

Technical Package Cover Page

This file contains the following documents:

- 1. Summary of application (in plain language)
 - English
 - Alternative Language (Spanish)
- 2. First notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
 - English
 - Alternative Language (Spanish)
- 3. Second notice (NAPD-Notice of Preliminary Decision)
 - English
 - Alternative Language (Spanish)
- 4. Application materials *
- 5. Draft permit *
- 6. Technical summary or fact sheet *

Portada de Paquete Técnico

Este archivo contiene los siguientes documentos:

- 1. Resumen de la solicitud (en lenguaje sencillo)
 - Inglés
 - Idioma alternativo (español)
- 2. Primer aviso (NORI, Aviso de Recepción de Solicitud e Intención de Obtener un Permiso)
 - Inglés
 - Idioma alternativo (español)
- 3. Segundo aviso (NAPD, Aviso de Decisión Preliminar)
 - Inglés
 - Idioma alternativo (español)
- 4. Materiales de la solicitud **
- 5. Proyecto de permiso **
- 6. Resumen técnico u hoja de datos **

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

PLAIN LANGUAGE SUMMARY FOR TPDES OR TLAP PERMIT APPLICATIONS

Plain Language Summary Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary as required by <u>Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H</u>. Applicants may modify the template as necessary to accurately describe their facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how the applicant will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements.

If you are subject to the alternative language notice requirements in <u>30 TAC Section 39.426</u>, <u>you must provide a translated copy of the completed plain language summary in the</u> <u>appropriate alternative language as part of your application package</u>. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTIC WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

The City of Temple (CN600245799) operates the Doshier Farm Wastewater Treatment Facility (RN101608958), an activated sludge plant. The facility is located at 2515 East Avenue H, in Temple, Bell County, Texas 76501. The permit application is for a renewal of the currently issued permit for an annual average daily flow of 7.5 million gallons per day.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), ammonia nitrogen (NH₃-N), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent in the permit application package. Domestic wastewater is treated by fine screens, grit removal basins, primary clarifiers, biological reactor, final clarifier, anaerobic digesters, a belt filter press, belt thickener, chlorine contact chamber, and dechlorinating chamber.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES DOMESTICAS' /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

La ciudad de Temple (CN600245799) opera la Doshier Farm Wastewater Treatment Facility (RN101608958), una planta de lodos activados. La instalación está ubicada en 2515 East Avenue H, en Temple, Condado de Bell, Texas 76501. La solicitud de permiso es para una renovación del permiso actualmente emitido para un flujo diario promedio anual de 7.5 millones de galones por día.

Se espera que las descargas de la instalación contengan en demanda bioquímica de oxígeno carbónico de cinco días (CBOD5), sólidos suspendidos totales (TSS), nitrógeno amoniacal (NH3-N) y Escherichia coli. Los contaminantes potenciales adicionales se incluyen en el Informe Técnico Doméstico 1.0, Sección 7 Análisis de Contaminantes de Efluentes Tratados en el paquete de solicitud de permiso.. Las aguas residuales domésticas serán tratadas por una planta de proceso de lodos activados. Las unidades de tratamiento son cribas finas, cuencas de eliminación de arena, clarificadores primarios, reactor biológico, clarificador final, digestores anaeróbicos, un filtro prensa de banda, espesador de banda, cámara de contacto de cloro y cámara de decloración.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL

PERMIT NO. WQ0010470002

APPLICATION. City of Temple, 3210 East Avenue H, Building A, Temple, Texas 76501, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010470002 (EPA I.D. No. TX0047651) to authorize the discharge of treated wastewater at a volume not to exceed an annual average flow of 7,500,000 gallons per day. The domestic wastewater treatment facility is located at 2515 East Avenue H, in the city of Temple, in Bell County, Texas 76501. The discharge route is from the plant site to an unnamed tributary; thence to Little Elm Creek; thence to Big Elm Creek; thence to Little River. TCEQ received this application on November 5, 2024. The permit application will be available for viewing and copying at City of Temple, Department of Public Works, 3210 East Avenue H, Building A, Suite 130, Temple, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage:

<u>https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications</u>. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.318055,31.077222&level=18

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at: <u>https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications</u>. El aviso de idioma alternativo en español está disponible en <u>https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications</u>.

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. **Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.**

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at <u>www.tceq.texas.gov/goto/cid</u>. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at <u>https://www14.tceq.texas.gov/epic/eComment/</u>, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at <u>www.tceq.texas.gov/goto/pep</u>. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Temple at the address stated above or by calling Mr. Kenton Moffett, P.E., Assistant Director of Public Works - Utilities, at 254-298-5623.

Issuance Date: December 5, 2024

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ0010470002

SOLICITUD. Ciudad de Temple, 3210 East Avenue H, Edificio A, Temple, Texas 76501, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0010470002 (EPA I.D. No. TX 0047651) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio medio anual de 7,500,000 galones por día. La planta está ubicada 2515 East Avenue H, in the city of Temple, en el Condado de Bell, Texas 76501. La ruta de descarga es del sitio de la planta a sitio de la planta a un afluente sin nombre; de allí a Little Elm Creek; de allí a Big Elm Creek; de ahí a Río Pequeño. La TCEQ recibió esta solicitud el 5 de noviembre de 2024. La solicitud para el permiso está disponible para leerla y copiarla en el Departamento de Obras Públicas de la Ciudad de Temple, 3210 East Avenue H, Edificio A, Suite 130, Temple, Texas. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdesapplications. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.318055,31.077222&level=18

AVISO ADICIONAL. El Director Ejecutivo de la TCEO ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO

CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. **A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso.** Una audiencia administrativa de lo contencios es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE **INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre,** dirección, y número de teléfono: el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general: una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración '[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; v explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado especifico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

CONTACTOS E INFORMACIÓN DE LA TCEQ. Todos los comentarios escritos del público y los para pedidos una reunión deben ser presentados a la Oficina del Secretario Principal, MC 105, TCEQ, P.O. Box 13087, Austin, TX 78711-3087 o por el internet at <u>www.tceq.texas.gov/about/comments.html</u>. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Si necesita más información en Español sobre esta solicitud para un permiso o el proceso del permiso, por favor llame a El Programa de Educación Pública de la TCEQ, sin cobro, al 1-800-687-4040. La información general sobre la TCEQ puede ser encontrada en nuestro sitio de la red: <u>www.tceq.texas.gov</u>.

También se puede obtener información adicional del Ciudad de Temple a la dirección indicada arriba o llamando a Sr. Kenton Moffett, P.E., Director Asistente de Obras Públicas - Servicios Públicos al 254-298-5623.

Fecha de emisión 5 de diciembre de 2024

Texas Commission on Environmental Quality

NOTICE OF APPLICATION AND PRELIMINARY DECISION FOR TPDES PERMIT FOR MUNICIPAL WASTEWATER

RENEWAL

PERMIT NO. WQ0010470002

APPLICATION AND PRELIMINARY DECISION. City of Temple, 3210 East Avenue H, Building A, Temple, Texas 76501, has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010470002, which authorizes the discharge of treated domestic wastewater at an annual average flow not to exceed 7,500,000 gallons per day. TCEQ received this application on November 5, 2024.

The facility is located at 2515 East Avenue H, in the City of Temple, Bell County, Texas 76501. The treated effluent is discharged to unnamed tributary, thence to Little Elm Creek, thence to Big Elm Creek, thence to Little River in Segment No. 1213 of the Brazos River Basin. The unclassified receiving water use is minimal aquatic life use for the unnamed tributary and Little Elm Creek. The designated uses for Segment No. 1213 are primary contact recreation, public water supply, and high aquatic life use. This link to an electronic map of the site or facility's general location is provided as a public courtesy and is not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.318055,31.077222&level=18

The TCEQ Executive Director has completed the technical review of the application and prepared a draft permit. The draft permit, if approved, would establish the conditions under which the facility must operate. The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The permit application, Executive Director's preliminary decision, and draft permit are available for viewing and copying at City of Temple, Department of Public Works, 3210 East Avenue H, Building A, Suite 130, Temple, Texas. The application, including any updates, and associated notices are available electronically at the following webpage:

https://www.tceq.texas.gov/permitting/wastewater/tpdes-applications.

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at: <u>https://www.tceq.texas.gov/permitting/wastewater/plain-language-summaries-and-public-notices</u>. El aviso de idioma alternativo en español está disponible en <u>https://www.tceq.texas.gov/permitting/wastewater/plain-language-summaries-and-public-notices</u>.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting about this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ holds a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. **Unless the application is directly referred for a contested case hearing, the response to comments will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting a contested case hearing or reconsideration of the Executive Director's decision. A contested case hearing is a legal proceeding similar to a civil trial in a state district court.**

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period; and the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period. TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

EXECUTIVE DIRECTOR ACTION. The Executive Director may issue final approval of the application unless a timely contested case hearing request or request for reconsideration is filed. If a timely hearing request or request for reconsideration is filed, the Executive Director will not issue final approval of the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

All written public comments and public meeting requests must be submitted to the Office of the Chief Clerk, MC 105, Texas Commission on Environmental Quality, P.O. Box 13087, Austin, TX 78711-3087 or electronically at www.tceq.texas.gov/goto/comment within 30 days from the date of newspaper publication of this notice.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at <u>www.tceq.texas.gov/goto/cid</u>. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. Public comments and requests must be submitted either electronically at <u>www.tceq.texas.gov/goto/comment</u>, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC 105, P.O. Box 13087, Austin, Texas 78711-3087. Any personal information you submit to the TCEQ will become part of the agency's record; this includes email addresses. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at <u>www.tceq.texas.gov/goto/pep</u>. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Temple at the address stated above or by calling Mr. Kenton Moffett, P.E., Assistant Director of Public Works - Utilities, at 254-298- 5623.

Issuance Date: June 12, 2025

Comisión De Calidad Ambiental Del Estado De Texas

AVISO DE LA SOLICITUD Y DECISIÓN PRELIMINAR PARA EL PERMISO DEL SISTEMA DE ELIMINACION DE DESCARGAS DE CONTAMINANTES DE TEXAS (TPDES) PARA AGUAS RESIDUALES MUNICIPALES

RENOVACIÓN

PERMISO NO. WQ0010470002

SOLICITUD Y DECISIÓN PRELIMINAR. La Ciudad de Temple, 3210 East Avenue H, Edificio A, Temple, Texas 76501 ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) una renovación para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo anual promedio de 7,500,000 galones por día. La TCEQ recibió esta solicitud el 5 de noviembre de 2024.

La planta está ubicada en 2515 East Avenue H, en la ciudad de Temple, Condado de Bell, Texas 76501. El efluente tratado es descargado a un afluente sin nombre, de ahí al arroyo Little Elm, de ahí al arroyo Big Elm y de ahí al río Little, en el Segmento No. 1213 de la Cuenca del Río Brazos. Los usos no clasificados de las aguas receptoras son limitados usos de la vida acuática para el afluente sin nombre y el arroyo Little Elm. Los usos designados para el Segmento No. 1213 son la recreación de contacto primario, abastecimiento de agua potable, y elevados usos para la vida acuática.

El Director Ejecutivo de la TCEQ ha completado la revisión técnica de la solicitud y ha preparado un borrador del permiso. El borrador del permiso, si es aprobado, establecería las condiciones bajo las cuales la instalación debe operar. El Director Ejecutivo ha tomado una decisión preliminar que si este permiso es emitido, cumple con todos los requisitos normativos y legales. La solicitud del permiso, la decisión preliminar del Director Ejecutivo y el borrador del permiso están disponibles para leer y copiar en Ciudad de Temple, Departamento de Obras Públicas, 3210 East Avenue H, Edificio A, Suite 130, Temple, Texas. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.318055,31.077222&level=18

AVISO DE IDIOMA ALTERNATIVO. El aviso de idioma alternativo en español está disponible en <u>https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications</u>.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO.

Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una reconsideración de la solicitud de lo contencioso. Una audiencia administrativa de lo contencios es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono: el nombre del solicitante y número del permiso: la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso para descargar aguas residuales sin proveer una oportunidad de una audiencia administrativa de lo contencioso. **ACCIÓN DEL DIRECTOR EJECUTIVO.** El Director Ejecutivo puede emitir una aprobación final de la solicitud a menos que exista un pedido antes del plazo de vencimiento de una audiencia administrativa de lo contencioso o se ha presentado un pedido de reconsideración. Si un pedido ha llegado antes del plazo de vencimiento de la audiencia o el pedido de reconsideración ha sido presentado, el Director Ejecutivo no emitirá una aprobación final sobre el permiso y enviará la solicitud y el pedido a los Comisionados de la TECQ para consideración en una reunión programada de la Comisión.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

Todos los comentarios escritos del público y los pedidos una reunión deben ser presentados durante los 30 días después de la publicación del aviso a la Oficina del Secretario Principal, MC 105, TCEQ, P.O. Box 13087, Austin, TX 78711-3087 or por el internet a <u>www.tceq.texas.gov/about/comments.html</u>. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia.

CONTACTOS E INFORMACIÓN DE LA AGENCIA. Los comentarios y solicitudes públicas deben enviarse electrónicamente a <u>https://www14.tceq.texas.gov/epic/eComment/</u>, o por escrito a Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Cualquier información personal que envíe a al TCEQ pasará a formar parte del registro de la agencia; esto incluye las direcciones de correo electrónico. Para obtener más información sobre esta solicitud de permiso o el proceso de permisos, llame al Programa de Educación Pública de la TCEQ, sin cargo, al 1-800-687-4040 o visite su sitio web en www.tceq.texas.gov/goto/pep. Si desea información en español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional de la Ciudad de Temple a la dirección indicada arriba o llamando a Sr. Kenton Moffett, P.E., Subdirector de Obras Públicas - Servicios Públicos, al 254-298-5623.

Fecha de emission: 12 de junio de 2025

TPDES PERMIT NO. WQ0010470002 [For TCEQ office use only - EPA I.D. No. TX0047651]

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY P.O. Box 13087 Austin, Texas 78711-3087

> <u>PERMIT TO DISCHARGE WASTES</u> under provisions of Section 402 of the Clean Water Act and Chapter 26 of the Texas Water Code

This is a renewal that replaces TPDES Permit No. WQ0010470002 issued on February 23, 2024.

City of Temple

whose mailing address is

3210 East Avenue H, Building A Temple, Texas 76501

is authorized to treat and discharge wastes from the Doshier Farm Wastewater Treatment Facility, SIC Code 4952

located at 2515 East Avenue H, in the City of Temple, Bell County, Texas 76501

to unnamed tributary, thence to Little Elm Creek, thence to Big Elm Creek, thence to Little River in Segment No. 1213 of the Brazos River Basin

only according to effluent limitations, monitoring requirements, and other conditions set forth in this permit, as well as the rules of the Texas Commission on Environmental Quality (TCEQ), the laws of the State of Texas, and other orders of the TCEQ. The issuance of this permit does not grant to the permittee the right to use private or public property for conveyance of wastewater along the discharge route described in this permit. This includes, but is not limited to, property belonging to any individual, partnership, corporation, or other entity. Neither does this permit authorize any invasion of personal rights nor any violation of federal, state, or local laws or regulations. It is the responsibility of the permittee to acquire property rights as may be necessary to use the discharge route.

This permit shall expire at midnight, five years from the date of issuance.

ISSUED DATE:

For the Commission

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

TPDES Permit No. WQ0010470002

Outfall Number 001

1. During the period beginning upon the date of issuance and lasting through the date of expiration, the permittee is authorized to discharge subject to the following effluent limitations:

The annual average flow of effluent shall not exceed 7.50 million gallons per day (MGD), nor shall the average discharge during any twohour period (2-hour peak) exceed 15,625 gallons per minute.

Effluent Characteristic	Discharge Limitations				Min. Self-Monitoring Requirements	
	Daily Avg	7-day Avg	Daily Max	Single Grab	Report Daily Avg. & Daily Max.	
	mg/l (lbs/day)	mg/l	mg/l	mg/l	Measurement Frequency	Sample Type
Flow, MGD	Report	N/A	Report	N/A	Continuous	Totalizing Meter
Carbonaceous Biochemical Oxygen Demand (5-day) Total Suspended Solids	10 (626)	15	25	35	Five/week	Composite
	15 (983)	25	40	60	Five/week	Composite
Ammonia Nitrogen	2 (125)	5	10	15	Five/week	Composite
Hexavalent Chromium	0.0132 (0.83)	N/A	0.028	0.0396	One/three months	Composite
<i>E. coli</i> , colony-forming units or most probable number per 100 ml	126	N/A	399	N/A	Three/week	Grab

2. The effluent shall contain a total chlorine residual of at least 1.0 mg/l after a detention time of at least 20 minutes (based on peak flow) and shall be monitored daily by grab sample. The permittee shall dechlorinate the chlorinated effluent to less than 0.1 mg/l total chlorine residual and shall monitor total chlorine residual daily by grab sample after the dechlorination process. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.

3. The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored five times per week by grab sample.

Page 2

City of Temple

- 4. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.
- 5. Effluent monitoring samples may be taken for BOD₅, TSS, NH₃-H, pH, and effluent samples required for the Pretreatment Requirements Section of the permit following the chlorine contact basins when flows diverted for beneficial reuse are high. For all other constituents, effluent monitoring samples will be taken following the final treatment unit.
- 6. The effluent shall contain a minimum dissolved oxygen of 4.0 mg/l and shall be monitored five times per week by grab sample.
- 7. The annual average flow and maximum 2-hour peak flow shall be reported monthly.

DEFINITIONS AND STANDARD PERMIT CONDITIONS

As required by Title 30 Texas Administrative Code (TAC) Chapter 305, certain regulations appear as standard conditions in waste discharge permits. 30 TAC § 305.121 - 305.129 (relating to Permit Characteristics and Conditions) as promulgated under the Texas Water Code (TWC) §§ 5.103 and 5.105, and the Texas Health and Safety Code (THSC) §§ 361.017 and 361.024(a), establish the characteristics and standards for waste discharge permits, including sewage sludge, and those sections of 40 Code of Federal Regulations (CFR) Part 122 adopted by reference by the Commission. The following text includes these conditions and incorporates them into this permit. All definitions in TWC § 26.001 and 30 TAC Chapter 305 shall apply to this permit and are incorporated by reference. Some specific definitions of words or phrases used in this permit are as follows:

- 1. Flow Measurements
 - a. Annual average flow the arithmetic average of all daily flow determinations taken within the preceding 12 consecutive calendar months. The annual average flow determination shall consist of daily flow volume determinations made by a totalizing meter, charted on a chart recorder and limited to major domestic wastewater discharge facilities with one million gallons per day or greater permitted flow.
 - b. Daily average flow the arithmetic average of all determinations of the daily flow within a period of one calendar month. The daily average flow determination shall consist of determinations made on at least four separate days. If instantaneous measurements are used to determine the daily flow, the determination shall be the arithmetic average of all instantaneous measurements taken during that month. Daily average flow determinations on days of discharge.
 - c. Daily maximum flow the highest total flow for any 24-hour period in a calendar month.
 - d. Instantaneous flow the measured flow during the minimum time required to interpret the flow measuring device.
 - e. 2-hour peak flow (domestic wastewater treatment plants) the maximum flow sustained for a two-hour period during the period of daily discharge. The average of multiple measurements of instantaneous maximum flow within a two-hour period may be used to calculate the 2-hour peak flow.
 - f. Maximum 2-hour peak flow (domestic wastewater treatment plants) the highest 2-hour peak flow for any 24-hour period in a calendar month.
- 2. Concentration Measurements
 - a. Daily average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar month, consisting of at least four separate representative measurements.
 - i. For domestic wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values in the previous four consecutive month period consisting of at least four measurements shall be utilized as the daily average concentration.

- ii. For all other wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values taken during the month shall be utilized as the daily average concentration.
- b. 7-day average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar week, Sunday through Saturday.
- c. Daily maximum concentration the maximum concentration measured on a single day, by the sample type specified in the permit, within a period of one calendar month.
- d. Daily discharge the discharge of a pollutant measured during a calendar day or any 24hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in terms of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the sampling day. For pollutants with limitations expressed in other units of measurement, the daily discharge is calculated as the average measurement of the pollutant over the sampling day.

The daily discharge determination of concentration made using a composite sample shall be the concentration of the composite sample. When grab samples are used, the daily discharge determination of concentration shall be the arithmetic average (weighted by flow value) of all samples collected during that day.

- e. Bacteria concentration (*E. coli* or Enterococci) Colony Forming Units (CFU) or Most Probable Number (MPN) of bacteria per 100 milliliters effluent. The daily average bacteria concentration is a geometric mean of the values for the effluent samples collected in a calendar month. The geometric mean shall be determined by calculating the nth root of the product of all measurements made in a calendar month, where n equals the number of measurements made; or, computed as the antilogarithm of the arithmetic mean of the logarithms of all measurements made in a calendar month. For any measurement of bacteria equaling zero, a substituted value of one shall be made for input into either computation method. If specified, the 7-day average for bacteria is the geometric mean of the values for all effluent samples collected during a calendar week.
- f. Daily average loading (lbs/day) the arithmetic average of all daily discharge loading calculations during a period of one calendar month. These calculations must be made for each day of the month that a parameter is analyzed. The daily discharge, in terms of mass (lbs/day), is calculated as (Flow, MGD x Concentration, mg/l x 8.34).
- g. Daily maximum loading (lbs/day) the highest daily discharge, in terms of mass (lbs/day), within a period of one calendar month.

3. Sample Type

a. Composite sample - For domestic wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (a). For industrial wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (b).

- b. Grab sample an individual sample collected in less than 15 minutes.
- 4. Treatment Facility (facility) wastewater facilities used in the conveyance, storage, treatment, recycling, reclamation and/or disposal of domestic sewage, industrial wastes, agricultural wastes, recreational wastes, or other wastes including sludge handling or disposal facilities under the jurisdiction of the Commission.
- 5. The term "sewage sludge" is defined as solid, semi-solid, or liquid residue generated during the treatment of domestic sewage in 30 TAC Chapter 312. This includes the solids that have not been classified as hazardous waste separated from wastewater by unit processes.
- 6. The term "biosolids" is defined as sewage sludge that has been tested or processed to meet Class A, Class AB, or Class B pathogen standards in 30 TAC Chapter 312 for beneficial use.
- 7. Bypass the intentional diversion of a waste stream from any portion of a treatment facility.

MONITORING AND REPORTING REQUIREMENTS

1. Self-Reporting

Monitoring results shall be provided at the intervals specified in the permit. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall conduct effluent sampling and reporting in accordance with 30 TAC §§ 319.4 - 319.12. Unless otherwise specified, effluent monitoring data shall be submitted each month, to the Compliance Monitoring Team of the Enforcement Division (MC 224), by the 20th day of the following month for each discharge which is described by this permit whether or not a discharge is made for that month. Monitoring results must be submitted online using the NetDMR reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. Monitoring results must be signed and certified as required by Monitoring and Reporting Requirements No. 10.

As provided by state law, the permittee is subject to administrative, civil and criminal penalties, as applicable, for negligently or knowingly violating the Clean Water Act (CWA); TWC §§ 26, 27, and 28; and THSC § 361, including but not limited to knowingly making any false statement, representation, or certification on any report, record, or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or noncompliance, or falsifying, tampering with or knowingly rendering inaccurate any monitoring device or method required by this permit or violating any other requirement imposed by state or federal regulations.

- 2. Test Procedures
 - a. Unless otherwise specified in this permit, test procedures for the analysis of pollutants shall comply with procedures specified in 30 TAC §§ 319.11 319.12. Measurements, tests, and calculations shall be accurately accomplished in a representative manner.
 - b. All laboratory tests submitted to demonstrate compliance with this permit must meet the requirements of 30 TAC § 25, Environmental Testing Laboratory Accreditation and Certification.
- 3. Records of Results
 - a. Monitoring samples and measurements shall be taken at times and in a manner so as to be representative of the monitored activity.

- b. Except for records of monitoring information required by this permit related to the permittee's sewage sludge or biosolids use and disposal activities, which shall be retained for a period of at least five years (or longer as required by 40 CFR Part 503), monitoring and reporting records, including strip charts and records of calibration and maintenance, copies of all records required by this permit, records of all data used to complete the application for this permit, and the certification required by 40 CFR § 264.73(b)(9) shall be retained at the facility site, or shall be readily available for review by a TCEQ representative for a period of three years from the date of the record or sample, measurement, report, application or certification. This period shall be extended at the request of the Executive Director.
- c. Records of monitoring activities shall include the following:
 - i. date, time and place of sample or measurement;
 - ii. identity of individual who collected the sample or made the measurement.
 - iii. date and time of analysis;
 - iv. identity of the individual and laboratory who performed the analysis;
 - v. the technique or method of analysis; and
 - vi. the results of the analysis or measurement and quality assurance/quality control records.

The period during which records are required to be kept shall be automatically extended to the date of the final disposition of any administrative or judicial enforcement action that may be instituted against the permittee.

4. Additional Monitoring by Permittee

If the permittee monitors any pollutant at the location(s) designated herein more frequently than required by this permit using approved analytical methods as specified above, all results of such monitoring shall be included in the calculation and reporting of the values submitted on the approved self-report form. Increased frequency of sampling shall be indicated on the self-report form.

5. Calibration of Instruments

All automatic flow measuring or recording devices and all totalizing meters for measuring flows shall be accurately calibrated by a trained person at plant start-up and as often thereafter as necessary to ensure accuracy, but not less often than annually unless authorized by the Executive Director for a longer period. Such person shall verify in writing that the device is operating properly and giving accurate results. Copies of the verification shall be retained at the facility site and/or shall be readily available for review by a TCEQ representative for a period of three years.

6. Compliance Schedule Reports

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of the permit shall be submitted no later than 14 days following each schedule date to the Regional Office and the Compliance

Monitoring Team of the Enforcement Division (MC 224).

- 7. Noncompliance Notification
 - a. In accordance with 30 TAC § 305.125(9) any noncompliance which may endanger human health or safety, or the environment shall be reported by the permittee to the TCEQ. Except as allowed by 30 TAC § 305.132, report of such information shall be provided orally or by facsimile transmission (FAX) to the Regional Office within 24 hours of becoming aware of the noncompliance. A written submission of such information shall also be provided by the permittee to the Regional Office and the Compliance Monitoring Team of the Enforcement Division (MC 224) within five working days of becoming aware of the noncompliance. For Publicly Owned Treatment Works (POTWs), effective December 21, 2025, the permittee must submit the written report for unauthorized discharges and unanticipated bypasses that exceed any effluent limit in the permit using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. The written submission shall contain a description of the noncompliance and its cause; the potential danger to human health or safety, or the environment; the period of noncompliance, including exact dates and times: if the noncompliance has not been corrected, the time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance, and to mitigate its adverse effects.
 - b. The following violations shall be reported under Monitoring and Reporting Requirement 7.a.:
 - i. Unauthorized discharges as defined in Permit Condition 2(g).
 - ii. Any unanticipated bypass that exceeds any effluent limitation in the permit.
 - iii. Violation of a permitted maximum daily discharge limitation for pollutants listed specifically in the Other Requirements section of an Industrial TPDES permit.
 - c. In addition to the above, any effluent violation which deviates from the permitted effluent limitation by more than 40% shall be reported by the permittee in writing to the Regional Office and the Compliance Monitoring Team of the Enforcement Division (MC 224) within 5 working days of becoming aware of the noncompliance.
 - d. Any noncompliance other than that specified in this section, or any required information not submitted or submitted incorrectly, shall be reported to the Compliance Monitoring Team of the Enforcement Division (MC 224) as promptly as possible. For effluent limitation violations, noncompliances shall be reported on the approved self-report form.
- 8. In accordance with the procedures described in 30 TAC §§ 35.301 35.303 (relating to Water Quality Emergency and Temporary Orders) if the permittee knows in advance of the need for a bypass, it shall submit prior notice by applying for such authorization.
- 9. Changes in Discharges of Toxic Substances

All existing manufacturing, commercial, mining, and silvicultural permittees shall notify the Regional Office, orally or by facsimile transmission within 24 hours, and both the Regional Office and the Compliance Monitoring Team of the Enforcement Division (MC 224) in writing within five (5) working days, after becoming aware of or having reason to believe:

- a. That any activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic pollutant listed at 40 CFR Part 122, Appendix D, Tables II and III (excluding Total Phenols) which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. One hundred micrograms per liter (100 μ g/L);
 - ii. Two hundred micrograms per liter (200 μ g/L) for acrolein and acrylonitrile; five hundred micrograms per liter (500 μ g/L) for 2,4-dinitrophenol and for 2-methyl-4,6-dinitrophenol; and one milligram per liter (1 mg/L) for antimony;
 - iii. Five (5) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.
- b. That any activity has occurred or will occur which would result in any discharge, on a nonroutine or infrequent basis, of a toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. Five hundred micrograms per liter (500 μ g/L);
 - ii. One milligram per liter (1 mg/L) for antimony;
 - iii. Ten (10) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.

10. Signatories to Reports

All reports and other information requested by the Executive Director shall be signed by the person and in the manner required by 30 TAC § 305.128 (relating to Signatories to Reports).

- 11. All POTWs must provide adequate notice to the Executive Director of the following:
 - a. Any new introduction of pollutants into the POTW from an indirect discharger which would be subject to CWA § 301 or § 306 if it were directly discharging those pollutants;
 - b. Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of issuance of the permit; and
 - c. For the purpose of this paragraph, adequate notice shall include information on:
 - i. The quality and quantity of effluent introduced into the POTW; and
 - ii. Any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW.

PERMIT CONDITIONS

- 1. General
 - a. When the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in an application or in any report to the Executive Director, it shall promptly submit such facts or information.
 - b. This permit is granted on the basis of the information supplied and representations made by the permittee during action on an application, and relying upon the accuracy and completeness of that information and those representations. After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked, in whole or in part, in accordance with 30 TAC Chapter 305, Subchapter D, during its term for good cause including, but not limited to, the following:
 - i. Violation of any terms or conditions of this permit;
 - ii. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts; or
 - iii. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.
 - c. The permittee shall furnish to the Executive Director, upon request and within a reasonable time, any information to determine whether cause exists for amending, revoking, suspending or terminating the permit. The permittee shall also furnish to the Executive Director, upon request, copies of records required to be kept by the permit.
- 2. Compliance
 - a. Acceptance of the permit by the person to whom it is issued constitutes acknowledgment and agreement that such person will comply with all the terms and conditions embodied in the permit, and the rules and other orders of the Commission.
 - b. The permittee has a duty to comply with all conditions of the permit. Failure to comply with any permit condition constitutes a violation of the permit and the Texas Water Code or the Texas Health and Safety Code, and is grounds for enforcement action, for permit amendment, revocation, or suspension, or for denial of a permit renewal application or an application for a permit for another facility.
 - c. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of the permit.
 - d. The permittee shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal or other permit violation that has a reasonable likelihood of adversely affecting human health or the environment.
 - e. Authorization from the Commission is required before beginning any change in the permitted facility or activity that may result in noncompliance with any permit requirements.
 - f. A permit may be amended, suspended and reissued, or revoked for cause in accordance

with 30 TAC §§ 305.62 and 305.66 and TWC§ 7.302. The filing of a request by the permittee for a permit amendment, suspension and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.

- g. There shall be no unauthorized discharge of wastewater or any other waste. For the purpose of this permit, an unauthorized discharge is considered to be any discharge of wastewater into or adjacent to water in the state at any location not permitted as an outfall or otherwise defined in the Other Requirements section of this permit.
- h. In accordance with 30 TAC § 305.535(a), the permittee may allow any bypass to occur from a TPDES permitted facility which does not cause permitted effluent limitations to be exceeded or an unauthorized discharge to occur, but only if the bypass is also for essential maintenance to assure efficient operation.
- i. The permittee is subject to administrative, civil, and criminal penalties, as applicable, under TWC §§ 7.051 7.075 (relating to Administrative Penalties), 7.101 7.111 (relating to Civil Penalties), and 7.141 7.202 (relating to Criminal Offenses and Penalties) for violations including, but not limited to, negligently or knowingly violating the federal CWA §§ 301, 302, 306, 307, 308, 318, or 405, or any condition or limitation implementing any sections in a permit issued under the CWA § 402, or any requirement imposed in a pretreatment program approved under the CWA §§ 402 (a)(3) or 402 (b)(8).
- 3. Inspections and Entry
 - a. Inspection and entry shall be allowed as prescribed in the TWC Chapters 26, 27, and 28, and THSC § 361.
 - b. The members of the Commission and employees and agents of the Commission are entitled to enter any public or private property at any reasonable time for the purpose of inspecting and investigating conditions relating to the quality of water in the state or the compliance with any rule, regulation, permit or other order of the Commission. Members, employees, or agents of the Commission and Commission contractors are entitled to enter public or private property at any reasonable time to investigate or monitor or, if the responsible party is not responsive or there is an immediate danger to public health or the environment, to remove or remediate a condition related to the quality of water in the state. Members, employees, Commission contractors, or agents acting under this authority who enter private property shall observe the establishment's rules and regulations concerning safety, internal security, and fire protection, and if the property has management in residence, shall notify management or the person then in charge of his presence and shall exhibit proper credentials. If any member, employee, Commission contractor, or agent is refused the right to enter in or on public or private property under this authority, the Executive Director may invoke the remedies authorized in TWC § 7.002. The statement above, that Commission entry shall occur in accordance with an establishment's rules and regulations concerning safety, internal security, and fire protection, is not grounds for denial or restriction of entry to any part of the facility, but merely describes the Commission's duty to observe appropriate rules and regulations during an inspection.
- 4. Permit Amendment and/or Renewal

- a. The permittee shall give notice to the Executive Director as soon as possible of any planned physical alterations or additions to the permitted facility if such alterations or additions would require a permit amendment or result in a violation of permit requirements. Notice shall also be required under this paragraph when:
 - i. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in accordance with 30 TAC § 305.534 (relating to New Sources and New Dischargers); or
 - ii. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants that are subject neither to effluent limitations in the permit, nor to notification requirements in Monitoring and Reporting Requirements No. 9; or
 - iii. The alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan.
- b. Prior to any facility modifications, additions, or expansions that will increase the plant capacity beyond the permitted flow, the permittee must apply for and obtain proper authorization from the Commission before commencing construction.
- c. The permittee must apply for an amendment or renewal at least 180 days prior to expiration of the existing permit in order to continue a permitted activity after the expiration date of the permit. If an application is submitted prior to the expiration date of the permit, the existing permit shall remain in effect until the application is approved, denied, or returned. If the application is returned or denied, authorization to continue such activity shall terminate upon the effective date of the action. If an application is not submitted prior to the expiration date of the permit, the permit shall expire and authorization to continue such activity shall terminate upon the effective shall terminate.
- d. Prior to accepting or generating wastes which are not described in the permit application or which would result in a significant change in the quantity or quality of the existing discharge, the permittee must report the proposed changes to the Commission. The permittee must apply for a permit amendment reflecting any necessary changes in permit conditions, including effluent limitations for pollutants not identified and limited by this permit.
- e. In accordance with the TWC § 26.029(b), after a public hearing, notice of which shall be given to the permittee, the Commission may require the permittee, from time to time, for good cause, in accordance with applicable laws, to conform to new or additional conditions.
- f. If any toxic effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is promulgated under CWA § 307(a) for a toxic pollutant which is present in the discharge and that standard or prohibition is more stringent than any limitation on the pollutant in this permit, this permit shall be modified or revoked and reissued to conform to the toxic effluent standard or prohibitions established under CWA § 307(a) for toxic pollutants within the time provided in the

regulations that established those standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.

- 5. Permit Transfer
 - a. Prior to any transfer of this permit, Commission approval must be obtained. The Commission shall be notified in writing of any change in control or ownership of facilities authorized by this permit. Such notification should be sent to the Applications Review and Processing Team (MC 148) of the Water Quality Division.
 - b. A permit may be transferred only according to the provisions of 30 TAC § 305.64 (relating to Transfer of Permits) and 30 TAC § 50.133 (relating to Executive Director Action on Application or WQMP update).
- 6. Relationship to Hazardous Waste Activities

This permit does not authorize any activity of hazardous waste storage, processing, or disposal that requires a permit or other authorization pursuant to the Texas Health and Safety Code.

7. Relationship to Water Rights

Disposal of treated effluent by any means other than discharge directly to water in the state must be specifically authorized in this permit and may require a permit pursuant to TWC Chapter 11.

8. Property Rights

A permit does not convey any property rights of any sort, or any exclusive privilege.

9. Permit Enforceability

The conditions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstances, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

10. Relationship to Permit Application

The application pursuant to which the permit has been issued is incorporated herein; provided, however, that in the event of a conflict between the provisions of this permit and the application, the provisions of the permit shall control.

- 11. Notice of Bankruptcy
 - a. Each permittee shall notify the Executive Director, in writing, immediately following the filing of a voluntary or involuntary petition for bankruptcy under any chapter of Title 11 (Bankruptcy) of the United States Code (11 USC) by or against:
 - i. the permittee;
 - ii. an entity (as that term is defined in 11 USC, § 101(14)) controlling the permittee or listing the permit or permittee as property of the estate; or
 - iii. an affiliate (as that term is defined in 11 USC, § 101(2)) of the permittee.

- b. This notification must indicate:
 - i. the name of the permittee;
 - ii. the permit number(s);
 - iii. the bankruptcy court in which the petition for bankruptcy was filed; and
 - iv. the date of filing of the petition.

OPERATIONAL REQUIREMENTS

- 1. The permittee shall at all times ensure that the facility and all of its systems of collection, treatment, and disposal are properly operated and maintained. This includes, but is not limited to, the regular, periodic examination of wastewater solids within the treatment plant by the operator in order to maintain an appropriate quantity and quality of solids inventory as described in the various operator training manuals and according to accepted industry standards for process control. Process control, maintenance, and operations records shall be retained at the facility site, or shall be readily available for review by a TCEQ representative, for a period of three years.
- 2. Upon request by the Executive Director, the permittee shall take appropriate samples and provide proper analysis in order to demonstrate compliance with Commission rules. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall comply with all applicable provisions of 30 TAC Chapter 312 concerning sewage sludge or biosolids use and disposal and 30 TAC §§ 319.21 319.29 concerning the discharge of certain hazardous metals.
- 3. Domestic wastewater treatment facilities shall comply with the following provisions:
 - a. The permittee shall notify the Municipal Permits Team, Wastewater Permitting Section (MC 148) of the Water Quality Division, in writing, of any facility expansion at least 90 days prior to conducting such activity.
 - b. The permittee shall submit a closure plan for review and approval to the Municipal Permits Team, Wastewater Permitting Section (MC 148) of the Water Quality Division, for any closure activity at least 90 days prior to conducting such activity. Closure is the act of permanently taking a waste management unit or treatment facility out of service and includes the permanent removal from service of any pit, tank, pond, lagoon, surface impoundment and/or other treatment unit regulated by this permit.
- 4. The permittee is responsible for installing prior to plant start-up, and subsequently maintaining, adequate safeguards to prevent the discharge of untreated or inadequately treated wastes during electrical power failures by means of alternate power sources, standby generators, and/or retention of inadequately treated wastewater.
- 5. Unless otherwise specified, the permittee shall provide a readily accessible sampling point and, where applicable, an effluent flow measuring device or other acceptable means by which effluent flow may be determined.
- 6. The permittee shall remit an annual water quality fee to the Commission as required by 30

TAC Chapter 21. Failure to pay the fee may result in revocation of this permit under TWC 7.302(b)(6).

7. Documentation

For all written notifications to the Commission required of the permittee by this permit, the permittee shall keep and make available a copy of each such notification under the same conditions as self-monitoring data are required to be kept and made available. Except for information required for TPDES permit applications, effluent data, including effluent data in permits, draft permits and permit applications, and other information specified as not confidential in 30 TAC §§ 1.5(d), any information submitted pursuant to this permit may be claimed as confidential by the submitter. Any such claim must be asserted in the manner prescribed in the application form or by stamping the words confidential business information on each page containing such information. If no claim is made at the time of submission, information may be made available to the public without further notice. If the Commission or Executive Director agrees with the designation of confidentiality, the TCEQ will not provide the information for public inspection unless required by the Texas Attorney General or a court pursuant to an open records request. If the Executive Director does not agree with the designation of confidentiality, the person submitting the information will be notified.

- 8. Facilities that generate domestic wastewater shall comply with the following provisions; domestic wastewater treatment facilities at permitted industrial sites are excluded.
 - a. Whenever flow measurements for any domestic sewage treatment facility reach 75% of the permitted daily average or annual average flow for three consecutive months, the permittee must initiate engineering and financial planning for expansion and/or upgrading of the domestic wastewater treatment and/or collection facilities. Whenever the flow reaches 90% of the permitted daily average or annual average flow for three consecutive months, the permittee shall obtain necessary authorization from the Commission to commence construction of the necessary additional treatment and/or collection facilities. In the case of a domestic wastewater treatment facility which reaches 75% of the permitted daily average or annual average flow for three consecutive months, and the planned population to be served or the quantity of waste produced is not expected to exceed the design limitations of the treatment facility, the permittee shall submit an engineering report supporting this claim to the Executive Director of the Commission.

If in the judgment of the Executive Director the population to be served will not cause permit noncompliance, then the requirement of this section may be waived. To be effective, any waiver must be in writing and signed by the Director of the Enforcement Division (MC 219) of the Commission, and such waiver of these requirements will be reviewed upon expiration of the existing permit; however, any such waiver shall not be interpreted as condoning or excusing any violation of any permit parameter.

b. The plans and specifications for domestic sewage collection and treatment works associated with any domestic permit must be approved by the Commission and failure to secure approval before commencing construction of such works or making a discharge is a violation of this permit and each day is an additional violation until approval has been secured.

- c. Permits for domestic wastewater treatment plants are granted subject to the policy of the Commission to encourage the development of area-wide waste collection, treatment, and disposal systems. The Commission reserves the right to amend any domestic wastewater permit in accordance with applicable procedural requirements to require the system covered by this permit to be integrated into an area-wide system, should such be developed; to require the delivery of the wastes authorized to be collected in, treated by or discharged from said system, to such area-wide system; or to amend this permit in any other particular to effectuate the Commission's policy. Such amendments may be made when the changes required are advisable for water quality control purposes and are feasible on the basis of waste treatment technology, engineering, financial, and related considerations existing at the time the changes are required, exclusive of the loss of investment in or revenues from any then existing or proposed waste collection, treatment or disposal system.
- 9. Domestic wastewater treatment plants shall be operated and maintained by sewage plant operators holding a valid certificate of competency at the required level as defined in 30 TAC Chapter 30.
- 10. For Publicly Owned Treatment Works (POTWs), the 30-day average (or monthly average) percent removal for BOD and TSS shall not be less than 85%, unless otherwise authorized by this permit.
- 11. Facilities that generate industrial solid waste as defined in 30 TAC § 335.1 shall comply with these provisions:
 - a. Any solid waste, as defined in 30 TAC § 335.1 (including but not limited to such wastes as garbage, refuse, sludge from a waste treatment, water supply treatment plant or air pollution control facility, discarded materials, discarded materials to be recycled, whether the waste is solid, liquid, or semisolid), generated by the permittee during the management and treatment of wastewater, must be managed in accordance with all applicable provisions of 30 TAC Chapter 335, relating to Industrial Solid Waste Management.
 - b. Industrial wastewater that is being collected, accumulated, stored, or processed before discharge through any final discharge outfall, specified by this permit, is considered to be industrial solid waste until the wastewater passes through the actual point source discharge and must be managed in accordance with all applicable provisions of 30 TAC Chapter 335.
 - c. The permittee shall provide written notification, pursuant to the requirements of 30 TAC § 335.8(b)(1), to the Corrective Action Section (MC 127) of the Remediation Division informing the Commission of any closure activity involving an Industrial Solid Waste Management Unit, at least 90 days prior to conducting such an activity.
 - d. Construction of any industrial solid waste management unit requires the prior written notification of the proposed activity to the Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division. No person shall dispose of industrial solid waste, including sludge or other solids from wastewater treatment processes, prior to fulfilling the deed recordation requirements of 30 TAC § 335.5.
 - e. The term "industrial solid waste management unit" means a landfill, surface impoundment, waste-pile, industrial furnace, incinerator, cement kiln, injection well,

container, drum, salt dome waste containment cavern, or any other structure vessel, appurtenance, or other improvement on land used to manage industrial solid waste.

- f. The permittee shall keep management records for all sludge (or other waste) removed from any wastewater treatment process. These records shall fulfill all applicable requirements of 30 TAC § 335 and must include the following, as it pertains to wastewater treatment and discharge:
 - i. Volume of waste and date(s) generated from treatment process;
 - ii. Volume of waste disposed of on-site or shipped off-site;
 - iii. Date(s) of disposal;
 - iv. Identity of hauler or transporter;
 - v. Location of disposal site; and
 - vi. Method of final disposal.

The above records shall be maintained on a monthly basis. The records shall be retained at the facility site, or shall be readily available for review by authorized representatives of the TCEQ for at least five years.

12. For industrial facilities to which the requirements of 30 TAC § 335 do not apply, sludge and solid wastes, including tank cleaning and contaminated solids for disposal, shall be disposed of in accordance with THSC § 361.

TCEQ Revision 06/2020

SLUDGE PROVISIONS

The permittee is authorized to dispose of sludge only at a Texas Commission on Environmental Quality (TCEQ) authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge. **The disposal of sludge or biosolids by land application on property owned, leased or under the direct control of the permittee is a violation of the permit unless the site is authorized with the TCEQ. This provision does not authorize Distribution and Marketing of Class A or Class AB Biosolids. This provision does not authorize the permittee to land apply biosolids on property owned, leased or under the direct control of the permittee.**

SECTION I. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE OR BIOSOLIDS LAND APPLICATION

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC § 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge or biosolids.
- 2. In all cases, if the person (permit holder) who prepares the sewage sludge supplies the sewage sludge to another person for land application use or to the owner or lease holder of the land, the permit holder shall provide necessary information to the parties who receive the sludge to assure compliance with these regulations.
- 3. The land application of processed or unprocessed chemical toilet waste, grease trap waste, grit trap waste, milk solids, or similar non-hazardous municipal or industrial solid wastes, or any of the wastes listed in this provision combined with biosolids, WTP residuals or domestic septage is prohibited unless the grease trap waste is added at a fats, oil and grease (FOG) receiving facility as part of an anaerobic digestion process.

B. Testing Requirements

Sewage sludge or biosolids shall be tested annually in accordance with the method 1. specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I [Toxicity Characteristic Leaching Procedure (TCLP)] or other method that receives the prior approval of the TCEQ for the contaminants listed in 40 CFR Part 261.24, Table 1. Sewage sludge or biosolids failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal. Following failure of any TCLP test, the management or disposal of sewage sludge or biosolids at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge or biosolids no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division and the Regional Director (MC Region 9) within seven (7) days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped, and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Permitting and Registration Support Division (MC 129), Texas Commission on Environmental Quality, P.O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. This annual report shall be submitted to the TCEQ Regional Office (MC Region 9) and the Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

2. Biosolids shall not be applied to the land if the concentration of the pollutants exceeds the pollutant concentration criteria in Table 1. The frequency of testing for pollutants in Table 1 is found in Section I.C. of this permit.

<u>Pollutant</u>	<u>Ceiling Concentration</u> (<u>Milligrams per kilogram</u>)*
Arsenic	75
Cadmium	85
Chromium	3000
Copper	4300
Lead	840
Mercury	57
Molybdenum	75
Nickel	420
PCBs	49
Selenium	100
Zinc	7500

TABLE 1

* Dry weight basis

3. Pathogen Control

All sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site must be treated by one of the following methods to ensure that the sludge meets either the Class A, Class AB or Class B biosolids pathogen requirements.

a. For sewage sludge to be classified as Class A biosolids with respect to pathogens, the density of fecal coliform in the sewage sludge must be less than 1,000 most probable number (MPN) per gram of total solids (dry weight basis), or the density of Salmonella sp. bacteria in the sewage sludge must be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met:

<u>Alternative 1</u> - The temperature of the sewage sludge that is used or disposed shall be maintained at or above a specific value for a period of time. See 30 TAC § 312.82(a)(2)(A) for specific information;

Alternative 5 (PFRP) - Sewage sludge that is used or disposed of must be treated in one of the Processes to Further Reduce Pathogens (PFRP) described in 40 CFR Part 503, Appendix B. PFRP include composting, heat drying, heat treatment, and thermophilic aerobic digestion; or

Alternative 6 (PFRP Equivalent) - Sewage sludge that is used or disposed of must be treated in a process that has been approved by the U. S. Environmental Protection Agency as being equivalent to those in Alternative 5.

b. For sewage sludge to be classified as Class AB biosolids with respect to pathogens, the density of fecal coliform in the sewage sludge must be less than 1,000 MPN per gram of total solids (dry weight basis), or the density of *Salmonella* sp. bacteria in the sewage sludge be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met:

<u>Alternative 2</u> - The pH of the sewage sludge that is used or disposed shall be raised to above 12 std. units and shall remain above 12 std. units for 72 hours.

The temperature of the sewage sludge shall be above 52° Celsius for 12 hours or longer during the period that the pH of the sewage sludge is above 12 std. units.

At the end of the 72-hour period during which the pH of the sewage sludge is above 12 std. units, the sewage sludge shall be air dried to achieve a percent solids in the sewage sludge greater than 50%; or

<u>Alternative 3</u> - The sewage sludge shall be analyzed for enteric viruses prior to pathogen treatment. The limit for enteric viruses is less than one Plaque-forming Unit per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC § 312.82(a)(2)(C)(i-iii) for specific information. The sewage sludge shall be analyzed for viable helminth ova prior to pathogen treatment. The limit for viable helminth ova is less than one per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC § 312.82(a)(2)(C)(i-iii) for specific information. The sewage sludge shall be analyzed for viable helminth ova prior to pathogen treatment. The limit for viable helminth ova is less than one per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC § 312.82(a)(2)(C)(iv-vi) for specific information; or

<u>Alternative 4</u> - The density of enteric viruses in the sewage sludge shall be less than one Plaque-forming Unit per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. The density of viable helminth ova in the sewage sludge shall be less than one per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed.

- c. Sewage sludge that meets the requirements of Class AB biosolids may be classified a Class A biosolids if a variance request is submitted in writing that is supported by substantial documentation demonstrating equivalent methods for reducing odors and written approval is granted by the executive director. The executive director may deny the variance request or revoke that approved variance if it is determined that the variance may potentially endanger human health or the environment, or create nuisance odor conditions.
- d. Three alternatives are available to demonstrate compliance with Class B biosolids

criteria.

Alternative 1

- i. A minimum of seven random samples of the sewage sludge shall be collected within 48 hours of the time the sewage sludge is used or disposed of during each monitoring episode for the sewage sludge.
- ii. The geometric mean of the density of fecal coliform in the samples collected shall be less than either 2,000,000 MPN per gram of total solids (dry weight basis) or 2,000,000 Colony Forming Units per gram of total solids (dry weight basis).

<u>Alternative 2</u> - Sewage sludge that is used or disposed of shall be treated in one of the Processes to Significantly Reduce Pathogens (PSRP) described in 40 CFR Part 503, Appendix B, so long as all of the following requirements are met by the generator of the sewage sludge.

- i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;
- ii. An independent Texas Licensed Professional Engineer must make a certification to the generator of a sewage sludge that the wastewater treatment facility generating the sewage sludge is designed to achieve one of the PSRP at the permitted design loading of the facility. The certification need only be repeated if the design loading of the facility is increased. The certification shall include a statement indicating the design meets all the applicable standards specified in Appendix B of 40 CFR Part 503;
- iii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iv. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review; and
- v. If the sewage sludge is generated from a mixture of sources, resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the PSRP, and shall meet the certification, operation, and record keeping requirements of this paragraph.

<u>Alternative 3</u> - Sewage sludge shall be treated in an equivalent process that has been approved by the U.S. Environmental Protection Agency, so long as all of the following requirements are met by the generator of the sewage sludge.

i. Prior to use or disposal, all the sewage sludge must have been generated from a
single location, except as provided in paragraph v. below;

- ii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iii. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review;
- iv. The Executive Director will accept from the U.S. Environmental Protection Agency a finding of equivalency to the defined PSRP; and
- v. If the sewage sludge is generated from a mixture of sources resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the Processes to Significantly Reduce Pathogens, and shall meet the certification, operation, and record keeping requirements of this paragraph.

In addition to the Alternatives 1 - 3, the following site restrictions must be met if Class B biosolids are land applied:

- i. Food crops with harvested parts that touch the biosolids/soil mixture and are totally above the land surface shall not be harvested for 14 months after application of biosolids.
- ii. Food crops with harvested parts below the surface of the land shall not be harvested for 20 months after application of biosolids when the biosolids remain on the land surface for 4 months or longer prior to incorporation into the soil.
- iii. Food crops with harvested parts below the surface of the land shall not be harvested for 38 months after application of biosolids when the biosolids remain on the land surface for less than 4 months prior to incorporation into the soil.
- iv. Food crops, feed crops, and fiber crops shall not be harvested for 30 days after application of biosolids.
- v. Domestic livestock shall not be allowed to graze on the land for 30 days after application of biosolids.
- vi. Turf grown on land where biosolids are applied shall not be harvested for 1 year after application of the biosolids when the harvested turf is placed on either land with a high potential for public exposure or a lawn.
- vii. Public access to land with a high potential for public exposure shall be restricted for 1 year after application of biosolids.

- viii. Public access to land with a low potential for public exposure shall be restricted for 30 days after application of biosolids.
- ix. Land application of biosolids shall be in accordance with the buffer zone requirements found in 30 TAC § 312.44.
- 4. Vector Attraction Reduction Requirements

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site shall be treated by one of the following Alternatives 1 through 10 for vector attraction reduction.

- <u>Alternative 1</u> The mass of volatile solids in the sewage sludge shall be reduced by a minimum of 38%.
- <u>Alternative 2</u> If Alternative 1 cannot be met for an anaerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge anaerobically in the laboratory in a bench-scale unit for 40 additional days at a temperature between 30° and 37° Celsius. Volatile solids must be reduced by less than 17% to demonstrate compliance.
- <u>Alternative 3</u> If Alternative 1 cannot be met for an aerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge with percent solids of two percent or less aerobically in the laboratory in a bench-scale unit for 30 additional days at 20° Celsius. Volatile solids must be reduced by less than 15% to demonstrate compliance.
- <u>Alternative 4</u> The specific oxygen uptake rate (SOUR) for sewage sludge treated in an aerobic process shall be equal to or less than 1.5 milligrams of oxygen per hour per gram of total solids (dry weight basis) at a temperature of 20° Celsius.
- <u>Alternative 5</u> Sewage sludge shall be treated in an aerobic process for 14 days or longer. During that time, the temperature of the sewage sludge shall be higher than 40° Celsius and the average temperature of the sewage sludge shall be higher than 45° Celsius.
- <u>Alternative 6</u> The pH of sewage sludge shall be raised to 12 or higher by alkali addition and, without the addition of more alkali shall remain at 12 or higher for two hours and then remain at a pH of 11.5 or higher for an additional 22 hours at the time the sewage sludge is prepared for sale or given away in a bag or other container.
- <u>Alternative 7</u> The percent solids of sewage sludge that does not contain unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 75% based on the moisture content and total solids prior to mixing with other materials. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

- <u>Alternative 8</u> The percent solids of sewage sludge that contains unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 90% based on the moisture content and total solids prior to mixing with other materials at the time the sludge is used. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.
- <u>Alternative 9</u> i. Biosolids shall be injected below the surface of the land.
 - ii. No significant amount of the biosolids shall be present on the land surface within one hour after the biosolids are injected.
 - iii. When sewage sludge that is injected below the surface of the land is Class A or Class AB with respect to pathogens, the biosolids shall be injected below the land surface within eight hours after being discharged from the pathogen treatment process.
- <u>Alternative 10</u>i. Biosolids applied to the land surface or placed on a surface disposal site shall be incorporated into the soil within six hours after application to or placement on the land.
 - ii. When biosolids that are incorporated into the soil is Class A or Class AB with respect to pathogens, the biosolids shall be applied to or placed on the land within eight hours after being discharged from the pathogen treatment process.

C. Monitoring Requirements

Toxicity Characteristic Leaching Procedure	- annually
(TCLP) Test	
PCBs	- annually

All metal constituents and fecal coliform or *Salmonella* sp. bacteria shall be monitored at the appropriate frequency shown below, pursuant to 30 TAC § 312.46(a)(1):

Amount of biosolids (*) metric tons per 365-day period	Monitoring Frequency
0 to less than 290	Once/Year
290 to less than 1,500	Once/Quarter
1,500 to less than 15,000	Once/Two Months
15,000 or greater	Once/Month

(*) The amount of bulk biosolids applied to the land (dry wt. basis).

Representative samples of sewage sludge shall be collected and analyzed in accordance with the methods referenced in 30 TAC § 312.7 $\,$

Identify each of the analytic methods used by the facility to analyze enteric viruses, fecal coliforms, helminth ova, *Salmonella* sp., and other regulated parameters.

Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.

Identify the nature of material generated by the facility (such as a biosolid for beneficial use or land-farming, or sewage sludge or biosolids for disposal at a monofill) and whether the material is ultimately conveyed off-site in bulk or in bags.

SECTION II. REQUIREMENTS SPECIFIC TO BULK SEWAGE SLUDGE OR BIOSOLIDS FOR APPLICATION TO THE LAND MEETING CLASS A, CLASS AB or B PATHOGEN REDUCTION AND THE CUMULATIVE LOADING RATES IN TABLE 2, OR CLASS B PATHOGEN REDUCTION AND THE POLLUTANT CONCENTRATIONS IN TABLE 3

For those permittees meeting Class A, Class AB or B pathogen reduction requirements and that meet the cumulative loading rates in Table 2 below, or the Class B pathogen reduction requirements and contain concentrations of pollutants below listed in Table 3, the following conditions apply:

A. Pollutant Limits

Table	2
Pollutant Arsenic Cadmium Chromium Copper Lead Mercury Molybdenum Nickel Selenium Zinc	Cumulative Pollutant Loading Rate (<u>pounds per acre</u>)* 36 35 2677 1339 268 15 Report Only 375 89 2500
Table	3
<u>Pollutant</u> Arsenic Cadmium Chromium Copper Lead Mercury	Monthly Average Concentration (<u>milligrams per kilogram</u>)* 41 39 1200 1500 300 17

B. Pathogen Control

Molvbdenum

Nickel

Zinc

Selenium

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, a reclamation site, shall be treated by either Class A, Class AB or Class B biosolids pathogen reduction requirements as defined above in Section I.B.3.

*Dry weight basis

Report Only

420

2800

36

C. Management Practices

- 1. Bulk biosolids shall not be applied to agricultural land, forest, a public contact site, or a reclamation site that is flooded, frozen, or snow-covered so that the bulk sewage sludge enters a wetland or other waters in the State.
- 2. Bulk biosolids not meeting Class A requirements shall be land applied in a manner which complies with Applicability in accordance with 30 TAC §312.41 and the Management Requirements in accordance with 30 TAC § 312.44.
- 3. Bulk biosolids shall be applied at or below the agronomic rate of the cover crop.
- 4. An information sheet shall be provided to the person who receives bulk Class A or AB biosolids sold or given away. The information sheet shall contain the following information:
 - a. The name and address of the person who prepared the Class A or AB biosolids that are sold or given away in a bag or other container for application to the land.
 - b. A statement that application of the biosolids to the land is prohibited except in accordance with the instruction on the label or information sheet.
 - c. The annual whole sludge application rate for the biosolids application rate for the biosolids that does not cause any of the cumulative pollutant loading rates in Table 2 above to be exceeded, unless the pollutant concentrations in Table 3 found in Section II above are met.

D. Notification Requirements

- 1. If bulk biosolids are applied to land in a State other than Texas, written notice shall be provided prior to the initial land application to the permitting authority for the State in which the bulk biosolids are proposed to be applied. The notice shall include:
 - a. The location, by street address, and specific latitude and longitude, of each land application site.
 - b. The approximate time period bulk biosolids will be applied to the site.
 - c. The name, address, telephone number, and National Pollutant Discharge Elimination System permit number (if appropriate) for the person who will apply the bulk biosolids.
- 2. The permittee shall give 180 days prior notice to the Executive Director in care of the Wastewater Permitting Section (MC 148) of the Water Quality Division of any change planned in the biosolids disposal practice.

E. Record Keeping Requirements

The documents will be retained at the facility site and/or shall be readily available for review by a TCEQ representative. The person who prepares bulk sewage sludge or a biosolids material shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative for a period of <u>five years</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply.

- 1. The concentration (mg/kg) in the sludge of each pollutant listed in Table 3 above and the applicable pollutant concentration criteria (mg/kg), <u>or</u> the applicable cumulative pollutant loading rate and the applicable cumulative pollutant loading rate limit (lbs/ac) listed in Table 2 above.
- 2. A description of how the pathogen reduction requirements are met (including site restrictions for Class AB and Class B biosolids, if applicable).
- 3. A description of how the vector attraction reduction requirements are met.
- 4. A description of how the management practices listed above in Section II.C are being met.
- 5. The following certification statement:

"I certify, under penalty of law, that the applicable pathogen requirements in 30 TAC § 312.82(a) or (b) and the vector attraction reduction requirements in 30 TAC § 312.83(b) have been met for each site on which bulk biosolids are applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices have been met. I am aware that there are significant penalties for false certification including fine and imprisonment."

- 6. The recommended agronomic loading rate from the references listed in Section II.C.3. above, as well as the actual agronomic loading rate shall be retained. The person who applies bulk biosolids shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative <u>indefinitely</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply:
 - a. A certification statement that all applicable requirements (specifically listed) have been met, and that the permittee understands that there are significant penalties for false certification including fine and imprisonment. See 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii), as applicable, and to the permittee's specific sludge treatment activities.
 - b. The location, by street address, and specific latitude and longitude, of each site on which biosolids are applied.
 - c. The number of acres in each site on which bulk biosolids are applied.
 - d. The date and time biosolids are applied to each site.
 - e. The cumulative amount of each pollutant in pounds/acre listed in Table 2 applied to each site.
 - f. The total amount of biosolids applied to each site in dry tons.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

F. Reporting Requirements

The permittee shall report annually to the TCEQ Regional Office (MC Region 9) and Compliance Monitoring Team (MC 224) of the Enforcement Division, by September 30th of each year the following information. The permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. Identify the nature of material generated by the facility (such as a biosolid for beneficial use or land-farming, or sewage sludge for disposal at a monofill) and whether the material is ultimately conveyed off-site in bulk or in bags.
- 3. Results of tests performed for pollutants found in either Table 2 or 3 as appropriate for the permittee's land application practices.
- 4. The frequency of monitoring listed in Section I.C. that applies to the permittee.
- 5. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 6. PCB concentration in sludge or biosolids in mg/kg.
- 7. Identity of hauler(s) and TCEQ transporter number.
- 8. Date(s) of transport.
- 9. Texas Commission on Environmental Quality registration number, if applicable.
- 10. Amount of sludge or biosolids disposal dry weight (lbs/acre) at each disposal site.
- 11. The concentration (mg/kg) in the sludge of each pollutant listed in Table 1 (defined as a monthly average) as well as the applicable pollutant concentration criteria (mg/kg) listed in Table 3 above, or the applicable pollutant loading rate limit (lbs/acre) listed in Table 2 above if it exceeds 90% of the limit.
- 12. Level of pathogen reduction achieved (Class A, Class AB or Class B).
- 13. Alternative used as listed in Section I.B.3.(a. or b.). Alternatives describe how the pathogen reduction requirements are met. If Class B biosolids, include information on how site restrictions were met.
- 14. Identify each of the analytic methods used by the facility to analyze enteric viruses, fecal coliforms, helminth ova, *Salmonella* sp., and other regulated parameters.
- 15. Vector attraction reduction alternative used as listed in Section I.B.4.

- 16. Amount of sludge or biosolids transported in dry tons/year.
- 17. The certification statement listed in either 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii) as applicable to the permittee's sludge or biosolids treatment activities, shall be attached to the annual reporting form.
- 18. When the amount of any pollutant applied to the land exceeds 90% of the cumulative pollutant loading rate for that pollutant, as described in Table 2, the permittee shall report the following information as an attachment to the annual reporting form.
 - a. The location, by street address, and specific latitude and longitude.
 - b. The number of acres in each site on which bulk biosolids are applied.
 - c. The date and time bulk biosolids are applied to each site.
 - d. The cumulative amount of each pollutant (i.e., pounds/acre) listed in Table 2 in the bulk biosolids applied to each site.
 - e. The amount of biosolids (i.e., dry tons) applied to each site.

The above records shall be maintained on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION III. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE OR BIOSOLIDS DISPOSED IN A MUNICIPAL SOLID WASTE LANDFILL

- A. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC § 330 and all other applicable state and federal regulations to protect public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present. The permittee shall ensure that the sewage sludge meets the requirements in 30 TAC § 330 concerning the quality of the sludge or biosolids disposed in a municipal solid waste landfill.
- B. If the permittee generates sewage sludge and supplies that sewage sludge or biosolids to the owner or operator of a municipal solid waste landfill (MSWLF) for disposal, the permittee shall provide to the owner or operator of the MSWLF appropriate information needed to be in compliance with the provisions of this permit.
- C. The permittee shall give 180 days prior notice to the Executive Director in care of the Wastewater Permitting Section (MC 148) of the Water Quality Division of any change planned in the sewage sludge or biosolids disposal practice.
- D. Sewage sludge or biosolids shall be tested annually in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I (Toxicity Characteristic Leaching Procedure) or other method, which receives the prior approval of the TCEQ for contaminants listed in Table 1 of 40 CFR § 261.24. Sewage sludge or biosolids failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal.

Following failure of any TCLP test, the management or disposal of sewage sludge or biosolids at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge or biosolids no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division and the Regional Director (MC Region 9) of the appropriate TCEQ field office within 7 days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped, and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Permitting and Registration Support Division (MC 129), Texas Commission on Environmental Quality, P. O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. This annual report shall be submitted to the TCEQ Regional Office (MC Region 9) and the Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30 of each year.

- E. Sewage sludge or biosolids shall be tested as needed, in accordance with the requirements of 30 TAC Chapter 330.
- F. Record Keeping Requirements

The permittee shall develop the following information and shall retain the information for five years.

- 1. The description (including procedures followed and the results) of all liquid Paint Filter Tests performed.
- 2. The description (including procedures followed and results) of all TCLP tests performed.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

G. Reporting Requirements

The permittee shall report annually to the TCEQ Regional Office (MC Region 9) and Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30th of each year the following information. The permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 3. Annual sludge or biosolids production in dry tons/year.
- 4. Amount of sludge or biosolids disposed in a municipal solid waste landfill in dry tons/year.
- 5. Amount of sludge or biosolids transported interstate in dry tons/year.
- 6. A certification that the sewage sludge or biosolids meets the requirements of 30 TAC § 330 concerning the quality of the sludge disposed in a municipal solid waste landfill.
- 7. Identity of hauler(s) and transporter registration number.
- 8. Owner of disposal site(s).
- 9. Location of disposal site(s).
- 10. Date(s) of disposal.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION IV. REQUIREMENTS APPLYING TO SLUDGE OR BIOSOLIDS TRANSPORTED TO ANOTHER FACILITY FOR FURTHER PROCESSING

These provisions apply to sludge or biosolids that is transported to another wastewater treatment facility or facility that further processes sludge or biosolids. These provisions are intended to allow transport of sludge or biosolids to facilities that have been authorized to accept sludge or biosolids. These provisions do not limit the ability of the receiving facility to determine whether to accept the sludge or biosolids, nor do they limit the ability of the receiving facility to request additional testing or documentation.

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC Chapter 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge.
- 2. Sludge or biosolids may only be transported using a registered transporter or using an approved pipeline.

B. Record Keeping Requirements

- 1. For sludge transported by an approved pipeline, the permittee must maintain records of the following:
 - a. the amount of sludge or biosolids transported;
 - b. the date of transport;
 - c. the name and TCEQ permit number of the receiving facility or facilities;
 - d. the location of the receiving facility or facilities;
 - e. the name and TCEQ permit number of the facility that generated the waste; and
 - f. copy of the written agreement between the permittee and the receiving facility to accept sludge or biosolids.
- 2. For sludge or biosolids transported by a registered transporter, the permittee must maintain records of the completed trip tickets in accordance with 30 TAC § 312.145(a)(1)-(7) and amount of sludge or biosolids transported.
- 3. The above records shall be maintained on-site on a monthly basis and shall be made available to the TCEQ upon request. These records shall be retained for at least five years.

C. Reporting Requirements

The permittee shall report the following information annually to the TCEQ Regional Office (MC Region 9) and Compliance Monitoring Team (MC 224) of the Enforcement Division, by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. the annual sludge or biosolids production;
- 3. the amount of sludge or biosolids transported;
- 4. the owner of each receiving facility;
- 5. the location of each receiving facility; and
- 6. the date(s) of disposal at each receiving facility.

TCEQ Revision 06/2020

OTHER REQUIREMENTS

1. The permittee shall employ or contract with one or more licensed wastewater treatment facility operators or wastewater system operations companies holding a valid license or registration according to the requirements of 30 TAC Chapter 30, Occupational Licenses and Registrations, and in particular 30 TAC Chapter 30, Subchapter J, Wastewater Operators and Operations Companies.

This Category B facility must be operated by a chief operator or an operator holding a Class B license or higher. The facility must be operated a minimum of five days per week by the licensed chief operator or an operator holding the required level of license or higher. The licensed chief operator or operator holding the required level of license or higher must be available by telephone or pager seven days per week. Where shift operation of the wastewater treatment facility is necessary, each shift that does not have the on-site supervision of the licensed chief operator must be supervised by an operator in charge who is licensed not less than one level below the category for the facility.

- 2. The facility is not located in the Coastal Management Program boundary.
- 3. There is no mixing zone established for this discharge to an intermittent stream. Acute toxic criteria apply at the point of discharge.
- 4. The permittee has submitted sufficient evidence of legal restrictions prohibiting residential structures within the part of the buffer zone not owned by the permittee according to 30 TAC Section 309.13(e)(3). The evidence of legal restrictions was submitted to the executive director in care of the TCEQ Wastewater Permitting Section (MC 148) under the permit issued November 15, 1993. The permittee shall comply with the requirements of 30 TAC Section 309.13(a) through (d). See Attachment A
- In accordance with 30 TAC § 319.9, a permittee that has at least twelve months of 5. uninterrupted compliance with its bacteria limit may notify the commission in writing of its compliance and request a less frequent measurement schedule. To request a less frequent schedule, the permittee shall submit a written request to the TCEQ Wastewater Permitting Section (MC 148) for each phase that includes a different monitoring frequency. The request must contain all of the reported bacteria values (Daily Avg. and Daily Max/Single Grab) for the twelve consecutive months immediately prior to the request. If the Executive Director finds that a less frequent measurement schedule is protective of human health and the environment, the permittee may be given a less frequent measurement schedule. For this permit, three/week may be reduced to one/week. A violation of any bacteria limit by a facility that has been granted a less frequent measurement schedule will require the permittee to return to the standard frequency schedule and submit written notice to the TCEO Wastewater Permitting Section (MC 148). The permittee may not apply for another reduction in measurement frequency for at least 24 months from the date of the last violation. The Executive Director may establish a more frequent measurement schedule if necessary to protect human health or the environment.
- 6. Violations of daily maximum limitations for the following pollutants shall be reported orally or by facsimile to TCEQ Region 9 within 24 hours from the time the permittee becomes aware of the violation followed by a written report within five working days to TCEQ Region 9 and the Enforcement Division (MC 224).

POLLUTANT	MAL (mg/l)
Hexavalent Chromium	0.003

Test methods utilized shall be sensitive enough to demonstrate compliance with the permit effluent limitations. Permit compliance/noncompliance determinations will be based on the effluent limitations contained in this permit with consideration given to the MAL for the parameters specified above.

When an analysis of an effluent sample for any of the parameters listed above indicates no detectable levels above the MAL and the test method detection level is as sensitive as the specified MAL, a value of zero (0) shall be used for that measurement when determining calculations and reporting requirements for the self-reporting form. This applies to determinations of daily maximum concentration, calculations of loading and daily averages, and other reportable results.

When a reported value is zero (0) based on this MAL provision, the permittee shall submit the following statement with the self-reporting form either as a separate attachment to the form or as a statement in the comments section of the form.

"The reported value(s) of zero (0) for [list parameter(s)] on the self-reporting form for [monitoring period date range] is based on the following conditions: 1) the analytical method used had a method detection level as sensitive as the MAL specified in the permit, and 2) the analytical results contained no detectable levels above the specified MAL."

When an analysis of an effluent sample for a parameter indicates no detectable levels and the test method detection level is not as sensitive as the MAL specified in the permit, or a MAL is not specified in the permit for that parameter, the level of detection achieved shall be used for that measurement when determining calculations and reporting requirements for the self-reporting form. A zero (o) may not be used.

CONTRIBUTING INDUSTRIES AND PRETREATMENT REQUIREMENTS

1. The permittee shall operate an industrial pretreatment program in accordance with Sections 402(b)(8) and (9) of the Clean Water Act, the General Pretreatment Regulations (40 CFR Part 403), and the approved **City of Temple** publicly owned treatment works (POTW) pretreatment program submitted by the permittee. The pretreatment program was approved on **May 1, 1984**, and modified on **September 24, 1993**, **March 24, 2015** (Streamlining Rule and removal of three local limits), and **February 23, 2024** (TBLLs).

The POTW pretreatment program is hereby incorporated by reference and shall be implemented in a manner consistent with the following requirements:

- a. Industrial user (IU) information shall be kept current according to 40 CFR §§ 403.8(f)(2)(i) and (ii) and updated at a frequency set forth in the approved pretreatment program to reflect the accurate characterization of all IUs.
- b. The frequency and nature of IU compliance monitoring activities by the permittee shall be consistent with the approved POTW pretreatment program and commensurate with the character, consistency, and volume of waste. The permittee is required to inspect and sample the effluent from each significant industrial user (SIU) at least once per year, except as specified in 40 CFR § 403.8(f)(2)(v). This is in addition to any industrial self-monitoring activities.
- c. The permittee shall enforce and obtain remedies for IU noncompliance with applicable pretreatment standards and requirements and the approved POTW pretreatment program.
- d. The permittee shall control through permit, order, or similar means, the contribution to the POTW by each IU to ensure compliance with applicable pretreatment standards and requirements and the approved POTW pretreatment program. In the case of SIUs (identified as significant under 40 CFR § 403.3(v)), this control shall be achieved through individual permits or general control mechanisms, in accordance with 40 CFR § 403.8(f)(1)(iii).

Both individual and general control mechanisms must be enforceable and contain, at a minimum, the following conditions:

- (1) Statement of duration (in no case more than five years);
- (2) Statement of non-transferability without, at a minimum, prior notification to the POTW and provision of a copy of the existing control mechanism to the new owner or operator;
- (3) Effluent limits, which may include enforceable best management practices (BMPs), based on applicable general pretreatment standards, categorical pretreatment standards, local limits, and State and local law;
- (4) Self-monitoring, sampling, reporting, notification and record keeping requirements, identification of the pollutants to be monitored (including, if applicable, the process for seeking a waiver for a pollutant neither present nor expected to be present in the IU's discharge in accordance with 40 CFR § 403.12(e)(2), or a specific waived pollutant in the case of an individual control mechanism), sampling location, sampling frequency, and sample type, based on the applicable general pretreatment standards in 40 CFR Part 403, categorical pretreatment standards, local limits, and State and local law;

- (5) Statement of applicable civil and criminal penalties for violation of pretreatment standards and requirements, and any applicable compliance schedule. Such schedules may not extend the compliance date beyond federal deadlines; and
- (6) Requirements to control slug discharges, if determined by the POTW to be necessary.
- e. For those IUs who are covered by a general control mechanism, in order to implement 40 CFR § 403.8(f)(1)(iii)(A)(2), a monitoring waiver for a pollutant neither present nor expected to be present in the IU's discharge is not effective in the general control mechanism until after the POTW has provided written notice to the SIU that such a waiver request has been granted in accordance with 40 CFR § 403.12(e)(2).
- f. The permittee shall evaluate whether each SIU needs a plan or other action to control slug discharges, in accordance with 40 CFR § 403.8(f)(2)(vi). If the POTW decides that a slug control plan is needed, the plan shall contain at least the minimum elements required in 40 CFR § 403.8(f)(2)(vi).
- g. The permittee shall provide adequate staff, equipment, and support capabilities to carry out all elements of the pretreatment program.
- h. The approved program shall not be modified by the permittee without the prior approval of the Executive Director, according to 40 CFR § 403.18.
- 2. The permittee is under a continuing duty to establish and enforce specific local limits to implement the provisions of 40 CFR § 403.5, develop and enforce local limits as necessary, and modify the approved pretreatment program as necessary to comply with federal, state, and local law, as amended. The permittee may develop BMPs to implement 40 CFR § 403.5(c)(1) and (2). Such BMPs shall be considered local limits and pretreatment standards. The permittee is required to effectively enforce such limits and to modify its pretreatment program, including the Legal Authority, Enforcement Response Plan, and Standard Operating Procedures (including forms), if required by the Executive Director to reflect changing conditions at the POTW. Substantial modifications will be approved in accordance with 40 CFR § 403.18, and modifications will become effective upon approval by the Executive Director in accordance with 40 CFR § 403.18.
- 3. The permittee shall analyze the treatment facility influent and effluent for the presence of the toxic pollutants listed in the Texas Surface Water Quality Standards [30 TAC Chapter 307], and 40 CFR Part 122, Appendix D, Table II at least **once per year** and the toxic pollutants listed in 40 CFR Part 122, Appendix D, Table III at least **once per three months**. If, based upon information available to the permittee, there is reason to suspect the presence of any toxic or hazardous pollutant listed in 40 CFR Part 122, Appendix D, Table V, or any other pollutant, known or suspected to adversely affect treatment plant operation, receiving water quality, or solids disposal procedures, analysis for those pollutants shall be performed at least **once per three months** on both the influent and the effluent.

The influent and effluent samples collected shall be composite samples consisting of at least 12 aliquots collected at approximately equal intervals over a representative 24-hour period and composited according to flow. Sampling and analytical procedures shall be in accordance with guidelines established in 40 CFR Part 136, as amended; as approved by the

EPA through the application for alternate test procedures; or as suggested in Tables E-1 and E-2 of the *Procedures to Implement the Texas Surface Water Quality Standards* (RG-194), June 2010, as amended and adopted by the TCEQ. The effluent samples shall be analyzed to the minimum analytical level (MAL) if necessary, to determine compliance with the daily average water quality based effluent concentration from the TCEQ's Texas Toxicity Modeling Program (TEXTOX) and other applicable water quality discharge standards. Where composite samples are inappropriate due to sampling, holding time, or analytical constraints, at least four (4) grab samples shall be taken at equal intervals over a representative 24-hour period.

4. The permittee shall prepare annually a list of IUs which, during the preceding twelve (12) months, were in significant noncompliance (SNC) with applicable pretreatment requirements. For the purposes of this section of the permit, "CONTRIBUTING INDUSTRIES AND PRETREATMENT REQUIREMENTS," SNC shall be determined based upon the more stringent of either criteria established at 40 CFR §403.8(f)(2)(viii) [*rev*. 10/14/05] or criteria established in the approved POTW pretreatment program. This list is to be published annually during the month of **February** in a newspaper of general circulation that provides meaningful public notice within the jurisdiction(s) served by the POTW.

In addition, each **February** the permittee shall submit an updated pretreatment program annual status report, in accordance with 40 CFR §§ 403.12(i) [*rev. 10/22/15*] and (m), to the TCEQ Pretreatment Team (MC148) of the Water Quality Division. The report summary shall be submitted on the Pretreatment Performance Summary (PPS) form [TCEQ-20218]. The report shall contain the following information as well as the information on the tables in this section:

- a. An updated list of all regulated IUs as indicated in this section. For each listed IU, the following information shall be included:
 - (1) Standard Industrial Classification (SIC) or North American Industry Classification System (NAICS) code *and* categorical determination.
 - (2) If the pretreatment program has been modified and approved to incorporate reduced monitoring for any of the categorical IUs as provided by 40 CFR Part 403 [*rev.* 10/14/05], then the list must also identify:
 - categorical IUs subject to the conditions for reduced monitoring and reporting requirements under 40 CFR § 403.12(e)(1) [*rev. 10/22/15*] and (3);
 - those IUs that are non-significant categorical industrial users (NSCIUs) under 40 CFR §403.3(v)(2); and
 - those IUs that are middle tier categorical industrial users (MTCIUs) under 40 CFR §403.12(e)(3).
 - (3) Control mechanism status.
 - Indicate whether the IU has an effective individual or general control mechanism, and the date such control mechanism was last issued, reissued, or modified;

- Indicate which IUs were added to the system, or newly identified, during the pretreatment year reporting period;
- Include the type of general control mechanisms; and
- Report all NSCIU annual evaluations performed, as applicable.
- (4) A summary of all compliance monitoring activities performed by the POTW during the pretreatment year reporting period. The following information shall be reported:
 - Total number of inspections performed; and
 - Total number of sampling events conducted.
- (5) Status of IU compliance with effluent limitations, reporting, and narrative standard (which may include enforceable BMPs, narrative limits, and/or operational standards) requirements. Compliance status shall be defined as follows:
 - Compliant (C) no violations during the pretreatment year reporting period;
 - Non-compliant (NC) one or more violations during the pretreatment year reporting period but does not meet the criteria for SNC; and
 - Significant Noncompliance (SNC) in accordance with requirements described above in this section.
- (6) For noncompliant IUs, indicate the nature of the violations, the type and number of actions taken (notice of violation, administrative order, criminal or civil suit, fines or penalties collected, etc.), and the current compliance status. If any IU was on a schedule to attain compliance with effluent limits or narrative standards, indicate the date the schedule was issued and the date compliance is to be attained.
- b. A list of each IU whose authorization to discharge was terminated or revoked during the pretreatment year reporting period and the reason for termination.
- c. A report on any interference, pass through, Act of God, or POTW permit violations known or suspected to be caused by IUs and response actions taken by the permittee.
- d. The results of all influent and effluent analyses performed pursuant to Item 3 of this section.
- e. An original newspaper public notice, or copy of the newspaper publication with official affidavit, of the list of IUs that meet the criteria of SNC, giving the name of the newspaper and date the list was published.
- f. The daily average water quality based effluent concentrations (from the TCEQ's Texas Toxicity Modeling Program (TexTox)) necessary to attain the Texas Surface

Water Quality Standards, 30 TAC Chapter 307, in water in the state.

- g. The maximum allowable headworks loading (MAHL) in pounds per day (lb/day) of the approved TBLLs or for each pollutant of concern (POC) for which the permittee has calculated a MAHL. In addition, the influent loading as a percent of the MAHL, using the annual average flow of the wastewater treatment plant in million gallons per day (MGD) during the pretreatment year reporting period, for each pollutant that has an adopted TBLL or for each POC for which the permittee has calculated a MAHL. (*See Endnotes No. 2 at the end of this section for the influent loading as a percent of the MAHL equation.*)
- h. The permittee may submit the updated pretreatment program annual status report information in tabular form using the example table format provided. Please attach, on a separate sheet, explanations to document the various pretreatment activities, including IU permits that have expired, BMP violations, and any sampling events that were not conducted by the permittee as required.
- i. A summary of changes to the POTW's approved pretreatment program that have not been previously reported to the Approval Authority.

Effective December 21, 2025, the permittee must submit the updated pretreatment program annual status report required by this section electronically using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. *[rev. Federal Register/ Vol. 80/ No. 204/ Friday, October 22, 2015/ Rules and Regulations, pages 64064-64158].*

- 5. The permittee shall provide adequate written notification to the Executive Director, care of the Wastewater Permitting Section (MC 148) of the Water Quality Division, within 30 days of the permittee's knowledge of the following:
 - a. Any new introduction of pollutants into the treatment works from an indirect discharger that would be subject to Sections 301 and 306 of the Clean Water Act, if the indirect discharger was directly discharging those pollutants; and
 - b. Any substantial change in the volume or character of pollutants being introduced into the treatment works by a source introducing pollutants into the treatment works at the time of issuance of the permit.

Adequate notice shall include information on the quality and quantity of effluent to be introduced into the treatment works and any anticipated impact of the change on the quality or quantity of effluent to be discharged from the POTW.

Revised March 2022

TPDES Pretreatment Program Annual Report Form for Updated Industrial Users List

Reporting month/year: _____, ____ to _____, ____

TPDES Permit No.: Permittee: Treatment Plant:

PRE	TREATN	IENT	' PR(DGRA	M S	FATUS	REP	ORT	' UPI	DAT	ED	INDU	STRIA	AL US	ERS ¹	LIST
ə				CON MECH	NTRO HANIS	L SM		he CA	le CA	(D C = 0 SN0	COM uring t Re Compli C= Sign	PLIAN he Pret porting ant, NC ificant	CE STA reatme g Perioc C = Nor Nonco	ATUS ent Yea 14 ncomp mplia	ar lliant, nce)
r Nam	er Name Code					or N)	ed by t	l by th		Rł	EPORT	S				
Industrial User	SIC or NAICS (CIU ²	Y/N or NR5	IND or GEN or	Last Action ⁶	TBLLs or TBLLs only ⁷	New User ³ (Y	Times Inspecte	Times Sampled	BMR	90-Day	Semi- Annual	Self- Monitoring ⁸	NSCIU Certifications	Effluent Limits	Narrative Standards

- Include all significant industrial users (SIUs), non-significant categorical industrial users (NSCIUs) as 1 defined in 40 CFR §403.3(v)(2), and/or middle tier categorical industrial users (MTCIUs) as defined in 40 CFR § 403.12(e)(3). Please do not include non-significant noncategorical IUs that are covered under best management practices (BMPs) or general control mechanisms.
- Categorical determination (include 40 CFR citation and NSCIU or MTCIU status, if applicable). 2
- Indicate whether the IU is a new user. If the answer is No or N, then indicate the expiration date of the 3 last issued IU permit.
- The term SNC applies to a broader range of violations, such as daily maximum, long-term average, 4 instantaneous limits, and narrative standards (which may include enforceable BMPs, narrative limits and/or operational standards). Any other violation, or group of violations, which the POTW determines will adversely affect the operation or implementation of the local Pretreatment Program now includes BMP violations (40 CFR § 403.8(f)(2)(viii)(H)).
- Code NR= None required (NSCIUs only): IND = individual control mechanism: GEN = general control 5 mechanism. Include as a footnote (or on a separate page) the name of the general control mechanism used for similar groups of IUs, identify the similar types of operations and types of wastes that are the same for each general control mechanism. Any BMPs through general control mechanisms that are applied to nonsignificant IUs need to be reported separately, e.g. the sector type and BMP description.
- Permit or NSCIU evaluations as applicable. 6
- According to 40 CFR § 403.12(i)(1), indicate whether the IU is subject to technically based local limits 7 (TBLLs) that are more stringent than categorical pretreatment standards, e.g. where there is one endof-pipe sampling point at a CIU, and you have determined that the TBLLs are more stringent than the categorical pretreatment standards for any pollutant at the end-of-pipe sampling point; **OR** the IU is subject only to local limits (TBLLs only), e.g. the IU is a non-categorical SIU subject only to TBLLs at the end-of-pipe sampling point.
- For those IUs where a monitoring waiver has been granted, please add the code "W" (after either C, 8 NC. or SNC codes) and indicate the pollutant(s) for which the waiver has been granted.

TPDES Pretreatment Program Annual Report Form Revised July 2007 TCEQ-20218a

TPDES Pretreatment Program Annual Report Form for Industrial User Inventory Modifications

Reporting month/year: _____, ____ to _____, ____

TPDES Permit No: ______ Permittee: _____ Treatment Plant: _____

	INDUSTI	RIAL USER I	NVENTORY MC	DIFICATIONS								
FACILITY NAME,	ADD, CHANGE,	IF DELETION:	IF ADDITION OR SIGNIFICANT CHANGE:									
ADDRESS AND CONTACT PERSON	DELETE (Including categorical reclassification to NSCIU or MTCIU)	Reason For Deletion	PROCESS DESCRIPTION	POLLUTANTS (Including any sampling waiver given for each pollutant not present)	FLOW RATE ⁹ (In gpd) R = Regulated U = Unregulated T = Total							

For NSCIUs, total flow must be given, if regulated flow is not determined. 9

TCEQ-20218b TPDES Pretreatment Program Annual Report Form

Revised July 2007

TPDES Pretreatment Program Annual Report Form for Enforcement Actions Taken

Reporting month/year: _____, ____ to _____, ____

 TPDES Permit No:
 Permittee:
 Treatment Plant:

Overall SNC % SNC ¹⁰ based on: Effluent Violations % Reporting Violations___% Narrative Standard Violations___%

	Ν	Nonc	ompli	ant In	dus	trial	Use	rs -]	Enfe	orceme	ent A	ctio	ns T	aken	
	Nature of Violation 11				Number of Actions Taken				d (Do arge)	Compliance Schedule			eturned 7 or N)		
Industrial User Name	Effluent Limits	Reports	NSCIU Certifications	Narrative Standards	AON	A.O.	Civil	Criminal	Other	Penalties Collecte not Include Surch	Y or N	Date Issued	Date Due	Current Status Re to Compliance: (Y	Comments

10 <u># %</u>

Pretreatment Standards [WENDB-PSNC] (Local Limits/Categorical Standards)

_____ Reporting Requirements [WENDB-PSNC]

_____ Narrative Standards

1. Please specify a separate number for each type of violation, *e.g.* report, notification, and/or NSCIU certification.

TCEQ-20218c TPDES Pretreatment Program Annual Report Form Revised July 2007

٦

TPDES Pretreatment Program Annual Report Form for Influent and Effluent Monitoring Results¹

Reporting month/year: ______, ____ to _____, ____

 TPDES Permit No.:
 Permittee:
 Treatment Plant:

PRETREATMENT PROGRAM INFLUENT AND EFFLUENT MONITORING RESULTS												
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in μg/L (Actual Concentration or < MAL)				Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Me (Actu	Effluent Measured in μg/L (Actual Concentratic or < MAL) 4			
		Date	Date Date Date Date					Date	Date	Date	Date	
METALS, CYANIDE AND I	PHENOLS											
Antimony, Total												
Arsenic, Total												
Beryllium, Total												
Cadmium, Total												
Chromium, Total												
Chromium (Hex)												
Chromium (Tri)⁵												
Copper, Total												
Lead, Total												
Mercury, Total												
Nickel, Total												
Selenium, Total												
Silver, Total												
Thallium, Total												
Zinc, Total												

PRETREATMENT	PROGRAM	INFL	UENT	AND	EFFL	UENT MO	ONITORI	NG R	ESUL	ГS			
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in μg/L (Actual Concentration or < MAL)				Average Influent % of the MAHL ²	DailyEfflueAverageMeasuredEffluentLimitLimit(Actual Cone(μg/L) 3or < M.			uent d in µg ncentra /IAL) 4	ient l in μg/L icentration IAL) 4		
		Date	Date	Date	Date			Date	Date	Date	Date		
Cyanide, Available ⁶													
Cyanide, Total													
Phenols, Total													
VOLATILE COMPOUNDS	•		1	1	1				•	8	I <u></u>		
Acrolein													
Acrylonitrile													
Benzene													
Bromoform							See TTHM						
Carbon Tetrachloride													
Chlorobenzene													
Chlorodibromomethane							See TTHM						
Chloroethane													
2-Chloroethylvinyl Ether													
Chloroform							See TTHM						
Dichlorobromomethane							See TTHM						
1,1-Dichloroethane													
1,2-Dichloroethane													
1,1-Dichloroethylene													
1,2-Dichloropropane													

PRETREATMENT PROGRAM INFLUENT AND EFFLUENT MONITORING RESULTS												
POLLUTANT	MAHL, if Applicable in lb/day	Mo (Actr	Influ easure 1al Con or < 1	uent d in µg ncentra MAL)	;/L ation	Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in μg/L (Actual Concentratio or < MAL) 4			/L ation	
		Date	Date	Date	Date			Date	Date	Date	Date	
1,3-Dichloropropylene												
Ethyl benzene												
Methyl Bromide												
Methyl Chloride												
Methylene Chloride												
1,1,2,2-Tetra-chloroethane												
Tetrachloroethylene												
Toluene												
1,2-Trans-Dichloroethylene												
1,1,1-Trichloroethane												
1,1,2-Trichloroethane												
Trichloroethylene												
Vinyl Chloride												
ACID COMPOUNDS												
2-Chlorophenol												
2,4-Dichlorophenol												
2,4-Dimethylphenol												
4,6-Dinitro-o-Cresol												
2,4-Dinitrophenol												
2-Nitrophenol												

PRETREATMENT PROGRAM INFLUENT AND EFFLUENT MONITORING RESULTS												
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in μg/L (Actual Concentration or < MAL)				Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Mo (Actu	Effluent Measured in μg/L (Actual Concentratio or < MAL) 4			
	-	Date	Date	Date	Date			Date	Date	Date	Date	
4-Nitrophenol												
P-Chloro-m-Cresol												
Pentachlorophenol												
Phenol												
2,4,6-Trichlorophenol												
BASE/NEUTRAL COMPOU	UNDS	os										
Acenaphthene												
Acenaphthylene												
Anthracene												
Benzidine												
Benzo(a)Anthracene												
Benzo(a)Pyrene												
3,4-Benzofluoranthene												
Benzo(ghi)Perylene												
Benzo(k)Fluoranthene												
Bis(2- Chloroethoxy)Methane												
Bis(2-Chloroethyl)Ether												
Bis(2-Chloroisopropyl)Ether												
Bis(2-Ethylhexyl)Phthalate												
4-Bromophenyl Phenyl Ether												

PRETREATMENT PROGRAM INFLUENT AND EFFLUENT MONITORING RESULTS												
POLLUTANT	MAHL, if Applicable in lb/day	Mo (Actr	Influ easure ual Cou or < 1	uent d in µg ncentra MAL)	/L ation	Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Mo (Act	Effluent Measured in μg/I (Actual Concentrati or < MAL) 4			
		Date	Date	Date	Date			Date	Date	Date	Date	
Butylbenzyl Phthalate												
2-Chloronaphthalene												
4-Chlorophenyl Phenyl Ether												
Chrysene												
Dibenzo(a,h)Anthracene												
1,2-Dichlorobenzene												
1,3-Dichlorobenzene												
1,4-Dichlorobenzene												
3,3-Dichlorobenzidine												
Diethyl Phthalate												
Dimethyl Phthalate												
Di-n-Butyl Phthalate												
2,4-Dinitrotoluene												
2,6-Dinitrotoluene												
Di-n-Octyl Phthalate												
1,2-Diphenyl Hydrazine												
Fluoranthene												
Fluorene												
Hexachlorobenzene												
Hexachlorobutadiene												

PRETREATMENT	PROGRAM	INFL	UENT	AND	EFFL	UENT MO	ONITORI	NG RI	ESUL	ГS	
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in μg/L (Actual Concentration or < MAL)		Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴					
		Date	Date	Date	Date			Date	Date	Date	Date
Hexachloro- cyclopentadiene											
Hexachloroethane											
Indeno(1,2,3-cd)pyrene											
Isophorone											
Naphthalene											
Nitrobenzene											
N-Nitrosodimethylamine											
N-Nitrosodi-n-Propylamine											
N-Nitrosodiphenylamine											
Phenanthrene											
Pyrene											
1,2,4-Trichlorobenzene											
PESTICIDES								b	-		
Aldrin											
Alpha- hexachlorocyclohexane (BHC)											
beta-BHC											
gamma-BHC (Lindane)											
delta-BHC											
Chlordane											

PRETREATMENT	PROGRAM	INFL	UENT	AND	EFFL	UENT MO	ONITORI	NG RI	ESUL	ГS	
POLLUTANT	MAHL, if Applicable in lb/day	Me (Actu	Influ easure ual Cou or < 1	uent d in µg ncentra MAL)	/L ation	Average Influent % of the MAHL ² Daily Average Effluent Limit (µg/L) ³		Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴			
		Date	Date	Date	Date			Date	Date	Date	Date
4,4-DDT											
4,4-DDE											
4,4-DDD											
Dieldrin											
alpha-Endosulfan											
beta-Endosulfan											
Endosulfan Sulfate											
Endrin											
Endrin Aldehyde											
Heptachlor											
Heptachlor Epoxide											
Polychlorinated biphenols (PCBs) The sum of PCB concentrations not to exceed daily average value.											
PCB-1242							See PCBs				
PCB-1254							See PCBs				
PCB-1221							See PCBs				
PCB-1232							See PCBs				
PCB-1248							See PCBs				
PCB-1260							See PCBs				

PRETREATMENT	PROGRAM	INFL	UENT	AND	EFFL	UENT MO	ONITORI	NG RI	ESUL	ГS	
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in μg/L (Actual Concentration or < MAL)		Average Influent % of the MAHL ² Daily Average Effluent Limit (µg/L) ³		Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴					
	-	Date	Date	Date	Date			Date	Date	Date	Date
PCB-1016							See PCBs				
Toxaphene											
ADDITIONAL TOXIC POL	LUTANTS R	EGUI	ATEI) UNI	DER 3	o TAC CH	APTER 3	07			
Aluminum											
Barium											
Bis(chloromethyl)ether 7											
Carbaryl											
Chloropyrifos											
Cresols											
2,4-D											
Danitol ⁸											
Demeton											
Diazinon											
Dicofol											
Dioxin/Furans 9											
Diuron											
Epichlorohydrin 9											
Ethylene glycol 9											
Fluoride											
Guthion											

PRETREATMENT	PROGRAM	INFL	UENT	AND	EFFL	UENT MO	ONITORI	NG RI	ESUL	ГS	
POLLUTANT	MAHL, if Applicable	Influent f Measured in µg/L le				Average Influent % of the	Effluent Measured in µg/L				
	in id/day	(Acti	or < 1	MAL)	ation	MAHL ²	Linnt (μg/L) ³	(Act)	or < N	ICentra IAL) 4	ation
	-	Date	Date	Date	Date			Date	Date	Date	Date
Hexachlorophene											
4,4-Isopropylidenediphenol (bisphenol A) 9											
Malathion											
Methoxychlor											
Methyl Ethyl Ketone											
Methyl tert-butyl-ether (MTBE) 9											
Mirex											
Nitrate-Nitrogen											
N-Nitrosodiethylamine											
N-Nitroso-di-n-Butylamine											
Nonylphenol											
Parathion											
Pentachlorobenzene											
Pyridine											
1,2-Dibromoethane											
1,2,4,5-Tetrachlorobenzene											
2,4,5-TP (Silvex)											
Tributyltin 9											
2,4,5-Trichlorophenol											
TTHM (Total											

PRETREATMENT	PROGRAM	INFL	UENT	AND	EFFL	UENT MO	ONITORI	NG RI	ESUL	ГS	
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in µg/L (Actual Concentration or < MAL)			Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Me (Actu	Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴			
		Date	Date	Date	Date			Date	Date	Date	Date
Trihalomethanes)											

Endnotes:

- 1. It is advised that the permittee collect the influent and effluent samples considering flow detention time through each wastewater treatment plant (WWTP).
- 2. The MAHL of the approved TBLLs or for each pollutant of concern (POC) for which the permittee has calculated a MAHL. Only complete the column labeled "Average Influent % of the MAHL," as a percentage, for pollutants that have approved TBLLs or for each POC for which the permittee has calculated a MAHL (U.S. Environmental Protection Agency *Local Limits Development Guidance*, July 2004, EPA933-R-04-002A).

The % of the MAHL is to be calculated using the following formulas:

Equation A: $L_{INF} = (C_{POLL} \times Q_{WWTP} \times 8.34) / 1000$

Equation B: $L_{\%}$ = (L_{INF} / MAHL) x 100

Where:	
$L_{INF} =$	Current Average (Avg) influent loading in lb/day
$C_{POLL} =$	Avg concentration in μ g/L of all influent samples collected during the pretreatment year.
Q _{WWTP} =	Annual average flow of the WWTP in MGD, defined as the arithmetic average of all daily flow determinations taken within the preceding 12 consecutive calendar months (or during the pretreatment year), and as described in the Definitions and Standard Permit Conditions section.
L% =	% of the MAHL
MAHL =	Calculated MAHL in lb/day
8.34 =	Unit conversion factor

- 3. Daily average effluent limit (metal values are for total metals) as derived by the Texas Toxicity Modeling Program (TexTox). Effluent limits as calculated are designed to be protective of the Texas Surface Water Quality Standards. The permittee shall determine and indicate which effluent limit is the most stringent between the 30 TAC Chapter 319, Subchapter B (Hazardous Metals) limit, TexTox values, or any applicable limit in the Effluent Limitations and Monitoring Requirements Section of this TPDES permit. Shaded blocks need not be filled in unless the permittee has received a permit requirement/limit for the particular parameter.
- 4. Minimum analytical levels (MALs) and analytical methods as suggested in Tables E-1 and E-2 of the *Procedures to Implement the Texas Surface Water Quality Standards* (June 2010), as amended and adopted by the TCEQ. Pollutants that are not detectable above the MAL need to be reported as less than (<) the MAL numeric value.
- 5. Report result by subtracting Hexavalent Chromium from Total Chromium.
- 6. Either the method for Amenable to Chlorination or Weak-Acid Dissociable is authorized.
- 7. Hydrolyzes in water. Will not require permittee to analyze at this time.
- 8. EPA procedure not approved. Will not require permittee to analyze at this time.
- 9. Analyses are not required at this time for these pollutants unless there is reason to believe that these pollutants may be present.

TCEQ-20218d TPDES Pretreatment Program Annual Report Form

Revised February 2020

BIOMONITORING REQUIREMENTS

48-HOUR ACUTE BIOMONITORING REQUIREMENTS: FRESHWATER

The provisions of this section apply to Outfall 001 for whole effluent toxicity (WET) testing.

- 1. <u>Scope, Frequency, and Methodology</u>
 - a. The permittee shall test the effluent for toxicity in accordance with the provisions below. Such testing will determine if an appropriately dilute effluent sample adversely affects the survival of the test organisms.
 - b. The permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified in this part of this permit and in accordance with "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms," fifth edition (EPA-821-R-02-012) or its most recent update:
 - 1) Acute static renewal 48-hour definitive toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*). A minimum of five replicates with eight organisms per replicate shall be used in the control and in each dilution. This test shall be conducted once per quarter.
 - 2) Acute static renewal 48-hour definitive toxicity test using the fathead minnow (*Pimephales promelas*). A minimum of five replicates with eight organisms per replicate shall be used in the control and in each dilution. This test shall be conducted once per quarter.

The permittee must perform and submit a valid test for each test species during the required reporting period for that species. A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution. A repeat test shall include the control and all effluent dilutions and use the appropriate number of organisms and replicates, as specified above. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. The permittee shall use five effluent dilution concentrations and a control in each toxicity test. These effluent dilution concentrations are 32%, 42%, 56%, 75%, and 100% effluent. The critical dilution, defined as 100% effluent, is the effluent concentration representative of the proportion of effluent in the receiving water during critical low flow or critical mixing conditions.
- d. This permit may be amended to require a WET limit, a chemical-specific limit, a best management practice, or other appropriate actions to address toxicity. The permittee may be required to conduct a toxicity reduction evaluation (TRE) after multiple toxic events.
- e. Testing Frequency Reduction
 - 1) If none of the first four consecutive quarterly tests demonstrates

significant lethal effects, the permittee may submit this information in writing and, upon approval, reduce the testing frequency to once per six months for the invertebrate test species and once per year for the vertebrate test species.

2) If one or more of the first four consecutive quarterly tests demonstrates significant lethal effects, the permittee shall continue quarterly testing for that species until this permit is reissued. If a testing frequency reduction had been previously granted and a subsequent test demonstrates significant lethal effects, the permittee shall resume a quarterly testing frequency for that species until this permit is reissued.

2. <u>Required Toxicity Testing Conditions</u>

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control and all effluent dilutions, which fails to meet any of the following criteria:
 - 1) a control mean survival of 90% or greater; and
 - 2) a coefficient of variation percent (CV%) of 40 or less for both the control and critical dilution. However, if significant lethality is demonstrated, a CV% greater than 40 shall not invalidate the test. The CV% requirement does not apply when significant lethality occurs.
- b. Statistical Interpretation
 - 1) For the water flea and fathead minnow tests, the statistical analyses used to determine if there is a significant difference between the control and an effluent dilution shall be in accordance with the manual referenced in Part 1.b.
 - 2) The permittee is responsible for reviewing test concentration-response relationships to ensure that calculated test results are interpreted and reported correctly. The document entitled "Method Guidance and Recommendation for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136)" (EPA 821-B-00-004) provides guidance on determining the validity of test results.
 - 3) If significant lethality is demonstrated (that is, there is a statistically significant difference in survival at the critical dilution when compared to the survival in the control), the conditions of test acceptability are met, and the survival of the test organisms are equal to or greater than 90% in the critical dilution and all dilutions below that, then the permittee shall report a survival No Observed Effect Concentration (NOEC) of not less than the critical dilution for the reporting requirements.
 - 4) The NOEC is defined as the greatest effluent dilution at which no significant lethality is demonstrated. The Lowest Observed Effect Concentration (LOEC) is defined as the lowest effluent dilution at which significant lethality is demonstrated. Significant lethality is defined as a statistically significant difference the survival of the test organism in a
specified effluent dilution when compared to the survival of the test organism in the control.

- 5) The use of NOECs and LOECs assumes either a monotonic (continuous) concentration-response relationship or a threshold model of the concentration-response relationship. For any test result that demonstrates a non-monotonic (non-continuous) response, the NOEC should be determined based on the guidance manual referenced in Item 2.
- 6) Pursuant to the responsibility assigned to the permittee in Part 2.b.2), test results that demonstrate a non-monotonic (non-continuous) concentration-response relationship may be submitted, prior to the due date, for technical review. The guidance manual referenced in Item 2 will be used when making a determination of test acceptability.
- 7) TCEQ staff will review test results for consistency with rules, procedures, and permit requirements.
- c. Dilution Water
 - 1) Dilution water used in the toxicity tests must be the receiving water collected at a point upstream of the discharge point as close as possible to the discharge point but unaffected by the discharge. Where the toxicity tests are conducted on effluent discharges to receiving waters that are classified as intermittent streams, or where the toxicity tests are conducted on effluent discharges where no receiving water is available due to zero flow conditions, the permittee shall:
 - a) substitute a synthetic dilution water that has a pH, hardness, and alkalinity similar to that of the closest downstream perennial water unaffected by the discharge; or
 - b) use the closest downstream perennial water unaffected by the discharge.
 - 2) Where the receiving water proves unsatisfactory as a result of preexisting instream toxicity (i.e. fails to fulfill the test acceptance criteria Part 2.a.), the permittee may substitute synthetic dilution water for the receiving water in all subsequent tests provided the unacceptable receiving water test met the following stipulations:
 - a) a synthetic lab water control was performed (in addition to the receiving water control) which fulfilled the test acceptance requirements of Part 2.a;
 - b) the test indicating receiving water toxicity was carried out to completion; and
 - c) the permittee submitted all test results indicating receiving water toxicity with the reports and information required in Part 3.

- 3) The synthetic dilution water shall consist of standard, moderately hard, reconstituted water. Upon approval, the permittee may substitute other appropriate dilution water with chemical and physical characteristics similar to that of the receiving water.
- d. Samples and Composites
 - 1) The permittee shall collect a minimum of two composite samples from Outfall 001. The second composite sample will be used for the renewal of the dilution concentrations for each toxicity test.
 - 2) The permittee shall collect the composite samples such that the samples are representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged on an intermittent basis.
 - 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the first composite sample. The holding time for the subsequent composite sample shall not exceed 72 hours. Samples shall be maintained at a temperature of 0-6 degrees Centigrade during collection, shipping, and storage.
 - 4) If Outfall 001 ceases discharging during the collection of effluent samples, the requirements for the minimum number of effluent sample, the minimum number of effluent portions, and the sample holding time are waived during that sampling period. However, the permittee must have collected an effluent composite sample volume sufficient to complete the required toxicity tests with renewal of the effluent. When possible, the effluent samples used for the toxicity tests shall be collected on separate days if the discharge occurs over multiple days. The sample collection duration and the static renewal protocol associated with the abbreviated sample collection must be documented in the full report.
 - 5) The effluent sample shall not be dechlorinated after sample collection.

3. <u>Reporting</u>

All reports, tables, plans, summaries, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted in accordance with the manual referenced in Part 1.b for every valid and invalid toxicity test initiated, whether carried to completion or not.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 1 forms provided with this permit.
 - 1) Annual biomonitoring test results are due on or before January 20th for biomonitoring conducted during the previous 12-month period.

- 2) Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.
- 3) Quarterly biomonitoring test results are due on or before April 20th, July 20th, October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.
- 4) Monthly biomonitoring test results are due on or before the 20th day of the month following sampling.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the water flea, Parameter TEM3D, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) For the water flea, Parameter TOM3D, report the NOEC for survival.
 - 3) For the water flea, Parameter TXM3D, report the LOEC for survival.
 - 4) For the fathead minnow, Parameter TEM6C, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 5) For the fathead minnow, Parameter TOM6C, report the NOEC for survival.
 - 6) For the fathead minnow, Parameter TXM6C, report the LOEC for survival.
- d. Enter the following codes for retests only:
 - 1) For retest number 1, Parameter 22415, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) For retest number 2, Parameter 22416, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
- 4. <u>Persistent Toxicity</u>

The requirements of this part apply only when a toxicity test demonstrates significant lethality. Significant lethality was defined in Part 2.b.

- a. The permittee shall conduct a total of 2 additional tests (retests) for any species that demonstrates significant lethality. The two retests shall be conducted monthly during the next two consecutive months. The permittee shall not substitute either of the two retests in lieu of routine toxicity testing. All reports shall be submitted within 20 days of test completion. Test completion is defined as the last day of the test.
- b. If one or both of the two retests specified in Part 4.a. demonstrates significant

lethality, the permittee shall initiate the TRE requirements as specified in Part 5.

c. The provisions of Part 4.a. are suspended upon completion of the two retests and submittal of the TRE action plan and schedule defined in Part 5.

5. <u>Toxicity Reduction Evaluation</u>

- a. Within 45 days of the retest that demonstrates significant lethality, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, the permittee shall submit a TRE action plan and schedule for conducting a TRE. The plan shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analyses to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall describe an approach for the reduction or elimination of lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:
 - Specific Activities The TRE action plan shall specify the approach the 1) permittee intends to utilize in conducting the TRE, including toxicity characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures" (EPA/600/6-91/003) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;
 - 2) Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects a specific pollutant and source of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;

- 3) Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
- 4) Project Organization The TRE action plan should describe the project staff, project manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:
 - 1) results and interpretation of any chemical specific analyses for the identified and suspected pollutant performed during the quarter;
 - 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;
 - 3) any data and substantiating documentation which identifies the pollutant(s) and source of effluent toxicity;
 - 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
 - 5) any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to meet no significant lethality at the critical dilution; and
 - 6) any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.
- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive months with at least monthly testing. At the end of the 12 months, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply

as a result of corrective actions taken by the permittee. Corrective actions are defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

- g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 28 months from the last test day of the retest that confirmed significant lethal effects at the critical dilution. The permittee may petition the Executive Director (in writing) for an extension of the 28-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification/TRE. The report shall provide information pertaining to the specific control mechanism selected that will, when implemented, result in the reduction of effluent toxicity to no significant lethality at the critical dilution. The report shall also provide a specific corrective action schedule for implementing the selected control mechanism.
- h. Based on the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements, where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and specify a chemical-specific limit.
- i. Copies of any and all required TRE plans and reports shall also be submitted to the U.S. EPA Region 6 office, 6WQ-PO.

TABLE 1 (SHEET 1 OF 2)

WATER FLEA SURVIVAL

Dates and Times Composites Collected		No. 1 FROM	D M: M:	Date Time TO	I D: :	Date Time	e
Test initiated: Dilution water used:		Rec	eiving water	_am/pm	Synthetic D	ilution wate	date
			PERCENT	SURVIVAL			
Time	Don			Percent	effluent		
Time	кер	0%	32%	42%	56%	75%	100%
	A						
	В						
24h	C						
	D						
	Е						
	Α						
	В						
48h	C						
	D						
	Е						
Mean at	test end						
CV%*							

*Coefficient of Variation = Standard Deviation x 100/mean

Dunnett's Procedure or Steel's Many-One Rank Test as appropriate:

Is the mean survival at 48 hours significantly less than the control survival?

CRITICAL DILUTION (100%): _____ YES _____ NO

Enter percent effluent corresponding to the NOEC below:

- 1) NOEC survival = ____% effluent
- 2) LOEC survival = ____% effluent

TABLE 1 (SHEET 2 OF 2)

FATHEAD MINNOW SURVIVAL

Dates and Times Composites Collected		No. 1 FRO No. 2 FRO	DM:	Date Time	TO: O:	Date Ti	ne
Test initiate	ed:			am/pm			date
Di	lution wate	er used:	Recei	ving water	Sy	nthetic Dilu	tion water
			PERCENT	SURVIVAL			
Time	Ren			Percent	effluent		
Time	Кер	0%	32%	42%	56%	75%	100%
	A						
	В						
24h	С						
	D						
	E						
	А						
	В						
48h	C						
	D						
	Е						
Mean at test end							
CV%*							

* Coefficient of Variation = standard deviation x 100/mean

Dunnett's Procedure or Steel's Many-One Rank Test as appropriate:

Is the mean survival at 48 hours significantly less than the control survival?

CRITICAL DILUTION (100%): _____ YES _____ NO

Enter percent effluent corresponding to the NOEC below:

- 1) NOEC survival = ____% effluent
- 2) LOEC survival = ____% effluent

24-HOUR ACUTE BIOMONITORING REQUIREMENTS: FRESHWATER

The provisions of this section apply to Outfall 001 for whole effluent toxicity (WET) testing.

- 1. <u>Scope, Frequency, and Methodology</u>
 - a. The permittee shall test the effluent for lethality in accordance with the provisions in this section. Such testing will determine compliance with Texas Surface Water Quality Standard 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival of the appropriate test organisms in 100% effluent for a 24-hour period.
 - b. The toxicity tests specified shall be conducted once per six months. The permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified in this section of the permit and in accordance with "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms," fifth edition (EPA-821-R-02-012) or its most recent update:
 - 1) Acute 24-hour static toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.
 - 2) Acute 24-hour static toxicity test using the fathead minnow (*Pimephales promelas*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.

The permittee must perform and report a valid test for each test species during the prescribed reporting period. An invalid test must be repeated during the same reporting period. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. In addition to an appropriate control, a 100% effluent concentration shall be used in the toxicity tests. The control and dilution water shall consist of standard, synthetic, moderately hard, reconstituted water.
- d. This permit may be amended to require a WET limit, a best management practice, a chemical-specific limit, or other appropriate actions to address toxicity. The permittee may be required to conduct a toxicity reduction evaluation (TRE) after multiple toxic events.
- e. As the dilution series specified in the 48-Hour Acute Biomonitoring Requirements includes a 100% effluent concentration, the results from those tests may fulfill the requirements of this section; any tests performed in the proper time interval may be substituted. Compliance will be evaluated as specified in Part 1.a. The 50% survival in 100% effluent for a 24-hour period standard applies to all tests utilizing a 100% effluent dilution, regardless of whether the results are submitted to comply with the minimum testing frequency.

2. <u>Required Toxicity Testing Conditions</u>

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control, if the control fails to meet a mean survival equal to or greater than 90%.
- b. Dilution Water In accordance with Part 1.c., the control and dilution water shall consist of standard, synthetic, moderately hard, reconstituted water.
- c. Samples and Composites
 - 1) The permittee shall collect one composite sample from Outfall 001.
 - 2) The permittee shall collect the composite sample such that the sample is representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged on an intermittent basis.
 - 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the composite sample. The sample shall be maintained at a temperature of 0-6 degrees Centigrade during collection, shipping, and storage.
 - 4) If Outfall 001 ceases discharging during the collection of the effluent composite sample, the requirements for the minimum number of effluent portions are waived. However, the permittee must have collected a composite sample volume sufficient for completion of the required test. The abbreviated sample collection, duration, and methodology must be documented in the full report.
 - 5) The effluent sample shall not be dechlorinated after sample collection.

3. <u>Reporting</u>

All reports, tables, plans, summaries, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted pursuant to this permit in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 2 forms provided with this permit.
 - 1) Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.
 - 2) Quarterly biomonitoring test results are due on or before April 20th, July 20th, and October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.

- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the water flea, Parameter TIE3D, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter "1."
 - 2) For the fathead minnow, Parameter TIE6C, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter "1."
- d. Enter the following codes for retests only:
 - 1) For retest number 1, Parameter 22415, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter "1."
 - 2) For retest number 2, Parameter 22416, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter "1."
- 4. <u>Persistent Mortality</u>

The requirements of this part apply when a toxicity test demonstrates significant lethality, which is defined as a mean mortality of 50% or greater of organisms exposed to the 100% effluent concentration for 24 hours.

- a. The permittee shall conduct 2 additional tests (retests) for each species that demonstrates significant lethality. The two retests shall be conducted once per week for 2 weeks. Five effluent dilution concentrations in addition to an appropriate control shall be used in the retests. These effluent concentrations are 6%, 13%, 25%, 50%, and 100% effluent. The first retest shall be conducted within 15 days of the laboratory determination of significant lethality. All test results shall be submitted within 20 days of test completion of the second retest. Test completion is defined as the 24th hour.
- b. If one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall initiate the TRE requirements as specified in Part 5.

5. <u>Toxicity Reduction Evaluation</u>

- a. Within 45 days of the retest that demonstrates significant lethality, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, the permittee shall submit a TRE action plan and schedule for conducting a TRE. The plan shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical

analyses to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall lead to the successful elimination of significant lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:

- 1) Specific Activities - The TRE action plan shall specify the approach the permittee intends to utilize in conducting the TRE, including toxicity characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures" (EPA/600/6-91/003) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression:
- 2) Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures, and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects a specific pollutant and source of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;
- 3) Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
- 4) Project Organization The TRE Action Plan should describe the project staff, manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly TRE Activities Reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:

- 1) results and interpretation of any chemical-specific analyses for the identified and suspected pollutant performed during the quarter;
- 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;
- 3) any data and substantiating documentation that identifies the pollutant and source of effluent toxicity;
- 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
- 5) any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to eliminate significant lethality; and
- 6) any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.
- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Ttesting for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive weeks with at least weekly testing. At the end of the 12 weeks, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply as a result of corrective actions taken by the permittee. Corrective actions are defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 18 months from the last test day of the retest that demonstrates significant lethality. The permittee may petition the Executive

Director (in writing) for an extension of the 18-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE. The report shall specify the control mechanism that will, when implemented, reduce effluent toxicity as specified in Part 5.h. The report shall also specify a corrective action schedule for implementing the selected control mechanism.

h. Within 3 years of the last day of the test confirming toxicity, the permittee shall comply with 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival of the test organism in 100% effluent at the end of 24-hours. The permittee may petition the Executive Director (in writing) for an extension of the 3-year limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE.

The permittee may be exempted from complying with 30 TAC § 307.6(e)(2)(B) upon proving that toxicity is caused by an excess, imbalance, or deficiency of dissolved salts. This exemption excludes instances where individually toxic components (e.g., metals) form a salt compound. Following the exemption, this permit may be amended to include an ion-adjustment protocol, alternate species testing, or single species testing.

- i. Based upon the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements where necessary, require a compliance schedule for implementing corrective actions, specify a WET limit, specify a best management practice, and specify a chemical-specific limit.
- j. Copies of any and all required TRE plans and reports shall also be submitted to the U.S. EPA Region 6 office, 6WQ-PO.

TABLE 2 (SHEET 1 OF 2)

WATER FLEA SURVIVAL

GENERAL INFORMATION

	Time	Date
Composite Sample Collected		
Test Initiated		

PERCENT SURVIVAL

		Percent effluent					
Time Rep		0%	6%	13%	25%	50%	100%
	A						
	В						
	С						
24h	D						
	Е						
	MEAN*						

Enter percent effluent corresponding to the LC50 below:

24 hour LC50 = ____% effluent

TABLE 2 (SHEET 2 OF 2)

FATHEAD MINNOW SURVIVAL

GENERAL INFORMATION

	Time	Date
Composite Sample Collected		
Test Initiated		

PERCENT SURVIVAL

Time	Dop	Percent effluent					
	кер	0%	6%	13%	25%	50%	100%
	А						
24h	В						
	C						
	D						
	Е						
	MEAN						

Enter percent effluent corresponding to the LC50 below:

24 hour LC50 = ____% effluent

Attachment A: Buffer Zone Map_WQ0019470002_City of Temple

FACT SHEET AND EXECUTIVE DIRECTOR'S PRELIMINARY DECISION

For draft Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010470002, EPA I.D. No. TX0047651, to discharge to water in the state.

Issuing Office:	Texas Commission on Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087
Applicant:	City of Temple 3210 East Avenue H, Building A Temple, Texas 76501
Prepared By:	Sonia Bhuiya Municipal Permits Team Wastewater Permitting Section (MC 148) Water Quality Division (512) 239-1205
Date:	March 19, 2025

Permit Action: Renewal

1. EXECUTIVE DIRECTOR RECOMMENDATION

The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The draft permit includes an expiration date of **five years from the date of issuance**.

2. APPLICANT ACTIVITY

The applicant has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of the existing permit that authorizes the discharge of treated domestic wastewater at an annual average flow not to exceed 7.50 million gallons per day (MGD). The existing wastewater treatment facility serves the Doshier Farm.

3. FACILITY AND DISCHARGE LOCATION

The plant site is located at 2515 East Avenue H, in the City of Temple, Bell County, Texas 76501.

Outfall Location:

Outfall Number	Latitude	Longitude
001	31.077222 N	97.31681 W

The treated effluent is discharged to unnamed tributary, thence to Little Elm Creek, thence to Big Elm Creek, thence to Little River in Segment No. 1213 of the Brazos River Basin. The unclassified receiving water use is minimal aquatic life use for the unnamed tributary and Little Elm Creek. The designated uses for Segment No. 1213 are primary contact recreation, public water supply, and high aquatic life use.

4. TREATMENT PROCESS DESCRIPTION AND SEWAGE SLUDGE DISPOSAL

The Doshier Farm Wastewater Treatment Facility is an activated sludge process plant operated in the extended aeration mode. Treatment units include fine screens, biological reactor, final clarifiers, anaerobic digesters, a belt filter press, belt thickener, chlorine contact chamber and dechlorination chamber. The facility is in operation.

Sludge generated from the treatment facility is hauled by a registered transporter and disposed of at a TCEQ-permitted landfill, Temple Recycling and Disposal Facility landfill, Permit No. 692A, in Bell County. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

5. INDUSTRIAL WASTE CONTRIBUTION

The draft permit includes pretreatment requirements that are appropriate for a facility of this size and complexity. The Doshier Farm WWTF receives significant industrial wastewater contributions.

6. SUMMARY OF SELF-REPORTED EFFLUENT ANALYSES

The following is a summary of the applicant's effluent monitoring data for the period October 2019 through October 2024. The average of Daily Average value is computed by the averaging of all 30-day average values for the reporting period for each parameter: flow, five-day carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), ammonia nitrogen (NH₃-N), and Hexavalent Chromium [as Cr]. The average of Daily Average value for *Escherichia coli* (*E. coli*) in colony-forming units (CFU) or most probable number (MPN) per 100 ml is calculated via geometric mean.

<u>Parameter</u>	<u>Average of Daily Avg</u>
Flow, MGD	2.62
CBOD ₅ , mg/l	2.66
TSS, mg/l	2.9
NH ₃ -N, mg/l	0.34
<i>E. coli</i> , CFU or MPN per 100 ml	2
Hexavalent Chromium [as Cr]	0.0031

7. DRAFT PERMIT CONDITIONS AND MONITORING REQUIREMENTS

The effluent limitations and monitoring requirements for those parameters that are limited in the draft permit are as follows:

A. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

The annual average flow of effluent shall not exceed 7.50 MGD, nor shall the average discharge during any two-hour period (2-hour peak) exceed 15,625 gallons per minute

<u>Parameter</u>	<u>30-Day Average</u>	<u>7-Day</u>	<u>Daily</u>
		<u>Average</u>	Maximum

City of Temple TPDES Permit No. WQ0010470002 Fact Sheet and Executive Director's Preliminary Decision

	<u>mg/l</u>	<u>lbs/day</u>	<u>mg/l</u>	<u>mg/l</u>
CBOD ₅	10	626	15	25
TSS	15	983	25	40
NH ₃ -N	2	125	5	10
Hexavalent Chromium	0.0132	0.83	N/A	0.028
DO (minimum)	4.0	N/A	N/A	N/A
E. coli, CFU or MPN	126	N/A	N/A	399
per 100 ml				

The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored five times per week by grab sample. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.

The effluent shall contain a total chlorine residual of at least 1.0 mg/l after a detention time of at least 20 minutes (based on peak flow) and shall be monitored daily by grab sample. The permittee shall dechlorinate the chlorinated effluent to less than 0.1 mg/l total chlorine residual and shall monitor total chlorine residual daily by grab sample after the dechlorination process. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.

<u>Parameter</u>	Monitoring Requirement
Flow, MGD	Continuous
CBOD ₅	Five/week
TSS	Five/week
NH ₃ -N	Five/week
Hexavalent Chromium	One/three months
DO	Five/week
E. coli	Three/week

B. SEWAGE SLUDGE REQUIREMENTS

The draft permit includes Sludge Provisions according to the requirements of 30 TAC Chapter 312, Sludge Use, Disposal, and Transportation. Sludge generated from the treatment facility is hauled by a registered transporter and disposed of at a TCEQ-permitted landfill, Temple Recycling and Disposal Facility landfill, Permit No. 692A, in Bell County. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

C. PRETREATMENT REQUIREMENTS

Permit requirements for pretreatment are based on TPDES regulations contained in 30 TAC Chapter 305 which references 40 CFR Part 403, General Pretreatment Regulations for Existing and New Sources of Pollution *[rev. Federal Register/ Vol. 70/ No. 198/ Friday, October 14, 2005/ Rules and Regulations, pages 60134-60798].* The permit includes specific requirements that establish responsibilities of local government, industry, and the public to implement the standards to control pollutants which pass through or interfere with treatment processes in publicly owned treatment works or which may contaminate the sewage sludge. This permit has appropriate pretreatment language for a facility of this size and complexity.

The permittee has a pretreatment program which was approved by the U.S. Environmental Protection Agency (EPA) on May 1, 1984, and modified on September 24, 1993, March 24, 2015 (Streamlining Rule and removal of three local limits), and February 23, 2024 (TBLLs). The permittee is required, under the conditions of the approved pretreatment program, to prepare annually a list of industrial users which during the preceding twelve months were in significant noncompliance with applicable pretreatment requirements for those facilities covered under the program. This list is to be published annually during the month of **February** in a newspaper of general circulation that provides meaningful public notice within the jurisdiction(s) served by the POTW.

Effective December 21, 2025, the permittee must submit the pretreatment program annual status report electronically using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. [rev. Federal Register/ Vol. 80/ No. 204/ Friday, October 22, 2015/ Rules and Regulations, pages 64064-64158].

The permittee is under a continuing duty to: establish and enforce specific local limits to implement the provisions of 40 CFR §403.5, to develop and enforce local limits as necessary, and to modify the approved POTW pretreatment program as necessary to comply with federal, state, and local law, as amended. The permittee is required to effectively enforce such limits and to modify their pretreatment program, including the Legal Authority, Enforcement Response Plan, and/or Standard Operating Procedures, if required by the Executive Director to reflect changing conditions at the POTW.

D. WHOLE EFFLUENT TOXICITY (BIOMONITORING) REQUIREMENTS

- (1) The draft permit includes 48-hour acute freshwater biomonitoring requirements as follows. The permit requires five dilutions in addition to the control (0% effluent) to be used in the toxicity tests. These additional effluent concentrations shall be 32%, 42%, 56%, 75%, and 100% The low-flow effluent concentration (critical dilution) is defined as 100% effluent. The critical dilution is in accordance with the "Aquatic Life Criteria" section of the "Water Quality Based Effluent Limitations/Conditions" section.
 - (a) Acute static renewal 48-hour definitive toxicity tests using the water flea (*Daphnia pulex*) or (*Ceriodaphnia dubia*). The frequency of the testing is once per quarter for at least the first year of testing, after which the permittee may apply for a testing frequency reduction.
 - (b) Acute static renewal 48-hour definitive toxicity test using the fathead minnow (*Pimephales promelas*). The frequency of the testing is once per quarter for at least the first year of testing, after which the permittee may apply for a testing frequency reduction.

- (2) The draft permit includes the following minimum 24-hour acute freshwater biomonitoring requirements at a frequency of once per six months:
 - (a) Acute 24-hour static toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*).
 - (b) Acute 24-hour static toxicity test using the fathead minnow (*Pimephales promelas*).

F. SUMMARY OF CHANGES FROM APPLICATION

None.

G. SUMMARY OF CHANGES FROM EXISTING PERMIT

The Standard Permit Conditions, Sludge Provisions, Other Requirements, and Biomonitoring sections of the draft permit have been updated.

For Publicly Owned Treatment Works (POTWs), effective December 21, 2025, the permittee must submit the written report for unauthorized discharges and unanticipated bypasses that exceed any effluent limit in the permit using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

Certain accidental discharges or spills of treated or untreated wastewater from wastewater treatment facilities or collection systems owned or operated by a local government may be reported on a monthly basis in accordance with 30 TAC § 305.132.

The draft permit includes all updates based on the 30 TAC § 312 rule change effective April 23, 2020.

The pretreatment language has been updated from the current permit. The permittee has requested to revise the pretreatment program year for TPDES Permit No. WQ0010470002 to run January 1 – December 31 (with the report now due in February instead of May 31). The pretreatment requirements will continue until permit expiration. Please see specific details in the Pretreatment Requirements Section of the fact sheet.

8. DRAFT PERMIT RATIONALE

A. TECHNOLOGY-BASED EFFLUENT LIMITATIONS/CONDITIONS

Regulations promulgated in Title 40 of the CFR require that technology-based limitations be placed in wastewater discharge permits based on effluent limitations guidelines, where applicable, or on best professional judgment (BPJ) in the absence of guidelines.

Effluent limitations for maximum and minimum pH are in accordance with 40

CFR § 133.102(c) and 30 TAC § 309.1(b).

B. WATER QUALITY SUMMARY AND COASTAL MANAGEMENT PLAN

(1) WATER QUALITY SUMMARY

The treated effluent is discharged to unnamed tributary, thence to Little Elm Creek, thence to Big Elm Creek, thence to Little River in Segment No. 1213 of the Brazos River Basin. The unclassified receiving water use is minimal aquatic life use for the unnamed tributary and Little Elm Creek. The designated uses for Segment No. 1213 are primary contact recreation, public water supply, and high aquatic life use. The effluent limitations in the draft permit will maintain and protect the existing instream uses. All determinations are preliminary and subject to additional review and/or revisions.

The discharge from this permit action is not expected to have an effect on any federal endangered or threatened aquatic or aquatic-dependent species or proposed species or their critical habitat. This determination is based on the United States Fish and Wildlife Service's (USFWS's) biological opinion on the State of Texas authorization of the TPDES (September 14, 1998; October 21, 1998, update). To make this determination for TPDES permits, TCEQ and EPA only considered aquatic or aquatic-dependent species occurring in watersheds of critical concern or high priority as listed in Appendix A of the USFWS biological opinion.The determination is subject to reevaluation due to subsequent updates or amendments to the biological opinion. The permit does not require EPA review with respect to the presence of endangered or threatened species.

Segment No. 1213 is not currently listed on the State's inventory of impaired and threatened waters (the 2022 CWA § 303(d) list). However, Big Elm Creek (1213A) is listed for bacteria in water (1213A_01). This facility is designed to provide adequate disinfection and, when operated properly, should not add to the bacterial impairment of the segment.

Based on dissolved solids screening, no additional limits or monitoring requirements are needed for total dissolved solids, chloride, or sulfate.

The effluent limitations and conditions in the draft permit comply with EPA-approved portions of the 2018 Texas Surface Water Quality Standards (TSWQS), 30 TAC §§ 307.1 - 307.10, effective March 1, 2018; 2014 TSWQS, effective March 6, 2014; 2010 TSWQS, effective July 22, 2010; and 2000 TSWQS, effective July 26, 2000.

(2) CONVENTIONAL PARAMETERS

Effluent limitations for the conventional effluent parameters (i.e., Five-Day Biochemical Oxygen Demand or Five-Day Carbonaceous Biochemical Oxygen Demand, Ammonia Nitrogen, etc.) are based on stream standards and waste load allocations for water quality-limited streams as established in the TSWQS and the State of Texas Water Quality Management Plan (WQMP).

The existing effluent limits have been reviewed for consistency with the State of Texas Water Quality Management Plan (WQMP). The existing limits are consistent with the approved WQMP.

The effluent limitations in the draft permit meet the requirements for secondary treatment and the requirements for disinfection according to 30 TAC Chapter 309, Subchapter A: Effluent Limitations.

(3) COASTAL MANAGEMENT PLAN

The facility is not located in the Coastal Management Program boundary.

C. WATER QUALITY-BASED EFFLUENT LIMITATIONS/CONDITIONS

(1) GENERAL COMMENTS

The Texas Surface Water Quality Standards (30 TAC Chapter 307) state that surface waters will not be toxic to man, or to terrestrial or aquatic life. The methodology outlined in the *Procedures to Implement the Texas Surface Water Quality Standards* (June 2010) is designed to ensure compliance with 30 TAC Chapter 307. Specifically, the methodology is designed to ensure that no source will be allowed to discharge any wastewater that: (1) results in instream aquatic toxicity; (2) causes a violation of an applicable narrative or numerical state water quality standard; (3) results in the endangerment of a drinking water supply; or (4) results in aquatic bioaccumulation that threatens human health.

(2) AQUATIC LIFE CRITERIA

(a) SCREENING

Water quality-based effluent limitations are calculated from freshwater aquatic life criteria found in Table 1 of the Texas Surface Water Quality Standards (30 TAC Chapter 307).

There is no mixing zone or zone of initial dilution for this discharge directly to an intermittent stream; acute freshwater criteria apply at the end of pipe. Chronic freshwater criteria do not apply to discharges to intermittent streams where there is no perennial waterbody within three miles downstream from the point of discharge. The following critical effluent percentage is being used:

Acute Effluent %: 100%

Waste load allocations (WLAs) are calculated using the above estimated effluent percentages, criteria outlined in the Texas Surface Water Quality Standards, and partitioning coefficients for metals (when appropriate and designated in the implementation procedures). The WLA is the end-ofpipe effluent concentration that can be discharged when, after mixing in the receiving stream, instream numerical criteria will not be exceeded. From the WLA, a long-term average (LTA) is calculated using a log normal probability distribution, a given coefficient of variation (0.6), and a 90th percentile confidence level. The LTA is the long-term average effluent concentration for which the WLA will never be exceeded using a selected percentile confidence level. The lower of the two LTAs (acute and chronic) is used to calculate a daily average and daily maximum effluent limitation for the protection of aquatic life using the same statistical considerations with the 99th percentile confidence level and a standard number of monthly effluent samples collected (12). Assumptions used in deriving the effluent limitations include segment values for hardness, chlorides, pH, and total suspended solids (TSS) according to the segmentspecific values contained in the TCEQ guidance document Procedures to Implement the Texas Surface Water Quality Standards. The segment values are 158 mg/l for hardness (as calcium carbonate), 41 mg/l chlorides, 7.7 standard units for pH, and 21 mg/l for TSS. For additional details on the calculation of water quality-based effluent limitations, refer to the TCEQ guidance document.

TCEQ practice for determining significant potential is to compare the reported analytical data against percentages of the calculated daily average water quality-based effluent limitation. Permit limitations are required when analytical data reported in the application exceeds 85% of the calculated daily average water quality-based effluent limitation. Monitoring and reporting are required when analytical data reported in the application exceeds 70% of the calculated daily average water qualitybased effluent limitation. See Attachment A of this Fact Sheet.

(b) PERMIT ACTION

Analytical data reported in the application was screened against calculated water quality-based effluent limitations for the protection of aquatic life. Reported analytical data does not exceed 70% of the calculated daily average water quality-based effluent limitations for aquatic life protection.

(3) AQUATIC ORGANISM BIOACCUMULATION CRITERIA

(a) SCREENING

The discharge point is located at a distance greater than three miles upstream of perennial waters. Human health screening is not applicable because of the distance between the discharge point and perennial waters that support fisheries.

(b) PERMIT ACTION

None.

(4) DRINKING WATER SUPPLY PROTECTION

(a) SCREENING

Water Quality Segment No. 1213, which receives the discharge from this facility, is designated as a public water supply. The discharge point is located at a distance greater than three miles from the classified segment. Screening reported analytical data of the effluent against water quality-based effluent limitations calculated for the protection of a drinking water supply is not applicable due to the distance between the discharge point and the classified segment.

(b) PERMIT ACTION

None.

(5) WHOLE EFFLUENT TOXICITY (BIOMONITORING) CRITERIA

(a) SCREENING

TCEQ has determined that there may be pollutants present in the effluent that may have the potential to cause toxic conditions in the receiving stream. Whole effluent biomonitoring is the most direct measure of potential toxicity that incorporates the effects of synergism of effluent components and receiving stream water quality characteristics. Biomonitoring of the effluent is, therefore, required as a condition of this permit to assess potential toxicity.

The existing permit includes 48-hour acute freshwater biomonitoring requirements. A summary of the biomonitoring testing for the facility indicates that in the past three years, the permittee has performed twelve 48-hour acute tests, with zero demonstrations of significant toxicity (i.e., zero failures).

A reasonable potential (RP) determination was performed in accordance with 40 CFR § 122.44(d)(1)(ii) to determine whether the discharge will reasonably be expected to cause or contribute to an exceedance of a state water quality standard or criterion within that standard. Each test species is evaluated separately. The RP determination is based on representative data from the previous three years of 48-hour acute WET testing. This determination was performed in accordance with the methodology outlined in the TCEQ letter to the EPA dated December 28, 2015, and approved by the EPA in a letter dated December 28, 2015.

With zero failures, a determination of no RP was made. WET limits are not required, and both test species are eligible for the testing frequency reduction after one year of quarterly testing.

(b) PERMIT ACTION

The test species are appropriate to measure the toxicity of the effluent consistent with the requirements of the State water quality standards. The biomonitoring frequency has been established to reflect the likelihood of ambient toxicity and to provide data representative of the toxic potential of the facility's discharge. This permit may be reopened to require effluent limits, additional testing, and/or other appropriate actions to address toxicity if biomonitoring data show actual or potential ambient toxicity to be the result of the permittee's discharge to the receiving stream or water body.

(6) WHOLE EFFLUENT TOXICITY CRITERIA (24-HOUR ACUTE)

(a) SCREENING

The existing permit includes 24-hour acute freshwater biomonitoring language. A summary of the biomonitoring testing for the facility indicates that in the past three years, the permittee has performed ten 24hour acute tests, with zero demonstrations of significant lethality (i.e., zero failures).

9. WATER QUALITY VARIANCE REQUESTS

No variance requests have been received.

10. PROCEDURES FOR FINAL DECISION

When an application is declared administratively complete, the Chief Clerk sends a letter to the applicant advising the applicant to publish the Notice of Receipt of Application and Intent to Obtain Permit in the newspaper. In addition, the Chief Clerk instructs the applicant to place a copy of the application in a public place for review and copying in the county where the facility is or will be located. This application will be in a public place throughout the comment period. The Chief Clerk also mails this notice to any interested persons and, if required, to landowners identified in the permit application. This notice informs the public about the application and provides that an interested person may file comments on the application or request a contested case hearing or a public meeting.

Once a draft permit is completed, it is sent, along with the Executive Director's preliminary decision, as contained in the technical summary or fact sheet, to the Chief Clerk. At that time, the Notice of Application and Preliminary Decision will be mailed to the same people and published in the same newspaper as the prior notice. This notice sets a deadline for making public comments. The applicant must place a copy of the Executive Director's preliminary decision and draft permit in the public place with the application.

Any interested person may request a public meeting on the application until the deadline for filing public comments. A public meeting is intended for the taking of public comment and is not a contested case proceeding.

After the public comment deadline, the Executive Director prepares a response to all significant public comments on the application, or the draft permit raised during the public comment period. The Chief Clerk then mails the Executive Director's response to comments and final decision to people who have filed comments, requested a contested case hearing, or requested to be on the mailing list. This notice provides that if a person

is not satisfied with the Executive Director's response and decision, they can request a contested case hearing or file a request to reconsider the Executive Director's decision within 30 days after the notice is mailed.

The Executive Director will issue the permit unless a written hearing request or request for reconsideration is filed within 30 days after the Executive Director's response to comments and final decision is mailed. If a hearing request or request for reconsideration is filed, the Executive Director will not issue the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting. If a contested case hearing is held, it will be a legal proceeding similar to a civil trial in state district court.

If the Executive Director calls a public meeting or the Commission grants a contested case hearing as described above, the Commission will give notice of the date, time, and place of the meeting or hearing. If a hearing request or request for reconsideration is made, the Commission will consider all public comments in making its decision and shall either adopt the Executive Director's response to public comments or prepare its own response.

For additional information about this application, contact Sonia Bhuiya at (512) 239-1205.

11. ADMINISTRATIVE RECORD

The following items were considered in developing the draft permit:

A. PERMIT(S)

TPDES Permit No. WQ0010470002 issued on February 23, 2024.

B. APPLICATION

Application received on November 5, 2024, and additional information received on December 5, 2024.

C. MEMORANDA

Interoffice Memoranda from the Water Quality Assessment Section of the TCEQ Water Quality Division. Interoffice Memorandum from the Pretreatment Team of the TCEQ Water Quality Division.

D. MISCELLANEOUS

Federal Clean Water Act § 402; Texas Water Code § 26.027; 30 TAC Chapters 30, 305, 309, 312, and 319; Commission policies; and U.S. Environmental Protection Agency guidelines.

Texas Surface Water Quality Standards, 30 TAC §§ 307.1 - 307.10.

Procedures to Implement the Texas Surface Water Quality Standards (IP), Texas Commission on Environmental Quality, June 2010, as approved by the

U.S. Environmental Protection Agency, and the IP, January 2003, for portions of the 2010 IP not approved by the U.S. Environmental Protection Agency.

Texas 2022 Clean Water Act Section 303(d) List, Texas Commission on Environmental Quality, June 1, 2022; approved by the U.S. Environmental Protection Agency on July 7, 2022.

Texas Natural Resource Conservation Commission, Guidance Document for Establishing Monitoring Frequencies for Domestic and Industrial Wastewater Discharge Permits, Document No. 98-001.000-OWR-WQ, May 1998.

Attachment A: Calculated Water Quality Based Effluent Limitations

TEXTOX MENU #1 - INTERMITTENT STREAM

The water quality-based effluent limitations developed below are calculated using:

Table 1, 2014 Texas Surface Water Quality Standards (30 TAC 307) for Freshwater Aquatic Life

"Procedures to Implement the Texas Surface Water Quality Standards," TCEQ, June 2010

PERMIT INFORMATION

% Effluent for Acute Aquatic Life:

Permittee Name:	WQ0010470002
TPDES Permit No:	City of Temple
Outfall No:	001
Prepared By:	Sonia Bhuiya
Date:	April 4, 2025

DISCHARGE INFORMATION Unnamed Tributary Intermittent Receiving Waterbody: Segment No: 1213 TSS (mg/L): 21 pH (Standard Units): 7.7 Hardness (mg/L as CaCO₃): 158 Chloride (mg/L): 41 Effluent Flow for Aquatic Life (MGD): 7.5 Critical Low Flow [7Q2] (cfs): 0

CALCULATE DISSOLVED FRACTION (AND ENTER WATER EFFECT RATIO IF APPLICABLE):

100

Stream/River Metal	Intercept (b)	Slope (m)	Partition Coefficient (Kp)	Dissolved Fraction (Cd/Ct)	Source	Water Effect Ratio (WER)	Source
Aluminum	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Arsenic	5.68	-0.73	51853.72	0.479		1.00	Assumed
Cadmium	6.60	-1.13	127612.20	0.272		1.00	Assumed
Chromium (total)	6.52	-0.93	195135.40	0.196		1.00	Assumed
Chromium (trivalent)	6.52	-0.93	195135.40	0.196		1.00	Assumed
Chromium (hexavalent)	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Copper	6.02	-0.74	110041.81	0.302		1.00	Assumed
Lead	6.45	-0.80	246731.48	0.162		1.00	Assumed
Mercury	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Nickel	5.69	-0.57	86364.45	0.355		1.00	Assumed
Selenium	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Silver	6.38	-1.03	104259.14	0.314		1.00	Assumed
Zinc	6.10	-0.70	149432.99	0.242		1.00	Assumed

AQUATIC LIFE

CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

Parameter	FW Acute Criterion (μg/L)	WLAa (μg/L)	LTAa (µg/L)	Daily Avg. (μg/L)	Daily Max. (µg/L)
Aldrin	3.0	3.00	1.72	2.52	5.34
Aluminum	991	991	568	834	1765
Arsenic	340	710	407	598	1265
Cadmium	13.3862	49.3	28.2	41.4	87.7
Carbaryl	2.0	2.00	1.15	1.68	3.56
Chlordane	2.4	2.40	1.38	2.02	4.27

City of Temple TPDES Permit No. WQ0010470002 Fact Sheet and Executive Director's Preliminary Decision

Chlorpyrifos	0.083	0.0830	0.0476	0.0699	0.147
Chromium (trivalent)	828.6951	4225	2421	3558	7528
Chromium (hexavalent)	15.7	15.7	9.00	13.2	27.9
Copper	21.85337	72.4	41.5	60.9	128
Cyanide (free)	45.8	45.8	26.2	38.5	81.6
4,4'-DDT	1.1	1.10	0.630	0.926	1.96
Demeton	N/A	N/A	N/A	N/A	N/A
Diazinon	0.17	0.170	0.0974	0.143	0.302
Dicofol [Kelthane]	59.3	59.3	34.0	49.9	105
Dieldrin	0.24	0.240	0.138	0.202	0.427
Diuron	210	210	120	176	374
Endosulfan I (<i>alpha</i>)	0.22	0.220	0.126	0.185	0.392
Endosulfan II (<i>beta</i>)	0.22	0.220	0.126	0.185	0.392
Endosulfan sulfate	0.22	0.220	0.126	0.185	0.392
Endrin	0.086	0.0860	0.0493	0.0724	0.153
Guthion [Azinphos Methyl]	N/A	N/A	N/A	N/A	N/A
Heptachlor	0.52	0.520	0.298	0.438	0.926
Hexachlorocyclohexane (gamma)					
[Lindane]	1.126	1.13	0.645	0.948	2.00
Lead	105.8689	654	375	551	1166
Malathion	N/A	N/A	N/A	N/A	N/A
Mercury	2.4	2.40	1.38	2.02	4.27
Methoxychlor	N/A	N/A	N/A	N/A	N/A
Mirex	N/A	N/A	N/A	N/A	N/A
Nickel	689.4908	1940	1112	1634	3457
Nonylphenol	28	28.0	16.0	23.5	49.8
Parathion (ethyl)	0.065	0.0650	0.0372	0.0547	0.115
Pentachlorophenol	17.6282	17.6	10.1	14.8	31.4
Phenanthrene	30	30.0	17.2	25.2	53.4
Polychlorinated Biphenyls [PCBs]	2.0	2.00	1.15	1.68	3.56
Selenium	20	20.0	11.5	16.8	35.6
Silver	0.8	9.35	5.36	7.87	16.6
Toxaphene	0.78	0.780	0.447	0.657	1.38
Tributyltin [TBT]	0.13	0.130	0.0745	0.109	0.231
2,4,5 Trichlorophenol	136	136	77.9	114	242
Zinc	172.6543	714	409	601	1273

CALCULATE 70% AND 85% OF DAILY AVERAGE EFFLUENT LIMITATIONS:

Aquatic Life	70% of Daily Avg.	85% of Daily Avg.
Parameter	(μg/L)	(µg/L)
Aldrin	1.76	2.14
Aluminum	584	709
Arsenic	418	508
Cadmium	29.0	35.2
Carbaryl	1.17	1.43
Chlordane	1.41	1.71
Chlorpyrifos	0.0489	0.0594
Chromium (trivalent)	2490	3024
Chromium (hexavalent)	9.25	11.2
Copper	42.6	51.8
Cyanide (free)	27.0	32.7
4,4'-DDT	0.648	0.787

City of Temple TPDES Permit No. WQ0010470002 Fact Sheet and Executive Director's Preliminary Decision

Demeton	N/A	N/A
Diazinon	0.100	0.121
Dicofol [Kelthane]	34.9	42.4
Dieldrin	0.141	0.171
Diuron	123	150
Endosulfan I (<i>alpha</i>)	0.129	0.157
Endosulfan II (<i>beta</i>)	0.129	0.157
Endosulfan sulfate	0.129	0.157
Endrin	0.0507	0.0615
Guthion [Azinphos Methyl]	N/A	N/A
Heptachlor	0.306	0.372
Hexachlorocyclohexane (gamma)		
[Lindane]	0.663	0.806
Lead	385	468
Malathion	N/A	N/A
Mercury	1.41	1.71
Methoxychlor	N/A	N/A
Mirex	N/A	N/A
Nickel	1143	1388
Nonylphenol	16.5	20.0
Parathion (ethyl)	0.0383	0.0465
Pentachlorophenol	10.3	12.6
Phenanthrene	17.6	21.4
Polychlorinated Biphenyls [PCBs]	1.17	1.43
Selenium	11.7	14.3
Silver	5.51	6.69
Toxaphene	0.459	0.558
Tributyltin [TBT]	0.0766	0.0930
2,4,5 Trichlorophenol	80.1	97.3
Zinc	421	511

City of Temple Doshier Farm Wastewater Treatment Facility

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

APPLICATION FOR RENEWAL

TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT NO. WQ0010470002

November 5, 2024

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION **CHECKLIST**

Complete and submit this checklist with the application.

APPLICANT NAME: City of Temple

PERMIT NUMBER (If new, leave blank): WQ00 10470002

Indicate if each of the following items is included in your application.

	Y	Ν
Administrative Report 1.0	\boxtimes	
Administrative Report 1.1		\boxtimes
SPIF	\boxtimes	
Core Data Form	\boxtimes	
Public Involvement Plan Form		\boxtimes
Technical Report 1.0	\boxtimes	
Technical Report 1.1		\boxtimes
Worksheet 2.0	\boxtimes	
Worksheet 2.1		\boxtimes
Worksheet 3.0		\boxtimes
Worksheet 3.1		\boxtimes
Worksheet 3.2		\boxtimes
Worksheet 3.3		\boxtimes
Worksheet 4.0	\boxtimes	
Worksheet 5.0	\boxtimes	
Worksheet 6.0	\boxtimes	
Worksheet 7.0		\boxtimes

	_	-
Original USGS Map	\boxtimes	
Affected Landowners Map		\boxtimes
Landowner Disk or Labels		\boxtimes
Buffer Zone Map		\boxtimes
Flow Diagram	\boxtimes	
Site Drawing	\boxtimes	
Original Photographs		\boxtimes
Design Calculations		\boxtimes
Solids Management Plan		\boxtimes
Water Balance		\boxtimes

Y

Ν

For TCEQ Use Only

Segment Number	County
Expiration Date	Region
Permit Number	

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION ADMINISTRATIVE REPORT 1.0

For any questions about this form, please contact the Applications Review and Processing Team at 512-239-4671.

Section 1. Application Fees (Instructions Page 26)

Indicate the amount submitted for the application fee (check only one).

New/Major Amendment	Renewal
\$350.00 🗆	\$315.00 🗆
\$550.00 	\$515.00 🗆
\$850.00 	\$815.00 🗆
\$1,250.00 🗆	\$1,215.00 🗆
\$1,650.00 🗆	\$1,615.00 🗆
\$2,050.00 🗆	\$2,015.00
	New/Major Amendment \$350.00 \$550.00 \$850.00 \$1,250.00 \$1,650.00 \$2,050.00 \$

Minor Amendment (for any flow) \$150.00 □

Payment Information:

Mailed	Check/Money Order Number:	Click to	enter	text.
	Check/Money Order Amount:	Click to	enter	text.
	Name Printed on Check: Click	to enter	text.	
EPAY	Voucher Number: <u>728129, 728</u>	<u>8130</u>		
Copy of Payr	nent Voucher enclosed?	Yes	\boxtimes	

Section 2. Type of Application (Instructions Page 26)

- **a.** Check the box next to the appropriate authorization type.
 - ☑ Publicly-Owned Domestic Wastewater
 - □ Privately-Owned Domestic Wastewater
 - Conventional Wastewater Treatment
- **b.** Check the box next to the appropriate facility status.
 - \boxtimes Active \square Inactive

TCEQ ePay Receipt

- Transaction Information -

Trace Number:	582EA000631668
Date:	10/29/2024 12:17 PM
Payment Method:	CC - Authorization 0000083669
ePay Actor:	CATHERINE MARTINEZ
TCEQ Amount:	\$2,015.00
Texas.gov Price::	\$2,060.59*

* This service is provided by Texas.gov, the official website of Texas. The price of this service includes funds that support the ongoing operations and enhancements of Texas.gov, which is provided by a third party in partnership with the State.

- Payment Contact Information -

Name:	COLTON MIGURA
Company:	CITY OF TEMPLE
Address:	3210 E AVENUE H BUILDING C, TEMPLE, TX 76501
Phone:	254-298-5940

– Cart Items -

Voucher	Fee Description	AR Number	Amount
728129	WW PERMIT - FACILITY WITH FLOW >= 1.0 MGD - RENEWAL		\$2,000.00
728130	30 TAC 305.53B WQ RENEWAL NOTIFICATION FEE		\$15.00
		TCEQ Amount:	\$2,015.00
TCEQ ePay Voucher Receipt

— Transaction Information —		
Voucher Number:	728129	
Trace Number:	582EA000631668	
Date:	10/29/2024 12:17 PM	
Payment Method:	CC - Authorization 0000083669	
Voucher Amount:	\$2,000.00	
Fee Type:	WW PERMIT - FACILITY WITH FLOW >= 1.0 MGD - RENEWAL	
ePay Actor:	CATHERINE MARTINEZ	
— Payment Contact Informati	ion — — — — — — — — — — — — — — — — — — —	
Name:	COLTON MIGURA	
Company:	CITY OF TEMPLE	
Address:	3210 E AVENUE H BUILDING C, TEMPLE, TX 76501	
Phone:	254-298-5940	
—Site Information ————		
Site Name:	DOSHIER FARMS WASTEWATER TREATMENT FACILITY	
Site Location:	2515 E AVENUE H TEMPLE TX 76501	
— Customer Information ——		
Customer Name:	CITY OF TEMPLE	
Customer Address:	2 N MAIN ST, TEMPLE, TX 76501	
— Other Information ———		
Program Area ID:	WQ0010470002	

TCEQ ePay Voucher Receipt

– Transaction Information –		
- IT ansaction into mation -		
Voucher Number:	728130	
Trace Number:	582EA000631668	
Date:	10/29/2024 12:17 PM	
Payment Method:	CC - Authorization 0000083669	
Voucher Amount:	\$15.00	
Fee Type:	30 TAC 305.53B WQ RENEWAL NOTIFICATION FEE	
ePay Actor: CATHERINE MARTINEZ		
– Payment Contact Informa	tion —	
Name:	COLTON MIGURA	
Company:	CITY OF TEMPLE	
Address:	3210 E AVENUE H BUILDING C, TEMPLE, TX 76501	
Phone:	254-298-5940	

- **c.** Check the box next to the appropriate permit type.
 - ☑ TPDES Permit
 - □ TLAP
 - TPDES Permit with TLAP component
 - Subsurface Area Drip Dispersal System (SADDS)
- **d.** Check the box next to the appropriate application type
 - □ New
 - $\square Major Amendment <u>with</u> Renewal <math display="block">\square Minor Amendment <u>with</u> Renewal$
 - □ Major Amendment <u>without</u> Renewal
- □ Minor Amendment <u>without</u> Renewal
- \boxtimes Renewal without changes \square Minor Modification of permit
- e. For amendments or modifications, describe the proposed changes: N/A

f. For existing permits:

Permit Number: WQ00 <u>10470002</u> EPA I.D. (TPDES only): TX <u>0047651</u>

Expiration Date: May 4, 2025

Section 3. Facility Owner (Applicant) and Co-Applicant Information (Instructions Page 26)

A. The owner of the facility must apply for the permit.

What is the Legal Name of the entity (applicant) applying for this permit?

City of Temple

(The legal name must be spelled exactly as filed with the Texas Secretary of State, County, or in the legal documents forming the entity.)

If the applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at <u>http://www15.tceq.texas.gov/crpub/</u>

CN: <u>600245799</u>

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix: <u>Mr.</u> Last Name, First Name: <u>Bond, Don</u>

Title: **Director of Public Works** Credential: **P.E.**

B. Co-applicant information. Complete this section only if another person or entity is required to apply as a co-permittee.

What is the Legal Name of the co-applicant applying for this permit?

<u>N/A</u>

(The legal name must be spelled exactly as filed with the TX SOS, with the County, or in the legal documents forming the entity.)

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at: <u>http://www15.tceq.texas.gov/crpub/</u>

CN: <u>N/A</u>

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix: Click to enter text. Last Name, First Name: Click to enter text.

Title: Click to enter text. Credential: Click to enter text.

Provide a brief description of the need for a co-permittee: Click to enter text.

C. Core Data Form

Complete the Core Data Form for each customer and include as an attachment. If the customer type selected on the Core Data Form is **Individual**, complete **Attachment 1** of Administrative Report 1.0. <u>A</u>

Section 4. Application Contact Information (Instructions Page 27)

This is the person(s) TCEQ will contact if additional information is needed about this application. Provide a contact for administrative questions and technical questions.

А.	Prefix: <u>Mr.</u>	Last Name, First Name:	Moffett, Ko	<u>enton</u>
	Title: Assistant Director of	<u> Public Works - Utilities</u>	Credential:	<u>P.E.</u>
	Organization Name: City of	<u>Femple</u>		
	Mailing Address: <u>3210 E. Av</u> <u>76501</u>	<u>enue H, Bldg A, Suite 123</u>	City, State,	Zip Code: <u>Temple, TX</u>
	Phone No.: (254) 298-5611	E-mail Address: <u>kmof</u>	fett@templo	etx.gov
	Check one or both: \square	Administrative Contact	\boxtimes	Technical Contact
B.	Prefix: <u>Ms.</u>	Last Name, First Name:	Sims, Jane	<u>et</u>
	Title: Project Manager	Credential: Click to ent	er text.	
	Organization Name: Mead &	<u>: Hunt, Inc.</u>		
	Mailing Address: <u>8217 Shoal</u> <u>TX 78757</u>	Creek Boulevard, Suite 20	23 City,	State, Zip Code: <u>Austin,</u>
	Phone No.: (512) 735-1001	E-mail Address: <u>Janet</u>	.Sims@mea	<u>idhunt.com</u>
	Check one or both: \square	Administrative Contact	\bowtie	Technical Contact

Section 5. Permit Contact Information (Instructions Page 27)

Provide the names and contact information for two individuals that can be contacted throughout the permit term.

A.	Prefix: <u>Mr.</u>	Last Name,	First Name:	<u>Davis</u> ,	Tim
----	--------------------	------------	-------------	----------------	-----

Title: <u>Mayor</u> Credential: Click to enter text.

Organization Name: <u>City of Temple</u>

	Mailing Address: <u>2 N Main Stree</u>	t City, State, Zip Code: <u>Temple, TX 76501</u>
	Phone No.: (254) 298-5700	E-mail Address: <u>tdavis@templetx.gov</u>
B.	Prefix: <u>Ms.</u>	Last Name, First Name: <u>Brynn Myers</u>
	Title: <u>City Manager</u>	Credential: Click to enter text.
	Organization Name: City of Tem	<u>ple</u>
	Mailing Address: <u>2 N Main Stree</u>	t City, State, Zip Code: <u>Temple, TX 76501</u>
	Phone No.: (254) 298-5600	E-mail Address: <u>citymanagerweb@templetx.gov</u>

Section 6. Billing Contact Information (Instructions Page 27)

The permittee is responsible for paying the annual fee. The annual fee will be assessed to permits *in effect on September 1 of each year*. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (using form TCEQ-20029).

Prefix: <u>Mr.</u> Last Name, First Name: <u>Bond, Don</u>

Title: Director or Public Works Credential: P.E.

Organization Name: City of Temple

Mailing Address: 3210 East Avenue H, Building ACity, State, Zip Code: Temple, TX76510

Phone No.: (254) 298-5621 E-mail Address: dbond@templetx.gov

Section 7. DMR/MER Contact Information (Instructions Page 27)

Provide the name and complete mailing address of the person delegated to receive and submit Discharge Monitoring Reports (DMR) (EPA 3320-1) or maintain Monthly Effluent Reports (MER).

Prefix: Mr.Last Name, First Name: Lock, RandyTitle: Regional Operational SuperintendentCredential: Click to enter text.

Organization Name: Brazos River Authority

Mailing Address: **2405 East 6th Avenue** City, State, Zip Code: **Belton, TX 76513**

Phone No.: (254) 307-9826 E-mail Address: randy.lock@brazos.org

Section 8. Public Notice Information (Instructions Page 27)

A. Individual Publishing the Notices

Prefix: <u>Ms.</u>	Last Name, First Name: <u>Lewellen, Jana</u>
Title: City Secretary	Credential: Click to enter text.
Organization Name: City of Tem	<u>ple</u>
Mailing Address: <u>2 N Main Stree</u>	t City, State, Zip Code: <u>Temple, TX 76501</u>
Phone No.: (254) 298-5700	E-mail Address: citysecretary@templetx.gov

B. Method for Receiving Notice of Receipt and Intent to Obtain a Water Quality Permit Package

Indicate by a check mark the preferred method for receiving the first notice and instructions:

- E-mail Address citysecretary@templetx.gov
- □ Fax cc: kmoffett@templetx.gov
- □ Regular Mail
- C. Contact permit to be listed in the Notices

Prefix: <u>Mr.</u> Last Name, First Name: <u>Moffett, Kenton</u>

Title: Assistant Director of Public Works - Utilities Credential: P.E.

Organization Name: <u>City of Temple</u>

Mailing Address: **<u>3210 E. Avenue H, Bldg A, Suite 123</u>** City, State, Zip Code: <u>**Temple, TX**</u> <u>**76510**</u>

Phone No.: (254) 298-5623 E-mail Address: kmoffett@templetx.gov

D. Public Viewing Information

If the facility or outfall is located in more than one county, a public viewing place for each county must be provided.

Public building name: **Department of Public Works**

Location within the building: **Suite 130**

Physical Address of Building: 3210 East Avenue H, Building A

City: Temple

County: <u>Bell</u>

Contact (Last Name, First Name): Moffett, Kenton

Phone No.: (254) 298-5623 Ext.: Click to enter text.

E. Bilingual Notice Requirements

This information **is required** for **new**, **major amendment**, **minor amendment or minor modification**, **and renewal** applications.

This section of the application is only used to determine if alternative language notices will be needed. Complete instructions on publishing the alternative language notices will be in your public notice package.

Please call the bilingual/ESL coordinator at the nearest elementary and middle schools and obtain the following information to determine whether an alternative language notices are required.

1. Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility?

🛛 Yes 🗆 No

If **no**, publication of an alternative language notice is not required; **skip to** Section 9 below.

2. Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school?

🛛 Yes 🗆 No

3. Do the students at these schools attend a bilingual education program at another location?

🗆 Yes 🛛 No

4. Would the school be required to provide a bilingual education program but the school has waived out of this requirement under 19 TAC §89.1205(g)?

🗆 Yes 🛛 No

5. If the answer is **yes** to **question 1, 2, 3, or 4**, public notices in an alternative language are required. Which language is required by the bilingual program? <u>Spanish</u>

F. Plain Language Summary Template

Complete the Plain Language Summary (TCEQ Form 20972) and include as an attachment.

Attachment: **B**

G. Public Involvement Plan Form

Complete the Public Involvement Plan Form (TCEQ Form 20960) for each application for a **new permit or major amendment to a permit** and include as an attachment.

Attachment: <u>N/A</u>

Section 9. Regulated Entity and Permitted Site Information (Instructions Page 29)

A. If the site is currently regulated by TCEQ, provide the Regulated Entity Number (RN) issued to this site. **RN** <u>101608958</u>

Search the TCEQ's Central Registry at <u>http://www15.tceq.texas.gov/crpub/</u> to determine if the site is currently regulated by TCEQ.

B. Name of project or site (the name known by the community where located):

Doshier Farms Wastewater Treatment Facility

C. Owner of treatment facility: <u>**City of Temple**</u>

Ownership of Facility: 🛛 Public 🗆 Private 🗖 Both 🗆

D. Owner of land where treatment facility is or will be:

Prefix: Click to enter text. Last Name, First Name: <u>City of Temple</u>

Title: Click to enter text. Credential: Click to enter text.

Organization Name: City of Temple

Mailing Address: **3210 East Avenue H, Suite 130** City, State, Zip Code: **Temple, TX 76501**

Phone No.: (254) 298-5621 E-mail Address: dbond@templetx.gov

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: <u>N/A</u>

Federal

E. Owner of effluent disposal site:

Prefix: <u>N/A</u>	Last Name, First Name: Click to enter text.
Title: Click to enter text.	Credential: Click to enter text.
Organization Name: Click to ente	er text.
Mailing Address: Click to enter te	ext. City, State, Zip Code: Click to enter text.
Phone No.: Click to enter text.	E-mail Address: Click to enter text.
If the landowner is not the same	person as the facility owner or co-applicant attach a l

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: Click to enter text.

F. Owner sewage sludge disposal site (if authorization is requested for sludge disposal on property owned or controlled by the applicant)::

Prefix: <u>N/A</u>	Last Name, First Name:	Click to enter text.
--------------------	------------------------	----------------------

Title: Click to enter text. Credential: Click to enter text.

Organization Name: Click to enter text.

Mailing Address: Click to enter text. City, State, Zip Code: Click to enter text.

Phone No.: Click to enter text. E-mail Address: Click to enter text.

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: Click to enter text.

Section 10. TPDES Discharge Information (Instructions Page 31)

A. Is the wastewater treatment facility location in the existing permit accurate?

🛛 Yes 🗆 No

If **no**, **or a new permit application**, please give an accurate description:

Click to enter text.

- **B.** Are the point(s) of discharge and the discharge route(s) in the existing permit correct?
 - 🖾 Yes 🗆 No

If **no**, **or a new or amendment permit application**, provide an accurate description of the point of discharge and the discharge route to the nearest classified segment as defined in 30 TAC Chapter 307:

Click to enter text.

City nearest the outfall(s): **<u>Temple, TX</u>**

County in which the outfalls(s) is/are located: **Bell**

C. Is or will the treated wastewater discharge to a city, county, or state highway right-of-way, or a flood control district drainage ditch?

🗆 Yes 🖾 No

If **yes**, indicate by a check mark if:

□ Authorization granted □ Authorization pending

For **new and amendment** applications, provide copies of letters that show proof of contact and the approval letter upon receipt.

Attachment: Click to enter text.

D. For all applications involving an average daily discharge of 5 MGD or more, provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge: **Bell, Milam, Robertson, Burleson, Brazos, Washington, and Grimes**

Section 11. TLAP Disposal Information (Instructions Page 32)

A. For TLAPs, is the location of the effluent disposal site in the existing permit accurate?

□ Yes □ No N/A

If **no, or a new or amendment permit application**, provide an accurate description of the disposal site location:

N/A

- **B.** City nearest the disposal site: Click to enter text.
- C. County in which the disposal site is located: Click to enter text.
- **D.** For **TLAPs**, describe the routing of effluent from the treatment facility to the disposal site:

Click to enter text.

E. For **TLAPs**, please identify the nearest watercourse to the disposal site to which rainfall runoff might flow if not contained: Click to enter text.

Section 12. Miscellaneous Information (Instructions Page 32)

- A. Is the facility located on or does the treated effluent cross American Indian Land?
 - 🗆 Yes 🖾 No
- **B.** If the existing permit contains an onsite sludge disposal authorization, is the location of the sewage sludge disposal site in the existing permit accurate?

□ Yes □ No

☑ Not Applicable

If No, or if a new onsite sludge disposal authorization is being requested in this permit application, provide an accurate location description of the sewage sludge disposal site.

Click to enter text.

- **C.** Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?
 - 🗆 Yes 🛛 No

If yes, list each person formerly employed by the TCEQ who represented your company and was paid for service regarding the application: Click to enter text.

D. Do you owe any fees to the TCEQ?

🗆 Yes 🛛 No

If **yes**, provide the following information:

Account number: Click to enter text.

Amount past due: Click to enter text.

E. Do you owe any penalties to the TCEQ?

🗆 Yes 🖾 No

If **yes**, please provide the following information:

Enforcement order number: Click to enter text.

Amount past due: Click to enter text.

Section 13. Attachments (Instructions Page 33)

Indicate which attachments are included with the Administrative Report. Check all that apply:

□ N/A Lease agreement or deed recorded easement, if the land where the treatment facility is located or the effluent disposal site are not owned by the applicant or co-applicant.

Original full-size USGS Topographic Map with the following information:

- Applicant's property boundary See Attachment C.
- Treatment facility boundary
- Labeled point of discharge for each discharge point (TPDES only)
- Highlighted discharge route for each discharge point (TPDES only)
- Onsite sewage sludge disposal site (if applicable)
- Effluent disposal site boundaries (TLAP only)
- New and future construction (if applicable)
- 1 mile radius information
- 3 miles downstream information (TPDES only)
- All ponds.
- □ N/A Attachment 1 for Individuals as co-applicants
- ☑ Other Attachments. Please specify:

Attachment

- A. Core Data Form
- B. Plain Language Summary
- C. USGS Map
- D. Process Flow Diagram
- E. Site Drawing
- F. Effluent Analysis Reports G. Parameters above the MAL

SPIF

Section 14. Signature Page (Instructions Page 34)

If co-applicants are necessary, each entity must submit an original, separate signature page. Permit Number: WO0011918001 /0470002

Applicant: City of Temple

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory name (typed or printed): Don Bond, P.E.

Signatory title: Director of Public Works

Signature:	Rout	Date:_	10/24/20	24
	(Use blue ink)			
Subscribed on this My commis	and Sworn to before me by th 24 day of sion expires on the 07	e said DON OCTOBEN day of	Bond , 2024. , 2028.	
Notary Publ	K. Ward		[SEAL]	
Bel County, Tex	<u>l</u> cas	NOTAF	JACKIE K WARD RY PUBLIC STATE OF TEXAS IY COMM, EXP. 7/9/28 IOTARY ID 126586185	

DOMESTIC WASTEWATER PERMIT APPLICATION

SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

This form applies to TPDES permit applications only. Complete and attach the Supplemental Permit information Form (SPIF) (TCEQ Form 20971).

Attachment: SPIF

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST OF COMMON DEFICIENCIES

Below is a list of common deficiencies found during the administrative review of domestic wastewater permit applications. To ensure the timely processing of this application, please review the items below and indicate by checking Yes that each item is complete and in accordance applicable rules at 30 TAC Chapters 21, 281, and 305. If an item is not required this application, indicate by checking N/A where appropriate. Please do not submit the application until the items below have been addressed.

Core Data Form (TCEQ Form No. 10400) (<i>Required for all application types. Must be completed in its entirety and signed.</i> <i>Note: Form may be signed by applicant representative.</i>)		Yes
Correct and Current Industrial Wastewater Permit Application Forms (TCEQ Form Nos. 10053 and 10054. Version dated 6/25/2018 or later.)		Yes
Water Quality Permit Payment Submittal Form (Page 19) (Original payment sent to TCEQ Revenue Section. See instructions for mailing ad	⊠ ldress	Yes s.)
7.5 Minute USGS Quadrangle Topographic Map Attached (Full-size map if seeking "New" permit. 8 ½ x 11 acceptable for Renewals and Amendments)		Yes
Current/Non-Expired, Executed Lease Agreement or Easement M/A		Yes
Landowners Map \boxtimes N/A <i>(See instructions for landowner requirements)</i>		Yes

Things to Know:

- All the items shown on the map must be labeled.
- The applicant's complete property boundaries must be delineated which includes boundaries of contiguous property owned by the applicant.
- The applicant cannot be its own adjacent landowner. You must identify the landowners immediately adjacent to their property, regardless of how far they are from the actual facility.
- If the applicant's property is adjacent to a road, creek, or stream, the landowners on the opposite side must be identified. Although the properties are not adjacent to applicant's property boundary, they are considered potentially affected landowners. If the adjacent road is a divided highway as identified on the USGS topographic map, the applicant does not have to identify the landowners on the opposite side of the highway.

Landowners Cross Reference List (See instructions for landowner requirements)		N/A		Yes
Landowners Labels or USB Drive attached (See instructions for landowner requirements)		N/A		Yes
Original signature per 30 TAC § 305.44 – Blue Ink Preferred (If signature page is not signed by an elected official or principle exect a copy of signature authority/delegation letter must be attached)	utive	officer	⊠,	Yes
Plain Language Summary			\boxtimes	Yes

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671.

The following information is required for all renewal, new, and amendment applications.

Section 1. Permitted or Proposed Flows (Instructions Page 43)

A. Existing/Interim I Phase

Design Flow (MGD): <u>7.5</u> 2-Hr Peak Flow (MGD): <u>22.5</u> Estimated construction start date: <u>N/A</u> Estimated waste disposal start date: <u>N/A</u>

B. Interim II Phase

Design Flow (MGD): <u>Click to enter text.</u> 2-Hr Peak Flow (MGD): <u>Click to enter text.</u> Estimated construction start date: <u>Click to enter text.</u> Estimated waste disposal start date: <u>Click to enter text.</u>

C. Final Phase

Design Flow (MGD): <u>Click to enter text.</u> 2-Hr Peak Flow (MGD): <u>Click to enter text.</u> Estimated construction start date: <u>Click to enter text.</u> Estimated waste disposal start date: <u>Click to enter text.</u>

D. Current Operating Phase

Provide the startup date of the facility: **<u>1994</u>**

Section 2. Treatment Process (Instructions Page 43)

A. Current Operating Phase

Provide a detailed description of the treatment process. **Include the type of treatment plant, mode of operation, and all treatment units.** Start with the plant's head works and

finish with the point of discharge. Include all sludge processing and drying units. **If more than one phase exists or is proposed, a description of** *each phase* **must be provided**.

The Doshier Farm Wastewater Treatment Facility is a conventional activated sludge process plant with nitrification. Treatment units include fine screens, 3-channel OrbalTM biological reactor, final clarifiers, anaerobic digesters, a belt thickener, belt filter press, chlorine contact chamber, and dechlorination system.

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) **of each treatment unit, accounting for** *all* **phases of operation.**

Table	1.0(1)) -	Treatment Units
-------	--------	-----	------------------------

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
Fine Screens	3	
3-Channel Orbal™ Activated Sludge Reactor	1	2,551,000 gallons
Final Clarifiers	2	105' dia., 14' SWD
Chlorine Contact Basin	2	30' x 60' x 12'
Dechlorination system	1	
Belt Thickener	1	2 meters
Anaerobic Digesters	2	84,175 cu. ft. – total
Belt Press	1	2 meters

C. Process Flow Diagram

Provide flow diagrams for the existing facilities and **each** proposed phase of construction. Attachment: <u>D</u>

Section 3. Site Information and Drawing (Instructions Page 44)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

- Latitude: **<u>31.077222</u>**
- Longitude: <u>-97.316810</u>

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

- Latitude: <u>N/A</u>
- Longitude: <u>N/A</u>

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and

• If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Attachment: <u>E</u>

Provide the name **and** a description of the area served by the treatment facility.

The Doshier Farm Wastewater Treatment Facility serves a portion of the City of Temple.

Collection System Information **for wastewater TPDES permits only**: Provide information for each **uniquely owned** collection system, existing and new, served by this facility, including satellite collection systems. **Please see the instructions for a detailed explanation and examples.**

Collection System Information

Collection System Name	Owner Name	Owner Type	Population Served
Doshier Farm Collection	City of Temple	Publicly Owned	35,299
		Choose an item.	
		Choose an item.	
		Choose an item.	

Section 4. Unbuilt Phases (Instructions Page 45)

Is the application for a renewal of a permit that contains an unbuilt phase or phases?

□ Yes ⊠ No

If yes, does the existing permit contain a phase that has not been constructed **within five years** of being authorized by the TCEQ?

🗆 Yes 🗆 No

If yes, provide a detailed discussion regarding the continued need for the unbuilt phase. **Failure to provide sufficient justification may result in the Executive Director recommending denial of the unbuilt phase or phases**.

Click to enter text.

Section 5. Closure Plans (Instructions Page 45)

Have any treatment units been taken out of service permanently, or will any units be taken out of service in the next five years?

🗆 Yes 🖾 No

If yes, was a closure plan submitted to the TCEQ?

🗆 Yes 🗆 No

If yes, provide a brief description of the closure and the date of plan approval.

Some older units are out of service. Future evaluations will be conducted to determine if rehabilitation, repurposing, or demolition is appropriate. A closure plan will be submitted to TCEQ for review and approval prior to conducting activities associated with the permanent closure and removal of any waste management unit or treatment facility.

Section 6. Permit Specific Requirements (Instructions Page 45)

For applicants with an existing permit, check the Other Requirements or Special Provisions of the permit.

A. Summary transmittal

Have plans and specifications been approved for the existing facilities and each proposed phase?

🛛 Yes 🗆 No

If yes, provide the date(s) of approval for each phase: 1991

Provide information, including dates, on any actions taken to meet a *requirement or provision* pertaining to the submission of a summary transmittal letter. **Provide a copy of an approval letter from the TCEQ, if applicable**.

Click to enter text.

B. Buffer zones

Have the buffer zone requirements been met?

🖾 Yes 🗆 No

Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the buffer zones.

The permittee submitted sufficient evidence of legal restrictions prohibiting residential structures within the buffer zone not owned by the City in accordance with 30 TAC 309.13(e)(3). The legal restriction evidence was submitted to TCEQ under the permit issued on November 15, 1993.

C. Other actions required by the current permit

Does the *Other Requirements* or *Special Provisions* section in the existing permit require submission of any other information or other required actions? Examples include Notification of Completion, progress reports, soil monitoring data, etc.

□ Yes ⊠ No

If yes, provide information below on the status of any actions taken to meet the conditions of an *Other Requirement* or *Special Provision*.

Click to enter text.

D. Grit and grease treatment

1. Acceptance of grit and grease waste

Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?

🗆 Yes 🛛 No

If No, stop here and continue with Subsection E. Stormwater Management.

2. Grit and grease processing

Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility.

Click to enter text.

3. Grit disposal

Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal?

□ Yes □ No

If No, contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.

Describe the method of grit disposal.

Click to enter text.

4. Grease and decanted liquid disposal

Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335.

Describe how the decant and grease are treated and disposed of after grit separation.

Click to enter text.

E. Stormwater management

1. Applicability

Does the facility have a design flow of 1.0 MGD or greater in any phase?

🛛 Yes 🗆 No

Does the facility have an approved pretreatment program, under 40 CFR Part 403?

🛛 Yes 🗆 No

If no to both of the above, then skip to Subsection F, Other Wastes Received.

2. MSGP coverage

Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?

🛛 Yes 🗆 No

If yes, please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:

TXR05 **<u>CH11</u>** or TXRNE <u>Click to enter text.</u>

If no, do you intend to seek coverage under TXR050000?

🗆 Yes 🗆 No

3. Conditional exclusion

Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?

🗆 Yes 🛛 No

If yes, please explain below then proceed to Subsection F, Other Wastes Received:

Click to enter text.

4. Existing coverage in individual permit

Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?

🗆 Yes 🖾 No

If yes, provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.

Click to enter text.

5. Zero stormwater discharge

Do you intend to have no discharge of stormwater via use of evaporation or other means?

🗆 Yes 🖾 No

If yes, explain below then skip to Subsection F. Other Wastes Received.

Click to enter text.

Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.

6. Request for coverage in individual permit

Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?

🗆 Yes 🖾 No

If yes, provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state.

Click to enter text.

Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.

F. Discharges to the Lake Houston Watershed

Does the facility discharge in the Lake Houston watershed?

🗆 Yes 🛛 No

If yes, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions. <u>Click to enter text.</u>

G. Other wastes received including sludge from other WWTPs and septic waste

1. Acceptance of sludge from other WWTPs

Does or will the facility accept sludge from other treatment plants at the facility site?

🗆 Yes 🛛 No

If yes, attach sewage sludge solids management plan. See Example 5 of instructions.

In addition, provide the date the plant started or is anticipated to start accepting sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an

estimate of the BOD₅ concentration of the sludge, and the design BOD₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

Click to enter text.

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

2. Acceptance of septic waste

Is the facility accepting or will it accept septic waste?

🗆 Yes 🛛 No

If yes, does the facility have a Type V processing unit?

🗆 Yes 🗖 No

If yes, does the unit have a Municipal Solid Waste permit?

🗆 Yes 🗖 No

If yes to any of the above, provide the date the plant started or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD_5 concentration of the septic waste, and the

design BOD₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

ck to enter text.	
a Domite that account also doe from a they we starwater treatment plants may be	

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

3. Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)

Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above?

🛛 Yes 🗖 No

If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.

Since the last permit action, the City began accepting portable chemical toilet wastes at the Doshier Farm WWTF. The activity began on September 23, 2022. Approximately, 105,000 gallons per month is received.

Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 50)

Is the facility in operation?

🛛 Yes 🗆 No

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). *Water treatment facilities* discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. **These tables are not applicable for a minor amendment without renewal.** See the instructions for guidance.

Note: The sample date must be within 1 year of application submission.

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l	3	3	1	Comp.	9/16/2024 @ 10:59 am
Total Suspended Solids, mg/l	2	2	1	Comp.	9/16/2024 @ 10:59 am
Ammonia Nitrogen, mg/l	<0.05	<0.05	1	Comp.	9/16/2024 @ 10:59 am
Nitrate Nitrogen, mg/l	6.0	6.0	1	Comp.	9/16/2024 @ 10:59 am
Total Kjeldahl Nitrogen, mg/l	1.16	1.16	1	Comp.	9/16/2024 @ 10:59 am
Sulfate, mg/l	70	70	1	Comp.	9/16/2024 @ 10:59 am
Chloride, mg/l	133	133	1	Comp.	9/16/2024 @ 10:59 am
Total Phosphorus, mg/l	3.42	3.42	1	Comp.	9/16/2024 @ 10:59 am
pH, standard units	7.53	7.53	1	Grab	9/17/24 @ 9:45 am
Dissolved Oxygen*, mg/l	5.70	5.70	1	Grab	9/17/24 @ 9:45 am
Chlorine Residual, mg/l	<0.1	< 0.1	1	Grab	9/17/24 @ 9:45 am
<i>E.coli</i> (CFU/100ml) freshwater	<1	<1	1	Grab	9/18/24@ 7:23am
Entercocci (CFU/100ml) saltwater	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	594	594	1	Comp.	9/16/2024 @ 10:59 am
Electrical Conductivity, µmohs/cm, †	N/A	N/A	N/A	N/A	N/A
Oil & Grease, mg/l	<5.560	<5.560	4	Grab	10/16/2024
Alkalinity (CaCO ₃)*, mg/l	230	230	1	Comp.	9/16/2024 @ 10:59 am

Table1.0(2) – Pollutant Analysis for Wastewater Treatment Facilities

*TPDES permits only

†TLAP permits only

Table1.0(3) – Pollutant Analysis for Water Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Suspended Solids, mg/l	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	N/A	N/A	N/A	N/A	N/A
pH, standard units	N/A	N/A	N/A	N/A	N/A
Fluoride, mg/l	N/A	N/A	N/A	N/A	N/A
Aluminum, mg/l	N/A	N/A	N/A	N/A	N/A

Pollutant	Average	Max	No. of	Sample	Sample
	Conc.	Conc.	Samples	Type	Date/Time
Alkalinity (CaCO ₃), mg/l	N/A	N/A	N/A	N/A	N/A

Section 8. Facility Operator (Instructions Page 50)

Facility Operator Name: <u>Nathan Wilde</u>

Facility Operator's License Classification and Level: WWOLA

Facility Operator's License Number: **WW0051402**

Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 51)

A. WWTP's Biosolids Management Facility Type

Check all that apply. See instructions for guidance

- \square Design flow>= 1 MGD
- \boxtimes Serves >= 10,000 people
- □ Class I Sludge Management Facility (per 40 CFR § 503.9)
- □ Biosolids generator
- □ Biosolids end user land application (onsite)
- □ Biosolids end user surface disposal (onsite)
- □ Biosolids end user incinerator (onsite)

B. WWTP's Biosolids Treatment Process N/A

Check all that apply. See instructions for guidance.

- □ Aerobic Digestion
- Air Drying (or sludge drying beds)
- □ Lower Temperature Composting
- □ Lime Stabilization
- □ Higher Temperature Composting
- □ Heat Drying
- □ Thermophilic Aerobic Digestion
- Beta Ray Irradiation
- □ Gamma Ray Irradiation
- Pasteurization
- □ Preliminary Operation (e.g. grinding, de-gritting, blending)
- Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter)
- □ Sludge Lagoon

- □ Temporary Storage (< 2 years)
- □ Long Term Storage (>= 2 years)
- □ Methane or Biogas Recovery
- □ Other Treatment Process: <u>Click to enter text.</u>

C. Biosolids Management

Provide information on the *intended* biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize all biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

Biosolids Management

Management Practice	Handler or Preparer Type	Bulk or Bag Container	Amount (dry metric tons)	Pathogen Reduction Options	Vector Attraction Reduction Option
Disposal in Landfill	N/A	Not Applicable		N/A	N/A
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): <u>Click to enter text.</u>

D. Disposal site

Disposal site name: Temple Recycling and Disposal Facility

TCEQ permit or registration number: 692A

County where disposal site is located: **Bell**

E. Transportation method

Method of transportation (truck, train, pipe, other): <u>**Truck**</u>

Name of the hauler: **<u>S&M Vacuum & Waste Ltd.</u>**

Hauler registration number: **20089**

Sludge is transported as a:

Liquid 🗆

 \Box semi-liquid \Box

semi-solid 🛛

solid \Box

Section 10. Permit Authorization for Sewage Sludge Disposal (Instructions Page 53)

A. Beneficial use authorization

Does the existing permit include authorization for land application of sewage sludge for beneficial use?

If yes, are you requesting to continue this authorization to land apply sewage sludge for beneficial use?

🗆 Yes 🗆 No

If yes, is the completed **Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451)** attached to this permit application (see the instructions for details)?

🗆 Yes 🗆 No

B. Sludge processing authorization

Does the existing permit include authorization for any of the following sludge processing, storage or disposal options?

Sludge Composting	Yes	\boxtimes	No
Marketing and Distribution of sludge	Yes	\boxtimes	No
Sludge Surface Disposal or Sludge Monofill	Yes	\boxtimes	No
Temporary storage in sludge lagoons	Yes	\boxtimes	No

If yes to any of the above sludge options and the applicant is requesting to continue this authorization, is the completed **Domestic Wastewater Permit Application: Sewage Sludge Technical Report (TCEQ Form No. 10056)** attached to this permit application?

🗆 Yes 🗆 No

Section 11. Sewage Sludge Lagoons (Instructions Page 53)

Does this facility include sewage sludge lagoons?

🗆 Yes 🛛 No

If yes, complete the remainder of this section. If no, proceed to Section 12.

A. Location information

The following maps are required to be submitted as part of the application. For each map, provide the Attachment Number.

• Original General Highway (County) Map:

Attachment: Click to enter text.

• USDA Natural Resources Conservation Service Soil Map:

Attachment: Click to enter text.

• Federal Emergency Management Map:

Attachment: Click to enter text.

• Site map:

Attachment: Click to enter text.

Discuss in a description if any of the following exist within the lagoon area. Check all that apply.

□ Overlap a designated 100-year frequency flood plain

- □ Soils with flooding classification
- Overlap an unstable area
- □ Wetlands

Click to enter text.

- □ Located less than 60 meters from a fault
- \Box None of the above

Attachment: Click to enter text.

If a portion of the lagoon(s) is located within the 100-year frequency flood plain, provide the protective measures to be utilized including type and size of protective structures:

B. Temporary storage information

Provide the results for the pollutant screening of sludge lagoons. These results are in addition to pollutant results in *Section 7 of Technical Report 1.0.*

Nitrate Nitrogen, mg/kg: Click to enter text. Total Kjeldahl Nitrogen, mg/kg: <u>Click to enter text.</u> Total Nitrogen (=nitrate nitrogen + TKN), mg/kg: Click to enter text. Phosphorus, mg/kg: Click to enter text. Potassium, mg/kg: Click to enter text. pH, standard units: Click to enter text. Ammonia Nitrogen mg/kg: Click to enter text. Arsenic: Click to enter text. Cadmium: Click to enter text. Chromium: Click to enter text. Copper: Click to enter text. Lead: Click to enter text. Mercury: Click to enter text. Molybdenum: Click to enter text. Nickel: Click to enter text. Selenium: Click to enter text. Zinc: Click to enter text. Total PCBs: Click to enter text. Provide the following information: Volume and frequency of sludge to the lagoon(s): <u>Click to enter text.</u>

Total dry tons stored in the lagoons(s) per 365-day period: Click to enter text.

Total dry tons stored in the lagoons(s) over the life of the unit: Click to enter text.

C. Liner information

Does the active/proposed sludge lagoon(s) have a liner with a maximum hydraulic conductivity of 1×10^{-7} cm/sec?

🗆 Yes 🗆 No

If yes, describe the liner below. Please note that a liner is required.

Click to enter text.

D. Site development plan

Provide a detailed description of the methods used to deposit sludge in the lagoon(s):

Click to enter text. Attach the following documents to the application.

- Plan view and cross-section of the sludge lagoon(s)
 Attachment: <u>Click to enter text.</u>
- Copy of the closure plan Attachment: <u>Click to enter text.</u>
- Copy of deed recordation for the site Attachment: <u>Click to enter text.</u>
- Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons Attachment: <u>Click to enter text.</u>
- Description of the method of controlling infiltration of groundwater and surface water from entering the site

Attachment: Click to enter text.

• Procedures to prevent the occurrence of nuisance conditions Attachment: <u>Click to enter text.</u>

E. Groundwater monitoring

Is groundwater monitoring currently conducted at this site, or are any wells available for groundwater monitoring, or are groundwater monitoring data otherwise available for the sludge lagoon(s)?

If groundwater monitoring data are available, provide a copy. Provide a profile of soil types encountered down to the groundwater table and the depth to the shallowest groundwater as a separate attachment.

Attachment: Click to enter text.

Section 12. Authorizations/Compliance/Enforcement (Instructions Page 55)

A. Additional authorizations

Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc?

🛛 Yes 🗆 No

If yes, provide the TCEQ authorization number and description of the authorization:

Authorization for Use of Reclaimed Water – R10470002					

B. Permittee enforcement status

Is the permittee currently under enforcement for this facility?

🗆 Yes 🛛 No

Is the permittee required to meet an implementation schedule for compliance or enforcement?

🗆 Yes 🖾 No

If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:

Click to enter text.

Section 13. RCRA/CERCLA Wastes (Instructions Page 55)

A. RCRA hazardous wastes

Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste?

🗆 Yes 🛛 No

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

🗆 Yes 🛛 No

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment: Click to enter text.

Section 14. Laboratory Accreditation (Instructions Page 56)

All laboratory tests performed must meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the Signature Page section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Don Bond, P.E.

Title: Director of Public Works

Signature: Date: 10/24 /2024

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

Section 1. Domestic Drinking Water Supply (Instructions Page 64)

Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge?

🗆 Yes 🛛 No

If **no**, proceed it Section 2. **If yes**, provide the following:

Owner of the drinking water supply: <u>Click to enter text.</u>

Distance and direction to the intake: <u>Click to enter text.</u>

Attach a USGS map that identifies the location of the intake.

Attachment: Click to enter text.

Section 2. Discharge into Tidally Affected Waters (Instructions Page 64)

Does the facility discharge into tidally affected waters?

🗆 Yes 🖾 No

If **no**, proceed to Section 3. **If yes**, complete the remainder of this section. If no, proceed to Section 3.

A. Receiving water outfall

Width of the receiving water at the outfall, in feet: Click to enter text.

B. Oyster waters

Are there oyster waters in the vicinity of the discharge?

🗆 Yes 🗆 No

If yes, provide the distance and direction from outfall(s).

Click to enter text.

C. Sea grasses

Are there any sea grasses within the vicinity of the point of discharge?

🗆 Yes 🗆 No

If yes, provide the distance and direction from the outfall(s).

Click to enter text.

Section 3. Classified Segments (Instructions Page 64)

Is the discharge directly into (or within 300 feet of) a classified segment?

🗆 Yes 🛛 No

If yes, this Worksheet is complete.

If no, complete Sections 4 and 5 of this Worksheet.

Section 4. Description of Immediate Receiving Waters (Instructions Page 65)

Name of the immediate receiving waters: **<u>unnamed tributary</u>**

A. Receiving water type

Identify the appropriate description of the receiving waters.

- 🛛 Stream
- Freshwater Swamp or Marsh
- Lake or Pond

Surface area, in acres: <u>Click to enter text.</u>

Average depth of the entire water body, in feet: Click to enter text.

Average depth of water body within a 500-foot radius of discharge point, in feet: <u>Click to enter text.</u>

- Man-made Channel or Ditch
- Open Bay
- 🗖 🛛 Tidal Stream, Bayou, or Marsh
- □ Other, specify: <u>Click to enter text</u>.

B. Flow characteristics

If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area *upstream* of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one).

Intermittent - dry for at least one week during most years

□ Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses

□ Perennial - normally flowing

Check the method used to characterize the area upstream (or downstream for new dischargers).

- □ USGS flow records
- Historical observation by adjacent landowners
- Personal observation
- □ Other, specify: <u>Click to enter text</u>.

C. Downstream perennial confluences

List the names of all perennial streams that join the receiving water within three miles downstream of the discharge point.

None.

D. Downstream characteristics

Do the receiving water characteristics change within three miles downstream of the discharge (e.g., natural or man-made dams, ponds, reservoirs, etc.)?

🗆 Yes 🛛 No

If yes, discuss how.

Click to enter text.

E. Normal dry weather characteristics

Provide general observations of the water body during normal dry weather conditions.

The creek upstream of the discharge was dry. It flows only when raining.

Date and time of observation: Oct. 1, 2024 @ 8:45 am

Was the water body influenced by stormwater runoff during observations?

🗆 Yes 🛛 No

Section 5. General Characteristics of the Waterbody (Instructions Page 66)

A. Upstream influences None

Is the immediate receiving water upstream of the discharge or proposed discharge site influenced by any of the following? Check all that apply.

- □ Oil field activities □ Urban runoff
- Upstream dischargesAgricultural runoff
- □ Septic tanks

□ Other(s), specify: <u>Click to enter text</u>.

B. Waterbody uses

Observed or evidences of the following uses. Check all that apply.

- ☑ Livestock watering
- □ Irrigation withdrawal
- Fishing

□ Domestic water supply

- □ Contact recreation
- Non-contact recreation
- □ Navigation
- □ Industrial water supply

C. Waterbody aesthetics

Check one of the following that best describes the aesthetics of the receiving water and the surrounding area.

- Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional
- Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored
- Common Setting: not offensive; developed but uncluttered; water may be colored or turbid
- Offensive: stream does not enhance aesthetics; cluttered; highly developed; dumping areas; water discolored

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Toxic Pollutants (Instructions Page 78)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab 🗆 Composite 🗆

Date and time sample(s) collected: See Attachment F.

Pollutant	AVG Effluent	MAX Effluent	Number of Samples	MAL (µg/l)
	Conc. (µg/1)	Conc. (µg/1)		
Acrylonitrile				50
Aldrin	<0.0100	<0.0100	1	0.01
Aluminum	<20.0	<20.0	1	2.5
Anthracene	<0.576	<0.576	1	10
Antimony	3.47	3.47	1	5
Arsenic	<4.0	<4.0	1	0.5
Barium	45.8	45.8	1	3
Benzene				10
Benzidine	<1.15	<1.15	1	50
Benzo(a)anthracene	<0.115	<0.115	1	5
Benzo(a)pyrene	<0.115	<0.115	1	5
Bis(2-chloroethyl)ether	<0.576	<0.576	1	10
Bis(2-ethylhexyl)phthalate	<2.88	<2.88	1	10
Bromodichloromethane	<1.0	<1.0	1	10
Bromoform				10
Cadmium	<2.00	<2.00	1	1
Carbon Tetrachloride				2
Carbaryl	<5.00	<5.00	1	5
Chlordane*	<0.250	<0.250	1	0.2
Chlorobenzene	<1.00	<1.00	1	10
Chlorodibromomethane				10

Table 4.0(1) – Toxics Analysis
Pollutant	AVG Effluent	MAX Effluent	Number of Samples	MAL (µg/l)
	Conc. (µg/l)	Conc. (µg/l)		
Chloroform				10
Chlorpyrifos	<0.0576	<0.0576	1	0.05
Chromium (Total)	<4.0	<4.0	1	3
Chromium (Tri) (*1)	<10.0	<10.0	1	N/A
Chromium (Hex)	<10.0	<10.0	1	3
Copper	5.71	5.71	1	2
Chrysene	<0.576	<0.576	1	5
p-Chloro-m-Cresol	<1.15	<1.15	1	10
4,6-Dinitro-o-Cresol	<1.15	<1.15	1	50
p-Cresol	<0.576	<0.576	1	10
Cyanide (*2)	7.63	7.63	1	10
4,4'- DDD	<0.0100	<0.0100	1	0.1
4,4'- DDE	<0.0100	<0.0100	1	0.1
4,4'- DDT	<0.0200	<0.0200	1	0.02
2,4-D	<0.201	<0.201	1	0.7
Demeton (O and S)				0.20
Diazinon				0.5/0.1
1,2-Dibromoethane				10
m-Dichlorobenzene	<0.576	<0.576	1	10
o-Dichlorobenzene	<0.576	<0.576	1	10
p-Dichlorobenzene	<0.576	<0.576	1	10
3,3'-Dichlorobenzidine	<0.576	<0.576	1	5
1,2-Dichloroethane				10
1,1-Dichloroethylene				10
Dichloromethane				20
1,2-Dichloropropane				10
1,3-Dichloropropene				10
Dicofol	<0.100	<0.100	1	1
Dieldrin	<0.0100	<0.0100	1	0.02
2,4-Dimethylphenol	<0.576	<0.576	1	10
Di-n-Butyl Phthalate	<2.88	<2.88	1	10
Diuron	<0.0900	<0.0900	1	0.09
Endosulfan I (alpha)	< 0.0100	<0.0100	1	0.01

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Endosulfan II (beta)	<0.0100	<0.0100	1	0.02
Endosulfan Sulfate	<0.0100	<0.0100	1	0.1
Endrin	<0.0100	<0.0100	1	0.02
Ethylbenzene				10
Fluoride	<500	<500	1	500
Guthion				0.1
Heptachlor	<0.0090	<0.0090	1	0.01
Heptachlor Epoxide	<0.0100	<0.0100	1	0.01
Hexachlorobenzene	<0.576	<0.576	1	5
Hexachlorobutadiene	<0.576	<0.576	1	10
Hexachlorocyclohexane (alpha)	<0.009	<0.009	1	0.05
Hexachlorocyclohexane (beta)	0.963	0.963	1	0.05
gamma-Hexachlorocyclohexane	<0.0100	< 0.0100	1	0.05
(Lindane)				
Hexachlorocyclopentadiene	<0.576	<0.576	1	10
Hexachloroethane	<0.576	<0.576	1	20
Hexachlorophene	<5.02	<5.02	1	10
Lead	<2.0	<2.0	1	0.5
Malathion				0.1
Mercury	<0.0005	< 0.0005	1	0.005
Methoxychlor	<0.0200	<0.0200	1	2
Methyl Ethyl Ketone				50
Mirex	<0.0200	<0.0200	1	0.02
Nickel	3.01	3.01	1	2
Nitrate-Nitrogen	<100	<100	1	100
Nitrobenzene	<0.576	<0.576	1	10
N-Nitrosodiethylamine	<1.15	<1.15	1	20
N-Nitroso-di-n-Butylamine	<1.15	<1.15	1	20
Nonylphenol	<5.05	<5.05	1	333
Parathion (ethyl)				0.1
Pentachlorobenzene	<0.576	<0.576	1	20
Pentachlorophenol	<1.15	<1.15	1	5
Phenanthrene	<0.576	<0.576	1	10

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Polychlorinated Biphenyls (PCB's) (*3)	<0.100	<0.100	1	0.2
Pyridine	<2.88	<2.88	1	20
Selenium	<2.0	<2.0	1	5
Silver	<2.0	<2.0	1	0.5
1,2,4,5-Tetrachlorobenzene	<0.576	<0.576	1	20
1,1,2,2-Tetrachloroethane				10
Tetrachloroethylene				10
Thallium	<2.0	<2.0	1	0.5
Toluene				10
Toxaphene	<0.200	<0.200	1	0.3
2,4,5-TP (Silvex)	<0.201	<0.201	1	0.3
Tributyltin (see instructions for explanation)	N/A	N/A		0.01
1,1,1-Trichloroethane				10
1,1,2-Trichloroethane				10
Trichloroethylene				10
2,4,5-Trichlorophenol				50
TTHM (Total Trihalomethanes)				10
Vinyl Chloride				10
Zinc	37.1	37.1	1	5

(*1) Determined by subtracting hexavalent Cr from total Cr.

(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab 🗆 Composite 🗆

Date and time sample(s) collected: <u>Click to enter text.</u>

Table 4.0(2)A – Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Antimony	<2.00	<2.00	1	5
Arsenic	<4.00	<4.00	1	0.5
Beryllium	<2.00	<2.00	1	0.5
Cadmium	<2.00	<2.00	1	1
Chromium (Total)	<4.00	<4.00	1	3
Chromium (Hex)	<10.0	<10.0	1	3
Chromium (Tri) (*1)	<10.0	<10.0	1	N/A
Copper	5.71	5.71	1	2
Lead	<2.0	<2.0	1	0.5
Mercury	<0.0005	<0.0005	1	0.005
Nickel	3.01	3.01	1	2
Selenium	<2.0	<2.0	1	5
Silver	<2.0	<2.0	1	0.5
Thallium	<2.0	<2.0	1	0.5
Zinc	37.1	37.1	1	5
Cyanide (*2)	7.63	7.63	1	10
Phenols, Total	<10	<10	1	10

(*1) Determined by subtracting hexavalent Cr from total Cr.

(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acrolein				50
Acrylonitrile				50
Benzene				10
Bromoform				10
Carbon Tetrachloride				2
Chlorobenzene				10
Chlorodibromomethane				10
Chloroethane				50
2-Chloroethylvinyl Ether				10
Chloroform				10
Dichlorobromomethane [Bromodichloromethane]				10
1,1-Dichloroethane				10
1,2-Dichloroethane				10
1,1-Dichloroethylene				10
1,2-Dichloropropane				10
1,3-Dichloropropylene				10
[1,3-Dichloropropene]				
1,2-Trans-Dichloroethylene				10
Ethylbenzene				10
Methyl Bromide				50
Methyl Chloride				50
Methylene Chloride				20
1,1,2,2-Tetrachloroethane				10
Tetrachloroethylene				10
Toluene				10
1,1,1-Trichloroethane				10
1,1,2-Trichloroethane				10
Trichloroethylene				10
Vinyl Chloride				10

Table 4.0(2)B – Volatile Compounds

Table 4.0(2)C – Acid Compounds

Pollutant	AVG Effluent	MAX Effluent	Number of Samples	MAL (µg/l)
	Conc. (µg/l)	Conc. (µg/l)	-	
2-Chlorophenol	<0.576	<0.576	1	10
2,4-Dichlorophenol	<0.576	<0.576	1	10
2,4-Dimethylphenol	<0.576	<0.576	1	10
4,6-Dinitro-o-Cresol	<1.15	<1.15	1	50
2,4-Dinitrophenol	<2.88	<2.88	1	50
2-Nitrophenol	<0.576	<0.576	1	20
4-Nitrophenol	<0.576	<0.576	1	50
P-Chloro-m-Cresol	<0.576	<0.576	1	10
Pentalchlorophenol	<1.15	<1.15	1	5
Phenol	<2.88	<2.88	1	10
2,4,6-Trichlorophenol	<0.576	<0.576	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acenaphthene	<0.576	<0.576	1	10
Acenaphthylene	<0.576	<0.576	1	10
Anthracene	<0.576	<0.576	1	10
Benzidine	<1.15	<1.15	1	50
Benzo(a)Anthracene	<0.115	<0.115	1	5
Benzo(a)Pyrene	<0.115	<0.115	1	5
3,4-Benzofluoranthene	<0.115	<0.115	1	10
Benzo(ghi)Perylene	<0.576	<0.576	1	20
Benzo(k)Fluoranthene	<0.576	<0.576	1	5
Bis(2-Chloroethoxy)Methane	<0.576	<0.576	1	10
Bis(2-Chloroethyl)Ether	<0.576	<0.576	1	10
Bis(2-Chloroisopropyl)Ether	<0.576	<0.576	1	10
Bis(2-Ethylhexyl)Phthalate	<2.88	<2.88	1	10
4-Bromophenyl Phenyl Ether	<0.576	<0.576	1	10
Butyl benzyl Phthalate	2.88	2.88	1	10
2-Chloronaphthalene	<0.576	<0.576	1	10
4-Chlorophenyl phenyl ether	<0.576	<0.576	1	10
Chrysene	<0.576	<0.576	1	5
Dibenzo(a,h)Anthracene	<0.115	<0.115	1	5
1,2-(o)Dichlorobenzene	<0.576	<0.576	1	10
1,3-(m)Dichlorobenzene	<0.576	<0.576	1	10
1,4-(p)Dichlorobenzene	<0.576	<0.576	1	10
3,3-Dichlorobenzidine	<0.576	<0.576	1	5
Diethyl Phthalate	<2.88	<2.88	1	10
Dimethyl Phthalate	<2.88	<2.88	1	10
Di-n-Butyl Phthalate	<2.88	<2.88	1	10
2,4-Dinitrotoluene	<0.576	<0.576	1	10
2,6-Dinitrotoluene	<0.576	<0.576	1	10
Di-n-Octyl Phthalate	<2.88	<2.88	1	10
1,2-Diphenylhydrazine (as Azo- benzene)	<0.576	<0.576	1	20
Fluoranthene	<0.576	<0.576	1	10

Table 4.0(2)D – Base/Neutral Compounds

Pollutant	AVG Effluent	MAX Effluent	Number of Samples	MAL (µg/l)
	Conc. (µg/1)	Conc. (μg/1)		
Fluorene	<0.576	<0.576	1	10
Hexachlorobenzene	<0.576	<0.576	1	5
Hexachlorobutadiene	<0.576	<0.576	1	10
Hexachlorocyclo-pentadiene	<0.576	<0.576	1	10
Hexachloroethane	<0.576	<0.576	1	20
Indeno(1,2,3-cd)pyrene	<0.576	<0.576	1	5
Isophorone	<0.576	<0.576	1	10
Naphthalene	<0.576	<0.576	1	10
Nitrobenzene	<0.576	<0.576	1	10
N-Nitrosodimethylamine	<0.576	<0.576	1	50
N-Nitrosodi-n-Propylamine	<0.576	<0.576	1	20
N-Nitrosodiphenylamine	<0.576	<0.576	1	20
Phenanthrene	<0.576	<0.576	1	10
Pyrene	<0.576	<0.576	1	10
1,2,4-Trichlorobenzene	<0.576	<0.576	1	10

Table 4.0(2)E - Pesticides			
Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples
Aldrin	<0.0100	<0.0100	1
alpha-BHC (Hexachlorocyclohexane)	<0.0090	<0.0090	1
beta-BHC (Hexachlorocyclohexane)	0.963	0.963	1
gamma-BHC (Hexachlorocyclohexane)	<0.0100	<0.0100	1
delta-BHC (Hexachlorocyclohexane)	<0.250	<0.250	1
Chlordane	<0.250	<0.250	1
4,4-DDT	<0.0200	<0.0200	1
4,4-DDE	<0.0100	<0.0100	1
4,4,-DDD	<0.0100	<0.0100	1
Dieldrin	<0.0100	<0.0100	1
Endosulfan I (alpha)	<0.0100	<0.0100	1
Endosulfan II (beta)	<0.0100	<0.0100	1
Endosulfan Sulfate	<0.0100	<0.0100	1
Endrin	<0.0100	<0.0100	1
Endrin Aldehyde	<0.0100	<0.0100	1
Heptachlor	<0.009	<0.009	1
Heptachlor Epoxide	<0.0100	<0.0100	1
PCB-1242	<0.100	<0.100	1
PCB-1254	<0.100	<0.100	1
PCB-1221	<0.100	<0.100	1
PCB-1232	<0.100	<0.100	1

PCB-1248

PCB-1260

PCB-1016

Toxaphene

* For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

< 0.100

< 0.100

< 0.100

< 0.200

MAL (µg/l)

0.01 0.05 0.05 0.05

0.05 0.2

0.02 0.1 0.1 0.02

0.010.02

0.1 0.02

0.1 0.01 0.01 0.2 0.2 0.2 0.2

0.2

0.2

0.2

0.3

1

1

1

1

< 0.100

< 0.100

< 0.100

< 0.200

Section 3. Dioxin/Furan Compounds

A. Indicate which of the following compounds from may be present in the influent from a contributing industrial user or significant industrial user. Check all that apply.

2,4,5-trichlorophenoxy acetic acid
Common Name 2,4,5-T, CASRN 93-76-5
2-(2,4,5-trichlorophenoxy) propanoic acid
Common Name Silvex or 2,4,5-TP, CASRN 93-72-1
2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate
Common Name Erbon, CASRN 136-25-4
0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate
Common Name Ronnel, CASRN 299-84-3
2,4,5-trichlorophenol
Common Name TCP, CASRN 95-95-4
hexachlorophene
Common Name HCP, CASRN 70-30-4

For each compound identified, provide a brief description of the conditions of its/their presence at the facility.

Click to enter text.

B. Do you know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin (TCDD) or any congeners of TCDD may be present in your effluent?

🗆 Yes 🖾 No

If **yes**, provide a brief description of the conditions for its presence.

Click to enter text.

C. If any of the compounds in Subsection A **or** B are present, complete Table 4.0(2)F.

For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab \Box Composite \Box

Date and time sample(s) collected: <u>Click to enter text.</u>

Table 4.0(2)F – Dioxin/Furan Compounds

Compound	Toxic Equivalenc y Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1					10
1,2,3,7,8 PeCDD	0.5					50
2,3,7,8 HxCDDs	0.1					50
1,2,3,4,6,7,8 HpCDD	0.01					50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05					50
2,3,4,7,8 PeCDF	0.5					50
2,3,7,8 HxCDFs	0.1					50
2,3,4,7,8 HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					0.5
PCB 81	0.0003					0.5
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total						

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: TOXICITY TESTING REQUIREMENTS

The following **is required** for facilities with a current operating design flow of**1.0 MGD or greater**, with an EPA-approved **pretreatment** program (or those required to have one under 40 CFR Part 403), or are required to perform Whole Effluent Toxicity testing. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Required Tests (Instructions Page 88)

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic: <u>N/A</u>

48-hour Acute: <u>12 – D. Pulex, 15 – Pimephales promelas</u>

Section 2. Toxicity Reduction Evaluations (TREs)

Has this facility completed a TRE in the past four and a half years? Or is the facility currently performing a TRE?

□ Yes □ No

If yes, describe the progress to date, if applicable, in identifying and confirming the toxicant.

Click to enter text.

Section 3. Summary of WET Tests

If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed.

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal				
All testing results have been previously submitted via both the DMR and tables.							

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works.

Section 1. All POTWs (Instructions Page 89)

A. Industrial users (IUs)

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

If there are no users, enter 0 (zero).

Categorical IUs:

Number of IUs: 3

Average Daily Flows, in MGD: **0.025**

Significant IUs – non-categorical:

Number of IUs: 9

Average Daily Flows, in MGD: 1.064

Other IUs:

Number of IUs: --

Average Daily Flows, in MGD: --

B. Treatment plant interference

In the past three years, has your POTW experienced treatment plant interference (see instructions)?

🗆 Yes 🛛 No

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

In the past three years the treatment plant has experienced three events in which effluent quality limitations were exceeded. It is uncertain if the events are due to interferences, operational issues, or pass through. The violations and dates are as follows:

Parameter	Dates
Carbonaceous Biochemical Oxygen	8/24/2022
Demand, 5-day	
Ammonia	6/19/2024 - 6/22/2024
Ammonia	7/13/2024 - 7/24/2024

The probable causes and possible source(s) that may have caused the events are unknown. However, the acceptance of hauled chemical toilet wastes was halted in July 2024.

C. Treatment plant pass through

In the past three years, has your POTW experienced pass through (see instructions)?

🛛 Yes 🗆 No

If yes, identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.

See above.	

D. Pretreatment program

Does your POTW have an approved pretreatment program?

🖾 Yes 🗆 No

If yes, complete Section 2 only of this Worksheet.

Is your POTW required to develop an approved pretreatment program?

□ Yes □ No

If yes, complete Section 2.c. and 2.d. only, and skip Section 3.

If no to either question above, skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.

Section 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 90)

A. Substantial modifications

Have there been any **substantial modifications** to the approved pretreatment program that have not been submitted to the TCEQ for approval according to *40 CFR §403.18*?

🗆 Yes 🛛 No

If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.

Click to enter text.

B. Non-substantial modifications

Have there been any **non-substantial modifications** to the approved pretreatment program that have not been submitted to TCEQ for review and acceptance?

🗆 Yes 🖾 No

If yes, identify all non-substantial modifications that have not been submitted to TCEQ, including the purpose of the modification.

Click to enter text.		

C. Effluent parameters above the MAL

In Table 6.0(1), list all parameters measured above the MAL in the POTW's effluent monitoring during the last three years. Submit an attachment if necessary.

Table 6.0(1) – Parameters Above the MAL

Pollutant	Concentration	MAL	Units	Date
See Attachment G.				

D. Industrial user interruptions

Has any SIU, CIU, or other IU caused or contributed to any problems (excluding interferences or pass throughs) at your POTW in the past three years?

🗆 Yes 🛛 No

If yes, identify the industry, describe each episode, including dates, duration, description of the problems, and probable pollutants.

Click to enter text.

Section 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 90)

A. General information N/A Company Name: Click to enter text. SIC Code: Click to enter text. Contact name: Click to enter text. Address: Click to enter text. City, State, and Zip Code: Click to enter text. Telephone number: Click to enter text. Email address: Click to enter text.

B. Process information

Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).

Click to enter text.

C. Product and service information

Provide a description of the principal product(s) or services performed.

Click to enter text.	

D. Flow rate information

See the Instructions for definitions of "process" and "non-process wastewater."

Discharge, in gallons/day: <u>Click to enter text.</u>										
Discharge Type: 🗆	Continuous	□ Batch		Intermittent						
Non-Process Wastewate	Non-Process Wastewater:									
Discharge, in gallons/day: <u>Click to enter text.</u>										
Discharge Type: 🗆	Continuous	□ Batch		Intermittent						

E. Pretreatment standards

Is the SIU or CIU subject to technically based local limits as defined in the *i*nstructions?

□ Yes □ No

Is the SIU or CIU subject to categorical pretreatment standards found in *40 CFR Parts 405-471*?

🗆 Yes 🗆 No

If subject to categorical pretreatment standards, indicate the applicable category and subcategory for each categorical process.

Category: Subcategories: Click to enter text.

Click or tap here to enter text. <u>Click to enter text.</u>

Category: Click to enter text.

Subcategories: Click to enter text.

Category: <u>Click to enter text.</u>

Subcategories: Click to enter text.

Category: <u>Click to enter text.</u>

Subcategories: Click to enter text.

Category: <u>Click to enter text.</u>

Subcategories: Click to enter text.

F. Industrial user interruptions

Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years?

🗆 Yes 🗆 No

If yes, identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants.

Click to enter text.

CITY OF TEMPLE DOSHIER FARM WASTEWATER TREATMENT FACILITY TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION LIST OF ATTACHMENTS

ATTACHMENT

- A. Core Data Form
- B. Plain Language Summary
- C. USGS Map
- D. Process Flow Diagram
- E. Site Drawing
- F. Effluent Analysis Reports
- G. Parameters above the MAL SPIF

REFERENCE

Admin Report 1.0, Section 3 Admin Report 1.0, Section 8.F Admin Report 1.0, Section 13 Tech Report 1.0, Section 2.C Tech Report 1.0, Section 3 Tech Report 1.0, Section 7 and Worksheet 4.0 Worksheet 6.0, Section 2.C Attachment A Core Data Form Admin Report 1.0, Section 3

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)								
New Permit, Registration or Authorization (<i>Core Data Form should be submitted with the program application.</i>)								
Renewal (Core Data Form should be submitted with the submitted with th	Renewal (Core Data Form should be submitted with the renewal form) Other							
2. Customer Reference Number (if issued)	Follow this link to search	3. Regulated Entity Reference Number (if issued)						
CN 600245799 Central Registry** RN 101608958								

SECTION II: Customer Information

4. General 0	ral Customer Information 5. Effective Date for Customer Information Updates (mm/dd/yyyy)											
☐ New Custo ☐Change in	omer Legal Narr	ne (Verifiable with th	Update Devas Secr	to Customer retary of State	Inform e or Te	ation xas (ı Comptrolle	er of Pu	Change in I Iblic Accour	Regulate nts)	ed Entity Ow	nership
The Custon Secretary o	The Customer Name submitted here may be updated automatically based on what is current and active with the Texas Secretary of State (SOS) or Texas Comptroller of Public Accounts (CPA).											
6. Custome	r Legal N	lame (If an individu	al, print last r	name first: eg	: Doe,	John	ı)	<u>If nev</u>	w Customer	r, enter j	previous Cus	tomer below:
City of Temple												
7. TX SOS/CPA Filing Number 8. TX State Tax ID (11 digits) 9. Federal Tax ID (9 digits) 10. DUNS Number (if applicable) (9 digits) (9 digits) 10. DUNS Number (11 digits) 10. DUNS Number (11 digits)								8 Number <i>(if</i>				
11. Type of	11. Type of Customer: Corporation Individual Partnership: General Limited											
Government:	🛛 City 🗌	County 🗌 Federal	🗌 Local 🔲	State 🗌 Oth	ier		Sole F	Proprie	torship	🗌 Otł	ner:	
12. Number	of Empl	oyees						13. I	ndepende	ently O	wned and	Operated?
0-20	21-100	⊠ 101-250 □ 2	251-500] 501 and hig	gher			⊠ Y	es	□ No	D	
14. Custom	er Role (Proposed or Actual)	– as it relate	s to the Regu	ulated	Entity	listed on	this for	m. Please o	check ol	ne of the follo	owing
⊠Owner ⊡Occupation	al License	□ Operator e □ Responsib	le Party	Owner	& Ope BSA A	erator pplica	ant		Other:			
15. Mailing	3210 Ea	st Avenue H, Buildir	ng A									
Address:	0:4			04+4+			710	7050			710 + 4	
Add1035.	City	lemple		State	IX		ZIP	7650	1		ZIP + 4	8402
16. Country	Mailing	Information (if ou	tside USA)			17.	. E-Mail A	Addre	ss (if applic	cable)		
dbond@templetx.org												
18. Telepho	ne Numl	per		19. Extens	ion o	r Co	de		20. Fax I	Numbe	er (if applical	ole)
(254)298-5	(254)298-5621 () -											

SECTION III: Regulated Entity Information

21. General Regulated	21. General Regulated Entity Information (If 'New Regulated Entity" is selected, a new permit application is also required.)							
☐ New Regulated Entity	Update	to Regulated Entity	Name 🔲 U	odate to Re	gulated En	tity Information		
The Regulated Entity Name submitted may be updated, in order to meet TCEQ Core Data Standards (removal of organizational endings such as Inc, LP, or LLC).								
22. Regulated Entity N	lame (Enter	name of the site whe	ere the regulate	ed action is	taking plac	e.)		
Doshier Farms Wastewate	er Treatment I	Facility						
23. Street Address of the Regulated	2515 East Avenue H							
Entity:								
<u>(No PO Boxes)</u>	City	Temple	State	тх	ZIP	76501	ZIP + 4	8424
24. County	Bell							

If no Street Address is provided, fields 25-28 are required.

25. Description to								
Physical Location:								
26. Nearest City						State	Ne	arest ZIP Code
Temple						ТХ	76	501
Latitude/Longitude are required and may be added/updated to meet TCEQ Core Data Standards. (Geocoding of the Physical Address may be used to supply coordinates where none have been provided or to gain accuracy).								
27. Latitude (N) In Decimal: 31.077222 28. Longitude (W) In Decimal: -97.318055								8055
Degrees	Minutes	1	Seconds	Degre	es	Minutes		Seconds
31		04	38		97		19	05
29. Primary SIC Code 30. Secondary SIC Code 31. Primary NAICS Code 32. Secondary NAICS Code (5 or 6 digits) (5 or 6 digits) (5 or 6 digits) (5 or 6 digits)								
	(4 (ligits)	1		,	(5 01	o digits)	
4952				221320				
33. What is the Primar	y Busines	s of this entity	/? (Do not repeat	the SIC or	NAICS des	cription.)		
Treatment of domestic was	stewater							
	3 210 Eas	t Avenue H, Build	ding A					
34. Mailing								
Address:	City	Tomplo	Stata	ту	710	76501		
	City	Temple	State		216	70501	217 + 4	
35. E-Mail Address:	dbo	ond@templetx.go	V					
36. Telephone Numbe	r		37. Extension of	or Code	38.	Fax Number (if a	applicable)	
(2 54) 2 98- 5 621					() -		

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

🗌 Dam Safety	Districts	Edwards Aquifer	Emissions Inventory Air	☐ Industrial Hazardous Waste

Municipal Solid Waste	Review Air		Petroleum Storage Tank	D PWS
Sludge	Storm Water	Title V Air		Used Oil
Voluntary Cleanup	Wastewater	Wastewater Agriculture	UWater Rights	Other:
	WQ0010470002			

SECTION IV: Preparer Information

40. Name:	Janet Sims					41. Title:	Project Manager			
42. Telephone Number 43. Ext./Code			44.	Fax	Number	45. E-Mail Address				
(512)735-100)1		()	-	Janet.Sims	@meadhunt.com			

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	City of Temple	Job Title:	Director of Public Wo	r of Public Works			
Name (In Print):	Don Bond, P.E.	·I,	Phone:	(254) 298- 5621			
Signature:	Blond		Date:	10/24/2024			
				the for the state			

Attachment B Plain Language Summary Admin Report 1.0, Section 8.F TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

PLAIN LANGUAGE SUMMARY FOR TPDES OR TLAP PERMIT APPLICATIONS

Plain Language Summary Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary as required by <u>Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H</u>. Applicants may modify the template as necessary to accurately describe their facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how the applicant will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements.

If you are subject to the alternative language notice requirements in <u>30 TAC Section 39.426</u>, <u>you must provide a translated copy of the completed plain language summary in the</u> <u>appropriate alternative language as part of your application package</u>. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTIC WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

The City of Temple (CN600245799) operates the Doshier Farm Wastewater Treatment Facility (RN101608958), an activated sludge plant. The facility is located at 2515 East Avenue H, in Temple, Bell County, Texas 76501. The permit application is for a renewal of the currently issued permit for an annual average daily flow of 7.5 million gallons per day.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), ammonia nitrogen (NH₃-N), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent in the permit application package. Domestic wastewater is treated by fine screens, grit removal basins, primary clarifiers, biological reactor, final clarifier, anaerobic digesters, a belt filter press, belt thickener, chlorine contact chamber, and dechlorinating chamber.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES DOMESTICAS' /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

La ciudad de Temple (CN600245799) opera la Doshier Farm Wastewater Treatment Facility (RN101608958), una planta de lodos activados. La instalación está ubicada en 2515 East Avenue H, en Temple, Condado de Bell, Texas 76501. La solicitud de permiso es para una renovación del permiso actualmente emitido para un flujo diario promedio anual de 7.5 millones de galones por día.

Se espera que las descargas de la instalación contengan en demanda bioquímica de oxígeno carbónico de cinco días (CBOD5), sólidos suspendidos totales (TSS), nitrógeno amoniacal (NH3-N) y Escherichia coli. Los contaminantes potenciales adicionales se incluyen en el Informe Técnico Doméstico 1.0, Sección 7 Análisis de Contaminantes de Efluentes Tratados en el paquete de solicitud de permiso.. Las aguas residuales domésticas serán tratadas por una planta de proceso de lodos activados. Las unidades de tratamiento son cribas finas, cuencas de eliminación de arena, clarificadores primarios, reactor biológico, clarificador final, digestores anaeróbicos, un filtro prensa de banda, espesador de banda, cámara de contacto de cloro y cámara de decloración.

Attachment C USGS Map Admin Report 1.0, Section 13

ATTACHMENT C CITY OF TEMPLE- DOSHIER FARM WASTEWATER TREATMENT FACILITY TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION USGS MAP

Attachment D Process Flow Diagram Tech Report 1.0, Section 2.C

Attachment E Site Drawing Tech Report 1.0, Section 3

ATTACHMENT E CITY OF TEMPLE DOSHIER FARM WASTEWATER TREATMENT FACILITY TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION SITE DRAWING Attachment F Effluent Analysis Reports Tech Report 1.0, Section 7 and Worksheet 4.0 Email information for report date: 11/4/24 16:27

H030066

Brazos River Authority

Attn: Adrienne Tapia adrienne.tapia@brazos.org

P.O. Box 7555 Waco, TX 76714-7555

Please contact us for your sampling needs or if you have any questions. Some convenient contacts are listed below. You can also access your results and reports through our ClientConnect ™ portal on our website (www.aqua-techlabs.com).

For sampling questions:

samplingbryan@aqua-techlabs.com (Bryan area) samplingaustin@aqua-techlabs.com (Austin area)

reporting@aqua-techlabs.com (report questions)

Aqua-Tech values you as a customer and encourages you to speak with our staff at 979-778-3707 or the above emails if you have questions.

Thank you for your business, June M. Brien Executive Technical Director **BRYAN FACILITY** 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN FACILITY 3512 Montopolis Dr. Suite A Austin, TX 78744 Phone: (512) 301-9559 Fax: (512) 301-9552

The analyses summarized in this report were performed by Aqua-Tech Laboratories, Inc. unless otherwise noted. Aqua-Tech Laboratories, Inc. holds accreditation from the State of Texas in accordance with TNI and/or through the TCEQ Drinking Water Commercial Laboratory Approval Program.

The following abbreviations indicate certification status:

- NEL TNI accredited parameter.
- ANR Accreditation not offered by the State of Texas.
- DWP Approval through the TCEQ Drinking Water Commercial Laboratory Approval Program.
- INF Aqua-Tech Laboratories, Inc. is not accredited for this parameter. It is reported on an informational basis only.

Subcontracted data summarized in this report is indicated by "Sub" in the Lab column.

General Definitions:

- NR Not Reported.
- RPD Relative Percent Difference.
- % R Percent Recovery.
- dry Results with the "dry" unit designation are reported on a "dry weight" basis.
- SQL The Sample Quantitation Limit is the value below which the parameter cannot reliably be detected. The SQL includes all sample preparations, dilutions and / or concentrations.
- Adj MDL The Adjusted Method Detection Limit is the MDL value adjusted for any sample dilutions or concentrations .
 - MDL The Method Detection Limit is the lowest theoretical value that is statistically different from zero for a specific method, taking into account all preparation steps and instrument settings.

All samples are reported on an "as received" basis unless the designation "dry" is added to the reported unit.

Copies of Aqua-Tech Laboratories, Inc. procedures and individual sampling plans are available upon request. Note that samples are collected by Aqua-Tech Laboratories, Inc. personnel unless otherwise noted in the "Sample Collected" field of this report as "Client" or "CLT".

Samples included in this report were received in acceptable condition according to Aqua-Tech Laboratories, Inc. procedures and 40 CFR, Chapter I, Subchapter D, Part 136.3, TABLE II. - *Required containers, preservation techniques, and holding times*, unless otherwise noted in this report.

Record Retention:

All reports, raw data, and associated quality control data are kept on file for 10 years before being destroyed. Any client that would like copies of records must contact Aqua-Tech Laboratories, Inc. no later than six months prior to the scheduled disposal. An administrative fee for retrieval and distribution will apply.

This report was approved by:

June M. Brien

June M. Brien, Technical Director

The results in this report apply only to the samples analyzed. This analytical report must be reproduced in its entirety unless written permission is granted by Aqua-Tech Laboratories, Inc.

corp@aqua-techlabs.com

www.aqua-techlabs.com

PACCREA

Certificate: TX-C24-00311

TCEQ Lab ID T104704371

BRYAN FACILITY

635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN FACILITY 3512 Montopolis Dr. Suite A Austin, TX 78744 Phone: (512) 301-9559 Fax: (512) 301-9552

Analytical Report

Brazos River Authority

11/4/24

Report Printed:

H030066

16:27

Temple Belton Regional WWTP Ef	fluent	Collected: 09/17 Received: 09/17	/24 10:59 by CLIENT /24 15:38 by James R Frit	z		<i>Type</i> Comp		Ma Nor	<i>trix</i> n Potable	C-O-C # H030066		
Lab ID# H030066-01	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method		Batch	
General Chemistry												
Carbonaceous BOD (5 day)	3	mg/L		1	1	1	Bryan	09/18/24 07:22 CTG	SM5210 B 2016		M182887	NEL
Total Suspended Solids	3	mg/L		1	1	1	Bryan	09/18/24 09:58 MRH	SM2540 D 2015		M182897	NEL
Total Dissolved Solids	516	mg/L		25.0	50.0	50.0	Bryan	09/19/24 12:38 MRH	SM2540 C 2015		M182992	NEL
Ammonia as N	4.96	mg/L	C-02	0.05	0.27	0.30	Bryan	09/19/24 11:44 KMA	SM4500-NH3 G 20	11	M182970	NEL
Total Kjeldahl Nitrogen as N	6.50	mg/L		0.13	0.13	0.20	Bryan	09/26/24 13:07 KMA	EPA 351.2 R2.0		M182958	NEL
Nitrate as N	4.8	mg/L			0.10	0.12	Calc	09/18/24 12:30 ATG	SM4500-NO3-F 20	11	[CALC]	NEL
Nitrite as N	0.33	mg/L		0.004	0.009	0.02	Bryan	09/18/24 08:52 ATG	SM4500 NO2- B 2	011	M182901	NEL
Nitrate/Nitrite as N	5.1	mg/L		0.02	0.10	0.12	Bryan	09/18/24 12:30 KMA	SM4500-NO3-F 20	11	M182912	ANR
Total Alkalinity as CaCO3 (pH4.5)	164	mg/L		5.00	20.0	20.0	Bryan	09/19/24 12:04 ATG	SM2320 B 2011		M182995	NEL
Chloride	109	mg/L		0.60	2.41	20.0	Austin	09/23/24 10:45 MSA	SM4500-CI- B 2011		M183101	NEL
Sulfate as SO4(2-)	45.8	mg/L		2.63	3.50	6.67	Austin	09/24/24 11:44 BEB	ASTM D516-16		M183176	NEL
Metals (Total)												
Phosphorus (Total)	<0.050	mg/L		0.082	0.041	0.050	Bryan	09/25/24 19:06 ABM	EPA 200.7 R4.4		M182987	NEL

Explanation of Notes

C-02 Result confirmed by re-analysis.

Form: C:\ELMNT\FORMAT\ATL 090124 FIN_LS.RPT

BRYAN FACILITY

635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN FACILITY 3512 Montopolis Dr. Suite A Austin, TX 78744 Phone: (512) 301-9559 Fax: (512) 301-9552

Analytical Report

Brazos River Authority

11/4/24

Report Printed:

H030066

16:27

General Chemistry - Quality Control														
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Ammonia as N - SM4500-NH3 G 2011													Bryan	
Initial Cal Check	1.00	mg/L				09/19/24 11:44 KMA	1.00		100	90 - 110			2409243	
Low Cal Check	0.05	mg/L				09/19/24 11:44 KMA	0.0500		104	70 - 130			2409243	
Blank	<0.05	mg/L		0.05	0.05	09/19/24 11:44 KMA							M182970	
LCS	0.50	mg/L		0.05	0.05	09/19/24 11:44 KMA	0.500		100	85 - 115			M182970	
LCS Dup	0.50	mg/L		0.05	0.05	09/19/24 11:44 KMA	0.500		99.8	85 - 115	0.200	20	M182970	
Matrix Spike	0.51	mg/L		0.05	0.05	09/19/24 11:44 KMA	0.500	<0.05	101	70 - 130			M182970	
Matrix Spike Dup	0.51	mg/L		0.05	0.05	09/19/24 11:44 KMA	0.500	<0.05	102	70 - 130	0.981	20	M182970	
Carbonaceous BOD (5 day) - SM5210 B 2016									Bryan					
Diln Water Blk	<0.20	mg/L		1	1	09/18/24 07:22 CTG		0.1		< or = 0.2 mg/L			2409218	
GGA	170	mg/L		1	1	09/18/24 07:22 CTG	198		85.9	76 - 110			2409218	
GGA	164	mg/L		1	1	09/18/24 07:22 CTG	198		82.8	76 - 110			2409218	
Seed Blank	<1	mg/L		1	1	09/18/24 07:22 CTG							2409218	
Seed Blank	<1	mg/L		1	1	09/18/24 07:22 CTG							2409218	
Duplicate	7	mg/L		2	2	09/18/24 07:22 CTG		8			5.56	21	M182887	
Chloride - SM4500-	CI- B 2011													Austin
Initial Cal Check	49.8	mg/L				09/23/24 10:45 MSA	50.0		99.5	90 - 110			2409289	
Low Cal Check	5.07	mg/L				09/23/24 10:45 MSA	4.95		102	0 - 200			2409289	
Blank	<5.00	mg/L		0.60	5.00	09/23/24 10:45 MSA							M183101	
LCS	20.7	mg/L		0.60	5.00	09/23/24 10:45 MSA	19.8		105	90 - 110			M183101	
LCS Dup	20.3	mg/L		0.60	5.00	09/23/24 10:45 MSA	19.8		102	90 - 110	2.25	5.86	M183101	
Matrix Spike	221	mg/L		2.41	20.0	09/23/24 10:45 MSA	79.2	144	97.7	83.4 - 113			M183101	
Matrix Spike Dup	221	mg/L		2.41	20.0	09/23/24 10:45 MSA	79.2	144	97.7	83.4 - 113	0.00	10.7	M183101	
MRL Check	5.07	mg/L		0.60	5.00	09/23/24 10:45 MSA	4.95		102	70 - 130			M183101	
Nitrate/Nitrite as N	- SM4500-NO	3-F 2011												Bryan
Initial Cal Check	1.0	mg/L				09/18/24 12:30 KMA	0.959		107	90 - 110			2409226	
Low Cal Check	0.02	mg/L				09/18/24 12:30 KMA	0.0200		90.0	70 - 130			2409226	
Blank	<0.02	mg/L		0.02	0.02	09/18/24 12:30 KMA							M182912	
LCS	0.51	mg/L		0.02	0.02	09/18/24 12:30 KMA	0.500		101	92.6 - 108			M182912	
LCS Dup	0.51	mg/L		0.02	0.02	09/18/24 12:30 KMA	0.500		101	92.6 - 108	0.00	2.2	M182912	
Matrix Spike	14	mg/L		0.17	0.20	09/18/24 12:30 KMA	5.00	8.9	107	79.4 - 122			M182912	
Matrix Spike Dup	14	mg/L		0.17	0.20	09/18/24 12:30 KMA	5.00	8.9	107	79.4 - 122	0.225	7.62	M182912	
BRYAN FACILITY

635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN FACILITY 3512 Montopolis Dr. Suite A Austin, TX 78744 Phone: (512) 301-9559 Fax: (512) 301-9552

Analytical Report

Brazos River Authority

11/4/24

Report Printed:

H030066

16:27

				G	ieneral C	hemistry - Quality Co	ontrol							
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Nitrite as N - SM45	00 NO2- B 20	011												Bryan
Initial Cal Check	0.07	mg/L				09/18/24 08:52 ATG	0.0695		101	90 - 110			2409220	
MRL	0.009	mg/L				09/18/24 08:52 ATG	0.0100		92.1	70 - 130			2409220	
Blank	<0.01	mg/L		0.004	0.01	09/18/24 08:52 ATG							M182901	
LCS	0.05	mg/L		0.004	0.01	09/18/24 08:52 ATG	0.0500		94.2	90 - 110			M182901	
LCS Dup	0.05	mg/L		0.004	0.01	09/18/24 08:52 ATG	0.0500		93.5	90 - 110	0.734	10	M182901	
Matrix Spike	0.05	mg/L		0.004	0.01	09/18/24 08:52 ATG	0.0500	0.006	84.7	75 - 115			M182901	
Matrix Spike Dup	0.05	mg/L		0.004	0.01	09/18/24 08:52 ATG	0.0500	0.006	84.7	75 - 115	0.00	10	M182901	
Initial Cal Check	0.07	mg/L				10/11/23 06:12 ATG	0.0660		102	90 - 110			2310107	
Sulfate as SO4(2-)	- ASTM D516	-16												Austin
Initial Cal Check	27.8	mg/L				09/13/24 09:10 BEB	30.0		92.7	90 - 110			2409181	
Initial Cal Check	28.7	mg/L				09/24/24 11:44 BEB	30.0		95.8	90 - 110			2409303	
Low Cal Check	4.07	mg/L				09/24/24 11:44 BEB	5.00		81.5	70 - 130			2409303	
Blank	<5.00	mg/L		2.63	5.00	09/24/24 11:44 BEB							M183176	
Duplicate	125	mg/L		10.5	20.0	09/24/24 11:44 BEB		122			2.00	11.9	M183176	
LCS	8.54	mg/L		2.63	5.00	09/24/24 11:44 BEB	10.0		85.4	85 - 115			M183176	
LCS Dup	8.62	mg/L		2.63	5.00	09/24/24 11:44 BEB	10.0		86.2	85 - 115	0.847	13.8	M183176	
Matrix Spike	156	mg/L		10.5	20.0	09/24/24 11:44 BEB	40.0	122	84.7	61.6 - 137			M183176	
Matrix Spike Dup	157	mg/L		10.5	20.0	09/24/24 11:44 BEB	40.0	122	85.5	61.6 - 137	0.958	17.1	M183176	
Total Alkalinity as	CaCO3 (pH4.	5) - SM2320 B	2011											Bryan
Initial Cal Check	6.90	mg/L				09/19/24 12:04 ATG	6.86		101	98 - 102			2409247	
Initial Cal Check	9.16	mg/L				09/19/24 12:04 ATG	9.18		99.8	98 - 102			2409247	
Low Cal Check	20.0	mg/L				09/19/24 12:04 ATG	19.2		104	70 - 130			2409247	
Duplicate	228	mg/L		20.0	20.0	09/19/24 12:04 ATG		226			0.881	10	M182995	
LCS	78.0	mg/L		20.0	20.0	09/19/24 12:04 ATG	77.0		101	90 - 110			M182995	
LCS Dup	78.0	mg/L		20.0	20.0	09/19/24 12:04 ATG	77.0		101	90 - 110	0.00	10	M182995	
Total Dissolved So	lids - SM2540) C 2015												Bryan
Blank	<25.0	mg/L		25.0	25.0	09/19/24 12:38 MRH							M182992	
Duplicate	498	mg/L		50.0	50.0	09/19/24 12:38 MRH		516			3.55	10	M182992	
Reference	492	mg/L		100	100	09/19/24 12:38 MRH	500		98.4	78 - 122			M182992	

BRYAN FACILITY

AUSTIN FACILITY 3512 Montopolis Dr. Suite A Austin, TX 78744 Phone: (512) 301-9559 Fax: (512) 301-9552

Analytical Report

Brazos River Authority

11/4/24

Report Printed:

H030066

16:27

				G	eneral Cl	hemistry - Quality Cor	ntrol							
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Total Kjeldahl Nitre	ogen as N - E	EPA 351.2 R2.0											E	Bryan
Initial Cal Check	1.65	mg/L				09/26/24 13:07 KMA	1.69		97.8	90 - 110			2409353	
Low Cal Check	0.22	mg/L				09/26/24 13:07 KMA	0.200		108	70 - 130			2409353	
Blank	<0.20	mg/L		0.13	0.20	09/26/24 13:07 KMA							M182958	
LCS	4.20	mg/L		0.13	0.20	09/26/24 13:07 KMA	4.00		105	87.4 - 119			M182958	
LCS Dup	4.68	mg/L		0.13	0.20	09/26/24 13:07 KMA	4.00		117	87.4 - 119	10.7	11.1	M182958	
Matrix Spike	165	mg/L		3.25	5.00	09/26/24 13:07 KMA	100	55.8	109	62.1 - 130			M182958	
Matrix Spike Dup	162	mg/L		3.25	5.00	09/26/24 13:07 KMA	100	55.8	106	62.1 - 130	2.44	17.5	M182958	
Total Suspended S	Solids - SM2	540 D 2015											E	Bryan
Blank	<1	mg/L		1	1	09/18/24 09:58 MRH							M182897	
Duplicate	344	mg/L		40	40	09/18/24 09:58 MRH		336			2.35	20	M182897	
Reference	102	mg/L		10	10	09/18/24 09:58 MRH	101		101	80 - 120			M182897	
					Metals ((Total) - Quality Contro	bl							
							Spike	Source				RPD		

	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Phosphorus (Total)	EPA 200.7 F	4.4												Bryan
Blank	<0.050	mg/L		0.041	0.050	09/25/24 18:29 ABM							M182987	
LCS	2.58	mg/L		0.041	0.050	09/25/24 18:32 ABM	2.50		103	84.5 - 115.4			M182987	
LCS Dup	2.67	mg/L		0.041	0.050	09/25/24 18:35 ABM	2.50		107	84.5 - 115.4	3.42	20	M182987	
Duplicate	7.30	mg/L		0.041	0.050	09/25/24 18:38 ABM		7.34			0.567	20	M182987	
Matrix Spike	10.3	mg/L		0.041	0.050	09/25/24 18:43 ABM	2.50	7.34	116	69.5 - 130.4			M182987	

BRYAN FACILITY

635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN FACILITY 3512 Montopolis Dr. Suite A Austin, TX 78744 Phone: (512) 301-9559 Fax: (512) 301-9552

Analytical Report

Brazos River Authority

11/4/24

Report Printed:

H030066

16:27

Sample Preparation Summary										
Sample	Method	Prepared	Lab	Bottle	Initial	Units	Final	Units	Factor	Batch
H030066-01										
Ammonia as N	SM4500-NH3 G 2011	9/19/24 9:34 KMA	Bryan	D	1.00	mL	6.00	mL	1	M182970
Carbonaceous BOD (5 day)	SM5210 B 2016	9/18/24 7:22 CTG	Bryan	F	300	mL	300	mL	1	M182887
Chloride	SM4500-CI- B 2011	9/23/24 10:45 MSA	Austin	С	25.0	mL	100	mL	1	M183101
Nitrate/Nitrite as N	SM4500-NO3-F 2011	9/18/24 10:01 KMA	Bryan	А	1.00	mL	6.00	mL	1	M182912
Nitrite as N	SM4500 NO2- B 2011	9/18/24 8:52 ATG	Bryan	I	10.0	mL	25.0	mL	1	M182901
Phosphorus (Total)	EPA 200.7 R4.4	9/19/24 12:45 ABM	Bryan	Е	50.0	mL	25.0	mL	1	M182987
Sulfate as SO4(2-)	ASTM D516-16	9/24/24 11:44 BEB	Austin	С	75.0	mL	100	mL	1	M183176
Total Alkalinity as CaCO3 (pH4.5)	SM2320 B 2011	9/19/24 12:04 ATG	Bryan	н	50.0	mL	200	mL	1	M182995
Total Dissolved Solids	SM2540 C 2015	9/19/24 12:38 MRH	Bryan	В	50.0	mL	100	mL	1	M182992
Total Kjeldahl Nitrogen as N	EPA 351.2 R2.0	9/19/24 7:34 CTG	Bryan	А	25.0	mL	25.0	mL	1	M182958
Total Suspended Solids	SM2540 D 2015	9/18/24 9:58 MRH	Bryan	G	1000	mL	1000	mL	1	M182897

AQUA-TECH LABORATORIES, INC.	Chain-of-Custody an	d Analysis Request	SPI ACCHED	Aqua-Tech lat	ooratories, Inc.	C-O-C #
Client / Project Name:	Brazos River A Temple Belton Regional WW	uthority TP- Permit Renewal		Austin 3512 Montopolis Dr. Austin TX 78744	Bryan 635 Phil Gramm Blvd. Bryan, TX 77807	H030066
Name Adrienne Tapia Address P.O. Box 7555 Generative Waco Content State TX Zip Phone (737) 245-0004 email	76714-7555 DW Drink SE NP Non-F Oilig UG CTU Custo CTU Custo	ng Water Reagent tracking is Potable Water available upon request. dy Maintained dy Transfer Unbroken	TCEQ LAB ID: T104704371	512.301.9559 Test results meet all a requirements unles Sample	979.778.3707 ccreditation/certification ss stated otherwise. Custody	Page 1 of 1 rte_ATL COC 012723.rpt
Analyses Requested: "A" [NEL] = NELAP accredited parameter [SUB] = NELAP accredited subcontracted By relinquishing the samples listed below to A method that is within ATL's NELAP fields of accre a NELAP lab that is accredited for that methoo analyzed by a compendial method. If a specific r all n A current list of AT	Prefix indicates Austin, all others Bryan or S Name format: Analysis-Matrix-Technology- [CNR] = No NELAP parameter [INF] = Informationa adua-Tech laboratories, Inc. (ATL), the client agree aditation (FoA). Analytes requiring an accredited m d. Clients will be notified of the subcontract lab's or enthod is required, the client will note the method nethod modifications documented by ATL or the su L's NELAC fields of accreditation and other method	cted Temperature Subcontracted, indicated by [SUB]. Method. accreditation required or available at only (not NELAC certified) is to the following terms. Samples will be analyzed by a nethod that is not within ATL's FoA will be subcontracted to tetails. Other analytes not requiring accreditation will be the "Analysis Requested" column. The client approves boontract lab. ds are available on request.	quished (print & sign) Receiv- ed (print & sign) Relin- quished (print & sign)	Anes Fr. 4 2 NA	Client Time ////////////////////////////////////	
Comments:		- LAB RECEIPT - B101 Temperature - CT (C): 4.6 Preservation Correct: Yes Post-Preservatives: N/A Thermometer ID: 0809841 <u>pH Paper ID: 0816091</u> <u>ko_A COC MULTI 043020.rpt</u>	Receiv- ed (print & quished (print & sign) Receiv- ed (print & sign)	James R Frit	Client Date Client Time Client Date 09/17 Client Date 09/17 Client Time 15:: R Fritz Date 09/17 X Lab Time 15::	Iced / Refri CM / CTU 7/24 CM / CTU / Sealed 7/24 CM / CTU / Sealed 7/24 X Cond Gooc X Cond Gooc X Cond / Refri X Cond / Refri X Cond / Refri X Cond / CTU
Field Sample ID	Start Date Time	End C Date Time	omposite S Type N	ample Container (Checked Matrix (Volume - 1	l box indicates bottle arrived in lab ype - Preservative)	["] Lab ID
Temple Belton Regional WWTP Effluent A CI NP Tit SM 4500 CI- B [NEL] CBOD NP Probe SM 5210 B [NEL] NO3N + NO2N NP RFA SM4500 NO3 F [Ch TDS NP Grav SM2540 C [NEL]	9.16.24 11.00 A SO4 NP Spec D516 [NEL] NH3N NP AUTO SM 4500 G [N NR] NO3N NP CALC SM4500 [NEL] TKN NP AUTO EPA 351.2 [NEL]	9-17-24 10:54 Alkalinity NP Probe SM 23: NO2N NP Spec SM4500 N P NP ICP EPA 200.7 [NEL] TSS NP Grav SM 2540 D	Comp 20 B [NEL] IO2 B [NEL] NEL]	NP CLT H2SC TDS 0.5LI CI SO4 0.	04 0.25LP TKN pH < 2 5LP	H030066-01
					. (

263 0.00

DAILY EFFLUENT WORKSHEET

FacilityJDate:F17-24Time:D945Flow:0.152Analyst(s):E3Barometer:

	Sample	Standard (Actual)	Blank	pH	
	and the second second	A TISIN A MAN		Initial	Adjusted
рH	7.53	7.01	CAR BEACH		
DO	5.70	8.49			
Initial CI2	213		0.00		
Mn Correction	010	and the second	0.00	773	6.75
Final Ci2	2.03	and the state of the		States Charles	
SO2	0.01	A STATISTICS AND A STATISTICS	0.00		
Mn Correction	0.01		2.00	7.53	6.82
Final S02	0.00	NOR DE MARKEN	and the second		S BAR MART
Temperature	27.3	22.4			

Note: pH for manganese correction must be between 6-7 su.

Method used for reportable chlorine analysis: SM 4500-CI G DPD Method

Method used for reportable pH analysis: SM 4500 H+B CALIBRATION VERIFICATION

NOTE: LOT #s must be updated after purchasing new chemical.

* RL-Reagent Log Book #5

Secondary g	gel standards	
B1	200	0
Std 1	0.25	0.15-0.33
Std 2	0.96	0.85-1.05
Std 3	1.69	1.50-1.78

Standard	Lot #
pH 4	4GF1285
pH 7	4GG0025
pH 10	4GF1169
Secondary Gel Stds.	A4061
DPD packets	A4010
Potassium lodide	A3059
Sodium Arsenite	A3233
Sulfuric Acid	4GB140220

Brazos River Authority - Operations E. coli by IDEXX - Enzyme Substrate Method - SM 9223 B

		Expiration
Equipment/Supplies	ID/Lot#	Date
Sterile Dilution H ₂ 0	27023	11/30/2024
Media/Reagent	LW044	12/4/2024
Quanti-Tray@/2000	BY046J	3/11/2027
290ml Sample Bottles	MW013V	10/21/2026
120ml Sample Bottles	2207259899	NA
Comparator	AY440	1/24/2025
Incubator	42621636	
Data Looger	230803884	

ç

Observed Temp In. 25,0

Incubator Time In: 0755

Analysis Start Time: 02/

Analysis Date In: 9-17-21

ç

Corrected Temp In: 35.0

Analyst In: EJ

ç

Correction Factor:

S S °C C Analysis Date Out: 9.18.29Incubator Time Out: 10: 0 Observed Temp Out: 34 9 Corrected Temp Out: 349 Correction Factor: Analyst Out: 5.3

						Total Co	liform	E. c	oli	
E classic	Res. Cl	Collect	Collect	Volume	Dilution	Yellow	Wells	Fluoresce	nt Wells	Result
Sampre ID	(mg/L)	Date	Time	(ml)	Factor	Large	Small	Large	Small	MPN/100 mL
Blank	NA	NA	NA	66	1	0	0	0	0	4/
7,8	Q.03	42.24	1480	201	/	64	05	53	0	51.2
IUD DUI	NA	12-61.5	1430	001	J	62	28	21	N	15.8
DE	2.32	X2.11.6	0723	100	/	/	0	0	2	< /

Samples received on ice. (If not, record comment below.)

Comments:

Note: Analysis start time must begin within eight hours of earliest sample collection time.

Operations Ecoli Datasheet/Rev 1/Eff Date 12-09-20

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Troy Zwerneman Brazos River Authority PO BOX 7555 Waco, Texas 76714 Generated 11/4/2024 5:58:10 PM 5

JOB DESCRIPTION

WWTP Dossier Farms Effluent

JOB NUMBER

860-85055-1

EOL.

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

du

Generated 11/4/2024 5:58:10 PM 1

Authorized for release by Jodi Allen, Project Manager I Jodi.Allen@et.eurofinsus.com (281)520-2865

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	6
Detection Summary	8
Client Sample Results	10
Action Limit Summary	17
Surrogate Summary	18
QC Sample Results	20
QC Association Summary	42
Lab Chronicle	47
Certification Summary	50
Method Summary	52
Sample Summary	53
Subcontract Data	54
Chain of Custody	64
Receipt Checklists	72

Definitions/Glossary

Client: Brazos River Authority Project/Site: WWTP Dossier Farms Effluent

3

Qualifiers

Qualifier Description	
Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.	
Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
Indicates the analyte was analyzed for but not detected.	
i VOA	
Qualifier Description	
LCS and/or LCSD is outside acceptance limits, low biased.	7
LCS and/or LCSD is outside acceptance limits, high biased.	
LCS/LCSD RPD exceeds control limits.	8
Compound was found in the blank and sample.	
Value is EMPC (estimated maximum possible concentration).	Q
Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	3
Surrogate recovery exceeds control limits, low biased.	
Surrogate recovery exceeds control limits, high biased.	
Indicates the analyte was analyzed for but not detected.	
A	
Qualifier Description	
LCS and/or LCSD is outside acceptance limits, high biased.	
Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	4.0
Indicates the analyte was analyzed for but not detected.	13
Qualifier Description	
Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.	
Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Indicates the analyte was analyzed for but not detected.	
Qualifier Description	
Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	1/
Indicates the analyte was analyzed for but not detected.	
	Qualifier Description Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements. Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. Indicates the analyte was analyzed for but not detected. VOA Qualifier Description LCS and/or LCSD is outside acceptance limits, low biased. LCS and/or LCSD is outside acceptance limits, high biased. LCSLCSD RPD exceeds control limits. Compound was found in the blank and sample. Value is EMPC (estimated maximum possible concentration). Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. Surrogate recovery exceeds control limits, low biased. Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected. A Qualifier Description LCS and/or LCSD is outside acceptance limits, high biased. Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. Indicates the analyte was analyzed for but not detected. Qualifier Description LCS and/or LCSD is outside acceptance limits, high biased. Result is less than the RL but greater than or equal to the MDL and the con

General Chemistry

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)

Client: Brazos River Authority Project/Site: WWTP Dossier Farms Effluent

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 860-85055-1

Eurofins Houston

Job Narrative 860-85055-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/18/2024 9:23 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 2.5°C, 2.5°C, 2.7°C and 3.2°C.

Subcontract Work

Methods 614 Organophos Pesticides, 622 Chloropyrifos: These methods were subcontracted to Ana-Lab Corporation. The subcontract laboratory certifications are different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

GC/MS VOA

Method 624.1: The following sample was received outside of holding time: Dossier Farms Effluent Lab Composite (860-85055-6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 625.1_QQQ: The surrogate recovery for the method blank associated with preparation batch 860-195146 and analytical batch 860-195382 was outside the control limit.

Method 625.1_QQQ: The surrogate recovery for the method blank and laboratory control sample duplicate associated with preparation batch 860-195146 and analytical batch 860-195750 was outside the control limits.

Method 625.1_QQQ: The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 860-195146 and analytical batch 860-195750 recovered outside control limits for the following analyte: Chlorpyrifos. This analyte was biased high in the LCS/LCSD and was not detected in the associated samples; therefore, the data have been reported.

Method 625.1_QQQ: The method blank for preparation batch 860-196166 and analytical batch 860-196265 contained Benzo[a]anthracene above the method detection limit.

Method 625.1_QQQ: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: Dossier Farms Effluent (860-85055-1). These results have been reported and qualified.

Method 625.1_QQQ: The following sample was re-prepared outside of preparation holding time due to QC failed on first extracted: Dossier Farms Effluent (860-85055-1).

Method 625.1_QQQ: The laboratory control sample and laboratory control sample duplicate (LCS/LCSD) for preparation batch 860-196166 and analytical batch 860-196265 recovered outside control limits for multiple analytes. The associated sample was reprepared and/or re-analyzed outside holding time.

Method 625.1_QQQ: The method blank for preparation batch 860-195146 and analytical batch 860-195750 contained bis (2-chloroisopropyl) ether and Benzo[a]anthracene above the method detection limit. These target analytes concentration was less than half the reporting limit (1/2RL) in the method blank. Sample was re-extracted and re-analyzed.

Case Narrative

Client: Brazos River Authority Project: WWTP Dossier Farms Effluent

Eurofins Houston

Job ID: 860-85055-1 (Continued)

Method 625.1_QQQ: The laboratory control sample and laboratory control sample duplicate (LCS/LCSD) for preparation batch 860-195146 and analytical batch 860-195382 recovered outside control limits for multiple analytes. The associated sample was reprepared and re-analyzed outside holding time.

Method 625.1_QQQ: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 860-196166 and analytical batch 860-196265 recovered outside control limits for the following analytes: 4-Nitrophenol and Pyridine.

Method D7065_11: The reference method requires samples to be preserved to a pH of 1-2. The following samples were received with insufficient preservation at a pH of 6. The samples were preserved to the appropriate pH in the laboratory.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

PCBs

Method 608.3_PCB: The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 860-193889 and analytical batch 860-194724 recovered outside control limits for the following analytes: PCB-1016. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Pesticides

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFMS: The following sample(s) was received with less than 1 hour remaining on the holding time. As such, the laboratory had insufficient time remaining to perform the analysis within holding time: Dossier Farms Effluent (860-85057-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 365.1_NP: only unpreserved sample was provided.

Dossier Farms Effluent (860-85055-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

11/4/2024

Detection Summary

RL

0.115

0.576

0.0180

0.0900

500

20.0

2.00

4.00

4 00

4.00

2.00

2.00

2.00

2.00

4.00

100

RL

5560

MDL Unit

0.117 ug/L

100 ug/L

3.01 ug/L

1.05 ug/L

0.929 ug/L

0.954 ug/L

0.690 ug/L

0.525 ug/L

0.504 ug/L

0.486 ug/L

0.685 ug/L

0.885 ug/L

71.7 ug/L

MDL Unit

1740 ug/L

0.00960 ug/L

0.00389 ug/L

0.0514 ug/L

Result Qualifier

0.0192 JB

0.176 JI

257 J

12.8 J

2.70 J

0.963

0.279

3.47

45.8

5.71

3.02

13.2

3.01

37.1

3250

Result Qualifier

2330 J

1.12 J

Client: Brazos River Authority Project/Site: WWTP Dossier Farms Effluent

Analyte

beta-BHC

Aluminum

Antimony

Arsenic

Barium

Copper

Nickel

Zinc

Selenium

Analyte

HEM

Manganese

Molybdenum

Fluoride

Diuron

Benzo[a]anthracene

2.6-Dinitrotoluene

Client Sample ID: Dossier Farms Effluent

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total Recoverable

Total/NA

Prep Type

Total/NA

Lab Sample ID: 860-85055-1

Dil Fac D Method

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5

1

Dil Fac D Method

625.1

625.1

608.3

300.0

632

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

365.1

1664B

5 Lab Sample ID: 860-85055-2

Lab Sample ID: 860-85055-3

Lab Sample ID: 860-85055-4

Lab Sample ID: 860-85055-5

Lab Sample ID: 860-85055-6

No Detections.

Phosphorus Total

Client Sample ID: Dossier Farms Effluent Grab 3

Client Sample ID: Dossier Farms Effluent Grab 2

Client Sample ID: Dossier Farms Effluent Grab 1

No Detections.

Client Sample ID: Dossier Farms Effluent Grab 4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
НЕМ	2670	J	5560	1740	ug/L	1	_	1664B	Total/NA

Client Sample ID: Dossier Farms Effluent Lab Composite

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Bromoform	1.32	JH	5.00	0.633	ug/L	1	624.1	Total/NA
Chlorodibromomethane	11.1	н	5.00	0.547	ug/L	1	624.1	Total/NA
Chloroform	24.4	Н	1.00	0.464	ug/L	1	624.1	Total/NA
Dichlorobromomethane	18.1	Н	1.00	0.552	ug/L	1	624.1	Total/NA
Trihalomethanes, Total	54.9	н	5.00	0.633	ug/L	1	624.1	Total/NA
Cyanide, Total	9.92		5.00	1.98	ug/L	1	Kelada 01	Total/NA
Cyanide, Available	7.63		2.00	1.56	ug/L		OIA - 1677	Total/NA

This Detection Summary does not include radiochemical test results.

	Detect	tion Sum	nmary			
Client: Brazos River Authority Project/Site: WWTP Dossier Far	ns Effluent			Job II	D: 860-85055-1	
Client Sample ID: Dossie	⁻ Farms Effluent Gra	b 1 1631	blanks	Lab Sample ID:	860-85055-7	
No Detections.						
Client Sample ID: Dossie	[·] Farms Effluent Gra	b 2 1631	blanks	Lab Sample ID:	860-85055-8	4
No Detections.						5
Client Sample ID: Dossier	⁻ Farms Effluent Gra	b 3 1631	blanks	Lab Sample ID:	860-85055-9	
No Detections.						
Client Sample ID: Dossier	⁻ Farms Effluent Gra	b 4 1631 I	blanks	Lab Sample ID: 8	60-85055-10	
No Detections.						8
Client Sample ID: Dossie	[·] Farms Effluent			Lab Sample ID:	860-85057-1	9
Analyte Nitrogen, Nitrate	Result Qualifier	RL 100	MDL Unit	<u>Dil Fac</u> <u>D</u> <u>Method</u>	Prep Type Total/NA	
						13
						16
						17

RL

0.576

0.576

0.576

1.15

0.115

0.115

0.576

MDL Unit

0.108 ug/L

0.100 ug/L

0.0945 ug/L

0.0906 ug/L

0.00960 ug/L

0.0101 ug/L

0.0669 ug/L

Analyte

Acenaphthene

Anthracene

Benzidine

Acenaphthylene

Benzo[a]anthracene Benzo[a]pyrene

Benzo[b]fluoranthene

Client Sample ID: Dossier Farms Effluent Date Collected: 10/17/24 10:59 Date Received: 10/18/24 09:23

Method: EPA 625.1 - Semivolatile Organic Compounds (GC-MS/MS)

Result Qualifier

<0.108 U

<0.0945 U

<0.0906 U

<0.0101 U

<0.0669 U

0.0192 JB

<0.100 U*+

Lab Sample ID: 860-85055-1 **Matrix: Water**

10/22/24 14:49 10/25/24 06:59

10/22/24 14:49 10/25/24 06:59

10/22/24 14:49 10/25/24 06:59

10/22/24 14:49 10/25/24 06:59

10/22/24 14:49 10/25/24 06:59

10/22/24 14:49 10/25/24 06:59

10/22/24 14:49 10/25/24 06:59

Analyzed

Prepared

D

Dil Fac 6 1 1

1

1

1

1

1

Benzo[g,h,i]perylene	<0.0348	U	0.576	0.0348	ug/L	10/22/24 14:49	10/25/24 06:59	1
Benzo[k]fluoranthene	<0.0476	U	0.576	0.0476	ug/L	10/22/24 14:49	10/25/24 06:59	1
Bis(2-chloroethoxy)methane	<0.0981	U	0.576	0.0981	ug/L	10/22/24 14:49	10/25/24 06:59	1
Bis(2-chloroethyl)ether	<0.216	U	0.576	0.216	ug/L	10/22/24 14:49	10/25/24 06:59	1
bis (2-chloroisopropyl) ether	<0.129	U *+ *1	0.576	0.129	ug/L	10/22/24 14:49	10/25/24 06:59	1
Bis(2-ethylhexyl) phthalate	<1.44	U	2.88	1.44	ug/L	10/22/24 14:49	10/25/24 06:59	1
4-Bromophenyl phenyl ether	<0.101	U	0.576	0.101	ug/L	10/22/24 14:49	10/25/24 06:59	1
Butyl benzyl phthalate	<1.44	U	2.88	1.44	ug/L	10/22/24 14:49	10/25/24 06:59	1
2-Chloronaphthalene	<0.381	U *1	0.576	0.381	ug/L	10/22/24 14:49	10/25/24 06:59	1
2-Chlorophenol	<0.0762	U	0.576	0.0762	ug/L	10/22/24 14:49	10/25/24 06:59	1
4-Chlorophenyl phenyl ether	<0.131	U	0.576	0.131	ug/L	10/22/24 14:49	10/25/24 06:59	1
Chlorpyrifos	<0.0160	U *+	0.0576	0.0160	ug/L	10/22/24 14:49	10/25/24 06:59	1
Chrysene	<0.0821	U	0.576	0.0821	ug/L	10/22/24 14:49	10/25/24 06:59	1
Dibenz(a,h)anthracene	<0.0513	U	0.115	0.0513	ug/L	10/22/24 14:49	10/25/24 06:59	1
1,2-Dichlorobenzene	<0.0948	U	0.576	0.0948	ug/L	10/22/24 14:49	10/25/24 06:59	1
1,3-Dichlorobenzene	<0.102	U	0.576	0.102	ug/L	10/22/24 14:49	10/25/24 06:59	1
1,4-Dichlorobenzene	<0.0785	U	0.576	0.0785	ug/L	10/22/24 14:49	10/25/24 06:59	1
3,3'-Dichlorobenzidine	<0.184	U	0.576	0.184	ug/L	10/22/24 14:49	10/25/24 06:59	1
2,4-Dichlorophenol	<0.141	U	0.576	0.141	ug/L	10/22/24 14:49	10/25/24 06:59	1
Diethyl phthalate	<1.44	U	2.88	1.44	ug/L	10/22/24 14:49	10/25/24 06:59	1
2,4-Dimethylphenol	<0.194	U *+	0.576	0.194	ug/L	10/22/24 14:49	10/25/24 06:59	1
Dimethyl phthalate	<1.44	U *+	2.88	1.44	ug/L	10/22/24 14:49	10/25/24 06:59	1
Di-n-butyl phthalate	<1.44	U	2.88	1.44	ug/L	10/22/24 14:49	10/25/24 06:59	1
4,6-Dinitro-o-cresol	<0.203	U *-	1.15	0.203	ug/L	10/22/24 14:49	10/25/24 06:59	1
2,4-Dinitrophenol	<0.105	U	2.88	0.105	ug/L	10/22/24 14:49	10/25/24 06:59	1
2,4-Dinitrotoluene	<0.206	U	0.576	0.206	ug/L	10/22/24 14:49	10/25/24 06:59	1
2,6-Dinitrotoluene	0.176	JI	0.576	0.117	ug/L	10/22/24 14:49	10/25/24 06:59	1
Di-n-octyl phthalate	<1.44	U	2.88	1.44	ug/L	10/22/24 14:49	10/25/24 06:59	1
1,2-Diphenylhydrazine	<0.288	U	0.576	0.288	ug/L	10/22/24 14:49	10/25/24 06:59	1
Fluoranthene	<0.0889	U	0.576	0.0889	ug/L	10/22/24 14:49	10/25/24 06:59	1
Fluorene	<0.0955	U	0.576	0.0955	ug/L	10/22/24 14:49	10/25/24 06:59	1
Hexachlorobenzene	<0.0982	U	0.576	0.0982	ug/L	10/22/24 14:49	10/25/24 06:59	1
Hexachlorobutadiene	<0.103	U	0.576	0.103	ug/L	10/22/24 14:49	10/25/24 06:59	1
Hexachlorocyclopentadiene	<0.0516	U *+	0.576	0.0516	ug/L	10/22/24 14:49	10/25/24 06:59	1
Hexachloroethane	<0.103	U	0.576	0.103	ug/L	10/22/24 14:49	10/25/24 06:59	1
Indeno[1,2,3-cd]pyrene	<0.101	U	0.576	0.101	ug/L	10/22/24 14:49	10/25/24 06:59	1
Isophorone	<0.107	U	0.576	0.107	ug/L	10/22/24 14:49	10/25/24 06:59	1
m & p - Cresol	<0.140	U	0.576	0.140	ug/L	10/22/24 14:49	10/25/24 06:59	1
Naphthalene	<0.0951	U	0.576	0.0951	ug/L	10/22/24 14:49	10/25/24 06:59	1
Nitrobenzene	<0.0742	U	0.576	0.0742	ug/L	10/22/24 14:49	10/25/24 06:59	1
2-Nitrophenol	<0.137	U	0.576	0.137	ug/L	10/22/24 14:49	10/25/24 06:59	1
4-Nitrophenol	<0.136	U *- *1	0.576	0.136	ug/L	10/22/24 14:49	10/25/24 06:59	1

Client Sample ID: Dossier Farms Effluent Date Collected: 10/17/24 10:59 Date Received: 10/18/24 09:23

Lab Sample ID: 860-85055-1 Matrix: Water

Method: EPA 625.1 - Semi	volatile Organi	c Compou	nds (GC-MS	/MS) (C	ontinued	1)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
N-Nitrosodiethylamine	<0.542	U	1.15	0.542	ug/L		10/22/24 14:49	10/25/24 06:59	1	-
N-Nitrosodimethylamine	<0.101	U *-	0.576	0.101	ug/L		10/22/24 14:49	10/25/24 06:59	1	
N-Nitrosodi-n-butylamine	<0.519	U *+	1.15	0.519	ug/L		10/22/24 14:49	10/25/24 06:59	1	2
N-Nitrosodi-n-propylamine	<0.119	U	0.576	0.119	ug/L		10/22/24 14:49	10/25/24 06:59	1	
N-Nitrosodiphenylamine	<0.146	U	0.576	0.146	ug/L		10/22/24 14:49	10/25/24 06:59	1	_
o-Cresol	<0.106	U	0.576	0.106	ug/L		10/22/24 14:49	10/25/24 06:59	1	
p-Chloro-m-cresol	<0.104	U	0.576	0.104	ug/L		10/22/24 14:49	10/25/24 06:59	1	
Pentachlorobenzene	<0.268	U	0.576	0.268	ug/L		10/22/24 14:49	10/25/24 06:59	1	
Pentachlorophenol	<1.05	U	1.15	1.05	ug/L		10/22/24 14:49	10/25/24 06:59	1	
Phenanthrene	<0.135	U *+	0.576	0.135	ug/L		10/22/24 14:49	10/25/24 06:59	1	
Phenol	<0.451	U	2.88	0.451	ug/L		10/22/24 14:49	10/25/24 06:59	1	
Pyrene	<0.0855	U	0.576	0.0855	ug/L		10/22/24 14:49	10/25/24 06:59	1	
Pyridine	<1.45	U	2.88	1.45	ug/L		10/22/24 14:49	10/25/24 06:59	1	
1,2,4,5-Tetrachlorobenzene	<0.0964	U	0.576	0.0964	ug/L		10/22/24 14:49	10/25/24 06:59	1	
1,2,4-Trichlorobenzene	<0.0772	U	0.576	0.0772	ug/L		10/22/24 14:49	10/25/24 06:59	1	
2,4,5-Trichlorophenol	<0.144	U	0.576	0.144	ug/L		10/22/24 14:49	10/25/24 06:59	1	
2,4,6-Trichlorophenol	<0.232	U	0.576	0.232	ug/L		10/22/24 14:49	10/25/24 06:59	1	
Total Cresols	<0.129	U	0.576	0.129	ug/L		10/22/24 14:49	10/25/24 06:59	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
2-Fluorobiphenyl (Surr)	73		43 - 130				10/22/24 14:49	10/25/24 06:59	1	
2-Fluorophenol (Surr)	83		19 - 120				10/22/24 14:49	10/25/24 06:59	1	
Nitrobenzene-d5 (Surr)	123		37 - 133				10/22/24 14:49	10/25/24 06:59	1	
Phenol-d5 (Surr)	66		8 - 124				10/22/24 14:49	10/25/24 06:59	1	
p-Terphenyl-d14 (Surr)	94		47 - 130				10/22/24 14:49	10/25/24 06:59	1	
2,4,6-Tribromophenol (Surr)	107		35 - 130				10/22/24 14:49	10/25/24 06:59	1	1
	Determination	of Nonylp	henols							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Nonylphenol	<1.15	U	5.05	1.15	ug/L		10/23/24 14:38	10/25/24 16:17	1	
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analvzed	Dil Fac	

Method: EPA 608.3 - Organochlorine Pesticides in Water

4-nonylphenol (Surr)

4-nonylphenol monoethoxylate (Surr)

87

89

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<0.00113	U	0.0100	0.00113	ug/L		10/18/24 14:43	10/21/24 16:31	1
alpha-BHC	<0.00142	U	0.00900	0.00142	ug/L		10/18/24 14:43	10/21/24 16:31	1
alpha-Endosulfan	<0.00107	U	0.0100	0.00107	ug/L		10/18/24 14:43	10/21/24 16:31	1
beta-BHC	0.963		0.0180	0.00389	ug/L		10/18/24 14:43	10/21/24 16:31	1
beta-Endosulfan	<0.00122	U	0.0100	0.00122	ug/L		10/18/24 14:43	10/21/24 16:31	1
Chlordane	<0.103	U	0.250	0.103	ug/L		10/18/24 14:43	10/21/24 16:31	1
Chlordane (.alpha.)	<0.00181	U	0.0100	0.00181	ug/L		10/18/24 14:43	10/21/24 16:31	1
4,4'-DDD	<0.000814	U	0.0100	0.000814	ug/L		10/18/24 14:43	10/21/24 16:31	1
4,4'-DDE	<0.00109	U	0.0100	0.00109	ug/L		10/18/24 14:43	10/21/24 16:31	1
4,4'-DDT	<0.00379	U	0.0200	0.00379	ug/L		10/18/24 14:43	10/21/24 16:31	1
delta-BHC	<0.00245	U	0.250	0.00245	ug/L		10/18/24 14:43	10/21/24 16:31	1
Dicofol	<0.0500	U	0.100	0.0500	ug/L		10/18/24 14:43	10/21/24 16:31	1
Dieldrin	<0.000953	U	0.0100	0.000953	ug/L		10/18/24 14:43	10/21/24 16:31	1

58 - 115

54 - 139

Eurofins Houston

10/23/24 14:38 10/25/24 16:17

10/23/24 14:38 10/25/24 16:17

1

Client Sample ID: Dossier Farms Effluent Date Collected: 10/17/24 10:59 Date Received: 10/18/24 09:23

Lab Sample ID: 860-85055-1 Matrix: Water

5

6

Martino Result Qualifier RL MDL Unit D Prepared Analyzed Dil Face Endowiller suffate <0.00171 U 0.0100 0.00166 U, 10/18/24/14/3 10/21/24/16/31 1 Endom <0.00166 U 0.0100 0.00166 U, 10/18/24/14/3 10/21/24/16/31 1 Endom <0.00289 U 0.0100 0.00148 U, 10/18/24/14/3 10/21/24/16/31 1 Impendition <0.00289 U 0.0200 0.00280 U, 10/18/24/14/3 10/21/24/16/31 1 Methoxythior <0.00280 U 0.2000 0.02200 0.02200 0.0221/24/16/31 1 Surrogate Surrogate Surrogate Surrogate To/18/24/14/3 10/21/24/16/31 1 CDC Deschorbiphenyl (Surr) 64 16/126 10/18/24/14/3 10/21/24/16/31 1 PCB-1016 <-0.01780 U 0.1000 0.01250 U, 10/18/24/14/33 10/21/	Mothod: EDA 609.2 Organoo	hloring Pac	ticidos in V	Nator (Con	tinued)					
Endexina sulfate C 0.00112 Upt. 101782/41443 1021241633 1 Endin -0.00156 0.00100 0.00158 Upt. 101782/41443 1021241633 1 Endin -0.00156 0.00100 0.0018 Upt. 101782/41443 1021241633 1 Endin -0.0044 Upt. 0.0160 0.00299 Upt. 101782/41443 1021241633 1 Heptachlor -0.0044 Upt. 0.01784 Upt. 101782/41443 1021241633 1 Metroxychor -0.0200 U.0200 0.0200 Upt. 101782/41443 1021241633 1 Metroxychor -0.0200 U.0200 0.0200 Upt. 101782/41443 1021241633 1 Surrogate Sifeecowry Gualifier Limits Prepard Analyzed 101782/41443 1021241633 1 DCS Decenthorobybren/ (Swr) 98 116 101782/41443 1021241633 1 10782/41443 1021241433 1 1021241443	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endin 0.00156 U 0.00168 U 10/162/1443 1021/241631 1 gamma BHC (Lindane) 0.00299 U 0.0100 0.00118 U 10/162/1443 1021/241631 1 gamma BHC (Lindane) 0.00209 U 0.00100 0.00239 ugL 10/162/1443 1021/241631 1 Hepstchlor 0.00246 U 0.00200 0.00200 0.00200 U 10/162/1443 1021/241631 1 Metsoxythin 0.00200 0.00200 0.00200 0.00200 0.0021/241433 1 Surrogato Strongato Strogato Strongato S	Endosulfan sulfate	< 0.00112	U	0.0100	0.00112	ug/L		10/18/24 14:43	10/21/24 16:31	1
Endm On0118 U On1010 Ountile U On1012 U On1012 U On1012 Ountile U Ountile Ountile U Ountile U Ountile U Ountile Ountile U Ountile U Ountile U Ountile U Ountile U Ountile U U Ountile U U U U U U U U U U U U U U <thu< td=""><td>Endrin</td><td><0.00156</td><td>U</td><td>0.0100</td><td>0.00156</td><td>ug/L</td><td></td><td>10/18/24 14:43</td><td>10/21/24 16:31</td><td>1</td></thu<>	Endrin	<0.00156	U	0.0100	0.00156	ug/L		10/18/24 14:43	10/21/24 16:31	1
gamma-BiC (Lindane) <0.00299 U 0.0100 0.00299 U 1011824 1443 102124 1631 1 Heptachlor <0.00446	Endrin aldehvde	<0.00118	U	0.0100	0.00118	ua/L		10/18/24 14:43	10/21/24 16:31	1
Heptachlor <0.00446 U 0.00405 upt. 101824 14.43 102124 16.31 1 Heptachlor epoxide <0.00134	gamma-BHC (Lindane)	<0.00299	Ŭ	0.0100	0.00299	ua/l		10/18/24 14.43	10/21/24 16:31	1
Heptachlor epoxide <0.00134	Hentachlor	<0.00200	0	0.00900	0.00446	ug/L		10/18/24 14:43	10/21/24 16:31	1
Implementation optimities optimities South State Outperform Outperform <thoutperform< th=""> Outperform Outperfor</thoutperform<>	Hentachlor enovide	<0.00134		0.00000	0.00440	ug/L		10/18/24 14:43	10/21/24 10:01	
Intervention Schools O Output Intervention	Methoxychlor	<0.00104		0.0200	0.00104	ug/L		10/18/24 14:43	10/21/24 10:31	1
Initial -0.0200 0 0.0200 0.0200 0.0200 0.0212 101/02/141-031 1 Surgapte -0.0200 0.0200 0.0200 0.02769 ugl 101/02/141-031 101/02/141-031 1 Surragate	Miroy	<0.00390	0	0.0200	0.00330	ug/L		10/18/24 14:43	10/21/24 10:31	1
Inscapenene Sources 0 D.200 D.0169 Upt ID1624 Id241 ID2124 ID31 I Surragate Secorery Qualifier Limits Propared Analyzed Dil Fac DGB Decelorabiphenyl (Surr) 99 15.136 ID1824 14.43 ID2124 16.31 1 Method: EPA 608.3 - Polychlorinated Biphenyls (PCBs) (GC) Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac PCB-1016 <0.0125		<0.0200		0.0200	0.0200	ug/L		10/10/24 14.43	10/21/24 10.31	
Surrogate %Recovery Qualifier Limits Propared Analyzed Dil Fac DGB Decachlorobiphenyl (Surr) 98 15-136 10/18/24 14:43 10/21/24 16:31 1 Method: EPA 608.3 - Polychlorinated Biphenyls (PCBs) (GC) Analyzed 0.0125 U/L 10/18/24 14:43 10/21/24 14:38 1 PCB-1242 <0.0175	loxaphene	<0.0769	0	0.200	0.0769	ug/L		10/10/24 14:43	10/21/24 10:31	I
DCB Deschlorobiphenyl (Surr) 98 15-136 10/18/24 14:43 10/21/24 16:31 1 Method: EPA 608.3 - Polychlorinated Biphenyls (PCBs) (GC) Analyte Result Qualifier RL MDL Unit D Propared Analyzed Dil Fac PCB-1016 <0.0125 U ** 0.100 0.0125 ugl. 10/18/24 14:43 10/21/24 14:38 1 PCB-1016 <0.0125 U 0.100 0.0125 ugl. 10/18/24 14:43 10/21/24 14:38 1 PCB-1224 <0.0175 U 0.100 0.00780 ugl. 10/18/24 14:43 10/21/24 14:38 1 PCB-1224 <0.0175 U 0.100 0.0175 ugl. 10/18/24 14:43 10/21/24 14:38 1 PCB-1224 <0.0175 U 0.100 0.0125 ugl. 10/18/24 14:43 10/21/24 14:38 1 PCB-1221 <0.0175 U 0.100 0.0125 ugl. 10/18/24 14:43 10/21/24 14:38 1 DPCB-1264 <0.0175	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene 64 18.126 10/18/24 14.43 10/21/24 16.31 1 Method: EPA 608.3 - Polychlorinated Biphenyls (PCBs) (GC) MDL Unit D Prepared Analyze Dil Fac PCB-1016 <0.0125	DCB Decachlorobiphenyl (Surr)	98		15 - 136				10/18/24 14:43	10/21/24 16:31	1
Method: EPA 608.3 - Polychlorinated Biphenyls (PCBs) (GC) MDL Unit D Prepared Analyzed Dil Fac PCB-1016 <0.0125	Tetrachloro-m-xylene	64		18 - 126				10/18/24 14:43	10/21/24 16:31	1
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DII Fac PCB-1016 <0.0125	- Method: EPA 608.3 - Polychio	rinated Binl	henvis (PC	Bs) (GC)						
PCB-1016 <0.0125 U + 0.100 0.0125 ug/L 10/18/24 14/43 10/21/24 14/38 1 PCB-1242 <0.0125	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PC8-1242 <0.0125 U 0.100 0.0125 ug/L 10/18/24 14:43 10/21/24 14:38 1 PC8-1254 <0.00780 U 0.100 0.00780 ug/L 10/18/24 14:43 10/21/24 14:38 1 PC8-1221 <0.0125 U 0.100 0.0125 ug/L 10/18/24 14:43 10/21/24 14:38 1 PC8-1232 <0.0125 U 0.100 0.0125 ug/L 10/18/24 14:43 10/21/24 14:38 1 PC8-1282 <0.0125 U 0.100 0.0125 ug/L 10/18/24 14:43 10/21/24 14:38 1 PC8-1280 <0.00780 U 0.100 0.0100 ug/L 10/18/24 14:43 10/21/24 14:38 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Pac 10/19/24 10/21/24 16:25 1 1	PCB-1016	<0.0125	U *+	0.100	0.0125	ug/L		. 10/18/24 14:43	10/21/24 14:38	1
PCB-1254 <0.00780 U 0.100 0.00780 ugl. 10/18/24 14:43 10/21/24 14:38 1 PCB-1221 <0.0125	PCB-1242	<0.0125	U	0.100	0.0125	ua/L		10/18/24 14:43	10/21/24 14:38	1
PCB-1221 <0.0125 U 0.100 0.0125 ug/L 10/18/24 14:43 10/21/24 14:38 1 PCB-1232 <0.0125 U 0.100 0.0125 ug/L 10/18/24 14:43 10/21/24 14:38 1 PCB-1248 <0.0125 U 0.100 0.0125 ug/L 10/18/24 14:43 10/21/24 14:38 1 PCB-120 <0.00780 U 0.100 0.0100 0.0125 ug/L 10/18/24 14:43 10/21/24 14:38 1 PCB-120 <0.00780 U 0.100 0.0100 ug/L 10/18/24 14:43 10/21/24 14:38 1 PCB-120 <0.00780 U 0.100 0.0100 ug/L 10/18/24 14:43 10/21/24 14:38 1 Surrogate Recovery Qualifier Limits Prepared Analyzed DI/Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DI/Fac 2.4-D <0.0424 U 0.201 0.0424 ug/L 10/19/24 05:03 10/21/24 16:25 1	PCB-1254	<0.00780	U	0 100	0.00780	ua/l		10/18/24 14:43	10/21/24 14:38	1
DCB-122 0.0125 U 0.0100 0.0125 ug/L 10/18/24 14:43 10/21/24 14:38 1 PCB-1232 <0.0125 U	PCB-1221	<0.0125	Ű	0 100	0.0125	ug/L		10/18/24 14:43	10/21/24 14:38	
FOR 102 0.0102 0.0103 0.0103 0.0125 ug/L 10/18/24 14/43 10/21/24 14/33 1 PCB-1248 <0.0125	PCB-1232	<0.0125		0 100	0.0125	ug/l		10/18/24 14:43	10/21/24 14:38	1
CB-126	PCB-1248	<0.0125	0	0.100	0.0125	ug/L		10/18/24 14:43	10/21/24 14:38	1
Del 200 Sciologo D	PCB-1240	<0.0120		0.100	0.0120	ug/L		10/18/24 14:43	10/21/24 14:30	
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac DCB Decachioro-m-xylene (Surr) 59 18.126 10/10/24 14:43 10/21/24 14:43 1 Method: EPA-01 615 - Herbicides (GC) 112 15.136 10/10/24 14:43 10/21/24 14:38 1 Analyze Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 2.4-D <0.0541	Polychlorinated hiphopyls, Total	<0.00780	0	0.100	0.00780	ug/L		10/18/24 14.43	10/21/24 14:30	1
Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene (Surr) 59 18.126 DCB Decachlorobiphenyl (Surr) 112 15.136 10/18/24 14:43 10/21/24 14:38 1 Method: EPA-01 615 - Herbicides (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 2(4-D <0.0541	Polychionnated biphenyis, total	~0.100	0	0.100	0.100	ug/L		10/10/24 14:45	10/21/24 14.50	I
Tetrachloro-m-xylene (Surr) 59 18 - 126 10/18/24 14:43 10/21/24 14:38 1 DCB Decachlorobiphenyl (Surr) 112 15 - 136 10/18/24 14:43 10/21/24 14:38 1 Method: EPA-01 615 - Herbicides (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 2.4-D <0.0541 U 0.201 0.0541 ug/L 10/19/24 05:03 10/21/24 16:25 1 Hexachlorophene <0.811 U 5.02 0.811 ug/L 10/19/24 05:03 10/21/24 16:25 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 72 45 - 150 100 10/19/24 05:03 10/21/24 16:25 1 Method: EPA 300.0 - Anions, Ion Chromatography Analyzed Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Method: EPA-01 632 - Carbamate and Urea Pesticides (HPLC) MDL Unit D Prepared <t< th=""><th>Surrogate</th><th>%Recovery</th><th>Qualifier</th><th>Limits</th><th></th><th></th><th></th><th>Prepared</th><th>Analyzed</th><th>Dil Fac</th></t<>	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr) 112 15-136 10/18/24 14:43 10/21/24 14:38 1 Method: EPA-01 615 - Herbicides (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 2,4-D <0.0541	Tetrachloro-m-xylene (Surr)	59		18_126				10/18/24 14:43	10/21/24 14:38	1
Method: EPA-01 615 - Herbicides (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 2.4-D <0.0541	DCB Decachlorobiphenyl (Surr)	112		15 - 136				10/18/24 14:43	10/21/24 14:38	1
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 2.4-D <0.0541	Method: EPA-01 615 - Herbicio	des (GC)								
Z4-D <0.0541 U 0.201 0.0541 ug/L 10/19/24 05:03 10/21/24 16:25 1 Hexachlorophene <0.811	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Result Qualifier Limits MDL Unit D Prepared Analyzed Dil Fac Fluoride 257 J 500 100 Unit D Prepared Analyzed Dil Fac Method: EPA-01 632 - Carbamate and Urea Pesticides (HPLC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Method: EPA-01 632 - Carbamate and Urea Pesticides (HPLC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Diuron 0.279 0.0900 0.514 ug/L D Prepared Analyzed Dil Fac Aluminum 10/21/24 16:25 1 10/21/24 16:25 1 10/21/24 16:25 1 Method: EPA-01 632 - Carbamate and Urea Pesticides (HPLC) Analyte D Prepared Analyzed Dil Fac Diuron 0.279 0.0900 0.0514 ug/L 10/21/24 14:03 10/29/24 15:59 1 Method: EPA 200.8 - Metals (ICP/MS) - Total Recoverable Anal	2 4-D	<0.0541	<u>U</u>	0 201	0 0541	ua/l		10/19/24 05:03	10/21/24 16:25	1
Notation openet 3.011 0 0.011 0.021 0.011 0.011 0.012 $101/12/4$ 0.012 $101/12/4$	Hexachlorophene	<0.811		5.02	0.811	ug/l		10/19/24 05:03	10/21/24 16:25	1
$\frac{Surrogate}{2,4-Dichlorophenylacetic acid} = \frac{\sqrt{Recovery}}{72} \frac{Qualifier}{45-150} = \frac{Limits}{45-150}$ $\frac{Prepared}{10/19/24 05:03} \frac{Analyzed}{10/21/24 16:25} = \frac{Dil Fac}{10}$ $\frac{Method: EPA 300.0 - Anions, Ion Chromatography}{Analyte} = \frac{Result}{257} \frac{Qualifier}{J} = \frac{RL}{500} = \frac{MDL}{100} \frac{Unit}{ug/L} = \frac{D}{100} \frac{Prepared}{10/24/24 14:29} = \frac{Analyzed}{10/24/24 14:29} = \frac{Dil Fac}{10}$ $\frac{Method: EPA-01 632 - Carbamate and Urea Pesticides (HPLC)}{Analyte} = \frac{Result}{10.279} \frac{Qualifier}{10.0900} = \frac{RL}{10.0900} = \frac{MDL}{100} \frac{Unit}{ug/L} = \frac{D}{10/21/24 14:03} = \frac{Analyzed}{10/29/24 15:59} = \frac{Dil Fac}{10}$ $\frac{Method: EPA-01 632 - Carbamate and Urea Pesticides (HPLC)}{10/27/24 14:03} = \frac{Analyzed}{10/29/24 15:59} = \frac{Dil Fac}{10}$ $\frac{Method: EPA-01 632 - Carbamate and Urea Pesticides (HPLC)}{0.279} = 0.0900 = 0.0514 ug/L = \frac{D}{10/21/24 14:03} = \frac{Analyzed}{10/29/24 15:59} = \frac{Dil Fac}{10}$ $\frac{Method: EPA 200.8 - Metals (ICP/MS) - Total Recoverable}{Analyte} = \frac{Result}{12.8} \frac{Qualifier}{J} = \frac{RL}{20.0} = \frac{MDL}{3.01} \frac{Unit}{ug/L} = \frac{D}{10/22/24 22:41} = \frac{Analyzed}{10/23/24 15:13} = \frac{Dil Fac}{10}$ $\frac{Analyzed}{10/23/24 15:13} = \frac{Dil Fac}{10/23/24 15:13} = Di$	Silvex (2.4.5-TP)	<0.0424	0	0.201	0.0424	ug/L		10/19/24 05:03	10/21/24 16:25	1
Surrogate 2,4-Dichlorophenylacetic acid%Recovery 72Qualifier 45-150Limits 	0.1007 (2,4,0 11)	-0.0-12-1	0	0.201	0.0424	ug/L		10/10/24 00:00	10/21/24 10:20	
2,4-Dichlorophenylacetic acid 72 45-150 10/19/24 05:03 10/21/24 16:25 1 Method: EPA 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Fluoride 257 J 500 100 ug/L D Prepared Analyzed Dil Fac Method: EPA-01 632 - Carbamate and Urea Pesticides (HPLC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Carbaryl <1.85	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Method: EPA 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Fluoride 257 J 500 100 ug/L D Prepared Analyzed Dil Fac Method: EPA-01 632 - Carbamate and Urea Pesticides (HPLC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Carbaryl <1.85	2,4-Dichlorophenylacetic acid	72		45 - 150				10/19/24 05:03	10/21/24 16:25	1
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Fluoride 257 J 500 100 ug/L D Prepared Analyzed Dil Fac Method: EPA-01 632 - Carbamate and Urea Pesticides (HPLC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Carbaryl <1.85		on Chroma	tography							
Fluoride 257 J 500 100 ug/L 10/24/24 12/24 1 Method: EPA-01 632 - Carbamate and Urea Pesticides (HPLC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Carbaryl <1.85	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
Method: EPA-01 632 - Carbamate and Urea Pesticides (HPLC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Carbaryl <1.85	Fluoride	257	J	500	100	ug/L			10/24/24 14:29	1
Method: EPA-01 632 - Carbamate and Urea Pesticides (HPLC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Carbaryl <1.85										
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Carbaryl <1.85	Method: EPA-01 632 - Carbam	ate and Ure	a Pesticid	es (HPLC)	MDI	11	_	Durananad	Amahamad	
Carbaryi <1.85 0 5.00 1.85 ug/L 10/21/24 10/29/24 15:59 1 Diuron 0.279 0.0900 0.0514 ug/L 10/21/24 10/29/24 15:59 1 Method: EPA 200.8 - Metals (ICP/MS) - Total Recoverable Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Analyte Result Qualifier RL 20.0 3.01 ug/L D Prepared Analyzed Dil Fac Antimony 3.47 2.00 1.05 ug/L 10/22/24 10/22/24 10/23/24 15:13 1		Result	Qualifier	RL _		Unit		Prepared	Analyzed	
Diuron 0.279 0.0900 0.0514 ug/L 10/21/24 10/29/24 15:59 1 Method: EPA 200.8 - Metals (ICP/MS) - Total Recoverable Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Analyte 12.8 12.8 13 20.0 3.01 ug/L 10/22/24 10/23/24 10/23/24 11/23/24 <td>Carbaryi</td> <td><1.85</td> <td>U</td> <td>5.00</td> <td>0.0544</td> <td>ug/L</td> <td></td> <td>10/21/24 14:03</td> <td>10/29/24 15:59</td> <td>1</td>	Carbaryi	<1.85	U	5.00	0.0544	ug/L		10/21/24 14:03	10/29/24 15:59	1
Method: EPA 200.8 - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Aluminum 12.8 J 20.0 3.01 ug/L 10/22/24 22:41 10/23/24 15:13 1 Antimony 3.47 2.00 1.05 ug/L 10/22/24 22:41 10/23/24 15:13 1	Diuron	0.279		0.0900	0.0514	ug/L		10/21/24 14:03	10/29/24 15:59	1
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Aluminum 12.8 J 20.0 3.01 ug/L 10/22/24 22:41 10/23/24 15:13 1 Antimony 3.47 2.00 1.05 ug/L 10/22/24 22:41 10/23/24 15:13 1	Method: EPA 200.8 - Metals (I	CP/MS) - To	tal Recove	rable						
Aluminum 12.8 J 20.0 3.01 ug/L 10/22/24 22:41 10/23/24 15:13 1 Antimony 3.47 2.00 1.05 ug/L 10/22/24 22:41 10/23/24 15:13 1	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony 3 47 2 00 1 05 uir/l 10/22/24 22:41 10/23/24 15:13 1	Aluminum	12.8	J	20.0	3.01	ug/L		10/22/24 22:41	10/23/24 15:13	1
	Antimony	3.47		2.00	1.05	ug/L		10/22/24 22:41	10/23/24 15:13	1

RL

4.00

4.00

2.00

2.00

4.00

4.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

4.00

RL

100

10.0

10.0

4.00

10.0

MDL Unit

0.929 ug/L

0.954 ug/L

0.375 ug/L

0.258 ug/L

0.890 ug/L

0.690 ug/L

0.369 ug/L

0.525 ug/L

0.504 ug/L

0.486 ug/L

0.685 ug/L

0.351 ug/L

0.215 ug/L

0.885 ug/L

MDL Unit

71.7 ug/L

5.80 ug/L

2.00 ug/L

0.525 ug/L

2.00 ug/L

Analyte

Arsenic

Barium

Beryllium

Cadmium

Chromium

Manganese Molybdenum

Copper

Lead

Nickel

Silver

Zinc

Thallium

Analyte

General Chemistry

Phenols, Total (EPA 420.4)

Phosphorus Total (EPA 365.1)

Total Chromium (SM 3500 CR B)

Trivalent Chromium (SM 3500 CR B)

Hexavalent chromium (SM 3500 CR B)

Date Collected: 10/15/24 23:00

Date Received: 10/18/24 09:23

Selenium

Client Sample ID: Dossier Farms Effluent Date Collected: 10/17/24 10:59 Date Received: 10/18/24 09:23

Method: EPA 200.8 - Metals (ICP/MS) - Total Recoverable (Continued)

Result Qualifier

2.70 J

45.8

<0.375 U

<0.258 U

<0.890 U

<0.369 U

3.02

13.2

3.01

1.12 J

<0.351 U

<0.215 U

Result Qualifier

37.1

3250

<5.80 U

<2.00 U

<0.525 U

<2.00 U

5.71

Lab Sample ID: 860-85055-1 Matrix: Water

10/22/24 22:41 10/23/24 15:13

10/22/24 22:41 10/23/24 15:13

10/22/24 22:41 10/23/24 15:13

10/22/24 22:41 10/23/24 15:13

10/22/24 22:41 10/23/24 15:13

10/22/24 22:41 10/23/24 15:13

10/22/24 22:41 10/23/24 15:13

10/22/24 22:41 10/23/24 15:13

10/22/24 22:41 10/23/24 15:13

10/22/24 22:41 10/23/24 15:13

10/22/24 22:41 10/23/24 15:13

10/22/24 22:41 10/23/24 15:13

10/22/24 22:41 10/23/24 15:13

10/22/24 22:41 10/23/24 15:13

Prepared

Analyzed

Prepared

D

п

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

5

1

Dil Fac

13 14 15

10/28/24 13:24 1 10/28/24 13:24 1 10/28/24 13:24 1 Lab Sample ID: 860-85055-2

Analyzed

11/01/24 13:56

10/25/24 20:31

Matrix: Water

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000490	U	0.000500	0.000490	ug/L			10/25/24 15:40	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (1664B)	2330	J	5560	1740	ug/L			10/24/24 15:08	1

Date Collected: 10/16/24 05:00 Date Received: 10/18/24 09:23

Client Sample ID: Dossier Farms Effluent Grab 1

Method: EPA 1631E - Mer	cury, Low Leve	(CVAFS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000490	U	0.000500	0.000490	ug/L			10/25/24 15:45	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (1664B)	<1570	U	5000	1570	ug/L			10/24/24 15:08	1

Client Sample Results

Client: Brazos River Authority
Project/Site: WWTP Dossier Farms Effluent

Job ID: 860-85055-1

Client Sample ID: Dossier Farms Effluent Grab 3 Date Collected: 10/16/24 11:00 Date Received: 10/18/24 09:23						Lab Sample ID: 860-85055-4 Matrix: Water					
Method: EPA 1631E - Mercury		(CVAES)									
Analyte	Result	Qualifier	RI	мрі	Unit	р	Prepared	Analyzed	Dil Fac		
Mercury	<0.000490		0.000500	0.000490			Toparou	10/25/24 16:45	1		
	-0.000+00	0	0.000000	0.000400	ug/L			10/20/24 10:40	I		
General Chemistry											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
HEM (1664B)	<1570	U	5000	1570	ug/L		-	10/24/24 15:08	1		
 Client Semple ID: Dessier	Formo Ef	fluont Cr	soh 1				ah Compl				
Date Collected: 40/46/24 47:00		nuent Gi	ab 4			L	ab Sampi	e ID. 000-03 Motrix	Motor		
Date Collected: 10/16/24 17:00								watrix	water		
Date Received: 10/18/24 09:23											
Method: EPA 1631E - Mercury	Low Level	(CVAFS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Mercury	<0.000490	U	0.000500	0.000490	ug/L		•	10/25/24 15:55	1		
					0						
General Chemistry											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
HEM (1664B)	2670	J	5560	1740	ug/L			10/24/24 15:08	1		
Client Comple ID: Deceier		fluoret Lo	h Compo								
Client Sample ID: Dossier	Farms EI	fluent La	in Compo	site		Li	ab Sampi	e ID: 860-85	0-000		
Date Collected: 10/16/24 17:00								Matrix	Water		
Date Received: 10/18/24 09:23											
Mothod: EBA 624.1 Volatilo O	raanie Con	anounde ((
Melliou. EPA 024.1 - Voldille O	Posult	Ouglifier	3C/1VI3)	МП	Unit	п	Propared	Applyzod	Dil Eac		
							Flepareu	10/22/24 12:28			
Acrolonitrilo	<11.1		50.0	1/ 2	ug/L			10/23/24 12:30	1		
Renzene	< 14.3		1 00	0.460	ug/L			10/23/24 12.30	1		
Bromoform	<0.400		5.00	0.400	ug/L			10/22/24 12:30			
Methyl ethyl ketone (MEK)	1.32		5.00	0.000	ug/L			10/23/24 12.30	1		
	<0.20		50.0	0.20	ug/L			10/23/24 12.30	1		
	<0.690		5.00	0.690	ug/L			10/23/24 12:30			
Chiorobenzene	<0.455	UH	1.00	0.455	ug/L			10/23/24 12:38	1		
Chloredibromomethane	11.1	H	5.00	0.547	ug/L			10/23/24 12:38	1		
	<1.98	UH	10.0	1.98	ug/L			10/23/24 12:38	· · · · · · .		
2-Chioroethyl vinyl ether	<0.753	ОН	5.00	0.753	ug/L			10/23/24 12:38	1		
Chloroform	24.4	H	1.00	0.464	ug/L			10/23/24 12:38	1		
1,2-Dibromoethane	<0.999	UH	5.00	0.999	ug/L			10/23/24 12:38	1		
1,1-Dichlorethylene	<0.738	υн	1.00	0.738	ug/L			10/23/24 12:38	1		
Dichlorobromomethane	18.1	н	1.00	0.552	ug/L			10/23/24 12:38	1		
1,1-Dichloroethane	<0.635	UH	1.00	0.635	ug/L			10/23/24 12:38	1		
1,2-Dichloroethane	< 0.372	UH	1.00	0.372	ug/L			10/23/24 12:38	1		
1,2-Dichloropropane	< 0.556	UH	5.00	0.556	ug/L			10/23/24 12:38	1		
1,3-Dichloropropylene	<1.27	UH	5.00	1.27	ug/L			10/23/24 12:38	1		
Ethylbenzene	<0.385	UH	1.00	0.385	ug/L			10/23/24 12:38	1		
Methyl bromide	<1.42	UH	5.00	1.42	ug/L			10/23/24 12:38	1		
Methyl chloride	<2.04	UH	10.0	2.04	ug/L			10/23/24 12:38	1		
Methylene Chloride	<1.73	UH	5.00	1.73	ug/L			10/23/24 12:38	1		
1,1,2,2-Tetrachloroethane	<0.470	UH	1.00	0.470	ug/L			10/23/24 12:38	1		
Tetrachloroethylene	<0.655	UH	1.00	0.655	ug/L			10/23/24 12:38	1		
Toluene	<0.475	UH	1.00	0.475	ug/L			10/23/24 12:38	1		
1,2-trans-Dichloroethylene	<0.368	UH	1.00	0.368	ug/L			10/23/24 12:38	1		
1,1,1-Trichloroethane	<0.585	UH	5.00	0.585	ug/L			10/23/24 12:38	1		

Job ID: 860-85055-1

Matrix: Water

5

6

Lab Sample ID: 860-85055-6

Client Sample ID: Dossier Farms Effluent Lab Composite Date Collected: 10/16/24 17:00

Date Received: 10/18/24 09:23

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	<0.411	UH	1.00	0.411	ua/L			10/23/24 12:38	
Trichloroethylene	<1.50	UH	5.00	1.50	ua/L			10/23/24 12:38	
Tribalomethanes Total	54.9	н	5.00	0 633	ua/l			10/23/24 12:38	
Vinyl chloride	<0 428	üн	2 00	0 428	ug/l			10/23/24 12:38	,
trans-1,3-Dichloropropene	<1.27	UH	5.00	1.27	ug/L			10/23/24 12:38	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	102		74 - 124			-		10/23/24 12:38	
Dibromofluoromethane (Surr)	104		75 - 131					10/23/24 12:38	
1,2-Dichloroethane-d4 (Surr)	104		63 - 144					10/23/24 12:38	
Toluene-d8 (Surr)	101		80 - 120					10/23/24 12:38	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cyanide, Total (EPA Kelada 01)	9.92		5.00	1.98	ug/L			10/23/24 15:20	
Cyanide, Available (EPA OIA - 1677)	7.63		2.00	1.56	ug/L			10/24/24 16:42	
lient Sample ID: Dossie	r Farms Ff	fluent G	rah 1 163 [,]	l hlanks	2		ah Samnl	o ID· 860-85	055-
one Collected: 10/15/24 22:00								C ID: 000-00	Moto
Date Collected: 10/15/24 23:00)							Watrix	vvate
Jale Received. 10/16/24 09.25	•								
Method: EPA 1631E - Mercur	y, Low Level	(CVAFS)							
Method: EPA 1631E - Mercur Analyte	y, Low Level Result	(CVAFS) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Method: EPA 1631E - Mercur Analyte Mercury	y, Low Level Result <0.000490	(CVAFS) Qualifier	RL 0.000500	MDL 0.000490	Unit ug/L	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: EPA 1631E - Mercur Analyte Mercury	y, Low Level Result <0.000490	(CVAFS) Qualifier	RL 0.000500	MDL 0.000490	Unit ug/L	<u>D</u>	Prepared	Analyzed 10/25/24 16:09	Dil Fac
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie	r Farms Ef	(CVAFS) Qualifier U	RL 0.000500 rab 2 163*	MDL 0.000490	Unit ug/L	 	Prepared ab Sampl	Analyzed 10/25/24 16:09 e ID: 860-85	Dil Fac
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 05:00	y, Low Level Result <0.000490 r Farms Ef	(CVAFS) Qualifier U	RL 0.000500 rab 2 163*	MDL 0.000490 I blanks	Unit ug/L	D La	Prepared	Analyzed 10/25/24 16:09 e ID: 860-85 Matrix	Dil Fac
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 05:00 Date Received: 10/18/24 09:23	y, Low Level Result <0.000490 r Farms Ef	(CVAFS) Qualifier U	RL 0.000500 rab 2 1631	MDL 0.000490	Unit ug/L	D La	Prepared	Analyzed 10/25/24 16:09 e ID: 860-85 Matrix	Dil Fac
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 05:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur	y, Low Level <u>Result</u> <0.000490 r Farms Ef	(CVAFS) Qualifier U fluent G	RL 0.000500 rab 2 163*	MDL 0.000490 I blanks	Unit ug/L	<u>P</u> La	Prepared	Analyzed 10/25/24 16:09 e ID: 860-85 Matrix	Dil Fac
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Pate Collected: 10/16/24 05:00 Pate Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte	y, Low Level Result <0.000490 r Farms Ef y, Low Level Result	(CVAFS) Qualifier U fluent G (CVAFS) Qualifier	RL 0.000500 rab 2 163 RL	MDL 0.000490 I blanks	Unit ug/L	D La	Prepared ab Sampl Prepared	Analyzed 10/25/24 16:09 e ID: 860-85 Matrix	Dil Fac
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 05:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Mercury	y, Low Level <u>Result</u> <0.000490 r Farms Ef y, Low Level <u>Result</u> <0.000490	(CVAFS) Qualifier U fluent G (CVAFS) Qualifier	RL 0.000500 rab 2 163 RL 0.000500	MDL 0.000490 I blanks MDL 0.000490	Unit ug/L	D	Prepared ab Sampl Prepared	Analyzed 10/25/24 16:09 e ID: 860-85 Matrix Analyzed 10/25/24 16:14	Dil Fac 5055-8 : Water Dil Fac
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 05:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Mercury	y, Low Level <u>Result</u> <0.000490 r Farms Ef y, Low Level <u>Result</u> <0.000490	(CVAFS) Qualifier U fluent G (CVAFS) Qualifier U	RL 0.000500 rab 2 163 RL 0.000500	MDL 0.000490 I blanks MDL 0.000490	Unit ug/L Unit ug/L	D	Prepared ab Sampl Prepared	Analyzed 10/25/24 16:09 e ID: 860-85 Matrix Analyzed 10/25/24 16:14	Dil Fac
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 05:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie	y, Low Level <u>Result</u> <0.000490 r Farms Ef y, Low Level <u>Result</u> <0.000490 r Farms Ef	(CVAFS) Qualifier U fluent G (CVAFS) Qualifier U fluent G	RL 0.000500 rab 2 163 RL 0.000500 rab 3 163	MDL 0.000490 I blanks MDL 0.000490 I blanks	Unit ug/L Unit ug/L	D La	Prepared ab Sampl Prepared ab Sampl	Analyzed 10/25/24 16:09 e ID: 860-85 Matrix Analyzed 10/25/24 16:14 e ID: 860-85	Dil Fac 055-8 : Wate Dil Fac 055-9
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 05:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 11:00	y, Low Level <u>Result</u> <0.000490 r Farms Ef y, Low Level <u>Result</u> <0.000490 r Farms Ef	(CVAFS) Qualifier U fluent G (CVAFS) Qualifier U fluent G	RL 0.000500 rab 2 163 RL 0.000500 rab 3 163	MDL 0.000490 blanks MDL 0.000490 blanks	Unit ug/L Unit ug/L	D La	Prepared ab Sampl Prepared ab Sampl	Analyzed 10/25/24 16:09 e ID: 860-85 Matrix Analyzed 10/25/24 16:14 e ID: 860-85 Matrix	Dil Fac
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 05:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 11:00 Date Received: 10/18/24 09:23	y, Low Level <u>Result</u> <0.000490 r Farms Ef y, Low Level <u>Result</u> <0.000490 r Farms Ef	(CVAFS) Qualifier U fluent G (CVAFS) Qualifier U fluent G	RL 0.000500 rab 2 163* 	MDL 0.000490 blanks MDL 0.000490 blanks	Unit ug/L Unit ug/L	D La	Prepared ab Sampl Prepared ab Sampl	Analyzed 10/25/24 16:09 e ID: 860-85 Matrix Analyzed 10/25/24 16:14 e ID: 860-85 Matrix	Dil Fac 055-8 Wate Dil Fac 055-9
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 05:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 11:00 Date Received: 10/18/24 09:23	y, Low Level Result <0.000490 r Farms Ef y, Low Level Result <0.000490 r Farms Ef	(CVAFS) Qualifier U fluent G (CVAFS) Qualifier U fluent G	RL 0.000500 rab 2 163* RL 0.000500 rab 3 163*	MDL 0.000490 I blanks 0.000490 I blanks	Unit ug/L Unit ug/L	D La	Prepared ab Sampl Prepared ab Sampl	Analyzed 10/25/24 16:09 e ID: 860-85 Matrix Analyzed 10/25/24 16:14 e ID: 860-85 Matrix	Dil Fac 055-8 : Water Dil Fac 055-9 : Water
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 05:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 11:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur	y, Low Level <u>Result</u> <0.000490 r Farms Ef y, Low Level <u>Result</u> <0.000490 r Farms Ef y, Low Level	(CVAFS) Qualifier U fluent G Qualifier U fluent G fluent G	RL 0.000500 rab 2 163* 	MDL 0.000490 I blanks MDL 0.000490 I blanks	Unit ug/L Unit ug/L	D La	Prepared ab Sampl Prepared ab Sampl	Analyzed 10/25/24 16:09 e ID: 860-85 Matrix Analyzed 10/25/24 16:14 e ID: 860-85 Matrix	Dil Fac 055-8 : Water Dil Fac
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 05:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Date Collected: 10/16/24 11:00 Date Received: 10/16/24 11:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte	y, Low Level <pre> Result </pre> <pre></pre>	(CVAFS) Qualifier U fluent G Qualifier U fluent G fluent G (CVAFS) Qualifier	RL 0.000500 rab 2 163 RL 0.000500 rab 3 163	MDL 0.000490 I blanks 0.000490 I blanks	Unit ug/L Unit ug/L	D La	Prepared ab Sampl Prepared ab Sampl Prepared	Analyzed 10/25/24 16:09 e ID: 860-85 Matrix Analyzed 10/25/24 16:14 e ID: 860-85 Matrix	Dil Fac
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Pate Collected: 10/16/24 05:00 Pate Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Pate Collected: 10/16/24 11:00 Pate Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Mercury	y, Low Level esuit esuit	(CVAFS) Qualifier U fluent G Qualifier U fluent G (CVAFS) Qualifier U	RL 0.000500 rab 2 163 RL 0.000500 rab 3 163 RL 0.000500	MDL 0.000490 blanks MDL 0.000490 blanks MDL 0.000490	Unit ug/L Unit ug/L Unit ug/L	D D D D	Prepared ab Sampl Prepared ab Sampl Prepared	Analyzed 10/25/24 16:09 e ID: 860-85 Matrix Analyzed 10/25/24 16:14 e ID: 860-85 Matrix Matrix	Dil Fac
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 05:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Received: 10/16/24 11:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie	y, Low Level r Farms Ef y, Low Level Result (0.000490) r Farms Ef y, Low Level Result (0.000490) r Farms Ef y, Low Level Result <0.000490 r Farms Ef	(CVAFS) Qualifier U fluent G Qualifier U fluent G (CVAFS) Qualifier U fluent G	RL 0.000500 rab 2 163' RL 0.000500 rab 3 163' RL 0.000500 rab 4 163'	MDL 0.000490 I blanks MDL 0.000490 I blanks 0.000490 I blanks	Unit ug/L Unit ug/L Unit ug/L	D D D Lat	Prepared ab Sampl Prepared Prepared Prepared D Sample	Analyzed 10/25/24 16:09 e ID: 860-85 Matrix Analyzed 10/25/24 16:14 e ID: 860-85 Matrix Matrix 10/25/24 16:50 ID: 860-850	Dil Fac 055-& Wate Dil Fac Dil Fac
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 05:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Date Collected: 10/16/24 11:00 Date Received: 10/16/24 11:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 11:00 Date Received: 10/16/24 11:00 Date Received: 10/16/24 11:00 Date Received: 10/16/24 11:00 Date Collected: 10/16/24 11:00	y, Low Level esuit (0.000490) r Farms Ef y, Low Level Result (0.000490) r Farms Ef y, Low Level Result (0.000490) r Farms Ef (0.000490) r Farms Ef (0.000490)	(CVAFS) Qualifier U fluent G Qualifier U fluent G (CVAFS) Qualifier U fluent G	RL 0.000500 rab 2 163 RL 0.000500 rab 3 163 RL 0.000500 rab 4 163	MDL 0.000490 I blanks MDL 0.000490 I blanks 0.000490 I blanks	Unit ug/L ug/L ug/L ug/L	D D D Lat	Prepared ab Sampl Prepared Prepared Prepared o Sample	Analyzed 10/25/24 16:09 e ID: 860-85 Matrix Analyzed 10/25/24 16:14 e ID: 860-85 Matrix Analyzed 10/25/24 16:50 ID: 860-850 Matrix	Dil Fac
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 05:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 11:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 17:00 Date Received: 10/18/24 09:23	y, Low Level esuit r Farms Ef y, Low Level Result <0.000490 y, Low Level Result <0.000490 y, Low Level y, Low Level x Farms Ef y, Low Level x Farms Ef y, Low Level x Farms Ef y Farms Ef x Farms Ef	(CVAFS) Qualifier U fluent G Qualifier U fluent G (CVAFS) Qualifier U fluent G	RL 0.000500 rab 2 163* RL 0.000500 rab 3 163* RL 0.000500 rab 4 163*	MDL 0.000490 blanks MDL 0.000490 blanks	Unit ug/L ug/L ug/L Unit ug/L	D D Lat	Prepared ab Sampl Prepared Ab Sampl Prepared D Sample	Analyzed 10/25/24 16:09 e ID: 860-85 Matrix Analyzed 10/25/24 16:14 e ID: 860-85 Matrix Analyzed 10/25/24 16:50 ID: 860-850 Matrix	Dil Fac 055-8 Wate Dil Fac 055-9 Wate Dil Fac 055-10
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 05:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Received: 10/16/24 11:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 17:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur	y, Low Level - Result - (0.000490 r Farms Ef y, Low Level - Result - (0.000490 r Farms Ef y, Low Level - Result - (0.000490 r Farms Ef y, Low Level - (0.000490 r Farms Ef	(CVAFS) Qualifier U fluent G Qualifier U fluent G (CVAFS) Qualifier U fluent G (CVAFS) Qualifier U fluent G	RL 0.000500 rab 2 163 RL 0.000500 rab 3 163 RL 0.000500 rab 4 163	MDL 0.000490 I blanks MDL 0.000490 I blanks	Unit ug/L Unit ug/L Unit	D D D D Lak	Prepared ab Sampl Prepared b Sampl Prepared c Sample	Analyzed 10/25/24 16:09 e ID: 860-85 Matrix Analyzed 10/25/24 16:14 e ID: 860-85 Matrix Analyzed 10/25/24 16:50 ID: 860-850 Matrix	Dil Fac 055-& Water Dil Fac 055-9 Dil Fac 055-10 Water
Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 05:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 11:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte Mercury Client Sample ID: Dossie Date Collected: 10/16/24 17:00 Date Received: 10/18/24 09:23 Method: EPA 1631E - Mercur Analyte	y, Low Level esuit r Farms Ef y, Low Level Result y, Low Level x, Low Level x, Low Level x, Low Level x, Cow Level x, Low Level X, Low Level X, Low Level	(CVAFS) Qualifier U fluent G Qualifier U fluent G (CVAFS) Qualifier U fluent G (CVAFS) Qualifier U fluent G	RL 0.000500 rab 2 163 RL 0.000500 rab 3 163 RL RL	MDL 0.000490 I blanks MDL 0.000490 I blanks MDL	Unit ug/L Unit ug/L Unit ug/L		Prepared ab Sampl Prepared Prepared Prepared Prepared	Analyzed 10/25/24 16:09 e ID: 860-85 Matrix Analyzed 10/25/24 16:14 e ID: 860-85 Matrix Analyzed 10/25/24 16:50 ID: 860-850 Matrix	Dil Fac

Job ID: 860-85055-1

17

Client Sample ID: Dossier Farms Effluent							Lab Sample ID: 860-85057-1				
Date Collected: 10/16/24 11:00		-	Matrix:	Water							
Date Received: 10/18/24 09:23											
Method: EPA 300.0 - Anions, Ion	Chromat	tography									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Nitrogen, Nitrate	6080	н	100	39.1	ug/L			10/22/24 03:41	1		
General Chemistry											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Chromium, hexavalent (SM3500 CR B)	<2.00	U	10.0	2.00	ug/L			10/28/24 13:30	1		

Client: Brazos River Authority Project/Site: WWTP Dossier Farms Effluent

Client Sample ID: Dossier Farms Effluent

Job ID: 860-85055-1

Lab Sample ID: 860-85055-1

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits have been highlighted for your convenience.

				BRA Limits			
Analyte	Result	Qualifier	Unit	Limit	RL	Method	Prep Type
Pentachlorophenol	<1.05	U	ug/L	1	1.15	625.1	Total/NA
Aldrin	<0.00113	U	ug/L	0.01	0.0100	608.3	Total/NA
alpha-Endosulfan	<0.00107	U	ug/L	0.01	0.0100	608.3	Total/NA
beta-BHC	0.963		ug/L	0.05	0.0180	608.3	Total/NA
beta-Endosulfan	<0.00122	U	ug/L	0.02	0.0100	608.3	Total/NA
delta-BHC	<0.00245	U	ug/L	0.05	0.250	608.3	Total/NA
Dieldrin	<0.000953	U	ug/L	0.02	0.0100	608.3	Total/NA
Endrin	<0.00156	U	ug/L	0.02	0.0100	608.3	Total/NA
Heptachlor	<0.00446	U	ug/L	0.01	0.00900	608.3	Total/NA
Heptachlor epoxide	<0.00134	U	ug/L	0.01	0.0100	608.3	Total/NA
Toxaphene	< 0.0769	U	ug/L	0.3	0.200	608.3	Total/NA
PCB-1016	<0.0125	U *+	ug/L	0.5	0.100	608.3	Total/NA
PCB-1242	<0.0125	U	ug/L	0.5	0.100	608.3	Total/NA
PCB-1254	<0.00780	U	ug/L	0.5	0.100	608.3	Total/NA
PCB-1221	<0.0125	U	uq/L	0.5	0.100	608.3	Total/NA
PCB-1232	<0.0125	U	uq/L	0.5	0.100	608.3	Total/NA
PCB-1248	<0.0125	U	ua/L	0.5	0.100	608.3	Total/NA
PCB-1260	<0.00780	U	ug/L	0.5	0.100	608.3	Total/NA
Aluminum	12.8	J	ua/L	2.5	20.0	200.8	Total
			3				Recoverable
Arsenic	2.70	J	ug/L	0.5	4.00	200.8	Total
							Recoverable
Barium	45.8		ug/L	3	4.00	200.8	Total
D - mullium	40.075			0.5	0.00	200.0	Recoverable
Beryllium	<0.375	0	ug/L	0.5	2.00	200.8	Iotal Rocovorablo
Cadmium	<0.258	U	ua/l	1	2 00	200.8	Total
Cadman	0.200	U U	ug, E		2.00	200.0	Recoverable
Chromium	<0.890	U	ug/L	3	4.00	200.8	Total
			-				Recoverable
Copper	5.71		ug/L	1	4.00	200.8	Total
							Recoverable
Lead	<0.369	U	ug/L	0.5	2.00	200.8	Total
Silvor	<0.351		ug/l	0.5	2.00	200.8	Recoverable
Siver	\ 0.551	0	ug/L	0.5	2.00	200.0	Recoverable
Thallium	<0.215	U	ug/L	0.5	2.00	200.8	Total
			0.				Recoverable
Total Chromium	<0.525	U	ug/L	3	4.00	SM 3500 CR B	Total/NA
Hexavalent chromium	<2.00	U	ug/L	2	10.0	SM 3500 CR B	Total/NA

Prep Type: Total/NA

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water

-			Pe	ercent Surre	ogate Reco
		BFB	DBFM	DCA	TOL
Lab Sample ID	Client Sample ID	(74-124)	(75-131)	(63-144)	(80-120)
860-85055-6	Dossier Farms Effluent Lab Corr	102	104	104	101
LCS 860-195257/3	Lab Control Sample	103	103	100	100
LCSD 860-195257/4	Lab Control Sample Dup	103	103	101	101
MB 860-195257/10	Method Blank	101	101	103	102
Surrogate Legend					
BFB = 4-Bromofluorol	penzene (Surr)				
DBFM = Dibromofluor	omethane (Surr)				
DCA = 1,2-Dichloroet	nane-d4 (Surr)				

TOL = Toluene-d8 (Surr)

Method: 625.1 - Semivolatile Organic Compounds (GC-MS/MS) Matrix: Water

		Percent Surrogate Recovery (Acceptance Limits)						
		FBP	2FP	NBZ	PHL	TPHd14	ТВР	
Lab Sample ID	Client Sample ID	(43-130)	(19-120)	(37-133)	(8-124)	(47-130)	(35-130)	
860-85055-1	Dossier Farms Effluent	73	83	123	66	94	107	
LCS 860-195146/2-A	Lab Control Sample	60	24	73	22	54	44	
LCS 860-195146/4-A	Lab Control Sample	112	43	131	44	101	74	
LCSD 860-195146/3-A	Lab Control Sample Dup	66	25	81	23	58	50	
LCSD 860-195146/5-A	Lab Control Sample Dup	110	50	137 S1+	51	111	77	
MB 860-195146/1-A	Method Blank	44	23	54	22	45 S1-	32 S1-	
Surrogate Legend								
FBP = 2-Fluorobipheny	/I (Surr)							
2FP = 2-Fluorophenol	(Surr)							
NBZ = Nitrobenzene-d	5 (Surr)							
PHL = Phenol-d5 (Surr)							
TPHd14 = p-Terphenyl	-d14 (Surr)							
TBP = 2,4,6-Tribromop	henol (Surr)							

Method: D7065-11 - Determination of Nonylphenols Matrix: Water

Percent Surrogate Recovery (Acceptance Limits) 4NPH **4NPME** (58-115) (54-139) Lab Sample ID **Client Sample ID** 860-85055-1 Dossier Farms Effluent 89 87 LCS 280-672179/2-A Lab Control Sample 103 102 LCSD 280-672179/3-A Lab Control Sample Dup 112 112 MB 280-672179/1-A Method Blank 74 84

Surrogate Legend

4NPH = 4-nonylphenol (Surr)

4NPME = 4-nonylphenol monoethoxylate (Surr)

Prep Type: Total/NA

Prep Type: Total/NA

Surrogate Summary

Method: 608.3 - Organochlorine Pesticides in Water Matrix: Water

		Pe	
	DCB1	TCX1	
Client Sample ID	(15-136)	(18-126)	
Dossier Farms Effluent	98	64	
Lab Control Sample	103	98	
Lab Control Sample Dup	97	88	
Method Blank	108	104	
	Client Sample ID Dossier Farms Effluent Lab Control Sample Lab Control Sample Dup Method Blank	Client Sample IDDCB1Dossier Farms Effluent98Lab Control Sample103Lab Control Sample Dup97Method Blank108	

Surrogate Legend

DCB = DCB Decachlorobiphenyl (Surr)

TCX = Tetrachloro-m-xylene

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC) Matrix: Water

		Percent Surrogate Recovery (Acceptance Limits)						
		TCX1	DCB1					
Lab Sample ID	Client Sample ID	(18-126)	(15-136)					
860-85055-1	Dossier Farms Effluent	59	112					
LCS 860-193889/4-A	Lab Control Sample	96	113					
LCSD 860-193889/5-A	Lab Control Sample Dup	94	113					
MB 860-193889/1-A	Method Blank	88	104					
Surrogate Legend								

TCX = Tetrachloro-m-xylene (Surr)

DCB = DCB Decachlorobiphenyl (Surr)

Method: 615 - Herbicides (GC)

Matrix: Water			Prep Type: Total/NA
_			Percent Surrogate Recovery (Acceptance Limits)
		DCPAA2	
Lab Sample ID	Client Sample ID	(45-150)	
860-85055-1	Dossier Farms Effluent	72	
LCS 860-194619/2-A	Lab Control Sample	93	
LCS 860-194619/4-A	Lab Control Sample	84	
LCSD 860-194619/3-A	Lab Control Sample Dup	99	
LCSD 860-194619/5-A	Lab Control Sample Dup	83	
MB 860-194619/1-A	Method Blank	94	
Surrogate Legend			

DCPAA = 2,4-Dichlorophenylacetic acid

Prep Type: Total/NA

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-195257/10 Matrix: Water

Analysis Batch: 195257

-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acrolein	<11.1	U	50.0	11.1	ug/L			10/23/24 09:42	1
Acrylonitrile	<14.3	U	50.0	14.3	ug/L			10/23/24 09:42	1
Benzene	<0.460	U	1.00	0.460	ug/L			10/23/24 09:42	1
Bromoform	<0.633	U	5.00	0.633	ug/L			10/23/24 09:42	1
Methyl ethyl ketone (MEK)	<8.28	U	50.0	8.28	ug/L			10/23/24 09:42	1
Carbon tetrachloride	<0.896	U	5.00	0.896	ug/L			10/23/24 09:42	1
Chlorobenzene	<0.455	U	1.00	0.455	ug/L			10/23/24 09:42	1
Chlorodibromomethane	<0.547	U	5.00	0.547	ug/L			10/23/24 09:42	1
Chloroethane	<1.98	U	10.0	1.98	ug/L			10/23/24 09:42	1
2-Chloroethyl vinyl ether	<0.753	U	5.00	0.753	ug/L			10/23/24 09:42	1
Chloroform	<0.464	U	1.00	0.464	ug/L			10/23/24 09:42	1
1,2-Dibromoethane	<0.999	U	5.00	0.999	ug/L			10/23/24 09:42	1
1,1-Dichlorethylene	<0.738	U	1.00	0.738	ug/L			10/23/24 09:42	1
Dichlorobromomethane	<0.552	U	1.00	0.552	ug/L			10/23/24 09:42	1
1,1-Dichloroethane	<0.635	U	1.00	0.635	ug/L			10/23/24 09:42	1
1,2-Dichloroethane	<0.372	U	1.00	0.372	ug/L			10/23/24 09:42	1
1,2-Dichloropropane	<0.556	U	5.00	0.556	ug/L			10/23/24 09:42	1
1,3-Dichloropropylene	<1.27	U	5.00	1.27	ug/L			10/23/24 09:42	1
Ethylbenzene	<0.385	U	1.00	0.385	ug/L			10/23/24 09:42	1
Methyl bromide	<1.42	U	5.00	1.42	ug/L			10/23/24 09:42	1
Methyl chloride	<2.04	U	10.0	2.04	ug/L			10/23/24 09:42	1
Methylene Chloride	<1.73	U	5.00	1.73	ug/L			10/23/24 09:42	1
1,1,2,2-Tetrachloroethane	<0.470	U	1.00	0.470	ug/L			10/23/24 09:42	1
Tetrachloroethylene	<0.655	U	1.00	0.655	ug/L			10/23/24 09:42	1
Toluene	<0.475	U	1.00	0.475	ug/L			10/23/24 09:42	1
1,2-trans-Dichloroethylene	<0.368	U	1.00	0.368	ug/L			10/23/24 09:42	1
1,1,1-Trichloroethane	<0.585	U	5.00	0.585	ug/L			10/23/24 09:42	1
1,1,2-Trichloroethane	<0.411	U	1.00	0.411	ug/L			10/23/24 09:42	1
Trichloroethylene	<1.50	U	5.00	1.50	ug/L			10/23/24 09:42	1
Trihalomethanes, Total	<0.633	U	5.00	0.633	ug/L			10/23/24 09:42	1
Vinyl chloride	<0.428	U	2.00	0.428	ug/L			10/23/24 09:42	1
trans-1,3-Dichloropropene	<1.27	U	5.00	1.27	ug/L			10/23/24 09:42	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		74 - 124		10/23/24 09:42	1
Dibromofluoromethane (Surr)	101		75 - 131		10/23/24 09:42	1
1,2-Dichloroethane-d4 (Surr)	103		63 - 144		10/23/24 09:42	1
Toluene-d8 (Surr)	102		80 - 120		10/23/24 09:42	1

Lab Sample ID: LCS 860-195257/3 Matrix: Water Analysis Batch: 195257

LCS LCS Spike %Rec Analyte Added Result Qualifier D %Rec Unit Limits Acrolein 250 159.6 64 60 - 140 ug/L 500 Acrylonitrile 472.4 ug/L 94 60 - 140 Benzene 50.0 42.80 ug/L 86 75 - 125 50.0 70 - 130 Bromoform 44.50 89 ug/L

Eurofins Houston

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

5

9

Client Sample ID: Method Blank Prep Type: Total/NA

Page 20 of 76

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 860-195257/3

Matrix: Water Analysis Batch: 195257

-	Spike	LCS	LCS				%Rec	5
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl ethyl ketone (MEK)		209.3		ug/L		84	60 - 140	6
Carbon tetrachloride	50.0	43.86		ug/L		88	70 - 125	
Chlorobenzene	50.0	41.59		ug/L		83	82 - 135	
Chlorodibromomethane	50.0	43.18		ug/L		86	73 - 125	
Chloroethane	50.0	43.59		ug/L		87	60 - 140	0
2-Chloroethyl vinyl ether	50.0	47.68		ug/L		95	50 - 150	0
Chloroform	50.0	43.89		ug/L		88	70 - 121	
cis-1,3-Dichloropropene	50.0	43.82		ug/L		88	74 - 125	9
1,2-Dibromoethane	50.0	43.55		ug/L		87	73 - 125	
1,1-Dichlorethylene	50.0	39.69		ug/L		79	50 - 150	
Dichlorobromomethane	50.0	43.23		ug/L		86	75 - 125	
1,1-Dichloroethane	50.0	43.70		ug/L		87	71 - 130	
1,2-Dichloroethane	50.0	43.07		ug/L		86	72 - 130	
1,2-Dichloropropane	50.0	43.72		ug/L		87	74 - 125	
Ethylbenzene	50.0	42.32		ug/L		85	75 - 125	
Methyl bromide	50.0	40.72		ug/L		81	60 - 140	13
Methyl chloride	50.0	39.96		ug/L		80	60 - 140	
Methylene Chloride	50.0	45.12		ug/L		90	71 - 125	
1,1,2,2-Tetrachloroethane	50.0	43.62		ug/L		87	74 - 125	
Tetrachloroethylene	50.0	41.11		ug/L		82	71 - 125	
Toluene	50.0	42.29		ug/L		85	75 - 130	
1,2-trans-Dichloroethylene	50.0	43.09		ug/L		86	75 - 125	
1,1,1-Trichloroethane	50.0	43.02		ug/L		86	70 - 130	
1,1,2-Trichloroethane	50.0	44.21		ug/L		88	75 - 130	
Trichloroethylene	50.0	41.83		ug/L		84	75 - 135	17
Vinyl chloride	50.0	41.07		ug/L		82	60 - 140	
trans-1,3-Dichloropropene	50.0	44.41		ug/L		89	66 - 125	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		74 - 124
Dibromofluoromethane (Surr)	103		75 - 131
1,2-Dichloroethane-d4 (Surr)	100		63 - 144
Toluene-d8 (Surr)	100		80 - 120

Lab Sample ID: LCSD 860-195257/4 Matrix: Water Analysis Batch: 195257

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acrolein	250	180.9		ug/L		72	60 - 140	13	25
Acrylonitrile	500	531.9		ug/L		106	60 - 140	12	25
Benzene	50.0	49.67		ug/L		99	75 - 125	15	25
Bromoform	50.0	51.45		ug/L		103	70 - 130	14	25
Methyl ethyl ketone (MEK)	250	243.1		ug/L		97	60 - 140	15	25
Carbon tetrachloride	50.0	52.85		ug/L		106	70 - 125	19	25
Chlorobenzene	50.0	48.30		ug/L		97	82 - 135	15	25
Chlorodibromomethane	50.0	50.34		ug/L		101	73 - 125	15	25
Chloroethane	50.0	44.32		ug/L		89	60 - 140	2	25

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 860-195257/4 Matrix: Water

Analysis Batch: 195257

-		Spike	LCSD	LCSD				%Rec		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2-Chloroethyl vinyl ether		50.0	54.68		ug/L		109	50 - 150	14	25
Chloroform		50.0	50.82		ug/L		102	70 - 121	15	25
cis-1,3-Dichloropropene		50.0	51.66		ug/L		103	74 - 125	16	25
1,2-Dibromoethane		50.0	50.01		ug/L		100	73 - 125	14	25
1,1-Dichlorethylene		50.0	45.07		ug/L		90	50 - 150	13	25
Dichlorobromomethane		50.0	49.95		ug/L		100	75 - 125	14	25
1,1-Dichloroethane		50.0	52.88		ug/L		106	71 - 130	19	25
1,2-Dichloroethane		50.0	49.84		ug/L		100	72 - 130	15	25
1,2-Dichloropropane		50.0	51.12		ug/L		102	74 - 125	16	25
Ethylbenzene		50.0	49.22		ug/L		98	75 - 125	15	25
Methyl bromide		50.0	43.24		ug/L		86	60 - 140	6	25
Methyl chloride		50.0	42.55		ug/L		85	60 - 140	6	25
Methylene Chloride		50.0	53.09		ug/L		106	71 - 125	16	25
1,1,2,2-Tetrachloroethane		50.0	49.91		ug/L		100	74 - 125	13	25
Tetrachloroethylene		50.0	48.22		ug/L		96	71 - 125	16	25
Toluene		50.0	48.96		ug/L		98	75 - 130	15	25
1,2-trans-Dichloroethylene		50.0	50.92		ug/L		102	75 - 125	17	25
1,1,1-Trichloroethane		50.0	49.86		ug/L		100	70 - 130	15	25
1,1,2-Trichloroethane		50.0	50.20		ug/L		100	75 - 130	13	25
Trichloroethylene		50.0	48.92		ug/L		98	75 - 135	16	25
Vinyl chloride		50.0	43.67		ug/L		87	60 - 140	6	25
trans-1,3-Dichloropropene		50.0	51.64		ug/L		103	66 - 125	15	25
	LCSD LCSD									

	LCSD	LUGD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		74 - 124
Dibromofluoromethane (Surr)	103		75 - 131
1,2-Dichloroethane-d4 (Surr)	101		63 - 144
Toluene-d8 (Surr)	101		80 - 120

Method: 625.1 - Semivolatile Organic Compounds (GC-MS/MS)

Lab Sample ID: MB 860-195146/1-A Matrix: Water Analysis Batch: 195750

Analysis Batch: 195750								Prep Batch:	195146
-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.107	U	0.571	0.107	ug/L		10/22/24 14:49	10/25/24 03:55	1
Acenaphthylene	<0.0996	U	0.571	0.0996	ug/L		10/22/24 14:49	10/25/24 03:55	1
Anthracene	<0.0938	U	0.571	0.0938	ug/L		10/22/24 14:49	10/25/24 03:55	1
Benzidine	<0.0900	U	1.14	0.0900	ug/L		10/22/24 14:49	10/25/24 03:55	1
Benzo[a]anthracene	0.01042	J	0.114	0.00953	ug/L		10/22/24 14:49	10/25/24 03:55	1
Benzo[a]pyrene	<0.0100	U	0.114	0.0100	ug/L		10/22/24 14:49	10/25/24 03:55	1
Benzo[b]fluoranthene	<0.0664	U	0.571	0.0664	ug/L		10/22/24 14:49	10/25/24 03:55	1
Benzo[g,h,i]perylene	<0.0345	U	0.571	0.0345	ug/L		10/22/24 14:49	10/25/24 03:55	1
Benzo[k]fluoranthene	<0.0473	U	0.571	0.0473	ug/L		10/22/24 14:49	10/25/24 03:55	1
Bis(2-chloroethoxy)methane	<0.0974	U	0.571	0.0974	ug/L		10/22/24 14:49	10/25/24 03:55	1
Bis(2-chloroethyl)ether	<0.214	U	0.571	0.214	ug/L		10/22/24 14:49	10/25/24 03:55	1
bis (2-chloroisopropyl) ether	0.9270	I	0.571	0.128	ug/L		10/22/24 14:49	10/25/24 03:55	1
Bis(2-ethylhexyl) phthalate	<1.43	U	2.86	1.43	ug/L		10/22/24 14:49	10/25/24 03:55	1

Eurofins Houston

Client Sample ID: Method Blank

Prep Type: Total/NA

QC Sample Results

Prep Type: Total/NA

Prep Batch: 195146

Client Sample ID: Method Blank

Method: 625.1 - Semivolatile Organic Compounds (GC-MS/MS) (Continued)

MB MB

Lab Sample ID: MB 860-195146/1-A **Matrix: Water**

Analysis Batch: 195750

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Bromophenyl phenyl ether	<0.100	U	0.571	0.100	ug/L		10/22/24 14:49	10/25/24 03:55	1
Butyl benzyl phthalate	<1.43	U	2.86	1.43	ug/L		10/22/24 14:49	10/25/24 03:55	1
2-Chloronaphthalene	<0.378	U	0.571	0.378	ug/L		10/22/24 14:49	10/25/24 03:55	1
2-Chlorophenol	<0.0756	U	0.571	0.0756	ug/L		10/22/24 14:49	10/25/24 03:55	1
4-Chlorophenyl phenyl ether	<0.130	U	0.571	0.130	ug/L		10/22/24 14:49	10/25/24 03:55	1
Chlorpyrifos	<0.0159	U	0.0571	0.0159	ug/L		10/22/24 14:49	10/25/24 03:55	1
Chrysene	<0.0815	U	0.571	0.0815	ug/L		10/22/24 14:49	10/25/24 03:55	1
Dibenz(a,h)anthracene	<0.0509	U	0.114	0.0509	ug/L		10/22/24 14:49	10/25/24 03:55	1
1,2-Dichlorobenzene	<0.0941	U	0.571	0.0941	ug/L		10/22/24 14:49	10/25/24 03:55	1
1,3-Dichlorobenzene	<0.102	U	0.571	0.102	ug/L		10/22/24 14:49	10/25/24 03:55	1
1,4-Dichlorobenzene	<0.0779	U	0.571	0.0779	ug/L		10/22/24 14:49	10/25/24 03:55	1
3,3'-Dichlorobenzidine	<0.183	U	0.571	0.183	ug/L		10/22/24 14:49	10/25/24 03:55	1
2,4-Dichlorophenol	<0.140	U	0.571	0.140	ug/L		10/22/24 14:49	10/25/24 03:55	1
Diethyl phthalate	<1.43	U	2.86	1.43	ug/L		10/22/24 14:49	10/25/24 03:55	1
2,4-Dimethylphenol	<0.192	U	0.571	0.192	ug/L		10/22/24 14:49	10/25/24 03:55	1
Dimethyl phthalate	<1.43	U	2.86	1.43	ug/L		10/22/24 14:49	10/25/24 03:55	1
Di-n-butyl phthalate	<1.43	U	2.86	1.43	ug/L		10/22/24 14:49	10/25/24 03:55	1
4,6-Dinitro-o-cresol	<0.201	U	1.14	0.201	ug/L		10/22/24 14:49	10/25/24 03:55	1
2,4-Dinitrophenol	<0.104	U	2.86	0.104	ug/L		10/22/24 14:49	10/25/24 03:55	1
2,4-Dinitrotoluene	<0.205	U	0.571	0.205	ug/L		10/22/24 14:49	10/25/24 03:55	1
2,6-Dinitrotoluene	<0.116	U	0.571	0.116	ug/L		10/22/24 14:49	10/25/24 03:55	1
Di-n-octyl phthalate	<1.43	U	2.86	1.43	ug/L		10/22/24 14:49	10/25/24 03:55	1
1,2-Diphenylhydrazine	<0.286	U	0.571	0.286	ug/L		10/22/24 14:49	10/25/24 03:55	1
Fluoranthene	<0.0883	U	0.571	0.0883	ug/L		10/22/24 14:49	10/25/24 03:55	1
Fluorene	<0.0948	U	0.571	0.0948	ug/L		10/22/24 14:49	10/25/24 03:55	1
Hexachlorobenzene	<0.0975	U	0.571	0.0975	ug/L		10/22/24 14:49	10/25/24 03:55	1
Hexachlorobutadiene	<0.103	U	0.571	0.103	ug/L		10/22/24 14:49	10/25/24 03:55	1
Hexachlorocyclopentadiene	<0.0512	U	0.571	0.0512	ug/L		10/22/24 14:49	10/25/24 03:55	1
Hexachloroethane	<0.102	U	0.571	0.102	ug/L		10/22/24 14:49	10/25/24 03:55	1
Indeno[1,2,3-cd]pyrene	<0.100	U	0.571	0.100	ug/L		10/22/24 14:49	10/25/24 03:55	1
Isophorone	<0.107	U	0.571	0.107	ug/L		10/22/24 14:49	10/25/24 03:55	1
m & p - Cresol	<0.139	U	0.571	0.139	ug/L		10/22/24 14:49	10/25/24 03:55	1
Naphthalene	<0.0944	U	0.571	0.0944	ug/L		10/22/24 14:49	10/25/24 03:55	1
Nitrobenzene	<0.0736	U	0.571	0.0736	ug/L		10/22/24 14:49	10/25/24 03:55	1
2-Nitrophenol	<0.136	U	0.571	0.136	ug/L		10/22/24 14:49	10/25/24 03:55	1
4-Nitrophenol	<0.135	U	0.571	0.135	ug/L		10/22/24 14:49	10/25/24 03:55	1
N-Nitrosodiethylamine	<0.538	U	1.14	0.538	ug/L		10/22/24 14:49	10/25/24 03:55	1
N-Nitrosodimethylamine	<0.100	U	0.571	0.100	ug/L		10/22/24 14:49	10/25/24 03:55	1
N-Nitrosodi-n-butylamine	<0.516	U	1.14	0.516	ug/L		10/22/24 14:49	10/25/24 03:55	1
N-Nitrosodi-n-propylamine	<0.119	U	0.571	0.119	ug/L		10/22/24 14:49	10/25/24 03:55	1
N-Nitrosodiphenylamine	<0.145	U	0.571	0.145	ug/L		10/22/24 14:49	10/25/24 03:55	1
o-Cresol	<0.105	U	0.571	0.105	ug/L		10/22/24 14:49	10/25/24 03:55	1
p-Chloro-m-cresol	<0.104	U	0.571	0.104	ug/L		10/22/24 14:49	10/25/24 03:55	1
Pentachlorobenzene	<0.266	U	0.571	0.266	ug/L		10/22/24 14:49	10/25/24 03:55	1
Pentachlorophenol	<1.04	U	1.14	1.04	ug/L		10/22/24 14:49	10/25/24 03:55	1
Phenanthrene	<0.134	U	0.571	0.134	ug/L		10/22/24 14:49	10/25/24 03:55	1
Phenol	<0.448	U	2.86	0.448	ug/L		10/22/24 14:49	10/25/24 03:55	1
Pyrene	<0.0849	U	0.571	0.0849	ug/L		10/22/24 14:49	10/25/24 03:55	1
Pyridine	<1.44	U	2.86	1.44	ug/L		10/22/24 14:49	10/25/24 03:55	1

Eurofins Houston

QC Sample Results

Method: 625.1 - Semivolatile Organic Compounds (GC-MS/MS) (Continued)

Lab Sample ID: MB 860-195146/1-A Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 195146

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 195750

· · · · · , · · · · · · · · · · · · · · · · · · ·									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	<0.0957	U	0.571	0.0957	ug/L		10/22/24 14:49	10/25/24 03:55	1
1,2,4-Trichlorobenzene	<0.0766	U	0.571	0.0766	ug/L		10/22/24 14:49	10/25/24 03:55	1
2,4,5-Trichlorophenol	<0.143	U	0.571	0.143	ug/L		10/22/24 14:49	10/25/24 03:55	1
2,4,6-Trichlorophenol	<0.231	U	0.571	0.231	ug/L		10/22/24 14:49	10/25/24 03:55	1
Total Cresols	<0.128	U	0.571	0.128	ug/L		10/22/24 14:49	10/25/24 03:55	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	44		43 - 130				10/22/24 14:49	10/25/24 03:55	1
2-Eluorophenol (Surr)	23		19 120				10/22/24 14.49	10/25/24 03:55	1

2-Fluorophenol (Surr)	23	19 - 120	10/22/24 14:49	10/25/24 03:55	1
Nitrobenzene-d5 (Surr)	54	37 - 133	10/22/24 14:49	10/25/24 03:55	1
Phenol-d5 (Surr)	22	8 - 124	10/22/24 14:49	10/25/24 03:55	1
p-Terphenyl-d14 (Surr)	45 S1-	47 - 130	10/22/24 14:49	10/25/24 03:55	1
2,4,6-Tribromophenol (Surr)	32 S1-	. 35 - 130	10/22/24 14:49	10/25/24 03:55	1

Lab Sample ID: LCS 860-195146/2-A Matrix: Water Analysis Batch: 195382

Analysis Batch: 195382							Prep Batch: 195146
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	2.86	2.940		ug/L		103	60 - 132
Acenaphthylene	2.86	3.493		ug/L		122	54 - 126
Anthracene	2.86	2.853		ug/L		100	43 - 120
Benzidine	2.86	0.9327	J	ug/L		33	11 _ 110
Benzo[a]anthracene	2.86	3.094	В	ug/L		108	42 - 133
Benzo[a]pyrene	2.86	2.904		ug/L		102	32 - 148
Benzo[b]fluoranthene	2.86	2.591		ug/L		91	42 - 140
Benzo[g,h,i]perylene	2.86	2.583		ug/L		90	25 - 195
Benzo[k]fluoranthene	2.86	2.641		ug/L		92	25 - 146
Bis(2-chloroethoxy)methane	2.86	3.272	Ι	ug/L		115	49 - 165
Bis(2-chloroethyl)ether	2.86	2.549		ug/L		89	43 - 126
bis (2-chloroisopropyl) ether	2.86	1.960	В	ug/L		69	63 - 139
Bis(2-ethylhexyl) phthalate	2.86	3.009		ug/L		105	29 - 137
4-Bromophenyl phenyl ether	2.86	2.586		ug/L		90	65 - 120
Butyl benzyl phthalate	2.86	2.623	J	ug/L		92	70 - 130
2-Chloronaphthalene	2.86	2.362		ug/L		83	65 - 120
2-Chlorophenol	2.86	2.539		ug/L		89	36 - 120
4-Chlorophenyl phenyl ether	2.86	2.546		ug/L		89	38 - 145
Chrysene	2.86	2.537		ug/L		89	47 - 130
Dibenz(a,h)anthracene	2.86	2.513		ug/L		88	32 - 200
1,2-Dichlorobenzene	2.86	2.033		ug/L		71	32 - 130
1,3-Dichlorobenzene	2.86	2.002		ug/L		70	26 - 130
1,4-Dichlorobenzene	2.86	1.927		ug/L		67	28 - 130
3,3'-Dichlorobenzidine	2.86	2.478		ug/L		87	20 - 150
2,4-Dichlorophenol	2.86	2.904		ug/L		102	53 - 122
Diethyl phthalate	2.86	2.846	J	ug/L		100	62 - 120
2,4-Dimethylphenol	2.86	4.923	*+	ug/L		172	42 - 120
Dimethyl phthalate	2.86	3.260		ug/L		114	67 - 120
Di-n-butyl phthalate	2.86	3.031		ug/L		106	8 - 120

Job ID: 860-85055-1

Client Sample ID: Lab Control Sample

Method: 625.1 - Semivolatile Organic Compounds (GC-MS/MS) (Continued)

Lab Sam	ple ID: I	LCS	860-195146	6/2-A
Matrix: W	later			

Matrix: Water							Prep Type: Total/NA
Analysis Batch: 195382							Prep Batch: 195146
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,6-Dinitro-o-cresol	2.86	0.8665	J *-	ug/L		30	53 - 130
2,4-Dinitrophenol	2.86	0.9394	J	ug/L		33	26 - 173
2,4-Dinitrotoluene	2.86	2.584		ug/L		90	48 - 127
2,6-Dinitrotoluene	2.86	3.432		ug/L		120	68 - 137
Di-n-octyl phthalate	2.86	3.098		ug/L		108	19 - 132
1,2-Diphenylhydrazine	2.86	2.459		ug/L		86	48 - 130
Fluoranthene	2.86	2.721		ug/L		95	43 - 121
Fluorene	2.86	3.076		ug/L		108	70 - 120
Hexachlorobenzene	2.86	2.609		ug/L		91	8 - 142
Hexachlorobutadiene	2.86	1.913		ug/L		67	38 - 120
Hexachlorocyclopentadiene	2.86	6.265	*+	ug/L		219	10 - 130
Hexachloroethane	2.86	1.709		ug/L		60	55 - 120
Indeno[1,2,3-cd]pyrene	2.86	2.567		ug/L		90	29 - 151
Isophorone	2.86	3.376		ug/L		118	47 - 180
m & p - Cresol	2.86	2.159		ug/L		76	22 - 130
Naphthalene	2.86	2.752		ug/L		96	36 - 120
Nitrobenzene	2.86	3.235		ug/L		113	54 - 130
2-Nitrophenol	2.86	2.478		ug/L		87	45 - 167
4-Nitrophenol	2.86	0.3308	J *-	ug/L		12	13 - 129
N-Nitrosodiethylamine	2.86	2.621		ug/L		92	54 - 130
N-Nitrosodimethylamine	2.86	0.6423	*_	ug/L		22	30 - 130
N-Nitrosodi-n-butylamine	2.86	3.930	*+	ug/L		138	58 - 130
N-Nitrosodi-n-propylamine	2.86	2.790		ug/L		98	14 - 198
N-Nitrosodiphenylamine	2.86	3.171		ug/L		111	60 - 130
o-Cresol	2.86	2.486		ug/L		87	14 - 176
p-Chloro-m-cresol	2.86	3.108		ug/L		109	41 - 128
Pentachlorobenzene	2.86	2.375		ug/L		83	47 - 130
Pentachlorophenol	2.86	1.964		ug/L		69	38 - 152
Phenanthrene	2.86	3.043		ug/L		106	65 - 120
Phenol	2.86	0.9354	JI	ug/L		33	17 - 120
Pyrene	2.86	2.471		ug/L		86	70 - 120
Pyridine	2.86	1.476	J	ug/L		52	1 - 126
1,2,4,5-Tetrachlorobenzene	2.86	1.926		ug/L		67	52 - 130
1,2,4-Trichlorobenzene	2.86	2.255		ug/L		79	57 - 130
2,4,5-Trichlorophenol	2.86	2.465		ug/L		86	35 - 130
2,4,6-Trichlorophenol	2.86	1.799		ug/L		63	52 - 129
Total Cresols	5.71	4.645		ua/L		81	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	60		43 - 130
2-Fluorophenol (Surr)	24		19 - 120
Nitrobenzene-d5 (Surr)	73		37 - 133
Phenol-d5 (Surr)	22		8 - 124
p-Terphenyl-d14 (Surr)	54		47 - 130
2,4,6-Tribromophenol (Surr)	44		35 - 130

5 6 9

QC Sample Results

Analyte

Job ID: 860-85055-1

Method: 625.1 - Semivolatile Organic Compounds (GC-MS/MS) (Continued) Lab Sample ID: LCS 860-195146/4-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 195750 Prep Batch: 195146 LCS LCS Spike %Rec Added Result Qualifier Unit D %Rec Limits

4.848 *+

ug/L

Chlorpyrifos			2.86
	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)			43 - 130
2-Fluorophenol (Surr)	43		19 - 120
Nitrobenzene-d5 (Surr)	131		37 - 133
Phenol-d5 (Surr)	44		8 - 124
p-Terphenyl-d14 (Surr)	101		47 - 130
2,4,6-Tribromophenol (Surr)	74		35 - 130

Lab Sample ID: LCSD 860-195146/3-A **Matrix: Water** Analysis Batch: 195382

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

170

34 - 130

Analysis Balch: 195362	0.11						Ргер Ба	iten: 1	15140
Awahata	Spike	LCSD	LCSD	11		0/ D = =	%Rec	000	RPD
	Added	Result	Qualifier		Ľ	%Rec			
Acenaphinene	2.80	3.039	*.	ug/L		106	60 - 132	3	29
Acenaphinylene	2.80	3.//2	" +	ug/L		132	54 - 126	8	30
Anthracene	2.86	3.174		ug/L		111	43 - 120	11	30
Benzidine	2.86	1.056	J	ug/L		37	11 - 110	12	30
Benzolajanthracene	2.86	3.429	В	ug/L		120	42 - 133	10	30
Benzolajpyrene	2.86	2.970		ug/L		104	32 - 148	2	30
Benzolbjtluoranthene	2.86	2.671		ug/L		93	42 - 140	3	30
Benzo[g,h,i]perylene	2.86	2.574		ug/L		90	25 - 195	0	30
Benzo[k]fluoranthene	2.86	2.689		ug/L		94	25 - 146	2	30
Bis(2-chloroethoxy)methane	2.86	3.444		ug/L		121	49 - 165	5	30
Bis(2-chloroethyl)ether	2.86	2.660		ug/L		93	43 - 126	4	30
bis (2-chloroisopropyl) ether	2.86	4.312	*+ *1 B	ug/L		151	63 - 139	75	30
Bis(2-ethylhexyl) phthalate	2.86	3.322		ug/L		116	29 - 137	10	30
4-Bromophenyl phenyl ether	2.86	2.779		ug/L		97	65 - 120	7	26
Butyl benzyl phthalate	2.86	2.941		ug/L		103	70 - 130	11	30
2-Chloronaphthalene	2.86	2.867	*1	ug/L		100	65 - 120	19	15
2-Chlorophenol	2.86	2.615		ug/L		92	36 - 120	3	30
4-Chlorophenyl phenyl ether	2.86	2.657		ug/L		93	38 - 145	4	30
Chrysene	2.86	2.659		ug/L		93	47 - 130	5	30
Dibenz(a,h)anthracene	2.86	2.584		ug/L		90	32 - 200	3	30
1,2-Dichlorobenzene	2.86	2.115		ug/L		74	32 - 130	4	30
1,3-Dichlorobenzene	2.86	2.051		ug/L		72	26 - 130	2	30
1,4-Dichlorobenzene	2.86	2.064		ug/L		72	28 - 130	7	30
3,3'-Dichlorobenzidine	2.86	2.664		ug/L		93	20 - 150	7	30
2,4-Dichlorophenol	2.86	3.060		ug/L		107	53 - 122	5	30
Diethyl phthalate	2.86	3.069		ug/L		107	62 - 120	8	30
2,4-Dimethylphenol	2.86	5.087	*+	ug/L		178	42 - 120	3	30
Dimethyl phthalate	2.86	3.509	*+	ug/L		123	67 _ 120	7	30
Di-n-butyl phthalate	2.86	3.360		ug/L		118	8 - 120	10	28
4,6-Dinitro-o-cresol	2.86	0.8473	J *-	ug/L		30	53 - 130	2	30
2,4-Dinitrophenol	2.86	0.9198	J	ug/L		32	26 - 173	2	30
2,4-Dinitrotoluene	2.86	2.768		ug/L		97	48 - 127	7	25
2,6-Dinitrotoluene	2.86	3.700		ug/L		129	68 - 137	8	29

Eurofins Houston

5

Prep Type: Total/NA Prep Batch: 195146

5

9

Client Sample ID: Lab Control Sample Dup

Method: 625.1 - Semivolatile Organic Compounds (GC-MS/MS) (Continued)

Lab Sample ID: LCSD 860-195146/3-A	
Matrix: Water	
Analysis Batch: 195382	
	Spike
• • •	

	Spike LCSD LCSD		LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Di-n-octyl phthalate		3.398		ug/L		119	19 - 132	9	30
1,2-Diphenylhydrazine	2.86	2.757		ug/L		97	48 - 130	11	30
Fluoranthene	2.86	3.054		ug/L		107	43 - 121	12	30
Fluorene	2.86	3.334		ug/L		117	70 - 120	8	23
Hexachlorobenzene	2.86	2.865		ug/L		100	8 - 142	9	30
Hexachlorobutadiene	2.86	2.020		ug/L		71	38 - 120	5	30
Hexachlorocyclopentadiene	2.86	6.851	*+	ug/L		240	10 - 130	9	30
Hexachloroethane	2.86	1.793		ug/L		63	55 - 120	5	30
Indeno[1,2,3-cd]pyrene	2.86	2.608		ug/L		91	29 - 151	2	30
Isophorone	2.86	3.656		ug/L		128	47 - 180	8	30
m & p - Cresol	2.86	2.317		ug/L		81	22 - 130	7	30
Naphthalene	2.86	2.888		ug/L		101	36 - 120	5	30
Nitrobenzene	2.86	3.472		ug/L		122	54 - 130	7	30
2-Nitrophenol	2.86	2.540		ug/L		89	45 - 167	2	30
4-Nitrophenol	2.86	0.4822	J *1	ug/L		17	13 - 129	37	30
N-Nitrosodiethylamine	2.86	2.682		ug/L		94	54 - 130	2	30
N-Nitrosodimethylamine	2.86	0.7012	*_	ug/L		25	30 - 130	9	30
N-Nitrosodi-n-butylamine	2.86	4.045	*+	ug/L		142	58 - 130	3	30
N-Nitrosodi-n-propylamine	2.86	2.896		ug/L		101	14 - 198	4	30
N-Nitrosodiphenylamine	2.86	3.416		ug/L		120	60 - 130	7	30
o-Cresol	2.86	2.719		ug/L		95	14 - 176	9	30
p-Chloro-m-cresol	2.86	3.325		ug/L		116	41 - 128	7	30
Pentachlorobenzene	2.86	2.475		ug/L		87	47 - 130	4	30
Pentachlorophenol	2.86	2.088		ug/L		73	38 - 152	6	30
Phenanthrene	2.86	3.445	*+	ug/L		121	65 - 120	12	24
Phenol	2.86	1.065	J	ug/L		37	17 - 120	13	30
Pyrene	2.86	2.721		ug/L		95	70 - 120	10	30
Pyridine	2.86	<1.44	U	ug/L		49	1 - 126	5	30
1,2,4,5-Tetrachlorobenzene	2.86	2.059		ug/L		72	52 - 130	7	30
1,2,4-Trichlorobenzene	2.86	2.396		ug/L		84	57 - 130	6	30
2,4,5-Trichlorophenol	2.86	2.612		ug/L		91	35 - 130	6	30
2,4,6-Trichlorophenol	2.86	1.922		ug/L		67	52 - 129	7	30
Total Cresols	5.71	5.036		ug/L		88	70 - 130	8	30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	66		43 - 130
2-Fluorophenol (Surr)	25		19 - 120
Nitrobenzene-d5 (Surr)	81		37 - 133
Phenol-d5 (Surr)	23		8 - 124
p-Terphenyl-d14 (Surr)	58		47 - 130
2,4,6-Tribromophenol (Surr)	50		35 - 130

Lab Sample ID: LCSD 860-195146/5-A

Matrix: Water Prep Type: Total/NA Analysis Batch: 195750 Prep Batch: 195146 Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Limits Unit D %Rec RPD Limit Chlorpyrifos 2.86 5.205 *+ ug/L 182 34 - 130 7 30

Eurofins Houston

Client Sample ID: Lab Control Sample Dup

QC Sample Results

Method: 625.1 - Semivolatile Organic Compounds (GC-MS/MS) (Continued) **Client Sample ID: Lab Control Sample Dup** Lab Sample ID: LCSD 860-195146/5-A **Matrix: Water** Prep Type: Total/NA Analysis Batch: 195750 Prep Batch: 195146 LCSD LCSD Surrogate %Recovery Qualifier Limits

2-Fluorobiphenyl (Surr)	110	43 - 130	
2-Fluorophenol (Surr)	50	19 - 120	
Nitrobenzene-d5 (Surr)	137 S1+	37 - 133	
Phenol-d5 (Surr)	51	8 - 124	
p-Terphenyl-d14 (Surr)	111	47 - 130	
2,4,6-Tribromophenol (Surr)	77	35 - 130	

Method: D7065-11 - Determination of Nonylphenols

Lab Sample ID: MB 280-67217 Matrix: Water Analysis Batch: 672267	79/1-A						Client Samp	le ID: Methoc Prep Type: To Prep Batch: (l Blank otal/NA 672179
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nonylphenol	<1.14	U	5.00	1.14	ug/L		10/23/24 14:38	10/24/24 18:00	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-nonylphenol (Surr)	74		58 - 115				10/23/24 14:38	10/24/24 18:00	1
4-nonylphenol monoethoxylate (Surr)	84		54 - 139				10/23/24 14:38	10/24/24 18:00	1

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Matrix: Water Analysis Batch: 672267							Prep Type: Total/N/ Prep Batch: 672179
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Nonylphenol	51.3	43.15		ug/L		84	56 - 125

	LCS		
Surrogate	%Recovery	Qualifier	Limits
4-nonylphenol (Surr)	103		58 - 115
4-nonylphenol monoethoxylate (Surr)	102		54 - 139

Lab Sample ID: LCSD 280-672179/3-A **Matrix: Water** An

Lab Sample ID: LCS 280-672179/2-A

Matrix: Water Analysis Batch: 672267									Prep Ty Prep Ba	pe: Tot itch: 67	al/NA 72179
-			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nonylphenol			51.3	51.58		ug/L		100	56 - 125	18	22
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-nonylphenol (Surr)	112		58 - 115								
4-nonylphenol monoethoxylate	112		54 - 139								

(Surr)

5 9

Method: 608.3 - Organochlorine Pesticides in Water

Lab Sample ID: MB 860-193889/1-A Matrix: Water Analysis Batch: 194726

-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<0.00113	U	0.0100	0.00113	ug/L		10/18/24 13:15	10/21/24 11:34	1
alpha-BHC	<0.00142	U	0.00900	0.00142	ug/L		10/18/24 13:15	10/21/24 11:34	1
alpha-Endosulfan	<0.00107	U	0.0100	0.00107	ug/L		10/18/24 13:15	10/21/24 11:34	1
beta-BHC	<0.00389	U	0.0180	0.00389	ug/L		10/18/24 13:15	10/21/24 11:34	1
beta-Endosulfan	<0.00122	U	0.0100	0.00122	ug/L		10/18/24 13:15	10/21/24 11:34	1
Chlordane	<0.103	U	0.250	0.103	ug/L		10/18/24 13:15	10/21/24 11:34	1
Chlordane (.alpha.)	<0.00181	U	0.0100	0.00181	ug/L		10/18/24 13:15	10/21/24 11:34	1
4,4'-DDD	<0.000814	U	0.0100	0.000814	ug/L		10/18/24 13:15	10/21/24 11:34	1
4,4'-DDE	<0.00109	U	0.0100	0.00109	ug/L		10/18/24 13:15	10/21/24 11:34	1
4,4'-DDT	<0.00379	U	0.0200	0.00379	ug/L		10/18/24 13:15	10/21/24 11:34	1
delta-BHC	<0.00245	U	0.250	0.00245	ug/L		10/18/24 13:15	10/21/24 11:34	1
Dicofol	<0.0500	U	0.100	0.0500	ug/L		10/18/24 13:15	10/21/24 11:34	1
Dieldrin	<0.000953	U	0.0100	0.000953	ug/L		10/18/24 13:15	10/21/24 11:34	1
Endosulfan sulfate	<0.00112	U	0.0100	0.00112	ug/L		10/18/24 13:15	10/21/24 11:34	1
Endrin	<0.00156	U	0.0100	0.00156	ug/L		10/18/24 13:15	10/21/24 11:34	1
Endrin aldehyde	<0.00118	U	0.0100	0.00118	ug/L		10/18/24 13:15	10/21/24 11:34	1
gamma-BHC (Lindane)	<0.00299	U	0.0100	0.00299	ug/L		10/18/24 13:15	10/21/24 11:34	1
Heptachlor	<0.00446	U	0.00900	0.00446	ug/L		10/18/24 13:15	10/21/24 11:34	1
Heptachlor epoxide	<0.00134	U	0.0100	0.00134	ug/L		10/18/24 13:15	10/21/24 11:34	1
Methoxychlor	<0.00390	U	0.0200	0.00390	ug/L		10/18/24 13:15	10/21/24 11:34	1
Mirex	<0.0200	U	0.0200	0.0200	ug/L		10/18/24 13:15	10/21/24 11:34	1
Toxaphene	<0.0769	U	0.200	0.0769	ug/L		10/18/24 13:15	10/21/24 11:34	1
	MB	МВ							

Surrogate	%Recovery Qualifie	r Limits
DCB Decachlorobiphenyl (Surr)	108	15 - 136
Tetrachloro-m-xylene	104	18 - 126

Lab Sample ID: LCS 860-193889/2-A Matrix: Water Analysis Batch: 194726

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aldrin	0.100	0.08872		ug/L		89	42 - 140	
alpha-BHC	0.100	0.09252		ug/L		93	37 _ 140	
alpha-Endosulfan	0.100	0.09907		ug/L		99	45 - 153	
beta-BHC	0.100	0.09862		ug/L		99	17 _ 147	
beta-Endosulfan	0.100	0.1008		ug/L		101	22 - 171	
Chlordane (.alpha.)	0.100	0.09391		ug/L		94	45 - 140	
4,4'-DDD	0.100	0.09951		ug/L		100	31 - 141	
4,4'-DDE	0.100	0.09378		ug/L		94	30 - 145	
4,4'-DDT	0.100	0.08250		ug/L		83	25 - 160	
delta-BHC	0.100	0.09722	J	ug/L		97	19 - 140	
Dieldrin	0.100	0.09489		ug/L		95	36 - 146	
Endosulfan sulfate	0.100	0.09351		ug/L		94	26 - 144	
Endrin	0.100	0.1007		ug/L		101	30 - 147	
Endrin aldehyde	0.100	0.08826		ug/L		88	60 - 130	
gamma-BHC (Lindane)	0.100	0.09755		ug/L		98	34 - 140	
Heptachlor	0.100	0.09221		ug/L		92	34 - 140	

5

9

13

Dil Fac

1

1

Analyzed

Prep Type: Total/NA

Prep Batch: 193889

10/18/24 13:15 10/21/24 11:34

10/18/24 13:15 10/21/24 11:34

Client Sample ID: Lab Control Sample

Prepared

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 193889

QC Sample Results

Method: 608.3 - Organochlorine Pesticides in Water (Continued)

Lab Sample ID: LCS 860-193889/2-A			Client Sample ID: Lab Control Samp									
Matrix: Water									Prep Ty	pe: Tot	al/NA	
Analysis Batch: 194726									Prep Ba	atch: 19	93889	
-			Spike	LCS	LCS				%Rec			
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits			
Heptachlor epoxide			0.100	0.09589		ug/L		96	37 - 142			
Methoxychlor			0.100	0.07767		ug/L		78	50 - 130			
	LCS	LCS										
Surrogate	%Recovery	Qualifier	Limits									
DCB Decachlorobiphenyl (Surr)	103		15 - 136									
Tetrachloro-m-xylene	98		18 - 126									
Lab Sample ID: LCSD 860 Matrix: Water)-193889/3-A	L			C	Client Sa	ample	ID: Lab	Control Prep Ty	Sample pe: Tot	e Dup al/NA	
Analysis Batch: 194726									Prep Ba	atch: 19	93889	
			Spike	LCSD	LCSD				%Rec		RPD	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Aldrin			0.100	0.08566		ug/L		86	42 - 140	4	30	
alpha-BHC			0.100	0.08838		ug/L		88	37 - 140	5	30	
alpha-Endosulfan			0.100	0.09814		ug/L		98	45 - 153	1	30	
beta-BHC			0.100	0.09368		ug/L		94	17 - 147	5	30	
beta-Endosulfan			0.100	0.09929		ug/L		99	22 - 171	2	30	
Chlordane (.alpha.)			0.100	0.09178		ug/L		92	45 - 140	2	30	
4,4'-DDD			0.100	0.09567		ug/L		96	31 - 141	4	30	
4,4'-DDE			0.100	0.09070		ug/L		91	30 - 145	3	30	
4,4'-DDT			0.100	0.07726		ug/L		77	25 - 160	7	30	
delta-BHC			0.100	0.09517	J	ug/L		95	19 - 140	2	30	
Dieldrin			0.100	0.09340		ug/L		93	36 - 146	2	30	
Endosulfan sulfate			0.100	0.09285		ug/L		93	26 - 144	1	30	
Endrin			0.100	0.09098		ug/L		91	30 - 147	10	30	
Endrin aldehyde			0.100	0.09088		ug/L		91	60 - 130	3	30	
gamma-BHC (Lindane)			0.100	0.09322		ug/L		93	34 - 140	5	30	
Heptachlor			0.100	0.08696		ug/L		87	34 - 140	6	30	
Heptachlor epoxide			0.100	0.09357		ug/L		94	37 - 142	2	30	
Methoxychlor			0.100	0.07548		ug/L		75	50 - 130	3	30	
	LCSD	LCSD										
Surrogate	%Recovery	Qualifier	Limits									
DCB Decachlorobiphenyl (Surr)	97		15 - 136									

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

88

Lab Sample ID: MB 860-193889/1-A **Matrix: Water** Analysis Batch: 194724

Tetrachloro-m-xylene

MB MB Analyte **Result Qualifier** RL MDL Unit Prepared D Analyzed Dil Fac PCB-1016 <0.0125 U 0.100 0.0125 ug/L 10/18/24 13:15 10/21/24 10:30 1 PCB-1242 <0.0125 U 0.100 0.0125 ug/L 10/18/24 13:15 10/21/24 10:30 1 PCB-1254 <0.00780 U 0.100 0.00780 ug/L 10/18/24 13:15 10/21/24 10:30 1 PCB-1221 0.0125 ug/L 10/18/24 13:15 10/21/24 10:30 <0.0125 U 0.100 1 PCB-1232 <0.0125 U 0.100 0.0125 ug/L 10/18/24 13:15 10/21/24 10:30 1 PCB-1248 <0.0125 U 0.100 0.0125 ug/L 10/18/24 13:15 10/21/24 10:30 1

18 - 126

Eurofins Houston

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 193889

5
QC Sample Results

Job ID: 860-85055-1

Lab Sample ID: MB 860-1	93889/1-A								C	Clie	nt Samp	le ID: Me	thod	Blank
Matrix: Water												Prep Typ	e: To	tal/NA
Analysis Batch: 194724												Prep Bat	ch: 1	93889
		MB	MB											
Analyte	Res	sult	Qualifier		I	MDL	Unit		D _	Pr	epared	Analyze	d	Dil Fac
PCB-1260	<0.00	780	U	0.100	0.00)780	ug/L		1	10/18	3/24 13:15	10/21/24 1	0:30	1
Polychlorinated biphenyls, Total	<0.1	100	U	0.100	0	.100	ug/L		1	10/18	8/24 13:15	10/21/24 1	0:30	1
		ΜΒ	МВ											
Surrogate	%Recov	ery	Qualifier	Limits						Pr	epared	Analyze	d	Dil Fac
Tetrachloro-m-xylene (Surr)		88		18 - 126					1	10/18	3/24 13:15	10/21/24 1	0:30	1
DCB Decachlorobiphenyl (Surr)		104		15 - 136					1	10/18	3/24 13:15	10/21/24 1	0:30	1
Lab Sample ID: LCS 860-	193889/4-A							Clie	nt S	San	nple ID:	Lab Cont	rol S	ample
Matrix: Water												Prep Typ	e: To	tal/NA
Analysis Batch: 194724												Prep Bat	ch: 1	93889
				Spike	LCS	LCS	;					%Rec		
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
PCB-1016				1.00	1.056	*+		ug/L			106	61 - 103		
PCB-1260				1.00	1.071			ug/L			107	37 - 130		
	105	105												
Surrogate	%Recovery	Qual	lifier	l imits										
Tetrachloro-m-xvlene (Surr)	96	quui		18 - 126										
DCB Decachlorobiphenvl (Surr)	113			15 - 136										
Lab Sample ID: LCSD 860)-193889/5-A						C	lient Sa	amp	ole	D: Lab	Control S	ampl	e Dup
Matrix: Water												Prep Typ	e: To	tal/NA
Analysis Batch: 194724												Prep Bat	ch: 1	93889
-				Spike	LCSD	LCS	D					%Rec		RPD
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
PCB-1016				1.00	1.104	*+		ug/L			110	61 - 103	4	24
PCB-1260				1.00	1.137			ug/L			114	37 - 130	6	28
	1000	1001	n											
Surrogata	% Pocovorv	Oust	Ulifior	Limite										
Tetrachloro-m-xylene (Surr)		Qual		18 126										
DCB Decachlorobinhenvl (Surr)	9 7 112			15 136										
	113			.000										
lethod: 615 - Herbicic	des (GC)													
Lab Sample ID: MB 860-1	94619/1-A								C	Clie	nt Samn	le ID: Me	thod	Blank
Matrix: Water												Prep Tvn	e: To	tal/N/
Analysis Batch: 194731												Pron Rat	ch 1	0/610

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<0.0539	U	0.200	0.0539	ug/L		10/19/24 05:03	10/21/24 11:56	1
Hexachlorophene	<0.808	U	5.00	0.808	ug/L		10/19/24 05:03	10/21/24 11:56	1
Silvex (2,4,5-TP)	<0.0422	U	0.200	0.0422	ug/L		10/19/24 05:03	10/21/24 11:56	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	94		45 - 150				10/19/24 05:03	10/21/24 11:56	1

Method: 615 - Herbicides (GC) (Continued)

Lab Sample ID: LCS 860- Matrix: Water	194619/2-A						Clien	t Sai	mple ID	: Lab Cor Prep Ty Prep Ba	itrol Sa pe: Tot	ample tal/NA 94619
			Spike	LCS	LCS					%Rec	iten. i	34013
Analyte			Added	Resul	t Qualifi	ər Un	it	D	%Rec	Limits		
2,4-D			2.00	1.83	1	ug/	L		92	55 - 145		
Silvex (2,4,5-TP)			2.00	1.70	2	ug/	L		85	55 - 140		
						•						
	LCS											
Surrogate	%Recovery	Qualifier	Limits									
2,4-Dichlorophenylacetic acid	93		45 - 150									
Lab Sample ID: LCS 860-7	194619/4-A						Clien	t Sai	mple ID	: Lab Cor	trol S	ample
Matrix: Water										Prep Tv	pe: To	tal/NA
Analysis Batch: 194731										Prep Ba	atch: 1	94619
			Spike	LCS	S LCS					%Rec		• • • • •
Analvte			Added	Resu	t Qualifi	er Un	it	D	%Rec	Limits		
Hexachlorophene		·	8.00	8.32	9	ug/	L		104	60 - 135		
						5						
	LCS	LCS										
Surrogate	%Recovery	Qualifier	Limits									
2,4-Dichlorophenylacetic acid	84		45 - 150									
Lab Sample ID: LCSD 860 Matrix: Water Analysis Batch: 194731	-194619/3-A	L .				Clier	nt Sar	nple	ID: Lat	Control Prep Ty Prep Ba	Sample pe: Tot atch: 1	e Dup tal/NA 94619
			Spike	LCSI	LCSD					%Rec		RPD
Analyte			Added	Resu	t Qualifi	er Un	it	D	%Rec	Limits	RPD	Limit
2,4-D			2.00	1.87	3	ug/	L		94	55 - 145	2	25
Silvex (2,4,5-TP)			2.00	1.82	3	ug/	L		91	55 - 140	7	25
	1050	ICSD										
Surrogate	%Recovery	Qualifier	l imits									
2 4-Dichlorophenylacetic acid		Quanner	45 150									
	55		10-100									
Lab Sample ID: LCSD 860 Matrix: Water Analysis Batch: 194731	-194619/5-A	L .				Clier	nt Sar	nple	ID: Lat	Control Prep Ty Prep Ba	Sample pe: Tof atch: 1	e Dup tal/NA 94619
			Spike	LCSI) LCSD					%Rec		RPD
Analyte		. <u></u>	Added	Resu	t Qualifi	er Un	it	D	%Rec	Limits	RPD	Limit
Hexachlorophene			8.00	8.31	2	ug/	L		104	60 - 135	0	25
	I CSD	LCSD										
Surrogate	%Recovery	Qualifier	Limits									
2.4-Dichlorophenylacetic acid	83		45 - 150									
Method: 300.0 - Anions	s, Ion Chro	omatogra	phy									
Lab Sample ID: MB 860-1	94889/40							Clie	ent Sam	ple ID: M	ethod	Blank
Matrix: Water										Prep Ty	pe: To	tal/NA
Analysis Batch: 194889											-	
-		MB MB										
Analyte	Re	sult Qualifier		RL	MDL U	nit	D	Р	repared	Analyz	2ed	Dil Fac
Nitrogen, Nitrate	<	39.1 U		100	39.1 ug	/L				10/22/24	00:19	1

9

17

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 860-1 Matrix: Water	94889/41							Clie	ent Sa	an	nple ID:	Lab Col Prep Tv	ntrol Sa pe: To	ample tal/NA
Analysis Batch: 194889														
				Spike	L	s	LCS					%Rec		
Analyte				Added	Res	ult	Qualifier	Unit)	%Rec	Limits		
Nitrogen, Nitrate				10000	92	40		ug/L			92	90 - 110		
Lab Sample ID: LCSD 860-	-1 9 4889/42						C	lient S	ampl	e I	ID: Lab	Control Prep Ty	Sampl	e Dup tal/NA
Analysis Batch: 194889												i i cp i j		
· ·····,				Spike	LC	D	LCSD					%Rec		RPD
Analyte				Added	Res	ult	Qualifier	Unit	D)	%Rec	Limits	RPD	Limit
Nitrogen, Nitrate				10000	96	55		ug/L			97	90 - 110	4	20
	404000/40													
Matrix: Water	194009/43							Cile	ent Sa	an		Prop Ty		
Analysis Batch: 194889												герту	pe. 10	
Analysis Baton. 104000				Spike	LL	s	LLCS					%Rec		
Analyte				Added	Res	ult	Qualifier	Unit	C)	%Rec	Limits		
Nitrogen, Nitrate				100	103	3.7		ug/L			104	50 - 150		
Γ										_				
Lab Sample ID: MB 860-19	5582/3								CI	ie	nt Sam	ple ID: M	ethod	Blank
Matrix: Water												Prep Ty	pe: Io	tai/NA
Analysis Batch: 195582		MR	MR											
Analyte	Re	sult	Qualifier		RI	N	/IDI Unit		п	Pr	enared	Δnalv	zed	Dil Fac
Fluoride		100	U		500		100 ua/L				epareu	10/24/24	11:16	1
Lab Sample ID: LCS 860-1 Matrix: Water Analysis Batch: 195582	95582/4			Spike	L	s	LCS	Clie	ent Sa	an	nple ID:	Lab Cor Prep Ty %Rec	ntrol Sa pe: To	ample tal/NA
Lab Sample ID: LCS 860-1 Matrix: Water Analysis Batch: 195582 Analyte	95582/4			Spike Added	Lu Res	:S ult	LCS Qualifier	Clic	ent Sa	an o	nple ID: %Rec	: Lab Cor Prep Ty %Rec Limits	ntrol Sa pe: To	ample tal/NA
Lab Sample ID: LCS 860-1 Matrix: Water Analysis Batch: 195582 Analyte Fluoride	95582/4			Spike Added 10000	L0 <u>Res</u> 107	S 111 50	LCS Qualifier	Clie Unit ug/L	ent Sa	an	%Rec	Lab Con Prep Ty %Rec Limits 90 - 110	ntrol Sa pe: To	ample tal/NA
Lab Sample ID: LCS 860-1 Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860-	95582/4			Spike Added 10000	L0 <u>Res</u> 107	S 2111 50	LCS Qualifier	Clic Unit ug/L	ent Sa	an D e	%Rec 108 -	 Lab Con Prep Ty %Rec Limits 90 - 110 Control 	ntrol Sape: To	ample tal/NA
Lab Sample ID: LCS 860-1 Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860- Matrix: Water	95582/4			Spike Added 10000	Lo <u>Res</u> 107	S ult 50	LCS Qualifier C	Unit ug/L Client S	ent Sa	an D	<mark>%Rec</mark> 108 - ID: Lab	 Lab Con Prep Ty %Rec Limits 90 - 110 Control Prep Ty 	ntrol Sape: To Sampl pe: To	ample tal/NA
Lab Sample ID: LCS 860-1 Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860- Matrix: Water Analysis Batch: 195582	95582/4			Spike Added 10000	L0 <u>Res</u> 107	S ult 50	LCS Qualifier C	Clie Unit ug/L Client S	ent Sa	e	NPIE ID: <u>%Rec</u> 108 ID: Lab	: Lab Con Prep Ty %Rec Limits 90 - 110 Control Prep Ty	ntrol Sape: To Sampl pe: To	ample tal/NA e Dup tal/NA
Lab Sample ID: LCS 860-1 Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860- Matrix: Water Analysis Batch: 195582	95582/4			Spike Added 10000 Spike	LC Res 107	SD	LCS Qualifier C	Clie Unit ug/L Client S	ent Sa	an o e	*Rec 108 1D: Lab	: Lab Con Prep Ty %Rec Limits 90 - 110 Control Prep Ty %Rec Limits	ntrol Sape: To Sampl pe: To	e Dup tal/NA RPD
Lab Sample ID: LCS 860-1 Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860- Matrix: Water Analysis Batch: 195582 Analyte Eluoride	95582/4			Spike Added 10000 Spike Added	LC 	S J I I I I I I I I	LCS Qualifier C LCSD Qualifier	Unit ug/L Client S	ent Sa C ample C	an) e	%Rec 108 ID: Lab %Rec 107	Lab Con Prep Ty %Rec Limits 90 - 110 Control Prep Ty %Rec Limits 90 - 110	ntrol Sape: To Sampl pe: To RPD	e Dup tal/NA e Dup tal/NA RPD Limit 20
Lab Sample ID: LCS 860-1 Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860- Matrix: Water Analysis Batch: 195582 Analysis Batch: 195582 Analysis Batch: 195582 Analyte Fluoride	95582/4			Spike Added 10000 Spike Added 10000	LC Res 107 LC: Res 107	S S D L I I I I I I I I	LCS Qualifier C LCSD Qualifier	Unit ug/L Client S Unit ug/L	ample	an) e	%Rec 108 ID: Lab %Rec 107	Lab Con Prep Ty %Rec Limits 90 - 110 Control Prep Ty %Rec Limits 90 - 110	Sampl pe: To Sampl pe: To RPD	e Dup tal/NA e Dup tal/NA RPD Limit 20
Lab Sample ID: LCS 860-1 Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860- Matrix: Water Analysis Batch: 195582 Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LLCS 860- Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LLCS 860- Matrix: Water	95582/4			Spike Added 10000 Spike Added 10000	LC 107 LC Res 107	SD JI D JI	LCS Qualifier C LCSD Qualifier	Unit ug/L Client S Unit ug/L Clie	ent Sa [ample [ent Sa	e	%Rec 108 ID: Lab %Rec 107 - 107	 Lab Con Prep Ty %Rec Limits 90 - 110 Control Prep Ty %Rec Limits 90 - 110 Lab Con Prop Ty 	ntrol Sape: To Sampl pe: To RPD 1 ntrol Sa	e Dup tal/NA e Dup tal/NA <u>RPD</u> Limit 20 ample
Lab Sample ID: LCS 860-1 Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860- Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860- Matrix: Water Analyte Fluoride Lab Sample ID: LLCS 860- Matrix: Water Analysis Batch: 195582	95582/4			Spike Added 10000 Spike Added 10000	LC Res 107 LC Res 107	SD JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI J J JI J JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI JI	LCS Qualifier C LCSD Qualifier	Unit ug/L client S Unit ug/L Clie	ent Sa [ample [ent Sa	an e 0	%Rec 108 ID: Lab %Rec 107 - 101	Lab Con Prep Ty %Rec Limits 90 - 110 Control Prep Ty %Rec Limits 90 - 110 : Lab Con Prep Ty	ntrol Sape: To Sampl pe: To <u>RPD</u> 1 ntrol Sa pe: To	e Dup tal/NA PD Limit 20 ample tal/NA
Lab Sample ID: LCS 860-1 Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860- Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860- Matrix: Water Analyte Fluoride Lab Sample ID: LLCS 860- Matrix: Water Analysis Batch: 195582	95582/4			Spike Added 10000 Spike Added 10000	LC Res 107 LC Res 107		LCS Qualifier C LCSD Qualifier	Clie ug/L Client S Unit ug/L Clie	ent Sa [ample [ent Sa	an e o	%Rec 108 ID: Lab %Rec 107 107	Lab Con Prep Ty %Rec Limits 90 - 110 Control Prep Ty %Rec Limits 90 - 110 : Lab Con Prep Ty %Rec	Sampl pe: To Sampl pe: To <u>RPD</u> 1 ntrol Sa pe: To	e Dup tal/NA PD Limit 20 ample tal/NA
Lab Sample ID: LCS 860-1 Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860- Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860- Matrix: Water Analyte Fluoride Lab Sample ID: LLCS 860- Matrix: Water Analysis Batch: 195582 Analysis Batch: 195582 Analysis Batch: 195582	95582/4			Spike Added 10000 Spike Added Spike Added	LC Res 107 LC Res 107 LLC Res		LCS Qualifier C LCSD Qualifier LLCS Qualifier	Unit ug/L Client S Unit Unit Unit	ent Sa [ample [ent Sa	an e oan	%Rec - 108 - ID: Lab %Rec - 107 - nple ID: %Rec %Rec	Lab Con Prep Ty %Rec Limits 90 - 110 Control Prep Ty %Rec Limits 90 - 110 : Lab Con Prep Ty %Rec Limits	Sampl pe: To Sampl pe: To 1 ntrol Sa pe: To	e Dup tal/NA e Dup tal/NA RPD Limit 20 ample tal/NA
Lab Sample ID: LCS 860-1 Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860- Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860- Matrix: Water Analyte Fluoride Lab Sample ID: LLCS 860- Matrix: Water Analysis Batch: 195582 Analysis Batch: 195582 Analysis Batch: 195582	95582/4			Spike Added 10000 Spike Added 10000 Spike Added	LC Res 107 LC Res 107 LLC Res 520	S L L D D L L D D L L D D L L D D S L L D D D S L L D D D S L L D D D S L L D D D S L L D D D S L L D D D S L L D D D S L L D D D D D D D D D D	LCS Qualifier C LCSD Qualifier LLCS Qualifier	Unit ug/L Client S Unit ug/L Clie Unit ug/L	ample ample	an e o	%Rec 108 ID: Lab %Rec 107 nple ID: %Rec 107 107	Lab Con Prep Ty %Rec Limits 90 - 110 Control Prep Ty %Rec Limits 90 - 110 : Lab Con Prep Ty %Rec Limits 50 - 150	Sampl pe: To Sampl pe: To 1 ntrol Sa pe: To	e Dup tal/NA PD Limit 20 ample tal/NA
Lab Sample ID: LCS 860-1 Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860- Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LLCS 860- Matrix: Water Analyte Fluoride Lab Sample ID: LLCS 860- Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: 860-85055 Matrix: Water Analysis Batch: 195582	95582/4 -195582/5 -195582/7 -1 MS			Spike Added 10000 Spike Added 10000 Spike Added 500	LC Res 107 LC Res 107 LL0 Res 520	S L L D D L L D D L L D D L L D D S L L D D D S L L D D D S L L D D D S L L D D D D S L L D D D D S L L D D D D D D D D D D	LCS Qualifier C LCSD Qualifier LLCS Qualifier	Unit ug/L Client S Unit ug/L Client Client	ent Sa [ample [ent Sa [Samp	an e 2 an	%Rec 108 ID: Lab %Rec 107 nple ID: %Rec 104 9 <id: dc<="" td=""></id:>	Lab Con Prep Ty %Rec Limits 90 - 110 Control Prep Ty %Rec Limits 90 - 110 : Lab Con Prep Ty %Rec Limits 50 - 150 Osssier Fa Prep Ty	ntrol Sape: To Sampl pe: To 1 ntrol Sa pe: To rms Ef pe: To	ample tal/NA e Dup tal/NA <u>RPD</u> Limit 20 ample tal/NA
Lab Sample ID: LCS 860-1 Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860- Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LLCS 860- Matrix: Water Analyte Fluoride Lab Sample ID: LLCS 860- Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: 860-85055 Matrix: Water Analysis Batch: 195582	95582/4 -195582/5 -195582/7 -1 MS Sample	 Sam		Spike Added 10000 Spike Added 500 Spike	LC Res 107 LC Res 107 LL Res 520	$S_{11} = 50$	LCS Qualifier C LCSD Qualifier LLCS Qualifier	Unit ug/L Client S Unit ug/L Client Client	ent Sa [ample [ent Sa [Samp	an e o an	%Rec 108 108 101: Lab %Rec 107 nple 107 nple %Rec 107 - 107 - 107 - 107 - 001 102 0101 102 0101 0102	Lab Con Prep Ty %Rec Limits 90 - 110 Control Prep Ty %Rec Limits 90 - 110 : Lab Con Prep Ty %Rec Limits 50 - 150 Dessier Fa Prep Ty %Rec	ntrol Sape: To Sampl pe: To 1 ntrol Sa pe: To rms Ef pe: To	e Dup tal/NA PD Limit 20 ample tal/NA
Lab Sample ID: LCS 860-1 Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860- Matrix: Water Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: LCSD 860- Matrix: Water Analysis Batch: 195582 Analysis Batch: 195582 Analysis Batch: 195582 Analyte Fluoride Lab Sample ID: 860-85055 Matrix: Water Analyte Fluoride Lab Sample ID: 860-85055 Matrix: Water Analysis Batch: 195582 Analysis Batch: 195582 Analysis Batch: 195582	95582/4 -195582/5 -195582/7 -1 MS Sample Result	Sam	 	Spike Added 10000 Spike Added 500 Spike Added	LC Res 107 LC Res 107 LLC Res 520		LCS Qualifier C LCSD Qualifier LLCS Qualifier MS Qualifier	Unit ug/L Client S Unit ug/L Client Unit Unit	ent Sa ample ent Sa Samp	an e an ole	%Rec 108 108 101: Lab %Rec 107 107 107 107 107 107 107 107 107 107 101 %Rec 104 %Rec %Rec	Lab Con Prep Ty %Rec Limits 90 - 110 Control Prep Ty %Rec Limits 90 - 110 : Lab Con Prep Ty %Rec Limits 50 - 150 Ossier Fa Prep Ty %Rec Limits	sampl pe: To Sampl pe: To 1 ntrol Sa pe: To rms Ef pe: To	e Dup tal/NA e Dup tal/NA <u>RPD</u> Limit 20 ample tal/NA

QC Sample Results

Client: Brazos River Authority Project/Site: WWTP Dossier Farms Effluent

Job ID: 860-85055-1

9

17

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 860-85055- Matrix: Water	1 MSD					Client	Samp	le ID: D	ossier Fa Prep Ty	rms Ef pe: To	fluent tal/NA
Analysis Batch: 195582 Analyte	Sample Result	Sample Qualifier	Spike Added	MS Resi	D MSD It Qualifier	Unit	D	%Rec	%Rec Limits	RPD	RPD Limit
Fluoride	257	J	10000	1117	<u>′0</u>	ug/L		109	90 - 110	0	15
Lab Sample ID: MB 860-19 Matrix: Water Analysis Batch: 195854	5854/3						Clie	ent San	nple ID: M Prep Ty	ethod pe: To	Blank tal/NA
Analyte	Re	wo wo sult Aualifia	r	RI	MDI Unit		пр	renared	Δnalv	70d	Dil Fac
Fluoride		<100 U	·I	500				repareu	10/25/24	10.14	1
				000	100 ug/L				10/20/24	10.14	
Lab Sample ID: LCS 860-19 Matrix: Water Analysis Batch: 195854	95854/4					Cli	ent Sa	mple ID	: Lab Cor Prep Ty	ntrol Sa pe: Tot	ample tal/NA
Analysis Datch. 199094			Spike	LC	S LCS				%Rec		
Analyte			Added	Resu	It Qualifier	Unit	D	%Rec	Limits		
Fluoride			10000	1018	80 0	ug/L		102	90 - 110		
						•					
Lab Sample ID: LCSD 860-	195854/5				(Client S	ample	ID: Lat	o Control	Sample	e Dup
Matrix: Water									Prep Ty	pe: To	tal/NA
Analysis Batch: 195854											
			Spike	LCS	D LCSD		_	~~ -	%Rec		RPD
Analyte			Added	Resu			D	%Rec			Limit
Fluoride			10000	1018	0	ug/L		102	90-110	0	20
Lab Sample ID: LLCS 860-	195854/7					Cli	ent Sa	mple ID	: Lab Cor	ntrol Sa	ample
Matrix: Water									Prep Tv	pe: To	tal/NA
Analysis Batch: 195854										•	
			Spike	LLC	S LLCS				%Rec		
Analyte			Added	Resu	It Qualifier	Unit	D	%Rec	Limits		
Fluoride			500	529	.3	ug/L		106	50 - 150		
Lab Sample ID: 860-85055-	1 MS					Client	Samp	le ID: D	ossier Fa Pren Tv	rms Ef	fluent tal/NA
Analysis Batch: 195854										20.10	
Analysis Batom 100004	Sample	Sample	Spike	N	S MS				%Rec		
Analyte	Result	Qualifier	Added	Resu	It Qualifier	Unit	D	%Rec	Limits		
Fluoride	188	J	10000	110	0	ug/L		108	90 - 110		
Lab Sample ID: 860-85055- Matrix: Water Analysis Batch: 195854	1 MSD					Client	Samp	le ID: D	ossier Fa Prep Ty	rms Ef pe: To	fluent tal/NA
	Sample	Sample	Spike	MS	D MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Resu	lt Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Fluoride	188	J	10000	110	0	ug/L		108	90 - 110	0	15

Method: 632 - Carbamate and Urea Pesticides (HPLC)

Lab Sample ID: MB 860-194868/	/1- A						Client Samp	ole ID: Metho	d Blank
Matrix: Water								Prep Type: 1	otal/NA
Analysis Batch: 196276								Prep Batch:	194868
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbaryl	<1.85	U	5.00	1.85	ug/L		10/21/24 14:03	10/29/24 13:48	1
Diuron	<0.0514	U	0.0900	0.0514	ug/L		10/21/24 14:03	10/29/24 13:48	1
									<u> </u>
Lab Sample ID: LCS 860-194868	3/ 2-A					Clien	t Sample ID:	Lab Control	Sample
Matrix: Water								Prep Type: I	otal/NA
Analysis Batch: 196276			• "		_			Prep Batch:	194868
			бріке		5			%Rec	
Analyte			Added	Result Qua	alifier	Unit	_ <u>D</u> <u>%Rec</u> _	Limits	
Carbaryl			100	106.9		ug/L	107	70 - 130	
Diuron			2.00	2.220		ug/L	111	70 - 130	
Lab Sample ID: LCSD 860-1948	68/3-A				c	Client Sar	nple ID: Lab	Control Sam	ple Dup
Matrix: Water								Prep Type: I	otal/NA
Analysis Batch: 196276			• "		_			Prep Batch:	194868
			Spike	LCSD LCS	SD			%Rec	RPD
Analyte			Added	Result Qua	alifier	Unit	<u>D%Rec</u>	Limits RP	D Limit
Carbaryl			100	95.57		ug/L	96	70 - 130	11 20
Diuron			2.00	2.016		ug/L	101	70-130 1	0 20
Lab Sample ID: MB 192-24993/3 Matrix: Water Analysis Batch: 24993	•						Client Samp	ble ID: Metho Prep Type: 1	d Blank fotal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000490	U	0.000500	0.000490	ug/L			10/25/24 15:09	1
Lab Sample ID: MB 192-24993/4 Matrix: Water Analysis Batch: 24993	ŀ						Client Samp	ole ID: Metho Prep Type: 1	d Blank ſotal/NA
	MB	MB				_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000490	U	0.000500	0.000490	ug/L			10/25/24 15:14	1
Lab Sample ID: MB 192-24993/5	;						Client Samp	ole ID: Metho Bren Type: 1	d Blank
Analysis Batch: 2/003								пер туре. т	
Analysis Datch. 24000	MB	MB							
Analyte	Result	Qualifier	RI	МП	Unit	П	Prenared	Analyzed	Dil Fac
Mercury	<0 000490			0 000490				10/25/24 15:18	1
Lab Sample ID: LCS 192-24993/ Matrix: Water Analysis Batch: 24993	6					Clien	t Sample ID:	Lab Control Prep Type: 1	Sample fotal/NA
			0		`			0/ Dee	
			бріке	LUS LUS	5			%Rec	
Analyte			Added	Result Qua	s alifier	Unit	D %Rec	Limits	

17

QC Sample Results

Job ID: 860-85055-1

0-85055-1

5 6

9

Method: 1631E - Mercury, Low Level (CVAFS) (Continued)

Lab Sample ID: 860-85055	-2 MS						CI	lient 🕄	Sample ID): D	ossier Fa	arms Efflue	nt G	arab 1
Matrix: Water												Prep Type:	Tot	al/NA
Analysis Batch: 24993														
-	Sample	Sam	nple	Spike		MS	MS					%Rec		
Analyte	Result	Qua	lifier	Added		Result	Qua	alifier	Unit	D	%Rec	Limits		
Mercury	<0.000490	U		0.00500	0.0	003787			ug/L		76	71 - 125		
_ Lab Sample ID: 860-85055	-2 MSD						CI	lient :	Sample ID): D	ossier Fa	arms Efflue	nt G	irab 1
Matrix: Water	-											Prep Type:	Tot	al/NA
Analysis Batch: 24993														
	Sample	Sam	nple	Spike		MSD	MSI	D				%Rec		RPD
Analyte	Result	Qua	lifier	Added		Result	Qua	alifier	Unit	D	%Rec	Limits F	RPD	Limit
Mercury	<0.000490	U		0.00500	0.0	003688			ug/L		74	71 - 125	3	24
Method: 200.8 - Metals	(ICP/MS)													
Matrix: Water Analysis Batch: 195430		мв	мр							F	Prep Typ	e: Total Re Prep Batc	cove h: 19	erable 95227
Analyte	Pa	WB	MB		PI		мпі	Unit	п	Р	roparod	Analyzod		Dil Eac
		3 01			20.0		3 01			10/2	2/24 22·41	10/23/24 14:	13 -	
Antimony	-	1 05	0		2 0.0		1 05	ug/L		10/2	2/24 22.41 02/24 22:41	10/23/24 14:	13	1
Arsenic	<0	929	U		4 00	0	929	ug/L		10/2	2/24 22.41	10/23/24 14:	13	1
Barium	<0	954	Ŭ		4 00	0	954	ug/L		10/2	2/24 22.41	10/23/24 14:	13	
Bervllium	<0	375	U		2 00	0	375	ua/l		10/2	2/24 22:41	10/23/24 14	13	1
Cadmium	<0	.258	U		2.00	0	.258	ua/L		10/2	2/24 22:41	10/23/24 14:4	13	1
Chromium	<0	.890	U		4.00	0	.890	ug/L		10/2	2/24 22:41	10/23/24 14:4	13	1
Copper	<0	.690	U		4.00	0	.690	ua/L		10/2	2/24 22:41	10/23/24 14:4	13	1
Lead	<0	.369	U		2.00	0	.369	ug/L		10/2	2/24 22:41	10/23/24 14:4	13	1
Manganese	<0	.525	U		2.00	0	.525	ug/L		10/2	2/24 22:41	10/23/24 14:	13	1
Molybdenum	<0	.504	U		2.00	0	.504	ug/L		10/2	2/24 22:41	10/23/24 14:4	43	1
Nickel	<0	.486	U		2.00	0	.486	ug/L		10/2	22/24 22:41	10/23/24 14:4	43	1
Selenium	<0	.685	U		2.00	0	.685	ug/L		10/2	2/24 22:41	10/23/24 14:4	43	1
Silver	<0	.351	U		2.00	0	.351	ug/L		10/2	22/24 22:41	10/23/24 14:4	43	1
Thallium	<0	.215	U		2.00	0	.215	ug/L		10/2	2/24 22:41	10/23/24 14:4	43	1
Zinc	<0	.885	U		4.00	0	.885	ug/L		10/2	2/24 22:41	10/23/24 14:4	13	1

Lab Sample ID: LCS 860-195227/3-A Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Analysis Batch: 195430 **Prep Batch: 195227** Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit D %Rec Aluminum 500 484.1 ug/L 97 85 - 115 Antimony 100 90.51 85 - 115 ug/L 91 Arsenic 100 97.56 ug/L 98 85 - 115 85 - 115 Barium 100 96 95.57 ug/L 100 91 Beryllium 90.73 ug/L 85 - 115 Cadmium 100 97 96.90 ug/L 85 - 115 Chromium 100 93 85 - 115 93.24 ug/L Copper 100 92.62 ug/L 93 85 - 115 Lead 100 95.10 ug/L 95 85 - 115 Manganese 100 95.80 ug/L 96 85 - 115 Molybdenum 100 94.90 ug/L 95 85 - 115

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Type: Total Recoverable

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 860-195227/3-A		Client Sample ID: Lab Control Sa						
Matrix: Water					F	Prep Ty	pe: Total Recoverable	
Analysis Batch: 195430							Prep Batch: 195227	
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nickel	100	93.66		ug/L		94	85 - 115	
Selenium	100	94.47		ug/L		94	85 - 115	
Silver	50.0	48.62		ug/L		97	85 - 115	
Thallium	100	97.48		ug/L		97	85 - 115	
Zinc	100	96.90		ug/L		97	85 - 115	

Lab Sample ID: LCSD 860-195227/4-A

Matrix: Water

Analysis Batch: 195430							Prep Ba	atch: 19	95227
-	Spike	LCSD L	LCSD				%Rec		RPD
Analyte	Added	Result (Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	500	485.0		ug/L		97	85 - 115	0	20
Antimony	100	91.57		ug/L		92	85 - 115	1	20
Arsenic	100	97.84		ug/L		98	85 - 115	0	20
Barium	100	96.97		ug/L		97	85 - 115	1	20
Beryllium	100	90.47		ug/L		90	85 - 115	0	20
Cadmium	100	97.18		ug/L		97	85 - 115	0	20
Chromium	100	93.82		ug/L		94	85 - 115	1	20
Copper	100	93.33		ug/L		93	85 - 115	1	20
Lead	100	95.99		ug/L		96	85 - 115	1	20
Manganese	100	95.86		ug/L		96	85 - 115	0	20
Molybdenum	100	96.02		ug/L		96	85 - 115	1	20
Nickel	100	92.91		ug/L		93	85 - 115	1	20
Selenium	100	94.49		ug/L		94	85 - 115	0	20
Silver	50.0	48.70		ug/L		97	85 - 115	0	20
Thallium	100	98.74		ug/L		99	85 - 115	1	20
Zinc	100	96.33		ug/L		96	85 - 115	1	20

Lab Sample ID: LLCS 860-195227/1-A Matrix: Water Analysis Batch: 195430

Analysis Batch: 195430							Prep Batch: 195227
-	Spike	LLCS	LLCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	20.0	20.26		ug/L		101	50 - 150
Antimony	2.00	2.053		ug/L		103	50 - 150
Arsenic	4.00	4.100		ug/L		103	50 - 150
Barium	4.00	4.006		ug/L		100	50 - 150
Beryllium	2.00	1.916	J	ug/L		96	50 - 150
Cadmium	2.00	2.146		ug/L		107	50 - 150
Chromium	4.00	4.389		ug/L		110	50 - 150
Copper	4.00	4.321		ug/L		108	50 - 150
Lead	2.00	1.970	J	ug/L		99	50 - 150
Manganese	2.00	2.128		ug/L		106	50 - 150
Molybdenum	2.00	2.119		ug/L		106	50 - 150
Nickel	2.00	1.988	J	ug/L		99	50 - 150
Selenium	2.00	1.915	J	ug/L		96	50 - 150
Silver	2.00	2.256		ug/L		113	50 - 150
Thallium	2.00	2.009		ug/L		100	50 - 150
Zinc	4.00	4.143		ug/L		104	50 - 150

QC Sample Results

Job ID: 860-85055-1

Method: 1664B - HEM and SGT-HEM

Lab Sample ID: MB 860-195725	/1								Cli	ent San	ple ID: M	lethod	Blank
Analysis Batch: 195725											Prep iy	pe. IC	nai/NA
Analysis Datch. 195725	МВ	мв											
Analyte	Result	Qualifier		RL		MDL	Unit		DI	Prepared	Analy	zed	Dil Fac
HEM -	<1570	U		5000		1570	ua/L				10/24/24	15:08	1
							0						
Lab Sample ID: LCS 860-19572	5/2							Clie	ent Sa	mple ID	: Lab Cor	ntrol S	ample
Matrix: Water										- C	Prep Ty	pe: To	tal/NA
Analysis Batch: 195725													
			Spike		LCS	LCS					%Rec		
Analyte			Added		Result	Qual	lifier	Unit	D	%Rec	Limits		
HEM			40000		38800			ug/L		97	78 - 114		·
Lab Sample ID: LCSD 860-1957	25/3						C	Client S	ample	D: Lab	o Control	Samp	le Dup
Matrix: Water											Prep Ty	pe: To	otal/NA
Analysis Batch: 195725													
			Spike		LCSD	LCS	D				%Rec		RPD
Analyte			Added		Result	Qual	lifier	Unit	D	%Rec	Limits	RPD	Limit
HEM			40000		38500			ug/L		96	78 - 114	1	18
Method: 365.1 - Phosphoru	s, Total												
									0.1				
Lab Sample ID: INB 860-196653	/1/								CI	ent San			Blank
Watrix: Water											Prep Ty	pe: IC	otal/NA
Analysis Batch: 196653													
	MB NB	MB											
Analyte	Result	Qualifier				MDL	Unit		<u> </u>	repared	Analy	zed	Dil Fac
Phosphorus lotal	<14.3	U		20.0		14.3	ug/L				10/29/24	13:23	1
Lab Sample ID: LCS 860-19665	3/19							Clie	ent Sa	mple ID	. Lab Co	ntrol S	ample
Matrix: Water											Pren Ty	ne To	tal/NΔ
Analysis Batch: 196653												p0 . 10	
			Spike		LCS	LCS					%Rec		
Analyte			Added		Result	Qual	lifier	Unit	D	%Rec	Limits		
Phosphorus Total			250		257.0			ua/L		103	90 - 110		·
								3/					
Lab Sample ID: LCSD 860-1966	53/20						C	Client S	ample	D: Lab	Control	Samp	le Dup
Matrix: Water											Prep Ty	pe: To	tal/NA
Analysis Batch: 196653												· · · ·	
			Spike		LCSD	LCS	D				%Rec		RPD
Analyte			Added		Result	Qual	lifier	Unit	D	%Rec	Limits	RPD	Limit
Phosphorus Total			250		269.0			ug/L		108	90 - 110	5	20
								-					
Lab Sample ID: LLCS 860-1966	53/18							Clie	ent Sa	mple ID	I ah Coi		
Matrix: Water											. Lub 001	ntrol S	ample
											Prep Ty	ntrol S pe: To	ample otal/NA
Analysis Batch: 196653											Prep Ty	ntrol S pe: To	ample otal/NA
Analysis Batch: 196653			Spike		LLCS	LLC	S				Prep Ty %Rec	ntrol S pe: To	ample otal/NA
Analysis Batch: 196653 Analyte			Spike Added		LLCS Result	LLCS	S lifier	Unit	D	%Rec	%Rec Limits	ntrol S pe: To	ample otal/NA

17

Method: 365.1 - Phosphorus, Total (Continued)

Lab Sample ID: MB 860-197678/	17								C	Clie	ent Sam	ple ID: M	ethod	Blank
Matrix: Water												Prep Ty	pe: To	otal/NA
Analysis Batch: 197678														
	MB	MB							_	_	_			
Analyte	Result	Qualifier		RL		MDL	Unit		D _	PI	repared	Analyz	zed	Dil Fac
Phosphorus Iotal	<14.3	U		20.0		14.3	ug/L					11/01/24	12:16	1
Lab Sample ID: LCS 860-197678	/19							Clie	ent \$	Sar	nple ID	: Lab Cor	ntrol S	ample
Matrix: Water											•	Prep Ty	pe: To	tal/NA
Analysis Batch: 197678														
			Spike		LCS	LCS	5					%Rec		
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Phosphorus Total			250		269.0			ug/L			108	90 - 110		
Lab Sample ID: LCSD 860-19767	78/20						6	liont S	amr	ماد	ID· I ah	Control	Samn	
Matrix: Water	0/20								ann		ID. Las	Pron Tv	ne. To	tal/NA
Analysis Batch: 197678												перту	pe. 10	
			Spike		LCSD	LCS	D					%Rec		RPD
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
Phosphorus Total			250		265.0			ug/L		_	106	90 - 110	4	20
Method: 420.4 - Phenolics,	iotal Re	covera	DIE											
Lab Sample ID: MB 860-196279/	16								6	Clie	ont Sam	nle ID [.] M	ethod	Blank
Matrix: Water										5110	un oun	Pren Tv	pe: To	tal/NA
Analysis Batch: 196279														
	MB	MB												
Analyte	Result	Qualifier		RL		MDL	Unit		D	Pi	repared	Analyz	zed	Dil Fac
Phenols, Total	<5.80	U		10.0		5.80	ug/L					10/25/24	17:19	1
Lab Sample ID: MB 860-196279/	55								C	Jie	ent Sam	IPIE ID: M	ethod	Blank
Matrix: Water												Prep Ty	pe: Io	otal/NA
Analysis Batch: 1962/9	МВ	мр												
Analyta	IVID Bocult	ND		ы		мпі	Unit		п	D.	roparod	Analy	rod	Dil Eac
Phenols Total	<5.80			10.0		5.80			<u> </u>	г	repareu		10.03	
	-0.00	0		10.0		0.00	ug/L					10/20/24	10.00	1
Lab Sample ID: LCS 860-196279	/56							Clie	ent \$	Sar	nple ID	: Lab Cor	ntrol S	ample
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 196279														
			Spike		LCS	LCS	5					%Rec		
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Phenols, Total			100		102.3			ug/L			102	90 - 110		
	0/40							lient 0	• • • • •			Control	Come	
Lau Sample ID: LCSD 860-1962/ Matrix: Water	3/10						, c	ment S	am	JIE			Samp	
Mallix. Walei Analysis Batch: 196279												гер ту	pe. 10	
Analysis Daten. 1302/3			Snike			1.09	SD D					%Rec		RDU
Analyte			babb A		Result	Qua	lifier	Unit		п	%Rec	l imite	RbU	Limit
Phenols. Total			100		98 10	gua				2	98	90_110	1	20
			100		00.10			- g, -				00-110		20

Method: 420.4 - Phenolics, 1	Fotal Re	covera	ble (C	onti	nued))							
Lab Sample ID: LCSD 860-19627 Matrix: Water Analysis Batch: 196279	9/57						C	Client S	ample	e ID: Lal	o Control Prep Ty	Sample pe: To	e Dup tal/NA
			Spike		LCSD	LCS	D				%Rec		RPD
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits	RPD	Limit
Phenols, Total			100		104.5			ug/L		105	90 - 110	2	20
Method: Kelada 01 - Cyanide	e, Total,	Acid D	issoc	iable	e and	Th	iocy	anate					
Lab Sample ID: MB 860-195605/2 Matrix: Water	24								Cli	ent San	nple ID: M Prep Ty	ethod pe: To	Blank tal/NA
Analysis Batch: 195605													
	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit		D	Prepared	Analyz	ed -	Dil Fac
Cyanide, Total	<1.98	U		5.00		1.98	ug/L				10/23/24	13:10	1
Lab Sample ID: MB 860-195605/6	64								Cli	ent San	nole ID: M	ethod	Blank
Matrix: Water									•	ont out	Prep Tv	pe: To	tal/NA
Analysis Batch: 195605												P - - - - - -	
-	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit		DI	Prepared	Analyz	zed	Dil Fac
Cyanide, Total	<1.98	U		5.00		1.98	ug/L				10/23/24	15:04	1
Lab Sample ID: LCS 860-195605 Matrix: Water Analysis Batch: 195605	/65		Spike		1.05			Cli	ent Sa	imple ID): Lab Cor Prep Ty	itrol Sa pe: To	ample tal/NA
Analyte			Addod		Posult		lifior	Unit	п	%Pac	%Rec		
Cvanide Total			100		109.8	Qua				110	90 - 110		
											00-110		
Lab Sample ID: LCSD 860-19560	5/27						C	Client S	ample	e ID: Lal	o Control	Sampl	e Dup
Matrix: Water											Prep Ty	pe: To	tal/NA
Analysis Batch: 195605							_						
			Spike		LCSD	LCS	SD 		_	a/ -	%Rec		RPD
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec			Limit
Cyanide, Iotal			100		109.4			ug/L		109	90 - 110	0	20
Lab Sample ID: LCSD 860-19560 Matrix: Water	5/66						C	Client S	ample	e ID: Lal	Control	Sample	e Dup tal/NA
Analysis Batch: 195605													
			Spike		LCSD	LCS	D				%Rec		RPD
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits	RPD	Limit
Cyanide, Total			100		106.6			ug/L		107	90 - 110	3	20
Lab Sample ID: LLCS 860-19560 Matrix: Water Analysis Batch: 195605	5/25							Cli	ent Sa	imple ID): Lab Cor Prep Ty	itrol Sa pe: To	ample tal/NA
			Spike		LLCS	LLC	S				%Rec		
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits		
Cyanide, Total			5.00		4.858	J		ug/L		97	50 - 150		

Method: OIA - 1677 - Available Cyanide by Flow Injection, Lig

Lab Sample ID: MB 180-48	2748/26									С	lie	ent Sam	ple ID: M	ethod	Blank
Analysis Batch: 482748													Fiebily	pe. IC	
Analysis Baten: 402140		ΜВ	МВ												
Analyte	Re	sult	Qualifier		RL		MDL	Unit		D	Ρ	repared	Analy	zed	Dil Fac
Cyanide, Available	<	1.56	U		2.00		1.56	ug/L					10/24/24	16:39	1
Lab Sample ID: LCS 180-4	82748/27								Cli	ient S	ar	nple ID	: Lab Cor	ntrol S	ample
Matrix: Water													Prep Ty	pe: To	tal/NA
Analysis Batch: 482748															
				Spike		LCS	LCS						%Rec		
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Cyanide, Available				50.1		50.65			ug/L			101	82 - 132		
Lab Sample ID: 860-85055-	6 MS				(Client	Sam	ple I	D: Dos	sier	Fa	rms Eff	luent La	o Com	posite
Matrix: Water													Prep Ty	pe: To	otal/NA
Analysis Batch: 482748															
	Sample	San	nple	Spike		MS	MS						%Rec		
Analyte	Result	Qua	alifier	Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Cyanide, Available	7.63			50.1		56.76			ug/L			98	82 - 130		
Lab Sample ID: 860-85055- Matrix: Water	6 MSD				•	Client	Sam	ple I	D: Dos	sier	Fa	rms Eff	luent Lal Prep Ty	o Com pe: To	posite otal/NA
Analysis Batch: 482748	0	0		Onilia		MOD	MOD						0/ D = =		
Analyto	Sample	San	lifior	Spike		Bocult		ifior	Unit		П	% Poc	%Rec	חסס	RPD Limit
Cyanide, Available	7.63	Que		50.1		57.56	Quai		ug/L	· ·	_	100	82 - 130	1	11
Method: SM3500 CR B	- Chromi	ım	Hexava	alent					_						
		,													
Lab Sample ID: MB 860-19	6291/3									С	lie	ent Sam	ple ID: M	ethod	Blank
Matrix: Water													Prep Ty	pe: To	otal/NA
Analysis Batch: 196291			мр												
Analyte	Pa		NID		Ы		мы	Unit		п	D	ronarod	Analy	704	Dil Eac
Chromium, hexavalent	<	2.00	U		10.0	. <u> </u>	2.00	ua/L		<u> </u>	F	repareu	10/28/24	13:28	1
								0							
Lab Sample ID: LCS 860-19	96291/4								Cli	ient S	ar	nple ID	: Lab Cor	ntrol S	ample
Matrix: Water													Prep Ty	pe: To	otal/NA
Analysis Batch: 196291															
				Spike		LCS	LCS				_		%Rec		
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Chromium, hexavalent				200		211.4			ug/L			106	80 - 120		
Lab Sample ID: LCSD 860-	196291/5							C	lient S	Samp	le	ID: Lab	Control	Samp	le Dup
Matrix: Water													Prep Ty	pe: To	otal/NA
Analysis Batch: 196291				Owline			1.00	_					0/ D		000
Analyto				Shike		LCOD Recult	0	lificr	linit		п	%Pac	%Rec	חםק	
Chromium hexavalent				200		211 /	Gudi	mer			_	106	80 120		20
				200		211.4			ug/L			100	00-120	0	20

Client: Brazos River Authority Project/Site: WWTP Dossier Farms Effluent

GC/MS VOA

Analysis Batch: 195257

Lab Sample ID 860-85055-6	Client Sample ID Dossier Farms Effluent Lab Composite	Prep Type Total/NA	Matrix Water	Method 624.1	Prep Batch
MB 860-195257/10	Method Blank	Total/NA	Water	624.1	
LCS 860-195257/3	Lab Control Sample	Total/NA	Water	624.1	
LCSD 860-195257/4	Lab Control Sample Dup	Total/NA	Water	624.1	

GC/MS Semi VOA

Prep Batch: 195146

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-85055-1	Dossier Farms Effluent	Total/NA	Water	3511	
MB 860-195146/1-A	Method Blank	Total/NA	Water	3511	
LCS 860-195146/2-A	Lab Control Sample	Total/NA	Water	3511	
LCS 860-195146/4-A	Lab Control Sample	Total/NA	Water	3511	
LCSD 860-195146/3-A	Lab Control Sample Dup	Total/NA	Water	3511	
LCSD 860-195146/5-A	Lab Control Sample Dup	Total/NA	Water	3511	
—					

Analysis Batch: 195382

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCS 860-195146/2-A	Lab Control Sample	Total/NA	Water	625.1	195146
LCSD 860-195146/3-A	Lab Control Sample Dup	Total/NA	Water	625.1	195146

Analysis Batch: 195750

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-85055-1	Dossier Farms Effluent	Total/NA	Water	625.1	195146
MB 860-195146/1-A	Method Blank	Total/NA	Water	625.1	195146
LCS 860-195146/4-A	Lab Control Sample	Total/NA	Water	625.1	195146
LCSD 860-195146/5-A	Lab Control Sample Dup	Total/NA	Water	625.1	195146

Prep Batch: 196166

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-85055-1 - RE	Dossier Farms Effluent	Total/NA	Water	3511	
MB 860-196166/1-A	Method Blank	Total/NA	Water	3511	
LCS 860-196166/2-A	Lab Control Sample	Total/NA	Water	3511	
LCSD 860-196166/3-A	Lab Control Sample Dup	Total/NA	Water	3511	

Analysis Batch: 196265

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 860-196166/1-A	Method Blank	Total/NA	Water	625.1	196166
LCS 860-196166/2-A	Lab Control Sample	Total/NA	Water	625.1	196166
LCSD 860-196166/3-A	Lab Control Sample Dup	Total/NA	Water	625.1	196166

Analysis Batch: 196834

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-85055-1 - RE	Dossier Farms Effluent	Total/NA	Water	625.1	196166

Prep Batch: 672179

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-85055-1	Dossier Farms Effluent	Total/NA	Water	D7065-11	
MB 280-672179/1-A	Method Blank	Total/NA	Water	D7065-11	
LCS 280-672179/2-A	Lab Control Sample	Total/NA	Water	D7065-11	
LCSD 280-672179/3-A	Lab Control Sample Dup	Total/NA	Water	D7065-11	

Eurofins Houston

Job ID: 860-85055-1

5

10

Client: Brazos River Authority Project/Site: WWTP Dossier Farms Effluent

GC/MS Semi VOA

Analysis Batch: 672267

Lah Sample ID	Client Sample ID	Dron Tuno	Matrix	Mathad	Dron Batah
MB 280-672179/1-A	Method Blank	Total/NA	Water	<u>D7065-11</u>	672179
LCS 280-672179/2-A	Lab Control Sample	Total/NA	Water	D7065-11	672179
LCSD 280-672179/3-A	Lab Control Sample Dup	Total/NA	Water	D7065-11	672179
Analysis Batch: 6725			Water		012110
Lab Sample ID 860-85055-1	Client Sample ID	Total/NA		D7065-11	Prep Batch
800-03033-1		Total/INA	Water	D7005-11	072178
GC Semi VOA					
Prep Batch: 193889					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-85055-1	Dossier Farms Effluent	Total/NA	Water	608	
MB 860-193889/1-A	Method Blank	Total/NA	Water	608	
LCS 860-193889/2-A	Lab Control Sample	Total/NA	Water	608	
LCS 860-193889/4-A	Lab Control Sample	Total/NA	Water	608	
LCSD 860-193889/3-A	Lab Control Sample Dup	Total/NA	Water	608	
LCSD 860-193889/5-A	Lab Control Sample Dup	Total/NA	Water	608	
Prep Batch: 194619					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batcl
860-85055-1	Dossier Farms Effluent	Total/NA	Water	3511	
MB 860-194619/1-A	Method Blank	Total/NA	Water	3511	
LCS 860-194619/2-A	Lab Control Sample	Total/NA	Water	3511	
LCS 860-194619/4-A	Lab Control Sample	Total/NA	Water	3511	
LCSD 860-194619/3-A	Lab Control Sample Dup	Total/NA	Water	3511	
LCSD 860-194619/5-A	Lab Control Sample Dup	Total/NA	Water	3511	
Analysis Batch: 1947	24				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-85055-1	Dossier Farms Effluent	Total/NA	Water	608.3	19388
MB 860-193889/1-A	Method Blank	Total/NA	Water	608.3	193889
LCS 860-193889/4-A	Lab Control Sample	Total/NA	Water	608.3	193889
LCSD 860-193889/5-A	Lab Control Sample Dup	Total/NA	Water	608.3	19388
Analysis Batch: 1947	26				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
860-85055-1	Dossier Farms Effluent	Total/NA	Water	608.3	193889
MB 860-193889/1-A	Method Blank	Total/NA	Water	608.3	193889
LCS 860-193889/2-A	Lab Control Sample	Total/NA	Water	608.3	19388
LCSD 860-193889/3-A	Lab Control Sample Dup	Total/NA	Water	608.3	19388
Analysis Batch: 1947	/31				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
860-85055-1	Dossier Farms Effluent	Iotal/NA	Water	615	194619
MB 860-194619/1-A	Method Blank	Total/NA	Water	615	194619
1 00 000 101010 0		T. 4. 1/NIA	147 1	0.15	

Eurofins Houston

Page 43 of 76

Job ID: 860-85055-1

Prep Type Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Water

Water

Water

Water

Matrix

Water

Water

Water

Water

Water

Client: Brazos River Authority Project/Site: WWTP Dossier Farms Effluent Job ID: 860-85055-1

Prep Batch

Prep Batch

Method

CWA_Prep

CWA Prep

CWA_Prep

CWA_Prep

Method

300.0

300.0

300.0

300.0

300.0

Lab Sample ID	Client Sample ID
860-85055-1	Dossier Farms Effluent
MB 860-194868/1-A	Method Blank
LCS 860-194868/2-A	Lab Control Sample
LCSD 860-194868/3-A	Lab Control Sample Dup
nalysis Batch: 1948 Lab Sample ID	89 Client Sample ID
nalysis Batch: 1948 Lab Sample ID 860-85057-1	89 Client Sample ID Dossier Farms Effluent
Lab Sample ID 860-85057-1 MB 860-194889/40	89 Client Sample ID Dossier Farms Effluent Method Blank
Lab Sample ID 860-85057-1 MB 860-194889/40 LCS 860-194889/41	89 Client Sample ID Dossier Farms Effluent Method Blank Lab Control Sample
Lab Sample ID 860-85057-1 MB 860-194889/40 LCS 860-194889/41 LCSD 860-194889/42	89 Client Sample ID Dossier Farms Effluent Method Blank Lab Control Sample Lab Control Sample Dup

Analysis Batch: 195582

HPLC/IC

Prep Batch: 194868

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-85055-1	Dossier Farms Effluent	Total/NA	Water	300.0	
MB 860-195582/3	Method Blank	Total/NA	Water	300.0	
LCS 860-195582/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 860-195582/5	Lab Control Sample Dup	Total/NA	Water	300.0	
LLCS 860-195582/7	Lab Control Sample	Total/NA	Water	300.0	
860-85055-1 MS	Dossier Farms Effluent	Total/NA	Water	300.0	
860-85055-1 MSD	Dossier Farms Effluent	Total/NA	Water	300.0	

Analysis Batch: 195854

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
MB 860-195854/3	Method Blank	Total/NA	Water	300.0		
LCS 860-195854/4	Lab Control Sample	Total/NA	Water	300.0		í
LCSD 860-195854/5	Lab Control Sample Dup	Total/NA	Water	300.0		
LLCS 860-195854/7	Lab Control Sample	Total/NA	Water	300.0		
860-85055-1 MS	Dossier Farms Effluent	Total/NA	Water	300.0		
860-85055-1 MSD	Dossier Farms Effluent	Total/NA	Water	300.0		

Analysis Batch: 196276

Lab Sample ID 860-85055-1	Client Sample ID Dossier Farms Effluent	Prep Type Total/NA	Matrix Water	Method 632	Prep Batch 194868
MB 860-194868/1-A	Method Blank	Total/NA	Water	632	194868
LCS 860-194868/2-A	Lab Control Sample	Total/NA	Water	632	194868
LCSD 860-194868/3-A	Lab Control Sample Dup	Total/NA	Water	632	194868

Metals

Analysis Batch: 24993

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-85055-2	Dossier Farms Effluent Grab 1	Total/NA	Water	1631E	
860-85055-3	Dossier Farms Effluent Grab 2	Total/NA	Water	1631E	
860-85055-4	Dossier Farms Effluent Grab 3	Total/NA	Water	1631E	
860-85055-5	Dossier Farms Effluent Grab 4	Total/NA	Water	1631E	
860-85055-7	Dossier Farms Effluent Grab 1 1631 blanks	Total/NA	Water	1631E	
860-85055-8	Dossier Farms Effluent Grab 2 1631 blanks	Total/NA	Water	1631E	
860-85055-9	Dossier Farms Effluent Grab 3 1631 blanks	Total/NA	Water	1631E	
860-85055-10	Dossier Farms Effluent Grab 4 1631 blanks	Total/NA	Water	1631E	

Client: Brazos River Authority Project/Site: WWTP Dossier Farms Effluent

Metals (Continued)

Analysis Batch: 24993 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 192-24993/3	Method Blank	Total/NA	Water	1631E	
MB 192-24993/4	Method Blank	Total/NA	Water	1631E	
MB 192-24993/5	Method Blank	Total/NA	Water	1631E	
LCS 192-24993/6	Lab Control Sample	Total/NA	Water	1631E	
860-85055-2 MS	Dossier Farms Effluent Grab 1	Total/NA	Water	1631E	
860-85055-2 MSD	Dossier Farms Effluent Grab 1	Total/NA	Water	1631E	

Prep Batch: 195227

Lab Sample ID 860-85055-1	Client Sample ID Dossier Farms Effluent	Prep Type Total Recoverable	Matrix Water	Method 200.8	Prep Batch
MB 860-195227/2-A	Method Blank	Total Recoverable	Water	200.8	
LCS 860-195227/3-A	Lab Control Sample	Total Recoverable	Water	200.8	
LCSD 860-195227/4-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	
LLCS 860-195227/1-A	Lab Control Sample	Total Recoverable	Water	200.8	

Analysis Batch: 195430

Lab Sample ID 860-85055-1	Client Sample ID Dossier Farms Effluent	Prep Type Total Recoverable	Matrix Water	Method 200.8	Prep Batch 195227
MB 860-195227/2-A	Method Blank	Total Recoverable	Water	200.8	195227
LCS 860-195227/3-A	Lab Control Sample	Total Recoverable	Water	200.8	195227
LCSD 860-195227/4-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	195227
LLCS 860-195227/1-A	Lab Control Sample	Total Recoverable	Water	200.8	195227

General Chemistry

Analysis Batch: 195605

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-85055-6	Dossier Farms Effluent Lab Composite	Total/NA	Water	Kelada 01	
MB 860-195605/24	Method Blank	Total/NA	Water	Kelada 01	
MB 860-195605/64	Method Blank	Total/NA	Water	Kelada 01	
LCS 860-195605/65	Lab Control Sample	Total/NA	Water	Kelada 01	
LCSD 860-195605/27	Lab Control Sample Dup	Total/NA	Water	Kelada 01	
LCSD 860-195605/66	Lab Control Sample Dup	Total/NA	Water	Kelada 01	
LLCS 860-195605/25	Lab Control Sample	Total/NA	Water	Kelada 01	

Analysis Batch: 195725

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-85055-2	Dossier Farms Effluent Grab 1	Total/NA	Water	1664B	
860-85055-3	Dossier Farms Effluent Grab 2	Total/NA	Water	1664B	
860-85055-4	Dossier Farms Effluent Grab 3	Total/NA	Water	1664B	
860-85055-5	Dossier Farms Effluent Grab 4	Total/NA	Water	1664B	
MB 860-195725/1	Method Blank	Total/NA	Water	1664B	
LCS 860-195725/2	Lab Control Sample	Total/NA	Water	1664B	
LCSD 860-195725/3	Lab Control Sample Dup	Total/NA	Water	1664B	

Analysis Batch: 196279

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-85055-1	Dossier Farms Effluent	Total/NA	Water	420.4	
MB 860-196279/16	Method Blank	Total/NA	Water	420.4	
MB 860-196279/55	Method Blank	Total/NA	Water	420.4	
LCS 860-196279/56	Lab Control Sample	Total/NA	Water	420.4	

Client: Brazos River Authority Project/Site: WWTP Dossier Farms Effluent

General Chemistry (Continued)

Analysis Batch: 196279 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 860-196279/18	Lab Control Sample Dup	Total/NA	Water	420.4	
LCSD 860-196279/57	Lab Control Sample Dup	Total/NA	Water	420.4	
Analysis Batch: 1962	287				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-85055-1	Dossier Farms Effluent	Total/NA	Water	SM 3500 CR B	
Analysis Batch: 1962	291				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-85057-1	Dossier Farms Effluent	Total/NA	Water	SM3500 CR B	
MB 860-196291/3	Method Blank	Total/NA	Water	SM3500 CR B	
LCS 860-196291/4	Lab Control Sample	Total/NA	Water	SM3500 CR B	
LCSD 860-196291/5	Lab Control Sample Dup	Total/NA	Water	SM3500 CR B	
Analysis Batch: 1966	553				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 860-196653/17	Method Blank	Total/NA	Water	365.1	
LCS 860-196653/19	Lab Control Sample	Total/NA	Water	365.1	
LCSD 860-196653/20	Lab Control Sample Dup	Total/NA	Water	365.1	
LLCS 860-196653/18	Lab Control Sample	Total/NA	Water	365.1	
Analysis Batch: 1976	578				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-85055-1	Dossier Farms Effluent	Total/NA	Water	365.1	
MB 860-197678/17	Method Blank	Total/NA	Water	365.1	
LCS 860-197678/19	Lab Control Sample	Total/NA	Water	365.1	
LCSD 860-197678/20	Lab Control Sample Dup	Total/NA	Water	365.1	1
Analysis Batch: 4827	748				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

l	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	860-85055-6	Dossier Farms Effluent Lab Composite	Total/NA	Water	OIA - 1677	
	MB 180-482748/26	Method Blank	Total/NA	Water	OIA - 1677	
	LCS 180-482748/27	Lab Control Sample	Total/NA	Water	OIA - 1677	
	860-85055-6 MS	Dossier Farms Effluent Lab Composite	Total/NA	Water	OIA - 1677	
	860-85055-6 MSD	Dossier Farms Effluent Lab Composite	Total/NA	Water	OIA - 1677	

11/4/2024

Initial

Amount

69.5 mL

1 mL

70.8 mL

1 mL

989.6 mL

200 uL

1000 mL

1000 mL

49.8 mL

1000 mL

50 mL

10 mL

10 ml

Final

Amount

4 mL

1 mL

4 mL

1 mL

1 mL

200 uL

1 mL

1 mL

4 mL

10 mL

50 mL

10 mL

10 mL

Batch

Number

195146

195750

196166

196834

672179

672528

193889

194724

193889

194726

194619

194731

195582

194868

196276

195227

195430

197678

196279

196287

Dil

1

1

1

1

1

1

1

1

1

5

1

Factor

Run

RE

RE

Client: Brazos River Authority Project/Site: WWTP Dossier Farms Effluent

Batch

Type

Prep

Prep

Prep

Prep

Prep

Prep

Prep

Prep

Analysis

Prep Type

Total/NA

Total Recoverable

Total Recoverable

Client Sample ID: Dossier Farms Effluent Date Collected: 10/17/24 10:59 Date Received: 10/18/24 09:23

Batch

3511

625.1

3511

625.1

608

608

608.3

608.3

3511

615

632

200.8

200.8

365.1

420.4

SM 3500 CR B

300.0

CWA Prep

D7065-11

D7065-11

Method

Lab EET HOU

EET HOU

EET HOU

EET HOU

EET DEN

EET DEN

EET HOU

EET HOU

EET HOU

EET HOU

EET HOU EET HOU

EET HOU

EET HOU

EET HOU

EET HOU

EET HOU

EET HOU

EET HOU

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 860-85055-1 Matrix: Water

Analyst

DR

Prepared

or Analyzed

10/22/24 14:49

10/25/24 06:59 LPL

10/28/24 07:39 DR

10/30/24 23:11 PXS

10/23/24 14:38 WPO

10/25/24 16:17 RJC

10/18/24 14:43 BH

10/21/24 14:38 WP

10/18/24 14:43 BH

10/21/24 16:31 A1S

10/19/24 05:03 BH

10/21/24 16:25 KM

10/24/24 14:29 WP

10/21/24 14:03 DR

10/29/24 15:59 YG

10/22/24 22:41 SHZ

10/23/24 15:13 DP

11/01/24 13:56 BW

10/25/24 20:31 YG

10/28/24 13:24 SC EET HOU Lab Sample ID: 860-85055-2

Lab Sample ID: 860-85055-3

Lab Sample ID: 860-85055-4

Client Sample ID: Dossier Farms Effluent Grab 1 Date Collected: 10/15/24 23:00 Date Received: 10/18/24 09:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	1631E		1	5 mL	5 mL	24993	10/25/24 15:40	EQ5	EET ARK
Total/NA	Analysis	1664B		1	900 mL	1000 mL	195725	10/24/24 15:08	ТВ	EET HOU

Client Sample ID: Dossier Farms Effluent Grab 2 Date Collected: 10/16/24 05:00 Date Received: 10/18/24 09:23

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	1631E		1	5 mL	5 mL	24993	10/25/24 15:45	EQ5	EET ARK
Total/NA	Analysis	1664B		1	1000 mL	1000 mL	195725	10/24/24 15:08	ТВ	EET HOU

Client Sample ID: Dossier Farms Effluent Grab 3 Date Collected: 10/16/24 11:00 Date Received: 10/18/24 09:23

Batch Batch Dil Initial Final Batch Prepared Method Prep Type Туре Run Factor Amount Amount Number or Analyzed Analyst Lab 24993 10/25/24 16:45 EQ5 Total/NA 1631E Analysis 5 mL EET ARK 1 5 mL Total/NA Analysis 1664B 1000 mL 1000 mL 195725 10/24/24 15:08 TB 1 EET HOU

Client Sample ID: Dossier Farms Effluent Grab 4

Date Collected: 10/16/24 17:00

Date Received: 10/18/24 09:23

Lab Sample ID: 860-85055-5 **Matrix: Water**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	1631E		1	5 mL	5 mL	24993	10/25/24 15:55	EQ5	EET ARK
Total/NA	Analysis	1664B		1	900 mL	1000 mL	195725	10/24/24 15:08	ТВ	EET HOU
Client Samp	ole ID: Dos	sier Farms	Effluen	t Lab C	omposite	9	L	ab Sample	ID: 860	-85055-6
Date Collected	d: 10/16/24 1	7:00							Ма	trix: Water
Date Received	d: 10/18/24 0	9:23								
Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	5 mL	5 mL	195257	10/23/24 12:38	NA	EET HOU
Total/NA	Analysis	Kelada 01		1	10 mL	10 mL	195605	10/23/24 15:20	BW	EET HOU
Total/NA	Analysis	OIA - 1677		1			482748	10/24/24 16:42	RAO	EET PIT
Client Same		cior Earme	Effluon	t Grab	1 1631 hi	anke		ah Samplo		85055 7
Data Collector		2.00	Emuen	Giab	1 1031 01	aling		ab Sample	ID. 000	triv: Mator
Date Received	d: 10/15/24 2 d: 10/18/24 0	9:23							IVIA	unx. water
	Detal	Datak		51	1	- 1	Batal	Durant		
Bron Tuno	Batch	Batch	Bun	Dii Eastar	Initial	Final	Batch	Prepared	Analyst	Lab
Total/NA	Analysis		Kuii	1	5 ml	5 ml	24993	10/25/24 16:09	FQ5	FFT ARK
	7 (10) 910	10012				-	24000	10/20/24 10:00		
Client Samp	ole ID: Dos	ssier Farms	Effluen	t Grab	2 1631 bl	anks	L	ab Sample	ID: 860	-85055-8
Date Collected	d: 10/16/24 0	5:00							Ма	trix: Water
Date Received	1: 10/18/24 0	9:23								
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	1631E		1	5 mL	5 mL	24993	10/25/24 16:14	EQ5	EET ARK
Client Same	ole ID: Dos	sier Farms	Effluen	t Grab	3 1631 bl	anks	L	ab Sample	ID: 860	-85055-9
Date Collected	d: 10/16/24 1	1:00					_		Ma	trix: Water
Date Received	d: 10/18/24 0	9:23								
Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	1631E		1	5 mL	5 mL	24993	10/25/24 16:50	EQ5	EETARK
 Client Samr		cior Earmo	Effluon	t Grab	1 1621 h	anke		h Samala I		95055 10
Dete Collector		5101 Faillis	Ennnen	Grad	4 1031 01	aliks	Ld	b Sample I	D. 000-	00000-10 triv: Motor
Date Received	d: 10/18/24 1 d: 10/18/24 0	9:23							IVIA	unx. water
	Detals	Datab			1	F 1	Batal	D		
Bron Tuno	Batch	Batch	Bun	Dii	Initial	Finai	Batch	Prepared	Analyst	Lab
Total/NA	Analysis	1631E	Kuii	1	5 mL	5 mL	24993	10/25/24 16:24	EQ5	EET ARK
			-		0	0				
Client Samp	ble ID: Dos	ssier Farms	Effluen	t			L	ab Sample	ID: 860	-85057-1
Date Collected	d: 10/16/24 1	1:00							Ma	trix: Water
	1: 10/18/24 0	9:23								
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1			194889	10/22/24 03:41	WP	EET HOU
									Eurofi	ns Houston
				Page	e 48 of 76					11/4/2024
				5						

Lab Chronicle

Client Sample ID: Dossier Farms Effluent Date Collected: 10/16/24 11:00 Date Received: 10/18/24 09:23

Batch Batch Dil Initial Final Batch Prepared Method Factor or Analyzed Prep Type Туре Run Amount Amount Number Analyst Lab Total/NA Analysis SM3500 CR B 25 mL 196291 10/28/24 13:30 MR EET HOU 25 mL 1

Laboratory References:

EET ARK = Eurofins Arkansas, 8600 Kanis Rd, Little Rock, AR 72204, TEL (501)224-5060

EET DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

EET PIT = Eurofins Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

SPL = SPL Kilgore, 2600 Dudley Rd, Kilgore, TX 75662

Lab Sample ID: 860-85057-1 Matrix: Water

	5
	8
	9
1	1
	3
	6
	7

Laboratory: Eurofins Houston

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

ority	Progr	am	Identification Number	Expiration Date	
i -	NELA	P	T104704215	06-30-25	-i
The following analytes	s are included in this repo	rt, but the laboratory is r	not certified by the governing author	ity. This list may include analytes	
for which the agency	does not offer certification	1.			
Analysis Method	Prep Method	Matrix	Analyte		
420.4		Water	Phenols, Total		
608.3	608	Water	Dicofol		
608.3	608	Water	Mirex		
608.3	608	Water	Polychlorinated biphenyls	s, Total	
615	3511	Water	Hexachlorophene		
624.1		Water	1,3-Dichloropropylene		
624.1		Water	Trihalomethanes, Total		
625.1	3511	Water	Chlorpyrifos		
625.1	3511	Water	m & p - Cresol		
625.1	3511	Water	Total Cresols		
632	CWA_Prep	Water	Diuron		
SM 3500 CR B		Water	Total Chromium		
SM 3500 CR B		Water	Trivalent Chromium		

Laboratory: Eurofins Arkansas

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	60-0889	03-02-25
Florida	NELAP	E87118	06-30-25
lowa	State	436	10-02-25
Louisiana (All)	NELAP	01946	06-30-25
Oklahoma	State	8709	12-31-24
Texas	NELAP	T104704575-23-1	05-31-25
Washington	State	C1087	07-13-25

Laboratory: Eurofins Denver

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
A2LA	Dept. of Defense ELAP	2907.01	10-31-25
A2LA	ISO/IEC 17025	2907.01	10-31-25
Alabama	State Program	40730	09-30-12 *
Alaska (UST)	State	18-001	11-30-25
Arizona	State	AZ0713	12-20-24
Arkansas DEQ	State	19-047-0	04-21-25
California	State	2513	10-30-24
Colorado	Petroleum Storage Tank Program	4025 (or)	01-08-25
Colorado	State	CO00026	06-30-25
Connecticut	State	PH-0686	09-30-26
Florida	NELAP	E87667-57	06-30-25
Georgia	State	4025-011	01-08-25
Illinois	NELAP	2000172024-9	05-31-25
lowa	State	370	12-01-24
Kansas	NELAP	E-10166	04-30-25
Kentucky (WW)	State	KY98047	12-31-24

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Client: Brazos River Authority Project/Site: WWTP Dossier Farms Effluent

Job ID: 860-85055-1

Laboratory: Eurofins Denver (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Louisiana	NELAP	30785	06-30-14 *	
Louisiana (All)	NELAP	30785	06-30-25	
Minnesota	NELAP	1788752	12-31-24	
Nevada	State	CO000262024-08	07-31-25	
New Hampshire	NELAP	2053	04-28-25	
New Jersey	NELAP	230001	06-30-25	
New York	NELAP	59923	04-01-25	
North Dakota	State	R-034	01-08-25	
Oklahoma	NELAP	8614	08-31-24 *	
Oregon	NELAP	4025	01-08-25	
Pennsylvania	NELAP	013	07-31-25	
South Carolina	State	72002001	01-08-24 *	
Texas	NELAP	TX104704183-08-TX	09-30-09 *	
Texas	NELAP	T104704183	09-30-25	
US Fish & Wildlife	US Federal Programs	058448	07-31-25	
USDA	US Federal Programs	P330-20-00065	12-19-25	
Utah	NELAP	QUAN5	06-30-13 *	
Utah	NELAP	CO00026	07-31-25	
Virginia	NELAP	460232	06-14-25	
Washington	State	C583	08-03-25	
West Virginia DEP	State	354	11-30-24	
Wisconsin	State	999615430	08-31-25	
Wyoming (UST)	A2LA	2907.01	10-31-25	
aboratory: Eurofins F	Pittsburgh			
ne accreditations/certifications liste	ed below are applicable to this report.			
Authority	Program	Identification Number	Expiration Date	
Texas	NELAP	T104704528	03-31-25	

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Brazos River Authority Project/Site: WWTP Dossier Farms Effluent

Vethod	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	EPA	EET HOU
625.1	Semivolatile Organic Compounds (GC-MS/MS)	EPA	EET HOU
07065-11	Determination of Nonylphenols	ASTM	EET DEN
608.3	Organochlorine Pesticides in Water	EPA	EET HOU
608.3	Polychlorinated Biphenyls (PCBs) (GC)	EPA	EET HOU
615	Herbicides (GC)	EPA-01	EET HOU
300.0	Anions, Ion Chromatography	EPA	EET HOU
632	Carbamate and Urea Pesticides (HPLC)	EPA-01	EET HOU
1631E	Mercury, Low Level (CVAFS)	EPA	EET ARK
200.8	Metals (ICP/MS)	EPA	EET HOU
I664B	HEM and SGT-HEM	1664B	EET HOU
365.1	Phosphorus, Total	EPA	EET HOU
120.4	Phenolics, Total Recoverable	EPA	EET HOU
Kelada 01	Cyanide, Total, Acid Dissociable and Thiocyanate	EPA	EET HOU
DIA - 1677	Available Cyanide by Flow Injection, Lig	EPA	EET PIT
SM 3500 CR B	Chromium, Trivalent	SM	EET HOU
SM3500 CR B	Chromium,Hexavalent	SM	EET HOU
Subcontract	614 Organophos Pesticides	None	SPL
Subcontract	622 Chloropyrifos	None	SPL
200.8	Preparation, Total Recoverable Metals	EPA	EET HOU
3511	Microextraction of Organic Compounds	SW846	EET HOU
608	Liquid-Liquid Extraction (Separatory Funnel)	EPA	EET HOU
CWA_Prep	Liquid-Liquid Extraction (Separatory Funnel)	EPA	EET HOU
07065-11	Liquid-Liquid Extraction (Continuous)	ASTM	EET DEN

Protocol References:

1664B = EPA-821-98-002

ASTM = ASTM International

EPA = US Environmental Protection Agency

EPA-01 = "Methods For The Determination Of Nonconventional Pesticides In Municipal And Industrial Wastewater", EPA/821/R/92/002, April 1992. None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET ARK = Eurofins Arkansas, 8600 Kanis Rd, Little Rock, AR 72204, TEL (501)224-5060

EET DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

EET PIT = Eurofins Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

SPL = SPL Kilgore, 2600 Dudley Rd, Kilgore, TX 75662

Sample Summary

Client: Brazos River Authority Project/Site: WWTP Dossier Farms Effluent

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-85055-1	Dossier Farms Effluent	Water	10/17/24 10:59	10/18/24 09:23
860-85055-2	Dossier Farms Effluent Grab 1	Water	10/15/24 23:00	10/18/24 09:23
860-85055-3	Dossier Farms Effluent Grab 2	Water	10/16/24 05:00	10/18/24 09:23
860-85055-4	Dossier Farms Effluent Grab 3	Water	10/16/24 11:00	10/18/24 09:23
860-85055-5	Dossier Farms Effluent Grab 4	Water	10/16/24 17:00	10/18/24 09:23
860-85055-6	Dossier Farms Effluent Lab Composite	Water	10/16/24 17:00	10/18/24 09:23
860-85055-7	Dossier Farms Effluent Grab 1 1631 blanks	Water	10/15/24 23:00	10/18/24 09:23
860-85055-8	Dossier Farms Effluent Grab 2 1631 blanks	Water	10/16/24 05:00	10/18/24 09:23
860-85055-9	Dossier Farms Effluent Grab 3 1631 blanks	Water	10/16/24 11:00	10/18/24 09:23
860-85055-10	Dossier Farms Effluent Grab 4 1631 blanks	Water	10/16/24 17:00	10/18/24 09:23
860-85057-1	Dossier Farms Effluent	Water	10/16/24 11:00	10/18/24 09:23

17

Page 1 of 1

11/04/2024

12:40

Printed

TABM-G

Eurofins Test America Houston Bethany A McDaniel 4145 Greenbriar Drive Stafford, TX 77477

TABLE OF CONTENTS

Report Name	Description	Pages
1122516_r02_01_ProjectSamples	SPL Kilgore Project P:1122516 C:TABM Project Sample Cross Reference t:304	1
1122516_r03_03_ProjectResults	SPL Kilgore Project P:1122516 C:TABM Project Results t:304 PO: US1313021524	3
1122516_r10_05_ProjectQC	SPL Kilgore Project P:1122516 C:TABM Project Quality Control Groups	3
1122516_r99_09_CoC1_of_1	SPL Kilgore CoC TABM 1122516_1_of_1	2
	Total Pages:	9

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 1 of 10

SAMPLE CROSS REFERENCE

1

5

15

	Eurofins Test Ame Bethany A McDar 4145 Greenbriar D Stafford, TX 7747	erica Houston niel Drive 77		Printed	11/4/2024	Page 1 of 1
Sample	Sample ID	Taken	Time		Received	
2346809	DOSSIER FARM EFFLUENT	10/17/2024	10:59:00		10/22/2024	
Bottle 01 Clier Bottle 02 Clier Bottle 03 Clier Bottle 04 Clier Bottle 05 Prepa	nt Supplied Amber Glass nt Supplied Amber Glass nt Supplied Amber Glass nt Supplied Amber Glass ared Bottle: OPXL/OPXS 2 mL Autosampler V	/ial (Batch 1144002) Volume: 1	.00000 mL <== De	rived from 01 (95	4 ml)	
	Method	Bottle	PrepSet	Preparation	QcGroup	Analytical
	EPA 614	05	1144002	10/22/2024	1145546	10/30/2024
	EPA 622	05	1144002	10/22/2024	1145542	10/30/2024

2600 Dudley Rd. Kilgore, Texas 75662 24 Waterway Avenue, Suite 375 The Woodlands, TX 77380 Office: 903-984-0551 * Fax: 903-984-5914

TABM-G

Eurofins Test America Houston Bethany A McDaniel 4145 Greenbriar Drive Stafford, TX 77477

 Page 1 of 3
Project
1122516

Report Date: Printed:

10/31/2024

11/04/2024

1

ź

5

14 15 16

RESULTS

				Sample R	esults					
	2346809	DOSSIER FARM EFFLUEN	Г					Received:	10/22	2/2024
Ι	Drinking Water	Collected by: Taken: 10,	Client /17/2024	Eurofins T	est Americ 59:00		PO:		US13130)21524
			Prepared:	i	10/31/2024	12:07:00	Analyzed	10/31/2024	12:07:00	WJI
	Parameter Check Limits		<i>Results</i> Completed	Unit.	s RL		Flags	CAS		Bottle
j	EPA 614		Prepared:	1144002	10/22/2024	13:00:00	Analyzed 1145546	10/30/2024	23:58:00	KAI
	Parameter Azinphos-met	thyl (Guthion)	<i>Results</i> <0.0524 <0.0524	Unit. ug/L ug/L	s RL 0.0524 0.0524		Flags	CAS 86-50-0 8065-48-3		<i>Bottle</i> 05
IELAC	Diazinon Malathion Parathion ethy	vi	<0.0524 <0.0524 <0.0524	-g – ug/L ug/L	0.0524 0.0524 0.0524			333-41-5 121-75-5 56-38-2		05 05 05
	Parathion, me	yı thyl	<0.0524	ug/L ug/L	0.0524			298-00-0		05
j	EPA 622		Prepared:	1144002	0/22/2024	13:00:00	Analyzed 1145542	10/30/2024	23:58:00	KAI
IELAC	Parameter Chlorpyrifos		<i>Results</i> <0.0524	<i>Unit</i> . ug/L	s <i>RL</i> 0.0524		Flags	<i>CAS</i> 2921-88-2		Bottle 05
			S	ample Pre	paration					
	2346809	DOSSIER FARM EFFLUEN	Г					Received:	10/22	2/2024
		10,	/17/2024						US1313(121524
			Prepared:	i	0/22/2024	14:02:02	Calculated	10/22/2024	14:02:02	CAI

Report Page 3 of 10

2600 Dudley Rd. Kilgore, Texas 75662 24 Waterway Avenue, Suite 375 The Woodlands, TX 77380 Office: 903-984-0551 * Fax: 903-984-5914

SPL The Science of Sure

1

ź

05

TABM-G Eurofins Test America Housto Bethany A McDaniel 4145 Greenbriar Drive	on						Pro 112	Page 2 of 3 oject 22516	3
Stafford, TX 77477						Report I Printed:	Date: 10 11	/31/2024 /04/2024	
2346809 DOSSIER FARM EFFLUEN	JT 0/17/2024						Received:	10/22/ US13130	/2024 21524
	Prepared:		10/22/2024	14:02:02	Calculated	1	10/22/2024	14:02:02	CAL
Environmental Fee (per Project)	Verified								
EPA 507	Prepared:	1144002	10/22/2024	13:00:00	Analyzed	1144002	10/22/2024	13:00:00	LSM
Solvent Extraction	1/954	ml	l						01
EPA 614	Prepared:	1144002	10/22/2024	13:00:00	Analyzed	1145546	10/30/2024	23:58:00	KAP
Permit Organophos. Pesticides	Entered								05
EPA 622	Prepared:	1144002	10/22/2024	13:00:00	Analyzed	1145542	10/30/2024	23:58:00	KAP

ALCHOR

Report Page 4 of 10

2.24.10.28

For use with EXP !CPP only

7

NELAC

Entered

2600 Dudley Rd. Kilgore, Texas 75662 24 Waterway Avenue, Suite 375 The Woodlands, TX 77380 Office: 903-984-0551 * Fax: 903-984-5914

TABM-G

Eurofins Test America Houston Bethany A McDaniel 4145 Greenbriar Drive Stafford, TX 77477

Qualifiers:

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC. RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

Poor くいつつ

Bill Peery, MS, VP Technical Services

Report Date:

Printed:

Page 3 of 3

Project

1122516

10/31/2024

11/04/2024

Report Page 5 of 10

QUALITY CONTROL

TABM-G

Eurofins Test America Houston Bethany A McDaniel 4145 Greenbriar Drive Stafford, TX 77477

Page 1 of 3 *Project* 1122516

Printed 11/04/2024

Analytical Set	1145542										EPA 622
				В	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Chlorpyrifos	1144002	ND	0.0904	50.0	ug/L			126958536			
				(ccv						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Chlorpyrifos		1010	1000	ug/L	101	48.0 - 150		126958527			
Chlorpyrifos		1160	1000	ug/L	116	48.0 - 150		126958535			
Chlorpyrifos		1150	1000	ug/L	115	48.0 - 150		126958545			
Chlorpyrifos		1270	1000	ug/L	127	48.0 - 150		126958549			
				LC	S Dup						
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Chlorpyrifos	1144002	622	488		1000	0.100 - 128	62.2	48.8	ug/L	24.1	30.0
				Ν	ISD						
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Chlorpyrifos	2346304	0.534	0.509	ND	0.956	70.0 - 130	53.4 *	50.9 *	ug/L	4.79	30.0
				Sur	rogate						
<u>Parameter</u>	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
Tributylphosphate		CCV	1010	1000	ug/L	101	0.100 - 115	126958527			
Tributylphosphate		CCV	972	1000	ug/L	97.2	0.100 - 115	126958535			
Tributylphosphate		CCV	983	1000	ug/L	98.3	0.100 - 115	126958545			
Tributylphosphate		CCV	1050	1000	ug/L	105	0.100 - 115	126958549			
Triphenylphosphate		CCV	97 1	1000	ug/L	97 .1	0.100 - 115	126958527			
Triphenylphosphate		CCV	1110	1000	ug/L	111	0.100 - 115	126958535			
Triphenylphosphate		CCV	1120	1000	ug/L	112	0.100 - 115	126958545			
Triphenylphosphate		CCV	1140	1000	ug/L	114	0.100 - 115	126958549			
Tributylphosphate	1144002	Blank	505	1000	ug/L	50.5	0.100 - 115	126958536			
Tributylphosphate	1144002	LCS	523	1000	ug/L	52.3	0.100 - 115	126958537			
Tributylphosphate	1144002	LCS Dup	394	1000	ug/L	39.4	0.100 - 115	126958538			
Triphenylphosphate	1144002	Blank	638	1000	ug/L	63.8	0.100 - 115	126958536			
Triphenylphosphate	1144002	LCS	652	1000	ug/L	65.2	0.100 - 115	126958537			
Triphenylphosphate	1144002	LCS Dup	511	1000	ug/L	51.1	0.100 - 115	126958538			
TributyIphosphate	2346304	MS	0.518	1.00	ug/L	51.8	0.100 - 115	126958540			
Triphonylphosphate	2346304	MSD	0.507	0.956	ug/L	53.0	0.100 - 115	120938341			
Triphenylphosphate	2340304	MSD	0.540	1.00	ug/L ug/I	54.0	0.100 - 115	120938340			
Tiplienyipliosphate	2340304	MSD	0.519	0.950	ug/L	J 4 .J	0.100 - 115	120736341			
Analytical Set	1145546			_							EPA 614
			1.00-	В	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units						
Azinphos-methyl (Guthion)	1144002	ND	41.4	50.0	ug/L			126958645			
Demeton	1144002	ND	31.9 10.7	50.0	ug/L			120938043			
Diazinon	1144002	ND	19.7	50.0	ug/L			120938043			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 6 of 10

QUALITY CONTROL

TABM-G

Eurofins Test America Houston Bethany A McDaniel 4145 Greenbriar Drive Stafford, TX 77477

The Science of Sure		SPL The Science of Sure
---------------------	--	----------------------------

Page 2 of 3 *Project* 1122516

Printed 11/04/2024

				Bla	ank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Malathion	1144002	ND	24.8	50.0	ug/L			126958645			
Parathion, ethyl	1144002	ND	23.9	50.0	ug/L			126958645			
Parathion, methyl	1144002	ND	27.4	50.0	ug/L			126958645			
				C	cv						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Azinphos-methyl (Guthion)		980	1000	110/I.	98.0	37.5 - 164		126958637			
Azinphos-methyl (Guthion)		1290	1000	ug/L	129	37.5 - 164		126958644			
Azinphos-methyl (Guthion)		1200	1000	ug/L	120	37.5 - 164		126958653			
Demeton		982	1000	ug/L	98.2	58.6 - 150		126958637			
Demeton		1150	1000	ug/L	115	58.6 - 150		126958644			
Demeton		1110	1000	ug/L	111	58.6 - 150		126958653			
Diazinon		983	1000	ug/L	98.3	65.4 - 138		126958637			
Diazinon		1060	1000	ug/L	106	65.4 - 138		126958644			
Diazinon		1060	1000	ug/L	106	65.4 - 138		126958653			
Malathion		1000	1000	ug/L	100	49.5 - 160		126958637			
Malathion		1170	1000	ug/L	117	49.5 - 160		126958644			
Malathion		1140	1000	ug/L	114	49.5 - 160		126958653			
Parathion, ethyl		989	1000	ug/L	98.9	56.0 - 142		126958637			
Parathion, ethyl		1190	1000	ug/L	119	56.0 - 142		126958644			
Parathion, ethyl		1140	1000	ug/L	114	56.0 - 142		126958653			
Parathion, methyl		991	1000	ug/L	99.1	12.6 - 194		126958637			
Parathion, methyl		1070	1000	ug/L	107	12.6 - 194		126958644			
Parathion, methyl		1110	1000	ug/L	111	12.6 - 194		126958653			
				LCS	Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Azinphos-methyl (Guthion)	1144002	838	643		1000	0.100 - 155	83.8	64.3	ug/L	26.3	30.0
Demeton	1144002	482	462		1000	0.100 - 109	48.2	46.2	ug/L	4.24	30.0
Diazinon	1144002	585	463		1000	0.100 - 125	58.5	46.3	ug/L	23.3	30.0
Malathion	1144002	610	468		1000	0.100 - 130	61.0	46.8	ug/L	26.3	30.0
Parathion, ethyl	1144002	710	560		1000	0.100 - 122	71.0	56.0	ug/L	23.6	30.0
Parathion, methyl	1144002	678	536		1000	0.100 - 131	67.8	53.6	ug/L	23.4	30.0
				M	SD						
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Azinphos-methyl (Guthion)	2346304	0.817	0.724	ND	0.956	30.0 - 150	81.7	72.4	ug/L	12.1	30.0
Demeton	2346304	0.448	0.416	ND	0.956	0.100 - 124	44.8	41.6	ug/L	7.41	30.0
Diazinon	2346304	0.541	0.527	ND	0.956	0.100 - 212	54.1	52.7	ug/L	2.62	30.0
Malathion	2346304	0.509	0.502	ND	0.956	0.100 - 183	50.9	50.2	ug/L	1.38	30.0
Parathion, ethyl	2346304	0.665	0.746	ND	0.956	0.100 - 195	66.5	74.6	ug/L	11.5	30.0
Parathion, methyl	2346304	0.626	0.671	ND	0.956	0.100 - 195	62.6	67.1	ug/L	6.94	30.0
				Surre	ogate						
Parameter	Sample	Type	Reading	Known	Units	Recover%	Limits%	File			
Tributylphosphate		CCV	1010	2000	ug/L	50.5	0.100 - 106	126958637			
J r - r											

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 7 of 10

QUALITY CONTROL

TABM-G

Eurofins Test America Houston Bethany A McDaniel 4145 Greenbriar Drive Stafford, TX 77477

Page 3 of 3 *Project* 1122516

Printed 11/04/2024

				Surr	ogate			
Parameter	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File
Tributylphosphate		CCV	972	2000	ug/L	48.6	0.100 - 106	126958644
Tributylphosphate		CCV	983	2000	ug/L	49.2	0.100 - 106	126958653
Triphenylphosphate		CCV	971	2000	ug/L	48.6	0.100 - 172	126958637
Triphenylphosphate		CCV	1110	2000	ug/L	55.5	0.100 - 172	126958644
Triphenylphosphate		CCV	1120	2000	ug/L	56.0	0.100 - 172	126958653
Tributylphosphate	1144002	Blank	505	2000	ug/L	25.2	0.100 - 106	126958645
Tributylphosphate	1144002	LCS	523	2000	ug/L	26.2	0.100 - 106	126958646
Tributylphosphate	1144002	LCS Dup	394	2000	ug/L	19.7	0.100 - 106	126958647
Triphenylphosphate	1144002	Blank	638	2000	ug/L	31.9	0.100 - 172	126958645
Triphenylphosphate	1144002	LCS	652	2000	ug/L	32.6	0.100 - 172	126958646
Triphenylphosphate	1144002	LCS Dup	511	2000	ug/L	25.6	0.100 - 172	126958647
Tributylphosphate	2346304	MS	0.518	2.01	ug/L	25.8	0.100 - 106	126958649
Tributylphosphate	2346304	MSD	0.507	1.91	ug/L	26.5	0.100 - 106	126958650
Triphenylphosphate	2346304	MS	0.540	2.01	ug/L	26.9	0.100 - 172	126958649
Triphenylphosphate	2346304	MSD	0.519	1.91	ug/L	27.2	0.100 - 172	126958650
Tributylphosphate	2346809	Unknown	0.677	2.10	ug/L	32.2	0.100 - 106	126958663
Triphenylphosphate	2346809	Unknown	0.800	2.10	ug/L	38.1	0.100 - 172	126958663

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same

conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); CCV - Continuing Calibration Verification used to prepare the curve; typically a mid-range concentration; verifies the continued validity of the calibration curve); MSD - Matrix Spike Duplicate

matrix spike; same solution and amount of target analyte added to the MS is added to a third aliquot of sample; quantifies matrix bias and precision.); LCS Dup -

Laboratory Control Sample Duplicate (replicate LCS; analyzed when there is insufficient sample for duplicate or MSD; quantifies accuracy and precision.); Surrogate -Surrogate (mimics the analyte of interest but is unlikely to be found in environmental samples; added to analytical samples for QC purposes. **ANSI/ASQC E4 1994 Ref #4 TRADE QA Resources Guide.)

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 8 of 10

(same standard

(replicate of the

1 of 2

1122516 CoC Print Group 001 of 001

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Phone: 281-240-4200	(Chain	of Cus	tody F	Rec	oro	d						彩记	ALL NO.				¢? e	uro	fins	Environme	ent Testing
Client Information (Sub Contract Lab)	Sampler: N/A			Lab	PM: n .lo	dil						C	arrier⊺ I/A	Frackin	g No(s):		COC 860	No: -1672	03.1		
Client Contact: Shipping/Receiving	Phone:			E-M	ail: Li Allo			fineu				S	tate of	Origin:				Page	i: be 1 of	f 1		
Company: Ana-Lab Corporation					Accr	reditatio	ons Re	equired	d (See	note):		!:	CAGO			·	_	Job i	V:			
Address: 2600 Dudley Rd	Due Date Request	ed:			NE	LAP -	- Texa	as										Pres	-0505 servat	ion Code	8:	
City:	TAT Requested (d	ays):			giù z in				 ^	I	515 1	tequ	leste	3a								
State, Zip: TX, 75662		N//	4			anophos																
Phone: N/A	PO #					4 O																
Email:	WO #:				المينية. المحمد الم	19 (S1							1				-22	1. Sec. 1.				
Project Name:	N/A Project #:					sticid																
Site:	86007586				-													Oth	er:			
Temple Belton/Dossier Farm	N/A					nopho	.											N/A				
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W-water, S-solid, O-waste/oll, BT=Tissue, A-Al		SUB (614 Orga	Peaticides	SUB (622 Chio											Sp	ecial Ins	structions/	Note:
Dossier Farms Effluent (860-85055-1)	10/17/24	10:59	6	Water			x	x								T		See	e Attac	ched Instru	ictions	
		Central	<u> </u>		+		-	-	+	+				+		+		1	2	di.	×0	9
					+		+	+		+			-+					90	10	-14		
			+		H		+	-		-			+	-	+							
			+		+			+	+	+	\vdash	-	+	-	+	+						
			<u> </u>	ļ	+		-	+		+		-	-+	+	-+-	+						
					+		+	+	_	-			-+	+		+	\vdash					
							_	+	+				\rightarrow	-	_	+		2 4				
					_			_			ļ				_							
																		: ś				
voe: Since laboratory accreditations are subject to change, Eurofins Envir aboratory does not currently maintain accreditation in the State of Origin II correditation status should be brought to Eurofins Environment Testing So	ronment Testing South Centr sted above for analysis/tests with Central, LLC attention in	al, LLC place /matrix being imediately. If	s the ownership analyzed, the s all requested a	o of method, a amples must i accreditations a	nalyte be ship are cur	& accre oped ba ment to	editati ack to date,	ion con the Eu return	nplianc urofins the sig	e upon Enviror Ined Ci	our su iment 1 nain of	bcontra l'esting Custod	act lab South ly atter	oratorie Centra sting to	al, LLC said c	s sampi laborat omplian	le shipr ory or c ce to E	ment is fo other inst Surofins E	orwarde ruction Environ	ad under ch s will be pro ment Testir	ain-of-custod ovided. Any o ng South Cen	ly. If the changes to trai, LLC.
ossible Hazard Identification						Sam	ple L	Dispo	osal (A fee	may	be a	55855	ed If	sam	oles a	re ret	ained	longe	r than 1	month)	
eliverable Requested: Lill IV. Other (and it)							Rei	tum 1	To Cli	ent			ispos	al By	Lab		\Box	Archive	For		Months	3
mpty Kit Relinquist Ad hu	Primary Deliver	able Rank:	2			Spec		nstruc	tions		equin	emen	its:									
linguished by:		Pate:		18	Tir	me:				,	4	- 1411 1.04	ا ب	Method	l of Shi	pment:					Company	
inquished by:	0/70/70/	24	7.00	Company					- 4			· r									Compar	
Inquished by	Date/Time:	lau	1010	Company		F	°°° y	P.	\mathcal{I}	へ	Л	V	2	_		K.	วิล	ldu		1010	SP SP	L
	Date/Time:			Company		F	Receiv	ed by:			τ)			D	ate/Tim					Company	
ustody Seals Intact: Custody Seal No.: Δ Yes Δ No	en se si si basa		n an an an an an Chuir an	.		c	Cooler	Temp	erature	(8) °C 1	and Oth	ner Rei	marks:	調査		10 - N - Q - M			建筑		in sign of the second s	n de servição A de servição

Ver: 10/10/2024

1

2 of 2

1 ź Q 4

5

15 16

1122516 CoC Print Group 001 of 001

10/21/24, 12:50 PM

FedEx Ship Manager - Print Your Label(s)

After printing this label:

Use the 'Print' button on this page to print your label to your laser or inkjet printer.
 Fold the printed page along the horizontal line.
 Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number. Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

https://www.fedex.com/shipping/shipAction.handle?method=doContinue

Eurofins Houston																
4145 Greenbriar Dr	ç	lain of Cu	istodv R	ecord									ر اور	eurofins		
Stafford, TX 77477 Phone (281) 240-4200															Er ronnen lesu	36
Client Information	Sampler 164	an hitida	Allen,	Jodi L				Can	ier Tra	Xing No	(s):		80	OC No: 50-33053-11362.	1	
Client Contact Daniel Potell	Phone:		E-Mai Jodi./	lien@et.eu	มาอร์เทรมร.ด	В П		Stat	e of Or	gin:			n d	age: age 1 of 2		
Company Brazos River Authority		PWSID:				Analy	sis R	eque	sted				5	Ъ ,#		
Address: 4802 Oiffeld Rd.	Due Date Requested:			; 307									Z D	reservation Code None	55:	
City: Sugar Land	TAT Requested (days): 10 WD		C) TAC	307			<u> </u>					> H C	HNO3 3 AscbAcd&NaOH HCI		
State, Zip: TX, 77479	Compliance Project:	A Yes A No		Jes (G	10 TA(,		 1)		m			ត្ត	E NH4SO4/NH4OF	, <u>-</u> !	
Phone: 254-761-3272(Tel)	78D #			0) 'estici	rophe OC	AC 30		ontrac		romiu			T	ZH 1-1 +	t of street	-
Email: Daniel.Potell@brazos.org	WO #			s or N No) prous P	xachlo 307 SV		C 307	(Subc	tract)	lent Cl	<u>>-</u>		13	<u>م</u>	~ \\	
Project Name: WWVTP Dossier Farms Effluent	Project #: 86007586	-		le (Ye es ar iosph	TP He	oride t Tabl	& TA	icides	ubcon	Triva	ገ <i>ር</i> ሮ		ntein			
Site: Dossier Farms Effluent	SSOW#:			Samj ISD (' ganop), 2,4,8 ible II	8D, Flu .3_Pe	Metal	os pes	ifos (S	ralent	_Y		03 30 2	ther		
	2	Sample (C=com	Matrix (Wowster, Social Convertable)	erform MS/N 14 (MOD) Or	15_MOD 2,40 25.1_QQQ Ta	00_ORGFM_2	00.7 Table II	14 Organphi	22 Chioropyr	500CR Hexav	lotal		olai Number			
	M	Preser	vation Code:	Ŷ	Z Z	Z	D Z	z	z	G E T			M			
Dossier Farms Effluent	1 42 71 01	0.59 0	Water	z x	××	××	×	×	×	×	7		[]			L
(mp Short 10 110 24 / 11 00	西丁亚					-		-		 		ļ	[l
PERI/HIT FILLI ONE COMO	5 5									<u> </u>						
								┢──		<u> </u>		ļ!			32	L
		 								┢		<u> </u>	<u> </u>	262	5	
													<u>_</u>	28	t 2	1
										┝─┼			╞┅┅┠╍	Por	0.95	
			8 =	30-85055 0	Chain of C	ustody			ł	}						<u> </u>
								+								
Possible Hazard Identification				Sample	Disposal	(Afeen	nay be	asse	sedi	samp	iles are	retai	ned I	longer than 1 m	10mth)	
Deliverable Requested: I, II, III IV Other (specify)		Diffornian L	9	Special I	Instruction	s/QC Re	quirem	ents:	0,00	Lac	ł	3	antice.		- MULLIUNO	
Empty Kit Relinquished by:	al	le:		Time:					Metho	d of Shi	pment					
Relinquished by:	Date/Time: /8 -17-2025	12 05	Company	Recei	ved by:					- 0	te/Time:				Company	
Relinquished by:	Date/Time:		Company	Recei	N Ag par	ucan	ع			p	te/Time:	124		G13	Company	
Relinquished by:	Date/Time:		Company	Recei	ved by:						ite/Time:				Company	
Custody Seals Intact: Custody Seal No. ∆ Yes ∆ No				Coale	r Temperatu	re(s) °C ar	id Other	Remark	14						Ver 05/06/2024	
															Ver 03/06/2024	

5

Ver 05/06/2024		-													∆ Yes ∆ No
		urks:	d Other Rema	(s) °C an	berature	or Tem	8						-	Custody Seal No.	Custody Seals Intact:
Company	ate/Time:				.,	ived by	Rece		Company			ate/Time:	0		Relinquíshed by:
Сотралу	10/10/24 923		È	Ş	Z	ived by	Rece		ompany			ate/Time:			Relinquished by:
Company	ale/Turke:	2 5				ived by	7 XaCa		SRA BRA	2:05	1 42	ate/1me:		Euse	Relinquished by:
	ipment	Method of Shi						Time:			Date:				Empty Kit Relinguished by
			dan en leure			uisu o		4						ii, iii, iv Outer (specity)	Deliverable Requested. 1,
Months	Archive For	osal By Lab	Disc			eturn		3		idiological	wn R	B Unkno	Poison	mmable Skin Imitant	Non-Hazard L-J Fla
than 1 month)	oles are retained longer i	essed if samp	nay be assi	A fee n	osal (Disp	mple	Sa]]]	ation	ossible Hazard Identific
					<u> </u>			-							
							1	+		 					
					-					 					
	N.	 													
						L									
	34				 									b Composite	Dossier Farms Effluent La
	On			×	×	×	×	z	Water	G	00:11	142 all 3	A	ab 4	ossier Farms Effluent Gr
New York Control of the Control of t	- \$ 5			×	×	×	×	Z Z	Water	G	11 00	0 14 24	U	ab 3	Jossier Farms Effluent Gr
	5		 	×	Ľ	×	×	Z	Water	G	8 8	2.16.24	N N	ab 2	ossier Farms Effluent Gr
				×	×	×	×	z	Water	G	13.0	21524	2	ab 1	ossier Farms Effluent Gr
				Z	Ξ	>	Z	校	on Code:	Preservati	X	X	5		
eciai Instructions/Note:				6	1 К	1	1	(F	T-TISEUR, A-Air)	G=grao) [6	lime	sample Uate		and the second se	sample Identification
prial Incernetione Minto-	otel Number	· · · · · · · · · · · · · · · · · · ·		24.1 VOC Tal	677 Table III	664B_NP O&	631e LL Hp	leid Filtered enformMS/N	Matrix (wmwaler, S=folid, O=wastafoli,	Sample Type (C=comp,	Sample				
				ble 11	Avali	G		.Sam (SD)				SOW#	ý		ite:)ossier Farms Effluent
	ontain			& TAC	able Cy			ple (Y Yesio				ojact#: 5007586	<u>6</u> 9	luent	roject Name: WVTP Dossier Farms Eff
	918			307	anide			NB)				0 	×		mail:)aniel.Potell@brazos.org
	- 							No) No)				80 *	-12		hone: 154-761-3272(Tel)
	s 44									No	t: A Yes A	ompliance Projec	0		tate, Zip: X, 77479
,cd&NaOH	HB - Ascba									U	ys): 10 WI	AT Requested (da	1		ity: Sugar Land
tion Codes:	N None										ë	ue Date Requeste	a		ddress: 802 Oilfield Rd.
	Job 养	ested	sis Requ	Analys						PWSID:					ompany: srazos River Authority
12	Page: Page 2 of	ate of Origin:	St	3	US.CO	Irofins)et.ei	Allen@	E-Maik Jodi./			oone:	14		ilent Contact)aniel Potell
3-11362.2	(s): COC No: 860-3305	rrier Tracking No	<u>୍</u> ୟୁ					, Jodi	Las PA Alien,	de	en 2.	inpler Natt	Ş		Client Information
fins Environment Testing	🔅 euro						ord	ecc	tody R	of Cust	hain c	0			Eurofins Houston 145 Greenbriar Dr Mafford, TX 77477 Thone (281) 240-4200

5
8
9
13
16
17

Doshier Farms WWTP - Pretreatment 4th Quarter - Table II, III, V (select), & 30 TAC Chapter 307 (Long Quarter)

Samplers. Please be sure to verify collection type and bottle/preservation. Sign at bottom Chief Operators. Please verify that all applicable boxes are checked/filled and sign at bottom

VIEDNESDAY TUESDAY		Curado latuo	IS. Flea	se venny ma	at an appro	Cable buses are checked	nned and sign at bottom			
VEDNESDAY TUESDAY		Date	Time	Location	Type Req'd	Samples	Bottle Preservatives Required	Comments	Flow (MGD)	CO/LO Verified
WEDNESDAY TUESDAY		10/15/2024	1100	Influent	A	Oil and Grease Cyanide (Kelada) Cyanide (Available) LL Mercury Volatiles (YOCs 624.1)	1-1L Amber w/HCI 1-250mL HDPE w/NaOH & Acsorbic Acid 1-125mL Amber Plastic w/NaOH 3-40mL VOA 2-40mL VOA	Add Sodium Arsenite AFTER vater FULTBLANC wi Di water in flad	2.27 54	r 3
WEDNESDAY WEDNESDAY Utility Grad Gradie (Keinale) (Millenth 113, Induce without answer without (Millenth Grad Gradie (Keinale) (Millenth 113, Millenth Millenth Millenth Gradie (Keinale) 113, Millenth Millenth Millenth Millenth Gradie (Keinale) 113, Millenth Millenth Millenth Millenth Gradie (Keinale) 113, Millenth	SDAY	10/15/2024	1700	Influent	Sab 2	Oil and Grease Cyanide (Kelada) Cyanide (Available) LL Mercury Volatiles (VOCs 624.1)	1-(L Amber w/HCI 1-250mL HDPE w/NaOH & Acsorbic Acid 1-250mL Amber Plastic w/NaOH 3-40mL VOA 2-40mL VOA	Add Sodium Arsenite AFTER valer Fill (BLANC w/D) water in field	224 2	53
WEDNESDAV Oll and Grease (and k Available) 1-12smL Amber WhOL & Assonbic Acid (and k Available) asson (and k Available) 1-12smL Amber Via (and k Available) asson (and k Availa	TUE	10/15/2024	2300	Influent	S S S	Oil and Grease Cyanide (Kelada) Cyanide (Available) LL Mercury Volatiles (VOCs 524.1)	1-1L Amber w/HCl 1-250mL HDPE w/NaOH & Acsorbic Acid 1-125mL Amber Plastic w/NaOH 3-40mL VOA 2-40mL VOA	Add Sodium Azentis AFTER vase' Fill "BLANK" wi DI vater in field	1,40 ll	ц т
WEDNESDAY 10/16/2024 500 Influent Grab Oll and Grease 11/L Amber WHCI Aussessmithe Aussesssmithe Aussessmithe Aus		10/15/2024	2300	Effluent	Grab	Oil and Grease Gyanide (Kelada) Gyanide (Available) LL Mercury Volatiles (VOCs 624.1)	1-1L Amber w/HCl 1-250mL HDPE w/NaOH & Acsorbic Acid 1-125mL Amber Plastic w/NaOH 3-40mL VOA 2-40mL VOA	Add Sodium Arsenite AFTER vater Fill "BLANK" w/ Di water in field	2:04 5%	Ĕ
WEDNESDAY 10/16/2024 500 Effluent Grab Orande (Available) 1-12/SmL Amber Plastic w/NaOH & Assorbic Acid 1-25/mL HDPE w/NaOH & Assorbic Acid Volatiles (VOCs 624.1) 2-10/16/2024 500 Effluent Grab Status 614 Status 1-25/mL Amber Plastic w/NaOH Status Add Sodium Asserts AFTER water (Arrage vials) 2-31 3-31 3-31 3-31 3-31 3-31 3-31 3-31 3-31 3-31		10/16/2024	500	Influent	4 4	Oil and Grease Cyanide (Kelada) Cyanide (Available) LL Mercury Volatiles (VOCs 624.1)	1-11. Amber wiHCI 1-250mL HDPE wiNaOH & Acsorbic Acid 1-250mL Amber Plastic wiNaOH 3-40mL VOA 2-40mL VOA	Add Sodium Arsenite AFTER water Fill "BLANK" w Di water in field	26 02 fist st	E L
WEDNE 614 4-1L amber 2-10/16/2024 613 2-30mL amber (large vials) 300 ORG (anions) 2-30mL amber (large vials) Insure Chorde) 4-1n-Hold 500 ORG (anions) 2-30mL HOPE Insure Chorde) 4-1n-Hold Figure A statistical and a	SDAY	10/16/2024	500	Effluent	Grab 2	Oil and Grease Cyanide (Kelada) Cyanide (Available) LL Mercury Volatiles (VOCs 624.1)	1-1L Amber wifiCl 1-250mL HDPE wiNaOH & Acsorbic Acid 1-125mL Amber Plastic wiNaOH 3-40mL VOA 2-40mL VOA	Add Sodium Arsenite AFTER water Fill "BLANK" w/ DI water (n field	231	C3
Ship ALL influent Samples SAME-DAY immediately following 1059 COMPOSITE collection	WEDNE	10/15/2024	1 100- 1059	Influent	COMPOSITE	614 615 625 (Gromium (Trivalent) Chromium (Hexavalent) Chromium (Hexavalent) Metals 608.3 632 (Carbary(& Diuron) 622 (Chloropyrifos) Fhosphorus	4-1L amber 2-60mL amber (large vials) 2-250mL HDPE 1-250mL HDPE 1-250mL HDPE 1-250mL HDPE wHAnnonium preseratives 1-250mL HDPE wHNO3 3-1L Amber Glass 1-1L Amber Glass 2-1L Amber Glass 2-1L Amber Glass	(Flouride, Witrate, Chieride) As-In: Hold (add Mich bedenum, Manganese) preserved by BRA	5.5.3 W	Ĩ
			an ann an Annailte		Ship A	LL Influent Samples SA	ME-DAY immediately following 1059 CC	MPOSITE collection!		
Doshier Farms WWTP - Pretreatment 4th Quarter - Table II, III, V (select), & 30 TAC Chapter 307 (Long Quarter)

Samplers. Please be sure to verify collection type and bottle/preservation Sign at bottom Chuef Operators. Please verify that all applicable boxes are checked/filled and sign at bottom

Samj	2 2 3					TI	HU	RS	DA	١Y						1	WE	DN (co	ESC int.)) A	1		 ;		
oler Signature	NCLUDE this o uto sampler for YOU HAVE C						-10/11/2024	40/47/0004	10/16/2024				and the second of the second			10/16/2024		t submission constraints			10/16/2024			Date	7=5
(s)	omplete or Influe JUESTIC						000	1050	1100-			_				1700					1100			21111	7
51/2	nd schedule v nt runs 1100 NS PLEASE							Influent	CTHIMENT	1						Effluent					Effluent			Focación	Incation
$\left \right\rangle$	vith final (Day1) to CONTAC	Ship /			C	0	M	PC	S	łT	E		and a second		4		Grah	And the second second second		L	5	d sub	and the second	Req'd	Type
	sample shipping for lab rev 1059 (Day2); Auto sample T Troy Zwerneman Office:	ALL Influent Samples S	Phosphorus	622 (Chloropyrifos)	632 (Carbaryl & Diuron)	608.3	Metals	Chromium (Hexavalent)	Chromium (Trivalent)	300 ORG (anions)	625.1	615	614	Volatiles (VUCS-624.1)	LL Mercury	Cyanide (Available)	Cyanide (Kelada)	Oil and Grease	Volatiles (VOCs 624.1)	LL Mercury	Cyanide (Available)	Cyanide (Kelada)	Oil and Grease	Campteo	Campler
Chief/Lead Operator Signature:	view and verification. r for Effluent will run 1100 (Day 2) to 1059 (De (254) 231-4231 or Cell: (254) 541-2836	AME-DAY immediately following 1059 C	1-250mL HDPE wH2SO4	2-1L Amber Glass	1-1L Amber Glass	3-1L Amber Glass	1-250mL HDPE w/HNO3	1-250mL HDPE w/Ammonium preseratives	1-250mL HOPE	2-250mL HDPE	4-60mL amber (large vials)	2-60mL amber (large vials)	4-1L amber	2-40mL VUA	3-40mL VOA	1-125mL Amber Plastic w/NaOH	1-250mL HDPE w/NaOH & Acsorbic Acid	1-1L Amber w/HCI	2-40mL VOA	3-40mL VOA	1-125mL Amber Plastic w/NaOH	1-250mL HDPE w/NaOH & Acsorbic Acid	1-1L Amber w/HCI	Required	Bottle Preservatives
12 Miles	<u>y3)</u>	OMPOSITE collection	preserved by BRA				(add Molybedenum, Manganese)			(Flouride, Nitrate, Chloride) 48-hr Hold					Fill "BLANK" w/ DI water in field	Add Sodium Arsenite AFTER water				Fill 'BLANK" w/ DI water in field	Add Sodium Amenite AFTER water			Contillents	
					1	、	100					- Arie)		<u> </u>		<u>ا</u> م			してい	- - - -				
				_		·		P L	? 1							7	11			1	1.1			Verified	C0/L0

)
	5
)
1	6
	0

Custody Seals Intact: Custody Seal No <u>A</u> Yes <u>A</u> No	Relinquished by:	Relinquished by:	Ratinquisnos by All 21 21 12	Empty Kit Relinquished by:	Deilverable Requested: 1, 11, 11, 1V Umer (specny)	Possible Hazard Identification				1 1 1 1 1	Eand Shino 10.17.24/ m.sA	00 11 /HEAN OF AME OWN)	Dossier Farms Effluent		Sample Identification Sa		Site: Dossier Farms Effluent	erojea vame: WWTP Influent 850	Email: Daniel.Potell@brazos.org	Phone: P103 254-761-3272(Tel) TBC	State, Zfr: TX, 77479	City: Sugar Land	Address: Due 4802 Olifield Rd.	Company: Brazos River Authority	Client Contact: Daniel Potell	Sam Client Information	Eurofins Houston 4145 Greenbhar Dr Staffod. TX 77477 Phone (281) 240-4200
	sTime:	vTime;	17.2027/12	Date:									24/21/21/21		mple Date Time G=	Sa	W(#:	07595			ipliance Project: A Yes & No	Requested (days): 10 WD	Dats Requested:	SMd	70;	Wethen Wile	Chain of (
	Company	Company	Company	Time		Nogical		860-85057 (11			C Water N N	reservation Code: XX	Comp, Omenium, E	mple Matrix (2 2	d Sam	ple ()	AFOI	Naj				ij	E-Mail: Jodi.Alien(Allen, Jodi	Custody Reco
Cacler Temperature(s) ^o C and Oth	Received by:	Received by: Nuclimon	Received by:			Return To Client		Chain of Cusinny					x x		35000	CR Hex	avent C	en						Analysis P	Det.eurofinsus.com		ord
or Romanus: 2.6 2.5	Date/Time:	10/10/	DeterTinia;	Method of Shipment	menus.	Disposal By Lab				 														Requested	State of Origin:	Carrier Tracking No(s):	
i Hau 368		E24 42				Archive For				 			bă		Special Ins	Numb	ar of c	əndağı İ	1075			HE - AschAcd&NaOF	N None	Job #	Page: Page 1 of 1	COC Na: 860-33053-1136;	arofins Enviro
Ver 05/06/2024	Company	Company	Company			Months									structions/Note:							I	ies:			2.2	ament listing

100000

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Phone: 281-240-4200	U	Chain o	of Cus	tody Re	ecord				🔅 eurofii	IS Environment Testing
	Sampler:			Lab PN			Carrier Tracki	ing No(s):	COC No:	
Client Information (Sub Contract Lab)	NA			Allen,	Jodi L		N/A		860-167156.	
Client contact Shipping/Receiving	Phone: N/A			E-Mail: Jodi./	vllen@et.e	urofinsus.com	State of Origi Texas	ë	Page: Page 1 of 1	
Company Eurofins Environment Testing South Centr					Vecreditations	: Required (See note): exas			Job #: 860-85055-1	
Address B600 Kanis Rd	Due Date Requeste 10/25/2024	.p				Analyse	sie Rannaetad		Preservation	Codes:
City Little Rock	TAT Requested (da	iya): N/A			130					
State, Zp AR, 72204	-				24				1	
Phone: 501-224-5060(Tel) 501-224-5075(Fax)	PO#				ani G					
Email: N/A	WO #								S	
Project Name: WWTP Dossier Farms Influent	Project #: 86007586				(JO Sa				n er tisti	
Site: Temple Belton/Dossier Farm	SSOW#: N/A				Aun:				other: N/A	
(d) to b (d) to series and action of the series		Sample	Sample Type (C=comp,	Matrix (w-water, a-solid, O-waterold,	easte up/ Men M/S/W magen M/S/W magen M/S/				nedrnu Number	
			Preserval	tion Code:					- specia	Instructions/Note:
Dossier Farms Effluent Grab 1 (860-85055-2)	10/15/24	23:00 Central	υ	Water	×				2	
Dossier Farms Effluent Grab 2 (860-85055-3)	10/16/24	05:00 Central	υ	Water	×				2	
Dossier Farms Effluent Grab 3 (860-85055-4)	10/16/24	11:00 Central	U	Water	×					
Dossier Farms Effluent Grab 4 (860-85055-5)	10/16/24	17:00 Central	υ	Water	×				2	
Dossier Farms Effluent Grab 1 1631 blanks (860-85055-7)	10/15/24	23:00 Central	IJ	Water	×				1	
Dossier Farms Effluent Grab 2 1631 blanks (860-85055-8)	10/16/24	05:00 Central	ი	Water	×				1	
Dossier Farms Effluent Grab 3 1631 blanks (860-85055-9)	10/16/24	11:00 Central	e	Water	×				54	
Dossier Farms Effluent Grab 4 1631 blanks (860-85055-10)	10/16/24	17:00 Central	IJ	Water	×					
Note: Since laboralory accreditations are subject to change, Eurofins Environmer Note: Since laboralory accreditations are subject to change, Eurofins Environmer laboratory does not currently maintain accreditation in the State of Origin listed at accreditation status should be brought to Eurofins Environment Testing South Ce	Testing South Centra bove for analysis/tests/ entral, LLC attention im	al, LLC places i matrix being ar mediately. If a	the ownership halyzed, the sa ll requested ac	of method, analy mples must be s creditations are	le & accredit hipped back t	tion compliance upon ou to the Eurofins Environm e. return the signed Chair	r subcontract laboratorie ant Testing South Centra of Custody attesting to	s. This sample shi	pment is forwarded und other instructions will b Eurofins Environment 1	r chain-of-custody. If the provided. Any changes to astinc South Central 1.1.C
Possible Hazard Identification					Sample	Disposal (A fee m	ay be assessed if	samples are re	stained longer tha	1 month)
Uncontirmed Deliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	able Rank: 2			Special	erum 10 Cilent Instructions/QC Rec	Uisposal By Juirements:	LaD	Archive For	Months
Empty Kit Relinquished by:		Date:			ime:		Method	of Shipment:		
Relinquished by:	DateTime	1/1/2	20	Company	Rece	CULTEN IN		Date/Time: (0/22	124 935	Company
Relinquished by:	Date/Note:			Company	Rece	ived by:		Date/Time:	>	Company
Relinquished by:	Date/Time:			Company	Rece	ived by:		Date/Time:		Company
Custody Seals Intact: Custody Seal No.: A Yes A No					Coole	er Temperature(s) °C and	Other Remarks:	9.		
					F	94 0997 6	79%			Ver: 10/10/2024
			17	15 16		12 13	9 10 11	8	5 6 7	

Danny Brown

From: Sent: To: Cc: Subject: Jodi Allen Tuesday, October 22, 2024 9:28 AM EurofinsArkansas SMG Lauren Hansen RE: Influent/Effluent

Verified Sender: This email is from an internal and/or verified domain which passed security verifications. Remember to still be cautious with personal data and follow company policies.

You should go by the login.

Jodi Allen Project Manager

Mobile:+1 281.520.2865 E-mail: <u>Jodi.Allen@ET.EurofinsUS.com</u>

From: EurofinsArkansas SMG <EurofinsArkansas.SMG@et.eurofinsus.com> Sent: Tuesday, October 22, 2024 9:23 AM To: Jodi Allen <Jodi.Allen@et.eurofinsus.com> Cc: Lauren Hansen <Lauren.Hansen@et.eurofinsus.com> Subject: Influent/Effluent

Verified Sender: This email is from an internal and/or verified domain which passed security verifications. Remember to still be cautious with personal data and follow company policies.

Hello Jodi,

We received your Hg samples this morning. Each of the samples are labeled Influent on the outside of the bag and Effluent on the inside vial (see attached). Should we use the inside or outside Sample ID? Please advise.

Thank you,

Danny Brown Senior Scientist Group Leader

Eurofins Arkansas 8600 Kanis Road Little Rock, AR 72204 Phone: 501 224-5060

Danny.Brown@et.eurofinsus.com www.eurofins.com

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477	Chain of Cu	istody Rec	ord		🔆 eurofins Environment Testing
Phone: 281-240-4200				5	
Client Information (Sub Contract Lab)	Sampler: N/A	Lab PM: Allen, Joo	i L	Carrier Tracking No(s): N/A	COC No: 860-167183.1
Client Contact: Shipping/Receiving	Phone: N/A	E-Mail: Jodi.Allen	@et.eurofinsus.com	State of Origin: Texas	Page: Page 1 of 1
Company: TestAmerica Laboratories, Inc.		Accre	ditations Required (See note): AP - Texas		Job #: 860-85055-1
Address: 4955 Yarrow Street,	Due Date Requested: 10/25/2024		Analysis I	Requested	Preservation Codes:
City: Arvada	TAT Requested (days): N/A				
State, Zip: CO, 80002					
Phone: 303-736-0100(Tel) 303-431-7171(Fax)	Po#: N/A	- (bhenol		
Email: N/A	WO#: N/A	Dr.NC	Ιουλ		S
Project Name: WWTP Dossier Farms Influent	Project #: 86007586	e (Xes	qarq_v		ədilmi
Site: Temple Belton/Dossier Farm	Sow#: N/A	dues	1) UZ		6 Other: 5 N/A
	Sampl	e Matrix (w=water, s=solid,	9020/11~59		
Sample Identification - Client ID (Lab ID)	Sample Date Time G=gra	P, O=waste/oll, 10 BT=Tissue, A=Air)	9020		Special Instructions/Note:
N. W. W.	Prese	rvation Code: 🗙			X
Dossier Farms Effluent (860-85055-1)	10/17/24 10:59 G	Water	×		2
Note: Since laboratory accreditations are subject to change, Eurofins Environmeni laboratory does not currently maintain accreditation in the State of Origin listed abu accreditation status should be brought to Eurofins Environment Testing South Cer	it Testing South Central, LLC places the owner tove for analysis/tests/matrix being analyzed, th intral, LLC attention immediately. If all request	ship of method, analyte 8 ne samples must be shipp ed accreditations are curr	accreditation compliance upon our su bed back to the Eurofins Environment ⁻ ent to date, return the signed Chain of	bcontract laboratories. This sample shipm esting South Central, LLC laboratory or oth Custody attesting to said compliance to Eu	ent is forwarded under chain-of-custody. If the her instructions will be provided. Any changes to irofins Environment Testing South Central, LLC.
Possible Hazard Identification			Sample Disposal (A fee may	be assessed if samples are reta	ined longer than 1 month) white For Months
Deliverable Requested: I, II, IV, Other (specify)	Primary Deliverable Rank: 2		Special Instructions/QC Requir	ements:	
Empty Kit Relindulshed by://	Late:	Tin	ē:	Method of Shipment:	
Relinquished by:	Data Time: Data Tru	Company	Received by:	Date/Time:	Company
Relinquished by:	Date/Time:	Company	Received by:	Date Time 2 - 0	24 Mag Company
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.: △ Yes △ No			Cooler Temperature(s) °C and Ot	Ier Remarks: 0, 9 & Tcu'	cFo.1
	17	15 16	11 12 13 14	7 8 9 10	Ver: 10/10/2024

ł

Login Sample Receipt Checklist

Client: Brazos River Authority

Login Number: 85055 List Number: 1 Creator: Jimenez, Nicanor

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

Job Number: 860-85055-1

List Source: Eurofins Houston

Client: Brazos River Authority

Login Number: 85055 List Number: 2 Creator: Hansen, Lauren K

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	False	IDs on containers do not match the COC. Logged in per COC.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

17

Job Number: 860-85055-1

List Source: Eurofins Arkansas

Client: Brazos River Authority

Login Number: 85055 List Number: 3 Creator: Held, Wesley

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 860-85055-1

List Source: Eurofins Denver

List Creation: 10/22/24 11:47 AM

17

Client: Brazos River Authority

Login Number: 85055 List Number: 4 Creator: Mullins, Plumm A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked	N/A	

Job Number: 860-85055-1

List Source: Eurofins Pittsburgh

List Creation: 10/22/24 03:25 PM

Login Sample Receipt Checklist

Client: Brazos River Authority

Login Number: 85057 List Number: 1 Creator: Jimenez, Nicanor

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

Job Number: 860-85055-1

List Source: Eurofins Houston

Attachment G Parameters above the MAL Worksheet 6.0, Section 2.C

ATTACHMENT G CITY OF TEMPLE DOSHIER FARM WASTEWATER TREATMENT FACILITY TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION PARAMETERS ABOVE THE MAL (all units in µg/L)

Parameter	MAL	2024 - Q1	2023 - Q4	2023 - Q3	2023 - Q2	2023 - Q1	2022 - Q4	2022 - Q3	2022 - Q2	2022 - Q1	2021 - Q4	2021 - Q3	2021 - Q2
Antimony	5						5.65						
Arsenic	0.5	1.14	1.21	2.11	1.53	1.19	1.46	2.21	1.36	1.36	1.21	3.35	1.97
Chromium (Hex)	3		3.1										5.46
Copper	2	2.32	5.91	5.65	5.97	4.18	5.91	8.5	8.43	5.73	4.8	6.51	6.2
Lead	0.5										0.514		
Mercury	0.005				0.012								
Nickel	2	4.52	2.7	2.78				2.33	3.1	7.18	27.7	8.98	3.4
Zinc	5	35.4	60.8	116	32.3	38.1	52.3	37.1	57.4	68.1	56.7	60.6	22.8
Cyanide, Available	10										15.8		
Cyanide, Total	10										15.8		
Chlorodibromomethane	10	16.6				10.7				15.6			
Chloroform	10					12.5				18.5			
Dichlorobromomethane	10	14.1				13.1				18.7			
Aluminum	2.5	19.1	43.5	18.6	17.1	14.3	12.1	23.2	17.3	24.6	23.9	18.2	25.9
Barium	3	74	77.7	81.8	61.7	71.5	63.4	55.5	71.3	64.3	52.9	52.8	86.8
Fluoride	500											650	627
Nitrate-Nitrogen	100	16300	20500	11800	18100	4640	12100	18100	9460	16500	17400	10800	5690
TTHM (Total Trihalomethanes)	10	44.8				38.3				55.8			
Molybdenum	1	5.26	4.11	79.3	11.1	4.06	5.11	8.76	5.34	3.47	2.19	3.14	2.37

Attachment SPIF

Supplemental Permit Information Form

- SPIF-1 General Location Map
 - SPIF-2 USGS Map

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

TCEQ USE ONLY:	
Application type:RenewalMajor Am	endmentNinor AmendmentNew
County:	Segment Number:
Admin Complete Date:	-
Agency Receiving SPIF:	
Texas Historical Commission	U.S. Fish and Wildlife
Texas Parks and Wildlife Department	U.S. Army Corps of Engineers

This form applies to TPDES permit applications only. (Instructions, Page 53)

Complete this form as a separate document. TCEQ will mail a copy to each agency as required by our agreement with EPA. If any of the items are not completely addressed or further information is needed, we will contact you to provide the information before issuing the permit. Address each item completely.

Do not refer to your response to any item in the permit application form. Provide each attachment for this form separately from the Administrative Report of the application. The application will not be declared administratively complete without this SPIF form being completed in its entirety including all attachments. Questions or comments concerning this form may be directed to the Water Quality Division's Application Review and Processing Team by email at <u>WO-ARPTeam@tceq.texas.gov</u> or by phone at (512) 239-4671.

The following applies to all applications:

1. Permittee: <u>City of Temple</u>

Permit No. WQ00 <u>10470002</u>

EPA ID No. TX <u>0047651</u>

Address of the project (or a location description that includes street/highway, city/vicinity, and county):

2515 East Avenue H, Temple Texas in Bell County

Provide the name, address, phone and fax number of an individual that can be contacted to answer specific questions about the property.

Prefix (Mr., Ms., Miss): <u>Mr.</u>

First and Last Name: Kenton Moffett

Credential (P.E, P.G., Ph.D., etc.): <u>P.E.</u>

Title: Assistant Director of Public Works - Utilities

Mailing Address: <u>3210 E. Avenue H, Bldg A, Suite 123</u>

City, State, Zip Code: Temple, TX 76501

Phone No.: <u>(254) 298-5621</u> Ext.:

Fax No.:

E-mail Address: <u>kmoffett@templetx.gov</u>

- 2. List the county in which the facility is located: <u>Bell</u>
- 3. If the property is publicly owned and the owner is different than the permittee/applicant, please list the owner of the property.

The property is owned by the applicant.

4. Provide a description of the effluent discharge route. The discharge route must follow the flow of effluent from the point of discharge to the nearest major watercourse (from the point of discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify the classified segment number.

To an unnamed tributary; thence to Little Elm Creek; thence to Big Elm Creek; thence to the Little River in Segment No. 1213 of the Brazos River Basin.

5. Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report). See SPIF-1 and SPIF-2.

Provide original photographs of any structures 50 years or older on the property. N/A

Does your project involve any of the following? Check all that apply. None.

- Proposed access roads, utility lines, construction easements
- □ Visual effects that could damage or detract from a historic property's integrity
- □ Vibration effects during construction or as a result of project design
- Additional phases of development that are planned for the future

- □ Sealing caves, fractures, sinkholes, other karst features
- Disturbance of vegetation or wetlands
- 1. List proposed construction impact (surface acres to be impacted, depth of excavation, sealing <u>of caves</u>, or other karst features):

N/A	
-----	--

Describe existing disturbances, vegetation, and land use:
 Existing disturbances, vegetation, and land use are those typical of a wastewater treatment facility.

THE FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR AMENDMENTS TO TPDES PERMITS

- 3. List construction dates of all buildings and structures on the property: N/A
- 4. Provide a brief history of the property, and name of the architect/builder, if known. N/A

SPIF 2 CITY OF TEMPLE - DOSHIER FARM WASTEWATER TREATMENT FACILITY TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION USGS MAP

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ0010470002

SOLICITUD. Ciudad de Temple, 3210 East Avenue H, Edificio A, Temple, Texas 76501, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0010470002 (EPA I.D. No. TX 0047651) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio medio anual de 7,500,000 galones por día. La planta está ubicada 2515 East Avenue H, in the city of Temple, en el Condado de Bell, Texas. La ruta de descarga es del sitio de la planta a sitio de la planta a un afluente sin nombre; de allí a Little Elm Creek; de allí a Big Elm Creek; de ahí a Río Pequeño. La TCEQ recibió esta solicitud el 5 de noviembre de 2024. La solicitud para el permiso está disponible para leerla y copiarla en el Departamento de Obras Públicas de la Ciudad de Temple, 3210 East Avenue H, Edificio A, Suite 130, Temple, Texas. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdesapplications. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.318055,31.077222&level=18

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO

CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. **A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso.** Una audiencia administrativa de lo contencios es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE **INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre,** dirección, y número de teléfono: el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general: una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración '[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; v explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado especifico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

CONTACTOS E INFORMACIÓN DE LA TCEQ. Todos los comentarios escritos del público y los para pedidos una reunión deben ser presentados a la Oficina del Secretario Principal, MC 105, TCEQ, P.O. Box 13087, Austin, TX 78711-3087 o por el internet at <u>www.tceq.texas.gov/about/comments.html</u>. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Si necesita más información en Español sobre esta solicitud para un permiso o el proceso del permiso, por favor llame a El Programa de Educación Pública de la TCEQ, sin cobro, al 1-800-687-4040. La información general sobre la TCEQ puede ser encontrada en nuestro sitio de la red: <u>www.tceq.texas.gov</u>.

También se puede obtener información adicional del Ciudad de Temple a la dirección indicada arriba o llamando a Sr. Kenton Moffett, P.E., Director Asistente de Obras Públicas - Servicios Públicos al 254-298-5623.

Fecha de emisión _____ [Date notice issued]

Rachel Ellis

From:	Janet Sims <janet.sims@meadhunt.com></janet.sims@meadhunt.com>
Sent:	Thursday, November 14, 2024 3:15 PM
То:	Rachel Ellis
Cc:	Kenton Moffett
Subject:	RE: Application to Renew Permit No. WQ0010470002-City of Temple- Notice of
	Deficiency Letter
Attachments:	WQ0010470002 NORI Spanish.docx

Rachel,

The portion of the NORI that was provided for the TPDES permit application for the City of Temple Doshier Farm WWTF has been reviewed.

Following are the corrections that are requested.

- 1. The description of the authorized flow is not correct. The permit authorizes the City of Temple to discharge treated wastewater at a volume not to exceed an <u>annual</u> average flow of 7,500,000 gallons per day. The permitted flow is not based on the daily average flow.
- 2. The word "City" in the second sentence should be capitalized.
- 3. The application will be available for copying and viewing at the City of Temple <u>Department of Public Works</u>, The fifth sentence of the first paragraph of the NORI needs to be revised as noted.

As requested, the Spanish translation of the NORI with the corrections requested above is attached. Please contact me if you have questions. Thanks,

Janet Sims

Senior Project Manager | Water/Wastewater Direct: 512-735-1001 | Cell: 512-695-2468 | Transfer Files

Mead& Iunt

LinkedIn | Facebook | Instagram

From: Rachel Ellis <Rachel.Ellis@tceq.texas.gov>
Sent: Tuesday, November 12, 2024 12:33 PM
To: kmoffett@templetx.gov
Cc: Janet Sims <Janet.Sims@meadhunt.com>
Subject: Application to Renew Permit No. WQ0010470002-City of Temple- Notice of Deficiency Letter

You don't often get email from <u>rachel.ellis@tceq.texas.gov</u>. <u>Learn why this is important</u>

Dear Mr. Moffit,

The attached Notice of Deficiency letter sent on November 12, 2024, requests additional information needed to declare the application administratively complete. Please send the complete response to my attention by November 26, 2024.

Thank you,

Rachel Ellis

Texas Commission on Environmental Quality Water Quality Division Application Review & Processing Team <u>Rachel.Ellis@tceq.texas.gov</u>

This email, including any attachments, is intended only for the use of the recipient(s) and may contain privileged and confidential information, including information protected under the HIPAA privacy rules. Any unauthorized review, disclosure, copying, distribution or use is prohibited. If you received this email by mistake, please notify us by reply e-mail and destroy all copies of the original message.

CONTRIBUTING INDUSTRIES AND PRETREATMENT REQUIREMENTS

1. The permittee shall operate an industrial pretreatment program in accordance with Sections 402(b)(8) and (9) of the Clean Water Act, the General Pretreatment Regulations (40 CFR Part 403), and the approved **City of Temple** publicly owned treatment works (POTW) pretreatment program submitted by the permittee. The pretreatment program was approved on **May 1, 1984**, and modified on **September 24, 1993**, **March 24, 2015** (Streamlining Rule and removal of three local limits), and **February 23, 2024** (TBLLs).

The POTW pretreatment program is hereby incorporated by reference and shall be implemented in a manner consistent with the following requirements:

- a. Industrial user (IU) information shall be kept current according to 40 CFR §§ 403.8(f)(2)(i) and (ii) and updated at a frequency set forth in the approved pretreatment program to reflect the accurate characterization of all IUs.
- b. The frequency and nature of IU compliance monitoring activities by the permittee shall be consistent with the approved POTW pretreatment program and commensurate with the character, consistency, and volume of waste. The permittee is required to inspect and sample the effluent from each significant industrial user (SIU) at least once per year, except as specified in 40 CFR § 403.8(f)(2)(v). This is in addition to any industrial self-monitoring activities.
- c. The permittee shall enforce and obtain remedies for IU noncompliance with applicable pretreatment standards and requirements and the approved POTW pretreatment program.
- d. The permittee shall control through permit, order, or similar means, the contribution to the POTW by each IU to ensure compliance with applicable pretreatment standards and requirements and the approved POTW pretreatment program. In the case of SIUs (identified as significant under 40 CFR § 403.3(v)), this control shall be achieved through individual permits or general control mechanisms, in accordance with 40 CFR § 403.8(f)(1)(iii).

Both individual and general control mechanisms must be enforceable and contain, at a minimum, the following conditions:

- (1) Statement of duration (in no case more than five years);
- (2) Statement of non-transferability without, at a minimum, prior notification to the POTW and provision of a copy of the existing control mechanism to the new owner or operator;
- (3) Effluent limits, which may include enforceable best management practices (BMPs), based on applicable general pretreatment standards, categorical pretreatment standards, local limits, and State and local law;
- (4) Self-monitoring, sampling, reporting, notification and record keeping requirements, identification of the pollutants to be monitored (including, if applicable, the process for seeking a waiver for a pollutant neither present nor expected to be present in the IU's discharge in accordance with 40 CFR § 403.12(e)(2), or a specific waived pollutant in the case of an individual control mechanism), sampling location, sampling frequency, and sample type, based on the applicable general pretreatment standards in 40 CFR Part 403, categorical pretreatment standards, local limits, and State and local law;
- (5) Statement of applicable civil and criminal penalties for violation of pretreatment standards and requirements, and any applicable compliance schedule. Such schedules may not extend the compliance date beyond federal deadlines; and
- (6) Requirements to control slug discharges, if determined by the POTW to be necessary.
- e. For those IUs who are covered by a general control mechanism, in order to implement 40

CFR § 403.8(f)(1)(iii)(A)(2), a monitoring waiver for a pollutant neither present nor expected to be present in the IU's discharge is not effective in the general control mechanism until after the POTW has provided written notice to the SIU that such a waiver request has been granted in accordance with 40 CFR § 403.12(e)(2).

- f. The permittee shall evaluate whether each SIU needs a plan or other action to control slug discharges, in accordance with 40 CFR § 403.8(f)(2)(vi). If the POTW decides that a slug control plan is needed, the plan shall contain at least the minimum elements required in 40 CFR § 403.8(f)(2)(vi).
- g. The permittee shall provide adequate staff, equipment, and support capabilities to carry out all elements of the pretreatment program.
- h. The approved program shall not be modified by the permittee without the prior approval of the Executive Director, according to 40 CFR § 403.18.
- 2. The permittee is under a continuing duty to establish and enforce specific local limits to implement the provisions of 40 CFR § 403.5, develop and enforce local limits as necessary, and modify the approved pretreatment program as necessary to comply with federal, state, and local law, as amended. The permittee may develop BMPs to implement 40 CFR § 403.5(c)(1) and (2). Such BMPs shall be considered local limits and pretreatment standards. The permittee is required to effectively enforce such limits and to modify its pretreatment program, including the Legal Authority, Enforcement Response Plan, and Standard Operating Procedures (including forms), if required by the Executive Director to reflect changing conditions at the POTW. Substantial modifications will be approved in accordance with 40 CFR § 403.18, and modifications will become effective upon approval by the Executive Director in accordance with 40 CFR § 403.18.
- 3. The permittee shall analyze the treatment facility influent and effluent for the presence of the toxic pollutants listed in the Texas Surface Water Quality Standards [30 TAC Chapter 307], and 40 CFR Part 122, Appendix D, Table II at least **once per year** and the toxic pollutants listed in 40 CFR Part 122, Appendix D, Table III at least **once per three months**. If, based upon information available to the permittee, there is reason to suspect the presence of any toxic or hazardous pollutant listed in 40 CFR Part 122, Appendix D, Table V, or any other pollutant, known or suspected to adversely affect treatment plant operation, receiving water quality, or solids disposal procedures, analysis for those pollutants shall be performed at least **once per three months** on both the influent and the effluent.

The influent and effluent samples collected shall be composite samples consisting of at least 12 aliquots collected at approximately equal intervals over a representative 24-hour period and composited according to flow. Sampling and analytical procedures shall be in accordance with guidelines established in 40 CFR Part 136, as amended; as approved by the EPA through the application for alternate test procedures; or as suggested in Tables E-1 and E-2 of the *Procedures to Implement the Texas Surface Water Quality Standards* (RG-194), June 2010, as amended and adopted by the TCEQ. The effluent samples shall be analyzed to the minimum analytical level (MAL) if necessary, to determine compliance with the daily average water quality based effluent concentration from the TCEQ's Texas Toxicity Modeling Program (TEXTOX) and other applicable water quality discharge standards. Where composite samples are inappropriate due to sampling, holding time, or analytical constraints, at least four (4) grab samples shall be taken at equal intervals over a representative 24-hour period.

4. The permittee shall prepare annually a list of IUs which, during the preceding twelve (12) months, were in significant noncompliance (SNC) with applicable pretreatment requirements. For the purposes of this section of the permit, "CONTRIBUTING INDUSTRIES AND PRETREATMENT REQUIREMENTS," SNC shall be determined based upon the more stringent of either criteria established at 40 CFR §403.8(f)(2)(viii) *[rev. 10/14/05]* or criteria established in the approved POTW pretreatment program. This list is to be published annually during the month of **February** in a newspaper of general circulation that provides meaningful public notice within the

jurisdiction(s) served by the POTW.

In addition, each **February** the permittee shall submit an updated pretreatment program annual status report, in accordance with 40 CFR §§ 403.12(i) [*rev. 10/22/15*] and (m), to the TCEQ Pretreatment Team (MC148) of the Water Quality Division. The report summary shall be submitted on the Pretreatment Performance Summary (PPS) form [TCEQ-20218]. The report shall contain the following information as well as the information on the tables in this section:

- a. An updated list of all regulated IUs as indicated in this section. For each listed IU, the following information shall be included:
 - (1) Standard Industrial Classification (SIC) or North American Industry Classification System (NAICS) code *and* categorical determination.
 - (2) If the pretreatment program has been modified and approved to incorporate reduced monitoring for any of the categorical IUs as provided by 40 CFR Part 403 [*rev.* 10/14/05], then the list must also identify:
 - categorical IUs subject to the conditions for reduced monitoring and reporting requirements under 40 CFR § 403.12(e)(1) [*rev.* 10/22/15] and (3);
 - those IUs that are non-significant categorical industrial users (NSCIUs) under 40 CFR §403.3(v)(2); and
 - those IUs that are middle tier categorical industrial users (MTCIUs) under 40 CFR §403.12(e)(3).
 - (3) Control mechanism status.
 - Indicate whether the IU has an effective individual or general control mechanism, and the date such control mechanism was last issued, reissued, or modified;
 - Indicate which IUs were added to the system, or newly identified, during the pretreatment year reporting period;
 - Include the type of general control mechanisms; and
 - Report all NSCIU annual evaluations performed, as applicable.
 - (4) A summary of all compliance monitoring activities performed by the POTW during the pretreatment year reporting period. The following information shall be reported:
 - Total number of inspections performed; and
 - Total number of sampling events conducted.
 - (5) Status of IU compliance with effluent limitations, reporting, and narrative standard (which may include enforceable BMPs, narrative limits, and/or operational standards) requirements. Compliance status shall be defined as follows:
 - Compliant (C) no violations during the pretreatment year reporting period;
 - Non-compliant (NC) one or more violations during the pretreatment year reporting period but does not meet the criteria for SNC; and
 - Significant Noncompliance (SNC) in accordance with requirements described above

in this section.

- (6) For noncompliant IUs, indicate the nature of the violations, the type and number of actions taken (notice of violation, administrative order, criminal or civil suit, fines or penalties collected, etc.), and the current compliance status. If any IU was on a schedule to attain compliance with effluent limits or narrative standards, indicate the date the schedule was issued and the date compliance is to be attained.
- b. A list of each IU whose authorization to discharge was terminated or revoked during the pretreatment year reporting period and the reason for termination.
- c. A report on any interference, pass through, Act of God, or POTW permit violations known or suspected to be caused by IUs and response actions taken by the permittee.
- d. The results of all influent and effluent analyses performed pursuant to Item 3 of this section.
- e. An original newspaper public notice, or copy of the newspaper publication with official affidavit, of the list of IUs that meet the criteria of SNC, giving the name of the newspaper and date the list was published.
- f. The daily average water quality based effluent concentrations (from the TCEQ's Texas Toxicity Modeling Program (TexTox)) necessary to attain the Texas Surface Water Quality Standards, 30 TAC Chapter 307, in water in the state.
- g. The maximum allowable headworks loading (MAHL) in pounds per day (lb/day) of the approved TBLLs or for each pollutant of concern (POC) for which the permittee has calculated a MAHL. In addition, the influent loading as a percent of the MAHL, using the annual average flow of the wastewater treatment plant in million gallons per day (MGD) during the pretreatment year reporting period, for each pollutant that has an adopted TBLL or for each POC for which the permittee has calculated a MAHL. (*See Endnotes No. 2 at the end of this section for the influent loading as a percent of the MAHL equation*.)
- h. The permittee may submit the updated pretreatment program annual status report information in tabular form using the example table format provided. Please attach, on a separate sheet, explanations to document the various pretreatment activities, including IU permits that have expired, BMP violations, and any sampling events that were not conducted by the permittee as required.
- i. A summary of changes to the POTW's approved pretreatment program that have not been previously reported to the Approval Authority.

Effective December 21, 2025, the permittee must submit the updated pretreatment program annual status report required by this section electronically using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. *[rev. Federal Register/ Vol. 80/ No. 204/ Friday, October 22, 2015/ Rules and Regulations, pages 64064-64158].*

- 5. The permittee shall provide adequate written notification to the Executive Director, care of the Wastewater Permitting Section (MC 148) of the Water Quality Division, within 30 days of the permittee's knowledge of the following:
 - a. Any new introduction of pollutants into the treatment works from an indirect discharger that would be subject to Sections 301 and 306 of the Clean Water Act, if the indirect discharger was directly discharging those pollutants; and
 - b. Any substantial change in the volume or character of pollutants being introduced into the treatment works by a source introducing pollutants into the treatment works at the time of

issuance of the permit.

Adequate notice shall include information on the quality and quantity of effluent to be introduced into the treatment works and any anticipated impact of the change on the quality or quantity of effluent to be discharged from the POTW.

Revised March 2022

TPDES Pretreatment Program Annual Report Form for Updated Industrial Users List

Reporting month/year: _____, ____ to _____, ____

 TPDES Permit No.:
 Permittee:
 Treatment Plant:

P	RETREA	TME	NT PI	ROGR	AM S	TATUS	REP	ORT	UPD	DAT]	ED I	NDUS	TRIAL	USER	S ¹ LIS	ST
ə			CONTROL MECHANISM					the CA	ne CA	COMPLIANCE STATUS During the Pretreatment Year Reporting Period ⁴ (C = Compliant, NC = Noncompliant, SNC= Significant Noncompliance)				r iant, ce)		
: Nam	Code			r NR				ed by t	l by tł		R	EPORT	S			
Industrial User	SIC or NAICS (CIU ²	Y/N or NR^5	IND or GEN or	Last Action ⁶	TBLLs or TBLLs only ⁷	New User ³ (Y	Times Inspecte	Times Sampled	BMR	90-Day	Semi- Annual	Self- Monitoring ⁸	NSCIU Certifications	Effluent Limits	Narrative Standards

- 1 Include all significant industrial users (SIUs), non-significant categorical industrial users (NSCIUs) as defined in 40 CFR §403.3(v)(2), and/or middle tier categorical industrial users (MTCIUs) as defined in 40 CFR §403.12(e)(3). Please do not include non-significant noncategorical IUs that are covered under best management practices (BMPs) or general control mechanisms.
- Categorical determination (include 40 CFR citation and NSCIU or MTCIU status, if applicable). 2
- Indicate whether the IU is a new user. If the answer is No or N, then indicate the expiration date of the last 3 issued IU permit.
- The term SNC applies to a broader range of violations, such as daily maximum, long-term average, 4 instantaneous limits, and narrative standards (which may include enforceable BMPs, narrative limits and/or operational standards). Any other violation, or group of violations, which the POTW determines will adversely affect the operation or implementation of the local Pretreatment Program now includes BMP violations (40 CFR §403.8(f)(2)(viii)(H)).
- Code NR= None required (NSCIUs only); IND = individual control mechanism; GEN = general control 5 mechanism. Include as a footnote (or on a separate page) the name of the general control mechanism used for similar groups of IUs, identify the similar types of operations and types of wastes that are the same for each general control mechanism. Any BMPs through general control mechanisms that are applied to nonsignificant IUs need to be reported separately, *e.g.* the sector type and BMP description.
- Permit or NSCIU evaluations as applicable. 6
- According to 40 CFR §403.12(i)(1), indicate whether the IU is subject to technically based local limits (TBLLs) 7 that are more stringent than categorical pretreatment standards, *e.q.* where there is one end-of-pipe sampling point at a CIU, and you have determined that the TBLLs are more stringent than the categorical pretreatment standards for any pollutant at the end-of-pipe sampling point; **OR** the IU is subject only to local limits (TBLLs only), e.q. the IU is a non-categorical SIU subject only to TBLLs at the end-of-pipe sampling point.
- For those IUs where a monitoring waiver has been granted, please add the code "W" (after either C, NC, or 8 SNC codes) and indicate the pollutant(s) for which the waiver has been granted.

TCEQ-20218a **TPDES Pretreatment Program Annual Report Form** Revised July 2007

TPDES Pretreatment Program Annual Report Form for Industrial User Inventory Modifications

Reporting month/year:_____, ____ to _____, ____

 TPDES Permit No:
 Permittee:
 Treatment Plant:

	INDUSTRI	IAL USER INV	VENTORY MODI	FICATIONS							
FACILITY NAME,	ADD, CHANGE.	IF DELETION:	IF ADDITION OR SIGNIFICANT CHANGE:								
ADDRESS AND CONTACT PERSON	DELETE (Including categorical reclassification to NSCIU or MTCIU)	Reason For Deletion	PROCESS DESCRIPTION	POLLUTANTS (Including any sampling waiver given for each pollutant not present)	FLOW RATE ⁹ (In gpd) R = Regulated U = Unregulated T = Total						

For NSCIUs, total flow must be given, if regulated flow is not determined. 9

TCEQ-20218b TPDES Pretreatment Program Annual Report Form Revised July 2007

TPDES Pretreatment Program Annual Report Form for Enforcement Actions Taken

Reporting month/year: _____, ____ to ____, ____

 TPDES Permit No:
 Permittee:
 Treatment Plant:

Overall SNC ___% SNC ¹⁰ based on: Effluent Violations___% Reporting Violations___% Narrative Standard Violations__%

	N	lonc	ompli	ant In	dus	trial	Use	rs - 1	Enfo	orceme	ent A	ctio	ns T	aken	
	Nat	ure o	f Viola	tion 11	Nu	ımbe T	r of A 'aken		15	d (Do arge)	Cor Sc	nplia hedu	nce ıle	turned or N)	
Industrial User Name	Effluent Limits	Reports	NSCIU Certifications	Narrative Standards	NOV	A.O.	Civil	Criminal	Other	Penalties Collecte not Include Surch	$Y ext{ or } N$	Date Issued	Date Due	Current Status Re to Compliance: (Y	Comments

10 <u># %</u>

_____ Pretreatment Standards [WENDB-PSNC] (Local Limits/Categorical Standards)

_____ Reporting Requirements [WENDB-PSNC]

_____ Narrative Standards

11 Please specify a separate number for each type of violation, *e.g.* report, notification, and/or NSCIU certification.

TCEQ-20218c TPDES Pretreatment Program Annual Report Form Revised

Revised July 2007

TPDES Pretreatment Program Annual Report Form for Influent and Effluent Monitoring Results¹

Reporting month/year: _____, ____ to _____, ____

 TPDES Permit No.:
 Permittee:
 Treatment Plant:

PRETREATMENT PROGRAM INFLUENT AND EFFLUENT MONITORING RESULTS													
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in µg/L (Actual Concentration or < MAL)				Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in μg, (Actual Concentra or < MAL) 4			/L ation		
		Date	Date	Date	Date			Date	Date	Date	Date		
METALS, CYANIDE AND PHENO	LS												
Antimony, Total													
Arsenic, Total													
Beryllium, Total													
Cadmium, Total													
Chromium, Total													
Chromium (Hex)													
Chromium (Tri)₅													
Copper, Total													
Lead, Total													
Mercury, Total													
Nickel, Total													
Selenium, Total													
Silver, Total													
Thallium, Total													
Zinc, Total													
Cyanide, Available ⁶													
Cyanide, Total													
Phenols, Total													

PRETREATMENT PROGRAM INFLUENT AND EFFLUENT MONITORING RESULTS													
POLLUTANT	MAHL, if Applicable in lb/day	Me (Actu	Influe easure ual Con or < 1	uent d in µg ncentra MAL)	/L ation	Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in µg/I (Actual Concentrati or < MAL) 4			/L ation		
		Date	Date	Date	Date			Date	Date	Date	Date		
VOLATILE COMPOUNDS													
Acrolein													
Acrylonitrile													
Benzene													
Bromoform							See TTHM						
Carbon Tetrachloride													
Chlorobenzene													
Chlorodibromomethane							See TTHM						
Chloroethane													
2-Chloroethylvinyl Ether													
Chloroform							See TTHM						
Dichlorobromomethane							See TTHM						
1,1-Dichloroethane													
1,2-Dichloroethane													
1,1-Dichloroethylene													
1,2-Dichloropropane													
1,3-Dichloropropylene													
Ethyl benzene													
Methyl Bromide													
Methyl Chloride													
Methylene Chloride													
1,1,2,2-Tetra-chloroethane													

PRETREATMENT PROGRAM INFLUENT AND EFFLUENT MONITORING RESULTS													
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in µg/L (Actual Concentration or < MAL)				Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in μg/ (Actual Concentrat or < MAL) 4			/L ation		
	-	Date	Date	Date	Date			Date	Date	Date	Date		
Tetrachloroethylene													
Toluene													
1,2-Trans-Dichloroethylene													
1,1,1-Trichloroethane													
1,1,2-Trichloroethane													
Trichloroethylene													
Vinyl Chloride													
ACID COMPOUNDS	1							1					
2-Chlorophenol													
2,4-Dichlorophenol													
2,4-Dimethylphenol													
4,6-Dinitro-o-Cresol													
2,4-Dinitrophenol													
2-Nitrophenol													
4-Nitrophenol													
P-Chloro-m-Cresol													
Pentachlorophenol													
Phenol													
2,4,6-Trichlorophenol													
BASE/NEUTRAL COMPOUNDS	1							n					
Acenaphthene													
Acenaphthylene													

PRETREATMENT PROGRAM INFLUENT AND EFFLUENT MONITORING RESULTS													
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in µg/L (Actual Concentration or < MAL)				Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in μg/ (Actual Concentrat or < MAL) 4			/L ation		
	- 	Date	Date	Date	Date			Date	Date	Date	Date		
Anthracene													
Benzidine													
Benzo(a)Anthracene													
Benzo(a)Pyrene													
3,4-Benzofluoranthene													
Benzo(ghi)Perylene													
Benzo(k)Fluoranthene													
Bis(2-Chloroethoxy)Methane													
Bis(2-Chloroethyl)Ether													
Bis(2-Chloroisopropyl)Ether													
Bis(2-Ethylhexyl)Phthalate													
4-Bromophenyl Phenyl Ether													
Butylbenzyl Phthalate													
2-Chloronaphthalene													
4-Chlorophenyl Phenyl Ether													
Chrysene													
Dibenzo(a,h)Anthracene													
1,2-Dichlorobenzene													
1,3-Dichlorobenzene													
1,4-Dichlorobenzene													
3,3-Dichlorobenzidine													
Diethyl Phthalate													

PRETREATMENT PROGRAM INFLUENT AND EFFLUENT MONITORING RESULTS													
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in μg/L (Actual Concentration or < MAL)				Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in μg (Actual Concentra or < MAL) 4			/L ation		
	-	Date	Date	Date	Date			Date	Date	Date	Date		
Dimethyl Phthalate													
Di-n-Butyl Phthalate													
2,4-Dinitrotoluene													
2,6-Dinitrotoluene													
Di-n-Octyl Phthalate													
1,2-Diphenyl Hydrazine													
Fluoranthene													
Fluorene													
Hexachlorobenzene													
Hexachlorobutadiene													
Hexachloro- cyclopentadiene													
Hexachloroethane													
Indeno(1,2,3-cd)pyrene													
Isophorone													
Naphthalene													
Nitrobenzene													
N-Nitrosodimethylamine													
N-Nitrosodi-n-Propylamine													
N-Nitrosodiphenylamine													
Phenanthrene													
Pyrene													
1,2,4-Trichlorobenzene													
PRETREATMENT PROGRAM INFLUENT AND EFFLUENT MONITORING RESULTS													
---	-------------------------------------	-------------	--------------------------------------	------------------------------------	--------------	--	--	---	------	-------------	------		
POLLUTANT	MAHL, if Applicable in lb/day	Me (Actu	Influ easure ual Con or < 1	uent d in µg ncentra MAL)	g/L ation	Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	DailyEffluentAverageMeasured in µg/LEffluentImitLimit(Actual Concentration(µg/L) 3or < MAL) 4		/L ation			
		Date	Date	Date	Date			Date	Date	Date	Date		
PESTICIDES													
Aldrin													
Alpha-hexachlorocyclohexane (BHC)													
beta-BHC													
gamma-BHC (Lindane)													
delta-BHC													
Chlordane													
4,4-DDT													
4,4-DDE													
4,4-DDD													
Dieldrin													
alpha-Endosulfan													
beta-Endosulfan													
Endosulfan Sulfate													
Endrin													
Endrin Aldehyde													
Heptachlor													
Heptachlor Epoxide													
Polychlorinated biphenols (PCBs) The sum of PCB concentrations not to exceed daily average value.													
PCB-1242							See PCBs						
PCB-1254							See PCBs						
PCB-1221							See PCBs						

PRETREATMENT PROGRAM INFLUENT AND EFFLUENT MONITORING RESULTS											
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in µg/L (Actual Concentration or < MAL)		Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Mo (Actu	Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴		/L ation		
	-	Date	Date	Date	Date			Date	Date	Date	Date
PCB-1232							See PCBs				
PCB-1248							See PCBs				
PCB-1260							See PCBs				
PCB-1016							See PCBs				
Toxaphene											
ADDITIONAL TOXIC POLLUTANTS REGULATED UNDER 30 TAC CHAPTER 307											
Aluminum											
Barium											
Bis(chloromethyl)ether 7											
Carbaryl											
Chloropyrifos											
Cresols											
2,4-D											
Danitol ⁸											
Demeton											
Diazinon											
Dicofol											
Dioxin/Furans 9											
Diuron											
Epichlorohydrin 9											
Ethylene glycol 9											
Fluoride											

PRETREATMENT PROGRAM INFLUENT AND EFFLUENT MONITORING RESULTS											
POLLUTANT	MAHL, if Applicable in lb/day	Me (Actu	Influent Measured in μg/L (Actual Concentration or < MAL)		Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Mo (Act	Effluent Measured in μg/L (Actual Concentration or < MAL) 4		/L ation	
	-	Date	Date	Date	Date			Date	Date	Date	Date
Guthion											
Hexachlorophene											
4,4-Isopropylidenediphenol (bisphenol A) ⁹											
Malathion											
Methoxychlor											
Methyl Ethyl Ketone											
Methyl tert-butyl-ether (MTBE) 9											
Mirex											
Nitrate-Nitrogen											
N-Nitrosodiethylamine											
N-Nitroso-di-n-Butylamine											
Nonylphenol											
Parathion											
Pentachlorobenzene											
Pyridine											
1,2-Dibromoethane											
1,2,4,5-Tetrachlorobenzene											
2,4,5-TP (Silvex)											
Tributyltin 9											
2,4,5-Trichlorophenol											
TTHM (Total Trihalomethanes)											

Endnotes:

- 1. It is advised that the permittee collect the influent and effluent samples considering flow detention time through each wastewater treatment plant (WWTP).
- 2. The MAHL of the approved TBLLs or for each pollutant of concern (POC) for which the permittee has calculated a MAHL. Only complete the column labeled "Average Influent % of the MAHL," as a percentage, for pollutants that have approved TBLLs or for each POC for which the permittee has calculated a MAHL (U.S. Environmental Protection Agency *Local Limits Development Guidance*, July 2004, EPA933-R-04-002A).

The % of the MAHL is to be calculated using the following formulas:

Equation A: $L_{INF} = (C_{POLL} \times Q_{WWTP} \times 8.34) / 1000$

Equation B: $L_{\%}$ = (L_{INF} / MAHL) x 100

Where:	
$L_{INF} =$	Current Average (Avg) influent loading in lb/day
$C_{POLL} =$	Avg concentration in μ g/L of all influent samples collected during the
	pretreatment year.
$Q_{WWTP} =$	Annual average flow of the WWTP in MGD, defined as the arithmetic average of
	all daily flow determinations taken within the preceding 12 consecutive calendar
	months (or during the pretreatment year), and as described in the Definitions
	and Standard Permit Conditions section.
L% =	% of the MAHL
MAHL =	Calculated MAHL in lb/day
8.34 =	Unit conversion factor

- 3. Daily average effluent limit (metal values are for total metals) as derived by the Texas Toxicity Modeling Program (TexTox). Effluent limits as calculated are designed to be protective of the Texas Surface Water Quality Standards. The permittee shall determine and indicate which effluent limit is the most stringent between the 30 TAC Chapter 319, Subchapter B (Hazardous Metals) limit, TexTox values, or any applicable limit in the Effluent Limitations and Monitoring Requirements Section of this TPDES permit. Shaded blocks need not be filled in unless the permittee has received a permit requirement/limit for the particular parameter.
- 4. Minimum analytical levels (MALs) and analytical methods as suggested in Tables E-1 and E-2 of the *Procedures to Implement the Texas Surface Water Quality Standards* (June 2010), as amended and adopted by the TCEQ. Pollutants that are not detectable above the MAL need to be reported as less than (<) the MAL numeric value.
- 5. Report result by subtracting Hexavalent Chromium from Total Chromium.
- 6. Either the method for Amenable to Chlorination or Weak-Acid Dissociable is authorized.
- 7. Hydrolyzes in water. Will not require permittee to analyze at this time.
- 8. EPA procedure not approved. Will not require permittee to analyze at this time.
- 9. Analyses are not required at this time for these pollutants unless there is reason to believe that these pollutants may be present.

TCEQ-20218d TPDES Pretreatment Program Annual Report Form Re

Revised February 2020

Texas Commission on Environmental Quality

INTEROFFICE MEMORANDUM

Date: December 4, 2024

To:	Municipal Team
Thru:	Colleen Cook, Pretreatment Team Leader
From:	Bridget Malone, Pretreatment Coordinator
Subject:	Pretreatment program option for the TPDES Permit No. WQ0010470002, City of Temple – Doshier Farm WWTF summary sheet
I hav	ve reviewed the above referenced permit and have placed the following standard, this memo, and any additional language in <u>Permit</u>

Option 3 - General Pretreatment language for POTWs <u>with</u> *regulated* industrial users on the collection system and with an approved Program.

Within this standard language, the Pretreatment Program has not incorporated additional pretreatment language requirements. Please incorporate the following language for permittee's FACT SHEET, if applicable, under:

1. INDUSTRIAL WASTE CONTRIBUTION

The Doshier Farm WWTF receives significant industrial wastewater contributions.

2. PRETREATMENT REQUIREMENTS

Permit requirements for pretreatment are based on TPDES regulations contained in 30 TAC Chapter 305 which references 40 CFR Part 403, General Pretreatment Regulations for Existing and New Sources of Pollution *[rev. Federal Register/ Vol. 70/ No. 198/Friday, October 14, 2005/ Rules and Regulations, pages 60134-60798].* The permit includes specific requirements that establish responsibilities of local government, industry, and the public to implement the standards to control pollutants which pass through or interfere with treatment processes in publicly owned treatment works or which may contaminate the sewage sludge. This permit has appropriate pretreatment language for a facility of this size and complexity.

The permittee has a pretreatment program which was approved by the U.S. Environmental Protection Agency (EPA) on May 1, 1984, and modified on September 24, 1993, March 24, 2015 (Streamlining Rule and removal of three local limits), and February 23, 2024 (TBLLs). The permittee is required, under the conditions of the approved pretreatment program, to prepare annually a list of industrial users which during the preceding twelve months were in significant noncompliance with applicable pretreatment requirements for those facilities covered under the program. This list is to be published annually during the month of **February** in a newspaper of general circulation that provides meaningful public notice within the jurisdiction(s) served by the POTW. Effective December 21, 2025, the permittee must submit the pretreatment program annual status report electronically using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. [rev. Federal Register/ Vol. 80/ No. 204/ Friday, October 22, 2015/ Rules and Regulations, pages 64064-64158].

The permittee is under a continuing duty to: establish and enforce specific local limits to implement the provisions of 40 CFR §403.5, to develop and enforce local limits as necessary, and to modify the approved POTW pretreatment program as necessary to comply with federal, state, and local law, as amended. The permittee is required to effectively enforce such limits and to modify their pretreatment program, including the Legal Authority, Enforcement Response Plan, and/or Standard Operating Procedures, if required by the Executive Director to reflect changing conditions at the POTW.

3. SUMMARY OF CHANGES FROM EXISTING PERMIT

The pretreatment language has been updated from the current permit. The permittee has requested to revise the pretreatment program year for TPDES Permit No. WQ0010470002 to run January 1 – December 31 (with the report now due in February instead of May 31). The pretreatment requirements will continue until permit expiration. Please see specific details in the Pretreatment Requirements Section of the fact sheet.

The TCEQ is committed to accessibility. To request a more accessible version of this report, please contact the TCEQ Help Desk at (512) 239-4357.

Item 5

Item 6

Item 7

Item 8

Item 9

April 20, 2020

May 20, 2020

June 19, 2020

July 16, 2020

August 20, 2020

(1654088)

(1660660)

(1667180)

(1674132)

(1680905)

Page 1

Compliance History Report

Compliance History Report for CN600245799, RN101608958, Rating Year 2024 which includes Compliance History (CH) components from September 1, 2019, through August 31, 2024.

Cus	stomer, Respo	ondent, (CN600245799,	City of Temple		Classification: SATISFAC	TORY	Rating	0.39
Re	gulated Entity	· ·	RN101608958,	DOSHIER FARMS	5	Classification: SATISFAC	TORY	Rating	0.92
Coi CH	mplexity Point Group:	ts:	7 08 - Sewage Tro	eatment Facilities	5	Repeat Violator: NO			
Loc	ation:	-	2515 E AVENUE	H TEMPLE, TX	76501-842	4, BELL COUNTY			
тс	EO Region:	- F	REGION 09 - W	ACO		·			
ID PR STO WA	Number(s): ETREATMENT EF DRMWATER PER INSTEWATER EPA	- PA ID TX004 MIT TXR05 ID TX0047	47651000 CH11 7651		PRETR WASTI WASTI	EATMENT PERMIT WQ001047 WATER PERMIT WQ0010470 WATER AUTHORIZATION R1	70002 1002 0470002		
Со	mpliance Histo	ory Perio	d: September	01, 2019 to Aug	ust 31, 202	4 Rating Year: 2024	Rating	g Date:	09/01/2024
Dat	te Compliance	History	Report Prep	ared: Decem	ber 10, 202	4			
Ag	ency Decision	Requirin	g Compliand	ce History: P	Permit - Iss suspension,	ance, renewal, amendment, i or revocation of a permit.	modification	, denial,	
Со	mponent Perio	od Select	ed: Novemb	er 05, 2019 to D	ecember 10), 2024			
тс	EQ Staff Memb	ber to Co	ntact for Ad	ditional Infor	mation R	egarding This Compliand	ce History	· .	
	Name: PT					Phone: (512) 239-	-3581		
Sit 1) H 2) H	e and Owne las the site been las there been a	r /Opera i in existenc (known) ch	tor History e and/or operation ange in owners	: tion for the full fi ship/operator of t	ve year cor he site dur	npliance period? ng the compliance period?	YES NO		
<u>Co</u>	mponents (N	<u>lultimec</u>	<u>lia) for the</u>	Site Are Lis	ted in Se	ections A - J			
Α.	Final Orders, N/A	court jud	dgments, an	d consent dec	crees:				
В.	Criminal conv N/A	victions:							
C.	Chronic exces	ssive emi	issions even	ts:					
D.	The approvalItem 1Item 2Item 3Item 4	dates of November 2 December 2 January 20, March 20, 2	investigatio 20, 2019 20, 2019 2020 2020	ons (CCEDS In (1619615) (1626969) (1634609) (1647739)	ıv. Track.	No.):			

Item 10	September 18, 2020	(1687476)
Item 11	December 21, 2020	(1714135)
Item 12	January 21, 2021	(1714136)
Item 13	February 19, 2021	(1727200)
Item 14	March 19, 2021	(1727201)
Item 15	April 20, 2021	(1727202)
Item 16	May 20, 2021	(1740900)
Item 17	July 08, 2021	(1735930)
Item 18	September 20, 2021	(1766897)
Item 19	October 19, 2021	(1777391)
Item 20	November 19, 2021	(1784188)
Item 21	December 17, 2021	(1791217)
Item 22	January 20, 2022	(1799001)
Item 23	February 16, 2022	(1806878)
Item 24	March 18, 2022	(1813943)
Item 25	April 12, 2022	(1809971)
Item 26	April 20, 2022	(1820516)
Item 27	May 17, 2022	(1829352)
Item 28	June 20, 2022	(1835646)
Item 29	July 19, 2022	(1842848)
Item 30	August 19, 2022	(1848976)
Item 31	October 20, 2022	(1863135)
Item 32	November 17, 2022	(1870047)
Item 33	December 19, 2022	(1875896)
Item 34	January 19, 2023	(1882715)
Item 35	February 20, 2023	(1890529)
Item 36	March 17, 2023	(1899095)
Item 37	April 19, 2023	(1905882)
Item 38	May 18, 2023	(1913057)
Item 39	June 19, 2023	(1919666)
Item 40	July 19, 2023	(1926631)
Item 41	August 18, 2023	(1933590)
Item 42	September 19, 2023	(1939731)
Item 43	October 12, 2023	(1932573)
Item 44	October 19, 2023	(1946576)
Item 45	October 31, 2023	(1931498)
Item 46	November 07, 2023	(1938613)
Item 47	November 17, 2023	(1952267)
Item 48	December 19, 2023	(1962039)
Item 49	January 19, 2024	(1968629)
Item 50	March 01, 2024	(1965488)
Item 51	March 20, 2024	(1984265)
Item 52	April 08, 2024	(1980912)
Item 53	April 19, 2024	(1990785)
Item 54	September 20, 2024	(2024376)

E. Written notices of violations (NOV) (CCEDS Inv. Track. No.):

A notice of violation represents a written allegation of a violation of a specific regulatory requirement from the commission to a regulated entity. A notice of violation is not a final enforcement action, nor proof that a violation has actually occurred.

1	Date: 01/31	/2024 (1977688)	Classification	Madarata
	Sell Report? 1	ES	Classification:	Moderate
	Citation:	2D TWC Chapter 26, SubChapter A 26.121	L(a)	
	ь	SU TAC Chapter 505, Subchapter F 505.12	23(1)	
	Description:	Failure to meet the limit for one or more p	ermit parameter	
2	D-t 04/20	(2024 (1007241)		
2	Date: 04/30	/2024 (199/241)		
	Self Report? YI	ES	Classification:	Moderate
	Citation:	2D TWC Chapter 26, SubChapter A 26.121	L(a)	
		30 TAC Chapter 305, SubChapter F 305.12	25(1)	

Compliance History Report for CN600245799, RN101608958, Rating Year 2024 which includes Compliance History (CH) components from November 05, 2019, through December 10, 2024.

Description: Failure to meet the limit for one or more permit parameter

3	Date: 05/31/2024 (2004197) Self Report? YES	Classification:	Moderate
	Citation: 2D TWC Chapter 26, SubChapter A 26. 30 TAC Chapter 305, SubChapter F 305 Failure to meet the limit for one or more	121(a) 5.125(1)	
	Description: Failure to meet the limit for one or mor	e permit parameter	
4	Date: 06/30/2024 (2011753)		
	Self Report? YES	Classification:	Moderate
	Citation: 2D TWC Chapter 26, SubChapter A 26. 30 TAC Chapter 305, SubChapter F 305	121(a) 5.125(1)	
	Description: Failure to meet the limit for one or mor	e permit parameter	
5	Date: 07/31/2024 (2017347)		
	Self Report? YES	Classification:	Moderate
	Citation: 2D TWC Chapter 26, SubChapter A 26. 30 TAC Chapter 305, SubChapter F 305	121(a) 5.125(1)	
	Description: Failure to meet the limit for one or mor	e permit parameter	

F. Environmental audits:

N/A

- G. Type of environmental management systems (EMSs): $_{\mbox{$N/A$}}$
- H. Voluntary on-site compliance assessment dates: $_{\mbox{N/A}}$
- I. Participation in a voluntary pollution reduction program: $N\!/\!A$
- J. Early compliance: N/A
- Sites Outside of Texas:

N/A

Compliance History Report for CN600245799, RN101608958, Rating Year 2024 which includes Compliance History (CH) components from November 05, 2019, through December 10, 2024.

DMR DATA

WQ0010470002 - CITY OF TEMPLE

EPA ID				Reported Measure	Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	DAILY AV (mg/L)	DAILY MX (mg/L)	DAILY AV (lb/d)
TX0047651	10/31/2019	001A	BOD, carbonaceous [5 day, 20 C]	1.96	2	14.72
TX0047651	11/30/2019	001A	BOD, carbonaceous [5 day, 20 C]	1.81	3	13.17
TX0047651	12/31/2019	001A	BOD, carbonaceous [5 day, 20 C]	1.77	3	11.34
TX0047651	1/31/2020	001A	BOD, carbonaceous [5 day, 20 C]	2	3	19.25
TX0047651	2/29/2020	001A	BOD, carbonaceous [5 day, 20 C]	2.05	5	22.22
TX0047651	3/31/2020	001A	BOD, carbonaceous [5 day, 20 C]	1.86	4	31.19
TX0047651	4/30/2020	001A	BOD, carbonaceous [5 day, 20 C]	2.18	5	17.31
TX0047651	5/31/2020	001A	BOD, carbonaceous [5 day, 20 C]	2.1	4	9.7
TX0047651	6/30/2020	001A	BOD, carbonaceous [5 day, 20 C]	2.05	4	6.28
TX0047651	7/31/2020	001A	BOD, carbonaceous [5 day, 20 C]	2.09	4	8.55
TX0047651	8/31/2020	001A	BOD, carbonaceous [5 day, 20 C]	2.05	4	7.91
TX0047651	9/30/2020	001A	BOD, carbonaceous [5 day, 20 C]	2.32	13	38.55
TX0047651	10/31/2020	001A	BOD, carbonaceous [5 day, 20 C]	3.05	5	15.52
TX0047651	11/30/2020	001A	BOD, carbonaceous [5 day, 20 C]	3	4	19.55
TX0047651	12/31/2020	001A	BOD, carbonaceous [5 day, 20 C]	2.59	4	24.39
TX0047651	1/31/2021	001A	BOD, carbonaceous [5 day, 20 C]	2.9	7	27.28
TX0047651	2/28/2021	001A	BOD, carbonaceous [5 day, 20 C]	2.89	6	41.41
TX0047651	3/31/2021	001A	BOD, carbonaceous [5 day, 20 C]	3.48	6	44.19
TX0047651	4/30/2021	001A	BOD, carbonaceous [5 day, 20 C]	3.55	5	16.95
TX0047651	5/31/2021	001A	BOD, carbonaceous [5 day, 20 C]	2.43	7	13.12
TX0047651	6/30/2021	001A	BOD, carbonaceous [5 day, 20 C]	1.5	3	25.07
TX0047651	7/31/2021	001A	BOD, carbonaceous [5 day, 20 C]	2.91	6	36.86
TX0047651	8/31/2021	001A	BOD, carbonaceous [5 day, 20 C]	2	3	9.19
TX0047651	9/30/2021	001A	BOD, carbonaceous [5 day, 20 C]	2.23	3	8.43
TX0047651	10/31/2021	001A	BOD, carbonaceous [5 day, 20 C]	2.62	5	27.79
TX0047651	11/30/2021	001A	BOD, carbonaceous [5 day, 20 C]	2.41	4	19.35
TX0047651	12/31/2021	001A	BOD, carbonaceous [5 day, 20 C]	2.35	4	16.2
TX0047651	1/31/2022	001A	BOD, carbonaceous [5 day, 20 C]	3.29	6	18.34
TX0047651	2/28/2022	001A	BOD, carbonaceous [5 day, 20 C]	3.05	5	16.72

TX0047651	3/31/2022	001A	BOD, carbonaceous [5 day, 20 C]	3.09	6	28.6
TX0047651	4/30/2022	001A	BOD, carbonaceous [5 day, 20 C]	3.14	5	12.68
TX0047651	5/31/2022	001A	BOD, carbonaceous [5 day, 20 C]	2.23	4	12.34
TX0047651	6/30/2022	001A	BOD, carbonaceous [5 day, 20 C]	1.95	3	6.87
TX0047651	7/31/2022	001A	BOD, carbonaceous [5 day, 20 C]	2.33	5	10.02
TX0047651	8/31/2022	001A	BOD, carbonaceous [5 day, 20 C]	3.96	39	11.69
TX0047651	9/30/2022	001A	BOD, carbonaceous [5 day, 20 C]	2.18	3	5.82
TX0047651	10/31/2022	001A	BOD, carbonaceous [5 day, 20 C]	2.71	5	12.38
TX0047651	11/30/2022	001A	BOD, carbonaceous [5 day, 20 C]	3.36	6	64.62
TX0047651	12/31/2022	001A	BOD, carbonaceous [5 day, 20 C]	3.36	11	38.56
TX0047651	1/31/2023	001A	BOD, carbonaceous [5 day, 20 C]	2.7	4	19.28
TX0047651	2/28/2023	001A	BOD, carbonaceous [5 day, 20 C]	3.19	5	22.15
TX0047651	3/31/2023	001A	BOD, carbonaceous [5 day, 20 C]	2.65	14	26.22
TX0047651	4/30/2023	001A	BOD, carbonaceous [5 day, 20 C]	2.5	4	20.65
TX0047651	5/31/2023	001A	BOD, carbonaceous [5 day, 20 C]	2.3	3	32.81
TX0047651	6/30/2023	001A	BOD, carbonaceous [5 day, 20 C]	3.55	6	10.6
TX0047651	7/31/2023	001A	BOD, carbonaceous [5 day, 20 C]	1.95	3	4.22
TX0047651	8/31/2023	001A	BOD, carbonaceous [5 day, 20 C]	2.04	4	4.77
TX0047651	9/30/2023	001A	BOD, carbonaceous [5 day, 20 C]	2.05	4	3.47
TX0047651	10/31/2023	001A	BOD, carbonaceous [5 day, 20 C]	3.18	15	9.5
TX0047651	11/30/2023	001A	BOD, carbonaceous [5 day, 20 C]	2.32	4	31.51
TX0047651	12/31/2023	001A	BOD, carbonaceous [5 day, 20 C]	3.9	13	46.6
TX0047651	1/31/2024	001A	BOD, carbonaceous [5 day, 20 C]	3.35	5	36.21
TX0047651	2/29/2024	001A	BOD, carbonaceous [5 day, 20 C]	3.48	7	36.28
TX0047651	3/31/2024	001A	BOD, carbonaceous [5 day, 20 C]	3.24	6	13.36
TX0047651	4/30/2024	001A	BOD, carbonaceous [5 day, 20 C]	3.18	14	72.47
TX0047651	5/31/2024	001A	BOD, carbonaceous [5 day, 20 C]	2.17	5	120.7
TX0047651	6/30/2024	001A	BOD, carbonaceous [5 day, 20 C]	3.65	10	100.04
TX0047651	7/31/2024	001A	BOD, carbonaceous [5 day, 20 C]	3.57	8	65.85
TX0047651	8/31/2024	001A	BOD, carbonaceous [5 day, 20 C]	2.09	4	9.74
TX0047651	9/30/2024	001A	BOD, carbonaceous [5 day, 20 C]	2.95	5	8.46
TX0047651	10/31/2024	001A	BOD, carbonaceous [5 day, 20 C]	3.3	5	8.09
			2 YEAR AVERAGE	2.91	6.80	32.74
			5 YEAR AVERAGE	2.66	6.10	24.38

EPA ID				Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	DAILY AV (CFU/100m	DAILY MX (CFU/100mL)
TX0047651	10/31/2019	001A	E. coli	4	45
TX0047651	11/30/2019	001A	E. coli	2	10
TX0047651	12/31/2019	001A	E. coli	8	53

TX0047651	1/31/2020	001A	E. coli	14	2420
TX0047651	2/29/2020	001A	E. coli	10	58
TX0047651	3/31/2020	001A	E. coli	10	63
TX0047651	4/30/2020	001A	E. coli	2	52
TX0047651	5/31/2020	001A	E. coli	8	108
TX0047651	6/30/2020	001A	E. coli	2	28
TX0047651	7/31/2020	001A	E. coli	2	18
TX0047651	8/31/2020	001A	E. coli	2	7
TX0047651	9/30/2020	001A	E. coli	7	1550
TX0047651	10/31/2020	001A	E. coli	7	770
TX0047651	11/30/2020	001A	E. coli	3	64
TX0047651	12/31/2020	001A	E. coli	1	2
TX0047651	1/31/2021	001A	E. coli	3	20
TX0047651	2/28/2021	001A	E. coli	2	4
TX0047651	3/31/2021	001A	E. coli	1	4
TX0047651	4/30/2021	001A	E. coli	1	2
TX0047651	5/31/2021	001A	E. coli	1	2
TX0047651	6/30/2021	001A	E. coli	1	3
TX0047651	7/31/2021	001A	E. coli	1	1
TX0047651	8/31/2021	001A	E. coli	1	1
TX0047651	9/30/2021	001A	E. coli	1	1
TX0047651	10/31/2021	001A	E. coli	1	2
TX0047651	11/30/2021	001A	E. coli	1	32
TX0047651	12/31/2021	001A	E. coli	1	3
TX0047651	1/31/2022	001A	E. coli	2	12
TX0047651	2/28/2022	001A	E. coli	3	8
TX0047651	3/31/2022	001A	E. coli	1	4
TX0047651	4/30/2022	001A	E. coli	1	2
TX0047651	5/31/2022	001A	E. coli	1	6
TX0047651	6/30/2022	001A	E. coli	1	1
TX0047651	7/31/2022	001A	E. coli	1	1
TX0047651	8/31/2022	001A	E. coli	2	20
TX0047651	9/30/2022	001A	E. coli	1	1
TX0047651	10/31/2022	001A	E. coli	1	1
TX0047651	11/30/2022	001A	E. coli	1	3
TX0047651	12/31/2022	001A	E. coli	1	3
TX0047651	1/31/2023	001A	E. coli	1	3
TX0047651	2/28/2023	001A	E. coli	1	4
TX0047651	3/31/2023	001A	E. coli	1	6
TX0047651	4/30/2023	001A	E. coli	1	4
TX0047651	5/31/2023	001A	E. coli	2	4

TX0047651	6/30/2023	001A	E. coli	1	1
TX0047651	7/31/2023	001A	E. coli	1	3
TX0047651	8/31/2023	001A	E. coli	1	3
TX0047651	9/30/2023	001A	E. coli	1	3
TX0047651	10/31/2023	001A	E. coli	2	10
TX0047651	11/30/2023	001A	E. coli	1	3
TX0047651	12/31/2023	001A	E. coli	1	3
TX0047651	1/31/2024	001A	E. coli	3	45
TX0047651	2/29/2024	001A	E. coli	3	13
TX0047651	3/31/2024	001A	E. coli	2	11
TX0047651	4/30/2024	001A	E. coli	1	10
TX0047651	5/31/2024	001A	E. coli	1	16
TX0047651	6/30/2024	001A	E. coli	1	5
TX0047651	7/31/2024	001A	E. coli	1	3
TX0047651	8/31/2024	001A	E. coli	1	1
TX0047651	9/30/2024	001A	E. coli	1	1
TX0047651	10/31/2024	001A	E. coli	1	2
			2 YEAR GEOMEAN	1.19	3.94
			5 YEAR GEOMEAN	1.63	7.26

EPA ID				Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	DAILY AV (MGD)	DAILY MX (MGD)
TX0047651	10/31/2019	001A	Flow, in conduit or thru treatment plant	1.74	2.64
TX0047651	11/30/2019	001A	Flow, in conduit or thru treatment plant	1.74	2.25
TX0047651	12/31/2019	001A	Flow, in conduit or thru treatment plant	1.81	2.22
TX0047651	1/31/2020	001A	Flow, in conduit or thru treatment plant	1.88	2.72
TX0047651	2/29/2020	001A	Flow, in conduit or thru treatment plant	2.14	4.66
TX0047651	3/31/2020	001A	Flow, in conduit or thru treatment plant	2.68	5.01
TX0047651	4/30/2020	001A	Flow, in conduit or thru treatment plant	2.95	4.92
TX0047651	5/31/2020	001A	Flow, in conduit or thru treatment plant	2.14	3.43
TX0047651	6/30/2020	001A	Flow, in conduit or thru treatment plant	1.78	2.08
TX0047651	7/31/2020	001A	Flow, in conduit or thru treatment plant	1.70	2.26
TX0047651	8/31/2020	001A	Flow, in conduit or thru treatment plant	1.57	1.96
TX0047651	9/30/2020	001A	Flow, in conduit or thru treatment plant	3.08	6.46
TX0047651	10/31/2020	001A	Flow, in conduit or thru treatment plant	1.73	1.97
TX0047651	11/30/2020	001A	Flow, in conduit or thru treatment plant	1.71	1.97
TX0047651	12/31/2020	001A	Flow, in conduit or thru treatment plant	1.96	6.52
TX0047651	1/31/2021	001A	Flow, in conduit or thru treatment plant	2.73	3.98
TX0047651	2/28/2021	001A	Flow, in conduit or thru treatment plant	3.16	5.53
TX0047651	3/31/2021	001A	Flow, in conduit or thru treatment plant	2.50	3.46

TX0047651	4/30/2021	001A	Flow, in conduit or thru treatment plant	2.17	2.95
TX0047651	5/31/2021	001A	Flow, in conduit or thru treatment plant	3.54	11.32
TX0047651	6/30/2021	001A	Flow, in conduit or thru treatment plant	4.10	11.90
TX0047651	7/31/2021	001A	Flow, in conduit or thru treatment plant	4.07	10.81
TX0047651	8/31/2021	001A	Flow, in conduit or thru treatment plant	2.29	3.34
TX0047651	9/30/2021	001A	Flow, in conduit or thru treatment plant	1.88	2.95
TX0047651	10/31/2021	001A	Flow, in conduit or thru treatment plant	2.32	5.69
TX0047651	11/30/2021	001A	Flow, in conduit or thru treatment plant	2.09	4.20
TX0047651	12/31/2021	001A	Flow, in conduit or thru treatment plant	2.13	2.91
TX0047651	1/31/2022	001A	Flow, in conduit or thru treatment plant	2.16	4.14
TX0047651	2/28/2022	001A	Flow, in conduit or thru treatment plant	2.79	8.51
TX0047651	3/31/2022	001A	Flow, in conduit or thru treatment plant	2.26	3.36
TX0047651	4/30/2022	001A	Flow, in conduit or thru treatment plant	2.35	3.95
TX0047651	5/31/2022	001A	Flow, in conduit or thru treatment plant	2.41	3.88
TX0047651	6/30/2022	001A	Flow, in conduit or thru treatment plant	1.98	2.60
TX0047651	7/31/2022	001A	Flow, in conduit or thru treatment plant	1.95	2.20
TX0047651	8/31/2022	001A	Flow, in conduit or thru treatment plant	2.00	3.50
TX0047651	9/30/2022	001A	Flow, in conduit or thru treatment plant	1.87	2.10
TX0047651	10/31/2022	001A	Flow, in conduit or thru treatment plant	1.87	2.87
TX0047651	11/30/2022	001A	Flow, in conduit or thru treatment plant	2.37	3.38
TX0047651	12/31/2022	001A	Flow, in conduit or thru treatment plant	2.19	3.00
TX0047651	1/31/2023	001A	Flow, in conduit or thru treatment plant	2.12	4.19
TX0047651	2/28/2023	001A	Flow, in conduit or thru treatment plant	2.80	8.37
TX0047651	3/31/2023	001A	Flow, in conduit or thru treatment plant	2.40	3.26
TX0047651	4/30/2023	001A	Flow, in conduit or thru treatment plant	3.34	7.76
TX0047651	5/31/2023	001A	Flow, in conduit or thru treatment plant	3.94	7.86
TX0047651	6/30/2023	001A	Flow, in conduit or thru treatment plant	2.59	3.40
TX0047651	7/31/2023	001A	Flow, in conduit or thru treatment plant	2.16	2.70
TX0047651	8/31/2023	001A	Flow, in conduit or thru treatment plant	2.08	2.60
TX0047651	9/30/2023	001A	Flow, in conduit or thru treatment plant	1.95	2.48
TX0047651	10/31/2023	001A	Flow, in conduit or thru treatment plant	2.30	4.07
TX0047651	11/30/2023	001A	Flow, in conduit or thru treatment plant	2.44	3.48
TX0047651	12/31/2023	001A	Flow, in conduit or thru treatment plant	3.01	6.64
TX0047651	1/31/2024	001A	Flow, in conduit or thru treatment plant	3.85	11.89
TX0047651	2/29/2024	001A	Flow, in conduit or thru treatment plant	3.34	4.52
TX0047651	3/31/2024	001A	Flow, in conduit or thru treatment plant	2.96	3.93
TX0047651	4/30/2024	001A	Flow, in conduit or thru treatment plant	5.37	18.20
TX0047651	5/31/2024	001A	Flow, in conduit or thru treatment plant	8.87	15.70
TX0047651	6/30/2024	001A	Flow, in conduit or thru treatment plant	4.18	5.87
TX0047651	7/31/2024	001A	Flow, in conduit or thru treatment plant	3.07	3.54
TX0047651	8/31/2024	001A	Flow, in conduit or thru treatment plant	2.52	2.99

TX0047651	9/30/2024	001A	Flow, in conduit or thru treatment plant	2.37	2.98	
TX0047651 10/31/2024 001A Flow, in conduit or thru treatment plant		2.23	2.56			
			2 YEAR AVERAGE	3.05	5.53	
			5 YEAR AVERAGE	2.62	4.80	

EPA ID				Reported Measure	Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	DAILY AV (mg/L)	DAILY MX (mg/L)	DAILY AV (lb/d)
TX0047651	10/31/2019	001A	Nitrogen, ammonia total [as N]	<.05	0.06	0.38
TX0047651	11/30/2019	001A	Nitrogen, ammonia total [as N]	<.05	<.05	0.38
TX0047651	12/31/2019	001A	Nitrogen, ammonia total [as N]	0.09	0.22	0.5
TX0047651	1/31/2020	001A	Nitrogen, ammonia total [as N]	0.05	0.08	0.52
TX0047651	2/29/2020	001A	Nitrogen, ammonia total [as N]	0.05	0.07	0.59
TX0047651	3/31/2020	001A	Nitrogen, ammonia total [as N]	0.05	0.09	0.83
TX0047651	4/30/2020	001A	Nitrogen, ammonia total [as N]	0.09	0.13	0.76
TX0047651	5/31/2020	001A	Nitrogen, ammonia total [as N]	0.06	0.12	0.28
TX0047651	6/30/2020	001A	Nitrogen, ammonia total [as N]	<.05	0.05	0.15
TX0047651	7/31/2020	001A	Nitrogen, ammonia total [as N]	0.05	0.1	0.23
TX0047651	8/31/2020	001A	Nitrogen, ammonia total [as N]	0.07	0.13	0.26
TX0047651	9/30/2020	001A	Nitrogen, ammonia total [as N]	0.1	0.94	1.94
TX0047651	10/31/2020	001A	Nitrogen, ammonia total [as N]	0.09	0.89	0.51
TX0047651	11/30/2020	001A	Nitrogen, ammonia total [as N]	0.06	0.08	0.37
TX0047651	12/31/2020	001A	Nitrogen, ammonia total [as N]	0.06	0.13	0.67
TX0047651	1/31/2021	001A	Nitrogen, ammonia total [as N]	0.08	0.53	0.66
TX0047651	2/28/2021	001A	Nitrogen, ammonia total [as N]	0.06	0.13	0.73
TX0047651	3/31/2021	001A	Nitrogen, ammonia total [as N]	0.06	0.09	0.73
TX0047651	4/30/2021	001A	Nitrogen, ammonia total [as N]	0.05	0.06	0.25
TX0047651	5/31/2021	001A	Nitrogen, ammonia total [as N]	0.14	1.87	0.67
TX0047651	6/30/2021	001A	Nitrogen, ammonia total [as N]	0.08	0.33	2.02
TX0047651	7/31/2021	001A	Nitrogen, ammonia total [as N]	0.1	0.85	1.25
TX0047651	8/31/2021	001A	Nitrogen, ammonia total [as N]	0.05	0.05	0.24
TX0047651	9/30/2021	001A	Nitrogen, ammonia total [as N]	0.05	0.08	0.2
TX0047651	10/31/2021	001A	Nitrogen, ammonia total [as N]	0.12	0.74	1.68
TX0047651	11/30/2021	001A	Nitrogen, ammonia total [as N]	0.05	0.06	0.45
TX0047651	12/31/2021	001A	Nitrogen, ammonia total [as N]	0.05	0.06	0.39
TX0047651	1/31/2022	001A	Nitrogen, ammonia total [as N]	0.83	6.15	2.56
TX0047651	2/28/2022	001A	Nitrogen, ammonia total [as N]	0.21	1.89	1.83
TX0047651	3/31/2022	001A	Nitrogen, ammonia total [as N]	0.05	0.07	0.47
TX0047651	4/30/2022	001A	Nitrogen, ammonia total [as N]	0.05	0.08	0.2
TX0047651	5/31/2022	001A	Nitrogen, ammonia total [as N]	0.09	0.62	0.43
TX0047651	6/30/2022	001A	Nitrogen, ammonia total [as N]	0.05	0.08	0.21

TX0047651	7/31/2022	001A	Nitrogen, ammonia total [as N]	0.05	0.06	0.21
TX0047651	8/31/2022	001A	Nitrogen, ammonia total [as N]	0.06	0.11	0.19
TX0047651	9/30/2022	001A	Nitrogen, ammonia total [as N]	0.05	0.07	0.14
TX0047651	10/31/2022	001A	Nitrogen, ammonia total [as N]	0.05	0.06	0.26
TX0047651	11/30/2022	001A	Nitrogen, ammonia total [as N]	0.06	0.13	1.14
TX0047651	12/31/2022	001A	Nitrogen, ammonia total [as N]	0.09	0.39	0.88
TX0047651	1/31/2023	001A	Nitrogen, ammonia total [as N]	0.09	0.7	0.65
TX0047651	2/28/2023	001A	Nitrogen, ammonia total [as N]	0.25	0.9	1.44
TX0047651	3/31/2023	001A	Nitrogen, ammonia total [as N]	0.09	0.28	0.71
TX0047651	4/30/2023	001A	Nitrogen, ammonia total [as N]	0.11	0.53	0.99
TX0047651	5/31/2023	001A	Nitrogen, ammonia total [as N]	0.05	0.07	0.75
TX0047651	6/30/2023	001A	Nitrogen, ammonia total [as N]	0.06	0.2	0.18
TX0047651	7/31/2023	001A	Nitrogen, ammonia total [as N]	0.22	1.47	0.5
TX0047651	8/31/2023	001A	Nitrogen, ammonia total [as N]	0.76	6.03	1.44
TX0047651	9/30/2023	001A	Nitrogen, ammonia total [as N]	0.07	0.43	0.12
TX0047651	10/31/2023	001A	Nitrogen, ammonia total [as N]	0.35	2.2	1.46
TX0047651	11/30/2023	001A	Nitrogen, ammonia total [as N]	0.05	0.06	0.7
TX0047651	12/31/2023	001A	Nitrogen, ammonia total [as N]	0.36	2.72	6.61
TX0047651	1/31/2024	001A	Nitrogen, ammonia total [as N]	0.11	0.8	2.2
TX0047651	2/29/2024	001A	Nitrogen, ammonia total [as N]	0.06	0.14	0.62
TX0047651	3/31/2024	001A	Nitrogen, ammonia total [as N]	0.49	4.34	2.64
TX0047651	4/30/2024	001A	Nitrogen, ammonia total [as N]	0.94	4.79	14.41
TX0047651	5/31/2024	001A	Nitrogen, ammonia total [as N]	0.37	2.7	17.98
TX0047651	6/30/2024	001A	Nitrogen, ammonia total [as N]	3.49	16.2	90.62
TX0047651	7/31/2024	001A	Nitrogen, ammonia total [as N]	6.69	26.1	125.04
TX0047651	8/31/2024	001A	Nitrogen, ammonia total [as N]	0.74	7.04	2.54
TX0047651	9/30/2024	001A	Nitrogen, ammonia total [as N]	1.75	5.89	5.76
TX0047651	10/31/2024	001A	Nitrogen, ammonia total [as N]	0.43	5.52	1.25
			2 YEAR AVERAGE	0.71	3.59	11.24
			5 YEAR AVERAGE	0.34	1.75	5.00

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	MO MIN (mg/L)
TX0047651	10/31/2019	001A	Oxygen, dissolved [DO]	5.88
TX0047651	11/30/2019	001A	Oxygen, dissolved [DO]	7.03
TX0047651	12/31/2019	001A	Oxygen, dissolved [DO]	7.21
TX0047651	1/31/2020	001A	Oxygen, dissolved [DO]	7.11
TX0047651	2/29/2020	001A	Oxygen, dissolved [DO]	6.97
TX0047651	3/31/2020	001A	Oxygen, dissolved [DO]	6.88
TX0047651	4/30/2020	001A	Oxygen, dissolved [DO]	5.86

TX0047651	5/31/2020	001A	Oxygen, dissolved [DO]	5.73
TX0047651	6/30/2020	001A	Oxygen, dissolved [DO]	5.45
TX0047651	7/31/2020	001A	Oxygen, dissolved [DO]	5.52
TX0047651	8/31/2020	001A	Oxygen, dissolved [DO]	5.39
TX0047651	9/30/2020	001A	Oxygen, dissolved [DO]	5.76
TX0047651	10/31/2020	001A	Oxygen, dissolved [DO]	6.2
TX0047651	11/30/2020	001A	Oxygen, dissolved [DO]	5.92
TX0047651	12/31/2020	001A	Oxygen, dissolved [DO]	7.75
TX0047651	1/31/2021	001A	Oxygen, dissolved [DO]	8.12
TX0047651	2/28/2021	001A	Oxygen, dissolved [DO]	8.15
TX0047651	3/31/2021	001A	Oxygen, dissolved [DO]	7.75
TX0047651	4/30/2021	001A	Oxygen, dissolved [DO]	7.05
TX0047651	5/31/2021	001A	Oxygen, dissolved [DO]	5.9
TX0047651	6/30/2021	001A	Oxygen, dissolved [DO]	6.09
TX0047651	7/31/2021	001A	Oxygen, dissolved [DO]	5.09
TX0047651	8/31/2021	001A	Oxygen, dissolved [DO]	5.42
TX0047651	9/30/2021	001A	Oxygen, dissolved [DO]	5.41
TX0047651	10/31/2021	001A	Oxygen, dissolved [DO]	6.53
TX0047651	11/30/2021	001A	Oxygen, dissolved [DO]	6.72
TX0047651	12/31/2021	001A	Oxygen, dissolved [DO]	7.14
TX0047651	1/31/2022	001A	Oxygen, dissolved [DO]	6.79
TX0047651	2/28/2022	001A	Oxygen, dissolved [DO]	8.07
TX0047651	3/31/2022	001A	Oxygen, dissolved [DO]	6.42
TX0047651	4/30/2022	001A	Oxygen, dissolved [DO]	6.31
TX0047651	5/31/2022	001A	Oxygen, dissolved [DO]	6.08
TX0047651	6/30/2022	001A	Oxygen, dissolved [DO]	5.82
TX0047651	7/31/2022	001A	Oxygen, dissolved [DO]	5.44
TX0047651	8/31/2022	001A	Oxygen, dissolved [DO]	4.11
TX0047651	9/30/2022	001A	Oxygen, dissolved [DO]	4.48
TX0047651	10/31/2022	001A	Oxygen, dissolved [DO]	5.93
TX0047651	11/30/2022	001A	Oxygen, dissolved [DO]	6.49
TX0047651	12/31/2022	001A	Oxygen, dissolved [DO]	7
TX0047651	1/31/2023	001A	Oxygen, dissolved [DO]	7.19
TX0047651	2/28/2023	001A	Oxygen, dissolved [DO]	7.08
TX0047651	3/31/2023	001A	Oxygen, dissolved [DO]	7.05
TX0047651	4/30/2023	001A	Oxygen, dissolved [DO]	6.24
TX0047651	5/31/2023	001A	Oxygen, dissolved [DO]	6.6
TX0047651	6/30/2023	001A	Oxygen, dissolved [DO]	5.2
TX0047651	7/31/2023	001A	Oxygen, dissolved [DO]	5.21
TX0047651	8/31/2023	001A	Oxygen, dissolved [DO]	5.05
TX0047651	9/30/2023	001A	Oxygen, dissolved [DO]	4.99

TX0047651	10/31/2023	001A	Oxygen, dissolved [DO]	5.2
TX0047651	11/30/2023	001A	Oxygen, dissolved [DO]	6.64
TX0047651	12/31/2023	001A	Oxygen, dissolved [DO]	6.19
TX0047651	1/31/2024	001A	Oxygen, dissolved [DO]	7.75
TX0047651	2/29/2024	001A	Oxygen, dissolved [DO]	7.82
TX0047651	3/31/2024	001A	Oxygen, dissolved [DO]	7.03
TX0047651	4/30/2024	001A	Oxygen, dissolved [DO]	6.62
TX0047651	5/31/2024	001A	Oxygen, dissolved [DO]	6.68
TX0047651	6/30/2024	001A	Oxygen, dissolved [DO]	6.15
TX0047651	7/31/2024	001A	Oxygen, dissolved [DO]	6.07
TX0047651	8/31/2024	001A	Oxygen, dissolved [DO]	4.67
TX0047651	9/30/2024	001A	Oxygen, dissolved [DO]	4.1
TX0047651	10/31/2024	001A	Oxygen, dissolved [DO]	5.33
			2 YEAR AVERAGE	6.17
			5 YEAR AVERAGE	6.26

EPA ID				Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	MINIMUM (SU)	MAXIMUM (SU)
TX0047651	10/31/2019	001A	рН	6.84	7.53
TX0047651	11/30/2019	001A	рН	6.94	7.43
TX0047651	12/31/2019	001A	рН	6.89	7.44
TX0047651	1/31/2020	001A	рН	6.91	7.54
TX0047651	2/29/2020	001A	рН	7.16	7.49
TX0047651	3/31/2020	001A	рН	7.03	7.53
TX0047651	4/30/2020	001A	рН	6.69	7.46
TX0047651	5/31/2020	001A	рН	6.47	7.39
TX0047651	6/30/2020	001A	рН	6.76	7.67
TX0047651	7/31/2020	001A	рН	7.02	7.62
TX0047651	8/31/2020	001A	рН	6.86	7.56
TX0047651	9/30/2020	001A	рН	7.07	7.75
TX0047651	10/31/2020	001A	рН	7.03	7.51
TX0047651	11/30/2020	001A	рН	6.95	7.45
TX0047651	12/31/2020	001A	рН	6.97	7.71
TX0047651	1/31/2021	001A	рН	6.16	7.83
TX0047651	2/28/2021	001A	рН	6.83	8.3
TX0047651	3/31/2021	001A	рН	7.33	7.76
TX0047651	4/30/2021	001A	рН	7.18	7.54
TX0047651	5/31/2021	001A	pH	7.34	7.79
TX0047651	6/30/2021	001A	pH	7	7.96
TX0047651	7/31/2021	001A	pН	7.22	7.84

TX0047651	8/31/2021	001A	рН	7.22	7.71
TX0047651	9/30/2021	001A	рН	7.2	7.63
TX0047651	10/31/2021	001A	рН	7.35	7.81
TX0047651	11/30/2021	001A	рН	7.14	7.79
TX0047651	12/31/2021	001A	рН	7.04	7.65
TX0047651	1/31/2022	001A	pH	7.07	7.65
TX0047651	2/28/2022	001A	рН	7.21	7.59
TX0047651	3/31/2022	001A	pH	7.14	7.72
TX0047651	4/30/2022	001A	рН	7.03	7.62
TX0047651	5/31/2022	001A	рН	7.28	7.71
TX0047651	6/30/2022	001A	pH	7.39	7.73
TX0047651	7/31/2022	001A	рН	7.29	7.64
TX0047651	8/31/2022	001A	рН	6.77	7.75
TX0047651	9/30/2022	001A	рН	7.16	7.43
TX0047651	10/31/2022	001A	рН	7.11	7.54
TX0047651	11/30/2022	001A	рН	7.39	7.77
TX0047651	12/31/2022	001A	рН	7.02	7.78
TX0047651	1/31/2023	001A	рН	7.28	7.67
TX0047651	2/28/2023	001A	рН	7.03	7.82
TX0047651	3/31/2023	001A	рН	7.31	7.84
TX0047651	4/30/2023	001A	рН	7.4	7.71
TX0047651	5/31/2023	001A	рН	7.03	7.82
TX0047651	6/30/2023	001A	pH	7.03	7.79
TX0047651	7/31/2023	001A	рН	7.21	7.58
TX0047651	8/31/2023	001A	рН	7.16	7.67
TX0047651	9/30/2023	001A	рН	7.21	7.77
TX0047651	10/31/2023	001A	рН	7.21	7.65
TX0047651	11/30/2023	001A	рН	7.38	7.82
TX0047651	12/31/2023	001A	рН	7.33	7.81
TX0047651	1/31/2024	001A	рН	7.01	7.85
TX0047651	2/29/2024	001A	рН	7.44	7.91
TX0047651	3/31/2024	001A	рН	7.35	7.89
TX0047651	4/30/2024	001A	pH	7.11	7.88
TX0047651	5/31/2024	001A	рН	7.48	7.87
TX0047651	6/30/2024	001A	pH	7.53	7.84
TX0047651	7/31/2024	001A	рН	6.61	7.87
TX0047651	8/31/2024	001A	pH	7.35	7.72
TX0047651	9/30/2024	001A	рН	7.27	7.84
TX0047651	10/31/2024	001A	pH	7.37	7.79
			2 YEAR AVERAGE	7.22	7.78
			5 YEAR AVERAGE	7.11	7.71

EPA ID				Reported Measure	Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	DAILY AV (mg/L)	DAILY MX (mg/L)	DAILY AV (lb/d)
TX0047651	10/31/2019	001A	Solids, total suspended	2.96	6	22.66
TX0047651	11/30/2019	001A	Solids, total suspended	2.71	5	21.88
TX0047651	12/31/2019	001A	Solids, total suspended	2.68	4	18.84
TX0047651	1/31/2020	001A	Solids, total suspended	3.43	5	34.06
TX0047651	2/29/2020	001A	Solids, total suspended	4.15	6	49.18
TX0047651	3/31/2020	001A	Solids, total suspended	3.67	6	58.47
TX0047651	4/30/2020	001A	Solids, total suspended	2.73	11	23.03
TX0047651	5/31/2020	001A	Solids, total suspended	1.67	3	8.48
TX0047651	6/30/2020	001A	Solids, total suspended	1.91	6	5.59
TX0047651	7/31/2020	001A	Solids, total suspended	1.65	3	6.86
TX0047651	8/31/2020	001A	Solids, total suspended	2	4	7.97
TX0047651	9/30/2020	001A	Solids, total suspended	3.86	10	67.52
TX0047651	10/31/2020	001A	Solids, total suspended	3.41	6	18.29
TX0047651	11/30/2020	001A	Solids, total suspended	3.95	9	28.17
TX0047651	12/31/2020	001A	Solids, total suspended	3.96	6	42.49
TX0047651	1/31/2021	001A	Solids, total suspended	4.81	11	45.4
TX0047651	2/28/2021	001A	Solids, total suspended	3.85	6	52.42
TX0047651	3/31/2021	001A	Solids, total suspended	3.61	6	47.06
TX0047651	4/30/2021	001A	Solids, total suspended	2.77	6	13.61
TX0047651	5/31/2021	001A	Solids, total suspended	2.71	10	16.12
TX0047651	6/30/2021	001A	Solids, total suspended	2.91	10	70.44
TX0047651	7/31/2021	001A	Solids, total suspended	2.32	7	31.88
TX0047651	8/31/2021	001A	Solids, total suspended	1.82	3	8.68
TX0047651	9/30/2021	001A	Solids, total suspended	1.64	3	6.46
TX0047651	10/31/2021	001A	Solids, total suspended	2.71	6	29.16
TX0047651	11/30/2021	001A	Solids, total suspended	2.86	5	23.85
TX0047651	12/31/2021	001A	Solids, total suspended	2.48	4	17.73
TX0047651	1/31/2022	001A	Solids, total suspended	3.33	8	18.76
TX0047651	2/28/2022	001A	Solids, total suspended	3.75	7	22.06
TX0047651	3/31/2022	001A	Solids, total suspended	2.87	4	26.93
TX0047651	4/30/2022	001A	Solids, total suspended	2.67	4	10.26
TX0047651	5/31/2022	001A	Solids, total suspended	2.45	4	14.25
TX0047651	6/30/2022	001A	Solids, total suspended	1.86	4	7.43
TX0047651	7/31/2022	001A	Solids, total suspended	1.86	4	7.01
TX0047651	8/31/2022	001A	Solids, total suspended	3.74	14	11.06
TX0047651	9/30/2022	001A	Solids, total suspended	2.45	3	6.4
TX0047651	10/31/2022	001A	Solids, total suspended	2.95	4	14.82

TX0047651	11/30/2022	001A	Solids, total suspended	3	5	58.81
TX0047651	12/31/2022	001A	Solids, total suspended	3.68	6	36.03
TX0047651	1/31/2023	001A	Solids, total suspended	3.09	5	24.03
TX0047651	2/28/2023	001A	Solids, total suspended	3.25	5	24.86
TX0047651	3/31/2023	001A	Solids, total suspended	2.04	3	15.65
TX0047651	4/30/2023	001A	Solids, total suspended	2.6	5	26.1
TX0047651	5/31/2023	001A	Solids, total suspended	3.26	5	41.28
TX0047651	6/30/2023	001A	Solids, total suspended	2.05	4	5.86
TX0047651	7/31/2023	001A	Solids, total suspended	1.9	5	4.04
TX0047651	8/31/2023	001A	Solids, total suspended	1.7	5	3.65
TX0047651	9/30/2023	001A	Solids, total suspended	2.33	4	4.05
TX0047651	10/31/2023	001A	Solids, total suspended	3.91	7	10.85
TX0047651	11/30/2023	001A	Solids, total suspended	2.55	4	33.38
TX0047651	12/31/2023	001A	Solids, total suspended	3.9	7	57.93
TX0047651	1/31/2024	001A	Solids, total suspended	4.61	9	55.13
TX0047651	2/29/2024	001A	Solids, total suspended	4.57	9	51.15
TX0047651	3/31/2024	001A	Solids, total suspended	3.24	6	13.47
TX0047651	4/30/2024	001A	Solids, total suspended	3.59	21	92.66
TX0047651	5/31/2024	001A	Solids, total suspended	2.91	8	173.32
TX0047651	6/30/2024	001A	Solids, total suspended	2.95	7	82.66
TX0047651	7/31/2024	001A	Solids, total suspended	2.57	5	48.23
TX0047651	8/31/2024	001A	Solids, total suspended	1.86	4	8.5
TX0047651	9/30/2024	001A	Solids, total suspended	1.81	3	5.3
TX0047651	10/31/2024	001A	Solids, total suspended	2.61	4	6.71
			2 YEAR AVERAGE	2.92	6.00	35.94
			5 YEAR AVERAGE	2.90	6.05	29.49

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	INST MAX (mg/L)
TX0047651	10/31/2019	001A	Chlorine, total residual	0.04
TX0047651	11/30/2019	001A	Chlorine, total residual	0.06
TX0047651	12/31/2019	001A	Chlorine, total residual	0.05
TX0047651	1/31/2020	001A	Chlorine, total residual	0.05
TX0047651	2/29/2020	001A	Chlorine, total residual	0.05
TX0047651	3/31/2020	001A	Chlorine, total residual	0.05
TX0047651	4/30/2020	001A	Chlorine, total residual	0.04
TX0047651	5/31/2020	001A	Chlorine, total residual	0.05
TX0047651	6/30/2020	001A	Chlorine, total residual	0.07
TX0047651	7/31/2020	001A	Chlorine, total residual	0.06
TX0047651	8/31/2020	001A	Chlorine, total residual	0.06

TX0047651	9/30/2020	001A	Chlorine, total residual	0.07
TX0047651	10/31/2020	001A	Chlorine, total residual	0.07
TX0047651	11/30/2020	001A	Chlorine, total residual	0.05
TX0047651	12/31/2020	001A	Chlorine, total residual	0.09
TX0047651	1/31/2021	001A	Chlorine, total residual	0.05
TX0047651	2/28/2021	001A	Chlorine, total residual	0.05
TX0047651	3/31/2021	001A	Chlorine, total residual	0.04
TX0047651	4/30/2021	001A	Chlorine, total residual	0.05
TX0047651	5/31/2021	001A	Chlorine, total residual	0.05
TX0047651	6/30/2021	001A	Chlorine, total residual	0.08
TX0047651	7/31/2021	001A	Chlorine, total residual	0.05
TX0047651	8/31/2021	001A	Chlorine, total residual	0.05
TX0047651	9/30/2021	001A	Chlorine, total residual	0.06
TX0047651	10/31/2021	001A	Chlorine, total residual	0.04
TX0047651	11/30/2021	001A	Chlorine, total residual	0.04
TX0047651	12/31/2021	001A	Chlorine, total residual	0.06
TX0047651	1/31/2022	001A	Chlorine, total residual	0.06
TX0047651	2/28/2022	001A	Chlorine, total residual	0.06
TX0047651	3/31/2022	001A	Chlorine, total residual	0.05
TX0047651	4/30/2022	001A	Chlorine, total residual	0.07
TX0047651	5/31/2022	001A	Chlorine, total residual	0.05
TX0047651	6/30/2022	001A	Chlorine, total residual	0.06
TX0047651	7/31/2022	001A	Chlorine, total residual	0.05
TX0047651	8/31/2022	001A	Chlorine, total residual	0.08
TX0047651	9/30/2022	001A	Chlorine, total residual	0.06
TX0047651	10/31/2022	001A	Chlorine, total residual	0.07
TX0047651	11/30/2022	001A	Chlorine, total residual	0.06
TX0047651	12/31/2022	001A	Chlorine, total residual	0.06
TX0047651	1/31/2023	001A	Chlorine, total residual	0.06
TX0047651	2/28/2023	001A	Chlorine, total residual	0.06
TX0047651	3/31/2023	001A	Chlorine, total residual	0.06
TX0047651	4/30/2023	001A	Chlorine, total residual	0.03
TX0047651	5/31/2023	001A	Chlorine, total residual	0.08
TX0047651	6/30/2023	001A	Chlorine, total residual	0.08
TX0047651	7/31/2023	001A	Chlorine, total residual	0.04
TX0047651	8/31/2023	001A	Chlorine, total residual	0.03
TX0047651	9/30/2023	001A	Chlorine, total residual	0.06
TX0047651	10/31/2023	001A	Chlorine, total residual	0.02
TX0047651	11/30/2023	001A	Chlorine, total residual	0.06
TX0047651	12/31/2023	001A	Chlorine, total residual	0.06
TX0047651	1/31/2024	001A	Chlorine, total residual	0.08

TX0047651	2/29/2024	001A	Chlorine, total residual	0.06
TX0047651	3/31/2024	001A	Chlorine, total residual	0.06
TX0047651	4/30/2024	001A	Chlorine, total residual	0.06
TX0047651	5/31/2024	001A	Chlorine, total residual	0.05
TX0047651	6/30/2024	001A	Chlorine, total residual	0.08
TX0047651	7/31/2024	001A	Chlorine, total residual	0.06
TX0047651	8/31/2024	001A	Chlorine, total residual	0.08
TX0047651	9/30/2024	001A	Chlorine, total residual	0.05
TX0047651	10/31/2024	001A	Chlorine, total residual	0.06
-			2 YEAR AVERAGE	0.06
			5 YEAR AVERAGE	0.06

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	MO MIN (mg/L)
TX0047651	10/31/2019	001A	Chlorine, total residual	1.16
TX0047651	11/30/2019	001A	Chlorine, total residual	1.24
TX0047651	12/31/2019	001A	Chlorine, total residual	1.04
TX0047651	1/31/2020	001A	Chlorine, total residual	1.1
TX0047651	2/29/2020	001A	Chlorine, total residual	1.28
TX0047651	3/31/2020	001A	Chlorine, total residual	1.03
TX0047651	4/30/2020	001A	Chlorine, total residual	1.21
TX0047651	5/31/2020	001A	Chlorine, total residual	1.17
TX0047651	6/30/2020	001A	Chlorine, total residual	1.08
TX0047651	7/31/2020	001A	Chlorine, total residual	1.05
TX0047651	8/31/2020	001A	Chlorine, total residual	1.09
TX0047651	9/30/2020	001A	Chlorine, total residual	0.54
TX0047651	10/31/2020	001A	Chlorine, total residual	1.35
TX0047651	11/30/2020	001A	Chlorine, total residual	1.32
TX0047651	12/31/2020	001A	Chlorine, total residual	1.82
TX0047651	1/31/2021	001A	Chlorine, total residual	1.23
TX0047651	2/28/2021	001A	Chlorine, total residual	1.04
TX0047651	3/31/2021	001A	Chlorine, total residual	1.05
TX0047651	4/30/2021	001A	Chlorine, total residual	1.37
TX0047651	5/31/2021	001A	Chlorine, total residual	1.05
TX0047651	6/30/2021	001A	Chlorine, total residual	1.32
TX0047651	7/31/2021	001A	Chlorine, total residual	1.11
TX0047651	8/31/2021	001A	Chlorine, total residual	1.13
TX0047651	9/30/2021	001A	Chlorine, total residual	1.11
TX0047651	10/31/2021	001A	Chlorine, total residual	1.06
TX0047651	11/30/2021	001A	Chlorine, total residual	1.27

TX0047651	12/31/2021	001A	Chlorine, total residual	1.07
TX0047651	1/31/2022	001A	Chlorine, total residual	1.28
TX0047651	2/28/2022	001A	Chlorine, total residual	1.06
TX0047651	3/31/2022	001A	Chlorine, total residual	1.13
TX0047651	4/30/2022	001A	Chlorine, total residual	1.15
TX0047651	5/31/2022	001A	Chlorine, total residual	1.09
TX0047651	6/30/2022	001A	Chlorine, total residual	1.1
TX0047651	7/31/2022	001A	Chlorine, total residual	1.05
TX0047651	8/31/2022	001A	Chlorine, total residual	1.15
TX0047651	9/30/2022	001A	Chlorine, total residual	1.12
TX0047651	10/31/2022	001A	Chlorine, total residual	1.09
TX0047651	11/30/2022	001A	Chlorine, total residual	1.21
TX0047651	12/31/2022	001A	Chlorine, total residual	1.26
TX0047651	1/31/2023	001A	Chlorine, total residual	1.15
TX0047651	2/28/2023	001A	Chlorine, total residual	1.01
TX0047651	3/31/2023	001A	Chlorine, total residual	1.31
TX0047651	4/30/2023	001A	Chlorine, total residual	1.15
TX0047651	5/31/2023	001A	Chlorine, total residual	1.02
TX0047651	6/30/2023	001A	Chlorine, total residual	1.1
TX0047651	7/31/2023	001A	Chlorine, total residual	1.16
TX0047651	8/31/2023	001A	Chlorine, total residual	1.14
TX0047651	9/30/2023	001A	Chlorine, total residual	1.02
TX0047651	10/31/2023	001A	Chlorine, total residual	1.01
TX0047651	11/30/2023	001A	Chlorine, total residual	1.11
TX0047651	12/31/2023	001A	Chlorine, total residual	1.12
TX0047651	1/31/2024	001A	Chlorine, total residual	1.04
TX0047651	2/29/2024	001A	Chlorine, total residual	1.01
TX0047651	3/31/2024	001A	Chlorine, total residual	1.11
TX0047651	4/30/2024	001A	Chlorine, total residual	1.03
TX0047651	5/31/2024	001A	Chlorine, total residual	1.06
TX0047651	6/30/2024	001A	Chlorine, total residual	1.07
TX0047651	7/31/2024	001A	Chlorine, total residual	1.01
TX0047651	8/31/2024	001A	Chlorine, total residual	1.02
TX0047651	9/30/2024	001A	Chlorine, total residual	1.04
TX0047651	10/31/2024	001A	Chlorine, total residual	1.08
			2 YEAR AVERAGE	1.09
			5 YEAR AVERAGE	1.13

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	2HR PEAK (gal/min)

TX0047651	10/31/2019	001A	Flow, in conduit or thru treatment plant	4389
TX0047651	11/30/2019	001A	Flow, in conduit or thru treatment plant	2910
TX0047651	12/31/2019	001A	Flow, in conduit or thru treatment plant	2951
TX0047651	1/31/2020	001A	Flow, in conduit or thru treatment plant	4965
TX0047651	2/29/2020	001A	Flow, in conduit or thru treatment plant	6597
TX0047651	3/31/2020	001A	Flow, in conduit or thru treatment plant	8597
TX0047651	4/30/2020	001A	Flow, in conduit or thru treatment plant	8187
TX0047651	5/31/2020	001A	Flow, in conduit or thru treatment plant	4305
TX0047651	6/30/2020	001A	Flow, in conduit or thru treatment plant	2868
TX0047651	7/31/2020	001A	Flow, in conduit or thru treatment plant	4333
TX0047651	8/31/2020	001A	Flow, in conduit or thru treatment plant	2638
TX0047651	9/30/2020	001A	Flow, in conduit or thru treatment plant	11368
TX0047651	10/31/2020	001A	Flow, in conduit or thru treatment plant	2819
TX0047651	11/30/2020	001A	Flow, in conduit or thru treatment plant	1875
TX0047651	12/31/2020	001A	Flow, in conduit or thru treatment plant	3284
TX0047651	1/31/2021	001A	Flow, in conduit or thru treatment plant	9451
TX0047651	2/28/2021	001A	Flow, in conduit or thru treatment plant	5555
TX0047651	3/31/2021	001A	Flow, in conduit or thru treatment plant	3368
TX0047651	4/30/2021	001A	Flow, in conduit or thru treatment plant	4131
TX0047651	5/31/2021	001A	Flow, in conduit or thru treatment plant	16507
TX0047651	6/30/2021	001A	Flow, in conduit or thru treatment plant	16506
TX0047651	7/31/2021	001A	Flow, in conduit or thru treatment plant	16076
TX0047651	8/31/2021	001A	Flow, in conduit or thru treatment plant	5416
TX0047651	9/30/2021	001A	Flow, in conduit or thru treatment plant	4479
TX0047651	10/31/2021	001A	Flow, in conduit or thru treatment plant	8013
TX0047651	11/30/2021	001A	Flow, in conduit or thru treatment plant	5388
TX0047651	12/31/2021	001A	Flow, in conduit or thru treatment plant	5104
TX0047651	1/31/2022	001A	Flow, in conduit or thru treatment plant	4243
TX0047651	2/28/2022	001A	Flow, in conduit or thru treatment plant	8222
TX0047651	3/31/2022	001A	Flow, in conduit or thru treatment plant	5180
TX0047651	4/30/2022	001A	Flow, in conduit or thru treatment plant	8576
TX0047651	5/31/2022	001A	Flow, in conduit or thru treatment plant	5166
TX0047651	6/30/2022	001A	Flow, in conduit or thru treatment plant	3611
TX0047651	7/31/2022	001A	Flow, in conduit or thru treatment plant	2923
TX0047651	8/31/2022	001A	Flow, in conduit or thru treatment plant	7284
TX0047651	9/30/2022	001A	Flow, in conduit or thru treatment plant	2763
TX0047651	10/31/2022	001A	Flow, in conduit or thru treatment plant	3687
TX0047651	11/30/2022	001A	Flow, in conduit or thru treatment plant	6472
TX0047651	12/31/2022	001A	Flow, in conduit or thru treatment plant	3611
TX0047651	1/31/2023	001A	Flow, in conduit or thru treatment plant	3111
TX0047651	2/28/2023	001A	Flow, in conduit or thru treatment plant	6076

TX0047651	3/31/2023	001A	Flow, in conduit or thru treatment plant	4417
TX0047651	4/30/2023	001A	Flow, in conduit or thru treatment plant	10083
TX0047651	5/31/2023	001A	Flow, in conduit or thru treatment plant	9771
TX0047651	6/30/2023	001A	Flow, in conduit or thru treatment plant	3375
TX0047651	7/31/2023	001A	Flow, in conduit or thru treatment plant	2125
TX0047651	8/31/2023	001A	Flow, in conduit or thru treatment plant	3014
TX0047651	9/30/2023	001A	Flow, in conduit or thru treatment plant	3410
TX0047651	10/31/2023	001A	Flow, in conduit or thru treatment plant	7507
TX0047651	11/30/2023	001A	Flow, in conduit or thru treatment plant	3514
TX0047651	12/31/2023	001A	Flow, in conduit or thru treatment plant	12625
TX0047651	1/31/2024	001A	Flow, in conduit or thru treatment plant	16313
TX0047651	2/29/2024	001A	Flow, in conduit or thru treatment plant	4771
TX0047651	3/31/2024	001A	Flow, in conduit or thru treatment plant	6715
TX0047651	4/30/2024	001A	Flow, in conduit or thru treatment plant	18444
TX0047651	5/31/2024	001A	Flow, in conduit or thru treatment plant	18458
TX0047651	6/30/2024	001A	Flow, in conduit or thru treatment plant	5854
TX0047651	7/31/2024	001A	Flow, in conduit or thru treatment plant	3854
TX0047651	8/31/2024	001A	Flow, in conduit or thru treatment plant	2604
TX0047651	9/30/2024	001A	Flow, in conduit or thru treatment plant	3653
TX0047651	10/31/2024	001A	Flow, in conduit or thru treatment plant	2229
		•	2 YEAR AVERAGE	6628

5 YEAR AVERAGE

6324

EPA ID				Reported Measure	Ent	er Flow Limit Below in I	MG
	Monitoring Period	Outfall	Parameter	ANNL AVG (MGD)	PERCENT OF LIMIT	7.50	
TX0047651 1	10/31/2019	001A	Flow, in conduit or thru treatment plant	2.98	39.73%		
TX0047651 1	11/30/2019	001A	Flow, in conduit or thru treatment plant	2.88	38.40%		
TX0047651 1	12/31/2019	001A	Flow, in conduit or thru treatment plant	2.78	37.07%		
TX0047651 1	1/31/2020	001A	Flow, in conduit or thru treatment plant	2.56	34.13%		
TX0047651 2	2/29/2020	001A	Flow, in conduit or thru treatment plant	2.53	33.73%		
TX0047651 3	3/31/2020	001A	Flow, in conduit or thru treatment plant	2.57	34.27%		
TX0047651	4/30/2020	001A	Flow, in conduit or thru treatment plant	2.89	38.53%		
TX0047651 5	5/31/2020	001A	Flow, in conduit or thru treatment plant	2.2	29.33%		
TX0047651 6	6/30/2020	001A	Flow, in conduit or thru treatment plant	2.07	27.60%		
TX0047651 7	7/31/2020	001A	Flow, in conduit or thru treatment plant	2.02	26.93%		
TX0047651 8	8/31/2020	001A	Flow, in conduit or thru treatment plant	2	26.67%		
TX0047651 9	9/30/2020	001A	Flow, in conduit or thru treatment plant	1.78	23.73%		
TX0047651	10/31/2020	001A	Flow, in conduit or thru treatment plant	2.1	28.00%		
TX0047651 1	11/30/2020	001A	Flow, in conduit or thru treatment plant	2.1	28.00%		
TX0047651 1	12/31/2020	001A	Flow, in conduit or thru treatment plant	2.11	28.13%		

TX0047651	1/31/2021	001A	Flow, in conduit or thru treatment plant	2.18	29.07%
TX0047651	2/28/2021	001A	Flow, in conduit or thru treatment plant	2.29	30.53%
TX0047651	3/31/2021	001A	Flow, in conduit or thru treatment plant	2.24	29.87%
TX0047651	4/30/2021	001A	Flow, in conduit or thru treatment plant	2.18	29.07%
TX0047651	5/31/2021	001A	Flow, in conduit or thru treatment plant	2.3	30.67%
TX0047651	6/30/2021	001A	Flow, in conduit or thru treatment plant	2.63	35.07%
TX0047651	7/31/2021	001A	Flow, in conduit or thru treatment plant	2.69	35.87%
TX0047651	8/31/2021	001A	Flow, in conduit or thru treatment plant	2.75	36.67%
TX0047651	9/30/2021	001A	Flow, in conduit or thru treatment plant	2.65	35.33%
TX0047651	10/31/2021	001A	Flow, in conduit or thru treatment plant	2.7	36.00%
TX0047651	11/30/2021	001A	Flow, in conduit or thru treatment plant	2.73	36.40%
TX0047651	12/31/2021	001A	Flow, in conduit or thru treatment plant	2.75	36.67%
TX0047651	1/31/2022	001A	Flow, in conduit or thru treatment plant	2.7	36.00%
TX0047651	2/28/2022	001A	Flow, in conduit or thru treatment plant	2.67	35.60%
TX0047651	3/31/2022	001A	Flow, in conduit or thru treatment plant	2.65	35.33%
TX0047651	4/30/2022	001A	Flow, in conduit or thru treatment plant	2.66	35.47%
TX0047651	5/31/2022	001A	Flow, in conduit or thru treatment plant	2.59	34.53%
TX0047651	6/30/2022	001A	Flow, in conduit or thru treatment plant	2.39	31.87%
TX0047651	7/31/2022	001A	Flow, in conduit or thru treatment plant	2.21	29.47%
TX0047651	8/31/2022	001A	Flow, in conduit or thru treatment plant	2.19	29.20%
TX0047651	9/30/2022	001A	Flow, in conduit or thru treatment plant	2.19	29.20%
TX0047651	10/31/2022	001A	Flow, in conduit or thru treatment plant	2.15	28.67%
TX0047651	11/30/2022	001A	Flow, in conduit or thru treatment plant	2.17	28.93%
TX0047651	12/31/2022	001A	Flow, in conduit or thru treatment plant	2.18	29.07%
TX0047651	1/31/2023	001A	Flow, in conduit or thru treatment plant	2.18	29.07%
TX0047651	2/28/2023	001A	Flow, in conduit or thru treatment plant	2.18	29.07%
TX0047651	3/31/2023	001A	Flow, in conduit or thru treatment plant	2.19	29.20%
TX0047651	4/30/2023	001A	Flow, in conduit or thru treatment plant	2.27	30.27%
TX0047651	5/31/2023	001A	Flow, in conduit or thru treatment plant	2.4	32.00%
TX0047651	6/30/2023	001A	Flow, in conduit or thru treatment plant	2.45	32.67%
TX0047651	7/31/2023	001A	Flow, in conduit or thru treatment plant	2.47	32.93%
TX0047651	8/31/2023	001A	Flow, in conduit or thru treatment plant	2.47	32.93%
TX0047651	9/30/2023	001A	Flow, in conduit or thru treatment plant	2.48	33.07%
TX0047651	10/31/2023	001A	Flow, in conduit or thru treatment plant	2.52	33.60%
TX0047651	11/30/2023	001A	Flow, in conduit or thru treatment plant	2.52	33.60%
TX0047651	12/31/2023	001A	Flow, in conduit or thru treatment plant	2.59	34.53%
TX0047651	1/31/2024	001A	Flow, in conduit or thru treatment plant	2.74	36.53%
TX0047651	2/29/2024	001A	Flow, in conduit or thru treatment plant	2.78	37.07%
TX0047651	3/31/2024	001A	Flow, in conduit or thru treatment plant	2.83	37.73%
TX0047651	4/30/2024	001A	Flow, in conduit or thru treatment plant	3	40.00%
TX0047651	5/31/2024	001A	Flow, in conduit or thru treatment plant	3.34	44.53%

TX0047651	6/30/2024	001A	Flow, in conduit or thru treatment plant	3.55	47.33%	
TX0047651	7/31/2024	001A	Flow, in conduit or thru treatment plant	3.63	48.40%	
TX0047651	8/31/2024	001A	Flow, in conduit or thru treatment plant	3.66	48.80%	
TX0047651	9/30/2024	001A	Flow, in conduit or thru treatment plant	3.7	49.33%	
TX0047651	10/31/2024	001A	Flow, in conduit or thru treatment plant	3.69	49.20%	75/90 Rule
			2 YEAR AVERAGE	2.73	75% Limit = 5.625	NO
			5 YEAR AVERAGE	2.56	90% Limit = 6.75	NO

EPA ID				Reported Measure	Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	DAILY AV (mg/L)	DAILY MX (mg/L)	DAILY AV (lb/d)
TX0047651	12/31/2019	001Q	Chromium, hexavalent [as Cr]	<.003	<.003	<.03
TX0047651	3/31/2020	001Q	Chromium, hexavalent [as Cr]	<.003	<.003	<.06
TX0047651	8/31/2020	001Q	Chromium, hexavalent [as Cr]	<.003	<.003	<.0081
TX0047651	11/30/2020	001Q	Chromium, hexavalent [as Cr]	<.003	<.003	<.02
TX0047651	2/28/2021	001Q	Chromium, hexavalent [as Cr]	<.003	<.003	<.8
TX0047651	5/31/2021	001Q	Chromium, hexavalent [as Cr]	<.003	<.003	<.8
TX0047651	8/31/2021	001Q	Chromium, hexavalent [as Cr]	0.00546	0.00546	0.165
TX0047651	11/30/2021	001Q	Chromium, hexavalent [as Cr]	0.003	0.003	0.045
TX0047651	2/28/2022	001Q	Chromium, hexavalent [as Cr]	<.003	<.003	0.058
TX0047651	5/31/2022	001Q	Chromium, hexavalent [as Cr]	0.003	0.003	0.056
TX0047651	8/31/2022	001Q	Chromium, hexavalent [as Cr]	0.003	0.003	0.052
TX0047651	11/30/2022	001Q	Chromium, hexavalent [as Cr]	0.003	0.003	0.045
TX0047651	2/28/2023	001Q	Chromium, hexavalent [as Cr]	<.003	<.003	0.091
TX0047651	5/31/2023	001Q	Chromium, hexavalent [as Cr]	0.003	0.003	0.055
TX0047651	8/31/2023	001Q	Chromium, hexavalent [as Cr]	<.003	<.003	0.059
TX0047651	11/30/2023	001Q	Chromium, hexavalent [as Cr]	0.003	0.003	0.051
TX0047651	2/29/2024	001Q	Chromium, hexavalent [as Cr]	0.0031	0.0031	0.08
TX0047651	5/31/2024	001Q	Chromium, hexavalent [as Cr]	<.003	<.003	0.1
TX0047651	8/31/2024	001Q	Chromium, hexavalent [as Cr]	<.003	<.003	0.057
			2 YEAR AVERAGE	0.0030	0.0030	0.066
			5 YEAR AVERAGE	0.0031	0.0031	0.139

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	VALUE (N=0;Y=1)
TX0047651	7/31/2020	SLDF	Compliance w/part 258 sludge requirement	1

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	ANNL TOT (DMT/y)
TX0047651	7/31/2020	SLDP	Annual amount of sludge land applied	0

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	ANNL TOT (DMT/y)
TX0047651	7/31/2020	SLDP	Annual amt of sludge incinerated	0
EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	ANNL TOT (DMT/y)
TX0047651	7/31/2020	SLDP	Annual amt sludge disposed in landfill	364.23

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	ANNL TOT (DMT/y)
TX0047651	7/31/2020	SLDP	Annual amt. sludge disposed surface unit	0

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	ANNL TOT (DMT/y)
TX0047651	7/31/2020	SLDP	Annual amt sludge transported interstate	0

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	ANNL TOT (DMT/y)
TX0047651	7/31/2020	SLDP	Annual sludge production, total	364.23

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	ANNL MAX (mg/kg)
TX0047651	7/31/2020	SLDP	Polychlorinated biphenyls [PCBs]	NODI=9

EPA ID				Reported Measure	1
	Monitoring Period	Outfall	Parameter	MO AV MN (pass=0;fai	l=1
TX0047651	7/31/2020	SLDP	Toxicity characteristic leaching procedure	0	I

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	ANNL TOT (DMT/y)
TX0047651	7/31/2020	SLDP	Ann. amt sludge disposed by other method	0

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	MX VALUE (met t/ha/yr)
TX0047651	7/31/2020	SLLA	Annual whole sludge application rate	NODI=C

EPA ID				Reported Measure	Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	SINGSAMP (mg/kg)	MAXIMUM (mg/kg)	MX VALUE (lb/acr)
TX0047651	7/31/2020	SLLA	Arsenic, dry weight	NODI=C	NODI=C	NODI=C

EPA ID				Reported Measure	Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	SINGSAMP (mg/kg)	MAXIMUM (mg/kg)	MX VALUE (lb/acr)
TX0047651	7/31/2020	SLLA	Cadmium, dry weight	NODI=C	NODI=C	NODI=C

EPA ID				Reported Measure	Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	SINGSAMP (mg/kg)	MAXIMUM (mg/kg)	MX VALUE (lb/acr)
TX0047651	7/31/2020	SLLA	Chromium, sludge, total, dry weight [as Cr]	NODI=C	NODI=C	NODI=C

EPA ID				Reported Measure	Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	SINGSAMP (mg/kg)	MAXIMUM (mg/kg)	MX VALUE (lb/acr)
TX0047651	7/31/2020	SLLA	Copper, dry weight	NODI=C	NODI=C	NODI=C

EPA ID				Reported Measure	Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	SINGSAMP (mg/kg)	MAXIMUM (mg/kg)	MX VALUE (lb/acr)
TX0047651	7/31/2020	SLLA	Lead, sludge, total, dry weight [as Pb]	NODI=C	NODI=C	NODI=C

EPA ID				Reported Measure	Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	SINGSAMP (mg/kg)	MAXIMUM (mg/kg)	MX VALUE (Ib/acr)
TX0047651	7/31/2020	SLLA	Mercury, sludge, total, dry weight [as Hg]	NODI=C	NODI=C	NODI=C

EPA ID				Reported Measure	Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	SINGSAMP (mg/kg)	MAXIMUM (mg/kg)	MX VALUE (lb/acr)
TX0047651	7/31/2020	SLLA	Molybdenum, sludge, total, dry weight [as Mo]	NODI=C	NODI=C	NODI=C

EPA ID				Reported Measure	Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	SINGSAMP (mg/kg)	MAXIMUM (mg/kg)	MX VALUE (lb/acr)
TX0047651	7/31/2020	SLLA	Nickel, sludge, total, dry weight [as Ni]	NODI=C	NODI=C	NODI=C

EPA ID				Reported Measure	Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	SINGSAMP (mg/kg)	MAXIMUM (mg/kg)	MX VALUE (lb/acr)
TX0047651	7/31/2020	SLLA	Selenium, dry weight	NODI=C	NODI=C	NODI=C
EPA ID				Reported Measure	Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	SINGSAMP (mg/kg)	MAXIMUM (mg/kg)	MX VALUE (lb/acr)
TX0047651	7/31/2020	SLLA	Zinc, sludge, total, dry weight [as Zn]	NODI=C	NODI=C	NODI=C

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	VALUE (table #)
TX0047651	7/31/2020	SLLA	Pollutant table from 503.13	NODI=C

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	VALUE (alt #)
TX0047651	7/31/2020	SLLA	Description of pathogen option used	NODI=C

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	VALUE (alt #)
TX0047651	7/31/2020	SLLA	Vector attraction reduction alternative used	NODI=C

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	MX VALUE (state class
TX0047651	7/31/2020	SLLA	Level of pathogen requirements achieved	NODI=C

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	MAXIMUM (MPN/g)
TX0047651	7/31/2020	SLLY	Fecal coliform	NODI=C

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	MAXIMUM (MPN/g)
TX0047651	7/31/2020	SLLY	Salmonella	NODI=C

EPA ID				Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	ALLWCONC (mg/kg)	SINGSAMP (mg/kg)
TX0047651	7/31/2020	SLSA	Arsenic, dry weight	NODI=C	NODI=C

EPA ID				Reported Measure	
	Monitoring Period	Outfall	Parameter	VALUE (acr)	
TX0047651	7/31/2020	SLSA	Boundary areas	NODI=C	
EPA ID				Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	ALLWCONC (ma/ka)	SINGSAMP (ma/ka)
	Monitoring r enou	Outian	1 didificier		· · · · · · · · · · · · · · · · · · ·

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	VALUE (alt #)
TX0047651	7/31/2020	SLSA	Description of pathogen option used	NODI=C

EPA ID				Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	ALLWCONC (mg/kg)	SINGSAMP (mg/kg)
TX0047651	7/31/2020	SLSA	Nickel, total [as Ni]	NODI=C	NODI=C

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	MINIMUM (SU)
TX0047651	7/31/2020	SLSA	рН	NODI=C

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	VALUE (N=0;Y=1)
TX0047651	7/31/2020	SLSA	Unit w/liner/leachate collection system	NODI=C

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	VALUE (alt #)
TX0047651	7/31/2020	SLSA	Vector attraction reduction alternative used	NODI=C

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	SINGSAMP (state class
TX0047651	7/31/2020	SLSA	Level of pathogen requirements achieved	NODI=C

EPA ID				Reported Measure	Reported Measure	
	Monitoring Period	Outfall	Parameter	48HR MIN (pass=0;fail	MO AV MN (pass=0;fail	l=1)
TX0047651	12/31/2019	TX1Q	LF Pass/Fail Static Renewal 48Hr Acute Pimephales p	0	0	

TX0047651	3/31/2020	TX1Q	LF Pass/Fail Static Renewal 48Hr Acute Pimephales p	0	0
TX0047651	9/30/2020	TX1Q	LF Pass/Fail Static Renewal 48Hr Acute Pimephales p	0	0
TX0047651	12/31/2020	TX1Q	LF Pass/Fail Static Renewal 48Hr Acute Pimephales p	0	0
TX0047651	3/31/2021	TX1Q	LF Pass/Fail Static Renewal 48Hr Acute Pimephales p	0	0
TX0047651	6/30/2021	TX1Q	LF Pass/Fail Static Renewal 48Hr Acute Pimephales p	0	0
TX0047651	9/30/2021	TX1Q	LF Pass/Fail Static Renewal 48Hr Acute Pimephales p	0	0
TX0047651	12/31/2021	TX1Q	LF Pass/Fail Static Renewal 48Hr Acute Pimephales p	0	0
TX0047651	3/31/2022	TX1Q	LF Pass/Fail Static Renewal 48Hr Acute Pimephales p	0	0
TX0047651	6/30/2022	TX1Q	LF Pass/Fail Static Renewal 48Hr Acute Pimephales p	0	0
TX0047651	9/30/2022	TX1Q	LF Pass/Fail Static Renewal 48Hr Acute Pimephales p	0	0
TX0047651	12/31/2022	TX1Q	LF Pass/Fail Static Renewal 48Hr Acute Pimephales p	0	0
TX0047651	3/31/2023	TX1Q	LF Pass/Fail Static Renewal 48Hr Acute Pimephales p	0	0
TX0047651	6/30/2023	TX1Q	LF Pass/Fail Static Renewal 48Hr Acute Pimephales p	NODI=9	NODI=9

EPA ID				Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	48HR MIN (%)	MO AV MN (%)
TX0047651	12/31/2019	TX1Q	LOAEC Lethal Static Renewal 48HR Acute Daphnia p	NODI=Q	NODI=Q
TX0047651	3/31/2020	TX1Q	LOAEC Lethal Static Renewal 48HR Acute Daphnia p	NODI=Q	NODI=Q
TX0047651	9/30/2020	TX1Q	LOAEC Lethal Static Renewal 48HR Acute Daphnia p	NODI=Q	NODI=Q
TX0047651	12/31/2020	TX1Q	LOAEC Lethal Static Renewal 48HR Acute Daphnia p	NODI=Q	NODI=Q
TX0047651	3/31/2021	TX1Q	LOAEC Lethal Static Renewal 48HR Acute Daphnia p	NODI=Q	NODI=Q
TX0047651	6/30/2021	TX1Q	LOAEC Lethal Static Renewal 48HR Acute Daphnia p	NODI=Q	NODI=Q
TX0047651	9/30/2021	TX1Q	LOAEC Lethal Static Renewal 48HR Acute Daphnia p	NODI=Q	NODI=Q
TX0047651	12/31/2021	TX1Q	LOAEC Lethal Static Renewal 48HR Acute Daphnia p	NODI=Q	NODI=Q
TX0047651	3/31/2022	TX1Q	LOAEC Lethal Static Renewal 48HR Acute Daphnia p	NODI=Q	NODI=Q
TX0047651	6/30/2022	TX1Q	LOAEC Lethal Static Renewal 48HR Acute Daphnia p	NODI=Q	NODI=Q
TX0047651	9/30/2022	TX1Q	LOAEC Lethal Static Renewal 48HR Acute Daphnia p	NODI=Q	NODI=Q
TX0047651	12/31/2022	TX1Q	LOAEC Lethal Static Renewal 48HR Acute Daphnia p	NODI=Q	NODI=Q
TX0047651	3/31/2023	TX1Q	LOAEC Lethal Static Renewal 48HR Acute Daphnia p	NODI=Q	NODI=Q
TX0047651	6/30/2023	TX1Q	LOAEC Lethal Static Renewal 48HR Acute Daphnia p	NODI=9	NODI=9

EPA ID				Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	48HR MIN (%)	MO AV MN (%)
TX0047651	12/31/2019	TX1Q	LOAEC Lethal Survival Static Renewal 48Hr Acute Pir	NODI=Q	NODI=Q
TX0047651	3/31/2020	TX1Q	LOAEC Lethal Survival Static Renewal 48Hr Acute Pir	NODI=Q	NODI=Q
TX0047651	9/30/2020	TX1Q	LOAEC Lethal Survival Static Renewal 48Hr Acute Pir	NODI=Q	NODI=Q
TX0047651	12/31/2020	TX1Q	LOAEC Lethal Survival Static Renewal 48Hr Acute Pir	NODI=Q	NODI=Q
TX0047651	3/31/2021	TX1Q	LOAEC Lethal Survival Static Renewal 48Hr Acute Pir	NODI=Q	NODI=Q

TX0047651	6/30/2021	TX1Q	LOAEC Lethal Survival Static Renewal 48Hr Acute Pir	NODI=Q	NODI=Q
TX0047651	9/30/2021	TX1Q	LOAEC Lethal Survival Static Renewal 48Hr Acute Pin	NODI=Q	NODI=Q
TX0047651	12/31/2021	TX1Q	LOAEC Lethal Survival Static Renewal 48Hr Acute Pin	NODI=Q	NODI=Q
TX0047651	3/31/2022	TX1Q	LOAEC Lethal Survival Static Renewal 48Hr Acute Pin	NODI=Q	NODI=Q
TX0047651	6/30/2022	TX1Q	LOAEC Lethal Survival Static Renewal 48Hr Acute Pin	NODI=Q	NODI=Q
TX0047651	9/30/2022	TX1Q	LOAEC Lethal Survival Static Renewal 48Hr Acute Pin	NODI=Q	NODI=Q
TX0047651	12/31/2022	TX1Q	LOAEC Lethal Survival Static Renewal 48Hr Acute Pin	NODI=Q	NODI=Q
TX0047651	3/31/2023	TX1Q	LOAEC Lethal Survival Static Renewal 48Hr Acute Pin	NODI=Q	NODI=Q
TX0047651	6/30/2023	TX1Q	LOAEC Lethal Survival Static Renewal 48Hr Acute Pin	NODI=9	NODI=9

EPA ID				Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	48HR MIN (pass=0;fail	MO AV MN (pass=0;fail=
TX0047651	12/31/2019	TX1Q	Low Flow Pass/Fail Static Renewal 48Hr Acute Daphn	0	0
TX0047651	3/31/2020	TX1Q	Low Flow Pass/Fail Static Renewal 48Hr Acute Daphn	0	0
TX0047651	9/30/2020	TX1Q	Low Flow Pass/Fail Static Renewal 48Hr Acute Daphn	0	0
TX0047651	12/31/2020	TX1Q	Low Flow Pass/Fail Static Renewal 48Hr Acute Daphn	0	0
TX0047651	3/31/2021	TX1Q	Low Flow Pass/Fail Static Renewal 48Hr Acute Daphn	0	0
TX0047651	6/30/2021	TX1Q	Low Flow Pass/Fail Static Renewal 48Hr Acute Daphn	0	0
TX0047651	9/30/2021	TX1Q	Low Flow Pass/Fail Static Renewal 48Hr Acute Daphn	100	100
TX0047651	12/31/2021	TX1Q	Low Flow Pass/Fail Static Renewal 48Hr Acute Daphn	0	0
TX0047651	3/31/2022	TX1Q	Low Flow Pass/Fail Static Renewal 48Hr Acute Daphn	0	0
TX0047651	6/30/2022	TX1Q	Low Flow Pass/Fail Static Renewal 48Hr Acute Daphn	0	0
TX0047651	9/30/2022	TX1Q	Low Flow Pass/Fail Static Renewal 48Hr Acute Daphn	0	0
TX0047651	12/31/2022	TX1Q	Low Flow Pass/Fail Static Renewal 48Hr Acute Daphn	0	0
TX0047651	3/31/2023	TX1Q	Low Flow Pass/Fail Static Renewal 48Hr Acute Daphn	0	0
TX0047651	6/30/2023	TX1Q	Low Flow Pass/Fail Static Renewal 48Hr Acute Daphn	NODI=9	NODI=9

EPA ID				Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	48HR MIN (%)	MO AV MN (%)
TX0047651	12/31/2019	TX1Q	NOAEC Lethal Static Renewal 48Hr acute Pimephales	100	100
TX0047651	3/31/2020	TX1Q	NOAEC Lethal Static Renewal 48Hr acute Pimephales	100	100
TX0047651	9/30/2020	TX1Q	NOAEC Lethal Static Renewal 48Hr acute Pimephales	100	100
TX0047651	12/31/2020	TX1Q	NOAEC Lethal Static Renewal 48Hr acute Pimephales	100	100
TX0047651	3/31/2021	TX1Q	NOAEC Lethal Static Renewal 48Hr acute Pimephales	NODI=Q	NODI=Q
TX0047651	6/30/2021	TX1Q	NOAEC Lethal Static Renewal 48Hr acute Pimephales	53	53
TX0047651	9/30/2021	TX1Q	NOAEC Lethal Static Renewal 48Hr acute Pimephales	100	100
TX0047651	12/31/2021	TX1Q	NOAEC Lethal Static Renewal 48Hr acute Pimephales	100	100
TX0047651	3/31/2022	TX1Q	NOAEC Lethal Static Renewal 48Hr acute Pimephales	100	100

TX0047651	6/30/2022	TX1Q	NOAEC Lethal Static Renewal 48Hr acute Pimephales	100	100
TX0047651	9/30/2022	TX1Q	NOAEC Lethal Static Renewal 48Hr acute Pimephales	100	100
TX0047651	12/31/2022	TX1Q	NOAEC Lethal Static Renewal 48Hr acute Pimephales	100	100
TX0047651	3/31/2023	TX1Q	NOAEC Lethal Static Renewal 48Hr acute Pimephales	100	100
TX0047651	6/30/2023	TX1Q	NOAEC Lethal Static Renewal 48Hr acute Pimephales	NODI=9	NODI=9

EPA ID				Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	48HR MIN (%)	MO AV MN (%)
TX0047651	12/31/2019	TX1Q	NOAEC Lethal Statis Renewal 48 Hr Acute Daphnia p	100	100
TX0047651	3/31/2020	TX1Q	NOAEC Lethal Statis Renewal 48 Hr Acute Daphnia p	100	100
TX0047651	9/30/2020	TX1Q	NOAEC Lethal Statis Renewal 48 Hr Acute Daphnia p	100	100
TX0047651	12/31/2020	TX1Q	NOAEC Lethal Statis Renewal 48 Hr Acute Daphnia p	100	100
TX0047651	3/31/2021	TX1Q	NOAEC Lethal Statis Renewal 48 Hr Acute Daphnia p	100	100
TX0047651	6/30/2021	TX1Q	NOAEC Lethal Statis Renewal 48 Hr Acute Daphnia p	53	53
TX0047651	9/30/2021	TX1Q	NOAEC Lethal Statis Renewal 48 Hr Acute Daphnia p	100	100
TX0047651	12/31/2021	TX1Q	NOAEC Lethal Statis Renewal 48 Hr Acute Daphnia p	100	100
TX0047651	3/31/2022	TX1Q	NOAEC Lethal Statis Renewal 48 Hr Acute Daphnia p	100	100
TX0047651	6/30/2022	TX1Q	NOAEC Lethal Statis Renewal 48 Hr Acute Daphnia p	100	100
TX0047651	9/30/2022	TX1Q	NOAEC Lethal Statis Renewal 48 Hr Acute Daphnia p	100	100
TX0047651	12/31/2022	TX1Q	NOAEC Lethal Statis Renewal 48 Hr Acute Daphnia p	100	100
TX0047651	3/31/2023	TX1Q	NOAEC Lethal Statis Renewal 48 Hr Acute Daphnia p	100	100
TX0047651	6/30/2023	TX1Q	NOAEC Lethal Statis Renewal 48 Hr Acute Daphnia p	NODI=9	NODI=9

EPA ID				Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	48HR MIN (pass=0;fail	MO AV MN (pass=0;fail=1)
TX0047651	12/31/2019	TX1Q	Whole effluent toxicity - retest #1	NODI=9	NODI=9
TX0047651	3/31/2020	TX1Q	Whole effluent toxicity - retest #1	NODI=9	NODI=9
TX0047651	9/30/2020	TX1Q	Whole effluent toxicity - retest #1	NODI=9	NODI=9
TX0047651	12/31/2020	TX1Q	Whole effluent toxicity - retest #1	NODI=9	NODI=9
TX0047651	3/31/2021	TX1Q	Whole effluent toxicity - retest #1	NODI=9	NODI=9
TX0047651	6/30/2021	TX1Q	Whole effluent toxicity - retest #1	NODI=9	NODI=9
TX0047651	9/30/2021	TX1Q	Whole effluent toxicity - retest #1	NODI=9	NODI=9
TX0047651	12/31/2021	TX1Q	Whole effluent toxicity - retest #1	NODI=9	NODI=9
TX0047651	3/31/2022	TX1Q	Whole effluent toxicity - retest #1	NODI=9	NODI=9
TX0047651	6/30/2022	TX1Q	Whole effluent toxicity - retest #1	NODI=9	NODI=9
TX0047651	9/30/2022	TX1Q	Whole effluent toxicity - retest #1	NODI=9	NODI=9
TX0047651	12/31/2022	TX1Q	Whole effluent toxicity - retest #1	NODI=9	NODI=9

TX0047651	3/31/2023	TX1Q	Whole effluent toxicity - retest #1	Not Received	NODI=9
TX0047651	6/30/2023	TX1Q	Whole effluent toxicity - retest #1	NODI=9	NODI=9

EPA ID				Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	48HR MIN (pass=0;fai	MO AV MN (pass=0;fail=
TX0047651	12/31/2019	TX1Q	Whole effluent toxicity - retest #2	NODI=9	NODI=9
TX0047651	3/31/2020	TX1Q	Whole effluent toxicity - retest #2	NODI=9	NODI=9
TX0047651	9/30/2020	TX1Q	Whole effluent toxicity - retest #2	NODI=9	NODI=9
TX0047651	12/31/2020	TX1Q	Whole effluent toxicity - retest #2	NODI=H	NODI=H
TX0047651	3/31/2021	TX1Q	Whole effluent toxicity - retest #2	NODI=9	NODI=9
TX0047651	6/30/2021	TX1Q	Whole effluent toxicity - retest #2	NODI=9	NODI=9
TX0047651	9/30/2021	TX1Q	Whole effluent toxicity - retest #2	NODI=9	NODI=9
TX0047651	12/31/2021	TX1Q	Whole effluent toxicity - retest #2	NODI=9	NODI=9
TX0047651	3/31/2022	TX1Q	Whole effluent toxicity - retest #2	NODI=9	NODI=9
TX0047651	6/30/2022	TX1Q	Whole effluent toxicity - retest #2	NODI=9	NODI=9
TX0047651	9/30/2022	TX1Q	Whole effluent toxicity - retest #2	NODI=9	NODI=9
TX0047651	12/31/2022	TX1Q	Whole effluent toxicity - retest #2	NODI=9	NODI=9
TX0047651	3/31/2023	TX1Q	Whole effluent toxicity - retest #2	Not Received	NODI=9
TX0047651	6/30/2023	TX1Q	Whole effluent toxicity - retest #2	NODI=9	NODI=9

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	SINGSAMP (pass=0;fail=1)
TX0047651	12/31/2019	TX1S	LC50 Pass/Fail Static 24Hr Acute D. Pulex	0
TX0047651	12/31/2020	TX1S	LC50 Pass/Fail Static 24Hr Acute D. Pulex	0
TX0047651	6/30/2021	TX1S	LC50 Pass/Fail Static 24Hr Acute D. Pulex	0
TX0047651	12/31/2021	TX1S	LC50 Pass/Fail Static 24Hr Acute D. Pulex	0
TX0047651	6/30/2022	TX1S	LC50 Pass/Fail Static 24Hr Acute D. Pulex	0
TX0047651	12/31/2022	TX1S	LC50 Pass/Fail Static 24Hr Acute D. Pulex	0
TX0047651	6/30/2023	TX1S	LC50 Pass/Fail Static 24Hr Acute D. Pulex	0
TX0047651	12/31/2023	TX1S	LC50 Pass/Fail Static 24Hr Acute D. Pulex	0
TX0047651	6/30/2024	TX1S	LC50 Pass/Fail Static 24Hr Acute D. Pulex	0

EPA ID				Reported Measure	
	Monitoring Period	Outfall	Parameter	SINGSAMP (pass=0;fail=	=1)
TX0047651	12/31/2019	TX1S	LC50 Pass/Fail Static 24Hr Acute Pimephales promela	0	
TX0047651	12/31/2020	TX1S	LC50 Pass/Fail Static 24Hr Acute Pimephales promela	0	
TX0047651	6/30/2021	TX1S	LC50 Pass/Fail Static 24Hr Acute Pimephales promela	0	
TX0047651	12/31/2021	TX1S	LC50 Pass/Fail Static 24Hr Acute Pimephales promela	0	
TX0047651	6/30/2022	TX1S	LC50 Pass/Fail Static 24Hr Acute Pimephales promela	0	
TX0047651	12/31/2022	TX1S	LC50 Pass/Fail Static 24Hr Acute Pimephales promela	0	
			1		
-----------	------------	------	---	---	
TX0047651	6/30/2023	TX1S	LC50 Pass/Fail Static 24Hr Acute Pimephales promela	0	
TX0047651	12/31/2023	TX1S	LC50 Pass/Fail Static 24Hr Acute Pimephales promela	0	
TX0047651	6/30/2024	TX1S	LC50 Pass/Fail Static 24Hr Acute Pimephales promela	0	

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	SINGSAMP (pass=0;fail
TX0047651	12/31/2019	TX1S	Whole effluent toxicity - retest #1	NODI=9
TX0047651	12/31/2020	TX1S	Whole effluent toxicity - retest #1	NODI=9
TX0047651	6/30/2021	TX1S	Whole effluent toxicity - retest #1	NODI=9
TX0047651	12/31/2021	TX1S	Whole effluent toxicity - retest #1	NODI=9
TX0047651	6/30/2022	TX1S	Whole effluent toxicity - retest #1	NODI=9
TX0047651	12/31/2022	TX1S	Whole effluent toxicity - retest #1	NODI=9
TX0047651	6/30/2023	TX1S	Whole effluent toxicity - retest #1	NODI=9
TX0047651	12/31/2023	TX1S	Whole effluent toxicity - retest #1	NODI=9
TX0047651	6/30/2024	TX1S	Whole effluent toxicity - retest #1	NODI=9

EPA ID				Reported Measure
	Monitoring Period	Outfall	Parameter	SINGSAMP (pass=0;fail=1)
TX0047651	12/31/2019	TX1S	Whole effluent toxicity - retest #2	NODI=9
TX0047651	12/31/2020	TX1S	Whole effluent toxicity - retest #2	NODI=9
TX0047651	6/30/2021	TX1S	Whole effluent toxicity - retest #2	NODI=9
TX0047651	12/31/2021	TX1S	Whole effluent toxicity - retest #2	NODI=9
TX0047651	6/30/2022	TX1S	Whole effluent toxicity - retest #2	NODI=9
TX0047651	12/31/2022	TX1S	Whole effluent toxicity - retest #2	NODI=9
TX0047651	6/30/2023	TX1S	Whole effluent toxicity - retest #2	NODI=9
TX0047651	12/31/2023	TX1S	Whole effluent toxicity - retest #2	NODI=9
TX0047651	6/30/2024	TX1S	Whole effluent toxicity - retest #2	NODI=9

EPA ID				Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	48HR MIN (%)	MO AV MN (%)
TX0047651	12/31/2023	TXBS	LOAEC Lethal Static Renewal 48HR Acute Daphnia pu	NODI=Q	NODI=Q
TX0047651	6/30/2024	TXBS	LOAEC Lethal Static Renewal 48HR Acute Daphnia pu	100	100

EPA ID				Reported Measure	Reported Measure	
	Monitoring Period	Outfall	Parameter	48HR MIN (pass=0;fail	MO AV MN (pass=0;fai	il=1)
TX0047651	12/31/2023	TXBS	Low Flow Pass/Fail Static Renewal 48Hr Acute Daphn	0	0	l

TX0047651	6/30/2024	TXBS	Low Flow Pass/Fail Static Renewal 48Hr Acute Daphn	0	0
				Papartad Magaura	Papartad Maggura

EPA ID				Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	48HR MIN (%)	MO AV MN (%)
TX0047651	12/31/2023	TXBS	NOAEC Lethal Statis Renewal 48 Hr Acute Daphnia p	100	100
TX0047651	6/30/2024	TXBS	NOAEC Lethal Statis Renewal 48 Hr Acute Daphnia p	100	100

EPA ID				Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	48HR MIN (pass=0;fail	MO AV MN (pass=0;fail=
TX0047651	12/31/2023	TXBS	Whole effluent toxicity - retest #1	NODI=9	NODI=9
TX0047651	6/30/2024	TXBS	Whole effluent toxicity - retest #1	NODI=9	NODI=9

EPA ID				Reported Measure	Reported Measure
	Monitoring Period	Outfall	Parameter	48HR MIN (pass=0;fail	MO AV MN (pass=0;fa
TX0047651	12/31/2023	TXBS	Whole effluent toxicity - retest #2	NODI=9	NODI=9
TX0047651	6/30/2024	TXBS	Whole effluent toxicity - retest #2	NODI=9	NODI=9

Senate Bill 709 (84th Legislative Session, 2015) amended the Texas Water Code by adding new Section 5.5553, which requires the Texas Commission on Environmental Quality (TCEQ) to provide written notice to you at least thirty (30) days prior to the TCEQ's issuance of draft permits for applications that are located in your district.

City of Temple, 3210 East Avenue H, Building A, Temple, Texas 76501, has applied to the TCEQ to renew Texas Pollutant Discharge Elimination System Permit No. WQ0010470002 (EPA I.D. No. TX0047651) to authorize the discharge of treated wastewater at a volume not to exceed an annual average flow of 7,500,000 gallons per day. The domestic wastewater treatment facility is located at 2515 East Avenue H, in the city of Temple, in Bell County, Texas 76501. The discharge route is from the plant site to an unnamed tributary, thence to Little Elm Creek, thence to Big Elm Creek, thence to Little River in Segment No. 1213 of the Brazos River Basin. TCEQ received this application on November 5, 2024. The permit application will be available for viewing and copying at City of Temple, Department of Public Works, 3210 East Avenue H, Building A, Suite 130, Temple, Texas. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

This link to an electronic map of the site or facility's general location is provided as a public courtesy and is not part of the application or notice. For the exact location, refer to the application. <u>https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.318055,31.077222&level=18</u>

TCEQ is preparing the initial draft permit. At the time the draft permit is issued, the applicant will be required to publish notice in a newspaper of general circulation, and the TCEQ will provide a copy of the notice of draft permit to persons who have requested to be on a mailing list.

Questions regarding this application may be directed to Mr. Deba Dutta, P.E., by calling 512-239-4608.

Issuance Date: _____

То:	Municipal Permits Team
	Wastewater Permitting Section
Thru:	Orlando M. Vasquez, Jr., P.E.
	Modeler, Water Quality Assessment Team
	Water Quality Assessment Section
From:	Mara Guerin
	Modeler, Water Quality Assessment Team
	Water Quality Assessment Section
Date:	February 10, 2025
Subject:	City of Temple
	Permit Renewal (WQ0010470002, TX0047651)
	Discharge to a tributary of Little River (Segment No. 1213) of the Brazos River
	Basin

The referenced applicant is proposing to renew its permit authorizing the discharge of 7.5 MGD of treated domestic wastewater into the watershed of Little River (Segment No. 1213). The facility is located in Bell County.

This permit action is for renewal of an existing authorization. A dissolved oxygen modeling analysis was previously performed for this permit on November 26, 2018, by Kristin L. Seiter. Applicable water body uses and criteria, proposed permitted flow conditions, and modeling analytical procedures pertaining to this discharge situation remain unchanged from the previous review. Therefore, the existing effluent set of **10 mg/L CBOD**₅, **2 mg/L Ammonia-Nitrogen, and 4.0 mg/L DO** is applicable to this permit. No additional modeling work was performed for the current permit action.

Segment No. 1213 is not currently listed on the State's inventory of impaired and threatened waters (the **2022** Clean Water Act Section 303(d) list). However, **Big Elm Creek (1213A)** is listed for bacteria in water (1213A_01).

The existing effluent limits have been reviewed for consistency with the State of Texas Water Quality Management Plan (WQMP). The existing limits are consistent with the approved WQMP.

То:	Municipal Permits Team Wastewater Permitting Section
From:	Jeff Paull Standards Implementation Team Water Quality Assessment Section Water Quality Division
Date:	December 12, 2024
Subject:	City of Temple; Permit no. WQ0010470002 Renewal; Application received 11/5/2024

The discharge route for the above referenced permit is to an unnamed tributary, thence to Little Elm Creek, thence to Big Elm Creeek, thence to Little River in Segment 1213 of the Brazos River Basin. The designated uses and dissolved oxygen criterion as stated in Appendix A of the Texas Surface Water Quality Standards (30 Texas Administrative Code §307.10) for Segment 1213 are primary contact recreation, public water supply, high aquatic life use, and 5.0 mg/L dissolved oxygen.

Since the discharge is directly to an unclassified water body, the permit action was reviewed in accordance with 30 Texas Administrative Code §307.4(h) and (l) of the 2022 Texas Surface Water Quality Standards and the *Procedures to Implement the Texas Surface Water Quality Standards* (June 2010). Based on available information, a preliminary determination of the aquatic life uses in the area of the discharge impact has been performed and the corresponding dissolved oxygen criterion assigned.

Unnamed tributary; minimal aquatic life use; 2.0 mg/L dissolved oxygen. Little Elm Creek; minimal aquatic life use; 2.0 mg/L dissolved oxygen.

Based on dissolved solids screening, no additional limits or monitoring requirements are needed for total dissolved solids, chloride, or sulfate.

The discharge from this permit action is not expected to have an effect on any federal endangered or threatened aquatic or aquatic dependent species or proposed species or their critical habitat. This determination is based on the United States Fish and Wildlife Service's (USFWS) biological opinion on the State of Texas authorization of the Texas Pollutant Discharge Elimination System (TPDES; September 14, 1998; October 21, 1998 update). To make this determination for TPDES permits, TCEQ and EPA only considered aquatic or aquatic dependent species occurring in watersheds of critical concern or high priority as listed in Appendix A of the USFWS biological opinion. The determination is subject to reevaluation due to subsequent updates or amendments to the biological opinion. The permit does not require EPA review with respect to the presence of endangered or threatened species.

То:	Municipal Permits Team Wastewater Permitting Section
From:	Michael B. Pfeil, Standards Implementation Team Water Quality Assessment Section Water Quality Division
Date:	February 4, 2025
Subject:	City of Temple Doshier Farm WWTP Permit No. WO0010470002

WHOLE EFFLUENT TOXICITY (WET) TESTING (BIOMONITORING)

The following information applies to Outfall 001. We recommend freshwater 48-hour acute testing and 24-hour acute testing. For both tests, we recommend a water flea (*Ceriodaphnia dubia* or *Daphnia pulex*) and the fathead minnow (*Pimephales promelas*) as test species and a testing frequency of once per quarter. We recommend a dilution series of 32%, 42%, 56%, 75%, and 100% with a critical dilution of 100%. The critical dilution is in accordance with the "Aquatic Life Criteria" section of the "Water Quality Based Effluent Limitations/Conditions" section.

For 24-hour acute testing, we recommend a testing frequency of once per six months. In the past three years, the permittee has performed ten 24-hour acute tests, with zero demonstrations of significant lethality (i.e., zero failures).

REASONABLE POTENTIAL (RP) DETERMINATION

In the past three years, the permittee has performed twelve 48-hour acute tests, with zero demonstrations of significant toxicity (i.e., zero failures).

A reasonable potential determination was performed in accordance with 40 CFR §122.44(d)(1)(ii) to determine whether the discharge will reasonably be expected to cause or contribute to an exceedance of a state water quality standard or criterion within that standard. Each test species is evaluated separately. The RP determination is based on representative data from the previous three years of 48-hour acute WET testing. This determination was performed in accordance with the methodology outlined in the TCEQ letter to the EPA dated December 28, 2015, and approved by the EPA in a letter dated December 28, 2015.

With zero failures, a determination of no RP was made. WET limits are not required and both test species are eligible for the testing frequency reduction after one year of quarterly testing.

To:	Municipal Permits Team Wastewater Permitting Section
From:	Claire Dittelmier, Water Quality Assessment Team Water Quality Assessment Section
Date:	February 4, 2025
Subject:	City of Temple Wastewater Permit No. WQ0010470002 Critical Conditions Recommendation Memo

The following information applies to **Outfall 001**.

The TexTox menu number is **1** for an intermittent water body.

This discharge is to an unnamed tributary.

Segment No.	1213
Critical Low Flow [7Q2] (cfs)	0
% Effluent for Acute Aquatic Life	100

Chronic aquatic life criteria do not apply. Human health criteria do not apply.

There is no mixing zone established for this discharge to an intermittent stream. Acute toxic criteria apply at the point of discharge.

OUTFALL LOCATION¹

Outfall Number	Latitude	Longitude
001	31.077222 N	-97.31681 W

¹ Latitude and Longitude values are approximations of the location for administrative purposes.