

This file contains the following documents:

- 1. Summary of application (in plain language)
 - English
 - Alternative Language (Spanish)
- 2. First notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
 - English
 - Alternative Language (Spanish)
- 3. Second notice (NAPD-Notice of Preliminary Decision)
 - English
 - Alternative Language (Spanish)
- 4. Application materials
- 5. Draft permit
- 6. Technical summary or fact sheet

Este archivo contiene los siguientes documentos:

- 1. Resumen de la solicitud (en lenguaje sencillo)
 - Inglés
 - Idioma alternativo (español)
- 2. Primer aviso (NORI, Aviso de Recepción de Solicitud e Intención de Obtener un Permiso)
 - Inglés
 - Idioma alternativo (español)
- 3. Segundo aviso (NAPD, Aviso de Decisión Preliminar)
 - Inglés
 - Idioma alternativo (español)
- 4. Materiales de la solicitud
- 5. Proyecto de permiso
- 6. Resumen técnico u hoja de datos

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTIC WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

City of Seguin (CN600342257) operates Geronimo Creek Wastewater Treatment Plant (RN101610566), an existing plant site that contains a raw sewage lift station, headworks consisting of manually and automatically cleaned bar screens, oxidation ditch, secondary clarifiers, chlorine contact basins, effluent flow measurement, non-potable water (NPW) pumps, mobile belt press sludge dewatering area, sludge drying beds, emergency electrical generators (one at the raw sewage pump station and one at the treatment plant), and operations building. The facility is located at 450 Seitz Road, in Seguin, Guadalupe County, Texas 78155. This application is for a renewal to discharge treated domestic wastewater of an annual average flow not to exceed 12,000,000 gallons per day.

Discharges from the facility are expected to contain carbon monoxide, total suspended solids, nitrate nitrogen, total kjeldahl nitrogen, sulfate, chloride, total phosphorus, pH, dissolved oxygen, chlorine residual, E.coli, total dissolved solids, and alkalinity. Geronimo Creek WWTP discharges effluent via a 24" discharge pipe into Geronimo Creek at a point approximately 250 feet upstream from the confluence of Geronimo Creek and the Guadalupe River; thence to the Guadalupe River below Comal River in Segment No. 1804 of the Guadalupe River Basin is treated by the lift station at the Geronimo Creek WWTP and the transfer lift station at the Walnut Branch WWTP receiving raw wastewater from the collection system and pumping raw sewage into the proposed headworks. The proposed headworks will have two (2) channels equipped with automatic bar screens for removing debris and solids. A third channel will contain a manually cleaned bar screen. The screened wastewater will flow through two (2) grit removal basins. The screenings and washed grit will be discharged into a dumpster for disposal. The screened and de-gritted wastewater will flow into a proposed mix basin where it will be mixed with return activated sludge (RAS) before discharging into four (4) proposed aeration basins. The basins will be equipped with fine bubble diffusers. Blowers will supply air to the diffusers. The mixed liquor from the aeration basins will feed three (3) proposed secondary clarifiers where suspended solids settle to the basin floor for removal. RAS will be pumped to the proposed mix basin. Waste Activated Sludge (WAS) and scum from the biological process will be pumped into three (3) proposed aerobic digesters. The existing oxidation ditch will be converted into two (2) aerobic digesters (aerobic digesters No. 1 and No. 2) and one (1) of the existing clarifiers will also be converted into a digester (aerobic digester No. 3). Blowers will provide air to air diffuser systems inside the digesters. The other existing clarifier will be converted into a sludge thickener for pre-thickening. The thickened sludge will be pumped to Digester No. 1 and No. 2 and those basins will overflow into Digester No. 3 and the sludge from Digester No. 3 will then be pumped to the two (2) proposed belt filter presses for dewatering. The digested sludge will be injected with a polymer prior to entering the dewatering area. Dewatered stabilized sludge will then be disposed via a licensed sludge hauler while a drain recycles water from the dewatering process back to the influent lift station. The clarifier effluent will be collected by circular effluent troughs around the clarifier perimeters. Clarifier effluent will then flow to three (3) tertiary cloth disk type filters. Filter backwash solids will be recycled for retreatment. Filtered water flows into two (2) existing and two (2) proposed chlorine contact basins for disinfection. Chlorine solution will be injected into the chlorine basin influent. The water will be disinfected as it flows through the contact chambers. The chlorine basin effluent will be de-chlorinated by feeding sulfur dioxide. The de-chlorinated effluent will flow to the plant effluent metering structure then to the plant outfall.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES DOMÉSTICAS /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

Ciudad de Seguin (CN600342257) opera Planta de tratamiento de aguas residuales Geronimo Creek RN101610566, una emplazamiento de la planta existente que contiene una estación elevadora de aguas residuales sin tratar, obras de cabecera que consisten en cribas de barras limpias manual y automáticamente, zanja de oxidación, clarificadores secundarios, cuencas de contacto con cloro, medición del flujo de efluentes, bombas de agua no potable (NPW), área de deshidratación de lodos de prensa de cinta móvil, lechos de secado de lodos, generadores eléctricos de emergencia (uno en la estación de bombeo de aguas residuales sin tratar y otro en la planta de tratamiento), y construcción de operaciones. La instalación está ubicada en 450 Seitz Road, en Seguin, Condado de Guadalupe, Texas 78155. Esta solicitud es para una renovación para descargar aguas residuales domésticas tratadas de un flujo promedio anual que no exceda los 12,000,000 galones por día.

Se espera que las descargas de la instalación contengan monóxido de carbono, sólidos suspendidos totales, nitrógeno nítrico, nitrógeno kjeldahl total, sulfato, cloruro, fósforo total, pH, oxígeno disuelto, cloro residual, E. coli, sólidos disueltos totales y alcalinidad. La PTAR Gerónimo Creek descarga efluentes a través de una tubería de descarga de 24" en Geronimo Creek en un punto aproximadamente 250 pies aguas arriba de la confluencia de Geronimo Creek y el río Guadalupe; de allí al río Guadalupe por debajo del río Comal en el segmento No. 1804 de la cuenca del río Guadalupe. está tratado por la estación de bombeo en la planta de tratamiento de aguas residuales de Geronimo Creek y la estación de bombeo de transferencia en la planta de tratamiento de aguas residuales de Walnut Branch, que reciben aguas residuales sin tratar del sistema de recolección y bombean aguas residuales sin tratar a las obras de cabecera propuestas. Las obras de cabecera propuestas contarán con dos (2) canales equipados con pantallas automáticas de barras para la remoción de escombros y sólidos. Un tercer canal contendrá una pantalla de barra limpiada manualmente. Las aguas residuales tamizadas fluirán a través de dos (2) cuencas de eliminación de arena. Las cribas y la arena lavada se descargarán en un contenedor de basura para su eliminación. Las aguas residuales tamizadas y desarenadas fluirán hacia una cuenca de mezcla propuesta donde se mezclarán con lodos activados de retorno (RAS) antes de descargarse en cuatro (4) cuencas de aireación propuestas. Los lavabos estarán equipados con difusores de burbujas finas. Los sopladores suministrarán aire a los difusores. El licor mezclado de las cuencas de aireación alimentará tres (3) clarificadores secundarios propuestos donde los sólidos suspendidos se depositan en el piso de la cuenca para su eliminación. El RAS se bombeará a la cuenca de mezcla propuesta. Los lodos activados residuales (WAS) y la escoria del proceso biológico se bombearán a tres (3) digestores aeróbicos propuestos. La zanja de oxidación existente se convertirá en dos (2) digestores aeróbicos (digestores aeróbicos Nº 1 y Nº 2) y uno (1) de los clarificadores existentes también se convertirá en un digestor (digestor aeróbico Nº 3). Los sopladores proporcionarán sistemas difusores de aire a aire dentro de los digestores. El otro clarificador existente se convertirá en un espesador de lodos para el preespesamiento. El lodo espesado se bombeará al digestor Nº 1 y Nº 2 y esas cuencas se desbordarán en el digestor nº 3 y el lodo del digestor nº 3 se bombeará a los dos (2) filtros prensa de banda propuestos

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL.

PERMIT NO. WQ0010277003

APPLICATION. City of Seguin, 205 North River Street, Seguin, Texas 78155, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010277003 (EPA I.D. No. TX0103535) to authorize the discharge of treated wastewater at a volume not to exceed an annual average flow of 12,000,000 gallons per day. The domestic wastewater treatment facility is located at 450 Seitz Road, in the city of Seguin, in Guadalupe County, Texas 78155. The discharge route is from the plant site is via outfall 001 via pipe to Geronimo Creek; thence to Guadalupe River Below Comal River and via outfall 002 directly to the Guadalupe River Below Coma River. TCEQ received this application on December 2, 2024. The permit application will be available for viewing and copying at Seguin City Hall, 205 North River Street, Seguin, in Guadalupe County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.916944,29.551944&level=18

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public

interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Seguin at the address stated above or by calling Mr. Tim Howe, Director of Water/Wastewater, at 830-386-2222.

Issuance Date: January 7, 2025

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ0010277003

SOLICITUD. Ciudad de Seguin, 205 North River Street, Seguin, Texas 78155 ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0010277003 (EPA I.D. No. TX0103535) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio diario de 12,000,000 galones por día. La planta está ubicada en 450 Seitz Road, Seguin en el Condado de Guadalupe, Texas. La ruta de descarga es desde el sitio de la planta es a través del desagüe 001 a través de una tubería hasta el arroyo Gerónimo; de allí hasta el río Guadalupe Río Comal y vía desagüe 002 directamente al río Guadalupe por debajo del río Coma. TCEO recibió esta solicitud el 2 de diciembre de 2024. La solicitud para el permiso estará disponible para leerla y copiarla en ayuntamiento de Seguin, 205 North River Street, Seguin, Enel Condado de Guadalupe, Texas antes de la fecha de publicación de este aviso en el periódico. La aplicación incluidas las actualizaciones y los avisos asociados están disponibles electrónicamente en la siguiente pagina web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.916944,29.551944&level=18

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO.

Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas

designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía http://www14.tceq.texas.gov/epic/eComment/o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional del Ciudad de Seguin a la dirección indicada arriba o llamando a Sir. Tim Howe, Director de Agua/Aguas Residuales al (830) 386-2222.

Fecha de emission: 7 de enero de 2025

Texas Commission on Environmental Quality

NOTICE OF APPLICATION AND PRELIMINARY DECISION FOR TPDES PERMIT FOR MUNICIPAL WASTEWATER

RENEWAL

PERMIT NO. WQ0010277003

APPLICATION AND PRELIMINARY DECISION. City of Seguin, 205 North River Street, Seguin, Texas 78155, has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010277003, which authorizes the discharge of treated domestic wastewater at an annual average flow not to exceed 12,000,000 gallons per day. TCEQ received this application on December 2, 2024.

The facility is located at 450 Seitz Road, in the City of Seguin, Guadalupe County, Texas 78155. The treated effluent is discharged via pipe for Outfall 001 to Geronimo Creek, thence to Guadalupe River Below Comal River in Segment No. 1804 of the Guadalupe River Basin. The discharge route for Outfall 002 is directly to Guadalupe River Below Comal River in Segment No. 1804 of the Guadalupe River Basin. The designated uses for Segment No. 1804 are primary contact recreation, public water supply, aquifer protection, and high aquatic life use. This link to an electronic map of the site or facility's general location is provided as a public courtesy and is not part of the application or notice. For the exact location, refer to the application. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.916944,29.551944&level=18

The TCEQ Executive Director has completed the technical review of the application and prepared a draft permit. The draft permit, if approved, would establish the conditions under which the facility must operate. The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The permit application, Executive Director's preliminary decision, and draft permit are available for viewing and copying at Seguin City Hall, 205 North River Street, Seguin, in Guadalupe County, Texas. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/tpdes-applications.

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at https://www.tceq.texas.gov/permitting/wastewater/plain-language-summaries-and-public-notices.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting about this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ holds a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting a contested case hearing or reconsideration of the Executive Director's decision. A contested case hearing is a legal proceeding similar to a civil trial in a state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period; and the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period. TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

EXECUTIVE DIRECTOR ACTION. The Executive Director may issue final approval of the application unless a timely contested case hearing request or request for reconsideration is filed. If a timely hearing request or request for reconsideration is filed, the Executive Director will not issue final approval of the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

All written public comments and public meeting requests must be submitted to the Office of the Chief Clerk, MC 105, Texas Commission on Environmental Quality, P.O. Box 13087, Austin, TX 78711-3087 or electronically at www.tceq.texas.gov/goto/comment within 30 days from the date of newspaper publication of this notice.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. Public comments and requests must be submitted either electronically at www.tceq.texas.gov/goto/comment, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC 105, P.O. Box 13087, Austin, Texas 78711-3087. Any personal information you submit to the TCEQ will become part of the agency's record; this includes email addresses. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Seguin at the address stated above or by calling Mr. Tim Howe, Director of Water/Wastewater, at 830-386-2222.

Issuance Date: October 10, 2025

Comisión De Calidad Ambiental Del Estado De Texas

AVISO DE LA SOLICITUD Y DECISIÓN PRELIMINAR PARA EL PERMISO DEL SISTEMA DE ELIMINACION DE DESCARGAS DE CONTAMINANTES DE TEXAS (TPDES) PARA AGUAS RESIDUALES MUNICIPALES

RENOVACIÓN

PERMISO NO. WQ001027703

SOLICITUD Y DECISIÓN PRELIMINAR. La Ciudad de Seguin, 205 North River Street, Seguin, Texas 78155 ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) una renovación para autorizar el permiso No. WQ0010277003 del sistema de eliminación de descargas de contaminantes de Texas (TPDES), este autoriza la descarga de aguas residuales domésticas tratadas con un promedio de flujo anual que no exceda 12,000,000 galones por día. La TCEQ recibió esta solicitud el Diciembre 2, 2024.

La planta está ubicada en 450 Seitz Road, en la ciudad de Seguin, en el Condado de Guadalupe, Texas 78155. El efluente tratado es descargado vía el Drenaje 001 al Arroyo Geronimo, después al Río Guadalupe debajo del Río Comal en el Segmento No. 1804 de la Cuenca del Río Guadalupe. La ruta de descarga para el Drenaje 002 es directa al Río Guadalupe debajo del Río Comal en el Segmento No. 1804 de la Cuenca del Río Guadalupe. Los usos designados para el Segmento No. 1804 son recreación con contacto, suministro de agua pública, protección de acuíferos, y uso alto de vida acuática. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.916944,29.551944&level=18

El Director Ejecutivo de la TCEQ ha completado la revisión técnica de la solicitud y ha preparado un borrador del permiso. El borrador del permiso, si es aprobado, establecería las condiciones bajo las cuales la instalación debe operar. El Director Ejecutivo ha tomado una decisión preliminar que si este permiso es emitido, cumple con todos los requisitos normativos y legales. La solicitud del permiso, la decisión preliminar del Director Ejecutivo y el borrador del permiso están disponibles para leer y copiar en la Alcaldía de Seguin, 205 North River Street, Seguin, Condado Guadalupe, Texas. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web:

https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdesapplications.

AVISO DE IDIOMA ALTERNATIVO. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/plain-language-summaries-and-public-notices.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO

CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración

"[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión.

La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso para descargar aguas residuales sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

ACCIÓN DEL DIRECTOR EJECUTIVO. El Director Ejecutivo puede emitir una aprobación final de la solicitud a menos que exista un pedido antes del plazo de vencimiento de una audiencia administrativa de lo contencioso o se ha presentado un pedido de reconsideración. Si un pedido ha llegado antes del plazo de vencimiento de la audiencia o el pedido de reconsideración ha sido presentado, el Director Ejecutivo no emitirá una aprobación final sobre el permiso y enviará la solicitud y el pedido a los Comisionados de la TECQ para consideración en una reunión programada de la Comisión.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado especifico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

Todos los comentarios escritos del público y los pedidos una reunión deben ser presentados durante los 30 días después de la publicación del aviso a la Oficina del Secretario Principal, MC 105, TCEQ, P.O. Box 13087, Austin, TX 78711-3087 or por el internet a www.tceq.texas.gov/about/comments.html. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia.

CONTACTOS E INFORMACIÓN DE LA AGENCIA. Los comentarios y solicitudes públicas deben enviarse electrónicamente a

https://www14.tceq.texas.gov/epic/eComment/, o por escrito a Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Cualquier información personal que envíe a al TCEQ pasará a formar parte del registro de la agencia; esto incluye las direcciones de correo electrónico. Para obtener más información sobre esta solicitud de permiso o el proceso de permisos, llame al Programa de Educación Pública de la TCEQ, sin cargo, al 1-800-687-4040 o visite su sitio web en www.tceq.texas.gov/goto/pep. Si desea información en español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional de la Ciudad de Seguin en la dirección indicada arriba o llamando a Sr. Tim Howe, Director de Servicios Publicos, al 830-386-2222.

Fecha de emission: el Octubre 10, 2025.

CITY OF SEGUIN GERONIMO CREEK WASTEWATER TREATMENT PLANT

TCEQ DOMESTIC WASTEWATER PERMIT APPLICATION

(RENEWAL)

TPDES Permit No. WQ0010277003

November 2024

Prepared by:

TRC Engineers, Inc.
505 E. Huntland Drive, Suite 250
Austin, Texas 78752
512-454-8716

TBPE Firm Registration #F-8632

CITY OF SEGUIN TCEQ DOMESTIC WASTEWATER PERMIT AMENDMENT APPLICATION GERONIMO CREEK WWTP TPDES PERMIT NO. WQ0010277003

Table of Contents

APPLICATION DOCUMENTS

Domestic Administrative Report

Domestic Administrative Report Checklist

Domestic Administrative Report 1.0

Supplemental Permit Information Form (SPIF)

Domestic Technical Report

Domestic Technical Report 1.0

Domestic Technical Report Worksheet 2.0

Domestic Technical Report Worksheet 4.0

Domestic Technical Report Worksheet 5.0

Domestic Technical Report Worksheet 6.0

ATTACHMENTS

Description

Attachment 01 - Core Data Form

Attachment 02 - Plain Language Summary Template

Attachment 03 - Original Full Size USGS Map

Attachment 04 - Supplemental Information Form (SPIF)

Attachment 05 - SPIF USGS Map

Attachment 06 - Treatment Process Description

Attachment 07 – Treatment Units & Design Calculations

Attachment 08 - Process Flow Diagrams

Attachment 09 - Site Drawing

Attachment 10 - Pollutant Analysis of Treated Effluent Lab Results

SOMMEN OF STREET

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST

Complete and submit this checklist with the application.

APPLICANT	NAME:	City	of	Seguin

PERMIT NUMBER (If new, leave blank): WQ00 <u>10277003</u>

Indicate if each of the following items is included in your application.

	Y	N		Y	N
Administrative Report 1.0	\boxtimes		Original USGS Map	\boxtimes	
Administrative Report 1.1		\boxtimes	Affected Landowners Map		\boxtimes
SPIF	\boxtimes		Landowner Disk or Labels		\boxtimes
Core Data Form	\boxtimes		Buffer Zone Map		\boxtimes
Public Involvement Plan Form	\boxtimes		Flow Diagram	\boxtimes	
Technical Report 1.0	\boxtimes		Site Drawing	\boxtimes	
Technical Report 1.1		\boxtimes	Original Photographs		\boxtimes
Worksheet 2.0	\boxtimes		Design Calculations		\boxtimes
Worksheet 2.1		\boxtimes	Solids Management Plan		\boxtimes
Worksheet 3.0		\boxtimes	Water Balance		\boxtimes
Worksheet 3.1		\boxtimes			
Worksheet 3.2		\boxtimes			
Worksheet 3.3		\boxtimes			
Worksheet 4.0	\boxtimes				
Worksheet 5.0	\boxtimes				
Worksheet 6.0	\boxtimes				
Worksheet 7.0		\boxtimes			

For TCEQ Use Only	
Segment Number	County
Expiration DatePermit Number	Region

SOMMISSION STATES

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION ADMINISTRATIVE REPORT 1.0

For any questions about this form, please contact the Applications Review and Processing Team at 512-239-4671.

Section 1. Application Fees (Instructions Page 26)

Indicate the amount submitted for the application fee (check only one).

Flow	New/Major Amendment	Renewal
< 0.05 MGD	\$350.00 □	\$315.00 □
≥0.05 but <0.10 MGD	\$550.00 □	\$515.00 □
≥0.10 but <0.25 MGD	\$850.00 □	\$815.00 □
≥0.25 but <0.50 MGD	\$1,250.00 □	\$1,215.00
≥0.50 but <1.0 MGD	\$1,650.00 □	\$1,615.00
≥1.0 MGD	\$2,050.00 □	\$2,015.00

Minor Amendment (for any flow) \$150.00 □

Payment Information:

Mailed Check/Money Order Number: 157834
Check/Money Order Amount: \$2,015.00
Name Printed on Check: City of Seguin
EPAY Voucher Number: Click to enter text.
Copy of Payment Voucher enclosed? Yes

Section 2. Type of Application (Instructions Page 26)

a.	Check the box next to the appropriate authorization type								
	\boxtimes	Publicly-Owned Domestic Wastewater							
		Privately-Owned Domestic Wastewater							
		Conventional Wastewater Treatment							
b.	Che	ck the box next to the appropriate facility status.							
	\boxtimes	Active Inactive							

c. Check the box next to the appropriate permit type.					
	\square TLAP				
	☐ TPDES Permit with TLAP component				
	☐ Subsurface Area Drip Dispersal System (SADDS)				
d.	d. Check the box next to the appropriate application type				
	□ New				
	\square Major Amendment <u>with</u> Renewal \square Minor Amendment <u>v</u>	<i>vith</i> Renewal			
	\square Major Amendment <u>without</u> Renewal \square Minor Amendment <u>v</u>	<i>vithout</i> Renewal			
	⊠ Renewal without changes	of permit			
e.	e. For amendments or modifications, describe the proposed changes: Click to	enter text.			
f.	f. For existing permits:				
	Permit Number: WQ00 <u>10277003</u>				
	EPA I.D. (TPDES only): TX <u>0103535</u>				
	Expiration Date: <u>June 4, 2025</u>				
Se	Section 3. Facility Owner (Applicant) and Co-Applicant Inf	ormation			
	(Instructions Page 26)				
A.	A. The owner of the facility must apply for the permit.				
	What is the Legal Name of the entity (applicant) applying for this permit?				
	<u>City of Seguin</u>				
	(The legal name must be spelled exactly as filed with the Texas Secretary of Sthe legal documents forming the entity.)	State, County, or i			
	If the applicant is currently a customer with the TCEQ, what is the Customer Vou may search for your CN on the TCEQ website at http://www.15.tceq.tex				

CN: 600342257

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in 30 TAC § 305.44.

Last Name, First Name: <u>Dodgen, Donna</u> Prefix: Mrs.

Title: Mayor Credential: Click to enter text.

B. Co-applicant information. Complete this section only if another person or entity is required to apply as a co-permittee.

What is the Legal Name of the co-applicant applying for this permit?

Click to enter text.

(The legal name must be spelled exactly as filed with the TX SOS, with the County, or in the *legal documents forming the entity.)*

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at: http://www15.tceq.texas.gov/crpub/

CN: Click to enter text.

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix: Click to enter text. Last Name, First Name: Click to enter text.

Title: Click to enter text. Credential: Click to enter text.

Provide a brief description of the need for a co-permittee: Click to enter text.

C. Core Data Form

Complete the Core Data Form for each customer and include as an attachment. If the customer type selected on the Core Data Form is **Individual**, complete **Attachment 1** of Administrative Report 1.0. <u>Attachment 1</u>

Section 4. Application Contact Information (Instructions Page 27)

This is the person(s) TCEQ will contact if additional information is needed about this application. Provide a contact for administrative questions and technical questions.

A. Prefix: Mr. Last Name, First Name: Howe, Tim

Title: <u>Director of Water/Wastewater</u> Credential: Click to enter text.

Organization Name: City of Seguin

Mailing Address: <u>205 North River Street</u> City, State, Zip Code: <u>Seguin, TX, 78155</u>

Phone No.: (830) 386-2222 E-mail Address: thowe@seguintexas.gov

Check one or both: \square Administrative Contact \square Technical Contact

B. Prefix: Mr. Last Name, First Name: Bell, Craig

Title: Austin Engineering Director Credential: P.E.

Organization Name: TRC Engineers, Inc.

Mailing Address: 505 East Huntland Drive, Suite 250 City, State, Zip Code: Austin, TX,

78752

Phone No.: (512) 924-4999 E-mail Address: cbell@trccompanies.com

Check one or both: \square Administrative Contact \boxtimes Technical Contact

Section 5. Permit Contact Information (Instructions Page 27)

Provide the names and contact information for two individuals that can be contacted throughout the permit term.

A. Prefix: Mr. Last Name, First Name: Parker, Steve

Title: City Manager Credential: Click to enter text.

Organization Name: City of Seguin

Mailing Address: 205 North River Street City, State, Zip Code: Seguin, TX, 78155

Phone No.: (830) 401-2300 E-mail Address: sparker@seguintexas.gov

B. Prefix: Mr. Last Name, First Name: Cortes, Rick

Title: <u>Deputy City Manager</u> Credential: Click to enter text.

Organization Name: City of Seguin

Mailing Address: <u>205 North River Street</u> City, State, Zip Code: <u>Seguin, TX, 78155</u>

Phone No.: (830) 386-2513 E-mail Address: rcortes@seguintexas.gov

Section 6. Billing Contact Information (Instructions Page 27)

The permittee is responsible for paying the annual fee. The annual fee will be assessed to permits *in effect on September 1 of each year*. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (using form TCEQ-20029).

Prefix: Ms. Last Name, First Name: Caddell, Susan

Title: <u>Director of Finance</u> Credential: Click to enter text.

Organization Name: City of Seguin

Mailing Address: 205 North River Street City, State, Zip Code: Seguin, TX, 78155

Phone No.: (830) 401-2455 E-mail Address: scaddell@seguintexas.gov

Section 7. DMR/MER Contact Information (Instructions Page 27)

Provide the name and complete mailing address of the person delegated to receive and submit Discharge Monitoring Reports (DMR) (EPA 3320-1) or maintain Monthly Effluent Reports (MER).

Prefix: Mr. Last Name, First Name: Howe, Tim

Title: Director of Water/Wastewater Credential: Click to enter text.

Organization Name: City of Seguin

Mailing Address: 205 North River Street City, State, Zip Code: Seguin, TX, 78155

Phone No.: (830) 386-2222 E-mail Address: thowe@seguintexas.gov

Section 8. Public Notice Information (Instructions Page 27)

A. Individual Publishing the Notices

Prefix: Mr. Last Name, First Name: Howe, Tim

Title: Director of Water/Wastewater Credential: Click to enter text.

Organization Name: City of Seguin

Mailing Address: 205 North River Street City, State, Zip Code: Seguin, TX, 78155

Phone No.: (830) 386-2222 E-mail Address: thowe@seguintexas.gov

В.	Method for Receiving Notice of Receipt and Intent to Obtain a Water Quality Permit Package							
	Indicate by a check mark the preferred method for receiving the first notice and instructions							
	⊠ E-mail Address							
	□ Fax							
	□ Regular Mail							
C.	Contact permit to be listed in the Notices							
	Prefix: Mr. Last Name, First Name: Howe, Tim							
	Title: <u>Director of Water/Wastewater</u> Credential: Click to enter text.							
	Organization Name: <u>City of Seguin</u>							
	Mailing Address: 205 North River Street City, State, Zip Code: Seguin, TX, 78155							
	Phone No.: (830) 386-2222 E-mail Address: thowe@seguintexas.gov							
D.	Public Viewing Information							
	If the facility or outfall is located in more than one county, a public viewing place for each county must be provided.							
	Public building name: <u>City Hall</u>							
	Location within the building: <u>City Secretary Office</u>							
	Physical Address of Building: <u>205 North River Street</u>							
	City: <u>Seguin</u> County: <u>Guadalupe</u>							
	Contact (Last Name, First Name): <u>Mueller, Kristin</u>							
	Phone No.: (830) 401-2468 Ext.: Click to enter text.							
E.	Bilingual Notice Requirements							
	This information is required for new, major amendment, minor amendment or minor modification, and renewal applications.							
	This section of the application is only used to determine if alternative language notices will be needed. Complete instructions on publishing the alternative language notices will be in your public notice package.							
	Please call the bilingual/ESL coordinator at the nearest elementary and middle schools and obtain the following information to determine whether an alternative language notices are required.							
	1. Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility?							
	⊠ Yes □ No							
	If no , publication of an alternative language notice is not required; skip to Section 9							

below.

2. Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school?

⊠ Yes □ No

	3.	Do the location		these	e schools attend	a bilingual e	educat	tion progi	am at	another
			Yes	\boxtimes	No					
	4.				uired to provide rement under 19				ram b	out the school has
			Yes	\boxtimes	No					
	5.		•	_	uestion 1, 2, 3, one is required by					tive language are
F.	Pla	in Lang	guage Sumn	nary T	Гemplate					
	Co	mplete	the Plain La	nguag	ge Summary (TCI	EQ Form 209	972) a	nd includ	e as a	n attachment.
	At	tachme	nt: <u>Attachm</u>	ent 2						
G.	Pu	blic Inv	olvement P	lan F	orm					
	Co	mplete	the Public Ir	nvolve	ement Plan Form	(TCEQ Forr	n 209	60) for ea	ch ap	plication for a
	ne	w perm	it or major	amen	dment to a perr	nit and incl	ude as	an attacl	hment	t.
	At	tachme	nt: Click to	enter	text.					
Co	-	0	D o grado	tad I	Costiste and Da		Cia I	C	4 ¹ and	(In atom at an a
5 e	CU	on 9.	Page 29		entity and Pe	rmittea s	sue i	ntorma	luon	(Instructions
A.				regul	ated by TCEQ, p	rovide the R	tegula	ted Entity	Num	ber (RN) issued to
					Registry at <u>http:/</u> ed by TCEQ.	<u>//www15.tce</u>	eq.tex	as.gov/crj	<u>oub/</u> t	to determine if
B.	Na	me of p	roject or sit	e (the	name known by	the commu	anity v	where loca	ated):	
	<u>Ge</u>	ronimo	Creek Wast	ewate	<u>r Treatment Plar</u>	<u>ıt</u>				
C.	Ov	vner of	treatment fa	cility	: <u>City of Seguin</u>					
	Ov	vnership	of Facility:	\boxtimes	Public	Private		Both		Federal
D.	Ov	vner of l	land where t	treatn	nent facility is or	will be:				
	Pre	efix: Clic	ck to enter t	ext.	Last Name	e, First Name	e: <u>City</u>	of Segui	<u>n</u>	
	Tit	le: Click	k to enter te	xt.	Credentia	l: Click to er	nter te	ext.		
	Or	ganizati	ion Name: <u>C</u>	ity of	<u>Seguin</u>					
	Ma	iling Ad	ddress: <u>205</u>]	North	River Street	City, State, 2	Zip Co	ode: <u>Segui</u>	<u>n, TX</u> ,	<u>78155</u>
	Ph	one No.	: <u>(830) 386-2</u>	<u> 2513</u>	E-mail Ad	ldress: Click	k to en	iter text.		
					same person as i			or co-app	olicant	t, attach a lease
		Attach	ment: Click	to en	ter text.					

	Prefix: Click to enter text.	Last Name, First Name: Click to enter text.
	Title: Click to enter text.	Credential: Click to enter text.
	Organization Name: Click to ente	er text.
	Mailing Address: Click to enter t	ext. City, State, Zip Code: Click to enter text.
	Phone No.: Click to enter text.	E-mail Address: Click to enter text.
	If the landowner is not the same agreement or deed recorded ease	e person as the facility owner or co-applicant, attach a lease ement. See instructions.
	Attachment: Click to enter te	ext.
F.	Owner sewage sludge disposal si property owned or controlled by	ite (if authorization is requested for sludge disposal on the applicant)::
	Prefix: Click to enter text.	Last Name, First Name: Click to enter text.
	Title: Click to enter text.	Credential: Click to enter text.
	Organization Name: Click to ente	er text.
	Mailing Address: Click to enter to	ext. City, State, Zip Code: Click to enter text.
	Phone No.: Click to enter text.	E-mail Address: Click to enter text.
	If the landowner is not the same agreement or deed recorded ease	e person as the facility owner or co-applicant, attach a lease ement. See instructions.
	Attachment: Click to enter te	ext.
Se		ge Information (Instructions Page 31)
	ection 10. TPDES Dischar	
	ection 10. TPDES Dischar	ge Information (Instructions Page 31)
	Is the wastewater treatment facil Yes No If no, or a new permit application	ge Information (Instructions Page 31)
	Is the wastewater treatment facil	ge Information (Instructions Page 31) lity location in the existing permit accurate?
A.	Is the wastewater treatment facil ✓ Yes □ No If no, or a new permit application of the content of the conten	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description:
A.	Is the wastewater treatment facil ✓ Yes □ No If no, or a new permit application of the content of the conten	ge Information (Instructions Page 31) lity location in the existing permit accurate?
A.	Is the wastewater treatment facil ✓ Yes □ No If no, or a new permit application of the content of the conten	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description:
A.	Is the wastewater treatment facil ✓ Yes □ No If no, or a new permit application Click to enter text. Are the point(s) of discharge and ✓ Yes □ No If no, or a new or amendment p	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the
A.	Is the wastewater treatment facil ✓ Yes □ No If no, or a new permit application Click to enter text. Are the point(s) of discharge and ✓ Yes □ No If no, or a new or amendment p	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct?
A.	Is the wastewater treatment facil ✓ Yes □ No If no, or a new permit application Click to enter text. Are the point(s) of discharge and ✓ Yes □ No If no, or a new or amendment point of discharge and the d	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the
A.	Is the wastewater treatment facility Yes □ No If no, or a new permit application Click to enter text. Are the point(s) of discharge and wastewater treatment point of discharge and the dis	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the
A.	Is the wastewater treatment facil ✓ Yes □ No If no, or a new permit application Click to enter text. Are the point(s) of discharge and ✓ Yes □ No If no, or a new or amendment point of discharge and the discharge and the discharge and the discharge click to enter text. Click to enter text.	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the large route to the nearest classified segment as defined in 30
A.	Is the wastewater treatment facilies. Yes No If no, or a new permit application. Click to enter text. Are the point(s) of discharge and No If no, or a new or amendment proport of discharge and the discharge	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the targe route to the nearest classified segment as defined in 30
A.	Is the wastewater treatment facil ✓ Yes ☐ No If no, or a new permit application of the content text. Are the point(s) of discharge and of the content of discharge and the discharge of the content text. City nearest the outfall(s): Seguin County in which the outfalls(s) is	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the targe route to the nearest classified segment as defined in 30
A.	Is the wastewater treatment facil ✓ Yes ☐ No If no, or a new permit application of the content text. Are the point(s) of discharge and of the content of discharge and the discharge of the content text. City nearest the outfall(s): Seguin County in which the outfalls(s) is	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the large route to the nearest classified segment as defined in 30 numbers of the segment as defined in 30 and segment as
A.	Is the wastewater treatment facil ✓ Yes ☐ No If no, or a new permit application of the content text. Are the point(s) of discharge and wastewater of discharge and the discharge of the content text. City nearest the outfall(s): Seguing County in which the outfalls(s) is Is or will the treated wastewater.	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the large route to the nearest classified segment as defined in 30 numbers of the segment as defined in 30 and segment as

E. Owner of effluent disposal site:

	If yes, indicate by a check mark if:
	\square Authorization granted \square Authorization pending
	For new and amendment applications, provide copies of letters that show proof of contact and the approval letter upon receipt.
	Attachment: Click to enter text.
D.	For all applications involving an average daily discharge of 5 MGD or more, provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge: <u>Guadalupe County</u> , <u>Gonzalez County</u>
Se	ection 11. TLAP Disposal Information (Instructions Page 32)
A.	For TLAPs, is the location of the effluent disposal site in the existing permit accurate?
	□ Yes □ No
	If no, or a new or amendment permit application , provide an accurate description of the disposal site location:
	Click to enter text.
B.	City nearest the disposal site: Click to enter text.
C.	County in which the disposal site is located: Click to enter text.
D.	For TLAPs , describe the routing of effluent from the treatment facility to the disposal site:
	Click to enter text.
Е.	For TLAPs , please identify the nearest watercourse to the disposal site to which rainfall runoff might flow if not contained: Click to enter text.
Se	ection 12. Miscellaneous Information (Instructions Page 32)
	Is the facility located on or does the treated effluent cross American Indian Land?
	□ Yes ⊠ No
В.	If the existing permit contains an onsite sludge disposal authorization, is the location of the sewage sludge disposal site in the existing permit accurate?
	□ Yes □ No ⊠ Not Applicable
	If No, or if a new onsite sludge disposal authorization is being requested in this permit application, provide an accurate location description of the sewage sludge disposal site.
	Click to enter text.

C.	Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?				
	□ Yes ⊠ No				
If yes, list each person formerly employed by the TCEQ who represented your compartwas paid for service regarding the application: Click to enter text.					
D.	D. Do you owe any fees to the TCEQ?				
	□ Yes ⊠ No				
	If yes , provide the following information:				
	Account number: Click to enter text.				
	Amount past due: Click to enter text.				
E.	E. Do you owe any penalties to the TCEQ?				
	□ Yes ⊠ No				
	If yes , please provide the following information:				
	Enforcement order number: Click to enter text.				
	Amount past due: Click to enter text.				
C					
	ection 13. Attachments (Instructions Page 33)				
Inc	dicate which attachments are included with the Administrative Report. Check all that apply:				
	Lease agreement or deed recorded easement, if the land where the treatment facility is located or the effluent disposal site are not owned by the applicant or co-applicant.				
\boxtimes	Original full-size USGS Topographic Map with the following information:				
	Applicant's property boundary Attachment 3				
	 Treatment facility boundary Labeled point of discharge for each discharge point (TPDES only) Highlighted discharge route for each discharge point (TPDES only) Onsite sewage sludge disposal site (if applicable) Effluent disposal site boundaries (TLAP only) New and future construction (if applicable) 1 mile radius information 3 miles downstream information (TPDES only) All ponds. 				
	Attachment 1 for Individuals as co-applicants				
	Other Attachments. Please specify: Click to enter text.				

Section 14. Signature Page (Instructions Page 34)

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: WQ0010277003

Applicant: City of Seguin

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory name (typed or printed): Donna Dodgen

Signatory title: Mayor

Signature: Douce Dulgey Date: 11/25/24

(Use blue ink)

Subscribed and Sworn to before me by the said Donna Dadgen
on this 25th day of November , 20 24 .

My commission expires on the 30th day of December , 20 27

otary Public

[SEAL]

Guadalupe County, Texas

DOMESTIC WASTEWATER PERMIT APPLICATION SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

This form applies to TPDES permit applications only. Complete and attach the Supplemental Permit information Form (SPIF) (TCEQ Form 20971).

Attachment: Attachment 4

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671.

The following information is required for all renewal, new, and amendment applications.

Section 1. Permitted or Proposed Flows (Instructions Page 43)

A. Existing/Interim I Phase

Design Flow (MGD): 2.13

2-Hr Peak Flow (MGD): 4.32

Estimated construction start date: Click to enter text.

Estimated waste disposal start date: Click to enter text.

B. Interim II Phase

Design Flow (MGD): N/A

2-Hr Peak Flow (MGD): N/A

Estimated construction start date: Click to enter text.

Estimated waste disposal start date: Click to enter text.

C. Final Phase

Design Flow (MGD): 12

2-Hr Peak Flow (MGD): 36

Estimated construction start date: July 2022

Estimated waste disposal start date: <u>July 2025</u>

D. Current Operating Phase

Provide the startup date of the facility: 01/01/1988

Section 2. Treatment Process (Instructions Page 43)

A. Current Operating Phase

Provide a detailed description of the treatment process. **Include the type of treatment plant, mode of operation, and all treatment units.** Start with the plant's head works and

finish with the point of discharge. Include all sludge processing and drying units. **If more than one phase exists or is proposed, a description of** *each phase* **must be provided**.

See Attachment 6

See Attachment 6

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) of each treatment unit, accounting for *all* phases of operation.

Table 1.0(1) - Treatment Units

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
	See Attachment 7	

C. Process Flow Diagram

Provide flow diagrams for the existing facilities and **each** proposed phase of construction.

Attachment: Attachment 8

Section 3. Site Information and Drawing (Instructions Page 44)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

• Latitude: <u>N 29.541699</u>

• Longitude: <u>W 97.913673</u>

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

Latitude: N/ALongitude: N/A

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and
- If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Attachment: Attachment 9

Provide the name and a des	cription of the area	served by the treatmen	t facility.
City of Seguin, Geronimo C	Creek Watershed		
Collection System Informati each uniquely owned collection systems. examples .	ction system, existi	ng and new, served by th	nis facility, including
Collection System Informatio	n		
Collection System Name	Owner Name	Owner Type	Population Served
		Choose an item.	
		(' D 45)	
	Phases (Instruc	<u> </u>	
Is the application for a rene	wal of a permit tha	t contains an unbuilt ph	ase or phases?
□ Yes ⊠ No			
If yes , does the existing per years of being authorized b		e that has not been cons	tructed within five
☐ Yes ☐ No	,		
If yes, provide a detailed direction from the first term of the fi	nt justification may	result in the Executive	
Click to enter text.			
Section 5. Closure I	Plans (Instructi	ons Page 45)	
Have any treatment units be out of service in the next fiv		rvice permanently, or wil	ll any units be taken
⊠ Yes □ No	-		

	□ Yes ⊠ No
If y	yes, provide a brief description of the closure and the date of plan approval.
	he Headworks and mobile belt press pad will be removed from service for the spansion and a closure plan will be submitted at that time.
Se	ction 6. Permit Specific Requirements (Instructions Page 45)
	r applicants with an existing permit, check the Other Requirements or Special ovisions of the permit.
A.	Summary transmittal
	Have plans and specifications been approved for the existing facilities and each proposed phase?
	⊠ Yes □ No
	If yes, provide the date(s) of approval for each phase: <u>1988 (approx.)</u>
	Provide information, including dates, on any actions taken to meet a <i>requirement or provision</i> pertaining to the submission of a summary transmittal letter. Provide a copy of an approval letter from the TCEQ, if applicable .
	N/A
B.	Buffer zones
	Have the buffer zone requirements been met?
	⊠ Yes □ No
	Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the buffer zones.
	The buffer zone requirement has been met by ownership for the existing plant. For the proposed expansion, the requirement will be met by ownership, with the exception of property ID No. 57652, for which a restrictive easement will be acquired.

If yes, was a closure plan submitted to the TCEQ?

C. Other actions required by the current permit

	sul	es the <i>Other Requirements</i> or <i>Special Provisions</i> section in the existing permit require omission of any other information or other required actions? Examples include tification of Completion, progress reports, soil monitoring data, etc.
		□ Yes ⊠ No
	-	yes, provide information below on the status of any actions taken to meet the nditions of an <i>Other Requirement</i> or <i>Special Provision</i> .
	\mathbf{C}	lick to enter text.
Б.	_	
D.		it and grease treatment
	1.	Acceptance of grit and grease waste
		Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?
		□ Yes ⊠ No
		If No, stop here and continue with Subsection E. Stormwater Management.
	2.	Grit and grease processing
		Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility.
		Click to enter text.
	3.	Grit disposal
		Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal?
		□ Yes □ No
		If No , contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.
		Describe the method of grit disposal.

		Click to enter text.
	4.	Grease and decanted liquid disposal
		Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335.
		Describe how the decant and grease are treated and disposed of after grit separation.
		Click to enter text.
E.	Sto	ormwater management
	1.	Applicability
		Does the facility have a design flow of 1.0 MGD or greater in any phase?
		⊠ Yes □ No
		Does the facility have an approved pretreatment program, under 40 CFR Part 403?
		⊠ Yes □ No
		If no to both of the above, then skip to Subsection F, Other Wastes Received.
	2.	MSGP coverage
		Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?
		⊠ Yes □ No
		If yes , please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:
		TXR05 <u>Q263</u> or TXRNE <u>Click to enter text.</u>
		If no, do you intend to seek coverage under TXR050000?
		□ Yes □ No
	<i>3.</i>	Conditional exclusion
		Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?
		□ Yes □ No
		If ves please explain below then proceed to Subsection F. Other Wastes Received:

	Click to enter text.
4.	Existing coverage in individual permit
	Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?
	□ Yes □ No
	If yes , provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.
	Click to enter text.
<u>5.</u>	Zero stormwater discharge
	Do you intend to have no discharge of stormwater via use of evaporation or other means?
	□ Yes □ No
	If yes, explain below then skip to Subsection F. Other Wastes Received.
	Click to enter text.
	Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.
5.	Request for coverage in individual permit
	Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?
	□ Yes □ No
	If yes, provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state.

	Click to enter text.
	Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.
Di	scharges to the Lake Houston Watershed
Do	es the facility discharge in the Lake Houston watershed?
	□ Yes ⊠ No
- 1	yes, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions. ck to enter text.
Ot	her wastes received including sludge from other WWTPs and septic waste
1.	Acceptance of sludge from other WWTPs
	Does or will the facility accept sludge from other treatment plants at the facility site?
	□ Yes ⊠ No
	If yes, attach sewage sludge solids management plan. See Example 5 of the instructions.
	In addition, provide the date the plant started or is anticipated to start accepting sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an
	estimate of the BOD_5 concentration of the sludge, and the design BOD_5 concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.
	Click to enter text.
	Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.
2.	Acceptance of septic waste
	Is the facility accepting or will it accept septic waste?
	⊠ Yes □ No
	If yes, does the facility have a Type V processing unit?
	□ Yes ⊠ No
	If yes, does the unit have a Municipal Solid Waste permit?
	□ Yes ⊠ No
	If y Cli

If yes to any of the above, provide the date the plant started or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD_5 concentration of the septic waste, and the design BOD_5 concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

This information has not changed since the last permit action.

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

3. Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)

Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above?

□ Yes ⊠ No

If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.

Click to enter text.

Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 50)

Is the facility in operation?

⊠ Yes □ No

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). *Water treatment facilities* discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. **These tables are not applicable for a minor amendment without renewal.** See the instructions for guidance.

Note: The sample date must be within 1 year of application submission.

Table 1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l	2	2	1	Composite	9am 5/14/2024- 8am 5/15/2024
Total Suspended Solids, mg/l	2.00	2.00	1	Composite	9am 5/14/2024- 8am 5/15/2024
Ammonia Nitrogen, mg/l	<0.10	<0.10	1	Composite	9am 5/14/2024- 8am 5/15/2024

Nitrate Nitrogen, mg/l	10,200 (ug/l)	10,200 (ug/l)	1	Composite	9am 2/12/2024- 8am 5/13/2024
Total Kjeldahl Nitrogen, mg/l	0.54	0.54	1	Composite	9am 6/10/2024- 8am 6/11/2024
Sulfate, mg/l	309	309	1	Composite	9am 6/10/2024- 8am 6/11/2024
Chloride, mg/l	247	247	1	Composite	9am 6/10/2024- 8am 6/11/2024
Total Phosphorus, mg/l	5.96	5.96	1	Composite	9am 6/10/2024- 8am 6/11/2024
pH, standard units	7.5	7.5	1	Composite	9am 5/14/2024- 8am 5/15/2024
Dissolved Oxygen*, mg/l	6.63	6.63	1	Grab	5/1/2024- 5/31/2024 Daily
Chlorine Residual, mg/l	1.2	1.2	1	Grab	5/1/2024- 5/31/2024 Daily
E.coli (CFU/100ml) freshwater	4	4	1	Grab	8:14am 5/21/24
Entercocci (CFU/100ml) saltwater	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	948	948	1	Composite	9am 6/10/2024- 8am 6/11/2024
Electrical Conductivity, µmohs/cm, †	N/A	N/A	N/A	N/A	N/A
Oil & Grease, mg/l	<5.0	<5.0	1	Grab	8:45am 6/11/2024
Alkalinity (CaCO ₃)*, mg/l	119	119	1	Composite	9am 6/10/2024- 8am 6/11/2024

^{*}TPDES permits only †TLAP permits only

Table1.0(3) - Pollutant Analysis for Water Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Suspended Solids, mg/l					
Total Dissolved Solids, mg/l					
pH, standard units					
Fluoride, mg/l					
Aluminum, mg/l					
Alkalinity (CaCO ₃), mg/l					

Section 8. Facility Operator (Instructions Page 50)

Facility Operator Name: <u>Brandon McBride</u>

Facility Operator's License Classification and Level: Class A Wastewater Treatment

Facility Operator's License Number: <u>WW0059303</u>

Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 51)

A. WWTP's Biosolids Management Facility Type

Check all that apply. See instructions for guidance

☑ Design flow>= 1 MGD

 \boxtimes Serves >= 10,000 people

☐ Class I Sludge Management Facility (per 40 CFR § 503.9)

☐ Biosolids generator

☐ Biosolids end user – land application (onsite)

☐ Biosolids end user - surface disposal (onsite)

☐ Biosolids end user – incinerator (onsite)

B. WWTP's Biosolids Treatment Process

Check all that apply. See instructions for guidance.

□ Aerobic Digestion

□ Air Drying (or sludge drying beds)

☐ Lower Temperature Composting

☐ Lime Stabilization

☐ Higher Temperature Composting

☐ Heat Drying

☐ Thermophilic Aerobic Digestion

☐ Beta Ray Irradiation

☐ Gamma Ray Irradiation

□ Pasteurization

☐ Preliminary Operation (e.g. grinding, de-gritting, blending)

☐ Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter)

□ Sludge Lagoon

☐ Temporary Storage (< 2 years)

 \square Long Term Storage (>= 2 years)

☐ Methane or Biogas Recovery

☐ Other Treatment Process: <u>Click to enter text.</u>

C. Biosolids Management

Provide information on the *intended* biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize

all biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

Biosolids Management

Management Practice	Handler or Preparer Type	Bulk or Bag Container	Amount (dry metric tons)	Pathogen Reduction Options	Vector Attraction Reduction Option
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): Click to enter text.

D. Disposal site

Disposal site name: <u>Mesquite Creek Landfill</u>
TCEQ permit or registration number: <u>66A</u>
County where disposal site is located: <u>Comal</u>

E. Transportation method

Method of transportation (truck, train, pipe, other): <u>Truck</u>

Name of the hauler: Waste Connections

Hauler registration number: 22591

Sludge is transported as a:

Liquid [] semi-liquid □	semi-solid □	solid ⊠

Section 10. Permit Authorization for Sewage Sludge Disposal (Instructions Page 53)

A. Beneficial use authorization

Does the existing pe	ermit include	authorization	for land	application	of sewage	sludge for
beneficial use?						

□ Yes ⊠ No

If yes, are you requesting to continue this authorization to land apply sewage sludge for beneficial use?

□ Yes □ No

If yes, is the completed Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451) attached to this permit application (see the instructions for details)?

Yes	No

	ne existing permit include authorization for or disposal options?	r any	y of the	follow	ing sludge processing,	
Slud	lge Composting		Yes	\boxtimes	No	
Marl	keting and Distribution of sludge		Yes	\boxtimes	No	
Slud	lge Surface Disposal or Sludge Monofill		Yes	\boxtimes	No	
Tem	iporary storage in sludge lagoons		Yes	\boxtimes	No	
authori: Technic	o any of the above sludge options and the zation, is the completed Domestic Wastew cal Report (TCEQ Form No. 10056) attach	vatei	r Permi	t Appl	ication: Sewage Sludge	
	Yes □ No					
Section 1	11. Sewage Sludge Lagoons (Ins	tru	ctions	Page	2 53)	
Does this f	acility include sewage sludge lagoons?					
□ Yes	s 🗵 No					
If yes, com	plete the remainder of this section. If no, p	oroc	eed to S	ection	12.	
A. Locatio	n information					
	lowing maps are required to be submitted the Attachment Number.	as p	art of tl	ne app	lication. For each map,	
• (Original General Highway (County) Map:					
A	Attachment: Click to enter text.					
J •	• USDA Natural Resources Conservation Service Soil Map:					
A	Attachment: Click to enter text.					
• F	Federal Emergency Management Map:					
A	Attachment: Click to enter text.					
• S	Site map:					
A	Attachment: Click to enter text.					
Discuss apply.	s in a description if any of the following ex	ist w	vithin th	e lago	on area. Check all that	
	Overlap a designated 100-year frequency	flood	d plain			
	Soils with flooding classification					
	Overlap an unstable area					
	Wetlands					
	Located less than 60 meters from a fault					
	None of the above					
Atta	chment: Click to enter text.					

B. Sludge processing authorization

	the protective measures to be utilized including type and size of protective structures: Click to enter text.
3.	Temporary storage information
	Provide the results for the pollutant screening of sludge lagoons. These results are in addition to pollutant results in <i>Section 7 of Technical Report 1.0.</i>
	Nitrate Nitrogen, mg/kg: Click to enter text.
	Total Kjeldahl Nitrogen, mg/kg: Click to enter text.
	Total Nitrogen (=nitrate nitrogen + TKN), mg/kg: Click to enter text.
	Phosphorus, mg/kg: Click to enter text.
	Potassium, mg/kg: Click to enter text.
	pH, standard units: Click to enter text.
	Ammonia Nitrogen mg/kg: Click to enter text.
	Arsenic: Click to enter text.
	Cadmium: Click to enter text.
	Chromium: Click to enter text.
	Copper: Click to enter text.
	Lead: Click to enter text.
	Mercury: Click to enter text.
	Molybdenum: Click to enter text.
	Nichal, Click to contact tout

Nickel: Click to enter text.

Selenium: Click to enter text.

Zinc: Click to enter text.

Total PCBs: <u>Click to enter text.</u>
Provide the following information:

Volume and frequency of sludge to the lagoon(s): Click to enter text.

Total dry tons stored in the lagoons(s) per 365-day period: Click to enter text.

Total dry tons stored in the lagoons(s) over the life of the unit: <u>Click to enter text.</u>

C. Liner information

Does the active/proposed slu	dge lagoon(s)	have a liner wit	th a maximum	hydraulic
conductivity of 1x10 ⁻⁷ cm/sec	?			

□ Yes □ No

If yes, describe the liner below. Please note that a liner is required.

	Click	a to enter text.
D.		evelopment plan
		de a detailed description of the methods used to deposit sludge in the lagoon(s):
	Click	a to enter text.
	Attac	h the following documents to the application.
	•	Plan view and cross-section of the sludge lagoon(s)
		Attachment: Click to enter text.
	•	Copy of the closure plan
		Attachment: Click to enter text.
	•	Copy of deed recordation for the site
		Attachment: Click to enter text.
	•	Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons
		Attachment: Click to enter text.
	•	Description of the method of controlling infiltration of groundwater and surface water from entering the site
		Attachment: Click to enter text.
	•	Procedures to prevent the occurrence of nuisance conditions
		Attachment: Click to enter text.
E.	Grou	ndwater monitoring
	groun	undwater monitoring currently conducted at this site, or are any wells available for dwater monitoring, or are groundwater monitoring data otherwise available for the e lagoon(s)?
		Yes □ No
	types	undwater monitoring data are available, provide a copy. Provide a profile of soil encountered down to the groundwater table and the depth to the shallowest dwater as a separate attachment.
	At	tachment: Click to enter text.

Section 12. Authorizations/Compliance/Enforcement (Instructions

Page 55)

A. Additional authorizations
Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc?
⊠ Yes □ No
If yes, provide the TCEQ authorization number and description of the authorization:
R10277-001 Water reuse is for the Rio Nogales Power Project
B. Permittee enforcement status
Is the permittee currently under enforcement for this facility?
□ Yes ⊠ No
Is the permittee required to meet an implementation schedule for compliance or enforcement?
□ Yes ⊠ No
If yes to either question, provide a brief summary of the enforcement, the implementati schedule, and the current status:
Click to enter text.
Section 13. RCRA/CERCLA Wastes (Instructions Page 55)

A. RCRA hazardous wastes

Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste?

Yes ⊠ No

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

□ Yes ⊠ No

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment: Click to enter text.

Section 14. Laboratory Accreditation (Instructions Page 56)

All laboratory tests performed must meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- · The laboratory is an in-house laboratory and is:
 - periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or
 - performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- · The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the Signature Page section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Donna Dodgen

Title: Mayor

Signature:

Date: 11/25/24

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

Section 1. Domestic Drinking Water Supply (Instructions Page 64)
Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge?
□ Yes ⊠ No
If no , proceed it Section 2. If yes , provide the following:
Owner of the drinking water supply: Click to enter text.
Distance and direction to the intake: Click to enter text.
Attach a USGS map that identifies the location of the intake.
Attachment: Click to enter text.
Section 2. Discharge into Tidally Affected Waters (Instructions Page 64)
Does the facility discharge into tidally affected waters?
□ Yes ⊠ No
If no , proceed to Section 3. If yes , complete the remainder of this section. If no, proceed to Section 3.
A. Receiving water outfall
Width of the receiving water at the outfall, in feet: Click to enter text.
B. Oyster waters
Are there oyster waters in the vicinity of the discharge?
□ Yes □ No
If yes, provide the distance and direction from outfall(s).
Click to enter text.
C. Sea grasses
Are there any sea grasses within the vicinity of the point of discharge?
□ Yes □ No
If yes, provide the distance and direction from the outfall(s).
Click to enter text.

Section 3. **Classified Segments (Instructions Page 64)** Is the discharge directly into (or within 300 feet of) a classified segment? Yes □ No **If yes**, this Worksheet is complete. **If no**, complete Sections 4 and 5 of this Worksheet. Section 4. **Description of Immediate Receiving Waters (Instructions Page 65)** Name of the immediate receiving waters: Click to enter text. A. Receiving water type Identify the appropriate description of the receiving waters. Stream Freshwater Swamp or Marsh Lake or Pond Surface area, in acres: Click to enter text. Average depth of the entire water body, in feet: Click to enter text. Average depth of water body within a 500-foot radius of discharge point, in feet: Click to enter text. Man-made Channel or Ditch Open Bay Tidal Stream, Bayou, or Marsh Other, specify: Click to enter text. **B.** Flow characteristics If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area upstream of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one). Intermittent - dry for at least one week during most years Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses Perennial - normally flowing Check the method used to characterize the area upstream (or downstream for new dischargers). USGS flow records Historical observation by adjacent landowners Personal observation Other, specify: Click to enter text.

		e names of all perennial streams t tream of the discharge point.	hat joir	n the receiving water within three miles
	Click t	o enter text.		
D.	Downs	stream characteristics		
		rge (e.g., natural or man-made dar	_	ithin three miles downstream of the ds, reservoirs, etc.)?
		Yes □ No		
		discuss how.		
	Click t	o enter text.		
E.	Norma	l dry weather characteristics		
		•	er body	during normal dry weather conditions.
	Click	to enter text.		
	Date a	nd time of observation: Click to en	nter tex	t.
	Was th	e water body influenced by storm	water r	unoff during observations?
		Yes □ No		
Se	ection	General Characteristi Page 66)	ics of	the Waterbody (Instructions
A.	Upstre	am influences		
		mmediate receiving water upstreated by any of the following? Chec		ne discharge or proposed discharge site apply.
		Oil field activities		Urban runoff
		Upstream discharges		Agricultural runoff
		Septic tanks		Other(s), specify: <u>Click to enter text.</u>

C. Downstream perennial confluences

B. Waterbody uses Observed or evidences of the following uses. Check all that apply. Livestock watering Contact recreation Irrigation withdrawal Non-contact recreation **Fishing Navigation** Domestic water supply Industrial water supply Park activities Other(s), specify: Click to enter text. C. Waterbody aesthetics Check one of the following that best describes the aesthetics of the receiving water and the surrounding area. Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored Common Setting: not offensive; developed but uncluttered; water may be colored or turbid Offensive: stream does not enhance aesthetics; cluttered; highly developed; dumping areas; water discolored

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Toxic Pollutants (Instructions Page 78)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab ⊠

Composite ⊠

Attachment 10

Date and time sample(s) collected: <u>02/13/2024</u>

Table 4.0(1) - Toxics Analysis

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Acrylonitrile	<50.0	<50.0	Grab	50
Aldrin	< 0.01	< 0.01	Comp.	0.01
Aluminum	32.4	32.4	Comp.	2.5
Anthracene	<10.0	<10.0	Comp.	10
Antimony	<5.0	<5.0	Comp.	5
Arsenic	<0.5	<0.5	Comp.	0.5
Barium	79.5	79.5	Comp.	3
Benzene	<10.0	<10.0	Grab	10
Benzidine	<50.0	<50.0	Comp.	50
Benzo(a)anthracene	<5.0	<5.0	Comp.	5
Benzo(a)pyrene	<5.0	<5.0	Comp.	5
Bis(2-chloroethyl)ether	<10.0	<10.0	Comp.	10
Bis(2-ethylhexyl)phthalate	<10.0	<10.0	Comp.	10
Bromodichloromethane	<10.0	<10.0	Grab	10
Bromoform	<10.0	<10.0	Grab	10
Cadmium	<1.0	<1.0	Comp.	1
Carbon Tetrachloride	<2.0	<2.0	Grab	2
Carbaryl	<5.0	<5.0	Comp.	5
Chlordane*	<0.2	<0.2	Comp.	0.2
Chlorobenzene	<10.0	<10.0	Grab	10
Chlorodibromomethane	<10.0	<10.0	Grab	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Chloroform	<10.0	<10.0	Grab	10
Chlorpyrifos	<0.05	<0.05	Comp.	0.05
Chromium (Total)	<3.0	<3.0	Comp.	3
Chromium (Tri) (*1)	<3.0	<3.0	Comp.	N/A
Chromium (Hex)	<3.0	<3.0	Comp.	3
Copper	3.3	3.3	Comp.	2
Chrysene	<5.0	<5.0	Comp.	5
p-Chloro-m-Cresol	<10.0	<10.0	Comp.	10
4,6-Dinitro-o-Cresol	<50.0	<50.0	Comp.	50
p-Cresol	<10.0	<10.0	Comp.	10
Cyanide (*2)	<10.0	<10.0	Grab	10
4,4'- DDD	<0.1	<0.1	Comp.	0.1
4,4'- DDE	<0.1	<0.1	Comp.	0.1
4,4'- DDT	<0.02	<0.02	Comp.	0.02
2,4-D	<0.7	<0.7	Comp.	0.7
Demeton (O and S)	<0.20	<0.20	Comp.	0.20
Diazinon	<0.5	<0.5	Comp.	0.5/0.1
1,2-Dibromoethane	<2.0	<2.0	Grab	10
m-Dichlorobenzene	<10.0	<10.0	Grab	10
o-Dichlorobenzene	<10.0	<10.0	Grab	10
p-Dichlorobenzene	<10.0	<10.0	Grab	10
3,3'-Dichlorobenzidine	<5.0	<5.0	Comp.	5
1,2-Dichloroethane	<10.0	<10.0	Grab	10
1,1-Dichloroethylene	<10.0	<10.0	Grab	10
Dichloromethane	<20.0	<20.0	Grab	20
1,2-Dichloropropane	<10.0	<10.0	Grab	10
1,3-Dichloropropene	<10.0	<10.0	Grab	10
Dicofol	<1.0	<1.0	Comp.	1
Dieldrin	<0.02	<0.02	Comp.	0.02
2,4-Dimethylphenol	<10.0	<10.0	Comp.	10
Di-n-Butyl Phthalate	<10.0	<10.0	Comp.	10
Diuron	<0.09	<0.09	Comp.	0.09
Endosulfan I (alpha)	<0.01	<0.01	Comp.	0.01

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Endosulfan II (beta)	<0.02	<0.02	Comp.	0.02
Endosulfan Sulfate	<0.1	<0.1	Comp.	0.1
Endrin	<0.02	<0.02	Comp.	0.02
Ethylbenzene	<10.0	<10.0	Grab	10
Fluoride	680.0	680.0	Comp.	500
Guthion	<0.1	<0.1	Comp.	0.1
Heptachlor	<0.01	<0.01	Comp.	0.01
Heptachlor Epoxide	<0.01	< 0.01	Comp.	0.01
Hexachlorobenzene	<5.0	<5.0	Comp.	5
Hexachlorobutadiene	<10.0	<10.0	Comp.	10
Hexachlorocyclohexane (alpha)	<0.05	< 0.05	Comp.	0.05
Hexachlorocyclohexane (beta)	<0.05	< 0.05	Comp.	0.05
gamma-Hexachlorocyclohexane (Lindane)	<0.05	<0.05	Comp.	0.05
Hexachlorocyclopentadiene	<10.0	<10.0	Comp.	10
Hexachloroethane	<20.0	<20.0	Comp.	20
Hexachlorophene	<10.0	<10.0	Comp.	10
Lead	0.5	0.5	Comp.	0.5
Malathion	<0.1	<0.1	Comp.	0.1
Mercury	<0.005	<0.005	Grab	0.005
Methoxychlor	<0.2	<0.2	Comp.	2
Methyl Ethyl Ketone	<50.0	<50.0	Grab	50
Mirex	<0.02	<0.02	Comp.	0.02
Nickel	3.5	3.5	Comp.	2
Nitrate-Nitrogen	10,200.0	10,200.0	Comp.	100
Nitrobenzene	<10.0	<10.0	Comp.	10
N-Nitrosodiethylamine	<20.0	<20.0	Comp.	20
N-Nitroso-di-n-Butylamine	<20.0	<20.0	Comp.	20
Nonylphenol	<5.0	<5.0	Comp.	333
Parathion (ethyl)	<0.1	<0.1	Comp.	0.1
Pentachlorobenzene	<20.0	<20.0	Comp.	20
Pentachlorophenol	<5.0	<5.0	Comp.	5
Phenanthrene	<10.0	<10.0	Comp.	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Polychlorinated Biphenyls (PCB's) (*3)	<0.2	<0.2	Comp.	0.2
Pyridine	<20.0	<20.0	Comp.	20
Selenium	<5.0	<5.0	Comp.	5
Silver	<0.5	<0.5	Comp.	0.5
1,2,4,5-Tetrachlorobenzene	<20.0	<20.0	Comp.	20
1,1,2,2-Tetrachloroethane	<10.0	<10.0	Grab	10
Tetrachloroethylene	<10.0	<10.0	Grab	10
Thallium	<0.5	<0.5	Comp.	0.5
Toluene	<10.0	<10.0	Grab	10
Toxaphene	<0.3	<0.3	Comp.	0.3
2,4,5-TP (Silvex)	<0.3	<0.3	Comp.	0.3
Tributyltin (see instructions for explanation)	-	-	-	0.01
1,1,1-Trichloroethane	<10.0	<10.0	Grab	10
1,1,2-Trichloroethane	<10.0	<10.0	Grab	10
Trichloroethylene	<10.0	<10.0	Grab	10
2,4,5-Trichlorophenol	<50.0	<50.0	Comp.	50
TTHM (Total Trihalomethanes)	<10.0	<10.0	Grab	10
Vinyl Chloride	<10.0	<10.0	Grab	10
Zinc	<5.0	<5.0	Comp.	5

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

^(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab ⊠ Composite ⊠

Date and time sample(s) collected: <u>02/13/2024</u>

Table 4.0(2)A - Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Antimony	<5.0	<5.0	Comp.	5
Arsenic	<0.5	<0.5	Comp.	0.5
Beryllium	<0.5	<0.5	Comp.	0.5
Cadmium	<1.0	<1.0	Comp.	1
Chromium (Total)	<3.0	<3.0	Comp.	3
Chromium (Hex)	<3.0	<3.0	Comp.	3
Chromium (Tri) (*1)	<3.0	<3.0	Comp.	N/A
Copper	3.3	3.3	Comp.	2
Lead	0.5	0.5	Comp.	0.5
Mercury	< 0.005	< 0.005	Grab	0.005
Nickel	3.5	3.5	Comp.	2
Selenium	<5.0	<5.0	Comp.	5
Silver	<0.5	<0.5	Comp.	0.5
Thallium	<0.5	<0.5	Comp.	0.5
Zinc	47.0	47.0	Comp.	5
Cyanide (*2)	<10.0	<10.0	Grab	10
Phenols, Total	<10.0	<10.0	Grab	10

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)B - Volatile Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrolein	<50.0	<50.0	Grab	50
Acrylonitrile	<50.0	<50.0	Grab	50
Benzene	<10.0	<10.0	Grab	10
Bromoform	<10.0	<10.0	Grab	10
Carbon Tetrachloride	<2.0	<2.0	Grab	2
Chlorobenzene	<10.0	<10.0	Grab	10
Chlorodibromomethane	<10.0	<10.0	Grab	10
Chloroethane	<50.0	<50.0	Grab	50
2-Chloroethylvinyl Ether	<10.0	<10.0	Grab	10
Chloroform	<10.0	<10.0	Grab	10
Dichlorobromomethane [Bromodichloromethane]	<10.0	<10.0	Grab	10
1,1-Dichloroethane	<10.0	<10.0	Grab	10
1,2-Dichloroethane	<10.0	<10.0	Grab	10
1,1-Dichloroethylene	<10.0	<10.0	Grab	10
1,2-Dichloropropane	<10.0	<10.0	Grab	10
1,3-Dichloropropylene	<10.0	<10.0	Grab	10
[1,3-Dichloropropene]				
1,2-Trans-Dichloroethylene	<10.0	<10.0	Grab	10
Ethylbenzene	<10.0	<10.0	Grab	10
Methyl Bromide	<10.0	<10.0	Grab	50
Methyl Chloride	<10.0	<10.0	Grab	50
Methylene Chloride	<20.0	<20.0	Grab	20
1,1,2,2-Tetrachloroethane	<10.0	<10.0	Grab	10
Tetrachloroethylene	<10.0	<10.0	Grab	10
Toluene	<10.0	<10.0	Grab	10
1,1,1-Trichloroethane	<10.0	<10.0	Grab	10
1,1,2-Trichloroethane	<10.0	<10.0	Grab	10
Trichloroethylene	<10.0	<10.0	Grab	10
Vinyl Chloride	<10.0	<10.0	Grab	10
	•	•	•	•

Table 4.0(2)C - Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
2-Chlorophenol	<10.0	<10.0	Comp.	10
2,4-Dichlorophenol	<10.0	<10.0	Comp.	10
2,4-Dimethylphenol	<10.0	<10.0	Comp.	10
4,6-Dinitro-o-Cresol	<50.0	<50.0	Comp.	50
2,4-Dinitrophenol	<50.0	<50.0	Comp.	50
2-Nitrophenol	<20.0	<20.0	Comp.	20
4-Nitrophenol	<50.0	<50.0	Comp.	50
P-Chloro-m-Cresol	<10.0	<10.0	Comp.	10
Pentalchlorophenol	<5.0	<5.0	Comp.	5
Phenol	16.0	16.0	Comp.	10
2,4,6-Trichlorophenol	<10.0	<10.0	Comp.	10

Table 4.0(2)D - Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acenaphthene	<10.0	<10.0	Comp.	10
Acenaphthylene	<10.0	<10.0	Comp.	10
Anthracene	<10.0	<10.0	Comp.	10
Benzidine	<50.0	<50.0	Comp.	50
Benzo(a)Anthracene	<5.0	<5.0	Comp.	5
Benzo(a)Pyrene	<5.0	<5.0	Comp.	5
3,4-Benzofluoranthene	<10.0	<10.0	Comp.	10
Benzo(ghi)Perylene	<20.0	<20.0	Comp.	20
Benzo(k)Fluoranthene	<5.0	<5.0	Comp.	5
Bis(2-Chloroethoxy)Methane	<10.0	<10.0	Comp.	10
Bis(2-Chloroethyl)Ether	<10.0	<10.0	Comp.	10
Bis(2-Chloroisopropyl)Ether	<10.0	<10.0	Comp.	10
Bis(2-Ethylhexyl)Phthalate	<10.0	<10.0	Comp.	10
4-Bromophenyl Phenyl Ether	<10.0	<10.0	Comp.	10
Butyl benzyl Phthalate	<10.0	<10.0	Comp.	10
2-Chloronaphthalene	<10.0	<10.0	Comp.	10
4-Chlorophenyl phenyl ether	<10.0	<10.0	Comp.	10
Chrysene	<5.0	<5.0	Comp.	5
Dibenzo(a,h)Anthracene	<5.0	<5.0	Comp.	5
1,2-(o)Dichlorobenzene	<10.0	<10.0	Comp.	10
1,3-(m)Dichlorobenzene	<10.0	<10.0	Comp.	10
1,4-(p)Dichlorobenzene	<10.0	<10.0	Comp.	10
3,3-Dichlorobenzidine	<5.0	<5.0	Comp.	5
Diethyl Phthalate	<10.0	<10.0	Comp.	10
Dimethyl Phthalate	<10.0	<10.0	Comp.	10
Di-n-Butyl Phthalate	<10.0	<10.0	Comp.	10
2,4-Dinitrotoluene	<10.0	<10.0	Comp.	10
2,6-Dinitrotoluene	<10.0	<10.0	Comp.	10
Di-n-Octyl Phthalate	<10.0	<10.0	Comp.	10
1,2-Diphenylhydrazine (as Azobenzene)	<20.0	<20.0	Comp.	20
Fluoranthene	<10.0	<10.0	Comp.	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Fluorene	<10.0	<10.0	Comp.	10
Hexachlorobenzene	<5.0	<5.0	Comp.	5
Hexachlorobutadiene	<10.0	<10.0	Comp.	10
Hexachlorocyclo-pentadiene	<10.0	<10.0	Comp.	10
Hexachloroethane	<20.0	<20.0	Comp.	20
Indeno(1,2,3-cd)pyrene	<5.0	<5.0	Comp.	5
Isophorone	<10.0	<10.0	Comp.	10
Naphthalene	<10.0	<10.0	Comp.	10
Nitrobenzene	<10.0	<10.0	Comp.	10
N-Nitrosodimethylamine	<50.0	<50.0	Comp.	50
N-Nitrosodi-n-Propylamine	<20.0	<20.0	Comp.	20
N-Nitrosodiphenylamine	<20.0	<20.0	Comp.	20
Phenanthrene	<10.0	<10.0	Comp.	10
Pyrene	<10.0	<10.0	Comp.	10
1,2,4-Trichlorobenzene	<10.0	<10.0	Comp.	10

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Aldrin	<0.01	<0.01	Comp.	0.01
alpha-BHC (Hexachlorocyclohexane)	<0.05	< 0.05	Comp.	0.05
beta-BHC (Hexachlorocyclohexane)	<0.05	<0.05	Comp.	0.05
gamma-BHC (Hexachlorocyclohexane)	<0.05	<0.05	Comp.	0.05
delta-BHC (Hexachlorocyclohexane)	<0.05	<0.05	Comp.	0.05
Chlordane	<0.15	<0.15	Comp.	0.2
4,4-DDT	<0.02	<0.02	Comp.	0.02
4,4-DDE	<0.1	<0.1	Comp.	0.1
4,4,-DDD	<0.1	<0.1	Comp.	0.1
Dieldrin	<0.02	<0.02	Comp.	0.02
Endosulfan I (alpha)	<0.01	<0.01	Comp.	0.01
Endosulfan II (beta)	<0.02	<0.02	Comp.	0.02
Endosulfan Sulfate	<0.1	<0.1	Comp.	0.1
Endrin	<0.02	<0.02	Comp.	0.02
Endrin Aldehyde	<0.1	<0.1	Comp.	0.1
Heptachlor	<0.01	<0.01	Comp.	0.01
Heptachlor Epoxide	<0.01	<0.01	Comp.	0.01
PCB-1242	<0.2	<0.2	Comp.	0.2
PCB-1254	<0.2	<0.2	Comp.	0.2
PCB-1221	<0.2	<0.2	Comp.	0.2
PCB-1232	<0.2	<0.2	Comp.	0.2
PCB-1248	<0.2	<0.2	Comp.	0.2
PCB-1260	<0.2	<0.2	Comp.	0.2
PCB-1016	<0.2	<0.2	Comp.	0.2
Toxaphene	<0.3	<0.3	Comp.	0.3

^{*} For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Section 3. Dioxin/Furan Compounds A. Indicate which of the following compounds from may be present in the influent from a contributing industrial user or significant industrial user. Check all that apply. 2,4,5-trichlorophenoxy acetic acid

Common Name 2,4,5-T, CASRN 93-76-5

2-(2,4,5-trichlorophenoxy) propanoic acid
Common Name Silvex or 2,4,5-TP, CASRN 93-72-1

2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate
Common Name Erbon, CASRN 136-25-4

0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate

Common Name Ronnel, CASRN 299-84-3

2,4,5-trichlorophenol

Common Name TCP, CASRN 95-95-4

hexachlorophene

Common Name HCP, CASRN 70-30-4

For each compound identified, provide a brief description of the conditions of its/their presence at the facility.

Click to enter text.	
ener to enter text.	

B. Do you know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin (TCDD) or any congeners of TCDD may be present in your effluent?

□ Yes ⊠ No

If **yes**, provide a brief description of the conditions for its presence.

Click to enter text.

C.	If any of the compounds in Subsection A ${f or}$ B are present, complete Table 4.0(2)F.
	For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab □ Composite □

Date and time sample(s) collected: Click to enter text.

Table 4.0(2)F - Dioxin/Furan Compounds

Compound	Toxic Equivalenc y Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1					10
1,2,3,7,8 PeCDD	0.5					50
2,3,7,8 HxCDDs	0.1					50
1,2,3,4,6,7,8 HpCDD	0.01					50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05					50
2,3,4,7,8 PeCDF	0.5					50
2,3,7,8 HxCDFs	0.1					50
2,3,4,7,8 HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					0.5
PCB 81	0.0003					0.5
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total						

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: TOXICITY TESTING REQUIREMENTS

The following **is required** for facilities with a current operating design flow of **1.0 MGD or greater**, with an EPA-approved **pretreatment** program (or those required to have one under 40 CFR Part 403), or are required to perform Whole Effluent Toxicity testing. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Required Tests (Instructions Page 88)

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic: <u>7</u> 48-hour Acute: 12

Section 2. Toxicity Reduction Evaluations (TREs)

Has this facility completed a TRE in the past fou	ar and a half years? Or is the facility currently
performing a TRE?	

□ Yes ⊠ No

If yes, describe the progress to date, if applicable, in identifying and confirming the toxicant.

Click to enter text.			

Section 3. Summary of WET Tests

If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed.

Table 5.0(1) Summary of WET Tests

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal
11/15/2023	Ceriodaphnia dubia	11%	N/A
(85787) 7day	Pimephales promelas	11%	N/A
07/19/2023	Ceriodaphnia dubia	11%	N/A
(85786) 7day	Pimephales promelas	11%	N/A
05/31/2023	Ceriodaphnia dubia	11%	N/A
(85785) 7day	Pimephales promelas	11%	N/A
02/22/2023	Daphnia pulex	53%	N/A
(85784) 48Hr	Pimephales promelas	53%	N/A
11/16/2022	Daphnia pulex	52%	N/A
(82767) 48Hr	Pimephales promelas	52%	N/A
08/18/2022	Daphnia pulex	52%	N/A
(82766) 48Hr	Pimephales promelas	52%	N/A
05/18/2022	Daphnia pulex	52%	N/A
(82763) 48Hr	Pimephales promelas	52%	N/A
02/23/2022	Daphnia pulex	52%	N/A
(82764) 48Hr	Pimephales promelas	52%	N/A
10/27/2021	Daphnia pulex	53%	N/A
(77336) 48Hr	Pimephales promelas	53%	N/A
08/11/2021	Daphnia pulex	53%	N/A
(77334) 48Hr	Pimephales promelas	53%	N/A
05/12/2021	Daphnia pulex	53%	N/A
(77333) 48Hr	Pimephales promelas	53%	N/A
03/10/2021	Daphnia pulex	53%	N/A
(77332) 48Hr	Pimephales promelas	53%	N/A
10/28/2020	Daphnia pulex	53%	N/A
(75766) 48Hr	Pimephales promelas	53%	N/A
09/02/2020	Daphnia pulex	53%	N/A
(75764) 48Hr	Pimephales promelas	53%	N/A
06/03/2020	Daphnia pulex	53%	N/A

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal
(75764) 48Hr	Pimephales promelas	53%	N/A
03/18/2020	Daphnia pulex	53%	N/A
(75762) 48Hr	Pimephales promelas	53%	N/A

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works.

Section 1. All POTWs (Instructions Page 89)

A. Industrial users (IUs)

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

If there are no users, enter 0 (zero). Categorical IUs:

Number of IUs: 3

Average Daily Flows, in MGD: <u>0.75</u>

Significant IUs - non-categorical:

Number of IUs: 1

Average Daily Flows, in MGD: 0

Other IUs:

Number of IUs: 0

Average Daily Flows, in MGD: 0

B. Treatment plant interference

In the past three years, has your POTW experienced treatment plant interference (see instructions)?

□ Yes ⊠ No

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

	Click to enter text.
Į	

	In the past three years, has your POTW experienced pass through (see instructions)?								
	□ Yes ⊠ No								
	If yes , identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.								
	Click to enter text.								
D.	Pretreatment program								
	Does your POTW have an approved pretreatment program?								
	⊠ Yes □ No								
	If yes, complete Section 2 only of this Worksheet.								
	Is your POTW required to develop an approved pretreatment program?								
	⊠ Yes □ No								
	If yes, complete Section 2.c. and 2.d. only, and skip Section 3.								
	If no to either question above , skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.								
E.	Service Area Map								
	Attach a map indicating the service area of the POTW. The map should include the applicant's service area boundaries and the location of any known industrial users discharging to the POTW. Please see the instructions for guidance.								
	Attachment: Click to enter text.								
Se	ection 2. POTWs with Approved Programs or Those Required to								
	Develop a Program (Instructions Page 90)								
A.	Substantial modifications								
	Have there been any substantial modifications to the approved pretreatment program that have not been submitted to the TCEQ for approval according to <i>40 CFR §403.18</i> ?								

C. Treatment plant pass through

If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.

Yes 🗵

No

Click to enter text.		

B. Non-substantial modifications

Have there been any **non-substantial modifications** to the approved pretreatment program that have not been submitted to TCEQ for review and acceptance?

□ Yes ⊠ No

If yes, identify all non-substantial modifications that have not been submitted to TCEQ, including the purpose of the modification.

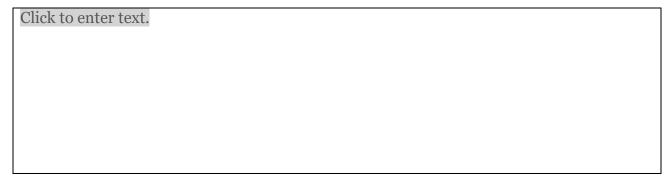
Click to enter text.		

C. Effluent parameters above the MAL

In Table 6.0(1), list all parameters measured above the MAL in the POTW's effluent monitoring during the last three years. Submit an attachment if necessary.

Table 6.0(1) - Parameters Above the MAL

Pollutant	Concentration	MAL	Units	Date	
Aluminum	32.4	2.5	(ug/l)	02/13/2024	
Barium	79.5	3.0	(ug/l)	02/13/2024	
Copper	3.3	2.0	(ug/l)	02/13/2024	
Fluoride	680.0	500.0	(ug/l)	02/13/2024 02/13/2024	
Lead	0.5	0.5	(ug/l)		
Nickel	3.5	2.0	(ug/l)	02/13/2024	
Nitrate-N	10,200.0	100.0	(ug/l)	02/13/2024	
Phenol	16.0	10.0	(ug/l)	02/13/2024	
Zinc	47.0	5.0	(ug/l)	02/13/2024	
Aluminum	36.0	2.5	(ug/l)	07/11/2023	
Barium	81.1	3.0	(ug/l)	07/11/2023	


Pollutant	Concentration	MAL	Units	Date	
Fluoride	oride 1.05		(mg/l)	07/11/2023	
Nickel	3.7	2.0	(ug/l)	07/11/2023	
Zinc	10.5	5.0	(ug/l)	07/11/2023	
Aluminum	126.0	2.5	(ug/l)	02/14/2023 02/14/2023	
Arsenic	0.5	0.5	(ug/l)		
Barium	29.5	3.0	(ug/l)	02/14/2023	
Copper	11.5	2.0	(ug/l)	02/14/2023	
Nickel	3.3	2.0	(ug/l)	02/14/2023	
Nitrate-N	25,600.0	100.0	(ug/l)	02/14/2023	
Phenol	16.0	10.0	(ug/l)	02/14/2023	
Zinc	11.1	5.0	(ug/l)	02/14/2023	

D. Industrial user interruptions

Has any SIU, CIU, or other IU caused or contributed to any problems (excluding interferences or pass throughs) at your POTW in the past three years?

□ Yes ⊠ No

If yes, identify the industry, describe each episode, including dates, duration, description of the problems, and probable pollutants.

Section 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 90)

A. General information

Company Name: N/A

SIC Code: N/A

Contact name: N/A

Address: N/A

City, State, and Zip Code: N/A

Telephone number: <u>N/A</u>

Email address: N/A

	Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).
	Click to enter text.
C.	Product and service information
	Provide a description of the principal product(s) or services performed.
	Click to enter text.
D	Flory note information
υ.	Flow rate information See the Instructions for definitions of "processe" and "per process wastewater"
	See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater:
	Discharge, in gallons/day: Click to enter text.
	Discharge Type: □ Continuous □ Batch □ Intermittent Non-Process Wastewater:
	Discharge, in gallons/day: Click to enter text.
	Discharge Type: □ Continuous □ Batch □ Intermittent
E.	Pretreatment standards
	Is the SIU or CIU subject to technically based local limits as defined in the <i>i</i> nstructions?
	□ Yes □ No
	Is the SIU or CIU subject to categorical pretreatment standards found in 40 CFR Parts 405-471?
	□ Yes □ No
	If subject to categorical pretreatment standards , indicate the applicable category and subcategory for each categorical process.
	Category: Subcategories: Click to enter text.
	Click or tap here to enter text. Click to enter text.
	Category: Click to enter text.

B. Process information

F.

ATTACHMENT 1

Core Data Form

(Ref. Section 3 of Administrative Report 1.0)

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (if other is checked please describe in space provided.)												
New Permit, Registration or Authorization (Core Data Form should be submitted with the program application.)												
Renewal (Renewal (Core Data Form should be submitted with the renewal form)							Other				
2. Customer	2. Customer Reference Number (if issued) Follow this link to for CN or RN num											ssued)
CN 6003422	Central R			RN 101610566								
SECTION II: Customer Information												
<u></u>												
4. General Cu	istomer In	formation	5. Effectiv	e Date for Cu	ıstome	r Info	rmation	Update	es (mm/dd/	уууу)		
New Custor			-	tomer Informat					egulated Ent	ity Owne	ership	
Change in Le	egal Name (Verifiable with the Te	xas Secretary	of State or Texa	as Com _l	otrolle	r of Public	Accour	nts)			
		bmitted here may	-	automaticall	y base	d on ı	what is c	urrent	and active	with th	e Texas Secr	etary of State
(SOS) or lexa	s comput	oller of Public Accou	inis (CPA).									
6. Customer	Legal Nam	e (If an individual, pri	nt last name	first: eg: Doe, J	ohn)			<u>If new</u>	Customer, e	enter pre	evious Custom	<u>er below:</u>
City of Seguin												
7. TX SOS/CP	A Filing Nu	umber	8. TX Stat	e Tax ID (11 di	igits)			9. Federal Tax ID 10. DUNS Number (i			Number (if	
						(9 digits)						
								74-60	0-2279			
11. Type of C	ustomer:	☐ Corpora	tion				☐ Individ	lual		Partne	rship: 🔲 Gen	eral 🔲 Limited
_		County Federal	Local 🗌 Sta	te 🗌 Other			Sole Pi	roprieto	rship	Otl	ner:	
12. Number o	of Employ	ees				ı		13. lr	ndependen	tly Ow	ned and Ope	erated?
0-20	21-100] 101-250 🛛 251-	500 🗌 50	1 and higher				☐ Ye	es [⊠ No		
14. Customer	Role (Prop	posed or Actual) – as i	t relates to th	ne Regulated En	ntity list	ed on t	this form.	Please c	heck one of	the follo	wing	
⊠Owner □ Occupationa	al Licensee	Operator Responsible Pa		Owner & Opera VCP/BSA App					Other:			
	205 Nortl	n River Street										
15. Mailing												
Address:	City	Seguin		State	ТХ		ZIP	78155	<u> </u>		ZIP + 4	
	City	Jeguiii		State	'^		215	/013			21F 7 4	
16. Country N	Mailing Inf	ormation (if outside	USA)			17.	E-Mail Ad	ddress	(if applicable	?)		
						thow	re@seguir	ntexas.g	ov			
18. Telephon	e Number			19. Extensio	n or C	ode			20. Fax N	umber	(if applicable)	

TCEQ-10400 (11/22) Page 1 of 3

(830) 386-2540		() -
------------------	--	-------

SECTION III: Regulated Entity Information

21. General Regulated Lin	21. General Regulated Entity Information (If 'New Regulated Entity" is selected, a new permit application is also required.)								
☐ New Regulated Entity ☐ Update to Regulated Entity Name ☐ Update to Regulated Entity Information									
The Regulated Entity Name submitted may be updated, in order to meet TCEQ Core Data Standards (removal of organizational endings such as Inc, LP, or LLC).									
22. Regulated Entity Nam	ne (Enter nam	e of the site where	e the regulated action	n is taking pla	ce.)				
Geronimo Creek Wastewater Treatment Plant									
23. Street Address of the Regulated Entity:	450 Seitz Ro	450 Seitz Road							
		_				1			1
(No PO Boxes)	City	Seguin	State	TX	ZIP	78155		ZIP + 4	
24. County	Guadalupe								
		If no Stree	et Address is provid	ded, fields 2	5-28 are re	quired.			
25. Description to									
Physical Location:	Seitz Road,	Seguin, Texas, Gua	adalupe County. Appr	oximately 5,1	18 feet east o	of the inte	rsection of 46	6 and Muell	er Lane.
26. Nearest City						State		Nea	rest ZIP Code
Seguin						TX		7815	5
Latitude/Longitude are ru used to supply coordinate	-	-			ata Standa	rds. (Geo	coding of th	e Physical	Address may be
27. Latitude (N) In Decim	al:	29.551887		28. Lo	ongitude (W	/) In Deci	mal:	97.91685	6
Degrees	Minutes		Seconds	Degre	es	Ŋ	/linutes		Seconds
Degrees 29	Minutes	33	Seconds 06.7932	Degre	es 97	N	Minutes 55		0.6816
_			06.7932				55	ndary NAIG	0.6816
29	30.	33	06.7932		97 ry NAICS Co		55	-	0.6816
29 29. Primary SIC Code	30.	33 Secondary SIC C	06.7932	31. Primar	97 ry NAICS Co		55 32. Seco	-	0.6816
29 29. Primary SIC Code (4 digits)	30. (4 d	33 Secondary SIC Cigits)	06.7932 Code	31. Primar (5 or 6 digit	97 cy NAICS Co cs)		55 32. Seco	-	0.6816
29 29. Primary SIC Code (4 digits) 4952	30. (4 d	33 Secondary SIC Cigits)	06.7932 Code	31. Primar (5 or 6 digit	97 cy NAICS Co cs)		55 32. Seco	-	0.6816
29 29. Primary SIC Code (4 digits) 4952 33. What is the Primary E Municipal Wastewater Treate	30. (4 d	33 Secondary SIC Cigits)	06.7932 Code	31. Primar (5 or 6 digit	97 cy NAICS Co cs)		55 32. Seco	-	0.6816
29 29. Primary SIC Code (4 digits) 4952 33. What is the Primary E Municipal Wastewater Treatr 34. Mailing	30. (4 d	33 Secondary SIC Cigits)	06.7932 Code	31. Primar (5 or 6 digit	97 cy NAICS Co cs)		55 32. Seco	-	0.6816
29 29. Primary SIC Code (4 digits) 4952 33. What is the Primary E Municipal Wastewater Treate	30. (4 d	33 Secondary SIC Cigits)	06.7932 Code	31. Primar (5 or 6 digit	97 cy NAICS Co cs)		55 32. Seco	-	0.6816
29 29. Primary SIC Code (4 digits) 4952 33. What is the Primary E Municipal Wastewater Treatr 34. Mailing	30. (4 d	33 Secondary SIC Cigits)	06.7932 Code o not repeat the SIC o	31. Primar (5 or 6 digit	97 y NAICS Co iption.)		55 32. Seco	gits)	0.6816
29 29. Primary SIC Code (4 digits) 4952 33. What is the Primary E Municipal Wastewater Treati 34. Mailing Address:	30. (4 d	33 Secondary SIC Cigits)	06.7932 Code o not repeat the SIC o	31. Primar (5 or 6 digit 22132 r NAICS descri	97 y NAICS Co iption.)	de	55 32. Seco	gits) ZIP + 4	0.6816
29 29. Primary SIC Code (4 digits) 4952 33. What is the Primary E Municipal Wastewater Treatr 34. Mailing Address: 35. E-Mail Address:	30. (4 d	33 Secondary SIC Cigits)	06.7932 Code o not repeat the SIC of	31. Primar (5 or 6 digit 22132 r NAICS descri	97 y NAICS Co ss) iption.) ZIP 38. Fa	de	55 32. Seco (5 or 6 dig	gits) ZIP + 4	0.6816

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

TCEQ-10400 (11/22) Page 2 of 3

D		☐ New Source			2		
Municipal:	Solid Waste	Review Air	OSSF		Petroleum Storage	Tank	PWS
Sludge		Storm Water	☐ Title V Air		Tires		Used Oil
☐ Voluntary (Cleanup	☑ Wastewater	☐ Wastewater Agric	ulture [Water Rights	_	Other:
		WQ0010277003					
40. Name:	Craig Bell, P.E.	reparer Inf	<u>formation</u>	41. Title:	Austin Engineerin	g Direct	or
42. Telephone	Number	43. Ext./Code	44. Fax Number	45. E-Mail	Address		
(512) 924-4999	9		(512)454-2433				
SECTIO	N V: AL	thorized S	Signature				
6. By my signatu	are below, I certif	fy, to the best of my kno					e, and that I have signature authority entified in field 39.
_	City of Se	eguin		Job Title:	Mayor		
Company:	City or Si						
Company: Name (In Print)	10000000	odgen			Pho	ne:	(830) 401- 2307

☐ Edwards Aquifer

Emissions Inventory Air

☐ Industrial Hazardous Waste

☐ Dam Safety

Districts

TCEQ-10400 (11/22) Page 3 of 3

ATTACHMENT 2

Plain Language Summary (Ref. Section 8 of Administrative Report 1.0)

TCEQ

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

PLAIN LANGUAGE SUMMARY FOR TPDES OR TLAP PERMIT APPLICATIONS

Plain Language Summary Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary as required by <u>Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H</u>. Applicants may modify the template as necessary to accurately describe their facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how the applicant will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS Enter 'INDUSTRIAL' or 'DOMESTIC' here WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

1. Enter applicant's name here (2. Enter Customer Number here (i.e., CN6#######)) 3. Choose from the drop-down menu 4. Enter name of facility here (5. Enter Regulated Entity Number here (i.e., RN1######)), 6. Choose from the drop-down menu 7. Enter facility description here. The facility 8. Choose from the drop-down menu located at 9. Enter location here, in 10. Enter city name here, 11. Enter county name here County, Texas 12. Enter zip code here. 13. Enter summary of application request here. << For TLAP applications include the following sentence, otherwise delete:>> This permit will not authorize a discharge of pollutants into water in the state.

Discharges from the facility are expected to contain 14. List all expected pollutants here. 15. Enter types of wastewater discharged here 16. Choose from the drop-down menu treated by 17. Enter a description of wastewater treatment used at the facility here.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES Introduzca 'INDUSTRIALES' o 'DOMÉSTICAS' aquí /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

1. Introduzca el nombre del solicitante aquí (2. Introduzca el número de cliente aquí (es decir, CN6#######).) 3. Elija del menú desplegable 4. Introduzca el nombre de la instalación aquí 5. Introduzca el número de entidad regulada aquí (es decir, RN1######), 6. Elija del menú desplegable 7. Introduzca la descripción de la instalación aquí. La instalación 8. Elija del menú desplegable. ubicada en 9. Introduzca la ubicación aquí, en 10. Introduzca el nombre de la ciudad aquí, Condado de 11. Introduzca el nombre del condado aquí, Texas 12. Introduzca el código postal aquí. 13. Introduzca el resumen de la petición de solicitud aquí. << Para las solicitudes de TLAP incluya la siguiente oración, de lo contrario, elimine:>> Este permiso no autorizará una descarga de contaminantes en el agua en el estado.

Se espera que las descargas de la instalación contengan 14. Liste todos los contaminantes esperados aquí. 15. Introduzca los tipos de aguas residuales descargadas aquí. 16. Elija del menú desplegable tratado por 17. Introduzca una descripción del tratamiento de aguas residuales utilizado en la instalación aquí.

INSTRUCTIONS

- 1. Enter the name of applicant in this section. The applicant name should match the name associated with the customer number.
- 2. Enter the Customer Number in this section. Each Individual or Organization is issued a unique 11-digit identification number called a CN (e.g. CN123456789).
- 3. Choose "operates" in this section for existing facility applications or choose "proposes to operate" for new facility applications.
- 4. Enter the name of the facility in this section. The facility name should match the name associated with the regulated entity number.
- 5. Enter the Regulated Entity number in this section. Each site location is issued a unique 11-digit identification number called an RN (e.g. RN123456789).
- 6. Choose the appropriate article (a or an) to complete the sentence.
- 7. Enter a description of the facility in this section. For example: steam electric generating facility, nitrogenous fertilizer manufacturing facility, etc.
- 8. Choose "is" for an existing facility or "will be" for a new facility.
- 9. Enter the location of the facility in this section.
- 10. Enter the City nearest the facility in this section.
- 11. Enter the County nearest the facility in this section.
- 12. Enter the zip code for the facility address in this section.
- 13. Enter a summary of the application request in this section. For example: renewal to discharge 25,000 gallons per day of treated domestic wastewater, new application to discharge process wastewater and stormwater on an intermittent and flow-variable basis, or major amendment to reduce monitoring frequency for pH, etc. If more than one outfall is included in the application, provide applicable information for each individual outfall.
- 14. List all pollutants expected in the discharge from this facility in this section. If applicable, refer to the pollutants from any federal numeric effluent limitations that apply to your facility.
- 15. Enter the discharge types from your facility in this section (e.g., stormwater, process wastewater, once through cooling water, etc.)
- 16. Choose the appropriate verb tense to complete the sentence.
- 17. Enter a description of the wastewater treatment used at your facility. Include a description of each process, starting with initial treatment and finishing with the outfall/point of disposal. Use additional lines for individual discharge types if necessary.

Example

Individual Industrial Wastewater Application

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

ABC Corporation (CN600000000) operates the Starr Power Station (RN10000000000), a two-unit gas-fired electric generating facility. Unit 1 has a generating capacity of 393 megawatts (MWs) and Unit 2 has a generating capacity of 528 MWs. The facility is located at 1356 Starr Street, near the City of Austin, Travis County, Texas 78753.

This application is for a renewal to discharge 870,000,000 gallons per day of once through cooling water, auxiliary cooling water, and also authorizes the following waste streams monitored inside the facility (internal outfalls) before it is mixed with the other wastewaters authorized for discharge via main Outfall 001, referred to as "previously monitored effluents" (low-volume wastewater, metal-cleaning waste, and stormwater (from diked oil storage area yards and storm drains)) via Outfall 001. Low-volume waste sources, metal-cleaning waste, and stormwater drains on a continuous and flow-variable basis via internal Outfall 101.

The discharge of once through cooling water via Outfall 001 and low-volume waste and metal-cleaning waste via Outfall 101 from this facility is subject to federal effluent limitation guidelines at 40 CFR Part 423. The pollutants expected from these discharges based on 40 CFR Part 423 are: free available chlorine, total residual chlorine, total suspended solids, oil and grease, total iron, total copper, and pH. Temperature is also expected from these discharges. Additional potential pollutants are included in the Industrial Wastewater Application Technical Report, Worksheet 2.0.

Cooling water and boiler make-up water are supplied by Lake Starr Reservoir. The City of Austin municipal water plant (CN600000000, PWS 00000) supplies the facility's potable water and serves as an alternate source of boiler make-up water. Water from the Lake Starr Reservoir is withdrawn at the intake structure and treated with sodium hypochlorite to prevent biofouling and sodium bromide as a chlorine enhancer to improve efficacy and then passed through condensers and auxiliary equipment on a once-through basis to cool equipment and condense exhaust steam.

Low-volume wastewater from blowdown of boiler Units 1 and 2 and metal-cleaning wastes receive no treatment prior to discharge via Outfall 101. Plant floor and equipment drains and stormwater runoff from diked oil storage areas, yards, and storm drains are routed through an oil and water separator prior to discharge via Outfall 101. Domestic wastewater, blowdown, and backwash water from the service water filter, clarifier, and sand filter are routed to the Starr Creek Domestic Sewage Treatment Plant, TPDES Permit No. WQ0010000001, for treatment and disposal. Metal-cleaning waste from equipment cleaning is generally disposed of off-site.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTIC WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

City of Seguin (CN600342257) operates Geronimo Creek Wastewater Treatment Plant (RN101610566), an existing plant site that contains a raw sewage lift station, headworks consisting of manually and automatically cleaned bar screens, oxidation ditch, secondary clarifiers, chlorine contact basins, effluent flow measurement, non-potable water (NPW) pumps, mobile belt press sludge dewatering area, sludge drying beds, emergency electrical generators (one at the raw sewage pump station and one at the treatment plant), and operations building. The facility is located at 450 Seitz Road, in Seguin, Guadalupe County, Texas 78155. This application is for a renewal to discharge treated domestic wastewater of an annual average flow not to exceed 12,000,000 gallons per day.

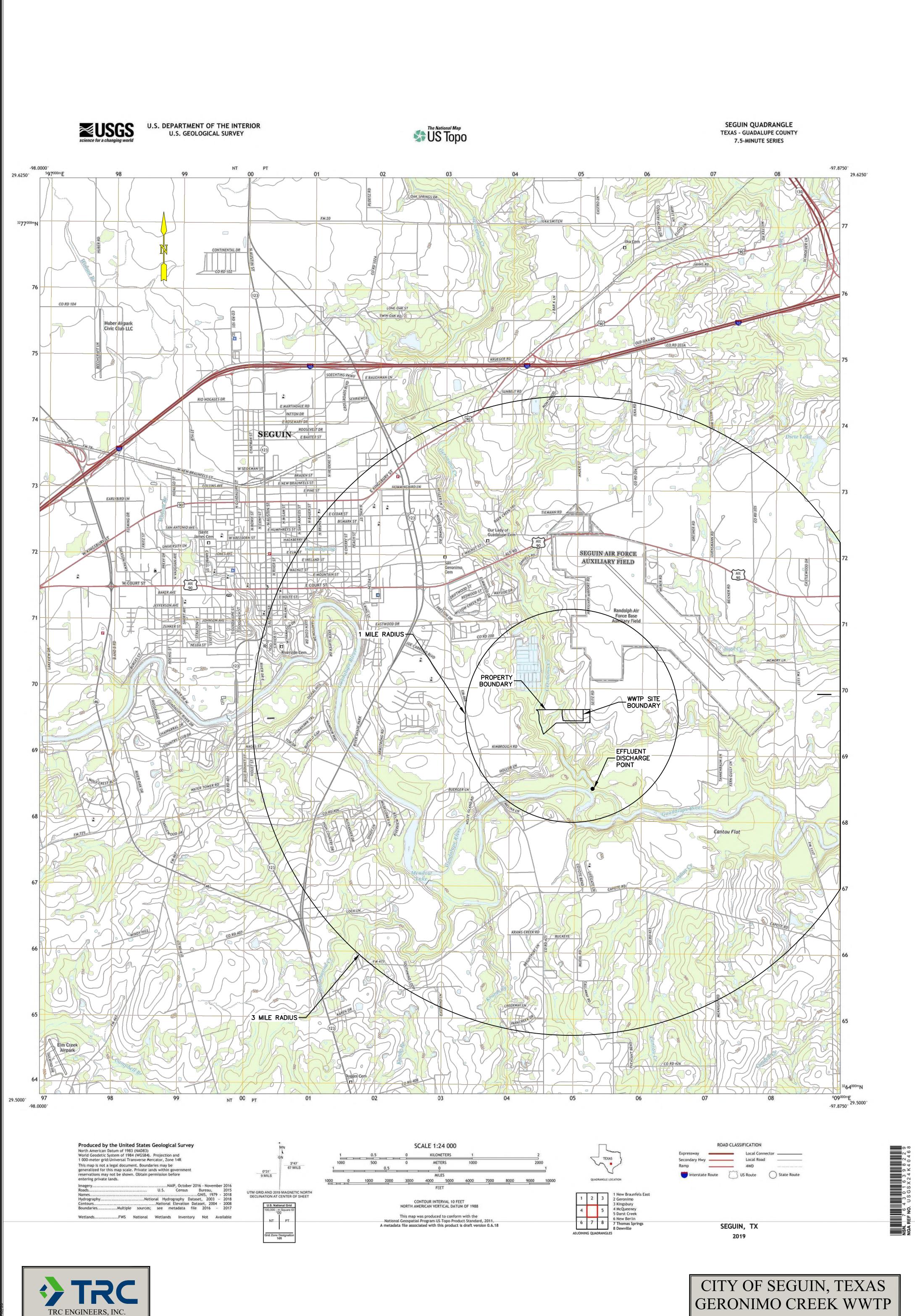
Discharges from the facility are expected to contain carbon monoxide, total suspended solids, nitrate nitrogen, total kjeldahl nitrogen, sulfate, chloride, total phosphorus, pH, dissolved oxygen, chlorine residual, E.coli, total dissolved solids, and alkalinity. Geronimo Creek WWTP discharges effluent via a 24" discharge pipe into Geronimo Creek at a point approximately 250 feet upstream from the confluence of Geronimo Creek and the Guadalupe River; thence to the Guadalupe River below Comal River in Segment No. 1804 of the Guadalupe River Basin is treated by the lift station at the Geronimo Creek WWTP and the transfer lift station at the Walnut Branch WWTP receiving raw wastewater from the collection system and pumping raw sewage into the proposed headworks. The proposed headworks will have two (2) channels equipped with automatic bar screens for removing debris and solids. A third channel will contain a manually cleaned bar screen. The screened wastewater will flow through two (2) grit removal basins. The screenings and washed grit will be discharged into a dumpster for disposal. The screened and de-gritted wastewater will flow into a proposed mix basin where it will be mixed with return activated sludge (RAS) before discharging into four (4) proposed aeration basins. The basins will be equipped with fine bubble diffusers. Blowers will supply air to the diffusers. The mixed liquor from the aeration basins will feed three (3) proposed secondary clarifiers where suspended solids settle to the basin floor for removal. RAS will be pumped to the proposed mix basin. Waste Activated Sludge (WAS) and scum from the biological process will be pumped into three (3) proposed aerobic digesters. The existing oxidation ditch will be converted into two (2) aerobic digesters (aerobic digesters No. 1 and No. 2) and one (1) of the existing clarifiers will also be converted into a digester (aerobic digester No. 3). Blowers will provide air to air diffuser systems inside the digesters. The other existing clarifier will be converted into a sludge thickener for pre-thickening. The thickened sludge will be pumped to Digester No. 1 and No. 2 and those basins will overflow into Digester No. 3 and the sludge from Digester No. 3 will then be pumped to the two (2) proposed belt filter presses for dewatering. The digested sludge will be injected with a polymer prior to entering the dewatering area. Dewatered stabilized sludge will then be disposed via a licensed sludge hauler while a drain recycles water from the dewatering process back to the influent lift station. The clarifier effluent will be collected by circular effluent troughs around the clarifier perimeters. Clarifier effluent will then flow to three (3) tertiary cloth disk type filters. Filter backwash solids will be recycled for retreatment. Filtered water flows into two (2) existing and two (2) proposed chlorine contact basins for disinfection. Chlorine solution will be injected into the chlorine basin influent. The water will be disinfected as it flows through the contact chambers. The chlorine basin effluent will be de-chlorinated by feeding sulfur dioxide. The de-chlorinated effluent will flow to the plant effluent metering structure then to the plant outfall.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES DOMÉSTICAS /AGUAS PLUVIALES

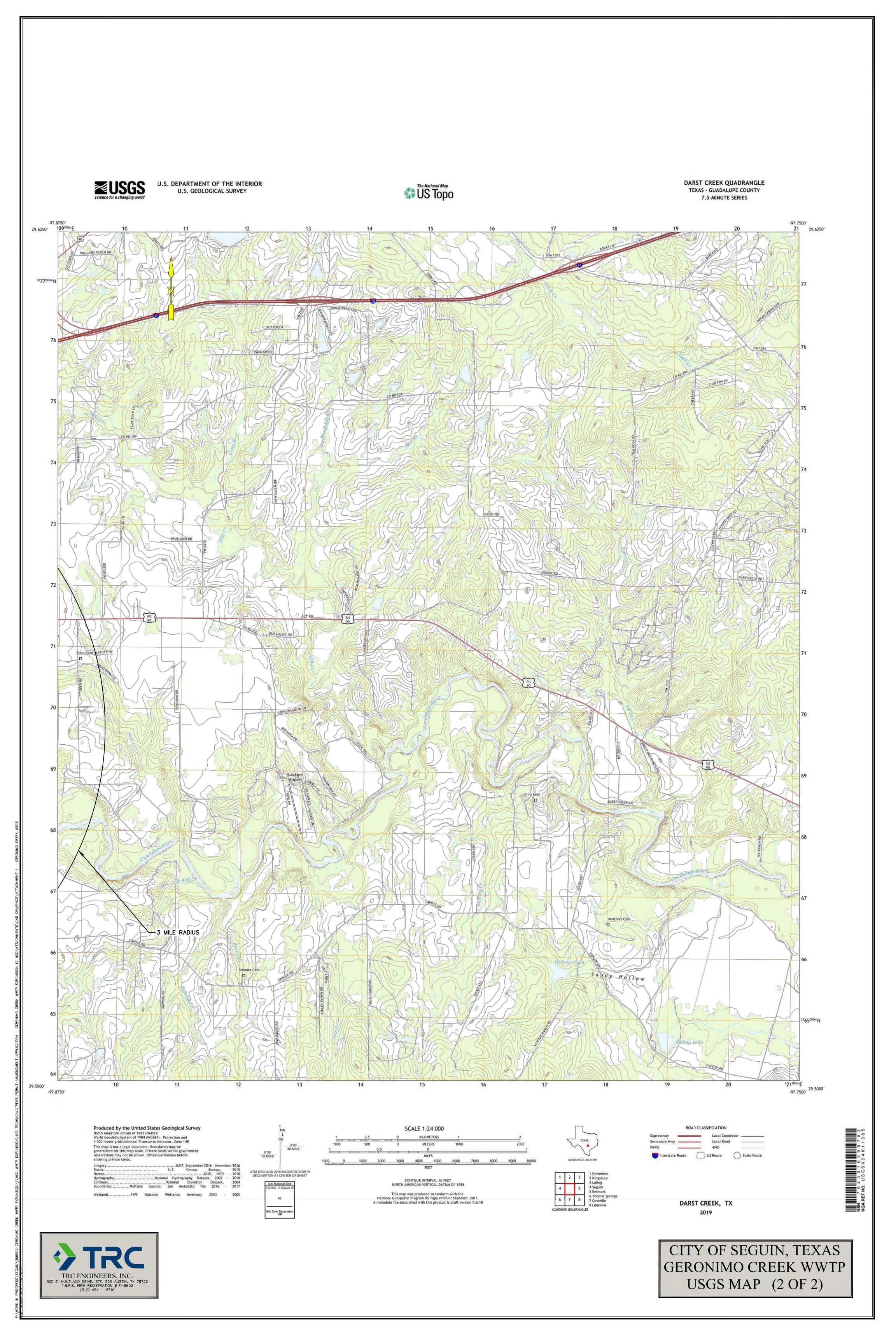
El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

Ciudad de Seguin (CN600342257) opera Planta de tratamiento de aguas residuales Geronimo Creek RN101610566, una emplazamiento de la planta existente que contiene una estación elevadora de aguas residuales sin tratar, obras de cabecera que consisten en cribas de barras limpias manual y automáticamente, zanja de oxidación, clarificadores secundarios, cuencas de contacto con cloro, medición del flujo de efluentes, bombas de agua no potable (NPW), área de deshidratación de lodos de prensa de cinta móvil, lechos de secado de lodos, generadores eléctricos de emergencia (uno en la estación de bombeo de aguas residuales sin tratar y otro en la planta de tratamiento), y construcción de operaciones. La instalación está ubicada en 450 Seitz Road, en Seguin, Condado de Guadalupe, Texas 78155. Esta solicitud es para una renovación para descargar aguas residuales domésticas tratadas de un flujo promedio anual que no exceda los 12,000,000 galones por día.


Se espera que las descargas de la instalación contengan monóxido de carbono, sólidos suspendidos totales, nitrógeno nítrico, nitrógeno kjeldahl total, sulfato, cloruro, fósforo total, pH, oxígeno disuelto, cloro residual, E. coli, sólidos disueltos totales y alcalinidad. La PTAR Gerónimo Creek descarga efluentes a través de una tubería de descarga de 24" en Geronimo Creek en un punto aproximadamente 250 pies aguas arriba de la confluencia de Geronimo Creek y el río Guadalupe; de allí al río Guadalupe por debajo del río Comal en el segmento No. 1804 de la cuenca del río Guadalupe. está tratado por la estación de bombeo en la planta de tratamiento de aguas residuales de Geronimo Creek y la estación de bombeo de transferencia en la planta de tratamiento de aguas residuales de Walnut Branch, que reciben aguas residuales sin tratar del sistema de recolección y bombean aguas residuales sin tratar a las obras de cabecera propuestas. Las obras de cabecera propuestas contarán con dos (2) canales equipados con pantallas automáticas de barras para la remoción de escombros y sólidos. Un tercer canal contendrá una pantalla de barra limpiada manualmente. Las aguas residuales tamizadas fluirán a través de dos (2) cuencas de eliminación de arena. Las cribas y la arena lavada se descargarán en un contenedor de basura para su eliminación. Las aguas residuales tamizadas y desarenadas fluirán hacia una cuenca de mezcla propuesta donde se mezclarán con lodos activados de retorno (RAS) antes de descargarse en cuatro (4) cuencas de aireación propuestas. Los lavabos estarán equipados con difusores de burbujas finas. Los sopladores suministrarán aire a los difusores. El licor mezclado de las cuencas de aireación alimentará tres (3) clarificadores secundarios propuestos donde los sólidos suspendidos se depositan en el piso de la cuenca para su eliminación. El RAS se bombeará a la cuenca de mezcla propuesta. Los lodos activados residuales (WAS) y la escoria del proceso biológico se bombearán a tres (3) digestores aeróbicos propuestos. La zanja de oxidación existente se convertirá en dos (2) digestores aeróbicos (digestores aeróbicos Nº 1 y Nº 2) y uno (1) de los clarificadores existentes también se convertirá en un digestor (digestor aeróbico Nº 3). Los sopladores proporcionarán sistemas difusores de aire a aire dentro de los digestores. El otro clarificador existente se convertirá en un espesador de lodos para el preespesamiento. El lodo espesado se bombeará al digestor Nº 1 y Nº 2 y esas cuencas se desbordarán en el digestor nº 3 y el lodo del digestor nº 3 se bombeará a los dos (2) filtros prensa de banda propuestos

para su deshidratación. El lodo digerido se inyectará con un polímero antes de ingresar al área de deshidratación. Los lodos estabilizados deshidratados se eliminarán a través de un transportista de lodos autorizado, mientras que un desagüe recicla el agua del proceso de deshidratación de regreso a la estación de bombeo afluente. El efluente del clarificador se recogerá mediante canales circulares alrededor de los perímetros del clarificador. El efluente del clarificador fluirá entonces a tres (3) filtros terciarios tipo disco de tela. Los sólidos de retrolavado del filtro se reciclarán para su retratamiento. El agua filtrada fluye hacia dos (2) cuencas de contacto de cloro existentes y dos (2) propuestas para su desinfección. Se inyectará una solución de cloro en el afluente de la cuenca de cloro. El agua se desinfectará a medida que fluya a través de las cámaras de contacto. El efluente de la cuenca de cloro se declorará alimentando con dióxido de azufre. El efluente declorado fluirá a la estructura de medición del efluente de la planta y luego al emisario de la planta.

ATTACHMENT 3


Original Full Size USGS Map

(Ref. Section 13 of Administrative Report 1.0)

505 E. HUNTLAND DRIVE, STE. 250 AUSTIN, TX 78752 T.B.P.E. FIRM REGISTRATION # F-8632 (512) 454 - 8716

USGS MAP (1 OF 2)

ATTACHMENT 4 SPIF Form

(Ref. Page 14 of the Administrative Report)

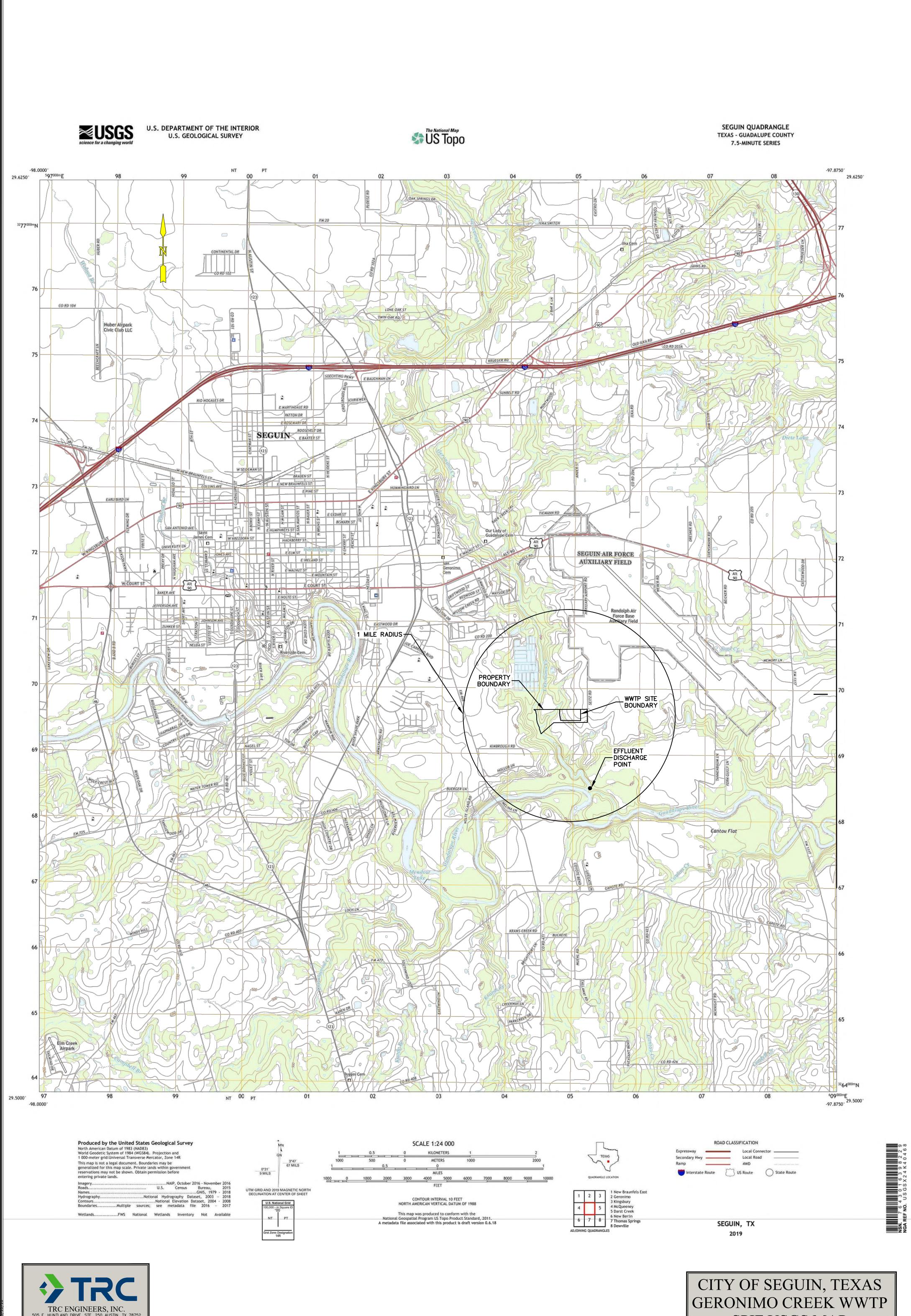
TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

TCEQ USE ONLY:	
Application type:RenewalMajor Ame	endment Minor Amendment New
County:	
Admin Complete Date:	
Agency Receiving SPIF:	
Texas Historical Commission	U.S. Fish and Wildlife
Texas Parks and Wildlife Department	U.S. Army Corps of Engineers
This form applies to TPDES permit applications	s only. (Instructions, Page 53)
Complete this form as a separate document. TCE our agreement with EPA. If any of the items are not needed, we will contact you to provide the informach item completely.	not completely addressed or further information
Do not refer to your response to any item in the attachment for this form separately from the Adapplication will not be declared administratively completed in its entirety including all attachmen may be directed to the Water Quality Division's Amail at	

Provide the name, address, phone and fax number of an individual that can be contacted to answer specific questions about the property.
Prefix (Mr., Ms., Miss): Mr.
First and Last Name: <u>Tim Howe</u>
Credential (P.E, P.G., Ph.D., etc.):
Title: <u>Director of Water/Wastewater</u>
Mailing Address: 205 North River Street
City, State, Zip Code: <u>Seguin, TX, 78155</u>
Phone No.: (830) 386-2540 Ext.: Fax No.:
E-mail Address: thowe@seguintexas.gov
List the county in which the facility is located: <u>Guadalupe</u>
If the property is publicly owned and the owner is different than the permittee/applicant,
please list the owner of the property. N/A
Provide a description of the effluent discharge route. The discharge route must follow the flow
of effluent from the point of discharge to the nearest major watercourse (from the point of
discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify the classified segment number.
Geronimo Creek WWTP discharges effluent via a 24" discharge pipe into Geronimo Creek at
a point approximately 250 feet upstream from the confluence of Geronimo Creek and the
Guadalupe River; thence to the Guadalupe River below Comal River in Segment No. 1804 of the Guadalupe River Basin.
Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report).
Provide original photographs of any structures 50 years or older on the property.
Does your project involve any of the following? Check all that apply.
☑ Proposed access roads, utility lines, construction easements
□ Visual effects that could damage or detract from a historic property's integrity
☑ Vibration effects during construction or as a result of project design
☐ Additional phases of development that are planned for the future
_
☐ Sealing caves, fractures, sinkholes, other karst features

2.3.


4.

5.

☐ Disturbance of vegetation or wetlands
List proposed construction impact (surface acres to be impacted, depth of excavation, sealing of caves, or other karst features): Approximately 3.0 acres will be impacted. Maximum excavation depth will be 20 feet. There will not be any sealing of caves or karst features.
Describe existing disturbances, vegetation, and land use: Existing property/land use is the current wastewater treatment plant.
IE FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR MENDMENTS TO TPDES PERMITS
List construction dates of all buildings and structures on the property:
Provide a brief history of the property, and name of the architect/builder, if known.

ATTACHMENT 5 SPIF USGS Map

(Ref. Item 5 of Supplemental Permit Information Form, SPIF)

505 E. HUNTLAND DRIVE, STE. 250 AUSTIN, TX 78752 T.B.P.E. FIRM REGISTRATION # F-8632 (512) 454 - 8716

SPIF USGS MAP

Treatment Process Description

(Ref. Section 2 of Domestic Technical Report 1.0)

Domestic Technical Report 1.0

Section 2.A - Treatment Process Description

Geronimo Creek WWTP

The Geronimo Creek Wastewater Treatment Plant (WWTP) is located in Seguin, Texas. The existing plant site contains a raw sewage lift station, headworks consisting of manually and automatically cleaned bar screens, oxidation ditch, secondary clarifiers, chlorine contact basins, effluent flow measurement, non-potable water (NPW) pumps, mobile belt press sludge dewatering area, sludge drying beds, emergency electrical generators (one at the raw sewage pump station and one at the treatment plant), and operations building.

Existing Interim Phase I (2.13 MGD)

The lift station receives raw wastewater from the collection system. Raw sewage is pumped from the lift station into a concrete influent box and is split into two channels. One channel contains a manually cleaned bar screen with a perforated plate for removing debris and solids. The second channel contains a mechanically cleaned bar screen. Screenings are dispensed into a dumpster on the ground level. The screened wastewater gravity feeds into one (1) oxidation ditch that provides oxygen and mixing to process the wastewater in extended-aeration mode. The mixed liquor from the aeration basins feeds two (2) secondary clarifiers. Suspended solids settle to the basin floor for removal. Waste activated sludge (WAS) from the biological process is pumped from the clarifier sludge hopper to either a portable belt filter press or sludge drying beds while return activated sludge (RAS) and scum are returned to the aeration basins. A drain recycles water from the dewatering process back to the influent lift station. The clarifier effluent is collected at the surface by circular effluent troughs around the tank perimeter. Clarifier effluent then flows into the chlorine contact basins for disinfection. Chlorine solution is injected into the clarifier effluent in the chlorine contact basins. Sulfur dioxide is fed into the chlorine basin effluent box for de-chlorination. The disinfected water flows to an effluent metering structure and from there to the plant outfall.

Proposed Final Phase (12.0 MGD)

The lift station at the Geronimo Creek WWTP and the transfer lift station at the Walnut Branch WWTP will receive raw wastewater from the collection system and pump raw sewage into the proposed headworks. The proposed headworks will have two (2) channels equipped with automatic bar screens for removing debris and solids. A third channel will contain a manually cleaned bar screen. The screened wastewater will flow through two (2) grit removal basins. The screenings and washed grit will be discharged into a dumpster for disposal. The screened and de-gritted wastewater will flow into a proposed mix basin where it will be mixed with return activated sludge (RAS) before discharging into four (4) proposed aeration basins. The basins will be equipped with fine bubble diffusers. Blowers will supply air to the diffusers. The mixed liquor from the aeration basins will feed three (3) proposed secondary clarifiers where suspended solids settle to the basin floor for removal. RAS will be pumped to the proposed mix basin. Waste Activated Sludge (WAS) and scum from the biological process will be pumped into three

(3) proposed aerobic digesters. The existing oxidation ditch will be converted into two (2) aerobic digesters (aerobic digesters No. 1 and No. 2) and one (1) of the existing clarifiers will also be converted into a digester (aerobic digester No. 3). Blowers will provide air to air diffuser systems inside the digesters. The other existing clarifier will be converted into a sludge thickener for pre-thickening. The thickened sludge will be pumped to Digester No. 1 and No. 2 and those basins will overflow into Digester No. 3 and the sludge from Digester No. 3 will then be pumped to the two (2) proposed belt filter presses for dewatering. The digested sludge will be injected with a polymer prior to entering the dewatering area. Dewatered stabilized sludge will then be disposed via a licensed sludge hauler while a drain recycles water from the dewatering process back to the influent lift station. The clarifier effluent will be collected by circular effluent troughs around the clarifier perimeters. Clarifier effluent will then flow to three (3) tertiary cloth disk type filters. Filter backwash solids will be recycled for retreatment. Filtered water flows into two (2) existing and two (2) proposed chlorine contact basins for disinfection. Chlorine solution will be injected into the chlorine basin influent. The water will be disinfected as it flows through the contact chambers. The chlorine basin effluent will be de-chlorinated by feeding sulfur dioxide. The de-chlorinated effluent will flow to the plant effluent metering structure then to the plant outfall.

Treatment Units & Design Calculations

(Ref. Section 2 of Domestic Technical Report 1.0)

Domestic Technical Report 1.0

<u>Section 2.B – Treatment Units</u>

Geronimo Creek WWTP

Interim Phase (2.13 MGD)				
Treatment Units	# of Units	Description		
Headworks	1	Mechanical Screen Channel Manual Bypass Channel (2 influent screening channels 3'x6'; grit removal basin)		
Aeration	1	Oxidation Ditch (284'x68'x13' dp.)		
Clarifier	2	68'ø x 12' SWD		
Chlorine Contact	2	Baffled Contact Chamber (2 @ 15'x43'x8' dp)		
Sludge Drying beds	6	6 @ 79'x40'x2'		
Mobile Belt Filter Press	1	1.5 meter mobile unit		
Final Phase (12 MGD)				
Treatment Units	# of Units	Description		
Headworks	1	2 Mechanical Bar Screens Manual Screen Bypass Channel 2 Grit Chambers		
Aeration	4	Plug Flow Conventional Activated Sludge (4 @ 200'x60'x15' dp.)		
Clarifier	3	3@115'Ø x 14' SWD		
Chlorine Contact	4	Baffled Contact Chamber (2 @ 15'x43'x8' dp; 2 @ 60'x60'x8' dp.)		
Tertiary Filtration	3	Cloth Media Disk (3 cloth disk filters each @ 11'x15'x11' dp.)		
Aerobic Digester	3	328,580 ft ³ (2 @ 142'x68'x13' dp) (1 @ 68'Ø x 12' dp.)		
Sludge Drying beds	6	6 @ 79'x40'x2'		
Belt Filter Press	2	2.0 meter unit		

ENGINEERING DESIGN SUMMARY FOR GERONIMO CREEK WWTP

PURPOSE The purpose of this report is to present the basis of design and summary of unit sizing calculations for the 12 MGD Wastewater Treatment Plant Expansion.

INFLUENT QUALITY CHARACTERISTICS The influent wastewater quality characteristics used for design are estimates based on State Design Criteria and are as follows:

PARAMETER	INTERIM PHASE	FINAL PHASE	
PARAIVIETER	CONCENTRATION	CONCENTRATION	
CBOD ₅	215 mg/L	250 mg/L	
TSS	215 mg/L	250 mg/L	

INFLUENT FLOW CHARACTERISTICS

The plant process and hydraulic design are based on the following flows:

Average Daily Flow (Qav)	2.13 MGD	1,480 GPM
Peak 2-Hr. Flow (Qpk)	4.32 MGD	3,000 GPM

Final Phase

Average Daily Flow (Qav)	12 MGD	8,340 GPM
Peak 2-Hr. Flow (Qpk)	36 MGD	25,020 GPM

EFFLUENT QUALITY CHARACTERISTICS The design is of the activated sludge type based on the ability to produce the following effluent quality characteristics:

<u>PARAMETER</u>	CONCENTRATION
CBOD ₅	20 mg/L
TSS	20 mg/L

The chlorine residual shall be less than 1.0 mg/L after dichlorination

Interim Phase Design Report

Influent Conditions Average Daily Flow (Qav) (MGD) 2 hr. Peak Flow (Qpk) (MGD) Average Flow (Qav) (cfs) 2 hr. Peak Flow (Qpk) (cfs) CBOD5 (lbs/day) TSS (lbs/day)	2.13 4.32 3.3 6.7 3,819 3,819
Aeration Aeration Volume Required (ft³) Total Aeration Volume Available (ft³) Organic Loading (lbs CBOD₅/day/1000 ft³) TCEQ Maximum Organic Loading (lbs CBOD₅/day/1000 ft³)	254,600 285,000 13.4 15
<u>Clarifiers</u>	
Clarifier Area Required (ft²) Diameter (ft) Area (ft²) TCEQ Maximum Surface Loading (GPD/ft²) Surface Loading @ Qpk (GPD/ft²) Sidewater Depth (ft) Detention Time at Qpk (hr) (minimum 2.2 hours; TCEQ 217.154.C.1.)	5,400 2 x 68' 7,264 800 595 12.0 3.6
Clarifier Weirs	
Weir Length (ft) Maximum Weir loading at Qpk (GPD/ft) Weir Loading at Qpk (GPD/ft)	393.8 30,000 10,981
<u>Disinfection Chambers</u>	
Disinfection Volume Required (ft ³) Volume Available (ft ³) Minimum TCEQ Detention Time (min) Actual Detention Time @ Qpk (min)	7,200 9,120 20 22.7
Air Requirements	
Oxygen required (lbs/day) Number of rotors	6,874 4
Oxygen per rotor (lbs/day) Oxygen provided – 3 rotors (lbs/day)	2,400 7,200

Final Phase Design Report

Influent Conditions Average Daily Flow @ Qav (MGD) 2 hr. Peak Flow (Qpk) (MGD) Average Flow (Qav) (cfs) 2 hr. Peak Flow (Qpk) (cfs) CBOD5 (lbs/day) TSS (lbs/day)	12.0 36.0 18.6 55.8 25,020 25,020
Aeration Aeration Volume Required (ft³) Total Aeration Volume Available (ft³) Organic Loading (lbs CBOD₅/day/1000 ft³) TCEQ Maximum Organic Loading (lbs CBOD₅ /day/1000 ft³)	714,857 720,000 34.75 35
Clarifiers Clarifier Area Required (ft²) Diameter (ft) Area (ft²) TCEQ Maximum Surface Loading (GPD/ft²) Surface Loading @ Qpk (GPD/ft²) Sidewater Depth (ft) Detention Time at Qpk (hr) (minimum 1.8 hours; TCEQ 217.154.C.1.)	30,000 3 x 115' 31,161 1,200 1,155 14 2.18
Clarifier Weirs Weir Length (ft) Maximum Weir loading at Qpk (GPD/ft) Weir Loading at Qpk (GPD/ft)	990 30,000 36,378
<u>Disinfection Chambers</u> Disinfection Volume Required (ft³) Volume Available (ft³) Minimum TCEQ Detention Time (min) @ Qpk Actual Detention Time @ Qpk (min)	66,960 66,960 20 20
Filters Filter Area Required (ft²) TCEQ Maximum Rate (gpm/ft²) @ Qpk Filter Area Available (ft²)	3,849 6.5 5,810
<u>Digesters</u> Volume Required for 15 Days SRT at Solids Concentration of 1.5% (ft³) Total Volume Available (ft³)	300,796 328,580
Air Requirements Process 3,200 cfm/day/ lb. CBOD ₅ (scfm) Process Blower Capacity (scfm) Digester 30 scfm/1,000 ft ³ (scfm) Digester Blower Capacity (scfm)	18,909 5 units @ 4,717 (one spare) 9,857 4 units @ 3,170

Note: The process calculations are based on a clean water oxygen transfer efficiency of 0.85% per foot of submergence. The submergence is 12.0 feet and the correction factor is 1.0.

Facility design features

A. Emergency Power Requirements

In accordance with 30 TAC § 217.36, the treatment facility must incorporate an on-site automatically starting generator capable of continuously operating all critical wastewater treatment system units. The fuel tank must be sized for a run time greater than the longest power outage in the power records. Two generators will be provided (one at the influent lift station and one at the plant site). These generators will provide enough power for the following units:

- 1. Influent Lift Station Pumps
- 2. Automatic Bar Screens
- 3. Activated Sludge Blowers
- 4. Aerobic Digester Blowers
- 5. Final Clarifier Sludge Scrapers
- 6. Return Activated Sludge Pump
- 7. Chlorination system
- 8. Dechlorination system
- 9. Effluent Metering Station
- 10. Non-Potable Water Pump
- 11. Lighting Panels and Control Equipment

An automatic transfer switch will be included to transfer electrical loads to the generator during an outage. In accordance with 30 TAC § 217.37, the disinfection system will automatically restart during a power outage and upon transfer back to the main power source.

B. Alarm Features

The facility will be equipped with a Supervisory Control and Data Acquisition (SCADA) system to monitor the operation of all critical treatment units. The control room will include a computer with graphic display of the treatment units that will indicate status and alarm conditions. The computer system will have the capability to alert facility personnel of the following conditions:

- 1. Power Outage
- 2. Influent Lift Station Wet Well High Level
- 3. Bar Screen Channel High Level
- 4. Final Clarifier Torque Overload
- 5. Equipment Failure
- 6. Chlorine Leak Detection
- 7. Sulfur Dioxide Leak Detection

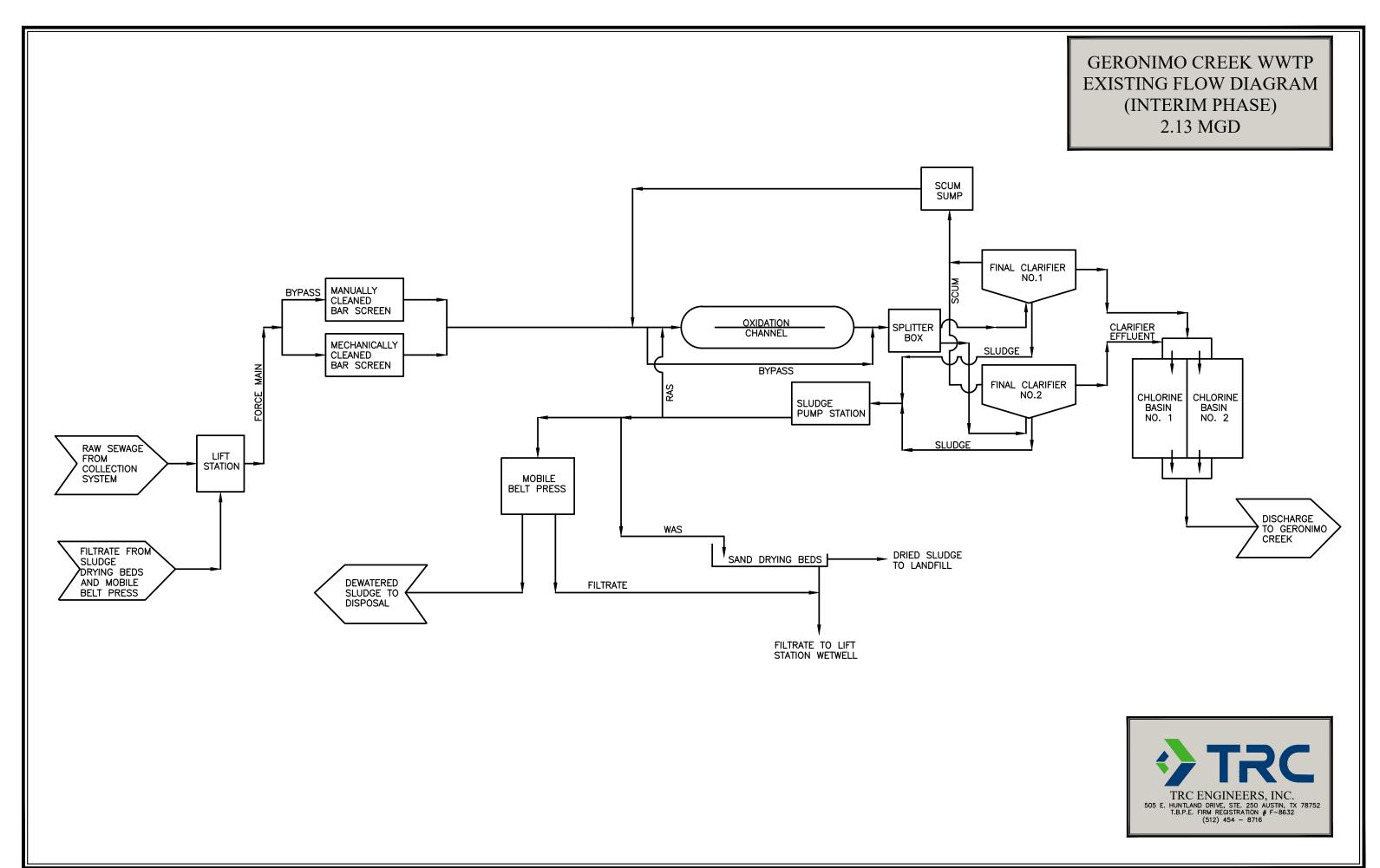
The computer will store prerecorded messages concerning each alarm condition and the procedure to be followed and will call up to 8 different phone numbers until the alarm condition is acknowledged. The influent lift station and final clarifiers will also be equipped with local alarm lights for high level and high torque respectively.

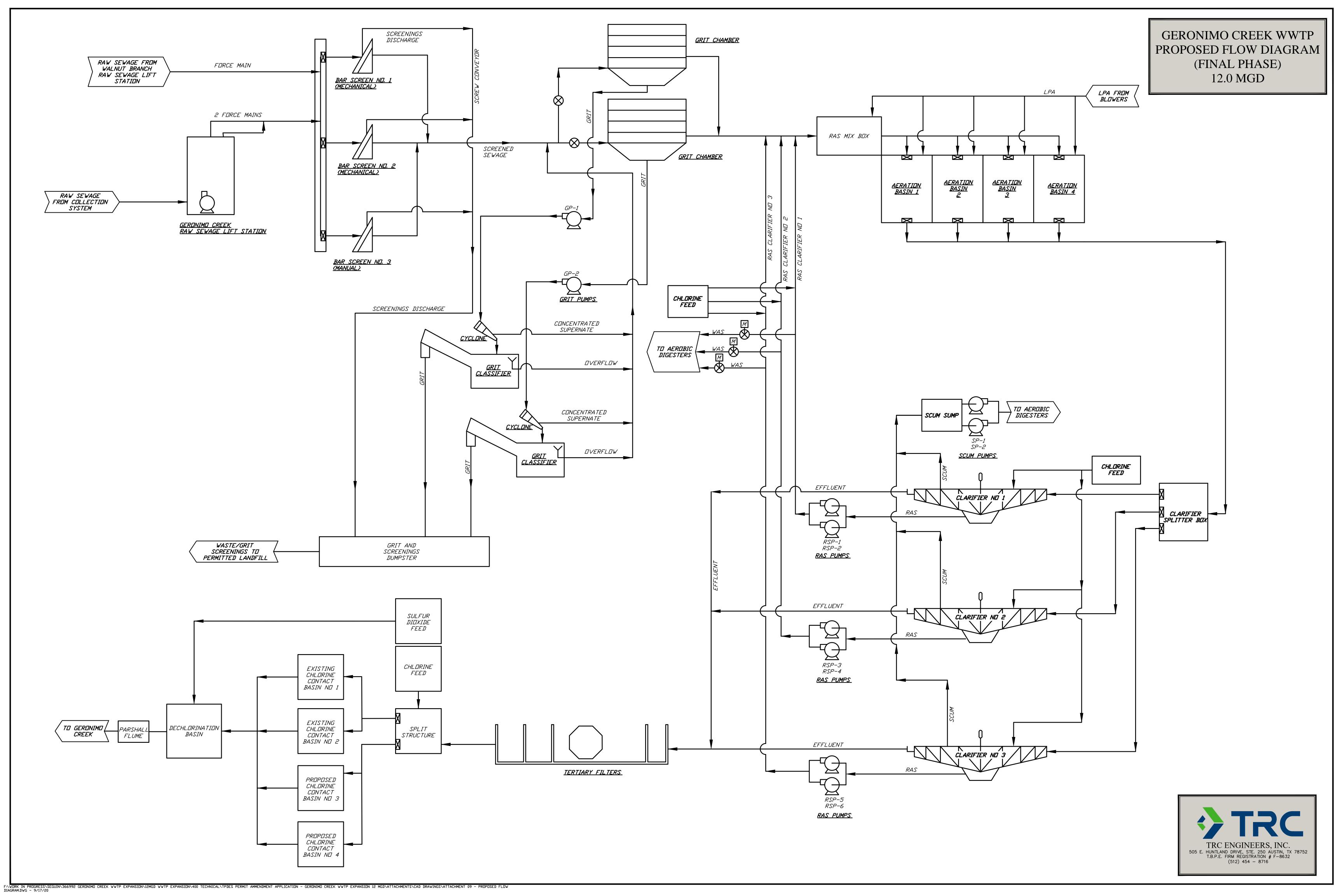
C. Design Features for Reliability and Operating Flexibility

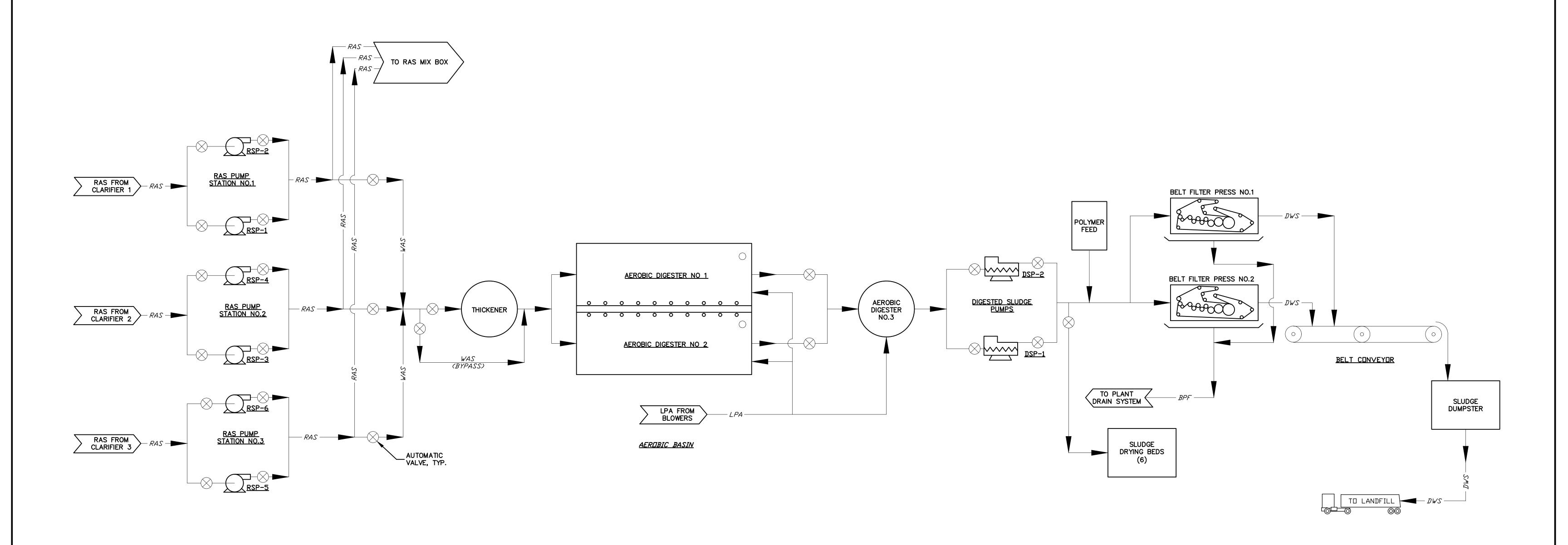
- 1. Influent lift station: The influent lift station will include pumps sized to meet peak flow pumping capacity with the largest unit out of service. Level switches will automatically start and stop the pumps based on influent flows and rising and falling wet well levels. High wet well level will result in an alarm condition.
- 2. Bar screen: The mechanical bar screen structure will include a bypass channel with a manual

screen for use when needed. Slide gates will be used to isolate each channel as required.

3. Aeration basins: Each capable of continuous operation. Piping and valves will be included to allow each unit to be individually isolated for draining, cleaning or repairs.


D. Overflow prevention


The following design features will be used to prevent the overflow of wastewater from treatment units.


- 1. The facility design includes a peaking factor of 3 to insure adequate hydraulic capacity which is higher than the actual peaking factor.
- 2. The influent lift station will be designed with the capacity to pump peak flow with one pump out of service.
- 3. The facility hydraulic design, including piping, channels, weirs, troughs, overflow, and other features, will be sized to allow the 2-hour peak flow to pass through the facility without exceeding minimum freeboard requirements with any single treatment unit out of service.

Process Flow Diagram

(Ref. Section 2 of Domestic Technical Report 1.0)

F:\WDRK IN PROGRESS\SEGUIN\366992 GERONIMO CREEK WWTP EXPANSION\12MGD WWTP EXPANSION\400 TECHNICAL\TPDES PERMIT AMMENDMENT APPLICATION - GERONIMO CREEK WWTP EXPANSION 12 MGD\ATTACHMENTS\CAD DRAWINGS\ATTACHMENT 09 DIAGRAM.DWG - 9/18/20

Site Drawing (Ref. Section 3 of Domestic Technical Report 1.0)

Pollutant Analysis of Treated Effluent Lab Results

(Ref. Section 7 of Domestic Technical Report 1.0)

07 May 2024

Seguin, City of Rene Porras 101 E Klein Seguin, TX 78155

Seguin, City of - WWTP

Enclosed are the results of analyses for samples received by the laboratory on 14-Feb-24 09:45. The analytical data provided relates only to the samples as received in this laboratory report.

ELI certifies that all results are NELAP compliant and performed in accordance with the referenced method except as noted in the Case Narrative or as noted with a qualifier. Any reproductions of this laboratory report should be in full and only with the written authorization from the client.

The total number of pages in this report is 11

Thank you for selecting ELI for your analytical needs. If you have any questions regarding this report, please contact us.

Sincerely,

Laura Bonjonia For Monica Smith

Client Services Representative

Laura Brynin

Gentificate No: T104704265-22-20

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281,568,7880 Phone www.envirodyne.com

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

24B2106

Reported:

07-May-24 16:37

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Effluent	24B2106-01	Water	13-Feb-24 00:00	14-Feb-24 09:45
Influent	24B2106-02	Water	13-Feb-24 00:00	14-Feb-24 09:45

Envirodyne Laboratories, Inc.

Laura Brymin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CLIENT: GERONIMO CREEK WWTP

LAB NUMBER: 2482106-01A

DATE COLLECTED:

(City of Seguin) 13-Feb-24

DATE RECEIVED: 14-Feb-24

DATE COMPLETED:

08-Mar-24

SAMPLED BY: RP

LOCATION:

Comp EFFLUENT

PARAMETERS:

METALS	CONCENTRATION	METHOD	INITIALS	MAL
TOTAL ALUMINUM (ug/l)	32.4	EPA 200.8	VEJ	2,5
TOTAL ANTIMONY (ug/l)	<5.0	EPA 200.8	VEJ	5.0
TOTAL ARSENIC (ug/l)	<0.5	EPA 200.8	VEJ	0.5
TOTAL BARIUM (ug/l)	79.5	EPA 200.8	VEJ	3.0
TOTAL BERYLLIUM (ug/l)	<0.5	EPA 200.8	VEJ	0.5
TOTAL CADMIUM (ug/l)	<1.0	EPA 200.8	VEJ	1.0
TOTAL CHROMIUM (ug/l)	<3.0	EPA 200.8	VEJ	3.0
HEX CHROMIUM (ug/l)	<3.0	3500 - Cr D	SSJ	3.0
TRI CHROMIUM (ug/l)	<3.0	N/A	SSJ	3.0
TOTAL COPPER (ug/l)	3.3	EPA 200.8	VEJ	2.0
TOTAL LEAD (ug/l)	0.5	EPA 200.8	VEJ	0.5
TOTAL MERCURY (ug/l)	*< 0.005	245.1	SUB	<0.005
TOTAL NICKEL (ug/l)	3.5	EPA 200.8	VEJ	2.0
TOTAL SELENIUM (ug/l)	<5.0	EPA 200.8	VEJ	5.0
TOTAL SILVER (ug/l)	<0.5	EPA 200.8	VEJ	0.5
TOTAL THALLIUM (ug/l)	<0,5	EPA 200.8	VEJ	0.5
TOTAL ZINC (ug/l)	47.0	EPA 200.8	VEJ	5.0
AMENABLE CYANIDE (ug/l)	*< 10.0	SM 4500 CN E&G	SUB	10.0
TOTAL CYANIDE (ug/l)	*< 10.0	SM 4500 CN E&G	SUB	10.0
TOTAL PHENOLS (ug/l)	*<10.0	420.1	SUB	10.0
FLUORIDE (ug/l)	680.0	SM 4500-F C	SKP	500.0
NITRATE-N (ug/l)	10,200.0	EPA 353.1	SKP	SKP
TOTAL STRONTIUM (ug/l)	563.0	EPA 200.7	VEJ	
TOTAL VANADIUM (ug/l)	<5.0	EPA 200.7	VEJ	

LAB REPRESENTATIVE

Ref. EPA METHODS FOR CHEMICAL ANALYSIS

*Analyzed by NELAC certified lab T10470423100K/et Drive. Suite #230 Houston. Texas 77099 281 568 7880

CERTIFICATE OF ANALYSIS

CLIENT: GERONIMO CREEK WWTP LAB NUMBER: 24B2106-01B

(City of Seguin)

DATE COLLECTED: 13-Feb-24 DATE RECEIVED: 14-Feb-24

DATE COMPLETED: 18-Feb-24 SAMPLED BY: RP

LOCATION: EFFLUENT - Grab

PARAMETERS:	VOLATILES	CONC.	DETECTION LIMITS
			(ug/l)
ACROLEIN (ug/l)		50.0 U	50.0
ACRYLONITRILE (up	m)	50.0 U	50.0
CHLOROMETHANE (,	10.0 U	10.0
VINYL CHLORIDE (up		10.0 U	10.0
BROMOMETHANE (u		10.0 U	10.0
CHLOROETHANE (us	- /	50.0 U	50.0
TRICHLOROFUORO		10.0 U	10.0
1.1-DICHLOROETHY		10.0 U	10.0
METHYLENE CHLOR		20.0 U	20.0
trans-1,2-DICHLOROI	the state of the s	10.0 U	10.0
1,1-DICHLOROETHA		10.0 U	10.0
1.1.1-TRICHLOROET		10.0 U	10.0
METHYL BROMIDE (10.0 U	10.0
METHYL CHLORIDE		10.0 U	10.0
CHLOROFORM (ug/l)		10.0 U	10.0
CARBON TETRACHL		2.0 U	2.0
1,2-DICHLOROETHAI		10.0 U	10.0
TRICHLOROETHANE		10.0 U	10.0
BENZENE (ug/l)	(49.9	10.0 U	10.0
TRICHLOROETHYLE	NE (ug/l)	10.0 U	10.0
1,2-DICHLOROPROP		10.0 U	10.0
DICHLOROBROMOM	and the contract of the contra	10.0 U	10.0
1,3 DICHLOROPROP	10,	10.0 U	10.0
TOLUENE (ug/l)	rania (agr)	10.0 U	10.0
trans-1,3-DICHLOROF	PROPENE (un/l)	10.0 U	10.0
1,1,2-TRICHLOROETI		10.0 U	10.0
TETRACHLOROETHY		10.0 U	10.0
DIBROMOCHLOROM		10.0 U	10.0
CHLOROBENZENE (I		10.0 U	10.0
2-CHLOROETHYLVIN		10.0 U	10.0
1,2-DIBROMOETHAN		2.0 U	2.0
ETHYLBENZENE (ug/		10.0 U	10.0
BROMOFORM (ug/l)	,	10.0 U	10.0
1,1,2,2-TETRACHLOR	ROETHANE (ug/l)	10.0 U	10.0
TOTAL TRIHALOMET		10.0 U	10.0
METHYL ETHYL KETO		50.0 U	50.0
1,3 DICHLORBENZEN		10.0 U	10.0
1,4 DICHLORBENZEN	1 4 7	10.0 U	10.0
1,2 DICHLORBENZEN		10.0 U	10.0
XYLENE (ug/l)		10.0 U	10.0
			aa_
D-/ FD4 6044 0/0/4			LAB REPRESENTATIVE

Ref. EPA 624.1 (VOLATILES)

U - Analyte Not Detected at the Listed Detection Limit

J - Analyte Present but Below Detection Limit

CLIENT: GERONIMO CREEK WWTP

LAB NUMBER: 24B2106-01C

(City of Seguin)

DATE COLLECTED: 13-Feb-24

DATE RECEIVED: 14-Feb-24

DATE COMPLETED: 22-Feb-24 SAMPLED BY: RP

LOCATION: EFFLUENT-Comp

PARAMETERS: BASE/ NEUTRALS

ACENAPHTHENE (ug/l)	10.0 U	ISOPHORONE (ug/l)	10.0 U
ACENAPHTHYLENE (ug/l)	10.0 U	NAPHTHALENE (ug/l)	10.0 U
ANTHRACENE (ug/l)	10.0 U	NITROBENZENE (ug/l)	10.0 U
BENZIDINE (ug/l)	50.0 U	N-NITROSO-di-n-PROPYLAMINE (ug/l)	20.0 U
BENZO (a) ANTHRACENE (ug/l)	5.0 U	N-NITROSODIPHENYLAMINE (ug/l)	20.0 U
BENZO (a) PYRENE (ug/l)	5.0 U	N-NITROSODIMETHYLAMINE (ug/l)	50.0 U
BENZO (B) FLUORANTHENE (ug/l)	10.0 U	PHENANTHRENE (ug/l)	10.0 U
BENZO (GHI) PERYLENE (ug/l)	20.0 U	PYRENE (ug/l)	10.0 U
BENZO (k) FLUORANTHENE (ug/l)	5.0 U	1,2,4-TRICHLOROBENZENE (ug/l)	10.0 U
BIS (2-CHLOROETHYL) ETHER (ug/l)	10.0 U	1,2,4,5-TETRACHLOROBENZENE (ug/l	20.0 U
BIS (2-CHLOROETHOXY) METHANE (ug/l)	10.0 U	2. 4-DINITROTOLUENE (ug/l)	10.0 U
BIS (2-CHLOROISOPROPYL) ETHER (ug/l)	10.0 U	2, 6-DINTROTOLUENE (ug/l)	10.0 U
BIS (2-ETHYLHEXYL) PHTHALATE (ug/l)	10.0 U	2-METHYLNAPHTHALENE (ug/l)	10.0 U
4-BROMOPHENYL PHENYL ETHER (ug/l)	10.0 U	Di-n-octyl PHTHALATE (ug/l)	10.0 U
BUTYL BENZYL PHTHALATE (ug/l)	10.0 U	PYRIDINE (ug/l)	20.0 U
2-CHLORONAPHTHALENE (ug/l)	10.0 U	p-CRESOL (ugf)	10.0 U
4-CHLOROPHENYL PHENYL ETHER (ug/l)	10.0 U		
CHRYSENE (ug/l)	5.0 U	ACID COMPOUNDS	
DIBENZO (a,h) ANTHRACENE (ug/l)	5.0 U	INFLUENT (Cont.)	
1.2-DICHLOROBENZENE (ug/l)	10.0 U		
1,3-DICHLOROBENZENE (ug/l)	10.0 U	2-CHLOROPHENOL (ug/l)	10.0 U
(p)1,4-DICHLOROBENZENE (ug/l)	10.0 U	2,4-DICHLOROPHENOL (ug/l)	10.0 U
3,3-DICHLOROBENZIDINE (ug/l)	5.0 U	2,4-DIMETHYLPHENOL (ug/l)	10.0 U
DIETHYL PHTHALATE (ug/l)	10.0 U	4, 6-DINITRO-o-CRESOL (ug/l)	50.0 U
DIMETHYL PHTHALATE (ug/l)	10.0 U	4,6-DINITRO-2-METHYLPHENOL (ug/l)	20.0 U
DI-N-BUTYL PHTHALATE (ug/l)	10.0 U	2,4-DINITROPHENOL (ug/l)	50.0 U
DIBENZOFURAN (ug/l)	10.0 U	2-NITROPHENOL (ug/l)	20.0 U
FLUORANTHENE (ug/l)	10.0 U	4-NITROPHENOL (ug/l)	50.0 U
FLUORENE (ug/l)	10.0 U	p-CHLORO-m-CRESOL (ug/l)	10.0 U
HEXACHLOROBENZENE (ug/l)	5.0 U	2-METHYLPHENOL (ug/l)	10.0 U
HEXACHLOROBUTADIENE (ug/l)	10.0 U	PENTACHLOROPHENOL (ug/l)	5.0 U
HEXACHLOROETHANE (ug/l)	20.0 U	PHENOL (ug/l)	16.0
HEXACHLOROCYCLOPENTADIENE (ug/l)	10.0 U	2,4,6-TRICHLOROPHENOL (ug/l)	10.0 U
HEXACHLOROPHENE (ug/l)	10.0 U	2,4,5-TRICHLOROPHENOL (ug/l)	50.0 U
IDENO (1,2,3,od) PYRENE (ug/l)	5.0 U	PENTACHLOROBENZENE (ug/l)	20.0 U
1,2-Diphenyl Hydrazine (ug/l)	20.0 U	4-CHLORO-3-METHYL PHENOL (ug/l)	10.0 U
N-NITROSO-di-n-BUTYLAMINE (ug/l)	20.0 U	NONYLPHENOL (ug/l)	5.0 U
N-NITROSO-DI-ETHYLAMINE (ug/l)	20.0 U	1 -	

Analyzed by NELAC certified lab T104704215 Ref. EPA-625 (Base/Neutrals & Acids)

U - Analyte Not Detected at the listed Detection Limit

J - Analyte Present but below Detection Limit

CERTIFICATE OF ANALYSIS

CLIENT: GERONIMO CREEK WWTP

LAB NUMBER:

24B2106-01D

DATE COLLECTED:

(City of Seguin) 13-Feb-24

DATE RECEIVED:

14-Feb-24

DATE COMPLETED:

20-Feb-24

FEELLIENT

SAMPLED BY:

RP

EFFICIENT

SAMPLE	T	Y	P	Ε	
LOCATIO	IA	ş.			

LOCATION:	EFFLUENT		EFFLUENT
	Comp		Comp
PARAMETERS:	PESTICIDES-PCB		PESTICIDES-PCB
EPA 1657*		EPA 608*	
Guthion (Azinphos Methyl) (ug/l)	< 0.10	Chlordane (ug/l)	< 0.15
		4-4' - DDD (ug/l)	< 0.10
Chlorpyrifos (ug/l)	< 0.05	4-4' - DDE (ug/l)	< 0.10
		4-4' - DDT (ug/l)	< 0.02
Demeton -O (ug/l)	< 0.20	Dieldrin (ug/l)	< 0.02
		Dicofol (ug/l)	< 1.0
Demeton -S (ug/l)	< 0.20	Endosulfan I (ug/l)	< 0.01
		Endosulfan II (ug/l)	< 0.02
Diazinon (ug/l)	< 0.5	Endosulfan Sulfate (ug/l)	< 0.10
		Endrin (ug/l)	< 0.02
Disulfoton (ug/l)	< 0.5	Gamma-BHC (Lindane) (ug/l)	< 0.05
		Heptachlor (ug/l)	< 0.01
EPN (ug/l)	< 0.5	Heptaclor Epoxide (ug/l)	< 0.01
		Methoxychlor (ug/l)	< 0.20
Ethion (ug/l)	< 0.5	Mirex (ug/l)	< 0.02
		Total PCBs (ug/l)	< 0.2
Ethyl Parathion (ug/l)	< 0.1	PCB-1016 (ug/l)	< 0.2
		PCB-1221 (ug/l)	< 0.2
Malathion (ug/l)	< 0.10	PCB-1232 (ug/l)	< 0.2
		PC8-1242 (ug/l)	< 0.2
Methyl Parathion (ug/l)	< 0.1	PCB-1248 (ug/l)	< 0.2
		PCB-1254 (ug/l)	< 0.2
Parathion (ug/l)	< 0.10	PCB-1260 (ug/l)	< 0.2
EPA 608*		Toxaphene (ug/l)	< 0.3
Aldrin (ug/l)	< 0.01	Endrin Aldehyde (ug/l)	< 0.10
		Delta - BHC (ug/l)	< 0.05
Alpha - BHC (ug/l)	< 0.05		
(Hexachlorocyclohexane)		EPA 632*	
		Diuron (ug/l)	< 0.09
Beta - BHC (ug/l)	< 0.05		
		EPA 8151*	
		2,4-D (ug/l)	< 0.7
		2,4,5-TP (Silvex) (ug/l)	< 0.3
		FDA 625*	
		EPA 625*	292
		Carbaryl (ug/l)	< 5.0

*Analyzed by NELAP certified lab T104704231

1-011 Brooklet Drive. Suite #230 Housiph, Texas 7 099 281 568 7880

CLIENT: GERONIMO CREEK WWTP LAB NUMBER: 24B2106-02A

(City of Seguin) DATE COLLECTED: 13-Feb-24 DATE RECEIVED: 14-Feb-24

SAMPLED BY: RP DATE COMPLETED: 08-Mar-24

Comp INFLUENT

LOCATION:

PARAMETERS:				
METALS	CONCENTRATION	METHOD	INITIALS	MAL
TOTAL ALUMINUM (ug/l)	310.0	EPA 200.8	VEJ	2.5
TOTAL ANTIMONY (ug/l)	<5.0	EPA 200.8	VEJ	5.0
TOTAL ARSENIC (Ug/I)	<0.5	EPA 200.8	VEJ	0.5
TOTAL BARIUM (ug/l)	81.7	EPA 200.8	VEJ	3.0
TOTAL BERYLLIUM (Ug/I)	<0.5	EPA 200.8	VEJ	0.5
TOTAL CADMIUM (ug/l)	<1.0	EPA 200.8	VEJ	1.0
TOTAL CHROMIUM (ug/l)	<3.0	EPA 200.8	VEJ	3.0
HEX CHROMIUM (ug/l)	<3.0	3500 - Cr D	SSJ	3.0
TRI CHROMIUM (ug/l)	<3.0	N/A	SSJ	3.0
TOTAL COPPER (ug/l)	13.1	EPA 200.8	VEJ	2.0
TOTAL LEAD (ug/l)	0.8	EPA 200.8	VEJ	0.5
TOTAL MERCURY (ug/l)	*< 0.005	245.1	SUB	< 0.005
TOTAL NICKEL (ug/l)	3.8	EPA 200.8	VEJ	2.0
TOTAL SELENIUM (ug/l)	<5.0	EPA 200.8	VEJ	5.0
TOTAL SILVER (ug/l)	<0.5	EPA 200.8	VEJ	0.5
TOTAL THALLIUM (ug/l)	<0.5	EPA 200.8	VEJ	0.5
TOTAL ZINC (ug/l)	34.1	EPA 200.8	VEJ	5.0
AMENABLE CYANIDE (ug/l)	*< 10.0	SM 4500 CN E&G	SUB	10.0
TOTAL CYANIDE (ug/l)	*< 10.0	SM 4500 CN E&G	SUB	10.0
TOTAL PHENOLS (ug/l)	*<10.0	420.1	SUB	10.0
FLUORIDE (ug/l)	<500.0	SM 4500-F C	SKP	500.0
NITRATE-N (ug/l)	<100.0	EPA 353.1	SKP	SKP
TOTAL STRONTIUM (ug/l)	723.0	EPA 200.7	VEJ	
	74/7		200	

EPA 200.7

LAB REPRESENTATIVE

Ref. EPA METHODS FOR CHEMICAL ANALYSIS *Analyzed by NELAC certified lab T10470423100Klet Drive. Suite #230 Houston. exas: 77099-281,568,7880

6.4

TOTAL VANADIUM (ug/l)

CERTIFICATE OF ANALYSIS

CLIENT: GERONIMO CREEK WWTP

LAB NUMBER: 24B2106-02B

DATE COLLECTED: (City of Seguin)
13-Feb-24

13-Feb-24 DATE RECEIVED: 14-Feb-24

DATE COMPLETED: 18-Feb-24 SAMPLED BY: RP

LOCATION: INFLUENT - Grab

PARAMETERS:	VOLATILES	CONC.	DETECTION LIMITS (ug/l)
ACROLEIN (ug/l)		50.0 U	50.0
ACRYLONITRILE (ug	n)	50.0 U	50.0
CHLOROMETHANE (10.0 U	10.0
VINYL CHLORIDE (us	a/l)	10.0 U	10.0
BROMOMETHANE (u	(Np	10.0 U	10.0
CHLOROETHANE (us	w /	50.0 U	50.0
TRICHLOROFUORO	METHANE (ug/l)	10.0 U	10.0
1,1-DICHLOROETHY		10.0 U	10.0
METHYLENE CHLOR	IDE (ug/l)	20.0 U	20.0
trans-1,2-DICHLORO	ETHYLENE (ug/l)	10.0 U	10.0
1,1-DICHLOROETHA	NE (ug/l)	10.0 U	10.0
1,1,1-TRICHLOROET		10.0 U	10.0
METHYL BROMIDE (I	JQ/I)	10.0 U	10.0
METHYL CHLORIDE	(ug/l)	10.0 U	10.0
CHLOROFORM (ug/l)		10.0 U	10.0
CARBON TETRACHL	ORIDE (ug/l)	2.0 U	2.0
1,2-DICHLOROETHA	NE (ug/l)	10.0 U	10.0
TRICHLOROETHANE	(ug/l)	10.0 U	10.0
BENZENE (ug/l)		10.0 U	10.0
TRICHLOROETHYLE	NE (ug/l)	10.0 U	10.0
1,2-DICHLOROPROP	ANE (ug/l)	10.0 U	10.0
DICHLOROBROMOM	ETHANE (ug/l)	10.0 U	10.0
1,3 DICHLOROPROP	YLENE (ug/l)	10.0 U	10.0
TOLUENE (ug/l)	0.71	10.0 U	10.0
trans-1,3-DICHLORO	PROPENE (ug/l)	10.0 U	10.0
1,1,2-TRICHLOROET	HANE (ug/l)	10.0 U	10.0
TETRACHLOROETHY	/LENE (ug/l)	10.0 U	10.0
DIBROMOCHLOROM	ETHANE (ug/l)	10.0 U	10.0
CHLOROBENZENE (I	ug/I)	10.0 U	10.0
2-CHLOROETHYLVIN	IYL ETHER (ug/l)	10.0 U	10.0
1,2-DIBROMOETHAN	E (ug/l)	2.0 U	2.0
ETHYLBENZENE (ug/	7)	10.0 U	10.0
BROMOFORM (ug/l)		10.0 U	10.0
1,1,2,2-TETRACHLOR	ROETHANE (ug/l)	10.0 U	10.0
TOTAL TRIHALOMET	HANES (ug/l)	10.0 U	10.0
METHYL ETHYL KET	ONE (ug/l)	50.0 U	50.0
1,3 DICHLORBENZEN	NE (ug/l)	10.0 U	10.0
1,4 DICHLORBENZEN	NE (ug/l)	10.0 U	10.0
1,2 DICHLORBENZEN	NE (ug/l)	10.0 U	10.0
XYLENE (ug/l)		10.0 U	10.0 Day
D-4 EDA 604 4 0/01 4	THECK		LAB REPRESENTATIVE

Ref. EPA 624.1 (VOLATILES)

U - Analyte Not Detected at the Listed Detection Limit

J - Analyte Present but Below Detection Limit

CLIENT: GERONIMO CREEK WWTP

LAB NUMBER: 24B2106-02C

(City of Seguin)

DATE COLLECTED: 13-Feb-24

DATE RECEIVED: 14-Feb-24

SAMPLED BY: RP DATE COMPLETED: 22-Feb-24

LOCATION: INFLUENT-Comp

PARAMETERS: BASE/ NEUTRALS

ACENAPHTHENE (ug/l)	10.0 U	ISOPHORONE (ug/l)	10.0 U
ACENAPHTHYLENE (ug/l)	10.0 U	NAPHTHALENE (ug/l)	10.0 U
ANTHRACENE (upl)	10.0 U	NITROBENZENE (ug/l)	10.0 U
BENZIDINE (ugf)	50.0 U	N-NITROSO-di-n-PROPYLAMINE (ugli)	20.0 U
BENZO (a) ANTHRACENE (ug/l)	5.0 U	N-NITROSODIPHENYLAMINE (up/l)	20.0 U
BENZO (a) PYRENE (ug/l)	5.0 U	N-NITROSODIMETHYLAMINE (ug/l)	50.0 U
BENZO (B) FLUORANTHENE (ug/l)	RANTHENE (ug/l) 10.0 U		10.0 U
BENZO (GHI) PERYLENE (ug/l)	20.0 U	PYRENE (ug/l)	10.0 U
BENZO (k) FLUORANTHENE (ug/l)	5.0 U	1,2,4-TRICHLOROBENZENE (ug/l)	10.0 U
BIS (2-CHLOROETHYL) ETHER (ug/l)	10.0 U	1,2,4,5-TETRACHLOROBENZENE (ug/l	20.0 U
BIS (2-CHLOROETHOXY) METHANE (ug/l)	10,0 U	2, 4-DINITROTOLUENE (ug/l)	10.0 U
BIS (2-CHLOROISOPROPYL) ETHER (ug/l)	10.0 U	2, 6-DINTROTOLUENE (ug/l)	10.0 U
BIS (2-ETHYLHEXYL) PHTHALATE (ug/l)	10.0 U	2-METHYLNAPHTHALENE (ug/l)	10.0 U
4-BROMOPHENYL PHENYL ETHER (ug/l)	10.0 U	Di-n-octyl PHTHALATE (ug/l)	10.0 U
BUTYL BENZYL PHTHALATE (ug/l)	10.0 U	PYRIDINE (ug/l)	20.0 U
2-CHLORONAPHTHALENE (ug/l)	10.0 U	p-CRESOL (ug/l)	10.0 U
4-CHLOROPHENYL PHENYL ETHER (ug/l)	10.0 U		
CHRYSENE (ug/l)	5.0 U	ACID COMPOUNDS	
DIBENZO (a,h) ANTHRACENE (ug/l)	5.0 U	INFLUENT (Cont.)	
1,2-DICHLOROBENZENE (ug/l)	10.0 U		
1,3-DICHLOROBENZENE (ug/l)	10.0 U	2-CHLOROPHENOL (ugf)	10.0 U
(p)1,4-DICHLOROBENZENE (ug/l)	10.0 U	2,4-DICHLOROPHENOL (ug/l)	10.0 U
3,3-DICHLOROBENZIDINE (ug/l)	5.0 U	2,4-DIMETHYLPHENOL (ug/l)	10.0 U
DIETHYL PHTHALATE (ug/l)	10.0 U	4, 6-DINITRO-o-CRESOL (ug/l)	50.0 U
DIMETHYL PHTHALATE (ug/l)	10.0 U	4,6-DINITRO-2-METHYLPHENOL (ug/l)	20.0 U
DI-N-BUTYL PHTHALATE (ug/l)	10.0 U	2,4-DINITROPHENOL (ug/l)	50.0 U
DIBENZOFURAN (ug/l)	10.0 U	2-NITROPHENOL (ug/l)	20.0 U
FLUORANTHENE (ug/l)	10.0 U	4-NITROPHENOL (ug/l)	50.0 U
FLUORENE (ug/l)	10.0 U	p-CHLORO-m-CRESOL (ug/l)	10.0 U
HEXACHLOROBENZENE (ug/l)	5.0 U	2-METHYLPHENOL (ug/l)	10.0 U
HEXACHLOROBUTADIENE (ug/l)	10.0 U	PENTACHLOROPHENOL (ug/l)	5.0 U
HEXACHLOROETHANE (ug/l)	20.0 U	PHENOL (ug/l)	16.0
HEXACHLOROCYCLOPENTADIENE (ug/l)	10.0 U	2,4,6-TRICHLOROPHENOL (ug/l)	10.0 U
HEXACHLOROPHENE (ug/l)	10.0 U	2,4,5-TRICHLOROPHENOL (ug/l)	50.0 U
IDENO (1,2,3,od) PYRENE (ug/l)	5.0 U	PENTACHLOROBENZENE (ug/l)	20.0 U
1,2-Diphenyl Hydrazine (ug/l)	20.0 U	4-CHLORO-3-METHYL PHENOL (ug/l)	10.0 U
N-NITROSO-di-n-BUTYLAMINE (ug/l)	20.0 U	NONYLPHENOL (ug/l)	5.0 U
N-NITROSO-DI-ETHYLAMINE (ug/l)	20.0 U	A	

Analyzed by NELAC certified lab T104704215 Ref. EPA-625 (Base/Neutrals & Acids) U - Analyte Not Detected at the listed Detection Limit

J - Analyte Present but below Detection Limit

LAS REPRESENTATIVE

CERTIFICATE OF ANALYSIS

CLIENT: GERONIMO CREEK WWTP

LAB NUMBER:

24B2106-02D

DATE COLLECTED:

(City of Seguin) 13-Feb-24

DATE RECEIVED:

14-Feb-24

DATE COMPLETED: 20-Feb-24

SAMPLED BY:

RP

SAMPLE TYPE	
LOCATION	

LOCATION:	INFLUENT		INFLUENT
PARAMETERS:	Comp PESTICIDES-PCB		Comp PESTICIDES-PCB
EPA 1657*		EPA 608*	
Guthion (Azinphos Methyl) (ug/l)	< 0.10	Chlordane (ug/l)	< 0.15
		4-4' - DDD (ug/l)	< 0.10
Chlorpyrifos (ug/l)	< 0.05	4-4' - DDE (ug/l)	< 0.10
		4-4' - DDT (ug/l)	< 0.02
Demeton -O (ug/l)	< 0.20	Dieldrin (ug/l)	< 0.02
		Dicofol (ug/l)	< 1.0
Demeton -S (ug/l)	< 0.20	Endosulfan I (ug/I)	< 0.01
		Endosulfan II (ug/l)	< 0.02
Diazinon (ug/l)	< 0.5	Endosulfan Sulfate (ug/l)	< 0.10
		Endrin (ug/l)	< 0.02
Disulfoton (ug/l)	< 0.5	Gamma-BHC (Lindane) (ug/l)	< 0.05
		Heptachlor (ug/l)	< 0.01
EPN (ug/l)	< 0.5	Heptaclor Epoxide (ug/l)	< 0.01
		Methoxychlor (ug/l)	< 0.20
Ethion (ug/l)	< 0.5	Mirex (ug/l)	< 0.02
		Total PCBs (ug/l)	< 0.2
Ethyl Parathion (ug/l)	< 0.1	PC8-1016 (ug/l)	< 0.2
		PCB-1221 (ug/l)	< 0.2
Malathion (ug/l)	< 0.10	PCB-1232 (ug/l)	< 0.2
		PCB-1242 (ug/l)	< 0.2
Methyl Parathion (ug/l)	< 0.1	PCB-1248 (ug/l)	< 0.2
		PCB-1254 (ug/l)	< 0.2
Parathion (ug/l)	< 0.10	PCB-1260 (ug/l)	< 0.2
EPA 608*		Toxaphene (ug/l)	< 0.3
Aldrin (ug/l)	< 0.01	Endrin Aldehyde (ug/l)	< 0.10
		Delta - BHC (ug/l)	< 0.05
Alpha - BHC (ug/l)	< 0.05	Section Newscassing	
(Hexachlorocyclohexane)		EPA 632*	
		Diuron (ug/l)	< 0.09
Beta - BHC (ug/l)	< 0.05		
		EPA 8151*	
		2,4-D (ug/l)	< 0.7
		2,4,5-TP (Silvex) (ug/l)	< 0.3
		EPA 625*	
		Carbaryl (ug/l)	< 5.0
		1000	9.0

*Analyzed by NELAP certified lab T104704231

1 014 Brooklet Drive. Suite #230 Housida, Texas 7 099 281 568 7880

FL DOH Certification #E84025 TX Certification #T104704527-22-9

Report Date: February 28, 2024

Envirodyne Laboratories, Inc. 11011 Brooklet, Ste 230 Houston, TX 77099-3543 Field Custody: Client Client/Field ID: 24B2106 Effluent

Sample Collection: 02-12/13-24/0900-0800

24.3639

Lab ID No:

Custody Date: 02-20-24/1025

Sample Description: Water

CERTIFICATE OF ANALYSIS

Parameter	Units	Results	Analysis Date	Method	Detection Limit
Uranium	pCi/l	0.0 ± 0.1	2-26-24/1624	EPA 908.0	0.3
Uranium	ug/l	0.0 ± 0.1	Calc	Calc	Calc

Thomas J. Weeks Laboratory Manager

Test results meet all requirements of the 2016 TNI standards. Statement of estimated uncertainty available upon request. Test results refer only to sample(s) listed. Contact person: Thomas Weeks (813) 229-2879.

FL DOH Certification #E84025 TX Certification #T104704527-22-9

Report Date: February 28, 2024

Envirodyne Laboratories, Inc. 11011 Brooklet, Ste 230 Houston, TX 77099-3543

Field Custody: Client/Field ID: Client 24B2106

Influent

Sample Collection: 02-12/13-24/0900-0800

Lab ID No:

24.3640

Custody Date:

02-20-24/1025

Sample Description: Water

CERTIFICATE OF ANALYSIS

Parameter	Units	Resul	ts	Analysis Date	Method	Detection Limit
Uranium	pCi/l	0.3 ±	0.2	2-26-24/1624	EPA 908.0	0.4
Uranium	ug/l	0.4 ±	0.3	Calc	Calc	Calc

Thomas J. Weeks Laboratory Manager

Test results meet all requirements of the 2016 TNI standards. Statement of estimated uncertainty available upon request. Test results refer only to sample(s) listed. Contact person: Thomas Weeks (813) 229-2879.

EMSL Analytical, Inc.

5950 Fairbanks N. Houston Rd. Houston, TX 77040 Phone/Fax: (713) 686-3635 / (713) 686-3645 http://www.EMSL.com / houstonlab@emsl.com

EMSL Order ID: Customer ID:

152401017

ENDY62

Customer PO: Project ID:

Attn: Laura Bonjonia

Envirodyne Laboratories, Inc.

11011 Brooklet Suite 230

Houston, TX 77099 24B2106/24B2107 Proj:

Phone: Fax:

(281) 568-7880 (281) 568-8004

Received: Analyzed: 02/20/2024

03/01/2024

Test Report: Determination of Asbestos Structures > 10µm in Water Performed by the 100.2 Method (EPA 600/R-94/134)

ASBESTOS Effective Sample Original Asbestos Fibers Analytical Concentration Confidence Area Filtration Sample Vol. Filter Sample ID Types Detected Sensitivity Limits Client / EMSL Date/Time **Filtered** Area Analyzed MFL (million fibers per liter) (ml) (mm3) (mm) 0.1397 0.00 - 0.68 Effuent 24B2106 2/20/2024 1282 None Detected ND 0.18 < 0.18 152401017-0001 05:32 PM Collection Date/Time: 02/13/2024 08:00 AM Influent 24B2108 2/20/2024 10 1282 0.2540 None Detected ND 0.50 < 0.50 0.00 - 1.90152401017-0002 05:33 PM 02/13/2024 08:00 AM Collection Date/Time: Due to excessive particulate the analytical sensitivity of 0.2 MFL as required by the method was not reached 0.1397 50 0.00 - 0.68Effuent 24B2107 2/20/2024 1282 None Detected ND 0.18 < 0.18 152401017-0003 05:48 PM 02/13/2024 08:00 AM Collection Date/Time: Influent 24B2107 2/20/2024 1282 0.2540 ND 0.50 < 0.50 0.00 - 1.90None Detected 152401017-0004 05:50 PM Collection Date/Time: 02/13/2024 08:00 AM

Due to excessive particulate the analytical sensitivity of 0.2 MFL as required

Michelle Leggett, Laboratory Manager or Other Approved Signatory

Whitelle

Any questions please contact Michelle Leggett.

Initial report from: 04/03/2024 11:24:06

by the method was not reached.

Analyst(s) Michelle Leggett

on and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may EMSL maintains liability limited to cost of analysis. Interpretet not be reproduced, accept in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received, Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. Estimation of uncertainty is available on request. Sample collection and containers provided by the client, acceptable bottle blank level is defined as s0.01MFL>10um. ND=None Detected. No Fibers Detected the value will be reported as less than 359% of the concentration equivalent to one foer. 1 to 4 fibers. The result will be reported as less than the corresponding upper 65% confidence limit (Poisson),5 to 30 fibers. Mean and 95% confidence intervals will be reported on the sais of the Poisson assumption. When more than 30 fibers are counted, both the Gaussian 95% confidence interval and the Poisson 95% confidence interval will be calculated. The large of these two intervals will be selected for data reporting. When the Gaussian 95% confidence interval is selected for data reporting, the Poisson will also be noted.

Samples analyzed by EMSL Analytical, Inc. Houston, TX

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

24B2106

Reported:

07-May-24 16:37

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyse	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B4B4616 - Inorganics										
Blank (B4B4616-BLK1)				Prepared &	Analyzed:	19-Feb-24				
Nitrate-N	<0.50	0.50	mg/L							
LCS (B4B4616-BS1)				Prepared &	Analyzed:	19-Feb-24				
Nitrate-N	2.86		mg/L	3.00		95.3	90-110			
Matrix Spike (B4B4616-MS1)	Sour	ce: 24B1898-	03	Prepared &	Analyzed:	19-Feb-24				
Nitrate-N	33.6	5.00	mg/L	30.0	ND	112	80-120			
Matrix Spike Dup (B4B4616-MSD1)	Source: 24B1898-03			Prepared &	Analyzed:	19-Feb-24				
Nitrate-N	33.3	5.00	mg/L	30.0	ND	111	80-120	0.897	20	
Batch B4B5579 - Inorganics										
Blank (B4B5579-BLK1)				Prepared &	Analyzed:	29-Feb-24				
Fluoride	< 0.10	0.10	mg/L							
LCS (B4B5579-BS1)				Prepared &	Analyzed:	29-Feb-24				
Fluoride	0.50		mg/L	0.500		101	90-110			
Matrix Spike (B4B5579-MS1)	Sour	ee: 24B2105-	01	Prepared &	Analyzed:	29-Feb-24				
Fluoride	1.16	0.20	mg/L	1.00	ND	116	80-120			
Matrix Spike Dup (B4B5579-MSD1)	Sour	ce: 24B2105-	01	Prepared & Analyzed: 29-Feb-24						
Fluoride	1.20	0.20	mg/L	1.00	ND	120	80-120	3.38	20	

Envirodyne Laboratories, Inc.

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

24B2106

Reported:

07-May-24 16:37

Metals - Quality Control

Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyse	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B4B4618 - Inorganics										
Blank (B4B4618-BLK1)				Prepared 8	Analyzed:	19-Feb-24				
Chromium, Hexavalent	<1.0	1.0	ug/L							
LCS (B4B4618-BS1)				Prepared &	: Analyzed:	19-Feb-24			*	
Chromium, Hexavalent	47.9		ng/L	50.0		95.8	95-105			
Matrix Spike (B4B4618-MS1)	Sou	rce: 24B2106-	01	Prepared &	Analyzed:	19-Feb-24				
Chromium, Hexavalent	47,0	1.0	ug/L	50.0	ND	94.0	80-120			
Matrix Spike Dup (B4B4618-MSD1)	Sou	rce: 24B2106-	01	Prepared 8	Analyzed:	19-Feb-24				
Chromium, Hexavalent	47.0	1.0	ug/L	50.0	ND	94.0	80-120	0.00	20	

Envirodyne Laboratories, Inc.

Laura Brymin

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

24B2106

Reported:

07-May-24 16:37

Total Metals by ICP - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyse	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B4C4606 - Metals - EPA 200.2										
Blank (B4C4606-BLK1)				Prepared:	07-Mar-24	Analyzed: 0	8-Mar-24			
Barium	<5.0	5.0	ug/L							
Aluminum	<5.0	5.0								
Strontium	<5.0	5.0								
LCS (B4C4606-BS1)	Prepared: 07-Mar-24 Analyzed: 08-Mar-24									
Aleminum	<5.0	5.0	ug/L		<5.0		85-115	0		
Barium	<5.0	5.0			< 5.0		85-115	0		
Strontium	44.2			50.0		88.4	85-115			
Matrix Spike (B4C4606-MS1)	Sou	rce: 24B2986-	02	Prepared:	07-Mar-24	Analyzed: 0	8-Mar-24			
Alaminum	<5.0	5.0	ug/L		<5.0		70-130	0		
Barium	<5.0	5.0			<5.0		70-130	0		
Strontium	293	10.0	•	75.0	207	114	70-130			
Matrix Spike Dup (B4C4606-MSD1)	Sou	rce: 24B2986-	02	Prepared: (07-Mar-24	Analyzed: 0	8-Mar-24			
Bariam	<5.0	5.0	ug/L		<5.0		70-130	0	20	
Aluminum	<5.0	5.0			<5.0		70-130	0	20	
Strontium	292	10.0		75.0	207	113	70-130	0.205	20	

Envirodyne Laboratories, Inc.

Laura Brymin

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

24B2106

Reported: 07-May-24 16:37

Total Metals by ICP-MS - Quality Control

Envirodyne Laboratories, Inc.

Analyse	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B4C2957 - Metals - EPA 200.2										
Blank (B4C2957-BLK1)				Prepared: 2	28-Feb-24 A	analyzed: 2	9-Feb-24			
Beryllium	<0.5	0.5	ug/L							
Copper	< 0.5	0.5	*							
Arsenia	< 0.5	0.5								
Lead	< 0.5	0.5								
Silver	< 0.5	0.5								
Niekel	< 0.5	0.5								
Vanadium	<2.0	2.0								
Thalliam	< 0.5	0.5								
Chromium	<2.0	2.0								
Cadmium	4.4	0.50								
Zinc	<2.0	2.0								
Selenium	<2.0	2.0	*							
Antimony	< 0.5	0.5	-							
LCS (B4C2957-BS1)				Prepared: 2	28-Feb-24 A	nalyzed: 25	9-Feb-24			
Arsenic	74.4		ug/L	75.0		99.2	85-115			
Beryllium	70.9		-	75.0		94.5	85-115			
Thallium	69.9			75.0		93.2	85-115			
Vanadium	71.4			75.0		95.3	85-115			
Cadreium	69			75.0		91.5	85-115			
Silver	75			75.0		100	85-115			
Nickel	72.1			75.0		96.2	85-115			
Lead	71			75.0		95.1	85-115			
Copper	72.9			75.0		97.2	85-115			
Chromium	68.0		-	75.0		90.6	85-115			
Zinc	72,5		-	75.0		96.7	85-115			
Selenium	73.8		-	75.0		98.5	85-115			
Antimony	67.3			75.0		89.8	85-115			

Envirodyne Laboratories, Inc.

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

24B2106

Reported:

RPD

%REC

07-May-24 16:37

Total Metals by ICP-MS - Quality Control

Envirodyne Laboratories, Inc.

Spiko

Source

Reporting

	n	Reporting	et-le-	Space	Source	%REC	Limits	RPD	Limit	Notes
Analyte	Result	Limit	Units	Level	Result	SHREE	Limits	KFD	Limit	Notes
Batch B4C2957 - Metals - EPA 200.2										
Matrix Spike (B4C2957-MS1)	Sou	rce: 24B2106-	01	Prepared: 2	28-Feb-24 /	Analyzed: 2	9-Feb-24			
Ansenic	103	0.5	ug/L	100	ND	103	70-130			
Beryllium	90.6	0.5	~	100	0.281	90.3	70-130			
Cadmium	88	0.50	-	100	0.31	88.0	70-130			B
Chromium	86.5	2.0	*	100	ND	86.5	70-130			
Copper	95.8	0.5		100	3.32	92.5	70-130			
Lead	91	0.5		100	0.46	91.0	70-130			
Nickel	97.7	0.5		100	3.50	94.3	70-130			
Silver	94	0.5		100	ND	93.5	70-130			
Thallium	91.2	0.5	-	100	0.313	90.9	70-130			
Vanadium	116	2.0	-	100	ND	116	70-130			
Selenium	98.3	2.0	*	100	ND	98.3	70-130			
Zinc	132	2.0		100	47.0	85.1	70-130			
Antimony	104	0.5		100	ND	104	70-130			
Matrix Spike Dup (B4C2957-MSD1)	Sou	rce: 24B2106-	01	Prepared: 2	28-Feb-24 A	analyzed: 2	9-Feb-24			
Thallium	91.6	0.5	up/L	100	0.313	91.3	70-130	0.394	20	
Vanadium	117	2.0		100	ND	117	70-130	0.539	20	
Cadmium	92	0.50		100	0.31	91.6	70-130	3.98	20	В
Beryllium	93.5	0.5	-	100	0.281	93.2	70-130	3.14	20	
Silver	95	0.5	9	100	ND	94.6	70-130	1.14	20	
Chromium	87.9	2.0		100	ND	87.9	70-130	1.62	20	
Arsenic	102	0.5	-	100	ND	102	70-130	0.923	20	
Nickel	96.8	0.5	-	100	3.50	93.3	70-130	0.969	20	
Lead	92	0.5	-	100	0.46	91.9	70-130	0.894	20	
Copper	93.3	0.5	-	100	3.32	90.0	70-130	2.65	20	
Selenium	99.0	2.0		100	ND	99.0	70-130	0.761	20	
Zinc	129	2.0		100	47.0	81.7	70-130	2.62	20	

Envirodyne Laboratories, Inc.

Antimony

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report most be reproduced in its entirety.

104

70-130

0.216

20

104

0.5

100

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

24B2106

Reported:

07-May-24 16:37

Notes and Definitions

and the second s	
 Analyzed by third party laborat 	WY.

- B Target detected in method blank
- ND Analyte NOT DETECTED at or above the reporting limit
- < Result is less than the RL
- a Analyte not available for TNI/NELAP accreditation
- n Not accredited

Envirodyne Laboratories, Inc.

24132100

TCEQ Certification # T104704265

Phone (281)568-7880 - Fax (281)568-8004 Envirodyne Laboratories, Inc. Houston, Texas 77099-3543 11011 Brooklet, Ste. 230

Page

ŏ

Time Analysis aboratory No. Analysis Request and Chain of Custody Record Date 2 Hyby Sozi Intact? .qm9T Seal Intact? earlintnet? D.O. Hd N Po Samu Sb,As,Be,C d,C r,C u,Hg,Ni,Se,Ag,T E I,Zn,A\, (5.~ Time DIEDE. Date. Date: Date Figure BNA, Pesticides, PCBs (EPA 625), J Email: 830-401-2324 Cyanide (Total & Amenable) ANALYSIS REQUESTED VOC (EPA 624), 1 Cr+6, F, NO3-N Phenol GERONIMO CREEK Site Representative: Arrival Temp. Data Results To: Date: 21th 12 y Received by Lab: Received by: Received by: (Signature) (Signature) (Signature) 830-401-2411 FITTHE 10 AIN ICE, HN03 Sample Cestainer Sample Type (Liquid, Peecerrolist) CE, NaOH Jate-2-13-24 18 6118 2 ICE, HCI Shippur HZSO4 SE 80 TIME halo: Phone: Liquid Liquid Liquid Liquid Liquid Liquid Client/Project Sludgo, otc.) formys Refinquished by: (N. O. Sov.) 40 ml Vial 1 Lt-Amb 250 ml-P 250 ml/P 500ml-P Lt-Amb (Sizoffaff) Relinquished by: Kene Comp Relinquished by: Grab Meter Reating (Signature) (Signature) Signature) Mr Cerecon Cl. Repulsal. 7-13-24 9:35 Ac 2-13-24 9-37 AM 4.40 pm Gly Corrected 9 to 8 ac Pato Br 2-1413-24 9.28 17/17:24 12-6/13-24 2.13.24 Date & Time Project No. Table II and III(Jan-Jun) FLOW Seguin, TX 78155 City of Seguin 101 E. Klein **EFFLUENT-Comp** EFFLUENT-Comp EFFLUENT-Comp Field Sample No./ EFFLUENT-Grab EFFLUENT-Grab EFFLUENT-Grab Rene Porras Indentification Samplers: (Signature) Affiliation Remarks: Address: Contact: Name: Lab ID 8

A. S. O43 1

Envirodyne Les aralories, Inc. 11011 Brocklet, Ste. 230

2 4B2106

PAROMON THE STATE OF

Phone (281)568-7880 - Fax (281)568-8004 Houston, Texas 77059-3543

Page

ö

Analysis Request and Chain of Custody Record TCEQ Certification # 7104704265 City of Seguin

DmiT sisylenA aboratory No. Temp. Sate, Thylay Seal Intact? Seat Intect? Seal Intest? 0'0 Hd Time and Sb,As,Be,C d,C r,C u,Hg,Ni,Se,Ag,T Date: Date; inne Date. Time. BNA, Pesticides, PCBs (EPA 625), | Email: 830-401-2324 Cyanide (Total & Amenable) ANALYSIS REQUESTED 1,Zn,A1, 12-2 VOC (EPA 624). I Cr+6, F, NO3-N Pheno GERONIMO CREEK Site Representative: Arrival Temp. Data Results To: Received by Lab; Received by: Received by. (Signature) (Signature) (Signature) 830-401-2411 18.6 183 Sampla Containor Sampla Type (Liquid, Preservative (SizeMatt) ICE, HIVO3 CE, NaOH Sate 2 HS lt 4 Jate 243 24 Time 10 and HZSO4 ICE MOI THE 945 (Rothy CE SCE Schen Liquid Liquid Liquid Liquid Liquid Liquid Phone: Client/Project Joseph 40 ml Vial 1 Lt-Amb 110 PM 250 ml-P 250 mI/P 500ml-P Lt-Amb (2) 4 250 Kene Relinquished by: Refinguished by: (elinquished by: Gtab Signature Meter Reserry 9:20 pm Signature Signature Vin Constitos 9.15-24 9:17 mm Cl. Resitual Ja to San 2-12/13-24 a to ban 2-13-24 -13.24 2-1415 24 9x 684 2-14/3-24 Date & Time FLOW. Seguin, TX 78155 Table II and III NFLUENT-Comp INFLUENT-Comp INFLUENT-Comp INFLUENT-Grab 101 E. Klein Rene Porras Field Sample No./ INFLUENT-Grab INFLUENT-Grab Indentification Samplers: (Signature) Affiligation Project No. Remarks: Address: Contact: Name: Lab ID City: So.

Envirodyne Laboratories, Inc. 11011 Brooklet, Ste, 230

24132106

E AND ONLY

ö

Page

Houston, Texas 77099-3543

Phone (281)568-7880 - Fax (281)568-8004

sis Analysis Request and Chain of Custody Record ·d Email: 830-401-2324 830-401-2411 Phone: Client/Project TCEQ Certification # T104704265 Seguin, TX 78155 Rene Porras City of Seguin 101 E. Klein Contact: Project No. Address: City:

slys ime	nA														.0	
du:	D.0						-				Seal intact?	Seal Intent?	Seal intoct?	The state of the s	aboratory No.	
	Hq), Hg				Date Time.	Date	-	Shb pull		Date:
	ANALYSIS REQUESTED	8voc (624.1)	Ethylene Dibromide (EDB)	Herbicides	Asbestos	Uranium	Metals (Vanadium, Strontium), Hg						C	801+		
Geronimo Creek	ANALYSIS	3.80	Ethylene Di	Her	As	'n	Metals (Vana				Received by: (Signature)	Received by:	Received by Lab:	(Signature)	Arrival Temp. Data Results To:	Site Representative:
Ger	Proservativo	Ice,HCI	Ice	eo l	83	80	lce	ice, i-fNO3			Date, 2-17-24 F		1 30	Time: 44 c	ival Temp.	18 6 18 2
	Sample Centainer Sample Type (Liquid, Proservative Studge, etc.)	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid	Liquid							Arr	
5	Sample Centainer S (StanMat's	(2) 40ml/vials	(2) (1-Lt/Amb	1-Lt Amber	1-Lt Amber	1-Lt/p	200 ml/P	250 ml/P		0	Rene forms		MID Per.	3		
	Grab	\geq	\times	\simeq	\simeq	\times	\simeq	\sim	-		od by:	of by:	Aq pa	#	0	
	Date & Time	2.12/13 24 9. to 8 22	2141324 9468m	2-14/3-24 9. to 82	2.14/13.24 9.5/4	2.14/5.24 2.15.84	2-1415-24 9. 15 8m	2.417.24 9. 15 Sh.			Refinguished by: (Signature)	Reanquished by:	Retinguished by: NA O	(Segmature)	fLOW Move Residing	Cl. Rosuluar Vin Contectors
Table V	Field Sample No./ Indentification	EFFLUENT-COMP	EFFLUENT-COMP	EFFLUENT-COMP	EFFLUENT-COMP	EFFLUENT-COMP	EFFLUENT-COMP	EFFLUENT-COMP			Samplers: (Signature)		Attestion		rks:	
10000	Lab ID No.										V				Remarks:	

Dates

Vin Contection CL Corrected E 2425418

Envirodyne Laboratories, Inc.

24182106

TCEQ Certification # 7104704265

11011 Brooklet, Ste. 230

Phone (281)568-7880 - Fax (281)568-8004 Houston, Texas 77099-3543

Page

ŏ

Time Analysis Analysis Request and Chain of Custody Record aboratory No. Temp. Seal Intact? Seal Intact? Scal Intact? .O.a Date, 3 liv/24 Time: 945 Hd Date: Time: Wetals (Vanadium, Strontium), Hg Sale: Date: fime: Email: 830-401-2324 Sevoc (624.1) Ethylene Dibromide (EDB) ANALYSIS REQUESTED Herbicides Asbestos Uranium 18 UII Site Representative: Geronimo Creek Wrival Temp. Data Results To: Jate: 24912 4 Received by Leb: Date 2-13-24 Received by: Received by: (Signature) (Signature) (Signature) 830-401-2411 Prosorvativo Ice, HNO3 THE POWER Ice,HCI THE 945 8 8 8 9 3 1000 Sate: Sample Container Sample Type (Liquid, (Size/Mat') Sludge, etc.) Phone: Liquid Liquid Liquid Liquid Liquid Liquid Liquid Client/Project COURS (2) 1-Lt/Amb 40ml/vials MO Gi Amber Amber 500 ml/P 250 ml/P Amber Amber 500 1.Lt 1-1-Comp Relinquished by: Relinquished by: Relinquished by: Cusp Meter Reading (Signature) (Signature) (Signature) Mn Conection Cly Corrected 9m to 8 m Cu Residual: 9. 58 BL 9 to 8 2 - 14/3 34 926/2 gar to San 2-13/13-24 9- to Sp. 2-1413-24 2-14/3-29 92 to Blee 2-14/3-24 Date & Time Seguin, TX 78155 Table V City of Seguin INFLUENT-COMP NFLUENT-COMP INFLUENT-COMP NFLUENT-COMP INFLUENT-COMP INFLUENT-COMP INFLUENT-COMP Field Sample No./ Rene Porras 101 E. Klein Indentification Samplers (Signature) Affiliation Project No. Address: Contact: Remarks: Vame: City: Lab ID No.

12 September 2023

Seguin, City of Rene Porras 101 E Klein Seguin, TX 78155

Seguin, City of - WWTP

Enclosed are the results of analyses for samples received by the laboratory on 12-Jul-23 12:45. The analytical data provided relates only to the samples as received in this laboratory report.

ELI certifies that all results are NELAP compliant and performed in accordance with the referenced method except as noted in the Case Narrative or as noted with a qualifier. Any reproductions of this laboratory report should be in full and only with the written authorization from the client.

The total number of pages in this report is 13

Thank you for selecting ELI for your analytical needs. If you have any questions regarding this report, please contact us.

Sincerely,

Laura Bonjonia For Monica Smith

Client Services Representative

Laura Brynin

TNI HABORATORA

Certificate No: T104704265-22-20

Client: Seguin, City of

Project: Seguin, City of - WWTP

Work Order: 23G1742

Reported: 12-Sep-23 17:58

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Effluent- Comp	23G1742-01	Water	11-Jul-23 08:00	12-Jul-23 12:45
Effluent- Grab	23G1742-02	Water	11-Jul-23 08:10	12-Jul-23 12:45
Influent- Comp	23G1742-03	Water	11-Jul-23 08:00	12-Jul-23 12:45
Influent- Grab	23G1742-04	Water	11-Jul-23 08:25	12-Jul-23 12:45

L-Sample analyzed by TNI accredited lab T104704231-22-29

Envirodyne Laboratories, Inc.

Client: Seguin, City of

Project: Seguin, City of - WWTP

Work Order: 23G1742

Reported:

12-Sep-23 17:58

Effluent- Comp23G1742-01 (Water) Sampled: 11-Jul-23 08:00

		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Analyst	Notes
			Envirod	yne Labo	ratories, Iı	nc.				
Wet Chemistry										
Fluoride	1.05	0.10	mg/L	1	B3G4157	13-Jul-23	13-Jul-23 11:54	SM 4500-F C	SKP	
Nitrate-N	< 0.50	0.50	mg/L	1	B3G4206	12-Jul-23	12-Jul-23 14:11	EPA 353.1	SSJ	
Metals										
Chromium, Hexavalent	1.0	1.0	ug/L	1	B3G4199	12-Jul-23	12-Jul-23 14:45	SM 3500-Cr I	3 SSJ	Н
Mercury by EPA 245.1										
Mercury	< 0.20	0.20	ug/L	1	B3G5576	26-Jul-23	26-Jul-23 12:06	EPA 245.1	SUB	L
Total Metals by ICP-MS										
Aluminum	36.0	2.0	ug/L	1	B3G5080	17-Jul-23	24-Jul-23 15:12	EPA 200.8	FOS	В
Antimony	3.0	0.5	ug/L	1	B3G5080	17-Jul-23	24-Jul-23 15:12	EPA 200.8	FOS	
Arsenic	< 0.5	0.5	ug/L	1	B3G5080	17-Jul-23	19-Jul-23 15:58	EPA 200.8	FOS	
Barium	81.1	2.0	ug/L	1	B3G5080	17-Jul-23	24-Jul-23 15:05	EPA 200.8	FOS	
Beryllium	< 0.5	0.5	ug/L	1	B3G5080	17-Jul-23	19-Jul-23 15:58	EPA 200.8	FOS	
Cadmium	< 0.50	0.50	ug/L	1	B3G5080	17-Jul-23	19-Jul-23 15:58	EPA 200.8	FOS	
Chromium	< 2.0	2.0	ug/L	1	B3G5080	17-Jul-23	19-Jul-23 15:58	EPA 200.8	FOS	
Copper	1.9	0.5	ug/L	1	B3G5080	17-Jul-23	19-Jul-23 15:58	EPA 200.8	FOS	
Lead	< 0.5	0.5	ug/L	1	B3G5080	17-Jul-23	19-Jul-23 15:34	EPA 200.8	FOS	
Nickel	3.7	0.5	ug/L	1	B3G5080	17-Jul-23	19-Jul-23 15:58	EPA 200.8	FOS	
Selenium	< 2.0	2.0	ug/L	1	B3G5080	17-Jul-23	19-Jul-23 15:58	EPA 200.8	FOS	
Silver	< 0.5	0.5	ug/L	1	B3G5080	17-Jul-23	25-Jul-23 13:10	EPA 200.8	FOS	
Thallium	< 0.5	0.5	ug/L	1	B3G5080	17-Jul-23	19-Jul-23 15:58	EPA 200.8	FOS	
Zinc	10.5	2.0	ug/L	1	B3G5080	17-Jul-23	19-Jul-23 15:58	EPA 200.8	FOS	

Envirodyne Laboratories, Inc.

Client: Seguin, City of

Project: Seguin, City of - WWTP

Work Order: 23G1742

Reported: 12-Sep-23 17:58

Effluent- Grab 23G1742-02 (Water) Sampled: 11-Jul-23 08:10

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method Analyst	Notes
			Envirod	yne Labo	ratories, I	nc.			
Wet Chemistry									
Cyanide, Amenable	< 0.005	0.005	mg/L	1	B3G5568	20-Jul-23	20-Jul-23 15:00	SM 4500 CN E&GSUB	L
Cyanide, Total	< 0.005	0.005	mg/L	1	B3G5568	20-Jul-23	20-Jul-23 15:00	SM 4500 CN E&GSUB	L
Phenol	< 0.05	0.05	mg/L	1	B3G5574	18-Jul-23	18-Jul-23 15:12	EPA 420.4 SUB	L

Envirodyne Laboratories, Inc.

Client: Seguin, City of

Project: Seguin, City of - WWTP

Work Order: 23G1742

Reported:

12-Sep-23 17:58

Influent- Comp 23G1742-03 (Water) Sampled: 11-Jul-23 08:00

		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Analyst	Notes
			Envirody	ne Labo	ratories, Iı	ıc.				
Wet Chemistry										
Fluoride	0.42	0.10	mg/L	1	B3G4157	13-Jul-23	13-Jul-23 11:54	SM 4500-F C	SKP	
Nitrate-N	< 0.50	0.50	mg/L	1	B3G4206	12-Jul-23	12-Jul-23 14:11	EPA 353.1	SSJ	
Metals										
Chromium, Hexavalent	<1.0	1.0	ug/L	1	B3G4199	12-Jul-23	12-Jul-23 14:45	SM 3500-Cr E	3 SSJ	Н
Mercury by EPA 245.1										
Mercury	< 0.20	0.20	ug/L	1	B3G5576	26-Jul-23	26-Jul-23 12:06	EPA 245.1	SUB	L
Total Metals by ICP-MS										
Aluminum	290	2.0	ug/L	1	B3G5079	17-Jul-23	21-Jul-23 12:13	EPA 200.8	FOS	B, Q
Antimony	< 0.5	0.5	ug/L	1	B3G5079	17-Jul-23	21-Jul-23 12:13	EPA 200.8	FOS	
Arsenic	< 0.5	0.5	ug/L	1	B3G5079	17-Jul-23	19-Jul-23 13:59	EPA 200.8	FOS	
Barium	70.2	2.0	ug/L	1	B3G5079	17-Jul-23	21-Jul-23 12:13	EPA 200.8	FOS	
Beryllium	< 0.5	0.5	ug/L	1	B3G5079	17-Jul-23	19-Jul-23 13:59	EPA 200.8	FOS	Q
Cadmium	< 0.50	0.50	ug/L	1	B3G5079	17-Jul-23	19-Jul-23 13:59	EPA 200.8	FOS	
Chromium	< 2.0	2.0	ug/L	1	B3G5079	17-Jul-23	19-Jul-23 13:59	EPA 200.8	FOS	
Copper	36.3	0.5	ug/L	1	B3G5079	17-Jul-23	19-Jul-23 13:59	EPA 200.8	FOS	
Lead	1.4	0.5	ug/L	1	B3G5079	17-Jul-23	19-Jul-23 13:59	EPA 200.8	FOS	
Nickel	4.4	0.5	ug/L	1	B3G5079	17-Jul-23	19-Jul-23 13:59	EPA 200.8	FOS	
Selenium	< 2.0	2.0	ug/L	1	B3G5079	17-Jul-23	19-Jul-23 13:59	EPA 200.8	FOS	
Silver	< 0.5	0.5	ug/L	1	B3G5079	17-Jul-23	11-Sep-23 21:41	EPA 200.8	LLB	В
Thallium	< 0.5	0.5	ug/L	1	B3G5079	17-Jul-23	19-Jul-23 13:59	EPA 200.8	FOS	
Zinc	78.9	2.0	ug/L	1	B3G5079	17-Jul-23	19-Jul-23 13:59	EPA 200.8	FOS	Q

Envirodyne Laboratories, Inc.

Client: Seguin, City of

Project: Seguin, City of - WWTP

Work Order: 23G1742

Reported:

12-Sep-23 17:58

Influent- Grab 23G1742-04 (Water) Sampled: 11-Jul-23 08:25

Analyte	Result	Reporting Limit	Units Envirod	Dilution vne Labo	Batch	Prepared	Analyzed	Method Analyst	Notes
Wet Chemistry			,						
Cyanide, Amenable	< 0.005	0.005	mg/L	1	B3I3777	20-Jul-23	20-Jul-23 15:00	SM 4500 CN E&GSUB	L
Cyanide, Total	< 0.005	0.005	mg/L	1	B3I3777	20-Jul-23	20-Jul-23 15:00	SM 4500 CN E&GSUB	L
Phenol	< 0.05	0.05	mg/L	1	B3G5574	18-Jul-23	18-Jul-23 15:12	EPA 420.4 SUB	L

Envirodyne Laboratories, Inc.

Client: Seguin, City of

Project: Seguin, City of - WWTP

Work Order: 23G1742

Reported:

12-Sep-23 17:58

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3G4157 - Inorganics										
Blank (B3G4157-BLK1)				Prepared &	Analyzed:	: 13-Jul-23				
Fluoride	< 0.10	0.10	mg/L							
LCS (B3G4157-BS1)				Prepared &	Analyzed:	13-Jul-23				
Fluoride	0.49		mg/L	0.500		98.2	90-110			
Matrix Spike (B3G4157-MS1)	Sou	rce: 23G1742-	01	Prepared &	Analyzed:	: 13-Jul-23				
Fluoride	2.12	0.20	mg/L	1.00	1.05	107	80-120			
Matrix Spike Dup (B3G4157-MSD1)	Sou	rce: 23G1742-	01	Prepared &	Analyzed:	: 13-Jul-23				
Fluoride	2.10	0.20	mg/L	1.00	1.05	105	80-120	0.948	20	
Batch B3G4206 - Inorganics										
Blank (B3G4206-BLK1)				Prepared &	Analyzed:	12-Jul-23				
Nitrate-N	< 0.50	0.50	mg/L							
LCS (B3G4206-BS1)				Prepared &	Analyzed:	12-Jul-23				
Nitrate-N	3.10		mg/L	3.00		103	90-110			
Matrix Spike (B3G4206-MS1)	Sou	rce: 23G1269-	01	Prepared &	k Analyzed:	: 12-Jul-23				
Nitrate-N	88.2	10.0	mg/L	60.0	25.0	105	80-120			
Matrix Spike Dup (B3G4206-MSD1)	Sou	rce: 23G1269-	01	Prepared &	a Analyzed:	: 12-Jul-23				
Nitrate-N	89.2	10.0	mg/L	60.0	25.0	107	80-120	1.13	20	

Envirodyne Laboratories, Inc.

Client: Seguin, City of

Project: Seguin, City of - WWTP

Work Order: 23G1742

Reported:

12-Sep-23 17:58

Metals - Quality Control

Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3G4199 - Inorganics										
Blank (B3G4199-BLK1)				Prepared &	Analyzed:	12-Jul-23				
Chromium, Hexavalent	<1.0	1.0	ug/L							
LCS (B3G4199-BS1)				Prepared &	: Analyzed:	12-Jul-23				
Chromium, Hexavalent	48.3		ug/L	50.0		96.6	95-105			
Matrix Spike (B3G4199-MS1)	Sour	ce: 23G1742-	01	Prepared &	: Analyzed:	12-Jul-23				
Chromium, Hexavalent	45.6	1.0	ug/L	50.0	1.00	89.2	80-120			
Matrix Spike Dup (B3G4199-MSD1)	Sour	ce: 23G1742-	01	Prepared &	: Analyzed:	12-Jul-23				
Chromium, Hexavalent	46.6	1.0	ug/L	50.0	1.00	91.2	80-120	2.17	20	

Envirodyne Laboratories, Inc.

Client: Seguin, City of

Project: Seguin, City of - WWTP

Work Order: 23G1742

Reported: 12-Sep-23 17:58

Total Metals by ICP-MS - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B3G5079-BLK1)				Prepared: 17-Jul	-23 Analyzed: 21	-Jul-23	
Barium	<2.0	2.0	ug/L				
Cadmium	< 0.50	0.50	"				
Silver	74	0.5	"				
Thallium	< 0.5	0.5	"				
Nickel	< 0.5	0.5	"				
Lead	< 0.5	0.5	"				
Copper	< 0.5	0.5	"				
Chromium	<2.0	2.0	"				
Arsenic	< 0.5	0.5	"				
Aluminum	7.35	2.0	"				В,
Beryllium	< 0.5	0.5	"				1
Zinc	<2.0	2.0	"				
Selenium	<2.0	2.0	"				
Antimony	< 0.5	0.5	"				
LCS (B3G5079-BS1)				Prepared: 17-Jul	-23 Analyzed: 21	-Jul-23	
Silver	74		ug/L	75.0	99.0	85-115	
Aluminum	86.9		"	75.0	116	85-115	В,
Thallium	76.0		"	75.0	101	85-115	
Nickel	72.5		"	75.0	96.6	85-115	
Barium	79.4		"	75.0	106	85-115	
Lead	76		"	75.0	102	85-115	
Copper	72.5		"	75.0	96.7	85-115	
Arsenic	74.6		"	75.0	99.5	85-115	
Chromium	74.4		"	75.0	99.2	85-115	
Cadmium	77		"	75.0	103	85-115	
Beryllium	70.6		"	75.0	94.1	85-115	1
Selenium	70.9		"	75.0	94.6	85-115	
Zinc	71.6		"	75.0	95.5	85-115	
Antimony	78.9		"	75.0	105	85-115	

Envirodyne Laboratories, Inc.

Client: Seguin, City of

Project: Seguin, City of - WWTP

Work Order: 23G1742

Reported: 12-Sep-23 17:58

Total Metals by ICP-MS - Quality Control Envirodyne Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3G5079 - Metals - EPA 200.2										
Matrix Spike (B3G5079-MS1)	Sou	rce: 23G1176-	02	Prepared:	17-Jul-23 A	nalyzed: 19	-Jul-23			
Lead	140	0.5	ug/L	100	24	115	70-130			
Cadmium	97	0.50	"	100	0.49	96.9	70-130			
Barium	310	20.0	"	100	227	83.7	70-130			
Aluminum	15700	20.0	"	100	14800	927	70-130			B, Q
Thallium	97.2	0.5	"	100	ND	97.2	70-130			
Arsenic	99.2	0.5	"	100	2.53	96.6	70-130			
Copper	119	0.5	"	100	16.9	102	70-130			
Nickel	115	0.5	"	100	12.5	102	70-130			
Beryllium	69.8	0.5	"	100	1.00	68.8	70-130			Q
Silver	72	5.0	"	100	ND	71.9	70-130			В
Chromium	114	2.0	"	100	15.2	99.1	70-130			
Selenium	83.8	2.0	"	100	ND	83.8	70-130			
Zinc	374	2.0	"	100	156	218	70-130			Q
Antimony	72.9	5.0	"	100	ND	72.9	70-130			
Matrix Spike Dup (B3G5079-MSD1)	Sou	rce: 23G1176-	02	Prepared:	17-Jul-23 A	nalyzed: 19	-Jul-23			
Chromium	120	2.0	ug/L	100	15.2	105	70-130	5.20	20	
Copper	125	0.5	"	100	16.9	108	70-130	4.95	20	
Beryllium	74.6	0.5	"	100	1.00	73.6	70-130	6.61	20	Q
Silver	86	5.0	"	100	ND	85.6	70-130	17.4	20	В
Cadmium	100	0.50	"	100	0.49	104	70-130	7.36	20	
Lead	150	0.5	"	100	24	126	70-130	7.58	20	
Barium	342	20.0	"	100	227	115	70-130	9.66	20	
Arsenic	108	0.5	"	100	2.53	105	70-130	8.34	20	
Nickel	121	0.5	"	100	12.5	109	70-130	5.78	20	
Aluminum	16200	20.0	"	100	14800	NR	70-130	2.93	20	B, Q
Thallium	107	0.5	"	100	ND	107	70-130	9.18	20	
Selenium	91.9	2.0	"	100	ND	91.9	70-130	9.18	20	
Zinc	392	2.0	"	100	156	236	70-130	4.66	20	Q
Antimony	82.1	5.0	"	100	ND	82.1	70-130	11.9	20	

Envirodyne Laboratories, Inc.

Client: Seguin, City of

Project: Seguin, City of - WWTP

Work Order: 23G1742

Reported:

12-Sep-23 17:58

Total Metals by ICP-MS - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B3G5080-BLK1)				Prepared: 17-Jul	-23 Analyzed: 19	9-Jul-23	
Chromium	<2.0	2.0	ug/L				
Copper	< 0.5	0.5	"				
Nickel	< 0.5	0.5	"				
Silver	< 0.5	0.5	"				
Гhallium	< 0.5	0.5	"				
Lead	< 0.5	0.5	"				
Arsenic	< 0.5	0.5	"				
Cadmium	< 0.50	0.50	"				
Aluminum	2.97	2.0	"				
Beryllium	< 0.5	0.5	"				
Barium	<2.0	2.0	"				
Selenium	<2.0	2.0	"				
Zinc	<2.0	2.0	"				
Antimony	< 0.5	0.5	"				
LCS (B3G5080-BS1)				Prepared: 17-Jul	-23 Analyzed: 19	9-Jul-23	
Thallium	78.0		ug/L	75.0	104	85-115	
Silver	81		"	75.0	109	85-115	
Nickel	74.5		"	75.0	99.3	85-115	
Arsenic	76.0		"	75.0	101	85-115	
Aluminum	75.7		"	75.0	101	85-115	
Lead	78		"	75.0	104	85-115	
Beryllium	72.5		"	75.0	96.7	85-115	
Cadmium	77		"	75.0	102	85-115	
Chromium	77.8		"	75.0	104	85-115	
Barium	75.7		"	75.0	101	85-115	
Copper	74.7		"	75.0	99.5	85-115	
Zinc	73.2		"	75.0	97.6	85-115	
Selenium	72.7		"	75.0	97.0	85-115	
Antimony	82.2		"	75.0	110	85-115	

Envirodyne Laboratories, Inc.

Client: Seguin, City of

Project: Seguin, City of - WWTP

Work Order: 23G1742

Reported:

12-Sep-23 17:58

Total Metals by ICP-MS - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
		Reporting		Spike	Source		/OICEC		KI D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (B3G5080-MS1)	Source	e: 23G1742-	01	Prepared: 1	7-Jul-23 A	nalyzed: 19	9-Jul-23			
Beryllium	82.1	0.5	ug/L	100	ND	82.1	70-130			
Thallium	99.0	0.5	"	100	ND	99.0	70-130			
Aluminum	150	2.0	"	100	36.0	114	70-130]
Silver	110	0.5	"	100	ND	110	70-130			
Chromium	89.4	2.0	"	100	ND	89.4	70-130			
Lead	95	1.0	"	100	ND	95.3	70-130			
Barium	189	2.0	"	100	81.1	108	70-130			
Nickel	95.7	0.5	"	100	3.67	92.0	70-130			
Cadmium	100	0.50	"	100	ND	100	70-130			
Copper	91.3	0.5	"	100	1.93	89.4	70-130			
Arsenic	103	0.5	"	100	ND	103	70-130			
Zinc	103	2.0	"	100	10.5	92.3	70-130			
Selenium	93.6	2.0	"	100	ND	93.6	70-130			
Antimony	118	0.5	"	100	3.04	115	70-130			
Matrix Spike Dup (B3G5080-MSD1)	Source	e: 23G1742-	01	Prepared: 1	7-Jul-23 A	nalyzed: 24	1-Jul-23			
Barium	188	2.0	ug/L	100	81.1	107	70-130	0.470	20	
Lead	94	1.0	"	100	ND	94.3	70-130	1.01	20	

Envirodyne Laboratories, Inc.

Reported:

12-Sep-23 17:58

Client: Seguin, City of

Project: Seguin, City of - WWTP

Work Order: 23G1742

Notes and Definitions

\circ	OC did not meet ELI acceptance c	riteria

- L Analyzed by third party laboratory
- H Hold time exceeded
- B Target detected in method blank
- ND Analyte NOT DETECTED at or above the reporting limit
- < Result is less than the RL
- a Analyte not available for TNI/NELAP accreditation
- n Not accredited

Envirodyne Laboratories, Inc.

2391742

CI, Corrected

Envirodyne Laboratories, Inc. 11011 Brooklet, Ste. 230 Houston, Texas 77099-3543

E	-	A	~	-	.40	\sim	100	
340	44	4	ш	- 1	44	н.		
-	4 4	- 4	~~	- 4	- 4	~		

Page Of

Time:

Phone (281)568-7880 - Fax (281)568-8004 TCEQ Certification # T104704265 City of Sequin Name: Analysis Request and Chain of Custody Record 101 E. Klein Address: City: Seguin, TX 78155 Rene Porras Contact: 830-401-2411 Email: 830-401-2324 Phone: Project No. Client/Project Analysis Temp. Table III (Jul-Dec) GERONIMO CREEK D.O. Field Sample No./ Comp Lab ID Date & Sample Container Sample Type (Liquid. Preservative ANALYSIS REQUESTED (Size/Mat't) Sludge, etc.) No. Time Indentification 7-19/11-23 Sb,As,Be,Cd,Cr,Cu,Hg,Ni,Se,Ag,Tl EFFLUENT-Comp 500ml-P Liquid ICE, HNO3 9 mix to 8 mm I, Zn, Al, Ba, Pb 7-11-23 ICE, H2SO4 **EFFLUENT-Grab** 1 Lt-Amb Liquid Phenol 8:10 m 7-11-23 EFFLUENT-Grab 250 ml-P Liquid Cyanide (Total & Amenable) ICE, NaOH 8:13 AM 7-19/11-23 **EFFLUENT-Comp** Liquid Cr+6, F, NO3-N 250 ml/P ICE 9m to 8am 7-10/11-23 Sb,As,Be,Cd,Cr,Cu,Hg,Ni,Se,Ag,T 500ml-P INFLUENT -Comp Liquid ICE, HNO3 gara to Sam I,Zn, Al, Ba, Pb 7-11-23 ICE, H2SO4 **INFLUENT-Grab** 1 Lt-Amb Liquid Phenol 8:25 A 7-11-23 **INFLUENT-Grab** 250 mI-P Liquid ICE, NaOH Cyanide (Total & Amenable) 8:28 am 7-19/11-23 INFLUENT-Comp 250 ml/P Liquid Cr+6, F, NO3-N ICE Queto 8 mm OVERNS Date: 7-11-23 Relinquished by: Rene Samplers: (Signature) Received by: Date: Seal Intact? Time: 10 AM Time: (Signature) (Signature) Date: Seal Intact? Relinquished by: Received by: Date: Time: (Signature) (Signature) Affiliation Date:7 12 13 Seal Intact? Date:7 12/21 Relinquished by: Received by Lab: Time! 7 Time: 1245 Signature) (Signature) FLOW: Arrival Temp. Data Results To: Remarks: aboratory No. Meter Reading: 5.35. Cl. Residual: Site Representative: Date: Mn Correction:

25 April 2023

Seguin, City of Rene Porras 101 E Klein Seguin, TX 78155

Seguin, City of - WWTP

Enclosed are the results of analyses for samples received by the laboratory on 15-Feb-23 10:15. The analytical data provided relates only to the samples as received in this laboratory report.

ELI certifies that all results are NELAP compliant and performed in accordance with the referenced method except as noted in the Case Narrative or as noted with a qualifier. Any reproductions of this laboratory report should be in full and only with the written authorization from the client.

The total number of pages in this report is 31

Thank you for selecting ELI for your analytical needs. If you have any questions regarding this report, please contact us.

Sincerely,

Laura Bonjonia For Monica Smith

Client Services Representative

Laura Brymin

Certificate No: T104704265-22-20

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

23B2626

Reported:

25-Apr-23 17:34

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Effluent - Comp	23B2626-01	Water	14-Feb-23 08:00	15-Feb-23 10:15
Effluent - Grab	23B2626-02	Water	14-Feb-23 09:08	15-Feb-23 10:15
Influent - Comp	23B2626-03	Water	14-Feb-23 08:00	15-Feb-23 10:15
Influent - Grab	23B2626-04	Water	14-Feb-23 09:28	15-Feb-23 10:15

Volatiles-

C=Vinyl Chloride, Styrene, MTBE, and 2-Chloroethyl Vinyl Ether are highly reactive compounds when samples are preserved with acids (pH <2). 2-Chloroethyl Vinyl Ether recoveries deteriorate with acid preservative. Acrolein or Acrylonitrile should be received with acidic preservation at pH> 4-5 and analyzed as soon as possible if it's a compound of interest.

L - Sample analyzed by TNI certified lab: T104704215-22-47
L - Sample analyzed by TNI certified lab: T104704527-22-9

Envirodyne Laboratories, Inc.

CLIENT: GERONIMO CREEK WWTP

LAB NUMBER: 23B2626-01A

DATE COLLECTED:

(City of Seguin) 14-Feb-23

DATE RECEIVED: 15-Feb-23

DATE COMPLETED:

24-Feb-23

SAMPLED BY: RI

Comp LOCATION: EFFLUENT

PARAMETERS:

METALS	CONCENTRATION	METHOD	INITIALS	MAL
TOTAL ALUMINUM (ug/l)	126.0	EPA 200.8	JMM	2.5
TOTAL ANTIMONY (ug/l)	<5.0	EPA 200.8	JMM	5.0
TOTAL ARSENIC (ug/l)	0.5	EPA 200.8	JMM	0.5
TOTAL BARIUM (ug/l)	29.5	EPA 200.8	JMM	3.0
TOTAL BERYLLIUM (ug/l)	< 0.5	EPA 200.8	JMM	0.5
TOTAL CADMIUM (ug/l)	<1.0	EPA 200.8	JMM	1.0
TOTAL CHROMIUM (ug/l)	<3.0	EPA 200.8	JMM	3.0
HEX CHROMIUM (ug/l)	<3.0	3500 - Cr D	LC	3.0
TRI CHROMIUM (ug/l)	<3.0	N/A	MES	3.0
TOTAL COPPER (ug/l)	11.5	EPA 200.8	JMM	2.0
TOTAL LEAD (ug/l)	<0.5	EPA 200.8	JMM	0.5
TOTAL MERCURY (ug/l)	*< 0.005	245.1	SUB	< 0.005
TOTAL NICKEL (ug/l)	3.3	EPA 200.8	JMM	2.0
TOTAL SELENIUM (ug/l)	<5.0	EPA 200.8	JMM	5.0
TOTAL SILVER (ug/l)	<0.5	EPA 200.8	JMM	0.5
TOTAL THALLIUM (ug/l)	<0.5	EPA 200.8	JMM	0.5
TOTAL ZINC (ug/l)	11.1	EPA 200.8	JMM	5.0
AMENABLE CYANIDE (ug/l)	*< 10.0	SM 4500 CN E&G	SUB	10.0
TOTAL CYANIDE (ug/l)	*< 10.0	SM 4500 CN E&G	SUB	10.0
TOTAL PHENOLS (ug/l)	* <10.0	420.1	SUB	10.0
FLUORIDE (ug/l)	<500.0	SM 4500-F C	SKP	500.0
NITRATE-N (ug/l)	25,600.0	EPA 353.1	MNF	LC
TOTAL STRONTIUM (ug/l)	401.0	EPA 200.7	JMM	
TOTAL VANADIUM (ug/l)	<5.0	EPA 200.7	JMM	

Ref. EPA METHODS FOR CHEMICAL ANALYSIS *Analyzed by NELAC certified lab T104704231

CERTIFICATE OF ANALYSIS

CLIENT: GERONIMO CREEK WWTP LAB NUMBER: 23B2626-01B

(City of Seguin)

DATE COLLECTED: 14-Feb-23 DATE RECEIVED: 15-Feb-23

DATE COMPLETED: 16-Feb-23 SAMPLED BY: RP

LOCATION: EFFLUENT - Grab

PARAMETERS:	VOLATILES	CONC.	DETECTION LIMITS (ug/l)
ACROLEIN (ug/l)		50.0 U	50.0
ACRYLONITRILE (ug/)	50.0 U	50.0
CHLOROMETHANE (I	ug/l)	10.0 U	10.0
VINYL CHLORIDE (ug		10.0 U	10.0
BROMOMETHANE (us	g/I)	10.0 U	10.0
CHLOROETHANE (ug	/I)	50.0 U	50.0
TRICHLOROFUORON	METHANE (ug/l)	10.0 U	10.0
1,1-DICHLOROETHYL		10.0 U	10.0
METHYLENE CHLORI	DE (ug/l)	20.0 U	20.0
trans-1,2-DICHLOROE		10.0 U	10.0
1,1-DICHLOROETHAN	NE (ug/l)	10.0 U	10.0
1,1,1-TRICHLOROETH	HANE (ug/l)	10.0 U	10.0
METHYL BROMIDE (u	g/l)	10.0 U	10.0
METHYL CHLORIDE (ug/l)	10.0 U	10.0
CHLOROFORM (ug/l)		10.0 U	10.0
CARBON TETRACHLO	ORIDE (ug/l)	2.0 U	2.0
1,2-DICHLOROETHAN	NE (ug/l)	10.0 U	10.0
TRICHLOROETHANE	(ug/l)	10.0 U	10.0
BENZENE (ug/l)		10.0 U	10.0
TRICHLOROETHYLEN	NE (ug/l)	10.0 U	10.0
1,2-DICHLOROPROPA	ANE (ug/l)	10.0 U	10.0
DICHLOROBROMOME	ETHANE (ug/l)	10.0 U	10.0
1,3 DICHLOROPROPY	LENE (ug/l)	10.0 U	10.0
TOLUENE (ug/l)		10.0 U	10.0
trans-1,3-DICHLOROP	ROPENE (ug/l)	10.0 U	10.0
1,1,2-TRICHLOROETH	IANE (ug/l)	10.0 U	10.0
TETRACHLOROETHY	LENE (ug/l)	10.0 U	10.0
DIBROMOCHLOROME	THANE (ug/l)	10.0 U	10.0
CHLOROBENZENE (u		10.0 U	10.0
2-CHLOROETHYLVIN	YL ETHER (ug/l)	10.0 U	10.0
1,2-DIBROMOETHANE	E (ug/l)	2.0 U	2.0
ETHYLBENZENE (ug/l)	10.0 U	10.0
BROMOFORM (ug/l)		10.0 U	10.0
1,1,2,2-TETRACHLOR	OETHANE (ug/l)	10.0 U	10.0
TOTAL TRIHALOMETI	HANES (ug/l)	10.0 U	10.0
METHYL ETHYL KETO		50.0 U	50.0
1,3 DICHLORBENZEN	E (ug/l)	10.0 U	10.0
1,4 DICHLORBENZEN	E (ug/l)	10.0 U	10.0
1,2 DICHLORBENZEN	E (ug/l)	10.0 U	10.0
XYLENE (ug/l)	8 6 %	10.0 U	10.0

Ref. EPA 624.1 (VOLATILES)

U - Analyte Not Detected at the Listed Detection Limit

J - Analyte Present but Below Detection Limit

CERTIFICATE OF ANALYSIS

CLIENT: GERONIMO CREEK WWTP

LAB NUMBER: 23B2626-01C

(City at Seguin)

DATE COLLECTED: 14-Feb-23

DATE RECEIVED: 15-Feb-23

DATE COMPLETED: 21-Feb-23 SAMPLED BY: RP

LOCATION: EFFLUENT-Comp

PARAMETERS: BASE/ NEUTRALS

ACENAPHTHENE (ug/l)	10.0 U	ISOPHORONE (ug/l)	10.0 U
ACENAPHTHYLENE (ug/l)	10.0 U	NAPHTHALENE (ug/l)	10.0 U
ANTHRACENE (ug/l)	10.0 U	NITROBENZENE (ug/l)	10.0 U
BENZIDINE (ug/l)	50.0 U	N-NITROSO-di-n-PROPYLAMINE (ug/l)	20.0 U
BENZO (a) ANTHRACENE (ug/l)	5.0 U	N-NITROSODIPHENYLAMINE (ug/l)	20.0 U
BENZO (a) PYRENE (ug/l)	5.0 U	N-NITROSODIMETHYLAMINE (ug/l)	50.0 U
BENZO (B) FLUORANTHENE (ug/l)	10.0 U	PHENANTHRENE (ug/l)	10.0 U
BENZO (GHI) PERYLENE (ug/l)	20.0 U	PYRENE (ug/l)	10.0 U
BENZO (k) FLUORANTHENE (ug/l)	5.0 U	1,2,4-TRICHLOROBENZENE (ugf)	10.0 U
BIS (2-CHLOROETHYL) ETHER (ug/l)	10.0 U	1,2,4,5-TETRACHLOROBENZENE (ug/l	20.0 U
BIS (2-CHLOROETHOXY) METHANE (ug/l)	10.0 U	2, 4-DINITROTOLUENE (ug1)	10.0 U
BIS (2-CHLOROISOPROPYL) ETHER (ug/l)	10.0 U	2, 6-DINTROTOLUENE (ug/l)	10.0 U
BIS (2-ETHYLHEXYL) PHTHALATE (ug/l)	10.0 U	2-METHYLNAPHTHALENE (up/l)	10.0 U
4-BROMOPHENYL PHENYL ETHER (ug/l)	10.0 U	Di-n-octyl PHTHALATE (ug/l)	10.0 U
BUTYL BENZYL PHTHALATE (ug/l)	10.0 U	PYRIDINE (ug/l)	20.0 U
2-CHLORONAPHTHALENE (ug/l)	10.0 U	p-CRESOL (ug/l)	10.0 U
4-CHLOROPHENYL PHENYL ETHER (ug/l)	10.0 U		
CHRYSENE (ug/l)	5.0 U	ACID COMPOUNDS	
DIBENZO (a,h) ANTHRACENE (ug/l)	5.0 U	INFLUENT (Cont.)	
1,2-DICHLOROBENZENE (ug/l)	10.0 U		
1,3-DICHLOROBENZENE (ug/l)	10.0 U	2-CHLOROPHENOL (ug/l)	10.0 U
(p)1,4-DICHLOROBENZENE (ug/l)	10.0 U	2,4-DICHLOROPHENOL (upl)	10.0 U
3,3-DICHLOROBENZIDINE (ug/l)	5.0 U	2_4-DIMETHYLPHENOL (ug/l)	10.0 U
DIETHYL PHTHALATE (ug/l)	10.0 U	4, 6-DINITRO-o-CRESOL (ug/l)	50.0 U
DIMETHYL PHTHALATE (up1)	10.0 U	4,6-DINITRO-2-METHYLPHENOL (ug/l)	20.0 U
DI-N-BUTYL PHTHALATE (ug/l)	10.0 U	2,4-DINITROPHENOL (ug/l)	50.0 U
DIBENZOFURAN (ugli)	10.0 U	2-NITROPHENOL (ug1)	20.0 U
FLUORANTHENE (up/l)	10.0 U	4-NITROPHENOL (ug/l)	50.0 U
FLUORENE (ug/l)	10.0 U	p-CHLORO-m-CRESOL (ug/l)	10.0 U
HEXACHLOROBENZENE (ug/l)	5.0 U	2-METHYLPHENOL (ug/l)	10.0 U
HEXACHLOROBUTADIENE (ug/l)	10.0 U	PENTACHLOROPHENOL (ug/l)	5.0 U
HEXACHLOROETHANE (ug/l)	20.0 U	PHENOL (ug/l)	16.0
HEXACHLOROCYCLOPENTADIENE (ug/l)	10.0 U	2,4,6-TRICHLOROPHENOL (upt)	10.0 U
HEXACHLOROPHENE (Up/1)	10.0 U	2,4,5-TRICHLOROPHENOL (ug/l)	50.0 U
IDENO (1,2,3,cd) PYRENE (ug/l)	5.0 U	PENTACHLOROBENZENE (ug/l)	20.0 U
1,2-Diphenyl Hydrazine (ug/l)	20.0 U	4-CHLORO-3-METHYL PHENOL (ug/l)	10.0 U
N-NITROSO-di-n-BUTYLAMINE (ug/l)	20.0 U	NONYLPHENOL (ug/l)	5.0 U

20.0 U

Analyzed by NELAC certified lab T104704215 Ref. EPA-625 (Base/Neutrals & Acids)

N-NITROSO-DI-ETHYLAMINE (ug/l)

U - Analyte Not Detected at the listed Detection Limit

J - Analyte Present but below Detection Limit

CERTIFICATE OF ANALYSIS

CLIENT: GERONIMO CREEK WWTP	LAB NUMBER:	232626-01D

(City of Seguin)

DATE COLLECTED: 14-Feb-23 DATE RECEIVED: 15-Feb-23

DATE COMPLETED: 20-Feb-23 SAMPLED BY: RP

SAMPLE TYPE:

LOCATION:	FFFILIENT		EEELUENT
LOCATION:	EFFLUENT		EFFLUENT
DIDINETEDO.	Comp		Comp
PARAMETERS:	PESTICIDES-PCB		PESTICIDES-PCB
EPA 1657*		EPA 608*	
Guthion (Azinphos Methyl) (ug/l)	< 0.10	Chlordane (ug/l)	< 0.15
011	- 0.05	4-4" - DDD (ug/l)	< 0.10
Chlorpyrifos (ug/l)	< 0.05	4-4" - DDE (ug/l)	< 0.10
Demotes O (100 III)	+ 0.00	4-4" - DDT (ug/l)	< 0.02
Demeton -O (ug/l)	< 0.20	Dieldrin (ug/l)	< 0.02
Demotes C (voll)		Dicofol (ug/l)	< 1.0
Demeton -S (ug/l)	< 0.20	Endosulfan I (ug/l)	< 0.01
Displace (com	- 0.5	Endosulfan II (ug/l)	< 0.02
Diazinon (ug/l)	< 0.5	Endosulfan Sulfate (ug/l)	< 0.10
District Control		Endrin (ug/l)	< 0.02
Disulfoton (ug/l)	< 0.5	Gamma-BHC (Lindane) (ug/l)	< 0.05
		Heptachlor (ug/l)	< 0.01
EPN (ug/l)	< 0.5	Heptaclor Epoxide (ug/l)	< 0.01
		Methoxychlor (ug/l)	< 0.20
Ethion (ug/l)	< 0.5	Mirex (ug/l)	< 0.02
		Total PCBs (ug/l)	< 0.2
Ethyl Parathion (ug/l)	< 0.1	PCB-1016 (ug/l)	< 0.2
		PCB-1221 (ug/l)	< 0.2
Malathion (ug/l)	< 0.10	PCB-1232 (ug/l)	< 0.2
	(Proping	PCB-1242 (ug/l)	< 0.2
Methyl Parathion (ug/l)	< 0.1	PCB-1248 (ug/l)	< 0.2
		PCB-1254 (ug/l)	< 0.2
Parathion (ug/l)	< 0.10	PCB-1260 (ug/l)	< 0.2
EPA 608*		Toxaphene (ug/l)	< 0.3
Aldrin (ug/l)	< 0.01	Endrin Aldehyde (ug/l)	< 0.10
		Delta - BHC (ug/l)	< 0.05
Alpha - BHC (ug/l)	< 0.05		
(Hexachlorocyclohexane)		EPA 632*	
		Diuron (ug/l)	< 0.09
Beta - BHC (ug/l)	< 0.05		
		EPA 8151*	
		2,4-D (ug/l)	< 0.7
		2,4,5-TP (Silvex) (ug/l)	< 0.3
		EPA 625*	
		Carbaryl (ug/l)	< 5.0
			- 0.0
		No 1	

^{*}Analyzed by NELAP certified lab T104704231

CLIENT: GERONIMO CREEK WWTP

LAB NUMBER: 23B2626-03A

DATE COLLECTED:

(City of Seguin) 14-Feb-23

DATE RECEIVED: 15-Feb-23

RP

DATE COMPLETED:

24-Feb-23

SAMPLED BY:

LOCATION

Comp

PARAMETERS:

METALS	CONCENTRATION	METHOD	INITIALS	MAL	
TOTAL ALUMINUM (ug/l)	355.0	EPA 200.8	JMM	2.5	
TOTAL ANTIMONY (ug/l)	<5.0	EPA 200.8	JMM	5.0	
TOTAL ARSENIC (ug/l)	< 0.5	EPA 200.8	JMM	0.5	
TOTAL BARIUM (ug/l)	56.6	EPA 200.8	JMM	3.0	
TOTAL BERYLLIUM (ug/l)	<0.5	EPA 200.8	JMM	0.5	
TOTAL CADMIUM (ug/l)	<1.0	EPA 200.8	JMM	1.0	
TOTAL CHROMIUM (ug/l)	<3.0	EPA 200.8	JMM	3.0	
HEX CHROMIUM (ug/l)	<3.0	3500 - Cr D	LC	3.0	
TRI CHROMIUM (ug/l)	<3.0	N/A	MES	3.0	
TOTAL COPPER (ug/l)	18.1	EPA 200.8	JMM	2.0	
TOTAL LEAD (ug/l)	0.9	EPA 200.8	JMM	0.5	
TOTAL MERCURY (ug/l)	*< 0.005	245.1	SUB	< 0.005	
TOTAL NICKEL (ug/l)	4.4	EPA 200.8	JMM	2.0	
TOTAL SELENIUM (ug/l)	<5.0	EPA 200.8	JMM	5.0	
TOTAL SILVER (ug/l)	<0.5	EPA 200.8	JMM	0.5	
TOTAL THALLIUM (ug/l)	< 0.5	EPA 200.8	JMM	0.5	
TOTAL ZINC (ug/l)	56.1	EPA 200.8	JMM	5.0	
AMENABLE CYANIDE (ug/l)	*< 10.0	SM 4500 CN E&G	SUB	10.0	
TOTAL CYANIDE (ug/l)	*< 10.0	SM 4500 CN E&G	SUB	10.0	
TOTAL PHENOLS (ug/l)	* <10.0	420.1	SUB	10.0	
FLUORIDE (ug/l)	<500.0	SM 4500-F C	SKP	500.0	
NITRATE-N (ug/l)	13,900.0	EPA 353.1	MNF	LC	
TOTAL STRONTIUM (ug/l)	385.0	EPA 200.7	JMM		
TOTAL VANADIUM (ug/l)	<5.0	EPA 200.7	JMM		

Ref. EPA METHODS FOR CHEMICAL ANALYSIS *Analyzed by NELAC certified lab T104704231

CERTIFICATE OF ANALYSIS

CLIENT: GERONIMO CREEK WWTP LAB NUMBER: 23B2626-03B

(City of Seguin)

DATE COLLECTED: 14-Feb-23 DATE RECEIVED: 15-Feb-23

DATE COMPLETED: 16-Feb-23 SAMPLED BY: RP

LOCATION: INFLUENT - Grab

PARAMETERS:	VOLATILES	CONC.	DETECTION LIMITS (ug/l)
ACROLEIN (ug/l)		50.0 U	50.0
ACRYLONITRILE (ug/	4)	50.0 U	50.0
CHLOROMETHANE (ug/l)		10.0 U	10.0
VINYL CHLORIDE (ug	p/I)	10.0 U	10.0
BROMOMETHANE (u	g/l)	10.0 U	10.0
CHLOROETHANE (ug	v1)	50.0 U	50.0
TRICHLOROFUORON	METHANE (ug/l)	10.0 U	10.0
1,1-DICHLOROETHYL		10.0 U	10.0
METHYLENE CHLOR	IDE (ug/l)	20.0 U	20.0
trans-1,2-DICHLOROE		10.0 U	10.0
1,1-DICHLOROETHAM		10.0 U	10.0
1,1,1-TRICHLOROETI		10.0 U	10.0
METHYL BROMIDE (U		10.0 U	10.0
METHYL CHLORIDE		10.0 U	10.0
OUR OPPOSED THE CO.		10.0 U	10.0
CARBON TETRACHL	ORIDE (ug/l)	2.0 U	2.0
1,2-DICHLOROETHAN	NE (ug/l)	10.0 U	10.0
TRICHLOROETHANE		10.0 U	10.0
BENZENE (ug/l)		10.0 U	10.0
TRICHLOROETHYLEI	NE (ug/l)	10.0 U	10.0
1,2-DICHLOROPROPA	ANE (ug/l)	10.0 U	10.0
DICHLOROBROMOM	ETHANE (ug/l)	10.0 U	10.0
1,3 DICHLOROPROP	YLENE (ug/l)	10.0 U	10.0
TOLUENE (ug/l)		10.0 U	10.0
trans-1,3-DICHLOROP	ROPENE (ug/l)	10.0 U	10.0
1,1,2-TRICHLOROETH	HANE (ug/l)	10.0 U	10.0
TETRACHLOROETHY	(LENE (ug/l)	10.0 U	10.0
DIBROMOCHLOROMI	ETHANE (ug/l)	10.0 U	10.0
CHLOROBENZENE (u	ıg/l)	10.0 U	10.0
2-CHLOROETHYLVIN	YL ETHER (ug/l)	10.0 U	10.0
1,2-DIBROMOETHANI		2.0 U	2.0
ETHYLBENZENE (ug/l	0	10.0 U	10.0
BROMOFORM (ug/l)		10.0 U	10.0
1,1,2,2-TETRACHLOR	(Ug/I)	10.0 U	10.0
TOTAL TRIHALOMET		10.0 U	10.0
METHYL ETHYL KETO		50.0 U	50.0
1,3 DICHLORBENZENE (ug/l)		10.0 U	10.0
1,4 DICHLORBENZEN		10.0 U	10.0
1,2 DICHLORBENZEN		10.0 U	10.0
XYLENE (ug/l)	7.5	10.0 U	10.0

Ref. EPA 624.1 (VOLATILES)

U - Analyte Not Detected at the Listed Detection Limit

J - Analyte Present but Below Detection Limit

ENVIRODYNE LABORATORIES, INC.

CERTIFICATE OF ANALYSIS

CLIENT: GERONIMO CREEK WWTP

LAB NUMBER: 23B2626-03C

(City of Seguin)

DATE COLLECTED: 14-Feb-23

DATE RECEIVED: 15-Feb-23

DATE COMPLETED: 21-Feb-23 SAMPLED BY: RP

LOCATION: INFLUENT-Comp

PARAMETERS: BASE/ NEUTRALS

ACENAPHTHENE (up/l)	10.0 U	ISOPHORONE (ug/l)	10.0 U
ACENAPHTHYLENE (ug/l)	10.0 U	NAPHTHALENE (ug/l)	10.0 U
ANTHRACENE (ug/l)	10.0 U	NITROBENZENE (og/l)	10.0 U
BENZIDINE (ug/l)	50.0 U	N-NITROSO-di-n-PROPYLAMINE (ug/l)	20.0 U
BENZO (a) ANTHRACENE (ug/l)	5.0 U	N-NITROSODIPHENYLAMINE (ug/l)	20.0 U
BENZO (a) PYRENE (ug/l)	5.0 U	N-NITROSODIMETHYLAMINE (ug/l)	50.0 U
BENZO (B) FLUORANTHENE (ug/l)	10.0 U	PHENANTHRENE (ug/l)	10.0 U
BENZO (GHI) PERYLENE (ug/l)	20.0 U	PYRENE (ug/l)	10.0 U
BENZO (k) FLUORANTHENE (ug/l)	5.0 U	1.2.4-TRICHLOROBENZENE (ug/l)	10.0 U
BIS (2-CHILOROETHYL) ETHER (ug/l)	10.0 U	1,2,4,5-TETRACHLOROBENZENE (ug/l)	20.0 U
BIS (2-CHLOROETHOXY) METHANE (up1)	10.0 U	2, 4-DINITROTOLUENE (ug/l)	10.0 U
BIS (2-CHLOROISOPROPYL) ETHER (ugl)	10.0 U	2, 6-DINTROTOLUENE (ug/l)	10.0 U
BIS (2-ETHYLHEXYL) PHTHALATE (ug/l)	10.0 U	2-METHYLNAPHTHALENE (ug/l)	10.0 U
4-BROMOPHENYL PHENYL ETHER (ug/l)	10.0 U	Di-n-octyl PHTHALATE (ug/l)	10.0 U
BUTYL BENZYL PHTHALATE (ug/l)	10,0 U	PYRIDINE (ug/l)	20.0 U
2-CHLORONAPHTHALENE (ugf)	10.0 U	p-CRESOL (ug/l)	10.0 U
4-CHLOROPHENYL PHENYL ETHER (ug/l)	10.0 U		
CHRYSENE (ug/l)	5.0 U	ACID COMPOUNDS	
DIBENZO (a,h) ANTHRACENE (ug/l)	5.0 U	INFLUENT (Cont.)	
1,2-DICHLOROBENZENE (ug/l)	10.0 U		
1,3-DICHLOROBENZENE (ug/l)	10.0 U	2-CHLOROPHENOL (ug/l)	10.0 U
(p)1,4-DICHLOROBENZENE (ug/l)	10.0 U	2,4-DICHLOROPHENOL (ug/l)	10.0 U
3,3-DICHLOROBENZIDINE (ug/l)	5.0 U	2,4-DIMETHYLPHENOL (ugf)	10.0 U
DIETHYL PHTHALATE (ug/l)	10.0 U	4, 6-DINITRO-o-CRESOL (ug/l)	50.0 U
DIMETHYL PHTHALATE (ug/l)	10.0 U	4,6-DINITRO-2-METHYLPHENOL (ug/l)	20.0 U
DI-N-BUTYL PHTHALATE (ug/l)	10.0 U	2,4-DINITROPHENOL (ug/l)	50.0 U
DIBENZOFURAN (ug/l)	10.0 U	2-NITROPHENOL (ug/l)	20.0 U
FLUORANTHENE (ug/l)	10.0 U	4-NITROPHENOL (ug/l)	50.0 U
FLUORENE (ug/l)	10.0 U	p-CHLORO-m-CRESOL (ug/l)	10.0 U
HEXACHLOROBENZENE (ug/l)	5.0 U	2-METHYLPHENOL (ug/l)	10.0 U
HEXACHLOROBUTADIENE (ug/l)	10.0 U	PENTACHLOROPHENOL (ug/l)	5.0 U
HEXACHLOROETHANE (ug/l)	20.0 U	PHENOL (ug/l)	16.0
HEXACHLOROCYCLOPENTADIENE (ug/l)	10.0 U	2,4,5-TRICHLOROPHENOL (ug/l)	10.0 U
HEXACHLOROPHENE (ug/l)	10.0 U	2,4,5-TRICHLOROPHENOL (ug/l)	50.0 U
IDENO (1,2,3,cd) PYRENE (ugli)	5.0 U	PENTACHLOROBENZENE (ug/l)	20.0 U
1,2-Diphenyl Hydrazine (ug/l)	20.0 U	4-CHLORO-3-METHYL PHENOL (ug/l)	10.0 U
N-NITROSO-di-n-BUTYLAMINE (ug/l)	20.0 U	NONYLPHENOL (ug/l)	5.0 U
ALLEGO DE CENTRE LA PROPERTIE DE LA PROPERTIE	22 2 11		

20.0 U

Analyzed by NELAC certified lab T104704215 Ref. EPA-625 (Base/Neutrals & Acids)

N-NITROSO-DI-ETHYLAMINE (ug/l)

U - Analyte Not Detected at the listed Detection Limit

J - Analyte Present but below Detection Limit

ENVIRODYNE LABORATORIES, INC.

CERTIFICATE OF ANALYSIS

CLIENT: GERONIMO CREEK WWTP LAB NUMBER: 232626-03D

(City of Seguin)

DATE COLLECTED: 14-Feb-23 DATE RECEIVED: 15-Feb-23

DATE COMPLETED: 20-Feb-23 SAMPLED BY: RP

SAMPLE TYPE:

SAMPLE TIPE.	INTELLIFIER		FEELLIENT
LOCATION:	INFLUENT		EFFLUENT
	Comp		Comp
PARAMETERS:	PESTICIDES-PCB		PESTICIDES-PCB
EPA 1657*		EPA 608*	
Guthion (Azinphos Methyl) (ug/l)	< 0.10	Chlordane (ug/l)	< 0.15
		4-4' - DDD (ug/l)	< 0.10
Chlorpyrifos (ug/l)	< 0.05	4-4' - DDE (ug/l)	< 0.10
		4-4' - DDT (ug/l)	< 0.02
Demeton -O (ug/l)	< 0.20	Dieldrin (ug/l)	< 0.02
		Dicofol (ug/l)	< 1.0
Demeton -S (ug/l)	< 0.20	Endosulfan I (ug/l)	< 0.01
		Endosulfan II (ug/I)	< 0.02
Diazinon (ug/l)	< 0.5	Endosulfan Sulfate (ug/l)	< 0.10
		Endrin (ug/l)	< 0.02
Disulfoton (ug/l)	< 0.5	Gamma-BHC (Lindane) (ug/l)	< 0.05
		Heptachlor (ug/l)	< 0.01
EPN (ug/l)	< 0.5	Heptaclor Epoxide (ug/l)	< 0.01
		Methoxychlor (ug/l)	< 0.20
Ethion (ug/l)	< 0.5	Mirex (ug/l)	< 0.02
0.70		Total PCBs (ug/l)	< 0.2
Ethyl Parathion (ug/l)	< 0.1	PCB-1016 (ug/l)	< 0.2
		PCB-1221 (ug/l)	< 0.2
Malathion (ug/l)	< 0.10	PCB-1232 (ug/l)	< 0.2
		PCB-1242 (ug/l)	< 0.2
Methyl Parathion (ug/l)	< 0.1	PCB-1248 (ug/l)	< 0.2
		PCB-1254 (ug/l)	< 0.2
Parathion (ug/l)	< 0.10	PCB-1260 (ug/l)	< 0.2
EPA 608*		Toxaphene (ug/l)	< 0.3
Aldrin (ug/l)	< 0.01	Endrin Aldehyde (ug/l)	< 0.10
		Delta - BHC (ug/l)	< 0.05
Alpha - BHC (ug/l)	< 0.05		
(Hexachlorocyclohexane)		EPA 632*	
		Diuron (ug/l)	< 0.09
Beta - BHC (ug/l)	< 0.05		
		EPA 8151*	10000
		2,4-D (ug/l)	< 0.7
		2,4,5-TP (Silvex) (ug/l)	< 0.3
		EPA 625*	
		Carbaryl (ug/l)	< 5.0
		Contrary (Carry	- 0.0
*Analyzed by NELAP certified lab	T104704231		
		LAB REPRESENTATIVE	

^{281 568 7880} TEL • 1 800 522 7389 TOLL FREE • 11011 BROOKLET DR. #230 • HOUSTON, TX 77099-3543 • WWW.ENVIRODYNE.COM

FL DOH Certification #E84025 TX Certification #T104704527-22-9

Report Date: March 2, 2023

Envirodyne Laboratories, Inc. 11011 Brooklet, Ste 230 Houston, TX 77099-3543 Field Custody: Cli Client/Field ID: 23B

Client 23B2626

Sample Collection:

Influent GC 02-14-23/0800

Lab ID No:

23.2305

Custody Date:

02-17-23/1055

Sample Description: Water

CERTIFICATE OF ANALYSIS

Parameter	Units	Resu	lts	Analysis Date	Method	Detection Limit
Uranium	pCi/l	0.1 ±	0.1	3-1-23/1616	EPA 908.0	0.3
Uranium	ug/l	0.1 ±	0.1	Calc	Calc	Calc

Thomas J. Weeks Laboratory Manager

Test results meet all requirements of the 2016 TNI standards. Statement of estimated uncertainty available upon request. Test results refer only to sample(s) listed. Contact person: Thomas Weeks (813) 229-2879.

FL DOH Certification #E84025 TX Certification #T104704527-22-9

Report Date: March 2, 2023

Envirodyne Laboratories, Inc. 11011 Brooklet, Ste 230 Houston, TX 77099-3543

Field Custody: Client Client/Field ID: 23B2626

Effluent GC

Sample Collection: 02-14-23/0800

Lab ID No: 23.2305x Custody Date: 02-17-23/1055

Sample Description: Water

CERTIFICATE OF ANALYSIS

Parameter	Units	Results	Analysis Date	Method	Detection Limit
Uranium	pCi/l	0.2 ± 0	.1 3-1-23/1616	EPA 908.0	0.4
Uranium	ug/l	0.3 ± 0.	.1 Calc	Calc	Calc

Thomas J. Weeks Laboratory Manager

Test results meet all requirements of the 2016 TNI standards. Statement of estimated uncertainty available upon request. Test results refer only to sample(s) listed. Contact person: Thomas Weeks (813) 229-2879.

EMSL Analytical, Inc.

5950 Fairbanks N. Houston Rd. Houston, TX 77040 Phone/Fax: (713) 686-3635 / (713) 686-3645 http://www.EMSL.com / houstonlab@emsl.com

EMSL Order ID: Customer ID: Customer PO:

Project ID:

152300921

ENDY62

Attn: Pepe

Proj:

Envirodyne Laboratories, Inc.

11011 Brooklet Suite 230

Houston, TX 77099 23B2626/23B2636

Phone: Fax:

(281) 568-7880 (281) 568-8004

Received: Analyzed:

02/16/2023 02/23/2023

Test Report: Determination of Asbestos Structures >10µm in Drinking Water Performed by the 100.2 Method (EPA 600/R-94/134)

						A	SBESTOS		
Sample ID Client / EMSL	Sample Filtration Date/Time	Original Sample Vol. Filtered	Effective Filter Area	Area Analyzed	Asbestos Types	Fibers Detected	Analytical Sensitivity	Concentration	Confidence Limits
County Emol		(ml)	(mm')	(mm²)			MFI	(million fibers per	iter)
Influent GC -	2/16/2023	25	1282	0.2580	None Detected	ND	0.20	<0.20	0.00 - 0.73
2382626 152300921-0001	04:20 PM								
Collection Date/Time:	02/14/2023 08:0	MA 00							
Effluent GC -	2/16/2023	50	1282	0.1419	None Detected	ND	0.18	<0.18	0.00 - 0.67
23B2626 152300921-0002	04:40 PM								
Collection Date/Time:	02/14/2023 08:0	MA 00							
Influent WB -	2/16/2023	5	1282	0.2580	None Detected	ND	0.99	<0.99	0.00 - 3.70
23B2636 152300921-0003	04:40 PM								
Collection Date/Time:	02/14/2023 08:0	00 AM							
Due to excessive particularly the method was not n		sensitivity of 0.2	MFL as requ	ired					
Effluent WB -	2/16/2023	50	1282	0.1419	None Detected	ND	0.18	<0.18	0.00 - 0.67
23B2636 152300921-0004	05:00 PM								
Collection Date/Time:	02/14/2023 08:0	MA 00							

Sample temperature at receipt: 11.0 degrees C / Samples held beyond the accepted holding time.

Analyst(s)

Michelle Leggett

Vichelle

Michelle Leggett, Laboratory Manager or Other Approved Signatory

Any questions please contact Michelle Leggett.

Initial report from: 02/23/2023 13:53:40

EMSL maintains liability imited to cost of analysis. Interpretation and use of text results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling obtaines and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. Estimation of uncertainty is available for request. Sample collection performed by the client. Pre-cleaned samples containers are available for purchase from EMSL. Note if sample containers are provided by the client, acceptable bottle blank level is defined as s0.01MFL for >= 10 um fibers. Not-None Detected. No Fibers. Detected: the value will be exported as less than 355% of the concentration equivalent to one fiber. It is 4 fibers. The result will be reported as less than 150 fibers provided by the client, acceptable bottle blank level is defined as s0.01MFL for >= 10 um fibers. Not-None Detected. No Fibers. Detected: the value will be reported as less than 355% of the concentration equivalent to one fiber. It is 4 fibers. The result will be reported as less than 30 fibers are counted, both the Gaussian 95% confidence interval will be calculated. The large of these two intervals will be selected for data reporting. When the Gaussian 95% confidence interval will be calculated. The large of these two intervals will be selected for data reporting. When the Gaussian 95% confidence interval will be calculated. The large of these two intervals will be selected for data reporting.

Samples analyzed by EMSL Analytical, Inc. Houston, TX Accredited by Texas Commission on Env. Quality

E A397450

ŏ

Envirodyne Laboratories, Inc. 11011 Brooklet, Ste. 230

Houston, Texas 77099-3543 Phone (281)568-7880 - Fax (281)568-8004

9miT CF:04 44 IR ID:HOU-343 Corrected Temp: 4.0 Analysis Request and Chain of Custody Record Time) y y Date: 71613 Seal Intact? Date: 2 16 25 all Intact? Seal Intact?] 860-43360 Chain of Custody Date2 1/6 42 Time. 1500 Time: 153 BrA, Perticides, PCBS (5/04 625 Carride (total & Amenable Date. Cypride (TOTAL & Ameriable BAR, Particides, PCBS, (1519 625) * Starbord (TR) meacun ANALYSIS REQU なんんないか PARKOL Fax Pharol Site Representative 2382626 Received by (Date2 -16-43 Received by (Signature) 281-568-7880 Date2-16-13 HOE! 13/202 100 P 学 ST. F JESSON. 1 Act Sample Container Sample Type (Liquid, Preservative (Siza/Nat) Sledge, etc.) Птв (926 Arrival Temp HEYEKI (Ares 405 45 2ate 2.10 12 fime 1500 ICA. Firme: 1536 Ding-Phone. Client/Project 250mile Ligara Prideras 250ml p 250mile pryser James R more 250m1 2-1(2 15 Comp Envirodyne Laboratories Inc. Relinquished by Relinquished by Refinquished by 11011 Brooklet Dr Ste 230 Grab Meter Reading: Mn Comection: Cl. Residual' (Signature) (Signature) (Signature) Cl. Corrected 2000 214,23 217.23 2 14,23 Date & Time 2-14.23 2-14.23 2 119 23 5260 22-41 2 0360 2442 Houston, Texas 77099 03,20 2700 350 2000 FLOW: Laura Bonjonia INThert G EFFERT OU Field Sample No./ onk to XELYED Indentification Samplers. (Signature) Affiliation Project No Remarks Address. Contact: Name: 380 W

14

Envirodyne Laboratories, Inc 11011 Brooklet, Ste. 230

E A397451

Houston, Texas 77099-3543

9miT CF:0.4 44 IR ID:HOU-343 **SisylsnA** Analysis Request and Chain of Custody Record Temp. Seal Intact? Date 2/14/59 Intact? Seal Intact? ŏ Corrected Temp: o a Datg -11.43 Time: / 421 Date: 2 lb13 Hd Time: 1500 -ewil Date Time Page Ethylere Dibrom-He (FDR) Ethylere DibRomide (EDB) ANALYSIS REQUESTED * Serveral X an Herbicides Harbicides Fax: SVOC 2382626 Site Representative Phone (281)568-7880 - Fax (281)568-8004 Received by (Signature) (Signature) Date 2-16 17 Received by 281-568-7880 #CE Time: /144. Arrival Temp Date2 -1643 34 H Preservative 454 14 ST. ST. Time: 1500 Date 2 16 70 1261 Time: Semple Container Sample Type (Liquid Phone: [Guio] Client/Project Fridga & Trobat. 2) 1-LT 2) 43~1 Ander シング 21-12 2/12 Relinquished by Relinquished by-Envirodyne Laboratories Inc. Relinquished by 11011 Brooklet Dr Ste 230 103 Grab Meter Reading: (Signature) Mn Correction (Signature) (Signature) Cl. Residual: Cly Corrected 214,23 2 1423 214.23 2 M 2 Date & 0 m グイン 5113 Houston, Texas 77099 0300 00%0 0800 0080 0800 Time PLOW: TCEQ Certification # T104704265 Laura Bonjonia FrAMENT GC しち ナメットナリ Field Sample No./ Susto sterlo Indentification (Signature) Affiliation Samplers Project No. Remarks Address: Contact vame: E. " Cabil Seath No. 8 È

-

13 14 15

Client:

Seguin, City of

Project:

Analyte

Batch B3B4051 - Organics

Seguin, City of - WWTP

Work Order:

23B2626

Reported:

RPD

Limit

Notes

%REC

Limits

RPD

25-Apr-23 17:34

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Units

Reporting

Limit

Result

< 2.50

< 2.50

< 2.50

< 2.50

< 2.50

< 2.50

< 2.50

<2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

Spike

Level

Source

Result

%REC

Blank (B3B4051-BLK1)				Prepared & Analyzed: 16-Feb-23	
Diehlorodifluoromethane	< 2.50	2.50	ogL		
Chloromethane	<2.50	2.50	-		
Vinyl Chloride	<2.50	2.50	-		
Bromomethane	<2.50	2.50	*		
Chloroethane	< 2.50	2.50	-		
Trichlorofluoromethane	< 2.50	2.50	*		
Acetone	<10.0	10.0			100
Acrolcin	< 2.50	2.50			
1,1-Dichloroethene	< 2.50	2.50			
Carbon Disulfido	<2.50	2.50			
Acetonitrile	<2.50	2.50			
Methylene Chloride	< 2.50	2.50	-		
Acrylonitrile	< 2.50	2.50			
MTBE (Methyl tert-butyl ether)	<2.50	2.50			
trans-1,2-Dichloroethene	<2.50	2.50	*		
1,1-Dichloroethane	< 2.50	2.50			
Vinyl Acetate	<2.50	2.50			
2,2-Dichloropropane	<2.50	2.50	*		
eis-1,2-Dichloroethene	<2.50	2.50			
Bromochloromethane	<2.50	2.50			
Chloroform	<2.50	2.50	-		
2-Butanone	<10.0	10.0	~		
1,2-Dichloroethane	<2.50	2.50	-		
1,1,1-Trichloroethane	< 2.50	2.50			

Envirodyne Laboratories, Inc.

Tetrahydrofuran

Trichloroethene

Dibromomethane

Benzene

Carbon Tetrachloride

1,1-Dichloropropene

1,2-Dichloropropano 2-Pentanone

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

23B2626

Reported: 25-Apr-23 17:34

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B3B4051-BLK1)				Prepared & Analyzed:	16-Feb-
Bromodichloromethate	<2.50	2.50	ug/L		
2-Chloroethyl vinyl other	<2.50	2.50			
cis-1,3-Dichloropropene	<2.50	2.50			
trans-1,3-Dichloropropene	< 2.50	2.50			
1,1,2-Trichloroethane	<2.50	2.50			
Dibromochloromethane	<2.50	2.50			
.2-Dibromocthane	<2.50	2.50			
-Methyl-2-Pentanone	<10.0	10.0			
oluene	< 2.50	2,50			
etrachloroethene	<2.50	2.50			
3-Dichloropropane	<2.50	2.50	*		
-Hexanone	<10.0	10.0			
hlorobenzene	<2.50	2.50			
,1,1,2-Tetrachloroethane	<2.50	2.50	*		
thylbenzene	<2.50	2.50	•		
.p-Xylene	<10.0	10.0			
Xylene	<2.50	2.50	-		
yrene	<2.50	2.50			
remoform	<2.50	2.50			
opropylbenzene (Cumene)	<2.50	2.50	-		
1,2,2-Tetrachloroethane	< 2.50	2.50			
2.3-Trichloropropone	<2.50	2.50	>4		
romobenzene	< 2.50	2.50			
ropylbenzene	< 2.50	2.50			
-Chlorotoluene	<2.50	2.50	-		
3,5-Trimethy/benzene	<2.50	2.50	-		
Chlorotoluene	<2.50	2.50			
ort-butyl Benzene	<2.50	2.50			
2,4-Trimethylbenzene	< 2.50	2.50			
ec-butyl Benzene	<2.50	2.50	+		
-Isopropyltoluene	<2.50	2.50	*		
And the second s					

Envirodyne Laboratories, Inc.

1,3-Dichlorobenzene

Laura Brymin

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

< 2.50

2.50

Client:

Analyte

Total Xylenes

Surrogate: Toluene-d8

Surrogate: Dibromofluoromethone

Surrogate: 1,2-Dichloroethane-d4

Surrogate: 4-Bromoffworobenzene

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

23B2626

Reported:

RPD

Limit

Notes

25-Apr-23 17:34

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Units

Reporting

Limit

7.50

Result

<7.50

27

31

30

Spike

Level

30.0

30.0

30.0

30.0

Source

Result

%REC

Limits

70-130

70-130

70-130

70-130

RPD

56REC

90.6

102

101

100

Blank (B3B4051-BLK1)				Prepared & Analyzed: 16-Feb-23
1,4-Dichlorobenzene	<2.50	2.50	ug/L	
Benzyl Chloride	<2.50	2.50	-	
n-butyl Benzene	< 2.50	2.50		
,2-Dichlorobenzene	<2.50	2.50	-	
2-Dibromo-3-chloropropane	<2.50	2.50	-	
2,4-Trichlorobenzene	< 2.50	2.50		
lexachlorobutadiene	< 2.50	2.50	-	
Vaphthalene	<2.50	2.50	-	
2.3-Trichlorobenzene	< 2.50	2.50	-	
Total Tribalemethanes	<10.0	10.0		

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Bonjonia For Monica Smith, Client Services Representative

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

23B2626 Work Order:

Reported: 25-Apr-23 17:34

RPD

%REC

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Spike

Source

Reporting

18.8

2.50

20.0

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3B4051 - Organics										
LCS (B3B4051-BS1)				Prepared 8	: Analyzed:	16-Feb-23				
Dichlorodifluoromethane	19.1	2.50	ug/L	20.0		95.5	1.16-250			
Chloromethane	17.9	2.50		20.0		89.7	1-205			
Vinyl Chloride	18.7	2.50		20.0		93.4	1-251			
leomomethane	18.6	2.50		20.0		93.0	15-185			
hloeoethane	18.5	2.50		20.0		92.3	40-160			
richlorofluoromethane	18.1	2.50		20.0		90.6	17-181			
cetone	21.6	10.0	-	20.0		108	35.9-210			
Acrolein	18.8	2.50		20.0		94.0	60-140			
,1-Dichloroethene	17.1	2.50		20.0		85.6	50-150			
arbon Disulfide	17.4	2.50		20.0		87.1	7-120			
cetonitrile	17.8	2.50		20.0		89.2	70-120			
fethylene Chloride	18.2	2.50	-	20.0		91.2	60-140			
crylonitrile	18.8	2.50	-	20.0		93.8	60-140			
TBE (Methyl tert-butyl other)	17.7	2.50		20.0		88.4	70-120			
ans-1,2-Dichloroethene	19.0	2.50	*	20.0		94.8	70-130			
1-Dichloroethane	18.1	2.50	*	20.0		90.6	70-130			
inyl Acetate	13.3	2.50	-	20.0		66.6	60-140			
2-Dichloropropane	18.0	2.50	-	20.0		89.8	70-120			
is-1,2-Dichloroethene	18.5	2.50		20.0		92.6	70-120			
komochloromethane	18.2	2.50		20.0		91.0	70-120			
hloroform	18.6	2.50		20.0		92.8	70-135			
Butanone	20.6	10.0		20.0		103	48.6-151			
2-Dichloroethane	18.5	2.50		20.0		92.3	70-130			
,1,1-Triebloroethane	18.3	2.50		20.0		91.4	56-162			
etrahydrofuran	17.8	2.50		20.0		89.1	70-130			
arbon Tetrachloride	18.4	2.50		20.0		92.0	70-130			
1-Dichloropropene	17.0	2.50		20.0		85.2	70-120			
enzene	18.4	2.50		20.0		92.2	65-135			
richloroethene	18.3	2.50		20.0		91.4	70-157			
2-Dichloropropune	18.6	2.50		20.0		93.0	35-165			
-Pentanone	17.6	2.50		20.0		88.2	70-120			

Envirodyne Laboratories, Inc.

Dibromomethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

70-120

94.2

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order: 23B2626

Reported:

RPD

%REC

25-Apr-23 17:34

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Spike

Source

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3B4051 - Organics										
LCS (B3B4051-BS1)				Prepared &	Analyzed:	16-Feb-23				
Bromodichloromethane	18.1	2.50	ug/L	20.0		90.6	65-135			
2-Chloroethyl vinyl other	17.7	2.50		20.0		88.4	1-225			
is-1,3-Dichloropropene	19.2	2.50		20.0		96.0	25-175			
rans-1,3-Dichloropropene	18.5	2.50		20.0		92.5	50-150			
.1.2-Trichloroethane	18.6	2.50	7	20.0		93.2	52-150			
Obromochloromethane	18.5	2.50		20.0		92.6	70-135			
,2-Dibromoethane	18.3	2.50	-	20.0		91,4	70-130			
-Methyl-2-Pentanone	22.6	10.0	-	20.0		113	58.2-144			
oluene	18.5	2.50	-	20.0		92.7	47-150			
etrachloroethene	22.0	2.50	~	20.0		110	64-148			
3-Dichloropropane	18.7	2.50	~	20.0		93.3	70-120			
Hexanone	21.6	10.0	. *	20.0		103	51.8-156			
hlorobenzene	16.8	2.50		20.0		84.2	65-135			
1,1,2-Tetrachloroethane	19.1	2.50		20.0		95.5	46-157			
thylbenzene	18.5	2.50		20.0		92.6	60-140			
,p-Xylene	39.3	10.0	•	40.0		98.2	70-120			
Xylene	18.7	2.50		20.0		93.4	70-120			
tyrene	17.3	2.50		20.0		86.4	70-120			
romotorm	17.7	2.50		20.0		88.5	70-130			
upropylbenzene (Cumene)	18.9	2.50		20.0		94.4	70-120			
1,2,2-Tetrachloroethane	16.7	2.50		20.0		83.6	46-157			
2,3-Trichloropropane	17.2	2.50	-	20.0		86.2	70-120			
romobenzene	17.6	2.50	-	20.0		87.8	70-120			
ropylberozne	18.0	2.50		20.0		90.2	70-120			
Chlorotoluene	18.2	2.50		20.0		91.0	70-120			
3,5-Trimethylbenzene	18.9	2.50		20.0		94.6	70-120			
Chlorotoluene	18.6	2.50		20.0		93.0	70-120			
rt-butyl Benzene	17.4	2.50		20.0		86.8	70-120			
2,4-Trimethylbenzene	18.1	2.50		20.0		90.5	70-120			
x-butyl Benzene	18.5	2.50		20.0		92.3	70-130			
-Isopropyltoluene	18.8	2.50		20.0		93.8	70-120			
J-Dichlorobenzene	18.3	2.50		20.0		91.3	70-130			

Envirodyne Laboratories, Inc.

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

23B2626

Reported: 25-Apr-23 17:34

RPD

%REC

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Spike

30.0

Source

Reporting

30

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3B4051 - Organics										
LCS (B3B4051-BS1)				Prepared &	k Analyzed:	16-Feb-23				
1,4-Dichlorobenzene	18.8	2.50	ug/L	20.0		94.2	65-135			
Benzyl Chlorida	14.7	2.50		20.0		73.6	70-120			
n-butyl Benzene	18.6	2.50		20.0		92.8	70-120			
1,2-Dichlorobenzene	17.4	2.50		20.0		87.0	65-135			
1,2-Dibromo-3-chloropropane	19.0	2.50		20.0		95.0	60-140			
1,2,4-Trichlorobenzene	17.8	2.50		20.0		89.0	70-120			
Hexachlorobatadiene	19.0	2.50		20.0		95.0	70-120			
Naphthalene	17.9	2.50		20.0		89.4	60-140			
1,2,3-Trichlorobenzene	17.4	2.50		20.0		86.8	60-140			
Total Trihalomethanes	72.9	10.0		80.0		91.1	35-155			
Total Xylenes	58.0	7.50		60.0		96.6	70-120			
Surrogute: Dibromofluoromethane	29		**	30.0		98.3	70-130			
Surrogate: 1,2-Dichloroethane-d4	30		(8)	30.0		100	70-130			
Surrogate: Tolsiene-d8	30		-	30.0		100	70-130			

Envirodyne Laboratories, Inc.

Surrogate: 4-Bromofluorobenzene

The results in this report upply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

99.9

70-130

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

2382626

Reported: 25-Apr-23 17:34

RPD

%REC

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Reporting

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3B4051 - Organics										
LCS Dup (B3B4051-BSD1)				Prepared &	Analyzed:	16-Feb-23				
Dichlorodifluoromethane	20.4	2.50	ug/L	20.0		102	1.16-250	6.78	20	
Chloromethane	19.5	2.50	-	20.0		97.3	1-205	8.13	60	
Vinyl Chloride	19.1	2.50	-	20.0		95.6	1-251	2.33	66	
Bromomethane	18,5	2.50		20.0		92.4	15-185	0.755	61	
Chloroethane	18.6	2.50		20.0		93.1	40-160	0.863	78	
Frichlerofluoromethane	19.8	2.50	*	20.0		99.0	17-181	8.91	84	
Acetone	21.9	10.0	-	20.0		109	35.9-210	1.57	25.2	
Acrolein	19.1	2.50		20.0		95.6	60-140	1.63	60	
,1-Dichloroethene	17.8	2.50		20.0		89.2	50-150	4.06	32	
Curbon Disulfide	18.2	2.50	-	20.0		91.2	7-120	4.60	20	
Acesonitrile	18.2	2.50	-	20.0		91.2	70-120	2.27	20	
Methylene Chloride	18.3	2.50		20.0		91.3	60-140	0.0548	28	
Acrylonitrile	18.5	2,50		20.0		92.6	60-140	1.39	60	
ATBE (Methyl tert-butyl ether)	18.0	2.50	-	20.0		90.0	70-120	1.91	20	
runs-1,2-Dichloroethene	19.4	2.50	-	20.0		97.2	70-130	2.40	45	
,1-Dichloroethane	19.2	2.50	-	20.0		95.8	70-130	5.63	40	
Vinyl Acetate	13.5	2.50		20.0		67.6	60-140	1.56	20	
2-Dichloropropane	18.3	2.50	-	20.0		91.3	70-120	1.60	20	
is-1,2-Dichloroethene	19.0	2.50	*	20.0		95.2	70-120	2.77	20	
Bromochloromethane	20.1	2.50		20.0		100	70-120	9.77	20	
Thloroform	18.8	2.50		20.0		93.8	70-135	1.02	54	
2-Butanone	18.8	10.0		20.0		94.2	48.6-151	8.83	21.6	
_2-Dichloroethane	17.0	2.50		20.0		85.0	70-130	8.18	49	
1.1.1-Trichloroethane	18.1	2.50		20.0		90.4	56-162	0.990	36	
Fetrahydrofaran	18.2	2.50		20.0		91.0	70-130	2.05	20	
Carbon Tetrachloride	18.1	2.50		20.0		90.6	70-130	1.48	41	
,1-Dichloropropene	17.8	2.50		20.0		88.8	70-120	4.02	20	
Servene	18.4	2.50		20.0		92.2	65-135	0.0542	61	
richteroethene	18.8	2.50		20.0		94.1	70-157	2.86	48	
,2-Dichloropropane	18.9	2.50		20.0		94.7	35-165	1.87	55	
2-Pentanone	17.6	2.50		20.0		88.0	70-120	0.227	20	
Dibeomomethane	19.1	2.50		20.0		95.3	70-120	1.16	20	

Envirodyne Laboratories, Inc.

Client: Seguin, City of

Project: Seguin, City of - WWTP

Work Order: 23B2626

Reported:

25-Apr-23 17:34

Volatile Organic Compounds by EPA 624.1 - Quality Control Envirodyne Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3B4051 - Organics										
LCS Dup (B3B4051-BSD1)				Prepared &	: Analyzed:	16-Feb-23				
Bromodichloecenethane	18.0	2.50	ug/L	20.0		90.1	65-135	0.553	56	
2-Chloroethyl vinyl ether	20.6	2.50		20.0		103	1-225	15.1	71	
is-1,3-Dichloropropene	18.9	2.50		20.0		94.4	25-175	1.73	58	
rans-1,3-Dichloropropene	18.7	2.50		20.0		93.7	50-150	1.29	86	
,1,2-Trichloroethane	18.9	2.50		20.0		94.6	52-150	1.44	45	
Obromochloromethane	18.3	2.50	-	20.0		91.6	70-135	1.09	50	
,2-Dibromoethane	18.5	2.50	-	20.0		92,4	70-130	1.14	20	
-Methyl-2-Pentanone	23.2	10.0	-	20.0		116	58.2-144	2.79	24.8	
Toluene	19.2	2.50		20.0		96.0	47-150	3.50	41	
etrachloroethene	22.5	2.50		20.0		112	64-148	1.98	39	
,3-Dichloropropane	19.0	2.50	-	20.0		95.2	70-120	1.96	20	
-Hexanone	22.3	10.0		20.0		112	51.8-156	3.14	23.6	
Thiorobenzene	17.3	2.50	-	20.0		86.6	65-135	2.81	53	
1,1,2-Tetrachloroethane	18.9	2.50	-	20.0		94.5	46-137	1.05	20	
thylbenzene	19.2	2.50	-	20.0		96.2	60-140	3.71	63	
n,p-Xylene	40.0	10.0	-	40.0		99.9	70-120	1.69	20	
-Xylene	19.4	2.50		20.0		97.0	70-120	3.78	20	
tyrene	17.7	2.50		20.0		88.6	70-120	2.51	20	
eomoform	17.9	2.50		20.0		89.4	70-130	0.956	42	
sopropylbenzene (Cumene)	19.3	2,50		20.0		96.4	70-120	2.10	20	
,1,2,2-Tetrachloroethane	17.0	2.50		20.0		85.0	46-157	1.72	61	
2,3-Trichloropropone	18.0	2.50		20.0		90.2	70-120	4.54	20	
Bromobenzene	17.8	2.50	*	20.0		89.0	70-120	1.36	20	
ropylbenzene	18.3	2.50	*	20.0		91.5	70-120	1,49	20	
-Chlorotoluene	18.6	2.50		20.0		93.2	70-120	2.50	20	
3,5-Trimethylbenzene	19.4	2.50		20.0		96.9	70-120	2.45	20	
Chloretoluene	18.8	2.50	+	20.0		94.0	70-120	1.07	20	
et-butyl Benzene	17.7	2.50	*	20.0		88.6	70-120	2.17	20	
2,4-Trimethylbenzene	18.4	2.50		20.0		92.2	70-120	1.81	20	
ec-butyl Benzene	19.0	2.50		20.0		94.8	70-130	2.62	20	
-Isopropyboluene	19.8	2.50		20.0		99.0	70-120	5.44	20	
,3-Dichlorobenzene	18.5	2.50		20.0		92.6	70-130	1.41	43	

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Brymin

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

23B2626

Reported:

RPD

25-Apr-23 17:34

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Spike

Source

%REC

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3B4051 - Organics										
LCS Dup (B3B4051-BSD1)				Prepared 8	Analyzed:	16-Feb-23				
1,4-Dichlorobenzene	19.0	2.50	ug/L	20.0		95.2	65-135	1.06	57	
Benzyl Chloride	14.5	2.50		20.0		72.7	70-120	1.16	20	
n-butyl Benzene	18.8	2.50		20.0		94.2	70-120	1.50	20	
1,2-Dichlorobenzene	17.5	2,50	*	20.0		87.6	65-135	0.573	57	
1,2-Dibromo-3-chloropropane	17.2	2,50		20.0		85.8	60-140	10.2	20	
,2,4-Trichlorobenzene	17.8	2.50		20.0		88.8	70-120	0.225	20	
Hexachlorobutadiene	18.5	2.50		20.0		92.4	70-120	2.77	20	
Naphthalene	18,3	2.50	*	20.0		91.6	60-140	2.32	20	
,2,3-Trichlorobenzene	17.9	2.50		20.0		89.7	60-140	3.34	20	
Total Tribalomethanes	73.0	10.0	-	80.0		91.2	35-155	0.0823	20	
Fotal Xylenes	59.4	7.50	-	60.0		98.9	70-120	2.37	20	
Sarrogate: Dilvomofluoromethane	30		-	39.0		98.9	70-130			
Surrogate: 1,2-Dicklomethane-d4	29		*	30.0		96.7	70-130			
Surrogate: Tolsiene-d8	30		*	30.0		101	70-130			
Surrogate: 4-Bromofluorobenzene	30			30.0		99.9	70-130			

Envirodyne Laboratories, Inc.

in

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

2382626

Reported:

25-Apr-23 17:34

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch	B3B4051	 Organics
-------	---------	------------------------------

Matrix Spike (B3B4051-MS1)	Source	e: 23B2626-	02	Prepared &	Analyzed:	16-Feb-2	3
Dichlorodifluoromethane	32.7	5.00	ug/L	40.0	ND	81.8	1.16-250
Chloromethane	36.5	5.00		40.0	ND	91.2	1-273
Virryl Chloride	34.9	5.00		40.0	ND	87.2	5-195
Bromomethate	35.1	5.60		40.0	ND	87.8	1-242
Chloroethane	34,3	5.00		40,0	ND	85,6	14-230
Frichlorofluoromethane	35.8	5.00		40.0	ND	89.6	50-150
Acctone	26.7	20.0		40.0	ND	66.8	11,5-191
Acrolein	41.8	5.00	*	40.0	ND	104	40-160
,1-Dichloroethene	32.6	5.00	*	40.0	ND	81.4	1-234
arbon Disulfide	30.0	5.00	-	40.0	ND	75.0	7-120
Acetonitrile	31.6	5.00	-	40.0	ND	79.0	70-120
dethylene Chloride	32.6	5.00	*	40.0	ND	81.4	1-221
acrylenitrile	35.8	5.00	*	40.0	ND	89.4	40-160
TBE (Methyl tert-butyl ether)	32.6	5.00	*	40.0	ND	81.6	70-120
rans-1,2-Dichloroethene	35.6	5.00		40.0	ND	89.0	54-156
,I-Dichloroethane	34.6	5.00		40.0	ND	86.4	59-155
fisyl Acetate	33.1	5.60		40.0	ND	82.6	60-140
2-Dichloropropane	29.7	5.00		40.0	ND	74.2	70-120
is-1,2-Dichloroethene	35.5	5.00		40.0	ND	88.8	70-129
komochloromethane	34.1	5.00		40.0	ND	85.3	70-120
hloroform	34.2	5.00	-	40.0	6.32	69.7	51-138
-Butanone	31.4	20.0		40.0	ND	78.4	32.5-154
,2-Dichloroethane	36.2	5.00	-	40.0	ND	90.6	49-155
,1,1-Trichloroethane	33.8	5.00		40.0	ND	84,4	70-130
etrahydrofuran	34.3	5.00		40.0	ND	85.7	70-130
arbon Tetrachioride	33.7	5.00	-	40.0	ND	84.2	70-140
,1-Dichloropropene	30.7	5.00	-	40.0	ND	76.8	70-120
enzene	34.5	5.00	-	40.0	ND	86.2	37-151
richloroethene	32.8	5.00	-	40.0	ND	82.0	65-135
2-Dichloropeopane	34.1	5.00		40.0	ND	85.3	1-210
-Pentanone	31.3	5.00	-	40.0	ND	78.2	70-120
Dibromomethane	37.0	5.00	-	40.0	ND	92.6	70-120

Envirodyne Laboratories, Inc.

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

23B2626

Reported:

25-Apr-23 17:34

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch	B3B4051	- Organics
-------	---------	------------

Matrix Spike (B3B4051-MS1)	Source	e: 23B2626-	B2626-02 Prepared & Analyzed: 16-Feb-23				3		
Bromodichloromethane	34.2	5.00	ug/L	40,0	7.73	66.1	35-155		
2-Chloroethyl vinyl ether	<5.00	5.00		40.0	<5.00		1-305	0	Q
cis-1,3-Dichloropropene	33.4	5.00	-	40.0	ND	83.6	1-227		
trans-1,3-Dichloropropene	35.1	5.00		40.0	ND	87.7	17-183		
1,1,2-Trichloroethane	35.1	5.00		40.0	ND	87.7	70-130		
Dibromochloromethane	33.7	5.00	*	40.0	4.42	73.3	53-149		
1,2-Dibromoethane	34.5	5.00		40.0	ND	86.2	70-120		
4-Methyl-2-Pentanone	42.0	20.0	*	40.0	ND	105	44.3-156		
Toluene	34.4	5.00		40.0	ND	86.0	70-130		
Tetrachloroethene	22.1	5.00	-	40.0	ND	55.2	70-130		Q
1,3-Dichloeopropane	34.7	5.00	-	40.0	ND	86.7	70-120		
2-Hexanone	39.2	20.0	-	40.0	ND	98.0	39.5-157		
Chlorobenzene	30.9	5.00	-	40.0	ND	77.2	37-160		
1,1,1,2-Tetrachloroethane	35.3	5.00		40.0	ND	88.2	46-157		
Ethylbenzene	33.5	5.00		40.0	ND	83.8	37-162		
m,p-Xylene	69.4	20.0	-	80.0	ND	86.7	70-120		
o-Xylene	34.2	5.00	-	40.0	ND	85.6	70-120		
Styrene	31.0	5.00	-	40.0	ND	77.6	70-120		
Bromoform	32.2	5.00		40.0	ND	80.5	45-169		
Isopropylbenzene (Cumene)	33.8	5.00		40.0	ND	84.4	70-120		
1,1,2,2-Tetrachloroethane	33.7	5.00	*	40.0	ND	84.3	60-140		
1,2,3-Trichleropropane	34.3	5.00		40.0	ND	85.7	70-120		
Bromobenzene	31.7	5.00		40.0	ND	79.2	70-120		
Propylbenzene	33.0	5.00		40.0	ND	82.4	70-120		
2-Chlorosoluene	33.9	5.00		40.0	ND	84.7	70-120		
1,3,5-Trimethylbenzono	33.9	5.00		40.0	ND	84.8	70-120		
4-Chlorotoluene	33.7	5.00	*	40.0	ND	84.3	70-120		
tert-butyl Benzene	35.0	5.00	*	40.0	ND	87.4	70-120		
1,2,4-Trimethylbenzene	31.8	5.00		40.0	ND	79.5	70-120		
see-butyl Benzene	32.9	5.00		40.0	ND	82.2	70-120		
p-Isopropyltoluene	32.3	5.00	*	40.0	ND	80.8	70-120		
1.3-Dichlorobenzene	33.4	5.00		40.0	ND	83.4	59-156		

Envirodyne Laboratories, Inc.

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

23B2626

Reported: 25-Apr-23 17:34

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyse	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B3B4051	- Organics
---------------	------------

Matrix Spike (B3B4051-MS1)	Source	e: 23B2626-	02	Prepared &	Prepared & Analyzed: 16-Feb-23			
1,4-Dichlorobenzene	34.9	5.00	ug/L	40.0	ND	87.2	18-190	
Benzyl Chloride	23.0	5.00		40.0	ND	57.6	70-120	Q
n-butyl Benzene	31.6	5.00		40.0	ND	79.1	70-129	
1,2-Dichlorobenzene	31.5	5.00		40.0	ND	78.8	18-190	
1,2-Dibromo-3-chloropropane	33.7	5.00		40.0	ND	84.2	60-140	
1,2,4-Trichlorobenzene	30.3	5.00		40.0	ND	75.8	70-120	
Hexachlorobutadiene	29.2	5.00		40.0	ND	73.0	70-120	
Naphthalene	33.1	5.00		40.0	ND	82.8	60-140	
1,2,3-Trichlorobenzene	31.8	5.00	-	40.0	ND	79.4	60-140	
Total Tribalomethanes	134	20.0		160	18.5	72.4	35-155	
Total Xylenes	104	15.0		120	ND	86.3	70-120	
Surrogate: Dibromofluoromethane	29			30.0		96.7	70-130	
Surrogate: 1,2-Dichloroethane-d4	31		(9)	30.0		102	70-130	
Surrogate: Toluene-d8	29			30.0		98.0	70-130	
Surrogate: 4-Bromoflsorobenzene	30			30.0		98.6	70-130	

Envirodyne Laboratories, Inc.

Client:

Analyte

Batch B3B4051 - Organics

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

2382626

Reported:

RPD

Limit

Notes

%REC

Limits

RPD

25-Apr-23 17:34

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Units

Reporting

Limit

Result

Spike

Level

Source

Result

ND

ND

ND

ND

ND

ND

ND

ND

ND

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

%REC

Matrix Spike Dup (B3B4051-MSD1)	Source	e: 23B2626-	02	Prepared &	Analyzed:	16-Feb-2:	3		
Dichlorodifluoromethane	32.8	5.00	ugL	40.0	ND	82.0	1.16-250	0.305	20
Chloromethane	32.0	5.00		40.0	ND	79.9	1-273	13.2	60
Virwl Chloride	32.6	5.00		40.0	ND	81.4	5-195	6.82	60
Bromomethane	32.1	5.00	-	40.0	ND	80.4	1-242	8.92	61
Chlorocthane	34.4	5.00		40.0	ND	86.0	14-230	0.350	78
Trichlorofluoromethane	33.4	5.00	3	40.0	ND	83.4	50-150	7.05	84
Acetone	25.3	20.0		40.0	ND	63.2	11.5-191	5.54	27.6
Acrolein	37.1	5.00		40.0	ND	92.8	40-160	11.9	60
1,1-Dichloroethene	29.3	5.00	-	40.0	ND	73.4	1-234	10.5	32
Carbon Disulfide	28.7	5.60	-	40.0	ND	71.8	7-120	4.43	20
Acesonitrile	32.7	5.00	-	40.0	ND	81.7	70-120	3.30	20
Methylene Chloride	32.7	5.00	-	40.0	ND	81.8	1-221	0.429	28
Acrylomtrile	38.3	5.00	-	40.0	ND	95.7	40-160	6.81	60
MTBE (Methyl tert-butyl ether)	32.6	5.60		40.0	ND	81.5	70-120	0.123	20
rans-1,2-Dichloroethene	33.7	5.00		40.0	ND	84.2	54-156	5.49	45
1,1-Dichloroethane	31.8	5.00	-	40.0	ND	79.4	59-155	8.44	40
Vinyl Acetate	29.5	5.00		40.0	ND	73.7	60-140	11.4	20
2.2-Dichloropropane	28.5	5.00		40.0	ND	71.2	70-120	4.12	20
ris-1,2-Dichloroethene	32.9	5.00		40.0	ND	82.2	70-120	7.78	20
Bromochloromethane	34.2	5.00		40.0	ND	85.4	70-120	0.176	20
Chloroform	32.3	5.00		40.0	6.32	65.0	51-138	5.59	54
2-Butanone	34.4	20.0		40.0	ND	86.1	32.5-154	9.36	21.6
1.2-Dichloroethane	35.4	5.00	-	40.0	ND	88.4	49-155	2.40	49

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

33.7

34,6

32.6

29.9

34.2

32.6

35.0

31.7

37.5

Envirodyne Laboratories, Inc.

Tetrahydrofuran

Trichloroethene

Dibromomethane

2-Pentanone

Веплепе

1,1.1-Trichloroethane

Carbon Tetrachloride

1,1-Dichloropropene

1,2-Dichloropropane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

84.4

86.5

81.5

746

85.6

81.6

87.5

79.4

93.8

70-130

70-130

70-140

70-120

37-151

65-135

1-210

70-120

70-120

0.0592

0.929

3.20

2.84

0.640

0.550

2.55

1.46

1.34

36.

20

41

20

61

48

55

20

20

Client:

Seguin, City of

Project:

Analyte

Seguin, City of - WWTP

Work Order:

23B2626

Reported: 25-Apr-23 17:34

RPD

Limit

Notes.

%REC

Limits

RPD

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Reporting

Limit

Result

35.8

32.8

33.5

33.7

33.6

5.00

5.00

5.00

5.00

5.00

40.0

40,0

40.0

40.0

ND

ND

ND

ND

ND

Matrix Spike Dup (B3B4051-MSD1)	Source	e: 23B2626-	02	Prepared &	Analyzed:	16-Feb-2	3			
Bromodichloromethane	33.9	5.00	ug/L	40,0	7.73	65.3	35-155	0.882	56	
2-Chloroethyl vinyl ether	<5.00	5.00		40.0	<5.00		1-305	0	21	C
eis-1,3-Dichloropropeno	35.4	5.00		40.0	ND	88.5	1-227	5.75	58	
trans-1,3-Dichloropropene	34.5	5.00		40.0	ND	86.4	17-183	1.55	86	
1,1,2-Trichloroethane	35.2	5.00		40.0	ND	88.0	70-130	0.398	45	
Dibromochloromethane	34.4	5.00		40.0	4.42	74.8	53-149	1.82	50	
1,2-Dibromoethane	34.9	5.00		40.0	ND	87.4	70-120	1,38	20	
4-Methyl-2-Pentanone	41.2	20.0		40.0	ND	103	44.3-156	2.07	27.4	
Toluene	33.2	5.00		40.0	ND	83.0	70-130	3,49	41	
Tetrachloroethene	21.7	5.00		40.0	ND	54.2	70-130	1.92	39	Q
1,3-Dichloropropane	34.2	5.00		40.0	ND	85.6	70-120	1.28	20	
2-Hexanone	39.3	20.0		40.0	ND	98.4	39.5-157	0.305	23.6	
Chlorobenzene	30.7	5.00	-	40.0	ND	76.6	37-160	0.780	53	
1,1.1,2-Tetrachloroethane	34.3	5.00		40.0	ND	85.8	46-157	2.70	20	
Ethylberizene	33.2	5.00		40.0	ND	83.0	37-162	1.02	63	
m.p-Xylene	70.0	20.0		80.0	ND	87.5	70-120	0.947	20	
o-Xylene	34.5	5.00		40.0	ND	86.2	70-120	0.698	20	
Styrene	31.4	5.00		40.0	ND	78.6	70-120	1.28	20	
Bromoform	32.4	5.00		40.0	ND	81.1	45-169	0.743	42	
Isopropylbenzene (Cumene)	34.1	5.00		40.0	ND	85.4	70-120	1.12	20	
1,1,2,2-Tetrachloroethane	33.8	5.00		40.0	ND	84.6	60-140	0.296	61	
1,2,3-Trichloropropane	34.2	5.00		40.0	ND	85.6	70-120	0.117	20	
Bromobenzene	33.0	5.00	-	40.0	ND	82.6	70-120	4.27	20	
Propylbenzene	33.0	5.00		40.0	ND	82.5	70-120	0.0606	20	
2-Chlerotoluene	34.0	5.00	-	40.0	ND	85.0	70-120	0.412	20	
1,3,5-Trimethylbenzene	34.6	5.00	-	40.0	ND	86.6	70-120	2.16	20	
4-Chlorotoluene	34.0	5.00	-	40.0	ND	84.9	70-120	0.709	20	
						1100010	201020	2.22	200	

Envirodyne Laboratories, Inc.

tert-butyl Benzene

sec-butyl Benzene

p-Isopropyltoluene

1,3-Dichlorobenzene

1,2,4-Trimethylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

89.5

82.0

83.8

84,4

84.0

70-120

70-120

70-120

70-120

59-156

2.32

3.16

1.87

4.30

0.716

20

20

20

20

43

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

Surrogate: Tolvene-d8

Surrogate: 4-Bromofluorobenzene

23B2626

Reported: 25-Apr-23 17:34

RPD

%REC

70-130

70-130

99.2

97.6

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Reporting

Spike

30.0

30.0

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3B4051 - Organics										
Matrix Spike Dup (B3B4051-MSD1)	Sour	ce: 23B2626-	02	Prepared &	Analyzed:	16-Feb-23				
1,4-Dichlorobenzene	35.3	5.00	ugL	40.0	ND	88.4	18-190	1.37	57	
Benzyl Chloride	24.1	5.60	-	40,0	ND	60.4	70-120	4.75	20	Q
n-butyl Benzene	32.8	5.00		40.0	ND	82.0	70-120	3.54	20	
1,2-Dichlorobenzene	33.2	5.00		40.0	ND	82.9	18-190	5.13	57	
1.2-Dibromo-3-chloropropane	33.1	5.00	-	40.0	ND	82.6	60-140	1.86	20	
1,2,4-Trichlorobenzene	30.9	5.00		40.0	ND	77.2	70-120	1.89	20	
Hexachlorobutadiene	32.7	5.00		40.0	ND	81.8	70-120	11.4	20	
Naphthalene	34.4	5.00	-	40,0	ND	85.9	60-140	3.68	20	
1,2,3-Trichlorobenzene	32.9	5.00		40.0	ND	82.2	60-140	3.47	20	
Total Tribalomethanes	133	20.0		160	18.5	71.6	35-155	0.973	20	
Total Xylenes	104	15.0	*	120	ND	87.1	70-120	0.865	20	
Surrogate: Dibromofluoromethane	29			30.0		98.1	70-130			
Surrogate: 1,2-Dicklomethane-d4	30		100	30.0		102	70-130			

Envirodyne Laboratories, Inc.

30

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

23B2626

Reported:

25-Apr-23 17:34

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	,	Vet Chemi	stry - Q	uality Con	trol					
	9	Envirodyn	e Labo	ratories,	Inc.					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	SREC	%REC Limits	RPD	RPD Limit	Notes
Batch B3B3937 - Inorganics										
Blank (B3B3937-BLK1)				Prepared &	: Analyzed:	16-Feb-23				
Fluoride	<0,10	0.10	mg/L							
LCS (B3B3937-BS1)				Prepared &	: Analyzed:	16-Feb-23				
Fluoride	0.52		mg/L	0.500		103	90-110			
Matrix Spike (B3B3937-MS1)	Sour	ce: 23B2305-	01	Prepared &	: Analyzed:	16-Feb-23				
Fluoride	1.22	0.20	mg/L	1.00	0.22	101	80-120			
Matrix Spike Dup (B3B3937-MSD1)	Sour	ce: 23B2305-	01	Prepared &	Analyzed:	16-Feb-23				
Fluoride	1.21	0.20	mg/L	1.00	0.22	99.6	80-120	0.822	20	
Batch B3C3319 - Inorganics										
Blank (B3C3319-BLK1)				Prepared &	: Analyzed:	15-Feb-23				
Nitrate-N	<0.50	9.50	mg/L							
LCS (B3C3319-BS1)				Prepared &	Analyzed:	15-Feb-23				
Nitrate-N	2.78		mg/L	3.00		92.7	90-110			
Matrix Spike (B3C3319-MS1)	Sour	ce: 23B2626-	03	Prepared &	Analyzed:	15-Feb-23				
Nitrate-N	17.0	2.50	mg/L	3.00	13.9	103	80-120			
Matrix Spike Dup (B3C3319-MSD1)	Sour	ce: 23B2626-	03	Prepared &	Analyzed:	15-Feb-23				
Nitrate-N	16.7	2.50	mg/L	3.00	13.9	92.3	80-120	1.96	20	

Envirodyne Laboratories, Inc.

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

23B2626

Reported: 25-Apr-23 17:34

Metals - Quality Control

Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3B5164 - Inorganics										
Blank (B3B5164-BLK1)				Prepared 8	Analyzed:	15-Feb-23				
Chromium, Hexavalent	<1.0	1.0	ug/L							
LCS (B3B5164-BS1)				Prepared 8	Analyzed:	15-Feb-23				
Chromium, Hexavalent	50.8		ug/L	50.0		102	95-105			
Matrix Spike (B3B5164-MS1)	Sou	ree: 23B2626-	01	Prepared &	Analyzed	15-Feb-23				
Chromium, Hesavalent	45.2	1.0	ug/L	50.0	ND	90.4	80-120			
Matrix Spike Dup (B3B5164-MSD1)	Sou	rce: 23B2626-	-01	Prepared 8	Analyzed	15-Feb-23	}			
Chromium, Hexavalent	45.3	1.0	ug/L	50.0	ND	90.6	80-120	0.221	20	

Envirodyne Laboratories, Inc.

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

23B2626

Reported:

25-Apr-23 17:34

Total Metals by ICP - Quality Control

Envirodyne Laboratories, Inc.

		Reporting		Spike	Source	%REC	%REC	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	20KBC	Limits	KPD	Lent	Notes
Batch B3B5700 - Metals - EPA 200.2										
Blank (B3B5700-BLK1)				Prepared:	23-Feb-23 /	Analyzed: 2	4-Feb-23			
Vanadium	<5.0	5.0	ug/L							
LCS (B3B5700-BS1)				Prepared: 2	23-Feb-23 /	Analyzed: 2	4-Feb-23			
Vanadiem	245		ug/L	250		98.0	85-115			
Matrix Spike (B3B5700-MS1)	Sou	rce: 23B2776-	01	Prepared:	23-Feb-23 /	Analyzed: 2	4-Feb-23			
Vanadium	1020	10.0	vg/L	1000	ND	102	70-130			
Matrix Spike Dup (B3B5700-MSD1)	Sou	rce: 23B2776-	01	Prepared:	23-Feb-23 /	Analyzed: 2	4-Feb-23			
Vanadiem	1000	10.0	ug/L	1000	ND	100	70-130	1.78	20	
Batch B3B5707 - Metals - EPA 200.2										
Blank (B3B5707-BLK1)				Prepared: 2	23-Feb-23 /	Analyzed: 2	4-Feb-23			
Strontium	<5.0	5.0	vg/L							
LCS (B3B5707-BS1)				Prepared:	23-Feb-23 /	Analyzed: 2	4-Feb-23			
Strontium	139	5.0	wg/L	150		92.5	85-115			
Matrix Spike (B3B5707-MS1)	Sou	rce: 23B2776-	01	Prepared: 2	23-Feb-23 /	Analyzed: 2	4-Feb-23			
Strontium	903	10.0	ug/L	300	614	96.6	70-130			
Matrix Spike Dup (B3B5707-MSD1)	Sou	rce: 23B2776-	01	Prepared: 2	23-Feb-23 /	Analyzed: 2	4-Feb-23			
Strontium	907	10.0	ug/L	300	614	97.9	70-130	0.420	20	

Envirodyne Laboratories, Inc.

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

23B2626

Reported:

25-Apr-23 17:34

Total Metals by ICP-MS - Quality Control

Envirodyne Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B3B5717 - Metals - EPA 200.2										
Blank (B3B\$717-BLK1)				Prepared: 2	23-Feb-23 A	Analyzed; 2	4-Feb-23			
Beryllium	< 0.5	0.5	ug'l.							
Arsenic	< 0.5	0.5								
Chromium	< 2.0	2.0								
Cadmium	3.6	0.50	-							
Copper	< 0.5	0.5	-							
Thalliam	<00.5	0.5	-							
Silver	< 0.5	0.5								
Nickel	< 0.5	0.5	14.1							
Selenium	< 2.0	2.0								
Zinc	<2.0	2.0								
Antimony	< 0.5	0.5	*							
LCS (B3B5717-BS1)				Prepared:	23-Feb-23 /	Analyzed: 2	4-Feb-23			
Beryllium	69.0		ng/L	75.0		92.0	85-115			
Arsenie	71.7		-	75.0		95.5	85-115			
Thallium	72.4			75.0		96.6	85-115			
Cadmium	75			75.0		99.9	85-115			
Silver	72			75.0		95.5	85-115			
Nickel	72.2			75,0		96.3	85-115			
Chromium	74.3			75.0		99.1	85-115			
Copper	72.5			75.0		96.6	85-115			
Zinc	72.2			75.0		96.3	85-115			
Selenium	71.4		(*)	75.0		95.1	85-115			
Antimony	74.9			75.0		99.9	85-115			
Matrix Spike (B3B5717-MS1)	Sot	ree: 23B2776-	-01	Prepared:	23-Feb-23 /	Analyzed: 2	4-Feb-23			
Arsenic	101	0.5	ug/L	100	2.32	99.0	70-130			
Nickel	98.5	0.5	-	100	3.05	95.4	70-130			
Thallium	95.9	0.5		100	ND	95.9	70-130			
Silver	93	0.5		100	ND	92.8	70-130			
Copper	93.5	0.5	~	100	0.499	93.0	70-130			
Chromium	91.2	2.0	-	100	ND	91.2	70-130			
Cadmium	100	0.50		100	ND	103	70-130			

Envirodyne Laboratories, Inc.

Client:

Seguin, City of

Project:

Antimony

Seguin, City of - WWTP

Work Order:

23B2626

Reported:

RPD

%REC

25-Apr-23 17:34

Total Metals by ICP-MS - Quality Control

Envirodyne Laboratories, Inc.

Spike

Source

0.467

100

104

70-130

4.80

20

Reporting

104

0.5

		resporting		System	Some		Lange Co.		141 15	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B3B5717 - Metals - EPA 200.2										
Matrix Spike (B3B5717-MS1)	Source	e: 23B2776-	01	Prepared:	23-Feb-23 /	analyzed: 2	4-Feb-23			
Beryllium	87.0	0.5	ug/L	100	ND	87.0	70-130			
Zine	195	2.0		100	96.3	98.3	70-130			
Selenium	95.7	2.0		100	ND	95.7	70-130			
Antimony	99.4	0.5		100	0.467	98.9	70-130			
Matrix Spike Dup (B3B5717-MSD1)	Source	e: 23B2776-	01	Prepared:	23-Feb-23 A	nalyzed: 2	4-Feb-23			
Chromium	96.3	2.0	ug/L	100	ND	96.3	70-130	5.50	20	
Cadmium	110	0.50		100	ND	107	70-130	3.82	20	
Arsenic	106	0.5		100	2.32	103	70-130	4.16	20	
Copper	98.5	0.5		100	0.499	98.0	70-130	5.22	20	
Silver	99	0.5		100	ND	99.2	70-130	6.62	20	
Beryllium	90.7	0.5		100	ND	90.7	70-130	4.16	20	
Thallium	99.4	0.5		100	ND	99.4	70-130	3.52	20	
Nickel	102	0.5		100	3.05	99.4	70-130	3.98	20	
Selenium	101	2.0	*	100	ND	101	70-130	5.46	20	
Zine	202	2.0		100	96.3	106	70-130	3.68	20	

Envirodyne Laboratories, Inc.

Client:

Seguin, City of

Project:

Seguin, City of - WWTP

Work Order:

2382626

Reported:

25-Apr-23 17:34

Notes and Definitions

Q QC did not meet ELI acceptance er	riteria
-------------------------------------	---------

- L Analyzed by third party laboratory
- B Target detected in method blank
- ND Analyte NOT DETECTED at or above the reporting limit
- < Result is less than the RL
- a Analyte not available for TNI/NELAP accreditation
- n Not accredited

Envirodyne Laboratories, Inc.

A394723 (d)

23B2626

NCEQ Certification # T104704265

Phone (281)568-7880 - Fax (281)568-8004 Envirodyne Laboratories, Inc. Houston, Texas 77099-3543 11011 Brooklet, Ste. 230

Page

of

omiT

SISYISHA aboratory No. Analysis Request and Chain of Custody Record Temp. Date: 2 | St23 Seal Intact? Seal Intect? Seal Intact? D.O. Hd Time: 101 Dete: Time: Date: Time: Date: Sb, As, Be, Cd, Cr, Cu, Hg, Ni, Se, Ag, T 830-401-2324 RNA. Pesticides, PCBs (EPA 625) Cyaride (Total & Amenable) ANALYSIS REQUESTED 000 Cr+6, F, NO3-N VOC (EPA 624) Phenol Fax: GERONIMO CREEK 6.21S 9 Site Reprosentative: Arrival Temp. Data Results To: Date: 2 | 15123 Received by Lab: Date: 2-N-23 Received by: Received by: (Signature) (Signature) (Signature) 830-401-2411 ICE, HNO3 ICE, NACH Time: 10 m Sample Container Sample Type (Liquid, Preservative (SizeMat() Sludge, etc.) (RAP) ICE, HCI S to I:auij ICE, H2SO4 SE Ö Time: Date: Liquid Phone: Liquid Liquid. Liquid Liquid Liquid Client/Project OFFWS 500 a40 ml Vial 1 Lt-Arrib 250 ml-P 250 ml/P Lt-Amb 500ml-P Resinguished by: Rene (Signature) Frechex Relinquished by: (NO Comp Refinquished by: Grab Meter Reading: Mn Correction: Signature) (Signature) Cl. Residual: Cl. Corrected 9:00a-9:08 mm 413 to 414 41354 यहि कद्यान 9 to 8p 52-H-23 EZ-11-2 Date & Time FLOW. Table II and III Seguin, TX 78155 EFFLUENT-Cong City of Seguin EFFLUENT-Comp **EFFLUENT-Comp** EFFLUENT-Grab Field Sample No./ **EFFLUENT-Grab** EFFLUENT-Grab Rene Porras 101 E. Klein Indentification Samplers: (Signature) Affiliation Project No. Remarks: Address Contact: Name: Lab ID No.

E A394724

Envirodyne Laboratories, Inc. Houston, Texas 77099-3543 11011 Brooklet, Ste. 230

23B2626

Phone (281)568-7880 - Fax (281)568-8004

ō Page

S Analysis Request and Chain of Custody Record 830-401-2324 Fax: 830-401-2411 Phone: Client/Project TCEQ Certification # T104704265 Seguin, TX 78155 Rene Porras City of Seguin 101 E. Klein Contact: Project No. Address: Name: City:

Date & B Supple Centaine Supple Upper (Upper Color) Date & B Supple Centaine Supple (CE. HNO) Sb,AS,Be,C d,C r,C u,Hg,Ni,Se,Ag,T 2-H-2-3	2	Table II and III	III pu		ב <u>ק</u>	ollent/Project	GE	GERONIMO CREEK				sisyl ne
NFLUENT-Comp 24% s24% S00ml-P Liquid CE, HNO3 Sb,AS,Be,C d,C r,C u,Hg,Ni,Se,Ag,T	ab ID No.	Field Sample No./ Indentification	Date & Time	_	Sample Container (Size/Mat)	Sanple Type (Uquk Sludge, etc.)	Presons	ANALYSIS REQUESTED	Hq		nəT	enA
NFLUENT-Grab 2-14-22		INFLUENT-Comp	413 52419 St. 58 pc	\geq	500ml-P	Liquid	ICE, HN03	Sb, As, Be, C d, C r, C u, Hg, Ni, Se, A I, Zn, A	T,e			
NFLUENT-Grab		INFLUENT-Grab	2-H-23 9:20 AL	$\stackrel{\cdot}{>}$	1 Lt-Amb	Liquid	ICE, H2SO4	Phenol	١			
NFLUENT-Grab		INFLUENT-Grab	8.25m	X	250 ml-P	Liquid	ICE, NaOH	Cyanide (Total & Amenable)	1			- 20
VFLUENT-Comp 2/13 h 2/h (2) 1 Liquid ICE BNA, Pesticides, PCBs (EPA 625) VFLUENT-Comp 2/15 h 2/h 250 ml/P Liquid ICE Cr+6, F, NO3-N VFLUENT-Comp 2/15 h 2/h 250 ml/P Liquid ICE Cr+6, F, NO3-N NFLUENT-Comp 2/15 h 2/h 250 ml/P Liquid ICE Cr+6, F, NO3-N NFLUENT-Comp 2/15 h 2/h 2/15 h 2/h Received by: Imme: Cr+6, F, NO3-N NFInature Relinquished by Reversed by: Imme: Companies Received by: Imme: Companies Relinquished by Received by: Signature Received by: Imme: Companies Resolved by: Signature Received by: Imme: Companies Rock Resolution Received by: Imme: Companies Received by: Connection Received by: Received by: Received by: Connection Received by: Received by: Received by: Companies Received by: Received by: Received by: Companies Received by: Received by:		INFLUENT-Grab	2-14-23 9:38 pt	>	40 ml Vial		ICE, HCI	ALT.				
Net Comp 7/3 to 2/4	100	INFLUENT-Comp	2/13 to 2/14	\times	(2) 1 Lt-Amb	Liquid	3OE	BNA, Pesticides, PCBs (EPA 62	25)			
Fersi (Signature) Relinquished by: Revered by: Received by: Time: Option (Signature) Relinquished by: Received by: Time: Option (Signature) Relinquished by:		INFLUENT-Comp	2/13to 4/4 9ato 8m	\times	250 ml/P	Liquid	30	Cr+6, F, NO3-N	`			
Signature Relinquished by: Received by: Time: Common C	((5,1)			3	1							
Relinquished by: Rene Park Date: 2-14-23 Received by: Time: Date: Signature) Relinquished by: Time: Calgnature) Calgnature) Received by: Time: Calgnature)				n i	10 mm	1000		+				
Relinquished by: Renewal Pate: 2-14-23 Received by: Time: Date: 2-14-23 Received by: Time: Date: Date: Date: Time: Date: Dat												
Relinquished by: Renewed by: Signature Pate: 2 Pate: Pate												
Affiliation (Signature) Relinquished by: [Signature] [Signature] [Signature] Relinquished by: [Time: 1015] [Time: 1015] [Time: 1015] [Time: 1015] [Signature] [Signature] [Signature] [Signature] [Signature] [Signature] [Signature] [Signature] [Signature] [Time: 1015] [Signature] [Sig	N	Samplers: (Signature)	Relinquishe (Signature	d by:	18		w	Received by: (Signature)	Date: Time:	Sealin	fact?	
Relinquished by: NNO Roll Color Signature) (Signature) Fechex FLow: Meter Residing: Cl. Residual: Min Connection Ch. Cornected: Ch. Ch. Cornected: Ch. Ch. Cornected: Ch. Ch. Ch. Ch.		Affilation	Relinquishe (Signature	d by:		őΕ	ate: me:	Received by: (Signature)	Date: Time:	Sealir	fact?	
PLOW: Meter Residual: Cl. Residual: Mn. Correction Ch. Correction Ch. Correction Time:			Relinquishe (Signature	d by:	9		ate: 2 5 13	K. C. Dag	Date: 2h 5 12	3 Seal In	ract?	
RATY Site Representative:	lema	ırks:	FLOW: Meter Readin Cl. Residual:			4	rival Temp.)	-	Labore	aboratory No.	
Comments of the contract of th			Mn Corrected	8 -		,	RATI	Site Representative:	Date; Time:			

Envirodyne Laboratories, Inc. Houston, Texas 77099-3543 11011 Brooklet, Ste. 230

2382323 2382323 mD2115123

TCEQ Certification # T104704265

Phone (281)568-7880 - Fax (281)568-8004

Page

ŏ

amiT sisylsnA Analysis Request and Chain of Custody Record Temp. Date: 2/K/23 Seal Intact? Seal Intact? Seal Intact? .O.Q Hd ١ ١ ١ ١ ١ Date: Time: Date: Time: 830-401-2324 Metals (Vanadium, Strontium) Ethylene Dibromide (EDB) ANALYSIS REQUESTED Herbicides Asbestos Uranium SVOC Fax: Geronimo Creek Received by Lab: Date: 2-14-23 Received by: Received by: (Signature) (Signature) 830-401-2411 Time: 10 mc Date: 2 | 17 | 2.3 Proservative Ice,HNO3 Ice,HCI 00 93 ce 83 Se rime: Date: Sample Container Sample Type (Liquid, (SizeMatt) Sladge, etc.) Phone: Liquid Liquid Liquid Liquid Liquid Liquid Liquid Client/Project Borns 40ml/vials 1-Lt/Amb 500 ml/P 250 ml/P 8 Amber Amber Amber 1-t 1-Lt 1-Lt 多 Relinquished by: NO Relinquished by: Relinquished by: Grab (Signature) (Signature) Par 280 2/3 + 2/14 2/3 52/14 900 to 8000 9/13 to 8000 9m to 8 mg 2/18 #24/4 9+ #8# 4134114 2/13 +2/14 Date & Time Seguin, TX 78155 Table V City of Seguin EFFLUENT-COMP EFFLUENT-COMP EFFLUENT-COMP EFFLUENT-COMP EFFLUENT-COMP EFFLUENT-COMP EFFLUENT-COMP Rene Porras Field Sample No./ 101 E. Klein Indentification Samplers: (Signature) Affiliation Project No. Address Contact: Vame: City: Lab ID No.

aboratory No.

Date: Time:

Site Representative:

6.215.9

Arrival Temp. Data Results To:

(Signature)

Time: Los S

Cec ex

(Signature)

Meter Reading:

FLOW:

Remarks

Cl. Residual:

Mn Corection:

Time: 101

2382626

TCEQ Certification # T104704265

Phone (281)568-7880 - Fax (281)568-8004 Envirodyne Laboratories, Inc. Houston, Texas 77099-3543 11011 Brooklet, Ste. 230

5 Page Time

sisylsnA Analysis Request and Chain of Custody Record Temp. Seal Intact? D.O. Hd Date: Time: 830-401-2324 Metals (Vanadium, Strontium) Ethylene Dibromide (EDB) ANALYSIS REQUESTED Herbicides Asbestos Uranium SVOC Fax: Geronimo Creek Received by: (Signature) 830-401-2411 Date: 2-14-23 Time: 10 #41 Prosorvative Ice,HN03 loe,HCI 8 8 8 8 8 Sample Container Sample Type (Liquid, (SizeMert) Shuge, etc.) Phone: Liquid Liquid Liquid Liquid Liquid Liquid Liquid Client/Project Bernes (2) 1-Lt/Amb 40ml/vials 500 ml/P 250 ml/P Amber Amber Amber 1-Lt 1-t 1-Lt Relinquished by: Rene dwog Gusp (Signature) 90 to 8 m 9 to 16 SA gar to Bar 94to Ben 9mts 8m 900 to 8411 기3 누디서 2/3 to 2/ly 9mto Bun 413 6219 2/15 15 72/14 H129481/2 4/2 P 5/H Date & Time Seguin, TX 78155 Table V City of Seguin INFLUENT-COMP INFLUENT-COMP INFLUENT-COMP NFLUENT-COMP NFLUENT-COMP NFLUENT-COMP INFLUENT-COMP Rene Porras Field Sample No./ 101 E. Klein Indentification Samplers: (Signature) Project No. Address: Contact: Name: City: Lab ID No.

aboratory No.

Date: Time:

Site Representative:

6.2/5.9

本

Arrival Temp. Data Results To:

Received by Lab:

Date: 2,15/123

ě

Relinquished by: (M.) (Signature) Frolex

Meter Reading:

Remarks:

Cl. Residuat

Mn Correction:

Cl, Corrected

Relinquished by:

(Signature)

Affiliation

(Signature)

Time:10 17

Received by:

(Signature)

Time: Date:

Date: 2/15/12/Seal Intact?

Time: 101

0

Seal Intact?

Date: Time:

Report No: 240611.25_2407031728

Guadalupe-Blanco River Authority

Report of Analysis

423729 - City of Seguin-Geronimo WWTP For:

PO Box 591

Seguin, TX 78156

Publish Date/Time: 7/3/2024 5:28 PM

The Ludgell

Released By: Kylie Gudgell

Title: Lead Technical Manager

technically compliant with the requirements of the methods used, except where noted. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and If applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the report, and that no information or data have been identified in the report, and that no information or data I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and

This Laboratory is NELAP accredited. Scope: Non-potable water, potable water.

Page 1 of 6

¹ Parameter not available for NELAP accreditation at the G8RA

Report No: 240611.25_2407031728

Lab Sample ID: 240611.25-01

Site: Effluent

Collection Date/Time: 6/11/2024 08:00 AM 6/11/2024 01:50 PM Receive Date/Time:

Sample Matrix: Waste Water Sample Type: Composite

5:28 PM

Publish Date/Time: 7/3/2024

Analyst Analyst Read Date/Time MHS MHS MHS MHS ×× ×× MLH 6/14/2024 02:42 AM 6/14/2024 02:42 AM 6/13/2024 04:46 PM 6/13/2024 04:46 PM 6/21/2024 09:45 AM 6/18/2024 10:39 AM 6/13/2024 06:18 PM Test Date/Time Qualifier 20 0.2 0.3 8 RP 2 2 님 119 mg CaCO3/L Sample Result 247 mg/L 309 mg/L 5.96 mg/L mg/L 0.54 mg/l S 948 4.5 EPA 310.2/ SM 2320 B EPA 310.2/ SM 2320 B EPA 300.0 Rev. 2.1 EPA 300.0 Rev. 2.1 EPA 351.2 Rev. 2 SM 2540 C EPA 365.3 Method Total Kjeldahl Nitrogen (TKN) Total Dissolved Solids Anions - Chloride Total Phosphorus Anions - Sulfate pH (T.Alkalinity) Total Alkalinity Analyte

Sample Matrix: Woste Woter Collection Date/Time: 6/11/2024 08:45 AM Lab Sample ID: 240611.25-02

Receive Date/Time: 6/11/2024 01:50 PM

Site: Effluent

Read Date/Time Grab Analyst Sample Type: 6/25/2024 10:45 AM Test Date/Time RPL Qualifier 법 Sample Result mg/L See Report Attached Subcontract Method Oil and Grease Analyte

Analyst

Subcontract methods are tested by an external laboratory. See subcontracted report for further details.

NA = not analyzed

(830)379-5822 ext 256

Seguin, TX 78155

933 East Court Street

Work Order: 240611.25 2 Parameter is approved under TCEQ Drinking Water Program This report cannot be reproduced, except in full, without prior written permission of the GBRA Laboratory. Results shown relate only to the items tested. Samples are assumed to be in acceptable condition unless otherwise noted.

Page 2 of 6

1 Parameter not available for NELAP accreditation at the GBRA

Report No: 240611.25_2407031728

Publish Date/Time: 7/3/2024 5:28 PM

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

%REC Percent Recovery				
		100	Limit of Quantitation	
%RPD Relative Percent Difference	rence	LR	Ow Rappe	
CCB Continuing Calibration Verification	n Verification	MBLK	Method Blank	
CCV Continuing Calibration Verification	n Verification	MDL	Method Detection Limit	
D.F. Dilution Factor		MS	Matrix Spike	
HR High Range		MSD	Matrix Spike Duplicate	
ICB Initial Calibration Blank	14	QN	Not Detected	
ICV Initial Calibration Verification	ification	90	Quality Control	
LCS Laboratory Control Spike	ike	RPL	Reporting Limit	
LCSD Laboratory Control Spike Duplicate	sike Duplicate			
Qualifier Definition				

QCBatch ID	OCID	Parameter	O Dog Language 10	andread I bentha
			GANGANGIA INTO CONTROL LIMITS	SHILLOI FILMITS
QC240613.005		Total Dissolved Solids	0.57	0 - 10
	LCS1	Total Dissolved Solids	92.12	75 - 125
		Total Dissolved Solids	0.0	0 - 10
QC240614.002		Total Alkalinity	87.75	75 - 125
	240613.09-01: MSD 1	Total Alkalinity	1.66	0 - 15.4
			I Premior and second sold of the same of	of constable for

This report cannot be reproduced, except in full, without prior written permission of the GBRA Laboratory. Results shown relate only to the items tested. Samples are assumed to be in acceptable condition unless otherwise nated.

(830)379-5822 ext 256

933 East Court Street Seguin, TX 78155

Work Order: 240611.25

Page 3 of 6

2 Parameter is approved under TCEQ Drinking Water Program

Page 3 of 10

eport No: 240611.25_24070317;	28
port No: 240611.25_240	5
port No: 240611.25_240	33
port No: 240611.25_	20
port No: 240611.25	1.3
port No:	.25
port No:	1
port No:	90
port	24
port	No:
1	Report

Total Albalinity 78.93 75-125	07/100/01/02/03/100	2000 20 01 012000			Publish Date/Time:	7/3/2024	5:28 PM
CCSD Total Alkalinity 3.41		240613.10-05; MS 2	Total Alkalinity	78.93	75 - 125		
LCS 1 Total Alkalinity 98.98 LCSD 2 Total Alkalinity 100.05 LCSD 2 Total Alkalinity 100.05 LCSD 3 Total Alkalinity 100.05 MBLK 1 PH (7.Alkalinity) 4.5 MBLK 2 PH (7.Alkalinity) 4.5 MBLK 3 Total Alkalinity 0.00 MBLK 2 PH (7.Alkalinity) 4.5 Anions - Chloride 112.69 240613.09-01: MS 1 Anions - Chloride 0.05 240613.09-01: MS 1 Anions - Chloride 0.057 240613.09-01: MS 1 Anions - Chloride 0.057 240613.10-05: MS 2 Anions - Chloride 0.057 240613.10-05: MS 2 Anions - Sulfate 102.05 LCS 1 Anions - Sulfate 102.05 LCS 1 Anions - Sulfate 103.85 LCS 1 Anions - Sulfate 103.85 LCSD 1 Anions - Sulfate 2.06 LCSD 2 Anions - Sulfate 0.00 MBLK 1 Anions - Sulfate 0.00 MBLK 1 Anions - Sulfate 0.00 MBLK 2 Anions - Sulfate 0.00 MBLK 1 Anions - Sulfate 0.00 MBLK 2 Anions - Sulfate 0.00 MBLK 2 Anions - Sulfate 0.00 MBLK 3 Anions - Sulfate 0.00 MBLK 1 Anions - Sulfate 0.00 MBLK 2 Anions - Sulfate 0.00 MBLK 2 Anions - Sulfate 0.00 MBLK 3 Anions - Sulfate 0.00 MBLK 1 Anions - Sulfate 0.00 MBLK 2 Anions - Sulfate 0.00 MBLK 2 Anions - Sulfate 0.00 MBLK 3 Anions - Sulfate 0.00 MBLK 3 Anions - Sulfate 0.00 MBLK 4 Anions - Sulfate 0.00 MBLK 5 Anions - Sulfate 0.00 MBLK 6 Anions - Sulfate 0.00 MBLK 7 Anions - Sulfate 0.00 MBLK 8 Anions - Sulfate 0.00 MBLK 9 Anions - Sulfate 0.00		240613.10-05; MSD 2	Total Alkalinity	3.41	0 - 15.4		
LCSD 1 Total Alkalinity 100.05 LCSD 2 Total Alkalinity 2.69 LCSD 3 Total Alkalinity 3.5 MBLK 1 Phenolphthalein Alkalinity 4.5 MBLK 2 Phenolphthalein Alkalinity 0.0 MBLK 2 Phenolphthalein Alkalinity 4.5 MBLK 2 Phenolphthalein Alkalinity 0.0 MBLK 2 Phenolphthalein Alkalinity 0.0 Amions - Chloride 110.6.3 240613.09-01: MS 1 Anions - Chloride 0.34 240613.09-01: MS 2 Anions - Sulfate 106.89 240613.10-05: MS 2 Anions - Sulfate 103.45 240613.10-05: MS 2 Anions - Sulfate 103.45 LCS 1 Anions - Sulfate 103.85 LCS 1 Anions - Sulfate 103.85 LCS 2 Anions - Sulfate 103.85 LCS 2 Anions - Sulfate 103.85 LCS 2 Anions - Sulfate 2.66 MBLK 1 Anions - Sulfate 0.0 MBLK 2 Anions - Sulfate 0.0 MBLK 3 Anions - Sulfate 0.0		ICS1	Total Alkalinity	86'86	80 - 120		
LCSD 1 Total Alkalinity 2.69 LCSD 2 Total Alkalinity 3.55 MBLK 1 PH (T.Alkalinity) 4.5 MBLK 2 PH (T.Alkalinity) 4.5 MBLK 2 Phenolphthalein Alkalinity 0.00 MBLK 2 Phenolphthalein Alkalinity 0.00 MBLK 2 Phenolphthalein Alkalinity 0.00 MBLK 2 Total Alkalinity 3.24 AMOR 3.09-01: MS 1 Anions - Chloride 0.057 240613.09-01: MS 1 Anions - Sulfate 0.057 240613.09-01: MS 2 Anions - Sulfate 0.057 240613.10-05: MS 2 Anions - Sulfate 0.057 240613.10-05: MS 2 Anions - Sulfate 0.057 240613.10-05: MS 2 Anions - Chloride 0.94 240613.10-05: MS 2 Anions - Sulfate 102.05 LCS 1 Anions - Chloride 0.94 240613.10-05: MS 2 Anions - Sulfate 0.054 240613.10-05: MS 2 Anions - Chloride 0.94 240613.10-05: MS 2 Anions - Sulfate 0.03 LCS 1 Anions - Chloride 0.00 MBLK 1 Anions - Chloride 0.00 MBLK 1 Anions - Chloride 0.00 MBLK 2 Anions - Chloride 0.00 MBLK 1 Anions - Chloride 0.00 MBLK 2 Anions - Sulfate 0.00 MBLK 2 Anions - Sulfate 0.00 MBLK 2 Anions - Sulfate 0.00 MBLK 3 Anions - Sulfate 0.00 MBLK 3 Anions - Sulfate 0.00 MBLK 1 Anions - Sulfate 0.00 MBLK 2 Anions - Sulfate 0.00 MBLK 2 Anions - Sulfate 0.00 MBLK 3 Anions - Sulfate 0.00 MBLK 1 Anions - Sulfate 0.00 MBLK 2 Anions - Sulfate 0.00 MBLK 2 Anions - Sulfate 0.00 MBLK 3 Anions - Sulfate 0.00 MBLK 4 Anions - Sulfate 0.00 MBLK 5 Anions - Sulfate 0.00 MBLK 6 Anions - Sulfate 0.00 MBLK 7 Anions - Sulfate 0.00 MBLK 7 Anions - Sulfate 0.00 MBLK 9 Anions - Chloride 0.00 MBLK 9 Anions - Chloride 0.00 MBLK 9 Anions - Chloride 0.00 MBLK 9 Anions - Ch		LCS 2	Total Alkalinity	100.05	80 - 120		
Mail		LCSD I	Total Alkalinity	2.69	0-15.4		
MBLK I PH (T-Alkalinity) 4.5 MBLK I Phenolphthalein Alkalinity 0.0 MBLK I Total Alkalinity 2.68 MBLK 2 PH (T-Alkalinity) 4.5 MBLK 2 Phenolphthalein Alkalinity 0.0 MBLK 2 Total Alkalinity 3.24 MBLK 2 Total Alkalinity 3.24 240613.09-01: MS 1 Anions - Chloride 112.69 240613.09-01: MS 1 Anions - Chloride 0.46 240613.00-01: MS 1 Anions - Chloride 0.46 240613.10-05: MS 2 Anions - Chloride 0.94 240613.10-05: MS 2 Anions - Chloride 98.65 LCS 1 Anions - Sulfate 102.05 LCS 2 Anions - Chloride 2.63 LCS 2 Anions - Chloride 2.63 LCS 2 Anions - Chloride 2.01 LCS 2 Anions - Chloride 0.0 MBLK 1 Anions - Sulfate 0.0 MBLK 2 Anions - Sulfate 0.0 MBLK 2 Anions - Sulfate		LCSD 2	Total Alkalinity	3.5	0-15.4		
MBLK I Phenolphthalein Alkalinity 0.0 MBLK 2 Phenolphthalein Alkalinity 4.5 MBLK 2 Phenolphthalein Alkalinity 4.5 MBLK 2 Phenolphthalein Alkalinity 0.0 MBLK 2 Total Alkalinity 0.0 AMELK 2 Total Alkalinity 0.0 240613.09-01; MS 1 Anions - Chloride 112.69 240613.09-01; MS 1 Anions - Chloride 0.57 240613.09-01; MS 2 Anions - Chloride 0.57 240613.10-05; MS 2 Anions - Chloride 106.89 240613.10-05; MS 2 Anions - Chloride 0.94 240613.10-05; MS 2 Anions - Chloride 0.94 LCS 1 Anions - Chloride 99.07 LCS 2 Anions - Chloride 2.63 LCS 2 Anions - Chloride 2.01 LCS 2 Anions - Chloride 2.01 LCS 2 Anions - Chloride 0.0 MBLK 1 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 3 A		MBLK 1	pH (T.Alkalinity)	4.5			
MBLK I Total Alkalinity 2.68 MBLK 2 Phenolphthalein Alkalinity 4.5 MBLK 2 Phenolphthalein Alkalinity 3.24 MBLK 2 Total Alkalinity 3.24 240613.09-01; MS 1 Anions - Chloride 112.69 240613.09-01; MS 1 Anions - Chloride 0.57 240613.09-01; MS 1 Anions - Chloride 0.57 240613.10-05; MS 2 Anions - Chloride 0.57 240613.10-05; MS 2 Anions - Chloride 0.94 LCS 1 Anions - Chloride 99.07 LCS 2 Anions - Chloride 2.63 LCS 2 Anions - Chloride 2.63 LCS 2 Anions - Chloride 2.66 MBLK 1 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 3 Anions - Chloride 0.0 MBLK 4		MBLK 1	Phenolphthalein Alkalinity	0.0			
MBLK 2 PH (T.Akalinity) 4.5 MBLK 2 Phenolphihalein Alkalinity 0.0 MBLK 2 Total Akalinity 0.0 MBLK 2 Total Akalinity 0.0 240613.09-01; MS 1 Anions - Chloride 112.69 240613.09-01; MS 1 Anions - Sulfate 0.46 240613.09-01; MS D 1 Anions - Chloride 0.46 240613.10-05; MS 2 Anions - Chloride 0.04 240613.10-05; MS 2 Anions - Chloride 0.94 240613.10-05; MS 2 Anions - Chloride 0.94 240613.10-05; MS 2 Anions - Chloride 98.65 LCS 1 Anions - Chloride 99.07 LCS 2 Anions - Chloride 2.63 LCS 2 Anions - Chloride 2.63 LCS 3 Anions - Chloride 2.66 MBLK 1 Anions - Chloride 0.0 MBLK 1 Anions - Chloride 0.0 MBLK 2 Anions - Sulfate 0.0 MBLK 2 Anions - Sulfate 0.0 MBLK 2 Anions - Chloride <td></td> <td>MBLK 1</td> <td>Total Alkalinity</td> <td>2.68</td> <td>0-20</td> <td></td> <td></td>		MBLK 1	Total Alkalinity	2.68	0-20		
MBLK 2 Phenolphthalein Alkalinity 0.0 MBLK 2 Total Alkalinity 3.24 240613.99-01: MS 1 Anions - Chloride 112.69 240613.09-01: MS 1 Anions - Chloride 0.57 240613.09-01: MS 2 Anions - Chloride 0.657 240613.10-05: MS 2 Anions - Chloride 0.04 240613.10-05: MS 2 Anions - Chloride 0.94 LCS 1 Anions - Sulfate 102.05 LCS 2 Anions - Sulfate 2.63 LCS 2 Anions - Sulfate 2.65 MBLK 1 Anions - Sulfate 2.66 MBLK 1 Anions - Chloride 0.0 MBLK 2 Anions - Sulfate 0.0 MBLK 2 Anions - Sulfate 0.0 MBLK 3 Anions - Sulfate 0.0 AB060S-13-01: MS 1 Total Phosphorus 1.118 2406011.08-01: MS		MBLK 2	pH (T.Alkalinity)	4.5			
QC240614.003 AMBLK 2 240613.09-01: MS 1 240613.09-01: MS 1 Anions - Chloride Anions - Sulfate 3.24 112.69 240613.09-01: MS 1 240613.09-01: MSD 1 240613.09-01: MSD 1 240613.10-05: MSD 2 240613.10-05: MSD 2 240613.00 Anions - Chloride 240613.00 1.18 2.65 2.01 2.03 2.00 2.00 2.00 2.00 2.00 2.00 2.00		MBLK 2	Phenolphthalein Alkalinity	0.0			
QC240614.003 240613.09-01; MS 1 Anions - Chloride 112.69 240613.09-01; MS 1 Anions - Sulfate 106.93 240613.09-01; MSD 1 Anions - Chloride 0.57 240613.09-01; MSD 1 Anions - Chloride 0.46 240613.10-05; MS 2 Anions - Chloride 106.89 240613.10-05; MSD 2 Anions - Chloride 0.94 240613.10-05; MSD 2 Anions - Chloride 98.65 LCS 1 Anions - Chloride 98.65 LCS 1 Anions - Chloride 99.07 LCS 2 Anions - Chloride 2.63 LCS 2 Anions - Sulfate 102.05 LCS 2 Anions - Sulfate 2.63 LCSD 1 Anions - Sulfate 2.64 LCSD 2 Anions - Sulfate 0.0 MBLK 1 Anions - Chloride 2.65 MBLK 1 Anions - Sulfate 0.0 MBLK 2 Anions - Sulfate 0.0 MBLK 2 Anions - Sulfate 0.0 Anions - Sulfate 0.0 Anions - Sulfate 0.0			Total Alkalinity	3.24	0-20		
240613.09-01; MS 1 Anions - Sulfate 106.93 240613.09-01; MSD 1 Anions - Chloride 0.57 240613.09-01; MSD 2 Anions - Sulfate 0.46 240613.10-05; MS 2 Anions - Chloride 106.89 240613.10-05; MSD 2 Anions - Chloride 0.94 240613.10-05; MSD 2 Anions - Sulfate 1.18 LCS 1 Anions - Chloride 98.65 LCS 1 Anions - Sulfate 102.05 LCS 2 Anions - Chloride 99.07 LCS 1 Anions - Sulfate 102.05 LCS 2 Anions - Sulfate 2.63 LCS 2 Anions - Chloride 2.63 LCS 2 Anions - Sulfate 2.63 LCS 2 Anions - Chloride 2.63 LCS 2 Anions - Chloride 2.63 LCS 2 Anions - Sulfate 0.0 MBLK 1 Anions - Sulfate 0.0 MBLK 2 Anions - Sulfate 0.0 MBLK 2 Anions - Sulfate 0.0 MBLK 2 Anions - Chloride 0.0	QC240614.003		Anions - Chloride	112.69	80 - 120		
240613.09-01: MSD 1 Anions - Chloride 0.57 240613.09-01: MSD 1 Anions - Sulfate 0.46 240613.10-05: MS 2 Anions - Chloride 106.89 240613.10-05: MSD 2 Anions - Chloride 0.94 240613.10-05: MSD 2 Anions - Chloride 0.94 240613.10-05: MSD 2 Anions - Chloride 98.65 LCS 1 Anions - Chloride 98.65 LCS 2 Anions - Chloride 99.07 LCS 2 Anions - Chloride 2.63 LCS 3 Anions - Chloride 2.63 LCS 4 Anions - Chloride 0.0 MBLK 1 Anions - Sulfate 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Sulfate 0.0 Albert 2 Anions - Sulfate 0.0 Albert 3 1.18		240613.09-01: MS 1	Anions - Sulfate	106.93	80 - 120		
24(613.09-01: MSD 1 Anions - Sulfate 0.46 24(613.10-05: MS 2 Anions - Chloride 106.89 240(613.10-05: MSD 2 Anions - Chloride 0.94 240(613.10-05: MSD 2 Anions - Chloride 0.94 240(613.10-05: MSD 2 Anions - Chloride 0.94 LCS 1 Anions - Chloride 98.65 LCS 2 Anions - Chloride 99.07 LCS 2 Anions - Chloride 2.63 LCS 2 Anions - Chloride 2.63 LCS 2 Anions - Chloride 2.63 LCSD 1 Anions - Chloride 2.63 LCSD 2 Anions - Chloride 2.63 LCSD 3 Anions - Chloride 2.63 LCSD 4 Anions - Chloride 2.66 MBLK 1 Anions - Sulfate 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 Alabora - Chloride 0.0 Alabora - Chloride 0.0 Alabora - C		240613.09-01: MSD 1	Anions - Chloride	0.57	0 - 20		
240613.10-05; MS 2 Anions - Chloride 106.89 240613.10-05; MS 2 Anions - Sulfate 103.45 240613.10-05; MSD 2 Anions - Chloride 0.94 240613.10-05; MSD 2 Anions - Chloride 98.65 LCS 1 Anions - Chloride 98.65 LCS 2 Anions - Chloride 99.07 LCS 2 Anions - Chloride 2.63 LCS 1 Anions - Chloride 2.63 LCS 2 Anions - Chloride 2.01 LCS 2 Anions - Chloride 2.03 LCS 2 Anions - Chloride 0.0 MBLK 1 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Sulfate 0.0 MBLK 2 Anions - Sulfate 0.0 A0605.13-01: MS 1 Total Phosphorus 1.18 240601.08-01: MS 2 Total Phosphorus 1.04.6 8		240613.09-01: MSD 1	Anions - Sulfate	0.46	0-20		
240613.10-05: MS 2 Anions - Sulfate 103.45 240613.10-05: MSD 2 Anions - Chloride 0.94 240613.10-05: MSD 2 Anions - Chloride 98.65 LCS 1 Anions - Chloride 98.65 LCS 2 Anions - Chloride 99.07 LCS 2 Anions - Chloride 2.63 LCS 2 Anions - Chloride 2.63 LCSD 1 Anions - Chloride 2.63 LCSD 2 Anions - Chloride 0.0 MBLK 1 Anions - Chloride 0.0 MBLK 1 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 Anions - Chloride 0.0 <td></td> <td>240613.10-05: MS 2</td> <td>Anions - Chloride</td> <td>106.89</td> <td>80 - 120</td> <td></td> <td></td>		240613.10-05: MS 2	Anions - Chloride	106.89	80 - 120		
240613.10-05: MSD 2 Anions - Chloride 0.94 240613.10-05: MSD 2 Anions - Sulfate 1.18 LCS 1 Anions - Chloride 98.65 LCS 2 Anions - Chloride 99.07 LCS 2 Anions - Chloride 99.07 LCS 2 Anions - Chloride 2.63 LCS 2 Anions - Chloride 2.63 LCSD 1 Anions - Chloride 2.63 LCSD 2 Anions - Chloride 2.01 LCSD 2 Anions - Chloride 0.0 MBLK 1 Anions - Chloride 0.0 MBLK 1 Anions - Sulfate 0.0 MBLK 2 Anions - Chloride 0.0 ABLK 3		240613.10-05: MS 2	Anions - Sulfate	103.45	80 - 120		
240613.10-05: MSD 2 Anions - Sulfate 1.18 LCS 1 Anions - Chloride 98.65 LCS 2 Anions - Chloride 102.05 LCS 2 Anions - Chloride 99.07 LCS 2 Anions - Chloride 2.63 LCSD 1 Anions - Chloride 2.63 LCSD 2 Anions - Chloride 2.01 LCSD 2 Anions - Chloride 0.0 MBLK 1 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Sulfate 0.0 MBLK 2 Anions - Sulfate 0.0 Anions - Chloride 0.0 Anions - Chloride 0.0 An		240613.10-05: MSD 2	Anions - Chloride	0.94	0-20		
LCS 1 Anions - Chloride 98.65 LCS 2 Anions - Sulfate 102.05 LCS 2 Anions - Chloride 99.07 LCS 2 Anions - Chloride 2.63 LCSD 1 Anions - Chloride 2.63 LCSD 1 Anions - Chloride 2.01 LCSD 2 Anions - Chloride 2.37 LCSD 2 Anions - Chloride 0.0 MBLK 1 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 ABLK 2 Anions - Chloride 0.0 ABCA0605.13-01: MS 1 Total Phosphorus 1.18 240605.13-01: MS 2 Total Phosphorus 1.18 104.6 8		240613.10-05: MSD 2	Anions - Sulfate	1.18	0-20		
LCS 1 Anions - Sulfate 102.05 LCS 2 Anions - Chloride 99.07 LCS 2 LCSD 1 LCSD 1 LCSD 2 Anions - Chloride 2.63 LCSD 2 Anions - Chloride 2.63 LCSD 2 Anions - Chloride 2.37 LCSD 2 Anions - Chloride 2.37 LCSD 2 Anions - Chloride 0.0 MBLK 1 Anions - Chloride 0.0 MBLK 2 Anions - Sulfate 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 3 Anions - Chloride 0.0 MBLK 4 MBLK 5 Anions - Chloride 0.0 MBLK 5 MBLK 5 Anions - Chloride 0.0 MBLK 5 MBLK		LCS 1	Anions - Chloride	98.65	90 - 110		
LCS 2 Anions - Chloride 99.07 LCSD 1 LCSD 1 Anions - Sulfate 103.85 LCSD 1 LCSD 2 Anions - Chloride 2.63 LCSD 2 Anions - Chloride 2.01 LCSD 2 Anions - Chloride 2.37 LCSD 2 Anions - Chloride 2.37 LCSD 2 Anions - Chloride 0.00 MBLK 1 Anions - Chloride 0.00 MBLK 2 Anions - Chloride 0.00 MBLK 2 Anions - Sulfate 0.00 MBLK 2 Anions - Sulfate 0.00 Anions - Chloride 0.00 Anions - Chloride 0.00 Anions - Chloride 0.00 Anions - Sulfate 0.00		LCS1	Anions - Sulfate	102.05	90-110		
LCS 2 Anions - Sulfate 103.85 LCSD 1 Anions - Chloride 2.63 LCSD 1 Anions - Chloride 2.01 LCSD 2 Anions - Chloride 2.37 LCSD 2 Anions - Chloride 0.0 MBLK 1 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 ABLK 2 Anions - Chloride 0.0 ABLK 2 Anions - Chloride 0.0 ABLK 3 Anions - Chloride 0.0 ABLK 2 Anions - Chloride 0.0 ABLK 3 Anions - Chloride 0.0 ABLK 2 Anions - Sulfate 0.0 ABLK 3 Total Phosphorus 1.1.8 240605.13-01: MS 1 Total Phosphorus 1.1.8 240611.08-01: MS 2 Total Phosphorus 104.6		LCS 2	Anions - Chloride	70'66	90-110		
LCSD 1 Anions - Chloride 2.63 LCSD 1 Anions - Sulfate 2.01 LCSD 2 Anions - Chloride 2.37 LCSD 2 Anions - Chloride 2.66 MBLK 1 Anions - Sulfate 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Sulfate 0.0 MBLK 2 Anions - Sulfate 0.0 Anions - Sulfate		LCS 2	Anions - Sulfate	103.85	90-110		
LCSD 1 Anions - Sulfate 2.01 LCSD 2 Anions - Chloride 2.37 LCSD 2 Anions - Chloride 2.37 MBLK 1 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 ABLK 3 Anions - Chloride 0.0 ABLK 2 Anions - Chloride 0.0 ABC 3 240605.13-01: MS 1 Total Phosphorus 1.18 240611.08-01: MS 2 Total Phosphorus 1.18 240611.08-01: MS 2 Total Phosphorus 104.6		LCSD 1	Anions - Chloride	2.63	0-20		
LCSD 2 Anions - Chloride 2.37 LCSD 2 Anions - Sulfate 2.66 MBLK 1 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 Anions - Sulfate		LCSD 1	Anions - Sulfate	2.01	0-20		
LCSD 2 Anions - Sulfate 2.66 MBLK 1 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 ABLK 2 Anions - Chloride 0.0 ABC 3 240605.13-01: MS 1 Total Phosphorus 1.18 240611.08-01: MS 2 Total Phosphorus 1.18 104.6 104.6		LCSD 2	Anions - Chloride	2.37	0-20		
MBLK 1 Anions - Chloride 0.0 MBLK 2 Anions - Sulfate 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Sulfate 0.0 Anions - Sulfate 0.0 Anions - Sulfate 0.0 Anions - Sulfate 0.0 Total Phosphorus 103.22 240605.13-01: MS 1 Total Phosphorus 1.18 240611.08-01: MS 2 Total Phosphorus 104.6		LCSD 2	Anions - Sulfate	2.66	0 - 20		
MBLK 2 MBLK 2 Anions - Sulfate O.0 MBLK 2 Anions - Chloride O.0 Anions - Sulfate O.0 Anions - Sulfate O.0 Anions - Sulfate O.0 Anions - Sulfate O.0 240605.13-01: MS 1 Total Phosphorus 1.18 240611.08-01: MS 2 Total Phosphorus 1.04.6		MBLK 1	Anions - Chloride	0.0	0-1		
MBLK 2 Anions - Chloride 0.0 MBLK 2 Anions - Sulfate 0.0 QC240618.003 240605.13-01: MS 1 Total Phosphorus 1.18 240611.08-01: MS 2 Total Phosphorus 1.04.6		MBLK 1	Anions - Sulfate	0.0			
MBLK 2 Anions - Sulfate 0.0 QC240618.003 240605.13-01: MS 1 Total Phosphorus 103.22 240605.13-01: MSD 1 Total Phosphorus 1.18 240611.08-01: MS 2 Total Phosphorus 104.6		MBLK 2	Anions - Chloride	0.0	0-1		
QC240618.003 240605.13-01: MS 1 Total Phosphorus 103.22 240605.13-01: MSD 1 Total Phosphorus 1.18 240611.08-01: MS 2 Total Phosphorus 104.6		MBLK 2	Anions - Sulfate	0.0			
240605.13-01; MSD 1 Total Phosphorus 1.18 240611.08-01; MS 2 Total Phosphorus 104.6	QC240618.003	240605.13-01: MS 1	Total Phosphorus	103.22	80 - 120		
240611.08-01: MS 2 Total Phosphorus 104.6		240605.13-01: MSD 1	Total Phosphorus	1.18	0-15		
		240611.08-01: MS 2	Total Phosphorus	104.6	80 - 120		
	= not analyzed						

NA = n

This report cannot be reproduced, except in full, without prior written permission of the GBRA Laboratory. Results shown relate only to the items tested. Samples are assumed to be in acceptable candition unless otherwise noted. (830)379-5822 ext 256 933 East Court Street Seguin, TX 78155

Page 4 of 10

Work Order: 240611.25

2 Parameter is approved under TCEQ Drinking Water Program

- 00
28
15
-
00
0
2407031
=
\simeq
25
CA
10
.25
1.4
\leftarrow
-
5
0
240611
~
1.4
t No:
z
200
E
0
Repo
a)
e.
_

107031728				Publish Date /Time-	2 (2) (2)	200
	240611.08-01: MSD 2	Total Phosphorus	0.42	51.0	4707/C//	3:28 PM
	240612.06-01: MS 3	Total Phosphorus	100 93	80 130		
	240612.06-01; MSD 3	Total Phosphorus	1 28	021-00		
	240613.13-01: MS 4	Total Phosphorus	103 69	SO - 120		
	240613.13-01: MSD 4	Total Phosphorus	1.6	0-15		
	LCS 1	Total Phosphorus	109.2	75-175		
	LCS 2	Total Phosphorus	108.29	75 - 125		
	LCS 3	Total Phosphorus	109.23	75 - 125		
	LCS 4	Total Phosphorus	108.8	75 - 125		
	LCSD I	Total Phosphorus	1.23	0-15		
	LCSD 2	Total Phosphorus	1.6	0-15		
	LCSD 3	Total Phosphorus	2.85	0-15		
	LCSD 4	Total Phosphorus	1.57	0-15		
	1001	Total Phosphorus	109.65	75-175		
	MBLK 1	Total Phosphorus	0.01			
	MBLK 2	Total Phosphorus	0.01			
	MBLK 3	Total Phosphorus	0.01			
	MBLK 4	Total Phosphorus	0.01			
QC240621.009	240603.05-01: MS 1	Total Kjeldahl Nitrogen (TKN)	0.58	90-110		
	240603.05-01: MSD 1	Total Kjeldahl Nitrogen (TKN)	-13.77	0-15		
	240604.25-03: MS 2	Total Kjeldahl Nitrogen (TKN)	103,54	90-110		
	240604.25-03: MSD 2	Total Kjeldahl Nitrogen (TKN)	5.79	0-15		
	240605.12-12: MS 3	Total Kjeldahl Nitrogen (TKN)	82.24	90-110		
	240605.12-12: MSD 3	Total Kjeldahl Nitrogen (TKN)	15.92	0-15		
	240610.07-07: MS 4	Total Kjeldahl Nitrogen (TKN)	90.36	90 - 110		
	240610.07-07: MSD 4	Total Kjeldahl Nitrogen (TKN)	4.71	0-15		
	LCS 1	Total Kjeldahl Nitrogen (TKN)	101.91	90 - 110		
	LCS 2	Total Kjeldahl Nitrogen (TKN)	16'66	90 - 110		
	LCS 3	Total Kjeldahl Nitrogen (TKN)	97.17	90 - 110		
	LCS 4	Total Kjeldahl Nitrogen (TKN)	101.27	90-110		
	LCSD I	Total Kjeldahl Nitrogen (TKN)	2.22	0-15		
	LCSD 2	Total Kjeldahl Nitrogen (TKN)	2.69	0-15		
	LCSD 3	Total Kjeldahl Nitrogen (TKN)	0.1	0-15		
	LCSD 4	Total Kjeldahl Nitrogen (TKN)	5.25	0-15		
	1001	Total Kjeldahl Nitrogen (TKN)	100.2	70 - 130		

NA = not analyzed

Seguin, TX 78155 [830]379-5822 ext 256 933 East Court Street

2 Parameter is approved under TCEQ Drinking Water Program This report cannot be reproduced, except in full, without prior written permission of the GBRA Laboratory. Results shown relate only to the items tested. Samples are assumed to be in acceptable condition unless otherwise noted.

Work Order: 240611.25

1 Parameter not available for NELAP accreditation at the GBRA

28
15
-
07031
0
-
0
-
2407
24
CA
11.25
-
9
0
-
2406
0
Š
-
E
0
Ő.
ai
×
_

NA = not analyzed

(830)379-5822 ext 256

933 East Court Street

Seguin, TX 78155

2 Parameter is approved under TCEQ Drinking Water Program This report cannot be reproduced, except in full, without prior written permission of the GBRA Laboratory. Results shown relate only to the items tested. Samples are assumed to be in acceptable condition unless otherwise noted.

Work Order: 240611.25

1 Parameter not available for NELAP accreditation at the GBRA

Chain-Of-Custody Record

Qualtrax ID: 17988

										1
Keport To			Customer Acct.#:	42372	99 Invoice	423729 Invoice To de particular				
Name: Seguin-Geronimo	0					(iii applicable)				-
Address: PO Box 591, Seguin, Tx 78156	eguin, T	c 78156			Name:			1		
Phone #: 830-386-2573					Address:					B
Email: bmcbride@segui	ntexas	Ov roomaes	Beaming		Phone #:	The state of the s				
Thermometer #. 211		100	81		Email:			1000		
Samuel Land 100	1	Observed /	Observed / Corrected Temp("C): 5, +	- 5.4	Chlorine (Chlorine Check Reagent ID:		Chlorin	Absent D	
Sample Iced (Circle One):	, Ves	No	CoC Page:	/ ot /	pH Paper	pH Paper Reagent ID: 14507 - 1151		CIIIO	CINCLINE: Adsent Present	esent
No. of Containers:		Containers	Containers Intact (Circle One): (Yes)	No	Residual	WErnel Bo				
Time Date Collected Collected	Matrix	P=Plastic G=Glass A=Amber	Sample Name/Description	Preservation ID (PIDS) TCEQ ID Number	Grab / Comp.	Analysis Recursed	240UII. 25			Sub
6-111-24 gato Bar	ww	11-4	Effluent		7		Ol and was composed of	Hd.	Preservative	Ont
6-111-24 9at 82	ww	11.4	Effluent	Millett - Ol	1	Sulfate, Chloride, TDS, Alkalinity	5			
6-11-24 1745	*****			10100	1	TKN, Tphos	101	77	H2804	*
_		200	Efficient	01805305	9	Oil & Grease	-02	+	H2504	>
Matrices:	WW=Wast	ewater, DW=Dri	Matrices: WW=Wastewater, DM=Drinking Water, SW=Surface Water, S=StudgelSoil	Sludge/Soil	Samples m	Samples marked above as "Sub Out" will be subcontracted to a laboration that makes the	ontracted to a laboratory the			
		Expedite Samples:	ples: 24hr/Holiday (4x Eas)	Approved the Comment of the Comment		requirem	requirements of these samples	an essees and	eguatory or en	9-user
		0		(ox Los)	3-5 days (2x Fee)	2x Fee) Due Date:				Γ
Sampler Name (Print): Nell C	J'C	forms			Sampler Signature	the X		W.	1	
Notice de la Company de la Com	V	FOURS		1:30 Par	Transferred To	×		Date/Time:		
	Thompson				Received By:	The N		12/11/9	1:30	
)			2	Received By:	Jan 1		10/11/2	4 1550	0
Relinquished By:				DateTime:	Received Bu-	4		Date/Time:		
MOVED LOCALISTICS					Co noning					

Qualifica ID: 17988

SERVICES CONTROL POLLUTION

Report of Sample Analysis

Chuck Wallgren, Physident Page 1 of Date/Time Received: 6/14/2024 16:23 Laboratory Information PCS Sample #: 764656 Report Date: 6/27/2024 Approved by: Date/Time Taken: 6/11/2024 0845 Sample Information Project Name: 240611.25-02 Matrix: Non-Potable Water Sample ID: 240611.25-02 Guadalupe-Blanco River Authority Client Information Seguin, TX 78155 933 East Court St. Jennifer Sanchez

Test Description	Result	Units	RL	Analy	sis Date/Tim	Moth	Pod.	
Oil and Grease (H.E.M.)	<5.0	mg/L	S	06/25	06/25/2024 10:45 EPA 1664 R	EPA 10	EPA 1664 Rev	EMV
Test Description	Precision	Quality Ass	Quality Assurance Summary	Mery	Men Hen			100
Oil and Grease (H.E.M.)	_	81	N/A	N/A	N/A N/A	A 92	N/A N/A N/A 92 78-114	Blank

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

Wr.
'Dny
38
ted.
gma
desi
SS
he sample to unless desig
esults relate only to tl d on an 'As Is' basis u imits
s' ba
s is
esults relate of on an 'As Is inits
Its a
imi de
alytical re is reported porting Li
it g it
a is
ese am I data i = Rep
A E

www.peslab.net chuck@peslab.net

Chain-Of-Custody Record

Jailtrax ID: 17988	THE WORLD	
Qu	ν,	******

Invoice To (if applicable) Invoice To (if	-											
15 15 15 15 15 15 15 15	Keport				Customer Acct#:		Invoice	To (if applicable)				
Choice 8 No	Name: GBR	A Kylle Gud	llog				Name:					
Phone #: Phone Ph	Address: 93	3 East Court	St Seguir	•			Address:					
Observed / Corrected Temp(C):	Phone #: 83(-379-5822					Phone #:					
Observed I Corrected Temp(**C): 1 October Reagent ID:	Email: labre	orts@gbra.c	D.C.				Email: labs	ubinvoices@gbra.org				
Containing Nation CoC Page: Of Residual Chlorine (Total/Free) Results: Containing Nation Coc Page: On and Chease Comp. Com	Thermomete	. #:		Observed /	Corrected Temp(°C):	,	Chlorine Cl	hock Reagent ID:		Chlorin	a . Abeaut De	
Matrix A=Amber Sample Name/Description TCEQ ID Number Sample Sa	Sample Iced	(Circle One		-	CoC Page:	of	pH Paper R	leagent ID:			. AUSBUILD PTG	osout
Matrix A=Amber Sample NameDescription 1L-G 240611.25-02 WW 1L-G 240611.25-02 TCEQ ID Number TCEQ ID Number	No. of Conta	iners:		Containers	Yes /	0	Residual C	hlorine (Total/Free) Results:				
WW 1LG 240611.25.02 W=Wastewater, DW=Drinking Water, SW=Surface Water, S=SludgerSoil Expedite Samples: 24hr/Holiday (4x Fee) 48hr/Weokend (3x Fee) A MARTINE: Repairme: Date/Time: Repairme: Repa	Date Collected		Matrix		Sample Name/Description	Preservation ID (PID#)/ TCEQ ID Number	Grab / Comp.	Analysis Requested	GBRA Sample ID	ž	Preservative	Sub
M=Wastewater, DW=Drinking Water, SW=Surface Water, S=StudgerSoil Expedite Samples: 24hr/Holiday (4x Fee) 48hr/Weekend (3x Fee) Samples: 24hr/Holiday (4x Fee) 48hr/Weekend (4x Fee) 48hr/Weeke	6/11/2024	0845	ww	11-6	240611.25-02		9	Oil and Grease	764656			
Expedite Samples: 24hr/Holiday (4x Fee) 48hr/Weekend (3x Fee) A Constitute: Reconstraint DaterTime: Reconstraint Reconstr											невом	
M=Wastewater, DW=Drinking Water, SW=Surface Water, S=SludgerSoil Expedite Samples: 24hr/Holiday (4x Fee) 48hr/Weekend (3x Fee) (8a) The Date/Time: Re- Date/Time: Re- Date/Time: Re-												
Expedite Samples: 24hr/Holiday (4x Fee) 48hr/Weekend (3x Fee) 8a												
Expedite Samples: 24hr/Holiday (4x Fee) 48hr/Weekend (3x Fee) 8amples: 24hr/Holiday (4x Fee) 8amples: 24h												
Expedite Samples: 24hr/Holiday (4x Fee) 48hr/Weokend (3x Fee) 63hr/Weokend (3x Fee) 63hr												
Expedite Samples: 24hr/Holiday (4x Fee) 48hr/Weekend (3x Fee) 8amples: 24hr/Holiday (4x Fee) 8amples: 24h												
Expedite Samples: 24hr/Holiday (4x Fee) 48hr/Weekend (3x Fee) 8am/Weekend (3x Fee) 8am/Weeken												
Expedite Samples: 24hr/Hotiday (4x Fee) 48hr/Weokend (3x Fee) 8a												
Expedite Samples: 24hr/Holiday (4x Fee) 48hr/Weokend (3x Fee) 8ahr/Weokend (3x Fee) 8ahr												
Expedite Samples: 24hr/Holiday (4x Fee) 48hr/Weekend (3x Fee) 8a												
Expedite Samples: 24hr/Holiday (4x Fee) 48hr/Weekend (3x Fee) 8amples: 24hr/Holiday (4x Fee) 8amples: 24hr/Holiday												
Expedite Samples: 24hr/Holiday (4x Fee) 48hr/Weekend (3x Fee) 55 Fee (3x Fee) 55 Fee (3x Fee) 56 Fee (3x Fee) 57 Fee (3x Fee) 58 Fee (3x Fee)		Matrices	WW=Was	tewater, DW=D	Prinking Water, SW=Surface Water, S=S	udgerSoll	Samples ma	irked above as "Sub Out" will be s	ubcontracted to a laboratory tha	it meets the	regulatory or enc	d-user
Date/Time: Received By:				Expedite San	24hr/Holiday (4x Fee)	48hr/Weekend (3x Fee)	3-5 days (2	2x Fee) Due Date:	rements of these samples			
Date/Time: Received By:	Sampler Name	Print):					Samulae Sinne					
Date/Time: Received By: Date/Time: Received By: Received By: Agan Coulling:	Relinquished B	"CARR)	12	Mr.	-	Transferred To			Date/Time:		
Date/Time: Received By: Received By: Again Again	Relinquished B); (1			1	Received By:			Date/Time:		
Date/Time: Received By: Cash Carilla	Relinquished B					Date/Time:	Received By:			Date/Time:		
Charles Charles	Relinquished B					Data/Time:	Received By:	Jan. 0 1/2 188.		Date/Time:	11/2	
	NOTES / COMM	ENTS / SHIP T	ö					CHANGE COLUMN		6-14-26	1623	

Page 10 of 10

Pollution Control Services

Sample Log-In Checklist

PCS Sample No(s) 7 6 4 6 5 6	COC No	764656
Client/Company Name: GBRA	Checklist Com	pleted by: JAA
Sample Delivery to Lab Via: Client Drop Off Commercial Carrier: Bus UPS PCS Field Services: Collection/Pick Up Other:	Lone Star FedEx	USPS
Sample Kit/Coolers Sample Kit/Cooler? YesNo Sample Kit/Cooler: Intact? Yes Custody Seals on Sample Kit/Cooler: Not Present If Present Sample Containers Intact; Unbroken and Not Leaking? Yes No Custody Seals on Sample Bottles: Not Present If Present COC Present with Shipment or Delivery or Completed at Drop Off? Yes Has COC sample date/time and other pertinent information been prove Has COC been properly Signed when Received/Relinquished? Yes Does COC agree with Sample Bottle Information, Bottle Types, Prese All Samples Received before Hold Time Expiration? Yes No Sufficient Sample Volumes for Analysis Requested? Yes No Zero Headspace in VOA Vial? Yes No Sample Preservation: *Cooling: Not Required or Required If cooling required, record temperature of submitted samples Observed Is Ice Present in Sample Kit/Cooler? Yes No Samples Lab Thermometer Make and Serial Number: Vaughan 1807009583 Other:	esNo sent, Intact Broken nt, Intact Broken /esNo ided by client/sampler? Y No rvation, etc.? YesNo	Ces:No:
Acid Preserved Sample - If present, is pH <2? Yes No Base Preserved Sample - If present, is pH >12? Yes No Other Preservation: If Present, Meets Requ Sample Preservations Checked by: Date pH paper used to check sample preservation (PCS log #): Samples Preserved/Adjusted by Lab: Lab # Parameters Preservation	**H ₂ SO ₄ NaOH irements? Yes No Time	HNO ₃ H ₃ PO ₄
Adjusted by Tech/Analyst: Date :Time:		= ==
Client Notification/ Documentation for "No" Responses A Person Notified: Notified Date: Time: Method of Contact: At Drop Off: Unable to Contact Authorized Laboratory to Proceed: Regarding / Comments:	E-Mail Fax	(Lab Director)
Actions taken to correct problems/discrepancies:		
Receiving qualifier needed (requires client notification above) Temp. Receiving qualifier entered into LIMS at login Initial/Date: Revision Comments:	Holding Time In	1. 9

Report No: 240521.12_2405281035

Report of Analysis

For: 423729 - City of Seguin-Geronimo WWTP

PO Box 591

Seguin, TX 78156

Publish Date/Time: 5/28/2024 10:35 AM

The Sudgell

Released By: Kylie Gudgell

Tifle: Lead Technical Manager

technically compliant with the requirements of the methods used, except where noted, I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and If applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the report, and that no information or data I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and have been knowingly withheld that would affect the quality of the data.

This Laboratory is NELAP accredited. Scope: Non-potable water, potable water,

Sample Matrix: Woste Worler Grob Sample Type: Collection Date/Time: 5/21/2024 08:14 AM Receive Date/Time: 5/21/2024 01:20 PM Lab Sample ID: 240521.12-01 Site: Effluent

Analyte	Method	Sample Result	DF	RPL S	RPL Qualifier	Test Date/Time	Anglys	Analyst Rend Date/Time	Australia
F. coli by Quanti-Tray	INEXY Collect 19 hr	- CONTROL V				В		AUTO PARA PARA	Andrys
	IDEAN COILETT TO TH	4 MPN/100ML	_	-		5/21/2024 01:48 PM	CC	5/22/2024 08:04 AN	D L

tal .

NA = not analyzed

(830)379-5822 ext 256

Seguin, TX 78155

933 East Court Street

¹ Parameter not available for NELAP accreditation at the G8RA Work Order: 240521.12 ² Parameter is approved under TCEQ Drinking Water Program This report cannot be reproduced, except in full, without prior written permission of the GBRA Laboratory. Results shown relate only to the items tested. Samples are assumed to be in acceptable condition unless otherwise noted.

Page 1 of 2

Report No: 240521.12_2405281035

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

Relative Percent Difference Continuing Calibration Verification MBLK Continuing Calibration Verification Dilution Factor Mish Range Initial Calibration Blank Initial Calibration Verification Coccupantial Calibration Verification Coccupantial Calibration Verification Coccupantial Calibration Verification Coccupantial Calibration Spike Laboratory Control Spike Laboratory Control Spike Duplicate RPL Laboratory Control Spike Duplicate	۵	CINCIPLICATION AND ADDRESS AND	rog	Limit of Quantitation	
ng Calibration Verification ng Calibration Verification MDL MS MS ige MSD libration Blank Ilbration Verification OC ND Inv Control Spike NPL RPL		ative Percent Difference	LR	Low Range	
ng Calibration Verification MDL Factor MS Ige MSD Ilibration Blank ND Ilibration Verification QC Inv Control Spike Duplicate RPL		ntinuing Calibration Verification	MBLK	Method Blank	
Factor NSD Ilbration Blank ND Ilbration Verification OC NY Control Spike NPL RPL NY Control Spike Duplicate	CCV Con	ntinuing Calibration Verification	MDL	Method Detection Limit	
libration Blank ND Ilbration Verification OC OT	D.F. Dilu	ution Factor	MS	Matrix Spike	
libration Blank libration Verification QC NP NP NP NP NP NP NP NP NP N	HR Hig	h Range	MSD	Matrix Spike Duplicate	
libration Verification QC ory Control Spike Duplicate	ICB Initi	ial Calibration Blank	QN	Not Detected	
ny Control Spike Duplicate	ICV Init	ial Calibration Verification	oc	Quality Control	
iry Control Spike Duplicate	rcs Lab	oratory Control Spike	RPL	Reporting Limit	
Qualifier Definition	LCSD Lab	oratory Control Spike Duplicate		•	
	Qualifier Defini	ition			
	Order Comment	22			
Order Comments	240521.12	N/A			

ı			
CCBatch ID	OCID	Parameter	% Recovery / RPD Control Limits
QC240522.002	240521.11-02: Duplicate 1 MBLK 1	E. coli by Quanti-Tray E. coli by Quanti-Tray	0.07

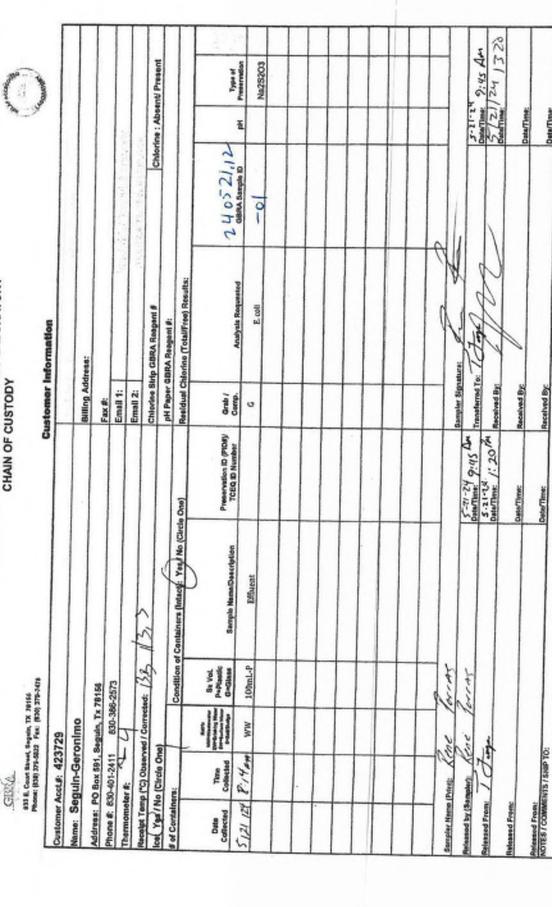
NA = not analyzed

(830)379-5822 ext 256 933 East Court Street Seguin, TX 78155

2 Parameter is approved under TCEQ Drinking Water Program This report cannot be reproduced, except in full, without prior written permission of the GBRA Laboratory. Results shown relate only to the items tested. Samples are assumed to be in acceptable condition unless otherwise noted.

Work Order: 240521.12

¹ Parameter not available for NELAP accreditation at the GBRA


24 heur TATY Notiday Fee-4X Price 48 heur TAT+3X Price 3-6 days TAT = 2X Price

Rush Fees:

Notes: Soldetals sent to subcontracted tab "# pM tested at eubcontracted lab.

GUADAL UPE-BLANCO RIVER AUTHORITY LABORATORY CHAIN OF CUSTODY

學

Report of Analysis

For: 423729 - City of Seguin-Geronimo WWTP

PO Box 591

Seguin, TX 78156

Publish Date/Time: 5/22/2024 3:13 PM

Released By: Kylie Gudgell

Has Ludgell

Title: Lead Technical Manager

technically compliant with the requirements of the methods used, except where noted. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and If applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the report, and that no information or data have been knowingly withheld that would affect the quality of the data. arm the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and

This Laboratory is NELAP accredited. Scope: Non-potable water, potable water,

Lab Sample ID: 240515.04-01 Site: Geronimo WWTP Effluent	fluent	Collection Date/Time: 5/15/2024 08:00 AM Receive Date/Time: 5/15/2024 11:02 AM	5/15/20	24 08:0	10 AM	Sample	Matrix: V	Sample Matrix: Waste Water Sample Type: Composite	
Analyte	Method	Sample Result	님	RPL C	RPL Qualifier	Test Date/Tir	Analyst	Analyst Read Date/Time	Annahad
Ammonia as N	EPA 350.1 Rev. 2	<0.10 mg/L	-	0.1		3	WW	and and and	Andiyst
Total Suspended Solids	SM 2540 D	2.00 mg/L	-	0.5		5/16/2024 08:54 PM	MLH		
г рн (Lab)	SM 4500 H+B	7.5 SU	-	-	Ø	5/15/2024 03:03 PM	S		
Biochemical Oxygen Demand (BOD)	SM 5210 B	2 mg/L	-	-	æ	5/15/2024 03:52 PM	Ŋ	5/20/2024 12:39 PM	S

+-1

NA = not analyzed

Parameter not available for NELAP accreditation at the GBRA
 Parameter is prepared under 1750 percentage.

² Parameter is approved under TCEQ Drinking Water Program

Work Order: 240515.04

Page 1 of 5

Report No: 240515.04_2405221513

Lab Sample ID: 240515.04-02

Site: Geronimo WWTP Influent

Collection Date/Time: 5/15/2024 08:15 AM

Receive Date/Time: 5/15/2024 11:02 AM

Sample Matrix: Waste Water

Publish Date/Time: 5/22/2024 3:13 PM

Sample Type: Grab

sended Solids SM 2540 D SM 4500 H+B ical Oxygen Demand SM 5210 B	Analyte	Method	Sample Besuit	20	100	00				
pended Solids SM 2540 D 88.0 mg/L 6.67 3.335 5/16/2024 08:54 PM MLH SM 4500 H+B 7.4 SU 1 1 Q 5/15/2024 03:04 PM CS 5/20/2024 12:39 PI		-	Incav aldilles	H	KE	Quantier		Analyst	Read Date/Time	Annivet
SM 4500 H+B 7.4 SU 1 1 Q 5/15/2024 03:04 PM CS ical Oxygen Demand SM 5210 B 103 mg/L 1 1 B 5/15/2024 03:52 PM CS 5/20/2024 12:39 PM	Total Suspended Solids	SM 2540 D	88.0 mg/L	79.9	3,335			MLH		The state of
103 mg/L 1 8 5/15/2024 03:52 PM CS 5/20/2024 12:39 PM		SM 4500 H+B	7.4 SU	-	-	Ø	5/15/2024 03:04 PM	S		
	Biochemical Oxygen Demand (BOD)	SM 5210 B	103 mg/L	-	-	æ	5/15/2024 03:52 PM	ប	5/20/2024 12:39 PM	ប

NA = not analyzed

1 Parameter not available for NELAP accreditation at the GBRA

2 Parameter is approved under TCEQ Drinking Water Program

This report cannot be reproduced, except in full, without prior written permission of the GBRA Laboratory. Results shown relate only to the items tested, Samples are assumed to be in acceptable condition unless otherwise noted. Seguin, TX 78155 (830)379-5822 ext 256 933 East Court Street

Page 2 of 6

Page 2 of 5

Work Order: 240515.04

3:13 PM

LABORATORY TERM AND QUALIFIER DEFINITION REPORT

eneral	General Term Definition		
%REC	Percent Recovery	001	Limit of Quantifation
%RPD	Relative Percent Difference	LR	Low Range
CCB	Continuing Calibration Verification	MBLK	Method Blank
CCV	Continuing Calibration Verification	MDL	Method Detection Limit
D.F.	Dilution Factor	MS	Matrix Soike
HR	High Range	MSD	Matrix Solke Duolicate
ICB	Initial Calibration Blank	QN	Not Detected
ICV	Initial Calibration Verification	OC	Ouality Control
CCS	Laboratory Control Spike	RPL	Reporting Limit
CCSD	Laboratory Control Spike Duplicate		

alifie	fler Definition
	Blank contamination; Analyte detected above the method reporting limit in an associated blank
	Sample held beyond the accepted holding time

(A
ž

17			
OCBatch ID	OC ID	Parameter	% Recovery / RPD Control Limits
QC240516.002	240514.07-01: Duplicate 2	pH (Lab)	0.13
	240514.11-01: Duplicate 1	pH (Lab)	0.29
	240515.02-01: Duplicate 3	pH (Lab)	0.0
	240515.08-01: Duplicate 4	pH (Lab)	0.0
	CCV 1	pH (Lab)	100.29
			1 Parameter not available for NELAP accreditation at the GREA

This report cannot be reproduced, except in full, without prior written permission of the GBRA Laboratory. Results shown relate only to the items tested. Samples are assumed to be in acceptable condition unless otherwise noted. (830)379-5822 ext 256 933 East Court Street Seguin, TX 78155

Work Order: 240515.04

2 Parameter is approved under TCEQ Drinking Water Program

Page 3 of 5

4_2405221513
77
5
O.
N
LO
0
4
2
4
15.04
LO.
-
5
240515
2
0
No
=
=
Repor
d)
ě.

Report No: 240515.04_2405221513	2405221513				Publish Date/Time: 5/22/2024 3:13 PM
		ICV I	pH (Lab)	100.43	
	QC240516.006	240515.01-03: Duplicate 2	Total Suspended Solids	1.14	0-15
		240515.01-04: Duplicate 3	Total Suspended Solids	0.0	0-15
		240515.01-05: Duplicate 4	Total Suspended Solids	2.35	0-15
		240515.02-04: Duplicate 1	Total Suspended Solids	0.0	0 - 15
		240515.05-02: Duplicate 5	Total Suspended Solids	1.68	0-15
		240515.06-01: Duplicate 6	Total Suspended Solids	0.0	0 - 15
		240515.06-02: Duplicate 7	Total Suspended Solids	2.01	0-15
		LCS 1	Total Suspended Solids	105.0	75 - 125
		LCS 2	Total Suspended Solids	868	75 - 125
		LCS 3	Total Suspended Solids	102.0	75-125
		LCS 4	Total Suspended Solids	105.0	75 - 125
		LCS 5	Total Suspended Solids	103.0	75 - 125
		PCS 6	Total Suspended Solids	107.0	75-125
		LCS 7	Total Suspended Solids	0.901	75-125
		MBLK 1	Total Suspended Solids	0.0	0 - 0.5
		MBLK 2	Total Suspended Solids	0.0	0-0.5
		MBLK 3	Total Suspended Solids	0.0	0 - 0.5
		MBLK 4	Total Suspended Solids	0.0	0-0.5
		MBLK 5	Total Suspended Solids	0.0	0-0.5
		MBLK 6	Total Suspended Solids	0.0	0-0.5
		MBLK 7	Total Suspended Solids	0.0	0-0.5
	QC240517.001	240514.14-02: Duplicate 1	Biochemical Oxygen Demand (BOD)	5.54	0 - 15.4
		240515.02-02: Duplicate 2	Biochemical Oxygen Demand (BOD)	1.34	0-15.4
		BOD GGA 1	Biochemical Oxygen Demand (BOD)	106.06	84.6 - 115,4
		Dilution Blank 1	Biochemical Oxygen Demand (BOD)	0.0	
	QC240520.002	240509.16-01: MS 1	Ammonia as N	105.5	90-110
		240509.16-01: MSD 1	Ammonia as N	2.47	0-15
		240514.08-01: MS 2	Ammonia as N	111.39	90-110
		240514.08-01: MSD 2	Ammonia as N	0.42	0-15
		240514.10-01: MS 3	Ammonia as N	89.86	90-110
		240514.10-01: MSD 3	Ammonia as N	2.74	0-15
NA = not analyzed				1 Paramete	1 Parameter not available for NELAP accreditation at the GBRA.
933 East Court Street	This report	connot be reproduced execution	2 Parameter This report cannot be reproduced exceed in full without exists united as a second control be reproduced exceed in full without exists and a second control be reproduced exceed in full without exists and a second control be reproduced exceed in full without exists and a second control be reproduced exceed in full without exists and a second control be reproduced exceed in full without exists and a second control be reproduced exceed in full without exists and a second control be reproduced exceed in full without exists and a second control be reproduced exceed in full without exists and a second control be reproduced exceed in full without exists and a second control be reproduced exceed in full without exists and a second control be reproduced exceeding the second control be reproduced as a second control be reproduced exceeding the second control be reproduced as a se	2 Paramete	2 Parameter is approved under TCEQ Drinking Water Program

This report cannol be reproduced, except in full, without prior written permission of the GBRA Laboratory. Results shawn relate only to the items tested. Samples are assumed to be in acceptable condition unless otherwise noted.

Seguin, TX 78155 (830)379-5822 ext 256 933 East Court Street

Page 4 of 6

Page 4 of 5

Work Order: 240515.04

51
21
52
240522
40
15.0
240515
24
No:
Report
\simeq

240515.03-03: MS 4 Ammonia as N 240515.03-03: MSD 4 Ammonia as N 240516.05-01: MS 5 Ammonia as N 240516.05-01: MSD 5 Ammonia as N LCS 1 Ammonia as N LCS 2 Ammonia as N LCS 3 Ammonia as N LCS 4 Ammonia as N LCS 5 Ammonia as N LCSD 1 Ammonia as N LCSD 3 Ammonia as N LCSD 4 Ammonia as N LCSD 5 Ammonia as N LCSD 5 Ammonia as N LCSD 6 Ammonia as N LCSD 7 Ammonia as N LCSD 7 Ammonia as N LCSD 8 Ammonia as N LCSD 9 Ammonia as N LCSD 1 Ammonia as N LCSD 1 Ammonia as N LCSD 1 Ammonia as N LCSD 2 Ammonia as N LCSD 2 Ammonia as N LCSD 3 Ammonia as N LCSD 4 Ammonia as N LCSD 4 Ammonia as N LCSD 5 Ammonia as N LCSD 6 Ammonia as N LCSD 7 Ammonia as N LCSD 7 Ammonia as N LCSD 8 Ammonia as N LCSD 8 Ammonia as N LCSD 9 Ammonia as N LCSD	nia as N N N N N N N N N N N N N N N N N N N	96.23 9.37 100.93 3.31 96.58 100.2 100.34 96.03 97.06 4.7 4.7 4.63 1.95 2.13 95.22 85.94 -0.04	Publish Date/Time: 5/22/2024 90-110 0-15 90-110 90-110 90-110 90-110 0-15 0-15 0-15 0-15 0-15 0-15 0-15	5/22/2024	3:13 PM
Ammonia as N	ia as N	-0.04	0-0.1		
Ammonia as N	ia as N	-0.06	0-0.1		
Ammonia as M	100	4	***		

NA = not analyzed

(830)379-5822 ext 256

Seguin, TX 78155

933 East Court Street

1 Parameter not available for NELAP accreditation at the GBRA 2 Parameter is approved under TCEQ Drinking Water Program Work Order: 240515.04 This report cannot be reproduced, except in full, without prior written permission of the GBRA Laboratory. Results shown relate only to the items tested. Samples are assumed to be in acceptable condition unless otherwise nated.

Page 5 of 5

933 E. Court Steat, Soguin, TX 75165 Phone: (ISS) 379-5422 Fee: (ISS) 379-7473

Castomer Information

the state of the s						The same of the sa				
Name: Seguin-WWTP Geronimo	TP Geror	omin			Billing Address:	Idress:				
Address: PO Box 591, Seguin, Tx 78156	Seguin, Tx 7	8156			Fax #:					-
Phone #: 830-401-2411	830-386-2573	2573			Email 1:		bevotelde@seta.ehlexas.gov			
Thermometer 8: 24					Email 2:	odu	rporras@sequintexas.gov	>		
10	red / Correcte	4: 3313.3			Chlorine 8	Chlorine Strip GBRA Reagent if	Chlori	ine : Abse	Chlorine: Absent/ Present	
los (Yes No (Circle One)	(ai				pH Paper	pH Paper GBRA Roegent#: 11522-04				
# of Containers: 3		Condition of	Condition of Containers (Intact): Yes Wo (Circle One)	ale One)	Residual	Residual Chlorine (Total/Free) Results:	annual contract of the second or second		The second second	-
Dete Time Collected Collected	Bach WWWfasterester CWedsfelog Ware Wwwfestere Wear Swderstadge	Sx Vol. PuPlasdo Gedhass	Sample NemerDescription	Presonation ID (PIDA) TOPO ID Number	Grab / Comp.	Analysis Requested	2 40515,07	Æ	Typa of Preservation	Rush Bampli (2x, 3x 4x)
Sinta to	WW	4L-P	Bifluent		o	Bop-rss	101		lce	_
17	WM	11-4	Effluent	010424-11	o	NH3 ,	1	27	H2SO4	_
_	WW	11P	Influent		o	BOD-TSS	76.		8	-
Sameler Messe (Beleft)	1	60.0			Sampler Signature:	basturo:				1
Ratesand by (Sampler):	Jus.	3		DeterTime: As years	Transferred To:	d To: Bryack ran	1	Dates/flime: 5/15/24		CON.
Released From: B.	year Ri	Rivera			TO 24 Received By:	1		Dato/Tim		7
Released From:				Date/Time:	Received By:	By:		DatoMine	*	
Released Frem:				Date/Tinec:	Received By:	Ph.		Datefilm	DateTime	
NOTES / COMMENTS / 8HIP TO:	. TO:						Rush Sees: 48 be	ur TAT=3X	vice	200

GET Approachs 6-866A 686 Form

December 18, 2024

Ms. Francesca Findlay
Texas Commission on Environmental Quality
Water Quality Division
Applications Review and Processing Team (MC148)
P.O. Box 13087
Austin, Texas 78711-3087

RE: City of Seguin (CN600342257)
Geronimo Creek Wastewater Treatment Plant (RN101610566)
Application to Renew Wastewater Permit #WQ0010277003 (EPA I.D. No. TX0103535)

Dear Ms. Findlay:

Below are the responses to the comments TRC received on December 5, 2024.

- 1. The increase in flow was approved through the major amendment submitted in January 2021. In the currently approved permit issued on February 6, 2023, there is an interim effluent limitations and final effluent limitations. The approved final effluent limitations are for 12 MGD.
- 2. The NORI portion is incorrect, please change "... annual average flow of 5,540,000 gallons per day." to "... annual average flow of 12,000,000 gallons per day." View response above for clarification.
 - a. The NORI translation into Spanish is attached with the correction of 12,000,000 gallons per day instead of 5,540,000.
- 3. In the second sentence of the NORI portion, Guadalupe County is misspelled. Please change "Gadalupe County" to "Guadalupe County".

If additional information is needed, please do not hesitate to contact this office.

Sincerely,

Luid Forche

Luis Tonche, P.E. Project Manager

Enclosures

Francesca Findlay

From: Tonche, Luis <LTonche@trccompanies.com>
Sent: Wednesday, December 18, 2024 10:00 AM

To: Francesca Findlay

Cc: Bell, Craig; Tim Howe; Escutia, Danielle

Subject: RE: [EXTERNAL] FW: WQ0010277003 City of Seguin

Attachments: TRC Response to TCEQ Comments- City of Seguin.pdf; Spanish NORI.docx

Follow Up Flag: Follow up Flag Status: Flagged

Ms. Findlay,

Please see attached response to the comments sent on December 5th. Also attached is the translated Spanish NORI in a Microsoft Word Document.

Thank you,

Luis Tonche, P.E.

Project Manager Design Management Services

505 East Huntland Drive, Suite 250, Austin, TX 78752 **D** 512.684.3150 | ltonche@trccompanies.com LinkedIn | Twitter | Blog | TRCcompanies.com

From: Francesca Findlay <Francesca.Findlay@tceq.texas.gov>

Sent: Thursday, December 5, 2024 11:16 AM **To:** Tim Howe < thowe@seguintexas.gov > **Cc:** Bell, Craig < CBell@trccompanies.com >

Subject: [EXTERNAL] FW: WQ0010277003 City of Seguin

This is an **External** email. Do not click links or open attachments unless you validate the sender and know the content is safe.

ALWAYS hover over the link to preview the actual URL/site and confirm its legitimacy.

Dear Mr. Howe

The attached Notice of Deficiency letter sent on December 5, 2024, requesting additional information needed to declare the application administratively complete. Please send the complete response to my attention December 19, 2024.

Thank you,

Francesca Findlay
License & Permit Specialist
ARP Team | Water Quality Division
512-239-2441
Texas Commission on Environmental Quality

Please consider whether it is necessary to print this e-mail

How is our customer service? Fill out our online customer satisfaction survey at http://www.tceq.texas.gov/customersurvey.

Francesca Findlay

From: Tonche, Luis <LTonche@trccompanies.com>

Sent: Monday, January 6, 2025 4:34 PM

To: Francesca Findlay

Cc: Bell, Craig; Tim Howe; Escutia, Danielle

Subject: RE: [EXTERNAL] FW: WQ0010277003 City of Seguin

Attachments: Seguin Geronimo Creek WWTP Letter.pdf; Updated page 2 of 68 - Copy.pdf; Map

showing two outfalls.pdf

Ms. Findlay,

Two (2) outfalls should be in the application. The two outfalls were approved on the major amendment submitted in January 2021. In the February 6, 2023 issued permit, it had two approved outfalls, Outfall Number 001 and Outfall Number 002. In the permit it states that Outfall 002, if constructed, would replace Outfall 001. For the permit renewal currently in review, the two approved outfalls shall still be included in the permit. Attached is back up documentation that was sent to Erwin Madrid on July 1st 2022. Attached I have included page 2 to include the coordinates for Outfall 002 and the map that shows both outfalls.

Thank you,

Luis Tonche, P.E.

Project Manager
Design Management Services

505 East Huntland Drive, Suite 250, Austin, TX 78752 **D** 512.684.3150 | ltonche@trccompanies.com
LinkedIn | Twitter | Blog | TRCcompanies.com

From: Francesca Findlay <Francesca.Findlay@tceq.texas.gov>

Sent: Friday, January 3, 2025 8:14 AM

To: Tonche, Luis <LTonche@trccompanies.com>

Cc: Bell, Craig <CBell@trccompanies.com>; Tim Howe <thowe@seguintexas.gov>; Escutia, Danielle

<DEscutia@trccompanies.com>

Subject: RE: [EXTERNAL] FW: WQ0010277003 City of Seguin

This is an **External** email. Do not click links or open attachments unless you validate the sender and know the content is safe.

ALWAYS hover over the link to preview the actual URL/site and confirm its legitimacy.

Good morning,

I am reviewing your application, and I have noticed that there are two outfalls in the permit, but I only see one in the application. Please verify that you are wanting to remove one of the outfalls.

Thank you,

Francesca Findlay License & Permit Specialist ARP Team | Water Quality Division 512-239-2441 Texas Commission on Environmental Quality

Please consider whether it is necessary to print this e-mail

How is our customer service? Fill out our online customer satisfaction survey at http://www.tceq.texas.gov/customersurvey.

From: Tonche, Luis <LTonche@trccompanies.com> Sent: Wednesday, December 18, 2024 10:00 AM

To: Francesca Findlay <Francesca.Findlay@tceq.texas.gov>

Cc: Bell, Craig <CBell@trccompanies.com>; Tim Howe <thowe@seguintexas.gov>; Escutia, Danielle

<DEscutia@trccompanies.com>

Subject: RE: [EXTERNAL] FW: WQ0010277003 City of Seguin

Ms. Findlay,

Please see attached response to the comments sent on December 5th. Also attached is the translated Spanish NORI in a Microsoft Word Document.

Thank you,

Luis Tonche, P.E.

Project Manager Design Management Services

505 East Huntland Drive, Suite 250, Austin, TX 78752

D 512.684.3150 | ltonche@trccompanies.com LinkedIn | Twitter | Blog | TRCcompanies.com

From: Francesca Findlay <Francesca.Findlay@tceq.texas.gov>

Sent: Thursday, December 5, 2024 11:16 AM To: Tim Howe < thowe@seguintexas.gov > Cc: Bell, Craig < CBell@trccompanies.com>

Subject: [EXTERNAL] FW: WQ0010277003 City of Seguin

This is an **External** email. Do not click links or open attachments unless you validate the sender and know the content is safe.

ALWAYS hover over the link to preview the actual URL/site and confirm its legitimacy.

Dear Mr. Howe

The attached Notice of Deficiency letter sent on December 5, 2024, requesting additional information needed to declare the application administratively complete. Please send the complete response to my attention December 19, 2024.

Thank you,

Francesca Findlay
License & Permit Specialist
ARP Team | Water Quality Division
512-239-2441
Texas Commission on Environmental Quality

Please consider whether it is necessary to print this e-mail

How is our customer service? Fill out our online customer satisfaction survey at http://www.tceq.texas.gov/customersurvey.

Jon Niermann, *Chairman*Emily Lindley, *Commissioner*Bobby Janecka, *Commissioner*Erin E. Chancellor, *Interim Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

February 17, 2023

TO: Persons on the attached mailing list.

RE: City of Seguin

TPDES Permit No. WQ0010277003

This letter is your notice that the Texas Commission on Environmental Quality (TCEQ) executive director (ED) has acted on the above-named application. According to 30 Texas Administrative Code (TAC) Section 50.135 the ED's action became effective on February 6, 2023 the date the ED signed the permit or other action unless otherwise specified in the permit or other action.

For certain matters, a **motion to overturn**, which is a request that the commission review the ED's action on an application, may be filed with the chief clerk. Whether a motion to overturn is procedurally available for a specific matter is determined by Title 30 of the Texas Administrative Code Chapter 50. According to 30 TAC Section 50.139, an action by the ED is not affected by a motion to overturn filed under this section unless expressly ordered by the commission.

If a motion to overturn is filed, the motion must be received by the chief clerk within 23 days after the date of this letter. An original and 7 copies of a motion must be filed with the chief clerk in person, or by mail to the chief clerk's address on the attached mailing list. On the same day the motion is transmitted to the chief clerk, please provide copies to the applicant, the ED's attorney, and the Public Interest Counsel at the addresses listed on the attached mailing list. If a motion to overturn is not acted on by the commission within 45 days after the date of this letter, then the motion shall be deemed overruled.

You may also request **judicial review** of the ED's action. The procedure and timelines for seeking judicial review of a commission or ED order are governed by Texas Water Code Section 5.351.

Individual members of the public may seek further information by calling the Public Education Program, toll free, at 1-800-687-4040.

Sincerely,

Laurie Gharis Chief Clerk

Laurie Gharis

LG/cb

Enclosure

MAILING LIST for City of Seguin TPDES Permit No. WQ0010277003

FOR THE APPLICANT:

Tim Howe, Director Water/Wastewater City of Seguin 205 North River Street Seguin, Texas 78155

Craig Bell, P.E., CES Practice Leader TRC Companies, Inc. 505 East Huntland Drive, Suite 250 Austin, Texas 78752

INTERESTED PERSONS:

James Manchin 8409 Bell Mountain Drive Austin, Texas 78730

Anne Rogers-Harrison Texas Parks and Wildlife Department 4200 Smith School Road Austin, Texas 78744

Marty Kelly Texas Parks and Wildlife Department 4200 Smith School Road Austin, Texas 78744

FOR THE EXECUTIVE DIRECTOR via electronic mail:

Ryan Vise, Director Texas Commission on Environmental Quality External Relations Division Public Education Program MC-108 P.O. Box 13087 Austin, Texas 78711-3087 Aubrey Pawelka, Staff Attorney Texas Commission on Environmental Quality Environmental Law Division MC-173 P.O. Box 13087 Austin, Texas 78711-3087

Sonia Bhuiya, Technical Staff
Texas Commission on Environmental
Quality
Water Quality Division MC-148
P.O. Box 13087
Austin, Texas 78711-3087

FOR PUBLIC INTEREST COUNSEL via electronic mail:

Vic McWherter, Attorney Texas Commission on Environmental Quality Public Interest Counsel MC-103 P.O. Box 13087 Austin, Texas 78711-3087

FOR THE CHIEF CLERK via electronic mail:

Laurie Gharis, Chief Clerk Texas Commission on Environmental Quality Office of Chief Clerk MC-105 P.O. Box 13087 Austin, Texas 78711-3087

TPDES PERMIT NO. WQ0010277003 [For TCEQ office use only - EPA I.D. No. TX0103535]

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY P.O. Box 13087 Austin, Texas 78711-3087

This major amendment supersedes and replaces TPDES Permit No. WQ0010277003 issued on June 4, 2020.

PERMIT TO DISCHARGE WASTES

under provisions of Section 402 of the Clean Water Act and Chapter 26 of the Texas Water Code

City of Seguin

whose mailing address is

205 North River Street Seguin, Texas 78155

is authorized to treat and discharge wastes from the Geronimo Creek Wastewater Treatment Facility, SIC Code 4952

located at 450 Seitz Road, Seguin in Guadalupe County, Texas 78155

Outfall 001 is via pipe to Geronimo Creek thence to the Guadalupe River Below Comal River in Segment 1804 of the Guadalupe River Basin. The discharge route for Outfall 002 is directly to the Guadalupe River Below Comal River in Segment 1804 of the Guadalupe River Basin (See Attachment A).

only according to effluent limitations, monitoring requirements, and other conditions set forth in this permit, as well as the rules of the Texas Commission on Environmental Quality (TCEQ), the laws of the State of Texas, and other orders of the TCEQ. The issuance of this permit does not grant to the permittee the right to use private or public property for conveyance of wastewater along the discharge route described in this permit. This includes, but is not limited to, property belonging to any individual, partnership, corporation, or other entity. Neither does this permit authorize any invasion of personal rights nor any violation of federal, state, or local laws or regulations. It is the responsibility of the permittee to acquire property rights as may be necessary to use the discharge route.

This permit shall expire at midnight, **June 4**, **2025**.

ISSUED DATE: February 6, 2023

For the Commission

FRINE. Chanaller

INTERIM EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

Outfall Number 001

1. During the period beginning upon the date of issuance and lasting through the completion of expansion to the 12.0 million gallons per day (MGD) facility, the permittee is authorized to discharge subject to the following effluent limitations:

The annual average flow of effluent shall not exceed 2.13 million gallons per day (MGD), nor shall the average discharge during any twohour period (2-hour peak) exceed 3,000 gallons per minute (gpm)

Effluent Characteristic		Discharge Li	imitations		Min. Self-Moni	Min. Self-Monitoring Requirements
	Daily Avg	7-day Avg Daily Max	Daily Max	Single Grab	Report Daily	Report Daily Avg. & Daily Max.
	mg/l (lbs/day)	mg/l	mg/l	mg/l	Measurement Frequency	Sample Type
Flow, MGD	Report	N/A	Report	N/A	Continuous	Totalizing Meter
Biochemical Oxygen Demand (5-day)	20 (355)	30	45	65	Two/week	Composite
Total Suspended Solids	20 (355)	30	45	92	Two/week	Composite
E. coli, colony-forming units or most probable number per 100 ml	126	N/A	399	N/A	One/week	Grab

- shall monitor chlorine residual daily by grab sample after the dechlorination process. An equivalent method of disinfection may be be monitored daily by grab sample. The permittee shall dechlorinate the chlorinated effluent to less than 0.1 mg/l chlorine residual and 2. The effluent shall contain a chlorine residual of at least 1.0 mg/l after a detention time of at least 20 minutes (based on peak flow) and shall substituted only with prior approval of the Executive Director.
 - The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.
- The effluent shall contain a minimum dissolved oxygen of 2.0 mg/l and shall be monitored twice per week by grab sample. 5. Effluent monitoring samples shall be taken at the following location(s): Following the final treatment unit. 6. The effluent shall contain a minimum dissolved oxygen of 2.0 mg/l and shall be monitored twice per week 7. The annual average flow and maximum 2-hour peak flow shall be reported monthly.

FINAL EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

Outfall Number 001 OR 002

1. During the period beginning upon the completion of expansion to the 12.0 million gallons per day (MGD) facility and lasting through the date of expiration, the permittee is authorized to discharge subject to the following effluent limitations:

The annual average flow of effluent shall not exceed 12.0 MGD, nor shall the average discharge during any two-hour period (2-hour peak) exceed 25,000 gpm.

Effluent Characteristic		Discharge Limitations	imitations		Min. Self-Mon	Min. Self-Monitoring Requirements
	Daily Avg mg/l (lbs/day)	7-day Avg mg/l	7-day Avg Daily Max mg/l mg/l	Single Grab mg/l	Report Daily Measurement	Report Daily Avg. & Daily Max. sasurement Sample Type
Flow, MGD	Report	N/A	Report	N/A	Continuous	Totalizing Meter
Biochemical Oxygen Demand (5-day)	20 (2002)	30	45	65	One/day	Composite
Total Suspended Solids	20 (2002)	30	45	65	One/day	Composite
E. coli, colony-forming units or most probable number per 100 ml	126	N/A	399	N/A	Five/week	Grab

^{*}Outfall 002, if constructed, would replace Outfall 001 (See Attachment A)

- shall monitor chlorine residual daily by grab sample after the dechlorination process. An equivalent method of disinfection may be be monitored daily by grab sample. The permittee shall dechlorinate the chlorinated effluent to less than 0.1 mg/l chlorine residual and The effluent shall contain a chlorine residual of at least 1.0 mg/l after a detention time of at least 20 minutes (based on peak flow) and shall substituted only with prior approval of the Executive Director.
 - The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored once per day by grab sample. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.
- The effluent shall contain a minimum dissolved oxygen of 2.0 mg/l and shall be monitored once per day by grab sample. 5. Effluent monitoring samples shall be taken at the following location(s): Following the final treatment unit. 6. The effluent shall contain a minimum dissolved oxygen of 2.0 mg/l and shall be monitored once per day by 7. The annual average flow and maximum 2-hour peak flow shall be reported monthly.

DEFINITIONS AND STANDARD PERMIT CONDITIONS

As required by Title 30 Texas Administrative Code (TAC) Chapter 305, certain regulations appear as standard conditions in waste discharge permits. 30 TAC § 305.121 - 305.129 (relating to Permit Characteristics and Conditions) as promulgated under the Texas Water Code (TWC) §§ 5.103 and 5.105, and the Texas Health and Safety Code (THSC) §§ 361.017 and 361.024(a), establish the characteristics and standards for waste discharge permits, including sewage sludge, and those sections of 40 Code of Federal Regulations (CFR) Part 122 adopted by reference by the Commission. The following text includes these conditions and incorporates them into this permit. All definitions in TWC § 26.001 and 30 TAC Chapter 305 shall apply to this permit and are incorporated by reference. Some specific definitions of words or phrases used in this permit are as follows:

1. Flow Measurements

- a. Annual average flow the arithmetic average of all daily flow determinations taken within the preceding 12 consecutive calendar months. The annual average flow determination shall consist of daily flow volume determinations made by a totalizing meter, charted on a chart recorder and limited to major domestic wastewater discharge facilities with one million gallons per day or greater permitted flow.
- b. Daily average flow the arithmetic average of all determinations of the daily flow within a period of one calendar month. The daily average flow determination shall consist of determinations made on at least four separate days. If instantaneous measurements are used to determine the daily flow, the determination shall be the arithmetic average of all instantaneous measurements taken during that month. Daily average flow determination for intermittent discharges shall consist of a minimum of three flow determinations on days of discharge.
- c. Daily maximum flow the highest total flow for any 24-hour period in a calendar month.
- d. Instantaneous flow the measured flow during the minimum time required to interpret the flow measuring device.
- e. 2-hour peak flow (domestic wastewater treatment plants) the maximum flow sustained for a two-hour period during the period of daily discharge. The average of multiple measurements of instantaneous maximum flow within a two-hour period may be used to calculate the 2-hour peak flow.
- f. Maximum 2-hour peak flow (domestic wastewater treatment plants) the highest 2-hour peak flow for any 24-hour period in a calendar month.

2. Concentration Measurements

- a. Daily average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar month, consisting of at least four separate representative measurements.
 - i. For domestic wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values in the previous four consecutive month period consisting of at least four measurements shall be utilized as the daily average concentration.

- ii. For all other wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values taken during the month shall be utilized as the daily average concentration.
- b. 7-day average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar week, Sunday through Saturday.
- c. Daily maximum concentration the maximum concentration measured on a single day, by the sample type specified in the permit, within a period of one calendar month.
- d. Daily discharge the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in terms of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the sampling day. For pollutants with limitations expressed in other units of measurement, the daily discharge is calculated as the average measurement of the pollutant over the sampling day.
 - The daily discharge determination of concentration made using a composite sample shall be the concentration of the composite sample. When grab samples are used, the daily discharge determination of concentration shall be the arithmetic average (weighted by flow value) of all samples collected during that day.
- e. Bacteria concentration (*E. coli* or Enterococci) Colony Forming Units (CFU) or Most Probable Number (MPN) of bacteria per 100 milliliters effluent. The daily average bacteria concentration is a geometric mean of the values for the effluent samples collected in a calendar month. The geometric mean shall be determined by calculating the nth root of the product of all measurements made in a calendar month, where n equals the number of measurements made; or, computed as the antilogarithm of the arithmetic mean of the logarithms of all measurements made in a calendar month. For any measurement of bacteria equaling zero, a substituted value of one shall be made for input into either computation method. If specified, the 7-day average for bacteria is the geometric mean of the values for all effluent samples collected during a calendar week.
- f. Daily average loading (lbs/day) the arithmetic average of all daily discharge loading calculations during a period of one calendar month. These calculations must be made for each day of the month that a parameter is analyzed. The daily discharge, in terms of mass (lbs/day), is calculated as (Flow, MGD x Concentration, mg/l x 8.34).
- g. Daily maximum loading (lbs/day) the highest daily discharge, in terms of mass (lbs/day), within a period of one calendar month.

3. Sample Type

a. Composite sample - For domestic wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (a). For industrial wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (b).

- b. Grab sample an individual sample collected in less than 15 minutes.
- 4. Treatment Facility (facility) wastewater facilities used in the conveyance, storage, treatment, recycling, reclamation and/or disposal of domestic sewage, industrial wastes, agricultural wastes, recreational wastes, or other wastes including sludge handling or disposal facilities under the jurisdiction of the Commission.
- 5. The term "sewage sludge" is defined as solid, semi-solid, or liquid residue generated during the treatment of domestic sewage in 30 TAC Chapter 312. This includes the solids that have not been classified as hazardous waste separated from wastewater by unit processes.
- 6. The term "biosolids" is defined as sewage sludge that has been tested or processed to meet Class A, Class AB, or Class B pathogen standards in 30 TAC Chapter 312 for beneficial use.
- 7. Bypass the intentional diversion of a waste stream from any portion of a treatment facility.

MONITORING AND REPORTING REQUIREMENTS

1. Self-Reporting

Monitoring results shall be provided at the intervals specified in the permit. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall conduct effluent sampling and reporting in accordance with 30 TAC §§ 319.4 - 319.12. Unless otherwise specified, effluent monitoring data shall be submitted each month, to the Compliance Monitoring Team of the Enforcement Division (MC 224), by the 20th day of the following month for each discharge which is described by this permit whether or not a discharge is made for that month. Monitoring results must be submitted online using the NetDMR reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. Monitoring results must be signed and certified as required by Monitoring and Reporting Requirements No. 10.

As provided by state law, the permittee is subject to administrative, civil and criminal penalties, as applicable, for negligently or knowingly violating the Clean Water Act (CWA); TWC §§ 26, 27, and 28; and THSC § 361, including but not limited to knowingly making any false statement, representation, or certification on any report, record, or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or noncompliance, or falsifying, tampering with or knowingly rendering inaccurate any monitoring device or method required by this permit or violating any other requirement imposed by state or federal regulations.

2. Test Procedures

- a. Unless otherwise specified in this permit, test procedures for the analysis of pollutants shall comply with procedures specified in 30 TAC §§ 319.11 319.12. Measurements, tests, and calculations shall be accurately accomplished in a representative manner.
- b. All laboratory tests submitted to demonstrate compliance with this permit must meet the requirements of 30 TAC § 25, Environmental Testing Laboratory Accreditation and Certification.

3. Records of Results

a. Monitoring samples and measurements shall be taken at times and in a manner so as to be representative of the monitored activity.

- b. Except for records of monitoring information required by this permit related to the permittee's sewage sludge or biosolids use and disposal activities, which shall be retained for a period of at least five years (or longer as required by 40 CFR Part 503), monitoring and reporting records, including strip charts and records of calibration and maintenance, copies of all records required by this permit, records of all data used to complete the application for this permit, and the certification required by 40 CFR § 264.73(b)(9) shall be retained at the facility site, or shall be readily available for review by a TCEQ representative for a period of three years from the date of the record or sample, measurement, report, application or certification. This period shall be extended at the request of the Executive Director.
- c. Records of monitoring activities shall include the following:
 - i. date, time and place of sample or measurement;
 - ii. identity of individual who collected the sample or made the measurement.
 - iii. date and time of analysis;
 - iv. identity of the individual and laboratory who performed the analysis;
 - v. the technique or method of analysis; and
 - vi. the results of the analysis or measurement and quality assurance/quality control records.

The period during which records are required to be kept shall be automatically extended to the date of the final disposition of any administrative or judicial enforcement action that may be instituted against the permittee.

4. Additional Monitoring by Permittee

If the permittee monitors any pollutant at the location(s) designated herein more frequently than required by this permit using approved analytical methods as specified above, all results of such monitoring shall be included in the calculation and reporting of the values submitted on the approved self-report form. Increased frequency of sampling shall be indicated on the self-report form.

5. Calibration of Instruments

All automatic flow measuring or recording devices and all totalizing meters for measuring flows shall be accurately calibrated by a trained person at plant start-up and as often thereafter as necessary to ensure accuracy, but not less often than annually unless authorized by the Executive Director for a longer period. Such person shall verify in writing that the device is operating properly and giving accurate results. Copies of the verification shall be retained at the facility site and/or shall be readily available for review by a TCEQ representative for a period of three years.

6. Compliance Schedule Reports

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of the permit shall be submitted no later than 14 days following each schedule date to the Regional Office and the Compliance Monitoring Team of the Enforcement Division (MC 224).

7. Noncompliance Notification

- In accordance with 30 TAC § 305.125(9) any noncompliance which may endanger human health or safety, or the environment shall be reported by the permittee to the TCEO. Except as allowed by 30 TAC § 305.132, report of such information shall be provided orally or by facsimile transmission (FAX) to the Regional Office within 24 hours of becoming aware of the noncompliance. A written submission of such information shall also be provided by the permittee to the Regional Office and the Compliance Monitoring Team of the Enforcement Division (MC 224) within five working days of becoming aware of the noncompliance. For Publicly Owned Treatment Works (POTWs), effective December 21, 2025, the permittee must submit the written report for unauthorized discharges and unanticipated bypasses that exceed any effluent limit in the permit using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. The written submission shall contain a description of the noncompliance and its cause; the potential danger to human health or safety, or the environment; the period of noncompliance, including exact dates and times; if the noncompliance has not been corrected, the time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance, and to mitigate its adverse effects.
- b. The following violations shall be reported under Monitoring and Reporting Requirement 7.a.:
 - i. Unauthorized discharges as defined in Permit Condition 2(g).
 - ii. Any unanticipated bypass that exceeds any effluent limitation in the permit.
 - iii. Violation of a permitted maximum daily discharge limitation for pollutants listed specifically in the Other Requirements section of an Industrial TPDES permit.
- c. In addition to the above, any effluent violation which deviates from the permitted effluent limitation by more than 40% shall be reported by the permittee in writing to the Regional Office and the Compliance Monitoring Team of the Enforcement Division (MC 224) within 5 working days of becoming aware of the noncompliance.
- d. Any noncompliance other than that specified in this section, or any required information not submitted or submitted incorrectly, shall be reported to the Compliance Monitoring Team of the Enforcement Division (MC 224) as promptly as possible. For effluent limitation violations, noncompliances shall be reported on the approved self-report form.
- 8. In accordance with the procedures described in 30 TAC §§ 35.301 35.303 (relating to Water Quality Emergency and Temporary Orders) if the permittee knows in advance of the need for a bypass, it shall submit prior notice by applying for such authorization.
- 9. Changes in Discharges of Toxic Substances

All existing manufacturing, commercial, mining, and silvicultural permittees shall notify the Regional Office, orally or by facsimile transmission within 24 hours, and both the Regional Office and the Compliance Monitoring Team of the Enforcement Division (MC 224) in writing within five (5) working days, after becoming aware of or having reason to believe:

- a. That any activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic pollutant listed at 40 CFR Part 122, Appendix D, Tables II and III (excluding Total Phenols) which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. One hundred micrograms per liter (100 μ g/L);
 - ii. Two hundred micrograms per liter (200 μ g/L) for acrolein and acrylonitrile; five hundred micrograms per liter (500 μ g/L) for 2,4-dinitrophenol and for 2-methyl-4,6-dinitrophenol; and one milligram per liter (1 mg/L) for antimony;
 - iii. Five (5) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.
- b. That any activity has occurred or will occur which would result in any discharge, on a nonroutine or infrequent basis, of a toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. Five hundred micrograms per liter (500 μ g/L);
 - ii. One milligram per liter (1 mg/L) for antimony;
 - iii. Ten (10) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.

10. Signatories to Reports

All reports and other information requested by the Executive Director shall be signed by the person and in the manner required by 30 TAC § 305.128 (relating to Signatories to Reports).

- 11. All POTWs must provide adequate notice to the Executive Director of the following:
 - a. Any new introduction of pollutants into the POTW from an indirect discharger which would be subject to CWA § 301 or § 306 if it were directly discharging those pollutants;
 - b. Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of issuance of the permit; and
 - c. For the purpose of this paragraph, adequate notice shall include information on:
 - i. The quality and quantity of effluent introduced into the POTW; and
 - ii. Any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW.

PERMIT CONDITIONS

1. General

- a. When the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in an application or in any report to the Executive Director, it shall promptly submit such facts or information.
- b. This permit is granted on the basis of the information supplied and representations made by the permittee during action on an application, and relying upon the accuracy and completeness of that information and those representations. After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked, in whole or in part, in accordance with 30 TAC Chapter 305, Subchapter D, during its term for good cause including, but not limited to, the following:
 - i. Violation of any terms or conditions of this permit;
 - ii. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts; or
 - iii. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.
- c. The permittee shall furnish to the Executive Director, upon request and within a reasonable time, any information to determine whether cause exists for amending, revoking, suspending or terminating the permit. The permittee shall also furnish to the Executive Director, upon request, copies of records required to be kept by the permit.

2. Compliance

- a. Acceptance of the permit by the person to whom it is issued constitutes acknowledgment and agreement that such person will comply with all the terms and conditions embodied in the permit, and the rules and other orders of the Commission.
- b. The permittee has a duty to comply with all conditions of the permit. Failure to comply with any permit condition constitutes a violation of the permit and the Texas Water Code or the Texas Health and Safety Code, and is grounds for enforcement action, for permit amendment, revocation, or suspension, or for denial of a permit renewal application or an application for a permit for another facility.
- c. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of the permit.
- d. The permittee shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal or other permit violation that has a reasonable likelihood of adversely affecting human health or the environment.
- e. Authorization from the Commission is required before beginning any change in the permitted facility or activity that may result in noncompliance with any permit requirements.

- f. A permit may be amended, suspended and reissued, or revoked for cause in accordance with 30 TAC §§ 305.62 and 305.66 and TWC§ 7.302. The filing of a request by the permittee for a permit amendment, suspension and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.
- g. There shall be no unauthorized discharge of wastewater or any other waste. For the purpose of this permit, an unauthorized discharge is considered to be any discharge of wastewater into or adjacent to water in the state at any location not permitted as an outfall or otherwise defined in the Other Requirements section of this permit.
- h. In accordance with 30 TAC § 305.535(a), the permittee may allow any bypass to occur from a TPDES permitted facility which does not cause permitted effluent limitations to be exceeded or an unauthorized discharge to occur, but only if the bypass is also for essential maintenance to assure efficient operation.
- i. The permittee is subject to administrative, civil, and criminal penalties, as applicable, under TWC §§ 7.051 7.075 (relating to Administrative Penalties), 7.101 7.111 (relating to Civil Penalties), and 7.141 7.202 (relating to Criminal Offenses and Penalties) for violations including, but not limited to, negligently or knowingly violating the federal CWA §§ 301, 302, 306, 307, 308, 318, or 405, or any condition or limitation implementing any sections in a permit issued under the CWA § 402, or any requirement imposed in a pretreatment program approved under the CWA §§ 402 (a)(3) or 402 (b)(8).

3. Inspections and Entry

- a. Inspection and entry shall be allowed as prescribed in the TWC Chapters 26, 27, and 28, and THSC § 361.
- b. The members of the Commission and employees and agents of the Commission are entitled to enter any public or private property at any reasonable time for the purpose of inspecting and investigating conditions relating to the quality of water in the state or the compliance with any rule, regulation, permit or other order of the Commission. Members, employees, or agents of the Commission and Commission contractors are entitled to enter public or private property at any reasonable time to investigate or monitor or, if the responsible party is not responsive or there is an immediate danger to public health or the environment, to remove or remediate a condition related to the quality of water in the state. Members, employees, Commission contractors, or agents acting under this authority who enter private property shall observe the establishment's rules and regulations concerning safety, internal security, and fire protection, and if the property has management in residence, shall notify management or the person then in charge of his presence and shall exhibit proper credentials. If any member, employee, Commission contractor, or agent is refused the right to enter in or on public or private property under this authority, the Executive Director may invoke the remedies authorized in TWC § 7.002. The statement above, that Commission entry shall occur in accordance with an establishment's rules and regulations concerning safety, internal security, and fire protection, is not grounds for denial or restriction of entry to any part of the facility, but merely describes the Commission's duty to observe appropriate rules and regulations during an inspection.

4. Permit Amendment and/or Renewal

- a. The permittee shall give notice to the Executive Director as soon as possible of any planned physical alterations or additions to the permitted facility if such alterations or additions would require a permit amendment or result in a violation of permit requirements. Notice shall also be required under this paragraph when:
 - i. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in accordance with 30 TAC § 305.534 (relating to New Sources and New Dischargers); or
 - ii. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants that are subject neither to effluent limitations in the permit, nor to notification requirements in Monitoring and Reporting Requirements No. 9; or
 - iii. The alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan.
- b. Prior to any facility modifications, additions, or expansions that will increase the plant capacity beyond the permitted flow, the permittee must apply for and obtain proper authorization from the Commission before commencing construction.
- c. The permittee must apply for an amendment or renewal at least 180 days prior to expiration of the existing permit in order to continue a permitted activity after the expiration date of the permit. If an application is submitted prior to the expiration date of the permit, the existing permit shall remain in effect until the application is approved, denied, or returned. If the application is returned or denied, authorization to continue such activity shall terminate upon the effective date of the action. If an application is not submitted prior to the expiration date of the permit, the permit shall expire and authorization to continue such activity shall terminate.
- d. Prior to accepting or generating wastes which are not described in the permit application or which would result in a significant change in the quantity or quality of the existing discharge, the permittee must report the proposed changes to the Commission. The permittee must apply for a permit amendment reflecting any necessary changes in permit conditions, including effluent limitations for pollutants not identified and limited by this permit.
- e. In accordance with the TWC § 26.029(b), after a public hearing, notice of which shall be given to the permittee, the Commission may require the permittee, from time to time, for good cause, in accordance with applicable laws, to conform to new or additional conditions.
- f. If any toxic effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is promulgated under CWA § 307(a) for a toxic pollutant which is present in the discharge and that standard or prohibition is more stringent than any limitation on the pollutant in this permit, this permit shall be modified or revoked and reissued to conform to the toxic effluent standard or

prohibition. The permittee shall comply with effluent standards or prohibitions established under CWA § 307(a) for toxic pollutants within the time provided in the regulations that established those standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.

5. Permit Transfer

- a. Prior to any transfer of this permit, Commission approval must be obtained. The Commission shall be notified in writing of any change in control or ownership of facilities authorized by this permit. Such notification should be sent to the Applications Review and Processing Team (MC 148) of the Water Quality Division.
- b. A permit may be transferred only according to the provisions of 30 TAC § 305.64 (relating to Transfer of Permits) and 30 TAC § 50.133 (relating to Executive Director Action on Application or WQMP update).

6. Relationship to Hazardous Waste Activities

This permit does not authorize any activity of hazardous waste storage, processing, or disposal that requires a permit or other authorization pursuant to the Texas Health and Safety Code.

7. Relationship to Water Rights

Disposal of treated effluent by any means other than discharge directly to water in the state must be specifically authorized in this permit and may require a permit pursuant to TWC Chapter 11.

8. Property Rights

A permit does not convey any property rights of any sort, or any exclusive privilege.

9. Permit Enforceability

The conditions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstances, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

10. Relationship to Permit Application

The application pursuant to which the permit has been issued is incorporated herein; provided, however, that in the event of a conflict between the provisions of this permit and the application, the provisions of the permit shall control.

11. Notice of Bankruptcy

- a. Each permittee shall notify the Executive Director, in writing, immediately following the filing of a voluntary or involuntary petition for bankruptcy under any chapter of Title 11 (Bankruptcy) of the United States Code (11 USC) by or against:
 - i. the permittee;
 - ii. an entity (as that term is defined in 11 USC, § 101(14)) controlling the permittee or listing the permit or permittee as property of the estate; or

- iii. an affiliate (as that term is defined in 11 USC, § 101(2)) of the permittee.
- b. This notification must indicate:
 - i. the name of the permittee and the permit number(s);
 - ii. the bankruptcy court in which the petition for bankruptcy was filed; and
 - iii. the date of filing of the petition.

OPERATIONAL REQUIREMENTS

- 1. The permittee shall at all times ensure that the facility and all of its systems of collection, treatment, and disposal are properly operated and maintained. This includes, but is not limited to, the regular, periodic examination of wastewater solids within the treatment plant by the operator in order to maintain an appropriate quantity and quality of solids inventory as described in the various operator training manuals and according to accepted industry standards for process control. Process control, maintenance, and operations records shall be retained at the facility site, or shall be readily available for review by a TCEQ representative, for a period of three years.
- 2. Upon request by the Executive Director, the permittee shall take appropriate samples and provide proper analysis in order to demonstrate compliance with Commission rules. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall comply with all applicable provisions of 30 TAC Chapter 312 concerning sewage sludge or biosolids use and disposal and 30 TAC §§ 319.21 319.29 concerning the discharge of certain hazardous metals.
- 3. Domestic wastewater treatment facilities shall comply with the following provisions:
 - a. The permittee shall notify the Municipal Permits Team, Wastewater Permitting Section (MC 148) of the Water Quality Division, in writing, of any facility expansion at least 90 days prior to conducting such activity.
 - b. The permittee shall submit a closure plan for review and approval to the Municipal Permits Team, Wastewater Permitting Section (MC 148) of the Water Quality Division, for any closure activity at least 90 days prior to conducting such activity. Closure is the act of permanently taking a waste management unit or treatment facility out of service and includes the permanent removal from service of any pit, tank, pond, lagoon, surface impoundment and/or other treatment unit regulated by this permit.
- 4. The permittee is responsible for installing prior to plant start-up, and subsequently maintaining, adequate safeguards to prevent the discharge of untreated or inadequately treated wastes during electrical power failures by means of alternate power sources, standby generators, and/or retention of inadequately treated wastewater.
- 5. Unless otherwise specified, the permittee shall provide a readily accessible sampling point and, where applicable, an effluent flow measuring device or other acceptable means by which effluent flow may be determined.

6. The permittee shall remit an annual water quality fee to the Commission as required by 30 TAC Chapter 21. Failure to pay the fee may result in revocation of this permit under TWC § 7.302(b)(6).

7. Documentation

For all written notifications to the Commission required of the permittee by this permit, the permittee shall keep and make available a copy of each such notification under the same conditions as self-monitoring data are required to be kept and made available. Except for information required for TPDES permit applications, effluent data, including effluent data in permits, draft permits and permit applications, and other information specified as not confidential in 30 TAC §§ 1.5(d), any information submitted pursuant to this permit may be claimed as confidential by the submitter. Any such claim must be asserted in the manner prescribed in the application form or by stamping the words confidential business information on each page containing such information. If no claim is made at the time of submission, information may be made available to the public without further notice. If the Commission or Executive Director agrees with the designation of confidentiality, the TCEQ will not provide the information for public inspection unless required by the Texas Attorney General or a court pursuant to an open records request. If the Executive Director does not agree with the designation of confidentiality, the person submitting the information will be notified.

- 8. Facilities that generate domestic wastewater shall comply with the following provisions; domestic wastewater treatment facilities at permitted industrial sites are excluded.
 - a. Whenever flow measurements for any domestic sewage treatment facility reach 75% of the permitted daily average or annual average flow for three consecutive months, the permittee must initiate engineering and financial planning for expansion and/or upgrading of the domestic wastewater treatment and/or collection facilities. Whenever the flow reaches 90% of the permitted daily average or annual average flow for three consecutive months, the permittee shall obtain necessary authorization from the Commission to commence construction of the necessary additional treatment and/or collection facilities. In the case of a domestic wastewater treatment facility which reaches 75% of the permitted daily average or annual average flow for three consecutive months, and the planned population to be served or the quantity of waste produced is not expected to exceed the design limitations of the treatment facility, the permittee shall submit an engineering report supporting this claim to the Executive Director of the Commission.

If in the judgment of the Executive Director the population to be served will not cause permit noncompliance, then the requirement of this section may be waived. To be effective, any waiver must be in writing and signed by the Director of the Enforcement Division (MC 219) of the Commission, and such waiver of these requirements will be reviewed upon expiration of the existing permit; however, any such waiver shall not be interpreted as condoning or excusing any violation of any permit parameter.

b. The plans and specifications for domestic sewage collection and treatment works associated with any domestic permit must be approved by the Commission and failure to secure approval before commencing construction of such works or making a discharge is a violation of this permit and each day is an additional violation until approval has been secured.

- c. Permits for domestic wastewater treatment plants are granted subject to the policy of the Commission to encourage the development of area-wide waste collection, treatment, and disposal systems. The Commission reserves the right to amend any domestic wastewater permit in accordance with applicable procedural requirements to require the system covered by this permit to be integrated into an area-wide system, should such be developed; to require the delivery of the wastes authorized to be collected in, treated by or discharged from said system, to such area-wide system; or to amend this permit in any other particular to effectuate the Commission's policy. Such amendments may be made when the changes required are advisable for water quality control purposes and are feasible on the basis of waste treatment technology, engineering, financial, and related considerations existing at the time the changes are required, exclusive of the loss of investment in or revenues from any then existing or proposed waste collection, treatment or disposal system.
- 9. Domestic wastewater treatment plants shall be operated and maintained by sewage plant operators holding a valid certificate of competency at the required level as defined in 30 TAC Chapter 30.
- 10. For Publicly Owned Treatment Works (POTWs), the 30-day average (or monthly average) percent removal for BOD and TSS shall not be less than 85%, unless otherwise authorized by this permit.
- 11. Facilities that generate industrial solid waste as defined in 30 TAC § 335.1 shall comply with these provisions:
 - a. Any solid waste, as defined in 30 TAC § 335.1 (including but not limited to such wastes as garbage, refuse, sludge from a waste treatment, water supply treatment plant or air pollution control facility, discarded materials, discarded materials to be recycled, whether the waste is solid, liquid, or semisolid), generated by the permittee during the management and treatment of wastewater, must be managed in accordance with all applicable provisions of 30 TAC Chapter 335, relating to Industrial Solid Waste Management.
 - b. Industrial wastewater that is being collected, accumulated, stored, or processed before discharge through any final discharge outfall, specified by this permit, is considered to be industrial solid waste until the wastewater passes through the actual point source discharge and must be managed in accordance with all applicable provisions of 30 TAC Chapter 335.
 - c. The permittee shall provide written notification, pursuant to the requirements of 30 TAC § 335.8(b)(1), to the Corrective Action Section (MC 127) of the Remediation Division informing the Commission of any closure activity involving an Industrial Solid Waste Management Unit, at least 90 days prior to conducting such an activity.
 - d. Construction of any industrial solid waste management unit requires the prior written notification of the proposed activity to the Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division. No person shall dispose of industrial solid waste, including sludge or other solids from wastewater treatment processes, prior to fulfilling the deed recordation requirements of 30 TAC § 335.5.
 - e. The term "industrial solid waste management unit" means a landfill, surface impoundment, waste-pile, industrial furnace, incinerator, cement kiln, injection well,

container, drum, salt dome waste containment cavern, or any other structure vessel, appurtenance, or other improvement on land used to manage industrial solid waste.

- f. The permittee shall keep management records for all sludge (or other waste) removed from any wastewater treatment process. These records shall fulfill all applicable requirements of 30 TAC § 335 and must include the following, as it pertains to wastewater treatment and discharge:
 - i. Volume of waste and date(s) generated from treatment process;
 - ii. Volume of waste disposed of on-site or shipped off-site;
 - iii. Date(s) of disposal;
 - iv. Identity of hauler or transporter;
 - v. Location of disposal site; and
 - vi. Method of final disposal.

The above records shall be maintained on a monthly basis. The records shall be retained at the facility site, or shall be readily available for review by authorized representatives of the TCEQ for at least five years.

12. For industrial facilities to which the requirements of 30 TAC § 335 do not apply, sludge and solid wastes, including tank cleaning and contaminated solids for disposal, shall be disposed of in accordance with THSC § 361.

TCEQ Revision 06/2020

SLUDGE PROVISIONS

The permittee is authorized to dispose of sludge only at a Texas Commission on Environmental Quality (TCEQ) authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge. The disposal of sludge or biosolids by land application on property owned, leased or under the direct control of the permittee is a violation of the permit unless the site is authorized with the TCEQ. This provision does not authorize Distribution and Marketing of Class A or Class AB Biosolids. This provision does not authorize the permittee to land apply biosolids on property owned, leased or under the direct control of the permittee.

SECTION I. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE OR BIOSOLIDS LAND APPLICATION

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC § 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge or biosolids.
- 2. In all cases, if the person (permit holder) who prepares the sewage sludge supplies the sewage sludge to another person for land application use or to the owner or lease holder of the land, the permit holder shall provide necessary information to the parties who receive the sludge to assure compliance with these regulations.
- 3. The land application of processed or unprocessed chemical toilet waste, grease trap waste, grit trap waste, milk solids, or similar non-hazardous municipal or industrial solid wastes, or any of the wastes listed in this provision combined with biosolids, WTP residuals or domestic septage is prohibited unless the grease trap waste is added at a fats, oil and grease (FOG) receiving facility as part of an anaerobic digestion process.

B. Testing Requirements

1. Sewage sludge or biosolids shall be tested annually in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I [Toxicity Characteristic Leaching Procedure (TCLP)] or other method that receives the prior approval of the TCEQ for the contaminants listed in 40 CFR Part 261.24, Table 1. Sewage sludge or biosolids failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal. Following failure of any TCLP test, the management or disposal of sewage sludge or biosolids at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge or biosolids no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division and the Regional Director (MC Region 13) within seven (7) days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Permitting and Registration Support Division (MC 129), Texas Commission on Environmental Quality, P.O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. This annual report shall be submitted to the TCEQ Regional Office (MC Region 13) and the Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

2. Biosolids shall not be applied to the land if the concentration of the pollutants exceeds the pollutant concentration criteria in Table 1. The frequency of testing for pollutants in Table 1 is found in Section I.C. of this permit.

TABLE 1

<u>Pollutant</u>	<u>Ceiling Concentration</u> (Milligrams per kilogram)*
Arsenic	75
Cadmium	85
Chromium	3000
Copper	4300
Lead	840
Mercury	57
Molybdenum	75
Nickel	420
PCBs	49
Selenium	100
Zinc	7500

^{*} Dry weight basis

3. Pathogen Control

All sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site must be treated by one of the following methods to ensure that the sludge meets either the Class A, Class AB or Class B biosolids pathogen requirements.

a. For sewage sludge to be classified as Class A biosolids with respect to pathogens, the density of fecal coliform in the sewage sludge must be less than 1,000 most probable number (MPN) per gram of total solids (dry weight basis), or the density of Salmonella sp. bacteria in the sewage sludge must be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met:

<u>Alternative 1</u> - The temperature of the sewage sludge that is used or disposed shall be maintained at or above a specific value for a period of time. See 30 TAC § 312.82(a)(2)(A) for specific information;

Alternative 5 (PFRP) - Sewage sludge that is used or disposed of must be treated in one of the Processes to Further Reduce Pathogens (PFRP) described in 40 CFR Part 503, Appendix B. PFRP include composting, heat drying, heat treatment, and thermophilic aerobic digestion; or

Alternative 6 (PFRP Equivalent) - Sewage sludge that is used or disposed of must be treated in a process that has been approved by the U. S. Environmental Protection Agency as being equivalent to those in Alternative 5.

b. For sewage sludge to be classified as Class AB biosolids with respect to pathogens, the density of fecal coliform in the sewage sludge must be less than 1,000 MPN per gram of total solids (dry weight basis), or the density of *Salmonella* sp. bacteria in the sewage sludge be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met:

<u>Alternative 2</u> - The pH of the sewage sludge that is used or disposed shall be raised to above 12 std. units and shall remain above 12 std. units for 72 hours.

The temperature of the sewage sludge shall be above 52° Celsius for 12 hours or longer during the period that the pH of the sewage sludge is above 12 std. units.

At the end of the 72-hour period during which the pH of the sewage sludge is above 12 std. units, the sewage sludge shall be air dried to achieve a percent solids in the sewage sludge greater than 50%; or

Alternative 3 - The sewage sludge shall be analyzed for enteric viruses prior to pathogen treatment. The limit for enteric viruses is less than one Plaque-forming Unit per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC \S 312.82(a)(2)(C)(i-iii) for specific information. The sewage sludge shall be analyzed for viable helminth ova prior to pathogen treatment. The limit for viable helminth ova is less than one per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC \S 312.82(a)(2)(C)(iv-vi) for specific information; or

<u>Alternative 4</u> - The density of enteric viruses in the sewage sludge shall be less than one Plaque-forming Unit per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. The density of viable helminth ova in the sewage sludge shall be less than one per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed.

- c. Sewage sludge that meets the requirements of Class AB biosolids may be classified a Class A biosolids if a variance request is submitted in writing that is supported by substantial documentation demonstrating equivalent methods for reducing odors and written approval is granted by the executive director. The executive director may deny the variance request or revoke that approved variance if it is determined that the variance may potentially endanger human health or the environment, or create nuisance odor conditions.
- d. Three alternatives are available to demonstrate compliance with Class B biosolids criteria.

Alternative 1

- i. A minimum of seven random samples of the sewage sludge shall be collected within 48 hours of the time the sewage sludge is used or disposed of during each monitoring episode for the sewage sludge.
- ii. The geometric mean of the density of fecal coliform in the samples collected shall be less than either 2,000,000 MPN per gram of total solids (dry weight basis) or 2,000,000 Colony Forming Units per gram of total solids (dry weight basis).

<u>Alternative 2</u> - Sewage sludge that is used or disposed of shall be treated in one of the Processes to Significantly Reduce Pathogens (PSRP) described in 40 CFR Part 503, Appendix B, so long as all of the following requirements are met by the generator of the sewage sludge.

- i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;
- ii. An independent Texas Licensed Professional Engineer must make a certification to the generator of a sewage sludge that the wastewater treatment facility generating the sewage sludge is designed to achieve one of the PSRP at the permitted design loading of the facility. The certification need only be repeated if the design loading of the facility is increased. The certification shall include a statement indicating the design meets all the applicable standards specified in Appendix B of 40 CFR Part 503;
- iii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iv. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review; and
- v. If the sewage sludge is generated from a mixture of sources, resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the PSRP, and shall meet the certification, operation, and record keeping requirements of this paragraph.

<u>Alternative 3</u> - Sewage sludge shall be treated in an equivalent process that has been approved by the U.S. Environmental Protection Agency, so long as all of the following requirements are met by the generator of the sewage sludge.

i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;

- ii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iii. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review;
- iv. The Executive Director will accept from the U.S. Environmental Protection Agency a finding of equivalency to the defined PSRP; and
- v. If the sewage sludge is generated from a mixture of sources resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the Processes to Significantly Reduce Pathogens, and shall meet the certification, operation, and record keeping requirements of this paragraph.

In addition to the Alternatives 1 - 3, the following site restrictions must be met if Class B biosolids are land applied:

- i. Food crops with harvested parts that touch the biosolids/soil mixture and are totally above the land surface shall not be harvested for 14 months after application of biosolids.
- ii. Food crops with harvested parts below the surface of the land shall not be harvested for 20 months after application of biosolids when the biosolids remain on the land surface for 4 months or longer prior to incorporation into the soil.
- iii. Food crops with harvested parts below the surface of the land shall not be harvested for 38 months after application of biosolids when the biosolids remain on the land surface for less than 4 months prior to incorporation into the soil.
- iv. Food crops, feed crops, and fiber crops shall not be harvested for 30 days after application of biosolids.
- v. Domestic livestock shall not be allowed to graze on the land for 30 days after application of biosolids.
- vi. Turf grown on land where biosolids are applied shall not be harvested for 1 year after application of the biosolids when the harvested turf is placed on either land with a high potential for public exposure or a lawn.
- vii. Public access to land with a high potential for public exposure shall be restricted for 1 year after application of biosolids.

- viii. Public access to land with a low potential for public exposure shall be restricted for 30 days after application of biosolids.
- ix. Land application of biosolids shall be in accordance with the buffer zone requirements found in 30 TAC § 312.44.

4. Vector Attraction Reduction Requirements

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site shall be treated by one of the following Alternatives 1 through 10 for vector attraction reduction.

- <u>Alternative 1</u> The mass of volatile solids in the sewage sludge shall be reduced by a minimum of 38%.
- Alternative 2 If Alternative 1 cannot be met for an anaerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge anaerobically in the laboratory in a bench-scale unit for 40 additional days at a temperature between 30° and 37° Celsius. Volatile solids must be reduced by less than 17% to demonstrate compliance.
- Alternative 3 If Alternative 1 cannot be met for an aerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge with percent solids of two percent or less aerobically in the laboratory in a bench-scale unit for 30 additional days at 20° Celsius. Volatile solids must be reduced by less than 15% to demonstrate compliance.
- Alternative 4 The specific oxygen uptake rate (SOUR) for sewage sludge treated in an aerobic process shall be equal to or less than 1.5 milligrams of oxygen per hour per gram of total solids (dry weight basis) at a temperature of 20° Celsius.
- Alternative 5 Sewage sludge shall be treated in an aerobic process for 14 days or longer. During that time, the temperature of the sewage sludge shall be higher than 40° Celsius and the average temperature of the sewage sludge shall be higher than 45° Celsius.
- Alternative 6 The pH of sewage sludge shall be raised to 12 or higher by alkali addition and, without the addition of more alkali shall remain at 12 or higher for two hours and then remain at a pH of 11.5 or higher for an additional 22 hours at the time the sewage sludge is prepared for sale or given away in a bag or other container.
- Alternative 7 The percent solids of sewage sludge that does not contain unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 75% based on the moisture content and total solids prior to mixing with other materials. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

Alternative 8 -

The percent solids of sewage sludge that contains unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 90% based on the moisture content and total solids prior to mixing with other materials at the time the sludge is used. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

Alternative 9 -

- i. Biosolids shall be injected below the surface of the land.
- ii. No significant amount of the biosolids shall be present on the land surface within one hour after the biosolids are injected.
- iii. When sewage sludge that is injected below the surface of the land is Class A or Class AB with respect to pathogens, the biosolids shall be injected below the land surface within eight hours after being discharged from the pathogen treatment process.

Alternative 10-

- i. Biosolids applied to the land surface or placed on a surface disposal site shall be incorporated into the soil within six hours after application to or placement on the land.
- ii. When biosolids that are incorporated into the soil is Class A or Class AB with respect to pathogens, the biosolids shall be applied to or placed on the land within eight hours after being discharged from the pathogen treatment process.

C. Monitoring Requirements

Toxicity Characteristic Leaching Procedure - annually (TCLP) Test
PCBs - annually

All metal constituents and fecal coliform or *Salmonella* sp. bacteria shall be monitored at the appropriate frequency shown below, pursuant to 30 TAC § 312.46(a)(1):

Amount of biosolids (*) metric tons per 365-day period	Monitoring Frequency
o to less than 290	Once/Year
290 to less than 1,500	Once/Quarter
1,500 to less than 15,000	Once/Two Months
15,000 or greater	Once/Month

(*) The amount of bulk biosolids applied to the land (dry wt. basis).

Representative samples of sewage sludge shall be collected and analyzed in accordance with the methods referenced in 30 TAC \S 312.7

Identify each of the analytic methods used by the facility to analyze enteric viruses, fecal coliforms, helminth ova, *Salmonella* sp., and other regulated parameters.

Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.

Identify the nature of material generated by the facility (such as a biosolid for beneficial use or land-farming, or sewage sludge or biosolids for disposal at a monofill) and whether the material is ultimately conveyed off-site in bulk or in bags.

SECTION II. REQUIREMENTS SPECIFIC TO BULK SEWAGE SLUDGE OR BIOSOLIDS FOR APPLICATION TO THE LAND MEETING CLASS A, CLASS AB or B PATHOGEN REDUCTION AND THE CUMULATIVE LOADING RATES IN TABLE 2, OR CLASS B PATHOGEN REDUCTION AND THE POLLUTANT CONCENTRATIONS IN TABLE 3

For those permittees meeting Class A, Class AB or B pathogen reduction requirements and that meet the cumulative loading rates in Table 2 below, or the Class B pathogen reduction requirements and contain concentrations of pollutants below listed in Table 3, the following conditions apply:

A. Pollutant Limits

Table 2

	Cumulative Pollutant Loading Rate
<u>Pollutant</u>	(pounds per acre)*
Arsenic	36
Cadmium	35
Chromium	2677
Copper	1339
Lead	268
Mercury	15
Molybdenum	Report Only
Nickel	375
Selenium	89
Zinc	2500

Table 3

	Monthly Average Concentration
<u>Pollutant</u>	(milligrams per kilogram)*
Arsenic	41
Cadmium	39
Chromium	1200
Copper	1500
Lead	300
Mercury	17
Molybdenum	Report Only
Nickel	420
Selenium	36
Zinc	2800
	*Dry weight basis

, 0

B. Pathogen Control

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, a reclamation site, shall be treated by either Class A, Class AB or Class B biosolids pathogen reduction requirements as defined above in Section I.B.3.

C. Management Practices

- 1. Bulk biosolids shall not be applied to agricultural land, forest, a public contact site, or a reclamation site that is flooded, frozen, or snow-covered so that the bulk sewage sludge enters a wetland or other waters in the State.
- 2. Bulk biosolids not meeting Class A requirements shall be land applied in a manner which complies with Applicability in accordance with 30 TAC §312.41 and the Management Requirements in accordance with 30 TAC § 312.44.
- 3. Bulk biosolids shall be applied at or below the agronomic rate of the cover crop.
- 4. An information sheet shall be provided to the person who receives bulk Class A or AB biosolids sold or given away. The information sheet shall contain the following information:
 - a. The name and address of the person who prepared the Class A or AB biosolids that are sold or given away in a bag or other container for application to the land.
 - b. A statement that application of the biosolids to the land is prohibited except in accordance with the instruction on the label or information sheet.
 - c. The annual whole sludge application rate for the biosolids application rate for the biosolids that does not cause any of the cumulative pollutant loading rates in Table 2 above to be exceeded, unless the pollutant concentrations in Table 3 found in Section II above are met.

D. Notification Requirements

- 1. If bulk is applied to land in a State other than Texas, written notice shall be provided prior to the initial land application to the permitting authority for the State in which the bulk biosolids are proposed to be applied. The notice shall include:
 - a. The location, by street address, and specific latitude and longitude, of each land application site.
 - b. The approximate time period bulk biosolids will be applied to the site.
 - c. The name, address, telephone number, and National Pollutant Discharge Elimination System permit number (if appropriate) for the person who will apply the bulk biosolids.
- 2. The permittee shall give 180 days prior notice to the Executive Director in care of the Wastewater Permitting Section (MC 148) of the Water Quality Division of any change planned in the biosolids disposal practice.

E. Record Keeping Requirements

The documents will be retained at the facility site and/or shall be readily available for review by a TCEQ representative. The person who prepares bulk sewage sludge or a biosolids material shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative for a

period of <u>five years</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply.

- 1. The concentration (mg/kg) in the sludge of each pollutant listed in Table 3 above and the applicable pollutant concentration criteria (mg/kg), <u>or</u> the applicable cumulative pollutant loading rate and the applicable cumulative pollutant loading rate limit (lbs/ac) listed in Table 2 above.
- 2. A description of how the pathogen reduction requirements are met (including site restrictions for Class AB and Class B biosolids, if applicable).
- 3. A description of how the vector attraction reduction requirements are met.
- 4. A description of how the management practices listed above in Section II.C are being met
- 5. The following certification statement:

"I certify, under penalty of law, that the applicable pathogen requirements in 30 TAC § 312.82(a) or (b) and the vector attraction reduction requirements in 30 TAC § 312.83(b) have been met for each site on which bulk biosolids are applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices have been met. I am aware that there are significant penalties for false certification including fine and imprisonment."

- 6. The recommended agronomic loading rate from the references listed in Section II.C.3. above, as well as the actual agronomic loading rate shall be retained. The person who applies bulk biosolids shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative <u>indefinitely</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply:
 - a. A certification statement that all applicable requirements (specifically listed) have been met, and that the permittee understands that there are significant penalties for false certification including fine and imprisonment. See 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii), as applicable, and to the permittee's specific sludge treatment activities.
 - b. The location, by street address, and specific latitude and longitude, of each site on which biosolids are applied.
 - c. The number of acres in each site on which bulk biosolids are applied.
 - d. The date and time biosolids are applied to each site.
 - e. The cumulative amount of each pollutant in pounds/acre listed in Table 2 applied to each site.
 - f. The total amount of biosolids applied to each site in dry tons.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

F. Reporting Requirements

The permittee shall report annually to the TCEQ Regional Office (MC Region 13) and Compliance Monitoring Team (MC 224) of the Enforcement Division, by September 30th of each year the following information. The permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. Identify the nature of material generated by the facility (such as a biosolid for beneficial use or land-farming, or sewage sludge for disposal at a monofill) and whether the material is ultimately conveyed off-site in bulk or in bags.
- 3. Results of tests performed for pollutants found in either Table 2 or 3 as appropriate for the permittee's land application practices.
- 4. The frequency of monitoring listed in Section I.C. that applies to the permittee.
- 5. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 6. PCB concentration in sludge or biosolids in mg/kg.
- 7. Identity of hauler(s) and TCEQ transporter number.
- 8. Date(s) of transport.
- 9. Texas Commission on Environmental Quality registration number, if applicable.
- 10. Amount of sludge or biosolids disposal dry weight (lbs/acre) at each disposal site.
- 11. The concentration (mg/kg) in the sludge of each pollutant listed in Table 1 (defined as a monthly average) as well as the applicable pollutant concentration criteria (mg/kg) listed in Table 3 above, or the applicable pollutant loading rate limit (lbs/acre) listed in Table 2 above if it exceeds 90% of the limit.
- 12. Level of pathogen reduction achieved (Class A, Class AB or Class B).
- 13. Alternative used as listed in Section I.B.3.(a. or b.). Alternatives describe how the pathogen reduction requirements are met. If Class B biosolids, include information on how site restrictions were met.
- 14. Identify each of the analytic methods used by the facility to analyze enteric viruses, fecal coliforms, helminth ova, *Salmonella* sp., and other regulated parameters.
- 15. Vector attraction reduction alternative used as listed in Section I.B.4.

- 16. Amount of sludge or biosolids transported in dry tons/year.
- 17. The certification statement listed in either 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii) as applicable to the permittee's sludge or biosolids treatment activities, shall be attached to the annual reporting form.
- 18. When the amount of any pollutant applied to the land exceeds 90% of the cumulative pollutant loading rate for that pollutant, as described in Table 2, the permittee shall report the following information as an attachment to the annual reporting form.
 - a. The location, by street address, and specific latitude and longitude.
 - b. The number of acres in each site on which bulk biosolids are applied.
 - c. The date and time bulk biosolids are applied to each site.
 - d. The cumulative amount of each pollutant (i.e., pounds/acre) listed in Table 2 in the bulk biosolids applied to each site.
 - e. The amount of biosolids (i.e., dry tons) applied to each site.

The above records shall be maintained on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION III. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE OR BIOSOLIDS DISPOSED IN A MUNICIPAL SOLID WASTE LANDFILL

- A. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC § 330 and all other applicable state and federal regulations to protect public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present. The permittee shall ensure that the sewage sludge meets the requirements in 30 TAC § 330 concerning the quality of the sludge or biosolids disposed in a municipal solid waste landfill.
- B. If the permittee generates sewage sludge and supplies that sewage sludge or biosolids to the owner or operator of a municipal solid waste landfill (MSWLF) for disposal, the permittee shall provide to the owner or operator of the MSWLF appropriate information needed to be in compliance with the provisions of this permit.
- C. The permittee shall give 180 days prior notice to the Executive Director in care of the Wastewater Permitting Section (MC 148) of the Water Quality Division of any change planned in the sewage sludge or biosolids disposal practice.
- D. Sewage sludge or biosolids shall be tested annually in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I (Toxicity Characteristic Leaching Procedure) or other method, which receives the prior approval of the TCEQ for contaminants listed in Table 1 of 40 CFR § 261.24. Sewage sludge or biosolids failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal.

Following failure of any TCLP test, the management or disposal of sewage sludge or biosolids at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge or biosolids no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division and the Regional Director (MC Region 13) of the appropriate TCEQ field office within 7 days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Permitting and Registration Support Division (MC 129), Texas Commission on Environmental Quality, P. O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. This annual report shall be submitted to the TCEQ Regional Office (MC Region 13) and the Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30 of each year.

- E. Sewage sludge or biosolids shall be tested as needed, in accordance with the requirements of 30 TAC Chapter 330.
- F. Record keeping Requirements

The permittee shall develop the following information and shall retain the information for five years.

- 1. The description (including procedures followed and the results) of all liquid Paint Filter Tests performed.
- 2. The description (including procedures followed and results) of all TCLP tests performed.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

G. Reporting Requirements

The permittee shall report annually to the TCEQ Regional Office (MC Region 13) and Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30th of each year the following information. The permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 3. Annual sludge or biosolids production in dry tons/year.
- 4. Amount of sludge or biosolids disposed in a municipal solid waste landfill in dry tons/year.
- 5. Amount of sludge or biosolids transported interstate in dry tons/year.
- 6. A certification that the sewage sludge or biosolids meets the requirements of 30 TAC § 330 concerning the quality of the sludge disposed in a municipal solid waste landfill.
- 7. Identity of hauler(s) and transporter registration number.
- 8. Owner of disposal site(s).
- 9. Location of disposal site(s).
- 10. Date(s) of disposal.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION IV. REQUIREMENTS APPLYING TO SLUDGE OR BIOSOLIDS TRANSPORTED TO ANOTHER FACILITY FOR FURTHER PROCESSING

These provisions apply to sludge or biosolids that is transported to another wastewater treatment facility or facility that further processes sludge or biosolids. These provisions are intended to allow transport of sludge or biosolids to facilities that have been authorized to accept sludge or biosolids. These provisions do not limit the ability of the receiving facility to determine whether to accept the sludge or biosolids, nor do they limit the ability of the receiving facility to request additional testing or documentation.

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC Chapter 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge.
- 2. Sludge or biosolids may only be transported using a registered transporter or using an approved pipeline.

B. Record Keeping Requirements

- 1. For sludge transported by an approved pipeline, the permittee must maintain records of the following:
 - a. the amount of sludge or biosolids transported;
 - b. the date of transport;
 - c. the name and TCEQ permit number of the receiving facility or facilities;
 - d. the location of the receiving facility or facilities;
 - e. the name and TCEO permit number of the facility that generated the waste; and
 - f. copy of the written agreement between the permittee and the receiving facility to accept sludge or biosolids.
- 2. For sludge or biosolids transported by a registered transporter, the permittee must maintain records of the completed trip tickets in accordance with 30 TAC § 312.145(a)(1)-(7) and amount of sludge or biosolids transported.
- 3. The above records shall be maintained on-site on a monthly basis and shall be made available to the TCEQ upon request. These records shall be retained for at least five years.

C. Reporting Requirements

The permittee shall report the following information annually to the TCEQ Regional Office (MC Region 13) and Compliance Monitoring Team (MC 224) of the Enforcement Division, by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. the annual sludge or biosolids production;
- 3. the amount of sludge or biosolids transported;
- 4. the owner of each receiving facility;
- 5. the location of each receiving facility; and
- 6. the date(s) of disposal at each receiving facility.

TCEQ Revision 06/2020

OTHER REQUIREMENTS

- 1. The permittee shall employ or contract with one or more licensed wastewater treatment facility operators or wastewater system operations companies holding a valid license or registration according to the requirements of 30 TAC Chapter 30, Occupational Licenses and Registrations, and in particular 30 TAC Chapter 30, Subchapter J, Wastewater Operators and Operations Companies.
 - This Category B for the Interim phase and Category A for the Final phase of facility must be operated by a chief operator or an operator holding a Class B license or higher for the Interim phase and a Class A license or higher for the Final phase. The facility must be operated a minimum of five days per week by the licensed chief operator or an operator holding the required level of license or higher. The licensed chief operator or operator holding the required level of license or higher must be available by telephone or pager seven days per week. Where shift operation of the wastewater treatment facility is necessary, each shift that does not have the on-site supervision of the licensed chief operator must be supervised by an operator in charge who is licensed not less than one level below the category for the facility.
- 2. The facility is not located in the Coastal Management Program boundary.
- 3. Chronic toxic criteria apply at the edge of the mixing zone. The mixing zone is defined as 300 feet downstream and 100 feet upstream from the point of discharge.
- 4. The permittee shall comply with the requirements of 30 TAC § 309.13(a) through (d). In addition, by ownership of the required buffer zone area, the permittee shall comply with the requirements of 30 TAC § 309.13(e).
- 5. The permittee shall provide facilities for the protection of its wastewater treatment facility from a 100-year flood.
- 6. In accordance with 30 TAC § 319.9, a permittee that has at least twelve months of uninterrupted compliance with its bacteria limit may notify the commission in writing of its compliance and request a less frequent measurement schedule. To request a less frequent schedule, the permittee shall submit a written request to the TCEO Wastewater Permitting Section (MC 148) for each phase that includes a different monitoring frequency. The request must contain all of the reported bacteria values (Daily Avg. and Daily Max/Single Grab) for the twelve consecutive months immediately prior to the request. If the Executive Director finds that a less frequent measurement schedule is protective of human health and the environment, the permittee may be given a less frequent measurement schedule. For this permit, 1/week may be reduced to 2/month in the Interim phase and 5/week may be reduced to 3/week in the Final phase. A violation of any bacteria limit by a facility that has been granted a less frequent measurement schedule will require the permittee to return to the standard frequency schedule and submit written notice to the TCEQ Wastewater Permitting Section (MC 148). The permittee may not apply for another reduction in measurement frequency for at least 24 months from the date of the last violation. The Executive Director may establish a more frequent measurement schedule if necessary, to protect human health or the environment.
- 7. Prior to construction of the Final phase of treatment facilities, the permittee shall submit to the TCEQ Wastewater Permitting Section (MC 148) a summary transmittal letter in

accordance with the requirements in 30 TAC § 217.6(d). If requested by the Wastewater Permitting Section, the permittee shall submit plans, specifications, and a final engineering design report which comply with 30 TAC Chapter 217, Design Criteria for Domestic Wastewater Systems. The permittee shall clearly show how the treatment system will meet the effluent limitations required on Page 2a of this permit. A copy of the summary transmittal letter shall be available at the plant site for inspection by authorized representatives of the TCEQ.

8. The permittee shall notify the TCEQ Regional Office (MC Region 13) and the Applications Review and Processing Team (MC 148) of the Water Quality Division, in writing at least forty-five days prior to the completion of the Final phase on Notification of Completion Form 20007.

CONTRIBUTING INDUSTRIES AND PRETREATMENT REQUIREMENTS

1. The permittee shall operate an industrial pretreatment program in accordance with Sections 402(b)(8) and (9) of the Clean Water Act, the General Pretreatment Regulations (40 CFR Part 403), and the approved **City of Seguin** publicly owned treatment works (POTW) pretreatment program submitted by the permittee. The pretreatment program was approved on **May 21, 2002 and** modified on **April 29, 2010**, and on **June 17, 2011** (Streamlining Rule nonsubstantial modification).

The POTW pretreatment program is hereby incorporated by reference and shall be implemented in a manner consistent with the following requirements:

- a. Industrial user (IU) information shall be kept current according to 40 CFR §§ 403.8(f)(2)(i) and (ii) and updated at a frequency set forth in the approved pretreatment program to reflect the accurate characterization of all IUs.
- b. The frequency and nature of IU compliance monitoring activities by the permittee shall be consistent with the approved POTW pretreatment program and commensurate with the character, consistency, and volume of waste. The permittee is required to inspect and sample the effluent from each significant industrial user (SIU) at least once per year, except as specified in 40 CFR § 403.8(f)(2)(v). This is in addition to any industrial self-monitoring activities.
- c. The permittee shall enforce and obtain remedies for IU noncompliance with applicable pretreatment standards and requirements and the approved POTW pretreatment program.
- d. The permittee shall control through permit, order, or similar means, the contribution to the POTW by each IU to ensure compliance with applicable pretreatment standards and requirements and the approved POTW pretreatment program. In the case of SIUs (identified as significant under 40 CFR § 403.3(v)), this control shall be achieved through individual permits or general control mechanisms, in accordance with 40 CFR § 403.8(f)(1)(iii).

Both individual and general control mechanisms must be enforceable and contain, at a minimum, the following conditions:

- (1) Statement of duration (in no case more than five years);
- (2) Statement of non-transferability without, at a minimum, prior notification to the POTW and provision of a copy of the existing control mechanism to the new owner or operator;
- (3) Effluent limits, which may include enforceable best management practices (BMPs), based on applicable general pretreatment standards, categorical pretreatment standards, local limits, and State and local law;
- Self-monitoring, sampling, reporting, notification and record keeping requirements, identification of the pollutants to be monitored (including, if applicable, the process for seeking a waiver for a pollutant neither present nor expected to be present in the IU's discharge in accordance with 40 CFR § 403.12(e)(2), or a specific waived pollutant in the case of an individual control mechanism), sampling location, sampling frequency, and sample type, based on the applicable general pretreatment standards in 40 CFR Part 403, categorical pretreatment standards, local limits, and State and local law;

- (5) Statement of applicable civil and criminal penalties for violation of pretreatment standards and requirements, and any applicable compliance schedule. Such schedules may not extend the compliance date beyond federal deadlines; and
- (6) Requirements to control slug discharges, if determined by the POTW to be necessary.
- e. For those IUs who are covered by a general control mechanism, in order to implement 40 CFR § 403.8(f)(1)(iii)(A)(2), a monitoring waiver for a pollutant neither present nor expected to be present in the IU's discharge is not effective in the general control mechanism until after the POTW has provided written notice to the SIU that such a waiver request has been granted in accordance with 40 CFR §403.12(e)(2).
- f. The permittee shall evaluate whether each SIU needs a plan or other action to control slug discharges, in accordance with 40 CFR § 403.8(f)(2)(vi). If the POTW decides that a slug control plan is needed, the plan shall contain at least the minimum elements required in 40 CFR § 403.8(f)(2)(vi).
- g. The permittee shall provide adequate staff, equipment, and support capabilities to carry out all elements of the pretreatment program.
- h. The approved program shall not be modified by the permittee without the prior approval of the Executive Director, according to 40 CFR § 403.18.
- 2. The permittee is under a continuing duty to establish and enforce specific local limits to implement the provisions of 40 CFR §403.5, develop and enforce local limits as necessary, and modify the approved pretreatment program as necessary to comply with federal, state, and local law, as amended. The permittee may develop BMPs to implement 40 CFR §403.5(c)(1) and (2). Such BMPs shall be considered local limits and pretreatment standards. The permittee is required to effectively enforce such limits and to modify its pretreatment program, including the Legal Authority, Enforcement Response Plan, and Standard Operating Procedures (including forms), if required by the Executive Director to reflect changing conditions at the POTW. Substantial modifications will be approved in accordance with 40 CFR §403.18, and modifications will become effective upon approval by the Executive Director in accordance with 40 CFR § 403.18.

The permittee submitted to the TCEQ on April 29, 2011, and amendments on May 27, 2011, and March 4, 2016, a substantial modification to their approved pretreatment program revising the existing technically based local limits (TBLLs). On May 21, 2014, the TCEQ received a written notice from the CA with an estimated construction date for the proposed downstream outfall location for the Geronimo Creek WWTP and confirming which portion of the original TBLLs package be reviewed by the TCEQ. The estimated construction date was delayed, and the updated timeframe was submitted to the TCEQ on November 9, 2015. The Executive Director is currently finalizing the technical review of this substantial modification.

If after review of the substantial modification submission, the Executive Director determines that the submission does not comply with applicable requirements, including 40 CFR §\$403.8 and 403.9, the Executive Director will notify the permittee. According to 40 CFR \$403.11(c), the notification will include suggested revisions to bring the substantial

modification submission into compliance with applicable requirements, including 40 CFR §§403.8(b) and (f) and 403.9(b). In such a case, revised information will be necessary for the Executive Director to make a determination on whether to approve or deny the permittee's substantial modification submission.

Upon approval by the Executive Director of the substantial modification to this approved POTW pretreatment program, the requirement to develop and enforce specific prohibitions and/or limits to implement the prohibitions and limits set forth in 40 CFR §\$403.5(a)(1), (b), (c)(1) and (3), and (d) is a condition of this permit. The specific prohibitions set out in 40 CFR §403.5(b) shall be enforced by the permittee unless modified under this provision.

3. The permittee shall analyze the treatment facility influent and effluent for the presence of the toxic pollutants listed in the Texas Surface Water Quality Standards [30 TAC Chapter 307], and 40 CFR Part 122, Appendix D, Table II at least **once per twelve months** and the toxic pollutants listed in 40 CFR Part 122, Appendix D, Table III at least **once per six months**. If, based upon information available to the permittee, there is reason to suspect the presence of any toxic or hazardous pollutant listed in 40 CFR Part 122, Appendix D, Table V, or any other pollutant, known or suspected to adversely affect treatment plant operation, receiving water quality, or solids disposal procedures, analysis for those pollutants shall be performed at least **once per six months** on both the influent and the effluent.

The influent and effluent samples collected shall be composite samples consisting of at least 12 aliquots collected at approximately equal intervals over a representative 24-hour period and composited according to flow. Sampling and analytical procedures shall be in accordance with guidelines established in 40 CFR Part 136, as amended; as approved by the EPA through the application for alternate test procedures; or as suggested in Tables E-1 and E-2 of the *Procedures to Implement the Texas Surface Water Quality Standards* (RG-194), June 2010, as amended and adopted by the TCEQ. The effluent samples shall be analyzed to the minimum analytical level (MAL), if necessary, to determine compliance with the daily average water quality based effluent concentration from the TCEQ's Texas Toxicity Modeling Program (TEXTOX) and other applicable water quality discharge standards. Where composite samples are inappropriate due to sampling, holding time, or analytical constraints, at least four (4) grab samples shall be taken at equal intervals over a representative 24-hour period.

4. The permittee shall prepare annually a list of IUs, which during the preceding twelve (12) months were in significant noncompliance (SNC) with applicable pretreatment requirements. For the purposes of this section of the permit, "CONTRIBUTING INDUSTRIES AND PRETREATMENT REQUIREMENTS," SNC shall be determined based upon the more stringent of either criteria established at 40 CFR § 403.8(f)(2)(viii) [rev. 10/14/05] or criteria established in the approved POTW pretreatment program. This list is to be published annually during the month of **May** in a newspaper of general circulation that provides meaningful public notice within the jurisdiction(s) served by the POTW.

In addition, each **May** the permittee shall submit an updated pretreatment program annual status report, in accordance with 40 CFR §§ 403.12(i) [rev. 10/22/15] and (m), to the TCEQ Pretreatment Team (MC148) of the Water Quality Division. The report summary shall be submitted on the Pretreatment Performance Summary (PPS) form [TCEQ-20218]. The report shall contain the following information as well as the information on the tables in this section:

- a. An updated list of all regulated IUs as indicated in this section. For each listed IU, the following information shall be included:
 - (1) Standard Industrial Classification (SIC) or North American Industry Classification System (NAICS) code *and* categorical determination.
 - (2) If the pretreatment program has been modified and approved to incorporate reduced monitoring for any of the categorical IUs as provided by 40 CFR Part 403 [rev. 10/14/05], then the list must also identify:
 - categorical IUs subject to the conditions for reduced monitoring and reporting requirements under 40 CFR § 403.12(e)(1) [rev. 10/22/15] and (3);
 - those IUs that are non-significant categorical industrial users (NSCIUs) under 40 CFR §403.3(v)(2); and
 - those IUs that are middle tier categorical industrial users (MTCIUs) under 40 CFR §403.12(e)(3).
 - (3) Control mechanism status.
 - Indicate whether the IU has an effective individual or general control mechanism, and the date such control mechanism was last issued, reissued, or modified;
 - Indicate which IUs were added to the system, or newly identified, during the pretreatment year reporting period;
 - Include the type of general control mechanisms; and
 - Report all NSCIU annual evaluations performed, as applicable.
 - (4) A summary of all compliance monitoring activities performed by the POTW during the pretreatment year reporting period. The following information shall be reported:
 - Total number of inspections performed; and
 - Total number of sampling events conducted.
 - (5) Status of IU compliance with effluent limitations, reporting, and narrative standard (which may include enforceable BMPs, narrative limits, and/or operational standards) requirements. Compliance status shall be defined as follows:
 - Compliant (C) no violations during the pretreatment year reporting period;
 - Non-compliant (NC) one or more violations during the pretreatment year reporting period but does not meet the criteria for SNC; and

- Significant Noncompliance (SNC) in accordance with requirements described above in this section.
- (6) For noncompliant IUs, indicate the nature of the violations, the type and number of actions taken (notice of violation, administrative order, criminal or civil suit, fines or penalties collected, etc.), and the current compliance status. If any IU was on a schedule to attain compliance with effluent limits or narrative standards, indicate the date the schedule was issued and the date compliance is to be attained.
- b. A list of each IU whose authorization to discharge was terminated or revoked during the pretreatment year reporting period and the reason for termination.
- c. A report on any interference, pass through, Act of God, or POTW permit violations known or suspected to be caused by IUs and response actions taken by the permittee.
- d. The results of all influent and effluent analyses performed pursuant to Item 3 of this section.
- e. An original newspaper public notice, or copy of the newspaper publication with official affidavit, of the list of IUs that meet the criteria of SNC, giving the name of the newspaper and date the list was published.
- f. The daily average water quality based effluent concentrations (from the TCEQ's Texas Toxicity Modeling Program (TexTox)) necessary to attain the Texas Surface Water Quality Standards, 30 TAC Chapter 307, in water in the state.
- g. The maximum allowable headworks loading (MAHL) in pounds per day (lb/day) of the approved TBLLs or for each pollutant of concern (POC) for which the permittee has calculated a MAHL. In addition, the influent loading as a percent of the MAHL, using the annual average flow of the wastewater treatment plant in million gallons per day (MGD) during the pretreatment year reporting period, for each pollutant that has an adopted TBLL or for each POC for which the permittee has calculated a MAHL. (See Endnotes No. 2 at the end of this section for the influent loading as a percent of the MAHL equation.)
- h. The permittee may submit the updated pretreatment program annual status report information in tabular form using the example table format provided. Please attach, on a separate sheet, explanations to document the various pretreatment activities, including IU permits that have expired, BMP violations, and any sampling events that were not conducted by the permittee as required.
- i. A summary of changes to the POTW's approved pretreatment program that have not been previously reported to the Approval Authority.

Effective December 21, 2025, the permittee must submit the updated pretreatment program annual status report required by this section electronically using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. [rev. Federal Register/ Vol. 80/ No. 204/ Friday, October 22, 2015/ Rules and Regulations, pages 64064-64158].

- 5. The permittee shall provide adequate written notification to the Executive Director, care of the Wastewater Permitting Section (MC 148) of the Water Quality Division, within 30 days of the permittee's knowledge of the following:
 - a. Any new introduction of pollutants into the treatment works from an indirect discharger that would be subject to Sections 301 and 306 of the Clean Water Act, if the indirect discharger was directly discharging those pollutants; and
 - b. Any substantial change in the volume or character of pollutants being introduced into the treatment works by a source introducing pollutants into the treatment works at the time of issuance of the permit.

Adequate notice shall include information on the quality and quantity of effluent to be introduced into the treatment works and any anticipated impact of the change on the quality or quantity of effluent to be discharged from the POTW.

Revised June 2020

TPDES Pretreatment Program Annual Report Form for Updated Industrial Users List

Reporting month/yea	ar:	_,to,	·
TPDES Permit No.:	Permittee:	Treatment Plant:	

PRE	PRETREATMENT PROGRAM STATUS REPORT UPDATED INDUSTRIAL USERS¹ LIST															
e				NTRO: HANIS			he CA	the CA	((C = 0	uring t Re Compli	PLIANO he Pret porting ant, NO ificant	reatme Period C = Nor	ent Yea 14 ncomp	oliant,	
r Name				or N)	ed by t	by		RI	EPORT	S		3				
Industrial User	SIC or NAICS (CIU2	$ m Y/N~or~NR^{5}$	IND or GEN or	Last Action ⁶	$\frac{\text{TBLLs or}}{\text{TBLLs only}}$	New User 3 (Y	Times Inspected by the	Times Sampled	BMR	90-Day	Semi- Annual	Self- Monitoring ⁸	NSCIU Certifications	Effluent Limits	Narrative Standards

- Include all significant industrial users (SIUs), non-significant categorical industrial users (NSCIUs) as defined in 40 CFR § 403.3(v)(2), and/or middle tier categorical industrial users (MTCIUs) as defined in 40 CFR §403.12(e)(3). Please do <u>not</u> include non-significant noncategorical IUs that are covered under best management practices (BMPs) or general control mechanisms.
- 2 Categorical determination (include 40 CFR citation and NSCIU or MTCIU status, if applicable).
- 3 Indicate whether the IU is a new user. If the answer is No or N, then indicate the expiration date of the last issued IU permit.
- The term SNC applies to a broader range of violations, such as daily maximum, long-term average, instantaneous limits, and narrative standards (which may include enforceable BMPs, narrative limits and/or operational standards). Any other violation, or group of violations, which the POTW determines will adversely affect the operation or implementation of the local Pretreatment Program now includes BMP violations (40 CFR § 403.8(f)(2)(viii)(H)).
- 5 Code NR= None required (NSCIUs only); IND = individual control mechanism; GEN = general control mechanism. Include as a footnote (or on a separate page) the name of the general control mechanism used for similar groups of IUs, identify the similar types of operations and types of wastes that are the same for each general control mechanism. Any BMPs through general control mechanisms that are applied to nonsignificant IUs need to be reported separately, *e.g.* the sector type and BMP description.
- 6 Permit or NSCIU evaluations as applicable.
- According to 40 CFR § 403.12(i)(1), indicate whether the IU is subject to technically based local limits (TBLLs) that are more stringent than categorical pretreatment standards, *e.g.* where there is one end-of-pipe sampling point at a CIU, and you have determined that the TBLLs are more stringent than the categorical pretreatment standards for any pollutant at the end-of-pipe sampling point; **OR** the IU is subject only to local limits (TBLLs only), *e.g.* the IU is a non-categorical SIU subject only to TBLLs at the end-of-pipe sampling point.
- 8 For those IUs where a monitoring waiver has been granted, please add the code "W" (after either C, NC, or SNC codes) and indicate the pollutant(s) for which the waiver has been granted.

TCEQ-20218a TPDES Pretreatment Program Annual Report Form

Revised July 2007

TPDES Pretreatment Program Annual Report Form for Industrial User Inventory Modifications

Reporting mo	onth/year:, _	to	
TPDES Permit No: _	Permittee:	Treatment Plant:	

	INDUSTRIAL USER INVENTORY MODIFICATIONS									
FACILITY NAME,	ADD, CHANGE,	IF DELETION:	IF ADDITION OR SIGNIFICANT CHANGE:							
ADDRESS AND CONTACT PERSON	(Including categorical reclassification to NSCIU or MTCIU)	Reason For Deletion	PROCESS DESCRIPTION	POLLUTANTS (Including any sampling waiver given for each pollutant not present)	FLOW RATE 9 (In gpd) R = Regulated U = Unregulated T = Total					

9	For NSCIUs, total	l flow must be	e given, if regul	lated fl	low is not d	letermined.
_			0 , 0			

TCEQ-20218b TPDES Pretreatment Program Annual Report Form

Revised July 2007

TPDES P	retre	atm	ent Pr	ogran	n An	nua	l Rej	ort	For	m for l	Enfo	rcer	nent	Action	ıs Taken
R	epoi	rting	g mont	th/yea	r:			,		to _				.,	-
TPDES Pe	ermit	t No :	:		_Pe	rmit	tee:			_Trea	tmei	nt Pl	ant:		
Overall SN Reporting	C _ Viola	% ation	SNC ¹⁰	base _% N	d on Jarra	: E ative	fflue Sta	ent V ndai	iola d V	ations_ iolatio	ns_	_ % %			
	N	lone	ompli	ant In	dus	trial	Use	rs -	Enf	orcem	ent A	ctio	ns T	aken	1
	Nat	ure c	of Viola	tion 11	Nι		er of A Taker		ns	d (Do arge)		mplia chedu		turned or N)	
Industrial User Name	User til s		Reports NSCIU Certifications Narrative Standards NOV		A.O.	Civil		Other	Penalties Collected (Do not Include Surcharge)	Y or N	Date Issued	Date Due	Current Status Returned to Compliance: (Y or N)	Comments	
						<u> </u>									
— - — - 11 Pleas	Pi Ro N	eport arrat ecify	ting Re ive Sta	equiren indard rate nu	nents s ımbe	s [W]	END	B-PS	NC_	ĺ		·		orical St	andards)
TCEQ-20218	8c	TPL	DES Pre	etreatr	nent	Prog	gram	ı Anr	nual	Report	For	m	1	Revised	' July 2007

Page 44

TPDES Pretreatment Program Annual Report Form for Influent and Effluent Monitoring Results¹

Reporting m	onth/year:,	to
TPDES Permit No.:	Permittee:	Treatment Plant:

POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in µg/L (Actual Concentration or < MAL)			Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴				
	•	Date	Date	Date	Date			Date	Date	Date	Date
METALS, CYANIDE AND	PHENOLS										
Antimony, Total											
Arsenic, Total											
Beryllium, Total											
Cadmium, Total											
Chromium, Total											
Chromium (Hex)											
Chromium (Tri) ⁵											
Copper, Total											
Lead, Total											
Mercury, Total											
Nickel, Total											
Selenium, Total											
Silver, Total											
Thallium, Total											
Zinc, Total											

POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in µg/L (Actual Concentration or < MAL)				Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴			
		Date	Date	Date	Date			Date	Date	Date	Date
Cyanide, Available ⁶											
Cyanide, Total											
Phenols, Total											
VOLATILE COMPOUNDS	"										
Acrolein											
Acrylonitrile											
Benzene											
Bromoform							See TTHM				
Carbon Tetrachloride											
Chlorobenzene											
Chlorodibromomethane							See TTHM				
Chloroethane											
2-Chloroethylvinyl Ether											
Chloroform							See TTHM				
Dichlorobromomethane							See TTHM				
1,1-Dichloroethane											
1,2-Dichloroethane	ĺ										
1,1-Dichloroethylene											
1,2-Dichloropropane											

PRETREATMENT	PROGRAM IN	NFLU]	ENT A	ND E	FFLU	ENT MOI	NITORIN	G RES			
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in µg/L (Actual Concentration or < MAL)			Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	(Actual Concentrat				
		Date Dat		Date	Date			Date	Date	Date	Date
1,3-Dichloropropylene											
Ethyl benzene											
Methyl Bromide											
Methyl Chloride											
Methylene Chloride											
1,1,2,2-Tetra-chloroethane											
Tetrachloroethylene											
Toluene											
1,2-Trans-Dichloroethylene											
1,1,1-Trichloroethane											
1,1,2-Trichloroethane											
Trichloroethylene											
Vinyl Chloride											
ACID COMPOUNDS	,			,	,						
2-Chlorophenol											
2,4-Dichlorophenol											
2,4-Dimethylphenol											
4,6-Dinitro-o-Cresol											
2,4-Dinitrophenol											
2-Nitrophenol											

PRETREATMENT I	MAHL, if Applicable in lb/day	Influent Measured in µg/L				Average Influent % of the MAHL ²	Daily Average Effluent Limit	Effluent Measured in µg/L (Actual Concentration or < MAL) 4			
		Date	or < 1	Date	Date		(μg/L) ³	Date	Or < N	Date	Date
4-Nitrophenol											
P-Chloro-m-Cresol											
Pentachlorophenol											
Phenol											
2,4,6-Trichlorophenol											
BASE/NEUTRAL COMPOUN	NDS	<u> </u>	<u> </u>	<u> </u>					<u> </u>	<u> </u>	<u> </u>
Acenaphthene											
Acenaphthylene											
Anthracene											
Benzidine											
Benzo(a)Anthracene											
Benzo(a)Pyrene											
3,4-Benzofluoranthene											
Benzo(ghi)Perylene											
Benzo(k)Fluoranthene											
Bis(2-Chloroethoxy)Methane											
Bis(2-Chloroethyl)Ether											
Bis(2-Chloroisopropyl)Ether											
Bis(2-Ethylhexyl)Phthalate											
4-Bromophenyl Phenyl Ether											

PRETREATMENT	PROGRAM IN	NFLU:			FFLU	ENT MO		G RES			
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in µg/L (Actual Concentration or < MAL)				Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in µg/L (Actual Concentration or < MAL) 4			
		Date	Date	Date	Date			Date	Date	Date	Date
Butylbenzyl Phthalate											
2-Chloronaphthalene											
4-Chlorophenyl Phenyl Ether											
Chrysene											
Dibenzo(a,h)Anthracene											
1,2-Dichlorobenzene											
1,3-Dichlorobenzene											
1,4-Dichlorobenzene											
3,3-Dichlorobenzidine											
Diethyl Phthalate											
Dimethyl Phthalate											
Di-n-Butyl Phthalate											
2,4-Dinitrotoluene											
2,6-Dinitrotoluene											
Di-n-Octyl Phthalate											
1,2-Diphenyl Hydrazine											
Fluoranthene											
Fluorene											
Hexachlorobenzene											
Hexachlorobutadiene											

PRETREATMENT I	PROGRAM IN	NFLU]	ENT A	ND E	FFLU	ENT MO	NITORIN	G RES	SULTS	8	
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in µg/L (Actual Concentration or < MAL)				Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴			
		Date	Date	Date	Date			Date	Date	Date	Date
Hexachloro- cyclopentadiene											
Hexachloroethane											
Indeno(1,2,3-cd)pyrene											
Isophorone											
Naphthalene											
Nitrobenzene											
N-Nitrosodimethylamine											
N-Nitrosodi-n-Propylamine											
N-Nitrosodiphenylamine											
Phenanthrene											
Pyrene											
1,2,4-Trichlorobenzene											
PESTICIDES			"	,	,					,	
Aldrin											
Alpha-hexachlorocyclohexane (BHC)											
beta-BHC											
gamma-BHC (Lindane)											
delta-BHC											
Chlordane											
4,4-DDT											

PRETREATMENT F	PROGRAM IN	NFLU]	ENT A	ND E	FFLU	ENT MO	NITORIN	G RES	SULTS	S	
POLLUTANT	MAHL, if Applicable in lb/day		easure ual Coi			Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴			
		Date	Date	Date	Date			Date	Date	Date	Date
4,4-DDE											
4,4-DDD											
Dieldrin											
alpha-Endosulfan											
beta-Endosulfan											
Endosulfan Sulfate											
Endrin											
Endrin Aldehyde											
Heptachlor											
Heptachlor Epoxide											
Polychlorinated biphenols (PCBs) The sum of PCB concentrations not to exceed daily average value.											
PCB-1242							See PCBs				
PCB-1254							See PCBs				
PCB-1221							See PCBs				
PCB-1232							See PCBs				
PCB-1248							See PCBs				
PCB-1260							See PCBs				
PCB-1016							See PCBs				

PRETREATMEN	T PROGRAM IN	NFLU	ENT A	ND E	FFLU	ENT MO	NITORIN	G RES	SULTS	8	
POLLUTANT	MAHL, if Applicable in lb/day		easure ual Coi	uent d in µg ncentr MAL)		Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³		easure ual Co	uent d in µg ncentra //AL) 4	
		Date	Date	Date	Date			Date	Date	Date	Date
Toxaphene											
ADDITIONAL TOXIC POL	LUTANTS REG	ULAT	ED U	NDEF	R 30 T	AC CHAP	TER 307	II.	II	JI.	JI
Aluminum											
Barium											
Bis(chloromethyl)ether 7											
Carbaryl											
Chloropyrifos											
Cresols											
2,4-D											
Danitol ⁸											
Demeton											
Diazinon											
Dicofol											
Dioxin/Furans 9											
Diuron											
Epichlorohydrin ⁹											
Ethylene glycol ⁹											
Fluoride											
Guthion											
Hexachlorophene											

POLLUTANT	MAHL, if Applicable in lb/day		Influeasure ual Cor or < 1	d in μg		Influent Softhe	Daily Average Effluent Limit (µg/L) ³		Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴			
		Date	Date	Date	Date			Date	Date	Date	Date	
4,4'- Isoproplidenediphenolediphenol (biphenol A) ⁹												
Malathion												
Methoxychlor												
Methyl Ethyl Ketone												
Methyl tert-butyl-ether (MTBE)												
Mirex												
Nitrate-Nitrogen												
N-Nitrosodiethylamine												
N-Nitroso-di-n-Butylamine												
Nonylphenol												
Parathion												
Pentachlorobenzene												
Pyridine												
1,2-Dibromoethane												
1,2,4,5-Tetrachlorobenzene												
2,4,5-TP (Silvex)												
Tributyltin 9												
2,4,5-Trichlorophenol												
TTHM (Total Trihalomethanes)												

Endnotes:

- 1. It is advised that the permittee collect the influent and effluent samples considering flow detention time through each wastewater treatment plant (WWTP).
- 2. The MAHL of the approved TBLLs or for each pollutant of concern (POC) for which the permittee has calculated a MAHL. Only complete the column labeled "Average Influent % of the MAHL," as a percentage, for pollutants that have approved TBLLs or for each POC for which the permittee has calculated a MAHL (U.S. Environmental Protection Agency *Local Limits Development Guidance*, July 2004, EPA933-R-04-002A).

The % of the MAHL is to be calculated using the following formulas:

Equation A: $L_{INF} = (C_{POLL} \times Q_{WWTP} \times 8.34) / 1000$

Equation B: $L_{\%} = (L_{INF} / MAHL) \times 100$

Where:

 $L_{INF} = Current Average (Avg) influent loading in lb/day$

 C_{POLL} = Avg concentration in μ g/L of all influent samples collected during the

pretreatment year.

O_{WWTP} = Annual average flow of the WWTP in MGD, defined as the arithmetic

average of all daily flow determinations taken within the preceding 12 consecutive calendar months (or during the pretreatment year), and as described in the Definitions and Standard Permit Conditions section.

 $L_{\%} = \%$ of the MAHL

MAHL = Calculated MAHL in lb/day 8.34 = Unit conversion factor

- 3. Daily average effluent limit (metal values are for total metals) as derived by the Texas Toxicity Modeling Program (TexTox). Effluent limits as calculated are designed to be protective of the Texas Surface Water Quality Standards. The permittee shall determine and indicate which effluent limit is the most stringent between the 30 TAC Chapter 319, Subchapter B (Hazardous Metals) limit, TexTox values, or any applicable limit in the Effluent Limitations and Monitoring Requirements Section of this TPDES permit. Shaded blocks need not be filled in unless the permittee has received a permit requirement/limit for the particular parameter.
- 4. Minimum analytical levels (MALs) and analytical methods as suggested in Tables E-1 and E-2 of the *Procedures to Implement the Texas Surface Water Quality Standards* (June 2010), as amended and adopted by the TCEQ. Pollutants that are not detectable above the MAL need to be reported as less than (<) the MAL numeric value.
- 5. Report result by subtracting Hexavalent Chromium from Total Chromium.
- 6. Either the method for Amenable to Chlorination or Weak-Acid Dissociable is authorized.
- 7. Hydrolyzes in water. Will not require permittee to analyze at this time.
- 8. EPA procedure not approved. Will not require permittee to analyze at this time.
- 9. Analyses are not required at this time for these pollutants unless there is reason to believe that these pollutants may be present.

TCEQ-20218d TPDES Pretreatment Program Annual Report Form

Revised February 2020

BIOMONITORING REQUIREMENTS

CHRONIC BIOMONITORING REQUIREMENTS: FRESHWATER

The provisions of this section apply to Outfall 001 for whole effluent toxicity (WET) testing.

1. Scope, Frequency, and Methodology

- a. The permittee shall test the effluent for toxicity in accordance with the provisions below. Such testing will determine if an appropriately dilute effluent sample adversely affects the survival, reproduction, or growth of the test organisms.
- b. The permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified in this part of this permit and in accordance with "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms," fourth edition (EPA-821-R-02-013) or its most recent update:
 - 1) Chronic static renewal survival and reproduction test using the water flea (*Ceriodaphnia dubia*) (Method 1002.0). This test should be terminated when 60% of the surviving adults in the control produce three broods or at the end of eight days, whichever occurs first. This test shall be conducted once per quarter.
 - 2) Chronic static renewal 7-day larval survival and growth test using the fathead minnow (*Pimephales promelas*) (Method 1000.0). A minimum of five replicates with eight organisms per replicate shall be used in the control and in each dilution. This test shall be conducted once per quarter.

The permittee must perform and report a valid test for each test species during the prescribed reporting period. An invalid test must be repeated during the same reporting period. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. The permittee shall use five effluent dilution concentrations and a control in each toxicity test. These effluent dilution concentrations are 3%, 5%, 6%, 8%, and 11% effluent. The critical dilution, defined as 8% effluent, is the effluent concentration representative of the proportion of effluent in the receiving water during critical low flow or critical mixing conditions.
- d. This permit may be amended to require a WET limit, a chemical-specific effluent limit, a best management practice, or other appropriate actions to address toxicity. The permittee may be required to conduct a toxicity reduction evaluation (TRE) after multiple toxic events.
- e. Testing Frequency Reduction
 - 1) If none of the first four consecutive quarterly tests demonstrates significant toxicity, the permittee may submit this information in writing

- and, upon approval, reduce the testing frequency to once per six months for the invertebrate test species and once per year for the vertebrate test species.
- If one or more of the first four consecutive quarterly tests demonstrates significant toxicity, the permittee shall continue quarterly testing for that species until this permit is reissued. If a testing frequency reduction had been previously granted and a subsequent test demonstrates significant toxicity, the permittee shall resume a quarterly testing frequency for that species until this permit is reissued.

2. Required Toxicity Testing Conditions

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control and all effluent dilutions, which fail to meet the following criteria:
 - 1) a control mean survival of 80% or greater;
 - 2) a control mean number of water flea neonates per surviving adult of 15 or greater;
 - a control mean dry weight of surviving fathead minnow larvae of 0.25 mg or greater;
 - a control coefficient of variation percent (CV%) of 40 or less in between replicates for the young of surviving females in the water flea test; and the growth and survival endpoints in the fathead minnow test;
 - a critical dilution CV% of 40 or less for the young of surviving females in the water flea test; and the growth and survival endpoints for the fathead minnow test. However, if statistically significant lethal or nonlethal effects are exhibited at the critical dilution, a CV% greater than 40 shall not invalidate the test;
 - 6) a percent minimum significant difference of 47 or less for water flea reproduction; and
 - 7) a percent minimum significant difference of 30 or less for fathead minnow growth.

b. Statistical Interpretation

- 1) For the water flea survival test, the statistical analyses used to determine if there is a significant difference between the control and an effluent dilution shall be the Fisher's exact test as described in the manual referenced in Part 1.b.
- 2) For the water flea reproduction test and the fathead minnow larval survival and growth tests, the statistical analyses used to determine if there is a significant difference between the control and an effluent dilution shall be in accordance with the manual referenced in Part 1.b.

- The permittee is responsible for reviewing test concentration-response relationships to ensure that calculated test-results are interpreted and reported correctly. The document entitled "Method Guidance and Recommendation for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136)" (EPA 821-B-00-004) provides guidance on determining the validity of test results.
- 4) If significant lethality is demonstrated (that is, there is a statistically significant difference in survival at the critical dilution when compared to the survival in the control), the conditions of test acceptability are met, and the survival of the test organisms are equal to or greater than 80% in the critical dilution and all dilutions below that, then the permittee shall report a survival No Observed Effect Concentration (NOEC) of not less than the critical dilution for the reporting requirements.
- 5) The NOEC is defined as the greatest effluent dilution at which no significant effect is demonstrated. The Lowest Observed Effect Concentration (LOEC) is defined as the lowest effluent dilution at which a significant effect is demonstrated. A significant effect is defined as a statistically significant difference between the survival, reproduction, or growth of the test organism in a specified effluent dilution when compared to the survival, reproduction, or growth of the test organism in the control.
- The use of NOECs and LOECs assumes either a monotonic (continuous) concentration-response relationship or a threshold model of the concentration-response relationship. For any test result that demonstrates a non-monotonic (non-continuous) response, the NOEC should be determined based on the guidance manual referenced in Item 3.
- 7) Pursuant to the responsibility assigned to the permittee in Part 2.b.3), test results that demonstrate a non-monotonic (non-continuous) concentration-response relationship may be submitted, prior to the due date, for technical review. The guidance manual referenced in Item 3 will be used when making a determination of test acceptability.
- 8) TCEQ staff will review test results for consistency with rules, procedures, and permit requirements.

c. Dilution Water

- Dilution water used in the toxicity tests must be the receiving water collected at a point upstream of the discharge point as close as possible to the discharge point but unaffected by the discharge. Where the toxicity tests are conducted on effluent discharges to receiving waters that are classified as intermittent streams, or where the toxicity tests are conducted on effluent discharges where no receiving water is available due to zero flow conditions, the permittee shall:
 - a) substitute a synthetic dilution water that has a pH, hardness, and

- alkalinity similar to that of the closest downstream perennial water unaffected by the discharge; or
- b) use the closest downstream perennial water unaffected by the discharge.
- 2) Where the receiving water proves unsatisfactory as a result of pre-existing instream toxicity (i.e. fails to fulfill the test acceptance criteria of Part 2.a.), the permittee may substitute synthetic dilution water for the receiving water in all subsequent tests provided the unacceptable receiving water test met the following stipulations:
 - a) a synthetic lab water control was performed (in addition to the receiving water control) which fulfilled the test acceptance requirements of Part 2.a;
 - b) the test indicating receiving water toxicity was carried out to completion (i.e., 7 days); and
 - c) the permittee submitted all test results indicating receiving water toxicity with the reports and information required in Part 3.
- 3) The synthetic dilution water shall consist of standard, moderately hard, reconstituted water. Upon approval, the permittee may substitute other appropriate dilution water with chemical and physical characteristics similar to that of the receiving water.

d. Samples and Composites

- 1) The permittee shall collect a minimum of three composite samples from Outfall 001. The second and third composite samples will be used for the renewal of the dilution concentrations for each toxicity test.
- 2) The permittee shall collect the composite samples such that the samples are representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged on an intermittent basis.
- 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the first composite sample. The holding time for any subsequent composite sample shall not exceed 72 hours. Samples shall be maintained at a temperature of 0-6 degrees Centigrade during collection, shipping, and storage.
- 4) If Outfall 001 ceases discharging during the collection of effluent samples, the requirements for the minimum number of effluent samples, the minimum number of effluent portions, and the sample holding time are waived during that sampling period. However, the permittee must have collected an effluent composite sample volume sufficient to complete the required toxicity tests with renewal of the effluent. When possible, the effluent samples used for the toxicity tests shall be collected on separate

days if the discharge occurs over multiple days. The sample collection duration and the static renewal protocol associated with the abbreviated sample collection must be documented in the full report.

5) The effluent samples shall not be dechlorinated after sample collection.

3. Reporting

All reports, tables, plans, summaries, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated whether carried to completion or not.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 1 forms provided with this permit.
 - 1) Annual biomonitoring test results are due on or before January 20th for biomonitoring conducted during the previous 12-month period.
 - 2) Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.
 - Quarterly biomonitoring test results are due on or before April 20th, July 20th, October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.
 - 4) Monthly biomonitoring test results are due on or before the 20th day of the month following sampling.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the water flea, Parameter TLP3B, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) For the water flea, Parameter TOP3B, report the NOEC for survival.
 - 3) For the water flea, Parameter TXP3B, report the LOEC for survival.
 - 4) For the water flea, Parameter TWP3B, enter a "1" if the NOEC for reproduction is less than the critical dilution; otherwise, enter a "o."
 - 5) For the water flea, Parameter TPP3B, report the NOEC for reproduction.
 - 6) For the water flea, Parameter TYP3B, report the LOEC for reproduction.
 - 7) For the fathead minnow, Parameter TLP6C, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."

- 8) For the fathead minnow, Parameter TOP6C, report the NOEC for survival.
- 9) For the fathead minnow, Parameter TXP6C, report the LOEC for survival.
- For the fathead minnow, Parameter TWP6C, enter a "1" if the NOEC for growth is less than the critical dilution; otherwise, enter a "0."
- 11) For the fathead minnow, Parameter TPP6C, report the NOEC for growth.
- 12) For the fathead minnow, Parameter TYP6C, report the LOEC for growth.
- d. Enter the following codes for retests only:
 - 1) For retest number 1, Parameter 22415, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) For retest number 2, Parameter 22416, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."

4. <u>Persistent Toxicity</u>

The requirements of this Part apply only when a test demonstrates a significant effect at the critical dilution. Significant lethality and significant effect were defined in Part 2.b. Significant sublethality is defined as a statistically significant difference in growth/reproduction at the critical dilution when compared to the growth/reproduction in the control.

- a. The permittee shall conduct a total of 2 additional tests (retests) for any species that demonstrates a significant effect (lethal or sublethal) at the critical dilution. The two retests shall be conducted monthly during the next two consecutive months. The permittee shall not substitute either of the two retests in lieu of routine toxicity testing. All reports shall be submitted within 20 days of test completion. Test completion is defined as the last day of the test.
- b. If the retests are performed due to a demonstration of significant lethality, and one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall initiate the TRE requirements as specified in Part 5. The provisions of Part 4.a. are suspended upon completion of the two retests and submittal of the TRE action plan and schedule defined in Part 5.
 - If neither test demonstrates significant lethality and the permittee is testing under the reduced testing frequency provision of Part 1.e., the permittee shall return to a quarterly testing frequency for that species.
- c. If the two retests are performed due to a demonstration of significant sublethality, and one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall again perform two retests as stipulated in Part 4.a.
- d. If the two retests are performed due to a demonstration of significant

- sublethality, and neither test demonstrates significant lethality, the permittee shall continue testing at the quarterly frequency.
- e. Regardless of whether retesting for lethal or sublethal effects, or a combination of the two, no more than one retest per month is required for a species.

5. <u>Toxicity Reduction Evaluation</u>

- a. Within 45 days of the retest that demonstrates significant lethality, or within 45 days of being so instructed due to multiple toxic events, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, or within 90 days of being so instructed due to multiple toxic events, the permittee shall submit a TRE action plan and schedule for conducting a TRE. The plan shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analyses to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall describe an approach for the reduction or elimination of lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:
 - Specific Activities The TRE action plan shall specify the approach the 1) permittee intends to utilize in conducting the TRE, including toxicity characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Toxicity Identification Evaluation: Characterization of Chronically Toxic Effluents, Phase I" (EPA/600/6-91/005F) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aquatic Toxicity Identification Evaluations, Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;
 - 2) Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects a specific pollutant and source of effluent toxicity, the permittee shall

- conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;
- 3) Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
- 4) Project Organization The TRE action plan should describe the project staff, project manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:
 - 1) results and interpretation of any chemical-specific analyses for the identified and suspected pollutant performed during the quarter;
 - 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;
 - any data and substantiating documentation which identifies the pollutant(s) and source of effluent toxicity;
 - 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
 - any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to meet no significant lethality at the critical dilution; and
 - 6) any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.
- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive months with at least monthly testing. At the end of the 12 months, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply as a result of corrective actions taken by the permittee. Corrective actions are defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

- g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 28 months from the last test day of the retest that confirmed significant lethal effects at the critical dilution. The permittee may petition the Executive Director (in writing) for an extension of the 28-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE. The report shall provide information pertaining to the specific control mechanism selected that will, when implemented, result in the reduction of effluent toxicity to no significant lethality at the critical dilution. The report shall also provide a specific corrective action schedule for implementing the selected control mechanism.
- h. Based on the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements, where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and specify a chemical-specific limit.
- i. Copies of any and all required TRE plans and reports shall also be submitted to the U.S. EPA Region 6 office, 6WQ-PO.

Time

Date

TABLE 1 (SHEET 1 OF 4)

BIOMONITORING REPORTING

CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION

Time

Date

Dates and Tir Composites	nes No. 1	FROM:		TO:		
Collected	No. 2	FROM:		TO:		
	No. 3	FROM:		TO:		
Test initiated	d:		am/	pm		date
Dilut	ion water used	d:	Receiving wat	er	Synthetic D	ilution water
	NUMBEI	R OF YOUNG	PRODUCED I	PER ADULT A	AT END OF TE	ST
			Percent	effluent		
REP	0%	3%	5%	6%	8%	11%
A						
В						
С						
D						
Е						
F						
G						
Н						
I						
J						
Survival Mean						
Total Mean						
CV%*						
PMSD				<u> </u>		

^{*}Coefficient of Variation = standard deviation x 100/mean (calculation based on young of the surviving adults)

Designate males (M), and dead females (D), along with number of neonates (x) released prior to death.

TABLE 1 (SHEET 2 OF 4)

CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION TEST

1. Dunnett's Procedure or Steel's Many-One Rank Test or Wilcoxon Rank Sum Test (with Bonferroni adjustment) or t-test (with Bonferroni adjustment) as appropriate:

Is the mean number of young produced per adult significantly less than the number of young per adult in the control for the % effluent corresponding to significant nonlethal effects?

CRITICAL DILUTION	(8%)):	YES	NO
	(0/0	,.	110	110

PERCENT SURVIVAL

		Percent effluent									
Time of Reading	0%	3%	5%	6%	8%	11%					
24h											
48h											
End of Test											

2. Fisher's Exact Test:

Is the mean survival at test end significantly less than the control survival for the % effluent corresponding to lethality?

CRITICAL DILUTION (8%):	: YES	NO
-------------------------	-------	----

- 3. Enter percent effluent corresponding to each NOEC\LOEC below:
 - a.) NOEC survival = ______% effluent
 - b.) LOEC survival = _____% effluent
 - c.) NOEC reproduction = ______% effluent
 - d.) LOEC reproduction = ______% effluent

Time

Date

TABLE 1 (SHEET 3 OF 4)

BIOMONITORING REPORTING

FATHEAD MINNOW LARVAE GROWTH AND SURVIVAL

Date Time

Dates and Times	No. 1 FRO	OM:		·	ТО:		
Composites Collected	No. 2 FR	OM:			TO:		
	No. 3 FR	OM:			ТО:		
Test initiated: _			a	m/pm			date
Dilution wa	ter used:	I	Receiving w	ater		Synthetic d	ilution water
	:	FATHEAI	D MINNOV	V GROW	TH DATA		
Effluent	Avera	ge Dry We	eight in rep	licate cha	ımbers	Mean Dry	CV%*
Concentration	A	В	С	D	Е	Weight	
0%							
3%							
5%							
6%							
8%							
11%							
PMSD							
Bonferroni a	rocedure or S adjustment) o dry weight (g the % effluer	teel's Mar or t-test (v growth) at nt corresp	ny-One Rar vith Bonfer 7 days sign	nk Test or roni adju nificantly significan	stment) a less than t nonletha	s appropriat the control's al effects?	e:
	CRITICAL	, DILUTIO	ON (8%):		_YES	NO	

TABLE 1 (SHEET 4 OF 4)

BIOMONITORING REPORTING

FATHEAD MINNOW GROWTH AND SURVIVAL TEST

FATHEAD MINNOW SURVIVAL DATA

Effluent	Percei	nt Surviv	al in repl	icate ch	ambers	Mean percent survival			CV%*
Concentration	A	В	С	D	E	24h	48h	7 day	
0%									
3%									
5%									
6%									
8%									
11%									

^{*} Coeff

ficient o	of Variation = standard deviation x 100/mean		
2.	Dunnett's Procedure or Steel's Many-One Rank Test or Wilcoxon Rank Sum Test (with Bonferroni adjustment) or t-test (with Bonferroni adjustment) as appropriate:		
	Is the mean survival at 7 days significantly less than the control survival for the $\%$ effluent corresponding to lethality?		
	CRITICAL DILUTION (8%): YES NO		
3.	Enter percent effluent corresponding to each NOEC\LOEC below:		
	a.) NOEC survival =% effluent		
	b.) LOEC survival =% effluent		
	c.) NOEC growth =% effluent		
	d.) LOEC growth =% effluent		

24-HOUR ACUTE BIOMONITORING REQUIREMENTS: FRESHWATER

The provisions of this section apply to Outfall 001 for whole effluent toxicity (WET) testing.

1. Scope, Frequency, and Methodology

- a. The permittee shall test the effluent for lethality in accordance with the provisions in this section. Such testing will determine compliance with Texas Surface Water Quality Standard 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival of the appropriate test organisms in 100% effluent for a 24-hour period.
- b. The toxicity tests specified shall be conducted once per six months. The permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified in this section of the permit and in accordance with "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms," fifth edition (EPA-821-R-02-012) or its most recent update:
 - 1) Acute 24-hour static toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.
 - 2) Acute 24-hour static toxicity test using the fathead minnow (*Pimephales promelas*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.

A valid test result must be submitted for each reporting period. The permittee must report, and then repeat, an invalid test during the same reporting period. The repeat test shall include the control and the 100% effluent dilution and use the appropriate number of organisms and replicates, as specified above. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. In addition to an appropriate control, a 100% effluent concentration shall be used in the toxicity tests. The control and dilution water shall consist of standard, synthetic, moderately hard, reconstituted water.
- d. This permit may be amended to require a WET limit, a best management practice, a chemical-specific limit, or other appropriate actions to address toxicity. The permittee may be required to conduct a toxicity reduction evaluation (TRE) after multiple toxic events.

2. Required Toxicity Testing Conditions

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control, if the control fails to meet a mean survival equal to or greater than 90%.
- b. Dilution Water In accordance with Part 1.c., the control and dilution water shall consist of standard, synthetic, moderately hard, reconstituted water.

c. Samples and Composites

- 1) The permittee shall collect one composite sample from Outfall 001.
- 2) The permittee shall collect the composite sample such that the sample is representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged.
- 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the composite sample. The sample shall be maintained at a temperature of o-6 degrees Centigrade during collection, shipping, and storage.
- 4) If Outfall 001 ceases discharging during the collection of the effluent composite sample, the requirements for the minimum number of effluent portions are waived. However, the permittee must have collected a composite sample volume sufficient for completion of the required test. The abbreviated sample collection, duration, and methodology must be documented in the full report.
- 5) The effluent sample shall not be dechlorinated after sample collection.

3. Reporting

All reports, tables, plans, summaries, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 2 forms provided with this permit.
 - Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.
 - 2) Quarterly biomonitoring test results are due on or before April 20th, July 20th, and October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the water flea, Parameter TIE3D, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."
 - 2) For the fathead minnow, Parameter TIE6C, enter a "o" if the mean

survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."

- d. Enter the following codes for retests only:
 - 1) For retest number 1, Parameter 22415, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."
 - 2) For retest number 2, Parameter 22416, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."

4. <u>Persistent Mortality</u>

The requirements of this part apply when a toxicity test demonstrates significant lethality, which is defined as a mean mortality of 50% or greater of organisms exposed to the 100% effluent concentration for 24 hours.

- a. The permittee shall conduct 2 additional tests (retests) for each species that demonstrates significant lethality. The two retests shall be conducted once per week for 2 weeks. Five effluent dilution concentrations in addition to an appropriate control shall be used in the retests. These effluent concentrations are 6%, 13%, 25%, 50% and 100% effluent. The first retest shall be conducted within 15 days of the laboratory determination of significant lethality. All test results shall be submitted within 20 days of test completion of the second retest. Test completion is defined as the 24th hour.
- b. If one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall initiate the TRE requirements as specified in Part 5.

5. <u>Toxicity Reduction Evaluation</u>

- a. Within 45 days of the retest that demonstrates significant lethality, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, the permittee shall submit a TRE action plan and schedule for conducting a TRE. The plan shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analyses to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall lead to the successful elimination of significant lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:
 - 1) Specific Activities The TRE action plan shall specify the approach the permittee intends to utilize in conducting the TRE, including toxicity

characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures" (EPA/600/6-91/003) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;

- 2) Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects specific pollutant and source of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;
- Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
- 4) Project Organization The TRE Action Plan should describe the project staff, project manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly TRE activities reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:
 - 1) results and interpretation of any chemical-specific analyses for the identified and suspected pollutant performed during the quarter;
 - 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;
 - 3) any data and substantiating documentation that identifies the pollutant

and source of effluent toxicity;

- 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
- 5) any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to eliminate significant lethality; and
- 6) any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.
- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive weeks with at least weekly testing. At the end of the 12 weeks, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply as a result of corrective actions taken by the permittee. Corrective actions are defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 18 months from the last test day of the retest that demonstrates significant lethality. The permittee may petition the Executive Director (in writing) for an extension of the 18-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE. The report shall specify the control mechanism that will, when implemented, reduce effluent toxicity as specified in Part 5.h. The report shall also specify a corrective action schedule for implementing the selected control mechanism.

h. Within 3 years of the last day of the test confirming toxicity, the permittee shall comply with 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival of the test organism in 100% effluent at the end of 24-hours. The permittee may petition the Executive Director (in writing) for an extension of the 3-year limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE.

The permittee may be exempted from complying with 30 TAC § 307.6(e)(2)(B) upon proving that toxicity is caused by an excess, imbalance, or deficiency of dissolved salts. This exemption excludes instances where individually toxic components (e.g., metals) form a salt compound. Following the exemption, this permit may be amended to include an ion-adjustment protocol, alternate species testing, or single species testing.

- i. Based upon the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and specify a chemical-specific limit.
- j. Copies of any and all required TRE plans and reports shall also be submitted to the U.S. EPA Region 6 office, 6WQ-PO.

TABLE 2 (SHEET 1 OF 2)

WATER FLEA SURVIVAL

GENERAL INFORMATION

	Time	Date
Composite Sample Collected		
Test Initiated		

PERCENT SURVIVAL

Time Rep		Percent effluent					
		0%	6%	13%	25%	50%	100%
	A						
	В						
o 4h	С						
24h	D						
	E						
	MEAN						

F	inter nercent e	ffluent correspon	ding to t	the I Cso	helow
П	инег ветсенге	THUCH COLLESION	UH12 IO 1	ロロモ しんらい	DEIDW.

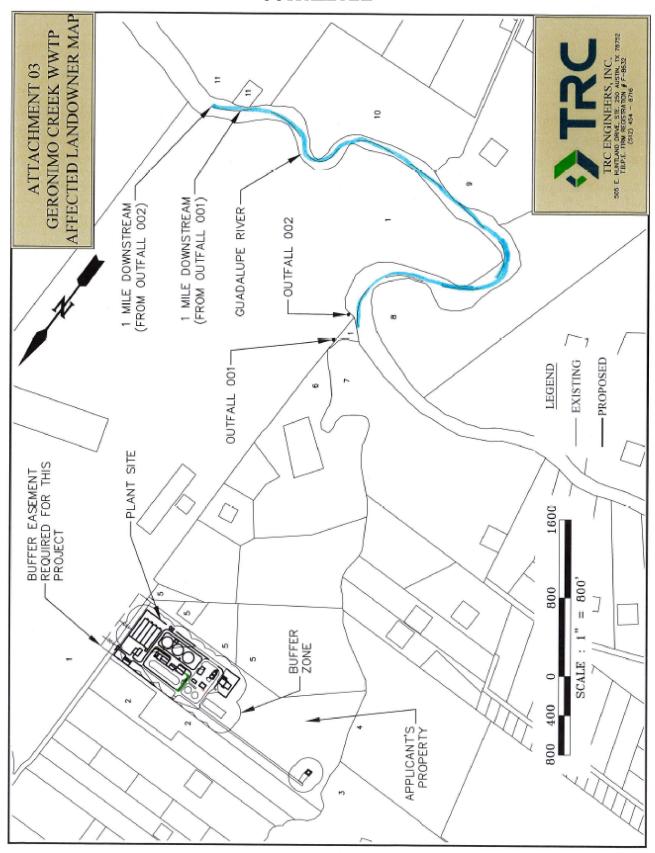
24 hour LC50 = _____% effluent

TABLE 2 (SHEET 2 OF 2)

FATHEAD MINNOW SURVIVAL

GENERAL INFORMATION

	Time	Date
Composite Sample Collected		
Test Initiated		


PERCENT SURVIVAL

Time Rep		Percent effluent						
		0%	6%	13%	25%	50%	100%	
	A							
	В							
o 4h	С							
24h	D							
	E							
	MEAN	_					_	

Enter ner	cent effluent cor	responding to	the I	an hel	0347
cinter per	cent emuent cor	responding to	ше ы	こちひ ひせに	Ow.

24 hour LC50 = _____% effluent

ATTACHMENT A OUTFALL MAP

Page 76

FACT SHEET AND EXECUTIVE DIRECTOR'S PRELIMINARY DECISION

For draft Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010277003, EPA I.D. No. TX0103535, to discharge to water in the state.

Issuing Office: Texas Commission on Environmental Quality

P.O. Box 13087

Austin, Texas 78711-3087

Applicant: City of Seguin

205 North River Street Seguin, Texas 78155

Prepared By: Sonia Bhuiya

Municipal Permits Team

Wastewater Permitting Section (MC 148)

Water Quality Division

(512) 239-1205

Date: April 28, 2025

Permit Action: Renewal

1. EXECUTIVE DIRECTOR RECOMMENDATION

The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The draft permit includes an expiration date of **five years from the date of issuance**.

2. APPLICANT ACTIVITY

The applicant has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of the existing permit that authorizes the discharge of treated domestic wastewater at an annual average flow not to exceed 2.13 million gallons per day (MGD) in the Interim phase, and an annual average flow not to exceed 12.0 MGD in the Final phase. The existing wastewater treatment facility serves the Geronimo Creek.

3. FACILITY AND DISCHARGE LOCATION

The plant site is located at 450 Seitz Road, in the City of Seguin, Guadalupe County, Texas 78155.

Outfall Locations:

Outfall Number	Latitude	Longitude
001	29.541730 N	97.913694 W
002	29.541067 N	97.914008 W

The treated effluent is discharged via pipe for Outfall 001 to Geronimo Creek, thence to Guadalupe River Below Comal River in Segment No. 1804 of the Guadalupe River Basin.

The discharge route for Outfall 002 is directly to Guadalupe River Below Comal River in Segment No. 1804 of the Guadalupe River Basin. The designated uses for Segment No. 1804 are primary contact recreation, public water supply, aquifer protection, and high aquatic life use.

4. TREATMENT PROCESS DESCRIPTION AND SEWAGE SLUDGE DISPOSAL

The Geronimo Creek Wastewater Treatment Facility is an activated sludge process plant operated in the extended aeration mode in the Interim phase and will be operated in the conventional mode in the Final phase. Treatment units in the Interim phase include two bar screens (one mechanical and one manual), an oxidation ditch, two final clarifiers, six sludge drying beds, a mobile belt filter press, two chlorine contact chambers, and a dechlorination chamber. Treatment units in the Final phase will include two bar screens (one mechanical and one manual), four aeration basins, three final clarifiers, six sludge drying beds, three tertiary filtrations, two belt filter presses, three chlorine contact chambers, and a dechlorination chamber. The facility is operating in the Interim phase.

Sludge generated from the treatment facility is hauled by a registered transporter and disposed of at a TCEQ-permitted landfill, Mesquite Creek Landfill, Permit No. 66B, in Comal County. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

5. INDUSTRIAL WASTE CONTRIBUTION

The draft permit includes pretreatment requirements that are appropriate for a facility of this size and complexity. The Geronimo Creek Branch WWTP receives significant industrial wastewater contributions.

6. SUMMARY OF SELF-REPORTED EFFLUENT ANALYSES

The following is a summary of the applicant's effluent monitoring data for the period November 2019 through November 2024. The average of Daily Average value is computed by the averaging of all 30-day average values for the reporting period for each parameter: flow, five-day biochemical oxygen demand (BOD $_5$), total suspended solids (TSS), and ammonia nitrogen (NH $_3$ -N). The average of Daily Average value for *Escherichia coli* (*E. coli*) in colony-forming units (CFU) or most probable number (MPN) per 100 ml is calculated via geometric mean.

<u>Parameter</u>	<u>Average of Daily Avg</u>
Flow, MGD	1.77
BOD_5 , mg/l	2.7
TSS, mg/l	2.8
E. coli, CFU or MPN per 100 ml	5

7. DRAFT PERMIT CONDITIONS AND MONITORING REQUIREMENTS

The effluent limitations and monitoring requirements for those parameters that are limited in the draft permit are as follows:

A. INTERIM PHASE EFFLUENT LIMITATIONS AND MONITORING

REQUIREMENTS

The annual average flow of effluent shall not exceed 2.13 MGD, nor shall the average discharge during any two-hour period (2-hour peak) exceed 3,000 gallons per minute (gpm).

<u>Parameter</u>	30-Day Average		<u>7-Day</u>	<u>Daily</u>
			<u>Average</u>	<u>Maximum</u>
	<u>mg/l</u>	<u>lbs/day</u>	<u>mg/l</u>	<u>mg/l</u>
BOD_5	20	355	30	45
TSS	20	355	30	45
DO (minimum)	2.0	N/A	N/A	N/A
E. coli, CFU or MPN	126	N/A	N/A	399
per 100 ml				

The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.

The effluent shall contain a total chlorine residual of at least 1.0 mg/l after a detention time of at least 20 minutes (based on peak flow) and shall be monitored daily by grab sample. The permittee shall dechlorinate the chlorinated effluent to less than 0.1 mg/l total chlorine residual and shall monitor total chlorine residual daily by grab sample after the dechlorination process. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.

<u>Parameter</u>	Monitoring Requirement
Flow, MGD	Continuous
BOD_5	Two/week
TSS	Two/week
DO	Two/week
E. coli	One/week
L. con	Offic week

B. FINAL PHASE EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

The annual average flow of effluent shall not exceed 12.0 MGD, nor shall the average discharge during any two-hour period (2-hour peak) exceed 25,000 gpm.

<u>Parameter</u>	<u> 30-Day Average</u>		<u>7-Day</u>	<u>Daily</u>
			<u>Average</u>	<u>Maximum</u>
	<u>mg/l</u>	<u>lbs/day</u>	<u>mg/l</u>	<u>mg/l</u>
BOD_5	20	2002	30	45
TSS	20	2002	30	45
DO (minimum)	2.0	N/A	N/A	N/A
E. coli, CFU or	126	N/A	N/A	399
MPN/100 ml				

The pH shall not be less than 6.0 standard units nor greater than 9.0 standard

units and shall be monitored once per day by grab sample. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.

The effluent shall contain a total chlorine residual of at least 1.0 mg/l after a detention time of at least 20 minutes (based on peak flow) and shall be monitored daily by grab sample. The permittee shall dechlorinate the chlorinated effluent to less than 0.1 mg/l total chlorine residual and shall monitor total chlorine residual daily by grab sample after the dechlorination process. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.

<u>Parameter</u> <u>Monitoring Requirement</u>

 $\begin{array}{ccc} \hline Flow, MGD & \hline Continuous \\ BOD_5 & One/day \\ TSS & One/day \\ DO & One/day \\ E. coli & Five/week \\ \hline \end{array}$

C. SEWAGE SLUDGE REQUIREMENTS

The draft permit includes Sludge Provisions according to the requirements of 30 TAC Chapter 312, Sludge Use, Disposal, and Transportation. Sludge generated from the treatment facility is hauled by a registered transporter and disposed of at a TCEQ-permitted landfill, Mesquite Creek Landfill, Permit No. 66B, in Comal County. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

D. PRETREATMENT REQUIREMENTS

Permit requirements for pretreatment are based on TPDES regulations contained in 30 TAC Chapter 305 which references 40 CFR Part 403, General Pretreatment Regulations for Existing and New Sources of Pollution [rev. Federal Register/Vol. 70/No. 198/Friday, October 14, 2005/Rules and Regulations, pages 60134-60798]. The permit includes specific requirements that establish responsibilities of local government, industry, and the public to implement the standards to control pollutants which pass through or interfere with treatment processes in publicly owned treatment works or which may contaminate the sewage sludge. This permit has appropriate pretreatment language for a facility of this size and complexity.

The permittee has a pretreatment program which was approved by the U.S. Environmental Protection Agency (EPA) on May 21, 2002, and modified on April 29, 2010, March 28, 2011, (nonsubstantial Streamlining Rule), and on **upon issuance date of TPDES Permit No. WQ0010277001** (TBLLs). The permittee is required, under the conditions of the approved pretreatment program, to prepare annually a list of industrial users which during the preceding twelve months were in significant noncompliance with applicable pretreatment requirements for those facilities covered under the program. This list is to be published annually during the month of May in a newspaper of general

circulation that provides meaningful public notice within the jurisdiction(s) served by the POTW.

Effective December 21, 2025, the permittee must submit the pretreatment program annual status report electronically using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. [rev. Federal Register/ Vol. 80/ No. 204/ Friday, October 22, 2015/ Rules and Regulations, pages 64064-64158].

The permittee is under a continuing duty to: establish and enforce specific local limits to implement the provisions of 40 CFR §403.5, to develop and enforce local limits as necessary, and to modify the approved POTW pretreatment program as necessary to comply with federal, state, and local law, as amended. The permittee is required to effectively enforce such limits and to modify their pretreatment program, including the Legal Authority, Enforcement Response Plan, and/or Standard Operating Procedures, if required by the Executive Director to reflect changing conditions at the POTW.

The permittee shall submit to the TCEQ Pretreatment Team (MC 148) of the Water Quality Division, within **sixty (60) days** of the issued date of this permit, a written notification that a technical development, and other components of the pretreatment program will be submitted within **twelve (12) months** of the completion of the expansion of Geronimo Creek (TPDES Permit No. WQ0010277003). The permittee is being required to redevelop due to increase of flow being received & treated at the facility. Additionally, once the expansion is complete the permittee has indicated the Walnut Branch WWTP (TPDES permit No. WQ0010277001) will be decommissioned, and all industrial contributions will be diverted to Geronimo Creek.

The permittee shall demonstrate and certify that the revised TBLLs will attain the Texas Surface Water Quality Standards [30 TAC Chapter 307] in waters in the state, prevent pass through of pollutants and inhibition of or interference with the treatment facility, prevent worker health and safety problems, and prevent sludge contamination. If applicable, the POTW is required to evaluate the enforceable best management practices (BMP) loadings during the redevelopment of the current TBLLs. The permittee shall submit a TBLLs package, draft legal authority, which incorporates such revisions, and any additional modifications to the pretreatment program that reflect changing conditions at the POTW. In order to ensure that the permittee has a program to assure compliance with such pretreatment standards and requirements, the permittee will include the Legal Authority, Enforcement Response Plan, Standard Operating Procedures (including forms). This package shall be submitted within **twelve (12) months** of the completion of the expansion of Geronimo Creek (TPDES Permit No. WQ0010277003).

E. WHOLE EFFLUENT TOXICITY (BIOMONITORING) REQUIREMENTS

(1) The draft permit includes chronic freshwater biomonitoring requirements as follows. The permit requires five dilutions in addition to the control (0% effluent) to be used in the toxicity tests. These additional effluent concentrations shall be 3%, 5%, 6%, 8%, and 11%. The low-flow effluent

concentration (critical dilution) is defined as 8% effluent. The critical dilution is in accordance with the "Aquatic Life Criteria" section of the "Water Quality Based Effluent Limitations/Conditions" section.

- (a) Chronic static renewal survival and reproduction test using the water flea (*Ceriodaphnia dubia*). The frequency of the testing is once per quarter for at least the first year of testing, after which the permittee may apply for a testing frequency reduction.
- (b) Chronic static renewal 7-day larval survival and growth test using the fathead minnow (*Pimephales promelas*). The frequency of the testing is once per quarter for at least the first year of testing, after which the permittee may apply for a testing frequency reduction.
- (2) The draft permit includes the following minimum 24-hour acute freshwater biomonitoring requirements at a frequency of once per six months:
 - (a) Acute 24-hour static toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*).
 - (b) Acute 24-hour static toxicity test using the fathead minnow (*Pimephales promelas*).
- F. SUMMARY OF CHANGES FROM APPLICATION

None.

G. SUMMARY OF CHANGES FROM EXISTING PERMIT

The Standard Permit Conditions, Sludge Provisions, Other Requirements, and Biomonitoring sections of the draft permit have been updated.

For Publicly Owned Treatment Works (POTWs), effective December 21, 2025, the permittee must submit the written report for unauthorized discharges and unanticipated bypasses that exceed any effluent limit in the permit using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

Certain accidental discharges or spills of treated or untreated wastewater from wastewater treatment facilities or collection systems owned or operated by a local government may be reported on a monthly basis in accordance with 30 TAC § 305.132.

The draft permit includes all updates based on the 30 TAC § 312 rule change effective April 23, 2020.

8. DRAFT PERMIT RATIONALE

A. TECHNOLOGY-BASED EFFLUENT LIMITATIONS/CONDITIONS

Regulations promulgated in Title 40 of the CFR require that technology-based limitations be placed in wastewater discharge permits based on effluent limitations guidelines, where applicable, or on best professional judgment (BPJ) in the absence of guidelines.

Effluent limitations for maximum and minimum pH are in accordance with 40 CFR § 133.102(c) and 30 TAC § 309.1(b).

Based on pH screening, the current permit limits (6.0 to 9.0 standard units) are protective of segment pH criteria.

B. WATER QUALITY SUMMARY AND COASTAL MANAGEMENT PLAN

(1) WATER QUALITY SUMMARY

The treated effluent is discharged via pipe for Outfall 001 to Geronimo Creek, thence to Guadalupe River Below Comal River in Segment No. 1804 of the Guadalupe River Basin. The discharge route for Outfall 002 is directly to Guadalupe River Below Comal River in Segment No. 1804 of the Guadalupe River Basin. The designated uses for Segment No. 1804 are primary contact recreation, public water supply, aquifer protection, and high aquatic life use. The effluent limitations in the draft permit will maintain and protect the existing instream uses. All determinations are preliminary and subject to additional review and/or revisions.

The discharge from this permit action is not expected to have an effect on any federal endangered or threatened aquatic or aquatic-dependent species or proposed species or their critical habitat. This determination is based on the United States Fish and Wildlife Service's (USFWS's) biological opinion on the State of Texas authorization of the TPDES (September 14, 1998; October 21, 1998, update). To make this determination for TPDES permits, TCEQ and EPA only considered aquatic or aquatic-dependent species occurring in watersheds of critical concern or high priority as listed in Appendix A of the USFWS biological opinion. The determination is subject to reevaluation due to subsequent updates or amendments to the biological opinion. The permit does not require EPA review with respect to the presence of endangered or threatened species.

Segment No. 1804 is not currently listed on the State's inventory of impaired and threatened waters (the 2024 CWA Section 303(d) list). However, Geronimo Creek (1804A) is currently listed for elevated bacteria from the confluence of the Guadalupe River south of Seguin in Guadalupe County to the upstream perennial portion north of Seguin in Guadalupe County (AU 1804A_01). This facility is designed to provide adequate disinfection and, when operated properly, should not add to the bacterial impairment of the segment. In addition, in order to ensure that the proposed discharge meets the stream bacterial standard, an effluent limitation of 126 colony-forming units (CFU) or most probable number (MPN) of Escherichia coli per 100 ml has been added to the draft permit.

The pollutant analysis of treated effluent provided by the permittee in the application indicated 948 mg/l total dissolved solids (TDS), 309 mg/l sulfate, and 247 mg/l chloride present in the effluent. The segment criteria for Segment No. 1804 are 330 mg/l for TDS, 25 mg/l for sulfate, and 19mg/l for chlorides. Based on dissolved solids screening, no additional limits or monitoring requirements are needed for total dissolved solids, chloride, or sulfate.

The effluent limitations and conditions in the draft permit comply with EPA-approved portions of the 2018 Texas Surface Water Quality Standards (TSWQS), 30 TAC §§ 307.1 - 307.10, effective March 1, 2018; 2014 TSWQS, effective March 6, 2014; 2010 TSWQS, effective July 22, 2010; and 2000 TSWQS, effective July 26, 2000.

(2) CONVENTIONAL PARAMETERS

Effluent limitations for the conventional effluent parameters (i.e., Five-Day Biochemical Oxygen Demand or Five-Day Carbonaceous Biochemical Oxygen Demand, Ammonia Nitrogen, etc.) are based on stream standards and waste load allocations for water quality-limited streams as established in the TSWQS and the State of Texas Water Quality Management Plan (WQMP).

The existing effluent limits have been reviewed for consistency with the State of Texas Water Quality Management Plan (WQMP). The existing limits are consistent with the approved WQMP.

The effluent limitations in the draft permit meet the requirements for secondary treatment and the requirements for disinfection according to 30 TAC Chapter 309, Subchapter A: Effluent Limitations.

(3) COASTAL MANAGEMENT PLAN

The facility is not located in the Coastal Management Program boundary.

C. WATER QUALITY-BASED EFFLUENT LIMITATIONS/CONDITIONS

(1) GENERAL COMMENTS

The Texas Surface Water Quality Standards (30 TAC Chapter 307) state that surface waters will not be toxic to man, or to terrestrial or aquatic life. The methodology outlined in the *Procedures to Implement the Texas Surface Water Quality Standards* (June 2010) is designed to ensure compliance with 30 TAC Chapter 307. Specifically, the methodology is designed to ensure that no source will be allowed to discharge any wastewater that: (1) results in instream aquatic toxicity; (2) causes a violation of an applicable narrative or numerical state water quality standard; (3) results in the endangerment of a drinking water supply; or (4) results in aquatic bioaccumulation that threatens human health.

(2) AQUATIC LIFE CRITERIA

(a) SCREENING

Water quality-based effluent limitations are calculated from freshwater aquatic life criteria found in Table 1 of the Texas Surface Water Quality Standards (30 TAC Chapter 307).

Acute freshwater criteria are applied at the edge of the zone of initial dilution (ZID), and chronic freshwater criteria are applied at the edge of the aquatic life mixing zone. The ZID for this discharge is defined as 20 feet upstream and 60 feet downstream from the point where the discharge enters Guadalupe River Below Comal River. The aquatic life mixing zone for this discharge is defined as 100 feet upstream and 300 feet downstream from the point where the discharge enters Guadalupe River Below Comal River.

TCEQ uses the mass balance equation to estimate dilutions at the edges of the ZID and aquatic life mixing zone during critical conditions. The estimated dilution at the edge of the aquatic life mixing zone is calculated using the permitted flow of 12.0 MGD and the 7-day, 2-year (7Q2) flow of 207.65 cfs for Guadalupe River Below Comal River. The estimated dilution at the edge of the ZID is calculated using the permitted flow of 12 MGD and 25% of the 7Q2 flow. The following critical effluent percentages are being used:

Acute Effluent %: 8.21% Chronic Effluent %: 26.34%

Waste load allocations (WLAs) are calculated using the above estimated effluent percentages, criteria outlined in the Texas Surface Water Quality Standards, and partitioning coefficients for metals (when appropriate and designated in the implementation procedures). The WLA is the end-ofpipe effluent concentration that can be discharged when, after mixing in the receiving stream, instream numerical criteria will not be exceeded. From the WLA, a long-term average (LTA) is calculated using a log normal probability distribution, a given coefficient of variation (0.6), and a 90th percentile confidence level. The LTA is the long-term average effluent concentration for which the WLA will never be exceeded using a selected percentile confidence level. The lower of the two LTAs (acute and chronic) is used to calculate a daily average and daily maximum effluent limitation for the protection of aquatic life using the same statistical considerations with the 99th percentile confidence level and a standard number of monthly effluent samples collected (12). Assumptions used in deriving the effluent limitations include segment values for hardness, chlorides, pH, and total suspended solids (TSS) according to the segmentspecific values contained in the TCEQ guidance document *Procedures to* Implement the Texas Surface Water Quality Standards. The segment values are 216 mg/l for hardness (as calcium carbonate), 19 mg/l for chlorides, 7.7 standard units for pH, and 4.7 mg/l for TSS. For additional details on the calculation of water quality-based effluent limitations, refer to the TCEQ guidance document.

TCEQ practice for determining significant potential is to compare the reported analytical data against percentages of the calculated daily average water quality-based effluent limitation. Permit limitations are required when analytical data reported in the application exceeds 85% of the calculated daily average water quality-based effluent limitation. Monitoring and reporting is required when analytical data reported in the application exceeds 70% of the calculated daily average water quality-based effluent limitation. See Attachment A of this Fact Sheet.

(b) PERMIT ACTION

Analytical data reported in the application was screened against calculated water quality-based effluent limitations for the protection of aquatic life. Reported analytical data does not exceed 70% of the calculated daily average water quality-based effluent limitations for aquatic life protection.

(3) AQUATIC ORGANISM BIOACCUMULATION CRITERIA

(a) SCREENING

Water quality-based effluent limitations for the protection of human health are calculated using criteria for the consumption of freshwater fish tissue and drinking water found in Table 2 of the Texas Surface Water Quality Standards (30 TAC Chapter 307). Freshwater fish tissue bioaccumulation and drinking water criteria are applied at the edge of the human health mixing zone. The human health mixing zone for this discharge is identical to the aquatic life mixing zone. TCEQ uses the mass balance equation to estimate dilution at the edge of the human health mixing zone during average flow conditions. The estimated dilution at the edge of the human health mixing zone is calculated using the permitted flow of 12.0 MGD and the harmonic mean flow of 315.25 cfs for Guadalupe River Below Comal River. The following critical effluent percentage is being used:

Human Health Effluent %: 5.56%

Water quality-based effluent limitations for human health protection against the consumption of fish tissue are calculated using the same procedure as outlined for calculation of water quality-based effluent limitations for aquatic life protection. A 99th percentile confidence level in the long-term average calculation is used with only one long-term average value being calculated.

Significant potential is again determined by comparing reported analytical data against 70% and 85% of the calculated daily average water quality-based effluent limitation. See Attachment A of this Fact Sheet.

(b) PERMIT ACTION

Reported analytical data does not exceed 70% of the calculated daily

average water quality-based effluent limitation for human health protection.

(4) DRINKING WATER SUPPLY PROTECTION

(a) SCREENING

Water Quality Segment No. 1804, which receives the discharge from this facility, is not designated as a public water supply. Screening reported analytical data of the effluent against water quality-based effluent limitations calculated for the protection of a drinking water supply is not applicable.

(b) PERMIT ACTION

None.

(5) WHOLE EFFLUENT TOXICITY (BIOMONITORING) CRITERIA

(a) SCREENING

TCEQ has determined that there may be pollutants present in the effluent that may have the potential to cause toxic conditions in the receiving stream. Whole effluent biomonitoring is the most direct measure of potential toxicity that incorporates the effects of synergism of effluent components and receiving stream water quality characteristics. Biomonitoring of the effluent is, therefore, required as a condition of this permit to assess potential toxicity.

The existing permit includes chronic freshwater biomonitoring requirements. A summary of the biomonitoring testing for the facility indicates that in the past three years, the permittee has performed twenty-two chronic tests, with zero demonstrations of significant toxicity (i.e., zero failures).

A reasonable potential determination was performed in accordance with 40 CFR § 122.44(d)(1)(ii) to determine whether the discharge will reasonably be expected to cause or contribute to an exceedance of a state water quality standard or criterion within that standard. Each test species is evaluated separately. The RP determination is based on representative data from the previous three years of WET testing. This determination was performed in accordance with the methodology outlined in the TCEQ letter to the EPA dated December 28, 2015, and approved by the EPA in a letter dated December 28, 2015.

With zero failures, a determination of no RP was made. WET limits are not required and both test species may be eligible for the testing frequency reduction after one year of quarterly testing.

(b) PERMIT ACTION

The test species are appropriate to measure the toxicity of the effluent

consistent with the requirements of the State water quality standards. The biomonitoring frequency has been established to reflect the likelihood of ambient toxicity and to provide data representative of the toxic potential of the facility's discharge. This permit may be reopened to require effluent limits, additional testing, and/or other appropriate actions to address toxicity if biomonitoring data show actual or potential ambient toxicity to be the result of the permittee's discharge to the receiving stream or water body.

(6) WHOLE EFFLUENT TOXICITY CRITERIA (24-HOUR ACUTE)

(a) SCREENING

The existing permit includes 24-hour acute freshwater biomonitoring language. A summary of the biomonitoring testing for the facility indicates that in the past three years, the permittee has performed ten 24-hour acute tests, with zero demonstrations of significant mortality (i.e., zero failures).

(b) PERMIT ACTION

The draft permit includes 24-hour 100% acute biomonitoring tests for the life of the permit.

9. WATER QUALITY VARIANCE REQUESTS

No variance requests have been received.

10. PROCEDURES FOR FINAL DECISION

When an application is declared administratively complete, the Chief Clerk sends a letter to the applicant advising the applicant to publish the Notice of Receipt of Application and Intent to Obtain Permit in the newspaper. In addition, the Chief Clerk instructs the applicant to place a copy of the application in a public place for review and copying in the county where the facility is or will be located. This application will be in a public place throughout the comment period. The Chief Clerk also mails this notice to any interested persons and, if required, to landowners identified in the permit application. This notice informs the public about the application and provides that an interested person may file comments on the application or request a contested case hearing or a public meeting.

Once a draft permit is completed, it is sent, along with the Executive Director's preliminary decision, as contained in the technical summary or fact sheet, to the Chief Clerk. At that time, the Notice of Application and Preliminary Decision will be mailed to the same people and published in the same newspaper as the prior notice. This notice sets a deadline for making public comments. The applicant must place a copy of the Executive Director's preliminary decision and draft permit in the public place with the application.

Any interested person may request a public meeting on the application until the deadline for filing public comments. A public meeting is intended for the taking of public comment and is not a contested case proceeding.

After the public comment deadline, the Executive Director prepares a response to all significant public comments on the application or the draft permit raised during the public comment period. The Chief Clerk then mails the Executive Director's response to comments and final decision to people who have filed comments, requested a contested case hearing, or requested to be on the mailing list. This notice provides that if a person is not satisfied with the Executive Director's response and decision, they can request a contested case hearing or file a request to reconsider the Executive Director's decision within 30 days after the notice is mailed.

The Executive Director will issue the permit unless a written hearing request or request for reconsideration is filed within 30 days after the Executive Director's response to comments and final decision is mailed. If a hearing request or request for reconsideration is filed, the Executive Director will not issue the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting. If a contested case hearing is held, it will be a legal proceeding similar to a civil trial in state district court.

If the Executive Director calls a public meeting or the Commission grants a contested case hearing as described above, the Commission will give notice of the date, time, and place of the meeting or hearing. If a hearing request or request for reconsideration is made, the Commission will consider all public comments in making its decision and shall either adopt the Executive Director's response to public comments or prepare its own response.

For additional information about this application, contact Sonia Bhuiya at (512) 239-1205.

11. ADMINISTRATIVE RECORD

The following items were considered in developing the draft permit:

A. PERMIT(S)

TPDES Permit No. WQ0010277003 issued on June 4, 2023.

B. APPLICATION

Application received on December 2, 2024, and additional information received on January 7, 2025.

C. MEMORANDA

Interoffice Memoranda from the Water Quality Assessment Section of the TCEQ Water Quality Division. Interoffice Memorandum from the Pretreatment Team of the TCEQ Water Quality Division.

D. MISCELLANEOUS

Federal Clean Water Act § 402; Texas Water Code § 26.027; 30 TAC Chapters 30, 305, 309, 312, and 319; Commission policies; and U.S. Environmental Protection

Agency guidelines.

Texas Surface Water Quality Standards, 30 TAC §§ 307.1 - 307.10.

Procedures to Implement the Texas Surface Water Quality Standards (IP), Texas Commission on Environmental Quality, June 2010, as approved by the U.S. Environmental Protection Agency, and the IP, January 2003, for portions of the 2010 IP not approved by the U.S. Environmental Protection Agency.

Texas 2022 Clean Water Act Section 303(d) List, Texas Commission on Environmental Quality, June 1, 2022; approved by the U.S. Environmental Protection Agency on July 7, 2022.

Texas Natural Resource Conservation Commission, Guidance Document for Establishing Monitoring Frequencies for Domestic and Industrial Wastewater Discharge Permits, Document No. 98-001.000-OWR-WQ, May 1998.

Attachment C: Calculated Water Quality Based Effluent Limitations

TEXTOX MENU #3 - PERENNIAL STREAM OR RIVER

The water quality-based effluent limitations developed below are calculated using:

Table 1, 2014 Texas Surface Water Quality Standards (30 TAC 307) for Freshwater Aquatic Life Table 2, 2018 Texas Surface Water Quality Standards for Human Health

"Procedures to Implement the Texas Surface Water Quality Standards," TCEQ, June 2010

PERMIT INFORMATION

 Permittee Name:
 City of Seguin

 TPDES Permit No.:
 WQ0010277003

 Outfall No.:
 001

 Prepared by:
 Sonia Bhuiya

 Date:
 April 29, 2025

DISCHARGE INFORMATION

Receiving Waterbody:	Guadalupe River Below Comal River
Segment No.:	1804
TSS (mg/L):	4.7
pH (Standard Units):	7.7
Hardness (mg/L as CaCO₃):	216
Chloride (mg/L):	19
Effluent Flow for Aquatic Life (MGD):	12
Critical Low Flow [7Q2] (cfs):	207.65
% Effluent for Chronic Aquatic Life (Mixing Zone):	8.21
% Effluent for Acute Aquatic Life (ZID):	26.34
Effluent Flow for Human Health (MGD):	12
Harmonic Mean Flow (cfs):	315.25
% Effluent for Human Health:	5.56
Human Health Criterion (select: PWS, FISH, or INC)	PWS

CALCULATE DISSOLVED FRACTION (AND ENTER WATER EFFECT RATIO IF APPLICABLE):

Stream/River Metal	Intercept (b)	Slope (m)	Partition Coefficient (Kp)	Dissolved Fraction (Cd/Ct)	Source	Water Effect Ratio (WER)	Source
Aluminum	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Arsenic	5.68	-0.73	154656.64	0.579		1.00	Assumed
Cadmium	6.60	-1.13	692674.85	0.235		1.00	Assumed
Chromium (total)	6.52	-0.93	785143.41	0.213		1.00	Assumed
Chromium (trivalent)	6.52	-0.93	785143.41	0.213		1.00	Assumed
Chromium (hexavalent)	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Copper	6.02	-0.74	333155.96	0.390		1.00	Assumed
Lead	6.45	-0.80	817187.50	0.207		1.00	Assumed
Mercury	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Nickel	5.69	-0.57	202723.56	0.512		1.00	Assumed
Selenium	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Silver	6.38	-1.03	487235.82	0.304		1.00	Assumed
Zinc	6.10	-0.70	426119.59	0.333		1.00	Assumed

AQUATIC LIFE

CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

		FW						
Parameter	FW Acute Criterion (µg/L)	Chronic Criterion (µg/L)	WLAα (μg/L)	WLAc (μg/L)	LTAα (μg/L)	LTAc (μg/L)	Daily Avg. (μg/L)	Daily Max. (μg/L)
Aldrin	3.0	N/A	11.39	N/A	6.53	N/A	9.59	20.29
Aluminum	991	N/A	3762	N/A	2156	N/A	3169	6704
Arsenic	340	150	2229	3156	1277	2430	1877	3972

Cadmium	18.1	0.420	293.0	21.77	167.9	16.76	24.64	52.13
Carbaryl	2.0	N/A	7.59	N/A	4.35	N/A	6.39	13.53
Chlordane	2.4	0.004	9.11	0.0487	5.22	0.0375	0.0552	0.1167
Chlorpyrifos	0.083	0.041	0.315	0.500	0.181	0.385	0.265	0.561
Chromium (trivalent)	1071	139	19060	7958	10922	6128	9008	19057
Chromium (hexavalent)	15.7	10.6	59.6	129.2	34.1	99.4	50.2	106.2
Copper	29.3	18.3	285.8	571.6	163.7	440.1	240.7	509
Cyanide (free)	45.8	10.7	173.9	130.4	99.6	100.4	146.4	309.8
4,4'-DDT	1.1	0.001	4.18	0.0122	2.393	0.0094	0.0138	0.0292
Demeton	N/A	0.1	N/A	1.218	N/A	0.938	1.379	2.918
Diazinon	0.17	0.17	0.645	2.071	0.370	1.595	0.544	1.150
Dicofol [Kelthane]	59.3	19.8	225.1	241.2	129.0	185.8	189.6	401.1
Dieldrin	0.24	0.002	0.911	0.0244	0.522	0.0188	0.0276	0.0584
Diuron	210	70	797	853	457	657	671	1421
Endosulfan I (alpha)	0.22	0.056	0.835	0.682	0.479	0.525	0.703	1.488
Endosulfan II (beta)	0.22	0.056	0.835	0.682	0.479	0.525	0.703	1.488
Endosulfan sulfate	0.22	0.056	0.835	0.682	0.479	0.525	0.703	1.488
Endrin	0.086	0.002	0.326	0.0244	0.187	0.0188	0.0276	0.0584
Guthion [Azinphos Methyl]	N/A	0.01	N/A	0.122	N/A	0.094	0.138	0.292
Heptachlor	0.52	0.004	1.97	0.0487	1.131	0.0375	0.0552	0.1167
Hexachlorocyclohexane (gamma) [Lindane]	1.126	0.08	4.27	0.975	2.449	0.751	1.103	2.334
Lead	148	5.76	2714	339.5	1555	261.4	384.3	813
Malathion	N/A	0.01	N/A	0.122	N/A	0.094	0.138	0.292
Mercury	2.4	1.3	9.11	15.84	5.22	12.20	7.67	16.24
Methoxychlor	N/A	0.03	N/A	0.366	N/A	0.281	0.414	0.875
Mirex	N/A	0.001	N/A	0.0122	N/A	0.0094	0.0138	0.0292
Nickel	898	99.8	6659	2374	3816	1828	2687	5685
Nonylphenol	28	6.6	106.3	80.4	60.9	61.92	89.5	189.4
Parathion (ethyl)	0.065	0.013	0.247	0.158	0.141	0.122	0.179	0.379
Pentachlorophenol	17.6	13.5	66.9	164.8	38.3	126.9	56.4	119.2
Phenanthrene	30	30	113.9	365.5	65.3	281.5	95.9	202.9
Polychlorinated Biphenyls [PCBs]	2.0	0.014	7.59	0.171	4.35	0.131	0.193	0.408
Selenium	20	5	75.9	60.92	43.5	46.91	63.9	135.3
Silver	0.8	N/A	20.92	N/A	11.99	N/A	17.62	37.3
Toxaphene	0.78	0.0002	2.961	0.00244	1.697	0.00188	0.00276	0.00584
Tributyltin [TBT]	0.13	0.024	0.493	0.292	0.283	0.225	0.331	0.700
2,4,5 Trichlorophenol	136	64	516	780	295.8	600.4	435	920
Zinc	225	227	2565	8300	1470	6391	2161	4571
· · · · · · · · · · · · · · · · · · ·						-		

HUMAN HEALTH CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

	Water		Incidental				
	and Fish	Fish Only	Fish	14/1 4/		Daily	Daily
Parameter	Criterion (μg/L)	Criterion (μg/L)	Criterion (μg/L)	WLAh (μg/L)	LTAh (μg/L)	Avg. (μg/L)	Max. (μg/L)
Acrylonitrile	1.0	115	1150	17.98	16.72	24.58	52.00
Aldrin	1.146E-05	1.147E-05	1.147E-04	2.06E-04	1.92E-04	2.82E-04	5.96E-04
Anthracene	1109	1317	13170	19939	18543	27259	57670
Antimony	6	1071	10710	107.9	100.3	147.5	312.0
Arsenic	10	N/A	N/A	310.5	288.7	424.5	898
Barium	2000	N/A	N/A	35959	33442	49159	104003
Benzene	5	581	5810	89.9	83.6	122.9	260.0
Benzidine	0.0015	0.107	1.07	0.0270	0.0251	0.0369	0.0780
Benzo(a)anthracene	0.024	0.025	0.25	0.432	0.401	0.590	1.248
Benzo(a)pyrene	0.0025	0.0025	0.025	0.0449	0.0418	0.061	0.130
Bis(chloromethyl)ether	0.0024	0.2745	2.745	0.0432	0.0401	0.059	0.125
Bis(2-chloroethyl)ether	0.60	42.83	428.3	10.79	10.03	14.75	31.20
Bis(2-ethylhexyl) phthalate [Di(2-ethylhexyl) phthalate]	6	7.55	75.5	107.9	100.3	147.5	312.0
Bromodichloromethane [Dichlorobromomethane]	10.2	275	2750	183.4	170.6	250.7	530
Bromoform [Tribromomethane]	66.9	1060	10600	1203	1119	1644	3479
Cadmium	5	N/A	N/A	382.6	355.8	523.0	1106

Code of Total delicate	4.5	4.5	460	00.0	75.0	440.6	224.0
Carbon Tetrachloride	4.5	46	460	80.9	75.2	110.6	234.0
Chlordane	0.0025	0.0025	0.025	0.0449	0.0418	0.061	0.130
Chlorodibromomethane [Dibromochloromethane]	100	2737	27370	1798	1672 125.4	2458	5200
·	7.5 70	183 7697	1830 76970	134.8 1259	1170	184.3 1721	390.0 3640
Chloroform [Trichloromethane] Chromium (hexavalent)	62	502	5020	1115	1037	1524	3040
Chrysene	2.45	2.52	25.2	44.05	40.97	60.2	127.4
Cresols [Methylphenols]	1041	9301	93010	18717	17406	25587	54134
Cyanide (free)	200	N/A	N/A	3596	3344	4916	10400
4,4'-DDD	0.002	0.002	0.02	0.0360	0.0334	0.0492	0.1040
4,4'-DDE	0.00013	0.00013	0.0013	0.00234	0.00217	0.00320	0.0068
4,4'-DDT	0.0004	0.0004	0.004	0.0072	0.0067	0.0098	0.0208
2,4'-D	70	N/A	N/A	1259	1170	1721	3640
Danitol [Fenpropathrin]	262	473	4730	4711	4381	6440	13624
1,2-Dibromoethane [Ethylene Dibromide]	0.17	4.24	42.4	3.056	2.843	4.179	8.84
m-Dichlorobenzene [1,3-Dichlorobenzene]	322	595	5950	5789	5384	7915	16745
o-Dichlorobenzene [1,2-Dichlorobenzene]	600	3299	32990	10788	10032	14748	31201
p-Dichlorobenzene [1,4-Dichlorobenzene]	75	N/A	N/A	1348	1254	1843	3900
3,3'-Dichlorobenzidine	0.79	2.24	22.4	14.20	13.21	19.42	41.08
1,2-Dichloroethane	5	364	3640	89.9	83.6	122.9	260.0
1,1-Dichloroethylene [1,1-Dichloroethene]	7	55114	551140	125.9	117.0	172.1	364.0
Dichloromethane [Methylene Chloride]	5	13333	133330	89.9	83.6	122.9	260.0
1,2-Dichloropropane	5	259	2590	89.9	83.6	122.9	260.0
1,3-Dichloropropene [1,3-Dichloropropylene]	2.8	119	1190	50.34	46.82	68.8	145.6
Dicofol [Kelthane]	0.30	0.30	3	5.39	5.016	7.37	15.60
Dieldrin	2.0E-05	2.0E-05	2.0E-04	3.60E-04	3.34E-04	4.92E-04	1.04E-03
2,4-Dimethylphenol	444	8436	84360	7983	7424	10913	23089
Di- <i>n</i> -Butyl Phthalate	88.9	92.4	924	1598	1486	2185	4623
Dioxins/Furans [TCDD Equivalents]	7.80E-08	7.97E-08	7.97E-07	1.40E-06	1.30E-06	1.92E-06	4.06E-06
Endrin	0.02	0.02	0.2	0.360	0.334	0.492	1.040
Epichlorohydrin	53.5	2013	20130	962	895	1315	2782
Ethylbenzene	700	1867	18670	12586	11705	17206	36401
Ethylene Glycol	46744	1.68E+07	1.68E+08	840427	781598	1148948	2430768
Fluoride	4000	N/A	N/A	71917	66883	98318	208007
Heptachlor	8.0E-05	0.0001	0.001	0.00144	0.00134	0.00197	0.00416
Heptachlor Epoxide	0.00029	0.00029	0.0029	0.0052	0.0048	0.0071	0.0151
Hexachlorobenzene	0.00068	0.00068	0.0068	0.0122	0.0114	0.0167	0.0354
Hexachlorobutadiene	0.21	0.22	2.2	3.776	3.511	5.162	10.92
Hexachlorocyclohexane (alpha)	0.0078	0.0084	0.084	0.140	0.130	0.192	0.406
Hexachlorocyclohexane (beta)	0.15	0.26	2.6	2.697	2.508	3.687	7.80
Hexachlorocyclohexane (gamma) [Lindane]	0.2	0.341	3.41	3.596	3.344	4.916	10.40
Hexachlorocyclopentadiene	10.7	11.6	116	192.4	178.9	263.0	556
Hexachloroethane	1.84	2.33	23.3	33.08	30.77	45.23	95.7
Hexachlorophene	2.05	2.90	29	36.86	34.28	50.39	106.6
4,4'-lsopropylidenediphenol [Bisphenol A]	1092	15982	159820	19633	18259	26841	56786
Lead	1.15 0.0122	3.83 0.0122	38.3 0.122	100.1 0.219	93.1 0.204	136.8 0.300	289.5 0.634
Mercury Methoxychlor	2.92	3.0	30	52.5	48.82	71.8	151.8
Methyl Ethyl Ketone	13865	9.92E+05	9.92E+06	249284	231834	340796	721004
Methyl tert-butyl ether [MTBE]	15005	10482	104820	269.7	250.8	368.7	721004
Nickel	332	1140	11400	11657	10841	15936	33714
Nitrate-Nitrogen (as Total Nitrogen)	10000	N/A	N/A	179794	167208	245796	520017
Nitrobenzene	45.7	1873	18730	822	764	1123	2376
N-Nitrosodiethylamine	0.0037	2.1	21	0.067	0.062	0.091	0.192
N-Nitroso-di- <i>n</i> -Butylamine	0.119	4.2	42	2.140	1.990	2.925	6.19
Pentachlorobenzene	0.119	0.355	3.55	6.26	5.82	8.55	18.10
Pentachlorophenol	0.348	0.333	2.9	3.955	3.679	5.41	11.44
Polychlorinated Biphenyls [PCBs]	6.4E-04	6.4E-04	6.40E-03	0.0115	0.0107	0.0157	0.0333
Pyridine Pyridine	23	947	9470	413.5	384.6	565	1196
Selenium	50	N/A	N/A	899	836	1229	2600
1,2,4,5-Tetrachlorobenzene	0.23	0.24	2.4	4.135	3.846	5.65	11.96
-,-, ,o retractionosciizene	0.23	U.4 4	۷.٦	7.133	5.040	5.05	11.50

1.64	26.35	263.5	29.49	27.42	40.31	85.3
5	280	2800	89.9	83.6	122.9	260.0
0.12	0.23	2.3	2.158	2.006	2.950	6.24
1000	N/A	N/A	17979	16721	24580	52002
0.011	0.011	0.11	0.198	0.184	0.270	0.572
50	369	3690	899	836	1229	2600
200	784354	7843540	3596	3344	4916	10400
5	166	1660	89.9	83.6	122.9	260.0
5	71.9	719	89.9	83.6	122.9	260.0
1039	1867	18670	18681	17373	25538	54030
80	N/A	N/A	1438	1338	1966	4160
0.23	16.5	165	4.135	3.846	5.653	11.960
	5 0.12 1000 0.011 50 200 5 5 1039	5 280 0.12 0.23 1000 N/A 0.011 0.011 50 369 200 784354 5 166 5 71.9 1039 1867 80 N/A	5 280 2800 0.12 0.23 2.3 1000 N/A N/A 0.011 0.011 0.11 50 369 3690 200 784354 7843540 5 166 1660 5 71.9 719 1039 1867 18670 80 N/A N/A	5 280 2800 89.9 0.12 0.23 2.3 2.158 1000 N/A N/A 17979 0.011 0.011 0.11 0.198 50 369 3690 899 200 784354 7843540 3596 5 166 1660 89.9 5 71.9 719 89.9 1039 1867 18670 18681 80 N/A N/A 1438	5 280 2800 89.9 83.6 0.12 0.23 2.3 2.158 2.006 1000 N/A N/A 17979 16721 0.011 0.011 0.11 0.198 0.184 50 369 3690 899 836 200 784354 7843540 3596 3344 5 166 1660 89.9 83.6 5 71.9 719 89.9 83.6 1039 1867 18670 18681 17373 80 N/A N/A 1438 1338	5 280 2800 89.9 83.6 122.9 0.12 0.23 2.3 2.158 2.006 2.950 1000 N/A N/A 17979 16721 24580 0.011 0.011 0.11 0.198 0.184 0.270 50 369 3690 899 836 1229 200 784354 7843540 3596 3344 4916 5 166 1660 89.9 83.6 122.9 5 71.9 719 89.9 83.6 122.9 1039 1867 18670 18681 17373 25538 80 N/A N/A 1438 1338 1966

CALCULATE 70% AND 85% OF DAILY AVERAGE EFFLUENT LIMITATIONS:

Aquatic Life Avg. Parameter (μg/L) Aldrin 6.71 Aluminum 2218 Arsenic 1314 Cadmium 17.25 Carbaryl 4.48 Chlordane 0.0386 Chlorpyrifos 0.186 Chromium (trivalent) 6305 Chromium (hexavalent) 35.1 Copper 168.5 Cyanide (free) 102.5 4,4'-DDT 0.0097	Avg. (μg/L) 8.15 2693 1596 20.94 5.44 0.0469 0.226
Aldrin 6.71 Aluminum 2218 Arsenic 1314 Cadmium 17.25 Carbaryl 4.48 Chlordane 0.0386 Chlorpyrifos 0.186 Chromium (trivalent) 6305 Chromium (hexavalent) 35.1 Copper 168.5 Cyanide (free) 102.5	8.15 2693 1596 20.94 5.44 0.0469 0.226
Arsenic 1314 Cadmium 17.25 Carbaryl 4.48 Chlordane 0.0386 Chlorpyrifos 0.186 Chromium (trivalent) 6305 Chromium (hexavalent) 35.1 Copper 168.5 Cyanide (free) 102.5	2693 1596 20.94 5.44 0.0469 0.226
Arsenic 1314 Cadmium 17.25 Carbaryl 4.48 Chlordane 0.0386 Chlorpyrifos 0.186 Chromium (trivalent) 6305 Chromium (hexavalent) 35.1 Copper 168.5 Cyanide (free) 102.5	1596 20.94 5.44 0.0469 0.226
Carbaryl 4.48 Chlordane 0.0386 Chlorpyrifos 0.186 Chromium (trivalent) 6305 Chromium (hexavalent) 35.1 Copper 168.5 Cyanide (free) 102.5	5.44 0.0469 0.226
Carbaryl 4.48 Chlordane 0.0386 Chlorpyrifos 0.186 Chromium (trivalent) 6305 Chromium (hexavalent) 35.1 Copper 168.5 Cyanide (free) 102.5	5.44 0.0469 0.226
Chlordane 0.0386 Chlorpyrifos 0.186 Chromium (trivalent) 6305 Chromium (hexavalent) 35.1 Copper 168.5 Cyanide (free) 102.5	0.226
Chlorpyrifos 0.186 Chromium (trivalent) 6305 Chromium (hexavalent) 35.1 Copper 168.5 Cyanide (free) 102.5	0.226
Chromium (trivalent) 6305 Chromium (hexavalent) 35.1 Copper 168.5 Cyanide (free) 102.5	7656
Chromium (hexavalent) 35.1 Copper 168.5 Cyanide (free) 102.5	7656
Copper 168.5 Cyanide (free) 102.5	42.7
Cyanide (free) 102.5	204.6
	124.5
,	0.0117
Demeton 0.965	1.172
Diazinon 0.380	0.462
Dicofol [Kelthane] 132.7	161.2
Dieldrin 0.0193	0.0234
Diuron 470	571
Endosulfan I (alpha) 0.492	0.598
Endosulfan II (<i>beta</i>) 0.492	0.598
Endosulfan sulfate 0.492	0.598
Endrin 0.0193	0.0234
Guthion [Azinphos Methyl] 0.097	0.117
Heptachlor 0.0386	0.0469
Hexachlorocyclohexane (gamma) [Lindane] 0.772	0.938
Lead 269.0	326.6
Malathion 0.097	0.117
Mercury 5.37	6.52
Methoxychlor 0.290	0.352
Mirex 0.0097	0.0117
Nickel 1881	2284
Nonylphenol 62.67	76.1
Parathion (ethyl) 0.125	0.152
Pentachlorophenol 39.5	47.9
Phenanthrene 67.1	81.5
Polychlorinated Biphenyls [PCBs] 0.135	0.164
Selenium 44.76	54.36
Silver 12.33	14.98
Toxaphene 0.00193	0.00234
Tributyltin [TBT] 0.232	0.281
2,4,5 Trichlorophenol 304.4	370
Zinc 1512	

	70% of Daily	85% of Daily
Human Health	Avg.	Avg.
Parameter	(μg/L)	(μg/L)
Acrylonitrile	17.21	20.89
Aldrin	1.97E-04	2.39E-04
Anthracene	19081	23170
Antimony	103.2	125.4
Arsenic	297.1	360.8
Barium	34411	41785
Benzene	86.0	104.5
Benzidine Renzidine	0.0258	0.0313
Benzo(a)anthracene	0.413	0.501
Benzo(a)pyrene	0.0430	0.0522
Bis(chloromethyl)ether	0.0413	0.0501
Bis(2-chloroethyl)ether	10.32	12.54
Bis(2-ethylhexyl) phthalate [Di(2-ethylhexyl) phthalate]	103.2	125.4
Bromodichloromethane [Dichlorobromomethane]	175.5	213.1
Bromoform [Tribromomethane]	266 1	1398
Carbon Totrachlorida	366.1	444.6
Carbon Tetrachloride Chlordane	77.4	94.0
	0.0430	0.0522
Chlorobenzene Chlorodibramamathana [Dibramashlaramathana]	1721	2089 156.7
Chlorodibromomethane [Dibromochloromethane]	129.0	
Chloroform [Trichloromethane] Chromium (hexavalent)	1204	1462
	1067	1295
Chrysene Creeks [Mathylphonels]	42.15 17911	51.19
Cresols [Methylphenols]	3441	21749
Cyanide (free)		4179
4,4'-DDD 4,4'-DDE	0.0344	0.0418
4,4'-DDT	0.00224	0.00272
2,4'-D	1204	1462
Danitol [Fenpropathrin]	4508	5474
1,2-Dibromoethane [Ethylene Dibromide]	2.925	3.552
m-Dichlorobenzene [1,3-Dichlorobenzene]	5540	6727
o-Dichlorobenzene [1,2-Dichlorobenzene]	10323	12536
p-Dichlorobenzene [1,4-Dichlorobenzene]	1290	1567
3,3'-Dichlorobenzidine	13.59	16.51
1,2-Dichloroethane	86.0	104.5
1,1-Dichloroethylene [1,1-Dichloroethene]	120.4	146.2
Dichloromethane [Methylene Chloride]	86.0	104.5
1,2-Dichloropropane	86.0	104.5
1,3-Dichloropropene [1,3-Dichloropropylene]	48.18	58.5
Dicofol [Kelthane]	5.162	6.27
Dieldrin	3.44E-04	4.18E-04
2,4-Dimethylphenol	7639	9276
Di- <i>n</i> -Butyl Phthalate	1530	1857
Dioxins/Furans [TCDD Equivalents]	1.34E-06	1.63E-06
Endrin	0.344	0.418
Epichlorohydrin	921	1118
Ethylbenzene	12044	14625
Ethylene Glycol	804264	976606
Fluoride	68823	83571
Heptachlor	0.00138	0.00167
Heptachlor Epoxide	0.00499	0.00606
Hexachlorobenzene	0.0117	0.0142
Hexachlorobutadiene	3.613	4.387
Hexachlorocyclohexane (alpha)	0.134	0.163
Hexachlorocyclohexane (beta)	2.581	3.134
Hexachlorocyclohexane (gamma) [Lindane]	3.441	4.179

Hexachlorocyclopentadiene	184.1	223.6
Hexachloroethane	31.66	38.44
Hexachlorophene	35.27	42.83
4,4'-Isopropylidenediphenol [Bisphenol A]	18789	22815
Lead	95.8	116.3
Mercury	0.210	0.255
Methoxychlor	50.24	61.0
Methyl Ethyl Ketone	238557	289677
Methyl tert-butyl ether [MTBE]	258.1	313.4
Nickel	11155	13545
Nitrate-Nitrogen (as Total Nitrogen)	172057	208927
Nitrobenzene	786	955
N-Nitrosodiethylamine	0.064	0.077
N-Nitroso-di- <i>n</i> -Butylamine	2.047	2.486
Pentachlorobenzene	5.99	7.27
Pentachlorophenol	3.785	4.596
Polychlorinated Biphenyls [PCBs]	0.0110	0.0134
Pyridine	395.7	480.5
Selenium	860	1045
1,2,4,5-Tetrachlorobenzene	3.957	4.805
1,1,2,2-Tetrachloroethane	28.22	34.26
Tetrachloroethylene [Tetrachloroethylene]	86.0	104.5
Thallium	2.065	2.507
Toluene	17206	20893
Toxaphene	0.189	0.230
2,4,5-TP [Silvex]	860	1045
1,1,1-Trichloroethane	3441	4179
1,1,2-Trichloroethane	86.0	104.5
Trichloroethylene [Trichloroethene]	86.0	104.5
2,4,5-Trichlorophenol	17877	21707
TTHM [Sum of Total Trihalomethanes]	1376	1671
Vinyl Chloride	3.957	4.805