: 2402342

ANALYTICAL QC SUMMARY REPORT

Project: IPP West Plant SHORT QTR RunID: IC2_240229A

The OO 1 1	- 1- 1-1-1-444005	-P (- P	(-11	-1 0404	20.40.050.0400	0.40.000					
The QC data	a in batch 114265 ap	plies to the	tollowing samp	oles: 2402	2342-05C, 2402	342-06C					
Sample ID:	MB-114265	Batch ID:	114265		TestNo:	E300			Units:	μg/L	
SampType:	MBLK	Run ID:	IC2_240229	Α	Analysis	Date: 2/29/2	:024 7:03:	26 PM	Prep Date:	2/29/20	024
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit ⁽	%RPD R	PDLimit Qual
Fluoride			<100	400							
Nitrate-N			<100	500							
Sample ID:	LCS-114265	Batch ID:	114265		TestNo:	E300			Units:	μg/L	
SampType:	LCS	Run ID:	IC2_240229	Α	Analysis	Date: 2/29/2	024 7:21:	26 PM	Prep Date:	2/29/20	024
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit ⁽	%RPD R	PDLimit Qual
Fluoride			4120	400	4000	0	103	90	110		
Nitrate-N			4730	500	5000	0	94.5	90	110		
Sample ID:	LCSD-114265	Batch ID:	114265		TestNo:	E300			Units:	μg/L	
SampType:	LCSD	Run ID:	IC2_240229	Α	Analysis	Date: 2/29/2	2024 7:39:	26 PM	Prep Date:	2/29/20	024
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit ⁽	%RPD R	PDLimit Qual
Fluoride			4120	400	4000	0	103	90	110	0.046	20
Nitrate-N			4770	500	5000	0	95.3	90	110	0.841	20
Sample ID:	2402403-01DMS	Batch ID:	114265		TestNo:	E300			Units:	μg/L	
SampType:	MS	Run ID:	IC2_240229	Α	Analysis	Date: 2/29/2	024 10:57	7:26 PM	Prep Date:	2/29/20	024
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit ⁽	%RPD R	PDLimit Qual
Fluoride		2	2040000	40000	2000000	0	102	90	110		
Nitrate-N			442000	50000	452000	0	97.9	90	110		
Sample ID:	2402403-01DMSD	Batch ID:	114265		TestNo:	E300			Units:	μg/L	
SampType:	MSD	Run ID:	IC2_240229	Α	Analysis	Date: 2/29/2	024 11:15	5:26 PM	Prep Date:	2/29/20	024
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit ⁽	%RPD R	PDLimit Qual
· · · · · · · · · · · · · · · · · · ·	·		· · · · · · · · · · · · · · · · · · ·		·				440		
Fluoride		2	2030000	40000	2000000	0	101	90	110	0.476	20

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 10 of 17

S Spike Recovery outside control limits

Parameter not NELAP certified

Work Order: 2402342

ANALYTICAL QC SUMMARY REPORT

Project: IPP West Plant SHORT QTR RunID: IC2_240229A

Sample ID: ICV-240229 SampType: ICV	Batch ID: Run ID:	R131709 IC2_240229	4	TestNo: Analysis	E3 (Date: 2/2	00 29/2024 6:27:26 F	PM	Units: Prep Date:	μg/L	
Analyte		Result	RL	SPK value	Ref Val	%REC Lo	wLimit	HighLimit	%RPD R	PDLimit Qual
Fluoride Nitrate-N		10300 12300	400 500	10000 12500	0 0	103 98.1	90 90	110 110		

Sample ID: CCV1-240229	Batch ID:	R13170	9	TestNo): E3	00		Units:	μg/L	=
SampType: CCV	Run ID:	IC2_240	0229A	Analys	is Date: 3/1	/2024 12:09:	26 AM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	t HighLimit	%RPD	RPDLimit Qual
Fluoride		4110	400	4000	0	103	90	110		
Nitrate-N		4830	500	5000	0	96.6	90	110		

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 11 of 17

Work Order: 2402342

ANALYTICAL QC SUMMARY REPORT

Project: IPP West Plant SHORT QTR

RunID: UV/VIS_2_240228B

The QC data in batch 114226 app	olies to the	following sam	ples: 2402	2342-01A, 2402	342-02A					
Sample ID: MB-114226	Batch ID:	114226		TestNo:	M350	00-Cr B		Units:	μg/L	
SampType: MBLK	Run ID:	UV/VIS_2_	240228B	Analysis	Date: 2/28/	/2024 10:30	:00 AM	Prep Date:	2/28/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLim	it Qual
Chromium (Hex) Chromium (Tri)		<3.00 <2.00	3.00 3.00							N
Sample ID: LCS-114226	Batch ID:	114226		TestNo:	M350	00-Cr B		Units:	μg/L	
SampType: LCS	Run ID:	UV/VIS_2_	240228B	Analysis	Date: 2/28/	/2024 10:30	:00 AM	Prep Date:	2/28/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLim	it Qual
Chromium (Hex)		99.6	3.00	100.0	0	99.6	85	115		
Sample ID: LCSD-114226	Batch ID:	114226		TestNo:	M35	00-Cr B		Units:	μg/L	
SampType: LCSD	Run ID:	UV/VIS_2_	240228B	Analysis	Date: 2/28/	/2024 10:33	:00 AM	Prep Date:	2/28/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLim	it Qual
Chromium (Hex)		97.5	3.00	100.0	0	97.5	85	115	2.10 15	
Sample ID: 2402342-02A MS	Batch ID:	114226		TestNo:	M350	00-Cr B		Units:	μg/L	
SampType: MS	Run ID:	UV/VIS_2_	240228B	Analysis	Date: 2/28/	/2024 10:41	:00 AM	Prep Date:	2/28/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLim	it Qual
Chromium (Hex)		99.3	3.00	100.0	0	99.3	85	115		
Sample ID: 2402342-02A MSD	Batch ID:	114226		TestNo:	M35	00-Cr B		Units:	μg/L	
SampType: MSD	Run ID:	UV/VIS_2_	240228B	Analysis	Date: 2/28/	/2024 10:41	:00 AM	Prep Date:	2/28/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLim	it Qual
Chromium (Hex)		95.5	3.00	100.0	0	95.5	85	115	3.85 15	

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 12 of 17

S Spike Recovery outside control limits

N Parameter not NELAP certified

Work Order: 2402342

ANALYTICAL QC SUMMARY REPORT

Project: IPP West Plant SHORT QTR RunID: UV/VIS_2_240228B

Sample ID: ICV-240228 SampType: ICV	Batch ID: Run ID:	R131658	2 240228B	TestNo:		500-Cr B 8/2024 10:28	:00 AM	Units: Prep Date	μg/L	
Analyte		Result	RL	SPK value	Ref Val	%REC		<u>'</u>		RPDLimit Qual
Chromium (Hex)		97.1	3.00	100.0	0	97.1	90	110		
Sample ID: CCV-240228	Batch ID:	R131658		TestNo:	M35	500-Cr B		Units:	μg/L	-
SampType: CCV	Run ID:	UV/VIS_	2_240228B	Analysis	Date: 2/28	8/2024 10:43	:00 AM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Chromium (Hex)		199	3.00	200.0	0	99.6	90	110		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

 $R \quad \ RPD \ outside \ accepted \ control \ \ limits$

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 13 of 17

CLIENT: CITY OF ROUND ROCK Work Order: 2402342

ANALYTICAL QC SUMMARY REPORT

Project: IPP West Plant SHORT QTR

UV/VIS_2_240301B **RunID:**

The QC data in batch 114271 ap	plies to the	following sam	ples: 2402	2342-03A, 2402	342-04A				
Sample ID: MB-114271	Batch ID:	114271		TestNo:	M450	00-CN E		Units:	μg/L
SampType: MBLK	Run ID:	UV/VIS_2_	240301B	Analysis	Date: 3/1/2	024 3:25:00) PM	Prep Date:	3/1/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qual
Cyanide, Available		<10.0	20.0						
Cyanide, Total		<10.0	20.0						
Sample ID: LCS-114271	Batch ID:	114271		TestNo:	M450	00-CN E		Units:	μg/L
SampType: LCS	Run ID:	UV/VIS_2_	240301B	Analysis	Date: 3/1/2	024 3:25:00) PM	Prep Date:	3/1/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qual
Cyanide, Total		192	20.0	200	0	95.8	85	115	
Sample ID: 2402341-04AMS	Batch ID:	114271		TestNo:	M450	00-CN E		Units:	μg/L
SampType: MS	Run ID:	UV/VIS_2_	240301B	Analysis	Date: 3/1/2	024 3:26:00) PM	Prep Date:	3/1/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qual
Cyanide, Total		177	20.0	200	0	88.4	79	114	
Sample ID: 2402341-04AMSD	Batch ID:	114271		TestNo:	M450	00-CN E		Units:	μg/L
SampType: MSD	Run ID:	UV/VIS_2_	240301B	Analysis	Date: 3/1/2	024 3:26:00	PM (Prep Date:	3/1/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qual
Cyanide, Total		177	20.0	200	0	88.3	79	114	0.056 20

Qualifiers: Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits Page 14 of 17

Spike Recovery outside control limits

Parameter not NELAP certified

Work Order: 2402342

ANALYTICAL QC SUMMARY REPORT

Project: IPP West Plant SHORT QTR RunID: UV/VIS_2_240301B

Sample ID: ICV-240301	Batch ID:	R131715		TestNo:	M4	500-CN E		Units:	μg/L	-
SampType: ICV	Run ID:	UV/VIS_2	2_240301B	Analysis	Date: 3/1/	/2024 3:23:00	PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Cyanide, Total		88.4	20.0	100	0	88.4	85	115		
Sample ID: CCV1-240301	Batch ID:	R131715		TestNo:	M4	500-CN E		Units:	μg/L	-
SampType: CCV	Run ID:	UV/VIS_2	2_240301B	Analysis	Date: 3/1/	/2024 3:36:00	PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Cyanide, Total		200	20.0	200	0	99.8	85	115		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 15 of 17

Work Order: 2402342

ANALYTICAL QC SUMMARY REPORT

Project: IPP West Plant SHORT QTR

UV/VIS_2_240305B **RunID:**

		(-			
The QC data in batch 114317 ap	plies to the	following sam	nples: 2402	2342-05B, 2402	342-06B					
Sample ID: LCS-114317	Batch ID:	114317		TestNo:	M45	00-P E		Units:	μg/L	
SampType: LCS	Run ID:	UV/VIS_2_	240305B	Analysis	Date: 3/5/2	2024 1:01:0	0 PM	Prep Date:	3/5/202	4
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RP	DLimit Qual
Phosphorus		497	100	500	0	99.4	80	120		
Sample ID: LCSD-114317	Batch ID:	114317		TestNo:	M45	00-P E		Units:	μg/L	
SampType: LCSD	Run ID:	UV/VIS_2_	240305B	Analysis	Date: 3/5/2	2024 1:01:0	0 PM	Prep Date:	3/5/202	4
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RP	DLimit Qual
Phosphorus		511	100	500	0	102	80	120	2.78	20
Sample ID: MB-114317	Batch ID:	114317		TestNo:	M45	00-P E		Units:	μg/L	
SampType: MBLK	Run ID:	UV/VIS_2_	240305B	Analysis	Date: 3/5/2	2024 1:02:0	0 PM	Prep Date:	3/5/202	4
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RP	DLimit Qual
Phosphorus		<40.0	100							
Sample ID: 2402373-01DMS	Batch ID:	114317		TestNo:	M45	00-P E		Units:	μg/L	
SampType: MS	Run ID:	UV/VIS_2_	240305B	Analysis	Date: 3/5/2	2024 1:04:0	0 PM	Prep Date:	3/5/202	4
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RP	DLimit Qual
Phosphorus		557	100	500	55.0	100	80	120		
Sample ID: 2402373-01DMSD	Batch ID:	114317		TestNo:	M45	00-P E		Units:	μg/L	
SampType: MSD	Run ID:	UV/VIS_2_	240305B	Analysis	Date: 3/5/2	2024 1:05:0	0 PM	Prep Date:	3/5/202	4
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RP	DLimit Qual
Phosphorus		556	100	500	55.0	100	80	120	0.180	20

Qualifiers: Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Spike Recovery outside control limits Parameter not NELAP certified

Page 16 of 17

Work Order: 2402342

ANALYTICAL QC SUMMARY REPORT

Project: IPP West Plant SHORT QTR

RunID: UV/VIS_2_240305B

Sample ID: ICV-240228	Batch ID:	R131768		TestNo:	M45	00-P E		Units:	μg/L	-
SampType: ICV	Run ID:	UV/VIS_2	2_240305B	Analysis	Date: 3/5/2	2024 1:00:0	0 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Phosphorus		209	100	200	0	104	85	115		
Sample ID: CCV1-240305	Batch ID:	R131768		TestNo:	M45	00-P E		Units:	μg/L	=
SampType: CCV	Run ID:	UV/VIS_2	2_240305B	Analysis	Date: 3/5/2	2024 1:11:0	0 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Phosphorus		492	100	500	0	98.4	85	115		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

 $R \quad \ RPD \ outside \ accepted \ control \ \ limits$

Page 17 of 17

S Spike Recovery outside control limits

N Parameter not NELAP certified

POLLUTION CONTROL SERVICES

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
John DuPont DHL Analytical, Inc. 2300 Double Creek Dr. Round Rock, TX 78664	Project Name: 2402342 Sample ID: Influent Grab 1 Matrix: Non-Potable Water Date/Time Taken: 2/27/2024 1200	PCS Sample #: 752878 Page 1 of 1 Date/Time Received: 3/1/2024 09:45 Report Date: 3/15/2024 Approved by: Chuck Wallgren, President

Test Description	Result	Units	RL	Analysis Date/Time	Method	Analyst
Mercury/CVAFS	0.000013	mg/L	0.000005	3/15/2024 08:54	EPA 245.7	DJL

Test Description	Precision	Quality Ass Limit	surance Sumn LCL	MS	MSD	UCL	LCS	LCS Limit	Blank
Mercury/CVAFS	<1	20	70	105	106	130	102	70 - 130	<1.8ng/L

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are abailable on request.

These analytical results relate only to the sample tested. All data is reported on an 'As Is' basis unless designated as 'Dry Wt'. RL = Reporting Limits

POLLUTION CONTROL SERVICES

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
John DuPont DHL Analytical, Inc. 2300 Double Creek Dr. Round Rock, TX 78664	Project Name: 2402342 Sample ID: Effluent Grab 1 Matrix: Non-Potable Water Date/Time Taken: 2/27/2024 2359	PCS Sample #: 752879 Page 1 of 1 Date/Time Received: 3/1/2024 09:45 Report Date: 3/15/2024 Approved by: Chuck Wallgren, President

Test Description	Result	Units	RL	Analysis Date/Time	Method	Analyst
Mercury/CVAFS	< 0.000005	mg/L	0.000005	3/15/2024 08:54	EPA 245.7	DJL

Test Description	Precision	Quality As Limit	surance Sumr LCL	mary MS	MSD	UCL	LCS	LCS Limit	Blank
Mercury/CVAFS	<1	20	70	105	106	130	102	70 - 130	<1.8ng/L

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are abailable on request.

These analytical results relate only to the sample tested. All data is reported on an 'As Is' basis unless designated as 'Dry Wt'. RL = Reporting Limits

DHL Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

2300 Double Creek Drive Round Rock, TX 78664

TEL: (512) 388-8222

FAX:

Work Order: 2402342

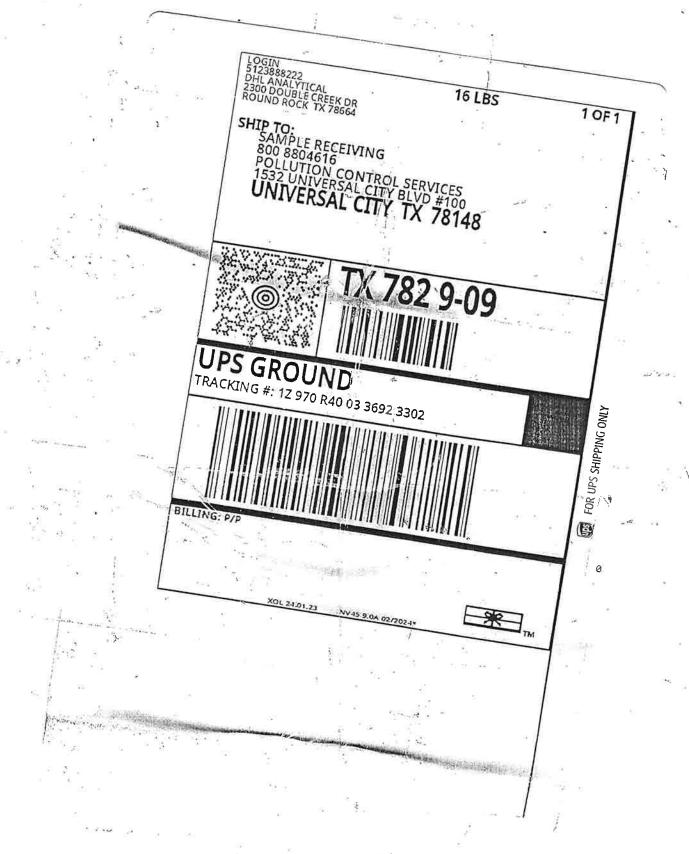
Subcontractor:

Pollution Control Services 1532 Universal City Blvd #100 TEL: FAX: (210) 340-0949 (210) 658-7903

Universal City, Texas 78148

Acct #:

29-Feb-24


							Requested	ests	
Sample ID	Matrix	DHL#	Date Collected	Bottle Type	Hg-LoLevel				
					E245.7				
Influent Grab 1	Aqueous	01B	02/27/24 12:00 PM	500GHCL	1	752	2878		
Effluent Grab 1	Aqueous	02B	02/27/24 11:59 PM	500GHCL	1	75	2070		

General Comments:

Please analyze these samples with a Standard Turnaround Time.

Quality Control Package Needed: Standard - SEND PDF & Excel EDD Please
EMAIL report to both cac@dhlanalytical.com & dupont@dhlanalytical.com
Call John DuPont if you have questions.

<i>C</i> *	Date/Time			Date/Time
Relinquished by:	2/29/24 1700	Received by:		
Relinquished by:		Received by:	son aguilla	3-1-24 0945

Pollution Control Services Sample Log-In Checklist

2 Log-In Checklist 752878

PCS Sample No(s) 7 5 2 8 7 8	7 5 2 8 7 9 COC No.
Client/Company Name: DHL	Checklist Completed by: 5 AA
Sample Delivery to Lab Via: Client Drop Off Commercial Carrier: Bus PCS Field Services: Collection/Pick Up Other:	UPS Lone Star FedEx USPS
Sample Kit/Coolers Sample Kit/Cooler? Yes No Sample Kit/Cooler Custody Seals on Sample Kit/Cooler: Not Present Sample Containers Intact; Unbroken and Not Leaking? Ye Custody Seals on Sample Bottles: Not Present COC Present with Shipment or Delivery or Completed at Has COC sample date/time and other pertinent informatio Has COC been properly Signed when Received/Relinquis Does COC agree with Sample Bottle Information, Bottle All Samples Received before Hold Time Expiration? Yes Sufficient Sample Volumes for Analysis Requested? Yes Zero Headspace in VOA Vial? Yes No Sample Preservation: * Cooling: Not Required or Required If cooling required, record temperature of submitted samp Is Ice Present in Sample Kit/Cooler? Yes No Lab Thermometer Make and Serial Number: Vaughan 1807009	If Present, Intact Broken Drop Off? Yes No n been provided by client/sampler? Yes: No: hed? Yes No Types, Preservation, etc.? Yes No No lles Observed/Corrected 20 / 20 °C o Samples received same day as collected? Yes No
Acid Preserved Sample - If present, is pH <2? Yes Base Preserved Sample - If present, is pH >12? Yes Other Preservation: If Present, Sample Preservations Checked by: Date pH paper used to check sample preservation (PCS log #): Samples Preserved/Adjusted by Lab: Lab # Para	Time (HEM pH checked at analysis).
Adjusted by Tech/Analyst: Date :T	
Person Notified: Contact Notified Date: Time: Method of Contact: At Drop Off: Phone Left V Unable to Contact Authorized Laboratory to Proceed Regarding / Comments:	oice Mail E-Mail Fax
Receiving qualifier entered into LIMS at login Init	pove) Temp Holding Time Initails:ial/Date:

May 29, 2024

Ryan Bornn CITY OF ROUND ROCK 2008 Enterprise ROUND ROCK, Texas 78664

TEL: (512) 218-5561

FAX: Order No.: 2405086

RE: IPP WEST Plant Long QTR

Dear Ryan Bornn:

DHL Analytical, Inc. received 6 sample(s) on 5/7/2024 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211 - TX-C24-00120

Table of Contents

Miscellaneous Documents	3
CaseNarrative 2405086	24
WorkOrderSampleSummary 2405086	26
PrepDatesReport 2405086	27
AnalyticalDatesReport 2405086	28
Analytical Report 2405086	30
AnalyticalQCSummaryReport 2405086	44
Subcontract Report 2405086	88

2300 Double Creek Dr. Round Rock, TX 78664 Phone 512.388.8222

CHAIN-OF-CUSTODY

PAGE _1__ OF _1_

Web: www.dhlanalytical.com
Email: login@dhlanalytical.com

CLIENT: City of Round	Rock					DA	ATE:	0	5/0	7/:	202	24									U	AB (JSE	ON	ΙLΥ			1		1	- Statemen	ثم وسم
ADDRESS: 3400 Sunrise	Rd., F	Round Ro	ck, TX 7	8665		P	D# :	:		,											٦p	HL \	NO	RK	ORI	DER	! #:	d	L'	4	050	86
PHONE: 512-218-6636		EMAIL: rbo			texas.gov	<u></u>				- A																						
DATA REPORTED TO: rb	ornn@					PK	OJE	L.I	LO	CA	IIO	NU	K IV	IAM	E:					IPI	2 W	ES'	ГΡ	lar	ıt I	on	ıg (TI	R			
ADDITIONAL REPORT CO	PIES TO	: kharris	@roundr	ocktex	xas.gov	CL	IEN'	ΤP	ROJ	EC	T#											OLL										
Authorize 5% surcharge		W=WATE			DIMENT	-	PRI	ESE	RVA	TIC	N		T	<u>-</u>		Τ		0	ä	<u>, </u>		_										
for TRRP report?	Lab	L=LIQUID		P=PAI	NT					Ö	7		<u> </u>	8				T 8270	529	ONIA		ğ		ERB C	101	⊒3\$¥:	E C					
☐ Yes ☐ No		S=SOIL		SL=SL	UDGE	LS.	o ₄			ţţ	₹ Š	S	8	┋┃╻		1		P PES	\$270	N S	á	I F		H 0 H	Ω	L& GRE	CVAS			-		
	Only	SO=SOLID			·	ine	뿔			Zn Acetate 🛚	ESE	Z	Ŧ	8 8	24.1	C63	PAH	٥		2 2		1	260		CRA 8	ō	OIST C			ı		
Field Sample 1.D.	DHL Lab#	Collection Date	Matrix	Container Type	# of Conta	HCL < H₃PO4	HNO ₃	H ₂ SO₄		ICE < UNPRESERVE	ANALYSES	BTEX () MTBE () [METHOD 8260]	TPH 1005 (1) TPH 1006 (1) HOLD 1006 (1)	VDC8266 VOC624.1	SVOC 8270 SVOC 625.1	PAH 8270 HOLD PAH	PEST 8270 ☐ 625.1 ☐ O-P PEST 8270 ☐	PCB 8082 (3 608.3 (3 PCB \$270 (3 625.1 (3	HERB 8321 CT PHOS CI AMMONIA CI	RCRA 8 C 1X11 C	PHO HEX CHROM	ANIONS 300 🗆 9056 🗅	TCLP-SVOC () VOC () PEST () HERB ()	TCIP-MÉTAIS 🗆 RCRA 8 🗇 TX-11 🗇 Pb 🗅	RCI CI IGN [] DGAS [] OILAGREASE []	TDS 🗆 TSS 🗅 🛠 MOIST 🗅 CYANIDE 🗅	LL Hg			FIELD	NOTES	
Influent Grab 1		05/07/24		W	G 1 V V LLg-HCI														CL													
Influent Grab 1	V	05/07/24	12:00	W	G 1 V V LLg-HCL														ICE													
						L	Ц	_	\Box			L	_	_	_	丄	Ц			\bot	\perp	_	L					4	4	_		
							Ш	_		_		ļ	4	_	1	╄	Щ		_	_ .	_	<u> </u>	Ц					_	4	4		
							Щ	_	4	_	- 8	L	4		_	╄	Ц		4	_ _		 _					\dashv	\dashv	4	4		
						_	\sqcup			_	_	ŀ	\perp	_	4	 	Ш		4	4	- -	╄	Ш				_	4	4	\dashv		
		-					$\vdash \vdash$	_	\vdash	4	_	ŀ	+	+	+-	╂	Н		4	+	-	╀-	Н	_			\dashv	+	+	-		
		<u> </u>		<u> </u>		-	\vdash	-	\dashv	\dashv		ŀ	+	+	+	-	Н	\dashv	+	+	+	╄	Н				\dashv	\dashv	+	+		
						-	$\vdash\vdash$	\dashv	\dashv	\dashv		┝	+	+	┿	╁	Н	\dashv	\dashv	+	╫	╁	Н		-		\dashv	\dashv	\dashv	+		
							H	\dashv		\dashv	-	ŀ	+	+	+	+	Н	\dashv	\dashv	+	+	╁	Н		Н		\dashv	十	\dashv	\dashv		
							H	\dashv		ᅥ	-	ŀ	\top	十	+	\vdash	\vdash	\dashv	\dashv	+	十	\vdash	H	П			一	十	\dashv	寸		
								\exists	\dashv	┪		t	\top	+	╅	┢	Н	\exists	7	\top	十	1	П					\dashv	十	寸		
							П	┪		┪		Ì	1	T	1		П		T	十	1							\top	寸	一		
							П	\neg	N	٦		ı	T	T			П					Π					1		T	\Box		
					11		1				2		Ι																			
Relinquished By: (Sign)		, , ,	DATE/TIME 5-7-24	i /		M			15	Z				ARO IRST				- 1			ONL		(°C):	:		(4	, 4	}	THE	RMO #: 🧳	-0
Relingshed By (Sign)	2 00	- landam	DATE/TIME	-	Receiv	ed b	Y:	- 67	•	٦	RU:	SH-1	l DA	YΠ	RUS	H-2	DAY	- 1		-											ED?	
HUMUT UJUUU L	-00	10/12029	11:23	an		_		uner.						SH-3																		ÑOT USED
Relinquished By: (Sign)	•	''' /	DATE/TIME		Receiv	ed b	ıγ:					IOR F DZ		L[]	0.	THE	R□	Ы	CAR	RIER	: 🗆	.so	□ FI	EDE	ΧĽ	UP	s 🗆	I CO	URII	ER,	À HAND D	ELIVERED

☐ DHL DISPOSAL @ \$10.00 each

2300 Double Creek Dr. Round Rock, TX 78664

Phone 512.388.8222

Web: www.dhlanalytical.com
Email: login@dhlanalytical.com

CHAIN-OF-CUSTODY

A	V A I	. Y T 1	CAL			Em	ail:	log	gin@	₽d	hlai	nal	ytic	:al.c	:om	1													PA	GE	<u>1</u> OF 1
CLIENT: City of Round	Rock					D/	ATE:	: 0	5/0)8/	202	24										AB	US	ΕO	NL۱	1		,	\sim		56
ADDRESS: 3400 Sunrise		Round Ro	ck, TX 7	8665		_	O#										•					DHL	W	ORI	OR	IDE	R#	· •	<u>L</u>	<u> 4</u>	05086
PHONE: 512-218-6636		EMAIL: rbe	ornn@roui	ndrock	texas.gov	00	011	CCT	10	C V.	ΓIΛ	NI C	י פר	۷A۱	AC.																
DATA REPORTED TO: rb	ornn@	roundRo	cktexas.	gov					LU	CA 	110	IN C	ו אכ	YAN	VIE.					IF	PI	V E	ST	Pla	nt	Lo	ng	<u>QT</u>	R		
ADDITIONAL REPORT CO	PIES TO	: kharris	@roundr	ockte	cas.gov	CL	IEN	ΤP	RO.	JEC	T #										(COL	LEC	то	R: 5	jemen	6	ي منه			
Authorize 5% surcharge		W=WATE	R	SE=SE	DIMENT		PR	ESE	RVA	\TIC	N			ä	T	T	T	T _o	10	0	LS.	119	3	11,	0	Ţ					
for TRRP report?	Lab	L=LIQUID		P=PAI	NT						✓		8	8	-			T 827	290	DNIA	MET		3	1 2	100	354	=				
☐ Yes ☐ No		S=SOIL		SL=SL	UDGE	S	ō			etat	RVE	ES	00 82	夏	٦.	. :	۱.	1 2 4	\$270	A A	OSS.	Ш			Ě	A SE	18				
	Only	SO=SOLID		,		ine	H₃PO ₄ □			Zn Acetate 🗆	ESE	Z	METH	8	8035	524.1	Į.	ļ		000	8		7 9		2	Ö	1	•			
Field Sample I.D.	DHL Lab#	Matrix	Container Type	# of Containers		HNO ₃	H ₂ SO ₄	\neg	ICE < UNPRESERVE	ANALYSES	BTEX [] MTBE [] [METHOD 8260]	TPH 1005 □ TPH 1006 □ HOLD 1006 □	GRO BOLS (1) DRO 8015 (1)	VOC 2266 U VOC 624.1 U	PAN 8279 CHOLD PAH C	PEST 8270 G 625.1 C O-P PEST 8270	PCS 8082 (1 608.3 (1 PCS 8270 (1 625.1 (1	HERB 8321 🗆 T PHOS 🗅 AMMONIA 🖰	METALS 6020 () 200.8 () 0155. METALS ()	RCRA 8 TX11 D	ANONS AM CHES	TCLP-SVOC O VOC O PEST O HERB CO	TCLP-METALS RCRA 8 TX-11 Pb	RCI CI IGN CI DGAS CI OIL&GREASE	TDS 🗆 TSS 🗅 🛠 MOIST 🗅 CYANIDE	LL Hg			FIELD NOTES		
Effluent Grab 1	02	05/07/24	23:59	W	G	1	√				7			Ť	Ť	T	T	T	Ť	Ī	Ť	Ť	Ť	T	Ť	Ť	Ť	V			LLg-HCL
Effluent Grab 1	1	05/07/24		W	P	1		П			7	Ì	П	T				T	1			T	T	T	T	T		Г			CR(VI) ICE
																							T		Τ	Ι					
											\$2,7,58,057																				
							L	Ш													\perp					L		$ldsymbol{ldsymbol{ldsymbol{ldsymbol{L}}}$			
						_		Ш		_	-		\dashv		_		\perp		_		_	\perp	\perp	L	_	L	_	$oldsymbol{oldsymbol{oldsymbol{eta}}}$			
						_	Ц	Щ		_	-		\perp	_	4	4	1	╀	1	Ш	_	1	\downarrow	1	_	$oldsymbol{\perp}$	L	\sqcup			
						_		Ш		_	_			4	4	\perp	1	\bot	_	Ш	_	4	4	_	╀-	1	╄	\sqcup		Ш	
						-				_				_	+	+	+	+	↓_	Н	-	+	+	\perp	+	╀	├-	\vdash			
						-	Н	\vdash		\dashv	-		-	+	+	+	+	+	+	Н	\dashv	+	+	╀	+	╀	╁	H	_		
						┝	Н	Н	\dashv	-	_	1	\dashv	\dashv	+	+	+	╁	+	Н	+	+	+	+	+	╁	╁	\vdash			
***				-		-	Н	Н		\dashv	-	ŀ	\dashv	\dashv	+	+	+	╁	+	Н	\dashv	+	十	+	+	╁	╁	Н	Н		
							Н	Н	\vdash	7	-	ı	\dashv	\neg	+	+	\dagger	t	\vdash	H	\dashv	+	十	\dagger	T	t	\vdash	H			
							П			┪	-	ı	\dashv	1	十	\top	T	T			十	十	T	1	T	T	T	М	Т		*
								1	11	_		ı	寸	_	T		T	T			1	1	T	T	T	T					
Relinquished By: (Sign)				24,	Receiv		1	b	M	2						ID T					E ON		P (*C	:):	4	6	٥			THI	ERMO #:
Reinglished By/sign/	80	5/08/2	DATE/TIME	84/	Redeiv	U)		<u></u>	L		RU	SH-				ISH-: AY□		YΠ													TED? YES NO NTACT INOT USED
Relinquished By: (Sign)			DATE/TIME		Receiv	ed b	ıy:						RMA ATE] (ОТН	ER [] 	1 "	RRIE	R: □	LSC		FED	EX [⊒ U	PS E] CC	OUR	IER	☑ HAND DELIVERED

☐ DHL DISPOSAL @ \$10.00 each

2300 Double Creek Dr. Round Rock, TX 78664 Phone 512.388.8222

CHAIN-OF-CUSTODY

Web: www.dhlanalytical.com Email: login@dhlanalytical.com

	V A I	- Y 1 1	CAL			Em	ail:	logi	in@	tb9	ılar	nal	ytic	al.c	om													F	PAGE	E <u>1</u>	OF 1
CLIENT: City of Round	Rock					DA	NTE:	05	/09	9/2	024	4									L	AB	USE	01	NLY	•		\sim	١.	_ *	
ADDRESS: 3400 Sunrise		Round Ro	ck, TX 7	8665) #:															HL	WC	RK	OR	DEI	R#:	0/	<u>- 4</u>	<u>D:</u>	5086
PHONE: 512-218-6636		EMAIL: rb			texas.gov	مما	∩ IE	ст	100	^ A T		NI C	1D N	NAN	4 C ·																
DATA REPORTED TO: rbo	rnn@						OJE	<u> </u>	LU	UM 1	10	INC	/N 1	N/AIV	IE.	IPP	W	ES	ΤL	on	ξQ	tr.									
ADDITIONAL REPORT COI	PIES TO	: kharris	@roundr	ockte	xas.gov	CL	IEN'	T PF	(O)	EC	Γ#											OLL	EC	TOR	:	K	m~		:Xc	- Cue	_
Authorize 5% surcharge		W=WATE	R	SE=SE	DIMENT		PRE	SER	(VA	TIO	N	П	П	٥	T	Т	Π	0	0,	٥	<u> </u>	l B	П	Ţ	Ĝ		7	Т	Т	T	
for TRRP report?	Lab	L=LIQUID		P=PAI	NT				I	اي	Χ		<u>a</u>	ğ		1		18270	0625	N O	Ě	ğ		ERBC	٥	354	ĕ		Ì		
☐ Yes ☐ No	Use	S=SOIL		SL=SL	UDGE	S.	o*	ı	-	ţ	Ş€	S	00	[로	╌┟	기모		P PES	\$270	¥	SS	\	П	Įě	Ę	A GRE	CAA			ı	
	Only	SO=SOLID				ine	퓠	ı	١	Ž	ESE	XS	Ĕ	8		1 8	¥	0		밁		}	0,0	1 E	28 8	ö] si			Ì	
Field Sample I.D.	DHL Lab#	Collection Date	Collection Time	Matrix	Container Type	# of Conta	HCL ☐ H3PO4 [HNO ₃	H ₂ SO ₄	NaOH ≺ Zn Acetate □	ICE < UNPRESERVED	ANALYSES	BTEX [] MTBE [] [METHOD 8260]	□ 1005 □ 1PH 1006 □ HOLD 1006	GRO BOLS DRO BOLS	SVOC 8270 D SVOC 625.1 D	PAN 8270 HOLD PAH	PEST 8270 C 625.1 C O-P PEST 8270 C	PCB 8082 🖰 608.3 🖰 PCB 4270 🖰 625.1 🗅	HERB 8321 CT PHOS CHAMONIA CO	METALS 6020 () 200.8 () DISS. METALS ()	PHI HEX CHROMID ALKALINITYCH CODE	ANIONS 300 9056	TCLP-SVOC () VOC () PEST () HERB ()	TCLP-METALS RCRA 8 TX-11 P6	RCI CI IGN CI DGAS CI OILAGREASE	TOS 🗆 TSS 🗆 🛠 MOIST 🗅 CYANIDE				FIELD NOTES
Influent Grab 1	03	05/07/24	12:00	W	Varies	4			✓.	√	$\sqrt{}$				√	<u> 1</u>						Ι				✓		$oldsymbol{\perp}$	\perp	О	0&G H2SO4
Influent Grab 2		05/07/24	18:00	W			Ш		<u> </u>	✓	⊿				✓	1									L	✓		┙	ᆚ	C	Cyanide NaOH
Influent Grab 3		05/07/24		W	Varies	4	Ш		<u> </u>	✓	⊿				_ ✓	1							L	L		✓		\bot	丄		VOC ICE
Influent Grab 4	4	05/08/24	06:00	W	Varies	4	Ц			<u>√</u>	⊿		\perp		_ ✓	<u> </u>					\perp			L	L	✓	✓	\perp	丄	丄	
							Ц		\perp	\perp			_		丄	$oldsymbol{\perp}$				\perp	\perp	L	L					\perp	$oldsymbol{\perp}$	$oldsymbol{\perp}$	
					-				\perp						\perp	┸						\perp						\bot	丄	丄	
							Щ	_	┙	\perp	SSERVER	L			ᆚ							丄	L	<u> </u>				\bot	ᆚ	丄	
							Ц	4	_	_	-	ļ	\bot	\bot	_				Ш	_	_	丰	L	L	L	L	Ш	\bot	丄	丄	
								_	4	4		1	_	_	4		L			\bot	\bot	\perp		L			Ш	_	丰	丰	
							4	4	4	4		-	4	_	4	4	_		ļ	\bot	4	┸	$oldsymbol{\perp}$	╙	<u> </u>		\sqcup	_	4	+	
							\sqcup	4	4	4	4	ŀ	4	_	4	4	\vdash			\perp	_	4	lacksquare	L	_		\vdash	4	+	\bot	
						_	\dashv	\dashv	+	\dashv	_	ŀ	\dashv	_	4	+	Н	Н	\dashv	+	-	╁-	╀	L			Н	+	+	+	
							\dashv	+	+	\dashv	20 Sept 4 (1995)	ŀ	+	+	+	+	-		-	-	+	╀	⊢	┡			Н	+	+	+	
							\vdash	+	+	\dashv	State April	ŀ	\dashv	+	┿	┿	\vdash	Н	-	+	+	╀	├-	⊢			Н	+	+	+	· · ·
				<u> </u>			1	+	,	+	A SECRETARIA	ŀ	+	+	+	╁	H	\vdash		╬	+	┿	-	-			\vdash	+	+	+	
Relinquished By: (Sign)			DATE/TIME		Receiv	es s	V:	//		7	71	<u> </u>	DAL	ARO	1181	L TII	ME	Ч	140	<u> </u>	ONL	<u>, </u>	<u></u>	<u></u>			<u> </u>		ᆂ	<u></u>	MO #:
Why	-		5.0	24/	Mint	1	M		h	Ľ				IRST							NG T		{°C]):	3	.3	°C			TEK!	78
Relinguished By//Sign/	18	15/2	DISTECTIME 1289	r KG	Receiv	ed 16 N 1	λı	l i			RUS	SH-1		NY□ SH-3			DAY														O? YES / NO
Relinquished By: (Sign)	-	00,000	DATE/TIME		Receiv	ed b	/(<u>)</u> /~ Y:	<u>~~</u>	<u> </u>	\dashv			MA	r 🗸	-	THE	R 🗆		CAR												HAND DELIVERED
											DUI	E D/	ATE																		

☐ DHL DISPOSAL @ \$10.00 each

2300 Double Creek Dr. Round Rock, TX 78664 Phone 512.388.8222

CHAIN-OF-CUSTODY

Web: www.dhlanalytical.com Email: login@dhlanalytical.com

A	4 A L	- Y T I	CAL			Em	ail: l	logi	in@	Pdt	lar	naly	ytic	al.c	om													F	PAG	E_	1 OF 1
CLIENT: City of Round	Rock					DA	TE:	05,	/09	/20)24	4									L	AB	USE	0	NLY	•		1			
ADDRESS: 3400 Sunrise		Round Ro	ck, TX 7	8665			D#:															HL	WC	DRK	OR	DEI	R#:	9	<u>- 7</u>	0	5086
PHONE: 512-218-6636		EMAIL: rbo			gov	00	OJE	CT.		~ ^ 7		NI C	\D A		10.																
DATA REPORTED TO: rbo	rnn@	roundroc	ktexas.go	ov		FR	OJE	<u> </u>	LO	_AI	101	IN C	<i>/</i> N I	NAIV	IE.	IPF	w	ES	ΤL	on	ξQ	tr.									
ADDITIONAL REPORT CO	PIES TO	: kharris	@roundr	ockte	xas.gov	CL	IENT	PF	ROJ	EC	Г#										C	OLI	EC	TO	}: ∅		To	~	4	_	· ·
Authorize 5% surcharge		W=WATE	R		DIMENT		PRE	_		_				اي	ı	1		-	210	او				١.	5	\checkmark	V			ľ	
for TRRP report?	LUL	L=LIQUID		P=PAI				١		밁	심	ı	92	9	1			ST 827	8	MONI		ΝĚ		HERB	100	EASE	MIDE			ı	
☐ Yes ☐ No		S=\$OIL		SL=SL	UDGE	ers	H₃PO₄	-		Eta	S.	ES	00	튀.	, [v	コ皇		S. P.E.	8 8 270	8	Sal	WALING A		sto	Ē	10.00	3				
	Only	SO=SOLID	· · · · · · · · · · · · · · · · · · ·	1		aine	垩	١	١	<u>ا</u>	ESE	TXS	E E	9001		200	Į ₹	9	8	30 E	ğ _	}	0.986	Ī	20	ŝ	golst				
Field Sample t.D.	DHL Lab#	Collection Date	Collection Time	Matrix	Container Type	Conta		HNO3	H ₂ SO ₄	NaOH Z	ICE < UNPRESERVED <	ANALYSES	BTEX () MTBE () [METHOD 8260]	□ 3001 □ HOT □ HOT □ 1006 □	GRO BOSS II DRO BOSS	SVOC 8270 D SVOC 625.1 D	PAH 8270 ☐ HOLD PAH□	PEST 8270 □ 625.1 □ O-P PEST 8270 □	PCB 8082 🗆 608.3 🗆 PCB 8270 🗇 625.1	HERB 8321 CT PHOS CHAMBONIA CO	METALS 6020 () 200.8 () DISS. METALS ()	BHILL HEX CHROMIN ALKALINITY CODE	ANIONS 300 🗆 9056 🗅	TCLP-SVOC () VOC () PEST () HERB ()	TCLP-METALS CI RCRA & CITX-11 CI Pb CI	RCI CI IGN CI DGAS CI OIL&GREASE	TDS 🗆 TSS 🗆 🛠 MOIST 🗅 CYANIDE				FIELD NOTES
Effluent Grab 1	04	05/07/24	23:59	W	Varies	4		J,	√ .	√	1	П			√	1	Ī					Ι		I		√		\Box	\perp	C	0&G H2SO4
Effluent Grab 2		05/08/24		W	Varies	4		,	✓ .	✓ .	/				V	4						\perp	<u>L</u>	L	<u> </u>	1	$ \checkmark $	\perp	1	_(Cyanide NaOH
Effluent Grab 3		05/08/24	12:00	W	Varies	4	Ш	_	<u>√</u>		4					4	_		Ц		\perp		\perp		L	✓	✓	\bot	丄		VOC ICE
Effluent Grab 4	V	05/08/24	18:00	W	Varies	4	Ц	بـ	<u> </u>	<u> </u>		١			_ √	4	_		Ш		\perp	_	\downarrow	1	L	✓	$ \mathbf{V} $	\dashv	4	4	
							Щ	4	\downarrow				_	\bot	1	_	_	<u> </u>	Ш	_	\perp	1	1	\perp	↓_	L		\dashv	4	4	
							\sqcup	4	\dashv	4	_	ı	_	4	_	\bot	┺	<u> </u>	\sqcup	4	\bot	_	\bot	╄	┞-	L	Ш	\dashv	+	4	
							$\vdash \vdash$	4	4	4	_		4	4	4	4	 -	L		4	\bot	+	+	╀	┼	<u> </u>		+	+	+	
		ļ 					\dashv	4	+	\dashv	_	ŀ	4	\perp	\bot	+	╀	┞	$\vdash \vdash$	+	+	+	+	+	╄-	<u> </u>	Н	+	+	+	
							$\vdash \vdash$	4	+	4			4	-	+	+	+	┞	Н	-	+	+	+	╀	╄	┝		\dashv	+	+	
·							\vdash	+	+	+	_	1	4	+	+	+-	╀	┝	Н	\dashv	┿	+	╀	╀	╁	├	Н	\dashv	+	┿	
							$\vdash \vdash$	+	+	+	-		+	\dashv	+	+	╁	┝	Н	\dashv	╬	╀	╁	╀	╀	\vdash	H	\dashv	+	+	
						_	\vdash	+	+	+	-	-	\dashv	+	+	+	╁	-	H	+	╫	╁	╫	╁	+	┝	Н	+	十	╁	
				<u> </u>			\vdash	+	\dashv	+	-		\dashv	╁	+	+	╁		H	\dashv	+	╁	╁	+	╁	\vdash	Н	+	十	╅	
							$\vdash \vdash$	十	┪	+		ŀ	\dashv	+	+	╁	╁	\vdash	H	+	+	╁	+	t	+	\vdash	Н	十	十	\dagger	
								\forall	7	┪	-	ŀ	\dashv	\dashv	十	+	╁	-	H	十	╅	\dagger	+	T	┢	H	Н	十	十	T	
Relinquished By: (Sign)	-/-		DATE/TIME	24	Receiv	65		H Mr-	2/	7				ARC IRST)	LAB		ONI		1.0):	1	<u>.)</u>	ه د		T	HER	18 78
Relingershed By Sign	//	//	DATE/TIME	1	Receiv	ed b	(U		<i>y</i> &	Ŧ	,			AY 🗆									-	-							ED? YES /NO
KMMH HAMM)	8 857	しをりはし	1/820)	1/W	U	U	1					RU	ISH-3	DA																TACT INOT USED
Relinquished By: (Sign)		1	DATE/TIME		Receiv	ed b	γ:			1				\L √	<u> </u>	THE	R□]	CAR												HAND DELIVERED
										- 1	DUI	E D	ATE						l												

☐ DHL DISPOSAL @ \$10.00 each

2300 Double Creek Dr. Round Rock, TX 78664

Phone 512.388.8222

Web: www.dhlanalytical.com Email: login@dhlanalytical.com

CHAIN-OF-CUSTODY

	N A	LYTI	CAL			Em	ail:	lo	gin@	@d	hla	nal	lyti	cal.	con	1													P	AGI	ξ <u>1</u>	OF 1	,
CLIENT: City of Round	Rock					D/	ATE	:05	5/09	9/2	024	4										LAB	US	E O	NL	Y		,	` I	Lá	_ ~	-000	
ADDRESS:3400 Sunrise			ck, TX 78	3665			D#															DHL	. W	ORI	(OI	RDE	ER #	‡: Ø	_	7 (ンコ	5086	
PHONE:		EMAIL: rb			xas.gov	00	ייטו	CCT	.10	~ V.	TIO	101	∩ P	NA	ME.	T1	י מר	5 A 7 Y	EST	τ.						•							
DATA REPORTED TO: rbc	ornn@	roundroc	ktexas.g	ov			.031		LU	-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	UK	INAI	VIL.	1.	· P	1 44	201	LO													
ADDITIONAL REPORT CO	PIES TO	ጋ፡ kharris(@roundr	ocktex	as.gov	CL	IEN	IT P	RO.	JEC	T#	<u> </u>										COL	LEC	то	R.G	7	On	1	<i>8</i>				
Authorize 5% surcharge		W=WATE	R	SE=SE	DIMENT		PR	ESE	RV/	ATIC	NC			ō				0	5.10	0	_ SI			٦	1 4		Τ,	,	ı				
for TRRP report?	Lab	L=LIQUID		P=PAI						-	✓		[09]	D 100	ı	-	_	T 827	20	ADNIA	MET/		2			K							
☐ Yes ☐ No	Use	S=\$OIL		SL=SL	UDGE	S	ŏ		П	etat	RVE	ES	00 83	Э МО		. K	٦.	1 3	8270	Ž,	Sig						2	2	۽ ا	اد			
	Only	SO=SOLID)	7		in	H₃PO ₄ □		Ш	Zn Acetate 🛚	ESE.	IYS	METH	1000	8015	624.1	Z Z	ŭ	ᆙ	濝	8.8				8	000		63	1				
	DHL	Collection	Collection		Container	Containers	_				ICE < UNPRESERVE	ANALYSES	BTEX () MTBE () [METHOD 8260]	H.	GRO 6015 (1) DRO 8015 (1)	VOC8260 VOC624.1	PAH 8279 CI HOLD PAH CI	PEST 8270 □ 625.1 < O P PEST 8270 □	PCS 8042 ☐ 608:3 < PCS 8270 ☐ 625.1 □	HERB 8323 🖒 T PHOS 🕿 AMMONIA 🗅	METALS 6020 🗆 200.8 🔇 DISS. METALS 🗅	RCRA 8 🗆 TX11 🗆	PHU HEX CHROMU AU		TOP-METALS CI BCBA # CTX-111 CPh C	RO CHIGN CI DIGAS CHOLAGREASE CH	The Disk Disk Moist Dickanine D	Organics E. 632	Flouride Nitrate				
Field Sample I.D.	Lab#		Time	Matrix	Туре	Ę C	HCL	HNO3	H ₂ SO ₄	NaOH 🗆	✓	1	D M	J 5001	Stor	92	0228	0,28	280	kzes i	99		Ĭ	2 5	E	Ng		zani	1				
						# of	Ξ	É	Ŧ	Na	ICE	L	втех	19 H	g g	ğ	1	EST	18	HERB	E L	2		į		ğ	į	Ö	TI.		<u></u>	FIELD NOTES	
Influent Comp	05	05/08/24		W	P	1		✓			✓					\perp					✓			I	I	I	L		L	L	_	4 Hr. Comp	
Influent Comp		05/08/24		W	P	1		L.	$ \mathbf{V} $		✓				\dashv	_	<u>↓</u>	퇶		✓		4	4	\bot	┸	\downarrow	\downarrow	┸	╀	╀	_	4 Hr. Comp	
Influent Comp		05/08/24	1	W	P	1		Ц	Ш		✓			\dashv	4	4	4	\perp	_	Ш	\dashv	4	4	\perp	\downarrow	\downarrow	\downarrow	\perp	✓	1		4 Hr. Comp	
Influent Comp	V	05/08/24	12:00	W	P	8	L		\sqcup		✓		Ц	_	_		4	┰	V		_	4	\bot	_	\downarrow	_	1	✓	1	1	12	4 Hr. Comp	_
				ļ		_	_		\vdash	_			Н	\dashv	4	-	+	4	-			4	4	+	+	╀	+	+	\downarrow	4	4		4
				ļ		_	H		\vdash	\dashv			Н	_	+	_	+	+	╀			+	+	╀	+	╀	+	╀	+	+	+		4
	 	 	<u> </u>				\vdash		Н	\dashv			H	\dashv	\dashv		+-	╀	╂		\dashv	+	+	╀	╀	╀	+	╀	╀	+	+-		\dashv
						_	\vdash	Н	Н	\dashv	-		Н	\dashv	+	+	+	+	╁		\dashv	+	+	╁	┿	+	+	╁	╀	╁	+-		-
		<u> </u>	 			_	\vdash		Н	ᅱ	-		Н	-	+	+	╁	╁	╁	-	+	+	+	+	+	╁	+	╁	╁	╁	+		ㅓ
						_	Н	H	Н	\dashv	_		Н	\dashv	+	\top	+	+			1	+	\dagger	+	\dagger	+	t	+	╁	十	+		┪
							Н	П	H	\exists	ᅥ		Н	7	\neg	\top	T	\dagger	T		\dashv	\dagger	T	\dagger	\dagger	T	T	T	T	T	T		٦
											T				十	十	T	T			_	\top	T	T	T	T	T	T	T	T	T		٦
															\top		T							Т	T	T	T						
7.																	Τ																
					//			//	2									L							\perp			\bot	\bot		<u></u>		
Relinquished By: (Sign)			DATE/TIME	S C .	Keceiv		7/		, (ID T			1		E ON				_	-	10			TI	HERM		٦
		//	5.8.	ير پر	<u>MANU</u>	14			y))R R					ING		-	-	_	. 3						78	╝
Relinguished By: (Sign)	n &	re/sa/a	DATE/TIME	8:21	Receiv	ed b	y: Li	1			RU	ISH-						Y□														? YES / NO	
Relinquished By: (Sign)		<u> </u>	DATE/TIME	1100	Receiv	od p	<u>\(\lambda \) \(\lambda \) \</u>	<u> </u>	<u>ل</u>		,	NO				AY□ OTH		7														OF NOT USED	
					HECEIA		7.						ATE		, L	Jin	L11 L	 □	1	MIL	n. L	(لبه م		-^	u	,,,			,,,,,,	. шп	mito occircico	
									_									-	4		_												_

☐ DHL DISPOSAL @ \$10.00 each

2300 Double Creek Dr. Round Rock, TX 78664 Phone 512.388.8222

CHAIN-OF-CUSTODY

OF 1

Web: www.dhlanalytical.com Email: login@dhlanalytical.com

PAGE 1 LAB USE ONLY CLIENT: City of Round Rock DATE: 05/09/2024 2405086 DHL WORKORDER #: ADDRESS: 3400 Sunrise Rd., Round Rock, TX 78665 PO#: EMAIL: rbornn@roundrocktexas.gov PROJECT LOCATION OR NAME: IPP WEST Long Qtr. DATA REPORTED TO: rbornn@roundrocktexas.gov ADDITIONAL REPORT COPIES TO: kharris@roundrocktexas.gov COLLECTOR: CLIENT PROJECT # Authorize 5% surcharge W=WATER SE=SEDIMENT PRESERVATION ETALS 6020 [] 200.8 DISS. METALS [] :ST 8270 🗆 625.1 🔼 O-P PEST 8270 🗆 CB 8082 🖸 608.3 🔇 PCB 8270 🛘 625.1 for TRRP report? L=LIQUID P=PAINT Lab H 1005 - TPH 1006 - HOLD 10 # of Containers HCL □ H₃PO₄ □ Zn Acetate ☐ Yes □ No S=\$QIL SL=SLUDGE Use Flouride Nitrate GRO BOIS CI DRO BOIS CI OC 8260 U VOC 624.1 [] Only SO=SOLID DIM BO TALLO DHL H₂SO₄ NaOH□ Collection Collection Container HNO3 Matrix Field Sample I.D. Lab# Date Time Type **FIELD NOTES** Effluent Comp 05/08/24 23:59 06 W Р 24 Hr. Comp EFfluent Comp 05/08/24 23:59 W Р 24 Hr. Comp 05/08/24 23:59 Effluent Comp р 24 Hr. Comp W 05/08/24 23:59 8 Effluent Comp W 24 Hr. Comp р DATE/TIME LAB USE ONLY THERMO #: **TURN AROUND TIME** .8.70 (CALL FIRST FOR RUSH) RECEIVING TEMP (°C): DATE/TIME RUSH-1 DAY□ RUSH-2 DAY□ IF >6°C, ARE SAMPLES ON ICE AND JUST COLLECTED? YES / NØ CUSTODY SEALS ON ICE CHEST: ☐ BROKEN ☐ INTACT ☐ NOT USED RUSH-3 DAY□ CARRIER: ☐ LSO ☐ FEDEX ☐ UPS ☐ COURIER ☐ HAND DELIVERED NORMAL [7] OTHER □ DUE DATE

☐ DHL DISPOSAL @ \$10.00 each

Date	Time	Location	Туре	Parameter	Bottle/Preservative	Flow (MGD)	Tech (Initial)	Comments
				Oil and Grease	1-250ml Amber w/H2SO4			
Day 1	2359	Effluent	Grab	Cyanide Volatiles LL Hg Chromium VI	1-250ml Plastic w/NaOH 2-VOA vials 1-500 ml glass w/HCl 1-250ml plastic	1.94	1	

Date	Time	Location	Type	Parameter	Bottle/Preservative	Flow (MGD)	Tech (Initial)	Comments
				Oil and Grease	1-250ml Amber w/H2SO4			
Day 1	1200	Influent	Grab	Cyanide Volatiles LL Hg Chromium VI	1-250ml Plastic w/NaOH 2-VOA vials 1-500 ml glass w/HCl 1-250ml plastic	2.03		

Date	Time	Location	Type	Parameter	Bottle/Preservative	Flow (MGD)	Tech (Initial)	Comments
				Oil and Grease	1-250ml Amber w/H2SO4		1	
Day 1	1800	Influent	Grab	Cyanide Volatiles	1-250ml Plastic w/NaOH 2-VOA vials	1.99	W	

Date	Time	Location	Туре	Parameter	Bottle/Preservative	Flow (MGD)	Tech (Initial)	Comments
				Oil and Grease	1-250ml Amber w/H2SO4			
Day 1	2359	Influent	Grab				105	
Dayı	2333	iiiiideiit	Grab	Cyanide	1-250ml Amber w/NaOH	A .	1.70	
				Volatiles	2 VOA Vials	,		

Date	Time	Location	Туре	Parameter	Bottle/Preservative	Flow (MGD)	Tech (Initial)	Comments
Day 1	Start at MIDNIGHT	Effluent	Comp			29mgd	fm	
Day 2	Off at MIDNIGHT	Effluent	Comp	Metals (plus Mn & Mo) Phosphorous Fluoride/Nitrate Herbicides Pesticides Organics PCBs Semi Vol.	1-500ml plastic w/HNO3 1-250ml plastic w/H2SO4 1-250ml plastic 2-500ml Amber 2-500ml Amber 2-500ml Amber 2-500ml Amber 2-500ml Amber			

Date	Time	Location	Type	Parameter	Bottle/Preservative	Flow (MGD)	Tech (Initial)	Comments
Day 1	Start at MIDNIGHT	Effluent	Comp					
Day 2	Off at MIDNIGHT	Effluent	Comp	Metals (plus Mn & Mo) Phosphorous Fluoride/Nitrate Herbicides Pesticides Organics PCBs Semi Vol.	1-500ml plastic w/HNO3 1-250ml plastic w/H2SO4 1-250ml plastic 2-500ml Amber 2-500ml Amber 2-500ml Amber 2-500ml Amber 2-500ml Amber	1.98 MGA	A	

Brushy Creek West WWTP Long Quarter IPP Monitoring Influent Day 1-2 Comp 1200

Date	Time	Location	Type	Parameter	Bottle/Preservative	Flow (MGD)	Tech (Initial)	Comments
Day 1	Start at NOON	Influent	Comp					
Day 2	OFF at NOON	Influent	Comp	Herbicides Pesticides Organics PCBs	1-500ml plastic w/HNO3 1-250ml plastic w/H2SO4 1-250ml plastic 2-500ml Amber 2-500ml Amber 2-500ml Amber 2-500ml Amber 2-500ml Amber	2.00 mch	N	

Please start automatic sampler for Influent at noon on Day 1.

Brushy Creek East WWTP Long Quarter IPP Monitoring Influent Day 1-2 Comp 1200

Date	Time	Location	Type	Parameter	Bottle/Preservative	Flow (MGD)	Tech (Initial)	Comments
Day 1	Start at NOON	Influent	Comp			26-ma0		
Day 2	OFF at NOON	Influent	Comp	1	1-500ml plastic w/HNO3 1-250ml plastic w/H2SO4 1-250ml plastic 2-500ml Amber 2-500ml Amber 2-500ml Amber 2-500ml Amber 2-500ml Amber	2		

Please start automatic sampler for Influent at noon on Day 1.

Date	Time	Location	Туре	Parameter	Bottle/Preservative	Flow (MGD)	Tech (Initial)	Comments
				Oil and Grease	1-250ml Amber w/H2SO4			
Day 2	0600	Effluent	Grab	Cyanide	1-250ml Plastic w/NaOH	6	1.757	
				Volatiles	2-VOA vials			

Date	Time	Location	Type	Parameter	Bottle/Preservative	Flow (MGD)	Tech (Initial)	Comments
				Oil and Grease	1-250ml Amber w/H2SO4			
Day 2	1200	Effluent	Grab			1.00		
Day 2	1200	Linaciit	Grab	Cyanide	1-250ml Plastic w/NaOH	10		
				Volatiles	2-VOA vials	m ()		

Date	Time	Location	Туре	Parameter	Bottle/Preservative	Flow (MGD)	Tech (Initial)	Comments
				Oil and Grease	1-250ml Amber w/H2SO4			
Day 2	1800	Effluent	Grab	'	1-250ml Plastic w/NaOH 2-VOA vials	1.95	1	

Date	Time	Location	Туре	Parameter	Bottle/Preservative	Flow (MGD)	Tech (Initial)	Comments
Day 2	0600	Influent	Grab	Oil and Grease	1-250ml Amber w/H2SO4	W		
							17-7	
				Cyanide	1-250ml Plastic w/NaOH		1/15 1	
				Volatiles	2-VOA vials			

DHL Analytical, Inc.

	Sample	Receipt Checi	KIISE			
Client Name: CITY OF ROUND ROCK			Date Received: 5/7/2024			
Work Order Number: 2405086			: EL			
Checklist completed by:	5/7/2024 Date		Reviewed by: 5/7/2024 Initials Date			
	Carrier name:	Hand Delivered				
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present		
Custody seals intact on shipping container/co	oler?	Yes	No 🗌	Not Present ✓		
Custody seals intact on sample bottles?		Yes 🛂	No 🗌	Not Present		
Chain of custody present?		Yes 🗸	No 🗌			
Chain of custody signed when relinquished ar	nd received?	Yes 🗹	No 🗌			
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌			
Samples in proper container/bottle?	-	Yes 🗸	No 🗌			
Sample containers intact?		Yes 🗹	No 🗌			
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌			
All samples received within holding time?		Yes 🗹	No 🗌			
Water - VOA vials have zero headspace?		Yes	No 🗌 💮	No VOA vials submitted 🗹 🛮 NA 🗌		
Water - pH<2 acceptable upon receipt?		Yes 🗌	No 🗌 💮 I	NA ☑ LOT#		
		Adjusted?		Checked by		
Water - ph>9 (S) or ph>10 (C N) acceptable u	oon receipt?	Yes 🗌	No 🗌 📑	NA ₩ LOT#		
		Adjusted?		Checked by		
Container/Temp Blank temperature in complia	ince?	Yes 🗹	No 🗌			
Cooler# 1						
Temp °C 14.7						
Seal Intact NP			4			
Any No response must be detailed in the com	ments section below.	**************************************				
Client contacted: Date contacted			Pers	on contacted:		
Contacted by:	Regarding:					
Comments:		W. P. C. & Married Conference and Co				
Corrective Action:						
A COLUMN TO THE PARTY OF THE PA		NOT THE STREET WITH A PARTY OF THE STREET, SAN				

DHL Analytical, Inc.

Day 2

Sample Receipt Checklist

Client Name: CITY OF ROUND ROCK		Date Received: 5/7/2024			
Work Order Number: 2405086		Received by: KAO			
5'					
Checklist completed by: 5/	/8/2024	Reviewed by:	5/8/2024		
Signature	Date	Initials	Date		
Carrier r	name: <u>Hand Delivered</u>				
Shipping container/cooler in good condition?	Yes 🔽	No ☐ Not Present ☐			
Custody seals intact on shipping container/cooler?	Yes	No ☐ Not Present ✓			
Custody seals intact on sample bottles?	Yes	No ☐ Not Present ✓			
Chain of custody present?	Yes 🗹	No 🗆			
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗆			
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌			
Samples in proper container/bottle?	Yes 🗹	No 🗌			
Sample containers intact?	Yes 🗸	No 🗆			
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌			
All samples received within holding time?	Yes 🗸	No 🗆			
Water - VOA vials have zero headspace?	Yes	No OA vials submitt	ed 🗹 NA 🗌		
Water - pH<2 acceptable upon receipt?	Yes	No □ NA 🗹 LOT#			
	Adjusted?	Checked by			
Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt?	Yes	No □ NA ✓ LOT#			
	Adjusted?	Checked by			
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌			
Cooler# 1					
Temp °C 4.6					
Seal Intact NP					
Any No response must be detailed in the comments section be	low.				
Client contacted: Date contacted		Porcon contacted:	TOTAL		
Contacted by: Regarding:	T-000-17-0000000000000000000000000000000				
Comments:					
Corrective Action:					

Day 3

Sample Receipt Checklist

Client Name: CITY OF ROUNI	D ROCK				Date Received: 5/7/2024				
Work Order Number: 2405086					Received by	: KAO			
Checklist completed by: Signature	I	5/9/2024 Date ier name:		d Delivered	Reviewed by	r: St Initials	5/9/2024 Date		
Shipping container/cooler in goo	od condition?		Yes	✓	No 🗌	Not Present			
Custody seals intact on shipping	g container/cooler?		Yes		No 🗌	Not Present ✓			
Custody seals intact on sample	bottles?		Yes		No 🗌	Not Present ✓			
Chain of custody present?			Yes	✓	No 🗌	,			
Chain of custody signed when r	elinquished and received?		Yes	✓	No 🗌				
Chain of custody agrees with sa	ample labels?		Yes	\checkmark	No 🗌				
Samples in proper container/bo	ttle?		Yes	✓	No 🗌				
Sample containers intact?			Yes	✓	No 🗌				
Sufficient sample volume for inc	dicated test?		Yes	✓	No 🗌				
All samples received within hold	ling time?		Yes	✓	No 🗌				
Water - VOA vials have zero he	adspace?		Yes	✓	No 🗌 💮	No VOA vials submi	itted NA		
Water - pH<2 acceptable upon	receipt?		Yes	✓	No 🗌 💮 I	NA LOT#	13171		
			Adjus	sted?	0	Checked by	EL		
Water - ph>9 (S) or ph>10 (CN)	acceptable upon receipt?		Yes Adjus	_	No □ I	NA LOT#	12798 E C		
Container/Temp Blank temperat	ture in compliance?		Yes	✓	No 🗌				
Cooler# 1	2								
Temp °C 3.3	1.2								
Seal Intact NP	NP	h =1=							
Any No response must be detail	ed in the comments section	below.							
Client contacted:	Date contac	cted:		***************************************	Pers	on contacted:			
Contacted by:	Regarding:								
Comments:									
Corrective Action:									

CLIENT: CITY OF ROUND ROCK
Project: IPP WEST Plant Long QTR

Lab Order: 2405086

CASE NARRATIVE

Date: 29-May-24

Samples were analyzed using the methods outlined in the following references:

Method E200.8 - Metals Analysis

Method E300 - Anions Analysis

Method E1664A - Oil & Grease Analysis

Method E624.1 - Volatile Organics Analysis

Method E625.1 - Semivolatile Organics Analysis

Method E625.1- PCB Analysis

Method E625.1 - Pesticide Analysis (Some compounds are not NELAP Certified)

Method E632 - Diuron-Hexachlorophene by LCMS Analysis (This parameter is not NELAP Certified)

Method D5812-96MOD - Dicofol in Water Analysis (this parameter is not NELAP certified)

Method D7065-17 - Nonylphenol in Water Analysis (this parameter is not NELAP certified)

Method M4500-CN E - Cyanide Analysis

Method M3500-Cr B - Hexavalent Chromium Analysis

Method M3500-Cr B - Trivalent Chromium (calculation) (this calculation is not NELAP certified)

Method M4500-P E - Total Phosphorus Analysis

Sub-contract - Herbicide and Mercury analyses by method E615 and E245.7. Analyzed at SPL.

LOG IN

The samples were received and log-in performed on 5/7/24 through 5/9/24. A total of 6 samples were received. The samples arrived in good condition and were properly packaged. A composite of the samples was performed in the laboratory at time of analysis for Oil and Grease, Cyanide, Volatile Organics.

VOLATILE ORGANICS ANALYSIS

For Volatiles analysis sample Influent Grabs 1-4 was diluted prior to analysis due to the nature of the sample (matrix).

For Volatiles analysis performed on 5/9/24 the recovery of Methyl bromide for the Initial Calibration Verification (ICV-240509) was below control limits. This is flagged accordingly in the QC summary report. The LCS was within control limits for this compound. No further corrective actions were taken.

SEMIVOLATILE ORGANICS ANALYSIS

For Semivolatiles analysis performed on 5/14/24 the matrix spike and matrix spike duplicate recoveries were above control limits for p-Chloro-m-Cresol. These are flagged accordingly in the QC summary

CLIENT: CITY OF ROUND ROCK

Project: IPP WEST Plant Long QTR

Lab Order: 2405086

CASE NARRATIVE

report. The sample selected for the matrix spike and matrix spike duplicate was not from this work order. The LCS was within control limits for this compound. No further corrective actions were taken.

DIURON-HEXACHLOROPHENE ANALYSIS

For Diuron-Hexachlorophene analysis performed on 5/13/24 the LCS and LCSD recoveries were above control limits for Hexachlorophene. These are flagged accordingly in the QC summary report. Samples Influent Comp and Effluent Comp were below detection limits for this compound. No further corrective actions were taken.

For Diuron-Hexachlorophene analysis performed on 5/13/24 the recovery of Hexachlorophene for the Initial Calibration Verification (ICV-240513) was above control limits. This is flagged accordingly. Samples Influent Comp and Effluent Comp were below detection limits for this compound. No further corrective actions were taken.

OIL & GREASE ANALYSIS

For Oil & Grease analysis performed on 5/10/24 Oil & Grease was detected below the reporting limit in the method blank (MB-115351). Samples Influent Grabs 1-4 and Effluent Grabs 1-4 may be biased high. No further corrective actions were taken.

For Oil & Grease analysis an MS was not performed due to insufficient sample volume. An LCS/LCSD was performed instead.

Date: 29-May-24

CLIENT: CITY OF ROUND ROCK
Project: IPP WEST Plant Long QTR

Lab Order: 2405086

Work Order Sample Summary

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
2405086-01	Influent Grab 1		05/07/24 12:00 PM	05/07/2024
2405086-02	Effluent Grab 1		05/07/24 11:59 PM	05/08/2024
2405086-03	Influent Grabs 1-4		05/08/24 06:00 AM	05/09/2024
2405086-04	Effluent Grabs 1-4		05/08/24 06:00 PM	05/09/2024
2405086-05	Influent Comp		05/08/24 12:00 PM	05/09/2024
2405086-06	Effluent Comp		05/08/24 11:59 PM	05/09/2024

Lab Order: 2405086

Client: CITY OF ROUND ROCK
Project: IPP WEST Plant Long QTR

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2405086-01A	Influent Grab 1	05/07/24 12:00 PM	Aqueous	M3500-Cr B	Hexachrom Prep Water	05/08/24 10:31 AM	115308
	Influent Grab 1	05/07/24 12:00 PM	Aqueous	M3500-Cr B	Hexachrom Prep Water	05/08/24 10:31 AM	115308
2405086-02A	Effluent Grab 1	05/07/24 11:59 PM	Aqueous	M3500-Cr B	Hexachrom Prep Water	05/08/24 10:31 AM	115308
2405086-03A	Influent Grabs 1-4	05/08/24 06:00 AM	Aqueous	E624_PR	Purge and Trap Water GC/MS	05/09/24 09:03 AM	115330
2405086-03B	Influent Grabs 1-4	05/08/24 06:00 AM	Aqueous	M4500-CN E	Cyanide Water Prep	05/15/24 08:03 AM	115390
2405086-03C	Influent Grabs 1-4	05/08/24 06:00 AM	Aqueous	E1664	1664 Prep	05/10/24 08:23 AM	115351
2405086-04A	Effluent Grabs 1-4	05/08/24 06:00 PM	Aqueous	E624_PR	Purge and Trap Water GC/MS	05/09/24 09:03 AM	115330
2405086-04B	Effluent Grabs 1-4	05/08/24 06:00 PM	Aqueous	M4500-CN E	Cyanide Water Prep	05/15/24 08:03 AM	115390
2405086-04C	Effluent Grabs 1-4	05/08/24 06:00 PM	Aqueous	E1664	1664 Prep	05/10/24 08:23 AM	115351
2405086-05A	Influent Comp	05/08/24 12:00 PM	Aqueous	E200.8_PR	Aq Digestion for Metals: ICP-MS	05/15/24 07:08 AM	115398
2405086-05B	Influent Comp	05/08/24 12:00 PM	Aqueous	M4500-P E	T-Phosphorus Prep Water	05/14/24 09:39 AM	115386
2405086-05C	Influent Comp	05/08/24 12:00 PM	Aqueous	E300	Anion Preparation	05/09/24 09:31 AM	115339
2405086-05D	Influent Comp	05/08/24 12:00 PM	Aqueous	E625_PR	Semivol Extraction for 625.1	05/13/24 09:22 AM	115369
	Influent Comp	05/08/24 12:00 PM	Aqueous	E625_PR	Semivol Extraction for 625.1	05/13/24 09:22 AM	115369
2405086-05E	Influent Comp	05/08/24 12:00 PM	Aqueous	E625_PR	Aq Prep Sep Funnel: Pest or PCB	05/10/24 08:47 AM	115352
2405086-05F	Influent Comp	05/08/24 12:00 PM	Aqueous	E625_PR	Aq Prep Sep Funnel: Pest or PCB	05/10/24 08:47 AM	115352
	Influent Comp	05/08/24 12:00 PM	Aqueous	E625_PR	Aq Prep Sep Funnel: Pest or PCB	05/10/24 08:47 AM	115352
2405086-05G	Influent Comp	05/08/24 12:00 PM	Aqueous	E632	632 Prep	05/13/24 08:53 AM	115364
2405086-06A	Effluent Comp	05/08/24 11:59 PM	Aqueous	E200.8_PR	Aq Digestion for Metals: ICP-MS	05/15/24 07:08 AM	115398
2405086-06B	Effluent Comp	05/08/24 11:59 PM	Aqueous	M4500-P E	T-Phosphorus Prep Water	05/14/24 09:39 AM	115386
2405086-06C	Effluent Comp	05/08/24 11:59 PM	Aqueous	E300	Anion Preparation	05/09/24 09:31 AM	115339
2405086-06D	Effluent Comp	05/08/24 11:59 PM	Aqueous	E625_PR	Semivol Extraction for 625.1	05/13/24 09:22 AM	115369
	Effluent Comp	05/08/24 11:59 PM	Aqueous	E625_PR	Semivol Extraction for 625.1	05/13/24 09:22 AM	115369
2405086-06E	Effluent Comp	05/08/24 11:59 PM	Aqueous	E625_PR	Aq Prep Sep Funnel: Pest or PCB	05/10/24 08:47 AM	115352
2405086-06F	Effluent Comp	05/08/24 11:59 PM	Aqueous	E625_PR	Aq Prep Sep Funnel: Pest or PCB	05/10/24 08:47 AM	115352
	Effluent Comp	05/08/24 11:59 PM	Aqueous	E625_PR	Aq Prep Sep Funnel: Pest or PCB	05/10/24 08:47 AM	115352
2405086-06G	Effluent Comp	05/08/24 11:59 PM	Aqueous	E632	632 Prep	05/13/24 08:53 AM	115364

Lab Order: 2405086

Client: CITY OF ROUND ROCK

Project: IPP WEST Plant Long QTR

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2405086-01A	Influent Grab 1	Aqueous	M3500-Cr B	Hexavalent Chromium-Water	115308	1	05/08/24 10:36 AM	UV/VIS_2_240508C
	Influent Grab 1	Aqueous	M3500-Cr B	Hexavalent Chromium-Water	115308	1	05/08/24 10:35 AM	UV/VIS_2_240508C
2405086-01B	Influent Grab 1	Aqueous	E245.7	Mercury Low Level	R133254	1.06	05/15/24 01:41 PM	SUB_240515B
2405086-02A	Effluent Grab 1	Aqueous	M3500-Cr B	Hexavalent Chromium-Water	115308	1	05/08/24 10:38 AM	UV/VIS_2_240508C
2405086-02B	Effluent Grab 1	Aqueous	E245.7	Mercury Low Level	R133254	1.06	05/15/24 01:51 PM	SUB_240515B
2405086-03A	Influent Grabs 1-4	Aqueous	E624.1	624.1 Volatiles Water	115330	5	05/09/24 03:56 PM	GCMS5_240509A
2405086-03B	Influent Grabs 1-4	Aqueous	M4500-CN E	Cyanide - Water Sample	115390	1	05/15/24 03:14 PM	UV/VIS_2_240515D
2405086-03C	Influent Grabs 1-4	Aqueous	E1664A	Total Oil & Grease	115351	1	05/10/24 05:00 PM	WC_240510C
2405086-04A	Effluent Grabs 1-4	Aqueous	E624.1	624.1 Volatiles Water	115330	1	05/09/24 04:21 PM	GCMS5_240509A
2405086-04B	Effluent Grabs 1-4	Aqueous	M4500-CN E	Cyanide - Water Sample	115390	1	05/15/24 03:15 PM	UV/VIS_2_240515D
2405086-04C	Effluent Grabs 1-4	Aqueous	E1664A	Total Oil & Grease	115351	1	05/10/24 05:00 PM	WC_240510C
2405086-05A	Influent Comp	Aqueous	E200.8	Total Recoverable Metals: ICP-MS	115398	1	05/15/24 12:48 PM	ICP-MS5_240515B
2405086-05B	Influent Comp	Aqueous	M4500-P E	Total Phosphorus	115386	10	05/15/24 09:44 AM	UV/VIS_2_240515A
2405086-05C	Influent Comp	Aqueous	E300	Anions by IC method - Water	115339	1	05/09/24 03:15 PM	IC4_240509A
2405086-05D	Influent Comp	Aqueous	E625.1	625.1 Semivolatile Water	115369	1	05/14/24 03:13 PM	GCMS4_240514C
	Influent Comp	Aqueous	D7065-17	Nonylphenol in Water by ASTM Met	hod115369	1	05/14/24 12:27 PM	GCMS9_240514A
2405086-05E	Influent Comp	Aqueous	E625.1	625.1 PCB by GC/MS	115352	1	05/13/24 03:38 PM	GCMS8_240513A
2405086-05F	Influent Comp	Aqueous	E625.1	625.1 Pesticide by GC/MS	115352	1	05/13/24 02:55 PM	GCMS10_240513A
	Influent Comp	Aqueous	D5812-96mod	Dicofol in Water by ASTM Method	115352	1	05/13/24 02:55 PM	GCMS10_240513B
2405086-05G	Influent Comp	Aqueous	E632	Diuron-Hexachlorophene by LCMS	115364	1	05/13/24 06:55 PM	LCMS2_240513A
2405086-05H	Influent Comp	Aqueous	E615	Herbicide in Water	R133255	1.9	05/17/24 06:37 AM	SUB_240517A
2405086-06A	Effluent Comp	Aqueous	E200.8	Total Recoverable Metals: ICP-MS	115398	1	05/15/24 12:50 PM	ICP-MS5_240515B
2405086-06B	Effluent Comp	Aqueous	M4500-P E	Total Phosphorus	115386	1	05/15/24 09:29 AM	UV/VIS_2_240515A
2405086-06C	Effluent Comp	Aqueous	E300	Anions by IC method - Water	115339	1	05/09/24 03:34 PM	IC4_240509A
2405086-06D	Effluent Comp	Aqueous	E625.1	625.1 Semivolatile Water	115369	1	05/14/24 02:24 PM	GCMS4_240514C
	Effluent Comp	Aqueous	D7065-17	Nonylphenol in Water by ASTM Met	hod115369	1	05/14/24 11:43 AM	GCMS9_240514A
2405086-06E	Effluent Comp	Aqueous	E625.1	625.1 PCB by GC/MS	115352	1	05/13/24 02:37 PM	GCMS8_240513A
2405086-06F	Effluent Comp	Aqueous	E625.1	625.1 Pesticide by GC/MS	115352	1	05/13/24 02:00 PM	GCMS10_240513A

Page 1 of 2

Lab Order: 2405086

Client: CITY OF ROUND ROCK

Project: IPP WEST Plant Long QTR

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2405086-06F	Effluent Comp	Aqueous	D5812-96mod	Dicofol in Water by ASTM Method	115352	1	05/13/24 02:00 PM	GCMS10_240513B
2405086-06G	Effluent Comp	Aqueous	E632	Diuron-Hexachlorophene by LCMS	115364	1	05/13/24 07:06 PM	LCMS2_240513A
2405086-06H	Effluent Comp	Aqueous	E615	Herbicide in Water	R133255	1.9	05/17/24 06:57 AM	SUB_240517A

CLIENT: CITY OF ROUND ROCK Client Sample ID: Influent Grab 1

Project: IPP WEST Plant Long QTR Lab ID: 2405086-01

Project No: Collection Date: 05/07/24 12:00 PM

Lab Order: 2405086 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF Date Analyzed		
MERCURY LOW LEVEL E245.7						Analyst: SUB		
Mercury	0.00307	0.00128	0.00532	J	μg/L	1.06 05/15/24 01:41 PM		
HEXAVALENT CHROMIUM-WATER		M3500-CR B				Analyst: JS		
Chromium (Hex)	<3.00	3.00	3.00		μg/L	1 05/08/24 10:35 AM		
Chromium (Tri)	<3.00	3.00	3.00	N	μg/L	1 05/08/24 10:35 AM		

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 29-May-24

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: CITY OF ROUND ROCK Client Sample ID: Effluent Grab 1

Project: IPP WEST Plant Long QTR **Lab ID:** 2405086-02

Project No: Collection Date: 05/07/24 11:59 PM

Lab Order: Matrix: AQUEOUS 2405086

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	
MERCURY LOW LEVEL		E24	Analyst: SUB					
Mercury	<0.00128	0.00128	0.00532		μg/L	1.06	05/15/24 01:51 PM	
HEXAVALENT CHROMIUM-WATER		M3500-	CR B			Analyst: JS		
Chromium (Hex)	<3.00	3.00	3.00		μg/L	1	05/08/24 10:38 AM	
Chromium (Tri)	<3.00	3.00	3.00	N	μg/L	1	05/08/24 10:38 AM	

Qualifiers: Value exceeds TCLP Maximum Concentration Level

J

DF Dilution Factor

Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 29-May-24

Е TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: CITY OF ROUND ROCK Client Sample ID: Influent Grabs 1-4

Project: IPP WEST Plant Long QTR Lab ID: 2405086-03

Project No: Collection Date: 05/08/24 06:00 AM

Lab Order: 2405086 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
TOTAL OIL & GREASE		E166				Analyst: CF
Oil & Grease	26200	2370	8460	μg/L	1	05/10/24 05:00 PM
624.1 VOLATILES WATER		E624	1.1			Analyst: JVR
Benzene	< 5.00	5.00	50.0	μg/L	5	05/09/24 03:56 PM
Carbon tetrachloride	<5.00	5.00	10.0	μg/L	5	05/09/24 03:56 PM
Chlorobenzene	<5.00	5.00	50.0	μg/L	5	05/09/24 03:56 PM
Chloroform	< 5.00	5.00	50.0	μg/L	5	05/09/24 03:56 PM
Chlorodibromomethane	<5.00	5.00	50.0	μg/L	5	05/09/24 03:56 PM
1,2-Dibromoethane	<5.00	5.00	10.0	μg/L	5	05/09/24 03:56 PM
1,2-Dichloroethane	<5.00	5.00	50.0	μg/L	5	05/09/24 03:56 PM
1,1-Dichloroethylene	<5.00	5.00	50.0	μg/L	5	05/09/24 03:56 PM
Methyl ethyl ketone	<75.0	75.0	250	μg/L	5	05/09/24 03:56 PM
Tetrachloroethylene	<10.0	10.0	50.0	μg/L	5	05/09/24 03:56 PM
Trichloroethylene	<5.00	5.00	50.0	μg/L	5	05/09/24 03:56 PM
1,1,1-Trichloroethane	<5.00	5.00	50.0	μg/L	5	05/09/24 03:56 PM
TTHM (Total Trihalomethanes)	<25.0	25.0	50.0	μg/L	5	05/09/24 03:56 PM
Vinyl chloride	<5.00	5.00	50.0	μg/L	5	05/09/24 03:56 PM
Acrolein	<75.0	75.0	250	μg/L	5	05/09/24 03:56 PM
Acrylonitrile	<15.0	15.0	250	μg/L	5	05/09/24 03:56 PM
Bromoform	<5.00	5.00	50.0	μg/L	5	05/09/24 03:56 PM
Chloroethane	<10.0	10.0	50.0	μg/L	5	05/09/24 03:56 PM
2-Chloroethylvinyl Ether	<30.0	30.0	50.0	μg/L	5	05/09/24 03:56 PM
Dichlorobromomethane	<5.00	5.00	50.0	μg/L	5	05/09/24 03:56 PM
1,1-Dichloroethane	<5.00	5.00	50.0	μg/L	5	05/09/24 03:56 PM
1,2-Dichloropropane	<5.00	5.00	50.0	μg/L	5	05/09/24 03:56 PM
1,3-Dichloropropylene	<5.00	5.00	50.0	μg/L	5	05/09/24 03:56 PM
Ethyl benzene	<5.00	5.00	50.0	μg/L	5	05/09/24 03:56 PM
Methyl bromide	<25.0	25.0	100	μg/L	5	05/09/24 03:56 PM
Methyl chloride	<5.00	5.00	100	μg/L	5	05/09/24 03:56 PM
Methylene chloride	<12.5	12.5	100	μg/L	5	05/09/24 03:56 PM
1,1,2,2-Tetra-chloroethane	<5.00	5.00	50.0	μg/L	5	05/09/24 03:56 PM
Toluene	<10.0	10.0	50.0	μg/L	5	05/09/24 03:56 PM
1,2-Trans-Dichloroethylene	<5.00	5.00	50.0	μg/L	5	05/09/24 03:56 PM
1,1,2-Trichloroethane	<5.00	5.00	50.0	μg/L	5	05/09/24 03:56 PM
1,2-Dichlorobenzene	<5.00	5.00	25.0	μg/L	5	05/09/24 03:56 PM
1,3-Dichlorobenzene	<5.00	5.00	25.0	μg/L	5	05/09/24 03:56 PM
1,4-Dichlorobenzene	<5.00	5.00	25.0	μg/L	5	05/09/24 03:56 PM
Surr: 1,2-Dichloroethane-d4	104	0	72-119	%REC	5	05/09/24 03:56 PM
Surr: 4-Bromofluorobenzene	105	0	76-119	%REC	5	05/09/24 03:56 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

CLIENT: CITY OF ROUND ROCK Client Sample ID: Influent Grabs 1-4

Project: IPP WEST Plant Long QTR Lab ID: 2405086-03

Project No: Collection Date: 05/08/24 06:00 AM

Lab Order: 2405086 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
624.1 VOLATILES WATER		E624	Analyst: JVR			
Surr: Dibromofluoromethane	99.5	0	85-115	%REC	5	05/09/24 03:56 PM
Surr: Toluene-d8	107	0	81-120	%REC	5	05/09/24 03:56 PM
CYANIDE - WATER SAMPLE		M4500-	CN E			Analyst: SMA
Cyanide, Available	<10.0	10.0	10.0	μg/L	1	05/15/24 03:14 PM
Cyanide, Total	<10.0	10.0	10.0	μg/L	1	05/15/24 03:14 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 29-May-24

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: CITY OF ROUND ROCK Client Sample ID: Effluent Grabs 1-4

Project: IPP WEST Plant Long QTR Lab ID: 2405086-04

Project No: Collection Date: 05/08/24 06:00 PM

Lab Order: 2405086 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TOTAL OIL & GREASE		E166	64A				Analyst: CF
Oil & Grease	2110	1410	5030	J	μg/L	1	05/10/24 05:00 PM
624.1 VOLATILES WATER		E624	4.1				Analyst: JVR
Benzene	<1.00	1.00	10.0		μg/L	1	05/09/24 04:21 PM
Carbon tetrachloride	<1.00	1.00	2.00		μg/L	1	05/09/24 04:21 PM
Chlorobenzene	<1.00	1.00	10.0		μg/L	1	05/09/24 04:21 PM
Chloroform	<1.00	1.00	10.0		μg/L	1	05/09/24 04:21 PM
Chlorodibromomethane	<1.00	1.00	10.0		μg/L	1	05/09/24 04:21 PM
1,2-Dibromoethane	<1.00	1.00	2.00		μg/L	1	05/09/24 04:21 PM
1,2-Dichloroethane	<1.00	1.00	10.0		μg/L	1	05/09/24 04:21 PM
1,1-Dichloroethylene	<1.00	1.00	10.0		μg/L	1	05/09/24 04:21 PM
Methyl ethyl ketone	<15.0	15.0	50.0		μg/L	1	05/09/24 04:21 PM
Tetrachloroethylene	<2.00	2.00	10.0		μg/L	1	05/09/24 04:21 PM
Trichloroethylene	<1.00	1.00	10.0		μg/L	1	05/09/24 04:21 PM
1,1,1-Trichloroethane	<1.00	1.00	10.0		μg/L	1	05/09/24 04:21 PM
TTHM (Total Trihalomethanes)	<5.00	5.00	10.0		μg/L	1	05/09/24 04:21 PM
Vinyl chloride	<1.00	1.00	10.0		μg/L	1	05/09/24 04:21 PM
Acrolein	<15.0	15.0	50.0		μg/L	1	05/09/24 04:21 PM
Acrylonitrile	<3.00	3.00	50.0		μg/L	1	05/09/24 04:21 PM
Bromoform	<1.00	1.00	10.0		μg/L	1	05/09/24 04:21 PM
Chloroethane	<2.00	2.00	10.0		μg/L	1	05/09/24 04:21 PM
2-Chloroethylvinyl Ether	<6.00	6.00	10.0		μg/L	1	05/09/24 04:21 PM
Dichlorobromomethane	<1.00	1.00	10.0		μg/L	1	05/09/24 04:21 PM
1,1-Dichloroethane	<1.00	1.00	10.0		μg/L	1	05/09/24 04:21 PM
1,2-Dichloropropane	<1.00	1.00	10.0		μg/L	1	05/09/24 04:21 PM
1,3-Dichloropropylene	<1.00	1.00	10.0		μg/L	1	05/09/24 04:21 PM
Ethyl benzene	<1.00	1.00	10.0		μg/L	1	05/09/24 04:21 PM
Methyl bromide	<5.00	5.00	20.0		μg/L	1	05/09/24 04:21 PM
Methyl chloride	<1.00	1.00	20.0		μg/L	1	05/09/24 04:21 PM
Methylene chloride	<2.50	2.50	20.0		μg/L	1	05/09/24 04:21 PM
1,1,2,2-Tetra-chloroethane	<1.00	1.00	10.0		μg/L	1	05/09/24 04:21 PM
Toluene	<2.00	2.00	10.0		μg/L	1	05/09/24 04:21 PM
1,2-Trans-Dichloroethylene	<1.00	1.00	10.0		μg/L	1	05/09/24 04:21 PM
1,1,2-Trichloroethane	<1.00	1.00	10.0		μg/L	1	05/09/24 04:21 PM
1,2-Dichlorobenzene	<1.00	1.00	5.00		μg/L	1	05/09/24 04:21 PM
1,3-Dichlorobenzene	<1.00	1.00	5.00		μg/L	1	05/09/24 04:21 PM
1,4-Dichlorobenzene	<1.00	1.00	5.00		μg/L	1	05/09/24 04:21 PM
Surr: 1,2-Dichloroethane-d4	104	0	72-119		%REC	1	05/09/24 04:21 PM
Surr: 4-Bromofluorobenzene	108	0	76-119		%REC	1	05/09/24 04:21 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

CLIENT: CITY OF ROUND ROCK Client Sample ID: Effluent Grabs 1-4

Project: IPP WEST Plant Long QTR Lab ID: 2405086-04

Project No: Collection Date: 05/08/24 06:00 PM

Lab Order: 2405086 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
624.1 VOLATILES WATER		E624	Analyst: JVR			
Surr: Dibromofluoromethane	98.9	0	85-115	%REC	1	05/09/24 04:21 PM
Surr: Toluene-d8	107	0	81-120	%REC	1	05/09/24 04:21 PM
CYANIDE - WATER SAMPLE		M4500-	CN E			Analyst: SMA
Cyanide, Available	<10.0	10.0	10.0	μg/L	1	05/15/24 03:15 PM
Cyanide, Total	<10.0	10.0	10.0	μg/L	1	05/15/24 03:15 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 29-May-24

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: CITY OF ROUND ROCK Client Sample ID: Influent Comp Project: IPP WEST Plant Long QTR Lab ID: 2405086-05

Project No: Collection Date: 05/08/24 12:00 PM

Lab Order: 2405086 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
DIURON-HEXACHLOROPHENE	BY LCMS	E63	32				Analyst: RA
Diuron	<0.278	0.278	0.741	N	μg/L	1	05/13/24 06:55 PM
Hexachlorophene	<9.26	9.26	46.3	N	μg/L	1	05/13/24 06:55 PM
Surr: Carbazole	73.2	0	35-145		%REC	1	05/13/24 06:55 PM
TOTAL RECOVERABLE METAL	S: ICP-MS	E200	0.8				Analyst: SP
Aluminum, Total	534	10.0	30.0		μg/L	1	05/15/24 12:48 PM
Antimony, Total	<0.800	0.800	2.50		μg/L	1	05/15/24 12:48 PM
Arsenic, Total	<2.00	2.00	5.00		μg/L	1	05/15/24 12:48 PM
Barium, Total	55.6	3.00	10.0		μg/L	1	05/15/24 12:48 PM
Beryllium, Total	< 0.300	0.300	1.00		μg/L	1	05/15/24 12:48 PM
Cadmium, Total	< 0.300	0.300	1.00		μg/L	1	05/15/24 12:48 PM
Chromium, Total	<2.00	2.00	5.00		μg/L	1	05/15/24 12:48 PM
Copper, Total	25.3	2.00	10.0		μg/L	1	05/15/24 12:48 PM
Lead, Total	1.06	0.300	1.00		μg/L	1	05/15/24 12:48 PM
Manganese	30.0	2.00	2.00		μg/L	1	05/15/24 12:48 PM
Molybdenum	2.04	2.00	5.00	J	μg/L	1	05/15/24 12:48 PM
Nickel, Total	<3.00	3.00	10.0		μg/L	1	05/15/24 12:48 PM
Selenium, Total	<2.00	2.00	5.00		μg/L	1	05/15/24 12:48 PM
Silver, Total	<1.00	1.00	2.00		μg/L	1	05/15/24 12:48 PM
Thallium, Total	< 0.500	0.500	1.50		μg/L	1	05/15/24 12:48 PM
Zinc, Total	63.2	2.00	5.00		μg/L	1	05/15/24 12:48 PM
625.1 PCB BY GC/MS		E62	5.1				Analyst: DEW
Aroclor 1016	< 0.951	0.951	1.90		μg/L	1	05/13/24 03:38 PM
Aroclor 1221	< 0.951	0.951	1.90		μg/L	1	05/13/24 03:38 PM
Aroclor 1232	< 0.951	0.951	1.90		μg/L	1	05/13/24 03:38 PM
Aroclor 1242	< 0.951	0.951	1.90		μg/L	1	05/13/24 03:38 PM
Aroclor 1248	< 0.951	0.951	1.90		μg/L	1	05/13/24 03:38 PM
Aroclor 1254	< 0.951	0.951	1.90		μg/L	1	05/13/24 03:38 PM
Aroclor 1260	< 0.951	0.951	1.90		μg/L	1	05/13/24 03:38 PM
Total PCBs	< 0.951	0.951	1.90		μg/L	1	05/13/24 03:38 PM
Surr: 2-Fluorobiphenyl	51.5	0	43-116		%REC	1	05/13/24 03:38 PM
Surr: 4-Terphenyl-d14	65.9	0	33-141		%REC	1	05/13/24 03:38 PM
625.1 SEMIVOLATILE WATER	E625.1					Analyst: DEW	
Benzidine	<47.3	47.3	473		μg/L	1	05/14/24 03:13 PM
Benzo(a)anthracene	<18.9	18.9	47.3		μg/L	1	05/14/24 03:13 PM
Benzo(a)pyrene	<18.9	18.9	47.3		μg/L	1	05/14/24 03:13 PM
Chrysene	<18.9	18.9	47.3		μg/L	1	05/14/24 03:13 PM
2,4-Dimethylphenol	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

CLIENT: CITY OF ROUND ROCK Client Sample ID: Influent Comp

Project:IPP WEST Plant Long QTRLab ID: 2405086-05Project No:Collection Date: 05/08/24 12:00 PM

Lab Order: 2405086 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
625.1 SEMIVOLATILE WATER		E625.	1				Analyst: DEW
4,6-Dinitro-o-cresol	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
m,p-Cresols	64.4	18.9	94.7	J	μg/L	1	05/14/24 03:13 PM
o-Cresols	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
p-Chloro-m-Cresol	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
Hexachlorobenzene	<18.9	18.9	47.3		μg/L	1	05/14/24 03:13 PM
Hexachlorobutadiene	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
Hexachloroethane	<18.9	18.9	189		μg/L	1	05/14/24 03:13 PM
Nitrobenzene	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
N-Nitrosodiethylamine	<18.9	18.9	189		μg/L	1	05/14/24 03:13 PM
N-Nitro-di-n-Butylamine	<18.9	18.9	189		μg/L	1	05/14/24 03:13 PM
Pentachlorobenzene	<18.9	18.9	189		μg/L	1	05/14/24 03:13 PM
Pentachlorophenol	<18.9	18.9	47.3		μg/L	1	05/14/24 03:13 PM
Phenanthrene	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
Pyridine	<37.9	37.9	189		μg/L	1	05/14/24 03:13 PM
1,2,4,5-Tetrachlorobenzene	<18.9	18.9	189		μg/L	1	05/14/24 03:13 PM
2,4,5-Trichlorophenol	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
2-Chlorophenol	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
2,4-Dichlorophenol	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
2,4-Dinitrophenol	<18.9	18.9	473		μg/L	1	05/14/24 03:13 PM
2-Nitrophenol	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
4-Nitrophenol	<18.9	18.9	473		μg/L	1	05/14/24 03:13 PM
Phenol	30.3	18.9	94.7	J	μg/L	1	05/14/24 03:13 PM
2,4,6-Trichlorophenol	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
3,4-Benzofluoranthene	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
Acenaphthene	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
Acenaphthylene	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
Anthracene	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
Benzo(ghi)perylene	<18.9	18.9	189		μg/L	1	05/14/24 03:13 PM
Benzo(k)Fluoranthene	<18.9	18.9	47.3		μg/L	1	05/14/24 03:13 PM
Bis(2-chloroethoxy)methane	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
Bis(2-chloroethyl)ether	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
Bis(2-chloroisopropyl)ether	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
Bis(2-ethylhexyl)phthalate	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
4-Bromophenyl phenyl ether	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
Butylbenzyl Phthalate	<37.9	37.9	94.7		μg/L	1	05/14/24 03:13 PM
2-Chloronaphthalene	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
4-Chlorophenyl phenyl ether	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
Dibenzo(a,h)Anthracene	<18.9	18.9	47.3		μg/L	1	05/14/24 03:13 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

CLIENT: CITY OF ROUND ROCK Client Sample ID: Influent Comp
Project: IPP WEST Plant Long QTR Lab ID: 2405086-05

Project No: Collection Date: 05/08/24 12:00 PM

Lab Order: 2405086 Matrix: AQUEOUS

Analyses	Result	t MDL	RL	Qual	Units	DF	Date Analyzed
625.1 SEMIVOLATILE WATER		E6:	25.1				Analyst: DEW
3,3-Dichlorobenzidine	<18.9	18.9	47.3		μg/L	1	05/14/24 03:13 PM
Diethyl phthalate	<37.9	37.9	94.7		μg/L	1	05/14/24 03:13 PM
Dimethyl phthalate	<37.9	37.9	94.7		μg/L	1	05/14/24 03:13 PM
Di-n-butyl phthalate	<37.9	37.9	94.7		μg/L	1	05/14/24 03:13 PM
2,4-Dinitrotoluene	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
2,6-Dinitrotoluene	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
Di-n-octyl phthalate	<37.9	37.9	94.7		μg/L	1	05/14/24 03:13 PM
1,2-Diphenyl Hydrazine	<18.9	18.9	189		μg/L	1	05/14/24 03:13 PM
Fluoranthene	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
Fluorene	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
Hexachloro-cyclopentadiene	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
Indeno(1,2,3-cd)pyrene	<18.9	18.9	47.3		μg/L	1	05/14/24 03:13 PM
Isophorone	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
Naphthalene	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
N-Nitrosodimethylamine	<18.9	18.9	189		μg/L	1	05/14/24 03:13 PM
N-Nitrosodi-n-propylamine	<18.9	18.9	189		μg/L	1	05/14/24 03:13 PM
N-Nitrosodiphenylamine	<18.9	18.9	189		μg/L	1	05/14/24 03:13 PM
Pyrene	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
1,2,4-Trichlorobenzene	<18.9	18.9	94.7		μg/L	1	05/14/24 03:13 PM
Cresols	64.4	18.9	94.7	J	μg/L	1	05/14/24 03:13 PM
Phenol, Total	30.3	18.9	94.7	J	μg/L	1	05/14/24 03:13 PM
Surr: 2,4,6-Tribromophenol	81.8	0	10-123		%REC	1	05/14/24 03:13 PM
Surr: 2-Fluorobiphenyl	66.0	0	43-116		%REC	1	05/14/24 03:13 PM
Surr: 2-Fluorophenol	32.5	0	21-100		%REC	1	05/14/24 03:13 PM
Surr: 4-Terphenyl-d14	94.0	0	33-141		%REC	1	05/14/24 03:13 PM
Surr: Nitrobenzene-d5	67.5	0	35-115		%REC	1	05/14/24 03:13 PM
Surr: Phenol-d5	20.8	0	10-94		%REC	1	05/14/24 03:13 PM
625.1 PESTICIDE BY GC/MS		E6:	25.1				Analyst: DEW
4,4-DDD	< 0.0896	0.0896	0.179		μg/L	1	05/13/24 02:55 PM
4,4-DDE	< 0.0896	0.0896	0.179		μg/L	1	05/13/24 02:55 PM
4,4-DDT	< 0.0896	0.0896	0.179		μg/L	1	05/13/24 02:55 PM
Aldrin	< 0.0896	0.0896	0.0896		μg/L	1	05/13/24 02:55 PM
alpha-BHC	< 0.0896	0.0896	0.179		μg/L	1	05/13/24 02:55 PM
alpha-Endosulfan	< 0.0896	0.0896	0.0896		μg/L	1	05/13/24 02:55 PM
beta-BHC	< 0.0896	0.0896	0.179		μg/L	1	05/13/24 02:55 PM
beta-Endosulfan	< 0.0896	0.0896	0.179		μg/L	1	05/13/24 02:55 PM
Carbaryl	<0.0896	0.0896	0.269	N	μg/L	1	05/13/24 02:55 PM
Chlordane	<0.538	0.538	1.79	N	μg/L	1	05/13/24 02:55 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

CLIENT: CITY OF ROUND ROCK Client Sample ID: Influent Comp
Project: IPP WEST Plant Long QTR Lab ID: 2405086-05

Project No: Collection Date: 05/08/24 12:00 PM

Lab Order: 2405086 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
625.1 PESTICIDE BY GC/MS		E625	5.1				Analyst: DEW
Chloropyrifos	< 0.0896	0.0896	0.269	N	μg/L	1	05/13/24 02:55 PM
delta-BHC	< 0.0896	0.0896	0.179		μg/L	1	05/13/24 02:55 PM
Diazinon	< 0.0896	0.0896	0.269	N	μg/L	1	05/13/24 02:55 PM
Dieldrin	< 0.0896	0.0896	0.179		μg/L	1	05/13/24 02:55 PM
Endosulfan sulfate	< 0.0896	0.0896	0.179		μg/L	1	05/13/24 02:55 PM
Endrin	< 0.0896	0.0896	0.179		μg/L	1	05/13/24 02:55 PM
Endrin aldehyde	< 0.0896	0.0896	0.179		μg/L	1	05/13/24 02:55 PM
gamma-BHC	< 0.0896	0.0896	0.179		μg/L	1	05/13/24 02:55 PM
Guthion	< 0.0896	0.0896	0.269	N	μg/L	1	05/13/24 02:55 PM
Heptachlor	< 0.0896	0.0896	0.0896		μg/L	1	05/13/24 02:55 PM
Heptachlor epoxide	< 0.0896	0.0896	0.0896		μg/L	1	05/13/24 02:55 PM
Malathion	< 0.0896	0.0896	0.269	N	μg/L	1	05/13/24 02:55 PM
Methoxychlor	<0.179	0.179	0.179	N	μg/L	1	05/13/24 02:55 PM
Mirex	< 0.0896	0.0896	0.179	N	μg/L	1	05/13/24 02:55 PM
Parathion	< 0.0896	0.0896	0.269	N	μg/L	1	05/13/24 02:55 PM
Toxaphene	<2.69	2.69	2.69		μg/L	1	05/13/24 02:55 PM
Demeton	< 0.0896	0.0896	0.269	N	μg/L	1	05/13/24 02:55 PM
Surr: 2-Fluorobiphenyl	60.6	0	43-116		%REC	1	05/13/24 02:55 PM
Surr: 4-Terphenyl-d14	96.7	0	33-141		%REC	1	05/13/24 02:55 PM
DICOFOL IN WATER BY ASTM	METHOD	D5812-9	6MOD				Analyst: DEW
Dicofol	<1.79	1.79	3.58	N	μg/L	1	05/13/24 02:55 PM
NONYLPHENOL IN WATER BY	ASTM METHOD	D7065	5-17				Analyst: DEW
Nonylphenol	<663	663	947	N	μg/L	1	05/14/24 12:27 PM
HERBICIDE IN WATER		E61	5				Analyst: SUB
2,4-D	< 0.303	0.303	0.952		μg/L	1.9	05/17/24 06:37 AM
2,4,5-TP (Silvex)	<0.170	0.170	0.571		μg/L	1.9	05/17/24 06:37 AM
ANIONS BY IC METHOD - WAT	ER	E30	0				Analyst: KES
Fluoride	181	100	400	J	μg/L	1	05/09/24 03:15 PM
Nitrate-N	<100	100	500		μg/L	1	05/09/24 03:15 PM
TOTAL PHOSPHORUS		M4500	-P E				Analyst: KES
Phosphorus	3850	400	1000		μg/L	10	05/15/24 09:44 AM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 29-May-24

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: CITY OF ROUND ROCK Client Sample ID: Effluent Comp
Project: IPP WEST Plant Long QTR Lab ID: 2405086-06

Project No: Collection Date: 05/08/24 11:59 PM

Lab Order: 2405086 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
DIURON-HEXACHLOROPHENE	BY LCMS	E63	32				Analyst: RA
Diuron	<0.0293	0.0293	0.0783	N	μg/L	1	05/13/24 07:06 PM
Hexachlorophene	< 0.978	0.978	4.89	N	μg/L	1	05/13/24 07:06 PM
Surr: Carbazole	60.8	0	35-145		%REC	1	05/13/24 07:06 PM
TOTAL RECOVERABLE METAL	S: ICP-MS	E200	0.8				Analyst: SP
Aluminum, Total	27.1	10.0	30.0	J	μg/L	1	05/15/24 12:50 PM
Antimony, Total	<0.800	0.800	2.50		μg/L	1	05/15/24 12:50 PM
Arsenic, Total	<2.00	2.00	5.00		μg/L	1	05/15/24 12:50 PM
Barium, Total	39.7	3.00	10.0		μg/L	1	05/15/24 12:50 PM
Beryllium, Total	<0.300	0.300	1.00		μg/L	1	05/15/24 12:50 PM
Cadmium, Total	< 0.300	0.300	1.00		μg/L	1	05/15/24 12:50 PM
Chromium, Total	<2.00	2.00	5.00		μg/L	1	05/15/24 12:50 PM
Copper, Total	4.19	2.00	10.0	J	μg/L	1	05/15/24 12:50 PM
Lead, Total	< 0.300	0.300	1.00		μg/L	1	05/15/24 12:50 PM
Manganese	4.13	2.00	2.00		μg/L	1	05/15/24 12:50 PM
Molybdenum	<2.00	2.00	5.00		μg/L	1	05/15/24 12:50 PM
Nickel, Total	<3.00	3.00	10.0		μg/L	1	05/15/24 12:50 PM
Selenium, Total	<2.00	2.00	5.00		μg/L	1	05/15/24 12:50 PM
Silver, Total	<1.00	1.00	2.00		μg/L	1	05/15/24 12:50 PM
Thallium, Total	< 0.500	0.500	1.50		μg/L	1	05/15/24 12:50 PM
Zinc, Total	36.1	2.00	5.00		μg/L	1	05/15/24 12:50 PM
625.1 PCB BY GC/MS		E625	5.1				Analyst: DEW
Aroclor 1016	< 0.0983	0.0983	0.197		μg/L	1	05/13/24 02:37 PM
Aroclor 1221	< 0.0983	0.0983	0.197		μg/L	1	05/13/24 02:37 PM
Aroclor 1232	< 0.0983	0.0983	0.197		μg/L	1	05/13/24 02:37 PM
Aroclor 1242	< 0.0983	0.0983	0.197		μg/L	1	05/13/24 02:37 PM
Aroclor 1248	<0.0983	0.0983	0.197		μg/L	1	05/13/24 02:37 PM
Aroclor 1254	< 0.0983	0.0983	0.197		μg/L	1	05/13/24 02:37 PM
Aroclor 1260	<0.0983	0.0983	0.197		μg/L	1	05/13/24 02:37 PM
Total PCBs	< 0.0983	0.0983	0.197		μg/L	1	05/13/24 02:37 PM
Surr: 2-Fluorobiphenyl	52.4	0	43-116		%REC	1	05/13/24 02:37 PM
Surr: 4-Terphenyl-d14	64.1	0	33-141		%REC	1	05/13/24 02:37 PM
625.1 SEMIVOLATILE WATER		E625	5.1				Analyst: DEW
Benzidine	<4.76	4.76	47.6		μg/L	1	05/14/24 02:24 PM
Benzo(a)anthracene	<1.90	1.90	4.76		μg/L	1	05/14/24 02:24 PM
Benzo(a)pyrene	<1.90	1.90	4.76		μg/L	1	05/14/24 02:24 PM
Chrysene	<1.90	1.90	4.76		μg/L	1	05/14/24 02:24 PM
2,4-Dimethylphenol	<1.90	1.90	9.52		μg/L	1	05/14/24 02:24 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 29-May-24

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

CLIENT: CITY OF ROUND ROCK Client Sample ID: Effluent Comp
Project: IPP WEST Plant Long QTR Lab ID: 2405086-06

Project No: Collection Date: 05/08/24 11:59 PM

Lab Order: 2405086 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Un	nits DF	Date Analyzed
625.1 SEMIVOLATILE WATER		E625.	1			Analyst: DEW
4,6-Dinitro-o-cresol	<1.90	1.90	9.52	μg/l		05/14/24 02:24 PM
m,p-Cresols	<1.90	1.90	9.52	μg/l		05/14/24 02:24 PM
o-Cresols	<1.90	1.90	9.52	μg/l		05/14/24 02:24 PM
p-Chloro-m-Cresol	<1.90	1.90	9.52	μg/l		05/14/24 02:24 PM
Hexachlorobenzene	<1.90	1.90	4.76	μg/l	_ 1	05/14/24 02:24 PM
Hexachlorobutadiene	<1.90	1.90	9.52	μg/l	_ 1	05/14/24 02:24 PM
Hexachloroethane	<1.90	1.90	19.0	μg/l	_ 1	05/14/24 02:24 PM
Nitrobenzene	<1.90	1.90	9.52	μg/l	_ 1	05/14/24 02:24 PM
N-Nitrosodiethylamine	<1.90	1.90	19.0	μg/l	_ 1	05/14/24 02:24 PM
N-Nitro-di-n-Butylamine	<1.90	1.90	19.0	μg/l	_ 1	05/14/24 02:24 PM
Pentachlorobenzene	<1.90	1.90	19.0	μg/l	_ 1	05/14/24 02:24 PM
Pentachlorophenol	<1.90	1.90	4.76	μg/l	_ 1	05/14/24 02:24 PM
Phenanthrene	<1.90	1.90	9.52	μg/l	_ 1	05/14/24 02:24 PM
Pyridine	<3.81	3.81	19.0	μg/l	_ 1	05/14/24 02:24 PM
1,2,4,5-Tetrachlorobenzene	<1.90	1.90	19.0	μg/l	_ 1	05/14/24 02:24 PM
2,4,5-Trichlorophenol	<1.90	1.90	9.52	μg/l	_ 1	05/14/24 02:24 PM
2-Chlorophenol	<1.90	1.90	9.52	μg/l	_ 1	05/14/24 02:24 PM
2,4-Dichlorophenol	<1.90	1.90	9.52	μg/l	_ 1	05/14/24 02:24 PM
2,4-Dinitrophenol	<1.90	1.90	47.6	μg/l	_ 1	05/14/24 02:24 PM
2-Nitrophenol	<1.90	1.90	9.52	μg/l	_ 1	05/14/24 02:24 PM
4-Nitrophenol	<1.90	1.90	47.6	μg/l	_ 1	05/14/24 02:24 PM
Phenol	<1.90	1.90	9.52	μg/l	_ 1	05/14/24 02:24 PM
2,4,6-Trichlorophenol	<1.90	1.90	9.52	μg/l	_ 1	05/14/24 02:24 PM
3,4-Benzofluoranthene	<1.90	1.90	9.52	μg/l	_ 1	05/14/24 02:24 PM
Acenaphthene	<1.90	1.90	9.52	μg/l		05/14/24 02:24 PM
Acenaphthylene	<1.90	1.90	9.52	μg/l		05/14/24 02:24 PM
Anthracene	<1.90	1.90	9.52	μg/l		05/14/24 02:24 PM
Benzo(ghi)perylene	<1.90	1.90	19.0	μg/l	_ 1	05/14/24 02:24 PM
Benzo(k)Fluoranthene	<1.90	1.90	4.76	μg/l		05/14/24 02:24 PM
Bis(2-chloroethoxy)methane	<1.90	1.90	9.52	μg/l		05/14/24 02:24 PM
Bis(2-chloroethyl)ether	<1.90	1.90	9.52	μg/l		05/14/24 02:24 PM
Bis(2-chloroisopropyl)ether	<1.90	1.90	9.52	μg/l		05/14/24 02:24 PM
Bis(2-ethylhexyl)phthalate	<1.90	1.90	9.52	μg/l		05/14/24 02:24 PM
4-Bromophenyl phenyl ether	<1.90	1.90	9.52	μg/l		05/14/24 02:24 PM
Butylbenzyl Phthalate	<3.81	3.81	9.52	μg/l		05/14/24 02:24 PM
2-Chloronaphthalene	<1.90	1.90	9.52	μg/l		05/14/24 02:24 PM
4-Chlorophenyl phenyl ether	<1.90	1.90	9.52	μg/l		05/14/24 02:24 PM
Dibenzo(a,h)Anthracene	<1.90	1.90	4.76	μg/l		05/14/24 02:24 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

CLIENT: CITY OF ROUND ROCK Client Sample ID: Effluent Comp
Project: IPP WEST Plant Long QTR Lab ID: 2405086-06

Project No: Collection Date: 05/08/24 11:59 PM

Lab Order: 2405086 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
625.1 SEMIVOLATILE WATER		E62	5.1				Analyst: DEW
3,3-Dichlorobenzidine	<1.90	1.90	4.76		μg/L	1	05/14/24 02:24 PM
Diethyl phthalate	<3.81	3.81	9.52		μg/L	1	05/14/24 02:24 PM
Dimethyl phthalate	<3.81	3.81	9.52		μg/L	1	05/14/24 02:24 PM
Di-n-butyl phthalate	<3.81	3.81	9.52		μg/L	1	05/14/24 02:24 PM
2,4-Dinitrotoluene	<1.90	1.90	9.52		μg/L	1	05/14/24 02:24 PM
2,6-Dinitrotoluene	<1.90	1.90	9.52		μg/L	1	05/14/24 02:24 PM
Di-n-octyl phthalate	<3.81	3.81	9.52		μg/L	1	05/14/24 02:24 PM
1,2-Diphenyl Hydrazine	<1.90	1.90	19.0		μg/L	1	05/14/24 02:24 PM
Fluoranthene	<1.90	1.90	9.52		μg/L	1	05/14/24 02:24 PM
Fluorene	<1.90	1.90	9.52		μg/L	1	05/14/24 02:24 PM
Hexachloro-cyclopentadiene	<1.90	1.90	9.52		μg/L	1	05/14/24 02:24 PM
Indeno(1,2,3-cd)pyrene	<1.90	1.90	4.76		μg/L	1	05/14/24 02:24 PM
Isophorone	<1.90	1.90	9.52		μg/L	1	05/14/24 02:24 PM
Naphthalene	<1.90	1.90	9.52		μg/L	1	05/14/24 02:24 PM
N-Nitrosodimethylamine	<1.90	1.90	19.0		μg/L	1	05/14/24 02:24 PM
N-Nitrosodi-n-propylamine	<1.90	1.90	19.0		μg/L	1	05/14/24 02:24 PM
N-Nitrosodiphenylamine	<1.90	1.90	19.0		μg/L	1	05/14/24 02:24 PM
Pyrene	<1.90	1.90	9.52		μg/L	1	05/14/24 02:24 PM
1,2,4-Trichlorobenzene	<1.90	1.90	9.52		μg/L	1	05/14/24 02:24 PM
Cresols	<1.90	1.90	9.52		μg/L	1	05/14/24 02:24 PM
Phenol, Total	<1.90	1.90	9.52		μg/L	1	05/14/24 02:24 PM
Surr: 2,4,6-Tribromophenol	82.2	0	10-123		%REC	1	05/14/24 02:24 PM
Surr: 2-Fluorobiphenyl	83.5	0	43-116		%REC	1	05/14/24 02:24 PM
Surr: 2-Fluorophenol	45.0	0	21-100		%REC	1	05/14/24 02:24 PM
Surr: 4-Terphenyl-d14	103	0	33-141		%REC	1	05/14/24 02:24 PM
Surr: Nitrobenzene-d5	86.0	0	35-115		%REC	1	05/14/24 02:24 PM
Surr: Phenol-d5	28.5	0	10-94		%REC	1	05/14/24 02:24 PM
625.1 PESTICIDE BY GC/MS		E62	5.1				Analyst: DEW
4,4-DDD	< 0.00974	0.00974	0.0195		μg/L	1	05/13/24 02:00 PM
4,4-DDE	< 0.00974	0.00974	0.0195		μg/L	1	05/13/24 02:00 PM
4,4-DDT	< 0.00974	0.00974	0.0195		μg/L	1	05/13/24 02:00 PM
Aldrin	< 0.00974	0.00974	0.00974		μg/L	1	05/13/24 02:00 PM
alpha-BHC	< 0.00974	0.00974	0.0195		μg/L	1	05/13/24 02:00 PM
alpha-Endosulfan	< 0.00974	0.00974	0.00974		μg/L	1	05/13/24 02:00 PM
beta-BHC	< 0.00974	0.00974	0.0195		μg/L	1	05/13/24 02:00 PM
beta-Endosulfan	< 0.00974	0.00974	0.0195		μg/L	1	05/13/24 02:00 PM
Carbaryl	< 0.00974	0.00974	0.0292	N	μg/L	1	05/13/24 02:00 PM
Chlordane	<0.0585	0.0585	0.195	N	μg/L	1	05/13/24 02:00 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

CLIENT: CITY OF ROUND ROCK Client Sample ID: Effluent Comp
Project: IPP WEST Plant Long QTR Lab ID: 2405086-06

Project No: Collection Date: 05/08/24 11:59 PM

Lab Order: 2405086 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
625.1 PESTICIDE BY GC/MS		E62	5.1				Analyst: DEW
Chloropyrifos	< 0.00974	0.00974	0.0292	N	μg/L	1	05/13/24 02:00 PM
delta-BHC	< 0.00974	0.00974	0.0195		μg/L	1	05/13/24 02:00 PM
Diazinon	< 0.00974	0.00974	0.0292	N	μg/L	1	05/13/24 02:00 PM
Dieldrin	< 0.00974	0.00974	0.0195		μg/L	1	05/13/24 02:00 PM
Endosulfan sulfate	< 0.00974	0.00974	0.0195		μg/L	1	05/13/24 02:00 PM
Endrin	< 0.00974	0.00974	0.0195		μg/L	1	05/13/24 02:00 PM
Endrin aldehyde	< 0.00974	0.00974	0.0195		μg/L	1	05/13/24 02:00 PM
gamma-BHC	< 0.00974	0.00974	0.0195		μg/L	1	05/13/24 02:00 PM
Guthion	< 0.00974	0.00974	0.0292	N	μg/L	1	05/13/24 02:00 PM
Heptachlor	< 0.00974	0.00974	0.00974		μg/L	1	05/13/24 02:00 PM
Heptachlor epoxide	< 0.00974	0.00974	0.00974		μg/L	1	05/13/24 02:00 PM
Malathion	< 0.00974	0.00974	0.0292	N	μg/L	1	05/13/24 02:00 PM
Methoxychlor	< 0.0195	0.0195	0.0195	N	μg/L	1	05/13/24 02:00 PM
Mirex	< 0.00974	0.00974	0.0195	N	μg/L	1	05/13/24 02:00 PM
Parathion	< 0.00974	0.00974	0.0292	N	μg/L	1	05/13/24 02:00 PM
Toxaphene	<0.292	0.292	0.292		μg/L	1	05/13/24 02:00 PM
Demeton	< 0.00974	0.00974	0.0292	N	μg/L	1	05/13/24 02:00 PM
Surr: 2-Fluorobiphenyl	74.7	0	43-116		%REC	1	05/13/24 02:00 PM
Surr: 4-Terphenyl-d14	101	0	33-141		%REC	1	05/13/24 02:00 PM
DICOFOL IN WATER BY ASTM M	ETHOD	D5812-9	96MOD				Analyst: DEW
Dicofol	<0.195	0.195	0.390	N	μg/L	1	05/13/24 02:00 PM
NONYLPHENOL IN WATER BY AS	STM METHOD	D706	5-17				Analyst: DEW
Nonylphenol	<66.6	66.6	95.2	N	μg/L	1	05/14/24 11:43 AM
HERBICIDE IN WATER		E6 ⁻	15				Analyst: SUB
2,4-D	0.776	0.302	0.949	J	μg/L	1.9	05/17/24 06:57 AM
2,4,5-TP (Silvex)	0.914	0.170	0.569		μg/L	1.9	05/17/24 06:57 AM
ANIONS BY IC METHOD - WATER	2	E30	00				Analyst: KES
Fluoride	255	100	400	J	μg/L	1	05/09/24 03:34 PM
Nitrate-N	10400	100	500		μg/L	1	05/09/24 03:34 PM
TOTAL PHOSPHORUS		M450	0-P E				Analyst: KES
Phosphorus	247	40.0	100		μg/L	1	05/15/24 09:29 AM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 29-May-24

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

Date: 29-May-24

CLIENT: CITY OF ROUND ROCK

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long OTR RunID: LCMS2 240513A

Project: IPP WE	SI Plant Loi	ng Q1 K				Kulll	<i>)</i> . I	JC1V152_24	10313/	1	
The QC data in batch 115364	applies to the	following s	amples: 240	5086-05G, 2405	5086-06G						
Sample ID: MB-115364	Batch ID:	115364		TestNo:	E632			Units:	μg/L		
SampType: MBLK	Run ID:	LCMS2	_240513A	Analysis	Date: 5/13/2	024 5:13	:53 PM	Prep Date:	5/13/2	2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimi	t Qual
Diuron	<	<0.0300	0.0800								N
Hexachlorophene		<1.00	5.00								Ν
Surr: Carbazole		6.09		10.00		60.9	35	145			
Sample ID: LCS-115364	Batch ID:	115364		TestNo:	E632			Units:	μg/L		
SampType: LCS	Run ID:	LCMS2	_240513A	Analysis	Date: 5/13/2	024 5:25	10 PM	Prep Date:	5/13/2	2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimi	t Qual
Diuron		1.77	0.0800	2.000	0	88.6	35	145			N
Hexachlorophene		3.03	5.00	2.000	0	152	35	145			SN
Surr: Carbazole		7.44		10.00		74.4	35	145			
Sample ID: LCSD-115364	Batch ID:	115364		TestNo:	E632			Units:	μg/L		
SampType: LCSD	Run ID:	LCMS2	_240513A	Analysis	Date: 5/13/2	024 5:36	27 PM	Prep Date:	5/13/2	2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimi	t Qual
Diuron		2.09	0.0800	2.000	0	104	35	145	16.4	30	N
Hexachlorophene		3.32	5.00	2.000	0	166	35	145	8.94	30	SN
Surr: Carbazole		7.88		10.00		78.8	35	145	0	0	

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 1 of 44

Work Order: 2405086 ANALYTICAL QC SUMMARY REPORT

RunID: LCMS2_240513A **Project:** IPP WEST Plant Long QTR

Sample ID: ICV-240513	Batch ID:	R133018	3	TestNo): E63	2		Units:	μg/L	•
SampType: ICV	Run ID:	LCMS2	_240513A	Analys	is Date: 5/1 3	3/2024 11:12	2:54 AM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Diuron		100	0.0800	100.0	0	100	90	110		N
Hexachlorophene		138	5.00	100.0	0	138	90	110		SN
Surr: Carbazole		1020		1000		102	35	145		

Qualifiers:

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits R

Spike Recovery outside control limits

Parameter not NELAP certified

Page 2 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR

RunID: ICP-MS5_240515B

Sample ID: MB-115398	Batch ID:	115398		TestNo	E20	0.8		Units:	μg/L
SampType: MBLK	Run ID:	ICP-MS5	_240515B	Analysi	s Date: 5/15	5/2024 12:29	9:00 PM	Prep Date:	5/15/2024
Analyte	I	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit 9	%RPD RPDLimit Qu
Aluminum, Total		<10.0	30.0						
Antimony, Total	•	<0.800	2.50						
Arsenic, Total		<2.00	5.00						
Barium, Total		<3.00	10.0						
Beryllium, Total	•	<0.300	1.00						
Cadmium, Total	•	<0.300	1.00						
Chromium, Total		<2.00	5.00						
Copper, Total		<2.00	10.0						
Lead, Total	•	<0.300	1.00						
Manganese		<2.00	2.00						
Molybdenum		<2.00	5.00						
Nickel, Total		<3.00	10.0						
Selenium, Total		<2.00	5.00						
Silver, Total		<1.00	2.00						
Thallium, Total	•	<0.500	1.50						
Zinc, Total		<2.00	5.00						
Sample ID: LCS-115398	Batch ID:	115398		TestNo	E20	0.8		Units:	μg/L
SampType: LCS	Run ID:	ICP-MS5	240515B	Analysi	s Date: 5/15	5/2024 12:32	2:00 PM	Prep Date:	5/15/2024

Sample ID. LC3-113396	Daten ID.	113330	163	uvo.	L200.0		Offits.	μg/ L
SampType: LCS	Run ID:	ICP-MS5_240515	B Ana	lysis Date:	5/15/2024 12:3	2:00 PM	Prep Date:	5/15/2024
Analyte	Re	esult RL	SPK valu	e Ref Va	al %REC	LowLim	it HighLimit %	6RPD RPDLimit Qua
Aluminum, Total	5	050 30.0	5000	0	101	85	115	
Antimony, Total	2	204 2.50	200.0	0	102	85	115	
Arsenic, Total	2	201 5.00	200.0	0	100	85	115	
Barium, Total	2	200 10.0	200.0	0	100	85	115	
Beryllium, Total	1	1.00	200.0	0	95.3	85	115	
Cadmium, Total	2	200 1.00	200.0	0	99.8	85	115	
Chromium, Total	1	199 5.00	200.0	0	99.7	85	115	
Copper, Total	2	202 10.0	200.0	0	101	85	115	
Lead, Total	1	1.00	200.0	0	98.1	85	115	
Manganese	2	202 2.00	200.0	0	101	85	115	
Molybdenum	1	198 5.00	200.0	0	99.0	85	115	
Nickel, Total	2	205 10.0	200.0	0	102	85	115	
Selenium, Total	2	207 5.00	200.0	0	103	85	115	
Silver, Total	2	206 2.00	200.0	0	103	85	115	
Thallium, Total	1	1.50	200.0	0	96.9	85	115	
Zinc, Total	2	203 5.00	200.0	0	101	85	115	

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 3 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR

RunID: ICP-MS5_240515B

Sample ID: LCSD-115398	Batch ID:	115398		TestNo	: E20	0.8		Units:	μg/L	
SampType: LCSD	Run ID:	ICP-MS5	_240515B	Analys	is Date: 5/15	5/2024 12:35	:00 PM	Prep Date:	5/15/2	2024
Analyte	1	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD I	RPDLimit Qual
Aluminum, Total		4980	30.0	5000	0	99.6	85	115	1.48	15
Antimony, Total		206	2.50	200.0	0	103	85	115	0.736	15
Arsenic, Total		199	5.00	200.0	0	99.3	85	115	1.11	15
Barium, Total		202	10.0	200.0	0	101	85	115	0.559	15
Beryllium, Total		190	1.00	200.0	0	95.2	85	115	0.082	15
Cadmium, Total		199	1.00	200.0	0	99.7	85	115	0.121	15
Chromium, Total		197	5.00	200.0	0	98.7	85	115	1.01	15
Copper, Total		202	10.0	200.0	0	101	85	115	0.161	15
Lead, Total		198	1.00	200.0	0	99.1	85	115	1.06	15
Manganese		199	2.00	200.0	0	99.7	85	115	1.16	15
Molybdenum		200	5.00	200.0	0	99.8	85	115	0.769	15
Nickel, Total		204	10.0	200.0	0	102	85	115	0.359	15
Selenium, Total		205	5.00	200.0	0	102	85	115	1.15	15
Silver, Total		206	2.00	200.0	0	103	85	115	0.229	15
Thallium, Total		196	1.50	200.0	0	98.1	85	115	1.26	15
Zinc, Total		201	5.00	200.0	0	101	85	115	0.766	15
Sample ID: 2405085-07A SD	Batch ID:	115398		TestNo): E20	8.0		Units:	μg/L	
SampType: SD	Run ID:	ICP-MS5	_240515B	Analys	is Date: 5/15	5/2024 12:42	2:00 PM	Prep Date:	5/15/2	2024
Analyte	- 1	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD I	RPDLimit Qual
Aluminum, Total		<50.0	150	0	47.37				0	10
Antimony, Total		<4.00	12.5	0	0				0	10
Arsenic, Total		<10.0	25.0	0	0.9830				0	10
Barium, Total		22.1	50.0	0	22.98				3.95	10
Beryllium, Total		<1.50	5.00	0	0				0	10
Cadmium, Total									_	10
Chromium, Total		<1.50	5.00	0	0				0	-
		<1.50 <10.0	5.00 25.0	0 0	0 0				0	10
Copper, Total										
Copper, Total Lead, Total		<10.0	25.0	0	0				0	10
• • •		<10.0 <10.0	25.0 50.0	0 0	0 3.729				0 0	10 10
Lead, Total		<10.0 <10.0 <1.50	25.0 50.0 5.00	0 0 0	0 3.729 0				0 0 0	10 10 10
Lead, Total Manganese		<10.0 <10.0 <1.50 14.3	25.0 50.0 5.00 10.0	0 0 0	0 3.729 0 14.53				0 0 0 1.74	10 10 10 10
Lead, Total Manganese Molybdenum		<10.0 <10.0 <1.50 14.3 <10.0	25.0 50.0 5.00 10.0 25.0	0 0 0 0	0 3.729 0 14.53 2.095				0 0 0 1.74 0	10 10 10 10 10
Lead, Total Manganese Molybdenum Nickel, Total		<10.0 <10.0 <1.50 14.3 <10.0 <15.0	25.0 50.0 5.00 10.0 25.0 50.0	0 0 0 0 0	0 3.729 0 14.53 2.095				0 0 0 1.74 0	10 10 10 10 10 10
Lead, Total Manganese Molybdenum Nickel, Total Selenium, Total		<10.0 <10.0 <1.50 14.3 <10.0 <15.0 <10.0	25.0 50.0 5.00 10.0 25.0 50.0 25.0	0 0 0 0 0 0	0 3.729 0 14.53 2.095 0				0 0 0 1.74 0 0	10 10 10 10 10 10

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 4 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR

RunID: ICP-MS5_240515B

Sample ID: 2405085-07A PDS	Batch ID:	115398		TestNo	E200	0.8		Units:	μg/L
SampType: PDS	Run ID:	ICP-MS5	_240515B	Analys	is Date: 5/15	/2024 1:09:	00 PM	Prep Date:	5/15/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Aluminum, Total		4980	30.0	5000	47.37	98.6	75	125	
Antimony, Total		177	2.50	200.0	0	88.6	75	125	
Arsenic, Total		188	5.00	200.0	0.9830	93.4	75	125	
Barium, Total		216	10.0	200.0	22.98	96.6	75	125	
Beryllium, Total		187	1.00	200.0	0	93.4	75	125	
Cadmium, Total		193	1.00	200.0	0	96.5	75	125	
Chromium, Total		193	5.00	200.0	0	96.4	75	125	
Copper, Total		191	10.0	200.0	3.729	93.8	75	125	
Lead, Total		191	1.00	200.0	0	95.7	75	125	
Manganese		201	2.00	200.0	14.53	93.4	75	125	
Molybdenum		191	5.00	200.0	2.095	94.6	75	125	
Nickel, Total		195	10.0	200.0	0	97.4	75	125	
Selenium, Total		183	5.00	200.0	0	91.7	75	125	
Silver, Total		194	2.00	200.0	0	97.0	75	125	
Thallium, Total		192	1.50	200.0	0	96.1	75	125	
Zinc, Total		211	5.00	200.0	26.14	92.4	75	125	
Sample ID: 2405085-07A MS	Dotob ID:	445000		T (1)					
Sample 1D. 2403063-07 A WIS	Batch ID:	115398		TestNo	E200	0.8		Units:	μg/L
SampType: MS	Run ID:		5_240515B		is Date: 5/15		00 PM	Onits: Prep Date:	μg/L 5/15/2024
	Run ID:		5_ 240515B RL					Prep Date:	
SampТуре: МS	Run ID:	ICP-MS5		Analys	is Date: 5/15	/2024 1:11:		Prep Date:	5/15/2024
SampType: MS Analyte	Run ID:	ICP-MS5	RL	Analys SPK value	is Date: 5/15 Ref Val	/2024 1:11: %REC	LowLim	Prep Date:	5/15/2024
SampType: MS Analyte Aluminum, Total	Run ID:	ICP-MS5 Result	RL 30.0	Analys SPK value 5000	Ref Val 47.37	/2024 1:11: %REC 100	LowLim	Prep Date: it HighLimit %	5/15/2024
SampType: MS Analyte Aluminum, Total Antimony, Total	Run ID:	ICP-MS5 Result 5060 208	RL 30.0 2.50	Analys SPK value 5000 200.0	Ref Val 47.37	%REC 100 104	LowLim 70 70	Prep Date: it HighLimit % 130 130	5/15/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total	Run ID:	ICP-MS5 Result 5060 208 202	RL 30.0 2.50 5.00	Analys SPK value 5000 200.0 200.0	Ref Val 47.37 0 0.9830	%REC 100 104 100	70 70 70	Prep Date: iit HighLimit % 130 130 130	5/15/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total	Run ID:	ICP-MS5 Result 5060 208 202 224	RL 30.0 2.50 5.00 10.0	Analys SPK value 5000 200.0 200.0 200.0	Ref Val 47.37 0 0.9830 22.98	%REC 100 104 100 101	70 70 70 70 70	Prep Date: 130 130 130 130 130 130	5/15/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total	Run ID:	ICP-MS5 Result 5060 208 202 224 192	RL 30.0 2.50 5.00 10.0 1.00	SPK value 5000 200.0 200.0 200.0 200.0 200.0	Ref Val 47.37 0 0.9830 22.98 0	/2024 1:11: %REC 100 104 100 101 95.9	70 70 70 70 70 70	Prep Date: 130 130 130 130 130 130 130	5/15/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total	Run ID:	ICP-MS5 Result 5060 208 202 224 192 198	RL 30.0 2.50 5.00 10.0 1.00	Analys SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 47.37 0 0.9830 22.98 0 0	/2024 1:11: %REC 100 104 100 101 95.9 99.0	70 70 70 70 70 70 70	Prep Date: it HighLimit % 130 130 130 130 130 130 130 13	5/15/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total	Run ID:	ICP-MS5 Result 5060 208 202 224 192 198 198	RL 30.0 2.50 5.00 10.0 1.00 1.00 5.00	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 47.37 0 0.9830 22.98 0 0	/2024 1:11: %REC 100 104 100 101 95.9 99.0 99.0	70 70 70 70 70 70 70 70	Prep Date: 130 130 130 130 130 130 130 130 130 13	5/15/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total	Run ID:	ICP-MS5 Result 5060 208 202 224 192 198 198 201	RL 30.0 2.50 5.00 10.0 1.00 1.00 5.00 10.0	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 47.37 0 0.9830 22.98 0 0 0 3.729	/2024 1:11: %REC 100 104 100 101 95.9 99.0 99.0 98.8	70 70 70 70 70 70 70 70 70	Prep Date: 130 130 130 130 130 130 130 130 130 13	5/15/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total	Run ID:	Result 5060 208 202 224 192 198 198 201 200	RL 30.0 2.50 5.00 10.0 1.00 1.00 5.00 10.0 1.00	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 47.37 0 0.9830 22.98 0 0 0 3.729 0	/2024 1:11: %REC 100 104 100 101 95.9 99.0 99.0 98.8 100	70 70 70 70 70 70 70 70 70 70	Prep Date: 130 130 130 130 130 130 130 130 130 13	5/15/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Manganese	Run ID:	Result 5060 208 202 224 192 198 198 201 200 213	RL 30.0 2.50 5.00 10.0 1.00 1.00 5.00 10.0 1.00 2.00	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 47.37 0 0.9830 22.98 0 0 3.729 0 14.53	%REC 100 104 100 101 95.9 99.0 98.8 100 99.0	70 70 70 70 70 70 70 70 70 70	Prep Date: 130 130 130 130 130 130 130 130 130 13	5/15/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Manganese Molybdenum	Run ID:	Result 5060 208 202 224 192 198 198 201 200 213 205	RL 30.0 2.50 5.00 10.0 1.00 5.00 10.0 1.00 2.00 5.00	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 47.37 0 0.9830 22.98 0 0 3.729 0 14.53 2.095	%REC 100 104 100 101 95.9 99.0 99.0 98.8 100 99.0 101	70 70 70 70 70 70 70 70 70 70 70	Prep Date: 130 130 130 130 130 130 130 130 130 13	5/15/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Chromium, Total Lead, Total Manganese Molybdenum Nickel, Total Selenium, Total	Run ID:	ICP-MS5 Result 5060 208 202 224 192 198 198 201 200 213 205 200	RL 30.0 2.50 5.00 10.0 1.00 5.00 10.0 2.00 5.00 10.0	SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 47.37 0 0.9830 22.98 0 0 3.729 0 14.53 2.095 0	/2024 1:11: %REC 100 104 100 101 95.9 99.0 99.0 98.8 100 99.0 101 99.9	70 70 70 70 70 70 70 70 70 70 70 70	Prep Date: 130 130 130 130 130 130 130 130 130 13	5/15/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Manganese Molybdenum Nickel, Total	Run ID:	ICP-MS5 Result 5060 208 202 224 192 198 198 201 200 213 205 200 195	RL 30.0 2.50 5.00 10.0 1.00 5.00 10.0 2.00 5.00 10.0 5.00 10.0 5.00	Analys SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 47.37 0 0.9830 22.98 0 0 3.729 0 14.53 2.095 0 0	/2024 1:11: %REC 100 104 100 101 95.9 99.0 99.0 98.8 100 99.0 101 99.9 97.4	70 70 70 70 70 70 70 70 70 70 70 70	Prep Date: 130 130 130 130 130 130 130 130 130 13	5/15/2024
SampType: MS Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Manganese Molybdenum Nickel, Total Selenium, Total Silver, Total	Run ID:	Result 5060 208 202 224 192 198 198 201 200 213 205 200 195 202	RL 30.0 2.50 5.00 10.0 1.00 1.00 5.00 10.0 1.00 5.00 10.0 5.00 10.0 5.00 2.00	Analys SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 47.37 0 0.9830 22.98 0 0 3.729 0 14.53 2.095 0 0 0	/2024 1:11: %REC 100 104 100 95.9 99.0 99.0 98.8 100 99.0 101 99.9 97.4 101	70 70 70 70 70 70 70 70 70 70 70 70 70	Prep Date: 130 130 130 130 130 130 130 130 130 13	5/15/2024

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 5 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

ICP-MS5_240515B **RunID: Project:** IPP WEST Plant Long QTR

Sample ID: 2405085-07A MSD	Batch ID:	115398		TestNo): E20	00.8		Units:	μg/L	
SampType: MSD	Run ID:	ICP-MS	5_240515B	Analys	is Date: 5/1	5/2024 1:14:	00 PM	Prep Date:	5/15/	2024
Analyte	İ	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Aluminum, Total		5110	30.0	5000	47.37	101	70	130	0.923	15
Antimony, Total		208	2.50	200.0	0	104	70	130	0.289	15
Arsenic, Total		201	5.00	200.0	0.9830	100	70	130	0.275	15
Barium, Total		227	10.0	200.0	22.98	102	70	130	1.18	15
Beryllium, Total		192	1.00	200.0	0	95.8	70	130	0.065	15
Cadmium, Total		199	1.00	200.0	0	99.5	70	130	0.474	15
Chromium, Total		202	5.00	200.0	0	101	70	130	1.88	15
Copper, Total		204	10.0	200.0	3.729	99.9	70	130	1.07	15
Lead, Total		203	1.00	200.0	0	102	70	130	1.48	15
Manganese		217	2.00	200.0	14.53	101	70	130	2.23	15
Molybdenum		208	5.00	200.0	2.095	103	70	130	1.66	15
Nickel, Total		202	10.0	200.0	0	101	70	130	0.887	15
Selenium, Total		197	5.00	200.0	0	98.5	70	130	1.17	15
Silver, Total		204	2.00	200.0	0	102	70	130	0.991	15
Thallium, Total		202	1.50	200.0	0	101	70	130	2.10	15
Zinc, Total		223	5.00	200.0	26.14	98.3	70	130	0.313	15

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Spike Recovery outside control limits Parameter not NELAP certified

Page 6 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR RunID: ICP-MS5_240515B

Sample ID: ICV-240515	Batch ID:	R133057	,	TestNo	E200).8		Units:	μg/L	
SampType: ICV	Run ID:	ICP-MS	5_240515B	Analys	is Date: 5/15 /	/2024 9:53:	00 AM	Prep Date):	
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD F	RPDLimit Qual
Aluminum, Total	:	2470	30.0	2500	0	99.0	90	110		
Antimony, Total		101	2.50	100.0	0	101	90	110		
Arsenic, Total		97.4	5.00	100.0	0	97.4	90	110		
Barium, Total		101	10.0	100.0	0	101	90	110		
Beryllium, Total		96.4	1.00	100.0	0	96.4	90	110		
Cadmium, Total		100	1.00	100.0	0	100	90	110		
Chromium, Total		100	5.00	100.0	0	100	90	110		
Copper, Total		101	10.0	100.0	0	101	90	110		
Lead, Total		98.3	1.00	100.0	0	98.3	90	110		
Manganese		98.9	2.00	100.0	0	98.9	90	110		
Molybdenum		97.5	5.00	100.0	0	97.5	90	110		
Nickel, Total		105	10.0	100.0	0	105	90	110		
Selenium, Total		103	5.00	100.0	0	103	90	110		
Silver, Total		103	2.00	100.0	0	103	90	110		
Thallium, Total		96.6	1.50	100.0	0	96.6	90	110		
Zinc, Total		101	5.00	100.0	0	101	90	110		
			0.00							
Sample ID: CCV2-240515	Batch ID:	R133057		TestNo	E200).8		Units:	μg/L	
Sample ID: CCV2-240515 SampType: CCV	Batch ID: Run ID:	R133057		TestNo	E200 is Date: 5/15/		7:00 AM			
·	Run ID:	R133057	,	TestNo				Units: Prep Date	: :	RPDLimit Qual
SampType: CCV	Run ID:	R133057	, 5_240515B	TestNo Analys	is Date: 5/15 /	/2024 11:27		Units: Prep Date	: :	RPDLimit Qual
SampType: CCV Analyte	Run ID:	R133057 ICP-MS:	, 5 _240515B RL	TestNo Analys SPK value	is Date: 5/15/ Ref Val	/2024 11:27 %REC	LowLim	Units: Prep Date	: :	RPDLimit Qual
SampType: CCV Analyte Aluminum, Total	Run ID:	R133057 ICP-MSS Result	7 5_ 240515B RL 30.0	TestNo Analys SPK value 5000	Ref Val	%REC	LowLim 90	Units: Prep Date it HighLimit	: :	RPDLimit Qual
SampType: CCV Analyte Aluminum, Total Antimony, Total	Run ID:	R133057 ICP-MSS Result 5010 202	RL 30.0 2.50	TestNo Analys SPK value 5000 200.0	Ref Val	%REC 100 101	LowLim 90 90	Units: Prep Date it HighLimit 110 110	: :	RPDLimit Qual
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total	Run ID:	R133057 ICP-MS5 Result 5010 202 196	RL 30.0 2.50 5.00	TestNo Analys SPK value 5000 200.0 200.0	Ref Val 0 0 0	%REC 100 101 97.8	90 90 90	Units: Prep Date it HighLimit 110 110 110	: :	RPDLimit Qual
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total	Run ID:	R133057 ICP-MSS Result 5010 202 196 197	30.0 2.50 5.00 10.0	TestNo Analys SPK value 5000 200.0 200.0 200.0	Ref Val 0 0 0 0	%REC 100 101 97.8 98.5	90 90 90 90 90	Units: Prep Date it HighLimit 110 110 110 110	: :	RPDLimit Qual
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total	Run ID:	R133057 ICP-MS5 Result 5010 202 196 197 188	30.0 2.50 5.00 10.0	TestNo Analys SPK value 5000 200.0 200.0 200.0 200.0	Ref Val 0 0 0 0 0 0	%REC 100 101 97.8 98.5 94.0	90 90 90 90 90 90	Units: Prep Date it HighLimit 110 110 110 110 110 110	: :	RPDLimit Qual
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total	Run ID:	R133057 ICP-MSS Result 5010 202 196 197 188 198	RL 30.0 2.50 5.00 10.0 1.00	TestNo Analys SPK value 5000 200.0 200.0 200.0 200.0 200.0	Ref Val 0 0 0 0 0 0 0	%REC 100 101 97.8 98.5 94.0 98.8	90 90 90 90 90 90 90	Units: Prep Date it HighLimit 110 110 110 110 110 110 110	: :	RPDLimit Qual
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total	Run ID:	R133057 ICP-MS: Result 5010 202 196 197 188 198	RL 30.0 2.50 5.00 10.0 1.00 1.00 5.00	TestNo Analys SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 0 0 0 0 0 0 0 0 0	%REC 100 101 97.8 98.5 94.0 98.8 98.9	90 90 90 90 90 90 90	Units: Prep Date it HighLimit 110 110 110 110 110 110 110 110	: :	RPDLimit Qual
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total	Run ID:	R133057 ICP-MS: Result 5010 202 196 197 188 198 198	RL 30.0 2.50 5.00 10.0 1.00 5.00 10.0	TestNo Analys SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0	0 0 0 0 0 0 0 0	%REC 100 101 97.8 98.5 94.0 98.8 98.9 99.7	90 90 90 90 90 90 90 90	Units: Prep Date it HighLimit 110 110 110 110 110 110 110 110 110 1	: :	RPDLimit Qual
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total	Run ID:	R133057 ICP-MSS Result 5010 202 196 197 188 198 198 199 195	RL 30.0 2.50 5.00 10.0 1.00 5.00 10.0 1.00 5.00 10.0	TestNo Analys SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	0 0 0 0 0 0 0 0 0	%REC 100 101 97.8 98.5 94.0 98.8 98.9 99.7 97.3	90 90 90 90 90 90 90 90 90	Units: Prep Date it HighLimit 110 110 110 110 110 110 110 110 110 1	: :	RPDLimit Qual
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Manganese	Run ID:	R133057 ICP-MSS Result 5010 202 196 197 188 198 198 199 195 198	RL 30.0 2.50 5.00 10.0 1.00 1.00 5.00 10.0 1.00 2.00	TestNo Analys SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 100 101 97.8 98.5 94.0 98.8 98.9 99.7 97.3 99.1	90 90 90 90 90 90 90 90 90 90	Units: Prep Date it HighLimit 110 110 110 110 110 110 110 110 110 1	: :	RPDLimit Qual
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Chromium, Total Lead, Total Manganese Molybdenum	Run ID:	R133057 ICP-MSS Result 5010 202 196 197 188 198 198 199 195 198 195	RL 30.0 2.50 5.00 10.0 1.00 5.00 10.0 1.00 2.00 5.00	TestNo Analys SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 100 101 97.8 98.5 94.0 98.8 98.9 99.7 97.3 99.1 97.7	90 90 90 90 90 90 90 90 90 90	Units: Prep Date it HighLimit 110 110 110 110 110 110 110 110 110 1	: :	RPDLimit Qual
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Manganese Molybdenum Nickel, Total	Run ID:	R133057 ICP-MSS Result 5010 202 196 197 188 198 198 199 195 198 195 201	RL 30.0 2.50 5.00 10.0 1.00 5.00 10.0 1.00 2.00 5.00 10.0	TestNo Analys SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	0 0 0 0 0 0 0 0 0 0 0	%REC 100 101 97.8 98.5 94.0 98.8 98.9 99.7 97.3 99.1 97.7 101	90 90 90 90 90 90 90 90 90 90 90	Units: Prep Date it HighLimit 110 110 110 110 110 110 110 110 110 1	: :	RPDLimit Qual
SampType: CCV Analyte Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Chromium, Total Chromium, Total Lead, Total Manganese Molybdenum Nickel, Total Selenium, Total	Run ID:	R133057 ICP-MSS Result 5010 202 196 197 188 198 198 199 195 198 195 201 202	RL 30.0 2.50 5.00 10.0 1.00 5.00 10.0 1.00 2.00 5.00 10.0 5.00 10.0 5.00	TestNo Analys SPK value 5000 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	0 0 0 0 0 0 0 0 0 0 0 0	%REC 100 101 97.8 98.5 94.0 98.8 98.9 99.7 97.3 99.1 97.7 101 101	90 90 90 90 90 90 90 90 90 90 90	Units: Prep Date it HighLimit 110 110 110 110 110 110 110 110 110 1	: :	RPDLimit Qual

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 7 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR RunID: ICP-MS5_240515B

Sample ID: CCV3-240515	Batch ID:	R133057		TestNo	: E20	0.8		Units:	μg/L
SampType: CCV	Run ID:	ICP-MS5_	240515B	Analys	is Date: 5/1	5/2024 1:17:	00 PM	Prep Date	:
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
Aluminum, Total		5040	30.0	5000	0	101	90	110	
Antimony, Total		201	2.50	200.0	0	101	90	110	
Arsenic, Total		199	5.00	200.0	0	99.3	90	110	
Barium, Total		198	10.0	200.0	0	99.0	90	110	
Beryllium, Total		186	1.00	200.0	0	92.9	90	110	
Cadmium, Total		198	1.00	200.0	0	98.9	90	110	
Chromium, Total		197	5.00	200.0	0	98.5	90	110	
Copper, Total		200	10.0	200.0	0	100	90	110	
Lead, Total		196	1.00	200.0	0	98.1	90	110	
Manganese		199	2.00	200.0	0	99.7	90	110	
Molybdenum		199	5.00	200.0	0	99.6	90	110	
Nickel, Total		203	10.0	200.0	0	101	90	110	
Selenium, Total		205	5.00	200.0	0	103	90	110	
Silver, Total		204	2.00	200.0	0	102	90	110	
Thallium, Total		194	1.50	200.0	0	96.9	90	110	
Zinc, Total		201	5.00	200.0	0	101	90	110	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 8 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR

RunID: GCMS10_240513A

Sample ID: LCS-115352	Batch ID:	115352		TestNo	E62	5.1		Units:	μg/L		
SampType: LCS	Run ID:	GCMS10	_240513A	Analys	is Date: 5/13	/2024 10:40	0:00 AM	Prep Date:	5/10/	2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit	Qual
4,4-DDD		0.409	0.0200	0.4000	0	102	0.1	135			
4,4-DDE		0.339	0.0200	0.4000	0	84.7	19	120			
4,4-DDT		0.384	0.0200	0.4000	0	95.9	0.1	171			
Aldrin		0.257	0.0100	0.4000	0	64.1	7	152			
alpha-BHC		0.348	0.0200	0.4000	0	86.9	42	108			
alpha-Endosulfan		0.392	0.0100	0.4000	0	97.9	47	128			
beta-BHC		0.367	0.0200	0.4000	0	91.6	42	131			
beta-Endosulfan		0.392	0.0200	0.4000	0	98.0	52	125			
Carbaryl		0.441	0.0300	0.4000	0	110	38	168			Ν
Chloropyrifos		0.460	0.0300	0.4000	0	115	42	131			Ν
delta-BHC		0.368	0.0200	0.4000	0	91.9	0.1	120			
Diazinon		0.471	0.0300	0.4000	0	118	52	120			Ν
Dieldrin		0.380	0.0200	0.4000	0	95.1	44	119			
Endosulfan sulfate		0.417	0.0200	0.4000	0	104	0.1	120			
Endrin		0.443	0.0200	0.4000	0	111	50	151			
Endrin aldehyde		0.336	0.0200	0.4000	0	84.0	0.1	189			
gamma-BHC		0.357	0.0200	0.4000	0	89.2	41	111			
Guthion		0.495	0.0300	0.4000	0	124	44	193			Ν
Heptachlor		0.288	0.0100	0.4000	0	72.1	0.1	172			
Heptachlor epoxide		0.413	0.0100	0.4000	0	103	71	120			
Malathion		0.530	0.0300	0.4000	0	133	56	161			Ν
Methoxychlor		0.431	0.0200	0.4000	0	108	38	156			Ν
Mirex		0.317	0.0200	0.4000	0	79.3	27	131			Ν
Parathion		0.459	0.0300	0.4000	0	115	13	184			Ν
Demeton		0.403	0.0300	0.4000	0	101	28	154			Ν
Surr: 2-Fluorobiphenyl		2.84		4.000		71.0	43	116			
Surr: 4-Terphenyl-d14		3.79		4.000		94.7	33	141			
Sample ID: LCSD-115352	Batch ID:	115352		TestNo	: E62	5.1		Units:	μg/L		
SampType: LCSD	Run ID:	GCMS10	_240513A	Analys	is Date: 5/13	/2024 11:12	2:00 AM	Prep Date:	5/10/	2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit	Qual
4,4-DDD		0.406	0.0200	0.4000	0	102	0.1	135	0.706	50	
4,4-DDE		0.320	0.0200	0.4000	0	80.0	19	120	5.73	50	
4,4-DDT		0.406	0.0200	0.4000	0	102	0.1	171	5.70	50	
Aldrin		0.203	0.0100	0.4000	0	50.9	7	152	23.1	50	
alpha-BHC		0.330	0.0200	0.4000	0	82.5	42	108	5.24	50	
alpha-Endosulfan		0.363	0.0100	0.4000	0	90.8	47	128	7.59	50	
beta-BHC		0.355	0.0200	0.4000	0	88.8	42	131	3.10	50	
beta-Endosulfan		0.384	0.0200	0.4000	0	96.0	52	125	2.07	50	

The QC data in batch 115352 applies to the following samples: 2405086-05E, 2405086-05F, 2405086-06E, 2405086-06F

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 9 of 44

S Spike Recovery outside control limits

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

GCMS10_240513A **RunID: Project:** IPP WEST Plant Long QTR

Sample ID: LCSD-115352	Batch ID:	115352		TestNo	E62	5.1		Units:	μg/L		
SampType: LCSD	Run ID:	GCMS10	_240513A	Analys	is Date: 5/13	3/2024 11:12	2:00 AM	Prep Date:	5/10/	2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit ⁽	%RPD	RPDLimit	t Qual
Carbaryl		0.445	0.0300	0.4000	0	111	38	168	1.02	50	N
Chloropyrifos		0.481	0.0300	0.4000	0	120	42	131	4.49	50	Ν
delta-BHC		0.354	0.0200	0.4000	0	88.6	0.1	120	3.67	50	
Diazinon		0.449	0.0300	0.4000	0	112	52	120	4.92	50	Ν
Dieldrin		0.372	0.0200	0.4000	0	93.0	44	119	2.21	50	
Endosulfan sulfate		0.428	0.0200	0.4000	0	107	0.1	120	2.69	50	
Endrin		0.431	0.0200	0.4000	0	108	50	151	2.78	50	
Endrin aldehyde		0.317	0.0200	0.4000	0	79.2	0.1	189	5.86	50	
gamma-BHC		0.344	0.0200	0.4000	0	85.9	41	111	3.78	50	
Guthion		0.509	0.0300	0.4000	0	127	44	193	2.78	50	Ν
Heptachlor		0.238	0.0100	0.4000	0	59.4	0.1	172	19.3	50	
Heptachlor epoxide		0.407	0.0100	0.4000	0	102	71	120	1.57	50	
Malathion		0.554	0.0300	0.4000	0	138	56	161	4.30	50	Ν
Methoxychlor		0.434	0.0200	0.4000	0	109	38	156	0.768	50	Ν
Mirex		0.317	0.0200	0.4000	0	79.3	27	131	0.012	50	N
Parathion		0.436	0.0300	0.4000	0	109	13	184	5.10	50	N
Demeton		0.417	0.0300	0.4000	0	104	28	154	3.46	50	Ν
Surr: 2-Fluorobiphenyl		2.66		4.000	•	66.4	43	116	0	0	
Surr: 4-Terphenyl-d14		3.67		4.000		91.8	33	141	0	0	
Sample ID: MB-115352	Batch ID:	115352		TestNo): E62	5.1		Units:	μg/L		
SampType: MBLK	Run ID:	GCMS10	_240513A	Analys	is Date: 5/13	3/2024 1:04:	00 PM	Prep Date:	5/10/	2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit ^o	%RPD	RPDLimit	t Qual
4,4-DDD	<	:0.0200	0.0200								
4,4-DDE	<	:0.0200	0.0200								
4,4-DDT	<	:0.0200	0.0200								
Aldrin	<	:0.0100	0.0100								
alpha-BHC	<	:0.0100	0.0200								
alpha-Endosulfan	<	:0.0100	0.0100								
beta-BHC	<	:0.0100	0.0200								
beta-Endosulfan	<	:0.0100	0.0200								
Carbaryl	<	:0.0100	0.0300								Ν
Chlordane	<	:0.0600	0.200								Ν
Chloropyrifos											Ν
	<	:0.0100									
Diazinon		:0.0100	0.0300								N
Dieldrin		:0.0100	0.0200								
Endosulfan sulfate											
Endrin		:0.0100									
Endrin aldehyde		:0.0100	0.0200								
alpha-Endosulfan beta-BHC beta-Endosulfan Carbaryl Chlordane Chloropyrifos delta-BHC Diazinon Dieldrin Endosulfan sulfate Endrin	< </td <td>0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100</td> <td>0.0100 0.0200 0.0200 0.0300 0.200 0.0300 0.0200 0.0300 0.0200 0.0200</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.0100 0.0200 0.0200 0.0300 0.200 0.0300 0.0200 0.0300 0.0200 0.0200								

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 10 of 44

RPD outside accepted control limits R

Spike Recovery outside control limits

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR

RunID: GCMS10_240513A

Sample ID: MB-115352	Batch ID: 115	352	TestNo:	E625.1			Units:	μg/L	•
SampType: MBLK	Run ID: GCI	MS10_240513A	Analysis	Date: 5/13/20)24 1:04:	00 PM	Prep Date:	5/10/2024	
Analyte	Resul	t RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit '	%RPD RPDLin	nit Qual
gamma-BHC	<0.010	0 0.0200							
Guthion	<0.010	0.0300							Ν
Heptachlor	<0.010	0.0100							
Heptachlor epoxide	<0.010	0.0100							
Malathion	<0.010	0.0300							Ν
Methoxychlor	<0.020	0.0200							Ν
Mirex	<0.010	0.0200							Ν
Parathion	<0.010	0.0300							Ν
Toxaphene	< 0.300	0.300							
Demeton	<0.010	0.0300							Ν
Surr: 2-Fluorobiphenyl	2.86		4.000		71.5	43	116		
Surr: 4-Terphenyl-d14	4.00		4.000		100	33	141		

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 11 of 44

R RPD outside accepted control limits

S Spike Recovery outside control limits

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR RunID: GCMS10_240513A

Sample ID: ICV-240513	Batch ID:	R133015		TestNo	E62	25.1		Units:	μg/L	
SampType: ICV	Run ID:	GCMS10	_240513A	Analysi	s Date: 5/1 3	3/2024 10:13	3:00 AM	Prep Date):	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	t HighLimit	%RPD F	RPDLimit Qual
4,4-DDD		219	0.0200	200.0	0	109	0.1	135		
4,4-DDE		201	0.0200	200.0	0	100	19	130		
4,4-DDT		223	0.0200	200.0	0	112	60	171		
Aldrin		193	0.0100	200.0	0	96.7	7	152		
alpha-BHC		194	0.0200	200.0	0	96.9	60	140		
alpha-Endosulfan		194	0.0100	200.0	0	97.1	60	140		
beta-BHC		195	0.0200	200.0	0	97.4	42	131		
beta-Endosulfan		199	0.0200	200.0	0	99.6	60	140		
Carbaryl		202	0.0300	200.0	0	101	60	140		N
Chloropyrifos		240	0.0300	200.0	0	120	60	140		N
delta-BHC		185	0.0200	200.0	0	92.6	0.1	130		
Diazinon		231	0.0300	200.0	0	115	60	140		N
Dieldrin		196	0.0200	200.0	0	98.2	70	130		
Endosulfan sulfate		209	0.0200	200.0	0	105	0.1	130		
Endrin		220	0.0200	200.0	0	110	60	140		
Endrin aldehyde		182	0.0200	200.0	0	90.9	0.1	189		
gamma-BHC		190	0.0200	200.0	0	95.0	60	140		
Guthion		207	0.0300	200.0	0	104	60	140		N
Heptachlor		203	0.0100	200.0	0	101	0.1	172		
Heptachlor epoxide		212	0.0100	200.0	0	106	70	130		
Malathion		220	0.0300	200.0	0	110	60	140		N
Methoxychlor		217	0.0200	200.0	0	108	60	140		N
Mirex		186	0.0200	200.0	0	93.2	60	140		N
Parathion		219	0.0300	200.0	0	109	60	140		N
Demeton		212	0.0300	200.0	0	106	60	140		N
Surr: 2-Fluorobiphenyl		758		800.0		94.8	60	140		
Surr: 4-Terphenyl-d14		808		800.0		101	60	140		
Sample ID: ICV-240513 CT	Batch ID:	R133015		TestNo	E62	25.1		Units:	μg/L	
SampType: ICV	Run ID:	GCMS10	_240513A	Analysi	s Date: 5/1 3	3/2024 11:40	0:00 AM	Prep Date	: :	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	t HighLimit	%RPD F	RPDLimit Qual
Chlordane		2610	0.200	2500	0	104	60	140		N

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

2510

0.300

RL Reporting Limit

Toxaphene

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

imit Page 12 of 44

140

R RPD outside accepted control limits

100

60

S Spike Recovery outside control limits

N Parameter not NELAP certified

2500

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

GCMS10_240513B **RunID: Project:** IPP WEST Plant Long QTR

The QC data in batch 115352 applies to the following samples: 2405086-05E, 2405086-05F, 2405086-06E, 2405086-06F										
Sample ID: LCS-115352-DICO	Batch ID:	115352		TestNo:	D:	5812-96mod		Units:	μg/L	
SampType: LCS	Run ID:	GCMS10	_240513B	Analysis	Date: 5/	13/2024 12:36	:00 PM	Prep Date:	5/10/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit 🤋	%RPD RPDLimi	t Qual
Dicofol		1.16	0.400	1.000	0	116	22	180		N
Sample ID: MB-115352	Batch ID:	115352		TestNo:	D:	5812-96mod		Units:	μg/L	
SampType: MBLK	Run ID:	GCMS10	_240513B	Analysis	Date: 5/	13/2024 1:04:0	00 PM	Prep Date:	5/10/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit 🤋	%RPD RPDLimi	t Qual
Dicofol		<0.200	0.400							N

Qualifiers:

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 13 of 44

R RPD outside accepted control limits

S Spike Recovery outside control limits

Batch ID:

Work Order: 2405086 ANALYTICAL QC SUMMARY REPORT

Units:

D5812-96mod

RunID: GCMS10_240513B **Project:** IPP WEST Plant Long QTR

Sample ID: ICV-240513 DICO μg/L SampType: ICV Run ID: GCMS10_240513B Analysis Date: 5/13/2024 12:08:00 PM Prep Date:

RLSPK value LowLimit HighLimit %RPD RPDLimit Qual Analyte Result Ref Val %REC Dicofol 222 0.400 250.0 0 88.7 80 120 Ν

TestNo:

Qualifiers:

Analyte detected in the associated Method Blank В

Analyte detected between MDL and RL J

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

Dilution Factor DF

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAP certified

Page 14 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR

RunID: GCMS4_240514C

					5086-06D				
Sample ID: LCS-115369	Batch ID:	115369		TestNo	: E62	5.1		Units:	μg/L
SampType: LCS	Run ID:	Run ID: GCMS4_240514C		Analys	is Date: 5/14	/2024 10:38	3:00 AM	Prep Date:	5/13/2024
Analyte	R	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qua
Benzidine		45.0	50.0	40.00	0	112	5	125	
Benzo(a)anthracene		40.1	5.00	40.00	0	100	33	143	
Benzo(a)pyrene		45.8	5.00	40.00	0	115	17	163	
Chrysene		38.5	5.00	40.00	0	96.3	17	168	
2,4-Dimethylphenol		39.9	10.0	40.00	0	99.8	32	120	
4,6-Dinitro-o-cresol		43.3	10.0	40.00	0	108	10	181	
m,p-Cresols		29.8	10.0	40.00	0	74.6	10	125	
o-Cresols		31.1	10.0	40.00	0	77.6	25	125	
p-Chloro-m-Cresol		38.6	10.0	40.00	0	96.6	22	147	
Hexachlorobenzene		32.3	5.00	40.00	0	80.7	10	152	
Hexachlorobutadiene		30.7	10.0	40.00	0	76.8	24	120	
Hexachloroethane		31.2	20.0	40.00	0	77.9	40	120	
Nitrobenzene		38.5	10.0	40.00	0	96.3	35	180	
N-Nitrosodiethylamine		31.3	20.0	40.00	0	78.2	20	125	
N-Nitro-di-n-Butylamine		33.5	20.0	40.00	0	83.7	20	125	
Pentachlorobenzene		32.0	20.0	40.00	0	80.1	40	140	
Pentachlorophenol		37.4	5.00	40.00	0	93.5	14	176	
Phenanthrene		36.3	10.0	40.00	0	90.8	54	120	
Pyridine		18.4	20.0	40.00	0	46.1	10	75	
1,2,4,5-Tetrachlorobenzene		30.8	20.0	40.00	0	77.0	30	140	
		30.8 47.1	10.0	40.00	0	118	25	125	
2,4,5-Trichlorophenol									
2-Chlorophenol		35.2	10.0	40.00	0	88.0	23	134	
2,4-Dichlorophenol		39.8	10.0	40.00	0	99.5	39	135	
2,4-Dinitrophenol		43.3	50.0	40.00	0	108	10	191	
2-Nitrophenol		38.6	10.0	40.00	0	96.6	29	182	
4-Nitrophenol		40.5	50.0	40.00	0	101	10	132	
Phenol		21.0	10.0	40.00	0	52.6	5	120	
2,4,6-Trichlorophenol		46.0	10.0	40.00	0	115	37	144	
3,4-Benzofluoranthene		41.1	10.0	40.00	0	103	24	159	
Acenaphthene		35.1	10.0	40.00	0	87.7	47	145	
Acenaphthylene		36.7	10.0	40.00	0	91.8	33	145	
Anthracene		34.9	10.0	40.00	0	87.2	27	133	
Benzo(ghi)perylene		42.2	20.0	40.00	0	106	10	219	
Benzo(k)Fluoranthene		37.5	5.00	40.00	0	93.9	11	162	
Bis(2-chloroethoxy)methane		35.3	10.0	40.00	0	88.2	33	184	
Bis(2-chloroethyl)ether		35.6	10.0	40.00	0	89.0	12	158	
Bis(2-chloroisopropyl)ether		37.9	10.0	40.00	0	94.8	36	166	
Bis(2-ethylhexyl)phthalate		46.5	10.0	40.00	0	116	10	158	
4-Bromophenyl phenyl ether		34.2	10.0	40.00	0	85.5	53	127	
Butylbenzyl Phthalate		44.5	10.0	40.00	0	111	10	152	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 15 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

GCMS4_240514C **RunID: Project:** IPP WEST Plant Long QTR

Sample ID: LCS-115369	Batch ID: 115369		TestNo	: E62 :	5.1		Units:	μg/L
SampType: LCS	Run ID: GCMS4_	240514C	Analys	is Date: 5/14	/2024 10:38	3:00 AM	Prep Date:	5/13/2024
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
2-Chloronaphthalene	36.5	10.0	40.00	0	91.2	60	120	
4-Chlorophenyl phenyl ether	36.8	10.0	40.00	0	92.0	25	158	
Dibenzo(a,h)Anthracene	44.1	5.00	40.00	0	110	10	125	
3,3-Dichlorobenzidine	42.9	5.00	40.00	0	107	10	262	
Diethyl phthalate	40.4	10.0	40.00	0	101	10	120	
Dimethyl phthalate	38.0	10.0	40.00	0	95.0	10	120	
Di-n-butyl phthalate	38.1	10.0	40.00	0	95.4	10	120	
2,4-Dinitrotoluene	42.4	10.0	40.00	0	106	39	139	
2,6-Dinitrotoluene	44.1	10.0	40.00	0	110	50	158	
Di-n-octyl phthalate	45.7	10.0	40.00	0	114	10	146	
1,2-Diphenyl Hydrazine	35.2	20.0	40.00	0	88.0	40	140	
Fluoranthene	33.2	10.0	40.00	0	83.0	26	137	
Fluorene	37.5	10.0	40.00	0	93.8	59	121	
Hexachloro-cyclopentadiene	45.0	10.0	40.00	0	113	8	130	
Indeno(1,2,3-cd)pyrene	43.7	5.00	40.00	0	109	10	171	
Isophorone	37.3	10.0	40.00	0	93.2	21	196	
Naphthalene	33.1	10.0	40.00	0	82.7	21	133	
N-Nitrosodimethylamine	16.3	20.0	40.00	0	40.7	10	125	
N-Nitrosodi-n-propylamine	33.2	20.0	40.00	0	83.0	10	230	
N-Nitrosodiphenylamine	36.8	20.0	40.00	0	92.1	20	125	
Pyrene	43.7	10.0	40.00	0	109	52	120	
1,2,4-Trichlorobenzene	32.3	10.0	40.00	0	80.8	44	142	
Phenol, Total	21.0	10.0	40.00	0	52.6	5	120	
Cresols	60.9	10.0	80.00	0	76.1	10	125	
Surr: 2,4,6-Tribromophenol	76.6		80.00		95.8	10	123	
Surr: 2-Fluorobiphenyl	76.2		80.00		95.2	43	116	
Surr: 2-Fluorophenol	53.6		80.00		67.0	21	100	
Surr: 4-Terphenyl-d14	92.8		80.00		116	33	141	
Surr: Nitrobenzene-d5	80.0		80.00		100	35	115	
Surr: Phenol-d5	36.6		80.00		45.8	10	94	

Sample ID: 2405093-01CMS	Batch ID:	115369		TestNo	: E62	5.1		Units:	μg/L	
SampType: MS	Run ID:	GCMS4	1_240514C	Analys	is Date: 5/14	/2024 11:03	3:00 AM	Prep Date	5/13/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qu	ıal
Benzidine		296	487	389.9	0	76.1	5	125		
Benzo(a)anthracene		363	48.7	389.9	0	93.0	33	143		
Benzo(a)pyrene		415	48.7	389.9	0	107	17	163		
Chrysene		351	48.7	389.9	0	90.0	17	168		
2,4-Dimethylphenol		453	97.5	389.9	56.23	102	32	120		
4,6-Dinitro-o-cresol		323	97.5	389.9	0	82.8	10	181		

Qualifiers: Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits Page 16 of 44

Spike Recovery outside control limits

Parameter not NELAP certified

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR RunID: GCMS4_240514C

Sample ID: 2405093-01CMS	Batch ID:	115369		TestNo	E625	5.1		Units:	μg/L
SampType: MS	Run ID:	GCMS4	1_240514C	Analys	is Date: 5/14 /	/2024 11:03	3:00 AM	Prep Date:	5/13/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
m,p-Cresols		326	97.5	389.9	0	83.7	10	125	
o-Cresols		335	97.5	389.9	0	86.0	25	125	
p-Chloro-m-Cresol		2530	97.5	389.9	0	650	22	147	S
Hexachlorobenzene		289	48.7	389.9	0	74.1	10	152	
Hexachlorobutadiene		284	97.5	389.9	0	72.9	24	120	
Hexachloroethane		277	195	389.9	0	71.0	40	120	
Nitrobenzene		353	97.5	389.9	0	90.6	35	180	
N-Nitrosodiethylamine		302	195	389.9	0	77.6	20	125	
N-Nitro-di-n-Butylamine		306	195	389.9	0	78.6	20	125	
Pentachlorobenzene		283	195	389.9	0	72.7	40	140	
Pentachlorophenol		333	48.7	389.9	0	85.4	14	176	
Phenanthrene		327	97.5	389.9	0	84.0	54	120	
Pyridine		262	195	389.9	0	67.2	10	75	
1,2,4,5-Tetrachlorobenzene		280	195	389.9	0	71.8	30	140	
2,4,5-Trichlorophenol		426	97.5	389.9	0	109	25	125	
2-Chlorophenol		348	97.5	389.9	0	89.2	23	134	
2,4-Dichlorophenol		374	97.5	389.9	0	96.0	39	135	
2,4-Dinitrophenol		354	487	389.9	0	90.8	10	191	
2-Nitrophenol		362	97.5	389.9	0	92.8	29	182	
4-Nitrophenol		438	487	389.9	0	112	10	132	
Phenol		371	97.5	389.9	23.54	89.1	5	120	
2,4,6-Trichlorophenol		403	97.5	389.9	0	103	37	144	
3,4-Benzofluoranthene		388	97.5	389.9	0	99.6	24	159	
Acenaphthene		322	97.5	389.9	0	82.6	47	145	
Acenaphthylene		329	97.5	389.9	0	84.5	33	145	
Anthracene		314	97.5	389.9	0	80.5	27	133	
Benzo(ghi)perylene		388	195	389.9	0	99.6	10	219	
Benzo(k)Fluoranthene		322	48.7	389.9	0	82.6	11	162	
Bis(2-chloroethoxy)methane		319	97.5	389.9	0	81.8	33	184	
Bis(2-chloroethyl)ether		321	97.5	389.9	0	82.5	12	158	
Bis(2-chloroisopropyl)ether		339	97.5	389.9	0	87.0	36	166	
Bis(2-ethylhexyl)phthalate		420	97.5	389.9	0	108	10	158	
4-Bromophenyl phenyl ether		297	97.5	389.9	0	76.3	53	127	
Butylbenzyl Phthalate		406	97.5	389.9	0	104	10	152	
2-Chloronaphthalene		326	97.5	389.9	0	83.6	60	120	
4-Chlorophenyl phenyl ether		337	97.5	389.9	0	86.4	25	158	
		404	48.7	389.9		104	10	125	
Dibenzo(a,h)Anthracene 3,3-Dichlorobenzidine		343	48.7 48.7	389.9	0			262	
,					0	88.1 05.5	10		
Diethyl phthalate		372	97.5 07.5	389.9	0	95.5	10	120	
Dimethyl phthalate		350	97.5 07.5	389.9	0	89.7	10	120	
Di-n-butyl phthalate		352	97.5	389.9	0	90.3	10	120	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 17 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR

RunID: GCMS4_240514C

Sample ID: 2405093-01CMS	Batch ID:	115369		TestNo	E62	25.1		Units:	μg/L
SampType: MS	Run ID:	GCMS4	_240514C	Analysi	s Date: 5/1 4	4/2024 11:03	:00 AM	Prep Date:	5/13/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
2,4-Dinitrotoluene		395	97.5	389.9	0	101	39	139	
2,6-Dinitrotoluene		406	97.5	389.9	0	104	50	158	
Di-n-octyl phthalate		430	97.5	389.9	0	110	10	146	
1,2-Diphenyl Hydrazine		310	195	389.9	0	79.4	40	140	
Fluoranthene		304	97.5	389.9	0	78.0	26	137	
Fluorene		345	97.5	389.9	0	88.6	59	121	
Hexachloro-cyclopentadiene		402	97.5	389.9	0	103	8	130	
Indeno(1,2,3-cd)pyrene		399	48.7	389.9	0	102	10	171	
Isophorone		346	97.5	389.9	0	88.8	21	196	
Naphthalene		299	97.5	389.9	0	76.8	21	133	
N-Nitrosodimethylamine		287	195	389.9	0	73.7	10	125	
N-Nitrosodi-n-propylamine		299	195	389.9	0	76.6	10	230	
N-Nitrosodiphenylamine		331	195	389.9	0	85.0	20	125	
Pyrene		399	97.5	389.9	0	102	52	120	
1,2,4-Trichlorobenzene		296	97.5	389.9	0	75.9	44	142	
Phenol, Total		371	97.5	389.9	23.54	89.1	5	120	
Cresols		662	97.5	779.7	0	84.9	10	125	
Surr: 2,4,6-Tribromophenol		616		779.7		79.0	10	123	
Surr: 2-Fluorobiphenyl		616		779.7		79.0	43	116	
Surr: 2-Fluorophenol		657		779.7		84.3	21	100	
Surr: 4-Terphenyl-d14		758		779.7		97.3	33	141	
Surr: Nitrobenzene-d5		680		779.7		87.3	35	115	
Surr: Phenol-d5		600		779.7		77.0	10	94	
Sample ID: 2405093-01CMSD	Batch ID:	115360		TestNo	- F62)E 1		Units:	ua/I

Sample ID: 2405093-01CMSD	Batch ID:	115369		TestNo	: E62	25.1		Units:	μg/L		
SampType: MSD	Run ID:	GCMS4_	_240514C	Analysi	s Date: 5/14	4/2024 11:28	:00 AM	Prep Date	5/13	5/13/2024	
Analyte	R	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual	
Benzidine		253	407	325.7	0	77.7	5	125	15.8	50	
Benzo(a)anthracene		309	40.7	325.7	0	94.9	33	143	15.9	50	
Benzo(a)pyrene		358	40.7	325.7	0	110	17	163	14.9	50	
Chrysene		300	40.7	325.7	0	92.1	17	168	15.6	50	
2,4-Dimethylphenol		402	81.4	325.7	56.23	106	32	120	11.9	50	
4,6-Dinitro-o-cresol		288	81.4	325.7	0	88.4	10	181	11.5	50	
m,p-Cresols		279	81.4	325.7	0	85.8	10	125	15.5	50	
o-Cresols		284	81.4	325.7	0	87.2	25	125	16.5	50	
p-Chloro-m-Cresol	2	2540	81.4	325.7	0	779	22	147	0.190	50 S	
Hexachlorobenzene		247	40.7	325.7	0	76.0	10	152	15.5	50	
Hexachlorobutadiene		224	81.4	325.7	0	68.8	24	120	23.6	50	
Hexachloroethane		217	163	325.7	0	66.6	40	120	24.2	50	
Nitrobenzene		301	81.4	325.7	0	92.5	35	180	15.9	50	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 18 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR RunID: GCMS4_240514C

Sample ID: 2405093-01CMSD	Batch ID: 115369		TestNo	E62	5.1		Units:	μg/L	
SampType: MSD	Run ID: GCMS4_	_240514C	Analys	is Date: 5/14	/2024 11:28	3:00 AM	Prep Date:	5/13	/2024
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
N-Nitrosodiethylamine	250	163	325.7	0	76.9	20	125	18.8	50
N-Nitro-di-n-Butylamine	265	163	325.7	0	81.5	20	125	14.3	50
Pentachlorobenzene	249	163	325.7	0	76.5	40	140	12.8	50
Pentachlorophenol	284	40.7	325.7	0	87.2	14	176	15.9	50
Phenanthrene	282	81.4	325.7	0	86.6	54	120	15.0	39
Pyridine	228	163	325.7	0	70.0	10	75	13.8	50
1,2,4,5-Tetrachlorobenzene	240	163	325.7	0	73.6	30	140	15.3	50
2,4,5-Trichlorophenol	358	81.4	325.7	0	110	25	125	17.3	50
2-Chlorophenol	293	81.4	325.7	0	89.9	23	134	17.1	50
2,4-Dichlorophenol	326	81.4	325.7	0	100	39	135	13.8	50
2,4-Dinitrophenol	306	407	325.7	0	94.0	10	191	14.5	50
2-Nitrophenol	310	81.4	325.7	0	95.2	29	182	15.4	50
4-Nitrophenol	343	407	325.7	0	105	10	132	24.4	50
Phenol	315	81.4	325.7	23.54	89.4	5	120	16.4	50
2,4,6-Trichlorophenol	342	81.4	325.7	0	105	37	144	16.4	50
3,4-Benzofluoranthene	335	81.4	325.7	0	103	24	159	14.8	50
Acenaphthene	268	81.4	325.7	0	82.4	47	145	18.3	48
Acenaphthylene	277	81.4	325.7	0	85.2	33	145	17.2	50
Anthracene	268	81.4	325.7	0	82.4	27	133	15.6	50
Benzo(ghi)perylene	332	163	325.7	0	102	10	219	15.6	50
Benzo(k)Fluoranthene	277	40.7	325.7	0	85.1	11	162	15.0	50
Bis(2-chloroethoxy)methane	277	81.4	325.7	0	85.2	33	184	13.9	50
Bis(2-chloroethyl)ether	275	81.4	325.7	0	84.4	12	158	15.6	50
Bis(2-chloroisopropyl)ether	291	81.4	325.7	0	89.4	36	166	15.2	50
Bis(2-ethylhexyl)phthalate	357	81.4	325.7	0	110	10	158	16.1	50
4-Bromophenyl phenyl ether	262	81.4	325.7	0	80.6	53	127	12.5	43
Butylbenzyl Phthalate	342	81.4	325.7	0	105	10	152	17.1	50
2-Chloronaphthalene	274	81.4	325.7	0	84.0	60	120	17.4	24
4-Chlorophenyl phenyl ether	283	81.4	325.7	0	86.9	25	158	17.5	50
Dibenzo(a,h)Anthracene	343	40.7	325.7	0	105	10	125	16.4	50
3,3-Dichlorobenzidine	282	40.7	325.7	0	86.5	10	262	19.7	50
Diethyl phthalate	310	81.4	325.7	0	95.2	10	120	18.2	50
Dimethyl phthalate	293	81.4	325.7	0	89.9	10	120	17.8	50
Di-n-butyl phthalate	296	81.4	325.7	0	90.9	10	120	17.3	47
2,4-Dinitrotoluene	329	81.4	325.7	0	101	39	139	18.2	42
2,6-Dinitrotoluene	338	81.4	325.7	0	104	50	158	18.3	48
Di-n-octyl phthalate	362	81.4	325.7 325.7	0	111	10	146	17.3	50
1,2-Diphenyl Hydrazine	269		325.7 325.7		82.6	40	140	14.1	50 50
		163		0					
Fluoranthene	257	81.4	325.7	0	78.8	26 50	137	16.8	50
Fluorene	282	81.4	325.7	0	86.6	59	121	20.2	38
Hexachloro-cyclopentadiene	325	81.4	325.7	0	99.9	8	130	21.0	50

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 19 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

GCMS4_240514C **RunID: Project:** IPP WEST Plant Long QTR

Sample ID: 2405093-01CMSD	Batch ID:	115369		TestNo	E62	5.1		Units:	μg/L	
SampType: MSD	Run ID:	GCMS4	_240514C	Analys	is Date: 5/14	/2024 11:28	3:00 AM	Prep Date:	5/13/	2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit Qua
Indeno(1,2,3-cd)pyrene		340	40.7	325.7	0	104	10	171	15.9	50
Isophorone		293	81.4	325.7	0	90.1	21	196	16.4	50
Naphthalene		253	81.4	325.7	0	77.7	21	133	16.7	50
N-Nitrosodimethylamine		240	163	325.7	0	73.8	10	125	17.8	50
N-Nitrosodi-n-propylamine		252	163	325.7	0	77.5	10	230	16.8	50
N-Nitrosodiphenylamine		290	163	325.7	0	89.0	20	125	13.4	50
Pyrene		332	81.4	325.7	0	102	52	120	18.5	49
1,2,4-Trichlorobenzene		241	81.4	325.7	0	74.0	44	142	20.4	50
Phenol, Total		315	81.4	325.7	23.54	89.4	5	120	16.4	50
Cresols		564	81.4	651.5	0	86.5	10	125	16.0	50
Surr: 2,4,6-Tribromophenol		537		651.5		82.5	10	123	0	0
Surr: 2-Fluorobiphenyl		521		651.5		80.0	43	116	0	0
Surr: 2-Fluorophenol		573		651.5		88.0	21	100	0	0
Surr: 4-Terphenyl-d14		645		651.5		99.0	33	141	0	0
Surr: Nitrobenzene-d5		586		651.5		90.0	35	115	0	0
Surr: Phenol-d5		513		651.5		78.8	10	94	0	0
Sample ID: MB-115369	Batch ID:	115369		TestNo	c: E62	5 1		Units:	μg/L	
SampType: MBLK	Run ID:		_240514C		is Date: 5/14		9:00 PM	Prep Date:	5/13/	2024
Analyte		Result	RL	SPK value	Ref Val	%REC			6RPD	RPDLimit Qua
-										
Benzidine		<5.00	50.0 5.00							
Danas (a) anthus as as		<2.00	5 00							
Benzo(a)anthracene		0.00								
Benzo(a)pyrene		<2.00	5.00							
Benzo(a)pyrene Chrysene		<2.00	5.00 5.00							
Benzo(a)pyrene Chrysene 2,4-Dimethylphenol		<2.00 <2.00	5.00 5.00 10.0							
Benzo(a)pyrene Chrysene 2,4-Dimethylphenol 4,6-Dinitro-o-cresol		<2.00 <2.00 <2.00	5.00 5.00 10.0 10.0							
Benzo(a)pyrene Chrysene 2,4-Dimethylphenol 4,6-Dinitro-o-cresol m,p-Cresols		<2.00 <2.00 <2.00 <2.00	5.00 5.00 10.0 10.0 10.0							
Benzo(a)pyrene Chrysene 2,4-Dimethylphenol 4,6-Dinitro-o-cresol m,p-Cresols o-Cresols		<2.00 <2.00 <2.00 <2.00 <2.00 <2.00	5.00 5.00 10.0 10.0 10.0							
Benzo(a)pyrene Chrysene 2,4-Dimethylphenol 4,6-Dinitro-o-cresol m,p-Cresols o-Cresols p-Chloro-m-Cresol		<2.00 <2.00 <2.00 <2.00 <2.00 <2.00	5.00 5.00 10.0 10.0 10.0 10.0							
Benzo(a)pyrene Chrysene 2,4-Dimethylphenol 4,6-Dinitro-o-cresol m,p-Cresols		<2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00	5.00 5.00 10.0 10.0 10.0 10.0 10.0 5.00							
Benzo(a)pyrene Chrysene 2,4-Dimethylphenol 4,6-Dinitro-o-cresol m,p-Cresols o-Cresols p-Chloro-m-Cresol Hexachlorobenzene		<2.00 <2.00 <2.00 <2.00 <2.00 <2.00	5.00 5.00 10.0 10.0 10.0 10.0							
Benzo(a)pyrene Chrysene 2,4-Dimethylphenol 4,6-Dinitro-o-cresol m,p-Cresols o-Cresols p-Chloro-m-Cresol Hexachlorobenzene Hexachlorobutadiene		<2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00	5.00 5.00 10.0 10.0 10.0 10.0 10.0 5.00							
Benzo(a)pyrene Chrysene 2,4-Dimethylphenol 4,6-Dinitro-o-cresol m,p-Cresols o-Cresols p-Chloro-m-Cresol Hexachlorobenzene Hexachlorobutadiene Hexachloroethane		<2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00	5.00 5.00 10.0 10.0 10.0 10.0 10.0 5.00							
Benzo(a)pyrene Chrysene 2,4-Dimethylphenol 4,6-Dinitro-o-cresol m,p-Cresols o-Cresols p-Chloro-m-Cresol Hexachlorobenzene Hexachlorobtadiene Hexachloroethane Nitrobenzene		<2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00	5.00 5.00 10.0 10.0 10.0 10.0 5.00 10.0 20.0							
Benzo(a)pyrene Chrysene 2,4-Dimethylphenol 4,6-Dinitro-o-cresol m,p-Cresols o-Cresols p-Chloro-m-Cresol Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Nitrobenzene N-Nitrosodiethylamine		<2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00	5.00 5.00 10.0 10.0 10.0 10.0 5.00 10.0 20.0							
Benzo(a)pyrene Chrysene 2,4-Dimethylphenol 4,6-Dinitro-o-cresol m,p-Cresols o-Cresols p-Chloro-m-Cresol		<2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00	5.00 5.00 10.0 10.0 10.0 10.0 5.00 10.0 20.0 10.0 20.0							
Benzo(a)pyrene Chrysene 2,4-Dimethylphenol 4,6-Dinitro-o-cresol m,p-Cresols o-Cresols p-Chloro-m-Cresol Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Nitrobenzene N-Nitrosodiethylamine N-Nitro-di-n-Butylamine		<2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00	5.00 5.00 10.0 10.0 10.0 10.0 5.00 10.0 20.0 20.0 20.0							
Benzo(a)pyrene Chrysene 2,4-Dimethylphenol 4,6-Dinitro-o-cresol m,p-Cresols o-Cresols p-Chloro-m-Cresol Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Nitrobenzene N-Nitrosodiethylamine N-Nitro-di-n-Butylamine Pentachlorobenzene		<2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00	5.00 5.00 10.0 10.0 10.0 10.0 5.00 10.0 20.0 20.0 20.0 20.0							
Benzo(a)pyrene Chrysene 2,4-Dimethylphenol 4,6-Dinitro-o-cresol m,p-Cresols o-Cresols p-Chloro-m-Cresol Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Nitrobenzene N-Nitrosodiethylamine N-Nitro-di-n-Butylamine Pentachlorophenol		<2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00	5.00 5.00 10.0 10.0 10.0 10.0 10.0 5.00 10.0 20.0 20.0 20.0 20.0 5.00							

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits Page 20 of 44

Spike Recovery outside control limits

Parameter not NELAP certified

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR

RunID: GCMS4_240514C

Sample ID: MB-115369	Batch ID: 115369		TestNo	: E62	5.1		Units:	μg/L
SampType: MBLK	Run ID: GCMS4	_240514C	Analys	is Date: 5/14	/2024 12:19	9:00 PM	Prep Date:	5/13/2024
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
2,4,5-Trichlorophenol	<2.00	10.0						
2-Chlorophenol	<2.00	10.0						
2,4-Dichlorophenol	<2.00	10.0						
2,4-Dinitrophenol	<2.00	50.0						
2-Nitrophenol	<2.00	10.0						
4-Nitrophenol	<2.00	50.0						
Phenol	<2.00	10.0						
2,4,6-Trichlorophenol	<2.00	10.0						
3,4-Benzofluoranthene	<2.00	10.0						
Acenaphthene	<2.00	10.0						
Acenaphthylene	<2.00	10.0						
Anthracene	<2.00	10.0						
Benzo(ghi)perylene	<2.00	20.0						
Benzo(k)Fluoranthene	<2.00	5.00						
Bis(2-chloroethoxy)methane	<2.00	10.0						
Bis(2-chloroethyl)ether	<2.00	10.0						
Bis(2-chloroisopropyl)ether	<2.00	10.0						
Bis(2-ethylhexyl)phthalate	<2.00	10.0						
4-Bromophenyl phenyl ether	<2.00	10.0						
Butylbenzyl Phthalate	<4.00	10.0						
2-Chloronaphthalene	<2.00	10.0						
4-Chlorophenyl phenyl ether	<2.00	10.0						
Dibenzo(a,h)Anthracene	<2.00	5.00						
3,3-Dichlorobenzidine	<2.00	5.00						
Diethyl phthalate	<4.00	10.0						
Dimethyl phthalate	<4.00	10.0						
Di-n-butyl phthalate	<4.00	10.0						
2,4-Dinitrotoluene	<2.00	10.0						
2,6-Dinitrotoluene	<2.00	10.0						
Di-n-octyl phthalate	<4.00	10.0						
1,2-Diphenyl Hydrazine	<2.00	20.0						
Fluoranthene	<2.00	10.0						
Fluorene	<2.00	10.0						
Hexachloro-cyclopentadiene	<2.00	10.0						
Indeno(1,2,3-cd)pyrene	<2.00	5.00						
Isophorone	<2.00	10.0						
Naphthalene	<2.00	10.0						
N-Nitrosodimethylamine	<2.00	20.0						
N-Nitrosodi-n-propylamine	<2.00	20.0						
N-Nitrosodiphenylamine	<2.00	20.0						
Pyrene	<2.00	10.0						

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 21 of 44

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR

RunID: GCMS4_240514C

Sample ID: MB-115369	Batch ID:	115369	1	TestNo	: E62	5.1		Units:	μg/L
SampType: MBLK	Run ID:	GCMS	4_240514C	Analys	is Date: 5/14	/2024 12:19	9:00 PM	Prep Date	5/13/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
1,2,4-Trichlorobenzene		<2.00	10.0						
Phenol, Total		<2.00	10.0						
Cresols		<2.00	10.0						
Surr: 2,4,6-Tribromophenol		72.4		80.00		90.5	10	123	
Surr: 2-Fluorobiphenyl		74.0		80.00		92.5	43	116	
Surr: 2-Fluorophenol		44.2		80.00		55.2	21	100	
Surr: 4-Terphenyl-d14		83.6		80.00		104	33	141	
Surr: Nitrobenzene-d5		77.4		80.00		96.8	35	115	
Surr: Phenol-d5		27.2		80.00		34.0	10	94	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 22 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR RunID: GCMS4_240514C

Sample ID: ICV-240514	Batch ID:	R133035		TestNo	E625	5.1		Units:	μg/L	
SampType: ICV	Run ID:	GCMS4_	240514C	Analys	is Date: 5/14	/2024 10:14	:00 AM	Prep Date:		
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RPI	DLimit Qual
Benzidine	:	2800	50.0	2500	0	112	60	130		
Benzo(a)anthracene	:	2380	5.00	2500	0	95.3	70	130		
Benzo(a)pyrene	:	2520	5.00	2500	0	101	70	130		
Chrysene	:	2280	5.00	2500	0	91.2	70	130		
2,4-Dimethylphenol	:	2100	10.0	2500	0	83.8	70	130		
4,6-Dinitro-o-cresol	:	2340	10.0	2500	0	93.8	70	130		
m,p-Cresols	:	2090	10.0	2500	0	83.7	70	130		
o-Cresols	:	2070	10.0	2500	0	82.9	70	130		
p-Chloro-m-Cresol	:	2130	10.0	2500	0	85.1	70	130		
Hexachlorobenzene		1980	5.00	2500	0	79.2	70	130		
Hexachlorobutadiene	:	2410	10.0	2500	0	96.4	70	130		
Hexachloroethane		2270	20.0	2500	0	90.8	70	130		
Nitrobenzene	:	2460	10.0	2500	0	98.4	70	130		
N-Nitrosodiethylamine	:	2210	20.0	2500	0	88.3	70	130		
N-Nitro-di-n-Butylamine	:	2040	20.0	2500	0	81.8	70	130		
Pentachlorobenzene	:	2120	20.0	2500	0	85.0	70	130		
Pentachlorophenol	:	2000	5.00	2500	0	79.8	70	130		
Phenanthrene	:	2130	10.0	2500	0	85.2	70	130		
Pyridine		2270	20.0	2500	0	90.9	70	130		
1,2,4,5-Tetrachlorobenzene		2080	20.0	2500	0	83.1	70	130		
2,4,5-Trichlorophenol		2490	10.0	2500	0	99.6	70	130		
2-Chlorophenol		2240	10.0	2500	0	89.6	70	130		
2,4-Dichlorophenol		2270	10.0	2500	0	90.7	70	130		
2,4-Dinitrophenol		2580	50.0	2500	0	103	70	130		
2-Nitrophenol		2380	10.0	2500	0	95.4	70	130		
4-Nitrophenol		2760	50.0	2500	0	110	70	130		
Phenol		2320	10.0	2500	0	93.0	70	130		
2,4,6-Trichlorophenol		2520	10.0	2500	0	101	70	130		
3,4-Benzofluoranthene		2550	10.0	2500	0	102	70	130		
Acenaphthene		2190	10.0	2500	0	87.4	70	130		
Acenaphthylene		2350	10.0	2500	0	94.0	70	130		
Anthracene		2000	10.0	2500	0	80.1	70	130		
Benzo(ghi)perylene		2440	20.0	2500	0	97.7	70	130		
Benzo(k)Fluoranthene		2130	5.00	2500	0	85.1	70	130		
Bis(2-chloroethoxy)methane		2200	10.0	2500	0	88.2	70	130		
Bis(2-chloroethyl)ether		2280	10.0	2500	0	91.4	70	130		
Bis(2-chloroisopropyl)ether		2480	10.0	2500	0	99.0	70	130		
Bis(2-ethylhexyl)phthalate		2640	10.0	2500	0	106	70	130		
4-Bromophenyl phenyl ether		2030	10.0	2500	0	81.1	70	130		
Butylbenzyl Phthalate		2600	10.0	2500	0	104	70	130		
2-Chloronaphthalene		2300	10.0	2500	0	92.0	70	130		
2 Onloronaphinalene	•	2000	10.0	2000	J	32.0	70	130		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 23 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR RunID: GCMS4_240514C

Sample ID: ICV-240514	Batch ID:	R13303	5	TestNo	: E62 !	5.1	· · · · · · · · · · · · · · · · · · ·	Units:	μg/L
SampType: ICV	Run ID:	GCMS4	_240514C	Analys	is Date: 5/14	/2024 10:14	:00 AM	Prep Date:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
4-Chlorophenyl phenyl ether		2210	10.0	2500	0	88.2	70	130	
Dibenzo(a,h)Anthracene		2590	5.00	2500	0	104	70	130	
3,3-Dichlorobenzidine		2760	5.00	2500	0	110	70	130	
Diethyl phthalate		2230	10.0	2500	0	89.0	70	130	
Dimethyl phthalate		2220	10.0	2500	0	88.6	70	130	
Di-n-butyl phthalate		2150	10.0	2500	0	86.1	70	130	
2,4-Dinitrotoluene		2380	10.0	2500	0	95.0	70	130	
2,6-Dinitrotoluene		2590	10.0	2500	0	104	70	130	
Di-n-octyl phthalate		2530	10.0	2500	0	101	70	130	
1,2-Diphenyl Hydrazine		2110	20.0	2500	0	84.5	70	130	
Fluoranthene		1920	10.0	2500	0	77.0	70	130	
Fluorene		2210	10.0	2500	0	88.2	70	130	
Hexachloro-cyclopentadiene		2580	10.0	2500	0	103	70	130	
Indeno(1,2,3-cd)pyrene		2600	5.00	2500	0	104	70	130	
Isophorone		2390	10.0	2500	0	95.8	70	130	
Naphthalene		2170	10.0	2500	0	87.0	70	130	
N-Nitrosodimethylamine		2260	20.0	2500	0	90.4	70	130	
N-Nitrosodi-n-propylamine		2150	20.0	2500	0	86.0	70	130	
N-Nitrosodiphenylamine		2110	20.0	2500	0	84.2	70	130	
Pyrene		2560	10.0	2500	0	102	70	130	
1,2,4-Trichlorobenzene		2280	10.0	2500	0	91.2	70	130	
Phenol, Total		2320	10.0	2500	0	93.0	70	130	
Cresols		4170	10.0	5000	0	83.3	70	130	
Surr: 2,4,6-Tribromophenol		2220		2500		88.8	70	130	
Surr: 2-Fluorobiphenyl		2450		2500		98.0	70	130	
Surr: 2-Fluorophenol		2310		2500		92.4	70	130	
Surr: 4-Terphenyl-d14		2600		2500		104	70	130	
Surr: Nitrobenzene-d5		2550		2500		102	70	130	
Surr: Phenol-d5		2220		2500		88.8	70	130	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 24 of 44

ANALYTICAL QC SUMMARY REPORT Work Order: 2405086

RunID: GCMS8_240513A **Project:** IPP WEST Plant Long QTR

The QC data in batch 115352 ap	oplies to the t	following s	samples: 240	5086-05E, 2405	5086-05F, 2	405086-06E	, 240508	6-06F	
Sample ID: LCS-115352-PCB	Batch ID:	115352		TestNo:	E62	5.1		Units:	μg/L
SampType: LCS	Run ID:	GCMS8	_240513A	Analysis	s Date: 5/13	3/2024 1:06:	00 PM	Prep Date:	5/10/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit 9	%RPD RPDLimit Qual
Aroclor 1016		2.41	0.200	4.000	0	60.3	37	130	
Aroclor 1260		2.48	0.200	4.000	0	62.0	19	130	
Total PCBs		4.89	0.200	8.000	0	61.1	19	130	
Surr: 2-Fluorobiphenyl		2.27		4.000		56.8	43	116	
Surr: 4-Terphenyl-d14		2.89		4.000		72.4	33	141	
Sample ID: MB-115352	Batch ID:	115352		TestNo:	E62	5.1		Units:	μg/L
SampType: MBLK	Run ID:	GCMS8	_240513A	Analysis	s Date: 5/13	3/2024 1:36:	00 PM	Prep Date:	5/10/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit 9	%RPD RPDLimit Qual
Aroclor 1016		<0.100	0.200						
Aroclor 1221		<0.100	0.200						
Aroclor 1232		<0.100	0.200						
Aroclor 1242		<0.100	0.200						
Aroclor 1248		<0.100	0.200						
Aroclor 1254		<0.100	0.200						
Aroclor 1260		<0.100	0.200						
Total PCBs		<0.100	0.200						
Surr: 2-Fluorobiphenyl		2.47		4.000		61.9	43	116	
Surr: 4-Terphenyl-d14		3.04		4.000		75.9	33	141	

Qualifiers: Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 25 of 44

R RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAP certified

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR RunID: GCMS8_240513A

Sample ID: ICV-240513	Batch ID:	R13301	7	TestNo	: E62	5.1		Units:	μg/L
SampType: ICV	Run ID:	GCMS8	3_240513A	Analys	is Date: 5/13	3/2024 12:20	0:00 PM	Prep Date	ı:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Aroclor 1016		1890	0.200	2000	0	94.7	70	130	_
Aroclor 1260		1790	0.200	2000	0	89.4	19	130	
Total PCBs		3680	0.200	4000	0	92.0	70	130	
Surr: 2-Fluorobiphenyl		1740		2000		87.1	70	130	
Surr: 4-Terphenyl-d14		1710		2000		85.7	70	130	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 26 of 44

Work Order: 2405086

Project: IPP WEST Plant Long QTR RunID: GCMS9_240514A

9		0						_		
The QC data in batch 115369 a	pplies to the t	following s	samples: 240	5086-05D, 2405	086-06D					
Sample ID: MB-115369	Batch ID:	115369		TestNo:	D7(065-17		Units:	μg/L	
SampType: MBLK	Run ID:	GCMS9	_240514A	Analysis	s Date: 5/1	4/2024 10:14	:00 AM	Prep Date:	5/13/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit ⁴	%RPD RPDLim	it Qual
Nonylphenol		<70.0	100							N
Sample ID: LCS-115369-NP	Batch ID:	115369		TestNo:	D7(065-17		Units:	μg/L	
SampType: LCS	Run ID:	GCMS9	_240514A	Analysis	S Date: 5/1	4/2024 10:58	:00 AM	Prep Date:	5/13/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit ⁽	%RPD RPDLim	it Qual
Nonylphenol		916	100	1000	0	91.6	40	140		N

ANALYTICAL QC SUMMARY REPORT

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 27 of 44

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR RunID: GCMS9_240514A

Sample ID: ICV-240514 NP TestNo: D7065-17 μg/L Batch ID: R133032 Units: SampType: ICV Run ID: GCMS9_240514A Analysis Date: 5/14/2024 9:51:00 AM Prep Date: Ref Val Analyte RLSPK value LowLimit HighLimit %RPD RPDLimit Qual Result %REC Nonylphenol 93200 100 100000 0 93.2 75 125 Ν

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 28 of 44

CLIENT: CITY OF ROUND ROCK ANALYTICAL QC SUMMARY REPORT

Work Order: 2405086

WC_240510C **RunID: Project:** IPP WEST Plant Long QTR

The QC data in batch 115351	applies to the	following	samples: 240	05086-03C, 240	5086-04C				
Sample ID: MB-115351	Batch ID:	115351		TestNo	: E16	64A		Units:	μg/L
SampType: MBLK	Run ID:	WC_24	0510C	Analysi	s Date: 5/10)/2024 5:00:	00 PM	Prep Date:	5/10/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qu
Oil & Grease		1700	5000						
Sample ID: LCS-115351	Batch ID:	115351		TestNo	: E16	64A		Units:	μg/L
SampType: LCS	Run ID:	WC_24	0510C	Analysi	s Date: 5/10)/2024 5:00:	00 PM	Prep Date:	5/10/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qu
Oil & Grease		32200	5000	40000	0	80.5	78	114	
Sample ID: LCSD-115351	Batch ID:	115351		TestNo	: E16	64A		Units:	μg/L
SampType: LCSD	Run ID:	WC_24	0510C	Analysi	s Date: 5/10)/2024 5:00:	00 PM	Prep Date:	5/10/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qu
Oil & Grease		32800	5000	40000	0	82.0	78	114	1.85 18

Qualifiers: Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 29 of 44

R RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAP certified

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR

RunID: GCMS5_240509A

Sample ID: LCS-115330 Batch ID: 115330 Run ID: 15330 R	The QC data in batch 115330 ap	oplies to the foll	owing samples: 24	405086-03A, 24	405086-04A				
Result	Sample ID: LCS-115330	Batch ID: 1	15330	Test	No: E6	24.1		Units:	μg/L
Benzene 24.6 10.0 23.20 0 106 65 135 Carbon tetrachloride 21.2 2.00 23.20 0 91.6 70 130 Chlorobenzene 23.9 10.0 23.20 0 91.6 70 130 Chlorobenzene 22.7 2.00 23.20 0 991.6 70 135 Chlorodom 22.7 2.00 23.20 0 993.0 70 135 Chlorodibromomethane 21.6 5.00 23.20 0 993.0 70 135 Chlorodibromomethane 21.8 2.00 23.20 0 94.0 60 140 140 142 Chlorocethane 21.5 5.00 23.20 0 94.0 60 140 140 142 Chlorocethylene 21.5 5.00 23.20 0 98.0 50 150 Methyl ethyl ketone 119 50.0 116.0 0 103 60 140 Tetrachloroethylene 23.5 10.0 23.20 0 95.2 65 135 Trichloroethylene 23.5 10.0 23.20 0 95.2 65 135 Trichloroethylene 21.5 5.00 23.20 0 95.2 65 135 Trichloroethylene 21.5 5.00 23.20 0 95.2 65 135 Trichloroethylene 21.5 10.0 23.20 0 95.2 65 135 Trichloroethylene 21.5 10.0 23.20 0 95.2 65 135 Trichloroethylene 21.5 10.0 23.20 0 95.2 65 135 Trichloroethylene 25.4 10.0 23.20 0 95.2 65 140 Trichloroethylene 25.4 10.0 23.20 0 95.2 65 140 Trichloroethylene 25.4 10.0 23.20 0 101 70 130 Trichloroethylene 25.4 10.0 23.20 0 101 70 150 Trichloroethylene 25.4 10.0 23.20 0 110 5 195 Chlorocothylene 26.0 10.0 23.20 0 110 5 195 Chlorocothylene 26.0 10.0 23.20 0 110 5 195 Chlorocothylene 27.0 10.0 23.20 0 110 5 195 Chlorocothylene 28.4 10.0 23.20 0 110 5 195 Chlorocothylene 28.4 10.0 23.20 0 110 5 195 Chlorocothylene 29.9 10.0 23.20 0 100 70 100 100 23.20 0 100 70 100 100 23.20 0 100 70 100 100 100 100 100 100 100 1	SampType: LCS	Run ID:	GCMS5_240509A	Analy	ysis Date: 5/ 9	9/2024 10:19:	00 AM	Prep Date:	5/9/2024
Carbon tetrachloride 21.2 2.00 23.20 0 91.6 70 130 Chlorodom 23.9 10.0 23.20 0 103 35 135 Chlorodibromomethane 21.6 5.00 23.20 0 98.1 70 135 Chlorodibromomethane 21.8 2.00 23.20 0 94.0 60 140 1,2-Dibrhoroethane 21.5 5.00 23.20 0 94.0 60 140 1,1-Dichloroethylene 22.7 5.00 23.20 0 98.0 50 150 Methyl ethyl ketone 119 50.0 23.20 0 101 70 130 Tichloroethylene 22.5 10.0 23.20 0 101 70 130 Tirchloroethylene 22.1 5.00 23.20 0 95.2 65 135 1,1,1-Trichloroethylene 22.1 5.00 23.20 0 95.2 65 135 <t< th=""><th>Analyte</th><th>Re</th><th>sult RL</th><th>SPK value</th><th>Ref Val</th><th>%REC</th><th>LowLim</th><th>it HighLimit '</th><th>%RPD RPDLimit Qu</th></t<>	Analyte	Re	sult RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD RPDLimit Qu
Chlorobenzene 23.9 10.0 23.20 0 103 35 135 Chlorodrom 22.7 2.00 23.20 0 98.1 70 135 Chlorodbromemethane 21.6 5.00 23.20 0 94.0 60 140 1,2-Dichloroethane 21.5 5.00 23.20 0 98.0 70 135 1,1-Dichloroethylene 22.7 5.00 23.20 0 98.0 50 150 Methyl ethyl ketone 119 50.0 21.6 0 101 70 130 Tetrachloroethylene 23.5 10.0 23.20 0 101 70 130 Tirchloroethylene 22.1 5.00 23.20 0 95.2 65 135 1,1,1-Trichloroethane 21.5 10.0 23.20 0 101 70 130 Tirchloroethylene 25.4 10.0 23.20 0 110 5 195 <t< td=""><td>Benzene</td><td>24</td><td>1.6 10.0</td><td>23.20</td><td>0</td><td>106</td><td>65</td><td>135</td><td></td></t<>	Benzene	24	1.6 10.0	23.20	0	106	65	135	
Chloroform 22.7 2.00 23.20 0 98.1 70 135 Chlorodibromomethane 21.6 5.00 23.20 0 93.0 70 135 1,2-Dibrimoethane 21.8 2.00 23.20 0 92.6 70 130 1,1-Dichloroethylene 22.7 5.00 23.20 0 98.0 50 150 Methyl ethyl ketone 119 50.0 23.20 0 103 60 140 Tetrachloroethylene 23.5 10.0 23.20 0 101 70 130 Trichloroethylene 22.1 5.00 23.20 0 95.2 65 135 1,1,1-Trichloroethylene 22.1 5.00 23.20 0 95.2 65 135 1,1,1-Trichloroethane 24.5 10.0 23.20 0 110 5 195 Acrylonitrile 45.1 50.0 46.40 0 97.3 60 140	Carbon tetrachloride	21	1.2 2.00	23.20	0	91.6	70	130	
Chlorodibromomethane 21.6 5.00 23.20 0 93.0 70 135 1,2-Dibromoethane 21.8 2.00 23.20 0 94.0 60 140 1,2-Dibromoethane 21.5 5.00 23.20 0 98.0 50 150 Methyl ethyl ketone 119 50.0 116.0 0 103 60 140 Tetrachloroethylene 23.5 10.0 23.20 0 1013 60 140 Trichloroethylene 22.1 5.00 23.20 0 95.2 65 135 1,1,1-Trichloroethane 21.5 10.0 23.20 0 95.2 70 130 TTHM (Total Trihalomethanes) 86.3 10.0 23.20 0 97.3 60 140 Vinyl chloride 25.4 10.0 23.20 0 110 5 195 Acrylontifile 45.1 50.0 46.40 0 97.3 60 140	Chlorobenzene	23	3.9 10.0	23.20	0	103	35	135	
1,2-Dibromoethane 21.8 2.00 23.20 0 94.0 60 140 1,2-Dichloroethane 21.5 5.00 23.20 0 92.6 70 130 1,1-Dichloroethylene 22.7 5.00 23.20 0 98.0 50 150 Methyl ektone 119 50.0 23.20 0 101 70 130 Trichloroethylene 22.1 5.00 23.20 0 95.2 65 135 1,1-1-Tichloroethylene 21.5 10.0 23.20 0 95.2 65 135 1,1,1-Tichloroethylene 21.5 10.0 23.20 0 95.9 70 130 TTHM (Total Trihalomethanes) 86.3 10.0 23.20 0 110 5 195 Acylontirile 45.1 50.0 23.20 0 110 5 195 Acylontirile 45.1 50.0 23.20 0 161 0 140	Chloroform	22	2.7 2.00	23.20	0	98.1	70	135	
1,2-Dichloroethylene 21.5 5.00 23.20 0 92.6 70 130 1,1-Dichloroethylene 22.7 5.00 23.20 0 98.0 50 150 Methyl ethyl ketone 119 50.0 116.0 0 103 60 140 Tetrachloroethylene 23.5 10.0 23.20 0 101 70 130 Trichloroethylene 22.1 5.00 23.20 0 95.2 65 135 1,1,1-Trichloroethane 21.5 10.0 23.20 0 92.9 70 130 TTHM (Total Trihalomethanes) 86.3 10.0 92.80 0 93.0 60 140 Vinyl chloride 25.4 10.0 23.20 0 110 5 195 Acrylontirlle 45.1 50.0 46.40 0 97.3 60 140 1,1,2-2-Tetra-chloroethane 24.9 10.0 23.20 0 101 5 225	Chlorodibromomethane	21	1.6 5.00	23.20	0	93.0	70	135	
1,1-Dichloroethylene 22,7 5.00 23.20 0 98.0 50 150 Methyl ethyl ketone 119 50.0 116.0 0 103 60 140 Tetrachloroethylene 23.5 10.0 23.20 0 101 70 130 Trichloroethylene 22.1 5.00 23.20 0 95.2 65 135 1,1,1-Trichloroethane 21.5 10.0 23.20 0 92.9 70 130 TTHM (Total Trihalomethanes) 86.3 10.0 23.20 0 91.0 6 140 Vinyl chloride 25.4 10.0 23.20 0 1110 5 195 Acrylonitrile 45.1 50.0 46.40 0 97.3 60 140 1,1,22-Tetra-chloroethane 26.0 10.0 23.20 0 110 5 25 Bromoform 20.0 10.0 23.20 0 107 40 160	1,2-Dibromoethane	21	1.8 2.00	23.20	0	94.0	60	140	
Methyl ethyl keione 119 50.0 116.0 0 103 60 140 Tetrachloroethylene 23.5 10.0 23.20 0 101 70 130 Trichloroethylene 22.1 5.00 23.20 0 95.2 65 135 1,1,1-Trichloroethane 21.5 10.0 23.20 0 92.9 70 130 TTHM (Total Trihalomethanes) 86.3 10.0 23.20 0 110 5 195 Acrylonitrile 45.1 50.0 46.40 0 97.3 60 140 1,1,2,2-Tetra-chloroethane 26.0 10.0 23.20 0 1112 60 140 Bromoform 20.0 10.0 23.20 0 107 40 160 2-Chloroethane 24.9 10.0 23.20 0 107 40 160 1,1-Dichloroethane 21.9 5.00 23.20 0 196 5 135	1,2-Dichloroethane	21	1.5 5.00	23.20	0	92.6	70	130	
Tetrachloroethylene 23.5 10.0 23.20 0 101 70 130 Trichloroethylene 22.1 5.00 23.20 0 95.2 65 135 1,1,1-Trichloroethane 21.5 10.0 23.20 0 92.9 70 130 THM (Total Trihalomethanes) 86.3 10.0 92.80 0 93.0 60 140 Vinyl chloride 25.4 10.0 23.20 0 110 5 195 Acrylonitrile 45.1 50.0 46.40 0 97.3 60 140 1,1,2,2-Tetra-chloroethane 26.0 10.0 23.20 0 112 60 140 1,1,2,2-Tetra-chloroethane 24.0 10.0 23.20 0 107 40 160 2-Chloroethylvinyl Ether 23.4 10.0 23.20 0 107 40 160 2-Chloroethylvinyl Ether 23.4 10.0 23.20 0 106 70 <td< td=""><td>1,1-Dichloroethylene</td><td>22</td><td>2.7 5.00</td><td>23.20</td><td>0</td><td>98.0</td><td>50</td><td>150</td><td></td></td<>	1,1-Dichloroethylene	22	2.7 5.00	23.20	0	98.0	50	150	
Trichloroethylene 22.1 5.00 23.20 0 95.2 65 135 1,1,1-Trichloroethane 21.5 10.0 23.20 0 99.9 70 130 TTHM (Total Trihalomethanes) 86.3 10.0 928.0 0 93.0 60 140 Vinyl chloride 25.4 10.0 23.20 0 110 5 195 Acrylonitrile 45.1 50.0 46.40 0 97.3 60 140 1,1,2,2-Tetra-chloroethane 26.0 10.0 23.20 0 812 65 135 Chloroethane 24.9 10.0 23.20 0 86.3 65 135 Chloroethane 24.9 10.0 23.20 0 107 40 160 2-Chloroethylvinyl Ether 23.4 10.0 23.20 0 101 5 225 Dichlorobrommethane 21.9 5.00 23.20 0 106 70 130 <	Methyl ethyl ketone	1.	19 50.0	116.0	0	103	60	140	
1,1,1-Trichloroethane 21.5 10.0 23.20 0 92.9 70 130 TTHM (Total Trihalomethanes) 86.3 10.0 92.80 0 93.0 60 140 Vinyl chloride 25.4 10.0 23.20 0 110 5 195 Acrylonitrile 45.1 50.0 46.40 0 97.3 60 140 1,1,2,2-Tetra-chloroethane 26.0 10.0 23.20 0 112 60 140 Bromoform 20.0 10.0 23.20 0 107 40 160 2-Chloroethykinyl Ether 23.4 10.0 23.20 0 101 5 225 Dichlorobromomethane 21.9 5.00 23.20 0 106 70 130 1,2-Dichloropropane 24.5 10.0 23.20 0 106 70 130 1,2-Dichloropropylene 22.9 10.0 23.20 0 98.7 25 175 <td>Tetrachloroethylene</td> <td>23</td> <td>3.5 10.0</td> <td>23.20</td> <td>0</td> <td>101</td> <td>70</td> <td>130</td> <td></td>	Tetrachloroethylene	23	3.5 10.0	23.20	0	101	70	130	
TTHM (Total Trihalomethanes) 86.3 10.0 92.80 0 93.0 60 140 Vinyl chloride 25.4 10.0 23.20 0 110 5 195 Acrylonitrile 45.1 50.0 46.40 0 97.3 60 140 1,1,2,2-Tetra-chloroethane 26.0 10.0 23.20 0 86.3 65 135 Promoform 20.0 10.0 23.20 0 107 40 160 2-Chloroethylvinyl Ether 23.4 10.0 23.20 0 101 5 225 Dichlorobromomethane 21.9 5.00 23.20 0 101 5 225 Dichloroptrophane 24.6 10.0 23.20 0 106 70 130 1,2-Dichloropropale 24.5 10.0 23.20 0 106 70 130 1,2-Dichloropropylene 22.9 10.0 23.20 0 106 60 140	Trichloroethylene	22	2.1 5.00	23.20	0	95.2	65	135	
Vinyl chloride 25.4 10.0 23.20 0 110 5 195 Acrylonitrile 45.1 50.0 46.40 0 97.3 60 140 1,1,2,2-Tetra-chloroethane 26.0 10.0 23.20 0 112 60 140 Bromoform 20.0 10.0 23.20 0 86.3 65 135 Chloroethane 24.9 10.0 23.20 0 101 5 225 Dichlorobromomethane 21.9 5.00 23.20 0 101 5 225 Dichloroptopame 24.6 10.0 23.20 0 106 70 130 1,2-Dichloropropale 24.5 10.0 23.20 0 106 70 130 1,2-Dichloropropale 24.5 10.0 23.20 0 106 35 165 1,3-Dichloropropale 24.5 10.0 23.20 0 106 35 165 1,4-Dich	1,1,1-Trichloroethane	21	1.5 10.0	23.20	0	92.9	70	130	
Acrylonitrile 45.1 50.0 46.40 0 97.3 60 140 1,1,2,2-Tetra-chloroethane 26.0 10.0 23.20 0 112 60 140 Bromoform 20.0 10.0 23.20 0 86.3 65 135 Chloroethyloryl Ether 24.9 10.0 23.20 0 107 40 160 2-Chloroethylvinyl Ether 23.4 10.0 23.20 0 101 5 225 Dichlorobromomethane 21.9 5.00 23.20 0 106 70 135 1,1-Dichloropropane 24.6 10.0 23.20 0 106 70 130 1,2-Dichloropropane 24.5 10.0 23.20 0 106 35 165 1,3-Dichloropropylene 22.9 10.0 23.20 0 106 35 165 1,3-Dichlorobropene 23.3 10.0 23.20 0 100 60 140	TTHM (Total Trihalomethanes)	86	3.3 10.0	92.80	0	93.0	60	140	
1,1,2,2-Tetra-chloroethane 26.0 10.0 23.20 0 112 60 140 Bromoform 20.0 10.0 23.20 0 86.3 65 135 Chloroethane 24.9 10.0 23.20 0 107 40 160 2-Chloroethylvinyl Ether 23.4 10.0 23.20 0 101 5 225 Dichlorobromomethane 21.9 5.00 23.20 0 106 70 130 1,1-Dichloropethane 24.6 10.0 23.20 0 106 70 130 1,2-Dichloropropane 24.5 10.0 23.20 0 106 70 130 1,3-Dichloropropylene 22.9 10.0 23.20 0 106 35 165 1,3-Dichloropropylene 22.9 10.0 23.20 0 100 60 140 Methyl bromide 14.7 20.0 23.20 0 100 60 140 Methylene chloride 24.5 5.00 23.20 0 106 60	Vinyl chloride	25	5.4 10.0	23.20	0	110	5	195	
Bromoform 20.0 10.0 23.20 0 86.3 65 135 Chloroethane 24.9 10.0 23.20 0 107 40 160 2-Chloroethylvinyl Ether 23.4 10.0 23.20 0 101 5 225 Dichlorobromomethane 21.9 5.00 23.20 0 106 70 130 1,2-Dichloropropane 24.6 10.0 23.20 0 106 70 130 1,2-Dichloropropane 24.5 10.0 23.20 0 106 35 165 1,3-Dichloropropalene 22.9 10.0 23.20 0 106 35 165 1,3-Dichloropropalene 22.9 10.0 23.20 0 98.7 25 175 Ethyl benzene 23.3 10.0 23.20 0 63.6 15 185 Methyl bromide 14.7 20.0 23.20 0 109 5 205	Acrylonitrile	45	5.1 50.0	46.40	0	97.3	60	140	
Chloroethane 24.9 10.0 23.20 0 107 40 160 2-Chloroethylvinyl Ether 23.4 10.0 23.20 0 101 5 225 Dichlorobromomethane 21.9 5.00 23.20 0 94.5 65 135 1,1-Dichloroptopane 24.6 10.0 23.20 0 106 70 130 1,2-Dichloropropylene 24.5 10.0 23.20 0 106 35 165 1,3-Dichloropropylene 22.9 10.0 23.20 0 98.7 25 175 Ethyl benzene 23.3 10.0 23.20 0 100 60 140 Methyl bromide 14.7 20.0 23.20 0 63.6 15 185 Methyl chloride 25.4 20.0 23.20 0 106 60 140 Toluene 25.4 20.0 23.20 0 106 60 140 Tolue	1,1,2,2-Tetra-chloroethane	26	3.0 10.0	23.20	0	112	60	140	
2-Chloroethylvinyl Ether 23.4 10.0 23.20 0 101 5 225 Dichlorobromomethane 21.9 5.00 23.20 0 94.5 65 135 1,1-Dichloroethane 24.6 10.0 23.20 0 106 70 130 1,2-Dichloropropane 24.5 10.0 23.20 0 106 35 165 1,3-Dichloropropylene 22.9 10.0 23.20 0 106 35 165 1,3-Dichloropropylene 22.9 10.0 23.20 0 100 60 140 Methyl benzene 23.3 10.0 23.20 0 100 60 140 Methyl bromide 14.7 20.0 23.20 0 109 5 205 Methyl chloride 25.4 20.0 23.20 0 106 60 140 Toluene 23.7 10.0 23.20 0 106 60 140 Toluene 23.7 10.0 23.20 0 98.9 70 130 <	Bromoform	20	0.0 10.0	23.20	0	86.3	65	135	
Dichlorobromomethane 21.9 5.00 23.20 0 94.5 65 135 1,1-Dichloroethane 24.6 10.0 23.20 0 106 70 130 1,2-Dichloropropane 24.5 10.0 23.20 0 106 35 165 1,3-Dichloropropylene 22.9 10.0 23.20 0 98.7 25 175 Ethyl benzene 23.3 10.0 23.20 0 100 60 140 Methyl bromide 14.7 20.0 23.20 0 63.6 15 185 Methyl chloride 25.4 20.0 23.20 0 109 5 205 Methylene chloride 24.5 5.00 23.20 0 106 60 140 Toluene 23.7 10.0 23.20 0 102 70 130 1,2-Trichloroethylene 22.9 2.00 23.20 0 98.9 70 130 1,2-	Chloroethane	24	1.9 10.0	23.20	0	107	40	160	
1,1-Dichloroethane 24.6 10.0 23.20 0 106 70 130 1,2-Dichloropropane 24.5 10.0 23.20 0 106 35 165 1,3-Dichloropropylene 22.9 10.0 23.20 0 98.7 25 175 Ethyl benzene 23.3 10.0 23.20 0 100 60 140 Methyl bromide 14.7 20.0 23.20 0 63.6 15 185 Methyl chloride 25.4 20.0 23.20 0 109 5 205 Methylene chloride 24.5 5.00 23.20 0 106 60 140 Toluene 23.7 10.0 23.20 0 106 60 140 1,2-Trans-Dichloroethylene 22.9 2.00 23.20 0 98.9 70 130 1,2-Dichlorobenzene 24.0 5.00 23.20 0 104 65 135 1,3-Dichlorobenzene 24.5 5.00 23.20 0 106 65 135	2-Chloroethylvinyl Ether	23	3.4 10.0	23.20	0	101	5	225	
1,2-Dichloropropane 24.5 10.0 23.20 0 106 35 165 1,3-Dichloropropylene 22.9 10.0 23.20 0 98.7 25 175 Ethyl benzene 23.3 10.0 23.20 0 100 60 140 Methyl bromide 14.7 20.0 23.20 0 63.6 15 185 Methyl chloride 25.4 20.0 23.20 0 109 5 205 Methylene chloride 24.5 5.00 23.20 0 106 60 140 Toluene 23.7 10.0 23.20 0 106 60 140 1,2-Trans-Dichloroethylene 22.9 2.00 23.20 0 98.9 70 130 1,2-Dichloroethane 22.5 10.0 23.20 0 97.0 70 130 1,2-Dichlorobenzene 24.0 5.00 23.20 0 104 65 135 1,4-Dichlorobenzene 24.5 5.00 23.20 0 106 65 13	Dichlorobromomethane	21	1.9 5.00	23.20	0	94.5	65	135	
1,3-Dichloropropylene 22.9 10.0 23.20 0 98.7 25 175 Ethyl benzene 23.3 10.0 23.20 0 100 60 140 Methyl bromide 14.7 20.0 23.20 0 63.6 15 185 Methyl chloride 25.4 20.0 23.20 0 109 5 205 Methylene chloride 24.5 5.00 23.20 0 106 60 140 Toluene 23.7 10.0 23.20 0 102 70 130 1,2-Trans-Dichloroethylene 22.9 2.00 23.20 0 98.9 70 130 1,1,2-Trichloroethane 22.5 10.0 23.20 0 97.0 70 130 1,2-Dichlorobenzene 24.0 5.00 23.20 0 104 65 135 1,3-Dichlorobenzene 24.5 5.00 23.20 0 106 70 130 1,4-Dichlorobenzene 24.5 5.00 23.20 0 106 65 <td< td=""><td>1,1-Dichloroethane</td><td>24</td><td>1.6 10.0</td><td>23.20</td><td>0</td><td>106</td><td>70</td><td>130</td><td></td></td<>	1,1-Dichloroethane	24	1.6 10.0	23.20	0	106	70	130	
Ethyl benzene 23.3 10.0 23.20 0 100 60 140 Methyl bromide 14.7 20.0 23.20 0 63.6 15 185 Methyl chloride 25.4 20.0 23.20 0 109 5 205 Methylene chloride 24.5 5.00 23.20 0 106 60 140 Toluene 23.7 10.0 23.20 0 102 70 130 1,2-Trans-Dichloroethylene 22.9 2.00 23.20 0 98.9 70 130 1,1,2-Trichloroethane 22.5 10.0 23.20 0 97.0 70 130 1,2-Dichlorobenzene 24.0 5.00 23.20 0 104 65 135 1,3-Dichlorobenzene 24.5 5.00 23.20 0 106 70 130 1,4-Dichlorobenzene 24.5 5.00 23.20 0 106 65 135 Surr: 1,2-Dichloroethane-d4 198 200.0 99.1 72 119	1,2-Dichloropropane	24	1.5 10.0	23.20	0	106	35	165	
Methyl bromide 14.7 20.0 23.20 0 63.6 15 185 Methyl chloride 25.4 20.0 23.20 0 109 5 205 Methylene chloride 24.5 5.00 23.20 0 106 60 140 Toluene 23.7 10.0 23.20 0 102 70 130 1,2-Trans-Dichloroethylene 22.9 2.00 23.20 0 98.9 70 130 1,1,2-Trichloroethane 22.5 10.0 23.20 0 97.0 70 130 1,2-Dichlorobenzene 24.0 5.00 23.20 0 104 65 135 1,3-Dichlorobenzene 24.5 5.00 23.20 0 106 70 130 1,4-Dichlorobenzene 24.5 5.00 23.20 0 106 65 135 Surr: 1,2-Dichloroethane-d4 198 200.0 99.1 72 119 Surr: 2-Dichlorobenzene 205 200.0 103 76 119 Surr: Dibromofluorome	1,3-Dichloropropylene	22	2.9 10.0	23.20	0	98.7	25	175	
Methyl chloride 25.4 20.0 23.20 0 109 5 205 Methylene chloride 24.5 5.00 23.20 0 106 60 140 Toluene 23.7 10.0 23.20 0 102 70 130 1,2-Trans-Dichloroethylene 22.9 2.00 23.20 0 98.9 70 130 1,1,2-Trichloroethane 22.5 10.0 23.20 0 97.0 70 130 1,2-Dichlorobenzene 24.0 5.00 23.20 0 104 65 135 1,3-Dichlorobenzene 24.5 5.00 23.20 0 106 65 135 1,4-Dichlorobenzene 24.5 5.00 23.20 0 106 65 135 Surr: 1,2-Dichloroethane-d4 198 200.0 99.1 72 119 Surr: 2-Bromofluorobenzene 205 200.0 103 76 119 Surr: Dibromofluoromethane 191 200.0 95.3 85 115	Ethyl benzene	23	3.3 10.0	23.20	0	100	60	140	
Methylene chloride 24.5 5.00 23.20 0 106 60 140 Toluene 23.7 10.0 23.20 0 102 70 130 1,2-Trans-Dichloroethylene 22.9 2.00 23.20 0 98.9 70 130 1,1,2-Trichloroethane 22.5 10.0 23.20 0 97.0 70 130 1,2-Dichlorobenzene 24.0 5.00 23.20 0 104 65 135 1,3-Dichlorobenzene 24.5 5.00 23.20 0 106 70 130 1,4-Dichlorobenzene 24.5 5.00 23.20 0 106 65 135 Surr: 1,2-Dichloroethane-d4 198 200.0 99.1 72 119 Surr: 4-Bromofluorobenzene 205 200.0 103 76 119 Surr: Dibromofluoromethane 191 200.0 95.3 85 115	Methyl bromide	14	1.7 20.0	23.20	0	63.6	15	185	
Methylene chloride 24.5 5.00 23.20 0 106 60 140 Toluene 23.7 10.0 23.20 0 102 70 130 1,2-Trans-Dichloroethylene 22.9 2.00 23.20 0 98.9 70 130 1,1,2-Trichloroethane 22.5 10.0 23.20 0 97.0 70 130 1,2-Dichlorobenzene 24.0 5.00 23.20 0 104 65 135 1,3-Dichlorobenzene 24.5 5.00 23.20 0 106 70 130 1,4-Dichlorobenzene 24.5 5.00 23.20 0 106 65 135 Surr: 1,2-Dichloroethane-d4 198 200.0 99.1 72 119 Surr: 4-Bromofluorobenzene 205 200.0 103 76 119 Surr: Dibromofluoromethane 191 200.0 95.3 85 115	Methyl chloride	25	5.4 20.0	23.20	0	109	5	205	
1,2-Trans-Dichloroethylene 22.9 2.00 23.20 0 98.9 70 130 1,1,2-Trichloroethane 22.5 10.0 23.20 0 97.0 70 130 1,2-Dichlorobenzene 24.0 5.00 23.20 0 104 65 135 1,3-Dichlorobenzene 24.5 5.00 23.20 0 106 70 130 1,4-Dichlorobenzene 24.5 5.00 23.20 0 106 65 135 Surr: 1,2-Dichloroethane-d4 198 200.0 99.1 72 119 Surr: 4-Bromofluorobenzene 205 200.0 103 76 119 Surr: Dibromofluoromethane 191 200.0 95.3 85 115	Methylene chloride	24	1.5 5.00	23.20	0	106	60	140	
1,1,2-Trichloroethane 22.5 10.0 23.20 0 97.0 70 130 1,2-Dichlorobenzene 24.0 5.00 23.20 0 104 65 135 1,3-Dichlorobenzene 24.5 5.00 23.20 0 106 70 130 1,4-Dichlorobenzene 24.5 5.00 23.20 0 106 65 135 Surr: 1,2-Dichloroethane-d4 198 200.0 99.1 72 119 Surr: 4-Bromofluorobenzene 205 200.0 103 76 119 Surr: Dibromofluoromethane 191 200.0 95.3 85 115	Toluene	23	3.7 10.0	23.20	0	102	70	130	
1,2-Dichlorobenzene 24.0 5.00 23.20 0 104 65 135 1,3-Dichlorobenzene 24.5 5.00 23.20 0 106 70 130 1,4-Dichlorobenzene 24.5 5.00 23.20 0 106 65 135 Surr: 1,2-Dichloroethane-d4 198 200.0 99.1 72 119 Surr: 4-Bromofluorobenzene 205 200.0 103 76 119 Surr: Dibromofluoromethane 191 200.0 95.3 85 115	1,2-Trans-Dichloroethylene	22	2.9 2.00	23.20	0	98.9	70	130	
1,3-Dichlorobenzene 24.5 5.00 23.20 0 106 70 130 1,4-Dichlorobenzene 24.5 5.00 23.20 0 106 65 135 Surr: 1,2-Dichloroethane-d4 198 200.0 99.1 72 119 Surr: 4-Bromofluorobenzene 205 200.0 103 76 119 Surr: Dibromofluoromethane 191 200.0 95.3 85 115	1,1,2-Trichloroethane	22	2.5 10.0	23.20	0	97.0	70	130	
1,3-Dichlorobenzene 24.5 5.00 23.20 0 106 70 130 1,4-Dichlorobenzene 24.5 5.00 23.20 0 106 65 135 Surr: 1,2-Dichloroethane-d4 198 200.0 99.1 72 119 Surr: 4-Bromofluorobenzene 205 200.0 103 76 119 Surr: Dibromofluoromethane 191 200.0 95.3 85 115	1,2-Dichlorobenzene	24	1.0 5.00	23.20	0	104	65	135	
Surr: 1,2-Dichloroethane-d4 198 200.0 99.1 72 119 Surr: 4-Bromofluorobenzene 205 200.0 103 76 119 Surr: Dibromofluoromethane 191 200.0 95.3 85 115	1,3-Dichlorobenzene	24	1.5 5.00		0	106	70	130	
Surr: 4-Bromofluorobenzene 205 200.0 103 76 119 Surr: Dibromofluoromethane 191 200.0 95.3 85 115	1,4-Dichlorobenzene	24	1.5 5.00	23.20	0	106	65	135	
Surr: Dibromofluoromethane 191 200.0 95.3 85 115	Surr: 1,2-Dichloroethane-d4	19	98	200.0		99.1	72	119	
	Surr: 4-Bromofluorobenzene	20	05	200.0		103	76	119	
Surr: Toluene-d8 208 200.0 104 81 120	Surr: Dibromofluoromethane	19	91	200.0		95.3	85	115	
	Surr: Toluene-d8	20	08	200.0		104	81	120	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 30 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR RunID: GCMS5_240509A

Sample ID: LCS-115330	Batch ID:	115330		TestNo	E62	4.1		Units:	μg/L
SampType: LCS	Run ID:	GCMS5	_240509A	Analys	is Date: 5/9/ 2	2024 10:45	MA 00:	Prep Date:	5/9/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	SRPD RPDLimit Qua
Acrolein		73.6	50.0	58.00	0	127	60	140	
Surr: 1,2-Dichloroethane-d4		201		200.0		100	72	119	
Surr: 4-Bromofluorobenzene		215		200.0		107	76	119	
Surr: Dibromofluoromethane		192		200.0		96.2	85	115	
Surr: Toluene-d8		212		200.0		106	81	120	
Sample ID: MB-115330	Batch ID:	115330		TestNo): E62	4.1		Units:	μg/L
SampType: MBLK	Run ID:	GCMS5	_240509A	Analys	is Date: 5/9/ 2	2024 11:11	:00 AM	Prep Date:	5/9/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qua
Benzene		<1.00	10.0						
Carbon tetrachloride		<1.00	2.00						
Chlorobenzene		<1.00	10.0						
Chloroform		<1.00	2.00						
Chlorodibromomethane		<1.00	5.00						
1,2-Dibromoethane		<1.00	2.00						
1,2-Dichloroethane		<1.00	5.00						
1,1-Dichloroethylene		<1.00	5.00						
Methyl ethyl ketone		<15.0	50.0						
Tetrachloroethylene		<2.00	10.0						
Trichloroethylene		<1.00	5.00						
1,1,1-Trichloroethane		<1.00	10.0						
TTHM (Total Trihalomethanes)		<5.00	10.0						
Vinyl chloride		<1.00	10.0						
Acrolein		<5.00	50.0						
Acrylonitrile		<3.00	50.0						
1,1,2,2-Tetra-chloroethane		<1.00	10.0						
Bromoform		<1.00	10.0						
Chloroethane		<2.00	10.0						
2-Chloroethylvinyl Ether		<6.00	10.0						
Dichlorobromomethane		<1.00	5.00						
1,1-Dichloroethane		<1.00	10.0						
1,2-Dichloropropane		<1.00	10.0						
·									
1,3-Dichloropropylene		<1.00	10.0						
Ethyl benzene		<1.00	10.0						
Methyl bromide		<5.00	20.0						
Methyl chloride		<1.00	20.0						
Methylene chloride		<2.50	5.00						
Toluene		<2.00	10.0						
1,2-Trans-Dichloroethylene		<1.00	2.00						
1,1,2-Trichloroethane		<1.00	10.0						

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 31 of 44

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR **RunID:** GCMS5_240509A

Sample ID: MB-115330				TestNo	E624	4.1		Units:	μg/L
SampType: MBLK	Run ID:	GCMS5	_240509A	Analys	is Date: 5/9/2	2024 11:11:	00 AM	Prep Date:	5/9/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qua
1,2-Dichlorobenzene		<1.00	5.00						
1,3-Dichlorobenzene		<1.00	5.00						
1,4-Dichlorobenzene		<1.00	5.00						
Surr: 1,2-Dichloroethane-d4		203		200.0		102	72	119	
Surr: 4-Bromofluorobenzene		215		200.0		108	76	119	
Surr: Dibromofluoromethane		195		200.0		97.7	85	115	
Surr: Toluene-d8		214		200.0		107	81	120	
Sample ID: 2405128-02AMS	Batch ID:	115330		TestNo	E624	4.1		Units:	μg/L
SampType: MS	Run ID:	GCMS5	_240509A	Analys	is Date: 5/9/2	2024 8:14:0	0 PM	Prep Date:	5/9/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qua
Benzene		23.9	10.0	23.20	0	103	37	151	
Carbon tetrachloride		20.8	2.00	23.20	0	89.7	70	140	
Chlorobenzene		22.8	10.0	23.20	0	98.2	37	160	
Chloroform		22.7	2.00	23.20	0	97.8	51	138	
Chlorodibromomethane		20.6	5.00	23.20	0	88.7	53	149	
1,2-Dibromoethane		21.2	2.00	23.20	0	91.2	40	160	
1,2-Dichloroethane		21.9	5.00	23.20	0	94.3	49	155	
1,1-Dichloroethylene		21.2	5.00	23.20	0	91.4	10	234	
Methyl ethyl ketone		109	50.0	116.0	0	94.4	40	160	
Tetrachloroethylene		21.5	10.0	23.20	0	92.6	64	148	
Trichloroethylene		21.0	5.00	23.20	0	90.5	70	157	
1,1,1-Trichloroethane		20.9	10.0	23.20	0	90.1	52	162	
TTHM (Total Trihalomethanes)		84.3	10.0	92.80	0	90.8	40	160	
Vinyl chloride		21.0	10.0	23.20	0	90.4	10	251	
Acrolein		56.1	50.0	58.00	0	96.7	40	160	
Acrylonitrile		43.4	50.0	46.40	0	93.6	40	160	
1,1,2,2-Tetra-chloroethane		26.1	10.0	23.20	0	112	46	157	
Bromoform		19.1	10.0	23.20	0	82.2	45	169	
Chloroethane		22.0	10.0	23.20	0	94.7	14	230	
Dichlorobromomethane		22.0	5.00	23.20	0	94.6	35	155	
1,1-Dichloroethane		24.0	10.0	23.20	0	103	59	155	
1,2-Dichloropropane		23.9	10.0	23.20	0	103	10	210	
1,3-Dichloropropylene		20.6	10.0	23.20	0	88.6	10	227	
Ethyl benzene		22.1	10.0	23.20	0	95.1	37	162	
Methyl bromide		11.0	20.0	23.20	0	47.5	10	242	
Methyl chloride		21.2	20.0	23.20	0	91.4	5	273	
Methylene chloride		24.3	5.00	23.20	0	105	10	221	
Toluene		22.7	10.0	23.20	0	97.7	47	150	
1,2-Trans-Dichloroethylene		21.7	2.00	23.20	0	93.7	54	156	

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

MDL Method Detection Limit

RPD outside accepted control limits R

Spike Recovery outside control limits

Parameter not NELAP certified

Page 32 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR RunID: GCMS5_240509A

SampType: MS Run ID: GCMS5_240509A Analysis Date: 5/9/2024 8:14-00 PM Prep Date: 5/9/2024 5/9/2024 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit 19/RPD RPDLimit Qual 11,2-Trichloroethrane 1,2-Dichlorobenzene 22.5 5.00 23.20 0 97.7 52 150 1,2-Dichlorobenzene 22.5 5.00 23.20 0 99.0 59 166 1,4-Dichlorobenzene 22.9 5.00 23.20 0 98.9 18 190 Surr: 1,2-Dichloroethrane-d4 206 200.0 103 72 119	Sample ID: 2405128-02AMS	Batch ID:	115330		TestNo	E62	4.1		Units:	μg/L	
1,2-Trichloroethane	SampType: MS	Run ID:	GCMS5	5_240509A	Analys	is Date: 5/9/ 2	2024 8:14:0	0 PM	Prep Date:	5/9/2	2024
1,2-Dichlorobenzene 22.5 5.00 23.20 0 97.1 18 190 150 1,3-Dichlorobenzene 23.0 5.00 23.20 0 99.0 59 156 156 150 140-Dichlorobenzene 23.0 5.00 23.20 0 99.0 59 156 156 150 150 150 150 150 150 150 150 150 150	Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD	RPDLimit Qual
1,2-Dichlorobenzene	1,1,2-Trichloroethane		22.7	10.0	23.20	0	97.7	52	150		
1,3-Dichlorobenzene 23,0 5,00 23,20 0 99,0 59 156 156 1,4-Dichlorobenzene 22,9 5,00 23,20 0 98,9 18 190 190 190 190 190 190 190 190 190 190	• •		22.5	5.00		0	97.1		190		
1,4-Dichlorobenzene 22.9 5.00 23.20 0 98.9 18 190 Head of the process o	1,3-Dichlorobenzene			5.00		0	99.0	59	156		
Surr: 4-Bromofluorobenzene Surri: Dibromofluoromethane Surri: Toluene-d8 200 200.0 98.7 85 115 Sample ID: 2405128-02AMSD Batch ID: 115330 TestNo: E624.1 Units: Light Mark Mark Mark Mark Mark Mark Mark Mark	1,4-Dichlorobenzene		22.9	5.00		0	98.9	18	190		
Surr: Dibromofluoromethane Surr: Toluene-d8 197 200.0 98.7 85 115 Sample ID: 2405128-02AMSD Batch ID: Run ID: 115330 TestNo: E624.1 Units: μg/L SampType: MSD Run ID: GCMS5_240509A Analysis Date: 5/9/2024 8:40:00 PM Prep Date: 5/9/2024 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Benzene 23.1 10.0 23.20 0 99.7 37 151 3.36 40 Carbon tetrachloride 19.7 2.00 23.20 0 99.7 37 151 3.36 40 Chlorodibrezene 22.3 10.0 23.20 0 96.0 37 160 2.22 40 Chlorodibromomethane 19.9 5.00 23.20 0 98.8 53 149 3.36 40 1,2-Dibromoethane 20.8 5.00 23.20 0 86.3 40 160 5.50	Surr: 1,2-Dichloroethane-d4		206		200.0		103	72	119		
Surr: Toluene-d8 202 200.0 101 81 120 Sample ID: 2405128-02AMSD Batch ID: 115330 TestNo: E624.1 Units: Jug/L µg/L SampType: MSD Run ID: GCMS5_240509A Analysis Date: 5/9/2024 8:40:00 PM Prep Date: 5/9/2024 5/9/2024 Analyte Result RL SPK value Ref Val WREC LowLimit HighLimit %RPD RPDLimit Qual Benzene 23.1 10.0 23.20 0 99.7 37 151 3.36 40 Carbon tetrachloride 19.7 2.00 23.20 0 96.0 37 160 2.22 40 Chloroform 21.6 2.00 23.20 0 98.3 51 138 4.70 40 Chlorodibromomethane 19.9 5.00 23.20 0 85.8 53 149 3.36 40 Chlorodibromomethane 20.0 20.0 23.20 0 86.8 53 149 3.36 40 1,2-Dichloroethane	Surr: 4-Bromofluorobenzene		200		200.0		100	76	119		
Sample ID: 2405128-02AMSD	Surr: Dibromofluoromethane		197		200.0		98.7	85	115		
SampType: MSD Run ID: GCMS5_240509A Analysis Date: 5/9/2024 8:40:00 PM Prep Date: 5/9/2024 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Benzene 23.1 10.0 23.20 0 99.7 37 151 3.36 40 Carbon tetrachloride 19.7 2.00 23.20 0 84.8 70 140 5.58 40 Chlorobenzene 22.3 10.0 23.20 0 96.0 37 160 2.22 40 Chlorodibromomethane 19.9 5.00 23.20 0 93.3 51 138 4.70 40 Chlorodibromomethane 19.9 5.00 23.20 0 85.8 53 149 3.36 40 1,2-Dibromoethane 20.0 2.00 23.20 0 86.3 40 160 5.50 40 1,1-Dibroethylene 20.7 5.00	Surr: Toluene-d8		202		200.0		101	81	120		
Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Benzene 23.1 10.0 23.20 0 99.7 37 151 3.36 40 Carbon tetrachloride 19.7 2.00 23.20 0 84.8 70 140 5.58 40 Chlorobenzene 22.3 10.0 23.20 0 96.0 37 160 2.22 40 Chlorobenzene 21.6 2.00 23.20 0 96.0 37 160 2.22 40 Chlorodibrommethane 19.9 5.00 23.20 0 85.8 53 149 3.36 40 1,2-Dibromoethane 20.0 2.00 23.20 0 85.8 53 149 3.36 40 1,2-Dibromoethane 20.0 2.00 23.20 0 86.3 40 160 5.50 40 1,2-Dibromoethane 20.8 5.00 23.20 0 88.6 49 155 5.10 40 1,2-Dibromoethylene 20.7 5.00 23.20 0 89.3 10 234 2.31 32 Methyl ethyl ketone 100 50.0 116.0 0 86.6 40 160 8.62 40 Tetrachloroethylene 21.0 10.0 23.20 0 99.6 64 148 2.20 39 Trichloroethylene 20.3 5.00 23.20 0 87.6 70 157 3.19 40 1,1-Trichloroethane 20.1 10.0 23.20 0 88.8 52 162 3.70 36 TTHM (Total Trihalomethanes) 80.8 10.0 92.80 0 87.0 40 160 4.27 40 17HM (Total Trihalomethanes) 80.8 10.0 92.80 0 87.0 40 160 8.61 40 Acrolein 51.5 50.0 58.00 98.87 40 160 8.61 40 Acrolein 51.5 50.0 58.00 0 88.7 40 160 8.61 40 Acrolein 51.5 50.0 58.00 0 88.7 40 160 8.61 40 Acrolein 51.5 50.0 58.00 0 88.7 40 160 8.61 40 Acrolein 51.5 50.0 58.00 0 88.7 40 160 8.61 40 Acrolein 51.5 50.0 58.00 0 88.7 40 160 8.61 40 Acrolein 51.5 50.0 58.00 0 88.7 40 160 8.61 40 Acrolein 18.0 10.0 23.20 0 102 46 157 9.55 40 Bromoform 18.0 10.0 23.20 0 90.0 14 230 5.10 40 Dichloroethane 20.9 10.0 23.20 0 91.3 35 155 3.55 40 Dichloroethane 20.9 10.0 23.20 0 91.3 35 155 3.55 40 1,1-Dichloroethane 23.1 10.0 23.20 0 91.3 35 155 3.55 40 1,1-Dichloroethane 23.1 10.0 23.20 0 91.3 35 155 3.55 40 1,1-Dichloroethane 23.1 10.0 23.20 0 91.3 35 155 3.55 40 1,1-Dichloroethane 23.1 10.0 23.20 0 91.3 35 155 3.55 40 1,1-Dichloroethane 23.1 10.0 23.20 0 91.3 35 155 3.55 40 1,1-Dichloroethane 23.1 10.0 23.20 0 99.5 59 155 3.77 40	Sample ID: 2405128-02AMSD	Batch ID:	115330		TestNo): E62	4.1		Units:	μg/L	
Benzene 23.1 10.0 23.20 0 99.7 37 151 3.36 40 Carbon tetrachloride 19.7 2.00 23.20 0 84.8 70 140 5.58 40 Chlorobenzene 22.3 10.0 23.20 0 96.0 37 160 2.22 40 Chloroform 21.6 2.00 23.20 0 93.3 51 138 4.70 40 Chlorodibromomethane 19.9 5.00 23.20 0 85.8 53 149 3.36 40 1,2-Dibromoethane 20.0 2.00 23.20 0 86.3 40 160 5.50 40 1,2-Dibromoethane 20.8 5.00 23.20 0 89.6 49 155 5.10 40 1,1-Dichloroethylene 20.7 5.00 23.20 0 89.3 10 234 2.31 32 Methyl ethyl ketone 100 50.0 116.0 0 86.6 40 160 8.62 40 Tetrachloroethylene 21.0 10.0 23.20 0 87.6 70 157 3.19 40 1,1,1-Trichloroethylene 20.3 5.00 23.20 0 86.8 52 162 3.70 36 TTHM (Total Trihalomethanes) 80.8 10.0 92.80 0 87.0 40 160 4.27 40 Vinyl chloride 20.5 10.0 23.20 0 88.3 10 251 2.28 40 Acrolein 51.5 50.0 58.00 0 88.7 40 160 8.61 40 Acrylonitrile 39.5 50.0 46.40 0 85.2 40 160 8.61 40 Acrylonitrile 39.5 50.0 46.40 0 85.2 40 160 8.61 40 Acrylonitrile 20.9 10.0 23.20 0 77.7 45 169 5.59 40 Bromoform 18.0 10.0 23.20 0 90.0 14 230 5.10 40 L1,1-Dichloroethane 20.9 10.0 23.20 0 91.3 35 155 3.55 40 L1,1-Dichloroethane 21.2 5.00 23.20 0 91.3 35 155 3.55 40 L1,1-Dichloroethane 21.2 5.00 23.20 0 91.3 35 155 3.55 40	SampType: MSD	Run ID:	GCMS5	5_240509A	Analys	is Date: 5/9/ 2	2024 8:40:0	0 PM	Prep Date:	5/9/2	2024
Carbon tetrachloride 19.7 2.00 23.20 0 84.8 70 140 5.58 40 Chlorobenzene 22.3 10.0 23.20 0 96.0 37 160 2.22 40 Chloroform 21.6 2.00 23.20 0 93.3 51 138 4.70 40 Chlorodibromomethane 19.9 5.00 23.20 0 85.8 53 149 3.36 40 1,2-Dibromoethane 20.0 2.00 23.20 0 86.3 40 160 5.50 40 1,2-Dichloroethane 20.8 5.00 23.20 0 89.6 49 155 5.10 40 1,1-Dichloroethylene 20.7 5.00 23.20 0 89.6 49 155 5.10 40 Tetrachloroethylene 20.1 10.0 23.20 0 86.6 40 160 8.62 40 1,1,1-Trichloroethylene 20.3 <td< td=""><td>Analyte</td><td></td><td>Result</td><td>RL</td><td>SPK value</td><td>Ref Val</td><td>%REC</td><td>LowLim</td><td>it HighLimit 9</td><td>%RPD</td><td>RPDLimit Qual</td></td<>	Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD	RPDLimit Qual
Chlorobenzene 22.3 10.0 23.20 0 96.0 37 160 2.22 40 Chloroform 21.6 2.00 23.20 0 93.3 51 138 4.70 40 Chlorodibromomethane 19.9 5.00 23.20 0 85.8 53 149 3.36 40 1,2-Dibromoethane 20.0 2.00 23.20 0 86.3 40 160 5.50 40 1,2-Dichloroethylene 20.7 5.00 23.20 0 89.6 49 155 5.10 40 1,1-Dichloroethylene 20.7 5.00 23.20 0 89.6 49 155 5.10 40 Methyl ethyl ketone 100 50.0 116.0 0 86.6 40 160 8.62 40 Tetrachloroethylene 21.0 10.0 23.20 0 87.6 70 157 3.19 40 1,1,1-Trichloroethane 20.1 1	Benzene		23.1	10.0	23.20	0	99.7	37	151	3.36	40
Chloroform 21.6 2.00 23.20 0 93.3 51 138 4.70 40 Chlorodibromomethane 19.9 5.00 23.20 0 85.8 53 149 3.36 40 1,2-Dibromoethane 20.0 2.00 23.20 0 86.3 40 160 5.50 40 1,2-Dichloroethane 20.8 5.00 23.20 0 89.6 49 155 5.10 40 1,1-Dichloroethylene 20.7 5.00 23.20 0 89.3 10 234 2.31 32 Methyl ethyl ketone 100 50.0 116.0 0 86.6 40 160 8.62 40 Tetrachloroethylene 21.0 10.0 23.20 0 90.6 64 148 2.20 39 Trichloroethylene 20.3 5.00 23.20 0 87.6 70 157 3.19 40 1,1,1-Trichloroethane 20.1 <th< td=""><td>Carbon tetrachloride</td><td></td><td>19.7</td><td>2.00</td><td>23.20</td><td>0</td><td>84.8</td><td>70</td><td>140</td><td>5.58</td><td>40</td></th<>	Carbon tetrachloride		19.7	2.00	23.20	0	84.8	70	140	5.58	40
Chlorodibromomethane 19.9 5.00 23.20 0 85.8 53 149 3.36 40 1,2-Dibromoethane 20.0 2.00 23.20 0 86.3 40 160 5.50 40 1,2-Dichloroethane 20.8 5.00 23.20 0 89.6 49 155 5.10 40 1,1-Dichloroethylene 20.7 5.00 23.20 0 89.3 10 234 2.31 32 Methyl ethyl ketone 100 50.0 116.0 0 86.6 40 160 8.62 40 Tetrachloroethylene 21.0 10.0 23.20 0 90.6 64 148 2.20 39 Trichloroethylene 20.3 5.00 23.20 0 87.6 70 157 3.19 40 1,1,1-Trichloroethane 20.1 10.0 23.20 0 86.8 52 162 3.70 36 TTHM (Total Trihalomethanes) 80.8 10.0 23.20 0 88.3 10 251 2.28 40	Chlorobenzene		22.3	10.0	23.20	0	96.0	37	160	2.22	40
1,2-Dibromoethane 20.0 2.00 23.20 0 86.3 40 160 5.50 40 1,2-Dichloroethane 20.8 5.00 23.20 0 89.6 49 155 5.10 40 1,1-Dichloroethylene 20.7 5.00 23.20 0 89.3 10 234 2.31 32 Methyl ethyl ketone 100 50.0 116.0 0 86.6 40 160 8.62 40 Tetrachloroethylene 21.0 10.0 23.20 0 90.6 64 148 2.20 39 Trichloroethylene 20.3 5.00 23.20 0 87.6 70 157 3.19 40 1,1,1-Trichloroethane 20.1 10.0 23.20 0 86.8 52 162 3.70 36 TTHM (Total Trihalomethanes) 80.8 10.0 92.80 0 87.0 40 160 4.27 40 Vinyl chloride 20.5 10.0 23.20 0 88.3 10 251 2.28 40	Chloroform		21.6	2.00	23.20	0	93.3	51	138	4.70	40
1,2-Dichloroethane 20.8 5.00 23.20 0 89.6 49 155 5.10 40 1,1-Dichloroethylene 20.7 5.00 23.20 0 89.3 10 234 2.31 32 Methyl ethyl ketone 100 50.0 116.0 0 86.6 40 160 8.62 40 Tetrachloroethylene 21.0 10.0 23.20 0 90.6 64 148 2.20 39 Trichloroethylene 20.3 5.00 23.20 0 87.6 70 157 3.19 40 1,1,1-Trichloroethane 20.1 10.0 23.20 0 86.8 52 162 3.70 36 TTHM (Total Trihalomethanes) 80.8 10.0 92.80 0 87.0 40 160 4.27 40 Vinyl chloride 20.5 10.0 23.20 0 88.3 10 251 2.28 40 Acrolein 51.5 50.0 58.00 0 88.7 40 160 8.61 40	Chlorodibromomethane		19.9	5.00	23.20	0	85.8	53	149	3.36	40
1,1-Dichloroethylene 20.7 5.00 23.20 0 89.3 10 234 2.31 32 Methyl ethyl ketone 100 50.0 116.0 0 86.6 40 160 8.62 40 Tetrachloroethylene 21.0 10.0 23.20 0 90.6 64 148 2.20 39 Trichloroethylene 20.3 5.00 23.20 0 87.6 70 157 3.19 40 1,1,1-Trichloroethane 20.1 10.0 23.20 0 86.8 52 162 3.70 36 TTHM (Total Trihalomethanes) 80.8 10.0 92.80 0 87.0 40 160 4.27 40 Vinyl chloride 20.5 10.0 23.20 0 88.3 10 251 2.28 40 Acrolein 51.5 50.0 58.00 0 88.7 40 160 8.61 40 Acrylonitrile 39.5 50.0 46.40 0 85.2 40 160 9.46 40	1,2-Dibromoethane		20.0	2.00	23.20	0	86.3	40	160	5.50	40
Methyl ethyl ketone 100 50.0 116.0 0 86.6 40 160 8.62 40 Tetrachloroethylene 21.0 10.0 23.20 0 90.6 64 148 2.20 39 Trichloroethylene 20.3 5.00 23.20 0 87.6 70 157 3.19 40 1,1,1-Trichloroethane 20.1 10.0 23.20 0 86.8 52 162 3.70 36 TTHM (Total Trihalomethanes) 80.8 10.0 92.80 0 87.0 40 160 4.27 40 Vinyl chloride 20.5 10.0 23.20 0 88.3 10 251 2.28 40 Acrolein 51.5 50.0 58.00 0 88.7 40 160 8.61 40 Acrylonitrile 39.5 50.0 46.40 0 85.2 40 160 9.46 40 1,1,2,2-Tetra-chloroethane 23.7 10.0 23.20 0 77.7 45 169 5.59 40 <td>1,2-Dichloroethane</td> <td></td> <td>20.8</td> <td>5.00</td> <td>23.20</td> <td>0</td> <td>89.6</td> <td>49</td> <td>155</td> <td>5.10</td> <td>40</td>	1,2-Dichloroethane		20.8	5.00	23.20	0	89.6	49	155	5.10	40
Tetrachloroethylene 21.0 10.0 23.20 0 90.6 64 148 2.20 39 Trichloroethylene 20.3 5.00 23.20 0 87.6 70 157 3.19 40 1,1,1-Trichloroethane 20.1 10.0 23.20 0 86.8 52 162 3.70 36 TTHM (Total Trihalomethanes) 80.8 10.0 92.80 0 87.0 40 160 4.27 40 Vinyl chloride 20.5 10.0 23.20 0 88.3 10 251 2.28 40 Acrolein 51.5 50.0 58.00 0 88.7 40 160 8.61 40 Acrylonitrile 39.5 50.0 46.40 0 85.2 40 160 9.46 40 1,1,2,2-Tetra-chloroethane 23.7 10.0 23.20 0 102 46 157 9.55 40 Bromoform 18.0 10.0 23.20 0 77.7 45 169 5.59 40 Chloroethane 20.9 10.0 23.20 0 90.0 14 230 5.10 40 Dichlorobromomethane 21.2 5.00 23.20 0 91.3 35 155 3.55 40 1,1-Dichloroethane 23.1 10.0 23.20 0 99.5 59 155 3.77 40	1,1-Dichloroethylene		20.7	5.00	23.20	0	89.3	10	234	2.31	32
Trichloroethylene 20.3 5.00 23.20 0 87.6 70 157 3.19 40 1,1,1-Trichloroethane 20.1 10.0 23.20 0 86.8 52 162 3.70 36 TTHM (Total Trihalomethanes) 80.8 10.0 92.80 0 87.0 40 160 4.27 40 Vinyl chloride 20.5 10.0 23.20 0 88.3 10 251 2.28 40 Acrolein 51.5 50.0 58.00 0 88.7 40 160 8.61 40 Acrylonitrile 39.5 50.0 46.40 0 85.2 40 160 9.46 40 1,1,2,2-Tetra-chloroethane 23.7 10.0 23.20 0 102 46 157 9.55 40 Bromoform 18.0 10.0 23.20 0 77.7 45 169 5.59 40 Chloroethane 20.9 10.0 23.20 0 90.0 14 230 5.10 40	Methyl ethyl ketone		100	50.0	116.0	0	86.6	40	160	8.62	40
1,1,1-Trichloroethane 20.1 10.0 23.20 0 86.8 52 162 3.70 36 TTHM (Total Trihalomethanes) 80.8 10.0 92.80 0 87.0 40 160 4.27 40 Vinyl chloride 20.5 10.0 23.20 0 88.3 10 251 2.28 40 Acrolein 51.5 50.0 58.00 0 88.7 40 160 8.61 40 Acrylonitrile 39.5 50.0 46.40 0 85.2 40 160 9.46 40 1,1,2,2-Tetra-chloroethane 23.7 10.0 23.20 0 102 46 157 9.55 40 Bromoform 18.0 10.0 23.20 0 77.7 45 169 5.59 40 Chloroethane 20.9 10.0 23.20 0 90.0 14 230 5.10 40 Dichlorobromomethane 21.2 5.00 23.20 0 91.3 35 155 3.55 40	Tetrachloroethylene		21.0	10.0	23.20	0	90.6	64	148	2.20	39
TTHM (Total Trihalomethanes) 80.8 10.0 92.80 0 87.0 40 160 4.27 40 Vinyl chloride 20.5 10.0 23.20 0 88.3 10 251 2.28 40 Acrolein 51.5 50.0 58.00 0 88.7 40 160 8.61 40 Acrylonitrile 39.5 50.0 46.40 0 85.2 40 160 9.46 40 1,1,2,2-Tetra-chloroethane 23.7 10.0 23.20 0 102 46 157 9.55 40 Bromoform 18.0 10.0 23.20 0 77.7 45 169 5.59 40 Chloroethane 20.9 10.0 23.20 0 90.0 14 230 5.10 40 Dichlorobromomethane 21.2 5.00 23.20 0 91.3 35 155 3.55 40 1,1-Dichloroethane 23.1 10.0 23.20 0 99.5 59 155 3.77 40 <td>Trichloroethylene</td> <td></td> <td>20.3</td> <td>5.00</td> <td>23.20</td> <td>0</td> <td>87.6</td> <td>70</td> <td>157</td> <td>3.19</td> <td>40</td>	Trichloroethylene		20.3	5.00	23.20	0	87.6	70	157	3.19	40
Vinyl chloride 20.5 10.0 23.20 0 88.3 10 251 2.28 40 Acrolein 51.5 50.0 58.00 0 88.7 40 160 8.61 40 Acrylonitrile 39.5 50.0 46.40 0 85.2 40 160 9.46 40 1,1,2,2-Tetra-chloroethane 23.7 10.0 23.20 0 102 46 157 9.55 40 Bromoform 18.0 10.0 23.20 0 77.7 45 169 5.59 40 Chloroethane 20.9 10.0 23.20 0 90.0 14 230 5.10 40 Dichlorobromomethane 21.2 5.00 23.20 0 91.3 35 155 3.55 40 1,1-Dichloroethane 23.1 10.0 23.20 0 99.5 59 155 3.77 40	1,1,1-Trichloroethane		20.1	10.0	23.20	0	86.8	52	162	3.70	36
Acrolein 51.5 50.0 58.00 0 88.7 40 160 8.61 40 Acrylonitrile 39.5 50.0 46.40 0 85.2 40 160 9.46 40 1,1,2,2-Tetra-chloroethane 23.7 10.0 23.20 0 102 46 157 9.55 40 Bromoform 18.0 10.0 23.20 0 77.7 45 169 5.59 40 Chloroethane 20.9 10.0 23.20 0 90.0 14 230 5.10 40 Dichlorobromomethane 21.2 5.00 23.20 0 91.3 35 155 3.55 40 1,1-Dichloroethane 23.1 10.0 23.20 0 99.5 59 155 3.77 40	TTHM (Total Trihalomethanes)		80.8	10.0	92.80	0	87.0	40	160	4.27	40
Acrylonitrile 39.5 50.0 46.40 0 85.2 40 160 9.46 40 1,1,2,2-Tetra-chloroethane 23.7 10.0 23.20 0 102 46 157 9.55 40 Bromoform 18.0 10.0 23.20 0 77.7 45 169 5.59 40 Chloroethane 20.9 10.0 23.20 0 90.0 14 230 5.10 40 Dichlorobromomethane 21.2 5.00 23.20 0 91.3 35 155 3.55 40 1,1-Dichloroethane 23.1 10.0 23.20 0 99.5 59 155 3.77 40	Vinyl chloride		20.5	10.0	23.20	0	88.3	10	251	2.28	40
1,1,2,2-Tetra-chloroethane 23.7 10.0 23.20 0 102 46 157 9.55 40 Bromoform 18.0 10.0 23.20 0 77.7 45 169 5.59 40 Chloroethane 20.9 10.0 23.20 0 90.0 14 230 5.10 40 Dichlorobromomethane 21.2 5.00 23.20 0 91.3 35 155 3.55 40 1,1-Dichloroethane 23.1 10.0 23.20 0 99.5 59 155 3.77 40	Acrolein		51.5	50.0	58.00	0	88.7	40	160	8.61	40
Bromoform 18.0 10.0 23.20 0 77.7 45 169 5.59 40 Chloroethane 20.9 10.0 23.20 0 90.0 14 230 5.10 40 Dichlorobromomethane 21.2 5.00 23.20 0 91.3 35 155 3.55 40 1,1-Dichloroethane 23.1 10.0 23.20 0 99.5 59 155 3.77 40	Acrylonitrile		39.5	50.0	46.40	0	85.2	40	160	9.46	40
Chloroethane 20.9 10.0 23.20 0 90.0 14 230 5.10 40 Dichlorobromomethane 21.2 5.00 23.20 0 91.3 35 155 3.55 40 1,1-Dichloroethane 23.1 10.0 23.20 0 99.5 59 155 3.77 40	1,1,2,2-Tetra-chloroethane		23.7	10.0	23.20	0	102	46	157	9.55	40
Dichlorobromomethane 21.2 5.00 23.20 0 91.3 35 155 3.55 40 1,1-Dichloroethane 23.1 10.0 23.20 0 99.5 59 155 3.77 40	Bromoform		18.0	10.0	23.20	0	77.7	45	169	5.59	40
1,1-Dichloroethane 23.1 10.0 23.20 0 99.5 59 155 3.77 40	Chloroethane		20.9	10.0	23.20	0	90.0	14	230	5.10	40
1,1-Dichloroethane 23.1 10.0 23.20 0 99.5 59 155 3.77 40	Dichlorobromomethane		21.2	5.00	23.20	0	91.3	35	155	3.55	40
1.2-Dichloropropage 23.0 10.0 23.20 0 00.0 10 210 3.92 40	1,1-Dichloroethane		23.1		23.20	0	99.5	59			40
1,≥=Didiliotopropario 20.0 10.0 20.20 0 99.0 10 210 3.02 40	1,2-Dichloropropane		23.0	10.0	23.20	0	99.0	10	210	3.82	40
1,3-Dichloropropylene 20.0 10.0 23.20 0 86.2 10 227 2.84 40	· ·							10			
Ethyl benzene 21.3 10.0 23.20 0 91.9 37 162 3.47 40						0		37			
Methyl bromide 12.0 20.0 23.20 0 51.8 10 242 8.73 40	Methyl bromide			20.0		0		10		8.73	
Methyl chloride 21.1 20.0 23.20 0 91.0 5 273 0.449 40	•					0		5		0.449	
Methylene chloride 23.7 5.00 23.20 0 102 10 221 2.72 28						0		10		2.72	
Toluene 21.9 10.0 23.20 0 94.5 47 150 3.38 40	Toluene		21.9	10.0		0	94.5	47			

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 33 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR RunID: GCMS5_240509A

Sample ID: 2405128-02AMSD	Batch ID:	115330		TestNo	E62	4.1		Units:	μg/L	
SampType: MSD	Run ID:	GCMS5	_240509A	Analys	is Date: 5/9/ 2	2024 8:40:0	0 PM	Prep Date	e: 5/9/ 2	2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
1,2-Trans-Dichloroethylene		21.0	2.00	23.20	0	90.6	54	156	3.32	40
1,1,2-Trichloroethane		21.4	10.0	23.20	0	92.2	52	150	5.83	40
1,2-Dichlorobenzene		22.1	5.00	23.20	0	95.1	18	190	2.14	40
1,3-Dichlorobenzene		22.4	5.00	23.20	0	96.4	59	156	2.70	40
1,4-Dichlorobenzene		22.3	5.00	23.20	0	96.2	18	190	2.74	40
Surr: 1,2-Dichloroethane-d4		203		200.0		101	72	119	0	0
Surr: 4-Bromofluorobenzene		200		200.0		100	76	119	0	0
Surr: Dibromofluoromethane		195		200.0		97.7	85	115	0	0
Surr: Toluene-d8		201		200.0		100	81	120	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 34 of 44

Work Order: 2405086

Project:

ANALYTICAL QC SUMMARY REPORT

IPP WEST Plant Long QTR RunID: GCMS5_240509A

Sample ID: ICV-240509	Batch ID:	R1329	61	TestN	o: E62 4	4.1		Units:	μg/L	-
SampType: ICV	Run ID:	GCMS	5_240509A	Analys	sis Date: 5/9/2	2024 9:54:0	0 AM	Prep Date) :	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Benzene		44.3	10.0	46.40	0	95.4	70	130		
Carbon tetrachloride		38.1	2.00	46.40	0	82.1	70	130		
Chlorobenzene		42.8	10.0	46.40	0	92.3	70	130		
Chloroform		41.1	2.00	46.40	0	88.6	70	130		
Chlorodibromomethane		39.2	5.00	46.40	0	84.5	70	130		
1,2-Dibromoethane		40.2	2.00	46.40	0	86.7	70	130		
1,2-Dichloroethane		39.2	5.00	46.40	0	84.5	70	130		
1,1-Dichloroethylene		40.2	5.00	46.40	0	86.6	70	130		
Methyl ethyl ketone		238	50.0	232.0	0	103	70	130		
Tetrachloroethylene		41.3	10.0	46.40	0	88.9	70	130		
Trichloroethylene		39.7	5.00	46.40	0	85.6	70	130		
1,1,1-Trichloroethane		38.7	10.0	46.40	0	83.3	70	130		
TTHM (Total Trihalomethanes)		157	10.0	185.6	0	84.6	70	130		
Vinyl chloride		41.9	10.0	46.40	0	90.4	70	130		
Acrolein		94.3	50.0	116.0	0	81.3	70	130		
Acrylonitrile		82.2	50.0	92.80	0	88.6	70	130		
1,1,2,2-Tetra-chloroethane		46.0	10.0	46.40	0	99.2	70	130		
Bromoform		36.3	10.0	46.40	0	78.3	70	130		
Chloroethane		41.3	10.0	46.40	0	88.9	70	130		
2-Chloroethylvinyl Ether		49.8	10.0	46.40	0	107	70	130		
Dichlorobromomethane		40.4	5.00	46.40	0	87.1	70	130		
1,1-Dichloroethane		43.8	10.0	46.40	0	94.4	70	130		
1,2-Dichloropropane		44.5	10.0	46.40	0	95.9	70	130		
1,3-Dichloropropylene		42.7	10.0	46.40	0	92.0	70	130		
Ethyl benzene		42.0	10.0	46.40	0	90.4	70	130		
Methyl bromide		23.7	20.0	46.40	0	51.0	70	130		S
Methyl chloride		40.8	20.0	46.40	0	87.9	70	130		
Methylene chloride		44.9	5.00	46.40	0	96.8	70	130		
Toluene		42.4	10.0	46.40	0	91.4	70	130		
1,2-Trans-Dichloroethylene		41.3	2.00	46.40	0	88.9	70	130		
1,1,2-Trichloroethane		41.7	10.0	46.40	0	89.9	70	130		
1,2-Dichlorobenzene		43.5	5.00	46.40	0	93.7	70	130		
1,3-Dichlorobenzene		44.0	5.00	46.40	0	94.9	70	130		
1,4-Dichlorobenzene		43.9	5.00	46.40	0	94.6	70	130		
Surr: 1,2-Dichloroethane-d4		200		200.0		100	72	119		
Surr: 4-Bromofluorobenzene		201		200.0		101	76	119		
Surr: Dibromofluoromethane		190		200.0		95.2	85	115		
Surr: Toluene-d8		206		200.0		103	81	120		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 35 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR

RunID: IC4_240509A

The QC data	in batch 115339 ap	nlies to the	following sar	nnles: 240	5086-05C 2404	5086-060					
Sample ID: I		Batch ID:	-	iipics. 240	TestNo:		n		Units:	ug/I	
· ·		Run ID:		10 A				EO AM		μg/L	24
SampType: I	WIDLK	Null ID.	IC4_24050	JJA	AllalySi	s Date: 5/9/2	2024 10:39:	JO AIVI	Prep Date:	5/9/20	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Fluoride			<100	400							
Nitrate-N			<100	500							
Sample ID: L	LCS-115339	Batch ID:	115339		TestNo	E300	0		Units:	μg/L	
SampType: I	LCS	Run ID:	IC4_24050	9A	Analysi	s Date: 5/9/2	2024 11:18:	53 AM	Prep Date:	5/9/20	24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Fluoride			3910	400	4000	0	97.7	90	110		
Nitrate-N			4840	500	5000	0	96.9	90	110		
Sample ID: I	LCSD-115339	Batch ID:	115339		TestNo	E300	0		Units:	μg/L	
SampType: I	LCSD	Run ID:	IC4_24050	9A	Analysi	s Date: 5/9/2	2024 11:44:	45 AM	Prep Date:	5/9/20	24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qual
Fluoride			3910	400	4000	0	97.8	90	110	0.168	20
Nitrate-N			4850	500	5000	0	97.1	90	110	0.232	20
Sample ID: 2	2405124-01CMS	Batch ID:	115339		TestNo	E300	0		Units:	μg/L	
SampType: I	MS	Run ID:	IC4_24050	9A	Analysi	s Date: 5/9/2	2024 4:12:1	7 PM	Prep Date:	5/9/20	24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Fluoride			1850000	40000	2000000	0	92.7	90	110		
Nitrate-N			434000	50000	452000	0	96.0	90	110		
Sample ID: 2	2405124-01CMSD	Batch ID:	115339		TestNo	E300	0		Units:	μg/L	
SampType: N	MSD	Run ID:	IC4_24050	9A	Analysi	s Date: 5/9/2	2024 4:31:1	7 PM	Prep Date:	5/9/20	24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Fluoride			1880000	40000	2000000	0	93.8	90	110	1.19	20
Nitrate-N			442000	50000	452000	0	97.8	90	110	1.82	20
Sample ID: 2	2405115-01AMS	Batch ID:	115339		TestNo	E300	0		Units:	μg/L	
SampType: I	MS	Run ID:	IC4_24050	9A	Analysi	s Date: 5/9/2	2024 5:09:1	7 PM	Prep Date:	5/9/20	24
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Fluoride			196000	4000	200000	1900	97.2	90	110		

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 36 of 44

S Spike Recovery outside control limits

N Parameter not NELAP certified

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR RunID: IC4_240509A

Sample ID: 2405115-01AMSD	Batch ID:	115339		TestNo	: E3	00		Units:	μg/L	
SampType: MSD	Run ID:	IC4_24	0509A	Analys	is Date: 5/9	9/2024 5:28:17	7 PM	Prep Date	: 5/9/2	2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Fluoride		197000	4000	200000	1900	97.6	90	110	0.427	20
Nitrate-N		45400	5000	45200	0	101	90	110	0.417	20

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limitsN Parameter not NELAP certified

Page 37 of 44

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR RunID: IC4_240509A

Sample ID: ICV-240509	Batch ID:	R132973	3	TestNo	: E30	0		Units:	μg/L	-
SampType: ICV	Run ID:	IC4_240	509A	Analysi	s Date: 5/9/	2024 10:40:	53 AM	Prep Date	:	
Analyte	l	Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD	RPDLimit Qual
Fluoride		10100	400	10000	0	101	90	110		
Nitrate-N		12700	500	12500	0	102	90	110		

Sample ID: CCV1-240509	Batch ID	: R132973		TestNo	E30	0		Units:	μg/L	_
SampType: CCV	Run ID:	IC4_240	509A	Analys	is Date: 5/10	/2024 9:37:	32 AM	Prep Date	: :	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD	RPDLimit Qua
Fluoride		3890	400	4000	0	97.2	90	110		
Nitrate-N		4810	500	5000	0	96.1	90	110		

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 38 of 44

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR

RunID: UV/VIS_2_240508C

The QC data in batch 115308 ap	plies to the	following sar	mples: 2405	5086-01A, 2405	086-02A					
Sample ID: MB-115308	Batch ID:	115308		TestNo:	M35	600-Cr B		Units:	μg/L	
SampType: MBLK	Run ID:	UV/VIS_2	_240508C	Analysis	Date: 5/8/ 2	2024 10:33:0	00 AM	Prep Date:	5/8/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RPDLi	mit Qual
Chromium (Hex)		<3.00	3.00							
Chromium (Tri)		<2.00	3.00							N
Sample ID: LCS-115308	Batch ID:	115308		TestNo:	M35	600-Cr B		Units:	μg/L	
SampType: LCS	Run ID:	UV/VIS_2	_240508C	Analysis	Date: 5/8/ 2	2024 10:33:0	00 AM	Prep Date:	5/8/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RPDLi	mit Qual
Chromium (Hex)		99.9	3.00	100.0	0	99.9	85	115		
Sample ID: LCSD-115308	Batch ID:	115308		TestNo:	M35	600-Cr B		Units:	μg/L	
SampType: LCSD	Run ID:	UV/VIS_2	_240508C	Analysis	Date: 5/8/ 2	2024 10:34:0	00 AM	Prep Date:	5/8/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RPDLi	mit Qual
Chromium (Hex)		104	3.00	100.0	0	104	85	115	3.56 15	5
Sample ID: 2405086-02A MS	Batch ID:	115308		TestNo:	M35	600-Cr B		Units:	μg/L	
SampType: MS	Run ID:	UV/VIS_2	_240508C	Analysis	Date: 5/8/ 2	2024 10:38:0	00 AM	Prep Date:	5/8/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RPDLi	mit Qual
Chromium (Hex)		87.0	3.00	100.0	0	87.0	85	115		
Sample ID: 2405086-02A MSD	Batch ID:	115308		TestNo:	M35	00-Cr B		Units:	μg/L	
SampType: MSD	Run ID:	UV/VIS_2	_240508C	Analysis	Date: 5/8/ 2	2024 10:38:0	00 AM	Prep Date:	5/8/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RPDLi	mit Qual
Chromium (Hex)		87.0	3.00	100.0	0	87.0	85	115	0.023 15	5

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 39 of 44

S Spike Recovery outside control limits

N Parameter not NELAP certified

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

UV/VIS_2_240508C **RunID: Project:** IPP WEST Plant Long QTR

Sample ID: ICV-240508	Batch ID:	R132957	•	TestNo:	M35	500-Cr B		Units:	μg/L	
SampType: ICV	Run ID:	UV/VIS_	2_240508C	Analysis	Date: 5/8/	2024 10:31:	00 AM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD	RPDLimit Qual
Chromium (Hex)		94.4	3.00	100.0	0	94.4	90	110		
Sample ID: CCV-240508	Batch ID:	R132957	•	TestNo:	М3	500-Cr B		Units:	μg/L	=
SampType: CCV	Run ID:	UV/VIS_	2_240508C	Analysis	Date: 5/8/	2024 10:45:	00 AM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD	RPDLimit Qual
Chromium (Hex)		191	3.00	200.0	0	95.6	90	110		

Page 40 of 44

Qualifiers:

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAP certified

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

UV/VIS_2_240515A **RunID: Project:** IPP WEST Plant Long QTR

•		0 -								
The QC data in batch 115386 ap	plies to the	following san	nples: 240	5086-05B, 2405	086-06B					
Sample ID: MB-115386	Batch ID:	115386		TestNo:	M45	00-P E		Units:	μg/L	
SampType: MBLK	Run ID:	UV/VIS_2	_240515A	Analysis	3 Date: 5/15	/2024 9:27:	00 AM	Prep Date:	5/14/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RPDLimit	Qual
Phosphorus		<40.0	100							
Sample ID: LCS-115386	Batch ID:	115386		TestNo:	M45	00-P E		Units:	μg/L	
SampType: LCS	Run ID:	UV/VIS_2	_240515A	Analysis	3 Date: 5/15	/2024 9:27:	00 AM	Prep Date:	5/14/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit	Qual
Phosphorus		521	100	500	0	104	80	120		
Sample ID: LCSD-115386	Batch ID:	115386		TestNo:	M45	00-P E		Units:	μg/L	
SampType: LCSD	Run ID:	UV/VIS_2	_240515A	Analysis	3 Date: 5/15	/2024 9:28:	00 AM	Prep Date:	5/14/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RPDLimit	Qual
Phosphorus		520	100	500	0	104	80	120	0.192 20	
Sample ID: 2405086-06BMS	Batch ID:	115386		TestNo:	M45	00-P E		Units:	μg/L	
SampType: MS	Run ID:	UV/VIS_2	_240515A	Analysis	3 Date: 5/15	/2024 9:30:	00 AM	Prep Date:	5/14/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RPDLimit	Qual
Phosphorus		732	100	500	247	97.0	80	120		
Sample ID: 2405086-06BMSD	Batch ID:	115386		TestNo:	M45	00-P E		Units:	μg/L	
SampType: MSD	Run ID:	UV/VIS_2	_240515A	Analysis	3 Date: 5/15	/2024 9:30:	00 AM	Prep Date:	5/14/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RPDLimit	Qual
Phosphorus		729	100	500	247	96.4	80	120	0.411 20	

Qualifiers: Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits Page 41 of 44

S Spike Recovery outside control limits

Parameter not NELAP certified

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

Project: IPP WEST Plant Long QTR RunID: UV/VIS_2_240515A

Sample ID: ICV-240515 SampType: ICV	Batch ID:	R133045	2 240515A	TestNo:	M45 s Date: 5/15	00-P E	00 AM	Units: Prep Date	μg/L	
Analyte		Result	RL	SPK value	Ref Val	%REC		<u>'</u>		RPDLimit Qual
Phosphorus		216	100	200	0	108	85	115		
Sample ID: CCV1-240515	Batch ID:	R133045		TestNo:	M45	00-P E		Units:	μg/L	
SampType: CCV	Run ID:	UV/VIS_	2_240515A	Analysis	s Date: 5/15	/2024 9:53:	00 AM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Phosphorus		512	100	500	0	102	85	115		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 42 of 44

R

Work Order: 2405086

ANALYTICAL QC SUMMARY REPORT

UV/VIS_2_240515D **RunID: Project:** IPP WEST Plant Long QTR

The QC data in batch 115390 ap	plies to the	following sam	ples: 2405	5086-03B, 2405	086-04B				
Sample ID: MB-115390	Batch ID:	115390		TestNo:	M45	500-CN E		Units:	μg/L
SampType: MBLK	Run ID:	UV/VIS_2_	240515D	Analysis	Date: 5/15	5/2024 3:10:	00 PM	Prep Date:	5/15/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qual
Cyanide, Available		<10.0	20.0						
Cyanide, Total		<10.0	20.0						
Sample ID: LCS-115390	Batch ID:	115390		TestNo:	M45	600-CN E		Units:	μg/L
SampType: LCS	Run ID:	UV/VIS_2_	240515D	Analysis	Date: 5/15	5/2024 3:11:	00 PM	Prep Date:	5/15/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qual
Cyanide, Total		183	20.0	200	0	91.5	85	115	
Sample ID: 2405085-04BMS	Batch ID:	115390		TestNo:	M45	600-CN E		Units:	μg/L
SampType: MS	Run ID:	UV/VIS_2_	240515D	Analysis	Date: 5/15	5/2024 3:11:	00 PM	Prep Date:	5/15/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qual
Cyanide, Total		189	20.0	200	0	94.3	79	114	
Sample ID: 2405085-04BMSD	Batch ID:	115390		TestNo:	M45	600-CN E		Units:	μg/L
SampType: MSD	Run ID:	UV/VIS_2_	240515D	Analysis	Date: 5/15	5/2024 3:12:	00 PM	Prep Date:	5/15/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qual
Cyanide, Total		178	20.0	200	0	88.9	79	114	5.89 20

Qualifiers: Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 43 of 44

R RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAP certified

Work Order: 2405086 ANALYTICAL QC SUMMARY REPORT

UV/VIS_2_240515D **RunID: Project:** IPP WEST Plant Long QTR

Sample ID: ICV-240515	Batch ID:	R133079		TestNo:	M45	500-CN E		Units:	μg/L	
SampType: ICV	Run ID:	UV/VIS_2	2_240515D	Analysis	s Date: 5/1 5	5/2024 3:09:	00 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Cyanide, Total		98.6	20.0	100	0	98.6	85	115		
Sample ID: CCV1-240515	Batch ID:	R133079		TestNo:	M45	500-CN E		Units:	μg/L	
SampType: CCV	Run ID:	UV/VIS_2	2_240515D	Analysis	S Date: 5/15	5/2024 3:20:	00 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Cyanide, Total		175	20.0	200	0	87.7	85	115		

Qualifiers:

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAP certified

Page 44 of 44

Page 1 of 2

DHL1-C

DHL Analytical
John Dupont
2300 Double Creek Dr
Round Rock, TX 78664

Printed 05/28/2024 12:49

TABLE OF CONTENTS

2405086

This report consists of this Table of Contents and the following pages:

Report Name	<u>Description</u>	<u>Pages</u>
1102832_r00_00TRRPcover	SPL Kilgore Project P:1102832 C:DHL1 TRRP Project	1
1102832_r02_01_ProjectSamples	Report Cover Page SPL Kilgore Project P:1102832 C:DHL1 Project Sample Cross Reference t:304	1
1102832_r02_03_ProjectPrep	SPL Kilgore Project P:1102832 C:DHL1 Project Preparation And QCgroup (Set) Listings t:304	1
1102832_r03_01_ProjectHold	SPL Kilgore Project P:1102832 C:DHL1 Project Holding Time Compliance	1
1102832_r03_03_ProjectResults	SPL Kilgore Project P:1102832 C:DHL1 Project Results t:304 PO: 20830	5
1102832_r03_06_M_ProjectTRRP	SPL Kilgore Project P:1102832 C:DHL1 Project TRRP Results Report for Class M	2
1102832_r03_06_O_ProjectTRRP	SPL Kilgore Project P:1102832 C:DHL1 Project TRRP Results Report for Class O	2
1102832_r10_01_ProjectQCgroup	SPL Kilgore Project P:1102832 C:DHL1 Project Sample QCgroup Reference	1
1102832_r10_05_ProjectQC	SPL Kilgore Project P:1102832 C:DHL1 Project Quality Control Groups	2
1102832_r99_09_CoC1_of_1	SPL Kilgore CoC DHL1 1102832_1_of_1	4
1102832_SETQA_1119325_1119481	SPL Kilgore Project P:1102832 C:DHL1 Project Quality Control TRRP-13 Check Lists 1119325_1119481	2
1102832_SETQA_1119425_1119920	SPL Kilgore Project P:1102832 C:DHL1 Project Quality Control TRRP-13 Check Lists 1119425 1119920	2
1102832_SETQA_er_1119325_1119481	SPL Kilgore Project P:1102832 C:DHL1 Project Quality Control TRRP-13 Check List Error Report 1119325 1119481	1
1102832_SETQA_er_1119425_1119920	SPL Kilgore Project P:1102832 C:DHL1 Project Quality Control TRRP-13 Check List Error Report 1119425 1119920	1

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 1 of 28

DHL1-C

DHL Analytical

John Dupont 2300 Double Creek Dr Round Rock, TX 78664

Page 2 of 2

26

Project 1102832

Printed

05/28/2024

12:49

Total Pages:

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 2 of 28

LABORATORY DATA PACKAGE COVER PAGE

2405086

This data package consists of:

- This signature page, the laboratory review checklist, and the following reportable data:
- ☑ R1 Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC 5.13 or ISO/IEC 17025 Section 5.10
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- ☑ R4 Surrogate recovery data including: (R4 R8: See QC Report)
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- ☑ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.
- 🗹 R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix; See Results Summary
- ☑ R10 Other problems or anomalies.
- The Exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By me signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Bill Peery (WJP)

VP Technical Services
Official Title

5/28/2024

Date

Name Signature

TNI

Central TX Region: 8101 Cameron Rd - Ste 305 Austin TX 78754

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 3 of 28

SAMPLE CROSS REFERENCE

Printed

5/28/2024

Page 1 of 1 2405086

DHL Analytical
John Dupont
2300 Double Creek Dr
Round Rock, TX 78664

Sample	Sample ID	Taken	Time	Received
2297988	INFLUENT GRAB 1	05/07/2024	12:00:00	05/10/2024

Bottle 01 Client supplied HCl Clean Metals Bottle

Bottle 02 Prepared Bottle: Mercury Preparation for Metals (Batch 1119325) Volume: 50.00000 mL <== Derived from 01 (47 ml)

	Method EPA 245.7 2	Bottle 02	PrepSet 1119325	Preparation 05/15/2024	QcGroup 1119481	Analytical 05/15/2024
Sample	Sample ID	Taken	Time		Received	
2297991	EFFLUENT GRAB 1	05/07/2024	23:59:00		05/10/2024	

Bottle 01 Client supplied HCl Clean Metals Bottle

Bottle 02 Prepared Bottle: Mercury Preparation for Metals (Batch 1119325) Volume: 50.00000 mL <= Derived from 01 (47 ml)

	Method EPA 245.7 2	Bottle 02	PrepSet 1119325	Preparation 05/15/2024	QcGroup 1119481	Analytical 05/15/2024
Sample	Sample ID	Taken	Time		Received	
2297993	INFLUENT COMP	05/08/2024	12:00:00		05/10/2024	

Bottle 01 Client Supplied Amber Glass

Bottle 02 Prepared Bottle: 2 mL Autosampler Vial (Batch 1119425) Volume: 10.00000 mL <== Derived from 01 (525 ml)

	Method EPA 615	Bottle 02	PrepSet 1119425	Preparation 05/15/2024	QcGroup 1119920	Analytical 05/17/2024
Sample	Sample ID	Taken	Time		Received	
2297994	EFFLUENT COMP	05/08/2024	23:59:00	<u> </u>	05/10/2024	

Bottle 01 Client Supplied Amber Glass

Bottle 02 Prepared Bottle: 2 mL Autosampler Vial (Batch 1119425) Volume: 10.00000 mL <== Derived from 01 (527 ml)

Method	Bottle	PrepSet	Preparation	QcGroup	Analytical
EPA 615	02	1119425	05/15/2024	1119920	05/17/2024

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 4 of 28

1102832

05/17/2024

05/28/2024

Page 1 of 1

SAMPLE PREPARATION

DHL Analytical John Dupont 2300 Double Creek Dr Round Rock, TX 78664

2405086

		Prep Set # 1119325	05/15/2024
Analytical Set #	111948	EPA 245.7 2	05/15/2024
	Sample	Sample ID	Bottle
	2297988	INFLUENT GRAB 1	02
	2297991	EFFLUENT GRAB 1	02

1119425 Prep Set # 05/15/2024 **EPA 615** Analytical Set # 1119920

Sample S	Sample ID	Bottle
2297993 II	NFLUENT COMP	02
2297994 E	EFFLUENT COMP	02

Central TX Region: 8101 Cameron Rd - Ste 305 Austin TX 78754

Report Page 5 of 28

Printed 05/28/2024

Page 1 of 1

HOLDING TIME COMPLIANCE

DHL Analytical John Dupont 2300 Double Creek Dr Round Rock, TX 78664

2405086

<u>Name</u>	<u>Method</u>	Taken:	Received Analyzed	<u>Hold</u> <u>Elapsed</u>
	2297988	5/7/24 12:00	05/10/2024	
Mercury, Total (low level)	EPA 245.7 2		5/15/24 13:41	90.00 8.00
Low Level Mercury Liquid Meta	ls EPA 245.7 2		5/15/24 9:30	90.00 7.00
	2297991	5/7/24 23:59	05/10/2024	
Mercury, Total (low level)	EPA 245.7 2		5/15/24 13:51	90.00 7.00
Low Level Mercury Liquid Meta	ls EPA 245.7 2		5/15/24 9:30	90.00 7.00
	2297993	5/8/24 12:00	05/10/2024	
Herbicides by GC	EPA 615		5/17/24 6:37	45.00 8.00
Esterification of Sample	EPA 615		5/15/24 14:00	7.00 7.00
	2297994	5/8/24 23:59	05/10/2024	
Herbicides by GC	EPA 615		5/17/24 6:57	45.00 8.00
Esterification of Sample	EPA 615		5/15/24 14:00	7.00 6.00

Central TX Region: 8101 Cameron Rd - Ste 305 Austin TX 78754

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 6 of 28

24 Waterway Avenue, Suite 375 The Woodlands, TX 77380

DHL Analytical John Dupont

2300 Double Creek Dr Round Rock, TX 78664

DHL1-C

Office: 903-984-0551 * Fax: 903-984-5914

Page 1 of 5

2

3

1102832

Project

Printed:

05/28/2024

2405086

RESULTS

				Sample R	esults						
	2297988 INFLU	ENT GRAB 1							Received:	05/10	/2024
N	Ion-Potable Water		Collected by: Client Taken: 05/07/2024		DHL Analytical 12:00:00		PO:			208.	
	EPA 245.7 2		Prepared:	1119325	05/15/2024	09:30:00	Analyzed	1119481	05/15/2024	13:41:00	MP.
	Parameter		Results	Unit			Flags	ï	CAS		Bottle
ELAC	Mercury, Total (low leve	l) 	3.07	ng/L	5.00		J		7439-97-6		02
	2297991 EFFLU	ENT GRAB 1							Received:	05/10	/2024
N	Ion-Potable Water		1 by: Client 05/07/2024	DHL Anal	ytical :59:00			PO:			20830
	EPA 245.72		Prepared:	1119325	05/15/2024	09:30:00	Analyzed	1119481	05/15/2024	13:51:00	MPI
	Parameter		Results	Unit	s RL		Flags	;	CAS		Bottle
ELAC	Mercury, Total (low leve	1)	<1.28	ng/L	1.28				7439-97-6		02
	2297993 INFLU	ENT COMP							Received:	05/10	/2024
N	Ion-Potable Water		Collected by: Client Taken: 05/08/2024		DHL Analytical 12:00:00		PO:			20830	
E	EPA 615		Prepared:	1119425	05/15/2024	14:00:00	Analyzed	1119920	05/17/2024	06:37:00	KAF
	Parameter		Results	Unit			Flags	;	CAS		Bottle
ELAC	2,4 Dichlorophenoxyacet 2,4,5-TP (Silvex)	ic acid	<0.700	ug/L ug/L			SD		94-75-7		02

Report Page 7 of 28

Office: 903-984-0551 * Fax: 903-984-5914

Page 2 of 5

2

DHL1-C

DHL Analytical John Dupont 2300 Double Creek Dr Round Rock, TX 78664 Project 1102832

						Printed:	05/2	28/2024	
	2297994 EFFLUENT CO Non-Potable Water	Collected by: Client Taken: 05/08/2024	DHL Anal	ytical :59:00		PO:	Received:	05/10/	/2024 20830
_	EPA 615	Prepared	d: 1119425 (95/15/2024	14:00:00	Analyzed 1119920	05/17/2024	06:57:00	KAP
NELAC NELAC		Results 0.776 0.914	<i>Unit</i> ug/L ug/L	0.700		Flags JSD S	CAS 94-75-7 93-72-1		Bottle 02 02
			Sample Pre	paration					
	2297988 INFLUENT GR	05/07/2024					Received:	05/10/	/2024 20830
_		Prepared	d: (05/28/2024	14:34:00	Analyzed	05/28/2024	14:34:00	WJP
Z	Level IV Data Review	Completed	i						
	EPA 245.72	Prepared	d: 1119325 (05/15/2024	09:30:00	Analyzed 1119325	05/15/2024	09:30:00	MP1
NELAC	Low Level Mercury Liquid Metals	50/47	ml						01
	2297991 EFFLUENT GR	05/07/2024					Received:	05/10/	/2024 20830
_		Prepared	d: (05/28/2024	14:34:00	Analyzed	05/28/2024	14:34:00	WJP
Z	Level IV Data Review	Completed	i						
	EPA 245.7 2	Prepared	d: 1119325 (05/15/2024	09:30:00	Analyzed 1119325	05/15/2024	09:30:00	MP1

Report Page 8 of 28

Page 3 of 5

2

DHL1-C

DHL Analytical John Dupont 2300 Double Creek Dr Round Rock, TX 78664 Project 1102832

							Printed:	05/	28/2024		
	2297991	EFFLUENT GRAB 1							Received:	05/10/	/2024 20830
			05/07/2024							-	20000
E	EPA 245.72		Prepared:	1119325	05/15/2024	09:30:00	Analyzed	1119325	05/15/2024	09:30:00	MP1
NELAC	Low Level M	Iercury Liquid Metals	50/47	ml							01
	2297993	INFLUENT COMP							Received:	05/10/	
			05/08/2024							2	20830
			Prepared:		05/10/2024	15:14:30	Calculated		05/10/2024	15:14:30	CAL
Z	Environment	al Fee (per Project)	Verified								
			Prepared:		05/28/2024	14:34:00	Analyzed		05/28/2024	14:34:00	WJP
z	Level IV Dat	a Review	Completed								
E	EPA 615		Prepared:	1119425	05/15/2024	14:00:00	Analyzed	1119425	05/15/2024	14:00:00	МСС
NELAC	Esterification	of Sample	10/525	ml							01
E	EPA 615		Prepared:	1119425	05/15/2024	14:00:00	Analyzed	1119920	05/17/2024	06:37:00	KAP
NELAC	Herbicides by	y GC	Entered								02
	2297994	EFFLUENT COMP							Received:	05/10/	
			05/08/2024							2	20830

Report Page 9 of 28

24 Waterway Avenue, Suite 375 The Woodlands, TX 77380

Office: 903-984-0551 * Fax: 903-984-5914

Page 4 of 5

Project 1102832

DHL1-C

DHL Analytical John Dupont 2300 Double Creek Dr Round Rock, TX 78664

Printed: 05/28/2024

2297994 EFFLUENT COMP Received: 05/10/2024

20830

05/08/2024

		03/06/2024								
		Prepared:		05/28/2024	14:34:00	Analyzed		05/28/2024	14:34:00	WJP
z	Level IV Data Review	Completed								
i	EPA 615	Prepared:	1119425	05/15/2024	14:00:00	Analyzed	1119425	05/15/2024	14:00:00	МСС
NELAC	Esterification of Sample	10/527	ml							01
i	EPA 615	Prepared:	1119425	05/15/2024	14:00:00	Analyzed	1119920	05/17/2024	06:57:00	KAP
NELAC	Herbicides by GC	Entered								02

Qualifiers:

J - Analyte detected below quantitation limit

D - Duplicate RPD was higher than expected

 ${\sf S}$ - Standard reads lower than desired

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation

z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

Report Page 10 of 28

The Science of Sure

Page 5 of 5

2

3

Project 1102832

Printed: 05/28/2024

DHL1-C

DHL Analytical John Dupont 2300 Double Creek Dr Round Rock, TX 78664

Bill Peery, MS, VP Technical Services

Report Page 11 of 28

RESULTS

Page 1 of 2

Project

1102832

DHL1

Printed 05/28/2024 **2405086**

DHL Analytical John Dupont 2300 Double Creek Dr Round Rock, TX 78664

<u>CAS</u>	Parameter		Results	MDL	SDL	MQL	MQLAdj	Flag	Units	Target	Bottle	Dilute
Non-Potable Wa	ater	Metals								EPA	A 245.7 2	
2297988	INFLUENT GRAB 1											
			Collection:	05/07/20)24	12:00:00	Client			Received:	05/10/2024	
Prepa	ared: 1119325											
					Analyzed:		1119481	5/	15/24	13:41:00		
7439-97-6	Mercury, Total (low level)		3.07	1.20	1.28	5.00	5.32	J	ng/L	5.00	02	1.06
2297991	EFFLUENT GRAB 1											
			Collection:	05/07/20)24	23:59:00	Client			Received:	05/10/2024	
Prepa	ared: 1119325											
					Analyzed:		1119481	5/	15/24	13:51:00		
7439-97-6	Mercury, Total (low level)		ND	1.20	1.28	5.00	5.32		ng/L	5.00	02	1.06

MDL is Method Detection Limit (40 CFR 136 Appendix B)

MQL is the Method Quantitation Limit and corresponds to a low standard

SDL is Sample Detection Limit and is the adjusted MDL (sample specific dilutions, dry weight)

MQLADJ is the Adjusted Method Quantitation Limit (dilutions, dry weight)

Email: Kilgore.ProjectManagement@spllabs.com

RESULTS

DHL1

DHL Analytical John Dupont 2300 Double Creek Dr Round Rock, TX 78664

Qualifiers:

- J Analyte detected below quantitation limit
- S Standard reads lower than desired

D - Duplicate RPD was higher than expected

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC.

Bill Peery, MS, VP Technical Services

Printed 05/28/2024 2405086

Email: Kilgore.ProjectManagement@spllabs.com

RESULTS

Page 1 of 2

Project

1102832

DHL1

Printed 05/28/2024 **2405086**

DHL Analytical John Dupont 2300 Double Creek Dr Round Rock, TX 78664

<u>CAS</u>	Param	eter		Results	MDL	SDL	MQL	MQLAdj	Flag	Units	Target	Bottle	Dilute
Non-Potab	le Water		Organics									EPA 615	
2297993	INFLUE	ENT COMP											
				Collection:	05/08/20)24	12:00:00	Client			Received:	05/10/2024	
	Prepared:	1119425											
						Analyzed:		1119920		5/17/24	06:37:00		
94-75-7	2,4 Di	chlorophenoxyacetic acid		ND	0.159	0.303	0.500	0.952	SD	ug/L	0.700	02	1.90
93-72-1	2,4,5-7	ΓP (Silvex)		ND	0.0893	0.170	0.300	0.571	S	ug/L	0.300	02	1.90
2297994	EFFLUI	ENT COMP											
				Collection:	05/08/20)24	23:59:00	Client			Received:	05/10/2024	
	Prepared:	1119425											
						Analyzed:		1119920	:	5/17/24	06:57:00		
94-75-7	2,4 Di	chlorophenoxyacetic acid		0.776	0.159	0.302	0.500	0.949	JSD	ug/L	0.700	02	1.90
93-72-1	2,4,5-7	ΓP (Silvex)		0.914	0.0893	0.170	0.300	0.569	S	ug/L	0.300	02	1.90

MDL is Method Detection Limit (40 CFR 136 Appendix B)

MQL is the Method Quantitation Limit and corresponds to a low standard

SDL is Sample Detection Limit and is the adjusted MDL (sample specific dilutions, dry weight)

MQLADJ is the Adjusted Method Quantitation Limit (dilutions, dry weight)

Email: Kilgore. Project Management@spllabs.com

SPL The Science of Sure

RESULTS

DHL1

DHL Analytical John Dupont 2300 Double Creek Dr Round Rock, TX 78664

Qualifiers:

- J Analyte detected below quantitation limit
- D Duplicate RPD was higher than expected
- S Standard reads lower than desired

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC.

Bill Peery, MS, VP Technical Services

Printed 05/28/2024 **2405086**

Email: Kilgore.ProjectManagement@spllabs.com

QC GROUPS 05/28/2024 Page 1 of 1

Project 1102832 2

3

5

DHL Analytical John Dupont 2300 Double Creek Dr Round Rock, TX 78664

	Test	<i>QCgroup</i>	Analyzed	
	ESRL	1,119,425	05/15/2024	
	2451	1,119,325	05/15/2024	
1545	HP 5890A - ECD5890 w/autosampler	HP		3336A57718
	!HER	1,119,920	05/17/2024	
7472	Mercury analyzer (Low Level)	Teledy	ne Leeman labs	US23192001
	*Hgl	1,119,481	05/15/2024	

Central TX Region: 8101 Cameron Rd - Ste 305 Austin TX 78754

Report Page 16 of 28

QUALITY CONTROL

Page 1 of 2

2

3

Project 1102832

Printed 05/28/2024

DHL1-C

DHL Analytical John Dupont 2300 Double Creek Dr Round Rock, TX 78664

CCC Parameter PrepSet Reading MDL MQL Units File File									Printed	05/28/202	<i>Z</i> 4	
Parameter Reading Known Units Recovereth Limitoth File Reading No. 113 70.0 - 130 126340012 126340012 126340012 126340012 126340012 126340012 126340012 126340009 12634009	Analytical Set	1119481									EP	A 245.7 2
Mercury, Total (low level) 5.67 5.00 ng/L 113 70.0 - 130 126340012					AWR	L/LOQ C						
Parameter	<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Preparate Prep Reading MIDL MQL Units Links Li	Mercury, Total (low level)		5.67	5.00	ng/L	113	70.0 - 130		126340012			
Mercury, Total (low level)					E	Blank						
CCC Parameter PrepSet Reading MDL MQL Units File File	<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Premeter PrepSet Reading MDL MQL Units File	Mercury, Total (low level)	1119325	ND	1.20	5.00	ng/L			126340009			
Mercury, Total (low level)						ССВ						
Mercury, Total (low level) 1119325 2.45 1.20 5.00 ng/L 126340026 126340037 126340037 126340025 126340037 126340057	<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Mercury, Total (low level) 1119325 2.01 1.20 5.00 ng/L 126340038 126340066	Mercury, Total (low level)	1119325	1.73	1.20	5.00	ng/L			126340014			
Mercury, Total (low level) 1119481 1.68 1.20 5.00 ng/L 126340066	Mercury, Total (low level)	1119325	2.45	1.20	5.00	ng/L			126340026			
CCV Parameter Reading Known Units Recover% Limits% File	Mercury, Total (low level)	1119325	2.01	1.20	5.00	ng/L			126340038			
Parameter Reading Known Units Recover% Limits% File	Mercury, Total (low level)	1119481	1.68	1.20	5.00	ng/L			126340066			
Mercury, Total (low level) 26.0 25.0 ng/L 104 87.0 - 113 126340013 126340013 126340013 126340013 126340025 126340013 126340025 126340013 126340025 126340013 126340037 126340037 126340043 126340045 126340043 126340065 1264 126340043 126340065 1264 126340065 1264 126340065 126340065 1264 126340065 126340065 1264 126340065 126340065 126340065 126340065 126340067 126340007 126340007 126340007 126340007 126340007 126340007 126340007 126340007 126340007 126340007 126340007 126340007 126340008 12634000						CCV						
Mercury, Total (low level)	<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Mercury, Total (low level)	Mercury, Total (low level)		26.0	25.0	ng/L	104	87.0 - 113		126340013			
Mercury, Total (low level) 26.9 25.0 ng/L 108 87.0 - 113 126340043 126340054	Mercury, Total (low level)		26.5	25.0	ng/L	106	87.0 - 113		126340025			
Mercury, Total (low level) 26.9 25.0 ng/L 108 87.0 - 113 126340054	Mercury, Total (low level)		26.8	25.0	ng/L	107	87.0 - 113		126340037			
Mercury, Total (low level)	Mercury, Total (low level)		26.9	25.0	ng/L	108	87.0 - 113		126340043			
Carameter Reading Known Units Recover% Limits% File	Mercury, Total (low level)				ng/L		87.0 - 113		126340054			
Reading Known Units Recover% Limits% File	Mercury, Total (low level)		27.6	25.0	ng/L	110	87.0 - 113		126340065			
Mercury, Total (low level) 50.0 50.0 ng/L 100 90.0 - 110 126340007 Parameter Reading Known Units Recover% Limits% File Mercury, Total (low level) 27.2 25.0 ng/L 109 90.0 - 110 126340008 LCS Dup Parameter PrepSet LCS LCSD Known Limits% LCS% LCSD% Units RPD Limit Mercury, Total (low level) 1119325 27.0 27.4 25.0 76.0 - 115 108 110 ng/L 1.47 50.0 MSD MSD WSD UNK Known Limits MS% MSD% Units RPD Limits Mercury, Total (low level) 2296946 24.7 24.8 1.86 26.6 63.0 - 111 85.9 86.2 ng/L 0.437 18.0 Mercury, Total (low level) 2297194 27.1 27.7 1.42 26.6 63.0 - 111 96.5 98.8 ng/L 2.31 18.0 Blank EPA 6 <						ICL						
Columbia	<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Reading Known Units Recover% Limits% File	Mercury, Total (low level)		50.0	50.0	ng/L	100	90.0 - 110		126340007			
Mercury, Total (low level) 27.2 25.0 ng/L 109 90.0 - 110 126340008 LCS Dup LCS Dup Parameter PrepSet LCS LCSD Known Limits% LCS% LCSD% Units RPD Limit LCS% LCSD% LCSD% Units RPD Limit LCS% LCSD% LCSD% Units RPD Limit LCS% LCSD% Units RPD Limit Units LCS% LCSD% Units RPD Limit Units LCS% Units RPD Limit Units					ICV							
Parameter	<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Parameter PrepSet LCS LCSD Known Limits% LCS% LCSD% Units RPD Limits Mercury, Total (low level) 1119325 27.0 27.4 25.0 76.0 - 115 108 110 ng/L 1.47 50.0 MSD MSD VINITY Known Limits MS% MSD% Units RPD Limits Mercury, Total (low level) 2296946 24.7 24.8 1.86 26.6 63.0 - 111 85.9 86.2 ng/L 0.437 18.0 Mercury, Total (low level) 2297194 27.1 27.7 1.42 26.6 63.0 - 111 96.5 98.8 ng/L 2.31 18.0 Analytical Set 1119920 Blank EPA 6 2,4 Dichlorophenoxyacetic acid 1119425 ND 0.159 0.500 ug/L 126347776 126347776	Mercury, Total (low level)		27.2	25.0	ng/L	109	90.0 - 110		126340008			
Mercury, Total (low level) 1119325 27.0 27.4 25.0 76.0 - 115 108 110 ng/L 1.47 50.0 MSD Parameter Sample MS MSD UNK Known Limits MS% MSD% Units RPD Limit Mercury, Total (low level) 2296946 24.7 24.8 1.86 26.6 63.0 - 111 85.9 86.2 ng/L 0.437 18.0 Mercury, Total (low level) 2297194 27.1 27.7 1.42 26.6 63.0 - 111 96.5 98.8 ng/L 2.31 18.0 Analytical Set 1119920 EPA 6 Blank Parameter 2,4 Dichlorophenoxyacetic acid 1119425 ND 0.159 0.500 ug/L 126347776					LC	S Dup						
MSD Parameter Sample MS MSD UNK Known Limits MS% MSD% Units RPD Limit Limits Limits Limits MS% MSD% Units RPD Limit Limits Li	Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Parameter Sample MS MSD UNK Known Limits MS% MSD% Units RPD Limits Mercury, Total (low level) 2296946 24.7 24.8 1.86 26.6 63.0 - 111 85.9 86.2 ng/L 0.437 18.0 Mercury, Total (low level) 2297194 27.1 27.7 1.42 26.6 63.0 - 111 96.5 98.8 ng/L 2.31 18.0 Blank EPA 6 Blank PrepSet Reading MDL MQL Units File 2,4 Dichlorophenoxyacetic acid 1119425 ND 0.159 0.500 ug/L 126347776	Mercury, Total (low level)	1119325	27.0	27.4		25.0	76.0 - 115	108	110	ng/L	1.47	50.0
Mercury, Total (low level) 2296946 24.7 24.8 1.86 26.6 63.0 - 111 85.9 86.2 ng/L 0.437 18.0 Mercury, Total (low level) 2297194 27.1 27.7 1.42 26.6 63.0 - 111 96.5 98.8 ng/L 2.31 18.0 EPA 6 Blank Parameter PrepSet Reading MDL MQL Units File 2,4 Dichlorophenoxyacetic acid 1119425 ND 0.159 0.500 ug/L 126347776					ı	MSD						
Mercury, Total (low level) 2296946 24.7 24.8 1.86 26.6 63.0 - 111 85.9 86.2 ng/L 0.437 18.0 Mercury, Total (low level) 2297194 27.1 27.7 1.42 26.6 63.0 - 111 96.5 98.8 ng/L 2.31 18.0 Analytical Set 1119920 EPA 6 Blank Parameter PrepSet Reading MDL MQL Units File 2,4 Dichlorophenoxyacetic acid 1119425 ND 0.159 0.500 ug/L 126347776	Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Mercury, Total (low level) 2297194 27.1 27.7 1.42 26.6 63.0 - 111 96.5 98.8 ng/L 2.31 18.0 Analytical Set 1119920 Blank Parameter 2,4 Dichlorophenoxyacetic acid 1119425 ND 0.159 0.500 ug/L 126347776		•										18.0
Blank Parameter PrepSet Reading MDL MQL Units File 2,4 Dichlorophenoxyacetic acid 1119425 ND 0.159 0.500 ug/L 126347776	•	2297194	27.1	27.7	1.42	26.6	63.0 - 111	96.5	98.8		2.31	18.0
Blank Parameter PrepSet Reading MDL MQL Units File 2,4 Dichlorophenoxyacetic acid 1119425 ND 0.159 0.500 ug/L 126347776	Analytical Set	1119920										EPA 615
2,4 Dichlorophenoxyacetic acid 1119425 ND 0.159 0.500 ug/L 126347776	, mary acar sec				Е	Blank						
2,4 Dichlorophenoxyacetic acid 1119425 ND 0.159 0.500 ug/L 126347776	Parameter	PrenSet	Reading	MDI.					File			
· · · · · ·		•										
2,4,3-1F (SHVEX) 1113423 NJ U.0053 U.30U UE/L 12034//0	2,4,5-TP (Silvex)	1119425	ND	0.0893	0.300	ug/L			126347776			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 17 of 28

QUALITY CONTROL

Page 2 of 2

Project 1102832

Printed 05/28/2024

DHL1-C

DHL Analytical John Dupont 2300 Double Creek Dr Round Rock, TX 78664

				C	CV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
2,4 Dichlorophenoxyacetic acid		157	150	ug/L	105	80.0 - 115		126347763			
2,4 Dichlorophenoxyacetic acid		96.2	150	ug/L	64.2	80.0 - 115	*	126347767			
2,4 Dichlorophenoxyacetic acid		134	150	ug/L	89.7	80.0 - 115		126347775			
2,4 Dichlorophenoxyacetic acid		127	150	ug/L	84.8	80.0 - 115		126347779			
2,4,5-TP (Silvex)		167	150	ug/L	111	80.0 - 115		126347763			
2,4,5-TP (Silvex)		85.4	150	ug/L	56.9	80.0 - 115	*	126347767			
2,4,5-TP (Silvex)		122	150	ug/L	81.3	80.0 - 115		126347775			
2,4,5-TP (Silvex)		104	150	ug/L	69.1	80.0 - 115	*	126347779			
				LCS	5 Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
2,4 Dichlorophenoxyacetic acid	1119425	0.839	0.481		1.00	0.100 - 319	83.9	48.1	ug/L	54.2 *	30.0
2,4,5-TP (Silvex)	1119425	0.592	0.568		1.00	0.100 - 244	59.2	56.8	ug/L	4.14	30.0
				Surr	ogate						
Parameter	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
2,4-Dichlorophenylacetic Acid		CCV	158	200	ug/L	79.0	0.100 - 313	126347763			
2,4-Dichlorophenylacetic Acid		CCV	111	200	ug/L	55.5	0.100 - 313	126347767			
2,4-Dichlorophenylacetic Acid		CCV	145	200	ug/L	72.5	0.100 - 313	126347775			
2,4-Dichlorophenylacetic Acid		CCV	149	200	ug/L	74.5	0.100 - 313	126347779			
2,4-Dichlorophenylacetic Acid	1119425	Blank	48.1	200	ug/L	24.0	0.100 - 313	126347776			
2,4-Dichlorophenylacetic Acid	1119425	LCS	82.9	200	ug/L	41.4	0.100 - 313	126347777			
2,4-Dichlorophenylacetic Acid	1119425	LCS Dup	108	200	ug/L	54.0	0.100 - 313	126347778			
2,4-Dichlorophenylacetic Acid	2297993	Unknown	0.698	3.81	ug/L	18.3	0.100 - 313	126347854			
2,4-Dichlorophenylacetic Acid	2297994	Unknown	2.31	3.80	ug/L	60.8	0.100 - 313	126347855			

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); CCB - Continuing Calibration Blank; CCV - Continuing Calibration Verification (same standard used to prepare the curve; typically a mid-range concentration; verifies the continued validity of the calibration curve); MSD -

Matrix Spike Duplicate (replicate of the matrix spike; same solution and amount of target analyte added to the MS is added to a third aliquot of sample; quantifies

matrix bias and precision.); ICV - Initial Calibration Verification; LCS Dup - Laboratory Control Sample Duplicate (replicate LCS; analyzed when there is insufficient

sample for duplicate or MSD; quantifies accuracy and precision.); AWRL/LOQ C - Ambient Water Reporting Limit/LOQ Check Std; Surrogate - Surrogate (mimics the

analyte of interest but is unlikely to be found in environmental samples; added to analytical samples for QC purposes. **ANSI/ASQC E4 1994 Ref #4 TRADE QA Resources Guide.)

TNI

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 18 of 28

CHAIN-OF-CUSTODY RECORD

1102832 CoC Print Group 001 of 001

DHL Analytical, Inc.

2300 Double Creek Drive Round Rock, TX 78664

TEL: (512) 388-8222 Work Order: 2405086

FAX:

Subcontractor:

AquaTech (Austin Office) 3512 Montopolis Drive Austin, Texas 78744

(512) 301-9559 TEL:

FAX:

Acct #:

09-May-24

Page 1 of 1

2 3

								Requested Tests
	Sample ID	Matrix	DHL#	Date Collected	Bottle Type	Hg-LoLevel	Herb_W	
_	>					E245.7	E615	
224798	Influent Grab 1	Aqueous	01B	05/07/24 12:00 PM	500GHCL	1		
1 99	Effluent Grab 1	Aqueous	02B	05/07/24 11:59 PM	500GHCL	1		
1. 4	17 Influent Comp	Aqueous	05H	05/08/24 12:00 PM	500AMGU		2	
¥ 04	Effluent Comp	Aqueous	06H	05/08/24 11:59 PM	500AMGU		2	

See attached target list for E615

General Comments:

Please analyze these samples with a Standard Turnaround Time. Quality Control Package Needed: Standard - SEND PDF & Excel EDD Please EMAIL report to both cac@dhlanalytical.com & dupont@dhlanalytical.com Call John DuPont if you have questions.

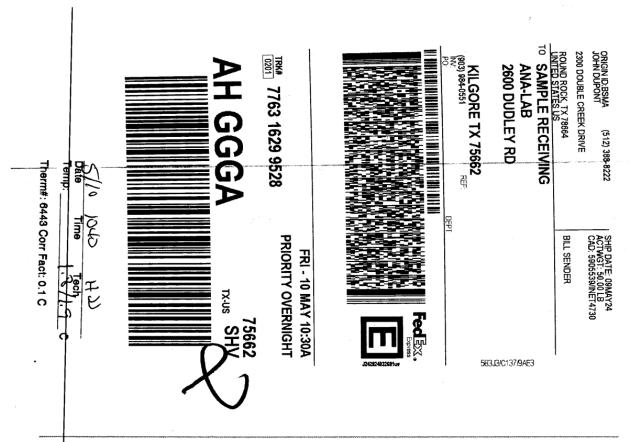
Date/Time 5/9/24 1700 40924 Novio Relinquished by:

Received by:

Date/Time

51912n 409

5


6

1102832 CoC Print Group 001 of 001

SEL List for E615

Rpt	Т	Analyte	Synonym	MDL	PQL
✓	Α	2,4-D		0.01	0.3
~	Α	2,4,5-TP (Silvex)		0.01	0.3

5

After printing this label:

- Use the 'Print' button on this page to print your label to your laser or inkjet printer.
 Fold the printed page along the horizontal line.
 Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not

ose of this system considered agreement to the service conditions in the current redex, service Guide, available on fedex.com.redex will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

	endiz		ecklist: Reportable Data					
		y Name: SPL Kilgore	LRC Date: 05/28/2024					
Proj	ect Na	me: 2405086	Laboratory Job (Project) Number:	1102832				
Revi	iewer	Name: Bill Peery (WJP)	PrepSet: 1119325 QCgroup: 11194	81				
#	A	Description		Yes	No	NA	NR	ER#
R01	OI	Chain-of-Custody (C-O-C)						
		Did samples meet the laboratory's standard conditions of sample acceptability					X	1
		Were all departures from standard conditions described in the exception repo	rt?	X				
R02	OI	Sample and Quality Control (QC) Identification						
		Are all field sample ID numbers cross referenced to the laboratory ID number	rs?	X				
		Are all laboratory ID numbers cross-referenced to the corresponding QC data	1?	X				
R03	OI	Test Reports						
		Were all samples prepared and analyzed within holding times?		X				
		Other than those results < MQL, were all other raw values bracketed by calib	ration standards?	X				
		Were calculations checked by a peer or supervisor?		X				
		Were all analyte identifications checked by a peer or supervisor?		X				
		Were sample quantitation limits reported for all analytes not detected?		X				
		Were all results for soil and sediment samples reported on a dry weight basis	?			X		
		Were % moisture (or solids) reported for all soil and sediment samples?				X		
		If required for the project, tentatively identified compounds reported?				X		
R04	0	Surrogate Recovery Data						
		Were surrogates added prior to extraction?				X		
		Were surrogate percent recoveries in all samples within the laboratory QC lin	nits?			X		
R05	OI	Test Reports/Summary Forms for Blank Samples						
		Were appropriate type(s) of blanks analyzed?		X				
		Were blanks analyzed at the appropriate frequency?		X				
		Were blank concentrations < MQL?		X				
		Were method blanks taken through the entire analytical process, including pr	reparation and, if applicable, cleanup	X				
R06	OI	procedures? Laboratory Control Samples (LCS)		- 11				
100		Were all chemicals of concern included in the LCS?				X		
		Was each LCS taken though the entire analytical procedure, including prep a	nd cleanup steps?	_		X	_	
		Were LCSs analyzed at the required frequency?	na cicanap steps.	+		X	-	
		Were LCS (and LCS duplicate, if applicable) %Rs within the laboratory QC	limits?	X		-		
		Does the detectability data document the laboratory's capability to detect the						
		calculate the SQLs?		X				
		Was the LCS duplicate relative percent difference within QC limits?		X				
R07		Matrix Spike (MS) and Matrix Spike Duplicate (MSD) data						
		Were the project/method specified analytes included in the MS and MSD?				X		
		Were MS/MSD analyzed at the appropriate frequency?				X		
		Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?		X				
		Were MS/MSD RPDs within laboratory QC limits?		X				
R08	OI	Analytical Duplicate Data						
		Were appropriate analytical duplicates analyzed for each matrix?				X		
		Were analytical duplicates analyzed at the appropriate frequency?				X		
		Were RPDs or relative standard deviations within the laboratory QC limits?				X		
R09	OI	Method Quantitation Limits (MQLs)						
		Are the MQLs for each method analyte included in the laboratory data packa		X				
		Do the MQLs correspond to the concentration of the lowest non-zero calibrat	tion standard?	X				
		Are unadjusted MQLs included in the laboratory data package?		X				
R10	OI	Other Problems/Anomalies						
		Are all known problems/anomalies/special condition noted in this LRC and E	ER?	X				
		Were all necessary corrective actions preformed for the reported data?		X				
		Was applicable and available technology used to lower the SQL and minimiz	te the matrix interference effects on the sample	X				
		results?						

4 5

6

8

Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X S13 IO Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X S14 OI Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X IS documentation of the analyst's competency up-to-date and on file?	App	endiz	x A: Laboratory Review Ch	necklist: Reportable Data								
Reviewer Name Bill Perry (WIP)	Lab	Laboratory Name: SPL Kilgore LRC Date: 05/28/2024										
Initial Calibration (ICAL) Were response factors and/or relative response factors for each analyte within QC limits? X	Proj	ect Na	ame: 2405086	Laboratory Job (Project) Number:	102832							
Initial Calibration (ICAL) Were response factors and or relative response factors for each analyte within QC limits? X	Rev	iewer	Name: Bill Peery (WJP)	PrepSet: 1119325 QCgroup: 111948	31							
Were percent ISDs or correlation coefficient criteria met? Were percent ISDs or correlation coefficient criteria met? Were all points generated between the fowest and highest standard used for all analyse? Were all points generated between the fowest and highest standard used for all analyse? X	#	A	Description		Yes	No	NA	NR	ER#			
Were percent RSD or correlation coefficient eriteria net? Was the number of standards recommended in the method used for all analytes? X	S01	OI	Initial Calibration (ICAL)									
Ware the number of standards recommended in the method used for all analytes? Were all points generated between the lowest and highest standard used to calculate the curve? Are ICAI, data available for all instruments used? Are ICAI, data available for all instruments used? Has the initial calibration curve been verified using an appropriate second source standard? X Initial and Condinuing Calibration Verification (ICCV and CCV) and Cordinuing Calibration Was the CCV analyzed at the method-required frequency? Were percent differences for each analyte within the method-required QC limits? Was the Aboulte value of the analyte concentration in the inorganic CCB « MQL? Was the aboulte value of the analyte concentration in the inorganic CCB « MQL? Was the appropriate compound for the method used for tuning? Were in abundance data within the method-required QC limits? Were in abundance data within the method-required QC limits? Y Were in abundance data within the method-required QC limits? Y Were in abundance data within the method-required QC limits? Y Were is area counts and retention times within the method-required QC limits? Y Were the raw data (for example, chromatoganus, spectral data) reviewed by an analys? X Were data associated with manual integrations flagged on the raw data? Y Were data associated with manual integrations flagged on the raw data? Y Were the raw data (for example, chromatoganus, spectral data) reviewed by an analys? X Were data associated with manual integrations flagged on the raw data (for exceeding the part of			Were response factors and/or relative response factors for each analyte withi	n QC limits?	X							
Were all points generated between the lowest and highest standard used to calculate the curve?			Were percent RSDs or correlation coefficient criteria met?		X							
Are ICAL data available for all instruments used? Has the initial calibration curve been verified using an appropriate second source standard? X			Was the number of standards recommended in the method used for all analyst	tes?	X							
Has the imital calibration curve been verified using an appropriate second source standard? A				alculate the curve?	X							
Initial and Continuing Calibration Verification (ICCV and CCV) and Continuing Calibration Was the CCV analyzed at the method-required frequency? X			Are ICAL data available for all instruments used?		X							
Was the CCV analyzed at the method-required frequency? Were percent differences for each analyte within the method-required QC limits? Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the inorganic CCB < MQL? Was the absolute value of the analyte concentration in the inorganic CCB < MQL? Was the appropriate compound for the method used for tuning? Were the appropriate compound for the method used for tuning? Were to an abundance data within the method-required QC limits? Were to an abundance data within the method-required QC limits? Internal Standards (IS) Were IS area counts and recention times within the method-required QC limits? Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Did dual column Confirmation Did dual column Confirmation Did dual column Confirmation Did dual column Confirmation Were precent recoveries, within method QC limits? X Interference Check Sample (ICS) Results Were precent recoveries within method QC limits? X Interference Check Sample (ICS) Results Were precent recoveries within method QC limits? X Interference Check Sample (ICS) Results Were precent differences, recoveries, and Method of Standard Additions Were precent differences, recoveries, and the linearity within the QC limits specified in the method? X Interference Check Sample (ICS) Results Were the analyses of the reported analyte? Is the MDL either adjusted or supported by the analysis of detectability check samples? X Interference Check General temperation analyses of the calculation of the analyses of the calculation of the analyses of the calculation of the analyses of the calculation of the analyses of the calculation of the analyses of the calculation of the analyses of the calculation of the analyses of the calculation of the analyses of the analyses of the calcul			Has the initial calibration curve been verified using an appropriate second so	ource standard?	X							
Were percent differences for each analyte within the method-required QC limits? Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the inorganic CCB < MQL? X	S02	OI	Initial and Continuing Calibration Verification (ICCV and CCV) and Contin	uing Calibration								
Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the inorganic CCB < MQL? Was the absolute value of the analyte concentration in the inorganic CCB < MQL? Was the appropriate compound for the method used for tuning? Was the appropriate compound for the method used for tuning? Were ion abundance data within the method-required QC limits? Internal Standards (IS) Were IS area counts and retention times within the method-required QC limits? INTERNAL (NELAC section 1 appendix A glossary, and section 5.12 or ISQ/IEC 17025 section) Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? Were data associated with manual integrations flagged on the raw data? Note that associated with manual integrations flagged on the raw data? Data Column confirmation results meet the method-required QC? Tentatively Identified Compounds (TICs) If TICs were requested, were the mass spectra and TIC data subject to appropriate checks? Is interference Check Sample (ICS) Results Were percent recoveries within method QC limits? Were percent differences, recoveries, and the linearity within the QC limits specified in the method? X Standards Description Spikes, and Method of Standard Additions Was a MID: study performed for each reported analyte? Is the MID: either adjusted or suppropried by the analysis of detectability check samples? X Standards Decumentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Standards Decumentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Standards Decumentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Standards Decumentation Are all standards used to be a standard of the standard sources? X Standards Decumentation Are all standards used to be analyses NIST-traceable or obtained from other apropriate sources? X Stand			Was the CCV analyzed at the method-required frequency?		X							
Was the absolute value of the analyte concentration in the inorganic CCB < MQL? Was Spectral Tuning Was be appropriate compound for the method used for tuning? Were ion abundance data within the method-required QC limits? Were loss are counts and retention times within the method-required QC limits? Were Sa reae counts and retention times within the method-required QC limits? Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were precent defensions flagged on the raw data? Were precent defensions flagged on data associated with the data decumented? Was a			Were percent differences for each analyte within the method-required QC lir	mits?	X							
Mass Spectral Tuning Was the appropriate compound for the method used for tuning? X Were ion abundance data within the method-required QC limits? X			-		X							
Was the appropriate compound for the method used for tuning? Were ion abundance data within the method-required QC limits? Variety			Was the absolute value of the analyte concentration in the inorganic CCB < 1	MQL?	X							
Were ion abundance data within the method-required QC limits? Variation V	S03	0	Mass Spectral Tuning									
Solition Compound			Was the appropriate compound for the method used for tuning?				X					
Were IS area counts and retention times within the method-required QC limits? X S05 OI Raw Data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025 section) Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? X X S05 Were data associated with manual integrations flagged on the raw data? X S06 O Dual Column Confirmation Did dual column confirmation results meet the method-required QC? X S07 O Tentatively Identified Compounds (TICs) If TICs were requested, were the mass spectra and TIC data subject to appropriate checks? X Interference Chock Sample (ICS) Results Were precent recoveries within method QC limits? X S08 I Interference Chock Sample (ICS) Results Were precent differences, recoveries, and the linearity within the QC limits specified in the method? X S09 I Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions Were precent differences, recoveries, and the linearity within the QC limits specified in the method? X S09 I Method Detection Limit (MDL) Studies Was a MDL study performed for each reported analyte? X S09 I Standards Ludy performed for each reported analyte? X S09 I			Were ion abundance data within the method-required QC limits?				X					
Social Dilutions, Post Digestion Spikes, and Method of Standard Additions Were precent recoveries, with method QC limits? X	S04	0	Internal Standards (IS)									
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? Were data associated with manual integrations flagged on the raw data? Note that associated with manual integrations flagged on the raw data? Note that associated with manual integrations flagged on the raw data? Note that associated with manual integrations flagged on the raw data? Note that the state of the state			Were IS area counts and retention times within the method-required QC limit	its?			X					
Were data associated with manual integrations flagged on the raw data?	S05	OI	Raw Data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/	IEC 17025 section)								
Sof O Dual Column Confirmation Did dual column confirmation results meet the method-required QC? Tentatively Identified Compounds (TCs) If TICs were requested, were the mass spectra and TIC data subject to appropriate checks? I Interference Check Sample (ICS) Results Were precent recoveries within method QC limits? Sof I Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions Were percent differences, recoveries, and the linearity within the QC limits specified in the method? Was a MDL study performed for each reported analyte? Is the MDL either adjusted or suppported by the analysis of detectability check samples? X Sill Of Proficiency Test Reports Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Sill Of Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X Signal Analyst Compensation of Analyst Compensation of the analysts competency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analysts competency up-to-date and on file? Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X Sill Of Laboratory Standard Operating Procedures (SOPs)				an analyst?	X							
Did dual column confirmation results meet the method-required QC? X			Were data associated with manual integrations flagged on the raw data?		X							
Sof O Tentatively Identified Compounds (TICs) If TICs were requested, were the mass spectra and TIC data subject to appropriate checks? Interference Check Sample (ICS) Results Were precent recoveries within method QC limits? Sof I Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions Were percent differences, recoveries, and the linearity within the QC limits specified in the method? Were percent differences, recoveries, and the linearity within the QC limits specified in the method? Was a MDL study performed for each reported analyte? Is the MDL either adjusted or suppported by the analysis of detectability check samples? X Standards Documentation	S06	0	Dual Column Confirmation									
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks? I Interference Check Sample (ICS) Results Were precent recoveries within method QC limits? Sop I Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions Were percent differences, recoveries, and the linearity within the QC limits specified in the method? X Since I Method Detection Limit (MDL) Studies Was a MDL study performed for each reported analyte? Is the MDL either adjusted or suppported by the analysis of detectability check samples? X Since I Proficiency Test Reports Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X Since I Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Since I Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X Since I Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X Since I Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable?			Did dual column confirmation results meet the method-required QC?				X					
Interference Check Sample (ICS) Results Were precent recoveries within method QC limits? X	S07	0	Tentatively Identified Compounds (TICs)									
Were precent recoveries within method QC limits? X Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions Were percent differences, recoveries, and the linearity within the QC limits specified in the method? X Since the MDL study performed for each reported analyte? Is the MDL either adjusted or suppported by the analysis of detectability check samples? X Since the MDL either adjusted or suppported by the analysis of detectability check samples? X Since the MDL either adjusted or suppported by the analysis of detectability check samples? X Since the MDL either adjusted or suppported by the analysis of detectability check samples? X Since the proficiency Test Reports Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X Since the procedures for compound/analyte identification documented? X Since the procedures for compound/analyte identification documented? X Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X Since the procedures for compound/analyte identification documented? X Since the procedure identification for analyse identification documented? X Since the procedure identification for analyse identification for analyse identificat			If TICs were requested, were the mass spectra and TIC data subject to appropriate to appropriate the mass spectra and TIC data subject to appropriate the mass spectra and TIC data subject to appropriate the mass spectra and TIC data subject to appropriate the mass spectra and TIC data subject to appropriate the mass spectra and TIC data subject to appropriate the mass spectra and TIC data subject to appropriate the mass spectra and TIC data subject to appropriate the mass spectra and TIC data subject to appropriate the mass spectra and TIC data subject to appropriate the mass spectra and TIC data subject to appropriate the mass spectra and TIC data subject to appropriate the mass spectra and TIC data subject to appropriate the mass spectra and TIC data subject to appropriate the mass spectra and TIC data subject to appropriate the mass spectra and the mass s	priate checks?			X					
Sop I Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions Were percent differences, recoveries, and the linearity within the QC limits specified in the method? X Since I Method Detection Limit (MDL) Studies Was a MDL study performed for each reported analyte? Is the MDL either adjusted or suppoprted by the analysis of detectability check samples? X Since I Proficiency Test Reports Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X Since I Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Since I O Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X Since I Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X Since I Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X Since I Laboratory Standard Operating Procedures (SOPs)	S08	I										
Were percent differences, recoveries, and the linearity within the QC limits specified in the method? X			Were precent recoveries within method QC limits?		X							
S10 OI Method Detection Limit (MDL) Studies Was a MDL study performed for each reported analyte? Is the MDL either adjusted or suppported by the analysis of detectability check samples? X	S09	I	Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions									
S10 OI Method Detection Limit (MDL) Studies Was a MDL study performed for each reported analyte? Is the MDL either adjusted or suppported by the analysis of detectability check samples? X			Were percent differences, recoveries, and the linearity within the QC limits s	specified in the method?			x					
Was a MDL study performed for each reported analyte? Is the MDL either adjusted or suppported by the analysis of detectability check samples? X S11 OI Proficiency Test Reports Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X S12 OI Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X S13 IO Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)	810	OI	Method Detection Limit (MDL) Studies				21					
Is the MDL either adjusted or suppported by the analysis of detectability check samples? S11 OI Proficiency Test Reports Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X S12 OI Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X S13 IO Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X S14 OI Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)	DIV.		, ,		X	ī						
S11 OI Proficiency Test Reports Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X S12 OI Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X S13 IO Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X S14 OI Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)				ck samples?		-		$\vdash\vdash$				
Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X S12 OI Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X S13 IO Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X S14 OI Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)	S11	OI	111 1		21							
S12 OI Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X S13 IO Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X S14 OI Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)	[]			ests or evaluation studies?								
Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X S13 IO Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X S14 OI Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? X S15 Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)			was the incomerly a performance acceptance on the approache providing the	out of containing stations.	X							
S13 IO Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X S14 OI Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)	S12	OI	Standards Documentation									
Are the procedures for compound/analyte identification documented? X Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)			Are all standards used in the analyses NIST-traceable or obtained from other	apropriate sources?	X							
OI Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)	S13	IO	Compound/Analyte Identification Procedures									
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)			Are the procedures for compound/analyte identification documented?		X							
Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)	S14	OI										
S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)	1		Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section	on 4?	X							
Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)			Is documentation of the analyst's competency up-to-date and on file?		X							
S16 OI Laboratory Standard Operating Procedures (SOPs)	S15	OI										
	1		Are all the methods used to generate the data documented, verified and valid	ated, where applicable?	X							
Are laboratory SOPs current and on file for each method performed?	S16	OI	Laboratory Standard Operating Procedures (SOPs)									
			Are laboratory SOPs current and on file for each method performed?		X							

- 1. Items identified by the letter "R" must be included on the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention
- 2. O = organic analyses; I = ionorganic analyses (and general chemistry, when applicable);
- 3. N/A = Not applicable;
- 4. NR = Not reviewed
- $5. \ \ ER\# = Exception \ Report \ identification \ number \ (an \ Exception \ Report \ should \ be \ completed \ for \ an \ item \ if \ "NR" \ or \ "No" \ is \ checked).$

Report Page 24 of 28

2

App	endix	A: Laboratory Review Ch	necklist: Reportable Data					
Labo	ratory	Name: SPL Kilgore	LRC Date: 05/28/2024					
Proje	ect Na	me: 2405086	Laboratory Job (Project) Number: 11	02832				
Revi	ewer	Name: Bill Peery (WJP)	PrepSet: 1119425 QCgroup: 1119920					
#	Α	Description	•	Yes	No	NA	NR	ER#
R01	OI	Chain-of-Custody (C-O-C)						
		Did samples meet the laboratory's standard conditions of sample acceptabilit	ty upon receipt?				X	1
		Were all departures from standard conditions described in the exception repo	ort?	X				
R02	OI	Sample and Quality Control (QC) Identification						
l		Are all field sample ID numbers cross referenced to the laboratory ID number	ers?	X				
l		Are all laboratory ID numbers cross-referenced to the corresponding QC data	a?	X				
203	OI	Test Reports						
		Were all samples prepared and analyzed within holding times?		X				
		Other than those results < MQL, were all other raw values bracketed by calib	bration standards?	X				
		Were calculations checked by a peer or supervisor?		X				
		Were all analyte identifications checked by a peer or supervisor?		X				
		Were sample quantitation limits reported for all analytes not detected?		X				
		Were all results for soil and sediment samples reported on a dry weight basis	s?	+		X		
		Were % moisture (or solids) reported for all soil and sediment samples?		+		X	\vdash	
		If required for the project, tentatively identified compounds reported?		+		X		
204	0	Surrogate Recovery Data						
		Were surrogates added prior to extraction?		X	Т			
		Were surrogate percent recoveries in all samples within the laboratory QC lin	mits?	X			\vdash	
205	OI	Test Reports/Summary Forms for Blank Samples						
		Were appropriate type(s) of blanks analyzed?		X	Т			
		Were blanks analyzed at the appropriate frequency?		X	-		\vdash	
		Were blank concentrations < MQL?		X	-		\vdash	
		Were method blanks taken through the entire analytical process, including p	reparation and, if applicable, cleanup	+				
		procedures?		X				
R06	OI	Laboratory Control Samples (LCS)						
		Were all chemicals of concern included in the LCS?				X		
		Was each LCS taken though the entire analytical procedure, including prep a	and cleanup steps?			X		
		Were LCSs analyzed at the required frequency?				X		
		Were LCS (and LCS duplicate, if applicable) %Rs within the laboratory QC	limits?	X				
		Does the detectability data document the laboratory's capability to detect the	chemicals of concern at the MDL used to	X				
		calculate the SQLs? Was the LCS duplicate relative percent difference within QC limits?		A	X			2
207					Λ			
207		Matrix Spike (MS) and Matrix Spike Duplicate (MSD) data Were the project/method specified analytes included in the MS and MSD?			_	v		
		Were MS/MSD analyzed at the appropriate frequency?			_	X	ш	
		Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?			_	X	ш	
		7 11 7			-	X	ш	
200	OT	Were MS/MSD RPDs within laboratory QC limits?				X		
R08	OI	Analytical Duplicate Data War appropriate analytical duplicates analyzed for each matrix?				v		
		Were appropriate analytical duplicates analyzed for each matrix?		4	 	X	Щ	
		Were analytical duplicates analyzed at the appropriate frequency?		4		X	Щ	
		Were RPDs or relative standard deviations within the laboratory QC limits?				X		
R09	OI	Method Quantitation Limits (MQLs)						
		Are the MQLs for each method analyte included in the laboratory data packa	<u>- </u>	X			Ш	
		Do the MQLs correspond to the concentration of the lowest non-zero calibra	ition standard?	X	<u> </u>		Ш	
		Are unadjusted MQLs included in the laboratory data package?		X				
		Other Problems/Anomalies						
R10	OI				_	_		
₹10	OI	Are all known problems/anomalies/special condition noted in this LRC and land and land are all known problems.	ER?	X				
ξ10	OI			X				

App	Appendix A: Laboratory Review Checklist: Reportable Data												
Lab	orator	y Name: SPL Kilgore	LRC Date: 05/28/2024										
Proj	ect Na	ame: 2405086	Laboratory Job (Project) Number: 11	02832									
Rev	iewer	Name: Bill Peery (WJP)	PrepSet: 1119425 QCgroup: 1119920	1									
#	A	Description		Yes	No	NA	NR	ER#					
S01	OI	Initial Calibration (ICAL)											
		Were response factors and/or relative response factors for each analyte withi	n QC limits?	X									
		Were percent RSDs or correlation coefficient criteria met?		X									
		Was the number of standards recommended in the method used for all analyst	tes?	X									
		Were all points generated between the lowest and highest standard used to ca	alculate the curve?	X									
		Are ICAL data available for all instruments used?		X									
		Has the initial calibration curve been verified using an appropriate second so	ource standard?	X									
S02	OI	Initial and Continuing Calibration Verification (ICCV and CCV) and Contin	uing Calibration										
		Was the CCV analyzed at the method-required frequency?		X									
		Were percent differences for each analyte within the method-required QC lir	mits?		X			3					
		Was the ICAL curve verified for each analyte?		X									
		Was the absolute value of the analyte concentration in the inorganic CCB <	MQL?			X							
S03	0	Mass Spectral Tuning											
		Was the appropriate compound for the method used for tuning?				X							
		Were ion abundance data within the method-required QC limits?				X							
S04	0	Internal Standards (IS)											
		Were IS area counts and retention times within the method-required QC limit				X							
S05	OI	Raw Data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/	<u> </u>										
		Were the raw data (for example, chromatograms, spectral data) reviewed by	an analyst?	X									
		Were data associated with manual integrations flagged on the raw data?		X									
S06	0	Dual Column Confirmation											
		Did dual column confirmation results meet the method-required QC?		X									
S07	0	Tentatively Identified Compounds (TICs)											
		If TICs were requested, were the mass spectra and TIC data subject to appropriate the mass spectra and the mass spe	priate checks?			X							
S08	I	Interference Check Sample (ICS) Results											
		Were precent recoveries within method QC limits?				X							
S09	I	Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions											
		Were percent differences, recoveries, and the linearity within the QC limits s	specified in the method?			X							
S10	OI	Method Detection Limit (MDL) Studies											
		Was a MDL study performed for each reported analyte?		X									
		Is the MDL either adjusted or suppported by the analysis of detectability che	ck samples?	X				\neg					
S11	OI	Proficiency Test Reports											
		Was the laboratory's performance acceptable on the applicable proficiency to	ests or evaluation studies?	v									
710	OT	Charles Demonstration		X									
S12	OI	Standards Documentation		V									
012	100	Are all standards used in the analyses NIST-traceable or obtained from other	apropriate sources?	X									
S13	IO	Compound/Analyte Identification Procedures		V									
01.4	07	Are the procedures for compound/analyte identification documented?		X									
S14	OI	Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section	na 49	v									
		*	д +:	X			\square						
015	OT	Is documentation of the analyst's competency up-to-date and on file?	/IEC Section 5	X									
S15	OI	Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO		V									
016	OT	Are all the methods used to generate the data documented, verified and valid	ateu, where applicable?	X									
S16	OI	Laboratory Standard Operating Procedures (SOPs)		v									
		Are laboratory SOPs current and on file for each method performed?		X									

- 1. Items identified by the letter "R" must be included on the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention
- 2. O = organic analyses; I = ionorganic analyses (and general chemistry, when applicable);
- 3. N/A = Not applicable;
- 4. NR = Not reviewed
- $5. \ \ ER\# = Exception \ Report \ identification \ number \ (an \ Exception \ Report \ should \ be \ completed \ for \ an \ item \ if \ "NR" \ or \ "No" \ is \ checked).$

Report Page 26 of 28

Appendix	x A: (cont'd): Laboratory Review Checklist: Exception Repo	orts
Laboratory	Name: SPL Kilgore	LRC Date: 05/28/2024
Project Na	me: 2405086	Laboratory Job (Project) Number: 1102832
Reviewer	Name: Bill Peery (WJP)	PrepSet: 1119325 QCgroup: 1119481
ER#	Description	
1	Bottles were reviewed at login. Please see the chain of custody	y record for sample receipt details.

¹ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked on the LRC)

Appendi	x A: (cont'd): Laboratory Review Checklist: Exception Rep	orts
Laboratory	Name: SPL Kilgore	LRC Date: 05/28/2024
Project Na	me: 2405086	Laboratory Job (Project) Number: 1102832
Reviewer	Name: Bill Peery (WJP)	PrepSet: 1119425 QCgroup: 1119920
ER#	Description	
1	Bottles were reviewed at login. Please see the chain of custod	ly record for sample receipt details.
2	The following LCSD constituents have RPDs outside of labor	ratory QC limits: 2,4 Dichlorophenoxyacetic acid
3	The following CCV constituents have recoveries outside of lal	boratory QC limits: 2,4 Dichlorophenoxyacetic acid,
	2,4,5-TP (Silvex), 2,4,5-TP (Silvex)	

¹ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked on the LRC)

Brushy West #10264-001, TX0075167 Month Of April-24

	Total Effluent	TwoHR_P															EFFLUENT										Efflu	uent
	Creek Flow	eak Flow	Annual		На				TS	S			NH	13				ood		Tota	al Phospho	rus		Nitrate	Vitrogen		Eco	oli
Date	MGD	GPM	Average	DO mg/l	S. U.	Cl mg/l	Dechlor	mg/l	< or >	LBS	7d avg	mg/l	< or >	LBS	7d avg	mg/l	< or >	LBS	7d avg	mg/l	< or >	LBS	mg/l	< or >	LBS	7d avg	CFU/100ml	< or >
4/1/2024	1.00	2491.20		7.77	6.99	UV	UV	2.5	<	20.933		0.672		5.627		1.71		47.12		0.5	, <	4.187	4		33.493		3.1	
4/2/2024	1.23	2563.20		7.61	6.99	UV	UV																				4.1	
4/3/2024	1.83	2692.80		7.68	6.87	UV	UV	2.5		38.135		0.079		1.205		2.94		18.38		0.5	<	7.627	10.9		166.267		12.2	
4/4/2024	1.79	1771.20		7.62	7.05	UV	UV																				9.7	
4/5/2024	2.11	1670.40		7.83	7.14	UV	UV																				1.0	
4/6/2024	1.66	2318.40		7.86	6.90	UV	UV																				4.1	
4/7/2024	1.17	2289.60		8.07	7.29	UV	UV																				5.2	
4/8/2024	2.10	3009.60		8.56	7.07	UV	UV	2.5	<	43.827		0.659		11.553		1.16		202.53		0.5	<	8.765	10.8		189.331		10.8	
4/9/2024	2.06	2923.20		8.18	6.94	UV	UV																				5.2	
4/10/2024	1.87	2908.80		8.26	7.14	UV	UV	2.5	<	39.052		0.072		1.125		1.20		17.57		0.5	<	7.810	10.9		170.267		8.5	
4/11/2024	1.52	2908.80		8.07	7.26	UV	UV																				6.3	
4/12/2024	1.93	2635.20		7.93	6.97	UV	UV																				5.0	
4/13/2024	2.20	2620.80		7.36	7.05	UV	UV																				8.5	
4/14/2024	.1.99	2577.60		7.29	7.02	UV	UV																				2.0	
4/15/2024	1.21	2620.80		7.21	7.01	UV	UV	2.5	<	25.229		0.173		1.746		1.25		17.62		0.5	<	5.046	11.2		113.024		1.0	
4/16/2024	1.85	2016.00		8.30	7.59	UV	UV																				4.1	
4/17/2024	1.85	2476.80		8.14	7.60	UV	UV	2.5	<	38.489		0.218		3.356		1.62		51.67		0.5	<	7.698	12.1		186.287		4.1	
4/18/2024	1.95	1785.60		8.13	7.47	UV	UV																				10.8	
4/19/2024	1.08	2332.80		7.90	7.17	UV	UV										,										3.1	
4/20/2024	1.83	2433.60		8.05	7.08	UV	UV																				3.0	
4/21/2024	1.83	2563.20		7.51	7.18	UV	UV																				10.9	
4/22/2024	1.83	2577.60		7.93	7.10	UV	UV	2.5	<	38.197		0.17		2.597		1.60		39.69		0.50	<	7.639	1.75		26.738		7.3	
4/23/2024	1.75	2347.20		8.00	6.95	UV	UV																				10.7	
4/24/2024	1.87	2505.60		7.77	6.87	UV	UV	2.5	<	39.073		0.169		2.641		1.25		41.28		0.5	<	7.815	14.2	2	221.934		9.7	
4/25/2024	1.92	2563.20		7.82	7.09	UV	UV																				5.2	
4/26/2024	1.92	2376.00		7.93	7.16	UV	UV																				4.1	
4/27/2024	1.78	2635.20		7.76	6.87	UV	UV																				8.4	
4/28/2024	2.22	2649.60		7.86	7.28	UV	UV																				4.1	
4/29/2024	1.91	2736.00		7.89	7.10	UV	UV	2.5	<	39.803		0.179		2.850		1.49		45.37		0.5	<	7.961	10.9	9	173.540		1.0	
4/30/2024	1.99	2448.00	1.60	7.92	7.11	UV	UV																				3.1	<
Total	53.257			236.21	213.31	0.00	0	22.5	> <	322.737	> <	2.391	><	32.7	> <	14.22	><	481.223	><	4.5	$>\!<$	64.5474	86.75		1280.88		8.5	
AVG	1.77523	2481.60	1.6	7.87367	7.11033	0	0	2.5	#DIV/0!	35.8597	><	0.26567	><	3.63334	><	1.58	><	53.4692	><	0.5	$>\!\!<$	7.17194	9.63889		142.32		4.79	> <
MAX	2.217	3009.60		8.56	7.6	0.00	0	2.5	$>\!<$	43.8267	><	0.672	$>\!<$	11.5527	$>\!<$	2.94	$>\!<$	202.527	><	0.5	$>\!\!<$	8.76534	14.2		221.934	><	12.2	
MIN	1.004			7.21	6.87	0.00	0	2.5	><	20.9334	><	0.072	><	1.1247	><	1.16	><	17.5687	><	0.5	> <	4.18668	1.75		26.738		1	><

√T:	CORR WWTP West P	SUBMISSIO	N DATE:	4-29	-27	PG	_OF_						
RESS:	1114 East Austin Ave					LOCATION I	NAME:	West Pl					
	Round Rock	STATE:	TX	ZIP:	78664	COLLECTOR	NAME:	-00	awil	Ben	net		
NE:	(512) 534-8916		FAX:			Phone Num	ber:						
\ REPORTED	то:					MATRIX:	Non-pot	able Wat	er				
CORRESL	FIELD SAMPLE ID/	SAMPLE	COLLE	CTION	CONTAINER	Number	PRESERV	/ATION: ³	REQU	JESTED	ANALY	SES:4	
LAB ID	SAMPLE LOCATION	TYPE1	DATE	TIME	TYPE ²	of bottles	ICE	None	cBOD	TSS	NH ₃	TP	TDS
1-09142	West Plant Outfall 001	CG	4-25-24	11:5500	PG	1	Х		х	Х			
V	West Plant Outfall 001	(c) G	1:2521	11:54pm	PG	1	х				х	Х	
-09143	West Plant Influent 001	TG G	4.24-21	111.55pm	PG	1	х		х	х			
V	West Plant Influent 001	CG	7-25-24	11:55	RG	1	х				X	X	
	out by City of Round Rock Em												
	Time of Analysis	Analyst	Blenk	(G	Precision	Qualifiers				Result in 1	mg/L	Reviewer	/Date
)								and analysis beginning the second contract of	the place gift, the Armed State of the Armed State				
was a second of the second of	4.55		TO THE THE THE THE THE THE THE THE THE THE		an principal and a constant and a state of the state of t	hadigi tin qorqor ti nishin shakan anasa a saasa a shaallaashii ayahin qaraa a	manuscriptus para para para para para para para par						
	-		Program and any impelling or other parts and any		The state of the s								
-				annian annian annian ann an ann an ann an									
ents:													
	rab. 2: P=polyethylene or PTF mn. 4: Indicate request for tes	ing "X"		LABO	DRATORY	USE OI	WLY:						
ED BY: (Signature)	ure)	Preservatio	n Check:										
Daw	Dan Que 4.26.21/						emp. (°C): ter ID:	6.8	Derived	(°C):	6.8		
UISHED BY Bigna	ture)	RECEIVED BY: (Signal)	ire)	1	-			/ "	THE RESIDENCE OF THE PERSON NAMED IN				
		Harry	keller	Custody Sea									
QUISHED BY: (Signa	ture) (Date/Time		RECEIVED BY: (Signati	ire)	Delivery: p	'Hand Del	ivered 🗆	Courier	□ Ship	ped		

•,	CORR WWTP West P	lant				SUBMISSIO	N DATE:	4.25	- 74	P.G	O.E.	1	
:SS:	1114 East Austin Ave					LOCATION		West Pl		_			
	Round Rock	STATE:	TX	ZIP:	78664	COLLECTOR		1000		ciali oo.			
	(512) 534-8916		FAX:		7,0007	Phone Num		مالاتا	7,				
REPORTED			-			MATRIX:	Non-pot	able Wate	er				
								3					
PRRESL	FIELD SAMPLE ID/	SAMPLE	COLL	ECTION	CONTAINER	Number	PRESERV	ATION:	REQ	UESTEC	ANAL'	/SES:	
AB ID	SAMPLE LOCATION	TYPE ¹	DATE	TIME	TYPE ²	of bottles	ICE	None	cBOD	TSS	NH ₃	TP	TDS
09131	West Plant Outfall 001	₿ G	4-24-24	0 1 23:59	Æ G	1	Х	,	Х	Х			
V	West Plant Outfall 001	6 6		6123:57	₽ G	1	Х				Х	Х	
09132	West Plant Influent 001	bG	42424	0/23:59	Ø G	1	х		х	Х			
	West Plant Influent 001	(D) G	4.24.20	0/23:00	€ G	1	х				X	Х	
100 To 100 To 100 To 100 To 100 To 100 To 100 To 100 To 100 To 100 To 100 To 100 To 100 To 100 To 100 To 100 To	out by City of Round Rock Em Time of Analysis	vironmental Se Analyst	Blank	I(s)	Precision	Qualifiers				Result in a		Reviewer	10-4-
ts:													
	rab. 2: P=polyethylene or PTF nn. 4: Indicate request for tes				ing "X"		LABO	RATORY	USE ON	NLY:			
8Y: (Signature)		Pate/Time	x/8:49	RECEIVED BY: (Signatu		Preservation Observed To	emp. (°C):	5.7	erived	(°C): _	5.7		
SPIED BY: (Signat		25-24/9	14 0930	RECEIVED BY: (Signatu	. / .) [6.1]	Thermomet Custody Sea	ls. 🗆 Brok		act e	lot Use			
SHED BY: (Signat	cure) C	ate/Time	,	RECEIVED BY: (Signatu	re}	Delivery:	Hand Deli	vered 🗆 (Courier	□ Shipp	oed		

													2
:	CORR WWTP West P	lant				SUBMISSIO		4.25	THE OWNER OF THE OWNER OWNER OF THE OWNER OW	alar .		1	
:SS:	1114 East Austin Ave					LOCATION	NAME:	West Pl		fall 001			
	Round Rock	STATE:	TX	ZIP:	78664	COLLECTOR	NAME:	100	て、				
: :	(512) 534-8916		FAX:			Phone Num	ber:						
REPORTED	то:					MATRIX:	Non-pota	able Wat	er				
							Lancara	14=10113	250	100750		cec 4	
RRESL	FIELD SAMPLE ID/	SAMPLE		ECTION	CONTAINER	Number	PRESERV			JESTED		SES:	
AB ID	SAMPLE LOCATION	TYPE1	DATE	TIME	TYPE ²	of bottles	ICE	None	cBOD	TSS	NH ₃	TP	TDS
09131	West Plant Outfall 001	₿ G	4-24-24	0 1 23:59	Æ G	1	X		Х	х			
V	West Plant Outfall 001	6 G	4.24.24		₽ G	1	х				Х	Х	
09132	West Plant Influent 001	bG	42424	0/23:59	Ø G	1	Х		Х	х			
	West Plant Influent 001	O G	4.24.20	0/23:00	© G	1	Х				Х	Х	
	out by City of Round Rock En		ervices ONLY										
Date	/Time of Analysis	Analyst	Blank	(CS	Precision	Qualifiers				tesult in r	ng/L	Reviewer/	Date
ts:													
	grab. 2: P=polyethylene or PTF mn. 4: Indicate request for test				ing "X"		LABO	RATORY	USE ON	ILY:			
BY: (Signature)		RECEIVED BY: (Signatu	ıre)	Preservation Observed To		5.7	erived	(°C):	5.7				
SPIED BY: (Signa	iture) E	RECEIVED BY: (Signatu	ire) Ock	Thermomet Custody Sea	er ID:	B	Correction	on: _	0				
SHED BY: (Signa	ture) C	RECEIVED BY: (Signatu	rel	Delivery:									

													=
	CORR WWTP West P					SUBMISSIO		4.25		_	_lOF_	1	
ISS:	1114 East Austin Ave					LOCATION I		West Pl		tfall 001	L		
	Round Rock	STATE:	TX	ZIP:	78664	COLLECTOR		Low	JU.				
::	(512) 534-8916		_FAX:			Phone Num							
REPORTED	TO:					MATRIX:	Non-pota	able Wate	er				
RRESL	FIELD SAMPLE ID/	SAMPLE	COLLE	ECTION	CONTAINER	Number	PRESERV	ATION:3	REQ	UESTED	ANALY	/SES: ⁴	
AB ID	SAMPLE LOCATION	TYPE1	DATE	TIME	TYPE ²	of bottles	ICE	None	cBOD	TSS	NH ₃	TP	TDS
09116	West Plant Outfall 001	C G	4-22-24	0/23:57	₽ G	1	Х		Х	Х			
V	West Plant Outfall 001	C G	4-12-24		∕P G	1	Х				х	Х	
79117	West Plant Influent 001	CG	4.22.24	0/27:57	₿ G	1	X		х	Х			
1	West Plant Influent 001	CG	4.12.24	ola3:IT	& G	1	х				Х	Х	
, 15ED	lout by City of Round Rock Em Time of Analysis	dronmental Se Analyst	Blank	les	Precision	Qualifiers				Result in a	ma //	Reviewer/	/Date
ts:												HAVE TO SERVICE THE PARTY OF TH	
	grab. 2: Papolyethylene or PTF mn. 4: Indicate request for test		ing "X"		LABO	RATORY	USE OF	NLY:					
BY: (Signature)		ure)	Preservation Observed To	n Check: emp. (°C):	9.2	Derived	(°C): _	9.2					
SHED BY: (Signa	iture) 5		Thermomet Custody Sea	ls: 🛭 Brok	cen 🗆 Int		ot Use						
SHED BY: (Signa	ture) C	Delivery:	Hand Deli	vered 🗆 (Courier	□ Shipp	oed						

	CORR WWTP West P	lant				SUBMISSIO	N DATE:	4./2	14	D.G.	2 OF 1		
SS:	1114 East Austin Ave					LOCATION		West Pi		-		Transition of the last of the	
JJ.	Round Rock	STATE:	TX	ZIP:	78664	COLLECTOR				1011 002			
	(512) 534-8916		FAX:		70004	Phone Num		CVI	~ ()·				
REPORTED			-			MATRIX:	Non-pot	able Wate	er				
RRESL	FIELD SAMPLE ID/	SAMPLE	COLL	ECTION	CONTAINER	Number	PRESERV	ATION:3	REQ	JESTED	ANALY	'SES:4	
AB ID	SAMPLE LOCATION	TYPE	DATE	TIME	TYPE ²	of bottles	ICE	None	cBOD	TSS	NH ₃	TP	TDS
79106	West Plant Outfall 001	(G) G	4-17-24	012357	E G	1	Х		Х	х			
2	West Plant Outfall 001	⊕ G	1	0/23:59	₽G	1	Х				х	Х	
19107	West Plant Influent 001	e) G	4-17-24	0/23:59	₽ G	1	X		х	х			
V	West Plant Influent 001	© G	4-17-24	0/23:0	BG	1	Х				Х	Х	
A CONTRACTOR OF THE	out by City of Round Rock Em Time of Analysis	Analyst	Blank	LCS	Precision	Qualifiers				tesuit in r		Reviewer/	
	rab. 2: P=polyethylene or PTF nn. 4: Indicate request for test				ing "X"		LABO	RATORY	USE ON	ILY:			
3Y: (Signature)		Preservation Observed To		5.30	Derived	(°C):	5.3						
HED BY: (Signa	ture) 4.	No.	D 0914 /	ire) Out	Thermomet Custody Sea	er ID:	B	Correction	on:	0			
HED BY: (Signar		Pate/Time		re)	Delivery: ビ								

NT:	CORR WWTP West P	lant				SUBMISSIO	N DATE.	6-1-1	6.24	DC	OF	T	
RESS:	1114 East Austin Ave					LOCATION		West P		_	_		
'RE33.	Round Rock	STATE:	TX	ZIP:	78664	COLLECTOR					L .		
NIC.		SIAIE:		- ^{ZIP} :	/8004			[0]	4 V	·			
NE:	(512) 534-8916		FAX:			Phone Num		-1-1-204-4					
A REPORTED	10:					MATRIX:	Non-pota	able wat	er				
CORRESL	FIELD SAMPLE ID/	SAMPLE	COLLI	ECTION	CONTAINER	Number	PRESERV	ATION:3	REQI	JESTED	ANALY	/SES:4	
LAB ID	SAMPLE LOCATION	TYPE1	DATE	TIME	TYPE ²	of bottles	ICE	None	cBOD	TSS	NH ₃	TP	TDS
-09091	West Plant Outfall 001	10 G	4-15-24	0 /23:59	6 G	1	Х		X	Х			
	West Plant Outfall 001	ØG	4-15-24	0/23:59	₽ G	1	Х				X	Х	
-09092	West Plant influent 001	Ø G	4-13-24	0/23:59	₽ G	1	х		X	х	,		
V	West Plant Influent 001	THE RESERVE THE PERSON NAMED IN		0 12359	(P) G	1	X				Х	X	
100 000	out by City of Round Rock Em												
	/Time of Analysis	Analyst	Slank	((3	Precision	Quelifiers				tesult in a	mg/E	Reviewer	/Date
)													
ents							71						
C=composite, Gag	rab. 2: P=polyethylene or PTF	E plastic, G= G	ass. 3: Indicate prese	ervation type by mark	ing "X"		LADO	NOATORY	LICE OF	11.37.			
	nn. 4: Indicate request for tes	D		RATORY	OSE ON	ILY:							
ED By (Signature)		Preservation		6 2.		(0.0)	G 2						
QUISHTED/8Y: (Signa	ture) C	Observed To Thermomet					2.2						
forzullunas: Tolkya		Custody Sea	_			/	d						
UISHED 8Y: (Signal		late/Time		RECEIVED BY: (Signatu	ire)	Delivery:							
terminen ni Inglia							pi						

:	CORR WWTP West P	lant			CORR WWTP West Plant									
:SS:	1114 East Austin Ave						LOCATION I	NAME:	West Pl	ant Out	fall 001			
	Round Rock	STATE:	TX	ZIP:	78	564	COLLECTOR	NAME:	lox	~U.				
77 	(512) 534-8916		FAX:				Phone Num	ber:						
REPORTED	то:						MATRIX:	Non-pot	able Wat	er				
RRESL	FIELD SAMPLE ID/	SAMPLE	COLL	ECTION	CONT	AINER	Number	PRESERV	/ATION: ³	REQ	UESTED	ANALY	'SES:4	
AB ID	SAMPLE LOCATION	TYPE	DATE	TIME	TY	PE ²	of bottles	ICE	None	cBOD	TSS	NH ₃	TP	TDS
09080	West Plant Outfall 001	C G	4-10-24	0 123'59	P	G	1	Х		х	Х			
1	West Plant Outfall 001	4.10.24	0 123:58	Р	G	1	Х				X	Х		
18090	West Plant Influent 001	CG	4.10.24	6/2375	Р	G	1	X		х	Х			
V	West Plant Influent 001	G	1	Х				Х	Х					
AMERICAN A	out by City of Round Rock Em Time of Analysis	dronmental Se Analyst	ervices ONLY Blank	L(S)	Precis	loo	Qualifiers				Result in r	/I	Reviewer/	//\ata
	rab. 2: P=polyethylene or PTF nn. 4: Indicate request for test				ing "X"			LABO	PRATORY	USE ON	NLY:			
BY: (Signature)	2h 4.11-24/820 A							n Check: emp. (°C):	5.1	Derived Correction	(°C): _	5.1		
HEU BY: (Stignat	(une)	2	ek	Thermomet Custody Sea	_			_	d					
HED BY: (Signat	BY: (Signature) Date/Time 4.//.24/9:03 Date/Time RECEIVED BY: (Signature) Date/Time						Delivery: @	Hand Deli	vered a	Courier	: Shipp	ped		

								4.9.					=						
:	CORR WWTP West P	lant		SUBMISSIO	OF														
ISS:	1114 East Austin Ave				LOCATION I	NAME:		Plant Outfall 001											
	Round Rock	STATE:	TX	ZIP:	78664	COLLECTOR	NAME:	12	Tomv.										
::	(512) 534-8916		FAX:			Phone Number:													
REPORTED	TO:			MATRIX: Non-potable Water															
RRESL	FIELD SAMPLE ID/	SAMPLE	COL	LECTION	CONTAINER	Number	PRESERV	ATION:3	REO	UESTED	ANAL	SES:4							
AB ID	SAMPLE LOCATION	TYPE	DATE	TIME	TYPE ²	of bottles	ICE None		cBOD	TSS	NH ₃	TP	TDS						
09063	West Plant Outfall 001	Ø G	4.8.24	0/23:39	ØG	1	Х		Х	Х									
V	West Plant Outfall 001	ବ୍ର	4.8.24	0123:59	₿ G	1	х				Х	X							
.09064	mindent oo1	OG	4.8.24	0/2339	⊕ G	1	х		х	Х									
V	West Plant Influent 001	© G	4-8-24	0/23:5	6 G	1	Х				Х	Х							
	out by City of Round Rock En	vironmental Se Analyst	Blank	Qualifiers				Result in		Reviewer									
is:			****	And the second s															
	rab. 2: Papolyethylene or PTF nn. 4: Indicate request for test				ing "X"	LABORATORY USE ONLY:													
8 (Signature)		ate/Time		RECEIVED BY (Signate	ure)	Preservation Check:													
4		1-9.24	Observed Temp. (°C): 6.0 Derived (°C): 6.0																
SHED TY: (Signal	ture) E	Thermometer ID: Q Correction:																	
4	H.	Custody Seals; Broken Intact Not Used																	
SHED BY-45ignat		Delivery: Hand Delivered D Courier D Shipped																	

IT:	CORR WWTP West P	lant			SUBMISSIO	N DATE:	4.4.24 PG. 10F1												
IESS:	1114 East Austin Ave				LOCATION I	NAME:	West Plant Outfall 001												
	Round Rock	STATE:	TX	ZIP:	78664	COLLECTOR	NAME:	IE: TOMV											
IE:	(512) 534-8916		FAX:	_		Phone Num	ber:												
REPORTED	TO:				MATRIX:	Non-pot	ble Wat	er											
ORRESL	FIELD SAMPLE ID/	SAMPLE	COLL	ECTION	CONTAINER	Number	PRESERV	'ATION:3	REQU	UESTED	ANAL	/SES: ⁴							
LAB ID	SAMPLE LOCATION	TYPE1	DATE	TIME	TYPE ²	of bottles	ICE	None	cBOD	TSS	NH ₃	TP	TDS						
-09063	Odtidii 001	6 G	4.3.24	0 /23:57	AD G	1	Х		X	Х									
-	West Plant Outfall 001	© G	4.3.24	01339	₿ G	1	X				x	Х							
-09054	West Plant Influent 001		4.3.24	0123:59	Ø G	1	Х		х	Х									
V	West Plant Influent 001	C) G	4.3.24	0123:5	₽ G	1	х				Х	х							
	out by City of Round Rock Em																		
Decep	Time of Analysis	Analyst	Blank	(c)	Precision	Qualifiers			,	Result in a	HOE/L	Reviewer	Date						
nts:	NA								*										
	rab. 2: P=polyethylene or PTFi nn. 4: Indicate request for test		LABORATORY USE ONLY:																
BY: (Signature)		Preservation Check:																	
1		Observed Temp. (°C): 8.9 Derived (°C): 8.9																	
ISNED BY: (Signat		Thermometer ID: Correction:																	
	4	Custody Seals: Broken Intact Not Used Delivery: Hand Delivered Courier Shipped																	
IISHED BY: (Signat	ture) D	ate/Time/		RECEIVED BY: (Signatu	re)	Delivery: 02/	Hand Deli	vered 🗆 (Courier	Shipp	ped								

July 31, 2024

Ryan Bornn CITY OF ROUND ROCK 3400 Sunrise Rd. ROUND ROCK, Texas 78665

TEL: (512) 218-5561

FAX: Order No.: 2407240

RE: West Plant Outfall

Dear Ryan Bornn:

DHL Analytical, Inc. received 1 sample(s) on 7/24/2024 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative and all estimated uncertainties of results are within method specifications.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211 - TX-C24-00120

Table of Contents

Miscellaneous Documents	3
CaseNarrative 2407240	5
WorkOrderSampleSummary 2407240	6
Analytical Report 2407240	7
AnalyticalQCSummaryReport 2407240	8

2300 Double Creek Dr. Round Rock, TX 78664 Phone 512.388.8222

CHAIN-OF-CUSTODY

Web: www.dhlanalytical.com Email: login@dhlanalytical.com

DIMINIONAL A U A L A L L C A L								Email: login@dhlanalytical.com															1	PAC	3E _	1	OF					
CLIENT: CURR Environmental Services Lab								DATE: 7-24-24													LAB USE ONLY DHL WORKORDER #: 2407240											
ADDRESS: 3400 Sunrice Rd RundRocky 1866S								:													ЭНІ	. W	ORK	OR	DEF	₹#:	$\underline{\sim}$	_	<u> 1 C</u>	<u> </u>	<u> </u>	<u>ر</u>
PHONE: EMAIL: plann @roundrock texas si							ROJE	OJECT LOCATION OR NAME:																								
DATA TEL OTTED TO. 1000 DESTA							CLIENT PROJECT # West Plant Outfoll COLLECTOR: MS																									
						CL						W	e3+	- PI	422	- 00	140						TOI		_	2.						
Authorize 5% surcharge W=WATER SE=SEDIMENT							ESER					006				023	PCB 8082 ☐ 608.3 ☐ PCB 8270 ☐ 625.1 ☐	□ 4	METALS 6020 ☐ 200.8 ☐ DISS. METALS ☐		G00	"	TCLP-METALS □ RCRA 8 □ TX-11 □ Pb □									
for TRRP report? ☐ Yes ☐ No	Lab	L=LIQUID		P=PA			4		1	<u>ש</u> ולים	ED.	8260])LD 10			_	EST 8	000	MOM	S. ME		E .	HER	711	REASI	ANID	2	.				
Li res Li No	1	S=SOIL SO=SOLID		2L=2L	UDGE	ers	H₃PO₄		1	מולב בר	L KV	기물	Ĭ	20	VOC 8260 □ VOC 624.1 □	22.1	1 4	CB 827	□ ¥	SIG		KALI	 - 	8	OIL&G	0	Nitrajen					
	Only	30-30LID	, 	1		# of Containers	ヹ゚		2,2		3	J ME	11006	0 801		/OC 62	PAH 8270 ☐ HOLD PAH ☐ PEST 8270 ☐ 625.1 ☐ O-P PEST 8270 ☐	3 🗆	PHOS	200.8		PH□ HEX CHROM□ ALKALINITY COD□	ANIONS 300 9056 TCLP-SVOC VOC PE	RCRA	AS	MOIST			꾕			
	DHL	Collection	Collection		Container	lo		_	4 [ANALYSES ATBE [METHOD 8	T I	D 2	0		29	809 🗆	-	020	1211	CHRO		ALS	90 🗆	8 🗆 %	길	3	3			
Field Sample I.D.	Lab#	Date	Time	Matrix	Туре	of (HCL \square	HNO3	H ₂ SO ₄	NaOn □ ZII Acetate □	7	ANALYSES BTEX MTBE [METHOD 8260]	TPH 1005 ☐ TPH 1006 ☐ HOLD 1006 ☐	GRO 8015 🗆 DRO 8015 🗆	c 8260)C 827	T 8270	8082	HERB 8321 ☐ T PHOS ☐ AMMONIA ☐	TALS 6	RCRA 8 🗆 TX11 🗆	HEX	TCLP-SVOC VOC PEST HERB	P-MET	RCI 🗆 IGN 🗀 DGAS 🗀 OIL&GREASE 🗆	TDS 🗗 TSS 🗆 % MOIST 🗆 CYANIDE 🗅	Nitrate-	Sultate	Chloride			
		<u> </u>	02 = Ch	 , 	<u> </u>	#	드	<u> </u>	工 ž	ž <u>S</u>	١	H H	1 4	8	Š	§ §	E 82	2	Ξ.	Σ			P	卢	2		_	办.	빞	FIEL	_D NOT	ES
West Plant Outfull	01	7-23-24	2359	W	Plastic 250	1		_	-	+	-		+	\vdash	\dashv	+	+		_	_	+	<u>/</u> _	+	╄		V	4	4	4			
		-		ļ		-		+	\dashv	+	-	\vdash	╀	-	\vdash	+	+-	\vdash	\dashv		+		+	╀		H	\dashv	+	+			
						\vdash		+	-	+	-		+-	+		+	+-	H	\dashv	\dashv	+	-	+	╁		\vdash	\dashv	+	+			
						-		-	+	+	-	A.	+	+	\vdash	+	+		+	+	\dagger		╁	╁		\vdash	\dashv	+	+			
								\neg	+	十			T			\top	+		1	\dashv	\dagger		╁	T		П	十	十	\top			
								T	\top	+	1				T	十	1	П	\exists	十	T		十	T		П	十	十	十			
																					T					П	T	T				
							Ш	\perp	\perp																							
								\perp	_	_	_		_			_	$oldsymbol{\perp}$	Ш		\perp	1		_	_		\sqcup	\bot	\bot	_			
								_	_	_	4		<u> </u>	\perp	_	4	_		_	\dashv	4		\bot	_	Ш	\sqcup	\dashv	+	_	····		
						_		_	-	+	-		+	\vdash	_	4	-	$\vdash \vdash$	4	_	+		+	├-		\vdash	-	+	+			
						_	\vdash	\dashv	+	+			-	\vdash		+	+	\vdash	\dashv	+	+	-	+	\vdash	Н	┝╾┼	+	+	+			
						_		+	+	+			╁	\vdash	\dashv	+	╁	\vdash	\dashv	+	+	╁	+	\vdash	Н	┌┼	+	+	+			
Relinquished By: (Sign)		<u></u>	DATE/TIME	<u> </u>	<u>I </u>	ed b	<u></u> у:	<u></u>		+	1	TUR	1 A E	SOLI SOLI	ND 1	IME		LAB	1151	ON	ıv			<u> </u>						PMO #		
Enn		- 7.2	4.24	10:44	Viu	M	Ĺ	Un		l					OR R			ı			ONLY THERMO#:											
Relinquished By: (Sign)		/ -×	DATE/TIME	•	Receiv	ed b	y:			┦ _F	RUSI	H-1 [DAY	□R	USH-	2 DA	\Y□	ı			RE SAMPLES ON ICE AND JUST COLLECTED? YES / NO											
															AYE			ı													1 NOT I	
Relinquished By: (Sign)		**************************************	DATE/TIME		Receiv									LSO FEDEX DUPS COURIER HAND DELIVERED																		
										DUE DATE																						

DHL Analytical, Inc.

Sample Receipt Checklist Client Name: CITY OF ROUND ROCK Date Received: 7/24/2024 Work Order Number: 2407240 Received by: KAO Checklist completed by: 7/24/2024 Reviewed by: 7/24/2024 Signature Date Date Carrier name: Hand Delivered Shipping container/cooler in good condition? Yes 🗸 No 🗌 Not Present Custody seals intact on shipping container/cooler? Yes 🗌 No 🗌 Not Present Custody seals intact on sample bottles? Yes No 🗌 Not Present Chain of custody present? Yes 🗸 No 🗌 Chain of custody signed when relinquished and received? Yes 🗸 No 🗌 Chain of custody agrees with sample labels? Yes 🗹 No 🗌 Samples in proper container/bottle? Yes ✔ No 🗌 Sample containers intact? Yes 🗸 No 🗌 Sufficient sample volume for indicated test? Yes 🗸 No 🗌 All samples received within holding time? Yes 🗹 No 🗌 Yes 🗌 No 🗌 Water - VOA vials have zero headspace? No VOA vials submitted NA 🗌 Water - pH<2 acceptable upon receipt? Yes No 🗌 NA 🗸 LOT# Adjusted? Checked by Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? No 🗌 Yes NA 🗹 LOT# Adjusted? Checked by Container/Temp Blank temperature in compliance? Yes 🗸 No 🗌 Cooler# 1 Temp °C 0.8 Seal Intact Any No response must be detailed in the comments section below. Client contacted: Date contacted: Person contacted: Contacted by: Regarding: Comments:

Corrective Action:

DHL Analytical, Inc.

CLIENT: CITY OF ROUND ROCK

Project: West Plant Outfall CASE NARRATIVE

Date: 31-Jul-24

Lab Order: 2407240

Samples were analyzed using the methods outlined in the following references:

E300 and Standard Methods.

All method blanks, sample duplicates, laboratory spikes, and/or matrix spikes met quality assurance objectives except where noted in the following. For Anions analysis by method E300 the matrix spike and matrix spike duplicate recoveries (2407233-03 MS/MSD) were slightly above control limits for Nitrate-N. This was due to matrix effect. These are flagged accordingly in the enclosed QC summary report. The "S" flag denotes spike recovery was outside control limits. The LCS was within control limits for this analyte. No further corrective actions were taken.

DHL Analytical, Inc.

Date: 31-Jul-24

CLIENT: CITY OF ROUND ROCK

Project: West Plant Outfall

Lab Order: 2407240 **Work Order Sample Summary**

Tag Number Lab Smp ID Client Sample ID **Date Collected Date Recved** 07/23/24 11:59 PM

2407240-01 West Plant Outfall

07/24/2024

CLIENT: CITY OF ROUND ROCK Client Sample ID: West Plant Outfall

Project: West Plant Outfall Lab ID: 2407240-01

Project No: Collection Date: 07/23/24 11:59 PM

Lab Order: 2407240 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
ANIONS BY IC METHOD - WATER		E30	0				Analyst: KES
Chloride	211	3.00	10.0		mg/L	10	07/24/24 10:16 PM
Nitrate-N	12.6	0.100	0.500		mg/L	1	07/24/24 08:46 PM
Sulfate	47.4	1.00	3.00		mg/L	1	07/24/24 08:46 PM
ALKALINITY		M2320) B				Analyst: KES
Alkalinity, Bicarbonate (As CaCO3)	128	10.0	20.0		mg/L @ pH 4.53	1	07/29/24 01:17 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.53	1	07/29/24 01:17 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.53	1	07/29/24 01:17 PM
Alkalinity, Total (As CaCO3)	128	10.0	20.0		mg/L @ pH 4.53	1	07/29/24 01:17 PM
TOTAL DISSOLVED SOLIDS		M254	0C				Analyst: KER
Total Dissolved Solids (Residue, Filterable)	625	10.0	10.0		mg/L	1	07/25/24 04:20 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 31-Jul-24

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAP certified

Date: 31-Jul-24

ANALYTICAL QC SUMMARY REPORT

CLIENT: CITY OF ROUND ROCK

Work Order: 2407240

RunID: IC2 240724D **Project:** West Plant Outfall

Project:	West Plan	it Outrain					Kunii	<i>,</i> 1	C2_24072	עד		
The QC dat	ta in batch 116389 ap	plies to the	following sa	mples: 240	7240-01A							
Sample ID:	MB-116389	Batch ID:	116389		TestNo	: E300)		Units:	mg/L		
SampType:	MBLK	Run ID:	IC2_2407	24D	Analys	is Date: 7/24	/2024 10:52	2:39 AM	Prep Date:	7/24/20)24	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RI	PDLimit	Qual
Chloride			<0.300	1.00								
Nitrate-N			<0.100	0.500								
Sulfate			<1.00	3.00								
Sample ID:	LCS-116389	Batch ID:	116389		TestNo	: E300)		Units:	mg/L		
SampType:	LCS	Run ID:	IC2_2407	24D	Analys	is Date: 7/24	/2024 11:10):39 AM	Prep Date:	7/24/20)24	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RI	PDLimit	Qual
Chloride			10.1	1.00	10.00	0	101	90	110			
Nitrate-N			5.12	0.500	5.000	0	102	90	110			
Sulfate			30.4	3.00	30.00	0	101	90	110			
Sample ID:	LCSD-116389	Batch ID:	116389		TestNo	: E300)		Units:	mg/L		
SampType:	LCSD	Run ID:	IC2_2407	24D	Analys	is Date: 7/24	/2024 11:28	3:39 AM	Prep Date:	7/24/20)24	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RI	PDLimit	Qual
Chloride			10.1	1.00	10.00	0	101	90	110	0.035	20	
Nitrate-N			5.12	0.500	5.000	0	102	90	110	0.004	20	
Sulfate			30.6	3.00	30.00	0	102	90	110	0.627	20	
Sample ID:	2407233-03EMS	Batch ID:	116389		TestNo	: E300)		Units:	mg/L		
SampType:	MS	Run ID:	IC2_2407	24D	Analys	is Date: 7/24	/2024 9:40:	40 PM	Prep Date:	7/24/20	24	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RI	PDLimit	Qual
Chloride			3390	100	2000	1313	104	90	110			
Nitrate-N			521	50.0	451.6	0	115	90	110			S
Sulfate			2780	300	2000	610.6	108	90	110			
Sample ID:	2407233-03EMSD	Batch ID:	116389		TestNo	: E30 0)		Units:	mg/L		
SampType:	MSD	Run ID:	IC2_2407	24D	Analys	is Date: 7/24	/2024 9:58:	40 PM	Prep Date:	7/24/20)24	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RI	PDLimit	Qual
,a., to			0.400	100	2000	1313	105	90	110	0.832	20	
Chloride			3420	100	2000	1010	100	• •	110	0.002		
			3420 526	50.0	451.6	0	116	90	110	0.977	20	S

Qualifiers: Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits R

Page 1 of 4

Spike Recovery outside control limits

Parameter not NELAP certified

CLIENT: CITY OF ROUND ROCK

Work Order: 2407240

ANALYTICAL QC SUMMARY REPORT

Project: West Plant Outfall RunID: IC2_240724D

Sample ID: 2407240-01AMS	Batch ID:	116389		TestNo): E30 ()		Units:	mg/L
SampType: MS	Run ID:	IC2_2407	'24D	Analys	is Date: 7/24	/2024 10:34	4:40 PM	Prep Date	7/24/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Chloride		399	10.0	200.0	210.7	94.3	90	110	
Nitrate-N		60.6	5.00	45.16	11.80	108	90	110	
Sulfate		248	30.0	200.0	47.39	100	90	110	
Sample ID: 2407240-01AMSD	Batch ID:	116389		TestNo): E30 ()		Units:	mg/L

Sample ID: 2407240-01AMSD	Batch ID	116389		TestNo): E30	0		Units:	mg/l	L
SampType: MSD	Run ID:	IC2_240	724D	Analys	is Date: 7/2 4	4/2024 10:52	2:41 PM	Prep Date	7/24	/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Chloride		399	10.0	200.0	210.7	93.9	90	110	0.178	20
Nitrate-N		60.6	5.00	45.16	11.80	108	90	110	0.029	20
Sulfate		249	30.0	200.0	47.39	101	90	110	0.410	20

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

 $\begin{array}{ll} S & \text{Spike Recovery outside control limits} \\ N & \text{Parameter not NELAP certified} \end{array}$

Page 2 of 4

CLIENT: CITY OF ROUND ROCK

Work Order: 2407240

ANALYTICAL QC SUMMARY REPORT

Project: West Plant Outfall RunID: TITRATOR_240729A

The QC data in batch 116448 ap	plies to the	following sam	ples: 2407	240-01A						
Sample ID: MB-116448	Batch ID:	116448		TestNo:	M2	320 B		Units:	mg/L	@ pH 4.49
SampType: MBLK	Run ID:	TITRATOR	_240729A	Analysis	s Date: 7/2	9/2024 10:10	:00 AM	Prep Date:	7/29/2	024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Alkalinity, Bicarbonate (As CaCO	3)	<10.0	20.0							
Alkalinity, Carbonate (As CaCO3)	<10.0	20.0							
Alkalinity, Hydroxide (As CaCO3)		<10.0	20.0							
Alkalinity, Total (As CaCO3)		<10.0	20.0							
Sample ID: LCS-116448	Batch ID:	116448		TestNo:	M2	320 B		Units:	mg/L	@ pH 4.51
SampType: LCS	Run ID:	TITRATOR	_240729A	Analysis	s Date: 7/2	9/2024 10:16	:00 AM	Prep Date:	7/29/2	024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Alkalinity, Total (As CaCO3)		50.5	20.0	50.00	0	101	74	129		
Sample ID: LCSD-116448	Batch ID:	116448		TestNo:	M2	320 B		Units:	mg/L	@ pH 4.5
SampType: LCSD	Run ID:	TITRATOR	_240729A	Analysis	S Date: 7/2	9/2024 10:21	:00 AM	Prep Date:	7/29/2	024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Alkalinity, Total (As CaCO3)		50.6	20.0	50.00	0	101	74	129	0.316	20
Sample ID: 2407221-03B-DUP	Batch ID:	116448		TestNo:	M2	320 B		Units:	mg/L	@ pH 4.52
SampType: DUP	Run ID:	TITRATOR	_240729A	Analysis	Date: 7/2	9/2024 12:31	:00 PM	Prep Date:	7/29/2	024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Alkalinity, Bicarbonate (As CaCO	3)	65.8	20.0	0	66.50				1.06	20
Alkalinity, Carbonate (As CaCO3)	<10.0	20.0	0	0				0	20
Alkalinity, Hydroxide (As CaCO3)		<10.0	20.0	0	0				0	20
Alkalinity, Total (As CaCO3)		65.8	20.0	0	66.50				1.06	20
Sample ID: 2407241-03B-DUP	Batch ID:	116448		TestNo:	M2	320 B		Units:	mg/L	@ pH 4.52
SampType: DUP	Run ID:	TITRATOR	_240729A	Analysis	s Date: 7/2	9/2024 12:59	:00 PM	Prep Date:	7/29/2	024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Alkalinity, Bicarbonate (As CaCO	3)	29.7	20.0	0	28.50				4.12	20
Alkalinity, Carbonate (As CaCO3)	<10.0	20.0	0	0				0	20
Alkalinity, Hydroxide (As CaCO3)		<10.0	20.0	0	0				0	20
Alkalinity, Total (As CaCO3)		29.7	20.0	0	28.50				4.12	20

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 3 of 4

ANALYTICAL QC SUMMARY REPORT

CLIENT: CITY OF ROUND ROCK

Work Order: 2407240

WC_240725A **RunID: Project:** West Plant Outfall

The QC data in batch 116415 ap	plies to the	following sa	mples: 240)7240-01A					
Sample ID: MB-116415	Batch ID:	116415		TestNo:	M25	40C		Units:	mg/L
SampType: MBLK	Run ID:	WC_2407	'25A	Analysis	Date: 7/25	/2024 4:20:	00 PM	Prep Date:	7/25/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qu
Total Dissolved Solids (Residue,	Filtera	<10.0	10.0						
Sample ID: LCS-116415	Batch ID:	116415		TestNo:	M25	640C		Units:	mg/L
SampType: LCS	Run ID:	WC_2407	'25A	Analysis	Date: 7/25	/2024 4:20:	00 PM	Prep Date:	7/25/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qu
Total Dissolved Solids (Residue,	Filtera	763	10.0	745.6	0	102	90	113	
Sample ID: 2407233-03E-DUP	Batch ID:	116415		TestNo:	M25	640C		Units:	mg/L
SampType: DUP	Run ID:	WC_2407	'25A	Analysis	Date: 7/25	/2024 4:20:	00 PM	Prep Date:	7/25/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qu
Total Dissolved Solids (Residue,	Filtera	2960	50.0	0	3035				2.50 5

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 4 of 4

R RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAP certified

September 03, 2024

Ryan Bornn CITY OF ROUND ROCK 3400 Sunrise Rd. ROUND ROCK, Texas 78665

TEL: (512) 218-5561

FAX: Order No.: 2408318

RE: West Plant EFF TKN

Dear Ryan Bornn:

DHL Analytical, Inc. received 1 sample(s) on 8/27/2024 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative and all estimated uncertainties of results are within method specifications.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211 - TX-C24-00120

Table of Contents

Miscellaneous Documents	3
CaseNarrative 2408318	5
WorkOrderSampleSummary 2408318	6
Analytical Report 2408318	7
Subcontract Report 2408318	8

2300 Double Creek Dr. Round Rock, TX 78664 Phone 512.388.8222

CHAIN-OF-CUSTODY

PAGE _____ OF ____

Web: www.dhlanalytical.com Email: login@dhlanalytical.com

CLIENT: CORK ESL				DA	TE:		(Z-	21	1-6	24							_ ı	AB	OR/	\TO	RY	US	ΕO	NLY	7					
ADDRESS: <u>5200 N</u>	1235	Randa	Rock TX	78	481	PC) #:													[HL	W	ORK	OR	DEI	R #:		9	<u>\H</u>	08318	
PHONE:		EMAIL: r	bornn@r	wadroc	Klexas																										
DATA REPORTED TO: 18	•				. 364		OJEC									<u></u>	<u> </u>	4 2	<u> </u>											<u> </u>	
ADDITIONAL REPORT COR			n	CE CE	DINACNIT		ENT				_	Nes	+ P	100	1 5		<u>4</u>				OL	-	TOF	_	T			T	-		
Authorize 5% surcharge for TRRP report?		W=WATE	К	P=PAI	DIMENT		PRES	SER			_8		006				270	325.1	□ A□	TALS] Pb [
☐ Yes ☐ No		L=LIQUID S=SOIL		SL=SL					4	ED		8260]	OLD 1(1.	_	EST 8	70 🗆	MMON	S. ME			J HER	×-11[SREAS	ANIDI					
ште з штио		SO=SOLID		SL=SL	ODGE	# of Containers			7n Acetate 🗌	SERV	ANALYSES	ЕТНОР)H □ 90	15	4.1	625.1	A 0-0	PCB 82	S \(\text{A}	8 🗆 DIS			PEST	A801] OIL&G	ST 🗆 CY					
	•]		ıtai		ı		PRE	Z	<u>S</u>	PH 100	RO 80	.0C 62	SVOC	25.1	8.3	T PHO	200.		9026	VOC 🗆	l RG	GAS	% MOI:		l			
Field Sample I.D.	DHL	Collection	Collection	Matrix	Container	S		واج	ځا⊑		1	MTBE	5 🗆 T	150	000			2 0 60	121	0209	X 8	300	000	ETALS	NS C	ss 🗆 s	r K N				
r leid Sample 1.D.	Lab #	Date	Time		Type	# of	HCL		H ₂ SO ₄	ICE S UNPRESERVED S		ВТЕХ □ МТВЕ □ [МЕТНОВ 8260]	ТРН 1005 □ ТРН 1006 □ НОLD 1006 □	GRO 8015 □ DRO 8015 □	VOC 82	SVOC8270 U SVOC625.1 U	PAH 82/0 ☐ HOLD PAH ☐ PEST 8270 ☐ 625.1 ☐ O-P PEST 8270 ☐	PCB 8082 ☐ 608.3 ☐ PCB 8270 ☐ 625.1 ☐	HERB 8321 ☐ T PHOS ☐ AMMONIA ☐	METALS 6020 □ 200.8 □ DISS. METALS □	RCRA 8 L TX11 L	ANIONS 300 9056	TCLP-SVOC □ VOC □ PEST □ HERB □	TCLP-METALS □ RCRA 8 □ TX-11 □ Pb □	RCI □ IGN □ DGAS □ OIL&GREASE □	TDS ☐ TSS ☐ % MOIST ☐ CYANIDE ☐	+			FIELD NOT	ES
West Plant Effluent	01	8-24-24	2359	W	P	1		T	T	T	1				Ť			T		Ť			Ť	Ť			V	寸			
											1																				
											l																				
											l																				
			****				\perp	_	\perp		1		Ш		\perp	_	\perp					_	_	_			\Box	\dashv	_		
							\perp	_	_	_	1		Ш	_	_	1	_		_	4	_	╄	\bot	_	_			\dashv	_		
							_	_		_	1		Ш	_	_	4	_	_	_	_		+	+	_	ļ			4	_		
				-			\dashv	+	-	+	ł		H		_	+	+	-		-	-	+	-	┝				-	\dashv		
				-			\dashv	+	+	╬	1		\vdash	\dashv	+	+	+		-	+	╬	+	╁	+	-			+	\dashv		
							\dashv	╁	+	-	1	H	\vdash	\dashv	\dashv	+	+	+	\vdash	-	\dashv	╬	╁┈	╁		_		\dashv	\dashv		
							+	+	+	+	1		H	+	\dashv	\dagger	╁	+	\vdash	\dashv	╁	+	╁	╁	 		\dashv	+	\dashv		
							\top	\dagger	\top	T	1			T	十	\top	\top	\dagger		\top	\dagger	\dagger	T	T		Г		1	7		
								T		T	1		П		T		T	1			T		T	T					7		
											1																				
Relinquished By: (Sign)			DATE/TIME		Recei	eel b	y: 	_							ND T OR R			LA RE	BOR CEIV	ATOF	FMI	SE O	NLY):	1.0	٥	,				THERM #:	
Relinquished By (Sign)		0.00	DATE/TIME		Receiv	ed b	y:			R	USH	I-1 D	AVE	⊒_RI	- אצע	2 D				USTO								INT	ACT	_ /)
Relinquished By: (Sign)		8 01.6	DATE/TIME		Receiv			<u>u</u>		1	NC	RM.	ALT	-3 D	AY[IER			CARR	IER:		LSO								OURIER 🗆 OT	HER
·								D	UE I	DAT	E												IANI	D DE	LIVE	RED)				

Sample Receipt Checklist

Client Name: CITY OF ROUND ROCK		Da	Date Received: 8/27/2024					
Work Order Number: 2408318		Re	eceived by: I	KAO				
Checklist completed by: Signature		Re d Delivered	eviewed by:	SN Initials	8/27/2024 Date			
Shipping container/cooler in good condition?	Yes	✓ No)	Not Present				
Custody seals intact on shipping container/coole	r? Yes	□ No)	Not Present				
Custody seals intact on sample bottles?	Yes	□ No)	Not Present				
Chain of custody present?	Yes	✓ No						
Chain of custody signed when relinquished and r	received? Yes	✓ No						
Chain of custody agrees with sample labels?	Yes	✓ No						
Samples in proper container/bottle?	Yes	✓ No						
Sample containers intact?	Yes	✓ No						
Sufficient sample volume for indicated test?	Yes	✓ No						
All samples received within holding time?	Yes	✓ No						
Water - VOA vials have zero headspace?	Yes	□ No	☐ No	VOA vials sub	omitted 🗹 NA 🗌			
Water - pH<2 acceptable upon receipt?	Yes	□ No	✓ NA	☐ LOT	# 13171			
	Adju	sted?	S	Checked by	SM			
Water - ph>9 (S) or ph>10 (CN) acceptable upon	receipt? Yes	□ No	□ NA	✓ LOT:	#			
	Adju	sted?		Checked by				
Container/Temp Blank temperature in compliance	e? Yes	✓ No						
Cooler # 1								
Temp °C 1.0								
Seal Intact NP								
Any No response must be detailed in the comme	nts section below.							
Client contacted:	Date contacted:		Person	contacted:				
Contacted by:	Regarding:							
Comments: The bottle was unpreserved up	oon receiving the sample fo	r testing.						

Corrective Action: We proceeded to acidify the sample with H2SO4 Lot#17171 in Login on 8/27/24.

CLIENT: CITY OF ROUND ROCK
Project: West Plant EFF TKN

Lab Order: 2408318

CASE NARRATIVE

Date: 03-Sep-24

The TKN analysis was sub-contracted to SPL.

CLIENT: CITY OF ROUND ROCK

Project: West Plant EFF TKN
Lab Order: 2408318

Work Order Sample Summary

Date: 03-Sep-24

Lab Smp ID Client Sample ID Tag Number Date Collected Date Recved

2408318-01 West Plant Effluent 08/26/24 11:59 PM 08/27/2024

CLIENT: CITY OF ROUND ROCK Client Sample ID: West Plant Effluent

Project: West Plant EFF TKN Lab ID: 2408318-01

Project No: Collection Date: 08/26/24 11:59 PM

Lab Order: 2408318 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TKN-TOTAL KJELDAHL NITROGEN (K)		E351	.2				Analyst: SUB
Total Kieldahl Nitrogen	4.73	0.00712	0.0500		ma/L	1	09/03/24 07:13 AM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RLND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

Date: 03-Sep-24

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAP certified

Page 1 of 1

Printed

09/03/2024 10:06

DHL1-C

DHL Analytical - SPL John Dupont 2300 Double Creek Dr Round Rock, TX 78664

TABLE OF CONTENTS

This report consists of this Table of Contents and the following pages:

Report Name	Description	<u>Pages</u>
1115983_r00_00TRRPcover	SPL Kilgore Project P:1115983 C:DHL1 TRRP Project	1
	Report Cover Page	
1115983_r02_01_ProjectSamples	SPL Kilgore Project P:1115983 C:DHL1 Project Sample	1
	Cross Reference t:304	_
1115983_r02_03_ProjectPrep	SPL Kilgore Project P:1115983 C:DHL1 Project	1
	Preparation And QCgroup (Set) Listings t:304	•
1115983_r03_01_ProjectHold	SPL Kilgore Project P:1115983 C:DHL1 Project Holding	1
	Time Compliance	•
1115983 r03 03 ProjectResults	SPL Kilgore Project P:1115983 C:DHL1 Project Results	2
,	t:304	2
1115983_r03_06_D_ProjectTRRP	SPL Kilgore Project P:1115983 C:DHL1 Project TRRP	1
	Results Report for Class D	1
1115983_r10_01_ProjectQCgroup	SPL Kilgore Project P:1115983 C:DHL1 Project Sample	1
	QCgroup Reference	1
1115983_r10_05_ProjectQC	SPL Kilgore Project P:1115983 C:DHL1 Project Quality	1
1110700_110_00_110J000Qe	Control Groups	1
1115983 r99 09 CoC 1 of 1	SPL Kilgore CoC DHL1 1115983 1 of 1	2
1113703_177_07_0001_01_1	of E Riigote coc Brief 1113703_1_01_1	2
1115983_SETQA_1135771_1136222	SPL Kilgore Project P:1115983 C:DHL1 Project Quality	2
1110700_001Q11_1100//11_1100222	Control TRRP-13 Check Lists 1135771 1136222	2
1115983_SETQA_er_1135771_1136222	SPL Kilgore Project P:1115983 C:DHL1 Project Quality	1
1113763_5E1QA_G_1133771_1130222	Control TRRP-13 Check List Error Report	1
	1135771_1136222	
	_	1.4
	Total Pages:	14

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 1 of 15

LABORATORY DATA PACKAGE COVER PAGE

AQUEOUS

This data package consists of:

- This signature page, the laboratory review checklist, and the following reportable data:
- ☑ R1 Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - 1) Items consistent with NELAC 5.13 or ISO/IEC 17025 Section 5.10
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- ☑ R4 Surrogate recovery data including: (R4 R8: See QC Report)
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- ☑ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.
- 🗹 R9 List of method quantitation limits (MQLs) for each analyte for each method and matrix; See Results Summary
- ☑ R10 Other problems or anomalies.
- The Exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By me signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Bill Peery (WJP)

VP Technical Services

9/3/2024

Name Signature Official Title Date

TNI

Central TX Region: 8101 Cameron Rd - Ste 305 Austin TX 78754

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 2 of 15

SAMPLE CROSS REFERENCE

Printed

9/3/2024

Page 1 of 1

DHL Analytical - SPL John Dupont 2300 Double Creek Dr Round Rock, TX 78664

Sample	Sample ID	Taken	Time	Received
2329354	WEST PLANT EFFLUENT	08/26/2024	11:59:00	08/28/2024

Bottle 01 Client supplied H2SO4 plastic

Bottle 02 Prepared Bottle: TKN TRAACS Autosampler Vial (Batch 1135771) Volume: 20.00000 mL <== Derived from 01 (20 ml)

Method	Bottle	PrepSet	Preparation	QcGroup	Analytical
EPA 351.2 2	02	1135771	08/29/2024	1136222	09/03/2024

Email: Kilgore.ProjectManagement@spllabs.com

09/03/2024

Page 1 of 1

3

SAMPLE PREPARATION

DHL Analytical - SPL John Dupont 2300 Double Creek Dr Round Rock, TX 78664

Default

Prep Set # 1135771 08/29/2024

Analytical Set # 1136222 EPA 351.2 2 09/03/2024

SampleSample IDBottle2329354WEST PLANT EFFLUENT02

Central TX Region: 8101 Cameron Rd - Ste 305 Austin TX 78754

Report Page 4 of 15

2.24.8.7

Printed 09/03/2024

Page 1 of 1

HOLDING TIME COMPLIANCE

DHL Analytical - SPL John Dupont 2300 Double Creek Dr Round Rock, TX 78664

AQUEOUS

<u>Name</u>	<u>Method</u>	Taken:	Received Analyzed	<u>Hold</u>	<u>Elapsed</u>
	2329354	8/26/24 11:59	08/28/2024		
TKN Block Digestion	EPA 351.2, Rev	v 2.0	8/29/24 7:38	28.00	2.00
Total Kjeldahl Nitrogen	EPA 351.2 2		9/3/24 7:13	28.00	7.00

Central TX Region: 8101 Cameron Rd - Ste 305 Austin TX 78754

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 5 of 15

Page 1 of 2

2

3

Project 1115983

09/03/2024

Printed:

DHL1-C

DHL Analytical - SPL John Dupont 2300 Double Creek Dr Round Rock, TX 78664

RESULTS

					Sample Re	esults					
ì	2329354 Non-Potable Water	WEST PLANT	Collected by.		DHL Analy	tical - SPL		P	Received: O:	08/28	/2024
_	EPA 351.2 2		<i>Такен.</i> 08	/26/2024 Prepared:	1135771 0		07:38:09	Analyzed 11362	222 09/03/2024	07:13:00	AM
LAC	Parameter Total Kjeldahl	Nitrogen		Results 4.73	Units mg/L			Flags	CAS 7727-37-9		Bottle
				S	ample Prep	aration					
	2329354	WEST PLANT	EFFLUENT						Received:	08/28	/2024
			08	/26/2024							
				Prepared:	Oc	8/28/2024	13:28:20	Calculated	08/28/2024	13:28:20	CAI
	Environmental	Fee (per Project)		Verified							
				Prepared:	0.5	9/03/2024	09:20:00	Analyzed	09/03/2024	09:20:00	TW
	Level IV Data	Review		Completed							
I	EPA 351.2, Rev 2.0	0		Prepared:	1135771 0	8/29/2024	07:38:09	Analyzed 11357	771 08/29/2024	07:38:09	ME

Report Page 6 of 15

Office: 903-984-0551 * Fax: 903-984-5914

DHL1-C

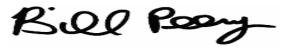
DHL Analytical - SPL John Dupont 2300 Double Creek Dr Round Rock, TX 78664

Page 2 of 2

Project 1115983

Printed: 09/03/2024

Qualifiers:


We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC.

 $RL\ is\ the\ Reporting\ Limit\ (sample\ specific\ quantitation\ limit)\ and\ is\ at\ or\ above\ the\ Method\ Detection\ Limit\ (MDL).\ CAS\ is\ Chemical\ CAS\ is\$ Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

Bill Peery, MS, VP Technical Services

Report Page 7 of 15

The Science of Sure

RESULTS

Page 1 of 1

Project

1115983

Printed 09/03/2024 **AQUEOUS**

DHL1

DHL Analytical - SPL John Dupont 2300 Double Creek Dr Round Rock, TX 78664

<u>CAS</u>	Param	eter		Results	MDL	SDL	MQL	MQLAdj	Flag	Units	Target	Bottle	Dilute
Non-Potable	Water		Distillations								EP	A 351.2 2	
2329354	WEST I	PLANT EFFLUENT											
				Collection:	08/26/20	24	11:59:00	Client			Received:	08/28/2024	
Pro	epared:	1135771											
						Analyzed:		1136222	9/	3/24	07:13:00		
7727-37-9	Total 1	Kjeldahl Nitrogen		4.73	0.00712	0.00712	0.050	0.050		mg/L		02	1.00

MDL is Method Detection Limit (40 CFR 136 Appendix B)

MQL is the Method Quantitation Limit and corresponds to a low standard

Qualifiers:

SDL is Sample Detection Limit and is the adjusted MDL (sample specific dilutions, dry weight)

MQLADJ is the Adjusted Method Quantitation Limit (dilutions, dry weight)

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc. - Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC.

TNI

Bill Peery, MS, VP Technical Services

Email: Kilgore.ProjectManagement@spllabs.com

QC GROUPS 09/03/2024

Page 1 of 1

2

3

DHL Analytical - SPL John Dupont 2300 Double Creek Dr Round Rock, TX 78664

	QCgroup	Analyzed	
TKDL	1,135,771	08/29/2024	
7051 Astoria2 Autoanalyzer		Astoria	200354
TKN	1,136,222	09/03/2024	

Central TX Region: 8101 Cameron Rd - Ste 305 Austin TX 78754

Report Page 9 of 15

Email: Kilgore.ProjectManagement@spllabs.com

QUALITY CONTROL

Page 1 of 1

Project 1115983

Printed 09/03/2024

DHL1-C

DHL Analytical - SPL John Dupont 2300 Double Creek Dr Round Rock, TX 78664

Analytical Set	1136222									EPA	A 351.2 2
				В	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Total Kjeldahl Nitrogen	1135771	ND	0.00712	0.050	mg/L			126722462			
				(CCV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Total Kjeldahl Nitrogen		5.31	5.00	mg/L	106	90.0 - 110		126722461			
Total Kjeldahl Nitrogen		5.29	5.00	mg/L	106	90.0 - 110		126722469			
				Duj	plicate						
<u>Parameter</u>	Sample		Result	Unknown	n		Unit		RPD		Limit%
Total Kjeldahl Nitrogen	2329539		0.509	0.500			mg/L		1.78		20.0
				1	ICV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Total Kjeldahl Nitrogen		4.83	5.00	mg/L	96.6	90.0 - 110		126722460			
				LC	S Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Total Kjeldahl Nitrogen	1135771	5.37	5.01		5.00	90.0 - 110	107	100	mg/L	6.94	20.0
				Mat	. Spike						
Parameter	Sample	Spike	Unknown	Known	Units	Recovery %	Limits %	File			
Total Kjeldahl Nitrogen	2329539	5.87	0.500	5.00	mg/L	107	80.0 - 120	126722467			

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); CCV - Continuing Calibration Verification

(same standard

used to prepare the curve; typically a mid-range concentration; verifies the continued validity of the calibration curve); ICV - Initial Calibration Verification; LCS Dup - Laboratory Control Sample Duplicate (replicate LCS; analyzed when there is insufficient sample for duplicate or MSD; quantifies accuracy and precision.)

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 10 of 15

1115983 CoC Print Group 001 of 001

DIII	A 1-	vtical.	T
1 11 11	Anar	vricai	inc

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

2300 Double Creek Drive Round Rock, TX 78664

TEL: (512) 388-8222 Work Order: 2408318

FAX:

2 3

5

9

Subcontractor:

SPL Laboratory Kilgore 2600 Dudley Rd Kilgore, TX 75662

TEL: (903) 984-0551

FAX: Acct #: 232935+

27-Aug-24

	V		Date Collected	Bottle Type	Requested Tests					
Sample ID	Matrix DHL	DHL#			TKN					
					E351.2					
West Plant Effluent	Aqueous	01A	08/26/24 11:59 PM	250HDPEH2SO4	1					

General Comments:

Please analyze these samples with a 1 DAY RUSH Turnaround Time. Quality Control Package Needed: Standard - SEND PDF & Excel EDD Please EMAIL report to both cac@dhlanalytical.com & dupont@dhlanalytical.com Call John DuPont if you have questions.

Date/Time

Date/Time

Relinquished by: Memdey
Relinquished by: Relinquished by:

8/27/24 5:00 Received by:

Received by:

Report Page 11 of 15

2

Report Page 12 of 15

Reviewer # A R01 OI R02 OI	Default Name: Bill Peery (WJP) Description Chain-of-Custody (C-O-C) Did samples meet the laboratory's standard conditions of sample acceptabil: Were all departures from standard conditions described in the exception rep Sample and Quality Control (QC) Identification Are all field sample ID numbers cross referenced to the laboratory ID numbers are all laboratory ID numbers cross-referenced to the corresponding QC da Test Reports Were all samples prepared and analyzed within holding times? Other than those results < MQL, were all other raw values bracketed by call	PrepSet: 1135771 QCgroup: 113622 ity upon receipt? port? pers?	1115983 2 Yes X X	No	NA	NR X	ER#
Reviewer # A R01 OI R02 OI	Description Chain-of-Custody (C-O-C) Did samples meet the laboratory's standard conditions of sample acceptability Were all departures from standard conditions described in the exception repostable and Quality Control (QC) Identification Are all field sample ID numbers cross referenced to the laboratory ID numbers are all laboratory ID numbers cross-referenced to the corresponding QC dataset Reports Were all samples prepared and analyzed within holding times? Other than those results < MQL, were all other raw values bracketed by call	PrepSet: 1135771 QCgroup: 113622 ity upon receipt? port? pers?	Yes X	No	NA		ER#
# A R01 OI R02 OI	Description Chain-of-Custody (C-O-C) Did samples meet the laboratory's standard conditions of sample acceptability. Were all departures from standard conditions described in the exception reposition. Sample and Quality Control (QC) Identification. Are all field sample ID numbers cross referenced to the laboratory ID numbers are all laboratory ID numbers cross-referenced to the corresponding QC dataset Reports. Were all samples prepared and analyzed within holding times? Other than those results < MQL, were all other raw values bracketed by call	ity upon receipt? port? pers?	Yes X	No	NA		ER#
R01 OI	Chain-of-Custody (C-O-C) Did samples meet the laboratory's standard conditions of sample acceptability were all departures from standard conditions described in the exception rep. Sample and Quality Control (QC) Identification Are all field sample ID numbers cross referenced to the laboratory ID numbers are all laboratory ID numbers cross-referenced to the corresponding QC data Test Reports Were all samples prepared and analyzed within holding times? Other than those results < MQL, were all other raw values bracketed by call	pers?	X	No	NA		ER#
R02 OI	Did samples meet the laboratory's standard conditions of sample acceptability. Were all departures from standard conditions described in the exception rep Sample and Quality Control (QC) Identification Are all field sample ID numbers cross referenced to the laboratory ID numbers are all laboratory ID numbers cross-referenced to the corresponding QC dataset Reports Were all samples prepared and analyzed within holding times? Other than those results < MQL, were all other raw values bracketed by call	pers?	X			X	1
	Were all departures from standard conditions described in the exception rep Sample and Quality Control (QC) Identification Are all field sample ID numbers cross referenced to the laboratory ID numbers are all laboratory ID numbers cross-referenced to the corresponding QC da Test Reports Were all samples prepared and analyzed within holding times? Other than those results < MQL, were all other raw values bracketed by call	pers?	X			X	1
	Sample and Quality Control (QC) Identification Are all field sample ID numbers cross referenced to the laboratory ID numbers are all laboratory ID numbers cross-referenced to the corresponding QC data Test Reports Were all samples prepared and analyzed within holding times? Other than those results < MQL, were all other raw values bracketed by call	pers?	X				
	Are all field sample ID numbers cross referenced to the laboratory ID numbers are all laboratory ID numbers cross-referenced to the corresponding QC dataset Reports Were all samples prepared and analyzed within holding times? Other than those results < MQL, were all other raw values bracketed by call						
R03 OI	Are all laboratory ID numbers cross-referenced to the corresponding QC da Test Reports Were all samples prepared and analyzed within holding times? Other than those results < MQL, were all other raw values bracketed by call						
R03 OI	Test Reports Were all samples prepared and analyzed within holding times? Other than those results < MQL, were all other raw values bracketed by call	ata?	X				
R03 OI	Were all samples prepared and analyzed within holding times? Other than those results < MQL, were all other raw values bracketed by call						
	Other than those results < MQL, were all other raw values bracketed by call						
			X				
1 1		ibration standards?	X				
1 1	Were calculations checked by a peer or supervisor?		X				
	Were all analyte identifications checked by a peer or supervisor?		X				
	Were sample quantitation limits reported for all analytes not detected?		X				
	Were all results for soil and sediment samples reported on a dry weight basis	is?			X		
	Were % moisture (or solids) reported for all soil and sediment samples?				X		
	If required for the project, tentatively identified compounds reported?				X		
R04 O	Surrogate Recovery Data						
	Were surrogates added prior to extraction?				X		
	Were surrogate percent recoveries in all samples within the laboratory QC l	limits?			X		
R05 OI	Test Reports/Summary Forms for Blank Samples						
	Were appropriate type(s) of blanks analyzed?		X				
	Were blanks analyzed at the appropriate frequency?		X				
	Were blank concentrations < MQL?		X				
	Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup						
R06 OI	procedures? Laboratory Control Samples (LCS)		X				
	Were all chemicals of concern included in the LCS?				X		
	Was each LCS taken though the entire analytical procedure, including prep	and cleanup steps?	_		X		
	Were LCSs analyzed at the required frequency?	and orealist steps.	_		X		
	Were LCS (and LCS duplicate, if applicable) %Rs within the laboratory QC	C limits?	X				
	Does the detectability data document the laboratory's capability to detect th		-				
	calculate the SQLs?		X				
	Was the LCS duplicate relative percent difference within QC limits?		X				
R07	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) data						
	Were the project/method specified analytes included in the MS and MSD?		X				
	Were MS/MSD analyzed at the appropriate frequency?		X				
	Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?		X				
	Were MS/MSD RPDs within laboratory QC limits?				X		
R08 OI	-						
	Were appropriate analytical duplicates analyzed for each matrix?		X				
	Were analytical duplicates analyzed at the appropriate frequency?		X				
	Were RPDs or relative standard deviations within the laboratory QC limits?	?	X				
R09 OI							
	Are the MQLs for each method analyte included in the laboratory data pack	<u> </u>	X				
	Do the MQLs correspond to the concentration of the lowest non-zero calibr	ration standard?	X				
	Are unadjusted MQLs included in the laboratory data package?		X				
R10 OI							
	Are all known problems/anomalies/special condition noted in this LRC and	TER?	X				
	Were all necessary corrective actions preformed for the reported data?		X				
	Was applicable and available technology used to lower the SQL and minim results?	nize the matrix interference effects on the sample	X				

2

4 5

Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X S13 IO Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X S14 OI Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X IS documentation of the analyst's competency up-to-date and on file?	App	endiz	x A: Laboratory Review Ch	ecklist: Reportable Data						
Reviewer Name Bill Perry (WIP)	Lab	orator	y Name: SPL Kilgore	LRC Date: 09/03/2024						
Initial Calibration (ICAL) Ver exponse factors for each analyte within QC limits? X	Proj	ect Na	ame: Default	Laboratory Job (Project) Number:	115983					
Initial Calibration (ICAL) Were response factors and or relative response factors for each analyte within QC limits? X	Rev	iewer	Name: Bill Peery (WJP)	PrepSet: 1135771 QCgroup: 113622	22					
Were percent ISDs or correlation coefficient criteria met? Were percent ISDs or correlation coefficient criteria met? Were all points generated between the fowest and highest standard used for all analyse? Were all points generated between the fowest and highest standard used for all analyse? X	#	A	Description		Yes	No	NA	NR	ER#	
Were percent RSD or correlation coefficient eriteria net? Was the number of standards recommended in the method used for all analytes? X	S01	OI	Initial Calibration (ICAL)							
Ware the number of standards recommended in the method used for all analytes? Were all points generated between the lowest and highest standard used to calculate the curve? Are ICAI, data available for all instruments used? Are ICAI, data available for all instruments used? Has the initial calibration curve been verified using an appropriate second source standard? X Initial and Condinuing Calibration Verification (ICCV and CCV) and Cordinuing Calibration Was the CCV analyzed at the method-required frequency? Were percent differences for each analyte within the method-required QC limits? Was the Aboulte value of the analyte concentration in the inorganic CCB « MQL? Was the aboulte value of the analyte concentration in the inorganic CCB « MQL? Was the appropriate compound for the method used for tuning? Were in abundance data within the method-required QC limits? Were in abundance data within the method-required QC limits? Y Were in abundance data within the method-required QC limits? Y Were in abundance data within the method-required QC limits? Y Were is area counts and retention times within the method-required QC limits? Y Were the raw data (for example, chromatoganus, spectral data) reviewed by an analys? Were data associated with munual integrations flagged on the raw data (for example, chromatoganus, spectral data) reviewed by an analys? Y Were data associated with munual integrations flagged on the raw data (for example, chromatoganus, spectral data) reviewed by an analys? Y Were data associated with munual integrations flagged on the raw data (for exceptible QC) If Ticks were requested, were the mass spectra and TiC data subject to appropriate checks? If The first part of the part			Were response factors and/or relative response factors for each analyte withi	n QC limits?	X					
Were all points generated between the lowest and highest standard used to calculate the curve?			Were percent RSDs or correlation coefficient criteria met?		X					
Are ICAL data available for all instruments used? This the initial collibration curve been verified using an appropriate second source standard? X			Was the number of standards recommended in the method used for all analyst	tes?	X					
Has the imital calibration curve been verified using an appropriate second source standard? A			1 0	alculate the curve?	X					
Initial and Continuing Calibration Verification (ICCV and CCV) and Continuing Calibration Was the CCV analyzed at the method-required frequency? X			Are ICAL data available for all instruments used?		X					
Was the CCV analyzed at the method-required frequency? Were percent differences for each analyte within the method-required QC limits? Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the inorganic CCB < MQL? Was the absolute value of the analyte concentration in the inorganic CCB < MQL? Was the appropriate compound for the method used for tuning? Were the appropriate compound for the method used for tuning? Were to an abundance data within the method-required QC limits? Were to an abundance data within the method-required QC limits? Internal Standards (IS) Were IS area counts and recention times within the method-required QC limits? Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Did dual column Confirmation Did dual column Confirmation Did dual column Confirmation Did dual column Confirmation Were precent recoveries, within method QC limits? Interference Check Sample (ICS) Results Were precent recoveries within method QC limits? Serial Dilutions, Post Digestion Splice, and Method of Standard Additions Were precent differences, recoveries, and the linearity within the QC limits specified in the method? X Serial Dilutions, Post Digestion Splice, and Method of Standard Additions Were precent differences recoveries within method QC limits? Serial Dilutions, Post Digestion Splice, and Method of Standard Additions Were precent differences recoveries and Method of Standard Additions Were precent differences recoveries and Method of Standard Additions Were precent differences recoveries and Method of Standard Additions Were precent differences recoveries and Method of Standard Additions Were precent differences recoveries and Method of Standard Additions Were precent differences recoveries and Method of Standard Additions Were precent differences recoverie			Has the initial calibration curve been verified using an appropriate second so	urce standard?	X					
Were percent differences for each analyte within the method-required QC limits? Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the inorganic CCB < MQL? Was the absolute value of the analyte concentration in the inorganic CCB < MQL? Was the appropriate compound for the method used for tuning? Was the appropriate compound for the method-required QC limits? Were ton abundance data within the method-required QC limits? Were to abundance data within the method-required QC limits? Were the raw can counts and retention times within the method-required QC limits? Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Yas build column confirmation Did dual column confirmation results meet the method-required QC? Tentatively Identified Compounds (TICs) If TiCs were requested, were the mass spectra and TiC data subject to appropriate checks? If Interference Check Sample (ICS) Results Were precent recoveries within method QC limits? Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions Was percent differences, recoveries, and the linearity within the QC limits specified in the method? Is serial Dilutions, Post Digestion Spikes, and Method of Standard Additions Was a MDL study performed for each reported analyte? Is the MDL either adjusted or suppported by the analysis of detectability check samples? X I Interference Theorem of the control of the control of the performance acceptable on the applicable proficiency tests or evaluation studies? X I Interference and the analyses NIST-traceable or obtained from other apropriate sources? X I Interference and the analyses of the catable of the proficiency tests or evaluation studies? X I Interference and the analyses of the catable of the proficiency tests or evaluation studies? X I Interference and the analyses	S02	OI	Initial and Continuing Calibration Verification (ICCV and CCV) and Contin	uing Calibration						
Was the ICAL curve verified for each analyte? Was the absolute value of the analyte concentration in the inorganic CCB < MQL? Was the absolute value of the analyte concentration in the inorganic CCB < MQL? Was the appropriate compound for the method used for tuning? Was the appropriate compound for the method used for tuning? Were ion abundance data within the method-required QC limits? Internal Standards (IS) Were IS area counts and retention times within the method-required QC limits? INTERNAL (NELAC section 1 appendix A glossary, and section 5.12 or ISQ/IEC 17025 section) Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? Were data associated with manual integrations flagged on the raw data? Note that associated with manual integrations flagged on the raw data? Dad dual column confirmation results meet the method-required QC? IT if ICs were requested, were the mass spectra and TIC data subject to appropriate checks? It interference Check Sample (ICS) Results Were percent recoveries within method QC limits? Were percent differences, recoveries, and the linearity within the QC limits specified in the method? X Sincial Dilutions, Post Digestion Spikes, and Method of Standard Additions Were percent differences, recoveries, and the linearity within the QC limits specified in the method? X Sincial Dilutions, Post Digestion Spikes, and Method of Standard Additions Was a MDI. study performed for each reported analyte? X Sincial Standards becomentation Are all standards under the analyses NIST-traceable or obtained from other apropriate sources? X Sincial Standards and the analyses NIST-traceable or obtained from other apropriate sources? X Sincial Standards and the analyses NIST-traceable or obtained from other apropriate sources? X Sincial Standards and the analyses NIST-traceable or obtained from other apropriate sources? X Sincial Standards and the analyses NIST-traceable or obtained from other apropriate sources? X Sincial Standards used to be a			Was the CCV analyzed at the method-required frequency?		X					
Was the absolute value of the analyte concentration in the inorganic CCB < MQL? Was Spectral Tuning Was be appropriate compound for the method used for tuning? Were ion abundance data within the method-required QC limits? Were loss are counts and retention times within the method-required QC limits? Were Sa reae counts and retention times within the method-required QC limits? Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were data associated with manual integrations flagged on the raw data? Were dolumn confirmation results meet the method-required QC? Tritics were requested, were the mass spectra and TIC data subject to appropriate checks? Interference Check Sample (ICS) Results Were precent recoveries within method QC limits? Were precent differences, recoveries, and the linearity within the QC limits specified in the method? Were precent differences, recoveries, and the linearity within the QC limits specified in the method? Interference Check Sample (ICS) Results Were percent differences, recoveries, and the linearity within the QC limits specified in the method? Was a MDL study performed for each reported analyte? Is the MDL cither adjusted or supported by the analysis of detectability check samples? X			Were percent differences for each analyte within the method-required QC lir	mits?	X					
Mass Spectral Tuning Was the appropriate compound for the method used for tuning? X Were ion abundance data within the method-required QC limits? X			Was the ICAL curve verified for each analyte?		X					
Was the appropriate compound for the method used for tuning? Were ion abundance data within the method-required QC limits? Variety			Was the absolute value of the analyte concentration in the inorganic CCB < 1	MQL?			X			
Were ion abundance data within the method-required QC limits? Variation V	S03	3 O Mass Spectral Tuning								
Solition Compound			Was the appropriate compound for the method used for tuning?				X			
Were IS area counts and retention times within the method-required QC limits? X S05 OI Raw Data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025 section) Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? X X S05 Were data associated with manual integrations flagged on the raw data? X S06 O Dual Column Confirmation Did dual column confirmation results meet the method-required QC? X S07 O Tentatively Identified Compounds (TICs) If TICs were requested, were the mass spectra and TIC data subject to appropriate checks? X Interference Chock Sample (ICS) Results Were precent recoveries within method QC limits? X S08 I Interference Chock Sample (ICS) Results Were precent differences, recoveries, and the linearity within the QC limits specified in the method? X S09 I Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions Were precent differences, recoveries, and the linearity within the QC limits specified in the method? X S09 I Method Detection Limit (MDL) Studies Was a MDL study performed for each reported analyte? X S09 I Standards Ludy performed for each reported analyte? X S09 I			Were ion abundance data within the method-required QC limits?				X			
Social Dilutions, Post Digestion Spikes, and Method of Standard Additions Were precent recoveries, with method QC limits? X	S04	0	Internal Standards (IS)							
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? Were data associated with manual integrations flagged on the raw data? Note that associated with manual integrations flagged on the raw data? Note that associated with manual integrations flagged on the raw data? Note that associated with manual integrations flagged on the raw data? Note that the state of the state			Were IS area counts and retention times within the method-required QC limit	ts?			X			
Were data associated with manual integrations flagged on the raw data?	S05	OI	Raw Data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/	EC 17025 section)						
Sof O Dual Column Confirmation Did dual column confirmation results meet the method-required QC? Tentatively Identified Compounds (TCs) If TICs were requested, were the mass spectra and TIC data subject to appropriate checks? I Interference Check Sample (ICS) Results Were precent recoveries within method QC limits? Sof I Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions Were percent differences, recoveries, and the linearity within the QC limits specified in the method? Was a MDL study performed for each reported analyte? Is the MDL either adjusted or suppported by the analysis of detectability check samples? X Sill OI Proficiency Test Reports Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Sill OI Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X Signal Analyst Compensation of Analyst Compensation of the analysts competency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analysts competency up-to-date and on file? Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X Sill OI Laboratory Standard Operating Procedures (SOPs)				an analyst?	X					
Did dual column confirmation results meet the method-required QC? X			Were data associated with manual integrations flagged on the raw data?		X					
Sof O Tentatively Identified Compounds (TICs) If TICs were requested, were the mass spectra and TIC data subject to appropriate checks? It Interference Check Sample (ICS) Results Were precent recoveries within method QC limits? Sof I Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions Were percent differences, recoveries, and the linearity within the QC limits specified in the method? Were percent differences, recoveries, and the linearity within the QC limits specified in the method? Was a MDL study performed for each reported analyte? Is the MDL either adjusted or suppported by the analysis of detectability check samples? X Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from oth	S06	0	Dual Column Confirmation							
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks? I Interference Check Sample (ICS) Results Were precent recoveries within method QC limits? Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions Were percent differences, recoveries, and the linearity within the QC limits specified in the method? X Since I Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions Were percent differences, recoveries, and the linearity within the QC limits specified in the method? X Since I Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions Were percent differences, recoveries, and the linearity within the QC limits specified in the method? X Since I Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions Were percent differences, recoveries, and the linearity within the QC limits specified in the method? X Since I Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions Was a MDL study performed for each reported analyte? X Since I Standard Study performed for each reported analyte; X Since I Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Since I Standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Since I Standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Since I Standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Since I Standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Since I Standards used in the analyses of the applicable proficiency tests or evaluation studies? X Since I Standards used in the analyses of the applicable proficiency tests or evaluation studies? X Since I Standards used in the analyses of the applicable of the applicable proficiency tests or evaluation studies? X Since I Standard December 1 Standard December 1 Standard Decem			Did dual column confirmation results meet the method-required QC?				X			
Interference Check Sample (ICS) Results Were precent recoveries within method QC limits? X	S07	0	Tentatively Identified Compounds (TICs)							
Were precent recoveries within method QC limits? Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions Were percent differences, recoveries, and the linearity within the QC limits specified in the method? X			If TICs were requested, were the mass spectra and TIC data subject to appropriate the spectra and TIC data subject to appropriate the spectra and TIC data subject to appropriate the spectra and TIC data subject to appropriate the spectra and TIC data subject to appropriate the spectra and TIC data subject to appropriate the spectra and TIC data subject to appropriate the spectra and TIC data subject to appropriate the spectra and TIC data subject to appropriate the spectra and TIC data subject to appropriate the spectra and TIC data subject to appropriate the spectra and TIC data subject to appropriate the spectra and TIC data subject to appropriate the spectra and TIC data subject to appropriate the spectra and TIC data subject to appropriate the spectra and TIC data subject to approximate the spectra and the spectra	priate checks?			X			
Sop I Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions Were percent differences, recoveries, and the linearity within the QC limits specified in the method? X Since I Method Detection Limit (MDL) Studies Was a MDL study performed for each reported analyte? Is the MDL either adjusted or suppoprted by the analysis of detectability check samples? X Since I Proficiency Test Reports Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X Since I Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X Since I O Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X Since I Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X Since I Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X Since I Laboratory Standard Operating Procedures (SOPs)	S08	Ι	Interference Check Sample (ICS) Results							
Were percent differences, recoveries, and the linearity within the QC limits specified in the method? X			Were precent recoveries within method QC limits?				X			
S10 OI Method Detection Limit (MDL) Studies Was a MDL study performed for each reported analyte? Is the MDL either adjusted or suppported by the analysis of detectability check samples? X	S09	I	Serial Dilutions, Post Digestion Spikes, and Method of Standard Additions							
S10 OI Method Detection Limit (MDL) Studies Was a MDL study performed for each reported analyte? Is the MDL either adjusted or suppported by the analysis of detectability check samples? X			Were percent differences, recoveries, and the linearity within the QC limits s	specified in the method?			v			
Was a MDL study performed for each reported analyte? Is the MDL either adjusted or suppported by the analysis of detectability check samples? X S11 OI Proficiency Test Reports Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X S12 OI Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X S13 IO Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)	210	OT	Method Detection Limit (MDL) Studies				Λ			
Is the MDL either adjusted or suppported by the analysis of detectability check samples? S11 OI Proficiency Test Reports Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X S12 OI Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X S13 IO Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X S14 OI Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)	510		, ,		Y					
S11 OI Proficiency Test Reports Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X S12 OI Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X S13 IO Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X S14 OI Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)				ck samples?			<u> </u>	\vdash		
Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X S12 OI Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X S13 IO Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X S14 OI Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)	211	OT	111 1	ek sumples.	21					
S12 OI Standards Documentation Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X S13 IO Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X S14 OI Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)	P11	01		ests or evaluation studies?		_				
Are all standards used in the analyses NIST-traceable or obtained from other apropriate sources? X S13 IO Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X S14 OI Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? X S15 Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)				2. Cranding section	X					
S13 IO Compound/Analyte Identification Procedures Are the procedures for compound/analyte identification documented? X S14 OI Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)	S12	OI	Standards Documentation							
Are the procedures for compound/analyte identification documented? X Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)			Are all standards used in the analyses NIST-traceable or obtained from other	apropriate sources?	X					
OI Demonstration of Analyst Compentency (DOC) Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)	S13	Ю	Compound/Analyte Identification Procedures							
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section 4? Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)			Are the procedures for compound/analyte identification documented?		X					
Is documentation of the analyst's competency up-to-date and on file? X S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)	S14	OI								
S15 OI Verification/Validation Documentation Methods (NELAC Chapter 5 or ISO/IEC Section 5) Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)	1		Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC Section	on 4?	X					
Are all the methods used to generate the data documented, verified and validated, where applicable? X S16 OI Laboratory Standard Operating Procedures (SOPs)			Is documentation of the analyst's competency up-to-date and on file?		X					
S16 OI Laboratory Standard Operating Procedures (SOPs)	S15	OI								
	1		Are all the methods used to generate the data documented, verified and valid	ated, where applicable?	X					
Are laboratory SOPs current and on file for each method performed?	S16	OI	Laboratory Standard Operating Procedures (SOPs)							
	1		Are laboratory SOPs current and on file for each method performed?		X					

- 1. Items identified by the letter "R" must be included on the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention
- 2. O = organic analyses; I = ionorganic analyses (and general chemistry, when applicable);
- 3. N/A = Not applicable;
- 4. NR = Not reviewed
- 5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Report Page 14 of 15

2

Appendix A: (cont'd): Laboratory Review Checklist: Exception Reports							
Laboratory	Name: SPL Kilgore	LRC Date: 09/03/2024					
Project Na	Project Name: Default Laboratory Job (Project) Number: 1115983						
Reviewer	Name: Bill Peery (WJP)	PrepSet: 1135771 QCgroup: 1136222					
ER#	Description						
1	Bottles were reviewed at login. Please see the chain of custody record for sample receipt details.						

¹ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked on the LRC)

2

5

Summary of WET Test Results
Wks 5.0 Section 3

CITY OF ROUND ROCK, CITY OF CEDAR PARK, CITY OF AUSTIN, AND CITY OF LEANDER BRUSHY CREEK REGIONAL WEST WASTEWATER TREATMENT FACILITY TPDES PERMIT RENEWAL APPLICATION SUMMARY OF WET TEST RESULTS

7-DAY CHRONIC BIOMONITORING

Testing Period	Test Species	IC25 Lethal	IC25 Sublethal
Q2 2022	Pimephales promelas	>84%	>84%
Q2 2022	Q2 2022 Ceriodaphnia dubia		>84%
Q3 2022	Pimephales promelas	>84%	>84%
Q3 2022	Ceriodaphnia dubia	>84%	>84%
Q4 2022	Pimephales promelas	>84%	>84%
Q4 2022	Ceriodaphnia dubia	>84%	>84%
Q1 2023	Pimephales promelas	>84%	>84%
Q1 2023	Ceriodaphnia dubia	>84%	>84%
Q2 2023	Pimephales promelas	>84%	>84%
Q2 2023	Ceriodaphnia dubia	>84%	>84%
Q3 2023	Pimephales promelas	>84%	>84%
Q3 2023	Ceriodaphnia dubia	>84%	>84%
Q4 2023	Pimephales promelas	>84%	>84%
Q4 2023	Ceriodaphnia dubia	>84%	>84%
4/2/2024	Pimephales promelas	>84%	>84%
4/2/2024	Ceriodaphnia dubia	>84%	>84%

24-HOUR ACUTE BIOMONITORING

Testing Period	Test Species	LC 50 % Effluent	
Jan-Jun 2022	Pimephales promelas	>100%	
Jan-Jun 2022	D. Pulex	>100%	
Jul-Dec 2022	Pimephales promelas	>100%	
Jul-Dec 2022	D. Pulex	>100%	
Jan-Jun 2023	Pimephales promelas	>100%	
Jan-Jun 2023	D. Pulex	>100%	
Jul-Dec 2023	Pimephales promelas	>100%	
Jul-Dec 2023	D. Pulex	>100%	
Jan-Jun 2024	Pimephales promelas	>100%	
Jan-Jun 2024	D. Pulex	>100%	

Effluent Parameters Above the MAL Wks 6.0 Section 2.C

CITY OF ROUND ROCK, CITY OF CEDAR PARK, CITY OF AUSTIN, AND CITY OF LEANDER BRUSHY CREEK REGIONAL WEST WASTEWATER TREATMENT FACILITY TPDES PERMIT RENEWAL APPLICATION EFFLUENT PARAMETERS ABOVE THE MAL

Pollutant	Concentration	MAL	Units	Date
2,4,5-TP (Silvex)	0.914	0.3	μg/L	05/08/2024
2,4,6-Trichlorophenol	71.3	10	μg/L	01/27/2022
2,4-D	0.776	0.7	μg/L	05/08/2024
Aluminum	84.9	2.5	μg/L	12/09/2020
Aluminum	65.7	2.5	μg/L	01/27/2021
Aluminum	163	2.5	μg/L	04/13/2021
Aluminum	88.0	2.5	μg/L	07/28/2021
Aluminum	499	2.5	μg/L	10/12/2021
Aluminum	167	2.5	μg/L	01/27/2022
Aluminum	103	2.5	μg/L	05/18/2022
Aluminum	20.1	2.5	μg/L	06/09/2022
Aluminum	119	2.5	μg/L	07/28/2022
Aluminum	31.6	2.5	μg/L	08/11/2022
Aluminum	97.5	2.5	μg/L	11/18/2022
Aluminum	255	2.5	μg/L	02/09/2023
Aluminum	47.7	2.5	μg/L	04/19/2023
Aluminum	68.6	2.5	μg/L	07/13/2023
Aluminum	61.2	2.5	μg/L	10/18/2023
Aluminum	31.8	2.5	μg/L	02/28/2024
Aluminum	27.1	2.5	μg/L	05/08/2024
Arsenic	<2	0.5	μg/L	05/08/2024
Arsenic, Total	0.96	0.5	μg/L	12/09/2020
Arsenic, Total	1.1	0.5	μg/L	01/27/2021
Arsenic, Total	1.08	0.5	μg/L	04/13/2021
Arsenic, Total	1.3	0.5	μg/L	07/28/2021
Arsenic, Total	1.64	0.5	μg/L	10/12/2021
Arsenic, Total	0.812	0.5	μg/L	01/27/2022
Arsenic, Total	1.03	0.5	μg/L	05/18/2022
Arsenic, Total	0.66	0.5	μg/L	06/09/2022
Arsenic, Total	1.39	0.5	μg/L	07/28/2022
Arsenic, Total	1.3	0.5	μg/L	08/11/2022
Arsenic, Total	1.64	0.5	μg/L	10/18/2023
Arsenic, Total	1.01	0.5	μg/L	02/28/2024
Barium	24.3	3	μg/L	12/09/2020
Barium	27.3	3	μg/L	01/27/2021
Barium	32.8	3	μg/L	04/13/2021
Barium	28.4	3	μg/L	07/28/2021
Barium	29.0	3	μg/L	10/12/2021
Barium	29.0	3	μg/L	01/27/2022
Barium	28.4	3	μg/L	05/18/2022
Barium	33.3	3	μg/L	06/09/2022
Barium	24	3	μg/L	07/28/2022

CITY OF ROUND ROCK, CITY OF CEDAR PARK, CITY OF AUSTIN, AND CITY OF LEANDER BRUSHY CREEK REGIONAL WEST WASTEWATER TREATMENT FACILITY TPDES PERMIT RENEWAL APPLICATION EFFLUENT PARAMETERS ABOVE THE MAL

Pollutant	Concentration	MAL	Units	Date
Barium	36.6	3	μg/L	08/11/2022
Barium	19.3	3	μg/L	11/18/2022
Barium	35.5	3	μg/L	02/09/2023
Barium	16.8	3	μg/L	04/19/2023
Barium	19.4	3	μg/L	07/13/2023
Barium	38.3	3	μg/L	10/18/2023
Barium	44.0	3	μg/L	02/28/2024
Barium	39.7	3	μg/L	05/08/2024
Copper	4.19	2	μg/L	05/08/2024
Copper, Total	8.36	2	μg/L	12/09/2020
Copper, Total	5.4	2	μg/L	01/27/2021
Copper, Total	10.0	2	μg/L	04/13/2021
Copper, Total	4.63	2	μg/L	07/28/2021
Copper, Total	17.8	2	μg/L	10/12/2021
Copper, Total	11.7	2	μg/L	01/27/2022
Copper, Total	6.09	2	μg/L	05/18/2022
Copper, Total	6.91	2	μg/L	06/09/2022
Copper, Total	9.03	2	μg/L	07/28/2022
Copper, Total	7.98	2	μg/L	08/11/2022
Copper, Total	5.46	2	μg/L	10/18/2023
Copper, Total	3.1	2	μg/L	02/28/2024
Cyanide, Available	16.3	10	μg/L	10/18/2023
Dicofol	60.7	1	μg/L	06/09/2022
Fluoride	666	500	μg/L	12/09/2020
Fluoride	594	500	μg/L	10/12/2021
Fluoride	535	500	μg/L	01/27/2022
Fluoride	633	500	μg/L	07/28/2022
Fluoride	709	500	μg/L	04/19/2023
Lead, Total	0.954	0.5	μg/L	10/12/2021
Lead, Total	0.772	0.5	μg/L	01/27/2022
Mercury, Total	0.00522	0.005	μg/L	04/13/2021
Mercury, Total	0.015	0.005	μg/L	01/27/2022
Mercury, Total	0.009	0.005	μg/L	05/18/2022
Mercury, Total	0.006	0.005	μg/L	07/28/2022
Nickel	<3	2	μg/L	05/08/2024
Nickel, Total	2.18	2	μg/L	01/27/2022
Nickel, Total	2.04	2	μg/L	05/18/2022
Nickel, Total	2.06	2	μg/L	06/09/2022
Nickel, Total	2.37	2	μg/L	07/28/2022
Nickel, Total	4.56	2	μg/L	08/11/2022
Nickel, Total	2.3	2	μg/L	10/18/2023
Nitrate-Nitrogen	13,600	100	μg/L	12/08/2020

CITY OF ROUND ROCK, CITY OF CEDAR PARK, CITY OF AUSTIN, AND CITY OF LEANDER BRUSHY CREEK REGIONAL WEST WASTEWATER TREATMENT FACILITY TPDES PERMIT RENEWAL APPLICATION EFFLUENT PARAMETERS ABOVE THE MAL

Pollutant	Concentration	MAL	Units	Date
Nitrate-Nitrogen	21,800	100	μg/L	01/27/2021
Nitrate-Nitrogen	7,160	100	μg/L	04/13/2021
Nitrate-Nitrogen	4,350	100	μg/L	07/28/2021
Nitrate-Nitrogen	13,800	100	μg/L	10/12/2021
Nitrate-Nitrogen	12,100	100	μg/L	01/27/2022
Nitrate-Nitrogen	9,980	100	μg/L	06/09/2022
Nitrate-Nitrogen	8,450	100	μg/L	07/28/2022
Nitrate-Nitrogen	8,160	100	μg/L	08/11/2022
Nitrate-Nitrogen	15,400	100	μg/L	11/18/2022
Nitrate-Nitrogen	8,630	100	μg/L	02/09/2023
Nitrate-Nitrogen	16,400	100	μg/L	04/19/2023
Nitrate-Nitrogen	14,900	100	μg/L	07/13/2023
Nitrate-Nitrogen	13,900	100	μg/L	10/18/2023
Nitrate-Nitrogen	10,400	100	μg/L	05/08/2024
Nitrobenzene	66.1	10	μg/L	10/12/2021
Silver	<1	0.5	μg/L	05/08/2024
Zinc	36.1	5	μg/L	05/08/2024
Zinc, Total	67	5	μg/L	12/09/2020
Zinc, Total	63.2	5	μg/L	01/27/2021
Zinc, Total	61.1	5	μg/L	04/13/2021
Zinc, Total	63.4	5	μg/L	07/28/2021
Zinc, Total	93.4	5	μg/L	10/12/2021
Zinc, Total	75.5	5	μg/L	01/27/2022
Zinc, Total	31.8	5	μg/L	05/18/2022
Zinc, Total	90.3	5	μg/L	06/09/2022
Zinc, Total	51.6	5	μg/L	07/28/2022
Zinc, Total	86.6	5	μg/L	08/11/2022
Zinc, Total	79.4	5	μg/L	10/18/2023
Zinc, Total	41.7	5	μg/L	02/28/2024

0982-021-01

October 3, 2024

Ms. Rachel Ellis
Applications Review and Processing Team (MC 148)
Water Quality Division
Texas Commission on Environmental Quality
PO Box 13087
Austin, Texas 78711

Re: City of Round Rock (CN600413181), City of Cedar Park (CN600407951), City of Austin (CN600135198), and City of Leander (CN600646012)

Brushy Creek Regional West Wastewater Treatment Facility (RN100822592)

Application for Renewal of Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010264001

Dear Ms. Ellis:

On behalf of City of Round Rock, City of Cedar Park, City of Austin, and City of Leander, Plummer Associates, Inc., (Plummer) has reviewed your letter sent via email on September 20, 2024, which transmitted the Notice of Deficiency (NOD) for the above-referenced permit. A copy of the letter is provided in Enclosure A. The following responses correspond to the numbered items in your letter.

Transfer Application:

- 1. Check number 10080175, issued by the City of Round Rock, was submitted to TCEQ on September 9th. Enclosure B provides the receipt from the TCEQ Cashier's Office.
- 2. The application provided the incorrect transfer date. Please see Enclosure C for a revised page 4 requesting that the transfer take place on September 9th (the date the application was submitted).

Administrative Report:

- 3. Please use the City of Round Rock's address for the permit: 221 East Main Street, Round Rock, Texas 78664. No changes to the other co-permittees' CDFs are necessary.
- 4. The Notice of Receipt of Application and Intent to Obtain a Water Quality Permit (NORI) has been reviewed. Revisions are provided below in red.

APPLICATION. City of Round Rock, City of Austin, City of Cedar Park, and City of Leander, 221 East Main Street, Round Rock, Texas 78664, has have applied to the Texas Commission on

Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010264001 (EPA I.D. No. TX0075167) to authorize the discharge of treated wastewater at a volume not to exceed an daily annual average flow of 3,000,000 gallons per day. The domestic wastewater treatment facility is located at 1116 East Austin Avenue, in the city of Round Rock, in Willamson County, Texas 78664. The discharge route is from the plant site is directing directly to Brushy Creek. TCEQ received this application on September 9, 2024. The permit application will be available for viewing and copying at the Utilities and Environmental Services Building, customer service desk, 3400 Sunrise Road, Round Rock, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage:

https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.666111,30.513888&level=18

Further information may also be obtained from City of Round Rock, City of Austin, City of Cedar Park, and City of Leander at the address stated above or by calling Mr. Michael Thane, P.E., Director - Utilities and Environmental Services, City of Round Rock at 512-218-3236.

5. A Spanish translation of the above revised NORI is provided in Enclosure D.

We appreciate your attention to this application. If you have any questions, feel free to contact me at (512) 687-2154 or alewis@plummer.com.

Respectfully yours,

ashing Jewis

PLUMMER

Ashley Lewis

Water Quality/Permitting Team Leader

Enclosures (4)

cc: Ms. Laurie Hadley, City of Round Rock, City Manger

Ms. Brenda Eivens, City of Cedar Park, City Manager

Ms. Shay Ralls, City of Austin, Director of Austin Water

Mr. Todd Parton, City of Leander, City Manager

SECTION 8. TRANSFER DATE

What is the date that the transfer of operator or ownership will occur? 9/9/2024

SECTION 9. REPORTING AND BILLING INFORMATION

A. Please identify the individual for receiving the reporting forms.

First and Last Name: Michael Thane

Title: <u>Director – Utilities and Environmental Services</u> Credentials: <u>P.E.</u>

Company Name: <u>City of Round Rock</u>
Mailing Address: <u>3400 Sunrise Rd</u>

City, State, and Zip Code: <u>Round Rock, TX 78665</u> Phone Number: <u>512-218-3236</u> Fax Number: <u>N/A</u>

E-mail Address: <u>mthane@roundrocktexas.gov</u>

B. Please identify the individual for receiving the annual fee invoices.

First and Last Name: Michael Thane

Title: <u>Director – Utilities and Environmental Services</u> Credentials: <u>P.E.</u>

Company Name: <u>City of Round Rock</u> Mailing Address: 3400 Sunrise Rd

City, State, and Zip Code: <u>Round Rock, TX 78665</u> Phone Number: <u>512-218-3236</u> Fax Number: <u>N/A</u>

E-mail Address: mthane@roundrocktexas.gov

SECTION 10. DELINQUENT FEES OR PENALTIES

Do you owe fees to the TCEQ? Yes \square No \boxtimes

Do you owe any penalties to the TCEQ? Yes \square No \boxtimes

If you answered yes to either of the above questions, provide the amount owed, the type of fee or penalty, and an identifying number.

N/A

Basis2 Receipt Report by Endorsement Number

SEP-26-24 12:14 PM

Acct. #: WQP Account Name: WATER QUALITY PERMIT APPLICATION Ref #2 Paid For Endors. # Paid In By PayTyp Chk # Card# Bank Slip Tran.Date Receipt Amnt. 10264001 ROUND ROCK, CITY OF 10080174 BS00110805 \$100.00 BRUSHY CREEK M540209 CK 09-SEP-24

REGIONAL WEST WWTF

Report_ID: Page 1

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ0010264001

SOLICITUD. La ciudad de Round Rock, la cuidad de Austin, la ciudad de Cedar Park, v la ciudad de Leander, 221 East Main Street, Round Rock, Texas 78664, han solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0010264001 (EPA I.D. No. TX0075167) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio anual de 3,000,000 galones por día. La planta está ubicada en 1116 East Austin Avenue, en la cuidad de Round Rock, en el Condado de Williamson, Texas 78664. La ruta de descarga es del sitio de la planta directamente al Brushy Creek. La TCEQ recibió esta solicitud el 9 de septiembre de 2024. La solicitud para el permiso está disponible para leerla y copiarla en el mostrador de atención al cliente del Edificio de Servicios Públicos y Ambientales, 3400 Sunrise Road, Round Rock, Texas. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdesapplications. Este enlace a un mapa electrónico del sitio o la ubicación general de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.666111,30.513888&level=18

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar

comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO

CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre. dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios: v la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia

estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una o más de las listas de correos siguientes (1) la lista de correo permanente para recibir los avisos del solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

CONTACTOS E INFORMACIÓN DE LA TCEQ. Todos los comentarios escritos del público y los para pedidos una reunión debe ser presentado a la Oficina del Secretario Principal, MC 105, TCEQ, P.O. Box 13087, Austin, TX 78711-3087 o por el internet at www.tceq.texas.gov/about/comments.html. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Si necesita más información en Español sobre esta solicitud para un permiso o el proceso del permiso, por favor llame a El Programa de Educación Pública de la TCEQ, sin cobro, al 1-800-687-4040. La información general sobre la TCEQ puede ser encontrada en nuestro sitio de la red: www.tceq.texas.gov.

También se puede obtener información adicional de la ciudad de Round Rock, la cuidad de Austin, la ciudad de Cedar Park, y la ciudad de Leander a la dirección indicada arriba o llamando a Sr. Michael Thane, P.E., Director de Servicios Públicos y Medioambientales, la ciudad de Round Rock, al 512-218-3236.

Fecha de emisión Date notice issued

TPDES PERMIT NO. WQ0010264001 [For TCEQ office use only - EPA I.D. No. TX0075167]

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY P.O. Box 13087 Austin, Texas 78711-3087

This is a renewal that replaces TPDES Permit No. WQoo10264001 issued on January 30, 2014.

PERMIT TO DISCHARGE WASTES

under provisions of Section 402 of the Clean Water Act and Chapter 26 of the Texas Water Code

City of Round Rock, City of Cedar Park, and City of Austin

whose mailing address is

221 East Main Street Round Rock, Texas 78664

is authorized to treat and discharge wastes from the Brushy Creek Regional West Wastewater Treatment Facility, SIC Code 4952

located at 1114 East Austin Avenue, in the City of Round Rock, Williamson County, Texas 78664

directly to Brushy Creek in Segment No. 1244 of the Brazos River Basin

only according to effluent limitations, monitoring requirements, and other conditions set forth in this permit, as well as the rules of the Texas Commission on Environmental Quality (TCEQ), the laws of the State of Texas, and other orders of the TCEQ. The issuance of this permit does not grant to the permittee the right to use private or public property for conveyance of wastewater along the discharge route described in this permit. This includes, but is not limited to, property belonging to any individual, partnership, corporation, or other entity. Neither does this permit authorize any invasion of personal rights nor any violation of federal, state, or local laws or regulations. It is the responsibility of the permittee to acquire property rights as may be necessary to use the discharge route.

This permit shall expire at midnight, five years from the date of issuance.

ISSUED DATE: March 11, 2020

For the Commission

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

Outfall Number 001

1. During the period beginning upon the date of issuance and lasting through the date of expiration, the permittee is authorized to discharge subject to the following effluent limitations:

The annual average flow of effluent shall not exceed 3.0 million gallons per day (MGD), nor shall the average discharge during any twohour period (2-hour peak) exceed 6,250 gallons per minute (gpm).

Effluent Characteristic		Discharge Limitations	imitations		Min. Self-Monit	Min. Self-Monitoring Requirements
	Daily Avg	7-day Avg Daily Max	Daily Max	Single Grab	Report Daily	Report Daily Avg. & Daily Max.
	mg/l (lbs/day)	mg/l	mg/l	mg/l	Measurement Frequency	Sample Type
Flow, MGD	Report	N/A	Report	N/A	Continuous	Totalizing Meter
Carbonaceous Biochemical Oxygen Demand (5-day)	7 (175)	12	22	32	Two/week	Composite
Total Suspended Solids	15 (375)	25	40	. 09	Two/week	Composite
Ammonia Nitrogen	3 (75)	9	10	15	Two/week	Composite
Nitrate-Nitrogen	Report (Report)	N/A	Report	N/A	Two/week	Composite
Total Phosphorus	1.0 (25)	64	4	9	Two/week	Composite
E. coli, CFU or MPN per 100 ml	126	N/A	399	N/A	Daily	Grab

- 2. The permittee shall utilize an Ultraviolet Light (UV) system for disinfection purposes. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.
- 3. The pH shall not be less than 6.5 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample.
 - 4. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.
- 5. Effluent monitoring samples shall be taken at the following location(s): Following the final treatment unit.
- 6. The effluent shall contain a minimum dissolved oxygen of 6.0 mg/l and shall be monitored twice per week by grab sample.
- 7. The annual average flow and maximum 2-hour peak flow shall be reported monthly.

DEFINITIONS AND STANDARD PERMIT CONDITIONS

As required by Title 30 Texas Administrative Code (TAC) Chapter 305, certain regulations appear as standard conditions in waste discharge permits. 30 TAC § 305.121 - 305.129 (relating to Permit Characteristics and Conditions) as promulgated under the Texas Water Code (TWC) §§ 5.103 and 5.105, and the Texas Health and Safety Code (THSC) §§ 361.017 and 361.024(a), establish the characteristics and standards for waste discharge permits, including sewage sludge, and those sections of 40 Code of Federal Regulations (CFR) Part 122 adopted by reference by the Commission. The following text includes these conditions and incorporates them into this permit. All definitions in TWC § 26.001 and 30 TAC Chapter 305 shall apply to this permit and are incorporated by reference. Some specific definitions of words or phrases used in this permit are as follows:

1. Flow Measurements

- a. Annual average flow the arithmetic average of all daily flow determinations taken within the preceding 12 consecutive calendar months. The annual average flow determination shall consist of daily flow volume determinations made by a totalizing meter, charted on a chart recorder and limited to major domestic wastewater discharge facilities with one million gallons per day or greater permitted flow.
- b. Daily average flow the arithmetic average of all determinations of the daily flow within a period of one calendar month. The daily average flow determination shall consist of determinations made on at least four separate days. If instantaneous measurements are used to determine the daily flow, the determination shall be the arithmetic average of all instantaneous measurements taken during that month. Daily average flow determination for intermittent discharges shall consist of a minimum of three flow determinations on days of discharge.
- c. Daily maximum flow the highest total flow for any 24-hour period in a calendar month.
- d. Instantaneous flow the measured flow during the minimum time required to interpret the flow measuring device.
- e. 2-hour peak flow (domestic wastewater treatment plants) the maximum flow sustained for a two-hour period during the period of daily discharge. The average of multiple measurements of instantaneous maximum flow within a two-hour period may be used to calculate the 2-hour peak flow.
- f. Maximum 2-hour peak flow (domestic wastewater treatment plants) the highest 2-hour peak flow for any 24-hour period in a calendar month.

2. Concentration Measurements

- a. Daily average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar month, consisting of at least four separate representative measurements.
 - i. For domestic wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values in the previous four consecutive month period consisting of at least four measurements shall be utilized as the daily average concentration.

- ii. For all other wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values taken during the month shall be utilized as the daily average concentration.
- b. 7-day average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar week, Sunday through Saturday.
- c. Daily maximum concentration the maximum concentration measured on a single day, by the sample type specified in the permit, within a period of one calendar month.
- d. Daily discharge the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in terms of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the sampling day. For pollutants with limitations expressed in other units of measurement, the daily discharge is calculated as the average measurement of the pollutant over the sampling day.
 - The daily discharge determination of concentration made using a composite sample shall be the concentration of the composite sample. When grab samples are used, the daily discharge determination of concentration shall be the arithmetic average (weighted by flow value) of all samples collected during that day.
- e. Bacteria concentration (*E. coli* or Enterococci) Colony Forming Units (CFU) or Most Probable Number (MPN) of bacteria per 100 milliliters effluent. The daily average bacteria concentration is a geometric mean of the values for the effluent samples collected in a calendar month. The geometric mean shall be determined by calculating the nth root of the product of all measurements made in a calendar month, where n equals the number of measurements made; or, computed as the antilogarithm of the arithmetic mean of the logarithms of all measurements made in a calendar month. For any measurement of bacteria equaling zero, a substituted value of one shall be made for input into either computation method. If specified, the 7-day average for bacteria is the geometric mean of the values for all effluent samples collected during a calendar week.
- f. Daily average loading (lbs/day) the arithmetic average of all daily discharge loading calculations during a period of one calendar month. These calculations must be made for each day of the month that a parameter is analyzed. The daily discharge, in terms of mass (lbs/day), is calculated as (Flow, MGD x Concentration, mg/l x 8.34).
- g. Daily maximum loading (lbs/day) the highest daily discharge, in terms of mass (lbs/day), within a period of one calendar month.

3. Sample Type

a. Composite sample - For domestic wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (a). For industrial wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (b).

- b. Grab sample an individual sample collected in less than 15 minutes.
- 4. Treatment Facility (facility) wastewater facilities used in the conveyance, storage, treatment, recycling, reclamation and/or disposal of domestic sewage, industrial wastes, agricultural wastes, recreational wastes, or other wastes including sludge handling or disposal facilities under the jurisdiction of the Commission.
- 5. The term "sewage sludge" is defined as solid, semi-solid, or liquid residue generated during the treatment of domestic sewage in 30 TAC Chapter 312. This includes the solids that have not been classified as hazardous waste separated from wastewater by unit processes.
- 6. Bypass the intentional diversion of a waste stream from any portion of a treatment facility.

MONITORING AND REPORTING REQUIREMENTS

1. Self-Reporting

Monitoring results shall be provided at the intervals specified in the permit. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall conduct effluent sampling and reporting in accordance with 30 TAC §§ 319.4 - 319.12. Unless otherwise specified, effluent monitoring data shall be submitted each month, to the Enforcement Division (MC 224), by the 20th day of the following month for each discharge which is described by this permit whether or not a discharge is made for that month. Monitoring results must be submitted online using the NetDMR reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. Monitoring results must be signed and certified as required by Monitoring and Reporting Requirements No. 10.

As provided by state law, the permittee is subject to administrative, civil and criminal penalties, as applicable, for negligently or knowingly violating the Clean Water Act (CWA); TWC §§ 26, 27, and 28; and THSC § 361, including but not limited to knowingly making any false statement, representation, or certification on any report, record, or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or noncompliance, or falsifying, tampering with or knowingly rendering inaccurate any monitoring device or method required by this permit or violating any other requirement imposed by state or federal regulations.

2. Test Procedures

- a. Unless otherwise specified in this permit, test procedures for the analysis of pollutants shall comply with procedures specified in 30 TAC §§ 319.11 319.12. Measurements, tests, and calculations shall be accurately accomplished in a representative manner.
- b. All laboratory tests submitted to demonstrate compliance with this permit must meet the requirements of 30 TAC § 25, Environmental Testing Laboratory Accreditation and Certification.

3. Records of Results

- a. Monitoring samples and measurements shall be taken at times and in a manner so as to be representative of the monitored activity.
- b. Except for records of monitoring information required by this permit related to the permittee's sewage sludge use and disposal activities, which shall be retained for a period

of at least five years (or longer as required by 40 CFR Part 503), monitoring and reporting records, including strip charts and records of calibration and maintenance, copies of all records required by this permit, records of all data used to complete the application for this permit, and the certification required by 40 CFR § 264.73(b)(9) shall be retained at the facility site, or shall be readily available for review by a TCEO representative for a period of three years from the date of the record or sample, measurement, report, application or certification. This period shall be extended at the request of the Executive Director.

- Records of monitoring activities shall include the following:
 - i. date, time and place of sample or measurement;
 - ii. identity of individual who collected the sample or made the measurement.
 - iii. date and time of analysis;
 - iv. identity of the individual and laboratory who performed the analysis;
 - v. the technique or method of analysis; and
 - vi. the results of the analysis or measurement and quality assurance/quality control records.

The period during which records are required to be kept shall be automatically extended to the date of the final disposition of any administrative or judicial enforcement action that may be instituted against the permittee.

4. Additional Monitoring by Permittee

If the permittee monitors any pollutant at the location(s) designated herein more frequently than required by this permit using approved analytical methods as specified above, all results of such monitoring shall be included in the calculation and reporting of the values submitted on the approved self-report form. Increased frequency of sampling shall be indicated on the self-report form.

5. Calibration of Instruments

All automatic flow measuring or recording devices and all totalizing meters for measuring flows shall be accurately calibrated by a trained person at plant start-up and as often thereafter as necessary to ensure accuracy, but not less often than annually unless authorized by the Executive Director for a longer period. Such person shall verify in writing that the device is operating properly and giving accurate results. Copies of the verification shall be retained at the facility site and/or shall be readily available for review by a TCEQ representative for a period of three years.

6. Compliance Schedule Reports

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of the permit shall be submitted no later than 14 days following each schedule date to the Regional Office and the Enforcement Division (MC 224).

7. Noncompliance Notification

- a. In accordance with 30 TAC § 305.125(9) any noncompliance which may endanger human health or safety, or the environment shall be reported by the permittee to the TCEQ. Except as allowed by 30 TAC § 305.132, report of such information shall be provided orally or by facsimile transmission (FAX) to the Regional Office within 24 hours of becoming aware of the noncompliance. A written submission of such information shall also be provided by the permittee to the Regional Office and the Enforcement Division (MC 224) within five working days of becoming aware of the noncompliance. For Publicly Owned Treatment Works (POTWs), effective September 1, 2020, the permittee must submit the written report for unauthorized discharges and unanticipated bypasses that exceed any effluent limit in the permit using the online electronic reporting system available through the TCEO website unless the permittee requests and obtains an electronic reporting waiver. The written submission shall contain a description of the noncompliance and its cause; the potential danger to human health or safety, or the environment; the period of noncompliance, including exact dates and times; if the noncompliance has not been corrected, the time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance, and to mitigate its adverse effects.
- The following violations shall be reported under Monitoring and Reporting Requirement 7.a.:
 - Unauthorized discharges as defined in Permit Condition 2(g).
 - ii. Any unanticipated bypass that exceeds any effluent limitation in the permit.
 - iii. Violation of a permitted maximum daily discharge limitation for pollutants listed specifically in the Other Requirements section of an Industrial TPDES permit.
- In addition to the above, any effluent violation which deviates from the permitted effluent limitation by more than 40% shall be reported by the permittee in writing to the Regional Office and the Enforcement Division (MC 224) within 5 working days of becoming aware of the noncompliance.
- d. Any noncompliance other than that specified in this section, or any required information not submitted or submitted incorrectly, shall be reported to the Enforcement Division (MC 224) as promptly as possible. For effluent limitation violations, noncompliances shall be reported on the approved self-report form.
- 8. In accordance with the procedures described in 30 TAC §§ 35.301 35.303 (relating to Water Quality Emergency and Temporary Orders) if the permittee knows in advance of the need for a bypass, it shall submit prior notice by applying for such authorization.
- 9. Changes in Discharges of Toxic Substances
 - All existing manufacturing, commercial, mining, and silvicultural permittees shall notify the Regional Office, orally or by facsimile transmission within 24 hours, and both the Regional Office and the Enforcement Division (MC 224) in writing within five (5) working days, after becoming aware of or having reason to believe:
 - That any activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic pollutant listed at 40 CFR Part 122, Appendix D, Tables II and III (excluding Total Phenols) which is not limited in the permit, if that

discharge will exceed the highest of the following "notification levels":

- i. One hundred micrograms per liter (100 µg/L);
- ii. Two hundred micrograms per liter (200 μ g/L) for acrolein and acrylonitrile; five hundred micrograms per liter (500 μ g/L) for 2,4-dinitrophenol and for 2-methyl-4,6-dinitrophenol; and one milligram per liter (1 mg/L) for antimony;
- iii. Five (5) times the maximum concentration value reported for that pollutant in the permit application; or
- iv. The level established by the TCEQ.
- b. That any activity has occurred or will occur which would result in any discharge, on a nonroutine or infrequent basis, of a toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. Five hundred micrograms per liter (500 µg/L);
 - ii. One milligram per liter (1 mg/L) for antimony;
 - iii. Ten (10) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.

10. Signatories to Reports

All reports and other information requested by the Executive Director shall be signed by the person and in the manner required by 30 TAC § 305.128 (relating to Signatories to Reports).

- 11. All POTWs must provide adequate notice to the Executive Director of the following:
 - a. Any new introduction of pollutants into the POTW from an indirect discharger which would be subject to CWA § 301 or § 306 if it were directly discharging those pollutants;
 - b. Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of issuance of the permit; and
 - c. For the purpose of this paragraph, adequate notice shall include information on:
 - i. The quality and quantity of effluent introduced into the POTW; and
 - ii. Any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW.

PERMIT CONDITIONS

1. General

a. When the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in an application or in any report to the

Executive Director, it shall promptly submit such facts or information.

- b. This permit is granted on the basis of the information supplied and representations made by the permittee during action on an application, and relying upon the accuracy and completeness of that information and those representations. After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked, in whole or in part, in accordance with 30 TAC Chapter 305, Subchapter D, during its term for good cause including, but not limited to, the following:
 - i. Violation of any terms or conditions of this permit;
 - ii. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts; or
 - iii. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.
- c. The permittee shall furnish to the Executive Director, upon request and within a reasonable time, any information to determine whether cause exists for amending, revoking, suspending or terminating the permit. The permittee shall also furnish to the Executive Director, upon request, copies of records required to be kept by the permit.

2. Compliance

- a. Acceptance of the permit by the person to whom it is issued constitutes acknowledgment and agreement that such person will comply with all the terms and conditions embodied in the permit, and the rules and other orders of the Commission.
- b. The permittee has a duty to comply with all conditions of the permit. Failure to comply with any permit condition constitutes a violation of the permit and the Texas Water Code or the Texas Health and Safety Code, and is grounds for enforcement action, for permit amendment, revocation, or suspension, or for denial of a permit renewal application or an application for a permit for another facility.
- c. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of the permit.
- d. The permittee shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal or other permit violation that has a reasonable likelihood of adversely affecting human health or the environment.
- e. Authorization from the Commission is required before beginning any change in the permitted facility or activity that may result in noncompliance with any permit requirements.
- f. A permit may be amended, suspended and reissued, or revoked for cause in accordance with 30 TAC §§ 305.62 and 305.66 and TWC§ 7.302. The filing of a request by the permittee for a permit amendment, suspension and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.
- g. There shall be no unauthorized discharge of wastewater or any other waste. For the purpose of this permit, an unauthorized discharge is considered to be any discharge of

- wastewater into or adjacent to water in the state at any location not permitted as an outfall or otherwise defined in the Other Requirements section of this permit.
- h. In accordance with 30 TAC § 305.535(a), the permittee may allow any bypass to occur from a TPDES permitted facility which does not cause permitted effluent limitations to be exceeded or an unauthorized discharge to occur, but only if the bypass is also for essential maintenance to assure efficient operation.
- i. The permittee is subject to administrative, civil, and criminal penalties, as applicable, under TWC §§ 7.051 7.075 (relating to Administrative Penalties), 7.101 7.111 (relating to Civil Penalties), and 7.141 7.202 (relating to Criminal Offenses and Penalties) for violations including, but not limited to, negligently or knowingly violating the federal CWA §§ 301, 302, 306, 307, 308, 318, or 405, or any condition or limitation implementing any sections in a permit issued under the CWA § 402, or any requirement imposed in a pretreatment program approved under the CWA §§ 402 (a)(3) or 402 (b)(8).

3. Inspections and Entry

- a. Inspection and entry shall be allowed as prescribed in the TWC Chapters 26, 27, and 28, and THSC § 361.
- b. The members of the Commission and employees and agents of the Commission are entitled to enter any public or private property at any reasonable time for the purpose of inspecting and investigating conditions relating to the quality of water in the state or the compliance with any rule, regulation, permit or other order of the Commission. Members, employees, or agents of the Commission and Commission contractors are entitled to enter public or private property at any reasonable time to investigate or monitor or, if the responsible party is not responsive or there is an immediate danger to public health or the environment, to remove or remediate a condition related to the quality of water in the state. Members, employees, Commission contractors, or agents acting under this authority who enter private property shall observe the establishment's rules and regulations concerning safety, internal security, and fire protection, and if the property has management in residence, shall notify management or the person then in charge of his presence and shall exhibit proper credentials. If any member, employee, Commission contractor, or agent is refused the right to enter in or on public or private property under this authority, the Executive Director may invoke the remedies authorized in TWC § 7.002. The statement above, that Commission entry shall occur in accordance with an establishment's rules and regulations concerning safety, internal security, and fire protection, is not grounds for denial or restriction of entry to any part of the facility, but merely describes the Commission's duty to observe appropriate rules and regulations during an inspection.

4. Permit Amendment and/or Renewal

- a. The permittee shall give notice to the Executive Director as soon as possible of any planned physical alterations or additions to the permitted facility if such alterations or additions would require a permit amendment or result in a violation of permit requirements. Notice shall also be required under this paragraph when:
 - i. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in accordance with 30 TAC § 305.534

(relating to New Sources and New Dischargers); or

- ii. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants that are subject neither to effluent limitations in the permit, nor to notification requirements in Monitoring and Reporting Requirements No. 9;
- iii. The alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan.
- b. Prior to any facility modifications, additions, or expansions that will increase the plant capacity beyond the permitted flow, the permittee must apply for and obtain proper authorization from the Commission before commencing construction.
- c. The permittee must apply for an amendment or renewal at least 180 days prior to expiration of the existing permit in order to continue a permitted activity after the expiration date of the permit. If an application is submitted prior to the expiration date of the permit, the existing permit shall remain in effect until the application is approved, denied, or returned. If the application is returned or denied, authorization to continue such activity shall terminate upon the effective date of the action. If an application is not submitted prior to the expiration date of the permit, the permit shall expire and authorization to continue such activity shall terminate.
- d. Prior to accepting or generating wastes which are not described in the permit application or which would result in a significant change in the quantity or quality of the existing discharge, the permittee must report the proposed changes to the Commission. The permittee must apply for a permit amendment reflecting any necessary changes in permit conditions, including effluent limitations for pollutants not identified and limited by this permit.
- e. In accordance with the TWC § 26.029(b), after a public hearing, notice of which shall be given to the permittee, the Commission may require the permittee, from time to time, for good cause, in accordance with applicable laws, to conform to new or additional conditions.
- f. If any toxic effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is promulgated under CWA § 307(a) for a toxic pollutant which is present in the discharge and that standard or prohibition is more stringent than any limitation on the pollutant in this permit, this permit shall be modified or revoked and reissued to conform to the toxic effluent standard or prohibition. The permittee shall comply with effluent standards or prohibitions established under CWA § 307(a) for toxic pollutants within the time provided in the regulations that established those standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.

5. Permit Transfer

a. Prior to any transfer of this permit, Commission approval must be obtained. The Commission shall be notified in writing of any change in control or ownership of facilities authorized by this permit. Such notification should be sent to the Applications

Review and Processing Team (MC 148) of the Water Quality Division.

b. A permit may be transferred only according to the provisions of 30 TAC § 305.64 (relating to Transfer of Permits) and 30 TAC § 50.133 (relating to Executive Director Action on Application or WQMP update).

6. Relationship to Hazardous Waste Activities

This permit does not authorize any activity of hazardous waste storage, processing, or disposal that requires a permit or other authorization pursuant to the Texas Health and Safety Code.

7. Relationship to Water Rights

Disposal of treated effluent by any means other than discharge directly to water in the state must be specifically authorized in this permit and may require a permit pursuant to TWC Chapter 11.

8. Property Rights

A permit does not convey any property rights of any sort, or any exclusive privilege.

9. Permit Enforceability

The conditions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstances, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

10. Relationship to Permit Application

The application pursuant to which the permit has been issued is incorporated herein; provided, however, that in the event of a conflict between the provisions of this permit and the application, the provisions of the permit shall control.

11. Notice of Bankruptcy

- a. Each permittee shall notify the Executive Director, in writing, immediately following the filing of a voluntary or involuntary petition for bankruptcy under any chapter of Title 11 (Bankruptcy) of the United States Code (11 USC) by or against:
 - i. the permittee;
 - ii. an entity (as that term is defined in 11 USC, \S 101(14)) controlling the permittee or listing the permit or permittee as property of the estate; or
 - iii. an affiliate (as that term is defined in 11 USC, § 101(2)) of the permittee.

b. This notification must indicate:

- i. the name of the permittee and the permit number(s);
- ii. the bankruptcy court in which the petition for bankruptcy was filed; and
- iii. the date of filing of the petition.

OPERATIONAL REQUIREMENTS

- 1. The permittee shall at all times ensure that the facility and all of its systems of collection, treatment, and disposal are properly operated and maintained. This includes, but is not limited to, the regular, periodic examination of wastewater solids within the treatment plant by the operator in order to maintain an appropriate quantity and quality of solids inventory as described in the various operator training manuals and according to accepted industry standards for process control. Process control, maintenance, and operations records shall be retained at the facility site, or shall be readily available for review by a TCEQ representative, for a period of three years.
- 2. Upon request by the Executive Director, the permittee shall take appropriate samples and provide proper analysis in order to demonstrate compliance with Commission rules. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall comply with all applicable provisions of 30 TAC Chapter 312 concerning sewage sludge use and disposal and 30 TAC §§ 319.21 319.29 concerning the discharge of certain hazardous metals.
- 3. Domestic wastewater treatment facilities shall comply with the following provisions:
 - a. The permittee shall notify the Municipal Permits Team, Wastewater Permitting Section (MC 148) of the Water Quality Division, in writing, of any facility expansion at least 90 days prior to conducting such activity.
 - b. The permittee shall submit a closure plan for review and approval to the Municipal Permits Team, Wastewater Permitting Section (MC 148) of the Water Quality Division, for any closure activity at least 90 days prior to conducting such activity. Closure is the act of permanently taking a waste management unit or treatment facility out of service and includes the permanent removal from service of any pit, tank, pond, lagoon, surface impoundment and/or other treatment unit regulated by this permit.
- 4. The permittee is responsible for installing prior to plant start-up, and subsequently maintaining, adequate safeguards to prevent the discharge of untreated or inadequately treated wastes during electrical power failures by means of alternate power sources, standby generators, and/or retention of inadequately treated wastewater.
- 5. Unless otherwise specified, the permittee shall provide a readily accessible sampling point and, where applicable, an effluent flow measuring device or other acceptable means by which effluent flow may be determined.
- 6. The permittee shall remit an annual water quality fee to the Commission as required by 30 TAC Chapter 21. Failure to pay the fee may result in revocation of this permit under TWC § 7.302(b)(6).

7. Documentation

For all written notifications to the Commission required of the permittee by this permit, the permittee shall keep and make available a copy of each such notification under the same conditions as self-monitoring data are required to be kept and made available. Except for information required for TPDES permit applications, effluent data, including effluent data in permits, draft permits and permit applications, and other information specified as not

confidential in 30 TAC §§ 1.5(d), any information submitted pursuant to this permit may be claimed as confidential by the submitter. Any such claim must be asserted in the manner prescribed in the application form or by stamping the words confidential business information on each page containing such information. If no claim is made at the time of submission, information may be made available to the public without further notice. If the Commission or Executive Director agrees with the designation of confidentiality, the TCEQ will not provide the information for public inspection unless required by the Texas Attorney General or a court pursuant to an open records request. If the Executive Director does not agree with the designation of confidentiality, the person submitting the information will be notified.

- 8. Facilities that generate domestic wastewater shall comply with the following provisions; domestic wastewater treatment facilities at permitted industrial sites are excluded.
 - a. Whenever flow measurements for any domestic sewage treatment facility reach 75% of the permitted daily average or annual average flow for three consecutive months, the permittee must initiate engineering and financial planning for expansion and/or upgrading of the domestic wastewater treatment and/or collection facilities. Whenever the flow reaches 90% of the permitted daily average or annual average flow for three consecutive months, the permittee shall obtain necessary authorization from the Commission to commence construction of the necessary additional treatment and/or collection facilities. In the case of a domestic wastewater treatment facility which reaches 75% of the permitted daily average or annual average flow for three consecutive months, and the planned population to be served or the quantity of waste produced is not expected to exceed the design limitations of the treatment facility, the permittee shall submit an engineering report supporting this claim to the Executive Director of the Commission.

If in the judgment of the Executive Director the population to be served will not cause permit noncompliance, then the requirement of this section may be waived. To be effective, any waiver must be in writing and signed by the Director of the Enforcement Division (MC 219) of the Commission, and such waiver of these requirements will be reviewed upon expiration of the existing permit; however, any such waiver shall not be interpreted as condoning or excusing any violation of any permit parameter.

- b. The plans and specifications for domestic sewage collection and treatment works associated with any domestic permit must be approved by the Commission and failure to secure approval before commencing construction of such works or making a discharge is a violation of this permit and each day is an additional violation until approval has been secured.
- c. Permits for domestic wastewater treatment plants are granted subject to the policy of the Commission to encourage the development of area-wide waste collection, treatment, and disposal systems. The Commission reserves the right to amend any domestic wastewater permit in accordance with applicable procedural requirements to require the system covered by this permit to be integrated into an area-wide system, should such be developed; to require the delivery of the wastes authorized to be collected in, treated by or discharged from said system, to such area-wide system; or to amend this permit in any other particular to effectuate the Commission's policy. Such amendments may be made when the changes required are advisable for water quality control purposes and are feasible on the basis of waste treatment technology, engineering, financial, and

related considerations existing at the time the changes are required, exclusive of the loss of investment in or revenues from any then existing or proposed waste collection, treatment or disposal system.

- 9. Domestic wastewater treatment plants shall be operated and maintained by sewage plant operators holding a valid certificate of competency at the required level as defined in 30 TAC Chapter 30.
- 10. For Publicly Owned Treatment Works (POTWs), the 30-day average (or monthly average) percent removal for BOD and TSS shall not be less than 85%, unless otherwise authorized by this permit.
- 11. Facilities that generate industrial solid waste as defined in 30 TAC § 335.1 shall comply with these provisions:
 - a. Any solid waste, as defined in 30 TAC § 335.1 (including but not limited to such wastes as garbage, refuse, sludge from a waste treatment, water supply treatment plant or air pollution control facility, discarded materials, discarded materials to be recycled, whether the waste is solid, liquid, or semisolid), generated by the permittee during the management and treatment of wastewater, must be managed in accordance with all applicable provisions of 30 TAC Chapter 335, relating to Industrial Solid Waste Management.
 - b. Industrial wastewater that is being collected, accumulated, stored, or processed before discharge through any final discharge outfall, specified by this permit, is considered to be industrial solid waste until the wastewater passes through the actual point source discharge and must be managed in accordance with all applicable provisions of 30 TAC Chapter 335.
 - c. The permittee shall provide written notification, pursuant to the requirements of 30 TAC § 335.8(b)(1), to the Environmental Cleanup Section (MC 127) of the Remediation Division informing the Commission of any closure activity involving an Industrial Solid Waste Management Unit, at least 90 days prior to conducting such an activity.
 - d. Construction of any industrial solid waste management unit requires the prior written notification of the proposed activity to the Registration and Reporting Section (MC 129) of the Registration, Review, and Reporting Division. No person shall dispose of industrial solid waste, including sludge or other solids from wastewater treatment processes, prior to fulfilling the deed recordation requirements of 30 TAC § 335.5.
 - e. The term "industrial solid waste management unit" means a landfill, surface impoundment, waste-pile, industrial furnace, incinerator, cement kiln, injection well, container, drum, salt dome waste containment cavern, or any other structure vessel, appurtenance, or other improvement on land used to manage industrial solid waste.
 - f. The permittee shall keep management records for all sludge (or other waste) removed from any wastewater treatment process. These records shall fulfill all applicable requirements of 30 TAC § 335 and must include the following, as it pertains to wastewater treatment and discharge:
 - i. Volume of waste and date(s) generated from treatment process;
 - ii. Volume of waste disposed of on-site or shipped off-site;

- iii. Date(s) of disposal;
- iv. Identity of hauler or transporter;
- v. Location of disposal site; and
- vi. Method of final disposal.

The above records shall be maintained on a monthly basis. The records shall be retained at the facility site, or shall be readily available for review by authorized representatives of the TCEQ for at least five years.

12. For industrial facilities to which the requirements of 30 TAC § 335 do not apply, sludge and solid wastes, including tank cleaning and contaminated solids for disposal, shall be disposed of in accordance with THSC § 361.

TCEQ Revision 08/2008

SLUDGE PROVISIONS

The permittee is authorized to dispose of sludge only at a Texas Commission on Environmental Quality (TCEQ) authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge. The disposal of sludge by land application on property owned, leased or under the direct control of the permittee is a violation of the permit unless the site is authorized with the TCEQ. This provision does not authorize Distribution and Marketing of Class A or Class AB Sewage Sludge. This provision does not authorize the permittee to land apply sludge on property owned, leased or under the direct control of the permittee.

SECTION I. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE LAND APPLICATION

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge in accordance with 30 TAC § 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge.
- 2. In all cases, if the person (permit holder) who prepares the sewage sludge supplies the sewage sludge to another person for land application use or to the owner or lease holder of the land, the permit holder shall provide necessary information to the parties who receive the sludge to assure compliance with these regulations.

B. Testing Requirements

1. Sewage sludge shall be tested annually in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I [Toxicity Characteristic Leaching Procedure (TCLP)] or other method that receives the prior approval of the TCEQ for the contaminants listed in 40 CFR Part 261.24, Table 1. Sewage sludge failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal. Following failure of any TCLP test, the management or disposal of sewage sludge at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Remediation Support Division and the Regional Director (MC Region 11) within seven (7) days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Registration, Review, and Reporting Division (MC 129), Texas Commission on Environmental Quality, P.O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. This annual report shall be submitted to the TCEQ Regional Office (MC Region 11) and the Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30th of each year. Effective September 1, 2020, the permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

2. Sewage sludge shall not be applied to the land if the concentration of the pollutants exceeds the pollutant concentration criteria in Table 1. The frequency of testing for pollutants in Table 1 is found in Section I.C.

TABLE 1

<u>Pollutant</u>	Ceiling Concentration
	(Milligrams per kilogram)*
Arsenic	75
Cadmium	85
Chromium	3000
Copper	4300
Lead	840
Mercury	57
Molybdenum	75
Nickel	420
PCBs	49
Selenium	100
Zinc	7500

^{*} Dry weight basis

3. Pathogen Control

All sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site must be treated by one of the following methods to ensure that the sludge meets either the Class A, Class AB or Class B pathogen requirements.

a. For sewage sludge to be classified as Class A with respect to pathogens, the density of fecal coliform in the sewage sludge be less than 1,000 most probable number (MPN) per gram of total solids (dry weight basis), or the density of Salmonella sp. bacteria in the sewage sludge be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met.

<u>Alternative 1</u> - The temperature of the sewage sludge that is used or disposed shall be maintained at or above a specific value for a period of time. See 30 TAC § 312.82(a)(2)(A) for specific information.

Alternative 5 (PFRP) - Sewage sludge that is used or disposed of must be treated in one of the Processes to Further Reduce Pathogens (PFRP) described in 40 CFR Part 503, Appendix B. PFRP include composting, heat drying, heat treatment, and thermophilic aerobic digestion.

Alternative 6 (PFRP Equivalent) - Sewage sludge that is used or disposed of must be treated in a process that has been approved by the U. S. Environmental Protection Agency as being equivalent to those in Alternative 5.

b. For sewage sludge to be classified as Class AB with respect to pathogens, the density of fecal coliform in the sewage sludge be less than 1,000 MPN per gram of total solids (dry weight basis), or the density of *Salmonella* sp. bacteria in the sewage sludge be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met.

<u>Alternative 2</u> - The pH of the sewage sludge that is used or disposed shall be raised to above 12 std. units and shall remain above 12 std. units for 72 hours.

The temperature of the sewage sludge shall be above 52° Celsius for 12 hours or longer during the period that the pH of the sewage sludge is above 12 std. units.

At the end of the 72-hour period during which the pH of the sewage sludge is above 12 std. units, the sewage sludge shall be air dried to achieve a percent solids in the sewage sludge greater than 50%.

Alternative 3 - The sewage sludge shall be analyzed for enteric viruses prior to pathogen treatment. The limit for enteric viruses is less than one Plaque-forming Unit per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC § 312.82(a)(2)(C)(i-iii) for specific information. The sewage sludge shall be analyzed for viable helminth ova prior to pathogen treatment. The limit for viable helminth ova is less than one per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC § 312.82(a)(2)(C)(iv-vi) for specific information.

Alternative 4 - The density of enteric viruses in the sewage sludge shall be less than one Plaque-forming Unit per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. The density of viable helminth ova in the sewage sludge shall be less than one per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed.

- c. Sewage sludge that meets the requirements of Class AB sewage sludge may be classified a Class A sewage sludge if a variance request is submitted in writing that is supported by substantial documentation demonstrating equivalent methods for reducing odors and written approval is granted by the executive director. The executive director may deny the variance request or revoke that approved variance if it is determined that the variance may potentially endanger human health or the environment, or create nuisance odor conditions.
- d. Three alternatives are available to demonstrate compliance with Class B criteria for

sewage sludge.

Alternative 1

- i. A minimum of seven random samples of the sewage sludge shall be collected within 48 hours of the time the sewage sludge is used or disposed of during each monitoring episode for the sewage sludge.
- ii. The geometric mean of the density of fecal coliform in the samples collected shall be less than either 2,000,000 MPN per gram of total solids (dry weight basis) or 2,000,000 Colony Forming Units per gram of total solids (dry weight basis).

<u>Alternative 2</u> - Sewage sludge that is used or disposed of shall be treated in one of the Processes to Significantly Reduce Pathogens (PSRP) described in 40 CFR Part 503, Appendix B, so long as all of the following requirements are met by the generator of the sewage sludge.

- i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;
- ii. An independent Texas Licensed Professional Engineer must make a certification to the generator of a sewage sludge that the wastewater treatment facility generating the sewage sludge is designed to achieve one of the PSRP at the permitted design loading of the facility. The certification need only be repeated if the design loading of the facility is increased. The certification shall include a statement indicating the design meets all the applicable standards specified in Appendix B of 40 CFR Part 503;
- iii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iv. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review; and
- v. If the sewage sludge is generated from a mixture of sources, resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the PSRP, and shall meet the certification, operation, and record keeping requirements of this paragraph.

<u>Alternative 3</u> - Sewage sludge shall be treated in an equivalent process that has been approved by the U.S. Environmental Protection Agency, so long as all of the following requirements are met by the generator of the sewage sludge.

i. Prior to use or disposal, all the sewage sludge must have been generated from a

single location, except as provided in paragraph v. below;

- ii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iii. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review;
- iv. The Executive Director will accept from the U.S. Environmental Protection Agency a finding of equivalency to the defined PSRP; and
- v. If the sewage sludge is generated from a mixture of sources resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the Processes to Significantly Reduce Pathogens, and shall meet the certification, operation, and record keeping requirements of this paragraph.

<u>In addition</u>, the following site restrictions must be met if Class B sludge is land applied:

- i. Food crops with harvested parts that touch the sewage sludge/soil mixture and are totally above the land surface shall not be harvested for 14 months after application of sewage sludge.
- ii. Food crops with harvested parts below the surface of the land shall not be harvested for 20 months after application of sewage sludge when the sewage sludge remains on the land surface for 4 months or longer prior to incorporation into the soil.
- iii. Food crops with harvested parts below the surface of the land shall not be harvested for 38 months after application of sewage sludge when the sewage sludge remains on the land surface for less than 4 months prior to incorporation into the soil.
- iv. Food crops, feed crops, and fiber crops shall not be harvested for 30 days after application of sewage sludge.
- v. Animals shall not be allowed to graze on the land for 30 days after application of sewage sludge.
- vi. Turf grown on land where sewage sludge is applied shall not be harvested for 1 year after application of the sewage sludge when the harvested turf is placed on either land with a high potential for public exposure or a lawn.

- vii. Public access to land with a high potential for public exposure shall be restricted for 1 year after application of sewage sludge.
- viii. Public access to land with a low potential for public exposure shall be restricted for 30 days after application of sewage sludge.
- ix. Land application of sludge shall be in accordance with the buffer zone requirements found in 30 TAC § 312.44.

4. Vector Attraction Reduction Requirements

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site shall be treated by one of the following Alternatives 1 through 10 for vector attraction reduction.

- Alternative 1 The mass of volatile solids in the sewage sludge shall be reduced by a minimum of 38%.
- Alternative 2 If Alternative 1 cannot be met for an anaerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge anaerobically in the laboratory in a bench-scale unit for 40 additional days at a temperature between 30° and 37° Celsius. Volatile solids must be reduced by less than 17% to demonstrate compliance.
- Alternative 3 If Alternative 1 cannot be met for an aerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge with percent solids of two percent or less aerobically in the laboratory in a bench-scale unit for 30 additional days at 20° Celsius. Volatile solids must be reduced by less than 15% to demonstrate compliance.
- Alternative 4 The specific oxygen uptake rate (SOUR) for sewage sludge treated in an aerobic process shall be equal to or less than 1.5 milligrams of oxygen per hour per gram of total solids (dry weight basis) at a temperature of 20° Celsius.
- Alternative 5 Sewage sludge shall be treated in an aerobic process for 14 days or longer. During that time, the temperature of the sewage sludge shall be higher than 40° Celsius and the average temperature of the sewage sludge shall be higher than 45° Celsius.
- Alternative 6 The pH of sewage sludge shall be raised to 12 or higher by alkali addition and, without the addition of more alkali shall remain at 12 or higher for two hours and then remain at a pH of 11.5 or higher for an additional 22 hours at the time the sewage sludge is prepared for sale or given away in a bag or other container.
- Alternative 7 The percent solids of sewage sludge that does not contain unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 75% based on the moisture content and total solids prior to mixing with other materials. Unstabilized solids are defined as organic materials in sewage sludge that have not been

treated in either an aerobic or anaerobic treatment process.

Alternative 8 -

The percent solids of sewage sludge that contains unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 90% based on the moisture content and total solids prior to mixing with other materials at the time the sludge is used. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

Alternative 9 -

- i. Sewage sludge shall be injected below the surface of the land.
- ii. No significant amount of the sewage sludge shall be present on the land surface within one hour after the sewage sludge is injected.
- iii. When sewage sludge that is injected below the surface of the land is Class A or Class AB with respect to pathogens, the sewage sludge shall be injected below the land surface within eight hours after being discharged from the pathogen treatment process.

Alternative 10-

- i. Sewage sludge applied to the land surface or placed on a surface disposal site shall be incorporated into the soil within six hours after application to or placement on the land.
- ii. When sewage sludge that is incorporated into the soil is Class A or Class AB with respect to pathogens, the sewage sludge shall be applied to or placed on the land within eight hours after being discharged from the pathogen treatment process.

C. Monitoring Requirements

Toxicity Characteristic Leaching Procedure - annually (TCLP) Test
PCBs - annually

All metal constituents and fecal coliform or *Salmonella* sp. bacteria shall be monitored at the appropriate frequency shown below, pursuant to 30 TAC § 312.46(a)(1):

Amount of sewage sludge (*) metric tons per 365-day period	Monitoring Frequency
o to less than 290	Once/Year
290 to less than 1,500	Once/Quarter
1,500 to less than 15,000	Once/Two Months
15,000 or greater	Once/Month

(*) The amount of bulk sewage sludge applied to the land (dry wt. basis).

Representative samples of sewage sludge shall be collected and analyzed in accordance with the methods referenced in 30 TAC § 312.7

Identify each of the analytic methods used by the facility to analyze enteric viruses, fecal coliforms, helminth ova, *Salmonella* sp., and other regulated parameters.

Identify in the following categories (as applicable) the sewage sludge treatment process or processes at the facility: preliminary operations (e.g., sludge grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.

Identify the nature of material generated by the facility (such as a biosolid for beneficial use or land-farming, or sewage sludge for disposal at a monofill) and whether the material is ultimately conveyed off-site in bulk or in bags.

SECTION II. REQUIREMENTS SPECIFIC TO BULK SEWAGE SLUDGE FOR APPLICATION TO THE LAND MEETING CLASS A, CLASS AB or B PATHOGEN REDUCTION AND THE CUMULATIVE LOADING RATES IN TABLE 2, OR CLASS B PATHOGEN REDUCTION AND THE POLLUTANT CONCENTRATIONS IN TABLE 3

For those permittees meeting Class A, Class AB or B pathogen reduction requirements and that meet the cumulative loading rates in Table 2 below, or the Class B pathogen reduction requirements and contain concentrations of pollutants below listed in Table 3, the following conditions apply:

A. Pollutant Limits

Table 2

	Cumulative Pollutant Loading
	Rate
<u>Pollutant</u>	(pounds per acre)*
Arsenic	36
Cadmium	35
Chromium	2677
Copper	1339
Lead	268
Mercury	15
Molybdenum	Report Only
Nickel	375
Selenium	89
Zinc	2500

Table 3

	Monthly Average
	Concentration
<u>Pollutant</u>	(<u>milligrams per kilogram</u>)*
Arsenic	41
Cadmium	39
Chromium	1200
Copper	1500
Lead	300
Mercury	17
Molybdenum	Report Only
Nickel	420
Selenium	36
Zinc	2800
	*D

*Dry weight basis

B. Pathogen Control

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, a reclamation site, shall be treated by either Class A, Class AB or Class B pathogen reduction requirements as defined above in Section I.B.3.

C. Management Practices

- 1. Bulk sewage sludge shall not be applied to agricultural land, forest, a public contact site, or a reclamation site that is flooded, frozen, or snow-covered so that the bulk sewage sludge enters a wetland or other waters in the State.
- 2. Bulk sewage sludge not meeting Class A requirements shall be land applied in a manner which complies with Applicability in accordance with 30 TAC §312.41 and the Management Requirements in accordance with 30 TAC § 312.44.
- 3. Bulk sewage sludge shall be applied at or below the agronomic rate of the cover crop.
- 4. An information sheet shall be provided to the person who receives bulk sewage sludge sold or given away. The information sheet shall contain the following information:
 - a. The name and address of the person who prepared the sewage sludge that is sold or given away in a bag or other container for application to the land.
 - b. A statement that application of the sewage sludge to the land is prohibited except in accordance with the instruction on the label or information sheet.
 - c. The annual whole sludge application rate for the sewage sludge application rate for the sewage sludge that does not cause any of the cumulative pollutant loading rates in Table 2 above to be exceeded, unless the pollutant concentrations in Table 3 found in Section II above are met.

D. Notification Requirements

- 1. If bulk sewage sludge is applied to land in a State other than Texas, written notice shall be provided prior to the initial land application to the permitting authority for the State in which the bulk sewage sludge is proposed to be applied. The notice shall include:
 - a. The location, by street address, and specific latitude and longitude, of each land application site.
 - b. The approximate time period bulk sewage sludge will be applied to the site.
 - c. The name, address, telephone number, and National Pollutant Discharge Elimination System permit number (if appropriate) for the person who will apply the bulk sewage sludge.
- 2. The permittee shall give 180 days prior notice to the Executive Director in care of the Wastewater Permitting Section (MC 148) of the Water Quality Division of any change planned in the sewage sludge disposal practice.

E. Record keeping Requirements

The sludge documents will be retained at the facility site and/or shall be readily available for review by a TCEQ representative. The person who prepares bulk sewage sludge or a sewage sludge material shall develop the following information and shall retain the information at

the facility site and/or shall be readily available for review by a TCEQ representative for a period of <u>five years</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply.

- 1. The concentration (mg/kg) in the sludge of each pollutant listed in Table 3 above and the applicable pollutant concentration criteria (mg/kg), or the applicable cumulative pollutant loading rate and the applicable cumulative pollutant loading rate limit (lbs/ac) listed in Table 2 above.
- 2. A description of how the pathogen reduction requirements are met (including site restrictions for Class AB and Class B sludge, if applicable).
- 3. A description of how the vector attraction reduction requirements are met.
- 4. A description of how the management practices listed above in Section II.C are being met.
- 5. The following certification statement:
 - "I certify, under penalty of law, that the applicable pathogen requirements in 30 TAC § 312.82(a) or (b) and the vector attraction reduction requirements in 30 TAC § 312.83(b) have been met for each site on which bulk sewage sludge is applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices have been met. I am aware that there are significant penalties for false certification including fine and imprisonment."
- 6. The recommended agronomic loading rate from the references listed in Section II.C.3. above, as well as the actual agronomic loading rate shall be retained. The person who applies bulk sewage sludge or a sewage sludge material shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative <u>indefinitely</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply:
 - a. A certification statement that all applicable requirements (specifically listed) have been met, and that the permittee understands that there are significant penalties for false certification including fine and imprisonment. See 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii), as applicable, and to the permittee's specific sludge treatment activities.
 - b. The location, by street address, and specific latitude and longitude, of each site on which sludge is applied.
 - c. The number of acres in each site on which bulk sludge is applied.
 - d. The date and time sludge is applied to each site.

- e. The cumulative amount of each pollutant in pounds/acre listed in Table 2 applied to each site.
- f. The total amount of sludge applied to each site in dry tons.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

F. Reporting Requirements

The permittee shall report annually to the TCEQ Regional Office (MC Region 11) and Compliance Monitoring Team (MC 224) of the Enforcement Division, by September 30th of each year the following information. Effective September 1, 2020, the permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

- 1. Identify in the following categories (as applicable) the sewage sludge treatment process or processes at the facility: preliminary operations (e.g., sludge grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. Identify the nature of material generated by the facility (such as a biosolid for beneficial use or land-farming, or sewage sludge for disposal at a monofill) and whether the material is ultimately conveyed off-site in bulk or in bags.
- 3. Results of tests performed for pollutants found in either Table 2 or 3 as appropriate for the permittee's land application practices.
- 4. The frequency of monitoring listed in Section I.C. that applies to the permittee.
- 5. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 6. PCB concentration in sludge in mg/kg.
- 7. Identity of hauler(s) and TCEQ transporter number.
- 8. Date(s) of transport.
- 9. Texas Commission on Environmental Quality registration number, if applicable.
- 10. Amount of sludge disposal dry weight (lbs/acre) at each disposal site.
- 11. The concentration (mg/kg) in the sludge of each pollutant listed in Table 1 (defined as a monthly average) as well as the applicable pollutant concentration criteria (mg/kg) listed in Table 3 above, or the applicable pollutant loading rate limit (lbs/acre) listed in Table 2 above if it exceeds 90% of the limit.
- 12. Level of pathogen reduction achieved (Class A, Class AB or Class B).
- 13. Alternative used as listed in Section I.B.3.(a. or b.). Alternatives describe how the pathogen reduction requirements are met. If Class B sludge, include information on how site restrictions were met.

- 14. Identify each of the analytic methods used by the facility to analyze enteric viruses, fecal coliforms, helminth ova, *Salmonella* sp., and other regulated parameters.
- 15. Vector attraction reduction alternative used as listed in Section I.B.4.
- 16. Amount of sludge transported in dry tons/year.
- 17. The certification statement listed in either 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii) as applicable to the permittee's sludge treatment activities, shall be attached to the annual reporting form.
- 18. When the amount of any pollutant applied to the land exceeds 90% of the cumulative pollutant loading rate for that pollutant, as described in Table 2, the permittee shall report the following information as an attachment to the annual reporting form.
 - a. The location, by street address, and specific latitude and longitude.
 - b. The number of acres in each site on which bulk sewage sludge is applied.
 - c. The date and time bulk sewage sludge is applied to each site.
 - d. The cumulative amount of each pollutant (i.e., pounds/acre) listed in Table 2 in the bulk sewage sludge applied to each site.
 - e. The amount of sewage sludge (i.e., dry tons) applied to each site.

The above records shall be maintained on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION III. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE DISPOSED IN A MUNICIPAL SOLID WASTE LANDFILL

- A. The permittee shall handle and dispose of sewage sludge in accordance with 30 TAC § 330 and all other applicable state and federal regulations to protect public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present. The permittee shall ensure that the sewage sludge meets the requirements in 30 TAC § 330 concerning the quality of the sludge disposed in a municipal solid waste landfill.
- B. If the permittee generates sewage sludge and supplies that sewage sludge to the owner or operator of a municipal solid waste landfill (MSWLF) for disposal, the permittee shall provide to the owner or operator of the MSWLF appropriate information needed to be in compliance with the provisions of this permit.
- C. The permittee shall give 180 days prior notice to the Executive Director in care of the Wastewater Permitting Section (MC 148) of the Water Quality Division of any change planned in the sewage sludge disposal practice.
- D. Sewage sludge shall be tested annually in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I (Toxicity Characteristic Leaching Procedure) or other method, which receives the prior approval of the TCEQ for contaminants listed in Table 1 of 40 CFR § 261.24. Sewage sludge failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal.

Following failure of any TCLP test, the management or disposal of sewage sludge at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Remediation Support Division and the Regional Director (MC Region 11) of the appropriate TCEQ field office within 7 days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Registration, Review, and Reporting Division (MC 129), Texas Commission on Environmental Quality, P. O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. This annual report shall be submitted to the TCEQ Regional Office (MC Region 11) and the Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30 of each year.

- E. Sewage sludge shall be tested as needed, in accordance with the requirements of 30 TAC Chapter 330.
- F. Record keeping Requirements

The permittee shall develop the following information and shall retain the information for five years.

- 1. The description (including procedures followed and the results) of all liquid Paint Filter Tests performed.
- 2. The description (including procedures followed and results) of all TCLP tests performed.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

G. Reporting Requirements

The permittee shall report annually to the TCEQ Regional Office (MC Region 11) and Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30th of each year the following information. Effective September 1, 2020, the permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

- 1. Identify in the following categories (as applicable) the sewage sludge treatment process or processes at the facility: preliminary operations (e.g., sludge grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 3. Annual sludge production in dry tons/year.
- 4. Amount of sludge disposed in a municipal solid waste landfill in dry tons/year.
- 5. Amount of sludge transported interstate in dry tons/year.
- 6. A certification that the sewage sludge meets the requirements of 30 TAC § 330 concerning the quality of the sludge disposed in a municipal solid waste landfill.
- 7. Identity of hauler(s) and transporter registration number.
- 8. Owner of disposal site(s).
- 9. Location of disposal site(s).
- 10. Date(s) of disposal.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION IV. REQUIREMENTS APPLYING TO SLUDGE TRANSPORTED TO ANOTHER FACILITY FOR FURTHER PROCESSING

These provisions apply to sludge that is transported to another wastewater treatment facility or facility that further processes sludge. These provisions are intended to allow transport of sludge to facilities that have been authorized to accept sludge. These provisions do not limit the ability of the receiving facility to determine whether to accept the sludge, nor do they limit the ability of the receiving facility to request additional testing or documentation.

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge in accordance with 30 TAC Chapter 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge.
- 2. Sludge may only be transported using a registered transporter or using an approved pipeline.

B. Record Keeping Requirements

- 1. For sludge transported by an approved pipeline, the permittee must maintain records of the following:
 - a. the amount of sludge transported;
 - b. the date of transport;
 - c. the name and TCEQ permit number of the receiving facility or facilities;
 - d. the location of the receiving facility or facilities;
 - e. the name and TCEQ permit number of the facility that generated the waste; and
 - f. copy of the written agreement between the permittee and the receiving facility to accept sludge.
- 2. For sludge transported by a registered transporter, the permittee must maintain records of the completed trip tickets in accordance with 30 TAC § 312.145(a)(1)-(7) and amount of sludge transported.
- 3. The above records shall be maintained on-site on a monthly basis and shall be made available to the TCEQ upon request. These records shall be retained for at least five years.

C. Reporting Requirements

The permittee shall report the following information annually to the TCEQ Regional Office (MC Region 11) and Compliance Monitoring Team (MC 224) of the Enforcement Division, by September 30th of each year. Effective September 1, 2020, the permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

- 1. Identify in the following categories (as applicable) the sewage sludge treatment process or processes at the facility: preliminary operations (e.g., sludge grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. the annual sludge production;
- 3. the amount of sludge transported;
- 4. the owner of each receiving facility;
- 5. the location of each receiving facility; and
- 6. the date(s) of disposal at each receiving facility.

TCEQ Revision 10/2019

OTHER REQUIREMENTS

- 1. The permittee shall employ or contract with one or more licensed wastewater treatment facility operators or wastewater system operations companies holding a valid license or registration according to the requirements of 30 TAC Chapter 30, Occupational Licenses and Registrations, and, in particular, 30 TAC Chapter 30, Subchapter J, Wastewater Operators and Operations Companies.
 - This Category B facility must be operated by a chief operator or an operator holding a Category B license or higher. The facility must be operated a minimum of five days per week by the licensed chief operator or an operator holding the required level of license or higher. The licensed chief operator or operator holding the required level of license or higher must be available by telephone or pager seven days per week. Where shift operation of the wastewater treatment facility is necessary, each shift that does not have the on-site supervision of the licensed chief operator must be supervised by an operator in charge who is licensed not less than one level below the category for the facility.
- 2. The facility is not located in the Coastal Management Program boundary.
- 3. Chronic toxic criteria apply at the edge of the mixing zone. The mixing zone is defined as 300 feet downstream and 100 feet upstream from the point of discharge.
- 4. The permittee shall comply with the nuisance odor prevention plan in accordance with 30 TAC § 309.13(e)(2) approved on May 14, 2014. (Log No. 0414/004) The permittee shall also comply with the requirements of 30 TAC § 309.13(a) through (d). (See Attachment A.)
- 5. The permittee shall provide facilities for the protection of its wastewater treatment facility from a 100-year flood.
- 6. In accordance with 30 TAC § 319.9, a permittee that has at least twelve months of uninterrupted compliance with its bacteria limit may notify the commission in writing of its compliance and request a less frequent measurement schedule. To request a less frequent schedule, the permittee shall submit a written request to the TCEQ Wastewater Permitting Section (MC 148) for each phase that includes a different monitoring frequency. The request must contain all of the reported bacteria values (Daily Avg. and Daily Max/Single Grab) for the twelve consecutive months immediately prior to the request. If the Executive Director finds that a less frequent measurement schedule is protective of human health and the environment, the permittee may be given a less frequent measurement schedule. For this permit, daily may be reduced to 5/week. A violation of any bacteria limit by a facility that has been granted a less frequent measurement schedule will require the permittee to return to the standard frequency schedule and submit written notice to the TCEQ Wastewater Permitting Section (MC 148). The permittee may not apply for another reduction in measurement frequency for at least 24 months from the date of the last violation. The Executive Director may establish a more frequent measurement schedule if necessary to protect human health or the environment.
- 7. Within 90 days from permit issuance, the permittee shall submit to the TCEQ Wastewater Permitting Section (MC 148) a summary transmittal letter in accordance with the requirements in 30 TAC § 217.6(d). If requested by the Wastewater Permitting Section, the permittee shall submit plans, specifications, and a final engineering design report which comply with 30 TAC Chapter 217, Design Criteria for Domestic Wastewater Systems. The

permittee shall clearly show how the treatment system will meet the effluent limitations required on Page 2 of this permit. A copy of the summary transmittal letter shall be available at the plant site for inspection by authorized representatives of the TCEQ.

8. The Nitrate-Nitrogen reporting requirements at Outfall 001 will expire at the expiration of this permit. The reported values will be evaluated, and the reporting requirements may be reinstated or an effluent limit added at the next permit action.

CONTRIBUTING INDUSTRIES AND PRETREATMENT REQUIREMENTS

The co-permittees shall operate an industrial pretreatment program in accordance with Sections 402(b)(8) and (9) of the Clean Water Act, the General Pretreatment Regulations (40 CFR Part 403), and the approved publicly owned treatment works (POTW) pretreatment program for the Brushy Creek Regional Wastewater System, which was originally authorized and approved by EPA for the Brazos River Authority on October 27, 1990, and modified on December 1, 1994, and August 16, 2005. The pretreatment program was subsequently transferred to the Cities of Round Rock, Cedar Park, and Austin on June 3, 2010, for the Brushy Creek Regional West Wastewater Treatment Facility (TPDES Permit No. WQ0010264001), and on December 2, 2010, for the Brushy Creek Regional East Wastewater Treatment Facility (TPDES Permit No. WQ0010264002). As a result of the permit transfers, the co-permittees were required to submit a modified pretreatment program to the Executive Director for review and approval. As required by TPDES Permit No. WQ0010264002, "tracking" plant of the approved pretreatment program, the copermittees developed and submitted a modified pretreatment program to reflect all three copermittees as the Control Authority (CA) for the Brushy Creek Regional Wastewater System. The co-permittees are the CA with a 'designated agent' for purposes of pretreatment reporting and record-keeping requirements, which is the City of Round Rock as of December 2, 2011.

The legal authority and the POTW's pretreatment program are not in compliance with the current 40 CFR Part 403 regulations [rev. Federal Register/ Vol. 70/ No. 198/ Friday, October 14, 2005/ Rules and Regulations, pages 60134-60798] and 30 TAC Chapter 315, as amended.

The co-permittees submitted a modification to their pretreatment program containing some or all of the required [i.e. more stringent] Streamlining Rule provisions to the TCEQ on September 28, 2010, and amendments were submitted on June 9, 2011. The modified pretreatment program revises the legal authorities and includes additional modifications to the transferred pretreatment program, including the Enforcement Response Plan and Standard Operating Procedures (including forms). The Executive Director is currently reviewing this modification for technical completeness. If after review of the modification submission, the Executive Director determines that the submission does not comply with applicable requirements, including 40 CFR §\$403.8 and 403.9, the Executive Director will notify the permittee. According to 40 CFR §403.11(c), the notification will include suggested modifications to bring the modification submission into compliance with applicable requirements, including 40 CFR §\$403.8(b) and (f), and 403.9(b). In such a case, revised information will be necessary for the Executive Director to make a determination on whether to approve or deny the permittee's modification submission.

The POTW pretreatment program is hereby incorporated by reference and shall be implemented in a manner consistent with the following requirements:

- a. Industrial user (IU) information shall be kept current according to 40 CFR §§403.8(f)(2)(i) and (ii) and updated at a frequency set forth in the approved pretreatment program to reflect the accurate characterization of all IUs.
- b. The frequency and nature of IU compliance monitoring activities by the copermittees shall be consistent with the approved POTW pretreatment program and commensurate with the character, consistency, and volume of waste. The co-

permittees are required to inspect and sample the effluent from each significant industrial user (SIU) at least once per year, except as specified in 40 CFR §403.8(f)(2)(v). This is in addition to any industrial self-monitoring activities.

- c. The co-permittees shall enforce and obtain remedies for IU noncompliance with applicable pretreatment standards and requirements and the approved POTW pretreatment program.
- d. The co-permittees shall control through permit, order, or similar means, the contribution to the POTW by each IU to ensure compliance with applicable pretreatment standards and requirements and the approved POTW pretreatment program. In the case of SIUs (identified as significant under 40 CFR §403.3(v)), this control shall be achieved through individual permits or general control mechanisms, in accordance with 40 CFR §403.8(f)(1)(iii).

Both individual and general control mechanisms must be enforceable and contain, at a minimum, the following conditions:

- (1) Statement of duration (in no case more than five years);
- (2) Statement of non-transferability without, at a minimum, prior notification to the POTW and provision of a copy of the existing control mechanism to the new owner or operator;
- (3) Effluent limits, which may include enforceable best management practices (BMPs), based on applicable general pretreatment standards, categorical pretreatment standards, local limits, and State and local law;
- (4) Self-monitoring, sampling, reporting, notification and record keeping requirements, identification of the pollutants to be monitored (including, if applicable, the process for seeking a waiver for a pollutant neither present nor expected to be present in the IU's discharge in accordance with 40 CFR §403.12(e)(2), or a specific waived pollutant in the case of an individual control mechanism), sampling location, sampling frequency, and sample type, based on the applicable general pretreatment standards in 40 CFR Part 403, categorical pretreatment standards, local limits, and State and local law;
- (5) Statement of applicable civil and criminal penalties for violation of pretreatment standards and requirements, and any applicable compliance schedule. Such schedules may not extend the compliance date beyond federal deadlines; and
- (6) Requirements to control slug discharges, if determined by the POTW to be necessary.
- e. For those IUs who are covered by a general control mechanism, in order to implement 40 CFR §403.8(f)(1)(iii)(A)(2), a monitoring waiver for a pollutant neither present nor expected to be present in the IU's discharge is not effective in the general control mechanism until after the POTW has provided written notice to the SIU that such a waiver request has been granted in accordance with 40 CFR §403.12(e)(2).
- f. The co-permittees shall evaluate whether each SIU needs a plan or other action to control slug discharges, in accordance with 40 CFR §403.8(f)(2)(vi). If the POTW decides that a slug control plan is needed, the plan shall contain at least the minimum elements required in 40 CFR §403.8(f)(2)(vi).

- g. The co-permittees shall provide adequate staff, equipment, and support capabilities to carry out all elements of the pretreatment program.
- h. The approved program shall not be modified by the co-permittees without the prior approval of the Executive Director, according to 40 CFR §403.18.
- 2. The co-permittees are under a continuing duty to establish and enforce specific local limits to implement the provisions of 40 CFR §403.5, develop and enforce local limits as necessary, and modify the approved pretreatment program as necessary to comply with federal, state, and local law, as amended. The co-permittees may develop BMPs to implement 40 CFR §403.5(c)(1) and (2). Such BMPs shall be considered local limits and pretreatment standards. The co-permittees are required to effectively enforce such limits and to modify its pretreatment program, including the legal authorities, enforcement response plan, and standard operating procedures (including forms), if required by the Executive Director to reflect changing conditions at the POTW. Substantial modifications will be approved in accordance with 40 CFR §403.18, and modifications will become effective upon approval by the Executive Director in accordance with 40 CFR §403.18.

The permittee has submitted a substantial modification to its approved pretreatment program for the re-development of the Brushy Creek Regional Wastewater System technically based local limits (TBLLs) to the TCEQ on January 3, 2015. The CA has subsequently submitted additional information and required revisions to in 2015 and 2016. The Executive Director is currently reviewing this substantial modification for technical completeness.

If after review of the substantial modification submission, the Executive Director determines that the submission does not comply with applicable requirements, including 40 CFR §§403.8 and 403.9, the Executive Director will notify the co-permittees. According to 40 CFR §403.11(c), the notification will include suggested revisions to bring the substantial modification submission into compliance with applicable requirements, including 40 CFR §§403.8(b) and (f) and 403.9(b). In such a case, revised information will be necessary for the Executive Director to make a determination on whether to approve or deny the co-permittees' substantial modification submission.

Upon approval by the Executive Director of the substantial modification to this approved POTW pretreatment program, the requirement to develop and enforce specific prohibitions and/or limits to implement the prohibitions and limits set forth in 40 CFR §\$403.5(a)(1), (b), (c)(1) and (3), and (d) is a condition of this permit. The specific prohibitions set out in 40 CFR §403.5(b) shall be enforced by the co-permittees unless modified under this provision.

3. The co-permittees shall analyze the treatment facility influent and effluent for the presence of the toxic pollutants listed in the Texas Surface Water Quality Standards [30 TAC Chapter 307], and 40 CFR Part 122, Appendix D, Table II at least **once per year** and the toxic pollutants listed in 40 CFR Part 122, Appendix D, Table III at least **once per six months**. If, based upon information available to the co-permittees, there is reason to suspect the presence of any toxic or hazardous pollutant listed in 40 CFR Part 122, Appendix D, Table V, or any other pollutant, known or suspected to adversely affect treatment plant operation, receiving water quality, or solids disposal procedures, analysis for those pollutants shall be performed at least **once per six months** on both the influent and the effluent.

The influent and effluent samples collected shall be composite samples consisting of at least 12 aliquots collected at approximately equal intervals over a representative 24-hour period and composited according to flow. Sampling and analytical procedures shall be in accordance with guidelines established in 40 CFR Part 136, as amended; as approved by the EPA through the application for alternate test procedures; or as suggested in Tables E-1 and E-2 of the *Procedures to Implement the Texas Surface Water Quality Standards* (RG-194), June 2010, as amended and adopted by the TCEQ. The effluent samples shall be analyzed to the minimum analytical level (MAL). Where composite samples are inappropriate due to sampling, holding time, or analytical constraints, at least four (4) grab samples shall be taken at equal intervals over a representative 24-hour period.

4. The 'designated agent' of the CA shall prepare annually a list of IUs which, during the preceding twelve (12) months, were in significant noncompliance (SNC) with applicable pretreatment requirements. For the purposes of this section of the permit, "CONTRIBUTING INDUSTRIES AND PRETREATMENT REQUIREMENTS," SNC shall be determined based upon the more stringent of either criteria established at 40 CFR §403.8(f)(2)(viii) [rev. 10/14/05] or criteria established in the approved POTW pretreatment program. This list is to be published annually during the month of **October** in a newspaper of general circulation that provides meaningful public notice within the jurisdiction(s) served by the POTW.

In addition, each **October** the 'designated agent' of the CA shall submit an updated pretreatment program annual status report, in accordance with 40 CFR §§403.12(i) [rev. 10/22/15] and (m), to the TCEQ Pretreatment Team (MC148) of the Water Quality Division. The report summary shall be submitted on the Pretreatment Performance Summary (PPS) form [TCEQ-20218]. The report shall contain the following information as well as the information on the tables in this section:

- a. An updated list of all regulated IUs as indicated in this section. For each listed IU, the following information shall be included:
 - (1) Standard Industrial Classification (SIC) or North American Industry Classification System (NAICS) code *and* categorical determination.
 - (2) If the pretreatment program has been modified and approved to incorporate reduced monitoring for any of the categorical IUs as provided by 40 CFR Part 403 [rev. 10/14/05], then the list must also identify:
 - categorical IUs subject to the conditions for reduced monitoring and reporting requirements under 40 CFR § 403.12(e)(1) [rev. 10/22/15] and (3);
 - those IUs that are non-significant categorical industrial users (NSCIUs) under 40 CFR §403.3(v)(2); and
 - those IUs that are middle tier categorical industrial users (MTCIUs) under 40 CFR §403.12(e)(3).
 - (3) Control mechanism status.
 - Indicate whether the IU has an effective individual or general control mechanism, and the date such control mechanism was last issued, reissued, or modified;
 - Indicate which IUs were added to the system, or newly identified, during the

pretreatment year reporting period;

- Include the type of general control mechanisms; and
- Report all NSCIU annual evaluations performed, as applicable.
- (4) A summary of all compliance monitoring activities performed by the POTW during the pretreatment year reporting period. The following information shall be reported:
 - Total number of inspections performed; and
 - Total number of sampling events conducted.
- (5) Status of IU compliance with effluent limitations, reporting, and narrative standard (which may include enforceable BMPs, narrative limits, and/or operational standards) requirements. Compliance status shall be defined as follows:
 - Compliant (C) no violations during the pretreatment year reporting period;
 - Non-compliant (NC) one or more violations during the pretreatment year reporting period but does not meet the criteria for SNC; and
 - Significant Noncompliance (SNC) in accordance with requirements described above in this section.
- (6) For noncompliant IUs, indicate the nature of the violations, the type and number of actions taken (notice of violation, administrative order, criminal or civil suit, fines or penalties collected, etc.), and the current compliance status. If any IU was on a schedule to attain compliance with effluent limits or narrative standards, indicate the date the schedule was issued and the date compliance is to be attained.
- b. A list of each IU whose authorization to discharge was terminated or revoked during the pretreatment year reporting period and the reason for termination.
- c. A report on any interference, pass through, upset, or POTW permit violations known or suspected to be caused by IUs and response actions taken by the co-permittees.
- d. The results of all influent and effluent analyses performed pursuant to Item 3 of this section.
- e. An original newspaper public notice, or copy of the newspaper publication with official affidavit, of the list of IUs that meet the criteria of SNC, giving the name of the newspaper and date, the list was published.
- f. The daily average water quality based effluent concentrations (from the TCEQ's Texas Toxicity Modeling Program (TexTox)) necessary to attain the Texas Surface Water Quality Standards, 30 TAC Chapter 307, in water in the state.
- g. The maximum allowable headworks loading (MAHL) in pounds per day (lb/day) of the approved TBLLs or for each pollutant of concern (POC) for which the permittees has calculated a MAHL. In addition, the influent loading as a percent of the MAHL, using the annual average flow of the wastewater treatment plant in million gallons per day (MGD) during the pretreatment year reporting period, for each pollutant that

has an adopted TBLL or for each POC for which the permittees have calculated a MAHL. (See Endnotes No. 2 at the end of this section for the influent loading as a percent of the MAHL equation.)

- h. The 'designated agent' of the CA may submit the updated pretreatment program annual status report information in tabular form using the example table format provided. Please attach, on a separate sheet, explanations to document the various pretreatment activities, including IU permits that have expired, BMP violations, and any sampling events that were not conducted by the permittees as required.
- i. A summary of changes to the POTW's approved pretreatment program that have not been previously reported to the Approval Authority.

Effective September 1, 2020, the 'designated agent' of the CA must submit the updated pretreatment program annual status report required by this section electronically using the online electronic reporting system available through the TCEQ website unless the copermittees requests and obtains an electronic reporting waiver. [rev. Federal Register/Vol. 80/No. 204/Friday, October 22, 2015/Rules and Regulations, pages 64064-64158].

- 5. The 'designated agent' of the CA shall provide adequate written notification to the Executive Director, care of the Wastewater Permitting Section (MC 148) of the Water Quality Division, within 30 days of the permittees' knowledge of the following:
 - a. Any new introduction of pollutants into the treatment works from an indirect discharger which would be subject to Sections 301 and 306 of the Clean Water Act if the indirect discharger was directly discharging those pollutants; and
 - b. Any substantial change in the volume or character of pollutants being introduced into the treatment works by a source introducing pollutants into the treatment works at the time of issuance of the permit.

Adequate notice shall include information on the quality and quantity of effluent to be introduced into the treatment works, and any anticipated impact of the change on the quality or quantity of effluent to be discharged from the POTW.

Revised October 18, 2019

TPDES Pretreatment Program Annual Report Form for Updated Industrial Users List

Reporting month/yea	ır:	,,
TPDES Permit No.:	Permittee: _	Treatment Plant:

PRE	PRETREATMENT PROGRAM STATUS REPORT UPDATED INDUSTRIAL USERS: LIST												LIST			
ų.				CONTROL MECHANISM				he CA	the CA		C = (uring t	porting ant, NO	reatme g Period C = Nor	ent Ye 14 ncomp	oliant,
User Name	CS Code		2	N or NR	91	Ti	(Y or N)	Inspected by the	Sampled by th		RI	EPORT		ns	mits	
Industrial 1	SIC or NAICS Code	CIU2	Y/N or NR5	IND or GEN	Last Action ⁶	TBLLs or TBLLs only	New User 3	Times Insp	Times Sam	BMR	90-Day	Semi- Annual	Self- Monitoring ⁸	NSCIU Certifications	Effluent Limits	Narrative Standards
														-		

- Include all significant industrial users (SIUs), non-significant categorical industrial users (NSCIUs) as defined in 40 CFR §403.3(v)(2), and/or middle tier categorical industrial users (MTCIUs) as defined in 40 CFR §403.12(e)(3). Please do <u>not</u> include non-significant noncategorical IUs that are covered under best management practices (BMPs) or general control mechanisms.
- 2 Categorical determination (include 40 CFR citation and NSCIU or MTCIU status, if applicable).
- 3 Indicate whether the IU is a new user. If the answer is No or N, then indicate the expiration date of the last issued IU permit.
- 4 The term SNC applies to a broader range of violations, such as daily maximum, long-term average, instantaneous limits, and narrative standards (which may include enforceable BMPs, narrative limits and/or operational standards). Any other violation, or group of violations, which the POTW determines will adversely affect the operation or implementation of the local Pretreatment Program now includes BMP violations (40 CFR §403.8(f)(2)(viii)(H)).
- 5 Code NR= None required (NSCIUs only); IND = individual control mechanism; GEN = general control mechanism. Include as a footnote (or on a separate page) the name of the general control mechanism used for similar groups of IUs, identify the similar types of operations and types of wastes that are the same for each general control mechanism. Any BMPs through general control mechanisms that are applied to nonsignificant IUs need to be reported separately, *e.g.* the sector type and BMP description.
- 6 Permit or NSCIU evaluations as applicable.
- According to 40 CFR §403.12(i)(1), indicate whether the IU is subject to technically based local limits (TBLLs) that are more stringent than categorical pretreatment standards, *e.g.* where there is one end-of-pipe sampling point at a CIU, and you have determined that the TBLLs are more stringent than the categorical pretreatment standards for any pollutant at the end-of-pipe sampling point; **OR** the IU is subject only to local limits (TBLLs only), *e.g.* the IU is a non-categorical SIU subject only to TBLLs at the end-of-pipe sampling point.
- 8 For those IUs where a monitoring waiver has been granted, please add the code "W" (after either C, NC, or SNC codes) and indicate the pollutant(s) for which the waiver has been granted.

TCEQ-20218a

TPDES Pretreatment Program Annual Report Form

Revised July 2007

TPDES Pretreatment Program Annual Report Form for Industrial User Inventory Modifications

Reporting month/y	ear:	to	.,
TPDES Permit No:	Permittee:	Treatment Plant: _	

	INDUSTI	RIAL USER II	NVENTORY MO	DIFICATIONS							
FACILITY NAME,	ADD, CHANGE,	IF DELETION:		ON OR SIGNIFICANT CHANGE:							
ADDRESS AND CONTACT PERSON	DELETE (Including categorical reclassification to NSCIU or MTCIU)	Reason For Deletion	PROCESS DESCRIPTION	POLLUTANTS (Including any sampling waiver given for each pollutant not present)	FLOW RATE 9 (In gpd) R = Regulated U = Unregulated T = Total						

9	For NSCIUs,	total flow	must be	given, if	regulated	l flow is	not detei	mined.

TCEQ-20218b TPDES Pretreatment Program Annual Report Form

Revised July 2007

P	(epo	rting	mont	h/yea	r: _			,		to _	_				
TPDES P	ermi	it No	:		_ Per	rmit	tee:			Trea	tme	nt P	lant:		
Overall SN Reporting															
	1	Vonc	ompli	ant In	dus	trial	Use	rs -]	Enf	orcem	ent A	Actio	ns Ta	aken	1
	Nat	ure o	of Violat	tion 11	Nι		r of A Caker		ns	d (Do ıarge)		mplia chedu		turned or N)	
Industrial User Name	Effluent Limits	Reports	NSCIU Certifications	Narrative Standards	NOV	A.O.	Civil	Criminal	Other	Penalties Collected (Do not Include Surcharge)	YorN	Date Issued	Date Due	Current Status Returned to Compliance: (Y or N)	Comments
				-											
. 13 d in 1															
	Pi Ro N	eport arrat ecify	ing Re ive Sta	quiren ndards rate nu	nents s umbe	s [W]	END	B-PS	NC_			·	Ü		andards) tion,

TCEQ-20218c TPDES Pretreatment Program Annual Report Form Revised July 2007

TPDES Pretreatment Program Annual Report Form for Influent and Effluent Monitoring Results $^{\scriptscriptstyle 1}$

Reporting m	onth/year:,	to
TPDES Permit No.:	Permittee:	Treatment Plant:

PRETREATME	NT PROGRAI	M INF	LUEN	IT AN	D EF	FLUENT I	MONITOR	RING	RESU	LTS	-			
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in µg/L (Actual Concentration or < MAL)			Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³		Effluent easured in µg/L ual Concentration or < MAL) ⁴						
		Date	Date	Date	Date			Date	Date	Date	Date			
METALS, CYANIDE AND PHENOLS														
Antimony, Total														
Arsenic, Total														
Beryllium, Total														
Cadmium, Total														
Chromium, Total														
Chromium (Hex)														
Chromium (Tri) ⁵														
Copper, Total														
Lead, Total														
Mercury, Total														
Nickel, Total														
Selenium, Total														
Silver, Total														
Thallium, Total														
Zinc, Total														
Cyanide, Available ⁶														
Cyanide, Total														

PRETREATMEN	T PROGRAM	M INF	LUE	NT AN	D EF	FLUENT I	MONITOR	RING	RESU	LTS		
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in µg/L (Actual Concentration or < MAL)				Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴				
		Date Date Date Date						Date	Date	Date	Date	
Phenols, Total												
VOLATILE COMPOUN	IDS									,		
Acrolein											_	
Acrylonitrile												
Benzene												
Bromoform							See TTHM					
Carbon Tetrachloride												
Chlorobenzene												
Chlorodibromomethane							See TTHM					
Chloroethane												
2-Chloroethylvinyl Ether												
Chloroform							See TTHM					
Dichlorobromomethane							See TTHM					
1,1-Dichloroethane												
1,2-Dichloroethane												
1,1-Dichloroethylene												
1,2-Dichloropropane												
1,3-Dichloropropylene												
Ethyl benzene												
Methyl Bromide												

PRETREATME	NT PROGRAM	M INF	LUEN	IT AN	D EFI	FLUENT I	MONITOR	UNG	RESU	LTS	
POLLUTANT	MAHL, if Applicable in lb/day		easure ual Co:	uent d in με ncentr MAL)	ation	Average Influent % of the MAHL ²	$ \begin{array}{c c} Daily & Effluent \\ Average & Measured in \mu g \\ Effluent \\ Limit & (Actual Concentration of MAL) 4 \\ \end{array} $				
		Date	Date	Date	Date			Date	Date	Date	Date
Methyl Chloride											
Methylene Chloride											
1,1,2,2-Tetra- chloroethane											
Tetrachloroethylene											
Toluene											_
1,2-Trans- Dichloroethylene											
1,1,1-Trichloroethane						-					
1,1,2-Trichloroethane											
Trichloroethylene											
Vinyl Chloride											
ACID COMPOUNDS	<u> </u>			J	J		L		<u> </u>	<u> </u>	I
2-Chlorophenol			-								
2,4-Dichlorophenol											
2,4-Dimethylphenol											
4,6-Dinitro-o-Cresol											
2,4-Dinitrophenol											
2-Nitrophenol											
4-Nitrophenol		1									
P-Chloro-m-Cresol											
Pentachlorophenol											J
Phenol											

PRETREATMEN	T PROGRAM	M INF	LUEN	T AN	D EF	FLUENT I	MONITOR	RING	RESU	LTS	
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in µg/L (Actual Concentration or < MAL)			Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in µg/L (Actual Concentration or < MAL) 4				
		Date	Date	Date	Date			Date	Date	Date	Date
2,4,6-Trichlorophenol											
BASE/NEUTRAL COM	POUNDS						1. 122,7424				, <u></u>
Acenaphthene											
Acenaphthylene											
Anthracene											
Benzidine											
Benzo(a)Anthracene	3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2										
Benzo(a)Pyrene	-										
3,4-Benzofluoranthene											
Benzo(ghi)Perylene											
Benzo(k)Fluoranthene											
Bis(2- Chloroethoxy)Methane											
Bis(2-Chloroethyl)Ether											
Bis(2- Chloroisopropyl)Ether											
Bis(2- Ethylhexyl)Phthalate											
4-Bromophenyl Phenyl Ether											
Butylbenzyl Phthalate											
2-Chloronaphthalene											
4-Chlorophenyl Phenyl Ether											

PRETREATMEN	T PROGRAM	M INF	LUEN	NT AN	D EF	FLUENT I	MONITOE	UNG	RESU	LTS	·
POLLUTANT	MAHL, if Applicable in lb/day		easure ual Co	uent d in με ncentr MAL)		Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³		Effluent Measured in µg/L (Actual Concentration or < MAL) 4		
		Date	Date	Date	Date			Date	Date	Date	Date
Chrysene											
Dibenzo(a,h)Anthracene											
1,2-Dichlorobenzene											
1,3-Dichlorobenzene											
1,4-Dichlorobenzene											
3,3-Dichlorobenzidine											
Diethyl Phthalate											
Dimethyl Phthalate											
Di-n-Butyl Phthalate											
2,4-Dinitrotoluene											
2,6-Dinitrotoluene											
Di-n-Octyl Phthalate											
1,2-Diphenyl Hydrazine											
Fluoranthene											
Fluorene											
Hexachlorobenzene											•
Hexachlorobutadiene											
Hexachloro- cyclopentadiene	·										
Hexachloroethane											
Indeno(1,2,3-cd)pyrene											
Isophorone											

PRETREATMEN	NT PROGRAM	M INF	LUE	NT AN	D EF	FLUENT I	MONITOR	RING	RESU	LTS		
POLLUTANT	MAHL, if Applicable in lb/day		easure ual Co:			Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³		Effluent Measured in µg/L (Actual Concentration or < MAL) ⁴			
		Date	Date	Date	Date			Date	Date	Date	Date	
Naphthalene												
Nitrobenzene												
N- Nitrosodimethylamine				E								
N-Nitrosodi-n- Propylamine												
N- Nitrosodiphenylamine												
Phenanthrene												
Pyrene												
1,2,4-Trichlorobenzene												
PESTICIDES	السيموريا	<u> </u>		1	<u> </u>			L.,,,,,,,,	<u> </u>		l	
Aldrin												
Alpha- hexachlorocyclohexane (BHC)												
beta-BHC												
gamma-BHC (Lindane)												
delta-BHC												
Chlordane												
4,4-DDT												
4,4-DDE											L.c	
4,4-DDD												
Dieldrin								·				

PRETREATME	NT PROGRAM	M INF	LUEN	T AN	D EFI	FLUENT I	MONITOR	UNG	RESU	LTS	
POLLUTANT	MAHL, if Applicable in lb/day	Measured in µg/L			Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in µg/L (Actual Concentration or < MAL) 4				
		Date	Date	Date	Date			Date	Date	Date	Date
alpha-Endosulfan											
beta-Endosulfan											
Endosulfan Sulfate											
Endrin											
Endrin Aldehyde											
Heptachlor											
Heptachlor Epoxide											
Polychlorinated biphenols (PCBs) The sum of PCB concentrations not to exceed daily average value.											
PCB-1242							See PCBs				
PCB-1254							See PCBs				
PCB-1221							See PCBs				
PCB-1232							See PCBs				
PCB-1248							See PCBs				
PCB-1260							See PCBs				
PCB-1016							See PCBs				
Toxaphene		:									
ADDITIONAL TOXIC	POLLUTANT	SRE	GULA	TED	UNDE	ER 30 TA(С СНАРТЕ	ER 30	7	Jl.	<u>L</u>
Aluminum											
Barium							,				

PRETREATMEN	T PROGRAM	M INF	LUEN	IT AN	D EFI	FLUENT I	MONITOR	RING	RESU	LTS	
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in µg/L (Actual Concentration or < MAL)			Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴				
		Date	Date	Date	Date			Date	Date	Date	Date
Bis(chloromethyl) ether ⁷											
Carbaryl								-			
Chloropyrifos											
Cresols											
2,4-D											
Danitol ⁸											
Demeton											
Diazinon	_										
Dicofol											
Dioxin/Furans 9											
Diuron											
Fluoride											
Guthion											
Hexachlorophene											
Malathion											
Methoxychlor											
Methyl Ethyl Ketone											
Mirex											
Nitrate-Nitrogen											
N-Nitrosodiethylamine											

PRETREATMEN	NT PROGRAM	M INF	LUEN	IT AN	D EFI	FLUENT I	MONITOR	RING	RESU	LTS	
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in µg/L (Actual Concentration or < MAL)				Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³		Effluent Measured in μg/L (Actual Concentration or < MAL) 4		
		Date	Date	Date	Date			Date	Date	Date	Date
N-Nitroso-di-n- Butylamine											
Nonylphenol											
Parathion											
Pentachlorobenzene											
Pyridine											
1,2-Dibromoethane											
1,2,4,5- Tetrachlorobenzene											
2,4,5-TP (Silvex)											
Tributyltin 9											
2,4,5-Trichlorophenol											
TTHM (Total Trihalomethanes)											

Endnotes:

- It is advised that the permittees collect the influent and effluent samples considering flow detention time through each wastewater treatment plant (WWTP).
- 2. The MAHL of the approved TBLLs or for each pollutant of concern (POC) for which the permittees have calculated a MAHL. Only complete the column labeled "Average Influent % of the MAHL," as a percentage, for pollutants that have approved TBLLs or for each POC for which the permittees has calculated a MAHL (U.S. Environmental Protection Agency *Local Limits Development Guidance*, July 2004, EPA933-R-04-002A).

The % of the MAHL is to be calculated using the following formulas:

Equation A: $L_{INF} = (C_{POLL} \times Q_{WWTP} \times 8.34) / 1000$

Equation B: $L_{\%} = (L_{INF} / MAHL) \times 100$

Where:

L INF = Current Average (Avg) influent loading in lb/day

 $C_{POLL} = Avg$ concentration in $\mu g/L$ of all influent samples collected during the

pretreatment year.

Q_{WWTP} = Annual average flow of the WWTP in MGD, defined as the arithmetic

average of all daily flow determinations taken within the preceding 12 consecutive calendar months (or during the pretreatment year), and as described in the Definitions and Standard Permit Conditions section.

 $L_{\%} = \%$ of the MAHL

MAHL = Calculated MAHL in lb/day

8.34 = Unit conversion factor

- 3. Daily average effluent limit (metal values are for total metals) as derived by the Texas Toxicity Modeling Program (TexTox). Effluent limits as calculated are designed to be protective of the Texas Surface Water Quality Standards. The permittees shall determine and indicate which effluent limit is the most stringent between the 30 TAC Chapter 319, Subchapter B (Hazardous Metals) limit, TexTox values, or any applicable limit in the Effluent Limitations and Monitoring Requirements Section of this TPDES permit. Shaded blocks need not be filled in unless the permittees have received a permit requirement/limit for the particular parameter.
- 4. Minimum analytical levels (MALs) and analytical methods as suggested in Tables E-1 and E-2 of the *Procedures to Implement the Texas Surface Water Quality Standards* (June 2010), as amended and adopted by the TCEQ. Pollutants that are not detectable above the MAL need to be reported as less than (<) the MAL numeric value.
- 5. Report result by subtracting Hexavalent Chromium from Total Chromium.
- 6. Either the method for Amenable to Chlorination or Weak-Acid Dissociable is authorized.
- 7. Hydrolyzes in water. Will not require permittees to analyze at this time.
- 8. EPA procedure not approved. Will not require permittees to analyze at this time.
- 9. Analyses are not required at this time for these pollutants unless there is reason to believe that these pollutants may be present.

TCEQ-20218d TPDES Pretreatment Program Annual Report Form

Revised March 2014

BIOMONITORING REQUIREMENTS

CHRONIC BIOMONITORING REQUIREMENTS: FRESHWATER

The provisions of this section apply to Outfall 001 for whole effluent toxicity (WET) testing.

- 1. Scope, Frequency, and Methodology
 - a. The permittee shall test the effluent for toxicity in accordance with the provisions below. Such testing will determine if an appropriately dilute effluent sample adversely affects the survival, reproduction, or growth of the test organisms.
 - b. The permittee shall conduct the following toxicity tests using the test organisms, procedures and quality assurance requirements specified in this part of this permit and in accordance with "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms," fourth edition (EPA-821-R-02-013) or its most recent update:
 - 1) Chronic static renewal survival and reproduction test using the water flea (*Ceriodaphnia dubia*) (Method 1002.0). This test should be terminated when 60% of the surviving adults in the control produce three broods or at the end of eight days, whichever occurs first. This test shall be conducted once per quarter.
 - 2) Chronic static renewal 7-day larval survival and growth test using the fathead minnow (*Pimephales promelas*) (Method 1000.0). A minimum of five replicates with eight organisms per replicate shall be used in the control and in each dilution. This test shall be conducted once per quarter.

The permittee must perform and report a valid test for each test species during the prescribed reporting period. An invalid test must be repeated during the same reporting period. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. The permittee shall use five effluent dilution concentrations and a control in each toxicity test. These effluent dilution concentrations are 27%, 35%, 47%, 63%, and 84% effluent. The critical dilution, defined as 63% effluent, is the effluent concentration representative of the proportion of effluent in the receiving water during critical low flow or critical mixing conditions.
- d. This permit may be amended to require a WET limit, a chemical-specific effluent limit, a best management practice, or other appropriate actions to address toxicity. The permittee may be required to conduct a toxicity reduction evaluation (TRE) after multiple toxic events.
- e. Testing Frequency Reduction
 - 1) If none of the first four consecutive quarterly tests demonstrates significant toxicity, the permittee may submit this information in writing

- and, upon approval, reduce the testing frequency to once per six months for the invertebrate test species and once per year for the vertebrate test species.
- 2) If one or more of the first four consecutive quarterly tests demonstrates significant toxicity, the permittee shall continue quarterly testing for that species until this permit is reissued. If a testing frequency reduction had been previously granted and a subsequent test demonstrates significant toxicity, the permittee shall resume a quarterly testing frequency for that species until this permit is reissued.

2. Required Toxicity Testing Conditions

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control and all effluent dilutions, which fail to meet the following criteria:
 - 1) a control mean survival of 80% or greater;
 - 2) a control mean number of water flea neonates per surviving adult of 15 or greater;
 - a control mean dry weight of surviving fathead minnow larvae of 0.25 mg or greater;
 - a control coefficient of variation percent (CV%) of 40 or less in between replicates for the young of surviving females in the water flea test; and the growth and survival endpoints in the fathead minnow test;
 - 5) a critical dilution CV% of 40 or less for young of surviving females in the water flea test; and the growth and survival endpoints for the fathead minnow test, unless statistically significant toxicity is demonstrated at the critical dilution, in which case the test shall be considered valid;
 - 6) a percent minimum significant difference of 47 or less for water flea reproduction; and
 - 7) a PMSD of 30 or less for fathead minnow growth.

b. Statistical Interpretation

- 1) For the water flea survival and reproduction test, the statistical analyses used to determine the inhibition concentration of effluent that would cause a 25% reduction (IC25) in survival or mean young per female shall be as described in the methods manual referenced in Part 1.b.
- 2) For the fathead minnow larval survival and growth tests, the statistical analyses used to determine the IC25 in survival or growth shall be as described in the methods manual referenced in Part 1.b.
- 3) The permittee is responsible for reviewing test concentration-response relationships to ensure that calculated test-results are interpreted and reported correctly. The document entitled "Method Guidance and

Recommendation for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136)" (EPA 821-B-00-004) provides guidance on determining the validity of test results.

- 4) Most point estimates are derived from a mathematical model that assumes a continuous dose-response relationship. For any test result that demonstrates a non-continuous (threshold) response, or a non-monotonic dose-response relationship, the IC25 should be determined based on the method guidance manual referenced in Item 3.
- Pursuant to the responsibility assigned to the permittee in Part 2.b.3), test results that demonstrate a non-monotonic dose-response relationship may be submitted, prior to the due date, for technical review of test validity and acceptability. The method guidance manual referenced in Item 3 will be used as the basis, along with best professional judgement, for making a determination of test validity and acceptability.

c. Dilution Water

- Dilution water used in the toxicity tests shall be the receiving water collected at a point upstream of the discharge as close as possible to the discharge point but unaffected by the discharge. Where the toxicity tests are conducted on effluent discharges to receiving waters that are classified as intermittent streams, or where the toxicity tests are conducted on effluent discharges where no receiving water is available due to zero flow conditions, the permittee shall:
 - a) substitute a synthetic dilution water that has a pH, hardness, and alkalinity similar to that of the closest downstream perennial water unaffected by the discharge; or
 - b) use the closest downstream perennial water unaffected by the discharge.
- 2) Where the receiving water proves unsatisfactory as a result of pre-existing instream toxicity (i.e. fails to fulfill the test acceptance criteria of Part 2.a.), the permittee may substitute synthetic dilution water for the receiving water in all subsequent tests provided the unacceptable receiving water test met the following stipulations:
 - a) a synthetic lab water control was performed (in addition to the receiving water control) which fulfilled the test acceptance requirements of Part 2.a;
 - b) the test indicating receiving water toxicity was carried out to completion (i.e., 7 days);
 - c) the permittee submitted all test results indicating receiving water toxicity with the reports and information required in Part 3.
- 3) The synthetic dilution water shall consist of standard, moderately hard,

reconstituted water. Upon approval, the permittee may substitute other appropriate dilution water with chemical and physical characteristics similar to that of the receiving water.

d. Samples and Composites

- 1) The permittee shall collect a minimum of three composite samples from Outfall 001. The second and third composite samples will be used for the renewal of the dilution concentrations for each toxicity test.
- 2) The permittee shall collect the composite samples such that the samples are representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged on an intermittent basis.
- 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the first composite sample. The holding time for any subsequent composite sample shall not exceed 72 hours. Samples shall be maintained at a temperature of 0-6 degrees Centigrade during collection, shipping, and storage.
- 4) If Outfall 001 ceases discharging during the collection of effluent samples, the requirements for the minimum number of effluent samples, the minimum number of effluent portions, and the sample holding time are waived during that sampling period. However, the permittee must have collected an effluent composite sample volume sufficient to complete the required toxicity tests with renewal of the effluent. When possible, the effluent samples used for the toxicity tests shall be collected on separate days if the discharge occurs over multiple days. The sample collection duration and the static renewal protocol associated with the abbreviated sample collection must be documented in the full report.
- 5) The effluent samples shall not be dechlorinated after sample collection.

3. Reporting

All reports, tables, plans, summaries, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated whether carried to completion or not.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 1 forms provided with this permit.
 - 1) Annual biomonitoring test results are due on or before January 20th for biomonitoring conducted during the previous 12-month period.
 - 2) Semiannual biomonitoring test results are due on or before July 20th and

- January 20th for biomonitoring conducted during the previous 6-month period.
- 3) Quarterly biomonitoring test results are due on or before April 20th, July 20th, October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.
- 4) Monthly biomonitoring test results are due on or before the 20th day of the month following sampling.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the water flea, Parameter T4P3B, enter a "1" if the IC25 for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) For the water flea, Parameter T6P3B, report the IC25 for survival.
 - 3) For the water flea, Parameter T₅P₃B, enter a "1" if the IC₂₅ for reproduction is less than the critical dilution; otherwise, enter a "o."
 - 4) For the water flea, Parameter T7P3B, report the IC25 for reproduction.
 - 5) For the fathead minnow, Parameter T4P6C, enter a "1" if the IC25 for survival is less than the critical dilution; otherwise, enter a "0."
 - 6) For the fathead minnow, Parameter T6P6C, report the IC25 for survival.
 - 7) For the fathead minnow, Parameter T5P6C, enter a "1" if the IC25 for growth is less than the critical dilution; otherwise, enter a "0."
 - 8) For the fathead minnow, Parameter T7P6C, report the IC25 for growth.
- d. Enter the following codes for retests only:
 - 1) For retest number 1, Parameter 22415, enter a "1" if the IC25 for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) For retest number 2, Parameter 22416, enter a "1" if the IC25 for survival is less than the critical dilution; otherwise, enter a "0."

4. Persistent Toxicity

The requirements of this Part apply only when a test demonstrates a significant effect at the critical dilution. A significant effect is defined as an IC25 of a specified endpoint (survival, growth, or reproduction) less than the critical dilution. Significant lethality is defined as a survival IC25 less than the critical dilution. Similarly, significant sublethality is defined as a growth or reproduction IC25 less than the critical dilution.

a. The permittee shall conduct a total of 2 additional tests (retests) for any species that demonstrates a significant effect (lethal or sublethal) at the critical dilution. The two retests shall be conducted monthly during the next two consecutive

- months. The permittee shall not substitute either of the two retests in lieu of routine toxicity testing. All reports shall be submitted within 20 days of test completion. Test completion is defined as the last day of the test.
- b. If the retests are performed due to a demonstration of significant lethality, and one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall initiate the TRE requirements as specified in Part 5. The provisions of Part 4.a. are suspended upon completion of the two retests and submittal of the TRE action plan and schedule defined in Part 5.
 - If neither test demonstrates significant lethality and the permittee is testing under the reduced testing frequency provision of Part 1.e., the permittee shall return to a quarterly testing frequency for that species.
- c. If the two retests are performed due to a demonstration of significant sublethality, and one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall again perform two retests as stipulated in Part 4.a.
- d. If the two retests are performed due to a demonstration of significant sublethality, and neither test demonstrates significant lethality, the permittee shall continue testing at the quarterly frequency.
- e. Regardless of whether retesting for lethal or sublethal effects, or a combination of the two, no more than one retest per month is required for a species.

5. <u>Toxicity Reduction Evaluation</u>

- a. Within 45 days of the retest that demonstrates significant lethality, or within 45 days of being so instructed due to multiple toxic events, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, or within 90 days of being so instructed due to multiple toxic events, the permittee shall submit a TRE action plan and schedule for conducting a TRE. The plan shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analyses to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall describe an approach for the reduction or elimination of lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:
 - 1) Specific Activities The TRE action plan shall specify the approach the permittee intends to utilize in conducting the TRE, including toxicity characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting characterization analyses, the permittee shall perform multiple

characterizations and follow the procedures specified in the document entitled "Toxicity Identification Evaluation: Characterization of Chronically Toxic Effluents, Phase I" (EPA/600/6-91/005F) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aquatic Toxicity Identification Evaluations, Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;

- 2) Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects a specific pollutant and source of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;
- 3) Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
- 4) Project Organization The TRE action plan should describe the project staff, project manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:
 - 1) results and interpretation of any chemical-specific analyses for the identified and suspected pollutant performed during the quarter;
 - 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;
 - any data and substantiating documentation which identifies the pollutant(s) and source of effluent toxicity;
 - 4) results of any studies/evaluations concerning the treatability of the

facility's effluent toxicity;

- 5) any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to meet no significant lethality at the critical dilution; and
- any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.
- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive months with at least monthly testing. At the end of the 12 months, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply as a result of corrective actions taken by the permittee. Corrective actions are defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

- g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 28 months from the last test day of the retest that confirmed significant lethal effects at the critical dilution. The permittee may petition the Executive Director (in writing) for an extension of the 28-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE. The report shall provide information pertaining to the specific control mechanism selected that will, when implemented, result in the reduction of effluent toxicity to no significant lethality at the critical dilution. The report shall also provide a specific corrective action schedule for implementing the selected control mechanism.
- h. Based on the results of the TRE and proposed corrective actions, this permit may

be amended to modify the biomonitoring requirements, where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and specify a chemical-specific limit.

i. Copies of any and all required TRE plans and reports shall also be submitted to the U.S. EPA Region 6 office, 6WQ-PO.

TABLE 1 (SHEET 1 OF 4)

BIOMONITORING REPORTING

CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION

		Date	Time	Date	Time	
Dates and Times	No. 1 FROM:			TO:		
Composites Collected	No. 2 FROM:			TO:		
	No. 3 FROM:			TO:		
Test initiated:			am/pm			_date
Dilution water used:	Rece	eiving wate	er	Synthetic I	Dilution water	
NU	MBER OF YOU	NG PROD	UCED PER AD	ULT AT EN	D OF TEST	

		Percent effluent										
REP	0%	27%	35%	47%	63%	84%						
A												
В												
С												
D												
Е												
F												
G												
Н												
I												
J												
Survival Mean												
Total Mean												
CV%*												

^{*}Coefficient of Variation = standard deviation x 100/mean (calculation based on young of the surviving adults)

Designate males (M), and dead females (D), along with number of neonates (x) released prior to death.

TABLE 1 (SHEET 2 OF 4)

CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION TEST

PERCENT SURVIVAL

		Percent effluent									
Time of Reading	0%	27%	35%	47%	63%	84%					
24h											
48h											
End of Test											

- 1. Is the IC25 for reproduction less than the critical dilution (63%)? _____YES ____NO
- 2. Is the IC25 for survival less than the critical dilution (63%)? ______YES _____NO
- 3. Enter percent effluent corresponding to each IC25 below:

IC25 survival = _____%

IC25 reproduction = _____%

TABLE 1 (SHEET 3 OF 4)

BIOMONITORING REPORTING

FATHEAD MINNOW LARVAE GROWTH AND SURVIVAL

		Date Time		Date	Time
Dates and Times Composites	No. 1	FROM:	T	O:	
Collected	No. 2	FROM:	7	TO:	
	No. 3	FROM:	Τ	TO:	
Test initiated:		am/pm	l		date
Dilution water used:		Receiving water	S	ynthetic dilution	water

FATHEAD MINNOW GROWTH DATA

Effluent Concentration	Avera	ge Dry We	Mean Dry	CV%*			
Concentration	A	В	С	D	E	Weight	
0%							
27%							
35%							
47%							
63%							
84%							

^{*} Coefficient of Variation = standard deviation x 100/mean

TABLE 1 (SHEET 4 OF 4)

BIOMONITORING REPORTING

FATHEAD MINNOW GROWTH AND SURVIVAL TEST

FATHEAD MINNOW SURVIVAL DATA

Effluent Concentration	Percer	nt Surviv	al in repl	licate ch	Mean percent survival			CV%*	
	A	В	С	D	Е	24h	48h	7 day	
0%									
27%						t .			
35%									
47%							·		
63%									
84%									

^{*} Coefficient of Variation = standard deviation x 100/mean

1.	Is the IC25 for growth less than the critical dilution (63%)?	YES	NO
2.	Is the IC25 for survival less than the critical dilution (63%)?	YES	NO
3.	Enter percent effluent corresponding to each IC25 below:		
	IC25 survival =%		
	IC25 growth =%		

24-HOUR ACUTE BIOMONITORING REQUIREMENTS: FRESHWATER

The provisions of this section apply to Outfall oo1 for WET testing.

1. Scope, Frequency, and Methodology

- a. The permittee shall test the effluent for lethality in accordance with the provisions in this section. Such testing will determine compliance with Texas Surface Water Quality Standard 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival of the appropriate test organisms in 100% effluent for a 24-hour period.
- b. The toxicity tests specified shall be conducted once per six months. The permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified in this section of the permit and in accordance with "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms," fifth edition (EPA-821-R-02-012) or its most recent update:
 - 1) Acute 24-hour static toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.
 - 2) Acute 24-hour static toxicity test using the fathead minnow (*Pimephales promelas*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.

The permittee must perform and report a valid test for each test species during the prescribed reporting period. An invalid test must be repeated during the same reporting period. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. In addition to an appropriate control, a 100% effluent concentration shall be used in the toxicity tests. The control and dilution water shall consist of standard, synthetic, moderately hard, reconstituted water.
- d. This permit may be amended to require a WET limit, a best management practice, a chemical-specific limit, or other appropriate actions to address toxicity. The permittee may be required to conduct a toxicity reduction evaluation (TRE) after multiple toxic events.

2. Required Toxicity Testing Conditions

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control, if the control fails to meet a mean survival equal to or greater than 90%.
- b. Dilution Water In accordance with Part 1.c., the control and dilution water shall consist of standard, synthetic, moderately hard, reconstituted water.
- c. Samples and Composites

- 1) The permittee shall collect one composite sample from Outfall 001.
- 2) The permittee shall collect the composite samples such that the sample is representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged.
- 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the composite sample. The samples shall be maintained at a temperature of o-6 degrees Centigrade during collection, shipping, and storage.
- 4) If Outfall 001 ceases discharging during the collection of the effluent composite sample, the requirements for the minimum number of effluent portions are waived. However, the permittee must have collected a composite sample volume sufficient for completion of the required test. The abbreviated sample collection, duration, and methodology must be documented in the full report.
- 5) The effluent sample shall not be dechlorinated after sample collection.

3. Reporting

All reports, tables, plans, summaries, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted pursuant to this permit in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 2 forms provided with this permit.
 - 1) Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.
 - 2) Quarterly biomonitoring test results are due on or before April 20th, July 20th, October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the water flea, Parameter TIE3D, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter "1."
 - 2) For the fathead minnow, Parameter TIE6C, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter "1."

- d. Enter the following codes for retests only:
 - 1) For retest number 1, Parameter 22415, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter "1."
 - 2) For retest number 2, Parameter 22416, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter "1."

4. Persistent Mortality

The requirements of this part apply when a toxicity test demonstrates significant lethality, which is defined as a mean mortality of 50% or greater of organisms exposed to the 100% effluent concentration for 24 hours.

- a. The permittee shall conduct 2 additional tests (retests) for each species that demonstrates significant lethality. The two retests shall be conducted once per week for 2 weeks. Five effluent dilution concentrations in addition to an appropriate control shall be used in the retests. These effluent concentrations are 6%, 13%, 25%, 50% and 100% effluent. The first retest shall be conducted within 15 days of the laboratory determination of significant lethality. All test results shall be submitted within 20 days of test completion of the second retest. Test completion is defined as the 24th hour.
- b. If one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall initiate the TRE requirements as specified in Part 5.

5. <u>Toxicity Reduction Evaluation</u>

- a. Within 45 days of the retest that demonstrates significant lethality, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, the permittee shall submit a TRE action plan and schedule for conducting a TRE. The plan shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analysis to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall lead to the successful elimination of significant lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:
 - 1) Specific Activities The TRE action plan shall specify the approach the permittee intends to utilize in conducting the TRE, including toxicity characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting

characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures" (EPA/600/6-91/003) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;

- Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures, and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects a specific pollutant and source of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;
- 3) Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
- 4) Project Organization The TRE action plan should describe the project staff, manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly TRE activities reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:
 - 1) results and interpretation of any chemical-specific analyses for the identified and suspected pollutant performed during the quarter;
 - 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;
 - any data and substantiating documentation that identifies the pollutant and source of effluent toxicity;

- 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
- 5) any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to eliminate significant lethality; and
- 6) any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.
- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive weeks with at least weekly testing. At the end of the 12 weeks, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply as a result of corrective actions taken by the permittee. Corrective actions are defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

- g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 18 months from the last test day of the retest that demonstrates significant lethality. The permittee may petition the Executive Director (in writing) for an extension of the 18-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE. The report shall specify the control mechanism that will, when implemented, reduce effluent toxicity as specified in item 5.h. The report will also specify a corrective action schedule for implementing the selected control mechanism.
- h. Within 3 years of the last day of the test confirming toxicity, the permittee shall comply with 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival

of the test organism in 100% effluent at the end of 24-hours. The permittee may petition the Executive Director (in writing) for an extension of the 3-year limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE.

The permittee may be exempted from complying with 30 TAC § 307.6(e)(2)(B) upon proving that toxicity is caused by an excess, imbalance, or deficiency of dissolved salts. This exemption excludes instances where individually toxic components (e.g., metals) form a salt compound. Following the exemption, this permit may be amended to include an ion-adjustment protocol, alternate species testing, or single species testing.

- i. Based upon the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and specify a chemical-specific limit.
- j. Copies of any and all required TRE plans and reports shall also be submitted to the U.S. EPA Region 6 office, 6WQ-PO.

TABLE 2 (SHEET 1 OF 2)

WATER FLEA SURVIVAL

GENERAL INFORMATION

	Time	Date
Composite Sample Collected		
Test Initiated		

PERCENT SURVIVAL

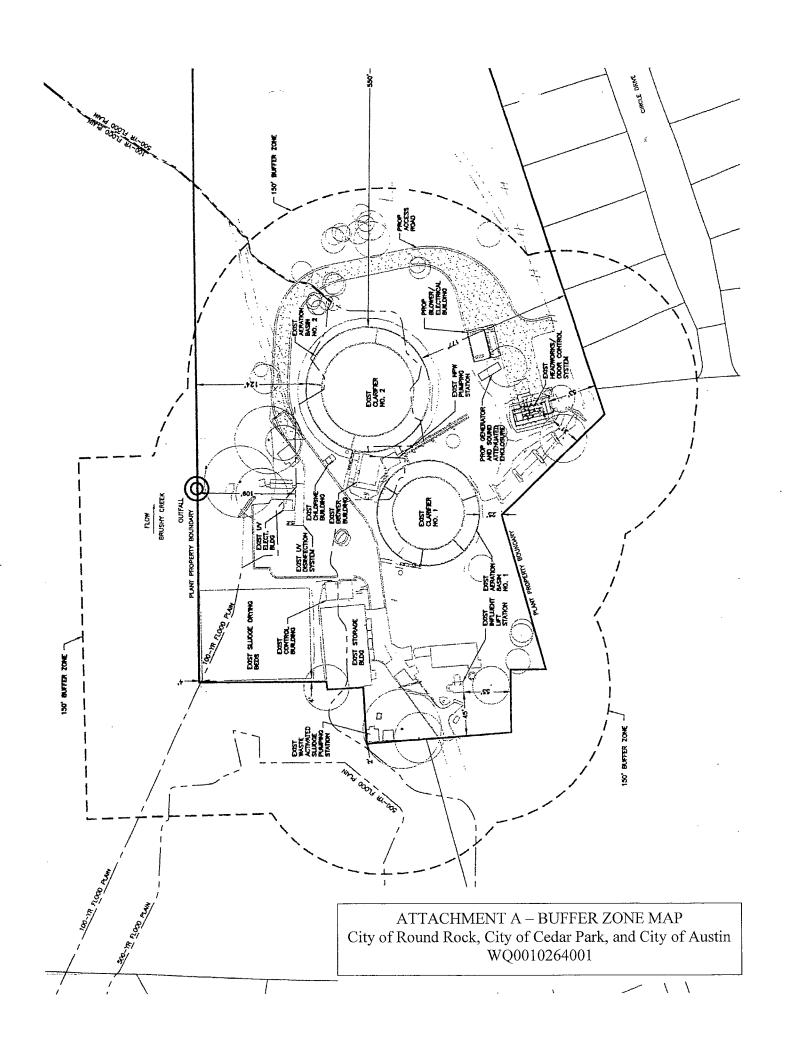
Time	Pan			Percent	effluent		
Time	Rep	0%	6%	13%	25%	50%	100%
	A						
	В						
o 4h	С						
24h	D						
	E						
	MEAN						

Enter	percent	effluent	correspo	onding '	to the	LC50	belo	ow:
	F		F	~			~ ~~	

24 hour LC50 = _____% effluent

TABLE 2 (SHEET 2 OF 2)

FATHEAD MINNOW SURVIVAL


GENERAL INFORMATION

	Time	Date
Composite Sample Collected		
Test Initiated		

PERCENT SURVIVAL

Time	Pop			Percent	effluent		
Time	Time Rep	ο%	6%	13%	25%	50%	100%
	A						
	В						
o 4h	С						
24h	D						
	E						
	MEAN						

24 hour LC50 = _____% effluent

FACT SHEET AND EXECUTIVE DIRECTOR'S PRELIMINARY DECISION

For draft Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010264001, EPA I.D. No. TX0075167, to discharge to water in the state.

Issuing Office: Texas Commission on Environmental Quality

P.O. Box 13087

Austin, Texas 78711-3087

Applicant: City of Round Rock, City of Cedar Park, City of Austin, and City of

Leander

221 East Main Street Round Rock, Texas 78664

Prepared By: Sonia Bhuiya

Municipal Permits Team

Wastewater Permitting Section (MC 148)

Water Quality Division

(512) 239-1205

Date: May 12, 2025

Permit Action: Renewal

1. EXECUTIVE DIRECTOR RECOMMENDATION

The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The draft permit includes an expiration date of **five years from the date of issuance**.

2. APPLICANT ACTIVITY

The applicant has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of the existing permit that authorizes the discharge of treated domestic wastewater at an annual average flow not to exceed 3.0 million gallons per day (MGD). The existing wastewater treatment facility serves portions of Round Rock, Cedar Park, Leander, Fern Bluffs Municipal Utility District (MUD), Brushy Creek MUD, and parts of North Austin.

3. FACILITY AND DISCHARGE LOCATION

The plant site is located at 1116 East Austin Avenue, in the City of Round Rock, Willamson County, Texas 78664.

Outfall Location:

Outfall Number	Latitude	Longitude	
001	30.514557 N	97.665391 W	_

The treated effluent is discharged directly to Brushy Creek in Segment No. 1244 of the Brazos River Basin. The designated uses for Segment No. 1244 are primary contact

Fact Sheet and Executive Director's Preliminary Decision

recreation, public water supply, aguifer protection, and high aquatic life use.

4. TREATMENT PROCESS DESCRIPTION AND SEWAGE SLUDGE DISPOSAL

The Brushy Creek Regional West Wastewater Treatment Facility is an activated sludge process plant operated in the extended aeration mode. Treatment units include an influent lift station, two fine screens, two selector basins, two aeration basins, two final clarifiers, and an Ultraviolet (UV) disinfection system. The facility is in operation.

Sludge generated from the treatment facility is conveyed via pipe to the Brushy Creek Regional East Wastewater Treatment Facility, Permit No. WQ0010264002, in Williamson County. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

5. INDUSTRIAL WASTE CONTRIBUTION

The draft permit includes pretreatment requirements that are appropriate for a facility of this size and complexity. The Brushy Creek Regional West WWTP receives significant industrial wastewater contributions.

6. SUMMARY OF SELF-REPORTED EFFLUENT ANALYSES

The following is a summary of the applicant's effluent monitoring data for the period August 2019 through September 2024. The average Daily Average value is computed by the averaging of all 30-day average values for the reporting period for each parameter: flow, five-day carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), ammonia nitrogen (NH₃-N), Nitrate- Nitrogen, and total Phosphorus (TP). The average Daily Average value for *Escherichia coli* (*E. coli*) in colony-forming units (CFU) or most probable number (MPN) per 100 ml is calculated via geometric mean.

<u>Parameter</u>	Average of Daily Avg
Flow, MGD	1.65
CBOD ₅ , mg/l	4.59
TSS, mg/l	3.61
NH ₃ -N, mg/l	0.45
E. coli, CFU or MPN per 100 ml	10
Nitrate- Nitrogen, mg/l	10.65
TP, mg/l	0.54

7. DRAFT PERMIT CONDITIONS AND MONITORING REQUIREMENTS

The effluent limitations and monitoring requirements for those parameters that are limited in the draft permit are as follows:

A. INTERIM PHASE EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

The annual average flow of effluent shall not exceed 3.0 MGD, nor shall the average discharge during any two-hour period (2-hour peak) exceed 6,250

Fact Sheet and Executive Director's Preliminary Decision

gallons per minute.

<u>Parameter</u>	<u> 30-Day Average</u>		<u>7-Day</u>	<u>Daily</u>
			<u>Average</u>	<u>Maximum</u>
	<u>mg/l</u>	<u>lbs/day</u>	<u>mg/l</u>	<u>mg/l</u>
CBOD_5	7	175	12	22
TSS	15	375	25	40
NH_3 -N	3	75	6	10
Nitrate-Nitrogen	Report	Report	N/A	Report
Total P	1.0	25	2	4
DO (minimum)	6.0	N/A	N/A	N/A
E. coli, CFU or MPN	126	N/A	N/A	399
per 100 ml				

The pH shall not be less than 6.5 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.

The permittee shall utilize an Ultraviolet Light (UV) system for disinfection purposes. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.

<u>Parameter</u>	Monitoring Requirement
Flow, MGD	Continuous
$CBOD_5$	Two/week
TSS	Two/week
NH ₃ -N	Two/week
Nitrate-Nitrogen	Two/week
Total P	Two/week
DO	Two/week
E. coli	Daily

B. FINAL PHASE EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

The annual average flow of effluent shall not exceed 3.0 MGD, nor shall the average discharge during any two-hour period (2-hour peak) exceed 6,250 gallons per minute.

<u>Parameter</u>	30-Day Average		<u>7-Day</u>	<u>Daily</u>
			<u>Average</u>	<u>Maximum</u>
	mg/l	<u>lbs/day</u>	<u>mg/l</u>	<u>mg/l</u>
$CBOD_5$	7	175	12	22
TSS	15	375	25	40
NH_3 - N	2	50	5	10
Nitrate-Nitrogen	Report	Report	N/A	Report
Total P	1.0	25	2	4
DO (minimum)	6.0	N/A	N/A	N/A
E. coli, CFU or MPN	126	N/A	N/A	399

Fact Sheet and Executive Director's Preliminary Decision

per 100 ml

 $E.\ coli$

The pH shall not be less than 6.5 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.

The permittee shall utilize an Ultraviolet Light (UV) system for disinfection purposes. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.

Monitoring Requirement Parameter Flow, MGD Continuous CBOD₅ Two/week Two/week **TSS** NH₃-N Two/week Two/week Nitrate-Nitrogen Total P Two/week DO Two/week

C. SEWAGE SLUDGE REQUIREMENTS

The draft permit includes Sludge Provisions according to the requirements of 30 TAC Chapter 312, Sludge Use, Disposal, and Transportation. Sludge generated from the treatment facility is conveyed via pipe to the Brushy Creek Regional East Wastewater Treatment Facility, Permit No. WQ0010264002, in Williamson County. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

Daily

D. PRETREATMENT REQUIREMENTS

Permit requirements for pretreatment are based on TPDES regulations contained in 30 TAC Chapter 305 which references 40 CFR Part 403, General Pretreatment Regulations for Existing and New Sources of Pollution [rev. Federal Register/Vol. 70/No. 198/Friday, October 14, 2005/Rules and Regulations, pages 60134-60798]. The permit includes specific requirements that establish responsibilities of local government, industry, and the public to implement the standards to control pollutants which pass through or interfere with treatment processes in publicly owned treatment works or which may contaminate the sewage sludge. This permit has appropriate pretreatment language for a facility of this size and complexity.

The co-permittees have a pretreatment program which was approved by the U.S. Environmental Protection Agency (EPA) for the Brazos River Authority on **October 27**, **1990**, and modified on **December 1**, **1994**, **August 16**, **2005**, **May 14**, **2020** (nonsubstantial Streamlining Rule), and **January 3**, **2024** (TBLLs). The pretreatment program was subsequently transferred to the Cities of Round Rock, Cedar Park, and Austin on June 3, 2010, for the Brushy Creek

Fact Sheet and Executive Director's Preliminary Decision

Regional West Wastewater Treatment Facility (TPDES Permit No. WQ0010264001), and on December 2, 2010, for the Brushy Creek Regional East Wastewater Treatment Facility (TPDES Permit No. WQ0010264002). As a result of the permit transfers, the co-permittees were required to submit a modified pretreatment program to the Executive Director for review and approval. As required by TPDES Permit No. WQ0010264002, "tracking" plant of the approved pretreatment program, the co-permittees developed and submitted a modified pretreatment program to reflect all the co-permittees as the Control Authority (CA) for the Brushy Creek Regional Wastewater System. The co-permittees (which now includes City of Leander) are the CA with a 'designated agent' for purposes of pretreatment report and recordkeeping requirements, which is the City of Round Rock as of December 2, 2011.

The co-permittees are required, under the conditions of the approved pretreatment program, to prepare annually a list of industrial users which during the preceding twelve months were in significant noncompliance with applicable pretreatment requirements for those facilities covered under the program. This list is to be published annually during the month of **October** in a newspaper of general circulation that provides meaningful public notice within the jurisdiction(s) served by the POTW.

Effective December 21, 2025, the co-permittees must submit the pretreatment program annual status report electronically using the online electronic reporting system available through the TCEQ website unless the co-permittees request and obtain an electronic reporting waiver. [rev. Federal Register/ Vol. 80/ No. 204/ Friday, October 22, 2015/ Rules and Regulations, pages 64064-64158].

The co-permittees are under a continuing duty to: establish and enforce specific local limits to implement the provisions of 40 CFR § 403.5, to develop and enforce local limits as necessary, and to modify the approved POTW pretreatment program as necessary to comply with federal, state, and local law, as amended. The co-permittees is required to effectively enforce such limits and to modify their pretreatment program, including the Legal Authority, Enforcement Response Plan, and/or Standard Operating Procedures, if required by the Executive Director to reflect changing conditions at the POTW.

Substantial modifications will be approved in accordance with 40 CFR § 403.18, and the modification will become effective upon approval by the Executive Director in accordance with 40 CFR § 403.

E. WHOLE EFFLUENT TOXICITY (BIOMONITORING) REQUIREMENTS

(1) The draft permit includes chronic freshwater biomonitoring requirements as follows. The permit requires five dilutions in addition to the control (0% effluent) to be used in the toxicity tests. These additional effluent concentrations shall be 27%, 47%, 63%, 84%, and 100%. The low-flow effluent concentration (critical dilution) is defined as 63% effluent. The critical dilution is in accordance with the "Aquatic Life Criteria" section of the "Water Quality Based Effluent Limitations/Conditions" section.

Fact Sheet and Executive Director's Preliminary Decision

- (a) Chronic static renewal survival and reproduction test using the water flea (*Ceriodaphnia dubia*). The frequency of the testing is once per quarter for at least the first year of testing, after which the permittee may apply for a testing frequency reduction.
- (b) Chronic static renewal 7-day larval survival and growth test using the fathead minnow (*Pimephales promelas*). The frequency of the testing is once per quarter for at least the first year of testing, after which the permittee may apply for a testing frequency reduction.
- (2) The draft permit includes the following minimum 24-hour acute freshwater biomonitoring requirements at a frequency of once per six months:
 - (a) Acute 24-hour static toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*).
 - (b) Acute 24-hour static toxicity test using the fathead minnow (*Pimephales promelas*).

F. SUMMARY OF CHANGES FROM APPLICATION

None.

G. SUMMARY OF CHANGES FROM EXISTING PERMIT

The Standard Permit Conditions, Sludge Provisions, Other Requirements, and Biomonitoring sections of the draft permit have been updated.

For Publicly Owned Treatment Works (POTWs), effective December 21, 2025, the permittee must submit the written report for unauthorized discharges and unanticipated bypasses that exceed any effluent limit in the permit using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

Certain accidental discharges or spills of treated or untreated was tewater from wastewater treatment facilities or collection systems owned or operated by a local government may be reported on a monthly basis in accordance with 30 TAC \S 305.132.

The draft permit includes all updates based on the 30 TAC § 312 rule change effective April 23, 2020.

Based on dissolved solids screening, no additional limits or monitoring requirements are needed for total dissolved solids, chloride, or sulfate.

Based on pH screening, the current permit limits (6.5 to 9.0 standard units) are protective of segment pH criteria.

Based on model results, effluent limits of 7 mg/L CBOD₅, 3 mg/l change to 2

Fact Sheet and Executive Director's Preliminary Decision

mg/L NH₃-N, and 6.0 mg/L DO are predicted to be **necessary** to maintain dissolved oxygen levels above the criterion stipulated by the Standards Implementation Team for Brushy Creek (5.0 mg/l).

8. DRAFT PERMIT RATIONALE

A. TECHNOLOGY-BASED EFFLUENT LIMITATIONS/CONDITIONS

Regulations promulgated in Title 40 of the CFR require that technology-based limitations be placed in wastewater discharge permits based on effluent limitations guidelines, where applicable, or on best professional judgment (BPJ) in the absence of guidelines.

Effluent limitations for maximum and minimum pH are in accordance with 40 CFR § 133.102(c) and 30 TAC § 309.1(b).

B. WATER QUALITY SUMMARY AND COASTAL MANAGEMENT PLAN

(1) WATER QUALITY SUMMARY

The treated effluent is discharged directly to Brushy Creek in Segment No. 1244 of the Brazos River Basin. The designated uses for Segment No. 1244 are primary contact recreation, public water supply, aquifer protection, and high aquatic life use. The effluent limitations in the draft permit will maintain and protect the existing instream uses. All determinations are preliminary and subject to additional review and/or revisions.

The discharge from this permit action is not expected to have an effect on any federal endangered or threatened aquatic or aquatic-dependent species or proposed species or their critical habitat. This determination is based on the United States Fish and Wildlife Service's (USFWS's) biological opinion on the State of Texas authorization of the TPDES (September 14, 1998; October 21, 1998, update). To make this determination for TPDES permits, TCEQ and EPA only considered aquatic or aquatic-dependent species occurring in watersheds of critical concern or high priority as listed in Appendix A of the USFWS biological opinion. The determination is subject to reevaluation due to subsequent updates or amendments to the biological opinion. The permit does not require EPA review with respect to the presence of endangered or threatened species.

Segment No. 1244 is currently listed on the State's inventory of impaired and threatened waters, the 2022 CWA § 303(d) list. The listing is for bacteria from the confluence San Gabriel River upstream to the confluence of Mustang Creek (AU 1244_01) and from the confluence of Cottonwood Creek upstream to the confluence of Lake Creek (AU 1244_03). This facility is designed to provide adequate disinfection and, when operated properly, should not add to the bacterial impairment of the segment.

Fact Sheet and Executive Director's Preliminary Decision

The pollutant analysis of treated effluent provided by the permittee in the application indicated 625 mg/l total dissolved solids (TDS), 47.4 mg/l sulfate, and 211 mg/l chloride present in the effluent. The segment criteria for Segment No. 1244 are 800 mg/l for TDS, 150 mg/l for sulfate, and 200 mg/l for chlorides. Based on dissolved solids screening, no additional limits or monitoring requirements are needed for total dissolved solids, chloride, or sulfate

The effluent limitations and conditions in the draft permit comply with EPA-approved portions of the 2018 Texas Surface Water Quality Standards (TSWQS), 30 TAC §§ 307.1 - 307.10, effective March 1, 2018; 2014 TSWQS, effective March 6, 2014; 2010 TSWQS, effective July 22, 2010; and 2000 TSWQS, effective July 26, 2000.

(2) CONVENTIONAL PARAMETERS

Effluent limitations for the conventional effluent parameters (i.e., Five-Day Biochemical Oxygen Demand or Five-Day Carbonaceous Biochemical Oxygen Demand, Ammonia Nitrogen, etc.) are based on stream standards and waste load allocations for water quality-limited streams as established in the TSWQS and the State of Texas Water Quality Management Plan (WQMP).

The effluent limits recommended above have been reviewed for consistency with the State of Texas Water Quality Management Plan (WQMP). The recommended limits are consistent with the approved WQMP.

The effluent limitations in the draft permit meet the requirements for secondary treatment and the requirements for disinfection according to 30 TAC Chapter 309, Subchapter A: Effluent Limitations.

(3) COASTAL MANAGEMENT PLAN

The facility is not located in the Coastal Management Program boundary.

C. WATER QUALITY-BASED EFFLUENT LIMITATIONS/CONDITIONS

(1) GENERAL COMMENTS

The Texas Surface Water Quality Standards (30 TAC Chapter 307) state that surface waters will not be toxic to man, or to terrestrial or aquatic life. The methodology outlined in the *Procedures to Implement the Texas Surface Water Quality Standards* (June 2010) is designed to ensure compliance with 30 TAC Chapter 307. Specifically, the methodology is designed to ensure that no source will be allowed to discharge any wastewater that: (1) results in instream aquatic toxicity; (2) causes a violation of an applicable narrative or numerical state water quality standard; (3) results in the endangerment of a drinking water supply; or (4) results in aquatic bioaccumulation that threatens human health.

Fact Sheet and Executive Director's Preliminary Decision

(2) AQUATIC LIFE CRITERIA

(a) SCREENING

Water quality-based effluent limitations are calculated from freshwater aquatic life criteria found in Table 1 of the Texas Surface Water Quality Standards (30 TAC Chapter 307).

Acute freshwater criteria are applied at the edge of the zone of initial dilution (ZID), and chronic freshwater criteria are applied at the edge of the aquatic life mixing zone. The ZID for this discharge is defined as 20 feet upstream and 60 feet downstream from the point where the discharge enters Brushy Creek. The aquatic life mixing zone for this discharge is defined as 100 feet upstream and 300 feet downstream from the point where the discharge enters Brushy Creek.

TCEQ uses the mass balance equation to estimate dilutions at the edges of the ZID and aquatic life mixing zone during critical conditions. The estimated dilution at the edge of the aquatic life mixing zone is calculated using the permitted flow of 3.0 MGD and the 7-day, 2-year (7Q2) flow of 2.72 cfs for Brushy Creek. The estimated dilution at the edge of the ZID is calculated using the permitted flow of 3.0 MGD and 25% of the 7Q2 flow. The following critical effluent percentages are being used:

Acute Effluent %: 87.22% Chronic Effluent %: 63.05%

Waste load allocations (WLAs) are calculated using the above estimated effluent percentages, criteria outlined in the Texas Surface Water Quality Standards, and partitioning coefficients for metals (when appropriate and designated in the implementation procedures). The WLA is the end-ofpipe effluent concentration that can be discharged when, after mixing in the receiving stream, instream numerical criteria will not be exceeded. From the WLA, a long-term average (LTA) is calculated using a log normal probability distribution, a given coefficient of variation (0.6), and a 90th percentile confidence level. The LTA is the long-term average effluent concentration for which the WLA will never be exceeded using a selected percentile confidence level. The lower of the two LTAs (acute and chronic) is used to calculate a daily average and daily maximum effluent limitation for the protection of aquatic life using the same statistical considerations with the 99th percentile confidence level and a standard number of monthly effluent samples collected (12). Assumptions used in deriving the effluent limitations include segment values for hardness, chlorides, pH, and total suspended solids (TSS) according to the segmentspecific values contained in the TCEQ guidance document *Procedures to* Implement the Texas Surface Water Quality Standards. The segment values are 160 mg/l for hardness (as calcium carbonate), 55 mg/l for chlorides, 7.3 standard units for pH, and 2 mg/l for TSS. For additional details on the calculation of water quality-based effluent limitations, refer to the TCEQ guidance document.

Fact Sheet and Executive Director's Preliminary Decision

TCEQ practice for determining significant potential is to compare the reported analytical data against percentages of the calculated daily average water quality-based effluent limitation. Permit limitations are required when analytical data reported in the application exceeds 85% of the calculated daily average water quality-based effluent limitation. Monitoring and reporting is required when analytical data reported in the application exceeds 70% of the calculated daily average water quality-based effluent limitation. See Attachment A of this Fact Sheet.

(b) PERMIT ACTION

Analytical data reported in the application was screened against calculated water quality-based effluent limitations for the protection of aquatic life. Reported analytical data does not exceed 70% of the calculated daily average water quality-based effluent limitations for aquatic life protection

(3) AQUATIC ORGANISM BIOACCUMULATION CRITERIA

(a) SCREENING

Water quality-based effluent limitations for the protection of human health are calculated using criteria for the consumption of freshwater fish tissue found in Table 2 of the Texas Surface Water Quality Standards (30 TAC Chapter 307). Freshwater fish tissue bioaccumulation criteria are applied at the edge of the human health mixing zone. The human health mixing zone for this discharge is identical to the aquatic life mixing zone. TCEQ uses the mass balance equation to estimate dilution at the edge of the human health mixing zone during average flow conditions. The estimated dilution at the edge of the human health mixing zone is calculated using the permitted flow of 3.0 MGD and the harmonic mean flow of 5.86 cfs for Brushy Creek. The following critical effluent percentage is being used:

Human Health Effluent %: 44.2%

Water quality-based effluent limitations for human health protection against the consumption of fish tissue are calculated using the same procedure as outlined for calculation of water quality-based effluent limitations for aquatic life protection. A 99th percentile confidence level in the long-term average calculation is used with only one long-term average value being calculated.

Significant potential is again determined by comparing reported analytical data against 70% and 85% of the calculated daily average water quality-based effluent limitation. See Attachment A of this Fact Sheet.

(b) PERMIT ACTION

Fact Sheet and Executive Director's Preliminary Decision

Reported analytical data does not exceed 70% of the calculated daily average water quality-based effluent limitations for human health protection.

(4) DRINKING WATER SUPPLY PROTECTION

(a) SCREENING

Water Quality Segment No. 1244, which receives the discharge from this facility, is designated as a public water supply. The screening procedure used to calculate water quality-based effluent limitations and determine the need for effluent limitations or monitoring requirements is identical to the procedure outlined in the aquatic organism bioaccumulation section of this fact sheet. Criteria used in the calculation of water quality-based effluent limitations for the protection of a drinking water supply are outlined in Table 2 (Water and Fish) of the Texas Surface Water Quality Standards (30 TAC Chapter 307). These criteria are developed from either drinking water maximum contaminant level (MCL) criteria outlined in 30 TAC Chapter 290 or from the combined human health effects of exposure to consumption of fish tissue and ingestion of drinking water.

(b) PERMIT ACTION

Criteria in the "Water and Fish" section of Table 2 do not distinguish if the criteria is based on a drinking water standard or the combined effects of ingestion of drinking water and fish tissue. Effluent limitations or monitoring requirements to protect the drinking water supply (and other human health effects) were previously calculated and outlined in the aquatic organism bioaccumulation criteria section of this fact sheet.

(5) WHOLE EFFLUENT TOXICITY (BIOMONITORING) CRITERIA

(a) SCREENING

TCEQ has determined that there may be pollutants present in the effluent that may have the potential to cause toxic conditions in the receiving stream. Whole effluent biomonitoring is the most direct measure of potential toxicity that incorporates the effects of synergism of effluent components and receiving stream water quality characteristics. Biomonitoring of the effluent is, therefore, required as a condition of this permit to assess potential toxicity.

The existing permit includes chronic freshwater biomonitoring requirements. A summary of the biomonitoring testing for the facility indicates that in the past 3 years, the permittee performed 26 chronic tests, with no demonstrations of significant toxicity (i.e., failures) by the water flea or fathead minnow.

A reasonable potential determination was performed in accordance with 40 CFR § 122.44(d)(1)(ii) to determine whether the discharge will

Fact Sheet and Executive Director's Preliminary Decision

reasonably be expected to cause or contribute to an exceedance of a state water quality standard or criterion within that standard. Each test species is evaluated separately. The RP determination is based on representative data from the previous three years of chronic (or 48-hour acute) WET testing. This determination was performed in accordance with the methodology outlined in the TCEQ letter to the EPA dated December 28, 2015, and approved by the EPA in a letter dated December 28, 2015.

With no demonstrations of significant toxicity during the period of record for either test species, a determination of no reasonable potential was made.

All of the test results were used for this determination.

(b) PERMIT ACTION

The test species are appropriate to measure the toxicity of the effluent consistent with the requirements of the State water quality standards. The biomonitoring frequency has been established to reflect the likelihood of ambient toxicity and to provide data representative of the toxic potential of the facility's discharge. This permit may be reopened to require effluent limits, additional testing, and/or other appropriate actions to address toxicity if biomonitoring data show actual or potential ambient toxicity to be the result of the permittee's discharge to the receiving stream or water body.

(6) WHOLE EFFLUENT TOXICITY CRITERIA (24-HOUR ACUTE)

(a) SCREENING

The existing permit includes 24-hour acute freshwater biomonitoring language. A summary of the biomonitoring testing for the facility indicates that in the past three years, the permittee has performed twelve 24-hour acute tests, with no demonstrations of significant mortality.

(b) PERMIT ACTION

The draft permit includes 24-hour 100% acute biomonitoring tests for the life of the permit.

9. WATER QUALITY VARIANCE REQUESTS

No variance requests have been received.

10. PROCEDURES FOR FINAL DECISION

When an application is declared administratively complete, the Chief Clerk sends a letter to the applicant advising the applicant to publish the Notice of Receipt of Application and Intent to Obtain Permit in the newspaper. In addition, the Chief Clerk instructs the applicant to place a copy of the application in a public place for review and copying in the

Fact Sheet and Executive Director's Preliminary Decision

county where the facility is or will be located. This application will be in a public place throughout the comment period. The Chief Clerk also mails this notice to any interested persons and, if required, to landowners identified in the permit application. This notice informs the public about the application and provides that an interested person may file comments on the application or request a contested case hearing or a public meeting.

Once a draft permit is completed, it is sent, along with the Executive Director's preliminary decision, as contained in the technical summary or fact sheet, to the Chief Clerk. At that time, the Notice of Application and Preliminary Decision will be mailed to the same people and published in the same newspaper as the prior notice. This notice sets a deadline for making public comments. The applicant must place a copy of the Executive Director's preliminary decision and draft permit in the public place with the application.

Any interested person may request a public meeting on the application until the deadline for filing public comments. A public meeting is intended for the taking of public comment and is not a contested case proceeding.

After the public comment deadline, the Executive Director prepares a response to all significant public comments on the application or the draft permit raised during the public comment period. The Chief Clerk then mails the Executive Director's response to comments and final decision to people who have filed comments, requested a contested case hearing, or requested to be on the mailing list. This notice provides that if a person is not satisfied with the Executive Director's response and decision, they can request a contested case hearing or file a request to reconsider the Executive Director's decision within 30 days after the notice is mailed.

The Executive Director will issue the permit unless a written hearing request or request for reconsideration is filed within 30 days after the Executive Director's response to comments and final decision is mailed. If a hearing request or request for reconsideration is filed, the Executive Director will not issue the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting. If a contested case hearing is held, it will be a legal proceeding similar to a civil trial in state district court.

If the Executive Director calls a public meeting or the Commission grants a contested case hearing as described above, the Commission will give notice of the date, time, and place of the meeting or hearing. If a hearing request or request for reconsideration is made, the Commission will consider all public comments in making its decision and shall either adopt the Executive Director's response to public comments or prepare its own response.

For additional information about this application, contact Sonia Bhuiya at (512) 239-1205.

1. ADMINISTRATIVE RECORD

The following items were considered in developing the draft permit:

A. PERMIT(S)

Fact Sheet and Executive Director's Preliminary Decision

TPDES Permit No. WQ0010264001 issued on March 11, 2020.

B. APPLICATION

Application received on September 9, 2024, and additional information received on October 22, 2024.

C. MEMORANDA

Interoffice Memoranda from the Water Quality Assessment Section of the TCEQ Water Quality Division. Interoffice Memorandum from the Pretreatment Team of the TCEQ Water Quality Division.

D. MISCELLANEOUS

Federal Clean Water Act § 402; Texas Water Code § 26.027; 30 TAC Chapters 30, 305, 309, 312, and 319; Commission policies; and U.S. Environmental Protection Agency guidelines.

Texas Surface Water Quality Standards, 30 TAC §§ 307.1 - 307.10.

Procedures to Implement the Texas Surface Water Quality Standards (IP), Texas Commission on Environmental Quality, June 2010, as approved by the U.S. Environmental Protection Agency, and the IP, January 2003, for portions of the 2010 IP not approved by the U.S. Environmental Protection Agency.

Texas 2022 Clean Water Act Section 303(d) List, Texas Commission on Environmental Quality, June 1, 2022; approved by the U.S. Environmental Protection Agency on July 7, 2022.

Texas Natural Resource Conservation Commission, Guidance Document for Establishing Monitoring Frequencies for Domestic and Industrial Wastewater Discharge Permits, Document No. 98-001.000-OWR-WQ, May 1998.

Fact Sheet and Executive Director's Preliminary Decision

Attachment A: Calculated Water Quality Based Effluent Limitations

TEXTOX MENU #3 - PERENNIAL STREAM OR RIVER

The water quality-based effluent limitations developed below are calculated using:

Table 1, 2014 Texas Surface Water Quality Standards (30 TAC 307) for Freshwater Aquatic

Table 2, 2018 Texas Surface Water Quality Standards for Human Health

"Procedures to Implement the Texas Surface Water Quality Standards," TCEQ, June 2010

PERMIT INFORMATION

City of Round Rock, City of Cedar Park, City of
Austin, and City of Leander
WQ0010264001
001
Sonia Bhuiya
June 5, 2025

DISCHARGE INFORMATION

Receiving Waterbody:	Brushy Creel	k
Segment No.:	1244	
TSS (mg/L):	2	
pH (Standard Units):	7.6	
Hardness (mg/L as CaCO ₃):	180	
Chloride (mg/L):	55	
Effluent Flow for Aquatic Life (MGD):	3	
Critical Low Flow [7Q2] (cfs):	2.72	
% Effluent for Chronic Aquatic Life		
(Mixing Zone):	63.05	
% Effluent for Acute Aquatic Life		
(ZID):	87.22	
Effluent Flow for Human Health		
(MGD):	3	
Harmonic Mean Flow (cfs):	5.86	
% Effluent for Human Health:	44.20	
Human Health Criterion (select:		
PWS, FISH, or INC)	PWS	

CALCULATE DISSOLVED FRACTION (AND ENTER WATER EFFECT RATIO IF APPLICABLE):

Stream/River Metal	Intercept (b)	Slope (m)	Partition Coefficient (Kp)	Dissolved Fraction (Cd/Ct)	Source	Water Effect Ratio (WER)	Source
					Assume		Assume
Aluminum	N/A	N/A	N/A	1.00	d	1.00	d
							Assume
Arsenic	5.68	-0.73	288567.96	0.634		1.00	d
			1819014.2				Assume
Cadmium	6.60	-1.13	7	0.216		1.00	d
			1737969.3				Assume
Chromium (total)	6.52	-0.93	1	0.223		1.00	d
			1737969.3				Assume
Chromium (trivalent)	6.52	-0.93	1	0.223		1.00	d
					Assume		Assume
Chromium (hexavalent)	N/A	N/A	N/A	1.00	d	1.00	d
							Assume
Copper	6.02	-0.74	626957.07	0.444		1.00	d

			1618735.9				Assume
Lead	6.45	-0.80	2	0.236		1.00	d
					Assume		Assume
Mercury	N/A	N/A	N/A	1.00	d	1.00	d
	,						Assume
Nickel	5.69	-0.57	329923.24	0.602		1.00	d
					Assume		Assume
Selenium	N/A	N/A	N/A	1.00	d	1.00	d
	,		1174732.8				Assume
Silver	6.38	-1.03	3	0.299		1.00	d
							Assume
Zinc	6.10	-0.70	774959.49	0.392		1.00	d

AQUATIC LIFE CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

		FW						
Parameter	FW Acute Criterion (μg/L)	Chronic Criterion (μg/L)	WLAa (μg/L)	WLAc (μg/L)	LTAα (μg/L)	LTAc (μg/L)	Daily Avg. (μg/L)	Daily Max. (μg/L)
Aldrin	3.0	N/A	3.44	N/A	1.97	N/A	2.90	6.13
Aluminum	991	N/A	1136	N/A	651	N/A	957	2025
Arsenic	340	150	615	375	352	289	425	898
Cadmium	15.2	0.370	80.8	2.72	46.3	2.10	3.08	6.52
Carbaryl	2.0	N/A	2.29	N/A	1.31	N/A	1.93	4.09
Chlordane	2.4	0.004	2.75	0.0063	1.58	0.0049	0.0072	0.0152
Chlorpyrifos	0.083	0.041	0.095	0.065	0.055	0.050	0.074	0.156
Chromium (trivalent)	922	120	4732	851	2711	656	964	2039
Chromium (hexavalent)	15.7	10.6	18.0	16.8	10.3	12.9	15.2	32.1
Copper	24.7	15.6	63.9	55.9	36.6	43.1	53.8	114
Cyanide (free)	45.8	10.7	52.5	17.0	30.1	13.1	19.2	40.6
4,4'-DDT	1.1	0.001	1.26	0.0016	0.723	0.0012	0.0018	0.0038
Demeton	N/A	0.1	N/A	0.159	N/A	0.122	0.180	0.380
Diazinon	0.17	0.17	0.195	0.270	0.112	0.208	0.164	0.347
Dicofol [Kelthane]	59.3	19.8	68.0	31.4	39.0	24.2	35.5	75.2
Dieldrin	0.24	0.002	0.275	0.0032	0.158	0.0024	0.0036	0.0076
Diuron	210	70	241	111	138	85	126	266
Endosulfan I (alpha)	0.22	0.056	0.252	0.089	0.145	0.068	0.101	0.213
Endosulfan II (beta)	0.22	0.056	0.252	0.089	0.145	0.068	0.101	0.213
Endosulfan sulfate	0.22	0.056	0.252	0.089	0.145	0.068	0.101	0.213
Endrin	0.086	0.002	0.099	0.0032	0.056	0.0024	0.0036	0.0076
Guthion [Azinphos Methyl]	N/A	0.01	N/A	0.016	N/A	0.012	0.018	0.038
Heptachlor	0.52	0.004	0.60	0.0063	0.342	0.0049	0.0072	0.0152
Hexachlorocyclohexane (gamma) [Lindane]	1.126	0.08	1.29	0.127	0.740	0.098	0.144	0.304
Lead	122	4.74	591	31.9	339	24.5	36.1	76
Malathion	N/A	0.01	N/A	0.016	N/A	0.012	0.018	0.038
Mercury	2.4	1.3	2.75	2.06	1.58	1.59	2.32	4.90
Methoxychlor	N/A	0.03	N/A	0.048	N/A	0.037	0.054	0.114
Mirex	N/A	0.001	N/A	0.0016	N/A	0.0012	0.0018	0.0038
Nickel	770	85.5	1465	225	840	173	255	539
Nonylphenol	28	6.6	32.1	10.5	18.4	8.06	11.8	25.1
Parathion (ethyl)	0.065	0.013	0.075	0.021	0.043	0.016	0.023	0.049
Pentachlorophenol	15.9	12.2	18.3	19.4	10.5	14.9	15.4	32.6
Phenanthrene	30	30	34.4	47.6	19.7	36.6	29.0	61.3
	2.0	0.014	2.29	0.022	1.31	0.017		
Polychlorinated Biphenyls [PCBs]							0.025	0.053
Selenium	20	5	22.9	7.93	13.1	6.11	9.0	19.0

Silver	0.8	N/A	14.61	N/A	8.37	N/A	12.31	26.0
						0.0002		0.0007
Toxaphene	0.78	0.0002	0.894	0.00032	0.512	4	0.00036	6
Tributyltin [TBT]	0.13	0.024	0.149	0.038	0.085	0.029	0.043	0.091
2,4,5 Trichlorophenol	136	64	156	102	89.3	78.2	115	243
Zinc	193	194	564	786	323	605	475	1005

HUMAN HEALTH

CALCIII ATE DAILY AVERAGE AND DAILY MAYIMILM EEELLIENT LIMITATIONS

	Water	I EFFLUENT LI	Incidental				
	and Fish	Fish Only	Fish			Daily	Daily
	Criterion	Criterion	Criterion	WLAh	LTAh	Avg.	Max.
Parameter	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Acrylonitrile	1.0	115	1150	2.26	2.10	3.09	6.54
		1.147E-			2.41E-	3.54E-	7.50E-
Aldrin	1.146E-05	05	1.147E-04	2.59E-05	05	05	05
Anthracene	1109	1317	13170	2509	2333	3430	7257
Antimony	6	1071	10710	13.6	12.6	18.6	39.3
Arsenic	10	N/A	N/A	35.7	33.2	48.8	103
Barium	2000	N/A	N/A	4525	4208	6186	13088
Benzene	5	581	5810	11.3	10.5	15.5	32.7
Benzidine	0.0015	0.107	1.07	0.0034	0.0032	0.0046	0.0098
Benzo(a)anthracene	0.024	0.025	0.25	0.054	0.050	0.074	0.157
Benzo(a)pyrene	0.0025	0.0025	0.025	0.0057	0.0053	0.008	0.016
Bis(chloromethyl)ether	0.0024	0.2745	2.745	0.0054	0.0050	0.007	0.016
Bis(2-chloroethyl)ether	0.60	42.83	428.3	1.36	1.26	1.86	3.93
Bis(2-ethylhexyl) phthalate [Di(2-	_						
ethylhexyl) phthalate]	6	7.55	75.5	13.6	12.6	18.6	39.3
Bromodichloromethane [Dichlorobromomethane]	10.2	275	2750	23.1	21.5	31.5	67
Bromoform [Tribromomethane]	66.9	1060	10600	151	141	207	438
	5	N/A	N/A	52.5	48.8	71.7	
Carbon Tatrachlorida	4.5	1N/A 46	460	10.2	9.5	13.9	152 29.4
Carbon Tetrachloride							
Chlordane	0.0025	0.0025 2737	0.025	0.0057 226	0.0053	0.008 309	0.016 654
Chlorobenzene Chlorodibromomethane	100	2/3/	27370	220	210	309	054
[Dibromochloromethane]	7.5	183	1830	17.0	15.8	23.2	49.1
Chloroform [Trichloromethane]	70	7697	76970	158	147	217	458
Chromium (hexavalent)	62	502	5020	140	130	192	406
Chrysene	2.45	2.52	25.2	5.54	5.16	7.6	16.0
Cresols [Methylphenols]	1041	9301	93010	2355	2190	3220	6812
Cyanide (free)	200	N/A	N/A	452	421	619	1309
4,4'-DDD	0.002	0.002	0.02	0.0045	0.0042	0.0062	0.0131
						0.0004	
4,4'-DDE	0.00013	0.00013	0.0013	0.00029	0.00027	0	0.0009
4,4'-DDT	0.0004	0.0004	0.004	0.0009	0.0008	0.0012	0.0026
2,4'-D	70	N/A	N/A	158	147	217	458
Danitol [Fenpropathrin]	262	473	4730	593	551	810	1714
1,2-Dibromoethane [Ethylene							
Dibromide]	0.17	4.24	42.4	0.385	0.358	0.526	1.11
<i>m</i> -Dichlorobenzene [1,3-Dichlorobenzene]	วาา	EOE	EOEO	720	670	006	2107
o-Dichlorobenzene [1,2-	322	595	5950	729	678	996	2107
Dichlorobenzene]	600	3299	32990	1357	1262	1856	3926
p-Dichlorobenzene [1,4-		3233		2007			3320
Dichlorobenzene]	75	N/A	N/A	170	158	232	491
3,3'-Dichlorobenzidine	0.79	2.24	22.4	1.79	1.66	2.44	5.17

1,2-Dichloroethane	5	364	3640	11.3	10.5	15.5	32.7
1,1-Dichloroethylene [1,1-							
Dichloroethene]	7	55114	551140	15.8	14.7	21.7	45.8
Dichloromethane [Methylene	_						
Chloride]	5	13333	133330	11.3	10.5	15.5	32.7
1,2-Dichloropropane 1,3-Dichloropropene [1,3-	5	259	2590	11.3	10.5	15.5	32.7
Dichloropropylene]	2.8	119	1190	6.33	5.89	8.7	18.3
Dicofol [Kelthane]	0.30	0.30	3	0.68	0.631	0.93	1.96
Dicoloi [Keithane]	0.30	0.50	3	0.00	4.21E-	6.19E-	1.31E-
Dieldrin	2.0E-05	2.0E-05	2.0E-04	4.52E-05	05	05	04
2,4-Dimethylphenol	444	8436	84360	1005	934	1373	2905
Di- <i>n</i> -Butyl Phthalate	88.9	92.4	924	201	187	275	582
					1.64E-	2.41E-	5.10E-
Dioxins/Furans [TCDD Equivalents]	7.80E-08	7.97E-08	7.97E-07	1.76E-07	07	07	07
Endrin	0.02	0.02	0.2	0.045	0.042	0.062	0.131
Epichlorohydrin	53.5	2013	20130	121	113	165	350
Ethylbenzene	700	1867	18670	1584	1473	2165	4581
						14458	
Ethylene Glycol	46744	1.68E+07	1.68E+08	105757	98354	1	305882
Fluoride	4000	N/A	N/A	9050	8416	12372	26175
Hantashla r	0.05.05	0.0001	0.001	0.00010	0.00017	0.0002	0.00053
Heptachlor	8.0E-05		0.001	0.00018	0.00017	5	0.00052
Heptachlor Epoxide	0.00029	0.00029	0.0029	0.0007	0.0006	0.0009	0.0019
Hexachlorobenzene	0.00068	0.00068	0.0068	0.0015	0.0014	0.0021	0.0044
Hexachlorobutadiene	0.21	0.22	2.2	0.475	0.442	0.650	1.37
Hexachlorocyclohexane (alpha)	0.0078	0.0084	0.084	0.018	0.016	0.024	0.051
Hexachlorocyclohexane (beta)	0.15	0.26	2.6	0.339	0.316	0.464	0.98
Hexachlorocyclohexane (gamma) [Lindane]	0.2	0.341	3.41	0.452	0.421	0.619	1.31
Hexachlorocyclopentadiene	10.7	11.6	116	24.2	22.5	33.1	70
Hexachloroethane	1.84	2.33	23.3	4.16	3.87	5.69	12.0
Hexachlorophene	2.05	2.90	29	4.64	4.31	6.34	13.4
4,4'-Isopropylidenediphenol	2.03	2.30	23	4.04	4.31	0.34	13.4
[Bisphenol A]	1092	15982	159820	2471	2298	3378	7146
Lead	1.15	3.83	38.3	11.0	10.3	15.1	31.9
Mercury	0.0122	0.0122	0.122	0.028	0.026	0.038	0.080
Methoxychlor	2.92	3.0	30	6.6	6.14	9.0	19.1
Methyl Ethyl Ketone	13865	9.92E+05	9.92E+06	31369	29173	42885	90729
Methyl tert-butyl ether [MTBE]	15	10482	104820	33.9	31.6	46.4	98
Nickel	332	1140	11400	1247	1160	1704	3606
Nitrate-Nitrogen (as Total Nitrogen)	10000	N/A	N/A	22625	21041	30930	65438
Nitrobenzene	45.7	1873	18730	103	96	141	299
N-Nitrosodiethylamine	0.0037	2.1	21	0.008	0.008	0.011	0.024
N-Nitroso-di- <i>n</i> -Butylamine	0.119	4.2	42	0.269	0.250	0.368	0.024
Pentachlorobenzene	0.348	0.355	3.55	0.79	0.73	1.08	2.28
Pentachlorophenol	0.348	0.333	2.9	0.498	0.463	0.68	1.44
Polychlorinated Biphenyls [PCBs]	6.4E-04	6.4E-04	6.40E-03	0.498	0.403	0.0020	0.0042
Pyridine Pyridine	23	947	9470	52.0	48.4	71	151
Selenium	50	947 N/A	9470 N/A	113	105	155	327
1,2,4,5-Tetrachlorobenzene	0.23	0.24	2.4	0.520	0.484	0.71	1.51
1,1,2,2-Tetrachloroethane Tetrachloroethylene	1.64	26.35	263.5	3.71	3.45	5.07	10.7
[Tetrachloroethylene]	5	280	2800	11.3	10.5	15.5	32.7
Thallium	0.12	0.23	2.3	0.271	0.252	0.371	0.79
Toluene	1000	N/A	N/A	2262	2104	3093	6544
	1000	14//1	14//	2202		5055	

Toxaphene	0.011	0.011	0.11	0.025	0.023	0.034	0.072
2,4,5-TP [Silvex]	50	369	3690	113	105	155	327
1,1,1-Trichloroethane	200	784354	7843540	452	421	619	1309
1,1,2-Trichloroethane	5	166	1660	11.3	10.5	15.5	32.7
Trichloroethylene [Trichloroethene]	5	71.9	719	11.3	10.5	15.5	32.7
2,4,5-Trichlorophenol	1039	1867	18670	2351	2186	3214	6799
TTHM [Sum of Total							
Trihalomethanes]	80	N/A	N/A	181	168	247	524
Vinyl Chloride	0.23	16.5	165	0.520	0.484	0.711	1.505

CALCULATE 70% AND 85% OF DAILY AVERAGE EFFLUENT LIMITATIONS:

Aquatic Life	70% of Daily Avg.	85% of Daily Avg.
Parameter	(μg/L)	(μg/L)
Aldrin	2.03	2.46
Aluminum	670	813
Arsenic	297	361
Cadmium	2.16	2.62
Carbaryl	1.35	1.64
Chlordane	0.0050	0.0061
Chlorpyrifos	0.052	0.063
Chromium (trivalent)	675	819
Chromium (hexavalent)	10.6	12.9
Copper	37.6	45.7
Cyanide (free)	13.4	16.3
4,4'-DDT	0.0013	0.0015
Demeton	0.126	0.153
Diazinon	0.115	0.140
Dicofol [Kelthane]	24.9	30.2
Dieldrin	0.0025	0.0031
Diuron	88	107
Endosulfan I (alpha)	0.070	0.085
Endosulfan II (<i>beta</i>)	0.070	0.085
Endosulfan sulfate	0.070	0.085
Endrin	0.0025	0.0031
Guthion [Azinphos Methyl]	0.013	0.015
Heptachlor	0.0050	0.0061
Hexachlorocyclohexane (gamma) [Lindane]	0.101	0.122
Lead	25.3	30.7
Malathion	0.013	0.015
Mercury	1.62	1.97
Methoxychlor	0.038	0.046
Mirex	0.0013	0.0015
Nickel	178	217
Nonylphenol	8.29	10.1
Parathion (ethyl)	0.016	0.020
Pentachlorophenol	10.8	13.1
Phenanthrene	20.3	24.6
Polychlorinated Biphenyls [PCBs]	0.018	0.021
Selenium	6.28	7.63
Silver	8.62	10.46

0.030	0.037
80.4	98
332	404
	80.4

Zinc	332	404
	70% of	85% of
Human Haalth	Daily	Daily
Human Health	Avg.	Avg.
Parameter	(μg/L)	(μg/L)
Acrylonitrile	2.17	2.63
Aldrin	2.48E-05	3.01E-05
Anthracene	2401	2916
Antimony	13.0	15.8
Arsenic	34.1	41.5
Barium	4330	5258
Benzene	10.8	13.1
Benzidine	0.0032	0.0039
Benzo(a)anthracene	0.052	0.063
Benzo(a)pyrene	0.0054	0.0066
Bis(chloromethyl)ether	0.0052	0.0063
Bis(2-chloroethyl)ether	1.30	1.58
Bis(2-ethylhexyl) phthalate [Di(2-	1.50	1.50
ethylhexyl) phthalate]	13.0	15.8
Bromodichloromethane		
[Dichlorobromomethane]	22.1	26.8
Bromoform [Tribromomethane]	145	176
Cadmium	50.2	61.0
Carbon Tetrachloride	9.7	11.8
Chlordane	0.0054	0.0066
Chlorobenzene	217	263
Chlorodibromomethane		
[Dibromochloromethane]	16.2	19.7
Chloroform [Trichloromethane]	152	184
Chromium (hexavalent)	134	163
Chrysene	5.30	6.44
Cresols [Methylphenols]	2254	2737
Cyanide (free)	433	526
4,4'-DDD	0.0043	0.0053
· ·	0.0043	
4,4'-DDE		0.00034
4,4'-DDT	0.0009	0.0011
2,4'-D	152	184
Danitol [Fenpropathrin]	567	689
1,2-Dibromoethane [Ethylene	0.260	0.447
Dibromide]	0.368	0.447
<i>m</i> -Dichlorobenzene [1,3-Dichlorobenzene]	697	847
o-Dichlorobenzene [1,2-	037	017
Dichlorobenzene]	1299	1577
p-Dichlorobenzene [1,4-		
Dichlorobenzene]	162	197
3,3'-Dichlorobenzidine	1.71	2.08
1.2 Dichloroothans	10.8	13.1
1,2-Dichloroethane		
1,1-Dichloroethylene [1,1-		
	15.2	18.4
1,1-Dichloroethylene [1,1-	15.2	18.4

1,2-Dichloropropane	10.8	13.1
1,3-Dichloropropene [1,3-	10.0	10.1
Dichloropropylene]	6.06	7.4
Dicofol [Kelthane]	0.650	0.79
Dieldrin	4.33E-05	5.26E-05
2,4-Dimethylphenol	961	1167
Di- <i>n</i> -Butyl Phthalate	192	234
Dioxins/Furans [TCDD Equivalents]	1.69E-07	2.05E-07
Endrin	0.043	0.053
Epichlorohydrin	116	141
Ethylbenzene	1516	1840
Ethylene Glycol	101207	122894
Fluoride	8660	10516
Heptachlor	0.00017	0.00021
Heptachlor Epoxide	0.00063	0.00076
Hexachlorobenzene	0.0015	0.0018
Hexachlorobutadiene	0.0015	0.552
Hexachlorocyclohexane (alpha)	0.433	0.021
Hexachlorocyclohexane (<i>aipha</i>) Hexachlorocyclohexane (<i>beta</i>)	0.017	0.021
Hexachlorocyclohexane (gamma)	0.323	0.334
[Lindane]	0.433	0.526
Hexachlorocyclopentadiene	23.2	28.1
Hexachloroethane	3.98	4.84
Hexachlorophene	4.44	5.39
4,4'-Isopropylidenediphenol		5.55
[Bisphenol A]	2364	2871
Lead	10.6	12.8
Mercury	0.026	0.032
Methoxychlor	6.32	7.7
Methyl Ethyl Ketone	30019	36452
Methyl tert-butyl ether [MTBE]	32.5	39.4
Nickel	1193	1449
Nitrate-Nitrogen (as Total Nitrogen)	21651	26291
Nitrobenzene	99	120
N-Nitrosodiethylamine	0.008	0.010
N-Nitroso-di- <i>n</i> -Butylamine	0.258	0.313
Pentachlorobenzene	0.75	0.91
Pentachlorophenol	0.476	0.578
Polychlorinated Biphenyls [PCBs]	0.0014	0.0017
Pyridine	49.8	60.5
Selenium	108	131
1,2,4,5-Tetrachlorobenzene	0.498	0.605
1,1,2,2-Tetrachloroethane	3.55	4.31
Tetrachloroethylene	3.33	7.51
[Tetrachloroethylene]	10.8	13.1
Thallium	0.260	0.315
Toluene	2165	2629
Toxaphene	0.024	0.029
2,4,5-TP [Silvex]	108	131
1,1,1-Trichloroethane	433	526
1,1,2-Trichloroethane	10.8	13.1
Trichloroethylene [Trichloroethene]	10.8	13.1
2,4,5-Trichlorophenol	2250	2732
TTHM [Sum of Total		=: 02
	173	210

Vinyl Chloride 0.498 0.605