

This file contains the following documents:

- 1. Summary of application (in plain language)
 - English
 - Alternative Language (Spanish)
- 2. First Notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
 - English
 - Alternative Language (Spanish)
- 3. Application materials

Este archivo contiene los siguientes documentos:

- 1. Resumen en lenguaje sencillo (PLS, por sus siglas en inglés) de la actividad propuesta
 - Inglés
 - Idioma alternativo (español)
- 2. Primer aviso (NORI, por sus siglas en inglés)
 - Inglés
 - Idioma alternativo (español)
- 3. Solicitud original

TCEQ

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

PLAIN LANGUAGE SUMMARY FOR TPDES OR TLAP PERMIT APPLICATIONS

Plain Language Summary Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. Applicants may modify the template as necessary to accurately describe their facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how the applicant will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTIC WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

The City of Sherman (CN600418578) operates the Post Oak Wastewater Treatment Facility (RN101612448), an activated sludge wastewater treatment plant. The facility is located at 1800 E. FM Highway 1417, in Sherman, Grayson County, Texas 75090. The application is for a major amendment to increase the annual average discharge flow not to exceed 24 million gallons per day of domestic wastewater via Outfall 001, which is located on Post Oak Creek and to add a new outfall, Outfall 002, on a tributary of Deaver Creek with an annual average discharge flow not to exceed 16 million gallons per day.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), ammonia nitrogen (NH₃-N), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent in the permit application package. Domestic wastewater is treated by an activated sludge process plant with two treatment trains. The north train treatment units are coarse screens, vortex grit removal system,

primary clarifiers, activated sludge basins, and secondary clarifiers. The south train treatment units are coarse screens, vortex grit removal system, fine screens, activated sludge basins, and membrane bioreactor basins. Secondary treated wastewater from the two trains is comingled and disinfected by an ultraviolet light system. Sludge process treatment units are sludge thickeners, anaerobic digesters, and dewatering screw presses.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES ENMIENDAS DE TPDES

AGUAS RESIDUALES DOMESTICAS' /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

La Ciudad de Sherman (CN600418578) opera la Post Oak Wastewater Treatment Facility (RN101612448), una planta de lodos activados. La instalación está ubicada en 1800 E. FM Highway 1417, en Sherman, Condado de Grayson, Texas 75090. La solicitud es para una modificación para aumentar el flujo de descarga promedio anual para no exceder los 24 millones de galones por día de aguas residuales domésticas a través del desagüe 001, que se encuentra en Post Oak Creek y para agregar un nuevo desagüe, el desagüe 002, en un afluente de Deaver Creek con un flujo de descarga promedio anual que no exceda los 16 millones de galones por día.

Se espera que las descargas de la planta contengan demanda bioquímica de oxígeno carbonoso (CBOD5) de cinco días, sólidos suspendidos totales (TSS), nitrógeno amoniaco (NH3-N) y Escherichia coli. En el Informe Técnico Doméstico 1.0, Sección 7. Análisis de Contaminantes de Efluentes Tratados del paquete de solicitud de permiso se incluyen otros contaminantes potenciales. Las aguas residuales domésticas se tratan mediante una planta de procesamiento de lodos activados con dos trenes de tratamiento. Las unidades de tratamiento del tren norte son una rejilla de barras, desarenadores, clarificadores primarios, tanque de lodos activados, y clarificadores secundarios. Las unidades de tratamiento del tren sur son rejillas gruesas, sistema de eliminación de arena por vórtice, rejillas finas, tanque de lodos activados y tanques de biorreactores de membrana. Las aguas residuales tratadas secundariamente de los dos trenes se mezclan y desinfectan mediante un sistema de luz ultravioleta. Las unidades de tratamiento del proceso de lodos son espesadores de lodos, digestores anaeróbicos y prensas de tornillo de deshidratación.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT AMENDMENT

PERMIT NO. WQ0010329001

APPLICATION. City of Sherman, P.O. Box 1106, Sherman, Texas 75090, has applied to the Texas Commission on Environmental Quality (TCEQ) to amend Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010329001 (EPA I.D. No. TX0024325) to authorize an increase in the discharge of treated wastewater for Outfall 001 to a volume not to exceed annual average flow of 24,000,000 gallons per day and the addition of new Outfall 002 to discharge treated wastewater at a volume not to exceed an annual average flow of 16,000,000 gallons per day. The domestic wastewater treatment facility is located at 1800 East Farm-to-Market Road 1417, near the city of Sherman, in Grayson County, Texas 75090. The discharge route is from the plant site via Outfall 001 to Post Oak Creek, thence to Choctaw Creek, thence to Red River Below Lake Texoma and via Outfall 002 to an unnamed tributary, thence to Deaver Creek, thence to Big Mineral Creek, thence to Lake Texoma. TCEQ received this application on February 19, 2025. The permit application will be available for viewing and copying at Sherman Public Library, 421 North Travis Street, Sherman, in Grayson County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Sherman at the address stated above or by calling Mr. Nathan Whiddon, Wastewater and Laboratory Manager, at 903-892-7286.

Issuance Date: March 14, 2025

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA MODIFICACION

PERMISO NO. WQ0010329001

SOLICITUD. La Ciudad de Sherman, P.O. Box 1106, Sherman, Texas 75090, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para modificar el Permiso No. WQ0010329001 (EPA I.D. No. TX 0024325) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio anual de 24,000,000 galones por día y a adición del nuevo emisario 002 para descargar aguas residuales tratadas en un volumen que no supere un flujo promedio anual de 16,000,000 de galones por día. La planta está ubicada en 1800 East Farm-to-Market Road 1417, cerca de la ciudad de Sherman, en el Condado de Gravson. Texas 75090. La ruta de descarga es del sitio de la planta a través del emisario 001 hasta Post Oak Creek, de allí a Choctaw Creek, de allí a Red River Below Lake Texoma y a través del emisario 002 hasta un afluente sin nombre, de allí a Deaver Creek, de allí a Big Mineral Creek, de allí al lago Texoma. La TCEQ recibió esta solicitud el 19 de febrero de 2025. La solicitud para el permiso estará disponible para leerla y copiarla en Biblioteca Pública de Sherman, 421 North Travis Street, Sherman, en el condado de Grayson, Texas, antes de la fecha de publicación de este aviso en el periódico. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es

https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-96.573611,33.601388&level=18

AVISO DE IDIOMA ALTERNATIVO. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la

solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

INFORMACIÓN DISPONIBLE EN LÍNEA. Para detalles sobre el estado de la solicitud, favor de visitar la Base de Datos Integrada de los Comisionados en www.tceq.texas.gov/goto/cid. Para buscar en la base de datos, utilizar el número de permiso para esta solicitud que aparece en la parte superior de este aviso.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía

http://www14.tceq.texas.gov/epic/eComment/ o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional del la Ciudad de Sherman, a la dirección indicada arriba o llamando a Sr. Nathan Whiddon, Gerente de Aguas Residuales y Laboratorio, al 903-892-7286.

Fecha de emisión el 14 de marzo de 2025

Leah Whallon

From: Janet Sims <janet.sims@meadhunt.com>

Sent: Monday, March 3, 2025 8:44 AM

To: Leah Whallon; nathanw@cityofsherman.com

Cc: kylarc@cityofsherman.com

Subject: RE: Application to Amend Permit No. WQ0010329001; City of Sherman; Post Oak WWTP **Attachments:** SHE Admin Rpt Revised Pages.pdf; Sherman WQ0010329001 Avery 5160 Labels.docx;

Sherman WQ0010329001 Spanish NORI.docx

Follow Up Flag: Follow up Flag Status: Flagged

Leah,

My client and I have reviewed your comments.

Below are our responses:

- 1. Administrative Report 1.0, Sections 4, 6, 8 Attached are revised pages 4, 5, and 6 of the Administrative Report. The mailing address for Mr. Whiddon and Mr. Christison has been revised to P.O. Box 1106, Sherman TX 75091 in Sections 4, 6, and 8.
- 2. Administrative Report 1.1, Section 1 As requested attached is a Microsoft Word document with the affected landowner list that is formatted for mailing labels (Avery 5160).
- 3. The portion of the NORI has been reviewed. No errors or omissions were found.
- 4. As requested, attached is the Spanish translation of the NORI. Please note the template that you provided does not allow the permit number in the title block to be added.

If additional information is required to declare the application administratively complete, please let me know.

Thanks,

Janet

Janet Sims

Senior Project Manager | Water/Wastewater

Direct: 512-735-1001 | Cell: 512-695-2468 | Transfer Files

Mead&Hunt

LinkedIn | Facebook | Instagram

From: Leah Whallon < Leah. Whallon@Tceq.Texas.Gov>

Sent: Thursday, February 27, 2025 4:27 PM

To: nathanw@cityofsherman.com

Cc: kylarc@cityofsherman.com; Janet Sims <janet.sims@meadhunt.com>

Subject: Application to Amend Permit No. WQ0010329001; City of Sherman; Post Oak WWTP

Good Afternoon,

Please see the attached Notice of Deficiency letter dated February 27, 2025 requesting additional information needed to declare the application administratively complete. Please send the complete response by March 13, 2025.

Please let me know if you have any questions.

Thank you,

Leah Whallon

Texas Commission on Environmental Quality Water Quality Division 512-239-0084 leah.whallon@tceq.texas.gov

How is our customer service? Fill out our online customer satisfaction survey at www.tceq.texas.gov/customersurvey

This email, including any attachments, is intended only for the use of the recipient(s) and may contain privileged and confidential information, including information protected under the HIPAA privacy rules. Any unauthorized review, disclosure, copying, distribution or use is prohibited. If you received this email by mistake, please notify us by reply e-mail and destroy all copies of the original message.

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at: http://www15.tceq.texas.gov/crpub/

CN: **N/A**

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix: <u>N/A</u> Last Name, First Name: Click to enter text.

Title: Click to enter text. Credential: Click to enter text.

Provide a brief description of the need for a co-permittee: Click to enter text.

C. Core Data Form

Complete the Core Data Form for each customer and include as an attachment. If the customer type selected on the Core Data Form is **Individual**, complete **Attachment 1** of Administrative Report 1.0. **See Attachment B.**

Section 4. Application Contact Information (Instructions Page 27)

This is the person(s) TCEQ will contact if additional information is needed about this application. Provide a contact for administrative questions and technical questions.

A. Prefix: Mr. Last Name, First Name: Whiddon, Nathan

Title: Wastewater and Laboratory Manager Credential: Click to enter text.

Organization Name: City of Sherman

Mailing Address: **P.O. Box 1106** City, State, Zip Code: **Sherman, TX 75091**

Phone No.: (903) 892-7286 E-mail Address: nathanw@cityofsherman.com

Check one or both: extstyle exts

B. Prefix: Ms. Last Name, First Name: Sims, Janet

Title: **Project Manager** Credential: Click to enter text.

Organization Name: **Mead & Hunt**

Mailing Address: **8217 Shoal Creek Boulevard, Suite 203** City, State, Zip Code: **Austin,**

TX 78757

Phone No.: <u>(512)</u> 735-1001 E-mail Address: <u>Janet.Sims@meadhunt.com</u>

Check one or both: extstyle exts

Section 5. Permit Contact Information (Instructions Page 27)

Provide the names and contact information for two individuals that can be contacted throughout the permit term.

A. Prefix: Mr. Last Name, First Name: Philpott, Clint

Title: **Assistant City Manager** Credential: **P.E.**

Organization Name: City of Sherman

Mailing Address: **220 West Mulberry** City, State, Zip Code: **Sherman, TX 75090**

Phone No.: (903) 892-7203 E-mail Address: clintp@cityofsherman.com

B. Prefix: Mr. Last Name, First Name: Flores, Zachary

Title: <u>City Manager</u> Credential: <u>Ph.D.</u>

Organization Name: City of Sherman

Mailing Address: **220 West Mulberry** City, State, Zip Code: **Sherman, TX 75090**

Phone No.: (903) 892-7205 E-mail Address: zacharyf@cityofsherman.com

Section 6. Billing Contact Information (Instructions Page 27)

The permittee is responsible for paying the annual fee. The annual fee will be assessed to permits *in effect on September 1 of each year*. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (using form TCEQ-20029).

Prefix: Mr. Last Name, First Name: Whiddon, Nathan

Title: Wastewater and Laboratory Manager Credential: Click to enter text.

Organization Name: City of Sherman

Mailing Address: **P.O. Box 1106** City, State, Zip Code: **Sherman, TX 75091**

Phone No.: (903) 892-7286 E-mail Address: nathanw@cityofsherman.com

Section 7. DMR/MER Contact Information (Instructions Page 27)

Provide the name and complete mailing address of the person delegated to receive and submit Discharge Monitoring Reports (DMR) (EPA 3320-1) or maintain Monthly Effluent Reports (MER).

Prefix: **Mr.** Last Name, First Name: **Philpott, Clint**

Title: **Assistant City Manager** Credential: **P.E.**

Organization Name: City of Sherman

Mailing Address: **220 West Mulberry** City, State, Zip Code: **Sherman, TX 75090**

Phone No.: (903) 892-7206 E-mail Address: ClintP@cityofsherman.com

Section 8. Public Notice Information (Instructions Page 27)

A. Individual Publishing the Notices

Prefix: Mr. Last Name, First Name: Christison, Kylar

Title: **Wastewater Project Manager** Credential: Click to enter text.

Organization Name: City of Sherman

Mailing Address: **P.O. Box 1106** City, State, Zip Code: **Sherman, TX 75091**

Phone No.: (903) 892-7034 E-mail Address: KylarC@cityofsherman.com

ь.		ckage	i Receiving	, NOU	ice of Receipt and Intent to Obtain a water Quanty Ferning						
	Indicate by a check mark the preferred method for receiving the first notice and instructions:										
		Fax									
		Regula	ar Mail								
C.	Co	ntact pe	ermit to be	listed	l in the Notices						
	Pre	efix: Mr	<u>•</u>		Last Name, First Name: Whiddon, Nathan						
	Title: Wastewater and Laboratory Manager Credential: Click to enter text.										
	Or	ganizati	on Name: <u>C</u>	ity of	<u>f Sherman</u>						
	Ma	ailing Ad	ldress: P.O.	Box	1106 City, State, Zip Code: Sherman, TX, 75091						
	Ph	one No.:	<u>(903) 892-</u>	·7286	E-mail Address: <u>nathanw@cityofsherman.com</u>						
D.	Pu	blic Vie	wing Inforn	natio	on .						
	If the facility or outfall is located in more than one county, a public viewing place for each county must be provided.										
	Public building name: <u>City Library</u>										
	Location within the building: <u>Front desk</u>										
	Physical Address of Building: 421 N. Travis										
	City: Sherman, TX County: Grayson										
	Contact (Last Name, First Name): <u>Cannon, Lauren</u>										
	Ph	one No.:	(903) 892-	·7240	Ext.: Click to enter text.						
Е.	Bil	Bilingual Notice Requirements									
	This information is required for new, major amendment, minor amendment or minor modification, and renewal applications.										
	This section of the application is only used to determine if alternative language notices will be needed. Complete instructions on publishing the alternative language notices will be in your public notice package.										
	Please call the bilingual/ESL coordinator at the nearest elementary and middle schools and obtain the following information to determine whether an alternative language notices are required.										
	1.				program required by the Texas Education Code at the elementary st to the facility or proposed facility?						
		\boxtimes	Yes		No						
		If no , p	oublication o	of an	alternative language notice is not required; skip to Section 9						
	2.				ttend either the elementary school or the middle school enrolled in ogram at that school?						
			Yes		No						

CITY OF SHERMAN TPDES Permit No. WQ0010329001

HMI SHERMAN 592 LLC PO BOX 822044 RICHLAND HILLS TX 76182 SHERMAN LUELLA RV PO BOX 822044 NORTH RICHLAND TX 76182 COOK NANCY GRAY TRUSTEE NANCY GRAY COOK TRUST 283 DAVENPORT RD SHERMAN TX 75090

TRIPLE G AND H LLC ATTN JOHN YORK GRAHAM MANAGER 734 DEER MEADOW LN SEADRIFT TX 77983

HAYNES MARTHA 1446 NW 23RD LN ANKENY IA 50023 TA KIEU THI MONG AND TIEN NGOC THI TRAN 1823 COUNTRY RD 596 NAVADA TX 75173

BROWN LEWISVILLE RAILROAD FAMILY FIRST LP PO BOX 29816 DALLAS TX 75229 STATE OF TEXAS TX DOT ATTN RIGHT OF WAY PO BOX 3067 DALLAS TX 75221

AUSTIN COLLEGE 900 N GRAND AVE SHERMAN TX 75090

FORSTER JAMES E 447 KELSEY RD DENISON TX 75021 MCCLELLAN AMY HINES PO BOX 3027 MCKINNEY TX 75070 AMERICAN RESERVE SERVICES CORPORATION 1605 LBJ FREEWAY STE 700 DALLAS TX 75234

HMI SHERMAN 211 LLC 90 BOX 822044 NORTH RICHLAND HILLS TX 76182 PC COUNSELING & REHABILITATION LLC NEWJERSEY LIMITED CO 17 MULBERRY ST SICKLERVILLE NJ 08081

MAESTRO INVESTING GROUP LLC 2553 AUTUMN LN FRISCO TX 75036

REAL ESTATE TEXOMA LLC 890 BEECHWOOD LN FAIRVIEW TX 75069 CONRAD PROPERTIES LLC 509 E 1ST ST PROSPER TX 75078 CONRAD RENTALS LLC 130 N PRESTON RD PROSPER TX 75078

KUSE WAYNE CARL ETUX ROXANN 1301 STATE HWY 289 SHERMAN TX 75092 CORONA RAFAEL AND CORONA SONIA 1241 MCMAHAN DR LEWISVILLE TX 75077

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA MODIFICACION

PERMISO NO. WQoo

SOLICITUD. La Ciudad de Sherman, P.O. Box 1106, Sherman, Texas 75091, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para modificar el Permiso No. WQ0010329001 (EPA I.D. No. TX 0024325) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio anual de 24,000,000 galones por día y a adición del nuevo emissário 002 para descargar aguas residuales tratadas en un volumen que no supere un flujo promedio anual de 16,000,000 de galones por día. La planta está ubicada en 1800 East Farm-to-Market Road 1417, cerca de la ciudad de Sherman, en el Condado de Grayson, Texas 75090. La ruta de descarga es del sitio de la planta a través del emissário 001 hasta Post Oak Creek, de allí a Choctaw Creek, de allí a Red River Below Lake Texoma y a través del emissário 002 a través de una tubería hasta un afluente sin nombre, de allí a Deaver Creek, de allí a Big Mineral Creek, de allí al lago Texoma. La TCEO recibió esta solicitud el 19 de febrero de 2025. La solicitud para el permiso estará disponible para leerla y copiarla en Biblioteca Pública de Sherman, 421 North Travis Street, Sherman, en el condado de Grayson, Texas, antes de la fecha de publicación de este aviso en el periódico. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-96.573611,33.601388&level=18

[Include the following non-italicized sentence if the facility is located in the Coastal Management Program boundary and is an application for a major amendment which will increase the pollutant loads to coastal waters or would result in relocation of an outfall to a critical areas, or a renewal with such a major amendment. The Coastal Management Program boundary is the area along the Texas Coast of the Gulf of México as depicted on the map in 31 TAC §503.1 and includes part or all of the following counties: Cameron, Willacy, Kenedy, Kleberg, Nueces, San Patricio, Aransas, Refugio, Calhoun, Victoria, Jackson, Matagorda, Brazoria, Galveston, Harris, Chambers, Jefferson y Orange. If the application is for amendment that does ot meet the above description, do not include the sentence: El Director Ejecutivo de la TCEQ ha revisado esta medida para ver si está de acuerdo con los objetivos y las regulaciones del Programa de Administración Costero de Texas (CMP) de acuerdo con las regulaciones del Consejo Coordinador de la Costa (CCC) y ha determinado que la acción es conforme con las metas y regulaciones pertinentes del CMP.

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de

completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO.

Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro: identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia

estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía http://www14.tceq.texas.gov/epic/eComment/ o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional del la Ciudad de Sherman, a la dirección indicada arriba o llamando a Sr. Nathan Whiddon, Gerente de Aguas Residuales y Laboratorio, al 903-892-7286.

Fecha de emisión	LI)а	te	no	tice	iss	uea	IJ
------------------	----	----	----	----	------	-----	-----	----

Post Oak Wastewater Treatment Facility

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

APPLICATION FOR MAJOR AMENDMENT

TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT NO. WQ0010329001

February 19, 2025

THE TONMENTAL OUR LEVEL OF THE TON THE

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST

Complete and submit this checklist with the application.

APPLICANT NAME: City of Shermar
--

PERMIT NUMBER (If new, leave blank): WQ00 10329001

Indicate if each of the following items is included in your application.

	Y	N		Y	N
Administrative Report 1.0	\boxtimes		Original USGS Map		
Administrative Report 1.1	\boxtimes		Affected Landowners Map	\boxtimes	
SPIF	\boxtimes		Landowner Disk or Labels	\boxtimes	
Core Data Form	\boxtimes		Buffer Zone Map	\boxtimes	
Public Involvement Plan Form	\boxtimes		Flow Diagram	\boxtimes	
Technical Report 1.0	\boxtimes		Site Drawing	\boxtimes	
Technical Report 1.1	\boxtimes		Original Photographs	\boxtimes	
Worksheet 2.0	\boxtimes		Design Calculations	\boxtimes	
Worksheet 2.1	\boxtimes		Solids Management Plan	\boxtimes	
Worksheet 3.0		\boxtimes	Water Balance		\boxtimes
Worksheet 3.1		\boxtimes			
Worksheet 3.2		\boxtimes			
Worksheet 3.3		\boxtimes			
Worksheet 4.0	\boxtimes				
Worksheet 5.0					
Worksheet 6.0	\boxtimes				
Worksheet 7.0		\boxtimes			

For TCEQ Use Only	
Segment Number	County
Expiration Date	Region
Permit Number	

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION **ADMINISTRATIVE REPORT 1.0**

For any questions about this form, please contact the Applications Review and Processing Team at 512-239-4671.

Section 1. Application Fees (Instructions Page 26)

Indicate the amount submitted for the application fee (check only one).

Flow	New/Major Amendment	Renewal
< 0.05 MGD	\$350.00 □	\$315.00 □
≥0.05 but <0.10 MGD	\$550.00 □	\$515.00 □
≥0.10 but <0.25 MGD	\$850.00 □	\$815.00 □
≥0.25 but <0.50 MGD	\$1,250.00 □	\$1,215.00
≥0.50 but <1.0 MGD	\$1,650.00 □	\$1,615.00
≥1.0 MGD	\$2,050.00 ⊠	\$2,015.00

Minor Amendment (for any flow) \$150.00 □

Pavment	Inform	ation
Pavment	шиопп	auon

Active

Check/Money Order Number: Click to enter text. Mailed Check/Money Order Amount: Click to enter text. Name Printed on Check: Click to enter text.

EPAY Voucher Number: 748858/748859

Copy of Payment Voucher enclosed? Yes 🖾

Section 2. Type of Application (Instructions Page 26)

a.	Check the box next to the appropriate authorization type.					
	\boxtimes	Publicly-Owned Domestic Wastewater				
		Privately-Owned Domestic Wastewater				
		Conventional Wastewater Treatment				
b.	Che	ck the box next to the appropriate facility status.				

Inactive

2/11/25, 3:32 PM TCEQ ePay

Questions or Comments >>

Shopping Cart Select Fee Search Transactions Sign Out

Your transaction is complete. Thank you for using TCEQ ePay.

Note: It may take up to 3 working days for this electronic payment to be processed and be reflected in the TCEQ ePay system. Print this receipt and the vouchers for your records. An email receipt has also been sent.

Transaction Information

Trace Number: 582EA000650995

Date: 02/11/2025 03:31 PM

Payment Method: CC - Authorization 0000068831

ePay Actor: KYLAR CHRISTISON Actor Email: kylarc@cityofsherman.com

IP: 67.60.177.98 **TCEQ Amount:** \$2,050.00 **Texas.gov Price:** \$2,096.38*

* This service is provided by Texas.gov, the official website of Texas. The price of this service includes funds that support the ongoing operations and enhancements of Texas.gov, which is provided by a third party in partnership with the State.

Payment Contact Information

Name: KYLAR CHRISTISON Company: CITY OF SHERMAN

Address: 288 POST OAK RD, SHERMAN, TX 75091

Phone: 903-892-7034

Cart Items

Click on the voucher number to see the voucher details.

Voucher	Fee Description	AR Number	Amount					
748858	WW PERMIT - FACILITY WITH FLOW $>= 1.0~\mathrm{MGD}$ - NEW AND MAJOR AMENDMENTS		\$2,000.00					
748859	30 TAC 305.53B WQ NOTIFICATION FEE	TCEQ Amount:	\$50.00 \$2,050.00					

ePay Again Exit ePay

Note: It may take up to 3 working days for this electronic payment to be processed and be reflected in the TCEQ ePay system. Print this receipt for your records.

Site Help | Disclaimer | Web Policies | Accessibility | Our Compact with Texans | TCEQ Homeland Security | Contact Us Statewide Links: Texas.gov | Texas Homeland Security | TRAIL Statewide Archive | Texas Veterans Portal

© 2002-2025 Texas Commission on Environmental Quality

C.	Che	eck the box next to the appropriate permit typ	e.	
	\boxtimes	TPDES Permit		
		TLAP		
		TPDES Permit with TLAP component		
		Subsurface Area Drip Dispersal System (SAD	DS)	
d.	Che	eck the box next to the appropriate application	ı typ	e
		New		
	\boxtimes	Major Amendment with Renewal		Minor Amendment with Renewal
		Major Amendment without Renewal		Minor Amendment without Renewal
		Renewal without changes		Minor Modification of permit
e.	For	amendments or modifications, describe the p	ropo	osed changes: See Attachment A.
f.	For	existing permits:		
	Per	mit Number: WQ00 <u>10329001</u>		
	EPA	A I.D. (TPDES only): TX 0024325		
	Exp	oiration Date: August 19, 2025		

Section 3. Facility Owner (Applicant) and Co-Applicant Information (Instructions Page 26)

A. The owner of the facility must apply for the permit.

What is the Legal Name of the entity (applicant) applying for this permit?

City of Sherman

(The legal name must be spelled exactly as filed with the Texas Secretary of State, County, or in the legal documents forming the entity.)

If the applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at http://www15.tceq.texas.gov/crpub/

CN: **600429583**

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in 30 TAC § 305.44.

Prefix: Mr. Last Name, First Name: Philpott, Clint

Title: **Assistant City Manager** Credential: **P.E.**

B. Co-applicant information. Complete this section only if another person or entity is required to apply as a co-permittee.

What is the Legal Name of the co-applicant applying for this permit?

N/A

(The legal name must be spelled exactly as filed with the TX SOS, with the County, or in the legal documents forming the entity.)

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at: http://www15.tceq.texas.gov/crpub/

CN: **N/A**

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix: N/A Last Name, First Name: Click to enter text.

Title: Click to enter text. Credential: Click to enter text.

Provide a brief description of the need for a co-permittee: Click to enter text.

C. Core Data Form

Complete the Core Data Form for each customer and include as an attachment. If the customer type selected on the Core Data Form is **Individual**, complete **Attachment 1** of Administrative Report 1.0. **See Attachment B.**

Section 4. Application Contact Information (Instructions Page 27)

This is the person(s) TCEQ will contact if additional information is needed about this application. Provide a contact for administrative questions and technical questions.

A. Prefix: Mr. Last Name, First Name: Whiddon, Nathan

Title: Wastewater and Laboratory Manager Credential: Click to enter text.

Organization Name: City of Sherman

Mailing Address: **288 Post Oak Road** City, State, Zip Code: **Sherman, TX 75090**

Phone No.: (903) 892-7286 E-mail Address: nathanw@cityofsherman.com

B. Prefix: Ms. Last Name, First Name: Sims, Janet

Title: **Project Manager** Credential: Click to enter text.

Organization Name: Mead & Hunt

Mailing Address: **8217 Shoal Creek Boulevard, Suite 203** City, State, Zip Code: **Austin,**

TX 78757

Phone No.: (512) 735-1001 E-mail Address: Janet.Sims@meadhunt.com

Check one or both:

Section 5. Permit Contact Information (Instructions Page 27)

Provide the names and contact information for two individuals that can be contacted throughout the permit term.

A. Prefix: **Mr.** Last Name, First Name: **Philpott, Clint**

Title: **Assistant City Manager** Credential: **P.E.**

Organization Name: City of Sherman

Mailing Address: **220 West Mulberry** City, State, Zip Code: **Sherman, TX 75090**

Phone No.: (903) 892-7203 E-mail Address: clintp@cityofsherman.com

B. Prefix: Mr. Last Name, First Name: Flores, Zachary

Title: <u>City Manager</u> Credential: <u>Ph.D.</u>

Organization Name: City of Sherman

Mailing Address: **220 West Mulberry** City, State, Zip Code: **Sherman, TX 75090**

Phone No.: (903) 892-7205 E-mail Address: zacharyf@cityofsherman.com

Section 6. Billing Contact Information (Instructions Page 27)

The permittee is responsible for paying the annual fee. The annual fee will be assessed to permits *in effect on September 1 of each year*. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (using form TCEQ-20029).

Prefix: Mr. Last Name, First Name: Whiddon, Nathan

Title: Wastewater and Laboratory Manager Credential: Click to enter text.

Organization Name: City of Sherman

Mailing Address: **288 Post Oak Road** City, State, Zip Code: **Sherman, TX 75090**

Phone No.: (903) 892-7286 E-mail Address: nathanw@cityofsherman.com

Section 7. DMR/MER Contact Information (Instructions Page 27)

Provide the name and complete mailing address of the person delegated to receive and submit Discharge Monitoring Reports (DMR) (EPA 3320-1) or maintain Monthly Effluent Reports (MER).

Prefix: **Mr.** Last Name, First Name: **Philpott, Clint**

Title: **Assistant City Manager** Credential: **P.E.**

Organization Name: City of Sherman

Mailing Address: **220 West Mulberry** City, State, Zip Code: **Sherman, TX 75090**

Phone No.: (903) 892-7206 E-mail Address: ClintP@cityofsherman.com

Section 8. Public Notice Information (Instructions Page 27)

A. Individual Publishing the Notices

Prefix: Mr. Last Name, First Name: Christison, Kylar

Title: **Wastewater Project Manager** Credential: Click to enter text.

Organization Name: **City of Sherman**

Mailing Address: **288 Post Oak Road** City, State, Zip Code: **Sherman, TX 75090**

Phone No.: (903) 892-7034 E-mail Address: KylarC@cityofsherman.com

B.	Method for Receiving Notice of Receipt and Intent to Obtain a Water Quality Permit Package									
	Indicate by a check mark the preferred method for receiving the first notice and instructions:									
	\boxtimes	E-mai	l Address							
		Fax								
		Regul	ar Mail							
C.	Co	ntact p	ermit to be	liste	d in the Notices					
	Pre	efix: <u>Mr</u>	<u>•</u>		Last Name, First Name: Whiddon, Nathan					
	Tit	ile: Was	tewater an	d Lal	credential: Click to enter text.					
	Or	ganizat	ion Name: <u>C</u>	City o	<u>f Sherman</u>					
	Ma	iling Ac	ddress: 288	Post	Oak Road City, State, Zip Code: Sherman, TX					
	Ph	one No.	: <u>(903) 892</u>	-7280	E-mail Address: <u>nathanw@cityofsherman.com</u>					
D.	Pu	blic Vie	wing Infor	matio	on					
	If the facility or outfall is located in more than one county, a public viewing place for each county must be provided.									
	Public building name: <u>City Library</u>									
	Location within the building: <u>Front desk</u>									
	Physical Address of Building: 421 N. Travis									
	Cit	y: <mark>Sher</mark>	man, TX		County: <u>Grayson</u>					
	Co	ntact (L	ast Name, F	irst N	Jame): <u>Cannon, Lauren</u>					
	Ph	one No.	: <u>(903) 892</u>	-7240	Ext.: Click to enter text.					
E.	Bilingual Notice Requirements									
	This information is required for new, major amendment, minor amendment or minor modification, and renewal applications.									
	This section of the application is only used to determine if alternative language notices will be needed. Complete instructions on publishing the alternative language notices will be in your public notice package.									
	Please call the bilingual/ESL coordinator at the nearest elementary and middle schools and obtain the following information to determine whether an alternative language notices are required.									
	1. Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility?									
			Yes		No					
		If no , p	oublication	of an	alternative language notice is not required; skip to Section 9					
	2.				ttend either the elementary school or the middle school enrolled in cogram at that school?					
		\boxtimes	Yes		No					

	3.	Do the location		these	e schools attend a bilingual education program at another				
			Yes	\boxtimes	No				
	4.				quired to provide a bilingual education program but the school has rement under 19 TAC §89.1205(g)?				
			Yes	\boxtimes	No				
	5.				question 1, 2, 3, or 4 , public notices in an alternative language are ge is required by the bilingual program? Spanish				
F.	Pla	in Lang	guage Summ	ary 7	Template				
		Complete the Plain Language Summary (TCEQ Form 20972) and include as an attachment. Attachment: C							
C	Dıı	hlic Inv	olvement P	lan F	Orm				
u.					ement Plan Form (TCEQ Form 20960) for each application for a				
					idment to a permit and include as an attachment.				
	At	tachme	nt: <u>D</u>						
S ₀	ot:	α 0	Dogulat	od I	Entity and Dormittad Sita Information (Instructions				
36	Cu	on 9.	Page 29		Entity and Permitted Site Information (Instructions				
Α.				regul	ated by TCEQ, provide the Regulated Entity Number (RN) issued to				
					Registry at http://www15.tceq.texas.gov/crpub/ to determine if ed by TCEQ.				
B.	Na	me of p	roject or site	e (the	e name known by the community where located):				
	<u>Po</u>	st Oak	Wastewater	Trea	atment Facility				
C.	Ov	vner of	treatment fa	cility	: <u>City of Sherman</u>				
	Ov	vnership	of Facility:	\boxtimes	Public □ Private □ Both □ Federal				
D.	Ov	vner of l	land where t	reatn	nent facility is or will be:				
	Pre	efix: Clic	ck to enter to	ext.	Last Name, First Name: Click to enter text.				
	Tit	le: Click	to enter tex	xt.	Credential: Click to enter text.				
	Or	ganizati	ion Name: <u>C</u> i	ity of	<u>Sherman</u>				
	Ma	iling Ac	ldress: 220	<u>West</u>	Mulberry Street City, State, Zip Code: Sherman, TX 75090				
	Ph	one No.	(903) 892-	<u>7200</u>	E-mail Address: Click to enter text.				
					same person as the facility owner or co-applicant, attach a lease d easement. See instructions.				
		Attach	ment: <u>N/A</u>						

	Prefix: <u>N/A</u>	Last Name, First Name: Click to enter text.				
	Title: Click to enter text.	Credential: Click to enter text.				
	Organization Name: Click to ente	er text.				
	Mailing Address: Click to enter text. City, State, Zip Code: Click to enter text.					
	Phone No.: Click to enter text.	E-mail Address: Click to enter text.				
If the landowner is not the same person as the facility owner or co-applicant, attach a le						
	agreement or deed recorded easement. See instructions. Attachment: Click to enter text.					
F.	Owner sewage sludge disposal si property owned or controlled by	ite (if authorization is requested for sludge disposal on the applicant)::				
	Prefix: <u>N/A</u>	Last Name, First Name: Click to enter text.				
	Title: Click to enter text.	Credential: Click to enter text.				
	Organization Name: Click to ente	er text.				
	Mailing Address: Click to enter to	ext. City, State, Zip Code: Click to enter text.				
	Phone No.: Click to enter text.	E-mail Address: Click to enter text.				
	If the landowner is not the same agreement or deed recorded ease	e person as the facility owner or co-applicant, attach a lease ement. See instructions.				
	Attachment: Click to enter te	ext.				
	Attachment: Click to enter to	ext.				
Se		ge Information (Instructions Page 31)				
	ection 10. TPDES Dischar					
	ection 10. TPDES Dischar	ge Information (Instructions Page 31)				
	ection 10. TPDES Dischar Is the wastewater treatment facil Yes No	ge Information (Instructions Page 31)				
	ection 10. TPDES Dischar Is the wastewater treatment facil Yes No	ge Information (Instructions Page 31) lity location in the existing permit accurate?				
	Is the wastewater treatment facilor ✓ Yes □ No If no, or a new permit application	ge Information (Instructions Page 31) lity location in the existing permit accurate?				
A.	Is the wastewater treatment facility ✓ Yes ✓ No If no, or a new permit application of the content text.	ge Information (Instructions Page 31) lity location in the existing permit accurate?				
A.	Is the wastewater treatment facility ✓ Yes ✓ No If no, or a new permit application of the content text.	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description:				
A.	Is the wastewater treatment facil ✓ Yes □ No If no, or a new permit application Click to enter text. Are the point(s) of discharge and □ Yes ☒ No If no, or a new or amendment p	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the				
A.	Is the wastewater treatment facil ✓ Yes ☐ No If no, or a new permit application Click to enter text. Are the point(s) of discharge and ☐ Yes ☒ No If no, or a new or amendment point of discharge and the discharge	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct?				
A.	Is the wastewater treatment facil ✓ Yes □ No If no, or a new permit application Click to enter text. Are the point(s) of discharge and □ Yes ☒ No If no, or a new or amendment p	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the				
A.	Is the wastewater treatment facility Yes	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the				
A.	Is the wastewater treatment facility Yes	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the large route to the nearest classified segment as defined in 30				
A.	Is the wastewater treatment facility. Yes In No If no, or a new permit application. Click to enter text. Are the point(s) of discharge and In No If no, or a new or amendment proport of discharge and the disc	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the large route to the nearest classified segment as defined in 30 man, TX				
A. B.	Is the wastewater treatment facility Yes No If no, or a new permit application Click to enter text. Are the point(s) of discharge and No If no, or a new or amendment proport of discharge and the discharge an	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the large route to the nearest classified segment as defined in 30 man, TX s/are located: Grayson discharge to a city, county, or state highway right-of-way, or				
A. B.	Is the wastewater treatment facility. Yes In No If no, or a new permit application. Click to enter text. Are the point(s) of discharge and In No If no, or a new or amendment proport of discharge and the disc	ge Information (Instructions Page 31) lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the large route to the nearest classified segment as defined in 30 man, TX s/are located: Grayson discharge to a city, county, or state highway right-of-way, or				

E. Owner of effluent disposal site:

	If yes , indicate by a check mark if:								
	\square Authorization granted \square Authorization pending								
	For new and amendment applications, provide copies of letters that show proof of contact and the approval letter upon receipt.								
	Attachment: <u>N/A</u>								
D.	For all applications involving an average daily discharge of 5 MGD or more, provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge: Grayson, Fannin, Lamar, and Red River								
Se	ection 11. TLAP Disposal Information (Instructions Page 32)								
Α.	For TLAPs, is the location of the effluent disposal site in the existing permit accurate?								
	□ Yes □ No N/A								
	If no, or a new or amendment permit application , provide an accurate description of the disposal site location:								
	N/A								
D	City nearest the disposal site: Click to enter text.								
	County in which the disposal site is located: Click to enter text.								
	· -								
υ.	D. For TLAPs , describe the routing of effluent from the treatment facility to the disposal site:								
Е.	For TLAPs , please identify the nearest watercourse to the disposal site to which rainfall runoff might flow if not contained: Click to enter text.								
Se	ection 12. Miscellaneous Information (Instructions Page 32)								
A.	Is the facility located on or does the treated effluent cross American Indian Land?								
	□ Yes ⊠ No								
В.	If the existing permit contains an onsite sludge disposal authorization, is the location of the sewage sludge disposal site in the existing permit accurate?								
	□ Yes □ No ⊠ Not Applicable								
	If No, or if a new onsite sludge disposal authorization is being requested in this permit application, provide an accurate location description of the sewage sludge disposal site.								
	Click to enter text.								

C.		Did any person formerly employed by the TCEQ represent your company and get paid for ervice regarding this application?						
		Yes	\boxtimes	No				
				on formerly employers regarding the applications.		o represented your company and er text.		
D.	Do yo	u owe any	fees	s to the TCEQ?				
		Yes	\boxtimes	No				
	•	-		ollowing information	1:			
	Ac	count nu	mber:	: Click to enter text.				
		_		e: Click to enter text				
E.	Do yo	u owe any	y pen	alties to the TCEQ?				
		Yes		No				
	•			e the following info				
	En	forcemen	t ord	er number: Click to	enter text.			
	An	nount pas	t due	e: Click to enter text				
C o	ation	19 A:	toal	hments (Instruc	rtiona Doga 22)			
						To Domont Chaple all that owners		
						ve Report. Check all that apply:		
		-			•	here the treatment facility is applicant or co-applicant.		
		ted or the	efflu		-			
\boxtimes	Origi			SGS Topographic M	ap with the followin	ng information:		
\boxtimes	Origi •	inal full-s	ize U	•	ap with the followin See Attachme			
	•	inal full-s Applican Treatme	ize U it's pi nt fac	SGS Topographic Ma roperty boundary cility boundary	See Attachme	nt E.		
	Origi	inal full-s Applicar Treatme Labeled	ize U it's pi nt fac point	SGS Topographic Ma roperty boundary cility boundary tof discharge for ea	See Attachmen	TPDES only)		
	•	inal full-s Applicar Treatme Labeled Highligh Onsite so	ize U nt's pi nt fac point ted d ewage	SGS Topographic Ma roperty boundary cility boundary tof discharge for ea discharge route for e e sludge disposal sit	See Attachment ch discharge point (ach discharge point te (if applicable)	nt E. (TPDES only)		
	•	Applican Treatme Labeled Highligh Onsite so Effluent	ize U nt's pi nt fac point ted d ewage dispo	SGS Topographic Ma roperty boundary cility boundary of discharge for ea- discharge route for e e sludge disposal sit osal site boundaries	See Attachments ch discharge point (ach discharge point ce (if applicable) (TLAP only)	TPDES only) (TPDES only) Attachments A. Proposed Changes B. Core Data Form		
	•	Applican Treatme Labeled Highligh Onsite so Effluent New and	ize U nt's proportion nt factorist point ted d ewage dispo futu	SGS Topographic Maroperty boundary cility boundary of discharge for each ischarge for each sludge disposal site boundaries re construction (if a	See Attachments ch discharge point (ach discharge point ce (if applicable) (TLAP only)	TPDES only) (TPDES only) Attachments A. Proposed Changes B. Core Data Form C. Plain Language Summary D. Public Involvement Plan		
	•	Applican Treatme Labeled Highligh Onsite so Effluent New and 1 mile ra 3 miles o	ize U nt fac point ted d ewage dispo futu dius	SGS Topographic Ma roperty boundary cility boundary of discharge for ea- discharge route for e e sludge disposal sit osal site boundaries	See Attachments ch discharge point (ach discharge point te (if applicable) (TLAP only) pplicable)	TPDES only) (TPDES only) Attachments A. Proposed Changes B. Core Data Form C. Plain Language Summary		
	•	Applican Treatme Labeled Highligh Onsite so Effluent New and 1 mile ra 3 miles o All pond	ize U It's proportion of the desired	SGS Topographic Mary cility boundary cility boundary of discharge for each ischarge for each ischarge disposal site boundaries are construction (if a information stream information	See Attachments ch discharge point (ach discharge point ce (if applicable) (TLAP only) pplicable) (TPDES only)	TPDES only) (TPDES only) Attachments A. Proposed Changes B. Core Data Form C. Plain Language Summary D. Public Involvement Plan E. USGS Map F. Affected Landowner Information G. Original Photographs		
	•	Applican Treatme Labeled Highligh Onsite so Effluent New and 1 mile ra 3 miles o All pond	ize U It's proportion of the desired	SGS Topographic Mary cility boundary color of discharge for each ischarge for each studge disposal site boundaries re construction (if a information	See Attachments ch discharge point (ach discharge point ce (if applicable) (TLAP only) pplicable) (TPDES only)	TPDES only) (TPDES only) Attachments A. Proposed Changes B. Core Data Form C. Plain Language Summary D. Public Involvement Plan E. USGS Map F. Affected Landowner Information G. Original Photographs H. Buffer Zone Map I. Treatment Process Description		
	Attac	Applican Treatme Labeled Highligh Onsite so Effluent New and 1 mile ra 3 miles o All pond	ize U It's proportion of the desired disposition of the disposition o	SGS Topographic Mary cility boundary cility boundary of discharge for each ischarge for each ischarge disposal site boundaries are construction (if a information stream information	See Attachments ch discharge point (ach discharge point ce (if applicable) (TLAP only) pplicable) (TPDES only)	TPDES only) (TPDES only) A. Proposed Changes B. Core Data Form C. Plain Language Summary D. Public Involvement Plan E. USGS Map F. Affected Landowner Information G. Original Photographs H. Buffer Zone Map I. Treatment Process Description J. Treatment Unit List K. Process Flow Diagram		
	Attac	Applican Treatme Labeled Highligh Onsite so Effluent New and 1 mile ra 3 miles o All pond	ize U It's proportion of the desired disposition of the disposition o	SGS Topographic Mary cility boundary cility boundary of discharge for each ischarge route for each ischarge disposal site boundaries are construction (if a information stream information addividuals as co-apposed	See Attachments ch discharge point (ach discharge point ce (if applicable) (TLAP only) pplicable) (TPDES only)	TPDES only) (TPDES only) Attachments A. Proposed Changes B. Core Data Form C. Plain Language Summary D. Public Involvement Plan E. USGS Map F. Affected Landowner Information G. Original Photographs H. Buffer Zone Map I. Treatment Process Description J. Treatment Unit List K. Process Flow Diagram L. Site Drawing M. Effluent Analysis Reports		
	Attac	Applican Treatme Labeled Highligh Onsite so Effluent New and 1 mile ra 3 miles o All pond	ize U It's proportion of the desired disposition of the disposition o	SGS Topographic Mary cility boundary cility boundary of discharge for each ischarge route for each ischarge disposal site boundaries are construction (if a information stream information addividuals as co-apposed	See Attachments ch discharge point (ach discharge point ce (if applicable) (TLAP only) pplicable) (TPDES only)	TPDES only) (TPDES only) Attachments A. Proposed Changes B. Core Data Form C. Plain Language Summary D. Public Involvement Plan E. USGS Map F. Affected Landowner Information G. Original Photographs H. Buffer Zone Map I. Treatment Process Description J. Treatment Unit List K. Process Flow Diagram L. Site Drawing		

U. WindroseV. Solids Management Plan

Q. Site Map

S. Permit Justification

- W. Post Oak Creek Stream StudyX. Effluent Parameters above the MAL
- Y. Biosolids Treatment Process Description

R. 100-year Frequency Flood Protection

T. Design Calculations and Plant Features

Z. Marketing and Distribution Plan

SPIF

Section 14. Signature Page (Instructions Page 34)

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: WQ0010329001

Applicant: City of Sherman

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory name (typed or printed): Clint Philpott, P.E.							
Signatory title: <u>Assistant City Manager</u>							
Signature: Club Phiph Date: 2/17/25							
(Use blue ink)							
Subscribed and Sworn to before me by the said Clint Philoott							
on this 17th day of February , 20 LS.							
My commission expires on the 28th day of February, 2075.							

TERI FINE

NOTARY PUBLIC STATE OF TEXAS ID # 132771151 My Comm. Expires 10-28-2028 SEAL!

DOMESTIC WASTEWATER PERMIT APPLICATION ADMINISTRATIVE REPORT 1.0

The following information is required for new and amendment applications.

Section 1. Affected Landowner Information (Instructions Page 36)

A.	Indicate by a check mark that the landowners map or drawing, with scale, includes the following information, as applicable: See Attachment F.							
	\boxtimes	The applicant's property boundaries						
	\boxtimes	The facility site boundaries within the applicant's property boundaries						
	\boxtimes	The distance the buffer zone falls into adjacent properties and the property boundaries of the landowners located within the buffer zone						
The property boundaries of all landowners surrounding the applicant's property boundaries of all landowners adjacent to the new facility (ponds).)								
		The point(s) of discharge and highlighted discharge route(s) clearly shown for one mile downstream						
	The property boundaries of the landowners located on both sides of the discharge route for one full stream mile downstream of the point of discharge							
	The property boundaries of the landowners along the watercourse for a one-half mile radius from the point of discharge if the point of discharge is into a lake, bay, estuary, or affected by tides							
		The boundaries of the effluent disposal site (for example, irrigation area or subsurface drainfield site) and all evaporation/holding ponds within the applicant's property						
\square The property boundaries of all landowners surrounding the effluent disposal si								
	The boundaries of the sludge land application site (for land application of sewage sludge land) and the property boundaries of landowners surrounding the applicant's property boundaries where the sewage sludge land application site is look							
☐ The property boundaries of landowners within one-half mile in all directions for applicant's property boundaries where the sewage sludge disposal site (for exactled surface disposal site or sludge monofill) is located								
В.	⊠ addı	Indicate by a check mark that a separate list with the landowners' names and mailing resses cross-referenced to the landowner's map has been provided.						
C.	Indi	cate by a check mark in which format the landowners list is submitted:						
		☐ USB Drive Four sets of labels						
D.		ride the source of the landowners' names and mailing addresses: Grayson Central raisal District (2/14/2025)						
E.		equired by $Texas\ Water\ Code\ \S\ 5.115$, is any permanent school fund land affected by application?						
		□ Yes 🖾 No						

	If yes , provide the location and foreseeable impacts and effects this application has on the land(s):							
	Cl	ek to enter text.						
Co	ot!	n 2 - Original Dhotographs (Instructions Dags 20)						
		n 2. Original Photographs (Instructions Page 38)						
		original ground level photographs. Indicate with checkmarks that the following tion is provided. See Attachment G.						
	\boxtimes	At least one original photograph of the new or expanded treatment unit location						
		At least two photographs of the existing/proposed point of discharge and as much area downstream (photo 1) and upstream (photo 2) as can be captured. If the discharge is to an open water body (e.g., lake, bay), the point of discharge should be in the right or left edge of each photograph showing the open water and with as much area on each respective side of the discharge as can be captured.						
		At least one photograph of the existing/proposed effluent disposal site						
		A plot plan or map showing the location and direction of each photograph						
Se	cti	n 3. Buffer Zone Map (Instructions Page 38)						
A.	inf	er zone map. Provide a buffer zone map on 8.5×11 -inch paper with all of the following mation. The applicant's property line and the buffer zone line may be distinguished by g dashes or symbols and appropriate labels.						
		The applicant's property boundary; See Attachment H. The required buffer zone; and Each treatment unit; and The distance from each treatment unit to the property boundaries.						
В.		er zone compliance method. Indicate how the buffer zone requirements will be met.						
		Ownership and existing Right-of-Way						
		Restrictive easement						
		Nuisance odor control						
		l Variance						
C.		uitable site characteristics. Does the facility comply with the requirements regarding uitable site characteristic found in 30 TAC § 309.13(a) through (d)?						
		▼ Yes □ No						

DOMESTIC WASTEWATER PERMIT APPLICATION SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

This form applies to TPDES permit applications only. Complete and attach the Supplemental Permit information Form (SPIF) (TCEQ Form 20971).

Attachment: SPIF

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST OF COMMON DEFICIENCIES

Below is a list of common deficiencies found during the administrative review of domestic wastewater permit applications. To ensure the timely processing of this application, please review the items below and indicate by checking Yes that each item is complete and in accordance applicable rules at 30 TAC Chapters 21, 281, and 305. If an item is not required this application, indicate by checking N/A where appropriate. Please do not submit the application until the items below have been addressed.

Core Data Form (TCEQ Form No. 10400) (Required for all application types. Must be completed in its entirety Note: Form may be signed by applicant representative.)		Yes		
Correct and Current Industrial Wastewater Permit Application Form (TCEQ Form Nos. 10053 and 10054. Version dated 6/25/2018 or late		Yes		
Water Quality Permit Payment Submittal Form (Page 19) (Original payment sent to TCEQ Revenue Section. See instructions fo	r mai	iling ad	⊠ dress	Yes
7.5 Minute USGS Quadrangle Topographic Map Attached (Full-size map if seeking "New" permit. 8 ½ x 11 acceptable for Renewals and Amendments)			\boxtimes	Yes
Current/Non-Expired, Executed Lease Agreement or Easement	\boxtimes	N/A		Yes
Landowners Map (See instructions for landowner requirements)				Yes
 Things to Know: All the items shown on the map must be labeled. The applicant's complete property boundaries must be deboundaries of contiguous property owned by the applicant. The applicant cannot be its own adjacent landowner. You landowners immediately adjacent to their property, regar from the actual facility. If the applicant's property is adjacent to a road, creek, or on the opposite side must be identified. Although the proapplicant's property boundary, they are considered poter If the adjacent road is a divided highway as identified on map, the applicant does not have to identify the landown the highway. 	nt. mus dless strea perti itially the U	t identi s of how um, the les are i affecto JSGS to	fy the fare a lander	e they are owners djacent to ndowners. aphic
Landowners Cross Reference List (See instructions for landowner requirements)		N/A	\boxtimes	Yes
Landowners Labels or USB Drive attached (See instructions for landowner requirements)		N/A	\boxtimes	Yes
Original signature per 30 TAC § 305.44 - Blue Ink Preferred				

a copy of signature authority/delegation letter must be attached)

Plain Language Summary

(If signature page is not signed by an elected official or principle executive officer,

Yes

THE TONMENTAL OUR LEVEL OF THE PROPERTY OF THE

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671.

The following information is required for all renewal, new, and amendment applications.

Section 1. Permitted or Proposed Flows (Instructions Page 43)

A. Existing/Interim I Phase

Design Flow (MGD): See Attachment A.

2-Hr Peak Flow (MGD): Click to enter text.

Estimated construction start date: Click to enter text.

Estimated waste disposal start date: Click to enter text.

B. Interim II Phase

Design Flow (MGD): Click to enter text.

2-Hr Peak Flow (MGD): Click to enter text.

Estimated construction start date: Click to enter text.

Estimated waste disposal start date: Click to enter text.

C. Final Phase

Design Flow (MGD): Click to enter text.

2-Hr Peak Flow (MGD): Click to enter text.

Estimated construction start date: Click to enter text.

Estimated waste disposal start date: Click to enter text.

D. Current Operating Phase

Provide the startup date of the facility: 1983

Section 2. Treatment Process (Instructions Page 43)

A. Current Operating Phase

Provide a detailed description of the treatment process. **Include the type of treatment plant, mode of operation, and all treatment units.** Start with the plant's head works and

than one phase exists or is proposed, a description of each phase must be provided. See Attachment I.

finish with the point of discharge. Include all sludge processing and drying units. If more

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) of each treatment unit, accounting for all phases of operation.

Table 1.0(1) - Treatment Units

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
See Attachment J.		

C. Process Flow Diagram

Provide flow diagrams for the existing facilities and **each** proposed phase of construction.

Attachment: See Attachment K

Section 3. Site Information and Drawing (Instructions Page 44)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

Outfall 001 Latitude: **33.601441** Outfall 002 33.620484 • Longitude: **-96.573860**

-96.709439

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

Latitude: N/A Longitude: N/A

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and
- If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Attachment: L

Provide the name and a description of the area served by the treatment facility.						
City of Sherman, City of H	owe, and City of Kno	ollwood				
Collection System Information each uniquely owned collection systems. It examples.	tion system, existing	and new, served by this f	facility, including			
Collection System Information	ı					
Collection System Name	Owner Name	Owner Type	Population Served			
City of Sherman	City of Sherman	Publicly Owned	44,000			
City of Howe	City of Howe	Publicly Owned	3,600			
City of Knollwood	City of Knollwood	Publicly Owned	5 00			
Section 4. Unbuilt P	hases (Instructio	D 45)				
years of being authorized by ☐ Yes ☐ No If yes, provide a detailed dis Failure to provide sufficient recommending denial of the	cussion regarding th t justification may re	esult in the Executive Di				
Click to enter text.						
Section 5. Closure P	lans (Instruction	is Page 45)				
Have any treatment units be out of service in the next five	en taken out of servi		ny units be taken			
□ Yes ⊠ No	•					
If yes, was a closure plan submitted to the TCEQ?						

T ca u	yes, provide a brief description of the closure and the date of plan approval. The treatment units that are not in service will be assessed to determine if the units an be renovated or repurposed. Prior to conducting demolition of any treatment nit and disposal of materials, a closure plan will be submitted to TCEQ for review nd approval.
Se	ection 6. Permit Specific Requirements (Instructions Page 45)
	r applicants with an existing permit, check the Other Requirements or Special ovisions of the permit.
A.	Summary transmittal
	Have plans and specifications been approved for the existing facilities and each proposed phase?
	⊠ Yes □ No
	If yes, provide the date(s) of approval for each phase: October 18, 2024
	Provide information, including dates, on any actions taken to meet a <i>requirement or provision</i> pertaining to the submission of a summary transmittal letter. Provide a copy of an approval letter from the TCEQ, if applicable.
	Click to enter text.
B.	Buffer zones
	Have the buffer zone requirements been met?
	⊠ Yes □ No
	Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the buffer zones.
	Click to enter text.

C. Other actions required by the current permit

Yes □ No

	sul	es the <i>Other Requirements</i> or <i>Special Provisions</i> section in the existing permit require omission of any other information or other required actions? Examples include tification of Completion, progress reports, soil monitoring data, etc.
		□ Yes ⊠ No
		yes, provide information below on the status of any actions taken to meet the nditions of an <i>Other Requirement</i> or <i>Special Provision</i> .
	C	lick to enter text.
D.		it and grease treatment
	1.	Acceptance of grit and grease waste
		Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?
		□ Yes ⊠ No
		If No, stop here and continue with Subsection E. Stormwater Management.
	2.	Grit and grease processing
		Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility.
		Click to enter text.
	3.	Grit disposal
		Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal?
		□ Yes □ No
		If No , contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.
		Describe the method of grit disposal.

		Click to enter text.
	4.	Grease and decanted liquid disposal
		Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335.
		Describe how the decant and grease are treated and disposed of after grit separation.
		Click to enter text.
Ε.	Sto	ormwater management
	1.	Applicability
		Does the facility have a design flow of 1.0 MGD or greater in any phase?
		⊠ Yes □ No
		Does the facility have an approved pretreatment program, under 40 CFR Part 403?
		⊠ Yes □ No
		If no to both of the above, then skip to Subsection F, Other Wastes Received.
	2.	MSGP coverage
		Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?
		□ Yes ⊠ No
		If yes , please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:
		TXR05 Click to enter text. or TXRNE Click to enter text.
		If no, do you intend to seek coverage under TXR050000?
		□ Yes ⊠ No
	3.	Conditional exclusion
		Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?
		□ Yes ⊠ No
		If yes, please explain below then proceed to Subsection F, Other Wastes Received:

4.	Existing coverage in individual permit
	Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?
	□ Yes ⊠ No
	If yes , provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.
	Click to enter text.
5.	Zero stormwater discharge
	Do you intend to have no discharge of stormwater via use of evaporation or other means?
	⊠ Yes □ No
	If yes, explain below then skip to Subsection F. Other Wastes Received.
	Stormwater that falls onto the treatment plant site is collected into the stormwater holding basin. The stormwater either evaporates or is pumped to the plant headworks for treatment. No untreated stormwater is discharge to surface water in the state.
	Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.
<i>6.</i>	Request for coverage in individual permit
	Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?
	□ Yes ⊠ No
	If yes, provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you

intend to divert stormwater to the treatment plant headworks and indirectly discharge

it to water in the state.

Click to enter text

		Click to enter text.
		Note: Direct stormwater discharges to waters in the state authorized through this
		individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.
F.	Di	scharges to the Lake Houston Watershed
	Do	es the facility discharge in the Lake Houston watershed?
		□ Yes ⊠ No
		yes, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions. ck to enter text.
G.	Ot	her wastes received including sludge from other WWTPs and septic waste
	1.	Acceptance of sludge from other WWTPs
		Does or will the facility accept sludge from other treatment plants at the facility site?
		□ Yes ⊠ No
		If yes, attach sewage sludge solids management plan. See Example 5 of the instructions.
		In addition, provide the date the plant started or is anticipated to start accepting sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an
		estimate of the BOD_5 concentration of the sludge, and the design BOD_5 concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.
		Click to enter text.
		Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.
	2.	Acceptance of septic waste
		Is the facility accepting or will it accept septic waste?
		□ Yes ⊠ No
		If yes, does the facility have a Type V processing unit?
		□ Yes □ No
		If yes, does the unit have a Municipal Solid Waste permit?
		□ Yes □ No

If yes to any of the above, provide the date the plant started or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD_5 concentration of the septic waste, and the design BOD_5 concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

Click to enter text.

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

3. Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)

Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above?

□ Yes ⊠ No

If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.

Click to enter text.

Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 50)

Is the facility in operation?

⊠ Yes □ No

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). *Water treatment facilities* discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. **These tables are not applicable for a minor amendment without renewal.** See the instructions for guidance.

Note: The sample date must be within 1 year of application submission.

Table1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities See Attachment M.

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l	4.3	4.3	1	Comp.	7/18/2024 @07:50
Total Suspended Solids, mg/l	4.7	4.7	1	Comp.	7/18/2024 @07:50
Ammonia Nitrogen, mg/l	<0.20	<0.20	1	Comp.	7/18/2024 @07:50
Nitrate Nitrogen, mg/l	21.9	21.9	1	Comp.	7/18/2024 @07:50

Total Kjeldahl Nitrogen, mg/l	1.18	1.18	1	Comp.	7/18/2024 @07:50
Sulfate, mg/l	177	177	1	Comp.	7/18/2024 @07:50
Chloride, mg/l	239	239	1	Comp.	7/18/2024 @07:50
Total Phosphorus, mg/l	5.42	5.42	1	Comp.	7/18/2024 @07:50
pH, standard units	7.2	7.2	1	Grab	7/18/2024 @07:50
Dissolved Oxygen*, mg/l	7.66	7.66	1	Grab	10/4/2024 @07:19
Chlorine Residual, mg/l	<0.10	<0.10	1	Grab	10/25/2024 @07:39
E.coli (CFU/100ml) freshwater	11	11	1	Grab	10/25/2024 @07:39
Entercocci (CFU/100ml) saltwater	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	1020	1020	1	Comp.	7/18/2024 @07:50
Electrical Conductivity, µmohs/cm, †	N/A	N/A	N/A	N/A	N/A
Oil & Grease, mg/l	<10	<10	1	Grab	7/18/2024 @07:45
Alkalinity (CaCO ₃)*, mg/l	190	190	1	Comp.	7/18/2024 @07:50

^{*}TPDES permits only

Table1.0(3) - Pollutant Analysis for Water Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Suspended Solids, mg/l	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	N/A	N/A	N/A	N/A	N/A
pH, standard units	N/A	N/A	N/A	N/A	N/A
Fluoride, mg/l	N/A	N/A	N/A	N/A	N/A
Aluminum, mg/l	N/A	N/A	N/A	N/A	N/A
Alkalinity (CaCO ₃), mg/l	N/A	N/A	N/A	N/A	N/A

Section 8. Facility Operator (Instructions Page 50)

Facility Operator Name: **Jeff Rigdon**

Facility Operator's License Classification and Level: **WWOLA**

Facility Operator's License Number: **WW0047697**

Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 51)

A. WWTP's Biosolids Management Facility Type

Check all that apply. See instructions for guidance

 \boxtimes Design flow>= 1 MGD

[†]TLAP permits only

\bowtie	Serves >= 10,000 people
	Class I Sludge Management Facility (per 40 CFR § 503.9)
\boxtimes	Biosolids generator
	Biosolids end user – land application (onsite)
	Biosolids end user – surface disposal (onsite)
	Biosolids end user – incinerator (onsite)
ww	TP's Biosolids Treatment Process
Che	ck all that apply. See instructions for guidance.
	Aerobic Digestion
	Air Drying (or sludge drying beds)
	Lower Temperature Composting
	Lime Stabilization
	Higher Temperature Composting
	Heat Drying
	Thermophilic Aerobic Digestion
	Beta Ray Irradiation
	Gamma Ray Irradiation
	Pasteurization
\boxtimes	Preliminary Operation (e.g. grinding, de-gritting, blending)
\boxtimes	Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter)
\boxtimes	Sludge Lagoon - for emergency purposes only
\boxtimes	Temporary Storage (< 2 years)
	Long Term Storage (>= 2 years)
	Methane or Biogas Recovery
\boxtimes	Other Treatment Process: <u>Anaerobic digestion</u>

C. Biosolids Management

B.

Provide information on the *intended* biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize all biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

Biosolids Management

Management Practice	Handler or Preparer Type	Bulk or Bag Container	Amount (dry metric tons)	Pathogen Reduction Options	Vector Attraction Reduction Option
Disposal in Landfill	On-Site Owner or Operator	Not Applicable	10,000 - 18,000 CY	N/A	N/A

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): Click to enter text.

D. Disposal site

Disposal site name: **Texoma Area Solid Waste Authority**

TCEQ permit or registration number: **2290**

County where disposal site is located: **Grayson**

E. Transportation method

Method of transportation (truck, train, pipe, other): **truck**

Name of the hauler: <u>City of Sherman</u> Hauler registration number: **25369**

Sludge is transported as a:

Liquid □ semi-liquid □ semi-solid ⊠ solid □

Section 10. Permit Authorization for Sewage Sludge Disposal (Instructions Page 53)

A. Beneficial use authorization

Does the existing	permit include	authorization	for land	application	of sewage	sludge for
heneficial use?						

⊠ Yes □ No

If yes, are you requesting to continue this authorization to land apply sewage sludge for beneficial use?

⊠ Yes □ No

If yes, is the completed Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451) attached to this permit application (see the instructions for details)?

The City's authorization for Beneficial Land Use of Biosolids is for Class A/AB biosolids, which does not require a permit.

B. Sludge processing authorization

Does the existing permit include authorization for any of the following sludge processing, storage or disposal options?

Sludge Composting

No

						The City has authorization
Mark	teting and Distribution of sludge	\boxtimes	Yes		No	for Marketing and Distribution of Class A and
Slud	ge Surface Disposal or Sludge Monofill		Yes		No	
Temj	porary storage in sludge lagoons	\boxtimes	Yes		No	Authorization No. 720008.
authoriz Technic	o any of the above sludge options and the cation, is the completed Domestic Waster al Report (TCEQ Form No. 10056) attack	wate	Permit	Appl	icati	on: Sewage Sludge
Section 1	1. Sewage Sludge Lagoons (Ins	tru	ctions	Page	• 5 3	3)
	acility include sewage sludge lagoons?					
⊠ Yes						
If yes, comp	olete the remainder of this section. If no,	proc	eed to S	ection	12.	
A. Location	ı information					
	owing maps are required to be submitted the Attachment Number.	as p	art of th	е арр	licat	ion. For each map,
• O	riginal General Highway (County) Map:					
A	ttachment: <u>N</u>					
• U	SDA Natural Resources Conservation Ser	vice S	Soil Map	:		
A	ttachment: <u>O</u>					
• Fe	ederal Emergency Management Map:					
A	ttachment: <u>P</u>					
• Si	ite map:					
A	ttachment: <u>Q</u>					
Discuss apply.	in a description if any of the following ex	xist w	ithin th	e lago	on a	rea. Check all that
\boxtimes	Overlap a designated 100-year frequency	floo	d plain			
	Soils with flooding classification					
	Overlap an unstable area					
	Wetlands					
	Located less than 60 meters from a fault					
	None of the above					
Attac	chment: <u>R</u>					
	ion of the lagoon(s) is located within the ective measures to be utilized including t					

If

Protective measures consist of earthen embankments that are 15 feet wide across the top. The embankment top has a 6.5 feet freeboard above the 100-year flood elevation of 631.0 feet.

B. Temporary storage information

Provide the results for the pollutant screening of sludge lagoons. These results are in addition to pollutant results in *Section 7 of Technical Report 1.0.*

Nitrate Nitrogen, mg/kg: <31.2

Total Kjeldahl Nitrogen, mg/kg: 33,600

Total Nitrogen (=nitrate nitrogen + TKN), mg/kg: **33,600**

Phosphorus, mg/kg: 6,940

Potassium, mg/kg: **2,980**

pH, standard units: 7.0

Ammonia Nitrogen mg/kg: **20,900**

Arsenic: <15.6 mg/kg

Cadmium: <3.12 mg/kg

Chromium: 68.4 mg/kg

Copper: 721 mg/kg

Lead: 29.7 mg/kg

Mercury: <**0.781 mg/kg**

Molybdenum: 16.8 mg/kg

Nickel: 49.7 mg/kg

Selenium: 16.7 mg/kg

Zinc: **1,150 mg/kg**

Total PCBs: <1.120 mg/kg

Provide the following information:

Volume and frequency of sludge to the lagoon(s):

lagoon for emergency reasons and is stored temporarily. All previously placed sludge has been removed.

Sludge is only placed into the sludge

Total dry tons stored in the lagoons(s) per 365-day period: N/A

Total dry tons stored in the lagoons(s) over the life of the unit: N/A

C. Liner information

Does the active/proposed sludge lagoon(s) have a liner with a maximum hydraulic conductivity of $1x10^{-7}$ cm/sec?

⊠ Yes □ No

If yes, describe the liner below. Please note that a liner is required.

A subsurface exploration was conducted in 2023 by ESC Southwest, LLP where two borings at the existing lagoons were drilled. The results indicate the presence of about 3-foot-thick fat clay fill material at the surface and meets the criteria for the soil liner, as defined by TCEQ Regulatory Guidance, Sept 2017. The coefficient of permeability for the clay soil encountered in the top 3 feet borings should be greater than $1x10^{-7}$ cm/sec.

Soil Property	TCEQ Requirements	Q Requirements B-28		
Plasticity Index (PI)	>15	41	31	
Liquid Limit (LL)	>30	65	53	
Percent Passing No. 200 Sieve	>30%	88	77	
Percent Passing 1-in Sieve	100	100	100	

D. Site development plan

Provide a detailed description of the methods used to deposit sludge in the lagoon(s):

In the event of an emergency, sludge can be pumped directly from the anaerobic digesters through a pipeline into the lagoons.

Attach the following documents to the application.

• Plan view and cross-section of the sludge lagoon(s)

Attachment: R

• Copy of the closure plan

Attachment: $\underline{\mathbf{R}}$

• Copy of deed recordation for the site

Attachment: R

• Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons

Attachment: <u>R</u>

• Description of the method of controlling infiltration of groundwater and surface water from entering the site

Attachment: <u>R</u>

• Procedures to prevent the occurrence of nuisance conditions

Attachment: <u>R</u>

E. Groundwater monitoring

Is groundwater monitoring currently conducted at this site, or are any wells available for groundwater monitoring, or are groundwater monitoring data otherwise available for the sludge lagoon(s)?

□ Yes ⊠ No

If groundwater monitoring data are available, provide a copy. Provide a profile of soil types encountered down to the groundwater table and the depth to the shallowest groundwater as a separate attachment.

Attachment: Click to enter text.

Section 12. Authorizations/Compliance/Enforcement (Instructions Page 55)

Page 55)
 A. Additional authorizations Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc? Xes I No
If yes, provide the TCEQ authorization number and description of the authorization:
Marketing and Distribution Sludge authorization 720008 for Class A and Class AB sludge.
B. Permittee enforcement status
Is the permittee currently under enforcement for this facility?
□ Yes ⊠ No
Is the permittee required to meet an implementation schedule for compliance or enforcement?
□ Yes ⊠ No
If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:
Click to enter text.

Section 13. RCRA/CERCLA Wastes (Instructions Page 55)

A. RCRA hazardous wastes

Has the facility received in the past three years, does it currently received	ive, or will it receive
RCRA hazardous waste?	

□ Yes ⊠ No

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

□ Yes ⊠ No

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment: N/A

Section 14. Laboratory Accreditation (Instructions Page 56)

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25*, *Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the Signature Page section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Clint Philpott, P.E.

Title: Assistant City Manager

Signature: Club Plips Date: 2/17/25

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.1

The following information is required for new and amendment major applications.

Section 1. Justification for Permit (Instructions Page 57)

A. Justification of permit need

B.

Provide a detailed discussion regarding the need for any phase(s) not currently permitted. Failure to provide sufficient justification may result in the Executive Director recommending denial of the proposed phase(s) or permit.

	See Attachment S.
Re	gionalization of facilities
	r additional guidance, please review <u>TCEQ's Regionalization Policy for Wastewater</u> <u>eatment</u> ¹ .
	ovide the following information concerning the potential for regionalization of domestic astewater treatment facilities:
1.	Municipally incorporated areas
	If the applicant is a city, then Item 1 is not applicable. Proceed to Item 2 Utility CCN areas.
	Is any portion of the proposed service area located in an incorporated city?
	□ Yes □ No ⊠ Not Applicable
	If yes, within the city limits of: <u>Click to enter text.</u>
	If yes, attach correspondence from the city.
	Attachment: Click to enter text.
	If consent to provide service is available from the city, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the city versus the cost of the proposed facility or expansion attached.
	Attachment: Click to enter text.
2.	Utility CCN areas
	Is any portion of the proposed service area located inside another utility's CCN area?
	□ Yes ⊠ No

¹ https://www.tceq.texas.gov/permitting/wastewater/tceq-regionalization-for-wastewater

If yes, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the CCN facilities versus the cost of the proposed facility or expansion.

Attachment: Click to enter text.

3. Nearby WWTPs or collection systems

Are there any domestic permitted wastewater treatment facilities or collection systems located within a three-mile radius of the proposed facility?

□ Yes ⊠ No

If yes, attach a list of these facilities and collection systems that includes each permittee's name and permit number, and an area map showing the location of these facilities and collection systems.

Attachment: Click to enter text.

If yes, attach proof of mailing a request for service to each facility and collection system, the letters requesting service, and correspondence from each facility and collection system.

Attachment: Click to enter text.

If the facility or collection system agrees to provide service, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the facility or collection system versus the cost of the proposed facility or expansion.

Attachment: Click to enter text.

Section 2. Proposed Organic Loading (Instructions Page 59)

Is this facility in operation?

⊠ Yes □ No

If no, proceed to Item B, Proposed Organic Loading.

If yes, provide organic loading information in Item A, Current Organic Loading

A. Current organic loading

Facility Design Flow (flow being requested in application): **24 MGD**

Average Influent Organic Strength or BOD₅ Concentration in mg/l: **190**

Average Influent Loading (lbs/day = total average flow X average BOD₅ conc. X 8.34): 38,030

Provide the source of the average organic strength or \mathtt{BOD}_5 concentration.

Influent data from Ja	anuary 2021 throug	n December 2024	

B. Proposed organic loading

This table must be completed if this application is for a facility that is not in operation or if this application is to request an increased flow that will impact organic loading.

Table 1.1(1) - Design Organic Loading

Source	Total Average Flow (MGD)	Influent BOD5 Concentration (mg/l)
Municipality	See Attachment S.	
Subdivision		
Trailer park - transient		
Mobile home park		
School with cafeteria and showers		
School with cafeteria, no showers		
Recreational park, overnight use		
Recreational park, day use		
Office building or factory		
Motel		
Restaurant		
Hospital		
Nursing home		
Other		
TOTAL FLOW from all sources		
AVERAGE BOD ₅ from all sources		

Section 3. Proposed Effluent Quality and Disinfection (Instructions Page 59)

A. Existing/Interim I Phase Design Effluent Quality

Biochemical Oxygen Demand (5-day), mg/l: Click to enter text.

Total Suspended Solids, mg/l: Click to enter text.

Ammonia Nitrogen, mg/l: <u>Click to enter text.</u> See Attachment A.

Total Phosphorus, mg/l: <u>Click to enter text.</u> Dissolved Oxygen, mg/l: <u>Click to enter text.</u>

Other: Click to enter text.

B. Interim II Phase Design Effluent Quality

Biochemical Oxygen Demand (5-day), mg/l: Click to enter text.

Total Suspended Solids, mg/l: Click to enter text.

Ammonia Nitrogen, mg/l: Click to enter text.

See Attachment A.

Total Phosphorus, mg/l: <u>Click to enter text.</u>

Dissolved Oxygen, mg/l: Click to enter text.

Other: Click to enter text.

C. Final Phase Design Effluent Quality

Biochemical Oxygen Demand (5-day), mg/l: Click to enter text.

Total Suspended Solids, mg/l: Click to enter text. See Attachment A.

Ammonia Nitrogen, mg/l: Click to enter text.

Total Phosphorus, mg/l: Click to enter text.

Dissolved Oxygen, mg/l: Click to enter text.

Other: Click to enter text.

D. Disinfection Method

Identify the proposed method of disinfection.

Chlorine: Click to enter text. mg/l after Click to enter text. minutes detention time at peak flow

Dechlorination process: <u>Click to enter text.</u>

☑ Ultraviolet Light: Existing/Interim I: 57; Interim II: 66; Final: 76 seconds contact time at peak flow

Other: Click to enter text.

Section 4. Design Calculations (Instructions Page 59)

Attach design calculations and plant features for each proposed phase. Example 4 of the instructions includes sample design calculations and plant features.

Attachment: <u>T</u>

Section 5. Facility Site (Instructions Page 60)

A. 100-year floodplain

Will the proposed facilities be located above the 100-year frequency flood level?

⊠ Yes □ No

If no, describe measures used to protect the facility during a flood event. Include a site map showing the location of the treatment plant within the 100-year frequency flood level. If applicable, provide the size and types of protective structures.

Provide the source(s) used to determine 100-year frequency flood plain.
48181C0405G eff. 9/1/2022
For a new or expansion of a facility, will a wetland or part of a wetland be filled?
□ Yes ⊠ No
If yes, has the applicant applied for a US Corps of Engineers 404 Dredge and Fill Permit?
□ Yes □ No
If yes, provide the permit number: <u>Click to enter text.</u>
If no, provide the approximate date you anticipate submitting your application to the Corps: Click to enter text.
Wind rose
Attach a wind rose: $\underline{\mathbf{U}}$
ection 6. Permit Authorization for Sewage Sludge Disposal (Instructions Page 60)

A. Beneficial use authorization

B.

Are you requesting to include authorization to land apply sewage sludge for beneficial use on property located adjacent to the wastewater treatment facility under the wastewater permit?

□ Yes ⊠ No

If yes, attach the completed **Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451)**: <u>.</u>

B. Sludge processing authorization

Identify the sludge processing, storage or disposal options that will be conducted at the wastewater treatment facility:

- ☐ Sludge Composting
- Marketing and Distribution of sludge
- ☐ Sludge Surface Disposal or Sludge Monofill

If any of the above, sludge options are selected, attach the completed **Domestic** Wastewater Permit Application: Sewage Sludge Technical Report (TCEQ Form No. 10056): Form No. 10056 is attached.

Section 7. Sewage Sludge Solids Management Plan (Instructions Page 61)

Attach a solids management plan to the application.

Attachment: V

The sewage sludge solids management plan must contain the following information:

- Treatment units and processes dimensions and capacities
- Solids generated at 100, 75, 50, and 25 percent of design flow
- Mixed liquor suspended solids operating range at design and projected actual flow
- Quantity of solids to be removed and a schedule for solids removal
- Identification and ownership of the ultimate sludge disposal site
- For facultative lagoons, design life calculations, monitoring well locations and depths, and the ultimate disposal method for the sludge from the facultative lagoon

An example of a sewage sludge solids management plan has been included as Example 5 of the instructions.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

The following information is required for an Trollo permit applications.
Section 1. Domestic Drinking Water Supply (Instructions Page 64)
Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge?
□ Yes ⊠ No
If no , proceed it Section 2. If yes , provide the following:
Owner of the drinking water supply: <u>Click to enter text.</u>
Distance and direction to the intake: <u>Click to enter text.</u>
Attach a USGS map that identifies the location of the intake.
Attachment:
Section 2. Discharge into Tidally Affected Waters (Instructions Page 64)
Does the facility discharge into tidally affected waters?
□ Yes ⊠ No
If no , proceed to Section 3. If yes , complete the remainder of this section. If no, proceed to Section 3.
A. Receiving water outfall
Width of the receiving water at the outfall, in feet: Click to enter text.
B. Oyster waters
Are there oyster waters in the vicinity of the discharge?
□ Yes □ No
If yes, provide the distance and direction from outfall(s).
Click to enter text.
C. Sea grasses
Are there any sea grasses within the vicinity of the point of discharge?
□ Yes □ No
If yes, provide the distance and direction from the outfall(s).
Click to enter text.

Is the discharge directly into (or within 300 feet of) a classified segment? Yes ⊠ No If yes, this Worksheet is complete. **If no**, complete Sections 4 and 5 of this Worksheet. Section 4. **Description of Immediate Receiving Waters (Instructions Page 65)** Name of the immediate receiving waters: Post Oak Creek A. Receiving water type Identify the appropriate description of the receiving waters. \boxtimes Stream Freshwater Swamp or Marsh Lake or Pond Surface area, in acres: Click to enter text. Average depth of the entire water body, in feet: Click to enter text. Average depth of water body within a 500-foot radius of discharge point, in feet: Click to enter text. Man-made Channel or Ditch Open Bay Tidal Stream, Bayou, or Marsh Other, specify: Click to enter text. **B.** Flow characteristics If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area *upstream* of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one). Intermittent - dry for at least one week during most years Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses Perennial - normally flowing Check the method used to characterize the area upstream (or downstream for new dischargers). USGS flow records Historical observation by adjacent landowners Personal observation Other, specify: **USGS and personal observations.**

Classified Segments (Instructions Page 64)

Section 3.

	List the names of all perennial streams that join the receiving water within three miles downstream of the discharge point.					
	Choc	taw Creek				
Б		1				
D.		stream characteristics				
		receiving water characteristics char rge (e.g., natural or man-made dams	_	ithin three miles downstream of the ds, reservoirs, etc.)?		
		Yes ⊠ No				
	If yes,	discuss how.				
	Click t	o enter text.				
T.	Nowwee	l dwy wysothou shous stouistics				
C.		d dry weather characteristics	hody	during normal dry weather conditions.		
				upstream of outfall. The water body		
	down	estream of outfall was a gently flow d water.				
	Date a	nd time of observation: 10/17/2024	. @ 10	2:05 am		
	Was th	e water body influenced by stormw	ater r	runoff during observations?		
		Yes ⊠ No				
Se	ection	5. General Characteristic Page 66)	s of	the Waterbody (Instructions		
A.	Upstre	am influences				
	Is the i			ne discharge or proposed discharge site		
		Oil field activities	\boxtimes	Urban runoff		
		Upstream discharges	\boxtimes	Agricultural runoff		
		Septic tanks		Other(s), specify: <u>Click to enter text.</u>		

C. Downstream perennial confluences

B. Waterbody uses Observed or evidences of the following uses. Check all that apply. Livestock watering Contact recreation Irrigation withdrawal Non-contact recreation Fishing **Navigation** Industrial water supply Domestic water supply Park activities Other(s), specify: Click to enter text. C. Waterbody aesthetics Check one of the following that best describes the aesthetics of the receiving water and the surrounding area. Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored \boxtimes Common Setting: not offensive; developed but uncluttered; water may be colored or turbid

Offensive: stream does not enhance aesthetics; cluttered; highly developed;

dumping areas; water discolored

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.1: STREAM PHYSICAL CHARACTERISTICS

Required for new applications, major facilities, and applications adding an outfall.

Worksheet 2.1 is not required for discharges to intermittent streams or discharges directly to (or within 300 feet of) a classified segment.

Section 1. General Information (Instructions Page 66)				
Date of study: See Attachment W. Time of study: Click to enter text.				
Stream name: Click to enter text.				
Location: <u>Click to enter text.</u>				
Type of stream upstream of existing discharge or downstream of proposed discharge (check one).				
☐ Perennial ☐ Intermittent with perennial pools				
Section 2. Data Collection (Instructions Page 66)				
Number of stream bends that are well defined: Click to enter text.				
Number of stream bends that are moderately defined: Click to enter text.				
Number of stream bends that are poorly defined: Click to enter text.				
Number of riffles: Click to enter text.				
Evidence of flow fluctuations (check one):				
□ Minor □ moderate □ severe				
Indicate the observed stream uses and if there is evidence of flow fluctuations or channel obstruction/modification.				

Stream transects

In the table below, provide the following information for each transect downstream of the existing or proposed discharges. Use a separate row for each transect.

Table 2.1(1) - Stream Transect Records

Stream type at transect	Transect location	Water surface	Stream depths (ft) at 4 to 10 points along each
Select riffle, run, glide, or pool. See Instructions, Definitions section.		width (ft)	transect from the channel bed to the water surface. Separate the measurements with commas.
Choose an item.			

Section 3. Summarize Measurements (Instructions Page 66)

Streambed slope of entire reach, from USGS map in feet/feet: Click to enter text.

Approximate drainage area above the most downstream transect (from USGS map or county highway map, in square miles): <u>Click to enter text.</u>

Length of stream evaluated, in feet: <u>Click to enter text.</u>

Number of lateral transects made: <u>Click to enter text.</u>

Average stream width, in feet: Click to enter text.

Average stream depth, in feet: Click to enter text.

Average stream velocity, in feet/second: Click to enter text.

Instantaneous stream flow, in cubic feet/second: Click to enter text.

Indicate flow measurement method (type of meter, floating chip timed over a fixed distance, etc.): <u>Click to enter text.</u>

Size of pools (large, small, moderate, none): Click to enter text.

Maximum pool depth, in feet: Click to enter text.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

The following information is required for an 11DLS permit applications.
Section 1. Domestic Drinking Water Supply (Instructions Page 64)
Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge?
□ Yes ⊠ No
If no , proceed it Section 2. If yes , provide the following:
Owner of the drinking water supply: Click to enter text.
Distance and direction to the intake: Click to enter text.
Attach a USGS map that identifies the location of the intake.
Attachment:
Section 2. Discharge into Tidally Affected Waters (Instructions Page 64)
Does the facility discharge into tidally affected waters?
□ Yes ⊠ No
If no , proceed to Section 3. If yes , complete the remainder of this section. If no, proceed to Section 3.
A. Receiving water outfall
Width of the receiving water at the outfall, in feet: <u>Click to enter text.</u>
B. Oyster waters
Are there oyster waters in the vicinity of the discharge?
□ Yes □ No
If yes, provide the distance and direction from outfall(s).
Click to enter text.
C. Sea grasses
Are there any sea grasses within the vicinity of the point of discharge?
□ Yes □ No
If yes, provide the distance and direction from the outfall(s).
Click to enter text.

Section 3. **Classified Segments (Instructions Page 64)** Is the discharge directly into (or within 300 feet of) a classified segment? Yes ⊠ No If yes, this Worksheet is complete. **If no**, complete Sections 4 and 5 of this Worksheet. Section 4. **Description of Immediate Receiving Waters (Instructions Page 65)** Name of the immediate receiving waters: **Deaver Creek** A. Receiving water type Identify the appropriate description of the receiving waters. \boxtimes Stream Freshwater Swamp or Marsh Lake or Pond Surface area, in acres: Click to enter text. Average depth of the entire water body, in feet: Click to enter text. Average depth of water body within a 500-foot radius of discharge point, in feet: Click to enter text. Man-made Channel or Ditch Open Bay Tidal Stream, Bayou, or Marsh Other, specify: Click to enter text. **B.** Flow characteristics If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area *upstream* of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one). Intermittent - dry for at least one week during most years Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses Perennial - normally flowing Check the method used to characterize the area upstream (or downstream for new dischargers). USGS flow records Historical observation by adjacent landowners Personal observation Other, specify: **USGS** map

C.	Downstream perennial confluences						
		List the names of all perennial streams that join the receiving water within three miles downstream of the discharge point.					
	None						
D.	Downs	stream characteristics					
	Do the receiving water characteristics change within three miles downstream of the discharge (e.g., natural or man-made dams, ponds, reservoirs, etc.)?						
	□ Yes ⊠ No						
		discuss how.					
	CHERT	o enter text.					
E.	Norma	l dry weather characteristics					
	Provide general observations of the water body during normal dry weather conditions.						
	Creek was not flowing and water was clear.						
	Date a	nd time of observation: December 2	20, 20	024			
	Was the water body influenced by stormwater runoff during observations?						
		Yes ⊠ No					
Se	ection	5. General Characteristics Page 66)	s of	the Waterbody (Instructions			
Α.	Upstre	am influences					
	Is the immediate receiving water upstream of the discharge or proposed discharge site influenced by any of the following? Check all that apply.						
		Oil field activities	\boxtimes	Urban runoff			
		Upstream discharges	\boxtimes	Agricultural runoff			
		Septic tanks		Other(s), specify: Click to enter text.			

B. Waterbody uses Observed or evidences of the following uses. Check all that apply. Livestock watering Contact recreation Irrigation withdrawal Non-contact recreation Fishing **Navigation** Industrial water supply Domestic water supply Park activities Other(s), specify: Click to enter text. C. Waterbody aesthetics Check one of the following that best describes the aesthetics of the receiving water and the surrounding area. Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored \boxtimes Common Setting: not offensive; developed but uncluttered; water may be colored or turbid

Offensive: stream does not enhance aesthetics; cluttered; highly developed;

dumping areas; water discolored

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Toxic Pollutants (Instructions Page 78)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab ⊠ Composite ⊠

Date and time sample(s) collected: **See Attachment M.**

Table 4.0(1) - Toxics Analysis

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Acrylonitrile	<50	<50	1	50
Aldrin	<0.01	<0.01	1	0.01
Aluminum	123	123	1	2.5
Anthracene	<10	<10	1	10
Antimony	<5	<5	1	5
Arsenic	2.05	2.05	1	0.5
Barium	49.6	49.6	1	3
Benzene	<10	<10	1	10
Benzidine	<50	<50	1	50
Benzo(a)anthracene	<5	<5	1	5
Benzo(a)pyrene	<5	<5	1	5
Bis(2-chloroethyl)ether	<10	<10	1	10
Bis(2-ethylhexyl)phthalate	<10	<10	1	10
Bromodichloromethane	<10	<10	1	10
Bromoform	<10	<10	1	10
Cadmium	<0.5	<0.5	1	1
Carbon Tetrachloride	<2	<2	1	2
Carbaryl	<5	<5	1	5
Chlordane*	<0.2	<0.2	1	0.2
Chlorobenzene	<10	<10	1	10
Chlorodibromomethane	<10	<10	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Chloroform	<10	<10	1	10
Chlorpyrifos	<0.05	<0.05	1	0.05
Chromium (Total)	<3	<3	1	3
Chromium (Tri) (*1)	<3	<3	1	N/A
Chromium (Hex)	<3	<3	1	3
Copper	7.41	7.41	1	2
Chrysene	<5	<5	1	5
p-Chloro-m-Cresol	<10	<10	1	10
4,6-Dinitro-o-Cresol	<50	<50	1	50
p-Cresol	<10	<10	1	10
Cyanide (*2)	<10	<10	1	10
4,4'- DDD	<0.1	<0.1	1	0.1
4,4'- DDE	<0.1	<0.1	1	0.1
4,4'- DDT	<0.02	<0.02	1	0.02
2,4-D	<0.7	<0.7	1	0.7
Demeton (O and S)	<0.2	<0.2	1	0.20
Diazinon	<0.1	<0.1	1	0.5/0.1
1,2-Dibromoethane	<10	<10	1	10
m-Dichlorobenzene	<10	<10	1	10
o-Dichlorobenzene	<10	<10	1	10
p-Dichlorobenzene	<10	<10	1	10
3,3'-Dichlorobenzidine	<5	<5	1	5
1,2-Dichloroethane	<10	<10	1	10
1,1-Dichloroethylene	<10	<10	1	10
Dichloromethane	<20	<20	1	20
1,2-Dichloropropane	<10	<10	1	10
1,3-Dichloropropene	<10	<10	1	10
Dicofol	<1	<1	1	1
Dieldrin	<0.02	<0.02	1	0.02
2,4-Dimethylphenol	<10	<10	1	10
Di-n-Butyl Phthalate	<10	<10	1	10
Diuron	<0.09	<0.09	1	0.09
Endosulfan I (alpha)	<0.01	<0.01	1	0.01

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Endosulfan II (beta)	<0.02	<0.02	1	0.02
Endosulfan Sulfate	<0.1	<0.1	1	0.1
Endrin	<0.02	<0.02	1	0.02
Ethylbenzene	<10	<10	1	10
Fluoride	3380	3380	1	500
Guthion	<0.1	<0.1	1	0.1
Heptachlor	<0.01	<0.01	1	0.01
Heptachlor Epoxide	<0.01	<0.01	1	0.01
Hexachlorobenzene	<5	<5	1	5
Hexachlorobutadiene	<10	<10	1	10
Hexachlorocyclohexane (alpha)	<0.05	<0.05	1	0.05
Hexachlorocyclohexane (beta)	<0.05	<0.05	1	0.05
gamma-Hexachlorocyclohexane	<0.05	<0.05	1	0.05
(Lindane)				
Hexachlorocyclopentadiene	<10	<10	1	10
Hexachloroethane	<20	<20	1	20
Hexachlorophene	<10	<10	1	10
Lead	<0.5	<0.5	1	0.5
Malathion	<0.1	<0.1	1	0.1
Mercury	<0.005	< 0.005	1	0.005
Methoxychlor	<2	<2	1	2
Methyl Ethyl Ketone	<50	<50	1	50
Mirex	<0.02	<0.02	1	0.02
Nickel	2.11	2.11	1	2
Nitrate-Nitrogen	21900	21900	1	100
Nitrobenzene	<10	<10	1	10
N-Nitrosodiethylamine	<20	<20	1	20
N-Nitroso-di-n-Butylamine	<20	<20	1	20
Nonylphenol	<50	<50	1	333
Parathion (ethyl)	<0.1	<0.1	1	0.1
Pentachlorobenzene	<20	<20	1	20
Pentachlorophenol	<5	<5	1	5
Phenanthrene	<10	<10	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Polychlorinated Biphenyls (PCB's) (*3)	<0.2	<0.2	1	0.2
Pyridine	<20	<20	1	20
Selenium	<5	<5	1	5
Silver	<0.5	<0.5	1	0.5
1,2,4,5-Tetrachlorobenzene	<20	<20	1	20
1,1,2,2-Tetrachloroethane	<10	<10	1	10
Tetrachloroethylene	<10	<10	1	10
Thallium	<0.5	<0.5	1	0.5
Toluene	<10	<10	1	10
Toxaphene	<0.3	<0.3	1	0.3
2,4,5-TP (Silvex)	<0.3	<0.3	1	0.3
Tributyltin (see instructions for explanation)	N/A	N/A	1	0.01
1,1,1-Trichloroethane	<10	<10	1	10
1,1,2-Trichloroethane	<10	<10	1	10
Trichloroethylene	<10	<10	1	10
2,4,5-Trichlorophenol	<50	<50	1	50
TTHM (Total Trihalomethanes)	<10	<10	1	10
Vinyl Chloride	<10	<10	1	10
Zinc	17.3	17.3	1	5

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

^(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab ⊠ Composite ⊠

Date and time sample(s) collected: **See Attachment M.**

Table 4.0(2)A - Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Antimony	<5	<5	1	5
Arsenic	2.05	2.05	1	0.5
Beryllium	<0.5	<0.5	1	0.5
Cadmium	<0.5	<0.5	1	1
Chromium (Total)	<3	<3	1	3
Chromium (Hex)	<3	<3	1	3
Chromium (Tri) (*1)	<3	<3	1	N/A
Copper	7.41	7.41	1	2
Lead	<0.5	<0.5	1	0.5
Mercury	<0.005	<0.005	1	0.005
Nickel	2.11	2.11	1	2
Selenium	<5	<5	1	5
Silver	<0.5	<0.5	1	0.5
Thallium	<0.5	<0.5	1	0.5
Zinc	17.3	17.3	1	5
Cyanide (*2)	<10	<10	1	10
Phenols, Total	20.0	20.0	1	10

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)B - Volatile Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrolein	<50	<50	1	50
Acrylonitrile	<50	<50	1	50
Benzene	<10	<10	1	10
Bromoform	<10	<10	1	10
Carbon Tetrachloride	<2	<2	1	2
Chlorobenzene	<10	<10	1	10
Chlorodibromomethane	<10	<10	1	10
Chloroethane	<50	<50	1	50
2-Chloroethylvinyl Ether	<10	<10	1	10
Chloroform	<10	<10	1	10
Dichlorobromomethane [Bromodichloromethane]	<10	<10	1	10
1,1-Dichloroethane	<10	<10	1	10
1,2-Dichloroethane	<10	<10	1	10
1,1-Dichloroethylene	<10	<10	1	10
1,2-Dichloropropane	<10	<10	1	10
1,3-Dichloropropylene	<10	<10	1	10
[1,3-Dichloropropene]				
1,2-Trans-Dichloroethylene	<10	<10	1	10
Ethylbenzene	<10	<10	1	10
Methyl Bromide	<50	<50	1	50
Methyl Chloride	<50	<50	1	50
Methylene Chloride	<20	<20	1	20
1,1,2,2-Tetrachloroethane	<10	<10	1	10
Tetrachloroethylene	<10	<10	1	10
Toluene	<10	<10	1	10
1,1,1-Trichloroethane	<10	<10	1	10
1,1,2-Trichloroethane	<10	<10	1	10
Trichloroethylene	<10	<10	1	10
Vinyl Chloride	<10	<10	1	10

Table 4.0(2)C - Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
2-Chlorophenol	<10	<10	1	10
2,4-Dichlorophenol	<10	<10	1	10
2,4-Dimethylphenol	<10	<10	1	10
4,6-Dinitro-o-Cresol	<50	<50	1	50
2,4-Dinitrophenol	<50	<50	1	50
2-Nitrophenol	<20	<20	1	20
4-Nitrophenol	<50	<50	1	50
P-Chloro-m-Cresol	<10	<10	1	10
Pentalchlorophenol	<5	<5	1	5
Phenol	<10	<10	1	10
2,4,6-Trichlorophenol	<10	<10	1	10

Table 4.0(2)D - Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acenaphthene	<10	<10	1	10
Acenaphthylene	<10	<10	1	10
Anthracene	<10	<10	1	10
Benzidine	<50	<50	1	50
Benzo(a)Anthracene	<5	<5	1	5
Benzo(a)Pyrene	<5	<5	1	5
3,4-Benzofluoranthene	<10	<10	1	10
Benzo(ghi)Perylene	<20	<20	1	20
Benzo(k)Fluoranthene	<5	<5	1	5
Bis(2-Chloroethoxy)Methane	<10	<10	1	10
Bis(2-Chloroethyl)Ether	<10	<10	1	10
Bis(2-Chloroisopropyl)Ether	<10	<10	1	10
Bis(2-Ethylhexyl)Phthalate	<10	<10	1	10
4-Bromophenyl Phenyl Ether	<10	<10	1	10
Butyl benzyl Phthalate	<10	<10	1	10
2-Chloronaphthalene	<10	<10	1	10
4-Chlorophenyl phenyl ether	<10	<10	1	10
Chrysene	<5	<5	1	5
Dibenzo(a,h)Anthracene	<5	<5	1	5
1,2-(o)Dichlorobenzene	<10	<10	1	10
1,3-(m)Dichlorobenzene	<10	<10	1	10
1,4-(p)Dichlorobenzene	<10	<10	1	10
3,3-Dichlorobenzidine	<5	<5	1	5
Diethyl Phthalate	<10	<10	1	10
Dimethyl Phthalate	<10	<10	1	10
Di-n-Butyl Phthalate	<10	<10	1	10
2,4-Dinitrotoluene	<10	<10	1	10
2,6-Dinitrotoluene	<10	<10	1	10
Di-n-Octyl Phthalate	<10	<10	1	10
1,2-Diphenylhydrazine (as Azobenzene)	<20	<20	1	20
Fluoranthene	<10	<10	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Fluorene	<10	<10	1	10
Hexachlorobenzene	<5	<5	1	5
Hexachlorobutadiene	<10	<10	1	10
Hexachlorocyclo-pentadiene	<10	<10	1	10
Hexachloroethane	<20	<20	1	20
Indeno(1,2,3-cd)pyrene	<5	<5	1	5
Isophorone	<10	<10	1	10
Naphthalene	<10	<10	1	10
Nitrobenzene	<10	<10	1	10
N-Nitrosodimethylamine	<50	<50	1	50
N-Nitrosodi-n-Propylamine	<20	<20	1	20
N-Nitrosodiphenylamine	<20	<20	1	20
Phenanthrene	<10	<10	1	10
Pyrene	<10	<10	1	10
1,2,4-Trichlorobenzene	<10	<10	1	10

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Aldrin	<0.01	<0.01	1	0.01
alpha-BHC (Hexachlorocyclohexane)	<0.05	<0.05	1	0.05
beta-BHC (Hexachlorocyclohexane)	<0.05	<0.05	1	0.05
gamma-BHC (Hexachlorocyclohexane)	<0.05	<0.05	1	0.05
delta-BHC (Hexachlorocyclohexane)	<0.05	<0.05	1	0.05
Chlordane	<0.2	<0.2	1	0.2
4,4-DDT	<0.02	<0.02	1	0.02
4,4-DDE	<0.1	<0.1	1	0.1
4,4,-DDD	<0.1	<0.1	1	0.1
Dieldrin	<0.02	<0.02	1	0.02
Endosulfan I (alpha)	<0.01	<0.01	1	0.01
Endosulfan II (beta)	<0.02	<0.02	1	0.02
Endosulfan Sulfate	<0.01	<0.01	1	0.1
Endrin	<0.02	<0.02	1	0.02
Endrin Aldehyde	<0.1	<0.1	1	0.1
Heptachlor	<0.01	<0.01	1	0.01
Heptachlor Epoxide	<0.01	<0.01	1	0.01
PCB-1242	<0.2	<0.2	1	0.2
PCB-1254	<0.2	<0.2	1	0.2
PCB-1221	<0.2	<0.2	1	0.2
PCB-1232	<0.2	<0.2	1	0.2
PCB-1248	<0.2	<0.2	1	0.2
PCB-1260	<0.2	<0.2	1	0.2
PCB-1016	<0.2	<0.2	1	0.2
Toxaphene	<0.3	<0.3	1	0.3

^{*} For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Section 3. Dioxin/Furan Compounds A. Indicate which of the following compounds from may be present in the influent from contributing industrial users or cignificant industrial users. Check all that captures are cignificant industrial users.

	ate which of the following compounds from may be present in the influent from a ibuting industrial user or significant industrial user. Check all that apply.
	2,4,5-trichlorophenoxy acetic acid
	Common Name 2,4,5-T, CASRN 93-76-5
	2-(2,4,5-trichlorophenoxy) propanoic acid
	Common Name Silvex or 2,4,5-TP, CASRN 93-72-1
	2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate
	Common Name Erbon, CASRN 136-25-4
	0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate
	Common Name Ronnel, CASRN 299-84-3
	2,4,5-trichlorophenol
	Common Name TCP, CASRN 95-95-4
	hexachlorophene
	Common Name HCP, CASRN 70-30-4
	ach compound identified, provide a brief description of the conditions of its/their nce at the facility.
N/A	
(TCDI	yu know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin D) or any congeners of TCDD may be present in your effluent? Yes No D, provide a brief description of the conditions for its presence.
	to enter text.

B.

C.	If any of the compounds in Subsection A ${f or}$ B are present, complete Table 4.0(2)F.
	For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab □ Composite □

Date and time sample(s) collected: $\underline{\mathbf{N/A}}$

Table 4.0(2)F - Dioxin/Furan Compounds

Compound	Toxic Equivalenc y Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1					10
1,2,3,7,8 PeCDD	0.5					50
2,3,7,8 HxCDDs	0.1					50
1,2,3,4,6,7,8 HpCDD	0.01					50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05					50
2,3,4,7,8 PeCDF	0.5					50
2,3,7,8 HxCDFs	0.1					50
2,3,4,7,8 HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					0.5
PCB 81	0.0003					0.5
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total						

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: TOXICITY TESTING REQUIREMENTS

The following **is required** for facilities with a current operating design flow of **1.0 MGD or greater**, with an EPA-approved **pretreatment** program (or those required to have one under 40 CFR Part 403), or are required to perform Whole Effluent Toxicity testing. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Required Tests (Instructions Page 88)

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic: <u>18 – Ceriodaphnia dubia & 18 – Pimephales promelas</u>

48-hour Acute: N/A

Section 2. Toxicity Reduction Evaluations (TREs)

Has this facility	completed a 7	ן RE in the	past four	and a hal	lf years?	Or is the	facility	currently
performing a TR	RE?							

□ Yes ⊠ No

If yes, describe the progress to date, if applicable, in identifying and confirming the toxicant.

Click to enter text.			

Section 3. Summary of WET Tests

If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed.

Table 5.0(1) Summary of WET Tests

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal						
All tests performed have been previously submitted via both the DMR and Table 1 of the permit.									

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works.

Section 1. All POTWs (Instructions Page 89)

A. Industrial users (IUs)

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

If there are no users, enter 0 (zero).

Categorical IUs:

Number of IUs: 8

Average Daily Flows, in MGD: 3.36* *Projected 2025 flows.

Significant IUs – non-categorical:

Number of IUs: 2

Average Daily Flows, in MGD: 0.410

Other IUs:

Number of IUs: **o**

Average Daily Flows, in MGD: o

B. Treatment plant interference

In the past three years, has your POTW experienced treatment plant interference (see instructions)?

□ Yes ⊠ No

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

Click to enter text.

	In the past three years, has your POTW experienced pass through (see instructions)?
	□ Yes ⊠ No
	If yes , identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.
	Click to enter text.
D.	Pretreatment program
	Does your POTW have an approved pretreatment program?
	⊠ Yes □ No
	If yes, complete Section 2 only of this Worksheet.
	Is your POTW required to develop an approved pretreatment program?
	□ Yes □ No
	If yes, complete Section 2.c. and 2.d. only, and skip Section 3.
	If no to either question above , skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.
E.	Service Area Map
	Attach a map indicating the service area of the POTW. The map should include the applicant's service area boundaries and the location of any known industrial users discharging to the POTW. Please see the instructions for guidance.
	Attachment: <u>N/A</u>
Se	ection 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 90)
A	Substantial modifications
. 11	Have there been any substantial modifications to the approved pretreatment program that have not been submitted to the TCEQ for approval according to <i>40 CFR §403.18</i> ?

If yes, identify the modifications that have not been submitted to TCEQ, including the

C. Treatment plant pass through

Yes ⊠ No

purpose of the modification.

	Click to enter text	·			_
R.	Non-substantial m	nodifications			
D.		ny non-substantial i	modifications to	the annroved pret	reatment
		not been submitted			
	□ Yes ⊠	No			
		non-substantial modose of the modifica		we not been subm	nitted to TCEQ,
	Click to enter text.				
C.	Effluent paramete		, ,		
		t all parameters mea t the last three years			
- -1		•	o. Judini an acae.	Illifelie ir freecoon.	у.
	ble 6.0(1) – Paramet ollutant	Concentration	MAL	Units	Date
	ee Attachment X.	Concentration	MAL	Units	Date
36	e Attacimient A.				

D. Industrial user interruptions

Has any SIU, CIU, or other IU caused or contributed to any problems (excluding interferences or pass throughs) at your POTW in the past three years?

□ Yes ⊠ No

If yes, identify the industry, describe each episode, including dates, duration, description of the problems, and probable pollutants.

	Click to enter text.
Se	ction 3. Significant Industrial User (SIU) Information and
	Categorical Industrial User (CIU) (Instructions Page 90)
Α.	General information
	Company Name: Click to enter text.
	SIC Code: <u>Click to enter text.</u>
	Contact name: <u>Click to enter text.</u>
	Address: Click to enter text.
	City, State, and Zip Code: Click to enter text.
	Telephone number: <u>Click to enter text.</u>
	Email address: Click to enter text.
B.	Process information
	Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).
	or CIU(s) discharge (i.e., process and non-process wastewater).
	or CIU(s) discharge (i.e., process and non-process wastewater).
	or CIU(s) discharge (i.e., process and non-process wastewater).
	or CIU(s) discharge (i.e., process and non-process wastewater).
	or CIU(s) discharge (i.e., process and non-process wastewater).
C.	or CIU(s) discharge (i.e., process and non-process wastewater).
C.	or CIU(s) discharge (i.e., process and non-process wastewater). Click to enter text.
C.	or CIU(s) discharge (i.e., process and non-process wastewater). Click to enter text. Product and service information
C.	or CIU(s) discharge (i.e., process and non-process wastewater). Click to enter text. Product and service information Provide a description of the principal product(s) or services performed.
C.	or CIU(s) discharge (i.e., process and non-process wastewater). Click to enter text. Product and service information Provide a description of the principal product(s) or services performed.
C.	or CIU(s) discharge (i.e., process and non-process wastewater). Click to enter text. Product and service information Provide a description of the principal product(s) or services performed.
C.	or CIU(s) discharge (i.e., process and non-process wastewater). Click to enter text. Product and service information Provide a description of the principal product(s) or services performed.

	See the Instructions for definitions of "process" and "non-process wastewater."
	Process Wastewater:
	Discharge, in gallons/day: Click to enter text.
	Discharge Type: \square Continuous \square Batch \square Intermittent
	Non-Process Wastewater:
	Discharge, in gallons/day: Click to enter text.
	Discharge Type: \square Continuous \square Batch \square Intermittent
Ε.	Pretreatment standards
	Is the SIU or CIU subject to technically based local limits as defined in the <i>i</i> nstructions?
	□ Yes □ No
	Is the SIU or CIU subject to categorical pretreatment standards found in 40 CFR Parts 405 - 471 ?
	□ Yes □ No
	If subject to categorical pretreatment standards , indicate the applicable category and subcategory for each categorical process.
	Category: Subcategories: Click to enter text.
	Click or tap here to enter text. <u>Click to enter text.</u>
	Category: <u>Click to enter text.</u>
	Subcategories: <u>Click to enter text.</u>
	Category: Click to enter text.
	Subcategories: <u>Click to enter text.</u>
	Category: Click to enter text.
	Subcategories: Click to enter text.
	Category: Click to enter text.
	Subcategories: <u>Click to enter text.</u>
F.	Industrial user interruptions
	Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years?
	□ Yes □ No
	If yes , identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants.
	Click to enter text.

CITY OF SHERMAN POST OAK WASTEWATER TREATMENT FACILITY TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION

ATTACHMENT	REFERENCE

AII	ACHMENT	REFERENCE
A.	Proposed Changes	Admin Report 1.0, Sections 2.e, and 10.B
		Tech Report 1.0, Section 1, and
		Tech Report 1.1, Section 3
В.	Core Data Form	Admin Report 1.0, Section 3.C
C.	Plain Language Summary	Admin Report 1.0, Section 8.F
D.	Public Involvement Plan	Admin Report 1.0, Section 8.G
E.	USGS Map	Admin Report 1.0, Section 13
F.	Affected Landowner Information	Admin Report 1.1, Section 1
G.	Original Photographs	Admin Report 1.1, Section 2
Н.	Buffer Zone Map	Admin Report 1.1, Section 3
I.	Treatment Process Description	Tech Report 1.0, Section 2.A
J.	Treatment Unit List	Tech Report 1.0, Section 2.B
K.	Process Flow Diagram	Tech Report 1.0, Section 2.C
L.	Site Drawing	Tech Report 1.0, Section 3
M	. Effluent Pollutant Analysis	Tech Report 1.0, Section 7, and
		Worksheet 4.0
N.	General Highway Map	Tech Report 1.0, Section 11.A
Ο.	USDA NRCS Soil Map	Tech Report 1.0, Section 11.A
Ρ.	FEMA Мар	Tech Report 1.0, Section 11.A
Q.	Site Map	Tech Report 1.0, Section 11.A
R.	Sludge Lagoon Site Description	Tech Report 1.0, Section 11.D
S.	Permit Justification	Technical Report 1.1, Section 1.A
Τ.	Design Calculation and Plant Features	Tech Report 1.1, Section 4
U.	Windrose	Tech Report 1.1, Section 5.B
٧.	Solids Management Plan	Tech Report 1.1, Section 7
W	. Post Oak Creek Stream Study	Worksheet 2.1
Χ.	Effluent Parameters above the MAL	Worksheet 6.0, Section 2.C
Y.	Biosolids Treatment Process Description	SSTR 1.0, Section 1.A
Z.	Marketing and Distribution Plan	SSTR 3.0, Section C
SF	PIF	Supplemental Permit Information Form

Attachment A Proposed Changes Admin Report 1.0, Sections 2.e and 10.B Tech Report 1.0, Section 1, and Tech Report 1.1, Section 3

ATTACHMENT A CITY OF SHERMAN DOST OAK WASTEWATER TREATMEN

POST OAK WASTEWATER TREATMENT FACILITY TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION PROPOSED AMENDMENT REQUESTS

A major amendment is requested by the City of Sherman (City) to the TPDES Permit WQ0010329001 for the Post Oak Wastewater Treatment Facility (WWTF). The proposed amendments to the permit are as follows:

- Increase the annual average discharge flow for Outfall 001 to 24 million gallons per day (MGD).
- Revise the 2-hour peak flow for Outfall 001 in the Existing/Interim I Phase from 42 MGD to 32 MGD.
- Add a new outfall with an annual average discharge flow not to exceed 16 MGD.
- Revise the sludge reporting requirements.
- Incorporate pretreatment program modification approval.

Information regarding the proposed amendment requests is presented in this attachment.

INCREASE OF OUTFALL 001 DISCHARGE FLOW AND ADD OUTFALL 002

Due to increased population growth and industrial contributions, the City of Sherman will expand the treatment facilities at the Post Oak WWTF. The current treatment facility is a conventional activated sludge process plant that is permitted for 16 MGD. A second treatment train, south of the existing conventional treatment train is proposed. The south train will be a membrane bioreactor (MBR), designed to specifically treat a significant portion of the industrial contributions. The purpose of constructing the South train is to improve the treatment capabilities of the WWTF. Treated effluent from each train will be commingled prior to discharge via Outfall 001. Neither an increase in flow nor any changes to the permit requirements are requested for the current renovations.

The City, however, anticipates the wastewater flows due to population and industrial growth to exceed 16 MGD in 2028. Therefore, two phases of expansion to the WWTF are requested. A phase for an annual average flow not to exceed 20 MGD and a phase not to exceed 24 MGD, both to discharge via Outfall 001 is proposed. The expansions to the Post Oak WWTF will involve improvements to the conventional treatment train and an expansion to the MBR train.

The City is also requesting a second outfall (Outfall 002) that will be located on a tributary to Deaver Creek with an annual average flow not to exceed 16 MGD. The purpose for adding the second outfall is to provide treated effluent for indirect potable reuse. The combined flow from Outfalls 001 and 002 will not exceed the annual average flow specified for the active phase of Outfall 001. The descriptions of the discharge routes; permitted and proposed flows; justification for the proposed flows; and the permitted and proposed effluent quality limits are presented below.

Descriptions of Discharge Routes

The treated effluent is currently discharged via Outfall 001, which is located on Post Oak Creek. The proposed Outfall 002 is located on an unnamed tributary to Deaver Creek. The discharge route descriptions for Outfalls 001 and 002 are as follows:

- Outfall 001 Treated effluent is discharged via Outfall 001 directly into Post Oak Creek; thence to Choctaw Creek; thence to the Red River below Lake Texoma in Segment No. 0202 of the Red River Basin.
- Outfall 002 Treated effluent will be discharged via Outfall 002 into an unnamed tributary; thence to Deaver Creek; thence to Big Mineral Creek; thence to Lake Texoma in Segment No. 0203 of the Red River Basin.

Permitted and Proposed Flows

	Outfall 001 Outfall 002				
	Interim I	Interim II	Final	Final	
	Phase	Phase	Phase	Phase	
Design Flow (MGD)	16	20	24	16	
2-Hr Peak Flow (MGD)	32	40	48	32	
Estimated Construction Start Date		2027	2029	2027	
Estimated Waste Disposal Start Date		2028	2030	2028	

Because the proposed flows are expected to exceed 90% of the permit limitations of 16 million gallons per day in 2029 and 2031 the proposed future phases are justified.

Permitted and Proposed Effluent Quality Limits*

			Outfall 002	
	Interim I	Interim II	Final	Final Phase
	Phase	Phase	Phase	
Biochemical Oxygen Demand	10	7	7	7
(5-day), mg/L				
Total Suspended Solids, mg/L	15	15	15	15
Ammonia Nitrogen, mg/L	2	2	2	2
Total Phosphorus, mg/L				
Dissolved Oxygen, mg/L	6	6	6	6
Other				

^{*}The combined flow from Outfalls 001 and 002 will not exceed the annual average flow specified for the active phase of Outfall 001. The combined loading from carbonaceous biochemical oxygen demand (5-day), ammonia nitrogen, and total suspended solids from Outfalls 001 and 002 will not exceed the loading specified for the active phase of Outfall 001.

REVISED SLUDGE REPORT REQUIREMENTS

The City of Sherman prepares sludge reports in accordance with the schedules established in the TPDES permits. Annual reports are submitted by September 30th of each year. The City requests the reporting period specified in the permit to be revised to be September 1st of the previous year to August 31st of the current year, which is consistent with 30 TAC Sec. 312.48.

INCORPORATION OF PRETREATMENT PROGRAM MODIFICATION APPROVAL

The City received a letter acknowledging TCEQ has determined that the substantial program modification originally submitted on October 30, 2023, was technically complete. The modifications were to incorporate revised technically based local limits, as well as additional narrative revisions to the pretreatment program elements.

The City's legal authority and pretreatment program are in compliance with the current 40 CFR Part 403 regulations and 30 TAC Chapter 315, as amended.

Attachment B

Core Data Form

Admin Report 1.0, Section 3.C

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)

Renewal (Core Data Form should be submitted with the renewal form)					ПП	Other					
`		umber (if issued)	<u> 1</u>	Follow this I	link to searc N numbers i	3. Re	3. Regulated Entity Reference Number (if issued)				
CN 60042958	33			Central R	Registry**	RN	101612448				
CTION	I II: C	<u>ustome</u> i	<u>Inform</u>	ation	<u>1</u>						
4. General Customer Information 5. Effective Date for Custom						formation	Updates (mm/dd	/уууу)			
New Custom Change in Le		erifiable with the T	Update to Custon exas Secretary of				nge in Regulated Er c Accounts)	ntity Own	ership		
		mitted here may er of Public Acco	-	tomatical	ly based o	n what is o	current and activ	e with th	ne Texas Sec	retary of State	
. Customer L	egal Name	(If an individual, p	rint last name firs	t: eg: Doe, J	lohn)		If new Customer	, enter pre	evious Custon	ner below:	
ity of Sherman											
. TX SOS/CPA	Filing Nun	nber	8. TX State T	TX State Tax ID (11 digits)			9. Federal Tax ID 10. DUNS Numb				
/A			N/A	N/A			(9 digits)		applicable)		
							N/A				
1. Type of Cu	stomer:	☐ Corpor	ation			☐ Indivi	ndividual Partnership: General Lin			neral 🗌 Limited	
overnment: 🗵	City 🗌 Co	unty 🗌 Federal 🗌] Local ☐ State	Other		☐ Sole F	Sole Proprietorship				
2. Number o	f Employee	es					13. Independe	ntly Ow	ned and Op	erated?	
0-20 2	1-100	101-250 🛚 253	1-500 🔲 501 a	ind higher			⊠ Yes	☐ No			
4. Customer	Role (Propo	sed or Actual) – as	it relates to the F	Regulated E	ntity listed o	n this form.	Please check one o	f the follo	owing		
Owner Occupational	Licensee	Operator Responsible P	· · · · · · · · · · · · · · · · · · ·	ner & Opera CP/BSA App			Other	:			
5. Mailing	220 West N	Iulberry Street									
ddress:	City	Sherman		State	ТХ	ZIP	75091		ZIP + 4	1106	
				Jule	'``	-"	75051		2 4	1100	

TCEQ-10400 (11/22) Page 1 of 3

18. Telephone Number	ohone Number			19. Extension or Code			20. Fax Number (if applicable)			
(903) 892-7206	2206						() -			
ECTION III: F	Regula	ted Entit	ty Inform	ation						
21. General Regulated Ent	tity Informa	tion (If 'New Regul	ated Entity" is selec	ted, a new p	ermit applica	tion is a	lso required.)			
☐ New Regulated Entity [Update to	Regulated Entity Na	me 🔲 Update t	o Regulated	Entity Inform	ation				
The Regulated Entity Nan as Inc, LP, or LLC).	ne submitted	d may be updated	d, in order to mee	t TCEQ Cor	e Data Star	ndards	(removal of or	ganization	al endings such	
22. Regulated Entity Nam	e (Enter name	e of the site where t	he regulated action	is taking pla	ice.)					
Post Oak Wastewater Treatmo	ent Facility									
23. Street Address of the Regulated Entity:	1800 East FM Highway 1417									
(No PO Boxes)	City Sherman		State	TX	ZIP 75		0	ZIP + 4		
24. County	Grayson	<u> </u>	I			1			<u>I</u>	
		If no Street	Address is provid	ed, fields 2	25-28 are re	quired				
25. Description to										
Physical Location:										
26. Nearest City						State		Nea	rest ZIP Code	
Sherman					TX		7509	0		
Latitude/Longitude are re used to supply coordinate	•				Pata Standa	ırds. (G	eocoding of th	e Physical	Address may be	
27. Latitude (N) In Decimal: 33.601388			28. Longitude			V) In Do	ecimal:	96.57361	96.573611	
Degrees	Minutes		econds	Degre	Degrees		Minutes		Seconds	
33	36 5.00		5.00		96		34		2500	
29. Primary SIC Code 4 digits)	30. 9	Secondary SIC Co	de 31. Primary NAICS Co (5 or 6 digits)			32. Secondary NAICS Code (5 or 6 digits)				
4952	2213	3								
33. What is the Primary B	usiness of tl	nis entity? (Do n	ot repeat the SIC or	NAICS descr	iption.)					
Treatment of domestic waste	water									
34. Mailing	P.O. Box 11	06								
Address:										
	City	Sherman	State	тх	ZIP	7509	1	ZIP + 4		
35. E-Mail Address:		I		<u> </u>					<u>l</u>	
36. Telephone Number		:	37. Extension or (Code	38. F	ax Nun	nber (if applicab	nle)		
() -		() -								

TCEQ-10400 (11/22) Page 2 of 3

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance. ☐ Dam Safety Districts Edwards Aquifer Emissions Inventory Air Industrial Hazardous Waste New Source Municipal Solid Waste OSSF Petroleum Storage Tank □ PWS Review Air Sludge Storm Water ☐ Title V Air ☐ Tires Used Oil ☐ Voluntary Cleanup **⊠** Wastewater ■ Wastewater Agriculture ■ Water Rights Other: WQ0010329001 **SECTION IV: Preparer Information** 40. Name: 41. Title: **Janet Sims** Senior Project Manager 42. Telephone Number 43. Ext./Code 44. Fax Number 45. E-Mail Address (512) 735-1001) Janet.Sims@meadhunt.com **SECTION V: Authorized Signature** 46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39. Company: Job Title: City of Sherman **Assistant City Manager** Name (In Print): **Clint Philpott** Phone: (903) 892-7203 Signature: Clint Plifett Date: 2/17/25

TCEQ-10400 (11/22) Page 3 of 3

Attachment C
Plain Language Summary
Admin Report 1.0, Section 8.F

TCEQ

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

PLAIN LANGUAGE SUMMARY FOR TPDES OR TLAP PERMIT APPLICATIONS

Plain Language Summary Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. Applicants may modify the template as necessary to accurately describe their facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how the applicant will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTIC WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

The City of Sherman (CN600418578) operates the Post Oak Wastewater Treatment Facility (RN101612448), an activated sludge wastewater treatment plant. The facility is located at 1800 E. FM Highway 1417, in Sherman, Grayson County, Texas 75090. The application is for a major amendment to increase the annual average discharge flow not to exceed 24 million gallons per day of domestic wastewater via Outfall 001, which is located on Post Oak Creek and to add a new outfall, Outfall 002, on a tributary of Deaver Creek with an annual average discharge flow not to exceed 16 million gallons per day.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), ammonia nitrogen (NH₃-N), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent in the permit application package. Domestic wastewater is treated by an activated sludge process plant with two treatment trains. The north train treatment units are coarse screens, vortex grit removal system,

primary clarifiers, activated sludge basins, and secondary clarifiers. The south train treatment units are coarse screens, vortex grit removal system, fine screens, activated sludge basins, and membrane bioreactor basins. Secondary treated wastewater from the two trains is comingled and disinfected by an ultraviolet light system. Sludge process treatment units are sludge thickeners, anaerobic digesters, and dewatering screw presses.

PLANTILIA EN ESPAÑOL PARA SOLICITUDES ENMIENDAS DE TPDES

AGUAS RESIDUALES DOMESTICAS' /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

La Ciudad de Sherman (CN600418578) opera la Post Oak Wastewater Treatment Facility (RN101612448), una planta de lodos activados. La instalación está ubicada en 1800 E. FM Highway 1417, en Sherman, Condado de Grayson, Texas 75090. La solicitud es para una modificación para aumentar el flujo de descarga promedio anual para no exceder los 24 millones de galones por día de aguas residuales domésticas a través del desagüe 001, que se encuentra en Post Oak Creek y para agregar un nuevo desagüe, el desagüe 002, en un afluente de Deaver Creek con un flujo de descarga promedio anual que no exceda los 16 millones de galones por día.

Se espera que las descargas de la planta contengan demanda bioquímica de oxígeno carbonoso (CBOD5) de cinco días, sólidos suspendidos totales (TSS), nitrógeno amoniaco (NH3-N) y Escherichia coli. En el Informe Técnico Doméstico 1.0, Sección 7. Análisis de Contaminantes de Efluentes Tratados del paquete de solicitud de permiso se incluyen otros contaminantes potenciales. Las aguas residuales domésticas se tratan mediante una planta de procesamiento de lodos activados con dos trenes de tratamiento. Las unidades de tratamiento del tren norte son una rejilla de barras, desarenadores, clarificadores primarios, tanque de lodos activados, y clarificadores secundarios. Las unidades de tratamiento del tren sur son rejillas gruesas, sistema de eliminación de arena por vórtice, rejillas finas, tanque de lodos activados y tanques de biorreactores de membrana. Las aguas residuales tratadas secundariamente de los dos trenes se mezclan y desinfectan mediante un sistema de luz ultravioleta. Las unidades de tratamiento del proceso de lodos son espesadores de lodos, digestores anaeróbicos y prensas de tornillo de deshidratación.

Attachment D Public Involvement Plan Admin Report 1.0, Section 8.G

Public Involvement Plan Form for Permit and Registration Applications

The Public Involvement Plan is intended to provide applicants and the agency with information about how public outreach will be accomplished for certain types of applications in certain geographical areas of the state. It is intended to apply to new activities; major changes at existing plants, facilities, and processes; and to activities which are likely to have significant interest from the public. This preliminary screening is designed to identify applications that will benefit from an initial assessment of the need for enhanced public outreach.

All applicable sections of this form should be completed and submitted with the permit or registration application. For instructions on how to complete this form, see TCEQ-20960-inst.

Section 1. Preliminary Screening

New Permit or Registration Application

New Activity - modification, registration, amendment, facility, etc. (see instructions)

If neither of the above boxes are checked, completion of the form is not required and does not need to be submitted.

Section 2. Secondary Screening

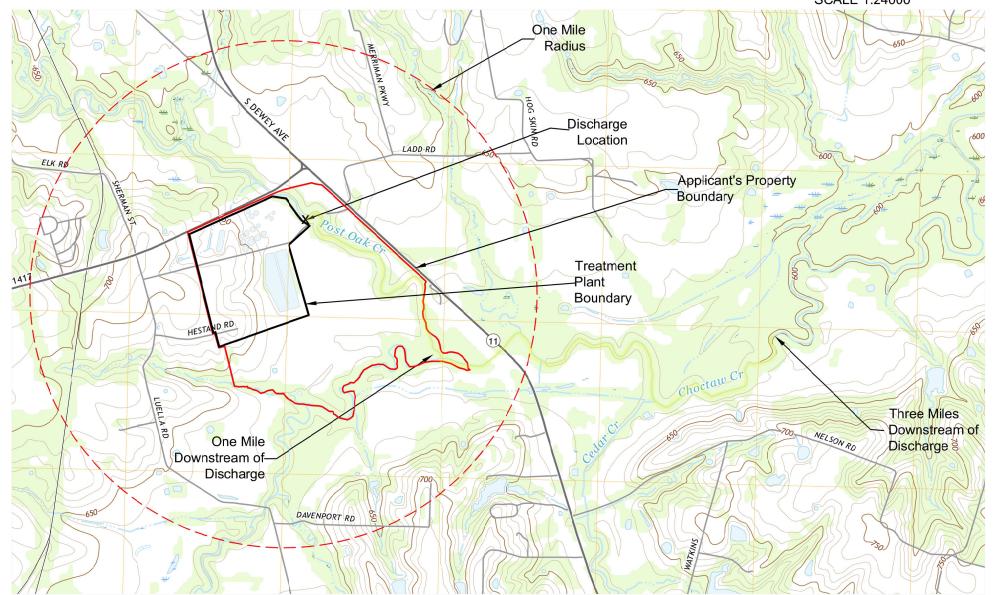
Requires public notice,

Considered to have significant public interest, and

Located within any of the following geographical locations:

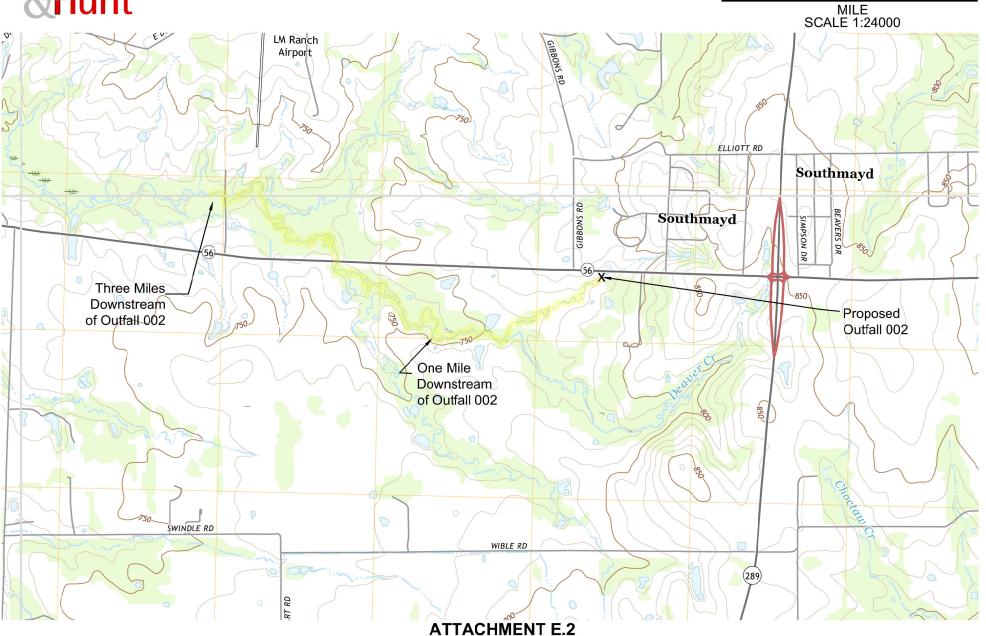
- Austin
- Dallas
- Fort Worth
- Houston
- San Antonio
- West Texas
- Texas Panhandle
- Along the Texas/Mexico Border
- Other geographical locations should be decided on a case-by-case basis

If all the above boxes are not checked, a Public Involvement Plan is not necessary. Stop after Section 2 and submit the form.

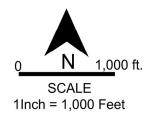

Public Involvement Plan not applicable to this application. Provide **brief** explanation.

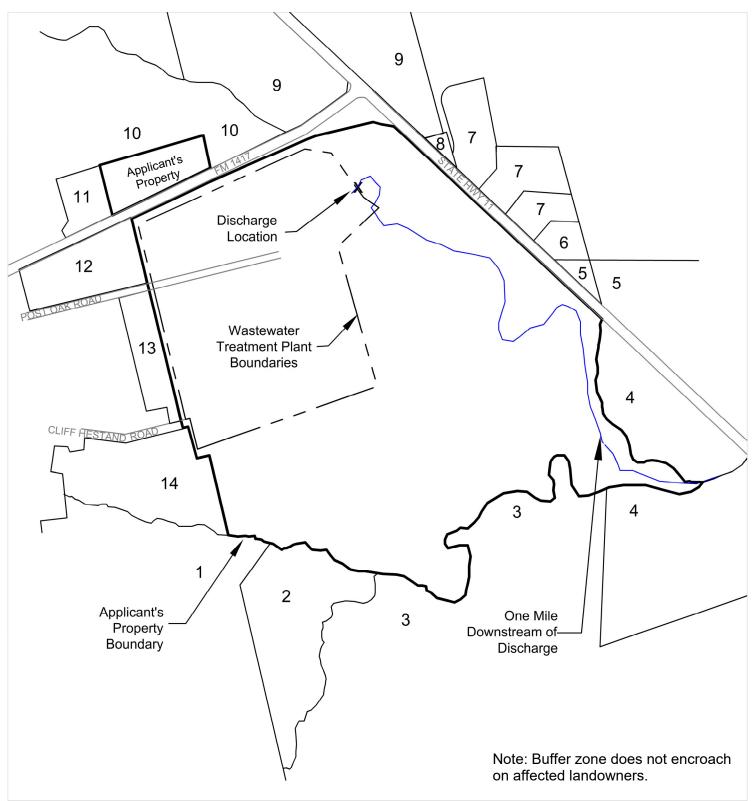
TCEQ-20960 (02-09-2023)

Attachment E USGS Map Admin Report 1.0, Section 13



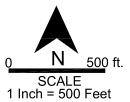
ATTACHMENT E.1
CITY OF SHERMAN - POST OAK WASTEWATER TREATMENT FACILITY
TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION
USGS MAP - OUTFALL 001

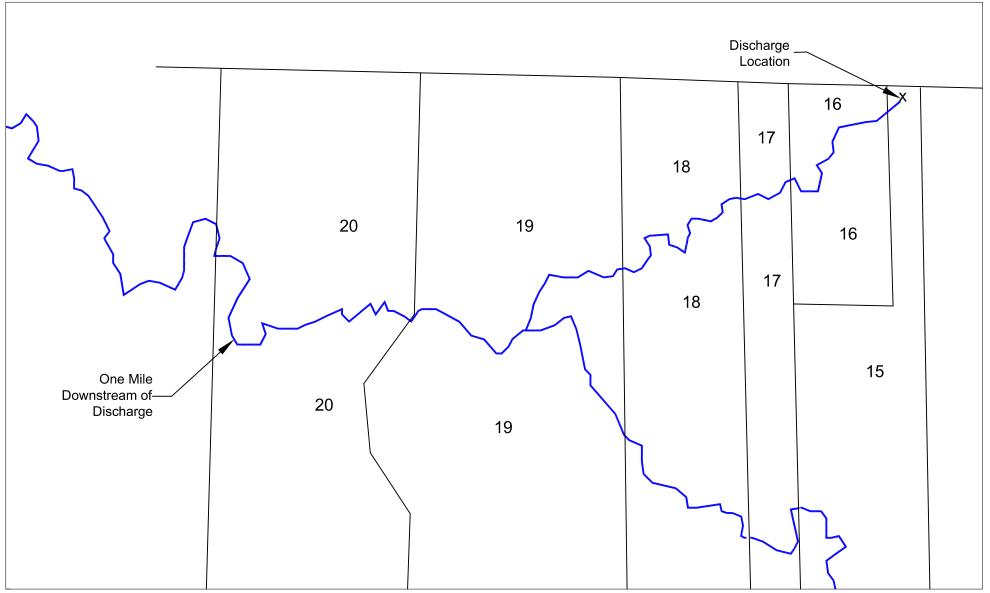




CITY OF SHERMAN - POST OAK WASTEWATER TREATMENT FACILITY
TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION
USGS MAP - OUTFALL 002

Attachment F Affected Landowner Information Tech Report 1.1, Section 1





ATTACHMENT F.1
CITY OF SHERMAN - POST OAK WASTEWATER TREATMENT FACILITY
TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION
AFFECTED LANDOWNER MAP

ATTACHMENT F.2
CITY OF SHERMAN - POST OAK WASTEWATER TREATMENT FACILITY
TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION
OUTFALL 002 - LANDOWNER MAP

ATTACHMENT F.3 CITY OF SHERMAN

POST OAK WASTEWATER TREATMENT FACILITY TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION AFFECTED LANDOWNER LIST

- 1 HMI SHERMAN 592 LLC PO BOX 822044 RICHLAND HILLS, TX 76182
- SHERMAN LUELLA RV PO BOX 822044 NORTH RICHLAND TX 76182
- 3 COOK NANCY GRAY TRUSTEE NANCY GRAY COOK TRUST 283 DAVENPORT RD SHERMAN TX 75090
- 4 TRIPLE G AND H LLC
 ATTN JOHN YORK GRAHAM MANAGER
 734 DEER MEADOW LN
 SEADRIFT TX 77983
- 5 HAYNES MARTHA 1446 NW 23RD LN ANKENY IA 50023
- 6 TA KIEU THI MONG AND TIEN NGOC THI TRAN 1823 COUNTRY RD 596 NAVADA TX 75173
- 7 BROWN LEWISVILLE RAILROAD FAMILY FIRST LP PO BOX 29816 DALLAS TX 75229
- 8 STATE OF TEXAS TX DOT ATTN RIGHT OF WAY PO BOX 3067 DALLAS TX 75221
- 9 AUSTIN COLLEGE 900 N GRAND AVE SHERMAN TX 75090
- 10 FORSTER JAMES E 447 KELSEY RD DENISON TX 75021
- 11 MCCLELLAN AMY HINES PO BOX 3027 MCKINNEY TX 75070
- 12 AMERICAN RESERVE SERVICES CORPORATION 1605 LBJ FREEWAY STE 700 DALLAS TX 75234

- 13 HMI SHERMAN 211 LLC 90 BOX 822044 NORTH RICHLAND HILLS TX 76182
- 14 PC COUNSELING & REHABILITATION LLC
 NEWJERSEY LIMITED CO
 17 MULBERRY ST
 SICKLERVILLE NJ 08081
- 15 MAESTRO INVESTING GROUP LLC 2553 AUTUMN LN FRISCO TX 75036
- 16 REAL ESTATE TEXOMA LLC 890 BEECHWOOD LN FAIRVIEW TX 75069
- 17 CONRAD PROPERTIES LLC 509 E 1ST ST PROSPER TX 75078
- 18 CONRAD RENTALS LLC 130 N PRESTON RD PROSPER TX 75078
- 19 KUSE WAYNE CARL ETUX ROXANN 1301 STATE HWY 289 SHERMAN TX 75092
- 20 CORONA RAFAEL AND CORONA SONIA 1241 MCMAHAN DR LEWISVILLE TX 75077

Attachment G
Original Photographs
Admin Report 1.1, Section 2

Photograph 1. – At Outfall 001 looking north, upstream.

Photograph 2. – At Outfall 001 looking south, downstream.

ATTACHMENT G.1 CITY OF SHERMAN POST OAK WASTEWATER TREATMENT FACILITY TEXAS POLLUTANT DISHARGE ELIMINATION SYSTEM PERMIT APPLICATION PHOTOGRAPHS

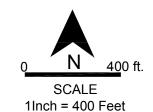
Photograph 3. – Location of new facilities looking east . (Photo was taken during construction of the renovation for the Existing/Interim I facilities.

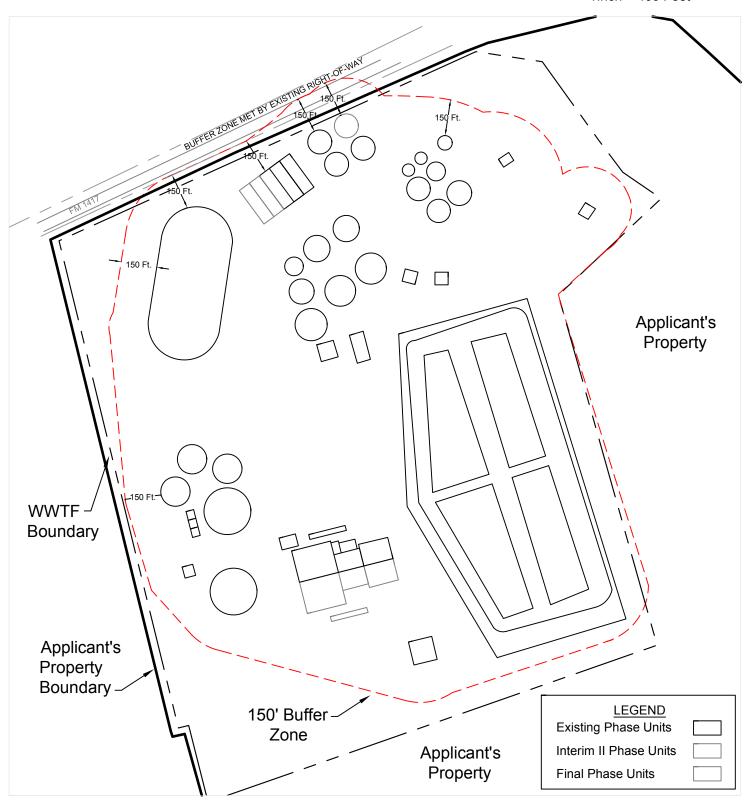
Photograph 4. – At Outfall 002 looking north, upstream.

Photograph 5. – At Outfall 002 looking south, downstream.

ATTACHMENT G.3 CITY OF SHERMAN POST OAK WASTEWATER TREATMENT FACILITY TEXAS POLLUTANT DISHARGE ELIMINATION SYSTEM PERMIT APPLICATION PHOTOGRAPHS

ATTACHMENT G.4
CITY OF SHERMAN
POST OAK WASTEWATER TREATMENT FACILITY
TEXAS POLLUTANT DISHARGE ELIMINATION SYSTEM PERMIT APPLICATION
PHOTOGRAPHS




Attachment H

Buffer Zone Map

Admin Report 1.1, Section 3

ATTACHMENT H
CITY OF SHERMAN - POST OAK WASTEWATER TREATMENT FACILITY
TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION
BUFFER ZONE MAP

Attachment I Treatment Process Description Tech Report 1.0, Section 2.A

ATTACHMENT I CITY OF SHERMAN POST OAK WASTEWATER TREATMENT FACILITY TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION TREATMENT PROCESS DESCRIPTION

The Post Oak Wastewater Treatment Facility (WWTF) is an activated sludge process plant. The existing facility is permitted for an annual average flow of 16 million gallons per day (MGD). The proposed phases are for annual average flows of 20 MGD and 24 MGD. This document outlines the treatment processes for each phase.

Existing/Interim I Phase (16 MGD)

The WWTF receives wastewater through three interceptor lines and has two treatment trains. There are two interceptors on the northside that receive wastewater from residential, commercial, and some industrial sources. The south interceptor line is primarily industrial.

The North train is a traditional activated sludge process facility. It is operated in the conventional mode with nitrification. Treatment units for the North train are coarse screens, vortex grit system, a wet weather equalization basin, primary clarifiers, aeration basins, aeration blowers, and secondary clarifiers.

The South train is a membrane bioreactor (MBR) treatment process system. The treatment units for the South train consist of coarse screens, vortex grit removal system, fine screens, flow equalization basin, activated sludge basin with anoxic and aerobic zones, and membrane bioreactor basin.

Secondary treated effluents from the two trains are comingled. Prior to comingling, the secondary treated effluent from the north train may be filtered through effluent cloth media filters. The treatment unit for the comingled secondary treated effluent is an ultraviolet light disinfection system. After disinfection the effluent is discharged to Post Oak Creek.

Sludge generated in the trains is comingled, dewatered, and disposed at a TCEQ authorized landfill. The sludge handling treatment units for the north train are a gravity sludge thickener and anaerobic sludge digesters. The sludge handling treatment unit for the south train is a sludge storage tank and rotary drum thickener. Combined sludges are dewatered in screw press. The dewatered sludge is transported to the Texoma Area Solids Waste Authority by a registered hauler for disposal.

Interim II Phase (20 MGD)

The proposed additional treatment units for the 20 MGD facilities are additions to the North train. Two aeration basins and one secondary clarifier are proposed for the North train. Rotary drum thickeners, dewatering screw presses, and sludge storage tanks are proposed for the South train. An expansion to the ultraviolet light disinfection system is also proposed.

Final Phase (24 MGD)

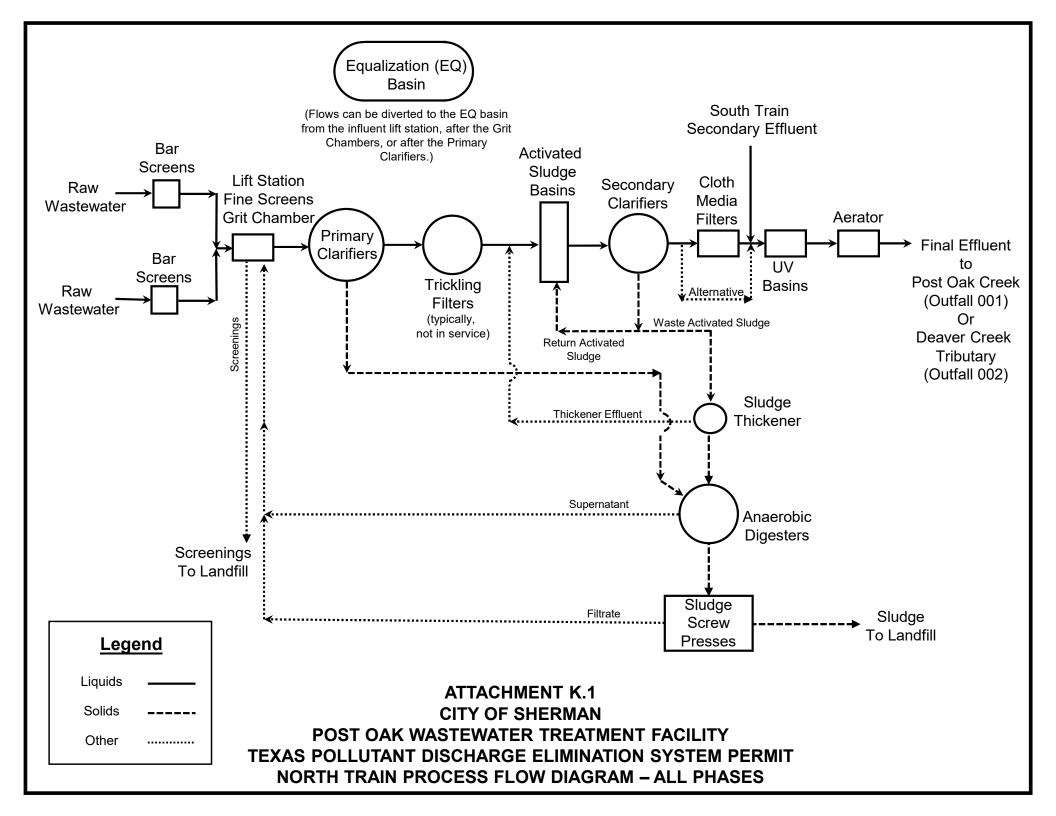
The proposed additional treatment units for the 24 MGD facilities will include a 4 MGD MBR treatment process system to the South train. This will include addition of coarse screens, vortex grit removal system, fine screens, flow equalization basin, activated sludge basins with anoxic and aerobic zones, and membrane bioreactor basin.

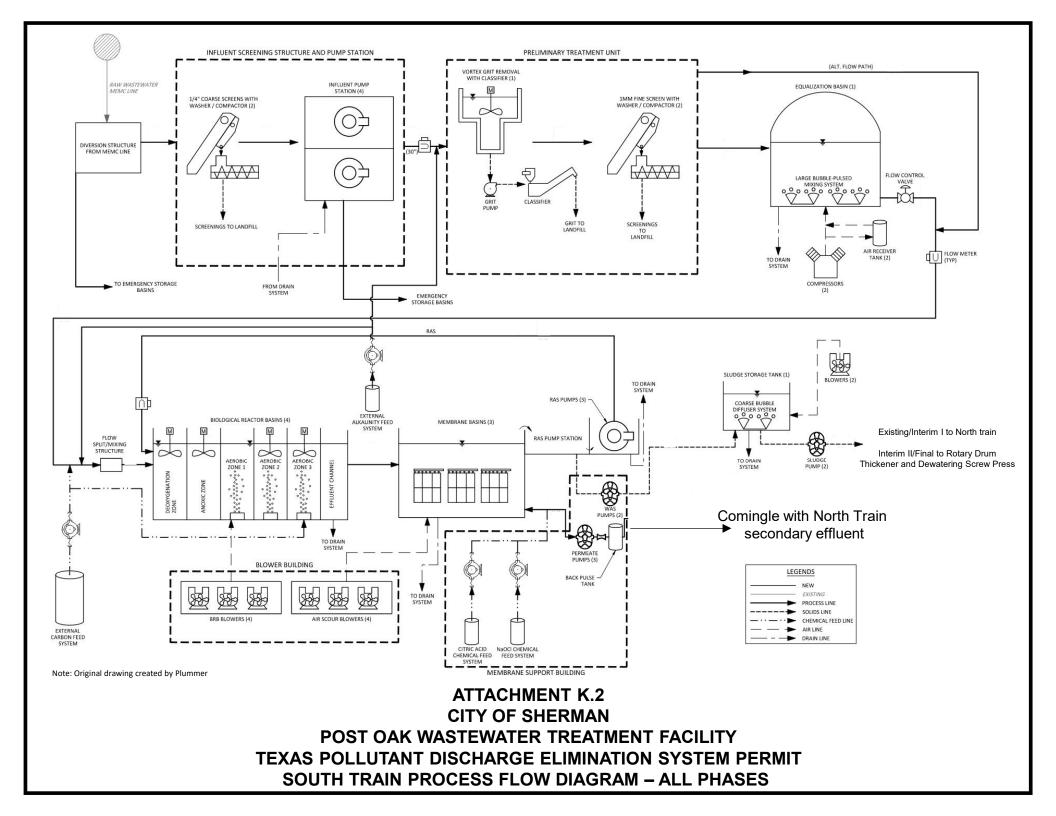
Attachment J Treatment Unit List Tech Report 1.0, Section 2.B

ATTACHMENT J CITY OF SHERMAN POST OAK WASTEWATER TREATMENT FACILITY TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION TREATMENT UNIT LIST

Existing/Interim I Phase (16 MGD)

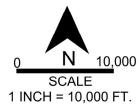
Treatment Unit	Number of Units	Dimensions (L x W x D)					
North Treatment Train (12 MGD)						
Upstream Coarse Screen	3	2@ 24 MGD Capacity 1@ 21 MGD Capacity					
Downstream Coarse Screen	2	16 MGD Capacity ea.					
Vortex Grit System	2	30 MGD Capacity ea.					
Wet Weather Equalization Basin	1	12 MG					
Primary Clarifiers	3	1@ 125' Dia. X 12' SWD 1@ 96' Dia. X 9.5' SWD 1@ 70' X 8.6' SWD					
Aeration Basins	3	150' x 50' x 18' SWD					
Aeration Blowers	3	3,550 SCFM					
Secondary Clarifiers	3	100' Dia. x 15' SWD					
Effluent Cloth Media Filters	2	6 MGD Average ea., 12 MGD Peak 2-hour ea.					
Anaerobic Digesters	3	2@ 100' Dia. X 25' SWD 1@ 80' Dia. X 20' SWD					
South Treatment Train (4 MGD)							
Coarse Screens	2	8 MG ea.					
Vortex Grit Removal System	1	8 MGD					
Fine Screens (1 mm)	2	8.0 MGD ea.					
Equalization Basin	1	4 MG Capacity					
Activated Sludge basins with one anoxic zone and three aerobic zones	4	0.380 MG ea.					
Membrane Bioreactor Basin	1	3 trains, 6 Membrane Cassettes/Train					
North and South Combined Uni	its						
UV Disinfection System	2	8 MGD avg. / 16 MGD 2-hour peak ea.					
Cascade Aerator	1						
Gravity Sludge Thickener	2	45' Dia. X 18.33' ea.					
Dewatering Screw Press	2	56 gpm ea.					
Emergency Storage Basins	4	Approximately 37 MG					

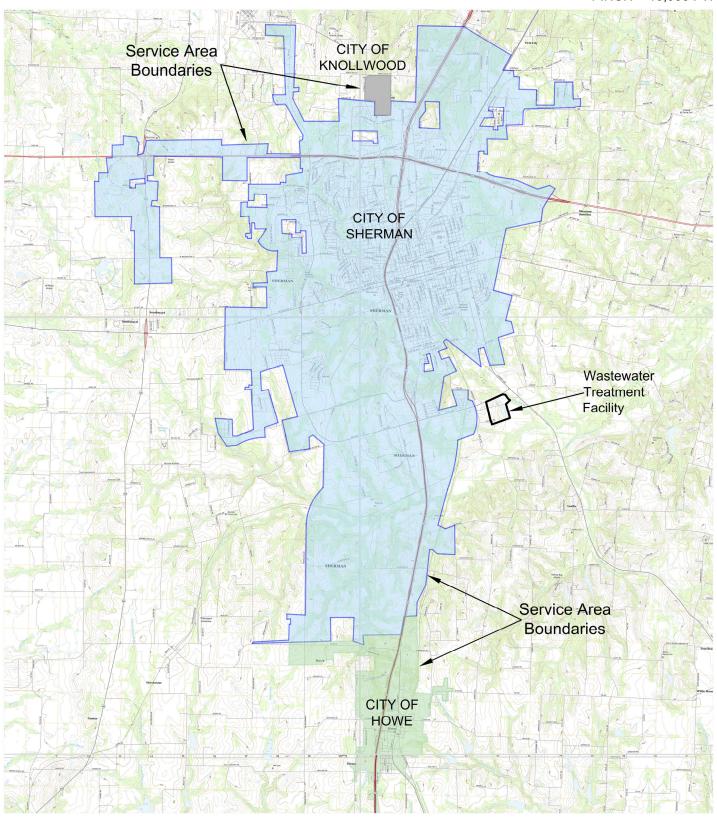

Interim II Phase (20 MGD) Additional Treatment Units


North Treatment Train (Addition	nal 4 MGD Treatm	nent Capacity)					
Aeration Basin	150' x 50' x 18' SWD						
Secondary Clarifier	1	100' Dia. x 15' SWD					
South Treatment Tain							
Rotary Drum Thickener	2	400 gpm ea.					
Dewatering Screw Press	2	200 gpm ea.					
Sludge Storage Tank	2	0.43 MG ea.					
North and South Combined Un	<u>its</u>						
UV Disinfection System	2	8 MGD avg. / 16 MGD 2-hour peak ea.					

Final Phase (24 MGD) Additional Treatment Units

South Treatment Train (Additio	South Treatment Train (Additional 4 MGD Treatment Capacity)								
Coarse Screens	3	8 MG ea.							
Vortex Grit Removal System	1	8 MGD							
Fine Screens (1 mm)	2	8.0 MGD ea.							
Equalization Basin	1	4 MG capacity							
Activated Sludge basins with one anoxic zone and three aerobic zones	4	0.380 MG ea.							
Membrane Bioreactor Basin	1	3 trains, 6 Membrane Cassettes /Train							


Attachment K
Process Flow Diagram
Tech Report 1.0, Section 2.C



Attachment L
Site Drawing
Tech Report 1.0, Section 3

ATTACHMENT L
CITY OF SHERMAN - POST OAK WASTEWATER TREATMENT FACILITY
TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION
SITE DRAWING

Attachment M

Effluent Pollutant Analysis

Tech Report 1.0, Section 7

Worksheet 4.0

Date Setup: 07/19/24 Time Setup: 8:04 Analyst: NM In Incubator: 12:48

Date Read Back: 7/24/2024 Out of Incubator: 10:15

Analyst: JS

CBOD Quality Control Data

BOD Blanks	IDO mg/l	FDO mg/l	Depletion mg/l	Blank Depl. Check	Reportable Blank (mg/l)			Blank QC#
Blank Blank (dup)	8.47 8.50	8.41 8.41	0.06 0.09	0.06 0.09	89.0		***********	0724-118-BLK
BOD Seed Control	mls seed control	IDO mg/l	FDO mg/l	Raw Seed Values	2/1 Rule Check	RPD Check	%	Seed Factor per mL
Seed Control mls of seed add	3 10 15 20 ed to each bot	8.47 8.26 8.20 8.15	7.63 5.56 3.73 1.85 3	0.84 0.27 0.30 0.32	0.27 0.30 0.32	1 & 2 2 & 3 1 & 3	9.9 5.5 15.4	0.29
BOD Standards	mls standard	IDO mg/l	FDO mg/l	Raw Std. Values	2/1 Rule Check	RPD Check	%	Reported Standard
Standards (LAB CHEM) 0724-118-CTL	6 6 6	8.50 8.47 8.47	4.22 3.50 3.25	169.9 204.4 216.9	169.9 204.4 216.9	1 & 2 2 & 3 1 & 3	18.4 5.9 24.3	24.343 197.0
Batch ID:	071924-01	Seed Factor>	0.88	Standard> Target>	(167.5 - 228.5)	Blank> Target>	0.08 (< 0.20)	•••••••••••••••••••••••••••••••••••••••
Precision:>	Control Limi		Accuracy:>	99.5				

The lower the % RPD, the more precise the analysis.

Entered By: JS

Date: 7/24/2024

Reviewed By:

Date:

(84.6 - 115.4) The closer to 100 % recovery you get, the more accurate the standard analysis is.

Entered By: Date:

(% RPD)

JS Reviewed By:

Control Limit =< 19

Excel Check By: RG

QC By: Date:

 $\mathbf{n}\mathbf{n}$

7/24/2024 Date:

Date:

(% Recovery)

7/24/2024

7/24/2024

Comments:

Batch ID#:	071924-01		******		CBOD Sa	mple Cale	ulations				
Sample Name	mls sample	IDO mg/l	FDO mg/l	Depletion mg/l	Raw BOD Data (mg/l)	2/1 Rule Check (mg/l)	Average of all 3 Dilutions	1 & 2 RPD Check	2 & 3 RPD Check	1 & 3 RPD Check	BOD Value (mg/l)
PO EFF	100.0	8.56	6.23	2.33	4.3	4.3	4,3	***********	**********	· · · · · · · · · · · · · · · · · · ·	4.3
240719012	200.0	8.67	4.99	3.68	4.2	4.2	Average>	4.3	4.3	4.4	10
7/18	300.0	8.79	3.46	5.33	4.4	4.4	%RPD>	3.4	5.8	2.4	
PO EFF	100.0	8.55	6.24	2.31	4.3	4.3	4.3	**********	*********		453
240719012	200.0	8.68	4.95	3.73	4.3	4.3	Average>	4.3	4.3	4.3	
(Duplicate)	300.0	8.74	3.45	5.29	4.4	4.4	%RPD>	0.2	3.1	2.9	
·····	10.0	8.42	5.62	2.80	57.5	57.5	59.5	*********	*********	************	60
240718021	15.0	8.35	4.43	3.92	60.7	60.7	Average->	59.1	60.4	58.8	REALIST CONTROL
	20.0	8.31	3.42	4.89	60.1	60.1	%RPD>	5.5	1.1	4.4	
**************	*************	**********	**********	0.00	**********	***********	#DIV/0!	**********	*********	***********	********
				0.00			Average>	#DIV/0!	#DIV/0!	#DIV/0!	
				0.00			%RPD>	#######	########	#######	
*************	******	**********	**********	0.00	***********	**********	#DIV/0!	**********	*********	••••••	********
				0.00			Average>	#DIV/0!	#DIV/0!	#DIV/0!	
				0.00			%RPD>	########	#######	#######	
***********	************	**********	***********	0.00	***********	**********	#DIV/0!	*********	******	· · · · · · · · · · · · · · · · · · ·	
				0.00			Average>	#DIV/0!	#DIV/0!	#DIV/0!	
				0.00			%RPD>	#######	#######	#######	

Excel Check By:

Date:

RG

7/24/2024

QC Review By: nm

Date: 7/24/2024

	Sherm	an Utilities	Laboratory	/ - Tota	l/Volatile Suspe	nded Solid	s QC Sheet	t (TSS, MLSS	/VSS, ML	VSS)			
TSS Batch:	TSS - DTV	824-01	VSS -D	71824 ndd,y - #)	-01								
	TSS Drvi	ng Cycles (103 - 105 °C	3)				VSS Drying	Cvcle (6	50 °C)		10,50	
Date/Tin	no la To	mala I	Date/Time		Temp Out	Date/7	ime în	Temp In		/Time Out		emp (
# 1 D11824	0910 Un 103	104.0 C	71824 10	20	Un 103 104.1	# 1 07/924	1135	Un525	071824	1156	Un G		200
#271824	1045 Un 103	104.0 0	71824 11	51	Un 103.1	#2		Ūn			Un		C
Un: Uncorrected	Temperature; C: C												
	TSS Duplic	ate VSS D	uplicate	LCS	S ₁ = Si	imple S ₂ =		plicate	TSS (mg	n/l \ ==	C x 1,0	00,00	0,0
Precision (RI	PD) 4.2			1/4/14	%RPD=	$\frac{S_1 - S_2}{S_1 + S_2}$	X 20	00	1.00 (11)	VC VC	olume fil	tered	(mL)
Accuracy (%	R)		<u> </u>	00		S ₁ + S	2						
Batch QC Ched	cks:				Dry	ng Oven Us	ed (mark o	ne)		(ე _{ნათ} x 1,	000.0	000
Did all samples	filter in < 10 minute	s?	(Y) N	Na	Dryling Over	#1 / Thermome	ter SN G153772	2	VSS (m	g/L) =	lume filt		
1	the last two dry weigh		V24		Drying Over	#2 / Thermome	ter SN B206216	,		,,			````
_	ghts ≥ 0.0025g and		Y * (N		Drying Over	#3 / Thermome	er SN G153769						
	_	•				Balance	Used						
						Ohaus Voy				,	vss		
		·····			Muffle	Furnace Us	ed ** (mark	one)	% Ash	լ=	TSS	x 10	0
					Iso	Temp Muffle	Furnace						
					Ther	molyne Muffle	Furnace						
					** Used in t	ne analysis of	volatile solid	is					
Batch Commen	ts:											·	
*	Maximum volume	filtered .	hana Eff										
	Maximum volume	•			•								
٨	Sample needs to	be re-analy:	zed										
	Exceeded filtration	•							49	onages			
•	Exceeded intration	i birie								C 4/3			
<u> </u>	- ($\cap_{\mathcal{C}}$					1211	07100)	75	. ν. υλ. 			
Analyst(s) :		<u> </u>		***	Peer	Reviewed by	KM	468170	2 2/6	* BY'			
										er silva kad	uta da t		
			. e. a Alexandra da de		a a dana a samanan da a <u>a a a a a</u>	opalastalaktieniskehik							
Revision 2.0 07/12/2					22 (a, 1963 - 1964)					Jan-Bed		12:00	
				l									
						-				54.5			
nan Utilities Laboral	tory - Total/Volatile Sus	spended Solid	s Worksheet (T	SS, MLS	s / VSS, MLVSS)					3.1.			
ch TSS-0718	124-01	-	Date /	Time (071824/083	(nen-dd-yy i Nemed)			Analytical Methods:	SM 2540 D. (755)		SM 25	40 E.
		i I		ľ	I	Filter Weight +	Pan Weight (g))	1	Res	uits		
Pamata	Sample	Volume p	ipette Lot Used	Pan	(A)	(B ₁)	(B ₂)	(C)	TSS	Final TSS \		inal 'SS	Ash la
Sample ID	#	Fiftered (mL)	(4 stayes;e)	#	Initial	Dry Vit.	Dry V∕t. # 2	Residue Wit	(mg4)		ng/l) Re	esu≊t nça√î)	Ash Book (光)

atch TSS-OTI		_	Date /		J1824/083	(mm-dd-yy / Nirmon)			nalytical <u>S</u> lethods:	M 2540 D		SM 2	540 E. V35)	Α,
mber: (2#1	emeter - mmethy - 1)		Batch I	nitiated: 1		Fitter Weight + I	Dan Wainht (n)	1		F	lesuits		_	
		Volume		Pan	(A)	(B ₁)	(B ₂)	(C)		Final	vss	Final VSS	Ash	
Sample ID	Sample #	Filtered (mL)	Pipette Lot Used (# septembe)	#	Initial V/L	Dry V/t. # 1	Dry Wt. # 2	Residue Wt. (B _n - A)	TSS (mgf)	TSS Result (mg/l)	(mg/l)	Result (mg/i)	(%)	O
Blank	0124-106-BLK	1000		3	0.1247	0.1246	0.1246	-0.0002						L
x. (1)-071824-01	_\CTL	500		Ц	0.1150	0-1649	0.1648	0.0498	99.6	100		<u> </u>		L
PO Inf 717	240718002	75		٦١_	0.1248	D.1341	<u></u>	0.0093	-	124			igsquare	L
PO PC	0 04	125		72	0.1138	0.1201		0.0063	-	50.4		ļ	-	
PO BC.	800	1000		73	0.1258	0.1308		0.0050		5.0			<u> </u>	ļ
PO AB	000	10		74	0.1141	0.1461		0.0320		3200		-	<u> </u>	-
10 110						0.1461	0.1229	0.0232			_	2320	27.5	4
PO RAS	007	3		A	0.1163	0.1379		0.0216		7200			1	+
1- 1010	275 124					0.1379	0.1221	0.0158			5266	5270	26.8	4
PO FAT	0.13	1000		5	0.1255	0.1302	0.1301	0.0046		4.6	ļ	<u> </u>		1
PO FAT (Ino)) 240718013-DUP	1000		6	0.1151	0.1200	0.1199	12.0048		48				1
CO CAL CAMP	240717045	325)	٦	0.1245	0-1272	0.1271	0.0026	<u> </u>	8.0		<u> </u>	-	1
	1 019	50		8	0.1248	0.1356	0.1354	0.0106	212	210	<u> </u>			1
	020	1000		9	0.1159	0.1174	0.1173	D.0014*	1.4	42.5		<u> </u>	 	4
	240718017	50		В	0.1235	0.1323	<u> </u>	0.0088	176	176	ļ	ļ		1
(4) <u> </u>		"				0.1323	0.1248	0.0075	-			150	14.8	1
	- D			C	0.1103 Sund	8 not coll	ected						‡	
	240718019	475		10	0.1252	0.1510	0.1510	0.0258	54.31	54.3				
										 	-	- Re	Pon	7
				-		1 DE 1	11824		1			1/24	2	
				+								6		Q
			<u> </u>			+			1			4ca	1400	_

Sherman Utilities Laboratory - Ammonia Nitrogen Worksheet

Batch Number: NH-_071924-01

(parameter - (mmddyy - #)

Analytical Method: SM 4500-NH3 D

Meter/Probe: Hach HQ430d / ISENH3181

Date / Time Batch Initiated: 071924/ 1214

Analyst:

230003

NaOH Pippettor used:

NaOH Lot used:

RU10087

Matrix Spike & Matrix Spike Dup Prep Date: <u>071924</u>

MS Standard Lot: A 3363

mL MS Standard: 0.2

Pipettor Used: RUI0087

mL Sample: 99.8

Sample Name	Sam	ple Number	Sample Vol. Analzyed (mL)	Dilution Factor	Amount NaOH Used (mL)	Initial Reading (mg/L)	Result** (mg/L)	% Recovery	RPD
Method Blank	0724-	120 -BLK	50	1	0.5	0.0153	40.0500		
LCS (1 mg/L) 1/3017		-CTL	50	1	0.5	1.01	1.01	10(
LCS Dup (1 mg/L)	\	-CDP	50	1	0.5	1.04	1.04	104	2.9
MS (2 mg/L)		-SPK	50	1	0.8	2.11	2.11	96	
MSD (2 mg/L)	_	-SDP	50	1	8.0	2.08	2.08	94	[.4
ID of Spiked Sample	POEEE 7	140717014			11666				
PO ESF 7-14	2407170		50	1	8.0	0.0400	40.20		
						2.5			
PÖ FF 7:17	2407181	D14	ର	ļ	0.8	0.0372	<0.20		
PD EAF 1-18	2407191)14	50	l	8.0	0.0341	∠ 0,20		
CCV (1 mg/L) Batch #	ICV/CCV+	271924.01	50	1	0.5	2.05	2.05	102	
CCB		NA	50	1	0.5	0.0157	40.0500		
PO INF 714	2407170)03	5	10	0.5	1.87	18.7		
									9000
PO Infan	240718	003	5	10	0.5	2.33	23.3		
				Water Land					
PO Infris	24071901)3	5	10	0.5	2.32	23.2		1 000
PO Infris	24071901	03	5	10	0.5	2.32	23.2		1 000
PO Inf-1-18	24071901	03		10	:	2.32	23.2		
PO Infrik	24071900	03			:	2.32	23.2		
PO Infilk	24071900	03			:	2.32	23.2		
PO Inf 1-18 CCB	24071900	NA NA				2.32	23.2 		

** The result is the final calculation which in adilution factor and Na corrections.

Revision 1.3 08/02/2022

Form: NH Worksheet

City of Sherman Dept. 7722- Treatment Service

Post Oak WWTP Dissolved Oxygen Log

			CL	ASSIC TOWN, BROAL	D HORIZON.
Date	Time	Meter Type/ Number	D.O. (mg/L)/Temp.	Solubility	Initials
10/4/24	0719	POYSI208/C	7.66/26.9	7.97	OI
1 1		1	, -		
				-	
				-	
		,			
	я				

Post Oak WWTP Colorimeter- Spec Check Standard/ Chlorine Residual Log

					Standard C	heck					
			Meter		Standard Kit		Spec.	Check Stand	dards	Results Acc	eptable ¹
Date	Time	Meter#	Range	Lot N	umber	Exp.	Std # 1	Std. # 2	Std. # 3	Yes	No
10/25/4	0720	WQ5	Low	A4219		8/26	0.24	0.92	1.63		
		Analyst Nan	ne/ Signatur	9 (0		P	eer Review N		ature	
Derek	Insall	-)	Derd	e Spall		ERZK	HARALDSZ	·N	النبأ	1hade	
					Sample Coll	ection					
Loc	cation	Date	Time			(Sampler Name	e/ Signature,	. 1 .		
EffI	vent	10/25/24	0739	Devek	Insall			Kerely	hll		
					Sample Ana	ilysis					
				Sta	andards Used/ L	ot Numbers	S				
Total Cl ₂	DPD/Exp.	Potassium Io	dide/ Exp.	Sodium Ar	senite/ Exp.	Sulfurio	Acid/ Exp.		Sodium F	Hydroxide/ Exp.	
A3045	2/28	A0335 1	2/25	A4149	5/29	216050	o 11 his	No	ot nee	ded	
		Pour 40 mLs	Measure	Adjusted pH	Measure	Add 3	drops KI	Add 3	drops	Measure Mn	Final Cl ₂
Date	Time	into beaker ✓	pH (SU)	(6.0-7.0)	Cl ₂ Residual ³	Wait	1 min. ✓	Sodium A	rsenite 🗸	Cl ₂ Residual	Residual ²
10/25/24	0750	V	7,37	6.64	0.07	l	/	V		0.11	20.10
					ouplicate Sampl	e Analysis					
		Pour 40 mLs	Measure	Adjusted pH	Measure	Add 3	drops KI	Add 3	drops	Measure Mn	Final Cl ₂
Date	Time	into beaker ✓	pH (SU)	(6.0-7.0)	Cl ₂ Residual ³	Wait	1 min. ✓	Sodium A	rsenite 🗸	Cl ₂ Residual	Residual ²
" "	11 11	N	7,37	6.64	0.07	V		V		0.11	<0.10
		Analyst Nan	ne/ Signatur	е			P	eer Review N	lame/ Signa		
Deve	KINS	all	Gerel	Jml/		ERIK	HARALDS	EN	3:1	House	\sim

Method Used: Standard Methods for the Examination of Water and Wastewater, 23rd Edition, Method 4500-CI G 2016

¹ Compare actual readings to the standard values found on the standard kit or in the Chlorine Spec Check Standard Verification Log column labeled "New Std. Range."

 $^{^2}$ Subtract 'Mn Cl $_2$ Residual' from 'Cl $_2$ Residual.' Report Results that are less than 0.10 mg/l as <0.1.

³ Measure first chlorine residual 3 minutes after DPD is added.

City of Sherman Utilities Laboratory 288 Post Oak Rd Sherman, TX 75090

Post Oak WWTP Nathan Whiddon P.O. Box 1106 Sherman, TX 75091 COC# B24102503 Page 1 of 4

Monday, October 28, 2024

Dear Client:

This final report includes results for sample(s) received by the City of Sherman Utilities Laboratory (COSUL) on 10/25/2024. The results presented in this report only apply to the analyses requested on the chain of custody document provided with the samples.

COSUL is accredited under NELAP and certifies that all reported results meet the NELAP requirements unless otherwise noted.

Due to the uncertainty of analytical measurements, the use of the measured values in this report for regulatory compliance must be evaluated by the client.

Thank you for selecting us for your analytical needs. If you have any questions regarding this report, please contact us at 903-892-7287.

Respectfully,

Nicole Moseley Laboratory Supervisor

Post Oak WWTP Nathan Whiddon P.O. Box 1106 Sherman, TX 75091 COC# B24102503 Page 2 of 4

LABORATORY REPORT

Customer Sample ID: PO ECOLI Sample Collected: 10/25/24 07:39

Laboratory Sample ID: 241025016 Sample Received: 10/25/24 08:15

Analysis Analysis

Parameter Date Time Result Units Analyst Runsheet Method E. coli 11 MPN/100 mL MW10/25/2024 11:49 1024-163 **IDEXX Quanti Tray**

COC# B24102503 Page 3 of 4

LABORATORY REPORT **QUALITY CONTROL SUMMARY**

Runsheet: 1024-163 E. C	OLI MPN				
SampleCode	Description	Result	Units	Acceptable Range	Comments
1024-163-BLK 241025016-DUP-1024-163	Blank Duplicate	<1 0.1120	MPN RLog	< 1 0.0000 - 0.2371	**

Range is only applicable to >10 MPN ** Duplicate counts were <10 MPN

PRESERVATION and CHAIN OF CUSTODY

Sample conditions observed a	it receipt in part or in	n whole by:	MW
Samples received iced?	Yes	Temperature at receipt?	15.8 °C
CoC form complete?	Yes	Bottle labels intact?	Yes
Adequate volume provided?	Yes	Samples received intact?	Yes
pH<2 for ammonia samples?	NA	Micro samples checked for neutralization of chlorine?	NA

Sherman	Turn Argund Tie G. Normal G. Exped	Consistency Constructs of Special Instructions																								
Coy of Sharman Utaties Laboratory (COSUL) 268 Post Cok Road, Sharman, Touas 75:00 Pix (903) 812-7267 Fax: (903) 868-2534		C) Other (Specify)			Payment Method Payment Indice O Pay Prior to Analysis With: D Cost O Chica ID Chica Cost O Cost O Chica ID Chica Cost						Page (Pri	ormittee -/0			B											
Post Dak Wi	Companier Morrosition UTP	"Dati	1/2v	ىرا .	hia	33n	::::::::::::::::::::::::::::::::::::::	<u> 1886/6</u>		Proj	oct In	(com	tion t	COM di		Eggs. Prayed		Cumin)	net in	lamb	ior)	855.45	8000		: William 1	:0550
1600 FM 1417	- E	Carty				Project Add	D-K								1	Corroct	:									
Sherman TX	<u>75090</u>					Carer			1887	Type:						Prone 6										
1903-892-7286	Frath ration	ecity of st	Ve Cr	na,	ر دی		ng Water S		J			****				li sete-		-								
							orine is (mg/L)	100	e of S Corect	LATONS.	W	Mar Gree	5)75 7)7	-		1		ives.	565 R	7.00	eć T	Т		1	Labix	100
	phe D Calectus Collectus	Time Collected again	Samble Matrix	Gampia Presarvation	Type of Boilies	F#4	Total	With Distribution (RT	Medial (SP)	past (FC)	1	fade Water In (GUI)	ublic (PU)	ı,	(4 623 8)	(100% D)	Worl/Colleging	1 0310 8)	(10)(0)	(Gorge)	13540 E)	(45004+13-0)	(Sec.	Superior and superior	Tejent Sample[s]	Meable Rejection Code
41025010 Effice	nt in/25/2	10396			<u>।</u> ५१		404°	ž	5 8	E		2 2		7	2 B	9	7	9.5	2	Ø :	<u> </u>	0	≛ <u>8</u>		2	₹
			\perp					П			П	I		1	1	1							1	1	T	†
		1		-				Ц	-	\coprod	H	Ш		4	_	\perp	4	_	\perp	Ţ		\perp	\Box	I		
				-	+-			H	\vdash	\vdash	H	+	\vdash	+	-	-	+	-	-	4	4	4	4	- -	1	<u> </u>
				-	╁	_		H	╁┼	H	H	+	+	+	\dashv	-	+	+	+	+	+	+	+	+	╁	_
			\top					H	$\dagger \dagger$	$\dagger \dagger$	Н	Ħ		+	+	+	+	+	+	+	\dagger	╁	+	╁	╁	-
											П	\Box		1	T	+	+	十	+	T	+	十	\top	+	†	
			- -		1_				Ш	Ц	П							I	I					1		
plac's Name:	,	- A	92303111119	0.0000000000000000000000000000000000000		-KONET (SEC.)					Ц	L			090000			Services		1			\perp	L	L	
nsignatural Dunck Incal	1/ Derely Inst		Co.	of Bottle Sectod: of Bottle collect	1	Ratingul (Signatu Ratingul (Signatu	thed by:	מקר	ch		h	re					Re	V 800	ished: See		Di Di	sto Tu	delsed.		/2J	/Σ Σ
olimed By: of Signatural of Signatural	Deta/ Rance	Tiene rest:	# o Par	X Bottle colvect		Retiropali (Signatur	P46 by:										100	af Box	shed des shed		0.	re i	ished Ished			
Print Signatury M. WITHERES	R. William	~10/25/7 ~ 081		d Sotte telved;	٠ ١	Lab Com	ments:						-													
de Rejection	CHIEFO COCCI- HEROTCHIC BLOODS			Chieries dont (LA)	· (¢U	Discon	es Bozia (A.	5667% ₹ }	00+	·Free	n Sam	pie (Fi	q E	ir-t	e akad	b Tqu	ai AT)	Ne	×7:	PNS,	- outy	EOVEC	34r 66 1	CEQ SETEP	
pie Typo(s): G-Grab. TC-Time Composite orvasiono Refrig - Refrigerated, lice - local do	FC - Fow Composite	* ***				1	50	, u	M	Sa	ropie	May s	r. W	Dhi	ing W	ster, 1	MY - Y	Nast.	valer.	M"	Non-Fr	eidelo	. St	Sudo		******
on 1.5 - 37:02m2						į.	5,5	2	C	',	y a çe		10: P	- (**25	exe. O	• Œ35	1, 52	• 52¢°	ze Po∖	yzanto	rze i	Some ·	w/ 550	ium Tr	kosultal Farm	. COC-1

Order ID: 24070279 Date: 7/31/2024 Page 1 of 68

Wednesday, July 31, 2024

City of Sherman Chester Wilson P.O. Box 1106 Sherman, TX 75091

Tel: (903) 892-7287 Fax: (903) 868-2535

Re: Project Name: Effluent

Project Number: COSIPT-24-2757

Project Location: WWTP 1800 E FM 1417 Sherman, TX 75092

SPL Inc received 20 liquid sample(s). The analysis performed were as follows:

<u>Sample</u>	Sample ID	<u>Matrix</u>	Collected	<u>Analysis</u>
24070279-001	Effluent	Liquid	7/17/2024 12:18	Field pH (Client Provided), Field Temperature (Client Supplied)
24070279-002	Effluent	Liquid	7/18/2024 07:58	Flow
24070279-003	Effluent	Liquid	7/18/2024 07:50	Orthophosphate, Total -P, Orthophosphate, Total -P, Dissolved, Phosphorus, Total - P, Dissolved
24070279-004	Effluent	Liquid	7/18/2024 07:45	N-Hexane Extractable Material, Silica Gel Treated N-Hexane Extractable Material
24070279-005	Effluent	Liquid	7/18/2024 07:06	Mercury, Low Level
24070279-006	Effluent	Liquid	7/18/2024 07:50	Phosphorus, Total - P, Total Kjeldahl Nitrogen, Total Nitrogen (Calculation), Total Organic Nitrogen (calculation)
24070279-007	Effluent	Liquid	7/18/2024 07:50	Total Dissolved Solids
24070279-008	Effluent	Liquid	7/18/2024 07:50	Tetramethylammonium Hydroxide / QAC
24070279-009	Effluent	Liquid	7/18/2024 07:50	Chloride, Fluoride, Nitrate - N, Nitrite - N, Sulfate
24070279-010	Effluent	Liquid	7/18/2024 07:50	Hexavalent Chromium
24070279-011	Effluent	Liquid	7/17/2024 07:38	Mercury, Low Level
24070279-012	Effluent	Liquid	7/18/2024 07:50	Alkalinity, Methylene Blue Active Substances
24070279-013	Effluent	Liquid	7/18/2024 07:50	Carbamates, Chlorophenoxy Acid Herbicides, Chlorpyrifos, Cresols, Hexachlorophene, PCBs, Pesticides, Pesticides, Organochlorine (617), Pesticides, Organophosphorous, Semi- Volatile Organic Compounds, TCDD
24070279-014	Effluent	Liquid	7/18/2024 07:50	Nonylphenol
24070279-015	Effluent	Liquid	7/18/2024 02:06	Total Trihalomethanes, Volatile Organic Compounds
24070279-016	Effluent	Liquid	7/18/2024 07:50	Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Trivalent Chromium, Zinc
24070279-017	Effluent	Liquid	7/18/2024 02:06	Cyanide, Amenable, Cyanide, Total
24070279-018	Effluent	Liquid	7/18/2024 07:50	Specific Conductance
24070279-019	Effluent	Liquid	7/18/2024 07:50	Silica, Silicate
24070279-020	Effluent	Liquid	7/18/2024 02:06	Phenols

Cund

Order ID: 24070279 Date: 7/31/2024 Page 2 of 68

To the best of my knowledge, all problems/ anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified via associated flags and/ or in the case narrative. The analyses and data met requirements of NELAP except where noted. All non-NELAP methods are identified accordingly and all estimated uncertainties of test results are within method or EPA specifications.

Respectfully submitted,

Cade Cassell

Project Manager

Order ID: 24070279 Date: 7/31/2024 Page 3 of 68

City of Sherman Chester Wilson

Analytical Report

Project Name: Effluent

Customer Sample ID:	24070	0279-001		•	Matrix: L	-		
Sample Received:	7/18/2	2024		Samp	ole Collected: 7	/17/2024 12:	18	
Parameter	MQL	SQL	Result	Units	Date Analyzed	Method	Analyst	Flags
Subcontract								
Field pH (Client Provided	I)							
Field pH	0.1	0.10	7.20	pH Units	07/17/24 12:18	SM 4500-H+B	Sub.	L-23
Field Temperature (Clien	t Suppl	ied)						
Field Temperature	0.1	0.1	27.9	°C	07/17/24 12:18	SM 2550B	Sub.	L-23

Order ID: 24070279 Date: 7/31/2024 Page 4 of 68

City of Sherman Chester Wilson

Analytical Report

Project Name: Effluent

Customer Sample ID: Effluent

SPL Sample ID: 24070279-002 Matrix: Liquid

Sample Received: 7/18/2024 Sample Collected: 7/18/2024 07:58

Parameter MQL SQL Result Units Date Analyzed Method Analyst Flags

Subcontract

Flow

Flow, Total 0.00001 0.00001 **6.9300** mgd 07/18/24 07:58 Calculation Sub. E-1,L-23

Order ID: 24070279 Date: 7/31/2024 Page 5 of 68

City of Sherman Chester Wilson

Analytical Report

Project Name: Effluent

Customer Sample ID:	24070	0279-003			Matrix: L	-		
Sample Received:	7/18/2	2024		Samp	ole Collected: 7	7/18/2024 07:	50	
Parameter	MQL	SQL	Result	Units	Date Analyzed	Method	Analyst	Flags
General Chemistry								
Orthophosphate, Total - P	10	100	4650	μg/L	07/18/24 15:00	SM 4500-P E	B.F.	D-1
Orthophosphate, Dissolved - P	10	100	4520	μg/L	07/18/24 15:00	SM 4500-P E	B.F.	D-1
Phosphorus, Total - P,	10	100	4780	μg/L	07/22/24 16:20	SM 4500-P B,E	B.F.	D-1

Order ID: 24070279 Date: 7/31/2024 Page 6 of 68

City of Sherman Chester Wilson

Analytical Report

Project Name: Effluent

Customer Sample I SPL Sample I	D: 2407	0279-004			Matrix: Li	•		
Sample Receive	d: 7/18/	2024		Sam	ple Collected: 7/	18/2024 07	':45	
Parameter	MQL	SQL	Result	Units	Date Analyzed	Method	Analyst	Flags
General Chemistry								
Oil and Grease (HEM)	10000	10000	ND	μg/L	07/23/24 10:00	1664	W.S.	
Non-polar Material (SGT- HFM)	10000	10000	ND	μg/L	07/24/24 11:00	1664	W.S.	

Order ID: 24070279 Date: 7/31/2024 Page 7 of 68

City of Sherman Chester Wilson

Analytical Report

Project Name: Effluent

Customer Sample ID: Effluent

SPL Sample ID: 24070279-005 Matrix: Liquid

Parameter MQL SQL Result Units Date Analyzed Method Analyst Flags

Subcontract

Mercury, Low Level

Prepared by method 245.7 on 07/24/24 at 09:30

Mercury 0.005 0.00500 ND $\mu g/L$ 07/25/24 14:19 245.7 Sub. L-2

Order ID: 24070279 Date: 7/31/2024 Page 8 of 68

City of Sherman Chester Wilson

Analytical Report

Customer Sample ID: SPL Sample ID:					Matrix:	Liquid		
Sample Received:				Samp		7/18/2024 07:5	50	
Parameter	MQL	SQL	Result	Units	Date Analyze	d Method	Analyst	Flags
General Chemistry								
Phosphorus, Total - P	10	100	5420	μg/L	07/22/24 16:00	SM 4500-P B,E	B.F.	D-1
Total Kjeldahl Nitrogen	100	100	1180	μg/L	07/25/24 09:15	SM 4500-NH3 B,D	B.F.	
Total Nitrogen	100	1000	23680	μg/L		Calculation		E-5,D-1
Total Organic Nitrogen	200	200	1180	μg/L		Calculation		E-5

Order ID: 24070279 Date: 7/31/2024 Page 9 of 68

City of Sherman Chester Wilson

Analytical Report

Project Name: Effluent

Customer Sample ID: Effluent

SPL Sample ID: 24070279-007 Matrix: Liquid

Sample Received: 7/18/2024 Sample Collected: 7/18/2024 07:50

Parameter MQL SQL Result Units Date Analyzed Method Analyst Flags

General Chemistry

Total Dissolved Solids 50 50.0 **1020** mg/L 07/18/24 15:55 SM 2540-C K.V.

Order ID: 24070279 Date: 7/31/2024 Page 10 of 68

City of Sherman Chester Wilson

Analytical Report

Customer Sample ID: SPL Sample ID:					Matrix:	Liquid		
Sample Received:				Samr	ole Collected:	=	-50	
Parameter	MQL	SQL	Result	Units	Date Analyzed		Analyst	Flags
Subcontract								
Tetramethylammonium F Extracted by method LCMS QAC on 07/22	•							
Tetramethylammonium Hydroxide	10	10.0	ND	μg/L	07/23/24 10:37	Cation IC / LCMS QAC	Sub.	E-1,L-2
Benzyldimethyldecylammoni um	10	10.0	ND	μg/L	07/22/24 15:49	Cation IC / LCMS QAC	Sub.	L-2
Benzyldimethyldodecylamm onium	10	10.0	ND	μg/L	07/22/24 15:49	Cation IC / LCMS QAC	Sub.	L-2
Benzyldimethylhexadecylam monium	10	10.0	ND	μg/L	07/22/24 15:49	Cation IC / LCMS QAC	Sub.	L-2
Benzyldimethyloctadecylam monium	10	10.0	ND	μg/L	07/22/24 15:49	Cation IC / LCMS QAC	Sub.	L-2
Benzyldimethyloctylammoni um	10	10.0	ND	μg/L	07/22/24 15:49	Cation IC / LCMS QAC	Sub.	L-2
Benzyldimethyltetradecylam monium	10	10.0	ND	μg/L	07/22/24 15:49	Cation IC / LCMS QAC	Sub.	L-2
Cetylpyridinium	10	10.0	ND	μg/L	07/22/24 15:49	Cation IC / LCMS QAC	Sub.	L-2
Didecyldimethylammonium	10	10.0	ND	μg/L	07/22/24 15:49	Cation IC / LCMS QAC	Sub.	L-2
Didodecyldimethylammoniu m	10	10.0	ND	μg/L	07/22/24 15:49	Cation IC / LCMS QAC	Sub.	L-2,*
Dihexadecyldimethylammoni um	15	15.0	ND	μg/L	07/22/24 15:49	Cation IC / LCMS QAC	Sub.	L-2,*
Dioctadecyldimethylammoni um	10	10.0	ND	μg/L	07/22/24 15:49	Cation IC / LCMS QAC	Sub.	L-2,*
Dioctyldimethylammonium	10	10.0	ND	μg/L	07/22/24 15:49	Cation IC / LCMS QAC	Sub.	L-2
Ditetradecyldimethylammoni um	10	10.0	ND	μg/L	07/22/24 15:49	Cation IC / LCMS QAC	Sub.	L-2,*
Octyldecyldimethylammoniu m	50	50.0	ND	μg/L	07/22/24 15:49	Cation IC / LCMS QAC	Sub.	L-2
Tetramethylammonium	25	25.0	ND	μg/L	07/22/24 15:49	Cation IC / LCMS QAC	Sub.	L-2
Tetrapropylammonium	10	10.0	ND	μg/L	07/22/24 15:49	Cation IC / LCMS QAC	Sub.	L-2
Surrogate			Result	Units	Spike Conc	Recovery	Rec Limits	
d25-DADMAC			69.4	μg/L	250 μg/L	28%	60-140%	Q-7

Order ID: 24070279 Date: 7/31/2024 Page 11 of 68

City of Sherman Chester Wilson

Analytical Report

Project Name: Effluent

Customer Sample ID: Effluent SPL Sample ID: 24070279-009 Matrix: Liquid Sample Received: 7/18/2024 Sample Collected: 7/18/2024 07:50 **Parameter** MQL SQL Result Units **Date Analyzed** Method Analyst **Flags General Chemistry** Chloride 1000 100000 **239000** μg/L 07/19/24 11:46 300.0 W.S. D-1 Fluoride 100 100 3380 µg/L 07/19/24 13:03 300.0 W.S. Nitrate - N 1000 **21900** μg/L W.S. D-1 100 07/19/24 12:01 300.0 Nitrite - N 100 100 ND µg/L 07/19/24 13:03 300.0 W.S. Sulfate 1000 **177000** μg/L 300.0 W.S. 10000 07/19/24 12:01 D-1

Order ID: 24070279 Date: 7/31/2024 Page 12 of 68

City of Sherman Chester Wilson

Analytical Report

Project Name: Effluent

Customer Sample ID: Effluent

SPL Sample ID: 24070279-010 Matrix: Liquid

Sample Received: 7/18/2024 Sample Collected: 7/18/2024 07:50

Parameter MQL SQL Result Units Date Analyzed Method Analyst Flags

General Chemistry

Chromium, Hexavalent 3 3.0 ND μ g/L 07/18/24 14:10 SM 3500-Cr-B B.F.

Order ID: 24070279 Date: 7/31/2024 Page 13 of 68

City of Sherman Chester Wilson

Analytical Report

Project Name: Effluent

Customer Sample ID: Effluent

SPL Sample ID: 24070279-011 Matrix: Liquid

Sample Received: 7/18/2024 Sample Collected: 7/17/2024 07:38

Parameter MQL SQL Result Units Date Analyzed Method Analyst Flags

Subcontract

Mercury, Low Level

Prepared by method 245.7 on 07/24/24 at 09:30

Mercury 0.005 0.00500 ND μg/L 07/25/24 15:09 245.7 Sub. L-2

Order ID: 24070279 Date: 7/31/2024 Page 14 of 68

City of Sherman Chester Wilson

Analytical Report

Project Name: Effluent

Customer Sample ID: Effluent SPL Sample ID: 24070279-012 Matrix: Liquid Sample Received: 7/18/2024 Sample Collected: 7/18/2024 07:50 **Parameter** MQL **SQL** Result Units **Date Analyzed** Method Analyst **Flags General Chemistry** Alkalinity, Total 10000 10000 **190000** μg/L 07/22/24 08:30 SM 2320-B B.F. MBAS 50 50 **81** μg/L 07/19/24 08:00 SM 5540-C B.F. S-15

Order ID: 24070279 Date: 7/31/2024 Page 15 of 68

City of Sherman Chester Wilson

Analytical Report

Customer Sample ID:					Motrice L	:a!al		
SPL Sample ID:				0	Matrix: Li	-	-	
Sample Received:					ple Collected: 7/			
Parameter	MQL	SQL	Result	Units	Date Analyzed	Method	Analyst	Flags
Cresols								
Cresols	10	10.0	ND	μg/L		Calculation		E-5
PCBs								
Extracted by method 608.3 on 07/23/24 a	t 09:06							
Aroclor - 1016	0.2	0.2	ND	μg/L	07/24/24 13:00	608.3	T.R.	
Aroclor - 1221	0.2	0.2	ND	μg/L	07/24/24 13:00	608.3	T.R.	
Aroclor - 1232	0.2	0.2	ND	μg/L	07/24/24 13:00	608.3	T.R.	
Aroclor - 1242	0.2	0.2	ND	μg/L	07/24/24 13:00	608.3	T.R.	
Aroclor - 1248	0.2	0.2	ND	μg/L	07/24/24 13:00	608.3	T.R.	
Aroclor - 1254	0.2	0.2	ND	μg/L	07/24/24 13:00	608.3	T.R.	
Aroclor - 1260	0.2	0.2	ND	μg/L	07/24/24 13:00	608.3	T.R.	
Surrogate			Result	Units	Spike Conc	Recovery	Rec Limits	
Decachlorobiphenyl			123	μg/L	100 μg/L	123%	50-140%	
Pesticides								
Extracted by method 608.3 on 07/23/24 a	t 09:06							
Aldrin	0.01	0.01	ND	μg/L	07/23/24 20:20	608.3	B.M.M.	
alpha-BHC	0.05	0.05	ND	μg/L	07/23/24 20:20	608.3	B.M.M.	
beta-BHC	0.05	0.05	ND	μg/L	07/23/24 20:20	608.3	B.M.M.	
gamma-BHC (Lindane)	0.05	0.05	ND	μg/L	07/23/24 20:20	608.3	B.M.M.	
delta-BHC	0.05	0.05	ND	μg/L	07/23/24 20:20	608.3	B.M.M.	
Chlordane	0.2	0.20		μg/L	07/23/24 20:20	608.3	B.M.M.	
4,4'-DDT	0.02	0.02		μg/L	07/23/24 20:20	608.3	B.M.M.	
4,4'-DDE	0.1	0.1		μg/L	07/23/24 20:20	608.3	B.M.M.	
4,4'-DDD	0.1	0.1		μg/L	07/23/24 20:20	608.3	B.M.M.	
Dieldrin	0.02	0.02		μg/L	07/23/24 20:20	608.3	B.M.M.	
alpha-Endosulfan (Endosulfan I)	0.01	0.01		μg/L	07/23/24 20:20	608.3	B.M.M.	
beta-Endosulfan (Endosulfan II)	0.02	0.02	ND	μg/L	07/23/24 20:20	608.3	B.M.M.	
Endosulfan Sulfate	0.1	0.1	ND	μg/L	07/23/24 20:20	608.3	B.M.M.	
Endrin	0.02	0.02		μg/L	07/23/24 20:20	608.3	B.M.M.	
Endrin Aldehyde	0.1	0.1		μg/L	07/23/24 20:20	608.3	B.M.M.	
Heptachlor	0.01	0.01		μg/L	07/23/24 20:20	608.3	B.M.M.	
Heptachlor Epoxide	0.01	0.01		μg/L	07/23/24 20:20	608.3	B.M.M.	
Toxaphene	0.3	0.3		μg/L	07/23/24 20:20	608.3	B.M.M.	
Surrogate			Result		Spike Conc	Recovery	Rec Limits	
Tetrachloro-m-xylene					•	71%	50-140%	
				μg/L	100 μg/L			
Decachlorobiphenyl			8.08	μg/L	100 μg/L	87%	50-140%	

Order ID: 24070279 Date: 7/31/2024 Page 16 of 68

City of Sherman Chester Wilson

Analytical Report

Customer Sample ID:	Efflue	ent						
SPL Sample ID:	24070	279-013			Matrix: Li	quid		
Sample Received:	7/18/2	2024		Samp	ole Collected: 7/	18/2024 0	7:50	
Parameter	MQL	SQL	Result	Units	Date Analyzed	Method	Analyst	Flags
Chlorophenoxy Acid Her	bicides							
Extracted by method 615 on 07/19/24 at								
2,4-D (2,4-Dichlorophenoxy acetic acid)	0.7	0.7	ND	μg/L	07/24/24 10:25	615	B.M.M.	
2,4,5-TP (Silvex)	0.3	0.3	ND	μg/L	07/24/24 10:25	615	B.M.M.	*
Surrogate			Result	Units	Spike Conc	Recovery	Rec Limits	
2,4-DCAA			904	ug/L	500 ug/L	181%	60-140%	Q-7
Semi-Volatile Organic Co	nuoam	ds		•	-			
Extracted by method 625.1 on 07/18/24 a	-							
2-Chlorophenol	10	10.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
2,4-Dichlorophenol	10	10.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
2,4-Dimethylphenol	10	10.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
4,6-Dinitro-o-Cresol (4,6- Dinitro-2-methyl phenol)	50	50.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
2,4-Dinitrophenol	50	50.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
2-Nitrophenol	20	20.0		μg/L	07/18/24 20:43	625.1	R.B.	
4-Nitrophenol	50	50.0		μg/L	07/18/24 20:43	625.1	R.B.	
p-Chloro-m-Cresol (4- Chloro-3-methylphenol)	10	10.0		μg/L	07/18/24 20:43	625.1	R.B.	
Pentachlorophenol	5	5.00	ND	μg/L	07/18/24 20:43	625.1	R.B.	
Phenol	10	10.0		μg/L	07/18/24 20:43	625.1	R.B.	
2,4,6-Trichlorophenol	10	10.0		μg/L	07/18/24 20:43	625.1	R.B.	
Acenaphthene	10	10.0		μg/L	07/18/24 20:43	625.1	R.B.	
Acenaphthylene	10	10.0		μg/L	07/18/24 20:43	625.1	R.B.	
Anthracene	10	10.0		μg/L	07/18/24 20:43	625.1	R.B.	
Benzidine	50	50.0		μg/L	07/18/24 20:43	625.1	R.B.	
Benzo(a)Anthracene	5	5.00		μg/L	07/18/24 20:43	625.1	R.B.	
Benzo(a)Pyrene	5	5.00		μg/L	07/18/24 20:43	625.1	R.B.	
3,4-Benzofluoranthene (Benzo(b)Fluoranthene)	10	10.0		μg/L	07/18/24 20:43	625.1	R.B.	
Benzo(g,h,i)Perylene	20	20.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
Benzo(k)Fluoranthene	5	5.00		μg/L	07/18/24 20:43	625.1	R.B.	
Bis(2-chloroethoxy)Methane	10	10.0		μg/L	07/18/24 20:43	625.1	R.B.	
Bis(2-chloroethyl)Ether	10	10.0		μg/L	07/18/24 20:43	625.1	R.B.	
Bis(2-chloroisopropyl)Ether	10	10.0		μg/L μg/L	07/18/24 20:43	625.1	R.B.	
Bis(2-ethylhexyl)Phthalate	10	10.0		μg/L μg/L	07/18/24 20:43	625.1	R.B.	
4-Bromophenyl Phenyl Ether	10	10.0		μg/L μg/L	07/18/24 20:43	625.1	R.B.	
Butylbenzyl Phthalate	10	10.0		μg/L μg/L	07/18/24 20:43	625.1	R.B.	
·								
2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether	10	10.0		μg/L	07/18/24 20:43	625.1	R.B.	
, , ,	10	10.0		μg/L	07/18/24 20:43	625.1	R.B.	
Chrysene	5	5.00		μg/L	07/18/24 20:43	625.1	R.B.	
Dibenzo(a,h)Anthracene	5	5.00	ND	μg/L	07/18/24 20:43	625.1	R.B.	

Order ID: 24070279 Date: 7/31/2024 Page 17 of 68

City of Sherman Chester Wilson

Analytical Report

Project Name: Effluent

Customer Sample ID: Effluent

SPL Sample ID: 24070279-013 Matrix: Liquid

Sample Received:	7/18/2	2024		Samı	ole Collected: 7/	18/2024 0	7:50	
Parameter	MQL	SQL	Result	Units	Date Analyzed	Method	Analyst	Flags
Semi-Volatile Organic Co	mpour	nds						
3,3-Dichlorobenzidine	. 5	5.00	ND	μg/L	07/18/24 20:43	625.1	R.B.	
Diethyl Phthalate	10	10.0		μg/L	07/18/24 20:43	625.1	R.B.	
Dimethyl Phthalate	10	10.0		μg/L	07/18/24 20:43	625.1	R.B.	
Di-n-Butyl Phthalate	10	10.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
2,4-Dinitrotoluene	10	10.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
2,6-Dinitrotoluene	10	10.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
Di-n-Octyl Phthalate	10	10.0		μg/L	07/18/24 20:43	625.1	R.B.	
Azobenzene (1,2-Diphenyl Hydrazine)	20	20.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
Fluoranthene	10	10.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
Fluorene	10	10.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
Hexachlorobenzene	5	5.00	ND	μg/L	07/18/24 20:43	625.1	R.B.	
Hexachlorobutadiene	10	10.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
Hexachlorocyclopentadiene	10	10.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
Hexachloroethane	20	20.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
Indeno(1,2,3-c,d)pyrene	5	5.00	ND	μg/L	07/18/24 20:43	625.1	R.B.	
Isophorone	10	10.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
Naphthalene	10	10.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
Nitrobenzene	10	10.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
N-Nitrosodimethylamine	50	50.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
N-Nitrosodi-n-Propylamine	20	20.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
N-Nitrosodiphenylamine	20	20.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
Phenanthrene	10	10.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
Pyrene	10	10.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
1,2,4-Trichlorobenzene	10	10.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
N-Nitrosodiethylamine	20	20.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
N-Nitroso-di-n-Butylamine	20	20.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
Pentachlorbenzene	20	20.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
Pyridine	20	20.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
1,2,4,5-Tetrachlorobenzene	20	20.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
2,4,5-Trichlorophenol	50	50.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
o-Cresol (2-Methylphenol)	10	10.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	
p-Cresol (4-Methylphenol)	10	10.0	ND	μg/L	07/18/24 20:43	625.1	R.B.	S-16
Surrogate			Result	Units	Spike Conc	Recovery	Rec Limits	
2-Fluorophenol			16.7	μg/L	100 μg/L	17%	21-100%	Q-7
Phenol-d6			9.53	μg/L	100 μg/L	10%	10-94%	Q-7
Nitrobenzene-d5			24.1	μg/L	50 μg/L	48%	35-114%	
2-Fluorobiphenyl			22.6	μg/L	50 μg/L	45%	43-116%	
2,4,6-Tribromophenol			91.1	μg/L	100 μg/L	91%	10-123%	

Order ID: 24070279 Date: 7/31/2024 Page 18 of 68

City of Sherman Chester Wilson

Analytical Report

Customer Sample ID: SPL Sample ID:					Matrix: L	iguid		
•				Sam		-	7.50	
Sample Received: Parameter	MQL	SQL	Result	Units	ple Collected: 7 Date Analyzed	/ 10/2024 07 Method	Analyst	Flags
Semi-Volatile Organic Co			Nosuit	Office	Dute Analyzed	Wictiou	Analyst	ı iag.
Surrogate	nipou	iius	Result	Unite	Spike Conc	Recovery	Rec Limits	
_					•	•		
Terphenyl-d14			48.1	µg/L	50 μg/L	96%	33-141%	
TCDD Extracted by method 625.1 on 07/18/24 a	± 15:20							
2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD)	10	10.0	ND	μg/L	07/18/24 20:43	625.1 Screen	R.B.	E-1
Hexachlorophene								
Extracted by method 625M on 07/24/24 a	nt 09:11							
Hexachlorophene	10	10.0	ND	μg/L	07/25/24 17:44	625.1 (Mod)	R.B.	E-3
Surrogate			Result	Units	Spike Conc	Recovery	Rec Limits	
DCAA			18.8	μg/L	25 μg/L	75%	10-130%	
Subcontract								
Pesticides, Organophos	ohorou	ıs						
Extracted by method 614 on 07/22/24 at								
Demeton	0.2	0.200	ND	μg/L	07/24/24 22:22	614	Sub.	L-2,*
Diazinon	0.1	0.100	ND	μg/L	07/24/24 22:22	614	Sub.	L-2,*
Guthion (Azinphos Methyl)	0.1	0.100	ND	μg/L	07/24/24 22:22	614	Sub.	L-2
Malathion	0.1	0.100		μg/L	07/24/24 22:22	614	Sub.	L-2,*
Parathion Ethyl	0.1	0.100		μg/L	07/24/24 22:22	614	Sub.	L-2
Parathion Methyl	0.05	0.050	ND	μg/L	07/24/24 22:22	614	Sub.	L-2
Surrogate			Result	Units	Spike Conc	Recovery	Rec Limits	
Tributylphosphate			0.170	ug/L	1.96 ug/L	9%	0.1-148%	
Triphenylphosphate			0.375	ug/L	1.96 ug/L	19%	0.1-406%	
Pesticides, Organochlori Extracted by method 617 on 07/22/24 at	•	7)						
Dicofol (Kelthane)	1	1.00	ND	μg/L	07/24/24 21:10	617	Sub.	L-2,*
Methoxychlor	2	2.00	ND	μg/L	07/24/24 21:10	617	Sub.	L-2
Mirex	0.02	0.020	ND	μg/L	07/24/24 21:10	617	Sub.	L-2,*
Surrogate			Result	Units	Spike Conc	Recovery	Rec Limits	
Decachlorobiphenyl			0.039	μg/L	0.0981 μg/L	40%	10-150%	
Tetrachloro-m-xylene			0.043	μg/L	0.0981 μg/L	44%	10-150%	
Chlorpyrifos								
Extracted by method 622 on 07/22/24 at Chlorpyrifos	13:00 0.05	0.050	ND	μg/L	07/25/24 22:22	622	Sub.	L-2,*
Carbamates								
Extracted by method 632 on 07/22/24 at	15:00							
Carbaryl	5	5.00		μg/L	07/25/24 22:13	632	Sub.	L-2,*
Diuron	0.09	0.0900	ND	μg/L	07/25/24 22:13	632	Sub.	B-4,L-2,*,E-3

Order ID: 24070279 Date: 7/31/2024 Page 19 of 68

City of Sherman Chester Wilson

Analytical Report

Project Name: Effluent

Customer Sample ID: Effluent

SPL Sample ID: 24070279-014 Matrix: Liquid

Sample Received: 7/18/2024 Sample Collected: 7/18/2024 07:50

Parameter MQL SQL Result Units Date Analyzed Method Analyst Flags

Subcontract Nonylphenol

Extracted by method ASTM D7065-11 on 07/29/24 at 08:45

Nonylphenol 50 50.0 ND μg/L 07/29/24 21:23 ASTM D7065-11 Sub. L-2,E-3

Order ID: 24070279

Date: 7/31/2024

Page 20 of 68

City of Sherman Chester Wilson

Analytical Report

Project Name: Effluent

Customer Sample ID: Effluent SPL Sample ID: 24070279-015 Matrix: Liquid Sample Received: 7/18/2024 Sample Collected: 7/18/2024 02:06 **Parameter** MQL Result Units **Date Analyzed** SQL Method Analyst **Flags Total Trihalomethanes** ND µg/L TTHM (Total 10 10.0 Calculation E-5 Trihalomethanes) **Volatile Organic Compounds** Acrolein 50.0 ND µg/L 07/19/24 21:40 624.1 V.D.L. 50.0 Acrylonitrile 50 ND µg/L 07/19/24 21:40 624.1 V.D.L. Benzene 10 10.0 ND µg/L 07/19/24 21:40 624.1 V.D.L. ND µg/L Bromoform 10 10.0 07/19/24 21:40 624.1 V.D.L. (Tribromomethane) Carbon Tetrachloride 2 2.0 ND µg/L 07/19/24 21:40 624.1 V.D.L. (Tetrachloromethane) Chlorobenzene 10 10.0 ND µg/L 07/19/24 21:40 624.1 V.D.L. Chlorodibromomethane 10 10.0 ND µg/L 07/19/24 21:40 624.1 V.D.L. (Dibromochloromethane) Chloroethane 50 50.0 ND µg/L 07/19/24 21:40 624.1 V.D.L. 10.0 ND µg/L 624.1 V.D.L. 2-Chloroethylvinyl Ether 10 07/19/24 21:40 10.0 Chloroform 10 ND µg/L 07/19/24 21:40 624.1 V.D.L. Dichlorobromomethane 10.0 ND µg/L 07/19/24 21:40 624.1 V.D.L. 10 (Bromodichloromethane) 1,1-Dichloroethane 10 10.0 ND µg/L 07/19/24 21:40 624.1 V.D.L. 1.2-Dichloroethane 10 10.0 ND µg/L 07/19/24 21:40 624.1 V.D.L. 1,1-Dichloroethylene 10 10.0 ND µg/L 07/19/24 21:40 624.1 V.D.L. 1,2-Dichloropropane 10 10.0 ND µg/L 07/19/24 21:40 624.1 V.D.L. 10.0 07/19/24 21:40 624.1 V.D.L. Cis-1,3-dichloropropylene 10 ND µg/L trans 1,3-Dichloropropylene 10 10.0 ND µg/L 07/19/24 21:40 624.1 V.D.L. Ethylbenzene 10 10.0 ND µg/L 07/19/24 21:40 624.1 V.D.L. Methyl Bromide 50 50.0 ND µg/L 07/19/24 21:40 624.1 V.D.L. (Bromomethane) Methyl Chloride 50 50.0 ND µg/L 07/19/24 21:40 624.1 V.D.L. (Chloromethane) Methylene Chloride 20 20.0 ND µg/L 07/19/24 21:40 624.1 V.D.L. 10 10.0 ND µg/L 624.1 V.D.L. 1,1,2,2-Tetrachloroethane 07/19/24 21:40 10.0 624.1 V.D.L. Tetrachloroethylene 10 ND µg/L 07/19/24 21:40 624.1 Toluene 10 10.0 ND µg/L 07/19/24 21:40 V.D.L. 10 10.0 07/19/24 21:40 624.1 V.D.L. 1,2-Trans-Dichloroethylene ND µg/L 1,1,1-Trichloroethane 10 10.0 ND µg/L 07/19/24 21:40 624.1 V.D.L. 1,1,2-Trichloroethane 10 10.0 624.1 V.D.L. ND µg/L 07/19/24 21:40 10.0 Trichloroethylene 10 ND µg/L 07/19/24 21:40 624.1 V.D.L. Vinyl Chloride 10 10.0 07/19/24 21:40 624.1 V.D.L. ND µg/L Methyl Ethyl Ketone (2-50.0 07/19/24 21:40 624.1 V.D.L. 50 ND µg/L Butanone) 1,2-Dibromoethane (EDB) 10 10.0 ND µg/L 07/19/24 21:40 624.1 V.D.L. 1,2-Dichlorobenzene 10 10.0 ND µg/L 07/19/24 21:40 624.1 V.D.L.

Order ID: 24070279 Date: 7/31/2024 Page 21 of 68

City of Sherman Chester Wilson

Analytical Report

Customer Sample ID: SPL Sample ID: Sample Received:	24070	0279-015		Samp	Matrix: Li ole Collected: 7/	-	2:06	
Parameter	MQL	SQL	Result	Units	Date Analyzed	Method	Analyst	Flags
Volatile Organic Compou	ınds							
1,3-Dichlorobenzene	10	10.0	ND	μg/L	07/19/24 21:40	624.1	V.D.L.	
1,4-Dichlorobenzene	10	10.0	ND	μg/L	07/19/24 21:40	624.1	V.D.L.	
Surrogate			Result	Units	Spike Conc	Recovery	Rec Limits	
Dibromofluoromethane			50.9	μg/L	50 μg/L	102%	86-118%	
1,2 Dichloroethane-d4			50.1	μg/L	50 μg/L	100%	80-120%	
Toluene-d8			48.1	μg/L	50 μg/L	96%	88-117%	
4-Bromofluorobenzene			45.4	ua/L	50 µa/L	91%	86-115%	

Order ID: 24070279 Date: 7/31/2024 Page 22 of 68

City of Sherman Chester Wilson

Analytical Report

Project Name: Effluent

Customer Sample ID: Effluent SPL Sample ID: 24070279-016 Matrix: Liquid Sample Received: 7/18/2024 Sample Collected: 7/18/2024 07:50 **Parameter** MQL SQL Result **Units Date Analyzed** Method Analyst **Flags General Chemistry** Chromium, Trivalent 3 3.0 ND µg/L Calculation E-5 Metals Digested by method 200.8 on 07/19/24 at 07:50 2.50 123 µg/L 07/24/24 14:30 200.8 M.F. Aluminum Antimony 5 5.0 ND µg/L 07/24/24 14:30 200.8 M.F. Arsenic 0.5 0.50 2.05 µg/L 07/24/24 14:30 200.8 M.F. Barium 3 3.0 49.6 µg/L 07/24/24 14:30 200.8 M.F. Beryllium 0.5 0.50 ND µg/L 07/24/24 14:30 M.F. 200.8 Cadmium 0.5 0.50 ND µg/L 07/24/24 14:30 200.8 M.F. Calcium 500 2500 M.F. **59000** μg/L 07/24/24 14:34 200.8 D-1 Chromium 3 3.0 ND µg/L 07/24/24 14:30 200.8 M.F. Copper 0.5 0.50 7.41 µg/L 07/24/24 14:30 200.8 M.F. Iron 100 100 ND µg/L 07/24/24 14:30 200.8 M.F. Lead 0.5 0.50 ND µg/L 07/24/24 14:30 200.8 M.F. Magnesium 500 500.0 17400 µg/L 07/24/24 14:30 200.8 M.F. Manganese 0.5 0.50 7.11 µg/L 07/24/24 14:30 200.8 M.F. Molybdenum 1 1.00 3.61 µg/L 07/24/24 14:30 200.8 M.F. Nickel 0.5 0.50 07/24/24 14:30 200.8 M.F. 2.11 µg/L Potassium 1000 200.0 **12000** μg/L 07/24/24 14:30 200.8 M.F. C-1 Selenium 5 5.00 200.8 ND µg/L 07/24/24 14:30 M.F. Silver 0.5 0.50 ND µg/L 07/24/24 14:30 200.8 M.F. Sodium 500 5000 254000 µg/L 07/24/24 14:38 200.8 M.F. D-1 D-1 Strontium 1 5.00 **582** μg/L 07/24/24 14:34 200.8 M.F. Thallium 0.5 0.50 ND µg/L 07/24/24 14:30 200.8 M.F. 17.3 µg/L Zinc 5 5.0 07/24/24 14:30 200.8 M.F. Digested by method 245.1 on 07/22/24 at 08:29 K.E.L. Mercury 0.20 ND µg/L 07/22/24 16:00 245.1

Order ID: 24070279 Date: 7/31/2024 Page 23 of 68

City of Sherman Chester Wilson

Analytical Report

Customer Sample ID: SPL Sample ID:					Matrix:	Liquid		
Sample Received:				Samp		7/18/2024 02:0)6	
Parameter	MQL	SQL	Result	Units	Date Analyzed	d Method	Analyst	Flags
General Chemistry								
Cyanide, Amenable to Chlorination	10	10	ND	μg/L	07/26/24 10:00	SM 4500-CN G	A.T.	
Cyanide, Total	10	10	ND	μg/L	07/26/24 10:00	SM 4500-CN C,E	A.T.	

Order ID: 24070279 Date: 7/31/2024 Page 24 of 68

City of Sherman Chester Wilson

Analytical Report

Project Name: Effluent

Customer Sample ID: Effluent SPL Sample ID: 24070279-018 Matrix: Liquid Sample Received: 7/18/2024 Sample Collected: 7/18/2024 07:50 **Date Analyzed Parameter** MQL **SQL** Result Units Method Analyst **Flags General Chemistry** Conductivity 100 B.F. 100 1680 µmhos/cm 07/23/24 10:45 120.1 S-14

Order ID: 24070279 Date: 7/31/2024 Page 25 of 68

City of Sherman Chester Wilson

Analytical Report

Customer Sample ID: SPL Sample ID: Sample Received:	24070	0279-019		Samı	Matrix: L i ble Collected: 7/	•	:50	
Parameter	MQL	SQL	Result	Units	Date Analyzed	Method	Analyst	Flags
Subcontract								
Silica								
Silica	1000	1000	15600	μg/L	07/29/24 13:50	200.7 Calc	Sub.	L-2
Silicate								
Silicate	200	200	7270	μg/L	07/29/24 10:53	Calculation	Sub.	E-1,L-2

Order ID: 24070279 Date: 7/31/2024 Page 26 of 68

City of Sherman Chester Wilson

Analytical Report

Project Name: Effluent

Customer Sample ID: Effluent

SPL Sample ID: 24070279-020 Matrix: Liquid

Sample Received: 7/18/2024 Sample Collected: 7/18/2024 02:06

Parameter MQL SQL Result Units Date Analyzed Method Analyst Flags

General Chemistry

Phenols 5 5.0 **20.0** μg/L 07/23/24 13:15 420.1 K.V.

Order ID: 24070279 Date: 7/31/2024 Page 27 of 68

City of Sherman Chester Wilson

Sample Cross Reference

Customer ID:	Lab ID:	Test	Method	QCBatchID
Effluent	24070279-003	Orthophosphate, Total -P, Dissolved	SM 4500-P E	PHOS_03241_L
		Orthophosphate, Total -P	SM 4500-P E	PHOS_03241_L
		Phosphorus, Total - P, Dissolved	SM 4500-P B,E	PHOS_03541_L
Effluent	24070279-004	Silica Gel Treated N-Hexane Extractable Material	1664	1664_00129AL
		N-Hexane Extractable Material	1664	ONG00129_L
Effluent	24070279-005	Mercury, Low Level	245.7	SUB51423_L
Effluent	24070279-006	Phosphorus, Total - P	SM 4500-P B,E	PHOS_03441_L
		Total Kjeldahl Nitrogen	SM 4500-NH3 B,D	TKN06123_L
Effluent	24070279-007	Total Dissolved Solids	SM 2540-C	TDS03031_L
Effluent	24070279-008	Tetramethylammonium Hydroxide / QAC	Cation IC / LCMS QAC	SUB50723_L
Effluent	24070279-009	Nitrite - N	300.0	IC03828_L
		Sulfate	300.0	IC03828_L
		Fluoride	300.0	IC03828_L
		Chloride	300.0	IC03828_L
		Nitrate - N	300.0	IC03828_L
 Effluent	24070279-010	Hexavalent Chromium	SM 3500-Cr-B	HEXL_02436_L
Effluent	24070279-011	Mercury, Low Level	245.7	SUB51423_L
Effluent	24070279-012	Alkalinity	SM 2320-B	ALKA 08327 L
		Methylene Blue Active Substances	SM 5540-C	MBAS_02622_L
Effluent	24070279-013	Semi-Volatile Organic Compounds	625.1	62500833_L
		Chlorophenoxy Acid Herbicides	615	HERB_00125_L
		Hexachlorophene	625.1 (Mod)	HEXC_01620_L
		Pesticides	608.3	OCP02734_L
		PCBs	608.3	PCB02734_L
		Chlorpyrifos	622	SUB50923_L
		Pesticides, Organophosphorous	614	SUB51023_L
		Carbamates	632	SUB51123_L
		Pesticides, Organochlorine (617)	617	SUB51223_L
 Effluent	24070279-014	Nonylphenol	ASTM D7065-11	SUB51323_L
Effluent	24070279-015	Volatile Organic Compounds	624.1	VOC33224_L
Effluent	24070279-016	Mercury	245.1	MERC_07154_L
		Zinc	200.8	META_01987_L
		Thallium	200.8	META_01987_L
		Strontium	200.8	META_01987_L
		Sodium	200.8	META_01987_L
		Silver	200.8	META_01987_L
		Selenium	200.8	META_01987_L
		Potassium	200.8	META_01987_L
		Aluminum	200.8	META_01987_L
		Molybdenum	200.8	META_01987_L
			200.8	
		Manganese		META_01987_L
		Barium	200.8	META_01987_L
		Nickel	200.8	META_01987_L
		Arsenic	200.8	META_01987_L
		Magnesium	200.8	META_01987_L
		Beryllium	200.8	META_01987_L

Order ID: 24070279 Date: 7/31/2024 Page 28 of 68

City of Sherman Chester Wilson

Sample Cross Reference

Customer ID:	Lab ID:	Test	Method	QCBatchID:
		Cadmium	200.8	META_01987_L
		Calcium	200.8	META_01987_L
		Chromium	200.8	META_01987_L
		Copper	200.8	META_01987_L
		Iron	200.8	META_01987_L
		Lead	200.8	META_01987_L
		Antimony	200.8	META_01987_L
Effluent	24070279-017	Cyanide, Amenable	SM 4500-CN G	CYAN_00132_L
		Cyanide, Total	SM 4500-CN C,E	CYAN_00132_L
Effluent	24070279-018	Specific Conductance	120.1	COND_11322_L
Effluent	24070279-019	Silica	200.7 Calc	SUB50823_L
		Silicate	Calculation	SUB50823_L
Effluent	24070279-020	Phenols	420.1	PHEN_00228_L

Order ID: 24070279 Date: 7/31/2024 Page 29 of 68

City of Sherman Chester Wilson

QC Summary

			Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flags
QCBatch	ID 1664_00129AL								
Blank	Non-polar Material (SGT- HEM)	ND mg/L							
LCS	Non-polar Material (SGT- HEM)	14.3 mg/L		20 mg/L	72%	64-132%			
LCSD	Non-polar Material (SGT- HEM)	13.0 mg/L		20 mg/L	65%	64-132%	9.5%	0-34%	
MS	Non-polar Material (SGT- HEM)	12.9 mg/L	ND	19.6 mg/L	66%	64-132%			
MSD	Non-polar Material (SGT- HEM)	13.3 mg/L	ND	19.6 mg/L	68%	64-132%	3.1%	0-34%	
QCBatch	ID ALKA_08327_L								
Blank	Alkalinity, Total	ND mg/L							
LCS	Alkalinity, Total	96.0 mg/L		100 mg/L	96%	90-110%			
LCSD	Alkalinity, Total	100 mg/L		100 mg/L	100%	90-110%	4.1%	0-20%	
MS	Alkalinity, Total	290 mg/L	190 mg/L	100 mg/L	100%	80-120%			
MSD	Alkalinity, Total	288 mg/L	190 mg/L	100 mg/L	100%	80-120%	0.7%	0-20%	
QCBatch				•					
Blank	Conductivity	ND µmhos/cm							
LCS	Conductivity	505 µmhos/cm		500 µmhos/cm	101%	90-110%			
LCSD	Conductivity	505 µmhos/cm		500 µmhos/cm	101%	90-110%	0.0%	0-25%	
Replicate	Conductivity	318 µmhos/cm	315 µmhos/cm				0.9%	0-25%	
QCBatch	ID CYAN_00132_L								
Blank	Cyanide, Amenable to Chlorination	ND mg/L							
	Cyanide, Total	ND mg/L							
LCS	Cyanide	0.189 mg/L		0.2 mg/L	95%	90-110%			
	Cyanide, Total	0.19 mg/L		0.2 mg/L	95%	90-110%			
LCSD	Cyanide	0.188 mg/L		0.2 mg/L	94%	90-110%	0.5%	0-20%	
	Cyanide, Total	0.19 mg/L		0.2 mg/L	94%	90-110%	1.1%	0-20%	
MS	Cyanide	0.187 mg/L	ND	0.2 mg/L	94%	80-120%			
	Cyanide, Total	0.19 mg/L	ND	0.2 mg/L	95%	80-120%			
MSD	Cyanide	0.186 mg/L	ND	0.2 mg/L	93%	80-120%	0.5%	0-20%	
	Cyanide, Total	0.19 mg/L	ND	0.2 mg/L	95%	80-120%	0.0%	0-20%	
QCBatch	ID HEXL_02436_L								
Blank	Chromium, Hexavalent	ND mg/L							
LCS	Chromium, Hexavalent	0.053 mg/L		0.05 mg/L	106%	90-110%			
LCSD	Chromium, Hexavalent	0.054 mg/L		0.05 mg/L	108%	90-110%	1.9%	0-20%	
MS	Chromium, Hexavalent	0.500 mg/L	ND	0.5 mg/L	100%	80-120%			

Order ID: 24070279 Date: 7/31/2024 Page 30 of 68

City of Sherman Chester Wilson

QC Summary

			Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	ID HEXL_02436_L								
MSD	Chromium, Hexavalent	0.480 mg/L	ND	0.5 mg/L	96%	80-120%	4.1%	0-20%	
QCBatch	ID IC03828_L								
Blank	Chloride	ND mg/L							
	Fluoride	ND mg/L							
	Nitrate - N	ND mg/L							
	Nitrite - N	ND mg/L							
	Sulfate	ND mg/L							
LCS	Chloride	2.79 mg/L		3 mg/L	93%	90-110%			
	Fluoride	1.87 mg/L		2 mg/L	94%	90-110%			
	Sulfate	14.4 mg/L		15 mg/L	96%	90-110%			
	Nitrate - N	2.88 mg/L		3 mg/L	96%	90-110%			
	Nitrite - N	2.88 mg/L		3 mg/L	96%	90-110%			
CSD	Chloride	2.78 mg/L		3 mg/L	93%	90-110%	0.4%	0-20%	
	Fluoride	1.88 mg/L		2 mg/L	94%	90-110%	0.5%	0-20%	
	Sulfate	14.4 mg/L		15 mg/L	96%	90-110%	0.2%	0-20%	
	Nitrate - N	2.90 mg/L		3 mg/L	97%	90-110%	0.7%	0-20%	
	Nitrite - N	2.90 mg/L		3 mg/L	97%	90-110%	0.7%	0-20%	
/IS	Chloride	4.29 mg/L	1.48 mg/L	3 mg/L	94%	80-120%			
	Fluoride	1.90 mg/L	ND	2 mg/L	95%	80-120%			
	Sulfate	16.4 mg/L	1.6 mg/L	15 mg/L	98%	80-120%			
	Nitrate - N	2.98 mg/L	ND	3 mg/L	99%	80-120%			
	Nitrite - N	2.96 mg/L	ND	3 mg/L	99%	80-120%			
MSD	Chloride	4.24 mg/L	1.48 mg/L	3 mg/L	92%	80-120%	1.2%	0-20%	
	Fluoride	1.90 mg/L	ND "	2 mg/L	95%	80-120%	0.0%	0-20%	
	Sulfate	16.2 mg/L	1.6 mg/L	15 mg/L	97%	80-120%	1.2%	0-20%	
	Nitrate - N	2.97 mg/L	ND	3 mg/L	99%	80-120%	0.3%	0-20%	
	Nitrite - N	2.93 mg/L	ND	3 mg/L	98%	80-120%	1.0%	0-20%	
QCBatch									
Blank	MBAS	ND mg/L							
LCS	MBAS	0.47 mg/L		0.5 mg/L	94%	90-110%			
_CSD	MBAS	0.47 mg/L		0.5 mg/L	94%	90-110%	0.0%	0-20%	
MS	MBAS	0.59 mg/L	0.08 mg/L	0.5 mg/L	118%	80-120%			
MSD	MBAS	0.56 mg/L	0.08 mg/L	0.5 mg/L	112%	80-120%	5.2%	0-20%	
QCBatch	ID ONG00129_L								
Blank	Oil and Grease (HEM)	ND mg/L							
LCS	Oil and Grease (HEM)	33.2 mg/L		40 mg/L	83%	78-114%			
LCSD	Oil and Grease (HEM)	34.1 mg/L		40 mg/L	85%	78-114%	2.7%	0-18%	
MS	Oil and Grease (HEM)	31.4 mg/L	ND	39.2 mg/L	80%	78-114%			
MSD	Oil and Grease (HEM)	35.7 mg/L	ND	39.2 mg/L	91%	78-114%	12.8%	0-18%	
QCBatch	ID PHEN_00228_L								

Order ID: 24070279 Date: 7/31/2024 Page 31 of 68

City of Sherman Chester Wilson

QC Summary

			Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flags
QCBatch	ID PHEN_00228_L								
LCS	Phenols	0.103 mg/L		0.1 mg/L	103%	90-110%			
LCSD	Phenols	0.100 mg/L		0.1 mg/L	100%	90-110%	3.0%	0-20%	
MS	Phenols	0.109 mg/L	0.02 mg/L	0.1 mg/L	109%	80-120%			
MSD	Phenols	0.111 mg/L	0.02 mg/L	0.1 mg/L	111%	80-120%	1.8%	0-20%	
QCBatch	ID PHOS_03241_L								
Blank	Orthophosphate, Dissolved - P	ND mg/L							
	Orthophosphate, Total - P	ND mg/L							
LCS	Orthophosphate, Dissolved - P	0.51 mg/L		0.5 mg/L	101%	90-110%			
	Orthophosphate, Total - P	0.51 mg/L		0.5 mg/L	101%	90-110%			
LCSD	Orthophosphate, Dissolved - P	0.50 mg/L		0.5 mg/L	100%	90-110%	2.0%	0-20%	
	Orthophosphate, Total - P	0.50 mg/L		0.5 mg/L	100%	90-110%	2.0%	0-20%	
MS	Orthophosphate, Dissolved - P	9.59 mg/L	5 mg/L	5 mg/L	92%	80-120%			
	Orthophosphate, Total - P	9.59 mg/L	5 mg/L	5 mg/L	92%	80-120%			
MSD	Orthophosphate, Dissolved - P	9.76 mg/L	5 mg/L	5 mg/L	95%	80-120%	1.8%	0-20%	
	Orthophosphate, Total - P	9.76 mg/L	5 mg/L	5 mg/L	95%	80-120%	1.8%	0-20%	
QCBatch	ID PHOS_03441_L								
Blank	Phosphorus, Total - P	ND mg/L							
LCS	Phosphorus, Total - P	0.47 mg/L		0.5 mg/L	94%	90-110%			
LCSD	Phosphorus, Total - P	0.47 mg/L		0.5 mg/L	93%	90-110%	0.9%	0-20%	
MS	Phosphorus, Total - P	0.62 mg/L	0.12 mg/L	0.5 mg/L	100%	80-120%			
MSD	Phosphorus, Total - P	0.63 mg/L	0.12 mg/L	0.5 mg/L	102%	80-120%	1.4%	0-20%	
QCBatch	ID PHOS_03541_L								
Blank	Phosphorus, Total - P, Dissolved	ND mg/L							
LCS	Phosphorus, Total - P, Dissolved	0.49 mg/L		0.5 mg/L	99%	90-110%			
LCSD	Phosphorus, Total - P, Dissolved	0.48 mg/L		0.5 mg/L	96%	90-110%	2.5%	0-20%	
MS	Phosphorus, Total - P, Dissolved	9.56 mg/L	4.78 mg/L	5 mg/L	96%	80-120%			
MSD	Phosphorus, Total - P, Dissolved	9.42 mg/L	4.78 mg/L	5 mg/L	93%	80-120%	1.5%	0-20%	
QCBatch	ID TDS03031_L								
Blank	Total Dissolved Solids	ND mg/L							
LCS	Total Dissolved Solids	995 mg/L		1000 mg/L	100%	90-110%			
LCSD	Total Dissolved Solids	980 mg/L		1000 mg/L	98%	90-110%	1.5%	0-5%	
Replicate	Total Dissolved Solids	2290 mg/L	2280 mg/L				0.4%	0-5%	

Order ID: 24070279 Date: 7/31/2024 Page 32 of 68

City of Sherman Chester Wilson

QC Summary

QC Type	Parameter	Result	Reference Value	Spike Conc	Rec	Rec Limits	RPD	RPD Limits	Flags
QCBatch	ID TKN06123_L								
Blank	Total Kjeldahl Nitrogen	ND mg/L							
LCS	Total Kjeldahl Nitrogen	9.20 mg/L		10 mg/L	92%	90-110%			
LCSD	Total Kjeldahl Nitrogen	9.90 mg/L		10 mg/L	99%	90-110%	7.3%	0-20%	
MS	Total Kjeldahl Nitrogen	8.75 mg/L	0.64 mg/L	10 mg/L	81%	80-120%			
MSD	Total Kjeldahl Nitrogen	10.2 mg/L	0.64 mg/L	10 mg/L	96%	80-120%	15.3%	0-20%	
QCBatch	ID MERC_07154_L								
Blank	Mercury	ND mg/L							
LCS	Mercury	0.0097 mg/L		0.01 mg/L	97%	85-115%			
LCSD	Mercury	0.0100 mg/L		0.01 mg/L	100%	85-115%	3.1%	0-20%	
MS	Mercury	0.0097 mg/L	ND	0.01 mg/L	97%	80-120%			
MSD	Mercury	0.0103 mg/L	ND	0.01 mg/L	103%	80-120%	6.0%	0-20%	
QCBatch	ID META_01987_L								
Blank	Aluminum	ND mg/L							
	Antimony	ND mg/L							
	Arsenic	ND mg/L							
	Barium	ND mg/L							
	Beryllium	ND mg/L							
	Cadmium	ND mg/L							
	Calcium	ND mg/L							
	Chromium	ND mg/L							
	Copper	ND mg/L							
	Iron	ND mg/L							
	Lead	ND mg/L							
	Magnesium	ND mg/L							
	Manganese	ND mg/L							
	Molybdenum	ND mg/L							
	Nickel	ND mg/L							
	Potassium	ND mg/L							
	Selenium	ND mg/L							
	Silver	ND mg/L							
	Sodium	ND mg/L							
	Strontium	ND mg/L							
	Thallium	ND mg/L							
	Zinc	ND mg/L							
LCS	Aluminum	1.09 mg/L		1.1 mg/L	99%	85-115%			
	Antimony	0.104 mg/L		0.1 mg/L	104%	85-115%			
	Arsenic	0.1060 mg/L		0.1 mg/L	106%	85-115%			
	Barium	0.103 mg/L		0.1 mg/L	103%	85-115%			
	Beryllium	0.0994 mg/L		0.1 mg/L	99%	85-115%			
	Cadmium	0.1042 mg/L		0.1 mg/L	104%	85-115%			
	Calcium	10.1 mg/L		10.1 mg/L	100%	85-115%			
	Chromium	0.103 mg/L		0.1 mg/L	103%	85-115%			

Order ID: 24070279 Date: 7/31/2024 Page 33 of 68

City of Sherman Chester Wilson

QC Summary

		I	Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	ID META_01987_L								
	Copper	0.1017 mg/L		0.1 mg/L	102%	85-115%			
	Iron	10.1 mg/L		10.1 mg/L	100%	85-115%			
	Lead	0.0921 mg/L		0.1 mg/L	92%	85-115%			
	Magnesium	10.1 mg/L		10.1 mg/L	100%	85-115%			
	Manganese	0.1028 mg/L		0.1 mg/L	103%	85-115%			
	Molybdenum	0.0989 mg/L		0.1 mg/L	99%	85-115%			
	Nickel	0.1033 mg/L		0.1 mg/L	103%	85-115%			
	Potassium	11.2 mg/L		11 mg/L	102%	85-115%			
	Selenium	0.1031 mg/L		0.1 mg/L	103%	85-115%			
	Silver	0.1041 mg/L		0.1 mg/L	104%	85-115%			
	Sodium	10.2 mg/L		10.1 mg/L	101%	85-115%			
	Strontium	0.0974 mg/L		0.1 mg/L	97%	85-115%			
	Thallium	0.1048 mg/L		0.1 mg/L	105%	85-115%			
	Zinc	0.104 mg/L		0.1 mg/L	104%	85-115%			
LCSD	Aluminum	1.10 mg/L		1.1 mg/L	100%	85-115%	1.0%	0-20%	
LUSD	Antimony	0.108 mg/L		0.1 mg/L	100%	85-115 <i>%</i>	3.3%	0-20%	
		•		_					
	Arsenic	0.1080 mg/L		0.1 mg/L	108%	85-115%	1.9%	0-20%	
	Barium	0.107 mg/L		0.1 mg/L	107%	85-115%	3.5%	0-20%	
	Beryllium	0.1022 mg/L		0.1 mg/L	102%	85-115%	2.8%	0-20%	
	Cadmium	0.1056 mg/L		0.1 mg/L	106%	85-115%	1.3%	0-20%	
	Calcium	10.1 mg/L		10.1 mg/L	100%	85-115%	0.3%	0-20%	
	Chromium	0.104 mg/L		0.1 mg/L	104%	85-115%	1.2%	0-20%	
	Copper	0.1012 mg/L		0.1 mg/L	101%	85-115%	0.5%	0-20%	
	Iron	10.2 mg/L		10.1 mg/L	101%	85-115%	0.8%	0-20%	
	Lead	0.0964 mg/L		0.1 mg/L	96%	85-115%	4.6%	0-20%	
	Magnesium	10.2 mg/L		10.1 mg/L	101%	85-115%	1.0%	0-20%	
	Manganese	0.1038 mg/L		0.1 mg/L	104%	85-115%	1.0%	0-20%	
	Molybdenum	0.1022 mg/L		0.1 mg/L	102%	85-115%	3.3%	0-20%	
	Nickel	0.1048 mg/L		0.1 mg/L	105%	85-115%	1.4%	0-20%	
	Potassium	11.1 mg/L		11 mg/L	101%	85-115%	1.0%	0-20%	
	Selenium	0.1051 mg/L		0.1 mg/L	105%	85-115%	2.0%	0-20%	
	Silver	0.1073 mg/L		0.1 mg/L	107%	85-115%	3.0%	0-20%	
	Sodium	10.2 mg/L		10.1 mg/L	101%	85-115%	0.0%	0-20%	
	Strontium	0.0991 mg/L		0.1 mg/L	99%	85-115%	1.7%	0-20%	
	Thallium	0.1048 mg/L		0.1 mg/L	105%	85-115%	0.0%	0-20%	
	Zinc	0.103 mg/L		0.1 mg/L	103%	85-115%	0.8%	0-20%	
MS	Aluminum	6.07 mg/L	0.4959 mg/L	5.5 mg/L	101%	80-120%			
	Antimony	0.501 mg/L	ND	0.5 mg/L	100%	80-120%			
	Arsenic	0.5484 mg/L		0.5 mg/L	109%	80-120%			
	Barium	•	0.028 mg/L	0.5 mg/L	101%	80-120%			
	Beryllium	0.5449 mg/L	ND	0.5 mg/L	109%	80-120%			
	Cadmium	0.5181 mg/L	ND	0.5 mg/L	104%	80-120%			
	Calcium	420 mg/L	361 mg/L	50.5 mg/L	117%	80-120%			
	Chromium	0.529 mg/L	ND	0.5 mg/L	106%	80-120%			

Order ID: 24070279 Date: 7/31/2024 Page 34 of 68

City of Sherman Chester Wilson

QC Summary

Project Name: Effluent

			Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	ID META_01987_L								
	Copper	0.5384 mg/L	0.0325 mg/L	0.5 mg/L	101%	80-120%			
	Iron	47.3 mg/L	0.53 mg/L	50.5 mg/L	93%	80-120%			
	Lead	0.4592 mg/L	ND	0.5 mg/L	92%	80-120%			
	Magnesium	63.3 mg/L	12.5 mg/L	50.5 mg/L	101%	80-120%			
	Manganese	0.6056 mg/L	0.0794 mg/L	0.5 mg/L	105%	80-120%			
	Molybdenum	0.5340 mg/L	0.0163 mg/L	0.5 mg/L	104%	80-120%			
	Nickel	0.5483 mg/L	0.0229 mg/L	0.5 mg/L	105%	80-120%			
	Potassium	230 mg/L	173 mg/L	55 mg/L	103%	80-120%			
	Selenium	0.5377 mg/L	0.0069 mg/L	0.5 mg/L	106%	80-120%			
	Silver	0.4941 mg/L	ND	0.5 mg/L	99%	80-120%			
	Sodium	80.4 mg/L	29.5 mg/L	50.5 mg/L	101%	80-120%			
	Strontium	0.9150 mg/L	0.42 mg/L	0.5 mg/L	99%	80-120%			
	Thallium	0.5168 mg/L	0.0005 mg/L	0.5 mg/L	103%	80-120%			
	Zinc	0.589 mg/L	0.062 mg/L	0.5 mg/L	106%	80-120%			
MSD	Aluminum	6.08 mg/L	0.4959 mg/L	5.5 mg/L	102%	80-120%	0.2%	0-20%	
	Antimony	0.520 mg/L	ND	0.5 mg/L	104%	80-120%	3.7%	0-20%	
	Arsenic	0.5574 mg/L		0.5 mg/L	111%	80-120%	1.6%	0-20%	
	Barium	_	0.028 mg/L	0.5 mg/L	105%	80-120%	3.9%	0-20%	
	Beryllium	0.5208 mg/L	ND	0.5 mg/L	104%	80-120%	4.5%	0-20%	
	Cadmium	0.5232 mg/L	ND	0.5 mg/L	105%	80-120%	1.0%	0-20%	
	Calcium	420 mg/L	361 mg/L	50.5 mg/L	117%	80-120%	0.1%	0-20%	
	Chromium	0.526 mg/L	ND	0.5 mg/L	105%	80-120%	0.6%	0-20%	
	Copper	_	0.0325 mg/L	0.5 mg/L	100%	80-120%	1.0%	0-20%	
	Iron	47.0 mg/L	_	50.5 mg/L	92%	80-120%	0.6%	0-20%	
	Lead	0.4597 mg/L	ND	0.5 mg/L	92%	80-120%	0.1%	0-20%	
	Magnesium	63.7 mg/L	12.5 mg/L	50.5 mg/L	101%	80-120%	0.6%	0-20%	
	Manganese	•	0.0794 mg/L	0.5 mg/L	105%	80-120%	0.2%	0-20%	
	Molybdenum	_	0.0163 mg/L	0.5 mg/L	107%	80-120%	2.8%	0-20%	
	Nickel	_	0.0229 mg/L	0.5 mg/L	104%	80-120%	1.1%	0-20%	
	Potassium	236 mg/L	_	55 mg/L	114%	80-120%	2.4%	0-20%	
	Selenium	_	0.0069 mg/L	0.5 mg/L	109%	80-120%	2.9%	0-20%	
	Silver	0.5279 mg/L	ND	0.5 mg/L	106%	80-120%	6.6%	0-20%	
	Sodium	80.8 mg/L	29.5 mg/L	50.5 mg/L	102%	80-120%	0.5%	0-20%	
	Strontium	0.9399 mg/L	_	0.5 mg/L	104%	80-120%	2.7%	0-20%	
	Thallium	_	0.0005 mg/L	0.5 mg/L	108%	80-120%	4.4%	0-20%	
	Zinc	_	0.062 mg/L	0.5 mg/L	102%	80-120%	3.1%	0-20%	
QCBatch		3.2g/L	2.00 <u>2</u> g/L	0.0g, =	.02,0	33 .23,0	2,0	3 20,0	
Blank	N-Nitrosodimethylamine	ND μg/L							
DIGITIK	Bis(2-chloroethyl)Ether	ND μg/L							
	Phenol	ND μg/L ND μg/L							
	2-Chlorophenol	ND μg/L ND μg/L							
	Bis(2-chloroisopropyl)Ether	ND μg/L							
	o-Cresol (2-Methylphenol)	ND μg/L ND μg/L							
	0-016201 (Z-WEUNVIDHENOI)	ND UU/L							

o-Cresol (2-Methylphenol) ND µg/L p-Cresol (4-Methylphenol) ND μg/L

Order ID: 24070279 Date: 7/31/2024 Page 35 of 68

City of Sherman Chester Wilson

QC Summary

			Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	ID 62500833_L								
	N-Nitrosodi-n-Propylamine	ND μg/L							
	Hexachloroethane	ND μg/L							
	Nitrobenzene	ND μg/L							
	Isophorone	ND μg/L							
	2-Nitrophenol	ND μg/L							
	2,4-Dimethylphenol	ND μg/L							
	Bis(2-chloroethoxy)Methane	ND μg/L							
	1,2,4-Trichlorobenzene	ND μg/L							
	2,4-Dichlorophenol	ND μg/L							
	Naphthalene	ND μg/L							
	Hexachlorobutadiene	ND μg/L							
	p-Chloro-m-Cresol (4- Chloro-3-methylphenol)	ND μg/L							
	Hexachlorocyclopentadiene	ND μg/L							
	2,4,6-Trichlorophenol	ND μg/L							
	2-Chloronaphthalene	ND μg/L							
	Dimethyl Phthalate	ND μg/L							
	2,6-Dinitrotoluene	ND μg/L							
	Acenaphthylene	ND μg/L							
	Acenaphthene	ND μg/L							
	2,4-Dinitrophenol	ND μg/L							
	2,4-Dinitrotoluene	ND μg/L							
	4-Nitrophenol	ND μg/L							
	Diethyl Phthalate	ND μg/L							
	Fluorene	ND μg/L							
	4-Chlorophenyl Phenyl Ether	ND μg/L							
	Azobenzene (1,2-Diphenyl Hydrazine)	ND μg/L							
	4,6-Dinitro-o-Cresol (4,6- Dinitro-2-methyl phenol)	ND μg/L							
	N-Nitrosodiphenylamine	ND μg/L							
	4-Bromophenyl Phenyl Ether	ND μg/L							
	Hexachlorobenzene	ND μg/L							
	Pentachlorophenol	ND μg/L							
	Phenanthrene	ND μg/L							
	Anthracene	ND μg/L							
	Di-n-Butyl Phthalate	ND μg/L							
	Fluoranthene	ND μg/L							
	Pyrene	ND μg/L							
	Butylbenzyl Phthalate	ND μg/L							
	Benzo(a)Anthracene	ND μg/L							
	Chrysene	ND μg/L							
	Bis(2-ethylhexyl)Phthalate	ND μg/L							

Order ID: 24070279 Date: 7/31/2024 Page 36 of 68

City of Sherman Chester Wilson

QC Summary

		ı	Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	ID 62500833_L								
	Di-n-Octyl Phthalate	ND μg/L							
	3,4-Benzofluoranthene	ND μg/L							
	Benzo(k)Fluoranthene	ND μg/L							
	Benzo(a)Pyrene	ND μg/L							
	Indeno(1,2,3-c,d)pyrene	ND μg/L							
	Dibenzo(a,h)Anthracene	ND μg/L							
	Benzo(g,h,i)Perylene	ND μg/L							
	Benzidine	ND μg/L							
	3,3-Dichlorobenzidine	ND μg/L							
	N-Nitrosodiethylamine	ND μg/L							
	N-Nitroso-di-n-Butylamine	ND μg/L							
	Pentachlorbenzene	ND μg/L							
	Pyridine	ND μg/L							
	1,2,4,5-Tetrachlorobenzene	ND μg/L							
	2,4,5-Trichlorophenol	ND μg/L							
Surrog	ate	Result		Spike Conc	Recovery	Rec Limits			
J	2-Fluorophenol	29.4 μg/L		100 μg/L	29%	21-100%			
	Phenol-d6	17.6 μg/L		100 μg/L	18%	10-94%			
	Nitrobenzene-d5	38.7 μg/L		50 μg/L	77%	35-114%			
	2-Fluorobiphenyl	35.7 μg/L		50 μg/L	71%	43-116%			
	2,4,6-Tribromophenol	83.7 μg/L		100 μg/L	84%	10-123%			
	Terphenyl-d14	40.1 μg/L		100 μg/L 50 μg/L	80%	33-141%			
LCS	· · · · · ·								
LUS	N-Nitrosodimethylamine	14.6 µg/L		50 μg/L	29%	10-86% 41-114%			
	Bis(2-chloroethyl)Ether	38.7 μg/L		50 μg/L	77%				
	Phenol	11.2 µg/L		50 μg/L	22%	10-79%			
	2-Chlorophenol	33.0 µg/L		50 μg/L	66% 77%	29-115% 40-122%			
	Bis(2-chloroisopropyl)Ether	38.4 µg/L		50 μg/L					
	o-Cresol (2-Methylphenol)	28.2 μg/L		50 μg/L	56%	27-111%			
	p-Cresol (4-Methylphenol)	25.8 μg/L		50 μg/L	52%	22-108%			
	N-Nitrosodi-n-Propylamine	40.6 μg/L		50 μg/L	81%	38-127%			
	Hexachloroethane	35.7 μg/L		50 μg/L	71%	49-95%			
	Nitrobenzene	39.3 µg/L		50 μg/L	79%	42-115%			
	Isophorone	40.4 μg/L		50 μg/L	81%	38-130%			
	2-Nitrophenol	40.1 μg/L		50 μg/L	80%	37-128%			
	2,4-Dimethylphenol	35.8 µg/L		50 μg/L	72%	52-100%			
	Bis(2-chloroethoxy)Methane	39.0 μg/L		50 μg/L	78%	42-121%			
	1,2,4-Trichlorobenzene	36.6 µg/L		50 μg/L	73%	46-101%			
	2,4-Dichlorophenol	38.6 µg/L		50 μg/L	77%	37-124%			
	Naphthalene	37.5 μg/L		50 μg/L	75%	46-103%			
	Hexachlorobutadiene	36.4 µg/L		50 μg/L	73%	51-92%			
	p-Chloro-m-Cresol (4- Chloro-3-methylphenol)	39.6 μg/L		50 μg/L	79%	39-131%			
	Hexachlorocyclopentadiene	34.4 µg/L		50 μg/L	69%	38-122%			
	2,4,6-Trichlorophenol	40.9 μg/L		50 μg/L	82%	44-125%			

Order ID: 24070279 Date: 7/31/2024 Page 37 of 68

City of Sherman Chester Wilson

QC Summary

		F	Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	ID 62500833_L								
	2,4,5-Trichlorophenol	40.7 μg/L		50 μg/L	81%	44-129%			
	2-Chloronaphthalene	38.4 µg/L		50 μg/L	77%	43-113%			
	Dimethyl Phthalate	42.0 µg/L		50 μg/L	84%	60-104%			
	2,6-Dinitrotoluene	44.5 μg/L		50 μg/L	89%	43-136%			
	Acenaphthylene	39.2 µg/L		50 μg/L	78%	42-120%			
	Acenaphthene	39.5 µg/L		50 μg/L	79%	43-120%			
	2,4-Dinitrophenol	42.5 µg/L		50 μg/L	85%	17-150%			
	2,4-Dinitrotoluene	44.6 µg/L		50 μg/L	89%	34-148%			
	4-Nitrophenol	15.2 μg/L		50 μg/L	30%	10-92%			
	Diethyl Phthalate	43.8 µg/L		50 μg/L	88%	64-105%			
	Fluorene	40.3 µg/L		50 μg/L	81%	41-121%			
	4-Chlorophenyl Phenyl Ether	40.1 μg/L		50 μg/L	80%	42-118%			
	Azobenzene (1,2-Diphenyl Hydrazine)	43.3 μg/L		50 μg/L	87%	48-126%			
	4,6-Dinitro-o-Cresol (4,6- Dinitro-2-methyl phenol)	49.6 μg/L		50 μg/L	99%	36-149%			
	N-Nitrosodiphenylamine	44.1 µg/L		50 μg/L	88%	32-156%			
	4-Bromophenyl Phenyl Ether	42.3 μg/L		50 μg/L	85%	45-121%			
	Hexachlorobenzene	41.7 µg/L		50 μg/L	83%	45-118%			
	Pentachlorophenol	45.2 μg/L		50 μg/L	90%	37-149%			
	Phenanthrene	41.7 µg/L		50 μg/L	83%	46-120%			
	Anthracene	41.7 µg/L		50 μg/L	83%	48-122%			
	Di-n-Butyl Phthalate	46.8 µg/L		50 μg/L	94%	58-121%			
	Fluoranthene	42.5 µg/L		50 μg/L	85%	52-119%			
	Pyrene	43.5 µg/L		50 μg/L	87%	56-127%			
	Butylbenzyl Phthalate	47.7 μg/L		50 μg/L	95%	59-129%			
	Benzo(a)Anthracene	44.1 µg/L		50 μg/L	88%	46-134%			
	Chrysene	39.0 µg/L		50 μg/L	78%	46-129%			
	Bis(2-ethylhexyl)Phthalate	50.5 μg/L		50 μg/L	101%	56-135%			
	Di-n-Octyl Phthalate	51.4 µg/L		50 μg/L	103%	51-140%			
	3,4-Benzofluoranthene (Benzo(b)Fluoranthene)	45.2 μg/L		50 μg/L	90%	45-132%			
	Benzo(k)Fluoranthene	44.5 μg/L		50 μg/L	89%	42-127%			
	Benzo(a)Pyrene	45.2 μg/L		50 μg/L	90%	45-132%			
	Indeno(1,2,3-c,d)pyrene	44.2 μg/L		50 μg/L	88%	36-139%			
	Dibenzo(a,h)Anthracene	42.5 μg/L		50 μg/L	85%	31-142%			
	Benzo(g,h,i)Perylene	44.0 μg/L		50 μg/L	88%	32-145%			

Order ID: 24070279 Date: 7/31/2024 Page 38 of 68

City of Sherman Chester Wilson

QC Summary

			Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	ID 62500833_L								
Surroga	ate	Result		Spike Conc	Recovery	Rec Limits			
	2-Fluorophenol	35.5 μg/L		100 μg/L	35%	21-100%			
	Phenol-d6	22.1 μg/L		100 μg/L	22%	10-94%			
	Nitrobenzene-d5	39.5 µg/L		50 μg/L	79%	35-114%			
	2-Fluorobiphenyl	38.7 µg/L		50 μg/L	77%	43-116%			
	2,4,6-Tribromophenol	97.7 μg/L		100 μg/L	98%	10-123%			
	Terphenyl-d14	37.9 μg/L		50 μg/L	76%	33-141%			
LCSD	N-Nitrosodimethylamine	14.3 µg/L		50 μg/L	29%	10-86%	2.1%	0-30%	
	Bis(2-chloroethyl)Ether	38.4 µg/L		50 μg/L	77%	41-114%	0.8%	0-30%	
	Phenol	11.0 μg/L		50 μg/L	22%	10-79%	1.8%	0-30%	
	2-Chlorophenol	32.6 µg/L		50 μg/L	65%	29-115%	1.2%	0-30%	
	Bis(2-chloroisopropyl)Ether	38.5 μg/L		50 μg/L	77%	40-122%	0.3%	0-30%	
	o-Cresol (2-Methylphenol)	28.2 μg/L		50 μg/L	56%	27-111%	0.0%	0-30%	
	p-Cresol (4-Methylphenol)	25.7 μg/L		50 μg/L	51%	22-108%	0.4%	0-30%	
	N-Nitrosodi-n-Propylamine	40.7 μg/L		50 μg/L	81%	38-127%	0.2%	0-30%	
	Hexachloroethane	35.7 μg/L		50 μg/L	71%	49-95%	0.0%	0-30%	
	Nitrobenzene	39.3 μg/L		50 μg/L	79%	42-115%	0.0%	0-30%	
	Isophorone	40.9 μg/L		50 μg/L	82%	38-130%	1.2%	0-30%	
	2-Nitrophenol	40.5 μg/L		50 μg/L	81%	37-128%	1.0%	0-30%	
	2,4-Dimethylphenol	36.7 µg/L		50 μg/L	73%	52-100%	2.5%	0-30%	
	Bis(2-chloroethoxy)Methane	39.5 μg/L		50 μg/L	79%	42-121%	1.3%	0-30%	
	1,2,4-Trichlorobenzene	36.9 µg/L		50 μg/L	74%	46-101%	0.8%	0-30%	
	2,4-Dichlorophenol	38.7 μg/L		50 μg/L	77%	37-124%	0.3%	0-30%	
	Naphthalene	38.1 µg/L		50 μg/L	76%	46-103%	1.6%	0-30%	
	Hexachlorobutadiene	36.7 μg/L		50 μg/L	73%	51-92%	0.8%	0-30%	
	p-Chloro-m-Cresol (4- Chloro-3-methylphenol)	40.2 μg/L		50 μg/L	80%	39-131%	1.5%	0-30%	
	Hexachlorocyclopentadiene	34.3 µg/L		50 μg/L	69%	38-122%	0.3%	0-30%	
	2,4,6-Trichlorophenol	42.5 μg/L		50 μg/L	85%	44-125%	3.8%	0-30%	
	2,4,5-Trichlorophenol	41.6 µg/L		50 μg/L	83%	44-129%	2.2%	0-30%	
	2-Chloronaphthalene	38.9 µg/L		50 μg/L	78%	43-113%	1.3%	0-30%	
	Dimethyl Phthalate	43.5 µg/L		50 μg/L	87%	60-104%	3.5%	0-30%	
	2,6-Dinitrotoluene	45.7 μg/L		50 μg/L	91%	43-136%	2.7%	0-30%	
	Acenaphthylene	40.2 μg/L		50 μg/L	80%	42-120%	2.5%	0-30%	
	Acenaphthene	39.7 μg/L		50 μg/L	79%	43-120%	0.5%	0-30%	
	2,4-Dinitrophenol	44.8 µg/L		50 μg/L	90%	17-150%	5.3%	0-30%	
	2,4-Dinitrotoluene	46.3 μg/L		50 μg/L	93%	34-148%	3.7%	0-30%	
	4-Nitrophenol	15.6 μg/L		50 μg/L	31%	10-92%	2.6%	0-30%	
	Diethyl Phthalate	45.3 μg/L		50 μg/L	91%	64-105%	3.4%	0-30%	
	Fluorene	41.6 µg/L		50 μg/L	83%	41-121%	3.2%	0-30%	
	4-Chlorophenyl Phenyl Ether	41.4 μg/L		50 μg/L	83%	42-118%	3.2%	0-30%	
	Azobenzene (1,2-Diphenyl Hydrazine)	43.5 μg/L		50 μg/L	87%	48-126%	0.5%	0-30%	

Order ID: 24070279 Date: 7/31/2024 Page 39 of 68

City of Sherman Chester Wilson

QC Summary

Project Name: Effluent

		F	Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	ID 62500833_L								
	4,6-Dinitro-o-Cresol (4,6- Dinitro-2-methyl phenol)	51.0 μg/L		50 μg/L	102%	36-149%	2.8%	0-30%	
	N-Nitrosodiphenylamine	44.6 µg/L		50 μg/L	89%	32-156%	1.1%	0-30%	
	4-Bromophenyl Phenyl Ether	42.5 μg/L		50 μg/L	85%	45-121%	0.5%	0-30%	
	Hexachlorobenzene	42.0 μg/L		50 μg/L	84%	45-118%	0.7%	0-30%	
	Pentachlorophenol	46.7 µg/L		50 μg/L	93%	37-149%	3.3%	0-30%	
	Phenanthrene	42.6 µg/L		50 μg/L	85%	46-120%	2.1%	0-30%	
	Anthracene	42.6 μg/L		50 μg/L	85%	48-122%	2.1%	0-30%	
	Di-n-Butyl Phthalate	48.5 μg/L		50 μg/L	97%	58-121%	3.6%	0-30%	
	Fluoranthene	44.0 μg/L		50 μg/L	88%	52-119%	3.5%	0-30%	
	Pyrene	43.3 µg/L		50 μg/L	87%	56-127%	0.5%	0-30%	
	Butylbenzyl Phthalate	49.2 μg/L		50 μg/L	98%	59-129%	3.1%	0-30%	
	Benzo(a)Anthracene	45.6 μg/L		50 μg/L	91%	46-134%	3.3%	0-30%	
	Chrysene	39.8 µg/L		50 μg/L	80%	46-129%	2.0%	0-30%	
	Bis(2-ethylhexyl)Phthalate	52.9 μg/L		50 μg/L	106%	56-135%	4.6%	0-30%	
	Di-n-Octyl Phthalate	55.4 μg/L		50 μg/L	111%	51-140%	7.5%	0-30%	
	3,4-Benzofluoranthene (Benzo(b)Fluoranthene)	45.6 μg/L		50 μg/L	91%	45-132%	0.9%	0-30%	
	Benzo(k)Fluoranthene	45.0 μg/L		50 μg/L	90%	42-127%	1.1%	0-30%	
	Benzo(a)Pyrene	46.1 µg/L		50 μg/L	92%	45-132%	2.0%	0-30%	
	Indeno(1,2,3-c,d)pyrene	50.5 μg/L		50 μg/L	101%	36-139%	13.3%	0-30%	
	Dibenzo(a,h)Anthracene	48.0 μg/L		50 μg/L	96%	31-142%	12.2%	0-30%	
	Benzo(g,h,i)Perylene	50.4 μg/L		50 μg/L	101%	32-145%	13.6%	0-30%	
Surrog	(0 /	Result		Spike Conc	Recovery		10.070	0 00 /0	
Juliog	2-Fluorophenol	34.1 μg/L		100 µg/L	34%	21-100%			
	Phenol-d6				22%	10-94%			
		21.6 µg/L		100 μg/L					
	Nitrobenzene-d5	38.8 µg/L		50 μg/L	78%	35-114%			
	2-Fluorobiphenyl	38.2 μg/L		50 μg/L	76%	43-116%			
	2,4,6-Tribromophenol	99.0 μg/L		100 μg/L	99%	10-123%			
	Terphenyl-d14	38.6 μg/L		50 μg/L	77%	33-141%			
MS	N-Nitrosodimethylamine	13.2 μg/L	ND	50 μg/L	26%	10-86%			
	Bis(2-chloroethyl)Ether	37.8 μg/L	ND	50 μg/L	76%	41-114%			
	Phenol	9.42 μg/L	ND	50 μg/L	19%	10-79%			
	2-Chlorophenol	30.8 μg/L	ND	50 μg/L	62%	29-115%			
	Bis(2-chloroisopropyl)Ether	37.9 μg/L	ND	50 μg/L	76%	40-122%			
	o-Cresol (2-Methylphenol)	25.3 μg/L	ND	50 μg/L	51%	27-111%			
	p-Cresol (4-Methylphenol)	22.3 μg/L	ND	50 μg/L	45%	22-108%			
	N-Nitrosodi-n-Propylamine	38.8 µg/L	ND	50 μg/L	78%	38-127%			
	Hexachloroethane	35.7 μg/L	ND	50 μg/L	71%	49-95%			
	Nitrobenzene	39.0 µg/L	ND	50 μg/L	78%	42-115%			
	Isophorone	39.0 µg/L	ND	50 μg/L	78%	38-130%			
	2-Nitrophenol	39.3 μg/L	ND	50 μg/L	79%	37-128%			
	2,4-Dimethylphenol	36.8 µg/L	ND	50 μg/L	74%	52-100%			
	Bis(2-chloroethoxy)Methane	37.9 μg/L	ND	50 μg/L	76%	42-121%			

SPL, Inc. • 1825 E. Plano Parkway #160 • Plano, TX 75074 • Tel: (972) 424-6422 • Lab ID: T104704227

Order ID: 24070279 Date: 7/31/2024 Page 40 of 68

City of Sherman Chester Wilson

QC Summary

		ı	Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	ID 62500833_L								
	1,2,4-Trichlorobenzene	35.8 µg/L	ND	50 μg/L	72%	46-101%			
	2,4-Dichlorophenol	37.4 μg/L	ND	50 μg/L	75%	37-124%			
	Naphthalene	36.9 µg/L	ND	50 μg/L	74%	46-103%			
	Hexachlorobutadiene	35.9 µg/L	ND	50 μg/L	72%	51-92%			
	p-Chloro-m-Cresol (4- Chloro-3-methylphenol)	37.9 μg/L	ND	50 μg/L	76%	39-131%			
	Hexachlorocyclopentadiene	33.4 µg/L	ND	50 μg/L	67%	38-122%			
	2,4,6-Trichlorophenol	40.4 µg/L	ND	50 μg/L	81%	44-125%			
	2,4,5-Trichlorophenol	40.3 μg/L	ND	50 μg/L	81%	44-129%			
	2-Chloronaphthalene	37.0 μg/L	ND	50 μg/L	74%	43-113%			
	Dimethyl Phthalate	41.4 µg/L	ND	50 μg/L	83%	60-104%			
	2,6-Dinitrotoluene	43.5 µg/L	ND	50 μg/L	87%	43-136%			
	Acenaphthylene	38.2 µg/L	ND	50 μg/L	76%	42-120%			
	Acenaphthene	38.4 µg/L	ND	50 μg/L	77%	43-120%			
	2,4-Dinitrophenol	46.0 µg/L	ND	50 μg/L	92%	17-150%			
	2,4-Dinitrotoluene	43.9 µg/L	ND	50 μg/L	88%	34-148%			
	4-Nitrophenol	13.8 µg/L	ND	50 μg/L	28%	10-92%			
	Diethyl Phthalate	42.5 µg/L	ND	50 μg/L	85%	64-105%			
	Fluorene	40.0 µg/L	ND	50 μg/L	80%	41-121%			
	4-Chlorophenyl Phenyl Ether	39.4 μg/L	ND	50 μg/L	79%	42-118%			
	Azobenzene (1,2-Diphenyl Hydrazine)	40.9 μg/L	ND	50 μg/L	82%	48-126%			
	4,6-Dinitro-o-Cresol (4,6- Dinitro-2-methyl phenol)	48.7 μg/L	ND	50 μg/L	97%	36-149%			
	N-Nitrosodiphenylamine	42.2 μg/L	ND	50 μg/L	84%	32-156%			
	4-Bromophenyl Phenyl Ether	40.2 μg/L	ND	50 μg/L	80%	45-121%			
	Hexachlorobenzene	39.7 μg/L	ND	50 μg/L	79%	45-118%			
	Pentachlorophenol	47.7 μg/L	ND	50 μg/L	95%	37-149%			
	Phenanthrene	40.2 μg/L	ND	50 μg/L	80%	46-120%			
	Anthracene	40.4 µg/L	ND	50 μg/L	81%	48-122%			
	Di-n-Butyl Phthalate	45.6 μg/L	ND	50 μg/L	91%	58-121%			
	Fluoranthene	41.3 μg/L	ND	50 μg/L	83%	52-119%			
	Pyrene	43.9 μg/L	ND	50 μg/L	88%	56-127%			
	Butylbenzyl Phthalate	49.0 μg/L	ND	50 μg/L	98%	59-129%			
	Benzo(a)Anthracene	43.5 μg/L	ND	50 μg/L	87%	46-134%			
	Chrysene	38.0 μg/L	ND	50 μg/L	76%	46-129%			
	Bis(2-ethylhexyl)Phthalate	53.1 μg/L	ND	50 μg/L	106%	56-135%			
	Di-n-Octyl Phthalate	54.2 μg/L	ND	50 μg/L	108%	51-140%			
	3,4-Benzofluoranthene (Benzo(b)Fluoranthene)	43.9 μg/L	ND	50 μg/L	88%	45-132%			
	Benzo(k)Fluoranthene	43.5 μg/L	ND	50 μg/L	87%	42-127%			
	Benzo(a)Pyrene	44.3 µg/L	ND	50 μg/L	89%	45-132%			
	Indeno(1,2,3-c,d)pyrene	45.8 μg/L	ND	50 μg/L	92%	36-139%			
	Dibenzo(a,h)Anthracene	43.4 µg/L	ND	50 μg/L	87%	31-142%			

Order ID: 24070279 Date: 7/31/2024 Page 41 of 68

City of Sherman Chester Wilson

QC Summary

QC Type	Parameter	Result	Reference Value	Spike Conc	Rec	Rec Limits	RPD	RPD Limits	Flags
QCBatc	hID 62500833_L								
	Benzo(g,h,i)Perylene	45.6 μg/L	ND	50 μg/L	91%	32-145%			
Surro	gate	Result		Spike Conc	Recovery	Rec Limits			
	2-Fluorophenol	29.3 μg/L		100 μg/L	29%	21-100%			
	Phenol-d6	17.7 μg/L		100 μg/L	18%	10-94%			
	Nitrobenzene-d5	38.5 µg/L		50 μg/L	77%	35-114%			
	2-Fluorobiphenyl	37.6 μg/L		50 μg/L	75%	43-116%			
	2,4,6-Tribromophenol	96.9 μg/L		100 μg/L	97%	10-123%			
	Terphenyl-d14	36.5 µg/L		50 μg/L	73%	33-141%			
MSD	N-Nitrosodimethylamine	12.2 µg/L	ND	50 μg/L	24%	10-86%	7.9%	0-30%	
	Bis(2-chloroethyl)Ether	31.5 µg/L		50 μg/L	63%	41-114%	18.2%	0-30%	
	Phenol	8.70 µg/L	ND	50 μg/L	17%	10-79%	8.0%	0-30%	
	2-Chlorophenol	24.0 μg/L	ND	50 μg/L	48%	29-115%	24.8%	0-30%	
	Bis(2-chloroisopropyl)Ether	31.7 µg/L	ND	50 μg/L	63%	40-122%	17.8%	0-30%	
	o-Cresol (2-Methylphenol)	20.5 μg/L	ND	50 μg/L	41%	27-111%	21.0%	0-30%	
	p-Cresol (4-Methylphenol)	18.8 μg/L	ND	50 μg/L	38%	22-108%	17.0%	0-30%	
	N-Nitrosodi-n-Propylamine	32.8 μg/L	ND	50 μg/L	66%	38-127%	16.8%	0-30%	
	Hexachloroethane	29.0 μg/L	ND	50 μg/L	58%	49-95%	20.7%	0-30%	
	Nitrobenzene	34.4 µg/L	ND	50 μg/L	69%	42-115%	12.5%	0-30%	
	Isophorone	34.2 μg/L	ND	50 μg/L	68%	38-130%	13.1%	0-30%	
	2-Nitrophenol	33.8 µg/L	ND	50 μg/L	68%	37-128%	15.0%	0-30%	
	2,4-Dimethylphenol	30.8 μg/L	ND	50 μg/L	62%	52-100%	17.8%	0-30%	
	Bis(2-chloroethoxy)Methane	33.4 µg/L	ND	50 μg/L	67%	42-121%	12.6%	0-30%	
	1,2,4-Trichlorobenzene	31.4 µg/L	ND	50 μg/L	63%	46-101%	13.1%	0-30%	
	2,4-Dichlorophenol	31.9 µg/L	ND	50 μg/L	64%	37-124%	15.9%	0-30%	
	Naphthalene	32.6 µg/L	ND	50 μg/L	65%	46-103%	12.4%	0-30%	
	Hexachlorobutadiene	30.5 μg/L	ND	50 μg/L	61%	51-92%	16.3%	0-30%	
	p-Chloro-m-Cresol (4- Chloro-3-methylphenol)	33.3 µg/L	ND	50 μg/L	67%	39-131%	12.9%	0-30%	
	Hexachlorocyclopentadiene	30.9 μg/L	ND	50 μg/L	62%	38-122%	7.8%	0-30%	
	2,4,6-Trichlorophenol	36.8 µg/L	ND	50 μg/L	74%	44-125%	9.3%	0-30%	
	2,4,5-Trichlorophenol	36.2 μg/L	ND	50 μg/L	72%	44-129%	10.7%	0-30%	
	2-Chloronaphthalene	33.1 µg/L	ND	50 μg/L	66%	43-113%	11.1%	0-30%	
	Dimethyl Phthalate	38.5 μg/L	ND	50 μg/L	77%	60-104%	7.3%	0-30%	
	2,6-Dinitrotoluene	40.3 μg/L	ND	50 μg/L	81%	43-136%	7.6%	0-30%	
	Acenaphthylene	34.8 µg/L	ND	50 μg/L	70%	42-120%	9.3%	0-30%	
	Acenaphthene	34.6 µg/L	ND	50 μg/L	69%	43-120%	10.4%	0-30%	
	2,4-Dinitrophenol	42.5 μg/L	ND	50 μg/L	85%	17-150%	7.9%	0-30%	
	2,4-Dinitrotoluene	42.1 μg/L	ND	50 μg/L	84%	34-148%	4.2%	0-30%	
	4-Nitrophenol	15.6 μg/L	ND	50 μg/L	31%	10-92%	12.2%	0-30%	
	Diethyl Phthalate	40.4 μg/L		50 μg/L	81%	64-105%	5.1%	0-30%	
	Fluorene	37.0 μg/L		50 μg/L	74%	41-121%	7.8%	0-30%	
	4-Chlorophenyl Phenyl Ether	36.1 μg/L	ND	50 μg/L	72%	42-118%	8.7%	0-30%	
	Azobenzene (1,2-Diphenyl Hydrazine)	37.1 μg/L	ND	50 μg/L	74%	48-126%	9.7%	0-30%	

Order ID: 24070279 Date: 7/31/2024 Page 42 of 68

City of Sherman Chester Wilson

QC Summary

		Reference				Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	ID 62500833_L								
	4,6-Dinitro-o-Cresol (4,6- Dinitro-2-methyl phenol)	47.2 μg/L	ND	50 μg/L	94%	36-149%	3.1%	0-30%	
	N-Nitrosodiphenylamine	38.6 µg/L	ND	50 μg/L	77%	32-156%	8.9%	0-30%	
	4-Bromophenyl Phenyl Ether	36.7 μg/L	ND	50 μg/L	73%	45-121%	9.1%	0-30%	
	Hexachlorobenzene	36.3 µg/L	ND	50 μg/L	73%	45-118%	9.0%	0-30%	
	Pentachlorophenol	46.0 μg/L	ND	50 μg/L	92%	37-149%	3.6%	0-30%	
	Phenanthrene	37.7 μg/L	ND	50 μg/L	75%	46-120%	6.4%	0-30%	
	Anthracene	37.9 μg/L	ND	50 μg/L	76%	48-122%	6.4%	0-30%	
	Di-n-Butyl Phthalate	45.6 μg/L	ND	50 μg/L	91%	58-121%	0.0%	0-30%	
	Fluoranthene	42.1 µg/L	ND	50 μg/L	84%	52-119%	1.9%	0-30%	
	Pyrene	36.6 µg/L	ND	50 μg/L	73%	56-127%	18.1%	0-30%	
	Butylbenzyl Phthalate	45.1 μg/L	ND	50 μg/L	90%	59-129%	8.3%	0-30%	
	Benzo(a)Anthracene	40.6 µg/L	ND	50 μg/L	81%	46-134%	6.9%	0-30%	
	Chrysene	36.0 µg/L	ND	50 μg/L	72%	46-129%	5.4%	0-30%	
	Bis(2-ethylhexyl)Phthalate	50.6 μg/L	ND	50 μg/L	101%	56-135%	4.8%	0-30%	
	Di-n-Octyl Phthalate	55.6 µg/L	ND	50 μg/L	111%	51-140%	2.6%	0-30%	
	3,4-Benzofluoranthene (Benzo(b)Fluoranthene)	42.0 μg/L	ND	50 μg/L	84%	45-132%	4.4%	0-30%	
	Benzo(k)Fluoranthene	41.6 µg/L	ND	50 μg/L	83%	42-127%	4.5%	0-30%	
	Benzo(a)Pyrene	41.8 µg/L	ND	50 μg/L	84%	45-132%	5.8%	0-30%	
	Indeno(1,2,3-c,d)pyrene	38.1 µg/L	ND	50 μg/L	76%	36-139%	18.4%	0-30%	
	Dibenzo(a,h)Anthracene	36.9 µg/L	ND	50 μg/L	74%	31-142%	16.2%	0-30%	
	Benzo(g,h,i)Perylene	36.5 µg/L	ND	50 μg/L	73%	32-145%	22.2%	0-30%	
Surrogate		Result		Spike Conc	Recovery	Rec Limits			
	2-Fluorophenol	25.6 µg/L		100 μg/L	26%	21-100%			
	Phenol-d6	16.6 µg/L		100 μg/L	17%	10-94%			
	Nitrobenzene-d5	31.9 µg/L		50 μg/L	64%	35-114%			
	2-Fluorobiphenyl	32.8 µg/L		50 μg/L	66%	43-116%			
	2,4,6-Tribromophenol	89.0 μg/L		100 μg/L	89%	10-123%			
	Terphenyl-d14	38.0 μg/L		50 μg/L	76%	33-141%			
QCBatch		00.0 µg/L		ου μg/ Ε	7070	00 11170			
Blank	2,4-D (2,4-Dichlorophenoxy acetic acid)	ND μg/L							
	2,4,5-TP (Silvex)	ND μg/L							
Surrogate		Result		Spike Conc	Recovery	Rec Limits			
3	2,4-DCAA	445 µg/L		500 μg/L	89%	60-140%			
LCS	2,4-D (2,4-Dichlorophenoxy acetic acid)	465 μg/L		500 μg/L	93%	60-140%			
	2,4,5-TP (Silvex)	445 µg/L		500 μg/L	89%	60-140%			
Surrogate		Result		Spike Conc	Recovery	Rec Limits			
og	2,4-DCAA	481 μg/L		500 μg/L	96%	60-140%			
LCSD	2,4-D (2,4-Dichlorophenoxy	479 μg/L		500 μg/L	96%	60-140%	3.0%	0-25%	
_555	acetic acid)	э рус		000 µg/L	3370	00 17070	0.070	0 20/0	

Order ID: 24070279 Date: 7/31/2024 Page 43 of 68

City of Sherman Chester Wilson

QC Summary

QC Type	e Parameter	Result	Reference Value	Spike Conc	Rec	Rec Limits	RPD	RPD Limits	Flag
	chID HERB_00125_L								
	2,4,5-TP (Silvex)	463 µg/L		500 μg/L	93%	60-140%	4.0%	0-25%	
Surro		Result		Spike Conc	Recovery	Rec Limits			
	2,4-DCAA	488 μg/L		500 μg/L	98%	60-140%			
MS	2,4-D (2,4-Dichlorophenoxy acetic acid)	446 μg/L	ND	500 μg/L	89%	60-140%			
	2,4,5-TP (Silvex)	423 µg/L	ND	500 μg/L	85%	60-140%			
Surro	ogate	Result		Spike Conc	Recovery	Rec Limits			
	2,4-DCAA	379 µg/L		500 μg/L	76%	60-140%			
MSD	2,4-D (2,4-Dichlorophenoxy acetic acid)	474 μg/L	ND	500 μg/L	95%	60-140%	6.1%	0-25%	
	2,4,5-TP (Silvex)	451 µg/L	ND	500 μg/L	90%	60-140%	6.4%	0-25%	
Surro	ogate	Result		Spike Conc	Recovery	Rec Limits			
	2,4-DCAA	422 μg/L		500 μg/L	84%	60-140%			
QCBato	chID HEXC_01620_L								
Blank	Hexachlorophene	ND μg/L							
Surro	ogate	Result		Spike Conc	Recovery	Rec Limits			
	DCAA	18.5 μg/L		25 μg/L	74%	10-130%			
LCS	Hexachlorophene	23.1 µg/L		25 μg/L	92%	10-130%			
Surro	ogate	Result		Spike Conc	Recovery	Rec Limits			
	DCAA	17.9 µg/L		25 μg/L	72%	10-130%			
LCSD	Hexachlorophene	23.1 µg/L		25 μg/L	92%	10-130%	0.0%	0-40%	
Surro	ogate	Result		Spike Conc	Recovery	Rec Limits			
	DCAA	17.9 µg/L		25 μg/L	72%	10-130%			
MS	Hexachlorophene	23.8 µg/L	ND	25 μg/L	95%	10-130%			
Surro	ogate	Result		Spike Conc	Recovery	Rec Limits			
	DCAA	19.2 μg/L		25 μg/L	77%	10-130%			
MSD	Hexachlorophene	22.3 µg/L	ND	25 μg/L	89%	10-130%	6.5%	0-40%	
Surro	ogate	Result		Spike Conc	Recovery	Rec Limits			
	DCAA	22.1 μg/L		25 μg/L	88%	10-130%			
QCBato	chID OCP02734_L								
Blank	alpha-BHC	ND μg/L							
	gamma-BHC (Lindane)	ND μg/L							
	beta-BHC	ND μg/L							
	delta-BHC	ND μg/L							
	Heptachlor	ND μg/L							
	Aldrin	ND μg/L							
	Heptachlor Epoxide	ND μg/L							
	alpha-Endosulfan (Endosulfan I)	ND μg/L							
	4,4'-DDE	ND μg/L							
	Dieldrin	ND μg/L							
	Endrin	ND μg/L							

Order ID: 24070279 Date: 7/31/2024 Page 44 of 68

City of Sherman Chester Wilson

QC Summary

		i	Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	ID OCP02734_L								
	4,4'-DDD	ND μg/L							
	beta-Endosulfan	ND μg/L							
	(Endosulfan II)								
	4,4'-DDT	ND μg/L							
	Endrin Aldehyde	ND μg/L							
	Endosulfan Sulfate	ND μg/L							
	Toxaphene	ND μg/L							
	Chlordane	ND μg/L							
Surrog	ate	Result		Spike Conc	Recovery	Rec Limits			
	Tetrachloro-m-xylene	74.4 μg/L		100 μg/L	74%	50-140%			
	Decachlorobiphenyl	88.7 μg/L		100 μg/L	89%	50-140%			
_CS	alpha-BHC	74.9 μg/L		100 μg/L	75%	40-140%			
	gamma-BHC (Lindane)	80.6 μg/L		100 μg/L	81%	40-140%			
	beta-BHC	83.0 μg/L		100 μg/L	83%	40-140%			
	delta-BHC	77.5 μg/L		100 μg/L	78%	40-140%			
	Heptachlor	84.3 μg/L		100 μg/L	84%	40-140%			
	Aldrin	80.7 μg/L		100 μg/L	81%	45-140%			
	Heptachlor Epoxide	85.3 μg/L		100 μg/L	85%	40-140%			
	alpha-Endosulfan (Endosulfan I)	90.1 μg/L		100 μg/L	90%	45-140%			
	4,4'-DDE	85.0 μg/L		100 μg/L	85%	40-140%			
	Dieldrin	86.9 µg/L		100 μg/L	87%	40-140%			
	Endrin	88.0 μg/L		100 μg/L	88%	40-140%			
	4,4'-DDD	83.6 μg/L		100 μg/L	84%	40-140%			
	beta-Endosulfan (Endosulfan II)	86.8 µg/L		100 μg/L	87%	40-140%			
	4,4'-DDT	87.2 μg/L		100 μg/L	87%	40-140%			
	Endosulfan Sulfate	71.8 μg/L		100 μg/L	72%	40-140%			
Surrog	ate	Result		Spike Conc	Recovery	Rec Limits			
	Tetrachloro-m-xylene	69.2 μg/L		100 μg/L	69%	50-140%			
	Decachlorobiphenyl	82.5 μg/L		100 μg/L	83%	50-140%			
LCSD	alpha-BHC	72.7 μg/L		100 μg/L	73%	40-140%	3.0%	0-35%	
	gamma-BHC (Lindane)	79.8 μg/L		100 μg/L	80%	40-140%	1.0%	0-35%	
	beta-BHC	83.2 μg/L		100 μg/L	83%	40-140%	0.2%	0-35%	
	delta-BHC	78.4 μg/L		100 μg/L	78%	40-140%	1.2%	0-35%	
	Heptachlor	81.6 μg/L		100 μg/L	82%	40-140%	3.3%	0-35%	
	Aldrin	77.7 μg/L		100 μg/L	78%	45-140%	3.8%	0-35%	
	Heptachlor Epoxide	84.2 μg/L		100 μg/L	84%	40-140%	1.3%	0-25%	
	alpha-Endosulfan (Endosulfan I)	89.3 μg/L		100 μg/L	89%	45-140%	0.9%	0-25%	
	4,4'-DDE	83.4 μg/L		100 μg/L	83%	40-140%	1.9%	0-35%	
	Dieldrin	86.0 μg/L		100 μg/L	86%	40-140%	1.0%	0-35%	
	Endrin	87.6 μg/L		100 μg/L	88%	40-140%	0.5%	0-35%	
	4,4'-DDD	83.7 μg/L		100 μg/L	84%	40-140%	0.1%	0-35%	

Order ID: 24070279 Date: 7/31/2024 Page 45 of 68

City of Sherman Chester Wilson

QC Summary

		I	Reference			Rec		RPD	
QC Type	e Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBate	chID OCP02734_L								
	beta-Endosulfan (Endosulfan II)	88.0 μg/L		100 μg/L	88%	40-140%	1.4%	0-35%	
	4,4'-DDT	86.5 μg/L		100 μg/L	87%	40-140%	0.8%	0-35%	
	Endosulfan Sulfate	77.5 μg/L		100 μg/L	78%	40-140%	7.6%	0-35%	
Surre	ogate	Result		Spike Conc	Recovery	Rec Limits			
	Tetrachloro-m-xylene	66.9 μg/L		100 μg/L	67%	50-140%			
	Decachlorobiphenyl	89.4 μg/L		100 μg/L	89%	50-140%			
MS	alpha-BHC	61.2 μg/L	ND	100 μg/L	61%	40-140%			
	gamma-BHC (Lindane)	65.8 μg/L	ND	100 μg/L	66%	40-140%			
	beta-BHC	72.8 μg/L	ND	100 μg/L	73%	40-140%			
	delta-BHC	71.7 μg/L	ND	100 μg/L	72%	40-140%			
	Heptachlor	79.2 μg/L	ND	100 μg/L	79%	40-140%			
	Aldrin	68.6 μg/L	ND	100 μg/L	69%	45-140%			
	Heptachlor Epoxide	80.4 μg/L	ND	100 μg/L	81%	40-140%			
	alpha-Endosulfan (Endosulfan I)	83.2 μg/L	ND	100 μg/L	83%	45-140%			
	4,4'-DDE	83.9 µg/L	ND	100 μg/L	84%	40-140%			
	Dieldrin	83.8 µg/L	ND	100 μg/L	84%	40-140%			
	Endrin	87.7 μg/L	ND	100 μg/L	88%	40-140%			
	4,4'-DDD	80.2 μg/L	ND	100 μg/L	80%	40-140%			
	beta-Endosulfan (Endosulfan II)	81.2 μg/L	ND	100 μg/L	81%	40-140%			
	4,4'-DDT	81.6 μg/L	ND	100 μg/L	82%	40-140%			
	Endosulfan Sulfate	75.6 μg/L	ND	100 μg/L	76%	40-140%			
Surre	ogate	Result		Spike Conc	Recovery	Rec Limits			
	Tetrachloro-m-xylene	68.0 μg/L		100 μg/L	68%	50-140%			
	Decachlorobiphenyl	81.0 μg/L		100 μg/L	81%	50-140%			
MSD	alpha-BHC	55.3 μg/L	ND	100 μg/L	55%	40-140%	10.1%	0-35%	
	gamma-BHC (Lindane)	59.2 μg/L	ND	100 μg/L	59%	40-140%	10.6%	0-35%	
	beta-BHC	66.4 μg/L	ND	100 μg/L	66%	40-140%	9.3%	0-35%	
	delta-BHC	64.7 μg/L	ND	100 μg/L	65%	40-140%	10.3%	0-35%	
	Heptachlor	71.3 µg/L	ND	100 μg/L	71%	40-140%	10.5%	0-35%	
	Aldrin	61.7 μg/L	ND	100 μg/L	62%	45-140%	10.6%	0-35%	
	Heptachlor Epoxide	71.4 μg/L	ND	100 μg/L	71%	40-140%	11.9%	0-25%	
	alpha-Endosulfan (Endosulfan I)	74.1 μg/L	ND	100 μg/L	74%	45-140%	11.6%	0-25%	
	4,4'-DDE	74.2 μg/L	ND	100 μg/L	74%	40-140%	12.3%	0-35%	
	Dieldrin	74.6 µg/L	ND	100 μg/L	75%	40-140%	11.6%	0-35%	
	Endrin	78.3 μg/L	ND	100 μg/L	78%	40-140%	11.3%	0-35%	
	4,4'-DDD	71.3 µg/L	ND	100 μg/L	71%	40-140%	11.7%	0-35%	
	beta-Endosulfan (Endosulfan II)	71.9 µg/L	ND	100 μg/L	72%	40-140%	12.1%	0-35%	
	4,4'-DDT	72.3 µg/L	ND	100 μg/L	72%	40-140%	12.1%	0-35%	
	Endosulfan Sulfate	63.3 µg/L	ND	100 μg/L	63%	40-140%	17.7%	0-35%	

Order ID: 24070279 Date: 7/31/2024 Page 46 of 68

City of Sherman Chester Wilson

QC Summary

		F	Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flags
QCBatc	hID OCP02734_L								
Surro	gate	Result		Spike Conc	Recovery	Rec Limits			
	Tetrachloro-m-xylene	67.7 μg/L		100 μg/L	68%	50-140%			
	Decachlorobiphenyl	79.8 μg/L		100 μg/L	80%	50-140%			
QCBatc	hID PCB_02734_L								
Blank	Aroclor - 1016	ND μg/L							
	Aroclor - 1221	ND μg/L							
	Aroclor - 1232	ND μg/L							
	Aroclor - 1242	ND μg/L							
	Aroclor - 1248	ND μg/L							
	Aroclor - 1254	ND μg/L							
	Aroclor - 1260	ND μg/L							
Surro	gate	Result		Spike Conc	Recovery	Rec Limits			
	Decachlorobiphenyl	77.2 μg/L		100 μg/L	77%	50-140%			
LCS	Aroclor - 1016	89.3 µg/L		100 μg/L	89%	50-140%			
	Aroclor - 1260	93.4 μg/L		100 μg/L	93%	40-140%			
Surro	gate	Result		Spike Conc	Recovery	Rec Limits			
	Decachlorobiphenyl	92.1 μg/L		100 μg/L	92%	50-140%			
LCSD	Aroclor - 1016	87.3 μg/L		100 μg/L	87%	50-140%	2.3%	0-35%	
	Aroclor - 1260	91.8 μg/L		100 μg/L	92%	40-140%	1.8%	0-35%	
Surro	gate	Result		Spike Conc	Recovery	Rec Limits			
	Decachlorobiphenyl	93.2 μg/L		100 μg/L	93%	50-140%			
MS	Aroclor - 1016	90.6 μg/L	ND	100 μg/L	91%	50-140%			
	Aroclor - 1260	86.1 µg/L	ND	100 μg/L	86%	40-140%			
Surro		Result		Spike Conc	Recovery				
	Decachlorobiphenyl	111 µg/L		100 μg/L	111%	50-140%			
MSD	Aroclor - 1016	102 μg/L	ND	100 μg/L	102%	50-140%	11.4%	0-35%	
	Aroclor - 1260	98.7 μg/L	ND	100 μg/L	99%	40-140%	13.7%	0-35%	
Surro		Result		Spike Conc	Recovery		1011 70	0 0070	
	Decachlorobiphenyl	114 µg/L		100 μg/L	114%	50-140%			
QCBatc									
Blank	Methyl Chloride	ND μg/L							
	(Chloromethane)	. 0							
	Vinyl Chloride	ND μg/L							
	Methyl Bromide (Bromomethane)	ND μg/L							
	Chloroethane	ND μg/L							
	Acrolein	ND μg/L							
	1,1-Dichloroethylene	ND μg/L							
	Methylene Chloride	ND μg/L							
	Acrylonitrile	ND μg/L							
	1,2-Trans-Dichloroethylene	ND μg/L							
	1,1-Dichloroethane	ND μg/L							

Order ID: 24070279 Date: 7/31/2024 Page 47 of 68

City of Sherman Chester Wilson

QC Summary

QC Type	Parameter	Result	Reference Value	Spike Conc	Rec	Rec Limits	RPD	RPD Limits	Flag
QCBatch	ID VOC_33224_L								
	Methyl Ethyl Ketone (2- Butanone)	ND μg/L							
	Chloroform	ND μg/L							
	1,1,1-Trichloroethane	ND μg/L							
	Carbon Tetrachloride (Tetrachloromethane)	ND μg/L							
	Benzene	ND μg/L							
	1,2-Dichloroethane	ND μg/L							
	Trichloroethylene	ND μg/L							
	1,2-Dichloropropane	ND μg/L							
	Dichlorobromomethane (Bromodichloromethane)	ND μg/L							
	2-Chloroethylvinyl Ether	ND μg/L							
	Cis-1,3-dichloropropylene	ND μg/L							
	Toluene	ND μg/L							
	trans 1,3-Dichloropropylene	ND μg/L							
	1,1,2-Trichloroethane	ND μg/L							
	Tetrachloroethylene	ND μg/L							
	1,2-Dibromoethane (EDB)	ND μg/L							
	Chlorodibromomethane (Dibromochloromethane)	ND μg/L							
	Chlorobenzene	ND μg/L							
	Ethylbenzene	ND μg/L							
	Bromoform (Tribromomethane)	ND μg/L							
	1,1,2,2-Tetrachloroethane	ND μg/L							
	1,2-Dichlorobenzene	ND μg/L							
	1,3-Dichlorobenzene	ND μg/L							
	1,4-Dichlorobenzene	ND μg/L							
Surroga	ate	Result		Spike Conc	Recovery	Rec Limits			
	Dibromofluoromethane	48.3 µg/L		50 μg/L	97%	86-118%			
	1,2 Dichloroethane-d4	50.2 μg/L		50 μg/L	100%	80-120%			
	Toluene-d8	51.6 µg/L		50 μg/L	103%	88-117%			
	4-Bromofluorobenzene	47.7 μg/L		50 μg/L	95%	86-115%			
LCS	Methyl Chloride (Chloromethane)	55.0 μg/L		50 μg/L	110%	10-273%			
	Vinyl Chloride	54.7 µg/L		50 μg/L	109%	10-251%			
	Methyl Bromide (Bromomethane)	48.8 μg/L		50 μg/L	98%	10-242%			
	Chloroethane	65.6 µg/L		50 μg/L	131%	14-230%			
	Trichlorofluoromethane	54.2 μg/L		50 μg/L	108%	17-181%			
	1,1-Dichloroethylene	54.3 μg/L		50 μg/L	109%	10-243%			
	Methylene Chloride	50.0 μg/L		50 μg/L	100%	10-221%			
	1,2-Trans-Dichloroethylene	54.6 μg/L		50 μg/L	109%	54-156%			
	1,1-Dichloroethane	57.1 μg/L		50 μg/L	114%	59-155%			
	Chloroform	51.4 μg/L		50 μg/L	103%	51-138%			

Order ID: 24070279 Date: 7/31/2024 Page 48 of 68

City of Sherman Chester Wilson

QC Summary

		ı	Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	ID VOC_33224_L								
	1,1,1-Trichloroethane	55.1 μg/L		50 μg/L	110%	52-162%			
	Carbon Tetrachloride (Tetrachloromethane)	50.1 μg/L		50 μg/L	100%	70-140%			
	1,2-Dichloroethane	50.4 μg/L		50 μg/L	101%	49-155%			
	Benzene	50.5 μg/L		50 μg/L	101%	37-151%			
	Trichloroethylene	50.4 μg/L		50 μg/L	101%	71-157%			
	1,2-Dichloropropane	50.8 μg/L		50 μg/L	102%	10-210%			
	Dichlorobromomethane (Bromodichloromethane)	55.0 μg/L		50 μg/L	110%	35-155%			
	Toluene	51.6 μg/L		50 μg/L	103%	47-150%			
	trans 1,3-Dichloropropylene	46.8 μg/L		50 μg/L	94%	17-183%			
	1,1,2-Trichloroethane	52.2 μg/L		50 μg/L	104%	52-150%			
	Cis-1,3-dichloropropene	49.7 μg/L		50 μg/L	99%	10-227%			
	Tetrachloroethylene	50.1 μg/L		50 μg/L	100%	64-148%			
	Chlorodibromomethane (Dibromochloromethane)	48.7 μg/L		50 μg/L	97%	53-149%			
	Chlorobenzene	51.1 μg/L		50 μg/L	102%	37-160%			
	Ethylbenzene	51.9 μg/L		50 μg/L	104%	37-162%			
	Bromoform (Tribromomethane)	45.1 μg/L		50 μg/L	90%	45-169%			
	1,1,2,2-Tetrachloroethane	48.6 μg/L		50 μg/L	97%	46-157%			
	1,3-Dichlorobenzene	51.1 μg/L		50 μg/L	102%	59-156%			
	1,4-Dichlorobenzene	49.7 μg/L		50 μg/L	99%	18-190%			
	1,2-Dichlorobenzene	51.4 μg/L		50 μg/L	103%	18-190%			
Surrog	ate	Result		Spike Conc	Recovery	Rec Limits			
	Dibromofluoromethane	53.9 μg/L		50 μg/L	108%	86-118%			
	1,2 Dichloroethane-d4	50.0 μg/L		50 μg/L	100%	80-120%			
	Toluene-d8	50.5 μg/L		50 μg/L	101%	88-117%			
	4-Bromofluorobenzene	49.5 μg/L		50 μg/L	99%	86-115%			
LCSD	Methyl Chloride (Chloromethane)	53.3 μg/L		50 μg/L	107%	10-273%	3.1%	0-25%	
	Vinyl Chloride	53.9 μg/L		50 μg/L	108%	10-251%	1.5%	0-25%	
	Methyl Bromide (Bromomethane)	48.2 μg/L		50 μg/L	96%	10-242%	1.2%	0-25%	
	Chloroethane	61.0 μg/L		50 μg/L	122%	14-230%	7.3%	0-25%	
	Trichlorofluoromethane	53.1 μg/L		50 μg/L	106%	17-181%	2.1%	0-25%	
	1,1-Dichloroethylene	53.7 μg/L		50 μg/L	107%	10-243%	1.1%	0-25%	
	Methylene Chloride	48.9 μg/L		50 μg/L	98%	10-221%	2.2%	0-25%	
	1,2-Trans-Dichloroethylene	53.7 μg/L		50 μg/L	107%	54-156%	1.7%	0-25%	
	1,1-Dichloroethane	55.9 μg/L		50 μg/L	112%	59-155%	2.1%	0-25%	
	Chloroform	50.5 μg/L		50 μg/L	101%	51-138%	1.8%	0-25%	
	1,1,1-Trichloroethane	54.8 μg/L		50 μg/L	110%	52-162%	0.5%	0-25%	
	Carbon Tetrachloride (Tetrachloromethane)	49.7 μg/L		50 μg/L	99%	70-140%	0.8%	0-25%	
	(Tetracriloronnemane)								
	1,2-Dichloroethane	50.0 μg/L		50 μg/L	100%	49-155%	0.8%	0-25%	

Order ID: 24070279 Date: 7/31/2024 Page 49 of 68

City of Sherman Chester Wilson

QC Summary

			Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	ID VOC33224_L								
	Trichloroethylene	50.0 μg/L		50 μg/L	100%	71-157%	0.8%	0-25%	
	1,2-Dichloropropane	49.9 µg/L		50 μg/L	100%	10-210%	1.8%	0-25%	
	Dichlorobromomethane	54.2 μg/L		50 μg/L	108%	35-155%	1.5%	0-25%	
	(Bromodichloromethane)								
	Toluene	50.6 μg/L		50 μg/L	101%	47-150%	2.0%	0-25%	
	trans 1,3-Dichloropropylene	46.7 µg/L		50 μg/L	93%	17-183%	0.2%	0-25%	
	1,1,2-Trichloroethane	52.1 μg/L		50 μg/L	104%	52-150%	0.2%	0-25%	
	Cis-1,3-dichloropropene	49.4 µg/L		50 μg/L	99%	10-227%	0.6%	0-25%	
	Tetrachloroethylene	49.4 µg/L		50 μg/L	99%	64-148%	1.4%	0-25%	
	Chlorodibromomethane (Dibromochloromethane)	48.4 μg/L		50 μg/L	97%	53-149%	0.6%	0-25%	
	Chlorobenzene	50.1 μg/L		50 μg/L	100%	37-160%	2.0%	0-25%	
	Ethylbenzene	50.9 μg/L		50 μg/L	102%	37-162%	1.9%	0-25%	
	Bromoform (Tribromomethane)	45.1 μg/L		50 μg/L	90%	45-169%	0.0%	0-25%	
	1,1,2,2-Tetrachloroethane	48.1 µg/L		50 μg/L	96%	46-157%	1.0%	0-25%	
	1,3-Dichlorobenzene	51.1 µg/L		50 μg/L	102%	59-156%	0.0%	0-25%	
	1,4-Dichlorobenzene	49.6 µg/L		50 μg/L	99%	18-190%	0.2%	0-25%	
	1,2-Dichlorobenzene	51.2 μg/L		50 μg/L	102%	18-190%	0.4%	0-25%	
Surrog	·	Result		Spike Conc	Recovery	Rec Limits			
	Dibromofluoromethane	53.2 μg/L		50 μg/L	106%	86-118%			
	1,2 Dichloroethane-d4	50.1 μg/L		50 μg/L	100%	80-120%			
	Toluene-d8	49.9 μg/L		50 μg/L	100%	88-117%			
	4-Bromofluorobenzene	49.0 μg/L		50 μg/L	98%	86-115%			
MS	Methyl Chloride		ND		107%				
VIO	(Chloromethane)	53.7 μg/L		50 μg/L		10-273%			
	Vinyl Chloride	55.1 µg/L	ND	50 μg/L	110%	10-251%			
	Methyl Bromide (Bromomethane)	45.9 μg/L	ND	50 μg/L	92%	10-242%			
	Chloroethane	50.1 μg/L	ND	50 μg/L	100%	14-230%			
	Trichlorofluoromethane	53.6 μg/L	ND	50 μg/L	107%	17-181%			
	1,1-Dichloroethylene	54.0 μg/L	ND	50 μg/L	108%	10-243%			
	Methylene Chloride	49.1 µg/L	ND	50 μg/L	98%	10-221%			
	1,2-Trans-Dichloroethylene	54.1 µg/L	ND	50 μg/L	108%	54-156%			
	1,1-Dichloroethane	56.5 μg/L	ND	50 μg/L	113%	59-155%			
	Chloroform	50.8 μg/L	ND	50 μg/L	102%	51-138%			
	1,1,1-Trichloroethane	54.6 µg/L	ND	50 μg/L	109%	52-162%			
	Carbon Tetrachloride (Tetrachloromethane)	49.9 μg/L	ND	50 μg/L	100%	70-140%			
	1,2-Dichloroethane	50.7 μg/L	ND	50 μg/L	101%	49-155%			
	Benzene	50.3 μg/L	ND	50 μg/L	101%	37-151%			
	Trichloroethylene	49.9 μg/L	ND	50 μg/L	100%	71-157%			
	1,2-Dichloropropane	50.3 μg/L	ND	50 μg/L	101%	10-210%			
	Dichlorobromomethane (Bromodichloromethane)	54.1 μg/L	ND	50 μg/L	108%	35-155%			
		51.7 μg/L	ND	50 μg/L	103%	47-150%			

Order ID: 24070279 Date: 7/31/2024 Page 50 of 68

City of Sherman Chester Wilson

QC Summary

		ı	Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	nID VOC33224_L								
	trans 1,3-Dichloropropylene	46.3 µg/L	ND	50 μg/L	93%	17-183%			
	1,1,2-Trichloroethane	52.4 µg/L	ND	50 μg/L	105%	52-150%			
	Cis-1,3-dichloropropene	49.1 µg/L	ND	50 μg/L	98%	10-227%			
	Tetrachloroethylene	49.3 µg/L	ND	50 μg/L	99%	64-148%			
	Chlorodibromomethane (Dibromochloromethane)	48.1 μg/L	ND	50 μg/L	96%	53-149%			
	Chlorobenzene	50.4 μg/L	ND	50 μg/L	101%	37-160%			
	Ethylbenzene	51.6 µg/L	ND	50 μg/L	103%	37-162%			
	Bromoform (Tribromomethane)	45.0 μg/L	ND	50 μg/L	90%	45-169%			
	1,1,2,2-Tetrachloroethane	50.2 μg/L	ND	50 μg/L	100%	46-157%			
	1,3-Dichlorobenzene	51.0 µg/L	ND	50 μg/L	102%	59-156%			
	1,4-Dichlorobenzene	49.2 µg/L	ND	50 μg/L	98%	18-190%			
	1,2-Dichlorobenzene	51.4 µg/L	ND	50 μg/L	103%	18-190%			
Surrog	jate	Result		Spike Conc	Recovery	Rec Limits			
_	Dibromofluoromethane	53.8 µg/L		50 μg/L	108%	86-118%			
	1,2 Dichloroethane-d4	50.2 μg/L		50 μg/L	100%	80-120%			
	Toluene-d8	49.9 μg/L		50 μg/L	100%	88-117%			
	4-Bromofluorobenzene	49.2 μg/L		50 μg/L	98%	86-115%			
MSD	Methyl Chloride	54.6 μg/L	ND	50 μg/L	109%	10-273%	1.7%	0-25%	
VISD	(Chloromethane)								
	Vinyl Chloride	54.9 µg/L	ND	50 μg/L	110%	10-251%	0.4%	0-25%	
	Methyl Bromide (Bromomethane)	47.6 μg/L	ND	50 μg/L	95%	10-242%	3.6%	0-25%	
	Chloroethane	48.9 μg/L	ND	50 μg/L	98%	14-230%	2.4%	0-25%	
	Trichlorofluoromethane	53.2 μg/L	ND	50 μg/L	106%	17-181%	0.8%	0-25%	
	1,1-Dichloroethylene	53.7 μg/L	ND	50 μg/L	107%	10-243%	0.6%	0-25%	
	Methylene Chloride	48.1 μg/L	ND	50 μg/L	96%	10-221%	2.1%	0-25%	
	1,2-Trans-Dichloroethylene	53.8 μg/L	ND	50 μg/L	108%	54-156%	0.6%	0-25%	
	1,1-Dichloroethane	55.5 μg/L	ND	50 μg/L	111%	59-155%	1.8%	0-25%	
	Chloroform	49.9 μg/L	ND	50 μg/L	100%	51-138%	1.8%	0-25%	
	1,1,1-Trichloroethane	54.9 μg/L	ND	50 μg/L	110%	52-162%	0.6%	0-25%	
	Carbon Tetrachloride (Tetrachloromethane)	50.2 μg/L	ND	50 μg/L	100%	70-140%	0.6%	0-25%	
	1,2-Dichloroethane	49.5 μg/L	ND	50 μg/L	99%	59-155%	2.4%	0-25%	
	Benzene	49.8 µg/L	ND	50 μg/L	100%	37-151%	1.0%	0-25%	
	Trichloroethylene	50.2 μg/L	ND	50 μg/L	100%	71-157%	0.6%	0-25%	
	1,2-Dichloropropane	50.1 μg/L	ND	50 μg/L	100%	10-210%	0.4%	0-25%	
	Dichlorobromomethane (Bromodichloromethane)	53.6 μg/L	ND	50 μg/L	107%	35-155%	0.9%	0-25%	
	Toluene	51.9 μg/L	ND	50 μg/L	104%	47-150%	0.4%	0-25%	
	trans 1,3-Dichloropropylene	46.3 μg/L	ND	50 μg/L	93%	17-183%	0.0%	0-25%	
	1,1,2-Trichloroethane	51.8 μg/L	ND	50 μg/L	104%	52-150%	1.2%	0-25%	
	Cis-1,3-dichloropropene	49.0 µg/L	ND	50 μg/L	98%	10-227%	0.2%	0-25%	
	Tetrachloroethylene	50.9 μg/L	ND	50 μg/L	102%	64-148%	3.2%	0-25%	

Order ID: 24070279 Date: 7/31/2024 Page 51 of 68

City of Sherman Chester Wilson

QC Summary

		F	Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	nID VOC33224_L								
	Chlorodibromomethane (Dibromochloromethane)	48.0 μg/L	ND	50 μg/L	96%	53-149%	0.2%	0-25%	
	Chlorobenzene	50.6 μg/L	ND	50 μg/L	101%	37-160%	0.4%	0-25%	
	Ethylbenzene	52.1 μg/L	ND	50 μg/L	104%	37-162%	1.0%	0-25%	
	Bromoform (Tribromomethane)	45.0 μg/L	ND	50 μg/L	90%	45-169%	0.0%	0-25%	
	1,1,2,2-Tetrachloroethane	50.0 μg/L	ND	50 μg/L	100%	46-157%	0.4%	0-25%	
	1,3-Dichlorobenzene	51.6 μg/L	ND	50 μg/L	103%	59-156%	1.2%	0-25%	
	1,4-Dichlorobenzene	50.2 μg/L	ND	50 μg/L	100%	18-190%	2.0%	0-25%	
	1,2-Dichlorobenzene	51.9 μg/L	ND	50 μg/L	104%	18-190%	1.0%	0-25%	
Surrog	ate	Result		Spike Conc	Recovery	Rec Limits			
	Dibromofluoromethane	53.0 μg/L		50 μg/L	106%	86-118%			
	1,2 Dichloroethane-d4	49.8 μg/L		50 μg/L	100%	80-120%			
	Toluene-d8	50.3 μg/L		50 μg/L	101%	88-117%			
	4-Bromofluorobenzene	49.7 μg/L		50 μg/L	99%	86-115%			
QCBatch	nID SUB_50723_L			· · · · · · · · · · · · · · · · · · ·					
Blank	Tetramethylammonium	ND μg/L							
Jianik	Hydroxide								
	Benzyldimethyldecylammon ium	ND μg/L							
	Benzyldimethyldodecylamm onium	ND μg/L							
	Benzyldimethylhexadecyla mmonium	ND μg/L							
	Benzyldimethyloctadecylam monium	ND μg/L							
	Benzyldimethyloctylammoni um	ND μg/L							
	Benzyldimethyltetradecylam monium	ND μg/L							
	Cetylpyridinium	ND μg/L							
	Didecyldimethylammonium	ND μg/L							
	Didodecyldimethylammoniu m	ND μg/L							
	Dihexadecyldimethylammo nium	ND μg/L							
	Dioctadecyldimethylammoni um	ND μg/L							
	Dioctyldimethylammonium	ND μg/L							
		"							
	Ditetradecyldimethylammon ium	ND μg/L							
	Ditetradecyldimethylammon	ND μg/L							
	Ditetradecyldimethylammon ium Octyldecyldimethylammoniu								

Order ID: 24070279 Date: 7/31/2024 Page 52 of 68

City of Sherman Chester Wilson

QC Summary

		F	Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	ID SUB50723_L								
Surrog	ate	Result		Spike Conc	Recovery	Rec Limits			
	d25-DADMAC	145 µg/L		250 μg/L	58%	60-140%			Q-1
LCS	Benzyldimethyldecylammon ium	50.8 μg/L		50 μg/L	102%	60-140%			
	Benzyldimethyldodecylamm onium	49.1 μg/L		50 μg/L	98%	60-140%			
	Benzyldimethylhexadecyla mmonium	55.2 μg/L		50 μg/L	110%	60-140%			
	Benzyldimethyloctadecylam monium	54.2 μg/L		50 μg/L	108%	60-140%			
	Benzyldimethyloctylammoni um	59.2 μg/L		50 μg/L	118%	60-140%			
	Benzyldimethyltetradecylam monium	55.4 μg/L		50 μg/L	111%	60-140%			
	Cetylpyridinium	47.6 μg/L		50 μg/L	95%	60-140%			
	Didecyldimethylammonium	38.0 μg/L		50 μg/L	76%	60-140%			
	Didodecyldimethylammoniu m	37.2 μg/L		50 μg/L	74%	60-140%			
	Dihexadecyldimethylammo nium	30.1 μg/L		50 μg/L	60%	60-140%			
	Dioctadecyldimethylammoni um	20.7 μg/L		50 μg/L	41%	60-140%			Q-
	Dioctyldimethylammonium	45.9 μg/L		50 μg/L	92%	60-140%			
	Ditetradecyldimethylammon ium	35.6 μg/L		50 μg/L	71%	60-140%			
	Octyldecyldimethylammoniu m	33.5 μg/L		50 μg/L	67%	60-140%			
	Tetramethylammonium	491 µg/L		500 μg/L	98%	60-140%			
	Tetrapropylammonium	41.0 μg/L		50 μg/L	82%	60-140%			
Surrog	ate	Result		Spike Conc	Recovery	Rec Limits			
	d25-DADMAC	179 μg/L		250 μg/L	72%	60-140%			
LCSD	Benzyldimethyldecylammon ium	59.4 μg/L		50 μg/L	119%	60-140%	15.6%	0-30%	
	Benzyldimethyldodecylamm onium	58.2 μg/L		50 μg/L	116%	60-140%	17.0%	0-30%	
	Benzyldimethylhexadecyla mmonium	66.2 μg/L		50 μg/L	132%	60-140%	18.1%	0-30%	
	Benzyldimethyloctadecylam monium	65.0 μg/L		50 μg/L	130%	60-140%	18.1%	0-30%	
	Benzyldimethyloctylammoni um	69.1 µg/L		50 μg/L	138%	60-140%	15.4%	0-30%	
	Benzyldimethyltetradecylam monium	65.9 µg/L		50 μg/L	132%	60-140%	17.3%	0-30%	
	Cetylpyridinium	56.0 μg/L		50 μg/L	112%	60-140%	16.2%	0-30%	
	Didecyldimethylammonium	45.6 μg/L		50 μg/L	91%	60-140%	18.2%	0-30%	
	Didodecyldimethylammoniu m	44.9 μg/L		50 μg/L	90%	60-140%	18.8%	0-30%	

Order ID: 24070279 Date: 7/31/2024 Page 53 of 68

City of Sherman Chester Wilson

QC Summary

		ı	Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	ID SUB50723_L								
	Dihexadecyldimethylammo nium	34.6 μg/L		50 μg/L	69%	60-140%	13.9%	0-30%	
	Dioctadecyldimethylammoni um	22.5 μg/L		50 μg/L	45%	60-140%	8.3%	0-30%	Q-
	Dioctyldimethylammonium	55.6 μg/L		50 μg/L	111%	60-140%	19.1%	0-30%	
	Ditetradecyldimethylammon ium	42.6 μg/L		50 μg/L	85%	60-140%	17.9%	0-30%	
	Octyldecyldimethylammoniu m	40.6 μg/L		50 μg/L	81%	60-140%	19.2%	0-30%	
	Tetramethylammonium	563 μg/L		500 μg/L	113%	60-140%	13.7%	0-30%	
	Tetrapropylammonium	47.5 μg/L		50 μg/L	95%	60-140%	14.7%	0-30%	
Surrog	ate	Result		Spike Conc	Recovery	Rec Limits			
	d25-DADMAC	175 μg/L		250 μg/L	70%	60-140%			
MS	Benzyldimethyldecylammon ium	544 μg/L	ND	500 μg/L	109%	50-150%			
	Benzyldimethyldodecylamm onium	513 μg/L	ND	500 μg/L	103%	50-150%			
	Benzyldimethylhexadecyla mmonium	377 μg/L	ND	500 μg/L	75%	50-150%			
	Benzyldimethyloctadecylam monium	351 μg/L	ND	500 μg/L	70%	50-150%			
	Benzyldimethyloctylammoni um	635 μg/L	ND	500 μg/L	127%	50-150%			
	Benzyldimethyltetradecylam monium	475 μg/L	ND	500 μg/L	95%	50-150%			
	Cetylpyridinium	361 µg/L	ND	500 μg/L	72%	50-150%			
	Didecyldimethylammonium	297 μg/L	ND	500 μg/L	59%	50-150%			
	Didodecyldimethylammoniu m	234 μg/L	ND	500 μg/L	47%	50-150%			Q-1
	Dihexadecyldimethylammo nium	147 μg/L	ND	500 μg/L	29%	50-150%			Q-1
	Dioctadecyldimethylammoni um	81.9 μg/L	ND	500 μg/L	16%	50-150%			Q-
	Dioctyldimethylammonium	463 µg/L	ND	500 μg/L	93%	50-150%			
	Ditetradecyldimethylammon ium	249 μg/L	ND	500 μg/L	50%	50-150%			Q-
	Octyldecyldimethylammoniu m	300 μg/L	ND	500 μg/L	60%	50-150%			
	Tetramethylammonium	309 μg/L	ND	500 μg/L	62%	50-150%			
_	Tetrapropylammonium	396 µg/L	ND	500 μg/L	79%	50-150%			
Surrog		Result		Spike Conc	Recovery				
	d25-DADMAC	112 µg/L		250 μg/L	45%	60-140%			Q-
MSD	Benzyldimethyldecylammon ium	587 μg/L	ND	500 μg/L	117%	50-150%	7.6%	0-30%	
	Benzyldimethyldodecylamm onium	555 μg/L	ND	500 μg/L	111%	50-150%	7.9%	0-30%	
	Benzyldimethylhexadecyla mmonium	401 μg/L	ND	500 μg/L	80%	50-150%	6.2%	0-30%	

Order ID: 24070279 Date: 7/31/2024 Page 54 of 68

City of Sherman Chester Wilson

QC Summary

				Reference			Rec		RPD	
QC Type	Paramete	r	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	ID SUB_	_50723_L								
	Benzyldime monium	thyloctadecylam	382 μg/L	ND	500 μg/L	76%	50-150%	8.5%	0-30%	
		thyloctylammoni	694 µg/L	ND	500 μg/L	139%	50-150%	8.9%	0-30%	
		thyltetradecylam	499 µg/L	ND	500 μg/L	100%	50-150%	4.9%	0-30%	
	Cetylpyridin	ium	385 µg/L	ND	500 μg/L	77%	50-150%	6.4%	0-30%	
		ethylammonium	319 µg/L	ND	500 μg/L	64%	50-150%	7.1%	0-30%	
		methylammoniu	257 μg/L	ND	500 μg/L	51%	50-150%	9.4%	0-30%	
	Dihexadecy nium	ldimethylammo	174 μg/L	ND	500 μg/L	35%	50-150%	16.8%	0-30%	Q-
	Dioctadecyl um	dimethylammoni	103 μg/L	ND	500 μg/L	21%	50-150%	22.8%	0-30%	Q-
	Dioctyldime	thylammonium	518 µg/L	ND	500 μg/L	104%	50-150%	11.2%	0-30%	
	Ditetradecyl ium	dimethylammon	266 μg/L	ND	500 μg/L	53%	50-150%	6.6%	0-30%	
	Octyldecyld m	imethylammoniu	339 µg/L	ND	500 μg/L	68%	50-150%	12.2%	0-30%	
	Tetramethyl		336 µg/L	ND	500 μg/L	67%	50-150%	8.4%	0-30%	
_	Tetrapropyla	ammonium	444 µg/L	ND	500 μg/L	89%	50-150%	11.4%	0-30%	
Surrog			Result		Spike Conc	Recovery	Rec Limits			
	d25-DADM	AC	126 μg/L		250 μg/L	50%	60-140%			Q-
QCBatch	ID SUB_	_50823_L								
Blank	Silica		ND mg/L							
	Silicate		ND mg/L							
QCBatch	ID SUB_	_50923_L								
Blank	Chlorpyrifos	;	ND μg/L							
Surrog	ate		Result		Spike Conc	Recovery	Rec Limits			
	Tributylphos	sphate	181 ug/L		1000 ug/L	18%	0.1-115%			
	Triphenylph	osphate	342 ug/L		1000 ug/L	34%	0.1-115%			
LCS	Chlorpyrifos	i	405 μg/L		1000 μg/L	41%	0-128%			
Surrog	ate		Result		Spike Conc	Recovery	Rec Limits			
	Tributylphos	sphate	481 ug/L		1000 ug/L	48%	0.1-115%			
	Triphenylph	osphate	432 ug/L		1000 ug/L	43%	0.1-115%			
LCSD	Chlorpyrifos	}	384 µg/L		1000 μg/L	38%	0-128%	5.3%	0-30%	
Surrog	ate		Result		Spike Conc	Recovery	Rec Limits			
	Tributylphos	sphate	450 ug/L		1000 ug/L	45%	0.1-115%			
	Triphenylph	osphate	348 ug/L		1000 ug/L	35%	0.1-115%			
MS	Chlorpyrifos	i	304 µg/L	ND	1000 μg/L	30%	80-120%			Q-
Surrog			Result		Spike Conc	Recovery	Rec Limits			
	Tributylphos	sphate	397 ug/L		1000 ug/L	40%	0.1-115%			
	Triphenylph	•	469 ug/L		1000 ug/L	47%	0.1-115%			

Order ID: 24070279 Date: 7/31/2024 Page 55 of 68

City of Sherman Chester Wilson

QC Summary

QC Type	Parameter	Result	Reference Value	Spike Conc	Rec	Rec Limits	RPD	RPD Limits	Flags
QCBatcl	hID SUB 50923_L								
Surrog	gate	Result		Spike Conc	Recovery	Rec Limits			
`	Tributylphosphate	323 ug/L		1000 ug/L	32%	0.1-115%			
	Triphenylphosphate	398 ug/L		1000 ug/L	40%	0.1-115%			
QCBatcl									-
Blank	Demeton	ND μg/L							
Dialik	Diazinon	ND μg/L							
	Guthion (Azinphos Methyl)	ND μg/L							
	Malathion	ND μg/L ND μg/L							
	Parathion Ethyl	ND μg/L ND μg/L							
	Parathion Methyl	ND μg/L							
Surrog	•	Result		Spike Conc	Recovery	Rec Limits			
Surrog	Tributylphosphate	181 ug/L		2000 ug/L	9%	0.1-148%			
	Triphenylphosphate	_		Ū	17%	0.1-146%			
1.00		342 ug/L		2000 ug/L					
LCS	Guthion (Azinphos Methyl)	437 µg/L		1000 µg/L	44%	0-183%			
	Demeton	332 μg/L		1000 µg/L	33%	0-118%			
	Diazinon	450 μg/L		1000 µg/L	45%	12-120%			
	Malathion	418 µg/L		1000 µg/L	42%	7-144%			
	Parathion Ethyl	370 μg/L		1000 µg/L	37%	6-144%			
C	Parathion Methyl	375 μg/L		1000 μg/L	38%	7-150%			
Surrog		Result		Spike Conc	Recovery	Rec Limits			
	Tributylphosphate	481 ug/L		2000 ug/L	24%	0.1-148%			
	Triphenylphosphate	432 ug/L		2000 ug/L	22%	0.1-406%			
LCSD	Guthion (Azinphos Methyl)	422 µg/L		1000 μg/L	42%	0-183%	3.5%	0-30%	
	Demeton	312 µg/L		1000 μg/L	31%	0-118%	6.2%	0-30%	
	Diazinon	417 µg/L		1000 μg/L	42%	12-120%	7.6%	0-30%	
	Malathion	391 µg/L		1000 μg/L	39%	7-144%	6.7%	0-30%	
	Parathion Ethyl	358 µg/L		1000 μg/L	36%	6-144%	3.3%	0-30%	
_	Parathion Methyl	356 µg/L		1000 µg/L	36%	7-150%	5.2%	0-30%	
Surrog		Result		Spike Conc	Recovery	Rec Limits			
	Tributylphosphate	450 ug/L		2000 ug/L	23%	0.1-148%			
	Triphenylphosphate	348 ug/L		2000 ug/L	17%	0.1-406%			
MS	Guthion (Azinphos Methyl)	391 µg/L	ND	1000 μg/L	39%	30-150%			
	Demeton	247 μg/L	ND	1000 μg/L	25%	30-150%			Q-
	Diazinon	341 µg/L	ND	1000 μg/L	34%	30-150%			
	Malathion	330 µg/L	ND	1000 μg/L	33%	30-150%			
	Parathion Ethyl	361 µg/L	ND	1000 μg/L	36%	30-150%			
	Parathion Methyl	379 µg/L	ND	1000 μg/L	38%	30-150%			
Surrog	gate	Result		Spike Conc	Recovery	Rec Limits			
	Tributylphosphate	397 ug/L		2000 ug/L	20%	0.1-148%			
	Triphenylphosphate	469 ug/L		2000 ug/L	23%	0.1-406%			
MSD	Guthion (Azinphos Methyl)	375 µg/L	ND	1000 μg/L	38%	30-150%	4.2%	0-30%	
	Demeton	203 μg/L	ND	1000 μg/L	20%	30-150%	19.6%	0-30%	Q-7
	Diazinon	289 µg/L	ND	1000 μg/L	29%	30-150%	16.5%	0-30%	Q-7

Order ID: 24070279 Date: 7/31/2024 Page 56 of 68

City of Sherman Chester Wilson

QC Summary

		ı	Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	nID SUB51023_L								
	Malathion	290 μg/L	ND	1000 μg/L	29%	30-150%	12.9%	0-30%	Q-
	Parathion Ethyl	313 µg/L	ND	1000 μg/L	31%	30-150%	14.2%	0-30%	
	Parathion Methyl	320 µg/L	ND	1000 μg/L	32%	30-150%	16.9%	0-30%	
Surrog	ate	Result		Spike Conc	Recovery	Rec Limits			
	Tributylphosphate	323 ug/L		2000 ug/L	16%	0.1-148%			
	Triphenylphosphate	398 ug/L		2000 ug/L	20%	0.1-406%			
QCBatch	nID SUB51123_L								
Blank	Carbaryl	ND μg/L							
	Diuron	62.0 µg/L							
LCS	Carbaryl	889 µg/L		1000 μg/L	89%	17-131%			
	Diuron	28.0 μg/L		1000 μg/L	03%	0-156%			
LCSD	Carbaryl	804 μg/L		1000 μg/L	80%	17-131%	10.0%	0-30%	
	Diuron	663 µg/L		1000 μg/L	%	0-156%			Q-12
MS	Carbaryl	0.0133 μg/L	ND	1000 μg/L	00%	0-215%			Q-
	Diuron	0.169 µg/L	ND	1000 μg/L	00%	0-148%			Q-1
MSD	Carbaryl	1.78 µg/L	ND	1000 μg/L	%	0-215%			Q-12
	Diuron	0.172 μg/L	ND	1000 μg/L	00%	0-148%	1.8%	0-30%	Q-7
QCBatch	nID SUB51223_L								
Blank	Dicofol (Kelthane)	ND μg/L							
	Methoxychlor	ND μg/L							
	Mirex	ND μg/L							
Surrog	ate	Result		Spike Conc	Recovery	Rec Limits			
	Decachlorobiphenyl	55.2 μg/L		100 μg/L	55%	10-150%			
	Tetrachloro-m-xylene	47.9 μg/L		100 μg/L	48%	10-150%			
LCS	Dicofol (Kelthane)	129 µg/L		100 μg/L	129%	0-140%			
	Methoxychlor	94.8 μg/L		100 μg/L	95%	34-135%			
	Mirex	73.7 μg/L		100 μg/L	74%	21-126%			
Surrog	ate	Result		Spike Conc	Recovery	Rec Limits			
	Decachlorobiphenyl	55.3 μg/L		100 μg/L	55%	10-150%			
	Tetrachloro-m-xylene	45.6 μg/L		100 μg/L	46%	10-150%			
LCSD	Dicofol (Kelthane)	128 µg/L		100 μg/L	128%	0-140%	0.8%	0-30%	
	Methoxychlor	96.1 μg/L		100 μg/L	96%	34-135%	1.4%	0-30%	
	Mirex	72.6 µg/L		100 μg/L	73%	21-126%	1.5%	0-30%	
Surrog	ate	Result		Spike Conc	Recovery	Rec Limits			
	Decachlorobiphenyl	49.6 μg/L		100 μg/L	50%	10-150%			
	Tetrachloro-m-xylene	45.2 μg/L		100 μg/L	45%	10-150%			
MS	Dicofol (Kelthane)	1.46 µg/L	ND	1 μg/L	146%	70-130%			Q-7
	Methoxychlor	0.822 μg/L	ND	1 μg/L	82%	70-130%			
	Mirex	0.465 μg/L	ND	1 μg/L	47%	70-130%			Q-
				Cuiles Como	Doggvery	Rec Limits			
Surrog	ate	Result		Spike Conc	Recovery	Nec Lillins			
Surrog	gate Decachlorobiphenyl	Result 0.400 µg/L		3ρικε Conc 0.995 μg/L	40%	10-150%			

Order ID: 24070279 Date: 7/31/2024 Page 57 of 68

City of Sherman Chester Wilson

QC Summary

		ı	Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flags
QCBatch	nID SUB51223_L								
MSD	Dicofol (Kelthane)	1.47 µg/L	ND	1 μg/L	147%	70-130%	0.7%	0-30%	Q-7
	Methoxychlor	0.765 μg/L	ND	1 μg/L	77%	70-130%	7.2%	0-30%	
	Mirex	0.385 μg/L	ND	1 μg/L	39%	70-130%	18.8%	0-30%	Q-7
Surrog	ate	Result		Spike Conc	Recovery	Rec Limits			
	Decachlorobiphenyl	0.326 µg/L		1 μg/L	33%	10-150%			
	Tetrachloro-m-xylene	0.390 μg/L		1 μg/L	39%	10-150%			
QCBatch	nID SUB51323_L								
Blank	Nonylphenol	ND μg/L							
LCS	Nonylphenol	67.1 μg/L		150 μg/L	45%	56-112%			Q-7
LCSD	Nonylphenol	109 μg/L		150 μg/L	73%	56-112%	47.6%	0-30%	Q-7
QCBatch	nID SUB51423_L								
Blank	Mercury	ND ng/L							
LCS	Mercury	26.3 ng/L		25 ng/L	105%	76-113%			
LCSD	Mercury	25.9 ng/L		25 ng/L	104%	76-113%	1.5%	0-20%	
MS	Mercury	24.2 ng/L	ND	26.6 ng/L	91%	67-111%			
MSD	Mercury	24.8 ng/L	ND	26.6 ng/L	93%	67-111%	2.5%	0-18%	

Order ID: 24070279 Date: 7/31/2024 Page 58 of 68

City of Sherman Chester Wilson

Case Narrative

Project Name:	Effluent
*	Refer to QC section and / or Case Narrative
B-4	Analyte detected in blank.
C-1	SDL / SQL lowered by means of initial sample aliquot adjustment.
D-1	Elevated reporting limit(s) due to dilution. Dilution resulted from sample matrix interference, high target analyte(s), high non-target analyte(s) or a combination thereof.
E-1	Not covered under scope of NELAP accreditation.
E-3	Not available under scope of NELAP accreditation.
E-5	Calculation not available under scope of NELAP accreditation.
L-2	Analysis performed by SPL Kilgore, 2600 Dudley Rd. Kilgore TX 75662 - Lab ID- T104704201
L-23	Analytical data provided by client
Q-12	Recovery is not reported due to sample matrix interference, high target analyte(s), high non-target analyte(s) or a combination thereof.
Q-7	Recovery and/or RPD outside desirable limits.
S-14	Result automatically temperature corrected to 25°C.
S-15	Reported as MBAS, calculated as LAS, mol wt 340
S-16	m-Cresol (3-methylphenol) and/ or p-Cresol (4-Methylphenol) reported as p-Cresol (4-Methylphenol)
ppm	Parts per million = mg/Kg or mg/L
ppb	Parts per billion = ug/Kg or ug/L
MQL	Method quantitation limit
SDL	Sample detection limit (reflects any laboratory adjustments made to the sample during analysis such as dry weight or dilutions)
SQL	Sample quantitation limit (reflects any laboratory adjustments made to the sample during analysis such as dry weight or dilutions
ND	Analyte not detected at or above SQL
LCS/LCSD	Laboratory control spike / Laboratory control spike duplicate
MS/MSD	Matrix spike / Matrix spike duplicate
RPD	Relative percent difference
Sub	Analysis performed by subcontract laboratory

Solid samples submitted to the laboratory for analysis by SW-846 Method 8260 should be collected by SW-846 Method 5035. Those samples in which concentrations are less than or equal to 200 ug/kg should be collected in accordance with SW-846 Method 5035, Section 6.2.1. For samples with higher concentrations (> 200 ug/kg), collect samples by SW-846 Method 5035, Section 6.2.2 or 6.2.3. Sample results may not accurately reflect volatile concentrations if collection is not performed according to the referenced methodologies.

Solid samples submitted to the laboratory for analysis by TNRCC Method 1005 should be collected in accordance to the methodology. Those samples in which concentrations of C6 to C12 are known to be absent, or fall under the Petroleum Storage Tank (PST) rule, may be collected in bulk sample jars in accordance with TNRCC Method 1005, Revision 3 clarifications. For samples with concentrations of C6 to C12, or where knowledge of the site does not exist, collect samples by TNRCC Method 1005, Section 6.1. Sample results may not accurately reflect TPH concentrations if collection is not performed according to the referenced methodologies.

Solid sample results reported on a dry weight basis for all applicable analysis, unless otherwise noted. Dry weight calculations based upon % solids obtained as outlined in EPA method 5035 section 7.5.

Herbicides Ending CCV Percent Drift for Silvex for SPL batch ID Herb-00125-L was outside SPL QC limits.

Order ID: 24070279 Date: 7/31/2024 Page 59 of 68

This report is intended only for the use of City of Sherman and may contain information that is privileged and confidential. It may not be reproduced in full (or in part) without the expressed written permission of City of Sherman and Southern Petroleum Laboratories, Inc.

Southern Petroleum Laboratories, Inc. certifies to the best of its knowledge that all results contained in this report are consistent with the National Environmental Laboratory Accreditation Program, except where otherwise noted.

Order ID: 24070279 Date: 7/31/2024 Page 60 of 68

City of Sherman Chester Wilson

Sample Preservation Verification

Project Name: Effluent

Receipt temp: 2.7 °C on Ice

Receipt method: Courier

Custody seal intact: Yes All samples / labels received intact: Yes

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: 24070279-001 Collector Affiliation:

Collected: 07/17/24 12:18 Matrix: Liquid

Bottle Type Count Collection Method Parts / Interval Preservation pH

N/A 0 Grab None -

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: 24070279-002 Collector Affiliation:

Collected: 07/17/24 08:00 until 07/18/24 07:58 Matrix: Liquid

 Bottle Type
 Count
 Collection Method
 Parts / Interval
 Preservation
 pH

 N/A
 0
 Meter
 None

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: 24070279-003 Collector Affiliation:

Collected: 07/17/24 08:00 until 07/18/24 07:50 Matrix: Liquid

 Bottle Type
 Count
 Collection Method
 Parts / Interval
 Preservation
 pH

 500 mL Plastic
 1
 Flow Composite
 24 hour
 Temp

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: 24070279-004 Collector Affiliation:

Collected: 07/18/24 07:45 Matrix: Liquid

Indicated / Observed

Bottle TypeCountCollection MethodParts / IntervalPreservationpH500 mL Amber4GrabH2SO4*

* Preservation verified at analysis

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: 24070279-005 Collector Affiliation:

Collected: 07/17/24 07:39 until 07/18/24 07:06 Matrix: Liquid

Indicated / Observed

Bottle TypeCountCollection MethodParts / IntervalPreservationpH500 mL Glass4Mult Part Grab4 partHCl-

Collected on 07/17/24 @ 07:39, 14:10, 20:08 and on 07/18/24 @ 07:06.

Order ID: 24070279 Date: 7/31/2024 Page 61 of 68

City of Sherman Chester Wilson

Sample Preservation Verification

Project Name: Effluent

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: **24070279-006** Collector Affiliation:

Collected: 07/17/24 08:00 until 07/18/24 07:50 Matrix: Liquid

Indicated / Observed

Bottle TypeCountCollection MethodParts / IntervalPreservationpH500 mL Plastic1Flow Composite24 hourH2SO4<2</td>

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: 24070279-007 Collector Affiliation:

Collected: 07/17/24 08:00 until 07/18/24 07:50 Matrix: Liquid

Indicated / Observed

<u>рН</u>

<u>pH</u>

Bottle TypeCountCollection MethodParts / IntervalPreservationpH1000 mL Plastic1Flow Composite24 hourTemp-

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: 24070279-008 Collector Affiliation:

Collected: 07/17/24 08:00 until 07/18/24 07:50 Matrix: Liquid

 Bottle Type
 Count
 Collection Method
 Parts / Interval
 Preservation
 pH

 250 mL Plastic
 1
 Flow Composite
 24 hour
 Temp

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: **24070279-009** Collector Affiliation:

Collected: 07/17/24 08:00 until 07/18/24 07:50 Matrix: Liquid

Bottle Type Count Collection Method Parts / Interval Preservation

500 mL Plastic 1 Flow Composite 24 hour Temp -

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: **24070279-010** Collector Affiliation:

Collected: 07/17/24 08:00 until 07/18/24 07:50 Matrix: Liquid

 Bottle Type
 Count
 Collection Method
 Parts / Interval
 Preservation
 pH

 250 mL Plastic
 1
 Flow Composite
 24 hour
 Temp

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: 24070279-011 Collector Affiliation:

Collected: 07/17/24 07:38 Matrix: Liquid

| Indicated / Observed | Bottle Type | Count | Collection Method | Parts / Interval | Preservation |

500 mL Glass 1 Mercury, Field Blank Temp -

Order ID: 24070279 Date: 7/31/2024 Page 62 of 68

City of Sherman Chester Wilson

Sample Preservation Verification

Project Name: Effluent

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: 24070279-012 Collector Affiliation:

Collected: 07/17/24 08:00 until 07/18/24 07:50 Matrix: Liquid

Indicated / Observed

Bottle Type Count Collection Method Parts / Interval Preservation pH
500 mL Plastic 1 Flow Composite 24 hour Temp -

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: 24070279-013 Collector Affiliation:

Collected: 07/17/24 08:00 until 07/18/24 07:50 Matrix: Liquid

Indicated / Observed

Bottle TypeCountCollection MethodParts / IntervalPreservationpH1000 mL Amber18Flow Composite24 hourTemp-

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: 24070279-014 Collector Affiliation:

Collected: 07/17/24 08:00 until 07/18/24 07:50 Matrix: Liquid

Bottle TypeCountCollection MethodParts / IntervalPreservationpH1000 mL Amber2Time Composite24 hourH2SO4<2</td>

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: 24070279-015 Collector Affiliation:

Collected: 07/17/24 07:30 until 07/18/24 02:06 Matrix: Liquid

Bottle TypeCountCollection MethodParts / IntervalPreservationpHVOA Vial8Mult Part Grab4 partTemp-

Collected on 07/17/24 @ 07:30, 14:06, 20:12 and on 07/18/24 @ 02:06.

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: 24070279-016 Collector Affiliation:

Collected: 07/17/24 08:00 until 07/18/24 07:50 Matrix: Liquid

Indicated / Observed

Bottle TypeCountCollection MethodParts / IntervalPreservationpH250 mL Plastic1Flow Composite24 hourHNO3<2</td>

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: 24070279-017 Collector Affiliation:

Collected: 07/17/24 07:30 until 07/18/24 02:06 Matrix: Liquid

Indicated / Observed

Bottle TypeCountCollection MethodParts / IntervalPreservationpH250 mL Plastic4Mult Part Grab4 partNaOH>12

Collected on 07/17/24 @ 07:30, 14:06, 20:12 and on 07/18/24 @ 02:06.

Order ID: 24070279 Date: 7/31/2024 Page 63 of 68

City of Sherman Chester Wilson

Sample Preservation Verification

Project Name: Effluent

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: 24070279-018 Collector Affiliation:

Collected: 07/17/24 08:00 until 07/18/24 07:50 Matrix: Liquid

Indicated / Observed

Sottle Type Count Collection Method Parts / Interval Preservation

Bottle TypeCountCollection MethodParts / IntervalPreservationpH250 mL Plastic1Flow Composite24 hourTemp-

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: 24070279-019 Collector Affiliation:

Collected: 07/17/24 08:00 until 07/18/24 07:50 Matrix: Liquid

| Indicated / Observed | Bottle Type | Count | Collection Method | Parts / Interval | Preservation | pH

250 mL Plastic 1 Flow Composite 24 hour Temp -

Customer Sample ID: Effluent Collected By: WWTP Staff

SPL Sample ID: 24070279-020 Collector Affiliation:

Collected: 07/17/24 07:30 until 07/18/24 02:06 Matrix: Liquid

| Indicated / Observed | Bottle Type | Count | Collection Method | Parts / Interval | Preservation | pH

250 ml Amber 4 Mult Part Grab 4 part H2SO4 <2

Collected on 07/17/24 @ 07:30, 14:06, 20:12 and on 07/18/24 @ 02:06.

Sample conditions at time of receipt at laboratory verified in part or in whole by:

R.L.M.

Order ID: 24070279 Date: 7/31/2024 Page 64 of 68

Documentation

PROJECT DESCRIPTION: Effluent

4	Turn Around Time:	5-7 DaysRUSH	Comments		see attached sheet field data sheet fee calculations	Report in ug/l.	SINGLE GRAB Report in ug/l.	Effluent only. Report in ug/l.	Report in ug/l.	Report in mg/l.	2757
atment ECORD	Sampler(s): WWVTP Staff (WWVTP Staff)	ure: Down half	Analysis	pH = 7,720 su ; Temperature = 27.9 ° C	Flow 6.93 mgd	Orthophosphate, Dissolved: Orthophosphate, Totali Phosphorus, Dissolved	Oil and Grease (HEM); Oil/Grease / TPH	Mercury, Low Level	Phosphorus, Total Nitrogen Nitrogen; Total Nitrogen	Total Dissolved Solids	# 200 <u>0</u>
Industrial Pretreatment CHAIN-OF-CUSTODY RECORD	П	<u>Signature:</u>	Bottle # and Preservative	None	None	1 < or = 6 Deg C	2 H2SO4 to pH < 2 and < or = 6 Deg C	3 HCI to a pH of < 2 & < or = to 6 Deg C	4 H2S04 to a pH of < 2 & < or = to 6 Deg C	5 < or = 6 Deg C	IPTF-036.3-GRAB ONLY
ust ri HAIN-C	Project Number: COSIPT-24-2757	Effluent	Sample Matrix	ww	MM	MM	WW	MM	MM	WW	_
<u>n</u>	Proje	<u>=</u>	Container Sample Type, # of Matrix cont.	N/A	N/A	500 ml Plastic 1	500 mL Amber 4	Glass, Mercury Kit 4	500 ml Plastic 1	1000 ml Plastic 1	
_	;	Tan Tan	Sample Type	GRAB	METER	24-FC	GRAB	4-PG	24-FC	24-FC	
City of Sherman P.O Box 1106 Sherman, TX 75091 903-868-2516	Billing:	Industry	Sample Date/Time	Jate: 7/17/4 Time: 12/8	Date: 7/11/24 Time: 08 00 Date: 7/15/21 Time: 0758	Pate: 7/17/2/Time: 03€ Pate: 7/13/2/Time: 015.2 Time: Time: Time:	//g/力 Time: つっぱく Time: Time:	2016: 7/17/2/Time: 7737 2016: 7/17/2/Time: 14/0 2016: 7/17/24/Time: 6.02(0)	1/18/1 Time: OSCO Time: Time:	1/7/24 Time: SSO Time: Time: Time:	
D WOKEK			ci.			0 10/10 10		2 12 2	Date: 7/1	Date: 7	
OVIN BEGADING	1417	X 75092	Sample ID.	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	
Section 2	Facility: WWTP 1800 F FM 1417	Sherman, TX 75092	Lab Sample ID ጋሣፅን <i>ዕ</i> ደን <i>ዓ</i>	001	T10	500	hoo	200	900	200	Sheet 1 of 4

Order ID: 24070279 Date: 7/31/2024 Page 65 of 68

Documentation

PROJECT DESCRIPTION: Effluent

Industrial Pretreatment

CHAIN-OF-CUSTODY RECORD

City of Sherman P.O Box 1106 Sherman, TX 75091 903-868-2516

							
Comments	Report in ug/l.	Report in ug/l.	Report in ug/l.	Sterile water is transeired from full bottle to empty bottle. Two bottles total.	Report in ug/l.	Priority pollutants, (625,608,614,622,632,615,617). Report in ug/l. See attached pollutant list.	Report in ug/l.
Analysis	TMA-H/Quaternary Ammonia Compounds	Chloride, Total; Fluoride; Nitrate - N; Nitrate Nitrogen; Nitrite - N; Sulfate, Total	Chromium, Hexavalent	Mercury-Hg Field Blank	Alkalinity, Total as CaC03; MBAS	Priority Pollutants (625.1, 608.3, 614, 622, 632, 615, 617)	Nonyiphenol
Bottle # and Preservative	6 < or = 6 Deg C	7 < or = 6 Deg C	8 < or = 6 Deg C	9 < or = 6 Deg C	10 6 Deg C	11 6 Deg C	12 6 Deg C
Sample Matrix	W/W	M/M	ww.	w/w	ww	WW	W/W
Container Sample Type, # of Matrix cont.	250 ml Plastic	500 ml Plastic 1	250 ml Plastic 1	Glass, Mercury Kit 1	500 ml Plastic 1	24-FC 1000 mL. Amber 18	1000 mL Amber 2
Sample Type	24-FC	24-FC	24-FC	Field Blank	24-FC	24-FC	24-TC
Sample Date/Time	Date: 7/17/24 Time: ⊘8∞ Date: 7/18/24 Time: √3 o Date: Time:	11 Date: 7/17/24 Time: 08000 Date: 7/18/24 Time: 0.5000 Date: Time: 0.5000 Date: Time:	1 Date:7/19/24 Time: 0800 Date:7/18/24 Time: 0500 Date: Time:	Date: 7/11/4/Time: 57/5 Date: Time: 1 Date: Time: 1 Date: Time: 1	Date: 7/18/24 Time: 08 00 Date: 7/18/24 Time: 07 0 0 Date: Time: 0 Date: Time:	Date: Time: Social Date: Time: Date: Time:	Date: Time:
Sample ID.	Effluent	Effluent	Effluent	Effluent	Effluent C	Effluent o	Effluent
Lab Sample ID オ4のかみアイ	300	600	010	(10	210	013	hIФ

IPTF-036.3-GRAB ONLY

Sheet 2 of 4

Order ID: 24070279 Date: 7/31/2024 Page 66 of 68

Documentation

PROJECT DESCRIPTION: Effluent

		4.1) List.		Nogogi Nogogi					
	Comments	Priority Pollutants (624.1) Report in ug/l. *See attached pollutant List. NOTE: Zero Headspace in VOA's	Effluent Only. Report in ug/l.	Y N CL2 O 6 - Guilde 20-6- CL2 O 7 - Guilde - O - O - O - O - O - O - O - O - O -	Effluent only. Report in ug/l.	Effluent only. Report in ug/l.	Report in ug/l.		2757
t rment Ecord	Analysis	Priority Pollutants (624.1)	Aluminum, Total; Antlimony, Total; Arsenic, Total; Banlum, Total; Beryllium, Total; Calcium, Total; Chromium, Total; Chromium, Total; Chromium, Trivalent; Copper, Total; Chromium, Trivalent; Copper, Total; Magnesium, Total; Manganese, Total; Mercury, Total; Molyberum, Total; Molyberum, Total; Nickel; Total; Selenium, Total; Selenium, Total; Silver, Total; Sodium, Total; Strontium, Total; Thallium, Total; Zinc,	lotal Cyanide, Available; Cyanide, Total	Conductivity	Reactive Silica: Silica	Phenol, Total		COC #:
Industrial Pretreatment chain-of-custody Record	Bottle # and Preservative	13 F	14 HNO3 to pH < 2 and < or = to 6 Deg L	15 (A) NaOH to pH > 10 & < or = 6 Deg C	16 < or = 6 Deg C	17 cor=6 Deg C	18 H2SO4 to pH < 2 and < or = 6 Deg C	-	IPTF-036.3-GRAB ONLY
ustr Hain-C	Sample Matrix	W/W	M/M	W/W	M/M	M/M	W/W	,	_
lnd G	Container Sample Type, # of Matrix cont.	40 ml VOA Glass 8	250 ml Plastic	250 ml Plastic 4	250 ml Plastic 1	250 ml Plastic 1	250 ml Amber 4		
_	Sample Type	4-PG	24-FC	4-PG	24-FC	24-FC	4-PG		
City of Sherman P.O Box 1106 Sherman, TX 75091 903-868-2516	Sample Date/Time	Date: 7/17/24 Time: 073 0 Date: 7/17/24 Time: 25.02 Date: 7.42,24 Time: 05.02	11/1//	Date: 7/17/24 Time: 073.5 Date: 7/17/24 Time: 251.2 Date: 7-/8-25 Time: 251.2	Date: 7/12/2 Time: 08.00 Date: 7/12/2 Time: 01.00 Date: Time: Time:	Date: 7/18/2/Time: 05c.	Date: 7 (17) 24 Time:		
Kellmal cinsis tomi seondinose	Sample ID.	Effluent 🗸	Effluent Date: Vote: Date: Date: Date:	Effluent Date. Date: Vale: Date: Date:	Effluent Date: Date: Date: Date:	Effluent Date: Date: Date: Date:	Effluent Date: Date: Date: Date: Date:	· -	
Name of the second	Lab Sample ID 24の7027月	015	910	710	810	619	020		Sheet 3 of 4

Order ID: 24070279 Date: 7/31/2024 Page 67 of 68

Documentation

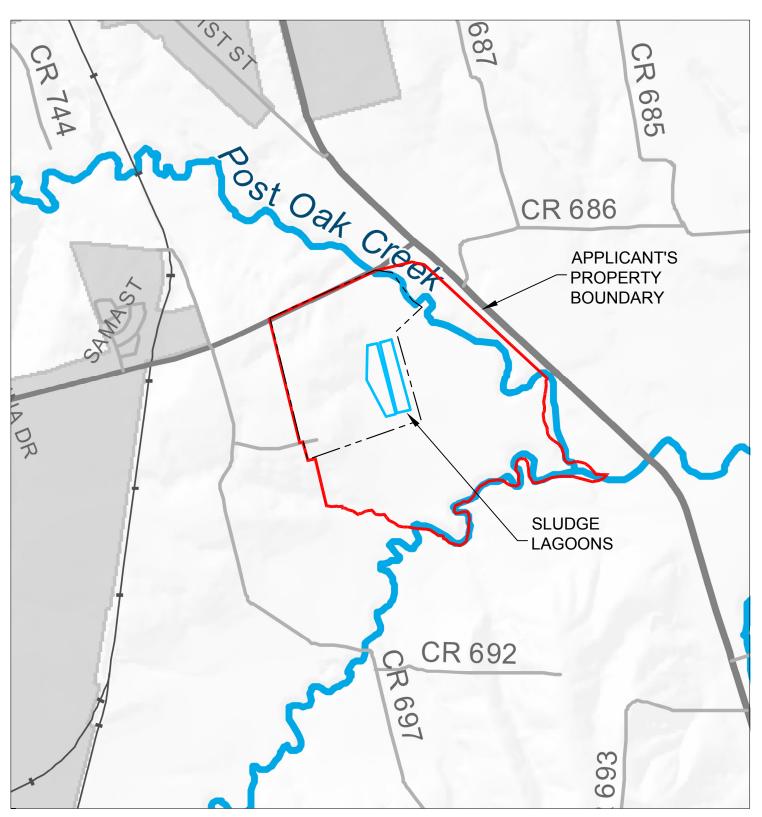
PROJECT DESCRIPTION: Effluent

tment scord	Artillation:	Time: Time:		COC#: 2757
Industrial Pretreatment chain-of-custoby Record	8/14 Received by: 43 / 1 1 1 1 1 1 1 1 1 1	Time: 1346 ILABORATORY: SPL Labs		IPTF-036.3-GRAB ONLY
City of Sherman r	Affiliation: Date/Time: OM Time: OM Date:	T	****	
34070 274 Shepman	Relinquished by: Derek Ingell Tun Benevam	REMARKS:		Shert 4 of 4

Order ID: 24070279 Date: 7/31/2024 Page 68 of 68

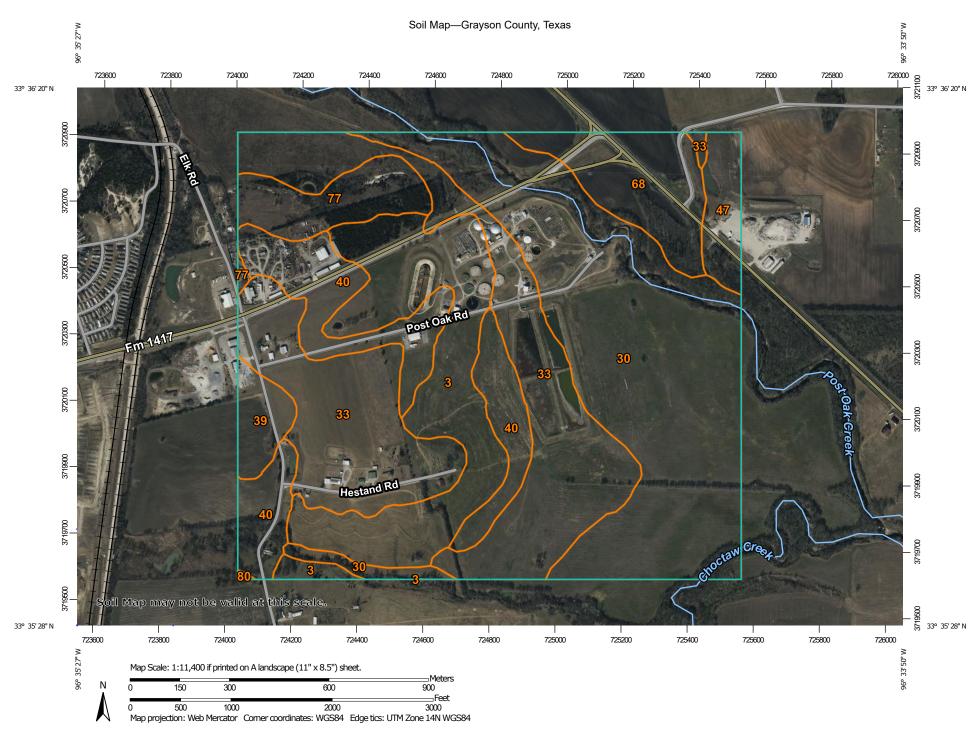
Documentation

PROJECT DESCRIPTION: Effluent


Supplemental Sample Receipt Checklist

	tyofSherman	Date l	Received:	7/18/2	24
Project: <u>C</u>	DSIPT-24-2757	Rec	eived By:	2 h	<u>I</u>
PL Project ID:	24070279				
Thermome	eter ID: <u>PCA - 40</u> 1	Correctio	n Factor:	<u>3</u> °c	
Observed	coóler rature: 2.4 °C	Correct	ed cooler perature: _ =	2,7 ℃	
rempe	atureC	rem	perature	<u>.,, </u>	
	Samples Received on Ice:	Ø N			
Proper bottl	es received in good condition:	(Y) N			
	Samples received match COC:	N (X)			
Bottle:	s filled with adequate volume:	N X			
Samp	oles appropriately preserved*:	(Y) N			
Samp	oles received within hold time:	N (A)			
	VOA vials filled properly:	Ø N	NA		
	Custody Seal Present: 🤱	Y) N			
	Custody Seal Intact:	Y N	NA		
Note:					
	g thermal preservation that are same			pt and receive	ed on ice are
acceptable even	if the measured temperature is highe	er than the al	owable.		
Comments:					
			 		<u> </u>
		· · · · · · · · · · · · · · · · · · ·			
		·····			

Attachment N
General Highway Map
Tech Report 1.0, Section 11.A



ATTACHMENT N
CITY OF SHERMAN - POST OAK WASTEWATER TREATMENT FACILITY
TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION
GENERAL HIGHWAY COUNTY MAP

Attachment O
USDA NRCS Soil Map
Tech Report 1.0, Section 11.A

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

(o) Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water
Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

8

Spoil Area

Stony Spot

Very Stony Spot

Wet Spot Other

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

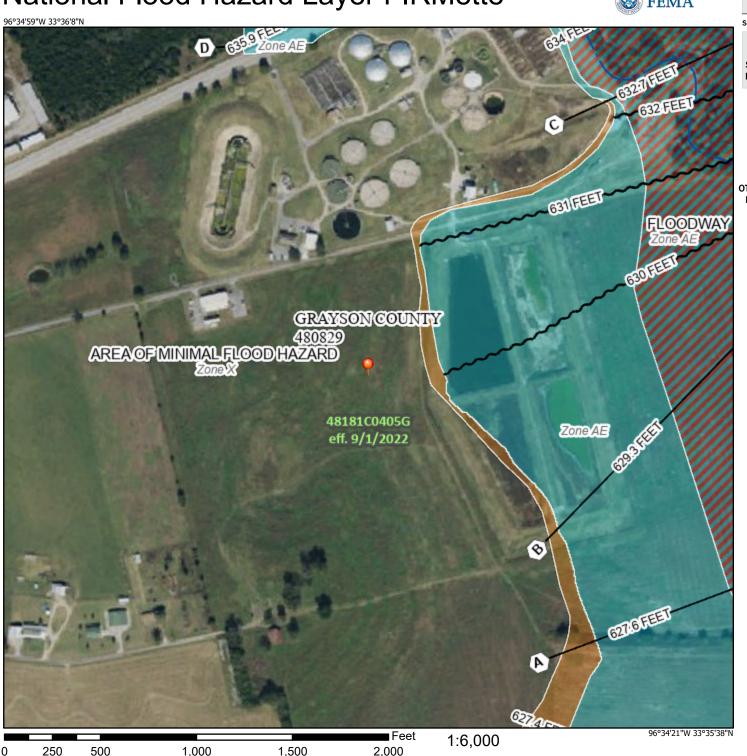
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Grayson County, Texas Survey Area Data: Version 21, Aug 30, 2024

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

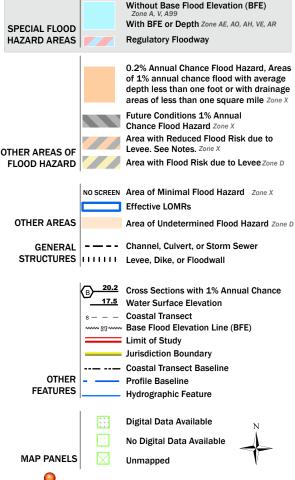
Date(s) aerial images were photographed: Jan 22, 2022—Jan 25, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.


Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
3	Altoga clay loam, 5 to 8 percent slopes	78.1	15.3%
30	Elbon soils, frequently flooded	155.4	30.5%
33	Fairlie and Houston Black clays, 1 to 3 percent slopes	139.0	27.3%
39	Heiden clay, 1 to 3 percent slopes	10.7	2.1%
40	Heiden clay, 3 to 5 percent slopes	57.9	11.4%
47	Lewisville silty clay, 3 to 5 percent slopes, eroded	12.9	2.5%
68	Tinn clay, 0 to 1 percent slopes, occasionally flooded	31.9	6.3%
77	Whitewright-Eddy-Howe complex, 5 to 12 percent slopes	22.9	4.5%
80	Wilson silty clay loam, 1 to 3 percent slopes	0.2	0.0%
Totals for Area of Interest		509.2	100.0%

Attachment P FEMA Map Tech Report 1.0, Section 11.A

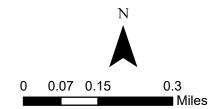

National Flood Hazard Layer FIRMette

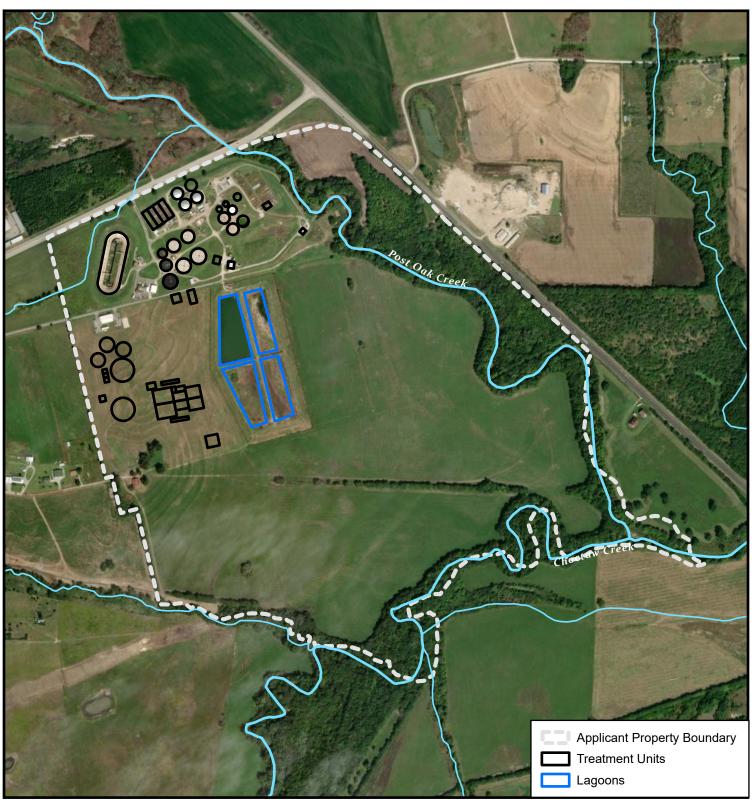
Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

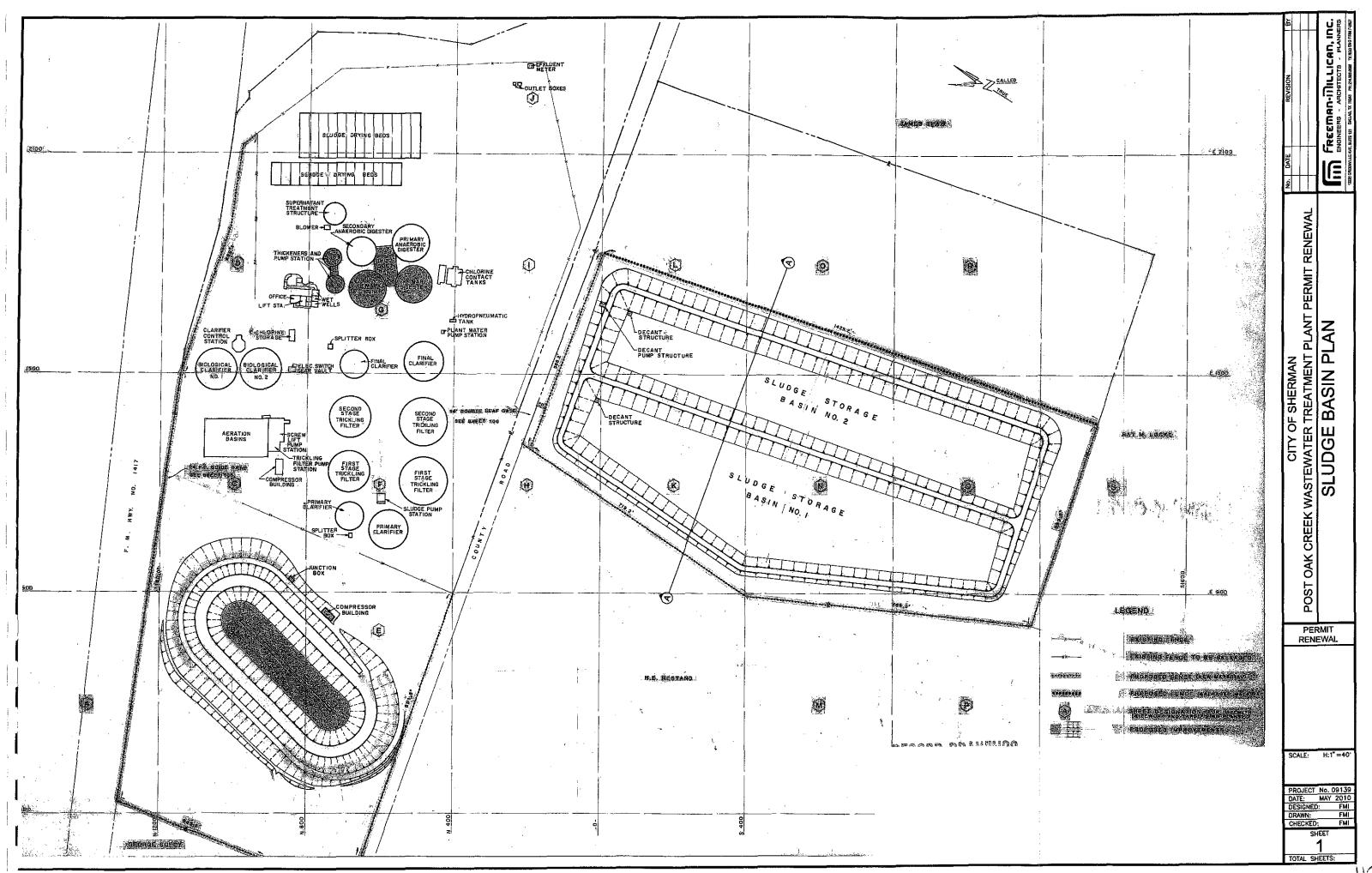
The pin displayed on the map is an approximate point selected by the user and does not represent

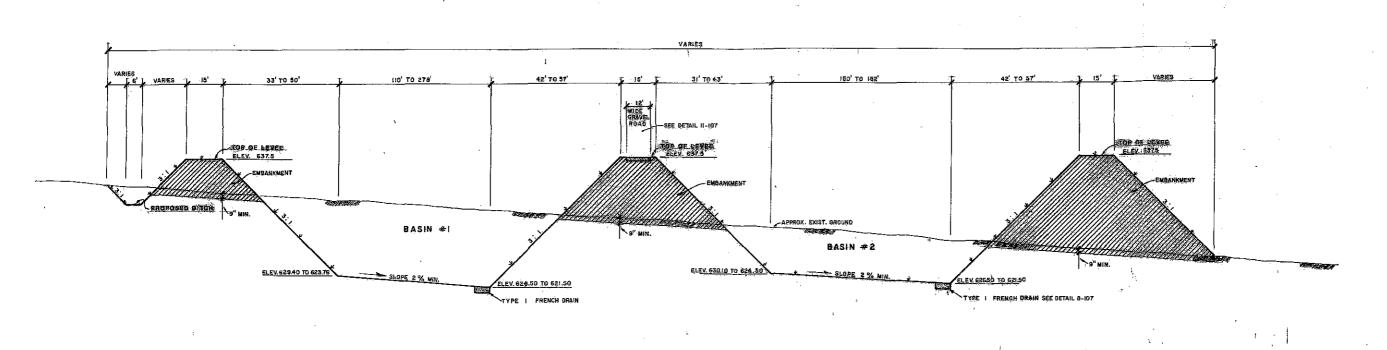

an authoritative property location.


The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 1/8/2025 at 9:46 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

Attachment Q Site Map Tech Report 1.0, Section 11.A





ATTACHMENT Q
CITY OF SHERMAN - POST OAK WASTEWATER TREATMENT FACILITY
TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION
SITE MAP

Attachment R 100-Year Frequency Flood Protection Tech Report 1.0, Section 11.A

SECTION A-A
TYPICAL SLUDGE BASIN SECTION
NO SCALE

POST OAK CREEK WASTEWATER TREATMENT PLANT PERMIT RENEWAL

TYPICAL SLUDGE BASIN SECTION TECHNICAL REPORT 1.0, 9, a PERMIT RENEWAL

SCALE: H:1"=40

PROJECT No. 09139
DATE: MAY 2010
DESIGNED: FMI
DRAWN: FMI
CHECKED: FMI

SHEET 2 TOTAL SHEETS:

013131

W.W.T.P. John Kitchen Survey

WARRANTY DEED

va 2413 MME 321

THE STATE OF TEXAS

COUNTY OF GRAYSON

KNOW ALL MEN BY THESE PRESENTS:

That the undersigned, JAMES H. SHAW of the City of Sherman, Grayson County, Texas (hereinafter called "Grantors"), for and in consideration of the sum of Two Thousand Five Hundred Dollars and No Cents (\$2,500.00) and the benefit to be derived by the people of the City of Sherman, Grayson County, Texas, has granted, transferred and conveyed, and does hereby GRANT, TRANSFER and CONVEY unto the CTTY OF SHERMAN, TEXAS, a municipal corporation (referred to herein as "Grantee"), its successors and assigns, all of the following described real property in Grayson County, Texas, to-wit:

All that certain tract or parcel of land, situated in Grayson County, Texas, a part of the John Kitchen Survey, Abstract No. 673, and more particularly described as follows:

BEGINNING at the Southwest corner of a 9-acre tract of land conveyed by H. B. Francis and wife, Annie Francis, to Jno. M. Locke by deed dated February 16, 1935, and of record in Vol. 377, at page 69, of the Deed Records of said County;

THENCE in a Northerly direction with the West line of said 9-acre tract for a distance of 1462 feet to its Northwest corner, a point in the channel of Postoak Creek and in the North line of a tract of land described as "First Tract" in a deed from Mrs. M. E. Chisholm, executrix, to H. B. Francis, dated May 11, 1921, and of record in Vol. 302, at page 352, of said Deed Records;

THENCE in a Westerly direction with the North line of said Francis tract for a distance of 150 feet;

THENCE in a Southerly direction, parallel with the West line of said 9-acre tract for a distance of 1462 feet to a point in the North line of another tract of land formerly owned by John M. Locke;

THENCE in an Easterly direction with said John M. Locke North line for a distance of 150 feet to the place of beginning, containing 5 acres of land, more or less, and being the same property conveyed by H. B. Francis and wife, Annie Francis, to R. W. Nevill by deed dated February 16, 1935, and of record in Vol. 377, at page 68, of said Deed Records.

WARRANTY DEED - Page 1

tva.2413 mai322

TO HAVE AND TO HOLD the above described premises, together with all and singular the rights and appurtenances thereto in anywise belonging unto the said Grantee, its successors and assigns forever; and Granter does hereby behind himself, his heirs, executors, administrators, successors, and assigns to WARRANT AND FOREVER DEFEND, all and singular, the said premises unto the said Grantee, its successors and assigns, against every person whomsoever claiming or to claim the same or any part thereof.

IN TESTIMONY WHEREOF, witness the execution hereof on this 3/ day of A.D., 1995.

James H Shaw

WARRANTY DEED - Face 2

VL 2413 MME 323

ACKNOWLEDGEMENT

THE STATE OF TEXAS	
COUNTY OF GRAYSON	

BEFORE ME, the undersigned authority, on this day personally appeared JAMES H. SHAW, known to me to be the person whose name is subscribed to the foregoing instrument and acknowledged to me that he executed the same for the purposes and consideration therein expressed.

GIVEN UNDER MY HAND AND SEA	AL OF OFFICE this the day of
	0,1/0,
Ritu V. Guither Aly Commission Expires	NOTARY PUBLIC IN AND FOR THE

FILED FOR RECORD
95 AUG 21 AM 9: 11
SARA JACKSON
COUNTY CLERK
GRAYSON COUNTY, TX

WARRANTY DEED - Page 3 SARA JACKS COUNTY CLE

		
Filed for record and recorded August 21	1, 1995 at	M.
are Jackson, Grayson County Clerk		
dary Jackson, Grayson County Clerk	, Deputy	

r vol 2512 Pice 612

WARRANTY DEED

THE STATE OF TEXAS

KNOW ALL MEN BY THESE PRESENTS:

COUNTY OF GRAYSON

That the undersigned, JAMES EUGENE FARMER of the City of Whitewright, Grayson County, Texas (hereinafter called "Grantor"), for and in consideration of the sum of TEN DOLLARS AND NO CENTS (\$10.00) and other valuable consideration to the undersigned paid by the Grantee herein named, the receipt of which is hereby acknowledged, has granted, transferred and conveyed, and does hereby GRANT, TRANSFER and CONVEY unto the CITY OF SHERMAN, TEXAS, a municipal corporation (referred to herein as "Grantee"), its successors and assigns, all of the following described real property situated in the County of Grayson, State of Texas, to-wit:

BEING part of the John Kitchen Survey, Abstract No. 673, part of the Winford Bailey Survey, Abstract No. 64, and part of the Winford Bailey Survey, Abstract No. 66, and being all of a 9 acre tract of land conveyed by H. B. Francis and wife, Annie Francis, to Jno. M. Locke by deed dated February 16th, 1935, recorded in Volume 377, Page 69, Deed Records, Grayson County, Texas, and also being part of a 110.62 acre tract of land conveyed by The Dallas Joint Stock Land Bank of Dallas, Texas to Jno. M. Locke by deed dated June 23rd, 1932, recorded in Volume 363, Page 7, said Deed Records, and also being the 110.877 acres of land conveyed by Mary Delle Locke Fleming and Lucy Locke to James E. Farmer and wife, Lorianna Farmer, by Warranty Deed dated April 10, 1993, recorded in Volume 2270, Page 478, said Deed Records, and being more particularly described by metes and bounds as follows:

BEGINNING at a ½" steel rod set in the center of a public road known as Ladd Road, said rod maintaining the Northwest corner of the said 9 acre tract and the Northeast corner of a 5 acre tract of land conveyed by Beatrice Daniels to James H. Shaw and wife, Moverine Shaw, by deed dated September 8th, 1978, said Deed Records;

THENCE North 75°28'30" East with the center of said road a distance of 735.39 feet to a point in the West right-of-way line of State Highway No. 11;

THENCE South 14°45'17" East a distance of 10.03 feet to an angle point in said right-of-way line;

WARRANTY DEED

Page 1

VOL 2512 MEE 613

THENCE North 75°02'00" East a distance of 248.60 feet to an angle point in said right-of-way line;

THENCE South 47°11'00" East, continuing with said West right-ofway line, a distance of 1580.82 feet to the most Northerly corner of a 28.354 acre tract of land, described as Tract Two, conveyed by George Bradley and wife, Lorene Bradley, to Melton Graham, Trustee, by deed dated July 24th, 1985, recorded in Volume 1761, Page 37, said Deed Records;

THENCE in a Southerly direction with the West line of said 28.354 acre tract, meandering along or near the East bank of Post Oak Creek, the following calls and distances:

South 16°00'00" East, a distance of 55.60 feet; South 41°42'00" East, a distance of 67.50 feet; South 22°28'00" East, a distance of 45.20 feet; South 11°50'00" East, a distance of 233.40 feet; South 00°27'00" East, a distance of 426.22 feet; South 07°15'00" East, a distance of 273.10 feet; South 17°28'00" East, a distance of 42.20 feet;

THENCE South 21°38'00" East a distance of 487.90 feet to a point in the center of said Post Oak Creek;

THENCE South 46°32'16" East with the center of said creek a distance of 195.51 feet to the point of intersection with the center of Choctaw Creek;

THENCE in a Northwesterly direction with the center of said Choctaw Creek the following calls and distances:

South 75°36'44" West, a distance of 240.54 feet; South 86°46'26" West, a distance of 140.89 feet; South 70°23'22" West, a distance of 117.43 feet; South 63°02'11" West, a distance of 142.19 feet; South 87°31'42" West, a distance of 133.15 feet; North 51°20'19" West, a distance of 34.64 feet; North 01°26'18" West, a distance of 294.21 feet; North 42°26'56" West, a distance of 102.24 feet; North 63°54'59" West, a distance of 113.17 feet; South 79°29'40" West, a distance of 56.86 feet;

WARRANTY DEED

Page 2

TVOL 2512 PAGE 614

THENCE North, leaving said Choctaw Creek, and continuing for a total distance of 148.13 feet to a ½" steel rod set in the South line of the said Bailey Survey, Abstract No. 66, said rod maintaining an ell corner of a 191 acre tract of land conveyed by H. E. Hestand and wife, Martha Janette Hestand, to Haskell Edmond Hestand Jr. by deed dated April 28th, 1983, recorded in Volume 1643, Page 568, said Deed Records;

THENCE North 87°52'13" West with an old fence along said South line a distance of 2348.33 feet to a ½" steel rod set at an ell corner of said 191 acre tract;

THENCE North 13°32'35" West with an old fence a distance of 320.57 feet to a chain link fence corner in the North line of said Bailey Survey and the South line of the said Kitchen Survey, said post maintaining the Southwest corner of a 38.373 acre tract of land conveyed in judgement by Haskell Edmond Hestand Jr. to the City of Sherman, Texas, recorded in Volume 1950, Page 432, said Deed Records:

THENCE North 74°52'37" East with said South line a distance of 1221.31 feet to a ½" steel rod set at the Southeast corner of the said 5 acre tract;

THENCE North 14°25'03" West with the East line of the said 5 acre tract a distance of 1462.00 feet to the POINT OF BEGINNING and containing 110.877 acres of land, more or less;

LESS AND EXCEPT a 14.34 acre tract previously conveyed out of said 110.877 acre tract by Warranty Deed dated April 8, 1996, from James Eugene Farmer to the City of Sherman, Texas, recorded in Volume 2459, Page 241, Deed Records, Grayson County, Texas, leaving a remainder of 96.537 acres of land, more or less.

TO HAVE AND TO HOLD the above described premises, together with all and singular the rights and appurtenances thereto, including any mineral interests, in anywise belonging, unto the said Grantee, its successors and assigns forever; and Grantor does hereby bind himself, his heirs, executors, administrators, successors, and assigns to WARRANT AND FOREVER DEFEND, all and singular, the said premises unto the said Grantee, its successors and assigns, against every person whomsoever claiming or to claim the same or any part thereof.

WARRANTY DEED Page

VOL 2512 MEE 615

JAMES EUGENE FARMER

	ACKNOWLEDGMENT	i.	EH 9:	
THE STATE OF TEXAS	9	טטר י	81 3	SOUTH CO
COUNTY OF GRAYSON	9 §	<u>.</u> نا	93 13 13 13 13 13 13 13 13 13 13 13 13 13	ii GRAY

COUNTY OF GRAYSON §

BEFORE ME, the undersigned authority, on this day personally appeared JAMES EUGENE FARMER, known to me to be the person whose name is subscribed to the foregoing instrument and acknowledged to me that he executed the same for the purposes and consideration therein expressed.

GIVEN UNDERMY HAND AND SEAL OF OFFICE this the 22 day of COVERN LUCL, A.D., 1996.

NOTARY PUBLIC IN AND FOR THE STATE OF TEXAS

WARRANTY DEED Page 4

FILED FOR RECORD AND RECORDED DECEMBER 18, 1996, AT
SARA JACKSON GRAYSON COUNTY CLERK, BY JUNEAU DEPUTY

Attachment No. 15

1. Closure Plan

When the city no longer desires to use the existing sludge dewatering basins, they will be emptied of sludge and the interior of the basin allowed to thoroughly dry. Once the floor and sides of the basins have dried sufficiently to allow heavy equipment on the floor of the basins, the berms that form the basin will be removed and the soil from the berms used to fill in the basins.

All of the soils that have been used to construct the original berms meet the permeability requirements of 30 TAC 217.203(c). Additionally, the soils adjacent to the sludge dewatering basins meet the permeability requirements. Therefore, there is sufficient soil available on site to completely fill the basins to the original grade lines that existed before the basins were constructed.

Once the basins have been filled and graded to the original contours, grass will be established on the entire surface of the closed sludge dewatering basins.

2. Prevention of surface water and ground water intrusion.

The clays soils that have been used to construct the sludge dewatering basins are very impermeable. Therefore it is very difficult for groundwater to enter the basins.

The tops of the berms all are above the elevation of existing ground. Therefore, there is no possibility that surface water can enter the basins.

3. Procedures to prevent nuisance conditions

During the time the basins are being filled with sludge or dewatered, at least 12 inches of water cover is maintained at all times. The only time such water cover is not maintained is just before the basins are to be emptied. The water cover prevents insects and rodents from being attracted to the basins. Only water birds and turtles are attracted to the basins.

20Se

Attachment S
Permit Justification
Tech Report 1.1, Section 1.A

ATTACHMENT S CITY OF SHERMAN

POST OAK WASTEWATER TREATMENT FACILITY TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION PERMIT JUSTIFICATION AND DESIGN ORGANIC LOADING

PERMIT JUSTIFICATION

The City of Sherman (City) is growing in population and providing services to new industrial users (IUs). Two IUs began large construction projects for new facilities. The IUs will discharge significant amounts of wastewater to the Post Oak Wastewater Treatment Facility (WWTF). Projected flows from the new IUs will increase as the IUs expand production. Flow projections for the population growth and IUs were obtained from the City of Sherman Master Plan Report dated August 30, 2024, which was prepared by Plummer Associates, Inc.

Figure 1 presents the projected flows from 2025 through 2032. The current and requested annual average permit flows with the 90% level of the proposed permitted flows are also presented on Figure 1.

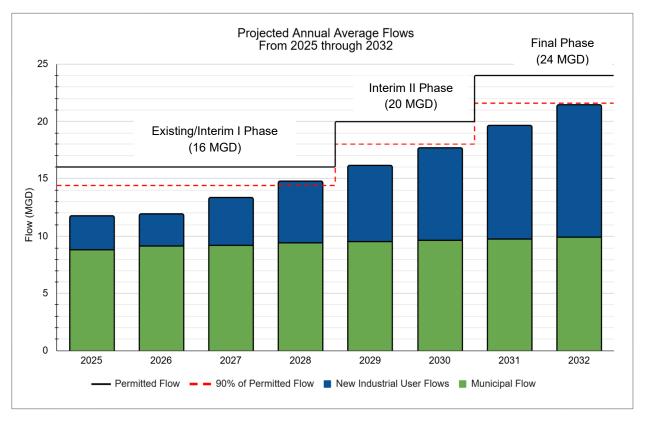


Figure 1. Projected Municipal and Industrial Flows from 2025 through 2032.

Because the proposed flows are expected to exceed 90% of the permit limitations of 16 million gallons per day (MGD) in 2029 and 20 MGD in 2031 the proposed future phases are justified.

DESIGN ORGANIC LOADING

The design organic loadings for each phase are based on existing data and information received from the new IUs. As described in Attachment A, the WWTF receives flows through three interceptors. Two interceptors are to the north side of the WWTF and delivers wastewater that is predominantly from residential/domestic sources. The sources of wastewater received through the south interceptor are predominantly industrial. As the new IUs ramp-up production, the quality and quantity of the wastewater received at the WWTF will change. The contributions from the new IU sources are expected to have 5-day, biochemical oxygen demand (BOD₅) concentrations significantly lower than the existing municipal/domestic source wastewater and IUs.

The design organic concentration for the Existing/Interim I phase of the North train is based on historical data. The average plus one standard deviation of the BOD₅ concentrations for influent data collected from January 2021 through December 2024 is 190 milligram per liter (mg/L).

The design organic concentration for the Existing/Interim I phase of the South train is 186 mg/L BOD_5 . The load is based on a mass balance calculations using the data for the south interceptor line and the maximum flows and BOD concentrations projected for the new IUs for 2025.

The design organic concentrations and anticipated organic loads for the Interim II and Final phases for the two trains were based on mass balance calculations. The North train will treat predominately domestic/municipal wastewater. The design concentration for the North train is 250 mg/L BOD₅. The South train, which will treat industrial flows, will be significantly lower in BOD₅ concentration. However, the ammonia concentrations will increase.

Table 1 presents the sources, design flow, and BOD₅ concentrations for each train and each phase.

Table 1. Existing/Interim I, Interim II, and Final Phase Organic Loading Sources.

Phase	Source	Design Flow (MGD)	BOD Concentration (mg/L)
Existing/Interim I (16 MGD)	•		
North Train	Residential/Municipal	12	190
South Train	Industrial	4	186
Interim II (20 MGD)			
North Train	Residential/Municipal	16	250
South Train	Industrial	4	186
Final (24 MGD)			
North Train	Residential/Municipal	16	250
South Train	Industrial	8	95

Attachment T Design Calculations and Plant Features Tech Report 1.1, Section 4

ATTACHMENT T.1 CITY OF SHERMAN POST OAK WASTEWATER TREATMENT PLANT DESIGN CALCULATIONS

EXISTING/INTERIM I PHASE - NORTH TRAIN

Flow and Loading

Design Flow	12.0 MGD
BOD Influent Design Concentration (1)	190 mg/L
Design Influent Organic Loading	19,015 lb BOD5/day
Peak Flow	24.0 MGD
Peaking Factor	2.0
Percent BOD Removal Primary Clarifiers	35 percent
BOD Primary Effluent Design Concentration	124 mg/L
Design Primary Effluent Organic Loading	12,360 lb BOD5/day
Notes	

Note:

The average concentration of BOD measured from January 2021 to December 2024 is 145 mg/l. 1 standard deviation is determined to be 45 mg/l. The BOD Influent Design Concentration is taken as 145 mg/l + 45 mg/l = 190 mg/l

Primary Clarification

1 mary Carmouton		1
No. of Basins	3	
Surface Area, Total	23,358	sf
Weir Length, Total	915	ft
Volume, Total	249,118	cf
Volume, Total	1,863,403	gal
Surface Loading Rate at Design Flow	514	gpd/sf
TCEQ Max. Surface Loading Rate at Design Flow	1,000	gpd/sf
Surface Loading Rate at Peak Flow	1,027	gpd/sf
TCEQ Max. Surface Loading Rate at Peak Flow	1,800	gpd/sf
Detention Time at Design Flow	3.7	hrs
TCEQ Min. Detention Time at Design Flow	1.8	hrs
Detention Time at Peak Flow	1.9	hrs
TCEQ Min. Detention Time at Peak Flow	0.9	hrs
Weir Loading Rate at Peak Flow	26,230	gpd/f
TCEQ Max. Weir Loading Rate at Peak Flow	30,000	gpd/f
2 Hour Peak Flow Capacity of Clarifier based on TCEQ Max. Surface Loading	42.0	MGD
2 Hour Peak Flow Capacity of Clarifier based on TCEQ Min. Detention Time	49.7	MGD
2 Hour Peak Flow Capacity of Clarifier based on TCEQ Max. Weir Loading	27.5	MGD

ATTACHMENT T.1 CITY OF SHERMAN POST OAK WASTEWATER TREATMENT PLANT DESIGN CALCULATIONS

EXISTING/INTERIM I PHASE - NORTH TRAIN

Activated Sludge Treatmer

Activated Studge Treatment		
No. of Basins	3	
Length	150.0	ft
Width	50.0	ft
SWD	18.0	ft
Volume at Normal WSE	405,000	cf
Volume at Normal WSE	3,029,805	gal
Detention Time at Design Flow	6.1	hrs
Detention Time at Peak Flow	3.0	hrs
Organic Loading at Design Flow	30.5	lb BOD/d/1000 cf
TCEQ Design Max. Allowable Organic Loading	35.0	lb BOD/d/1000 cf
Design Capacity of Aeration Basin based on TCEQ Max. Organic Loading	13.8	MGD
Oxygen Required as per TCEQ	2.2	lb O _{2/} lb BOD
Oxygen Required for Organic Loading	27,192	lb O _{2/} lb BOD
Wastewater Oxygen Transfer Efficiency	15%	
Unit Weight of Air	0.075	ld/cf
Oxygen Air Ratio	23%	lb O _{2/} lb Air
Required Air Flow	7,298	CFM
Existing Blower Capacity	10,650	CFM

Secondary Clarification (Biological Clarifiers)

No. of Basins, Total	3	
SWD, ea.	15.0	ft
Diameter, ea.	100.0	ft
Surface Area, Total	23,562	sf
Volume, Total	353,429	cf
Volume, Total	2,644,000	gal
Weir Length, Total	942	ft
Surface Loading Rate at Design Flow	509	gpd/sf
Surface Loading Rate at Peak Flow	1,019	gpd/sf
TCEQ Max. Surface Loading Rate at Peak Flow	1,200	gpd/sf
Detention Time at Design Flow	5.3	hrs
Detention Time at Peak Flow	2.6	hrs
TCEQ Min. Detention Time at Peak Flow	1.8	hrs
Max. Weir Loading Rate at Peak Flow	25,478	gpd/ft
TCEQ Max. Weir Loading Rate at Peak Flow	30,000	gpd/ft
2 Hour Peak Flow Capacity of Clarifier based on TCEQ Max. Surface Loading	28.0	MGD
2 Hour Peak Flow Capacity of Clarifier based on TCEQ Max. Weir Loading Rate	28.0	MGD
2 Hour Peak Flow Capacity of Clarifier based on TCEQ Min. Detention Time	35.0	MGD

ATTACHMENT T.1 CITY OF SHERMAN POST OAK WASTEWATER TREATMENT FACILITY DESIGN CALCULATIONS

EXSITING/INTERIM I - SOUTH TRAIN

Influent Wastewater Characteristics

Notes:

- 1. Values provided are based on the Preliminary Design Report for 2025, which has been submitted to the TCEQ.
- 2. The design value is considered the average plus one standard deviation concentration, which is equivalent to the max month value.
- 3. Values are calculated based on available data for the south interceptor and projected data from the industries.

Values

Parameter	Average (mg/L)	Design (mg/L)
BOD	141	186
TSS	149	223
Ammonia	76	90

Flow Characteristics

Notes:

1. The South WWTP - MBR is designed with a 2 times peaking factor. Flows over this amount will be sent to storage.

<u>Values</u>

Parameter	Value (MGD)
AADF	4
Peak Day Flow	8

Biological Reactor Basins (BRB)

Notes

- 1. The BRB system was designed using the GPS-X modelling software.
- 2. The TCEQ requires a solids retention time (SRT) of 10-25 days. The BRB has a SRT of 23 days for AADF and 10 days for peak day flow.
- 3. The TCEQ requires an MLSS concentration of 4,000-10,000 mg/L. The BRB has a design MLSS concentration of 3,800 mg/L for AADF and 7,400 for peak flow. Model results indicated that given that under AADF conditions the BRBs can operate in the 3,000s mg/L of MLSS and achieve required levels of nitrification. If a minimum MLSS of 4,000 is required, then supplemental carbon will be needed.

Organic Loading Rate

Parameter	Value	
Aerobic Volume per Train (gal)	380,000	
Total Aerobic Volume (cf)	203,209	
Max Organic Loading Rate (lbs BOD/d/1,000 cf)	35	<-
Actual Organic Loading Rate (lbs BOD/d/1,000 cf)	31	

<--TCEQ Max

Air Demand

Givens

Parameter	Value	
Theoretical BOD demand (lb O2/lb BOD)	1.2	< TCEQ coefficient
Theoretical NH3 demand (lb O2/lb NH3)	4.57	< TCEQ coefficient
BRB Diffuser Submergence Depth (ft)	19.1	< Per Xylem diffuser submittal
Standard Oxygen Transfer Efficiency per ft of submergence (%)	1.6	< Xylem Silver Series II LP diffusers are used. This is the average value.
Standard Oxygen Transfer Efficiency (%)	30.6	
Wastewater Oxygen Transfer Efficiency (%)	9.4	< Corrected for fine bubble diffuser and actual submergence pe TCEQ factors.
Unit Weight of Air (lb/cf)	0.075	< Standard conversion
Oxygen Air Ratio (lb O2/lb air)	0.23	< Standard conversion
Air Flow Rate per Blower (scfm)	4,000	
Number of Blowers	4	
Firm Air Flowrate (scfm)	12,000	

ATTACHMENT T.1 CITY OF SHERMAN POST OAK WASTEWATER TREATMENT FACILITY DESIGN CALCULATIONS

EXSITING/INTERIM I - SOUTH TRAIN

Calculations	
Parameter	Average Flow Value
BOD Loading (lb/d)	6,205
NH3 Loading (lb/d)	3,002
Oxygen Required for BOD (lb/d)	7,446
Oxygen Required for NH3 (lb/d)	13,721
Total Oxygen Required (lb/d)	21,167
Air Required (cfm)	9,041
Firm Capacity Provided (cfm)	12,000

^{1.} Using the 2.2 coefficient in 30 TAC 217.155(a)(3) the oxygen required is 13,651 lb/day. The separate BOD (1.2) and ammonia (4.57) coefficients produced a higher air requirement and is used for sizing the system.

Membrane Basins

<u>Givens</u>

Parameter	Design Cassettes
Number of Trains	3
Module Suface Area (ft ²)	530
Max Modules/Cassette	64
Surface Area/Cassete (ft ²)	33,920

Calculations

<u>Garagerer</u>			
Parameter	Design Capacity (6 Cassettes/ Train)	Firm Capacity (5 Cassettes/Train)	TCEQ Value
Surface Area/Train (ft ²)	203,520	169,600	==
Total Surface Area (ft ²)	610,560	508,800	
Average Net Flux Rate (gal/day/sf)	6.6	7.9	15
Peak Net Flux Rate (gal/day/sf)	13.1	15.7	18.75

^{1.} There is a spare permeate pump provided, so the redundancy requirement is taken to be one cassette out of service.

Sludge Storage Tank

Givens

Parameter	Value
Tank Diameter (ft)	64
SWD (ft)	18
Volume (cf)	57,906
Firm Blower Capacity (scfm)	1,737

<-- Two blowers each rated for 1,737 scfm.

Calculations

Parameter	Actual Value	TCEQ Value
Airflow (cf air/min/1000 cf liquid)	30	30

ATTACHMENT T.2 CITY OF SHERMAN POST OAK WASTEWATER TREATMENT PLANT DESIGN CALCULATIONS

INTERIM II - NORTH TRAIN

Flow and Loading

16.0	MGD
250	mg/L
33,360	lb BOD5/day
32.0	MGD
2.0	
35	percent
163	mg/L
21,684	lb BOD5/day
	250 33,360 32.0 2.0 35 163

Note:

BOD influent design concentration isdetermined based on mass balance + 1 Standard Deviation. The mass balance assumes that the 9.77 MGD of existing municipal flow shall have a concentration of 200 mg/l, 4 MGD of future flow shall have a BOD concentration of 300 mg/l and 2.23 MGD of industrial flow shall have a BOD concentration of 40 mg/l.

Primary Clarification

No. of Basins	3	
Surface Area, Total	23,358	sf
Weir Length, Total	915	ft
Volume, Total	249,118	cf
Volume, Total	1,863,403	gal
Surface Loading Rate at Design Flow	685	gpd/sf
TCEQ Max. Surface Loading Rate at Design Flow	1,000	gpd/sf
Surface Loading Rate at Peak Flow	1,370	gpd/sf
TCEQ Max. Surface Loading Rate at Peak Flow	1,800	gpd/sf
Detention Time at Design Flow	2.8	hrs
TCEQ Min. Detention Time at Design Flow	1.8	hrs
Detention Time at Peak Flow	1.4	hrs
TCEQ Min. Detention Time at Peak Flow	0.9	hrs
Weir Loading Rate at Peak Flow	34,973	gpd/f
TCEQ Max. Weir Loading Rate at Peak Flow	30,000	gpd/f
2 Hour Peak Flow Capacity of Clarifier based on TCEQ Max. Surface Loading	42.0	MGD
2 Hour Peak Flow Capacity of Clarifier based on TCEQ Min. Detention Time	50.0	MGD
2 Hour Peak Flow Capacity of Clarifier based on TCEQ Max. Weir Loading	27.0	MGD

ATTACHMENT T.2 CITY OF SHERMAN POST OAK WASTEWATER TREATMENT PLANT DESIGN CALCULATIONS

INTERIM II - NORTH TRAIN

Activated Sludge Treatment

No. of Basins (2 to be installed in future)	5	
Length	150.0	ft
Width	50.0	ft
SWD	18.0	ft
Volume at Normal WSE	675,000	cf
Volume at Normal WSE	5,049,675	gal
Detention Time at Design Flow	7.6	hrs
Detention Time at Peak Flow	3.8	hrs
Organic Loading at Design Flow	32.1	lb BOD/d/1000 cf
TCEQ Design Max. Allowable Organic Loading	35.0	lb BOD/d/1000 cf
Design Capacity of Aeration Basin based on TCEQ Max. Organic Loading	17.4	MGD
Oxygen Required as per TCEQ	2.2	lb O _{2/} lb BOD
Oxygen Required for Organic Loading	47,705	lb O _{2/} lb BOD
Wastewater Oxygen Transfer Efficiency	15%	
Unit Weight of Air	0.075	ld/cf
Oxygen Air Ratio	23%	lb O _{2/} lb Air
Required Air Flow	12,804	CFM
Existing Blower Capacity (2 new blowers each of 3,550 CFM to be added)	10,650	CFM

Secondary Clarification (Biological Clarifiers)

No. of Basins, Total	4	
SWD, ea.	15.0	ft
Diameter, ea.	100.0	ft
Surface Area, Total	31,416	sf
Volume, Total	471,239	cf
Volume, Total	3,525,340	gal
Weir Length, Total	1,257	ft
Surface Loading Rate at Design Flow	509	gpd/sf
Surface Loading Rate at Peak Flow	1,019	gpd/sf
TCEQ Max. Surface Loading Rate at Peak Flow	1,200	gpd/sf
Detention Time at Design Flow	5.3	hrs
Detention Time at Peak Flow	2.6	hrs
TCEQ Min. Detention Time at Peak Flow	1.8	hrs
Max. Weir Loading Rate at Peak Flow	25,457	gpd/ft
TCEQ Max. Weir Loading Rate at Peak Flow	30,000	gpd/ft
2 Hour Peak Flow Capacity of Clarifier based on TCEQ Max. Surface Loading	38.0	MGD
2 Hour Peak Flow Capacity of Clarifier based on TCEQ Max. Weir Loading Rate	38.0	MGD
2 Hour Peak Flow Capacity of Clarifier based on TCEQ Min. Detention Time	47.0	MGD

ATTACHMENT T.2 CITY OF SHERMAN POST OAK WASTEWATER TREATMENT FACILITY DESIGN CALCULATIONS

INTERIM II - SOUTH TRAIN

Influent Wastewater Characteristics

Notes:

- 1. Values provided are based on the Preliminary Design Report for 2025, which has been submitted to the TCEQ.
- 2. The design value is considered the average plus one standard deviation concentration, which is equivalent to the max month value.
- 3. Values are calculated based on available data for the south interceptor and projected data from the industries.

Values

Parameter	Average (mg/L)	Design (mg/L)
BOD	141	186
TSS	149	223
Ammonia	76	90

Flow Characteristics

Notes:

1. The South WWTP - MBR is designed with a 2 times peaking factor. Flows over this amount will be sent to storage.

Values

Parameter	Value (MGD)
AADF	4
Peak Day Flow	8

Biological Reactor Basins (BRB)

Notes

- 1. The BRB system was designed using the GPS-X modelling software.
- 2. The TCEQ requires a solids retention time (SRT) of 10-25 days. The BRB has a SRT of 23 days for AADF and 10 days for peak day flow.
- 3. The TCEQ requires an MLSS concentration of 4,000-10,000 mg/L. The BRB has a design MLSS concentration of 3,800 mg/L for AADF and 7,400 for peak flow. Model results indicated that given that under AADF conditions the BRBs can operate in the 3,000s mg/L of MLSS and achieve required levels of nitrification. If a minimum MLSS of 4,000 is required, then supplemental carbon will be needed.

Organic Loading Rate

Parameter	Value
Aerobic Volume per Train (gal)	380,000
Total Aerobic Volume (cf)	203,209
Max Organic Loading Rate (lbs BOD/d/1,000 cf)	35
Actual Organic Loading Rate (lbs BOD/d/1,000 cf)	31

<--TCEQ Max

Air Demand

Givens

Parameter	Value
Theoretical BOD demand (lb O2/lb BOD)	1.2
Theoretical NH3 demand (lb O2/lb NH3)	4.57
BRB Diffuser Submergence Depth (ft)	19.1
Standard Oxygen Transfer Efficiency per ft of submergence (%)	1.6
Standard Oxygen Transfer Efficiency (%)	30.6
Wastewater Oxygen Transfer Efficiency (%)	9.4
Unit Weight of Air (lb/cf)	0.075
Oxygen Air Ratio (lb O2/lb air)	0.23
Air Flow Rate per Blower (scfm)	4,000
Number of Blowers	4
Firm Air Flowrate (scfm)	12,000

- <-- TCEQ coefficient
- <-- TCEQ coefficient
- <-- Per Xylem diffuser submittal
- <-- Xylem Silver Series II LP diffusers are used. This is the average value.
- <-- Corrected for fine bubble diffuser and actual submergence per TCEQ factors.
- <-- Standard conversion
- <-- Standard conversion

ATTACHMENT T.2 CITY OF SHERMAN POST OAK WASTEWATER TREATMENT FACILITY DESIGN CALCULATIONS

INTERIM II - SOUTH TRAIN

Calculations	
Parameter	Average Flow Value
BOD Loading (lb/d)	6,205
NH3 Loading (lb/d)	3,002
Oxygen Required for BOD (lb/d)	7,446
Oxygen Required for NH3 (lb/d)	13,721
Total Oxygen Required (lb/d)	21,167
Air Required (cfm)	9,041
Firm Capacity Provided (cfm)	12,000

^{1.} Using the 2.2 coefficient in 30 TAC 217.155(a)(3) the oxygen required is 13,651 lb/day. The separate BOD (1.2) and ammonia (4.57) coefficients produced a higher air requirement and is used for sizing the system.

Membrane Basins

<u>Givens</u>

Parameter	Design Cassettes
Number of Trains	3
Module Suface Area (ft ²)	530
Max Modules/Cassette	64
Surface Area/Cassete (ft ²)	33,920

Calculations

Parameter	Design Capacity (6 Cassettes/ Train)	Firm Capacity (5 Cassettes/Train)	TCEQ Value
Surface Area/Train (ft ²)	203,520	169,600	
Total Surface Area (ft ²)	610,560	508,800	
Average Net Flux Rate (gal/day/sf)	6.6	7.9	15
Peak Net Flux Rate (gal/day/sf)	13.1	15.7	18.75

^{1.} There is a spare permeate pump provided, so the redundancy requirement is taken to be one cassette out of service.

Sludge Storage Tank

Givens

Parameter	Value
Tank Diameter (ft)	64
SWD (ft)	18
Volume (cf)	57,906
Firm Blower Capacity (scfm)	1,737

<-- Two blowers each rated for 1,737 scfm.

Calculations

Parameter	Actual Value	TCEQ Value
Airflow (cf air/min/1000 cf liquid)	30	30

ATTACHMENT T.3 CITY OF SHERMAN POST OAK WASTEWATER TREATMENT PLANT DESIGN CALCULATIONS

FINAL - NORTH TRAIN

Flow and Loading

16.0	MGD
250	mg/L
33,360	lb BOD5/day
32.0	MGD
2.0	
35	percent
163	mg/L
21,684	lb BOD5/day
	250 33,360 32.0 2.0 35 163

Note:

BOD influent design concentration isdetermined based on mass balance + 1 Standard Deviation. The mass balance assumes that the 9.77 MGD of existing municipal flow shall have a concentration of 200 mg/l, 4 MGD of future flow shall have a BOD concentration of 300 mg/l and 2.23 MGD of industrial flow shall have a BOD concentration of 40 mg/l.

Primary Clarification

No. of Basins	3	
Surface Area, Total	23,358	sf
Weir Length, Total	915	ft
Volume, Total	249,118	cf
Volume, Total	1,863,403	gal
Surface Loading Rate at Design Flow	685	gpd/sf
TCEQ Max. Surface Loading Rate at Design Flow	1,000	gpd/sf
Surface Loading Rate at Peak Flow	1,370	gpd/sf
TCEQ Max. Surface Loading Rate at Peak Flow	1,800	gpd/sf
Detention Time at Design Flow	2.8	hrs
TCEQ Min. Detention Time at Design Flow	1.8	hrs
Detention Time at Peak Flow	1.4	hrs
TCEQ Min. Detention Time at Peak Flow	0.9	hrs
Weir Loading Rate at Peak Flow	34,973	gpd/f
TCEQ Max. Weir Loading Rate at Peak Flow	30,000	gpd/f
2 Hour Peak Flow Capacity of Clarifier based on TCEQ Max. Surface Loading	42.0	MGD
2 Hour Peak Flow Capacity of Clarifier based on TCEQ Min. Detention Time	50.0	MGD
2 Hour Peak Flow Capacity of Clarifier based on TCEQ Max. Weir Loading	27.0	MGD

ATTACHMENT T.3 CITY OF SHERMAN POST OAK WASTEWATER TREATMENT PLANT DESIGN CALCULATIONS

FINAL - NORTH TRAIN

Activated Sludge Treatment

No. of Basins (2 to be installed in future)	5	
Length	150.0	ft
Width	50.0	ft
SWD	18.0	ft
Volume at Normal WSE	675,000	cf
Volume at Normal WSE	5,049,675	gal
Detention Time at Design Flow	7.6	hrs
Detention Time at Peak Flow	3.8	hrs
Organic Loading at Design Flow	32.1	lb BOD/d/1000 cf
TCEQ Design Max. Allowable Organic Loading	35.0	lb BOD/d/1000 cf
Design Capacity of Aeration Basin based on TCEQ Max. Organic Loading	17.4	MGD
Oxygen Required as per TCEQ	2.2	lb O _{2/} lb BOD
Oxygen Required for Organic Loading	47,705	lb O _{2/} lb BOD
Wastewater Oxygen Transfer Efficiency	15%	
Unit Weight of Air	0.075	ld/cf
Oxygen Air Ratio	23%	lb O _{2/} lb Air
Required Air Flow	12,804	CFM
Existing Blower Capacity (2 new blowers each of 3,550 CFM to be added)	10,650	CFM

Secondary Clarification (Biological Clarifiers)

No. of Basins, Total	4	
SWD, ea.	15.0	ft
Diameter, ea.	100.0	ft
Surface Area, Total	31,416	sf
Volume, Total	471,239	cf
Volume, Total	3,525,340	gal
Weir Length, Total	1,257	ft
Surface Loading Rate at Design Flow	509	gpd/sf
Surface Loading Rate at Peak Flow	1,019	gpd/sf
TCEQ Max. Surface Loading Rate at Peak Flow	1,200	gpd/sf
Detention Time at Design Flow	5.3	hrs
Detention Time at Peak Flow	2.6	hrs
TCEQ Min. Detention Time at Peak Flow	1.8	hrs
Max. Weir Loading Rate at Peak Flow	25,457	gpd/ft
TCEQ Max. Weir Loading Rate at Peak Flow	30,000	gpd/ft
2 Hour Peak Flow Capacity of Clarifier based on TCEQ Max. Surface Loading	38.0	MGD
2 Hour Peak Flow Capacity of Clarifier based on TCEQ Max. Weir Loading Rate	38.0	MGD
2 Hour Peak Flow Capacity of Clarifier based on TCEQ Min. Detention Time	47.0	MGD

ATTACHMENT T.3 CITY OF SHERMAN POST OAK WASTEWATER TREATMENT FACILITY DESIGN CALCULATIONS

FINAL - SOUTH TRAIN

Influent Wastewater Characteristics

Notes:

- 1. The design value is considered the average plus one standard deviation concentration, which is equivalent to the max month value.
- 2. Values are calculated based on available data for the south interceptor and projected data from the new industries.

<u>Values</u>

Parameter	Average (mg/L)	Design (mg/L)
BOD	71	95
TSS	76	110
Ammonia	91	111

Flow Characteristics

Notes:

1. The South WWTP - MBR is designed with a 2 times peaking factor. Flows over this amount will be sent to storage.

Values

Parameter	Value (MGD)
AADF	8
Peak Day Flow	16

Biological Reactor Basins (BRB)

Notes

- 1. The BRB system was designed using the GPS-X modelling software.
- 2. The TCEQ requires a solids retention time (SRT) of 10-25 days. The BRB has a SRT of 25 days for AADF and 11 days for peak day flow.
- 3. The TCEQ requires an MLSS concentration of 4,000-10,000 mg/L. The BRB has a design MLSS concentration of 3,200 mg/L for AADF and 5,600 for peak flow. Model results indicated that given that under AADF conditions the BRBs can operate in the 3,000s mg/L of MLSS and achieve required levels of nitrification. If a minimum MLSS of 4,000 is required, then supplemental carbon will be needed.

Organic Loading Rate

Parameter	Value	
Aerobic Volume per Train (gal)	380,000	
Total Aerobic Volume (cf)	406,417	
Max Organic Loading Rate (lbs BOD/d/1,000 cf)	35	<-
Actual Organic Loading Rate (lbs BOD/d/1,000 cf)	16	

<--TCEQ Max

Air Demand

Givens

Parameter	Value	
Theoretical BOD demand (lb O2/lb BOD)	1.2	< TCEQ coefficient
Theoretical NH3 demand (lb O2/lb NH3)	4.57	< TCEQ coefficient
BRB Diffuser Submergence Depth (ft)	19.1	< Per Xylem diffuser submittal
Standard Oxygen Transfer Efficiency per ft of submergence (%)	1.6	< Xylem Silver Series II LP diffusers are used. This is the average value.
Standard Oxygen Transfer Efficiency (%)	30.6	
Wastewater Oxygen Transfer Efficiency (%)	9.4	< Corrected for fine bubble diffuser and actual submergend TCEQ factors.
Unit Weight of Air (lb/cf)	0.075	< Standard conversion
Oxygen Air Ratio (lb O2/lb air)	0.23	< Standard conversion
Air Flow Rate per Blower (scfm)	4,000	
Number of Blowers	8	
Firm Air Flowrate (scfm)	28,000	

ATTACHMENT T.3 CITY OF SHERMAN POST OAK WASTEWATER TREATMENT FACILITY DESIGN CALCULATIONS

FINAL - SOUTH TRAIN

Calculations

Calculations			
Parameter	Average Flow Value		
BOD Loading (lb/d)	6,338		
NH3 Loading (lb/d)	7,406		
Oxygen Required for BOD (lb/d)	7,606		
Oxygen Required for NH3 (lb/d)	33,845		
Total Oxygen Required (lb/d)	41,451		
Air Required (cfm)	17,705		
Firm Capacity Provided (cfm)	28,000		

^{1.} Using the 2.2 coefficient in 30 TAC 217.155(a)(3) the oxygen required is 13,651 lb/day. The separate BOD (1.2) and ammonia (4.57) coefficients produced a higher air requirement and is used for sizing the system.

Membrane Basins

Givens

<u>CITOTIO</u>	
Parameter	Design Cassettes
Number of Trains	6
Module Suface Area (ft ²)	530
Max Modules/Cassette	64
Surface Area/Cassete (ft ²)	33,920

Calculations

Parameter	Design Capacity (6 Cassettes/ Train)	Firm Capacity (5 Cassettes/Train)	TCEQ Value
Surface Area/Train (ft ²)	203,520	169,600	
Total Surface Area (ft ²)	1,221,120	1,017,600	
Average Net Flux Rate (gal/day/sf)	6.6	7.9	15
Peak Net Flux Rate (gal/day/sf)	13.1	15.7	18.75

^{1.} There is a spare permeate pump provided, so the redundancy requirement is taken to be one cassette out of service.

Sludge Storage Tank

Givens

Parameter	Value
Tank Quantity	2
Tank Diameter (ft)	64
SWD (ft)	18
Volume (cf)	57,906
Firm Blower Capacity (scfm)	1,737

<-- Two blowers each rated for 1,737 scfm.

Calculations

Parameter	Actual Value	TCEQ Value
Airflow (cf air/min/1000 cf liquid)	30	30

ATTACHMENT T.4 CITY OF SHERMAN POST OAK WASTEWATER TREATMENT PLAN FACILITY DESIGN FEATURES

Emergency Power Requirements

In accordance with 30 TAC 217.36, emergency power generation is provided for the Post Oak WWTP. There are two independent circuits with an automatic transfer switch for the North train. The North train will also have generators as part of an upcoming Plummer Wastewater Electrical Upgrades (MV Loop) project. The South train has a generator for backup power. The generators included will energize automatically if a power outage is detected and are sized to allow normal operation of the entire plant.

Alarm Features

The Post Oak WWTP is equipped with a supervisory control and data acquisition (SCADA) system to monitor and allow for control over the operation of plant equipment.

North Train

The SCADA system is located within the facility's administration building. There is a graphic display that includes all treatment units. There are operators on site 24 hours per day to monitor the treatment process.

South Train

The MBR treatment units are integrated into the SCADA system. There is a separate control system for the membrane system located inside the Membrane Support Building Control Room. The following summarizes the alarms that are sent to the SCADA system for the South train. Alarms are also triggered at the local programmable logic controller (PLC) panels. Alarm conditions are not included for the membrane system in this narrative for brevity. The membrane manufacturer provides continuous on call support as needed to address potential alarms if they arise.

- 1. Loss of power to each treatment unit and piece of equipment.
- 2. Diversion Structure high level.
- 3. Influent Pump Station high level alarms for the coarse screen channel. High- and low-level alarms for each wet well.
- 4. Preliminary Treatment Unit high level alarms for each fine screen channel.
- 5. Equalization Basin low level.
- 6. Biological Reactor Basin Influent Splitter Box high level.
- 7. Carbon and Alkalinity discharge pump pressure high level.
- 8. Membrane Bioreactor Basin air scour blower low flow.
- 9. RAS Pump Station high and low level.
- 10. Waste Activated Sludge (WAS) discharge pump pressure high level.
- 11. Relift Pump Station high and low level.

- 12. Effluent Filters disk mechanism torque.
- 13. Effluent Filters high level.

Design Features for Reliability and Operating Flexibility

North Train

- 1. Influent Lift Station. There are seven submersible pumps. The peak two-hour flow (P2HF) can be pumped with the largest pump out of service.
- 2. Coarse Screens. Three coarse screens can handle the P2HF, allowing one unit to be out of service if needed.
- Grit Removal. One grit unit can handle the P2HF, allowing one unit to be out of service if needed.
- 4. Wet Weather Equalization Basin. There is one, 12 MG Wet Weather Equalization Basin that is used during peak flow events. Flow can be diverted from the influent lift station, after the grit chambers, or after the primary clarifiers.
- 5. Aeration Basins. There are three trains that can be operated in plug flow or parallel modes. If operated in parallel, individual trains can be taken offline if needed. Two additional trains are proposed.
- 6. Secondary Clarifiers. There are three clarifiers, allowing an individual clarifier to be isolated if needed. One additional clarifier is proposed.
- 7. UV Disinfection. There are two 8 MGD/16 MGD UV trains, allowing one train to be taken out of service if needed. Two additional 8 MGD/16 MGD UV trains are proposed.

South Train

- Influent Pump Station. Each coarse bar screen is designed for the peak flow of 8 MGD, providing full redundancy. There are four submersible pumps (two 4 MGD and two 8 MGD). The firm capacity of the station is 16 MGD.
- 2. Preliminary Treatment Unit. The grit removal unit has a bypass channel included. Each fine screen is designed for the peak flow of 8 MGD, providing full redundancy. The fine screens have 1 mm openings, ensuring the membranes are protected.
- 3. Equalization Basin. This unit is sized for 4 MG each. There is also a bypass line included if the structure needs to be taken offline.
- 4. Activated Sludge Basins. There are four trains that operate in parallel, allowing basins to be taken offline as needed. Four trains with blower capacity identical to those constructed for the first 4 MGD phase would be added.
- Membrane Bioreactor Basins. There are three trains that operate in parallel, allowing basins to be taken offline as needed. Each train contains a dedicated permeate pump. A shelf spare permeate pump is included for redundancy.
- 6. RAS Pump Station. There are three submersible pumps rated for 8 MGD each. The station was designed for a four times recirculation factor. Pumping requirements are met with one pump out of service.
- 7. Effluent Piping. The membrane effluent piping going to the POWWTP UV disinfection treatment unit contains valves to allow flow to be drained back to the Influent Pump Station if membrane effluent does not meet permit limits.

8. Solids Handling. Thickening and dewatering facilities dedicated to the South train would be added. Supernatant from both processes would be collected and drained to the South train Influent Pump Station. A second sludge storage tank may be constructed depending on the volume of WAS produced.

Overflow Prevention

The following features are included to prevent overflow of wastewater from treatment units.

North Train

- 1. The coarse screens, influent lift station, and grit removal can accommodate the P2HF with one unit out of service.
- 2. There is ample peak flow storage if flows exceed the treatment capabilities of the primary clarifiers, secondary treatment process, and UV disinfection. There is one, 12 MG Wet Weather Equalization Basin that is used during peak flow events. If this volume is not sufficient, there are four emergency storage basins with approximately 37 MG capacity that can be used.

South Train

The following design features will be used to prevent the overflow of wastewater from the treatment units.

- Based on projected flows, the plant includes a 2:1 peaking factor. All structures are designed to pass the full 8 MGD peak flow, and yard piping has been sized to accommodate 16 MGD peak flow for future expansion.
- The Diversion Structure contains a bypass line to send flow to the emergency storage ponds if needed. Flow is then drained back to the Diversion Structure after the peak flow event.
- 3. The Influent Pump Station contains a bypass line to send flow to the emergency storage ponds if needed.
- 4. The Preliminary Treatment Unit contains logic to clean the fine screens if an 8 MGD pump is operated from the Influent Pump Station. This feature functions to reduce the potential for blinding of the fine screens.
- 5. The Equalization Basin contains an overflow line that sends flow to the emergency storage basins if needed.
- 6. The RAS Pump Station includes a storage basin to ensure sufficient volume is available for pumping. The storage basin also serves as an overflow for the membrane basins.
- 7. If this volume is not sufficient, there are four emergency storage basins with approximately 37 MG capacity that can be used.

Peak Flow Discussion

The factor for the 2-hour peak flow to annual average flow for the Existing/Interim I and requested phases is 2:1. The facility currently has sufficient flow equalization and storage to prevent overflow for extreme storm events that may result in high influent flows. Information

obtained from the recently completed for the City's Wastewater Collection System Master Plan (Master Plan) is presented below to demonstrate the 2:1 peaking factor is sufficient.

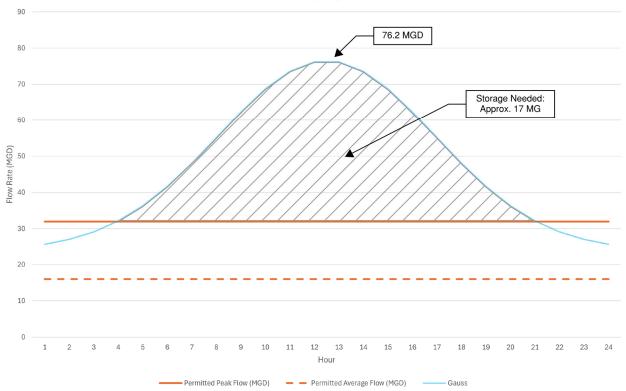
Temporary flow monitoring and analysis were conducted for the Master Plan. It was concluded the collection system could produce a peak flow upon buildout of 76.2 MGD in 2032. However, if additional large diameter interceptors are constructed in the future, or if significant inflow and infiltration reductions are achieved, the peak flow may need to be reassessed. However, the projected influent peaking factors based on the evaluation are as follows:

Phase	Average Daily Flow (MGD)	Peak Flow (MGD)	Peak Influent Flow (MGD)	Peaking Factor
Existing/Interim I	16	32	76.2	4.76
Interim II	20	40	76.2	3.81
Final	24	48	76.2	3.17

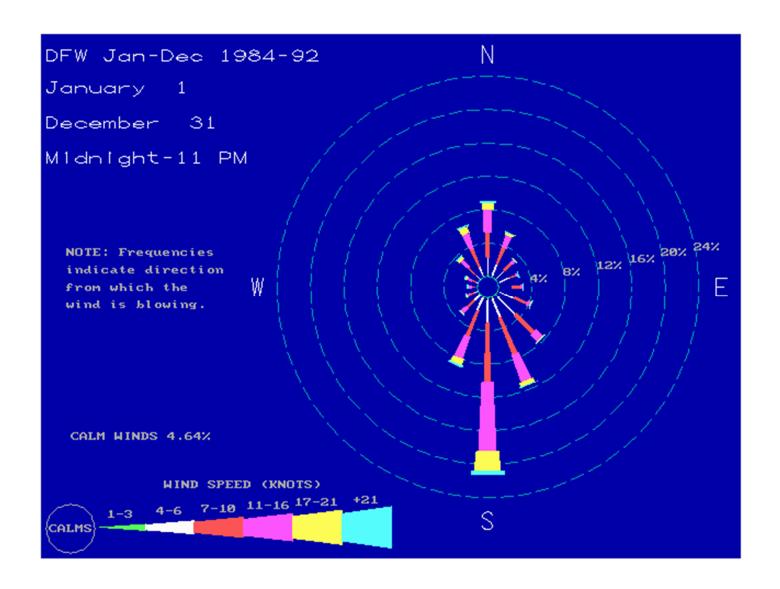
Current firm pumping capacity is 16 MGD for the south plant train and 60 MGD for the north plant train, for a total of 76 MGD. Both stations are expandable to enable future firm pumping capacities to exceed a total of over 90 MGD with pump additions.

Conservatively assuming that flow rate of 76.2 occurs during a day in the plant's Interim I phase, with 41 MG entering the collection system over a 24-hour period, approximately 17 MG of storage is projected to be needed to keep flows in the plant's secondary treatment system below the 32 MGD hydraulic and process capacity. It is anticipated that peak storage needs may be reduced during future phases as pumping and daily processing capacities are increased, so needs for emergency storage are not expected to increase for the Interim II and Final phases. Current peak flow storage volume available is as follows:

Volume available:


•	West Equalization Basin Lower Storage	8.5 MG
•	Additional Storage in West Equalization	10.1 MG
	Basin Within Levee	
•	MBR Plant daily flow equalization	4.0 MG
•	Northwest Earthen Emergency Storage Basin	9.6 MG
•	Southwest Earthen Emergency Storage Basin	9.1 MG

Total Peak Flow Storage Available, Interim I 41.3 MG


It is noted that a second (future) 4 MG daily flow equalization basin is planned for the MBR train, and two additional earthen peak flow storage basins (not listed above) are available for additional emergency storage if needed.

A peak flow hydrograph reflecting the conditions described above during the Interim I phase is shown in the figure below:

Sherman Hydrograph

Attachment U Wind Rose Tech Report 1.1, Section 5.B

ATTACHMENT U CITY OF SHERMAN POST OAK WASTEWATER TREATMENT FACILITY TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION WIND ROSE

Attachment V
Solids Management Plan
Tech Report 1.1, Section 7

ATTACHMENT V CITY OF SHERMAN POST OAK WASTEWATER TREATMENT FACILITY SOLIDS MANAGEMENT PLAN

EXISTING / INTERIM I PHASE

NORTH TRAIN

Parameter	Value
Influent Design Flow (MGD)	12
Influent Design BOD Concentration (mg/L)	190
Average Dry Sludge Production (lb/MG) ¹	530
Assumed Percent Solids to Dewatering	2.50%

^{1.} Based on sludge production data from 2021-2024

Sludge Production

Parameter	100% Flow	75% Flow	50% Flow	25% Flow
Pounds of BOD (lb)	19,015	14,261	9,508	4,754
Dry Solids Produced (lbs/day)	6,360	4,770	3,180	1,590
Volume of Wet Sludge (gal/day)	30,504	22,878	15,252	7,626

Sludge Storage Available

Location	Volume (gal)
Aerated Sludge Storage	34,121
Earthen Basin (Emergency Storage)	35,740,000

SOUTH TRAIN

Parameter	Value
Influent Design Flow (MGD)	4
Influent Design BOD Concentration (mg/L)	186
Sludge Storage Tank Volume (gal)	433,136
MBR Basin MLSS (mg/L) ¹	5,300
WAS Production (lb/MG) ²	571
WAS Percent Solids	0.53%

- 1. Based on model results from GPS-X for average flow and concentration conditions.
- 2. Based on model results from GPS-X. This uses 0.286 dry tons/million gallons.

Sludge Production

Parameter	100% Flow	75% Flow	50% Flow	25% Flow
Pounds of BOD (lb)	6,205	4,654	3,102	1,551
Weight of Wet Sludge (lb)	2,284	1,713	1,142	1,713
Volume of Wet Sludge (gal)	51,672	38,754	25,836	12,918

ATTACHMENT V CITY OF SHERMAN POST OAK WASTEWATER TREATMENT FACILITY SOLIDS MANAGEMENT PLAN

INTERIM II PHASE

NORTH TRAIN

Parameter	Value
Influent Design Flow (MGD)	16
Influent Design BOD Concentration (mg/L)	250
Average Dry Sludge Production (lb/MG)	697
Assumed Percent Solids to Dewatering	2.50%

Sludge Production

Parameter	100% Flow	75% Flow	50% Flow	25% Flow
Pounds of BOD (lb)	33,360	25,020	16,680	8,340
Dry Solids Produced (lbs/day)	11,158	8,368	3,180	2,789
Volume of Wet Sludge (gal/day)	53,515	40,136	26,758	13,379

SOUTH TRAIN

Parameter	Value
Influent Design Flow (MGD)	4
Influent Design BOD Concentration (mg/L)	186
Sludge Storage Tank Volume (gal)	433,136
MBR Basin MLSS (mg/L) ¹	5,300
WAS Production (lb/MG) ²	571
WAS Percent Solids	0.53%

- 1. Based on model results from GPS-X for average flow and concentration conditions.
- 2. Based on model results from GPS-X. This uses 0.286 dry tons/million gallons.

Sludge Production

Parameter	100% Flow	75% Flow	50% Flow	25% Flow
Pounds of BOD (lb)	6,205	4,654	3,102	1,551
Weight of Wet Sludge (lb)	2,284	1,713	1,142	1,713
Volume of Wet Sludge (gal)	51,672	38,754	25,836	12,918

ATTACHMENT V CITY OF SHERMAN POST OAK WASTEWATER TREATMENT FACILITY SOLIDS MANAGEMENT PLAN

FINAL PHASE

NORTH TRAIN

Parameter	Value
Influent Design Flow (MGD)	16
Influent Design BOD Concentration (mg/L)	250
Average Dry Sludge Production (lb/MG)	697
Assumed Percent Solids to Dewatering	2.50%

Sludge Production

Parameter	100% Flow	75% Flow	50% Flow	25% Flow
Pounds of BOD (lb)	33,360	25,020	16,680	8,340
Dry Solids Produced (lbs/day)	11,158	8,368	3,180	2,789
Volume of Wet Sludge (gal/day)	53,515	40,136	26,758	13,379

SOUTH TRAIN

Parameter	Value
Influent Design Flow (MGD)	8
Influent Design BOD Concentration (mg/L)	95
Sludge Storage Tank Volume (gal)	866,271
MBR Basin MLSS (mg/L) ¹	5,000
WAS Production (lb/MG) ²	571
WAS Percent Solids	0.50%

- 1. Based on model results from GPS-X for average flow and concentration conditions.
- 2. Based on model results from GPS-X. This uses 0.286 dry tons/million gallons. Projected WAS production rate is the same as the 4 MGD condition.

Sludge Production

Parameter	100% Flow	75% Flow	50% Flow	25% Flow
Pounds of BOD (lb)	6,338	4,754	3,169	1,585
Weight of Wet Sludge (lb)	4,568	3,426	2,284	3,426
Volume of Wet Sludge (gal)	109,544	82,158	54,772	27,386

Sludge Removal Schedule

Dewatered solids will be removed and transported to the Texoma Area Solid Waste Authority (Permit No. 2290) daily with the exception of weekends and holidays.

Attachment W Post Oak Creek Stream Study Worksheet 2.1

ATTACHMENT 2

RECEIVING WATERS

All applicants must submit USGS quadrangle maps showing the location of the facility and the discharge point(s) and/or the land treatment/land application area, as appropriate. If this is an application for a <u>discharge</u> permit, USGS quadrangle maps must be submitted that depict the discharge route for three (3) miles from the point of discharge (or until a classified segment as defined in 30 TAC Chapter 307, Appendix C, Texas Surface Water Quality Standards is reached.)

The permittee should retain a copy of the information submitted with this Attachment for reference in subsequent applications.

APPLICATIONS FOR A PERMIT TO DISPOSE OF ALL WASTEWATER BY LAND DISPOSAL ARE NOT REQUIRED TO COMPLETE ATTACHMENT 2, SECTION A OR B.

SECTION A

DESCRIPTION OF RECEIVING WATERS

If all outfalls do not enter the same receiving water, SECTION A must be completed for each receiving water. The outfalls that flow into each receiving water should be listed.

OU	TTFALL NUMBER(S)
1.	Is there a surface water intake for domestic drinking water supply located within 5 (five) miles downstream from the point/proposed point of discharge?
	If Yes, identify owner of the drinking water supply and accurately locate it on the USGS 7.5-minute topographic map.
2.	For discharges into marine waters, N/A
	a) What is the width of the receiving water at the outfall?
	b) Are there oyster reefs in the vicinity of the discharge? If yes, give approximate distance from outfall(s).
3.	Is the discharge directly into (or within 300 feet of) a classified segment as defined in Appendix C of the Texas Surface Water Quality Standards?
	YES If YES, stop here. SECTION A is complete. It is not necessary to complete SECTION B.
	X NO Check NO if the discharge goes into a watercourse such as a creek or tributary prior to flowing into a classified segment and then complete Items 3 4 5 and 6. (Complete SECTION 3

only if appropriate.)

OUTFALL NUMBER(S) 001
The following questions refer to the <u>immediate</u> receiving water (e.g., a drained ditch, a stream, a lake, a bay, etc.). Check the box which best describes the first receiving water into which the discharge will flow after it leaves the outfall aranswer any associated questions.
4. The receiving water can best be described as:
a. [X] Stream OR [] Man-made Channel or Ditch:
Name/Number Post Oak Creek
(1) Stream or Channel Type: Characterize the area upstream of the discharge by checking one of the boxes below. (For a new discharge characterize downstream area.)
[X] Intermittent (dry for at least one week during most years)
[] Intermittent with Persistent Pools (enduring pools containin sufficient habitat to maintain significant aquatic life uses)
[] Perennial (normally flowing)
(2) List the name(s) of any perennial streams which join the receivin water within three miles downstream of the discharge point:
Choctaw Creek joins with Post Oak Creek 2.2 km downstream of the WWTP discharge point.
(3) Do the receiving water characteristics change within three miles o the discharge? YES NO $\frac{X}{}$. If yes, state how:
(4) Basis of flow assessment: [] USGS flow records, [X] personal observation, [] historical observation of adjacent landowner, [other, specify
b. [] Tidal Stream, Bayou, or Marsh: Name
c. [] Open Bay: Name
d. [] Lake or Pond: Name
Surface area acres
e. [] Freshwater Swamp or Marsh: Name
f. [] Other, Specify

Date and time of observation: Downstream - 9/87
Upstream - /05/86 Weather conditions during and just prior to observation:
Dry
Was water body influenced by stormwater runoff during observations? No
neral Characteristics of Water Body:
Water (applies to the area upstream for streams and channels and outside the effluent impact area for tidal streams, lakes, ponds, bays and marshes.
For a new discharge, characterize the proposed discharge impact area) (check as appropriate): Existing Discharge
[X] clear [] clouded [] odorless [] colored [] turbid [] odor
describe
[] other, specify:
Characterize areas surrounding the water body (check one):
[] wooded [] pastureland [] urban [X] farmland
Characterize the stream channel modifications (check as appropriate): No modifications have been done. [] channelized [] dammed [] banks rip-rapped [] leveed [] concrete lined [] others, specify:
Is the receiving water upstream of the discharge or proposed discharge site influenced by (check as appropriate):
[] oil field activities
Describe any obvious water quality problems (e.g., surface scums, sludge accumulations, nuisance aquatic plant growth, discolored water, trash, etc.):

f. Us	ses o	of water body (observed or evidences of) (Check as approp	priate):
	[]	<pre>] livestock watering [] contact recreation] non contact recreation [] fishing] domestic water supply [] industrial water supply] irrigation withdrawal [] navigation] picnic or park activities] others, specify: None was observed or evidence found. Typically livest</pre>	
		creek for water during some of the year.	
g. Se wa	lect ter a	creek for water during some of the year. t one of the following to best describe the aesthetics of t and the surrounding area (check one):	the receiving
Į.		<u>Wilderness</u> : outstanding natural beauty; usually wooded of area; water clarity exceptional	or unpastured
[<u>Natural Area</u> : trees and/or native vegetation common; some evident (from fields, pastures, dwellings); water clarit	
Į		<pre>Common Setting: not offensive, developed but uncluttere be colored or turbid</pre>	d; water may
[X	() <u>C</u>	Offensive: stream does not enhance aesthetics; clutted developed; dumping areas; water discolored	ered; highly
Physic	cal C	Characteristics of Water Body:	
ef: st: ite	fect ream. ems a	ommission staff will apply a mathematical model for probability which a discharge may have on the oxygen balance of the control of providing the interpretation a. (1), (2), and (3) below or indicating acceptance of the assumptions in the following statement.	he receiving formation in
YES	s	, TNRCC default assumptions are acceptable.	
of der	the oth, v	n, Tidal Stream, Man-made Channel or Ditch - If the physic e receiving stream changes drastically (depth, width, ve width and velocity of each homogenous reach should be def eachment in response to this requirement.	elocity) the
	(1)	the outfall location (measure at normal dry weather flo	w - omit for
		tidal stream). 16.8	_ ft³/sec
		Measurement method used Product of cross-section are	a and measured
	(2)		velocity.
		0.63	_ft/sec
		Measurement method used dye injection and time dye	
	(3)	Average width of water surface from the outfall locatio more than 400 meters downstream using at least three m (measure at normal dry weather flow - include an averadepth for a tidal stream)	neasurements age
		G	
		Measurement method used Surveyor's tape	

7.

	(4)	Are there any man-made or natural dams located wit downstream from the discharge?	hin 2 miles
		YES NO X	
ъ.	Lake, Po	nd, Bay, Swamp, or Marsh N/A	
	(1)	Surface area acres	
	(2)	Average depth of the entire water body	feet
	(3)	Depth of water at discharge point	feet
	(4)	Approximate average depth of water body within a 100	foot radius
		of the discharge point	feet
	(5)	Depth of discharge pipe	feet
	(6)	Distance of discharge to:	
		Nearest public water supply intake	miles
		Nearest recreational area	miles
		Nearest residential lot	feet
		Nearest bank	feet

SECTION B (Part I) - Stream Physical Characteristics Worksheet

oute: 1-5-96 Time	: 1:00PM s	Stream: Po	st Oak	1	ocatio	of site: Upstream of Discharge	·		
icarest Stream Segment:	Red Ri	lver	Observed 5	Stream .	Usca:_	None		·	
iream Type (Circle One)	e perennial	intermitte	ent) w perennial po	ok i	Vo. of	Stream Bends: 6 Definition of Bends: Moder	rate		
Channel Obstructions/Mo	difications:	None	·	N	lo. of I	tiffles: 6 Flow Fluctuations (Circle One): mi	nor (mod	erate seve	πe ·
Evidence of Flow Flucture	tions: trasl	h along	bank Riparia	n Vege	ation	(%) 70 Trees 20 Grasses Forbs 10 Cult.	Fields	_ Other	 -
Location of Transect	Stream Width (A.)	Left Bank · Slope · (*)	Left Bank Erosion (%)			Stream Depths (ft.) at Points Across Transect	Right Bank Slope (°)	Right Bank Erosion (%)	Ттее Сапару (%)
	12	45	60	0	.7	1.1 1.3 1.5 1.5 1.3 1.0 0.8 0	50	60	25
Section 1	Stream Type (Circle					Dominant Types Riparian Vegetation: Trees, brush, and some grass		% Gravel or Larger	
	Algae/Macro (Circle One)		Width of Riperian vegetation (fl.)		Instr	eam Cover Types:		% Instream	Cover
	Abundant (Rare (Abs		80	١		Soil ·		0	,
Location of Transect	Stream Width (ft.)	Left Bank Slope (°)	Left Bank Ervaion (%)			Stream Depths (ft.) at Points Across Transect	Right Bank Slope (°)	Right Bank Erosion (%)	Тгее Сагиру (%)

Location Transec		Stream Width (ft.)	Left Bank Slope (°)	Left Bank Erosion (%)	Bank Stream Depths (ft.) at Points Across Transect Bank Erosjon Stope										Right Bank Erosion (%)	Ттее Сагмру (%)	
		20	50	50	ó	.6	.7	.7	.8	.8	.8	.6	.3	0	30	50	0
Section 1	A	Stream Type One) RiMe Glide Pool	Rum	Dominant Substrate Type Soil				Dominant Types Riperian Vegetation: Grass								% Gravel or Larger	
	;	Algae/Mecro (Circle Oric) Abundant Rare Abs	Common	Width of Riparian vegetation (ft.) 110	ustream Cover Types: None									% Instrum Cover			

Location of Transect	Siream Widda (fl.)	Left Bank Siope (°)	Left Bank Erosion (%)	,	•	Right Bank Erosion (%)	Тгее Сагкэру (%)				
	15	45	50	0	1.0	1.0 0.7 0.5	0.5 0.3 0	.2 0.1 0	45	50	70
Section 1B	Stream Type One) Riffie Glide Peci	Rum	Dominant Substrate Type Soil			Dominant Types Rips Grass and t		% Gravel or Larger			
	Algae/Macm (Circle One) Abundant Rare (Abe	Соминен	Width of Riperies Instruction (fl.) 70			am Cover Types: None		% Instream Cover			

Location of Transect	Stream Width (A.)	Left Bank Slope (°)	LeA Bank Erosion (%)	Right Stream Depths (ft.) at Points Across Transect Bank Slope (*)									Right Bank Erosion (%)	Tree Cantipy (%)		
	12	45	50	0	.5	.7	.7	.8	.7	.7_	.6_	.5	0	30	50	50
Section 1C	Stream Type One) Riffle Glide Poo	Rus	Dominant Substrate Soll	Туре	. (II.	inent T Trees	-			n;	7-			% Gravel of Larger 30	
	Algae/Macr (Circle One Abundant Rare Ab) Сошшоп	Width of Riparian vegetation (ft.) 100		Instream Cover Types: None										% Instream Cover	

Location of Transect	Stream Width (A.)	Left Bank Slope (°)	Left Bank Erosion (%)		Right Stream Depths (ft.) at Points Across Transect Bank Slope (*)										Right Benk Erosion (%)	Тгее Свиору (%)
	Stream Type One) Riffle Glide Poo	Rus	Dominant Substrate	Туре		Domin		pes Rip	Parian V	egetatio	n:				% Gravel o	r Larger
:	Algae/Macr (Circle One Abundant Rare Ab	Width of Riperian vegetation (ft.)	Instream Cover Types:								•	% Instream	Cover			

SECTION B (Part I) - Stream Physical Characteristics Worksheet

Datc: 9/87 Ti	mc: N/A	Stream: Po	st Oak Creek	L	ocation	of site:			•					<u> </u>		
Nearest Stream Segmen								<u> </u>								
Stream Type (Circle On Channel Obstructions/M Evidence of Flow Fluc	Aodifications:	falle some paper in	n trees at locations	N	o. of Ri	ffics: N/A	Flov	v Pluci	uetions	(Circle	One)	: wio	or mod		ere	
Location of Transect	Stream Width (R.)	Left Bank · Slops · (°)	Left Bank Erosion (%)		S	tream Deptha	(fl.) at I	Points A	cros Ti	nnseci			Right Bank Slope (°)	Right. Bank Erosion (%)	Тгее Сапору (%)	
	22	50	20										50	20	30	
Section 2	Stream Type One) Riffle Glide Poo	Rus	Dominant Substrate SOLL	Турс	Dominant Types Riperian Vegetation: Oak Trees and Grasses									% Gravel or Larger		
	Algae/Macr (Circle One Abundast Rare (Ab		Instream Cover Types: / None									% Instream Cover				
Location of Transect	Stream Width (R.)	Left Bank Slope (°)	LeA Bank Erosion (%)			Stream Deptho	14 (f.) st	Points A	cross T	'raneccl			Right Benk Slope (°)	Right Bank Erosion (%)	Тесе Свиору (%)	
	22	50	.20										50	20	30	
Section 3	Stream Typ One) Riff Glide Po	e Run	Dominant Substrate Soll	е Туре		Dominant T Oak	ypes Rig and 1	% Gravel or Larger								
	Algae/Mac (Circle On Abundant Rare (Al	c) Common	Width of Riparian vegetation (ft.)	Instream Cover Types: None								% Instream Cover				

SECTION B (Part I) - Stream Physical Characteristics Worksheet

Date: 9/87 Time; Nearest Stream Segment:_ Stream Type (Circle One): Channel Obstructions/Mod Evidence of Flow Fluctuat	Red Rive	intermitte falle some	Observed S mat w perennial po en trees at locations a trees	iream l ole N	Uscs: lo. of S o. of R	None	a: 85	w Fluct	anoitau	(Circle	One)	: win	or (mod			
Location of Transect	Stream Width (ft.)	Left Benk · Slope · (°)	Left Bank Erosion (%)			Stream Depth	l (fl.) at	Points A	cross Tr	ransect			Right Bank Slope (*)	Right. Bank Erosion (%)	Tree Campy (%)	
	22	50	20						•				50	20	30	
Section 2	Stream Type One) Riffle Glide Pool	(Rum	Dominant Substrate So.1.1	ntinent Substrate Type Dominant Types Riperien Vegetation: Soil Oak Trees and Grasses										% Gravel or	Larger	
	Algae/Macro (Circle One) Abundant (Rare (Abs	Common	Width of Riperian vegetation (ft.) 100	dth of Riparian Instream Cover Types:										% Instresm O	Cover	
Location of Transect	Stream Width (N.)	Lefi Bank Slope (°)	Left Bank Erosion (%)	Right Stream Depths (ft.) at Points Across Transect Bank Slope (°)											Tree Canopy (%)	
	22	50	20												30	
Section 3	Stream Type One) Riffle Glide Poo	e (Rus)	Dominant Substrate	ant Substrate Type Dominant Types Riperian Vegetation: % Grave!												
	Algae/Mac _l (Circle One Abundant Rare (Ab) Common	Width of Riperien vegetation (ft.)	of Riparian Instream Cover Types:												

Location of Transect	Stream Width (A.)	Left Bank Slope (°)	LeA Bank Erosion (%)		•	Siream Depths	l ja (. fl)	Points A	свое Т	manseci			Right Bank Slope (°)	Right Bank Erosion (%)	Tree Canopy (%)
	22	60	25										60	25	50
Section 4	Stream Type One) Riffie Glide) Pee	i i i i i i i i i i i i i i i i i i i	Dominant Substrat	unt Substrate Type Dominant Types Riparian Vegetation:							ees		% Gravel o	C Larger	
	Algae/Macr (Circle One Abundant Rare (Ab) Сощинов	Width of Riparian vegetation (A.) 80		Instr	eam Cover Typ None	,		,					% Instreets	O Cover

Location of Transect	Stream Width (ft.)	Left Benk Slope (°)	Left Bank Erosion (%)			Stream Deptha	/fi.) at	Points A	сгов е Т	Trib¢c(Right Bank Slope (°)	Right Bank Erosion (%)	Tree Canopy (%)
	16	75	40								75	40	50	
Section 5	Stream Type One) Riffie Glide Pou) Russ	Dominant Substrate Rock	Туре		Dominant T	-		_	n:			% Gravel o	T Larger
	Algae/Macr (Circle One) Abundant)	Width of Riparian vegciation (ft.)		Instra	am Cover Typ	CB:						% Instream	Cover
	Rure (Abs		60			None					 .T			0

Location of Transect	Stream Width (ft.)	Left Bank Slupe (°)	, Left Bank Erosion (%)			Stream Depth	ia (.A) a	Points /	Across T	fanseci		Right Bank Slope (*)	Right Bank Erosion (%)	Tree Canopy (%)
	26	35	25									35	25	20
Section 6	Stream Type One) RiMe Glide Poo	Run	Dominant Substrate	Турс		Dominant Tree	Types Rig S , G1		_		h		% Gravel o	r Leikei
	Algae/Macr (Circle One Abundant Rare Ab	Common	Width of Riperies vegetation (ft.)		Instr	eam Cover Ty None	•				•	•	% Instream O	Cover

77 P

Location of Transect	Stream Width (A.)	Left Benk Slope (°)	Left Bunk Erosion (%)		•	Stream Depths	(â.) a (l	ointe A	teross Ti	enscci			Right Benk Slope (°)	Right Benk Erosion (%)	Tree Canopy (%)
	20	70	30									70	30	50	
Section 7	Stream Type Onc) Biffle Glide Pee	Russ	Dominant Substrate Soil	Dominant Substrate Type Dominant Types Riperian Vegetation:								% Gravel o	0		
	Algae/Macr (Circle One Abundant Rare (Ab	Commen	Width of Riperies vegetation (A.) 80		Instra	em Cover Type None	:8 :							S instream	

Location of Transect	Stream Width (ft.)	Left Bank Slope (°)	Left Bank Erosion (%)			Stream Deptha	(Å.) st	Pointa	Across T				Right Bank Slope (°)	Right Bank Erosion (%)	Tree Canopy (%)
	20	70	30									70	30	50	
Section 8	Stream Type Ope Riffle Glide Poo	Rust	Dominant Substrate Soil	Positinent Substrate Type Dominant Type						ed:				% Gravel o	r Larger O
	Algae/Macr (Circle One Abundant Rare (Ab	Common	Width of Riperien vegetation (fl.) 70		lnetce	nm Cover Typ	er: one							% Instream	i Cover

Location of Transect	Stream Width (fl.)	Left Benk Slope (*)	Left Bank Erosion (%)		Ste	eam Depthe	(ñ.) at	Points	Across T	Fransect			Right Bank Slope (*)	Right Bank Erosion (%)	Tree Canopy (%)
	1.7	75	40									75	40	50	
Section 9	Stream Type One) Riffle Glide Poo	Rue	Dominant Substrate	Dominant Types Riparian Vegetation: Trees and Brush									% Gravel o	or Larger	
	Algae/Maca (Circle One Abundant Rare (Ab)	Width of Ripetien vegetation (ft.) 80		hutcem	Cover Typ						•		% Instream	Cover

Location of Transect	Stream Width (A.)	Left Benk Slope (°)	Left Bank Erosion (%)		Si	ream Deptho	(A.) at i	Points A	cross T	ranecci	•		Right Benk Slope (°)	Right Bank Erosion (%)	Tree Canopy (%)
	20	70	30							70	30	50			
Section 10	Streem Type Ong. Riffie Gilde Pee	Name .								% Gravel o	or Larger				
	Algae/Macr (Circle One Abusdant Rare (Abe) Common	Width of Ripariae vogetation (ft.) 75	1	Înwrea	m Cover Typ None	te:		,	·				% luotrean	Cover

Location of Transect	Stream Width (ft.)	Left Bank Slope (°)	Left · Bank Erosion (%)		Sı	ream Depths	(fi.) at l	Pointe A	.cross T				Right Bank Slope (*)	Right Bank Erosion (%)	Тгес Селору (%)
	19	70	30								7Q	30	50		
Section 11	Streem Type One) Riffle (Glide) Pool	Kum	Dominant Substrate Type Dominant Types Riparian Vegetation: Soil Trees and Grass and Brush									% Gravel o	O Larger		
,	Algae/Mace (Circle One Abundant Rure (Abs	Common	Width of Riperies vegetation (8.) 80.	Ripariau Instresm Cover Types: on (A.)								% instream	Cover		

Location of Transect	Stream Width (A.)	Left Hank Slope (°)	Left Bank Erosion (%)	-		Stream Deptho	l sa (. ñ)	A stnio ^c	стова Т	ransect		Right Bank Slope (*)	Right Baak Erosioa (%)	Tree Compy (%)
	18	60	30							60	30	50		
Section 12	Stream Type One) Riffle Glide Poo	Rua	Dominant Substrate So11	Dominant Substrate Type Dominant Types Riparian Vegetation:							in the second	% Gravel o	r Larget)	
:	Algue/Macs (Circle One Alnudant Rare (Ab	Сошшоц Сошшоц	Width of Riperian vegetation (ft.) 190		Instr	oam Cover Typ None					•	·	% Instream	Cover

S. Co

Location of Transect	Stream Width (fl.)	Left Bank Slope (°)	Left Bank Erosion (%)		•	Stream I	Depths	(A.) at l	Points A	crosa Ti	ransec(Right Benk Slope (°)	Right Bank Erosion (%)	Tree Carmpy (%)
	17	60	30									6Q	30	50		
Section 13	Stream Type One) Riffie Glide) Poe	Russ	Dominant Substrat	Trees and Brush									% Gravel o	0		
	Algse/Macr (Circle One Abundant Rare Ab)	Width of Riperien vegetation (A.)											% instream	Cover	

Location of Transect	Stream Width (A.)	Left Bank Slope (°)	Left Bank Erosion (%)		S	tream Depti				•		Right Bank Slope (°)	Right Bank Erosion (%)	Тгее Сагнуру (%)
	20	70	· 30 ,	Arate Type Dominant Types Riparian Vegetation:							70	30	50	
Section 14	Stream Type Onc) Riffle Glide Poul	Run	Dominant Substrate Soll				fypes Ri es and		_	on:			% Gravel o	r Larger
	Algae/Macr (Circle One) Abundant Rare (Abs	Соштоп	Width of Ripacian vegetation (ft.) 70		Instres	m Cover T _l None	-						% Instream	Cover

Location of Transect	Streem Width (ft.)	Left Bank Slope (°)	Left Bank Erosion (%)			Siream I	Depths	i 1a (.ĥ)	A staio	сгоза Т	ranscci		Right Bank Slope (°)	Right Bank Erosion (%)	Tree Canopy (%)
	20	70	30		-								70	30	60
Section 15		Dominant Substrate So 11	Туре			_	per Rip and		_	n:			% Gravel o	er Larger	
:	Onc) Riffle Run Glide) Pool Algae/Macrophyto (Circle One) Abundant Common Rare (Absent)				Leanter	em Cov	er Type One	ip;				•		% jaetreem	Cover

Location of Transect	Stream Width (fl.)	Left Bank Slopa (°)	Left Bank Erosion (%)		•	Stream Deptha	(fl.) at Poi	ию Асгоее Т	ranseci		Right Bank Slope (°)	Right Bank Erosion (%)	Тгес Сапкру (%)
	19	75	40	0			.80			0	7.5	40	50
Section 16	Stream Type (Circle			е Туре		Dominant Trees	pes Ripsri and (_	n:			% Gravel o	r Larger
	Algae/Macro (Circle One) Abundant Rare (Abu	Commen	Width of Riparian vegetation (0.)		Instr	none	en:					% instream	

Location of Transect	Stezam Width (A.)	Left Benk Slope (*)	Left · Bank Ervaion (%)			Siream Depth	(A.) at F	ointe A				Right Bank Slope (°)	Right Bank Erosion (%)	Tree Canopy (%)
	21	70	30	0			.95				0	70	30	30
Section 17		Rus	Dominant Substrate Sol1	Туре		Dominant T Tree:			egetation: and Bri	ush			% Gravel o	r Larger
	(Circle One Abundant	lide Pool ligae/Macrophyte Width of Riparian				eam Cover Ty)cp:						% Instream	ı Cover

Location of Transect	Streem Width (A.)	Left Bank Siope (°)	Left Bank Eronion (%)			Siream I	Deptho ((fi.) at Points	Астова Т	fanscçî			Right Bank Slope (°)	Right Bank Erosion (%)	Tree Campy (%)
	19	75	40	0				1.35				0	75	40	50
Section 18	Stream Type One) Riffle Glide Poo	Rus	Dominant Substrate Soil	Турс		ii .		pes Riporisa and Gra		n:	-		<u>.</u>	% Gravel o	r Larger
; ;	Algae/Maca (Circle Onc		Width of Riperian vegetation (A.)		laster	am Cov	сг Турс	:0:						% Instream	Cover
	Abundani Raro Ab	Common scal	.90			No	ne							0	

Location of Transect	Stream Width (fl.)	Left Benk Slope (°)	Left Bank Erosion (%)			Streamt Dept	ths (ft.) at Poic	is Acroso	Transcci		Right Bank Slope (°)	Right Benk Erosion (%)	Tree Canopy (%)
	19	75	40								75	40	50
Section 19	Stream Type One) Riffie Glide Pee	. Branc	Dominant Subst	nate Type		Dominent	Types Ripads Trees	n Vegelat	ion:	roto – an s assan mana sas assa	woni 1910 - 1	% Gravel o	or Larger
	(Circle One) Abundant	nc) Riffie Run lide) Feel So 11 So 11 So 11 Width of Riparian vegetation (ft.) bundant Commen 90				em Covet T Non	•					% lustrean	1 Cover

Location of Transect	Stream Width (A.)	Lefi Bank Slope (*)	Left Bank Erosion (%)			Stream Deg	the (ft.) at P	oints .	Across T	[ensec]		Right Bank Slope (°)	Right Bank Erosion (%)	Tree Canopy (%)
	24	50	20	0			1.05				0_	50	20	60
Section 20	Stream Type One) Riffle Glide Poo	Rus	Dominant Subm Soil	rate Type		Dominan Tred	l Types Ripa 28	/ nain	/egclation	n:	 		% Gravel o	r Larger
	Algae/Macr (Circle One Abundant Rare (Ab) Common	Width of Ripari vegetation (A.)	AD	. Greeter	sam Cover							% hutcen	Cover

Location of Transect	Stream Width (A.)	Left Benk Slope (*)	Left Bank Erosion (%)			Stream Depth	(fl.) at Point	s Across T	fanscct		Right Bank Slope (°)	Right Bank Erosion (%)	Тгес Сыніру (%)
	23	50	20	0			.56			0	50	20	50
Section 21	Stream Typ Ope) Riffle Glide Poo	e Run	Dominant Substrat Soll	с Турс		Dominant Trees	ypes Riperies	Vegetation	n:			% Gravel o	or Larger
	Algae/Mac (Circle One Ahundant Rare Ab	;)	Width of Riperies vegetation (fl.) 100		lnete	am Cover Ty None	P¢#:			•		% Instream	1 Cover

Location of Transect	Stream Width (A.)	Len Bank Slope (°)	Left Bauk Erosion (%)		S	tream Depthe	(A.) at I	A atnio	cross Tr	nasce		Right Bank Slops (°)	Right Bank Erosion (%)	Tree Canopy (%)
	18	60	30			0.69					60	30	_ 50	
Section 22	Stream Type One) Riffie Glide Pea	Rum	Dominant Subset	ые Туре		Dominant T	ypes Rip		_):			% Gravel o	or Larger
	Algae/Macr (Circle One Abundant Rare (Ab	Commen	Width of Riparia vagetation (ft.) 90	10	Instres	m Cover Typ None			,	. •	·		% Instream	n Cover

Location of Transect	Stream Width (A.)	Left Bank Stope (")	LcA Bank Erosion (%)			stream Depths (ft.) at Points .	Across Transect		Right Bank Slope (°)	Right Bank Erosion (%)	Tree Canopy (%)
	18	60	30	0		1.05		0	60	30	50
Section 23	Stream Type (Circle One) Riffle Run (Glide) Feel Soil			16 Туре		Donunsa Types Riperian \ Trees and Bro		,		% Gravel o	or Larger
	(Circle One) Abundant	The state of the s			Instre	am Cover Types: None				% limtream	1 Cover

Location of Transect	Streem Width (A.)	Left Bank Slops (°)	Left Bank Erosion (%)			Stream Dep	iha (fi.) at	Points	Acrous T	Farscot			Right Bank Slope (°)	Right Bank Erozion (%)	Тгее Сапору (%)
	20	70	30	0			1.1	8				0	70	30	60
Section 24	Stream Type One) Riffle Glide Poo	Rus	Duminent Substrate Soil	Турс		Dominan Tre	Types Ri	,	•	a:	.•			% Gravel o	os Larger
:	Algas/Macr (Circle One Abundant Rare Ab	Common	Width of Ripscian vegetation (ft.) 80		bute	eam Cover T	••						•	% Instream	Cover

Ser.

ATTACHMENT 2: SECTION B (PART II) - Physical Characteristics of Water Body

Streambed slope over entire upstream-downstream reach (from USGS map in ft./ft.)	0.0006	5
Approximate drainage area above the most downst transect (from USGS or county highway map in mi		
UP TO THE DISCHARGE POINT		
• •	Upstream Reach	Downstream Reach
Length of stream evaluated (in miles)	0.5	14.5
Number of lateral transects made	4	_23
Average stream width (in feet)	15	_20
Average stream depth (in feet)	0.9	1.02
Average stream velocity (in ft/sec)	0.1	0.73
Instantaneous stream flow (in ft3/sec)	1.5	12.6
Indicate flow measurement method	Calculated u	pstream & r downstream
Indicate velocity measurement method	dye method	
Flow fluctuations (minor, moderate, severe)	<u>Moderate</u>	<u> Moderate</u>
Size of pools (large, small, moderate, none)	None	NOne_
Maximum pool depth (in feet)	N/A	N/A
Total number of stream bends	6	85
Number well defined	None	None
Number moderately defined	4	65
Number poorly defined	2	20
Total number of riffles	6	10
Dominant substrate type	soil	<u>soil</u>
Average percentage of substrates	_	•
gravel sized or larger	20	0
Average percentage stream bank erosion	50	35
Average stream bank slope (in degrees)	50	60
Average percentage instream cover	0	0
Average width of riparian vegetation (in ft)	25	15
Average riparian percent composition by: (to	tal to equal 10	0%)
Trees	40	40
- Shrubs	_30	40
Grasses and Forbs	20	20
Cultivated fields	10	
Other		
Total % =	100	100
Average percentage of tree canopy coverage	40	40

Attachment X Effluent Parameters Above the MAL Worksheet 6.0, Section 2.C

ATTACHMENT X

CITY OF SHERMAN

POST OAK WASTEWATER TREATMENT FACILITY TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION

EFFLUENT PARAMETERS ABOVE THE MAL

(All values expressed in µg/L)

	MAL	2/17/2022	4/21/2022	7/6/2022	10/20/2022	1/12/2023	4/20/2023	8/3/2023	10/19/2023	12/20/2023	1/27/2024	1/11/2024	4/4/2024	7/18/2024
Aluminum	2.5	113.27	24.46	107.7	135.16	48.38	106	142	179	46	104.85	41.99	30.19	123
Arsenic	0.5	1.72	1.54	1.2	1.46	1.36	0.97	1.45	1.8		0.92	1.3	1.25	2.05
Barium	3.0	59.2	70	43.8	43.1	54.6	57.4	43.6	53.4		34.1	60.5	70	49.6
Copper	2.0	5.38	2.98	6.05	4.61	6.23	5.81	7.5	5.57		3.79	4.88	5.46	7.41
Fluoride	500.0	55100	3100	4080	4300	3610	3540	4610	3320		3570		3280	3380
Nickel	2.0	1.98	1.77	1.87	1.92	2.46	2.52	2.03	1.49	1.7	1.72	1.66	1.97	2.11
Zinc	5.0	32.4	28.4	14.2	18.3	21.9	16.5	14.5	15.4		28.6	20.3	25.7	17.3
Phenols	10.0			5	11	7	14	12					6	20
Di-n-Butyl	10.0		12.1											
Phthalate	10.0		12.1											

Attachment Y Biosolids Treatment Process Description Sewage Sludge Technical Report 1.0, Section 1.A

DOMESTIC WASTEWATER PERMIT APPLICATION: SEWAGE SLUDGE TECHNICAL REPORT 1.0 ITEM 1a – PAGE 1

1a. TREATMENT PROCESSING INFORMATION

Description of the type of process facility

Our biosolids storage/dewatering basins were designed and constructed of a clay material which displays such low permeability that leakage through the clay is far less than the minimum mean pan evaporation. This clay meets TCEQ permeability requirements for clay liner in these basins. The City of Sherman established a facility inside the dewatering basins which enables the use of one of the three analysis/treatment methods described in the following:

Method 1 TAC 312.82(a)(2)(D) Alternative 4. If sludge is considered Class A, add CaO to facilitate handling.

Method 2 - TAC 312.82(a)(2)(D) Alternative 4. If sludge is not considered to be Class A, add CaO to increase pH above 12 for over 24 hours.

Method 3 - TAC 312.82(a)(2)(A) Alternative 1(i). If sludge is not considered to be Class A, add CaO to increase temperature to 70 deg C for over 30 minutes.

"Sludge processing begins with mesophilic anaerobic digestion. The digested solids are then discharged to dewatering basins where their stored for about 1-2 years before they'er dewatered and processed for marketing and distribution for beneficial reuse."

Given that the sludge already meets the requirement for vector attraction reduction, the City takes representative samples of the sludge to be analyzed by a qualified lab to determine the densities of fecal coliform, enteric viruses, and viable helminth ova contained in the sludge. Based on results of these tests, one of the analysis/treatment methods is used to insure the sludge meets the requirements for Class A sludge, thus making it suitable for marketing and distribution to the public.

As the basins fill, the City's objective is to clear the basin of sludge. The sludge has dewatered and thickened to approximately 18% solids, making it workable for lime treatment. Sludge at the south end of the basin is moved to the north end by use of a track type front-end loader or a crane operated drag line. Enough sludge is moved to leave a "working area," approximately 210 feet wide by 200 feet long, in which lime treatment equipment can be set up, and treated sludge can be stored. Approximately 160,000 cubic feet of sludge must be moved to the north end to clear the working area. Because the unused capacity of the north end is approximately 1.1 million cubic feet, moving the sludge from the working area to this location does not present a containment problem.

Mobile lime treatment processing equipment is set up in the working area. The two main components of this equipment are a sludge/lime mixer and a lime silo. Representative capacities and features are as follows:

CLC Portable High Capacity Lime/Sludge Mixer

- 50' Overall Length
- Diesel Powered
- Hopper:

.5 Cu. yd, gravity feed, 9' long x 7'-5" wide top opening Hopper elevation 11' above ground

Receiving trough with tapered opening and rubber flashing

Pugmill:

4'x10'

Approximate capacity 50 ton per hour of treated sludge (wet weight) Counter-rotating twin shafts, reversible paddles

The second

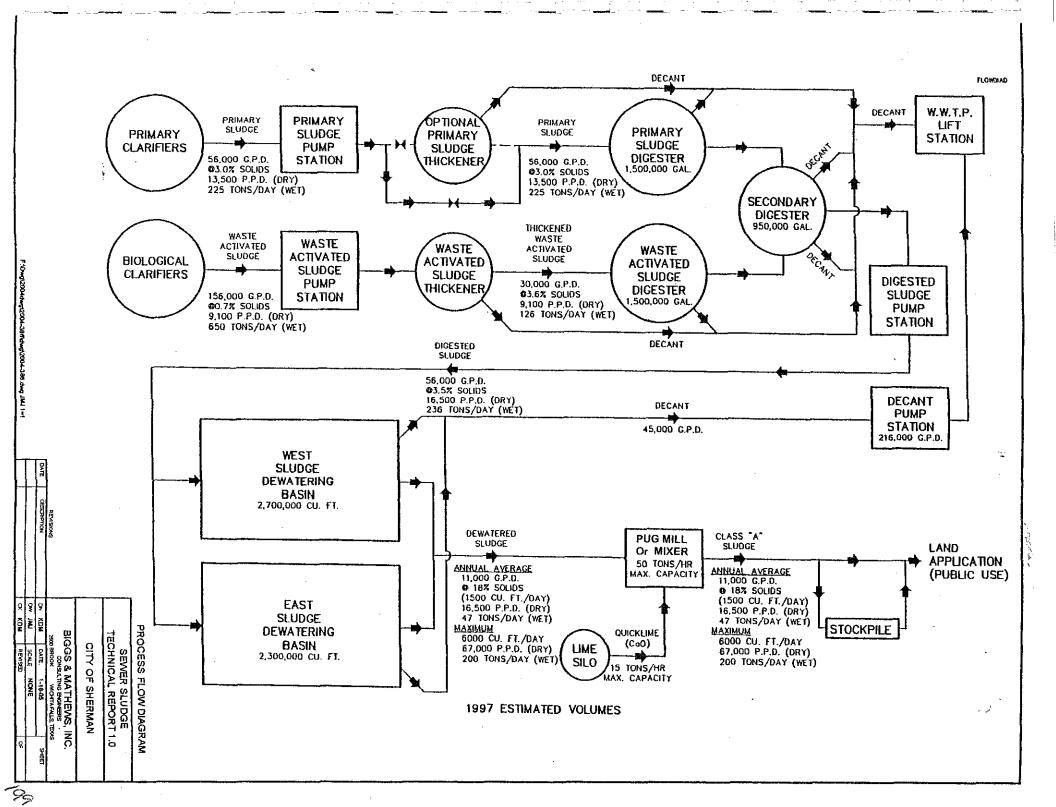
Vane Feeder:

1-112 cu, yd, hopper

Feed capacity, 15 ton per hour of lime

Discharge Conveyor: 30" x 28' pulley centers
 Single blade, spring tensioned belt cleaner mounted under the head pulley
 Extended conveyor elevation 13'

Operator's platform along side of pugmill with handrail, toe plate and gripstrut decking


Portable Lime Silo

- Discharge Conveyor:
- 30 ton lime storage capacity
- 8'-8" diameter x 28' height
- Auger discharge elevation 13'-4" above ground, 5' from silo wall
- Positive feed drive, approximately 10 ton per hour capacity
- 225 sq. ft, dust house with air vibrator
- Bin level indicators
- Caged ladder and railing

Sludge is placed in the hopper on the mixer by a track type front-end loader. The sludge in the hopper is metered as it is entered into the mixer. The quicklime, CaO, reagent is conveyed into the vane feeder on the mixer by auger from the lime silo, The quicklime is metered at the vane feeder such that it is added in correct proportion to the sludge, insuring adherence to the operating parameters of the treatment method. The sludge and quicklime are mixed by a pug mill, or twin screw type mixer, to insure uniform distribution of the quicklime and thus uniform pH and temperature. The treated sludge is then removed from the mixer by a conveyor belt to a spreader, or to a stockpile in the working area, Prior to distribution, the treated sludge is tested daily for pH and temperature to verify that the required values for the treatment method are being met.

Prior to emptying the basin, discharge from the wastewater treatment plant digesters is switched to a clean basin. The basin that contains sludge is allowed to dewater; then an identical process for testing, treating, and removing its sludge is implemented.

Process Flow Diagram (INCLUDED IN THIS ATTACHMENT)

Site controls

If the lime treatment equipment is shut down for refueling or maintenance, the sludge treatment process will cease, thus excluding the possibility of inadequate treatment. The possibility of sludge overflows in the basin is also excluded as long as the other basin has sufficient capacity to accept discharge from the wastewater treatment plant. Because the lime treatment equipment is mobile, prolonged delays due to maintenance can be avoided by simply replacing faulty equipment with identical units. Additionally, the production capabilities of the lime equipment are more than sufficient to treat and clear the basin of sludge in less than one year.

Groundwater protection

The bottom of each of the basins has sufficient downward slope, from southwest to northeast, to prevent the working area from being inundated with water from the sludge at the north end. If rainfall or water from the treated sludge saturates the ground at the working area, a sump pump (300 GPM capacity) is installed in a pit at the northeast corner of the working area. From this pit, water can be pumped through a pipe to an existing decant structure at the north end of the basin. Water passing through the decant structure is channeled back to the head of the wastewater treatment plant. The following calculations show the capacity of the decant structure for handling a 25 year, 24 hour rainfall event:

 $l = b \setminus (t_0 + d)^e$, where: b = 95, d = 8.9, e = 0.79

I=95\(1440+8.9)0.190.3in/hrx 24 hr= 7.2 in=0.6ft

(Formula and variables obtained from TxDOT Bridge Division Hydraulic Manual, 3rd Ed., Dec.1985)

Area of East Basin = 210' x 1200' ft2 = 252,000 ft2

Rainfall Volume = 0.6ftx252, $000 ft^2 = 151,200 ft^2 x 7.48 gaffe = <math>1,131,000 gallons$

The decant structure is drained through an 8" dia. pipe on a 2.0% slope to a pump station with a capacity of 150 GPM, therefore the time required to remove surface water from the basin is calculated as follows:

T 1,131,000 gallons\150 $GPM = 7540 \min 1440 \min / day = 5.23 days$

The 25 year, 24 hour rainfall event therefore, requires that the sludge treatment cease for approximately one week. The capacity of the basin however, is more than enough to prevent overflows. Under these conditions, treated sludge stockpiled in the working area may be contaminated with untreated sludge. If this occurs, the stockpiled sludge is recycled through the lime mixing equipment and retested to confirm Class A status.

Odor, dust, bioaerosol management

The lime mixing process will yield only localized ammonia odor which is quickly diffused by air dispersal, There is only minimal, localized dust from lime being augered into the vane feeder. Because the untreated sludge is very moist, lime mixing will not dry the treated sludge sufficiently to generate dust from a sludge stockpile. There are no bioaerosol emissions from the lime treatment facility. Therefore, it is unlikely that dust or odor is detectable beyond the periphery of the dewatering basins. Furthermore, given that the dewatering basins are bordered on the north by the wastewater treatment plant, and on the east, south, and west by approximately 180 acres of Cityowned pasture, off-site odoer problems are minimized.

<u>Ultimate use of finished product</u>

Ultimately, biosolids are all processed by this method into Class A material and distributed for beneficial land application. Any poor quality material is reprocessed until it meets Class A standards. The city presently owns sufficient land to accommodate the annual production of biosolids.

Attachment Z Marketing and Distribution Plan Sewage Sludge Technical Report 3.0, Section C

Domestic Wastewater Permit Application Sewage Sludge Technical Report 3.0

Sewage Sludge Marketing and Distribution

1.b. Provide a description of the marketing and distribution plan.

Response: The City of Sherman stores digested biosolids in dewatering basins until the material is ready to be mixed with lime and processed for beneficial reuse. The resulting Class A biosolids are land applied, free of charge, on property belonging to the City of Sherman and adjacent formally "Noticed" properties. The biosolids can be made available free, upon request to the general public if they wish to pick up any of the material. To date, no one from the general public has done so. An information sheet, containing the information required in Section IV, paragraph B.4. of our TPDES Permit 10329-001, is provided to each person who receives sewage sludge. These Class A biosolids are generally used as a soil conditioner and fertilizer for pasture grasses and hay fields.

Distribution and transportation to city and adjacent properties are accomplished in Knight or Knight-equivalent spreaders which then also apply the material to the receiving properties. The general public must pick up, transport, and apply the biosolids on their own properties using their own equipment. City or contractor personnel will load the biosolids into all transportation and distribution equipment for all customers.

In past years, approximately 10,000 - 18,000 cubic yards of these Class A biosolids were distributed each year. The volume may vary each year.

The biosolids are stored in clay lined basins which are surrounded by earthen berms to keep any surface water from running into the basins and to also contain any water which comes into contact with the biosolids. The permeability of the clay liner has been tested to ensure protection of the ground water. The corresponding professional engineering report states "All permeabilities meet the minimum requirements of the T.N.R.C.C. of 1×10^{-7} cm/sec for sludge storage and disposal."

1.c. Provide the following on all entities receiving sludge directly from the permittee:

Name: City of Sherman Telephone Number: 903-892-7286

Company: City of Sherman

Fax Number: 903-868-2535 Street: P.O. Box 1106

City: Sherman
State: Texas

ZIP Code: 75019-1106 Permits: N/A – Class A

CLASS "A" BIOSOLIDS INFORMATION SHEET

CITY OF SHERMAN for 2009

In accordance with TCEQ and EPA requirements, the following information is provided for individuals receiving Class "A" biosolids generated at Sherman's Post Oak Wastewater Treatment Plant.

1. Name and address of preparer of the biosolids for application to the land:

City of Sherman Post Oak Wastewater Treatment Plant Attn: Wastewater Plant Superintendent P.O. Box 1106 Sherman, Texas 75091-1106

- 2. Application of these biosolids to the land is prohibited **except** in accordance with the following instructions:
 - a. Bulk biosolids shall not be applied to the land if it is likely to adversely affect a threatened or endangered species listed under section 4 of the Endangered Species Act or its designated critical habitat.
 - b. Bulk biosolids shall not be applied to a site that is flooded, frozen, or snow covered so that the biosolids enter a wetland or other waters of the United States, as defined in 40 CFR §122.2, except as provided in a permit issued pursuant to section 402 or 404 of the Clean Water Act (CWA).
 - c. Bulk biosolids shall not be applied to a site that is less than 10 meters (33 ft.) from waters of the United States, as defined in 40 CFR §122.2, unless otherwise specified by the permitting authority.
 - d. Bulk biosolids shall be applied to the land at an annual whole sludge application rate (AWSAR) that is equal to or less than the agronomic rate for the site, unless otherwise specified by the permitting authority. The agronomic rate is the biosolids application rate that will provide only that amount of nitrogen which a crop or vegetation can use in a given year. It minimizes the amount of nitrogen that will pass below the root zone of the crop or vegetation to the ground water. Plant available nitrogen (PAN) of these biosolids is calculated at 9.22 lb/ton or 9.09 lb/cu yd.
 - e. Biosolids shall be applied by a method and under conditions that prevent runoff of the material beyond the active application area and protect the quality of the surface water and the soils in the unsaturated zone. Where runoff of the biosolids from the active application area is evident, the operator shall cease further application until the condition is corrected.

- f. Biosolids shall be applied uniformly over the surface of the land.
- g. Biosolids shall not be applied during rainstorms or during periods in which surface soils are water-saturated.
- h. A land application site location shall be selected and the site operated in a manner to prevent public health nuisances.
- i. Biosolids debris must be prevented from blowing or running off site boundaries or into surface waters. If necessary, when significant nuisance conditions occur, the operator shall:
 - (1) Minimize dust migration from the site and access roadways;
 - (2) Minimize objectionable odors through incorporation of biosolids into the soil or by taking some other type of corrective action.
- 3. The annual whole sludge application rate (AWSAR) which does not cause the TCEQ (30 TAC §312.43, Table 4) and EPA (40 CFR §503.13, Table 4) metal loading rates to be exceeded:

AWSAR = AMLR/(C x 0.001 x 2.2405) where: AMLR = annual metal loading rate (kg/ha) from Table 4 in 30 TAC §312.43 or 40 CFR §503.13

C = metal concentration (mg/kg) of biosolids, dry weight basis from laboratory analysis of biosolids

For our present biosolids, these values are:

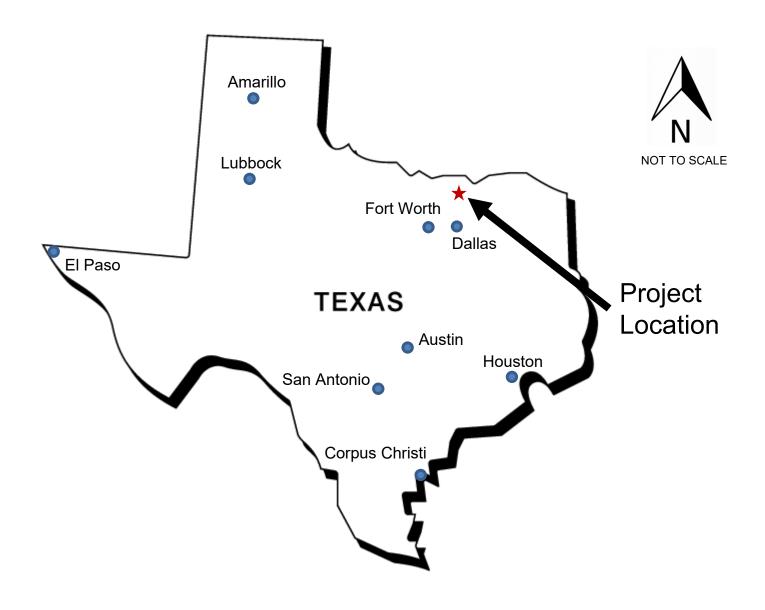
POLLUTANT	<u>AMLR</u>	<u>C</u>	<u>AWSAR</u>
Arsenic	2.0	12.5	71
Cadmium	1.9	0.7	1211
Chromium	150.0	33.9	1975
Copper	75.0	499.7	67
Lead	15.0	20.7	323
Mercury	0.85	0.9	435
Molybdenum	Monitor	15.1	
Nickel	21.0	19.6	478
Selenium	5.0	10.2	219
Zinc	140.0	497.0	126

The AWSAR for the applied biosolids is the lowest AWSAR individual metal AWSAR, in this case it's copper. Since the metal AWSARs are so high, nitrogen (at about 10.0 dry tons/ac or about 81.1 wet cy/ac for grass, at about 12.5% solids content & 1971 lb/cy) will be the controlling constituent.

Supplemental Permit Information Form

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

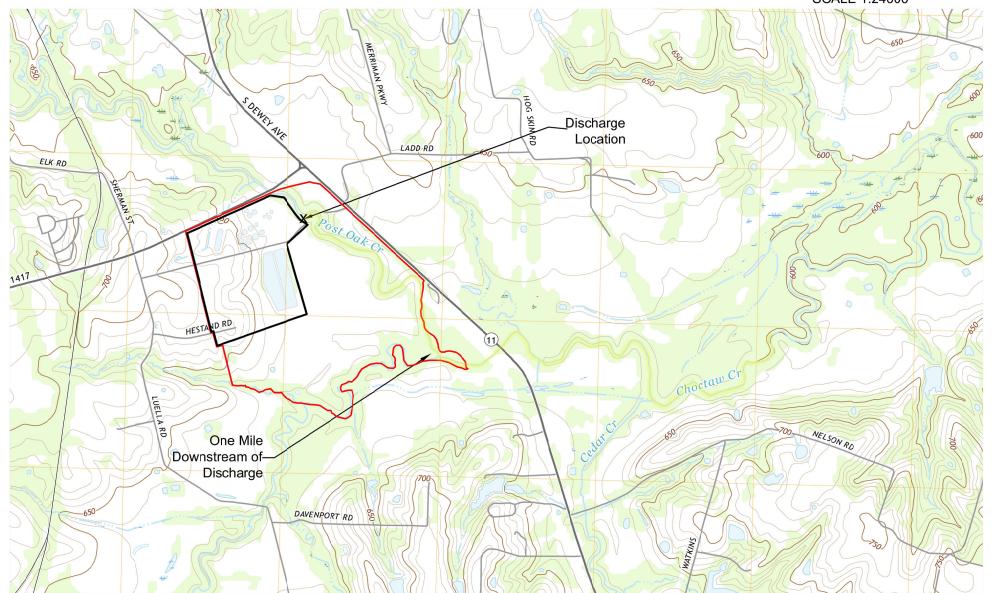
FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS


TCEQ USE ONLY: Application type:RenewalMajor A County:	AmendmentMinor AmendmentNew Segment Number:
Admin Complete Date:	
Agency Receiving SPIF:	
Texas Historical Commission	U.S. Fish and Wildlife
Texas Parks and Wildlife Department	
This form applies to TPDES permit application	ons only. (Instructions, Page 53)
our agreement with EPA. If any of the items a	TCEQ will mail a copy to each agency as required by re not completely addressed or further information information before issuing the permit. Address
application will not be declared administrative completed in its entirety including all attachm	Administrative Report of the application. The ely complete without this SPIF form being nents. Questions or comments concerning this form 's Application Review and Processing Team by
The following applies to all applications:	
1. Permittee: City of Sherman	
Permit No. WQ00 <u>10329001</u>	EPA ID No. TX <u>0024325</u>
Address of the project (or a location descrand county):	iption that includes street/highway, city/vicinity,
1800 East F.M. 1417, Sherman, TX 75090)

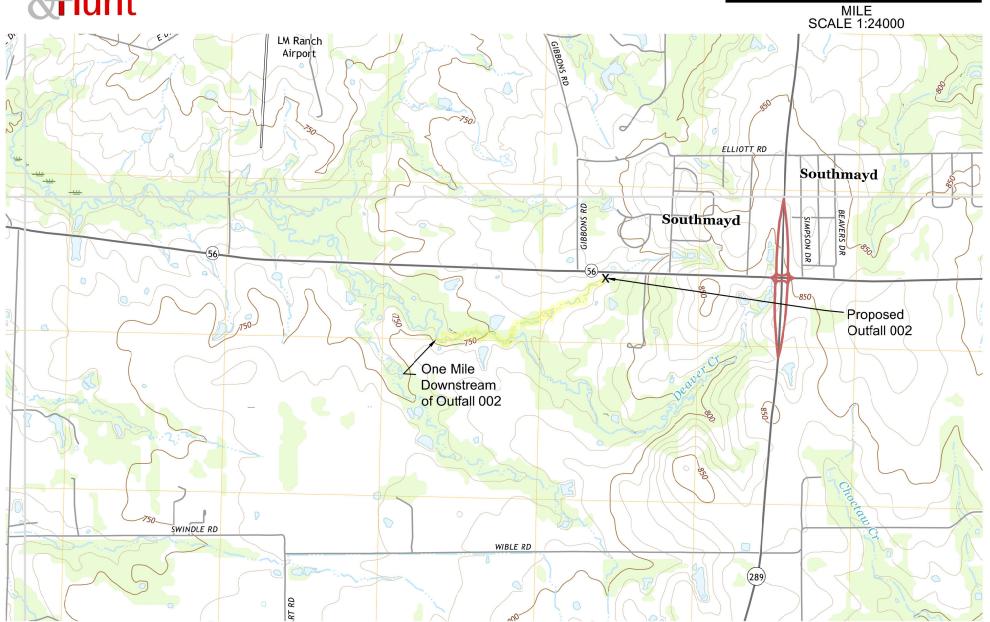
	Provide the name, address, phone and fax number of an individual that can be contacted to answer specific questions about the property.				
	Prefix (Mr., Ms., Miss): Mr.				
	First and Last Name: Whiddon, Nathan				
	Credential (P.E, P.G., Ph.D., etc.):				
	Title: Wastewater and Laboratory Manager				
	Mailing Address: <u>288 Post Oak Road</u>				
	City, State, Zip Code: Sherman, TX 75090				
	Phone No.: (903) 892-70286 Ext.:				
	E-mail Address: nathanw@cityofsheman.com				
2.	List the county in which the facility is located: <u>Grayson</u>				
3.	If the property is publicly owned and the owner is different than the permittee/applicant, please list the owner of the property.				
	The property is owned by the permittee.				
1.	Provide a description of the effluent discharge route. The discharge route must follow the flow of effluent from the point of discharge to the nearest major watercourse (from the point of discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify the classified segment number. The treated effluent is discharges via Outfall 001 directly into Post Oak Creek; thence to Choctaw Creek; thence to the Red River below Lake Texoma in Segment No. 0202 of the				
	Red River Basin and will be discharged via Outfall 002 to an unnamed tributary; thence to Deaver Creek; thence to Big Mineral Creek; thence to Lake Texoma in Segment No.				
	0203 of the Red River Basin.				
5.	Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report). See SPIF-1 and SPIF-2.				
5.	Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is				
5.	Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report). See SPIF-1 and SPIF-2.				
5.	Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report). See SPIF-1 and SPIF-2. Provide original photographs of any structures 50 years or older on the property. See SPIF-3 Does your project involve any of the following? Check all that apply.				
5.	Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report). See SPIF-1 and SPIF-2. Provide original photographs of any structures 50 years or older on the property. See SPIF-3 Does your project involve any of the following? Check all that apply. □ Proposed access roads, utility lines, construction easements				
5.	Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report). See SPIF-1 and SPIF-2. Provide original photographs of any structures 50 years or older on the property. See SPIF-3 Does your project involve any of the following? Check all that apply. □ Proposed access roads, utility lines, construction easements □ Visual effects that could damage or detract from a historic property's integrity				
5.	Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report). See SPIF-1 and SPIF-2. Provide original photographs of any structures 50 years or older on the property. See SPIF-3 Does your project involve any of the following? Check all that apply. □ Proposed access roads, utility lines, construction easements				

	Ш	Sealing caves, fractures, sinkholes, other karst features
		Disturbance of vegetation or wetlands
1.	of cave The properties and	coposed construction impact (surface acres to be impacted, depth of excavation, sealing es, or other karst features): proposed construction will impact approximately 50 acres of the City's existing erty that is designated for the wastewater treatment plant. The depth of excavation ticipated to be around 8' below ground elevation. No karst formations or caves found in the geotechnical investigation.
2.	Descri	be existing disturbances, vegetation, and land use:
		existing disturbances, vegetation, and land use of the property are those typical of stewater treatment facility.
		OWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR ENTS TO TPDES PERMITS
3.	List co	onstruction dates of all buildings and structures on the property:
	The book operation with	buildings and structures on the property are associated with wastewater treatment ations. The construction dates of the buildings and structures are prior to 1962 renovations made in 1968, 1979, 1982, 1983, 1985, 1996, 1998, 2009, and 2010 by ous engineering firms.
4.	Provid	e a brief history of the property, and name of the architect/builder, if known.
		to the construction of the wastewater treatment facilities the property was ved to be used for pasture or agricultural purposes.

Supplemental Permit Information Form


- SPIF-1 General Location Map
 - SPIF-2 USGS Map
- SPIF-3 Photographs of Structures Older than 50 Years

SPIF-1
CITY OF SHERMAN
POST OAK WASTEWATER TREATMENT FACILITY
TEXAS POLLUTANT DISHARGE ELIMINATION SYSTEM PERMIT APPLICATION
GENERAL LOCATION MAP



SPIF-2.1
CITY OF SHERMAN - POST OAK WASTEWATER TREATMENT FACILITY
TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION
USGS MAP - 001

SPIF 2.2

CITY OF SHERMAN - POST OAK WASTEWATER TREATMENT FACILITY
TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION
USGS MAP - OUTFALL 002

Photograph 1- Old Headworks Maintenance Shop

Photograph 2. – Primary Clarifier 1

SPIF-3.1 CITY OF SHERMAN POST OAK WASTEWATER TREATMENT FACILITY TEXAS POLLUTANT DISHARGE ELIMINATION SYSTEM PERMIT APPLICATION PHOTOGRAPHS OF STRUCTURES OLDER THAN 50 YEARS

Photograph 3. Primary Clarifier 2.

Photograph 4. – Supernatant Treatment.

SPIF-3.2 CITY OF SHERMAN POST OAK WASTEWATER TREATMENT FACILITY TEXAS POLLUTANT DISHARGE ELIMINATION SYSTEM PERMIT APPLICATION PHOTOGRAPHS OF STRUCTURES OLDER THAN 50 YEARS

Photograph 5. Trickling Filter 1

Photograph 6. – Trickling Filter 2

SPIF-3.3 CITY OF SHERMAN POST OAK WASTEWATER TREATMENT FACILITY TEXAS POLLUTANT DISHARGE ELIMINATION SYSTEM PERMIT APPLICATION PHOTOGRAPHS OF STRUCTURES OLDER THAN 50 YEARS