

This file contains the following documents:

- 1. Summary of application (in plain language)
 - English
 - Alternative Language (Spanish)
- 2. First Notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
 - English
 - Alternative Language (Spanish)
- 3. Application materials

Este archivo contiene los siguientes documentos:

- 1. Resumen en lenguaje sencillo (PLS, por sus siglas en inglés) de la actividad propuesta
 - Inglés
 - Idioma alternativo (español)
- 2. Primer aviso (NORI, por sus siglas en inglés)
 - Inglés
 - Idioma alternativo (español)
- 3. Solicitud original

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS

Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary of your facility and application as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. You may modify the template as necessary to accurately describe your facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how you will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements. After filling in the information for your facility delete these instructions.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTIC WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

City of Donna (CN#600737886) operates the Donna Wastewater Treatment Plant (RN#102080751), an Activated Sludge Wastewater Treatment Plant. The facility is located at 1800 S. River Rd., in Donna, Hidalgo County, Texas 78537. The application is for the renewal of the TPDS permit to discharge 1,800,000 gallons of domestic treated effluent per day via outfall 001.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand ($CBOD_5$), total suspended solids (TSS), ammonia nitrogen (NH_3 -N), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a bar screen, a grit chamber, aeration basins, final clarifiers, sludge drying beds, a screw press, chlorine contact chambers and a dechlorination

chamber.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES DOMESTICAS /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

City of Donna (CN#600737886) opera Donna Wastewater Treatment Plant (RN#102080751), una Planta de Tratamiento de Aguas Residuales con Lodos Activados. La instalación está ubicada en 1800 S. River Rd., en Donna, Condado de Hidalgo, Texas 78537. La solicitud es para la renovación del permiso TPDS para descargar 1,800,000 galones de efluente doméstico tratado por día a través del punto de descarga 001.

Se espera que las descargas de la instalación contengan demanda bioquímica de oxígeno carbonácea a cinco días (DBO5c), sólidos suspendidos totales (SST), nitrógeno amoniacal (NH3-N) y *Escherichia coli*. Contaminantes adicionales se incluyen en el Informe Técnico Doméstico 1.0, Sección 7. Análisis de Contaminantes del Efluente Tratado y en la Hoja de Cálculo Doméstica 4.0 del paquete de solicitud del permiso.

Las aguas residuales domésticas son tratadas en una planta de proceso de lodos activados y las unidades de tratamiento incluyen una reja de desbaste, un desarenador, tanques de aireación, clarificadores finales, camas de secado de lodos, una prensa de tornillo, cámaras de contacto con cloro y una cámara de decloración

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL.

PERMIT NO. WQ0010504001

APPLICATION. City of Donna, 307 South 12th Street, Donna, Texas 78537, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010504001 (EPA I.D. No. TX0132802) to authorize the discharge of treated wastewater at a volume not to exceed an annual average flow of 1,800,000 gallons per day. The domestic wastewater treatment facility is located at 1252 Walker Road, in the city of Donna, in Hidalgo County, Texas 78537 and approximately 0.6 miles southwest of the intersection Farm-to-Market Road 493 and Stites Road. The discharge route is from the plant site to an unnamed drainage ditch, thence to the Llano Grande portion of Arroyo Colorado Above Tidal. TCEQ received this application on September 22, 2025. The permit application will be available for viewing and copying at Donna City Hall, Bulletin Board, 307 South 12th Street, Donna, in Hidalgo County, Texas prior to the date this notice is published in the newspaper. The application is available for viewing and copying at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pendingpermits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-98.053333,26.148333&level=18

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public

interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Donna at the address stated above or by calling Mr. Sotero Valdez, Public Utilities Director, at (956) 464-3314.

Issuance Date: December 1, 2025

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ0010504001

SOLICITUD. City of Donna, 307 South 12th Street, Donna, TX 78537, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0010504001 (EPA I.D. No. TX 0132802) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio anual de 1,800,00 galones por día. La planta está ubicada 1252 Walker Road, en la cuidad de Donna, en el Condado de Hidalgo, Texas 78537 y aproximadamente 0,6 millas al suroeste de la intersección de Farm-to-Market Road 493 y Stites Road. La ruta de descarga es del sitio de la planta a hacia un canal de drenaje sin nombre, y de ahí a la porción Llano Grande del Arroyo Colorado por encima de la zona de marea. La TCEQ recibió esta solicitud el 22 de septiembre de 2025. La solicitud para el permiso estará disponible para leerla y copiarla en el Ayuntamiento de Donna, en el Tablón de Anuncios, 307 South 12th Street, Donna, en el Condado de Hidalgo, Texas, antes de la fecha de publicación de este aviso en el periódico. La solicitud está disponible para su visualización y copia en la siguiente página web:

https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-98.053333,26.148333&level=18

AVISO DE IDIOMA ALTERNATIVO. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos

o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión.

La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Además, puede pedir que la TCEQ ponga su nombre en una o más de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos del solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envía por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

INFORMACIÓN DISPONIBLE EN LÍNEA. Para detalles sobre el estado de la solicitud, favor de visitar la Base de Datos Integrada de los Comisionados en www.tceq.texas.gov/goto/cid. Para buscar en la base de datos, utilizar el número de permiso para esta solicitud que aparece en la parte superior de este aviso.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía

http://www14.tceq.texas.gov/epic/eComment/o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional del la Cuidad de Donna a la dirección indicada arriba o llamando a Sr. Sotero Valdez, Director de Servicios Públicos al (956) 464-3314.

Fecha de emisión: el 1 de diciembre de 2025

COMMISSION OF STREET

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST

Complete and submit this checklist with the application.

APPLICANT NAME: City of Donna

PERMIT NUMBER (If new, leave blank): WQ0010504001

Indicate if each of the following items is included in your application.

	Y	N		Y	N
Administrative Report 1.0	\boxtimes		Original USGS Map	\boxtimes	
Administrative Report 1.1		\boxtimes	Affected Landowners Map		\boxtimes
SPIF	\boxtimes		Landowner Disk or Labels		\boxtimes
Core Data Form	\boxtimes		Buffer Zone Map		\boxtimes
Summary of Application (PLS)	\boxtimes		Flow Diagram	\boxtimes	
Public Involvement Plan Form		\boxtimes	Site Drawing	\boxtimes	
Technical Report 1.0	\boxtimes		Original Photographs		\boxtimes
Technical Report 1.1		\boxtimes	Design Calculations		\boxtimes
Worksheet 2.0	\boxtimes		Solids Management Plan		\boxtimes
Worksheet 2.1		\boxtimes	Water Balance		\boxtimes
Worksheet 3.0		\boxtimes			
Worksheet 3.1		\boxtimes			
Worksheet 3.2		\boxtimes			
Worksheet 3.3		\boxtimes			
Worksheet 4.0	\boxtimes				
Worksheet 5.0		\boxtimes			
Worksheet 6.0	\boxtimes				
Worksheet 7.0	Total	\boxtimes			
For TCEQ Use Only					
Segment Number Expiration Date Permit Number			County Region		

STORM/SSIQUE OF THE PROPERTY O

Flow

< 0.05 MGD

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION ADMINISTRATIVE REPORT 1.0

Renewal

\$315.00 □

For any questions about this form, please contact the Applications Review and Processing Team at 512-239-4671.

New/Major Amendment

Section 1. Application Fees (Instructions Page 26)

Indicate the amount submitted for the application fee (check only one).

\$350.00 🗆

		4010.00			
≥ 0.05 but < 0.10 N	MGD \$550.00 □	\$515.00 □			
≥0.10 but <0.25 N	MGD \$850.00 □	\$815.00 □			
≥0.25 but <0.50 N	MGD \$1,250.00 □	\$1,215.00 □			
≥0.50 but <1.0 Mo	GD \$1,650.00 □	\$1,615.00 □			
≥1.0 MGD	\$2,050.00	\$2,015.00 ⊠			
Minor Amendment (for any flow) \$150.00 □					
Payment Informat	rion:				
Mailed	Check/Money Order Number: Click	to enter text.			
	Check/Money Order Amount: Click	to enter text.			
	Name Printed on Check: Click to en	ter text.			
EPAY	Voucher Number: Click to enter tex	7843367 784337			

Section 2. Type of Application (Instructions Page 26)

Copy of Payment Voucher enclosed?

a.	Che	eck the box i	next	to the appropriate authorization type.
	\boxtimes	Publicly Ov	wned	Domestic Wastewater
		Privately-C	wne	d Domestic Wastewater
		Convention	nal W	ater Treatment
b.	Che	eck the box 1	next	to the appropriate facility status.
	\boxtimes	Active		Inactive

Yes ⊠

C	Che	ck the box next to the appropriate permit type	<u>.</u>	
- 8		TPDES Permit		
		TLAP		
		TPDES Permit with TLAP component		
		Subsurface Area Drip Dispersal System (SAD)	DS)	
d.	Che	eck the box next to the appropriate application	typ	e
		New		A CAL Day over
		Major Amendment <u>with</u> Renewal	\boxtimes	Minor Amendment <u>with</u> Renewal
		Major Amendment without Renewal		Minor Amendment <u>without</u> Renewal
		Renewal without changes		Minor Modification of permit
e.	<u>dry</u> Thi	r amendments or modifications, describe the p ing beds for sludge dewatering. The City will add m is will be in addition to the sludge drying beds and will be provide the operators with redundancy and resilied dried sludge will be generated at the WWTP, no cha	vill n	ot replace the sludge drying beds, rather it not sludge dewatering. The same amounts
f.	For	r existing permits:		
	Per	rmit Number: WQ00 <u>10504001</u>		
	EP	A I.D. (TPDES only): TX <u>0024660</u>		
	Ex]	piration Date: <u>10/07/202</u> 5		
S	ecti	ion 3. Facility Owner (Applicant)	and	Co-Applicant Information

(Instructions Page 26)

A. The owner of the facility must apply for the permit.

What is the Legal Name of the entity (applicant) applying for this permit?

City of Donna

(The legal name must be spelled exactly as filed with the Texas Secretary of State, County, or in the legal documents forming the entity.)

If the applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at http://www15.tceq.texas.gov/crpub/

CN: 600737886

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in 30 TAC § 305.44.

Last Name, First Name: Pena, Jorge Prefix: Mr. Credential: Click to enter text. Title: City Manager

B. Co-applicant information. Complete this section only if another person or entity is required to apply as a co-permittee.

What is the Legal Name of the co-applicant applying for this permit?

Click to enter text.

(The legal name must be spelled exactly as filed with the TX SOS, with the County, or in the legal documents forming the entity.)

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at: http://www15.tceq.texas.gov/crpub/

CN: Click to enter text.

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in $30\ TAC\ \S\ 305.44$.

Last Name, First Name: Pena, Jorge Prefix: Mr.

Credential: Click to enter text. Title: City Manager

Provide a brief description of the need for a co-permittee: Click to enter text.

C. Core Data Form

Complete the Core Data Form for each customer and include as an attachment. If the customer type selected on the Core Data Form is Individual, complete Attachment 1 of Administrative Report 1.0. Click to enter text.

Section 4. Application Contact Information (Instructions Page 27)

This is the person(s) TCEQ will contact if additional information is needed about this application. Provide a contact for administrative questions and technical questions.

Last Name, First Name: Ramirez, Javier A. Prefix: Mr.

Title: Senior Infrastructure Advisor Credential: Class A Wastewater Operator

Organization Name: Javier Hinojosa Engineering

City, State, Zip Code: McAllen, TX 78504 Mailing Address: 416 E Dove Ave

E-mail Address: <u>jramirez.cityofdonna@gmail.com</u> Phone No.: 9563538640

Technical Contact X Administrative Contact \times Check one or both:

Last Name, First Name: Hinojosa, Javier R. Prefix: Mr.

Credential: Professional Engineer Title: Owner

Organization Name: Javier Hinojosa Engineering

City, State, Zip Code: McAllen, TX 78504 Mailing Address: 416 E Dove Ave

E-mail Address: javier@javierhinojosaeng.com Phone No.: (956) 668-1588

Technical Contact Administrative Contact Check one or both: X

Section 5. Permit Contact Information (Instructions Page 27)

Provide the names and contact information for two individuals that can be contacted throughout the permit term.

Last Name, First Name: Ramirez, Javier A. Prefix: Mr.

Title: Senior Infrastructure Advisor Credential: Class A Wastewater Operator

Organization Name: Javier Hinojosa Engineering

Mailing Address: 416 E Dove Ave

City, State, Zip Code: McAllen, TX 78504

Phone No.: 9563538640

E-mail Address: iramirez.cityofdonna@gmail.com

B. Prefix: Mr.

Last Name, First Name: Pena, Jorge

Title: City Manager

Credential: Click to enter text.

Organization Name: City of Donna

Mailing Address: 307 South 12th St

City, State, Zip Code: Donna, TX 78537

Phone No.: <u>9564643314</u>

E-mail Address: jpena@cityofdonna.org

Billing Contact Information (Instructions Page 27) Section 6.

The permittee is responsible for paying the annual fee. The annual fee will be assessed to permits in effect on September 1 of each year. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (using form TCEQ-20029).

Prefix: Ms.

Last Name, First Name: Rodriguez, Mary

Title: City Secretary

Credential: Click to enter text.

Organization Name: City of Donna

Mailing Address: 307 South 12th St

City, State, Zip Code: Donna, TX 78537

Phone No.: <u>9564643314</u>

E-mail Address: mrodriguez@cityofdonna.org

Section 7. DMR/MER Contact Information (Instructions Page 27)

Provide the name and complete mailing address of the person delegated to receive and submit Discharge Monitoring Reports (DMR) (EPA 3320-1) or maintain Monthly Effluent Reports (MER).

Prefix: Mr.

Last Name, First Name: Pena, Jorge

Title: City Manager

Credential: Click to enter text.

Organization Name: City of Donna

Mailing Address: 307 South 12th St

City, State, Zip Code: Donna, TX 78537

Phone No.: 9564643314

E-mail Address: jpena@cityofdonna.org

Public Notice Information (Instructions Page 27) Section 8.

A. Individual Publishing the Notices

Prefix: Ms.

Last Name, First Name: Rodriguez, Mary

Title: <u>City Secretary</u>

Credential: Click to enter text.

Organization Name: City of Donna

Mailing Address: 307 South 12th St

City, State, Zip Code: <u>Donna, TX 78537</u>

Phone No.: <u>9564643314</u>

E-mail Address: mrodriguez@cityofdonna.org

В.	Met	hod for	Receiving	Notic	e of Receipt and Intent to Obtain a Water Quality Permit
	Pac	kage			
	Indi	icate by	a check ma	rk the	preferred method for receiving the first notice and instructions:
	\boxtimes	E-mail	Address		
		Fax			
		Regular	r Mail		
C.	Cor	ıtact per	rmit to be l	isted	in the Notices
	Pre	fix: <u>Mr.</u>			Last Name, First Name: <u>Valdez, Sotero</u>
	Titl	e: <u>Public</u>	<u>Utilities Dir</u>	ector	Credential: Click to enter text.
	Org	ganizatio	on Name: <u>Ci</u>	ty of D	
	Mai	iling Ado	dress: <u>307 S</u>	outh 1	
	Pho	one No.:	9564643314		E-mail Address: cmoffice@cityofdonna.org
D.	Pul	olic Viev	ving Inforn	ation	
	If to	he facilit inty mus	ty or outfall st be provide	is loc ed.	ated in more than one county, a public viewing place for each
	Pul	olic build	ding name:	City H	<u>all</u>
	Loc	cation wi	ithin the bu	ilding	: <u>Bulletin Board in Lobby</u>
	Phy	ysical Ad	ddress of Bu	uilding	g: <u>307 South 12th St</u>
	Cit	y: <u>Donna</u>	1		County: <u>Hidalgo</u>
	Co	ntact (La	ast Name, Fi	rst Na	ame): <u>Valdez, Sotero</u>
	Phe	one No.:	9564643314	Ext.:	Click to enter text.
E.	Bil	ingual N	lotice Requ	ireme	ents
	mo	odificatio	on, and ren	ewal	d for new, major amendment, minor amendment or minor applications.
	be	needed.	on of the app Complete in contice pac	nstru	on is only used to determine if alternative language notices will ctions on publishing the alternative language notices will be in
	Ple ob	ease call tain the	the bilingua following in	al/ESI nform	coordinator at the nearest elementary and middle schools and ation to determine whether an alternative language notices are
	1.	- Ic a hili	ngual educa dle school n	ation ; leares	program required by the Texas Education Code at the elementary to the facility or proposed facility?
		\boxtimes	Yes		No
		If no , p below.	oublication (of an a	alternative language notice is not required; skip to Section 9
	2.	Are the	e students v gual educati	vho at on pr	tend either the elementary school or the middle school enrolled in ogram at that school?
			Yes		No

	3.	Do the location	students at n?	these	e schools	attend	a bilingua	l educ	ation prog	gram a	it another
			Yes	\boxtimes	No						
	4.		the school k							gram	but the school has
			Yes	\boxtimes	No						
	5.		nswer is ye : ed. Which laı	-							ative language are
F.	Su	mmary	of Applicat	ion ir	n Plain L	anguag	e Template	e			
			the F. Sumn n as the plai) Form 20972), ment.
	At	tachmei	nt: Click to ϵ	enter	text.						
G.	Pu	blic Inv	olvement P	lan F	orm						
			the Public In it or major a								pplication for a
	At	tachmei	nt: Click to e	enter	text.						
			TIS FILMENT L ST			TE TO SE					
Se	cti	on 9.	Regulat Page 29		Entity a	ınd Po	ermitted	Site	Inform	ation	ı (Instructions
A.			is currently : N <u>10208075</u> :		ated by T	CEQ, p	rovide the	Regula	ated Entity	y Num	ıber (RN) issued to
			TCEQ's Cen currently re				//www15.to	ceq.tex	kas.gov/cr	pub/	to determine if
B.	Na	me of p	roject or site	e (the	name kr	own by	y the comm	nunity	where loc	ated):	
	City	y of Doni	na Wastewate	er Tre	atment Pl	<u>ant</u>					
C.	Ow	mer of t	reatment fa	cility:	City of D	<u>onna</u>					
	Ow	mership	of Facility:	\boxtimes	Public		Private		Both		Federal
D.	Ow	mer of l	and where t	reatm	ient facil	ity is o	r will be:				
	Pre	fix: <u>Mr.</u>			Las	st Name	e, First Nan	ne: <u>Mo</u>	reno, Davi	<u>d</u>	
	Tit	le: <u>Mayo</u>	<u>r</u>		Cre	edentia	l: Click to e	enter t	ext.		
	Org	ganizatio	on Name: <u>Ci</u>	ty of I	<u>Donna</u>						
	Ma	iling Ad	dress: <u>307 S</u>	outh 1	2th St		City, State,	Zip C	ode: <u>Donn</u>	a, TX	<u> 78537</u>
	Pho	one No.:	9564643314		E-	mail Ao	ldress: <u>jpe</u> n	na@city	ofdonna.o	rg	
			owner is not or deed rec						or co-ap	olican	t, attach a lease
		Attachr	nent: Click t	n ent	er tevt						

E.	Owner of effluent disposal site:	
	Prefix: Click to enter text.	Last Name, First Name: Click to enter text.
	Title: Click to enter text.	Credential: Click to enter text.
	Organization Name: Click to ente	er text.
	Mailing Address: Click to enter t	ext. City, State, Zip Code: Click to enter text.
	Phone No.: Click to enter text.	E-mail Address: Click to enter text.
	If the landowner is not the same agreement or deed recorded ease	person as the facility owner or co-applicant, attach a lease ement. See instructions.
	Attachment: Click to enter to	ext.
F.	Owner sewage sludge disposal si property owned or controlled by	ite (if authorization is requested for sludge disposal on the applicant)::
	Prefix: Click to enter text.	Last Name, First Name: Click to enter text.
	Title: Click to enter text.	Credential: Click to enter text.
	Organization Name: Click to ente	er text.
	Mailing Address: Click to enter to	ext. City, State, Zip Code: Click to enter text.
	Phone No.: Click to enter text.	E-mail Address: Click to enter text.
	If the landowner is not the same agreement or deed recorded ease	person as the facility owner or co-applicant, attach a lease ement. See instructions.
	Attachment: Click to enter te	xt.
·		
Se	ction 10. TPDES Discharg	ge Information (Instructions Page 31)
A.	Is the wastewater treatment facil	ity location in the existing permit accurate?
	⊠ Yes □ No	
		n, please give an accurate description:
	Click to enter text.	
В.	Are the point(s) of discharge and	the discharge route(s) in the existing permit correct?
	⊠ Yes □ No	
	If no , or a new or amendment pe point of discharge and the discharge TAC Chapter 307:	ermit application, provide an accurate description of the rge route to the nearest classified segment as defined in 30
	Click to enter text.	
	City nearest the outfall(s): <u>Donna</u>	
	County in which the outfalls(s) is/	are located: Hidalgo
C.		lischarge to a city, county, or state highway right-of-way, or
	⊠ Yes □ No	

	If yes , indicate by a check mark if:
	For new and amendment applications, provide copies of letters that show proof of contact and the approval letter upon receipt.
	Attachment: Click to enter text.
D.	For all applications involving an average daily discharge of 5 MGD or more, provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge: Cameron County , Hidalgo County
Se	ection 11. TLAP Disposal Information (Instructions Page 32)
A.	For TLAPs, is the location of the effluent disposal site in the existing permit accurate?
	□ Yes □ No
	If no, or a new or amendment permit application , provide an accurate description of the disposal site location:
	N/A
B.	City nearest the disposal site: Click to enter text.
	County in which the disposal site is located: Click to enter text.
D.	For TLAPs, describe the routing of effluent from the treatment facility to the disposal site:
	N/A
E.	For TLAPs , please identify the nearest watercourse to the disposal site to which rainfall
	runoff might flow if not contained: <u>N/A</u>
Ça	ction 12. Miscellaneous Information (Instructions Page 32)
A.	Is the facility located on or does the treated effluent cross American Indian Land?
	•
	□ Yes ⊠ No
В.	•
В.	\square Yes \boxtimes No If the existing permit contains an onsite sludge disposal authorization, is the location of the
В.	\square Yes \boxtimes No If the existing permit contains an onsite sludge disposal authorization, is the location of the sewage sludge disposal site in the existing permit accurate?
В.	☐ Yes ☐ No If the existing permit contains an onsite sludge disposal authorization, is the location of the sewage sludge disposal site in the existing permit accurate? ☐ Yes ☐ No ☐ Not Applicable If No, or if a new onsite sludge disposal authorization is being requested in this permit

C.	Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?
	□ Yes ⊠ No
	If yes, list each person formerly employed by the TCEQ who represented your company and was paid for service regarding the application: Click to enter text.
D.	Do you owe any fees to the TCEQ?
	□ Yes ⊠ No
	If yes , provide the following information:
	Account number: Click to enter text.
	Amount past due: Click to enter text.
E.	Do you owe any penalties to the TCEQ?
	□ Yes ⊠ No
	If yes , please provide the following information:
	Enforcement order number: Click to enter text.
	Amount past due: Click to enter text.
Se	ection 13. Attachments (Instructions Page 33)
_	ection 13. Attachments (Instructions Page 33) dicate which attachments are included with the Administrative Report. Check all that apply:
_	
Inc	dicate which attachments are included with the Administrative Report. Check all that apply: Lease agreement or deed recorded easement, if the land where the treatment facility is located or the effluent disposal site are not owned by the applicant or co-applicant.
Ind	Lease agreement or deed recorded easement, if the land where the treatment facility is located or the effluent disposal site are not owned by the applicant or co-applicant. Original full-size USGS Topographic Map with the following information: • Applicant's property boundary • Treatment facility boundary • Labeled point of discharge for each discharge point (TPDES only) • Highlighted discharge route for each discharge point (TPDES only) • Onsite sewage sludge disposal site (if applicable) • Effluent disposal site boundaries (TLAP only) • New and future construction (if applicable) • 1 mile radius information • 3 miles downstream information (TPDES only) • All ponds.
Ind	Lease agreement or deed recorded easement, if the land where the treatment facility is located or the effluent disposal site are not owned by the applicant or co-applicant. Original full-size USGS Topographic Map with the following information: Applicant's property boundary Treatment facility boundary Labeled point of discharge for each discharge point (TPDES only) Highlighted discharge route for each discharge point (TPDES only) Onsite sewage sludge disposal site (if applicable) Effluent disposal site boundaries (TLAP only) New and future construction (if applicable) 1 mile radius information 3 miles downstream information (TPDES only)
Inc	Lease agreement or deed recorded easement, if the land where the treatment facility is located or the effluent disposal site are not owned by the applicant or co-applicant. Original full-size USGS Topographic Map with the following information: • Applicant's property boundary • Treatment facility boundary • Labeled point of discharge for each discharge point (TPDES only) • Highlighted discharge route for each discharge point (TPDES only) • Onsite sewage sludge disposal site (if applicable) • Effluent disposal site boundaries (TLAP only) • New and future construction (if applicable) • 1 mile radius information • 3 miles downstream information (TPDES only) • All ponds.

Section 14. Signature Page (Instructions Page 34)

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: WQ0010504001

Applicant: City of Donna

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory name (typed or printed): Jorge Pena

Signatory title: City Manager

(Use blue ink)	<u> </u>		
Subscribed and Sworn to before	e me by the	said Jorge Pen	a, City Manager
on this 22nd	day of	September	, 20 <u>25</u> .
My commission expires on the_	215+	_day of <u>November</u>	, 20 <u>28</u> *

Notary Public

Signature:

Hidalgo County, Texas 9/20/28

BELINDA TOSCA
Notary Public, State of Texas
Comm. Expires 11-21-2028
Notary ID 130908086

ISEAL1

Date:

DOMESTIC WASTEWATER PERMIT APPLICATION ADMINISTRATIVE REPORT 1.0

The following information is required for new and amendment applications.

Section 1. Affected Landowner Information (Instructions Page 36)

5e	an (o	n 1. Affecteu Landowner imormation (mo
Α.	Indio follo	cate by a check mark that the landowners map or drawing, with scale, includes the owing information, as applicable:
		The applicant's property boundaries
		The facility site boundaries within the applicant's property boundaries
		The distance the buffer zone falls into adjacent properties and the property boundaries of the landowners located within the buffer zone
		The property boundaries of all landowners surrounding the applicant's property (Note: if the application is a major amendment for a lignite mine, the map must include the property boundaries of all landowners adjacent to the new facility (ponds).)
		The point(s) of discharge and highlighted discharge route(s) clearly shown for one mile downstream
		The property boundaries of the landowners located on both sides of the discharge route for one full stream mile downstream of the point of discharge
		The property boundaries of the landowners along the watercourse for a one-half mile radius from the point of discharge if the point of discharge is into a lake, bay, estuary, or affected by tides
		The boundaries of the effluent disposal site (for example, irrigation area or subsurface drainfield site) and all evaporation/holding ponds within the applicant's property
		The property boundaries of all landowners surrounding the effluent disposal site
		The boundaries of the sludge land application site (for land application of sewage sludge for beneficial use) and the property boundaries of landowners surrounding the applicant's property boundaries where the sewage sludge land application site is located
		The property boundaries of landowners within one-half mile in all directions from the applicant's property boundaries where the sewage sludge disposal site (for example, sludge surface disposal site or sludge monofill) is located
В.	□ ado	Indicate by a check mark that a separate list with the landowners' names and mailing dresses cross-referenced to the landowner's map has been provided.
C.	□ lab	Indicate by a check mark that the landowners list has also been provided as mailing els in electronic format (Avery 5160).
	Dis	ovide the source of the landowners' names and mailing addresses: <u>Hidalgo County Appraisal</u>
E.	As thi	required by $Texas\ Water\ Code\ \S\ 5.115$, is any permanent school fund land affected by sapplication?
		□ Yes ⊠ No

	If yo	es, provide the location and foreseeable impacts and effects this application has on the
		ck to enter text.
C		on 2. Original Photographs (Instructions Page 38)
Pr	ovide	e original ground level photographs. Indicate with checkmarks that the following ation is provided.
1111		At least one original photograph of the new or expanded treatment unit location
		At least two photographs of the existing/proposed point of discharge and as much area downstream (photo 1) and upstream (photo 2) as can be captured. If the discharge is to an open water body (e.g., lake, bay), the point of discharge should be in the right or left edge of each photograph showing the open water and with as much area on each respective side of the discharge as can be captured.
		At least one photograph of the existing/proposed effluent disposal site
		A plot plan or map showing the location and direction of each photograph
Se	ectio	on 3. Buffer Zone Map (Instructions Page 38)
Α.	info	Fer zone map. Provide a buffer zone map on 8.5×11 -inch paper with all of the following rmation. The applicant's property line and the buffer zone line may be distinguished by a dashes or symbols and appropriate labels.
	•	The applicant's property boundary; The required buffer zone; and Each treatment unit; and The distance from each treatment unit to the property boundaries.
В.		Fer zone compliance method. Indicate how the buffer zone requirements will be met. ck all that apply.
	i	□ Ownership
	[☐ Restrictive easement
	[□ Nuisance odor control
	[□ Variance
C.		uitable site characteristics. Does the facility comply with the requirements regarding uitable site characteristic found in 30 TAC § 309.13(a) through (d)?
	[□ Yes □ No

DOMESTIC WASTEWATER PERMIT APPLICATION SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

This form applies to TPDES permit applications only. Complete and attach the Supplemental Permit information Form (SPIF) (TCEQ Form 20971).

Attachment: SPIF TCEQ Form 20971

WATER QUALITY PERMIT

PAYMENT SUBMITTAL FORM

Use this form to submit the Application Fee, if the mailing the payment.

- Complete items 1 through 5 below.
- Staple the check or money order in the space provided at the bottom of this document.
- Do Not mail this form with the application form.
- Do not mail this form to the same address as the application.
- Do not submit a copy of the application with this form as it could cause duplicate permit entries.

Mail this form and the check or money order to:

BY REGULAR U.S. MAIL

Texas Commission on Environmental Quality Financial Administration Division Cashier's Office, MC-214 P.O. Box 13088 Austin, Texas 78711-3088 BY OVERNIGHT/EXPRESS MAIL

Texas Commission on Environmental Quality Financial Administration Division Cashier's Office, MC-214 12100 Park 35 Circle Austin, Texas 78753

Fee Code: WQP Waste Permit No: WQ0010504001

- 1. Check or Money Order Number: Click to enter text.
- 2. Check or Money Order Amount: Click to enter text.
- 3. Date of Check or Money Order: Click to enter text.
- 4. Name on Check or Money Order: Click to enter text.
- 5. APPLICATION INFORMATION

Name of Project or Site: City of Donna Wastewater Treatment Plant

Physical Address of Project or Site: 1800 S. River Rd, Donna, TX 78537

If the check is for more than one application, attach a list which includes the name of each Project or Site (RE) and Physical Address, exactly as provided on the application.

Staple Check or Money Order in This Space

ATTACHMENT 1

INDIVIDUAL INFORMATION

Section 1. Individual Information (Instructions Page 41)

Complete this attachment if the facility applicant or co-applicant is an individual. Make additional copies of this attachment if both are individuals.

Prefix (Mr., Ms., Miss): Click to enter text.

Full legal name (Last Name, First Name, Middle Initial): Click to enter text.

Driver's License or State Identification Number: Click to enter text.

Date of Birth: Click to enter text.

Mailing Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Phone Number: Click to enter text. Fax Number: Click to enter text.

E-mail Address: Click to enter text.

CN: Click to enter text.

For Commission Use Only:

Customer Number:

Regulated Entity Number:

Permit Number:

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST OF COMMON DEFICIENCIES

Below is a list of common deficiencies found during the administrative review of domestic wastewater permit applications. To ensure the timely processing of this application, please review the items below and indicate by checking Yes that each item is complete and in accordance applicable rules at 30 TAC Chapters 21, 281, and 305. If an item is not required this application, indicate by checking N/A where appropriate. Please do not submit the application until the items below have been addressed.

Core Data Form (TCEQ Form No. 10400) (Required for all application types. Must be completed in its entirety Note: Form may be signed by applicant representative.)		Yes		
Correct and Current Industrial Wastewater Permit Application Form (TCEQ Form Nos. 10053 and 10054. Version dated 6/25/2018 or late	is er.)			Yes
Water Quality Permit Payment Submittal Form (Page 19) (Original payment sent to TCEQ Revenue Section. See instructions for	r ma	iiling aa	□ ldres	Yes
7.5 Minute USGS Quadrangle Topographic Map Attached (Full-size map if seeking "New" permit. 8 ½ x 11 acceptable for Renewals and Amendments)				Yes
Current/Non-Expired, Executed Lease Agreement or Easement		N/A		Yes
Landowners Map (See instructions for landowner requirements)		Yes		
 Things to Know: All the items shown on the map must be labeled. The applicant's complete property boundaries must be deboundaries of contiguous property owned by the applicant. The applicant cannot be its own adjacent landowner. You handowners immediately adjacent to their property, regard from the actual facility. If the applicant's property is adjacent to a road, creek, or son the opposite side must be identified. Although the propapplicant's property boundary, they are considered potent if the adjacent road is a divided highway as identified on the map, the applicant does not have to identify the landowner the highway. 	t. mus lless strea erti ially he H	t identi of how m, the es are r affecte	fy the far land land land land	they are owners djacent to
Landowners Labels and Cross Reference List (See instructions for landowner requirements)		N/A		Yes
Electronic Application Submittal See application submittal requirements on page 23 of the instructions	.)			Yes
Original signature per 30 TAC § 305.44 - Blue Ink Preferred If signature page is not signed by an elected official or principle execu a copy of signature authority/delegation letter must be attached)	tive	officer,		Yes
Summary of Application (in Plain Language)				Yes

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

TCEQ USE ONLY:	
Application type:RenewalMajor A	
County:	Segment Number:
Admin Complete Date:	
Agency Receiving SPIF:	
Texas Historical Commission	U.S. Fish and Wildlife
Texas Parks and Wildlife Department	U.S. Army Corps of Engineers
This form applies to TPDES permit application	ns only. (Instructions, Page 53)
	CEQ will mail a copy to each agency as required by not completely addressed or further information aformation before issuing the permit. Address
Do not refer to your response to any item in the attachment for this form separately from the A application will not be declared administrativel completed in its entirety including all attachmemay be directed to the Water Quality Division's email at WQ-ARPTeam@tceq.texas.gov or by ph	administrative Report of the application. The ly complete without this SPIF form being ents. Questions or comments concerning this form a Application Review and Processing Team by
The following applies to all applications:	
1. Permittee: <u>City of Donna</u>	
Permit No. WQ00 <u>10504001</u>	EPA ID No. TX <u>0024660</u>
Address of the project (or a location descrip and county):	otion that includes street/highway, city/vicinity,
1800 S. River Rd., Donna, TX 78537	

	Provide the name, address, phone and fax number of an individual that can be contacted to answer specific questions about the property.
	Prefix (Mr., Ms., Miss): Mr.
	First and Last Name: <u>Javier Ramirez</u>
	Credential (P.E, P.G., Ph.D., etc.): <u>Class A Wastewater Operator</u>
	Title: <u>Senior Infrastructure Advisor</u>
	Mailing Address: <u>416 E Dove Ave</u>
	City, State, Zip Code: McAllen, TX 78504
	Phone No.: <u>956-668-1588</u> Ext.: Fax No.:
	E-mail Address: <u>jramirez.cityofdonna@gmail.com</u>
2.	List the county in which the facility is located: <u>Hidalgo</u>
3.	If the property is publicly owned and the owner is different than the permittee/applicant, please list the owner of the property. NA
4.	Provide a description of the effluent discharge route. The discharge route must follow the flow of effluent from the point of discharge to the nearest major watercourse (from the point of discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify the classified segment number.
	The effluent flows then are discharged into an unnamed ditch flowing into the Arroyo Colorado (Segment 2202). From the point of discharge, into an unnamed ditch, the effluent flows approximately 4.5 miles, through the unnamed ditch, through sparsely populated areas in the county then mostly through farm land, into the Arroyo Colorado (Segment 2202).
5.	Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report).
	Provide original photographs of any structures 50 years or older on the property.
	Does your project involve any of the following? Check all that apply.
	☐ Proposed access roads, utility lines, construction easements
	☐ Visual effects that could damage or detract from a historic property's integrity
	☐ Vibration effects during construction or as a result of project design
	☐ Additional phases of development that are planned for the future
	☐ Sealing caves, fractures, sinkholes, other karst features

	☐ Disturbance of vegetation or wetlands	
1.	List proposed construction impact (surface acres to be impacted, depth of excavation, see of caves, or other karst features):	aling
	<u>NA</u>	
		· · · · · · · · · · · · · · · · · · ·
2.	Describe existing disturbances, vegetation, and land use: NA	
	NA .	
	HE FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJ MENDMENTS TO TPDES PERMITS	OR
3.	List construction dates of all buildings and structures on the property:	
ł.	Provide a brief history of the property, and name of the architect/builder, if known.	- ·

TCEQ	Use	Only
------	-----	------

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)							
New Permit, Registration or Authorization (Core Data Form should be submitted with the program application.)							
Renewal (Core Data Form should be submitted with the renewal form)							
2. Customer Reference Number (if issued)	Follow this link to search	3. Regulated Entity Reference Number (if issued)					
CN 600737886	for CN or RN numbers in Central Registry**	RN 102080751					

SECTION II: Customer Information

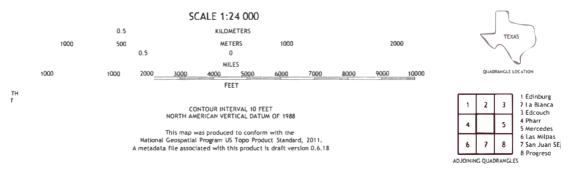
General Customer Information 5. Effective Date for Customer Information Updates (mm/dd/yyyy) 4/1/2025							
New Customer ☐ Change in Regulated Entity Ownership ☐ Change in Legal Name (Verifiable with the Texas Secretary of State or Texas Comptroller of Public Accounts)							
The Customer Name submitted here may be updated automatically based on what is current and active with the Texas Secreta	ry of State						
(SOS) or Texas Comptroller of Public Accounts (CPA).							
6. Customer Legal Name (If an individual, print last name first: eg: Doe, John) If new Customer, enter previous Customer be	elow:						
City of Donna							
7. TX SOS/CPA Filing Number 8. TX State Tax ID (11 digits) 9. Federal Tax ID (10. DUNS Numapplicable) (9 digits) 74-6000690	INS Number (if ible)						
11. Type of Customer: Corporation Individual Partnership: General	Limited						
Government: Solicy City County Federal Local State Other Sole Proprietorship Other:							
12. Number of Employees 13. Independently Owned and Operation	ed?						
□ 0-20 □ 21-100 ⊠ 101-250 □ 251-500 □ 501 and higher □ Yes ☑ No							
14. Customer Role (Proposed or Actual) – as it relates to the Regulated Entity listed on this form. Please check one of the following							
□ Owner □ Operator □ Owner & Operator □ Other: □ Occupational Licensee □ Responsible Party □ VCP/BSA Applicant							
307 South 12 th St.							
15. Mailing							
Address: City Donna State TX ZIP 78537 ZIP 4 33	337						
City Donna State TX ZIP /853/ ZIP+4 53							
16. Country Mailing Information (if outside USA) 17. E-Mail Address (if applicable)							
	jpena@cityofdonna.org						

TCEQ-10400 (11/22) Page 1 of 3

18. Telephone Number	19. Extension or Code	20. Fax Number (if applicable)
(956) 464-3314		(956) 464-9923

SECTION III: Regulated Entity Information

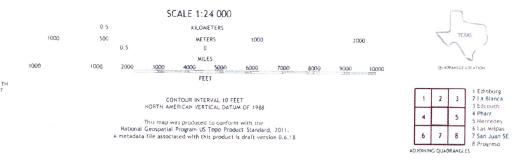
21. General Regulated Entity Information (If 'New Regulated Entity" is selected, a new permit application is also required.)


New Regulated Entity	Update 1	o Regulated Entit	y Name	Update	to Reg	ulated E	ntity Inforn	nation			
The Regulated Entity Namas Inc, LP, or LLC).	ne submitt	ed may be upd	ated, in	order to me	et TC	EQ Core	e Data Sta	ndards	(removal of oi	rganization	al endings such
22. Regulated Entity Nam	e (Enter na	me of the site whe	ere the re	gulated actio	n is ta	king plac	ce.)				
City of Donna Wastewater Tr	eatment Pla	nt									
23. Street Address of the Regulated Entity:	1800 S. River Rd										
(No PO Boxes)	City	Donna		State	ТХ		ZIP	7853	7	ZIP + 4	
24. County											
· · · · · · · · · · · · · · · · · · ·	I	If no Stre	eet Addr	ress is provi	ded, 1	ields 2!	5-28 are re	equired.	•		
25. Description to Physical Location:	0.6 miles S	Southwest of the i	ntersectio	on of FM 493	and St	tites Rd.					
26. Nearest City								State		Nea	rest ZIP Code
Donna								TX		7853	7
Latitude/Longitude are re	equired an	d may be added	d/update	ed to meet	TCEQ	Core D	ata Stando	ards. (G	eocoding of th	ne Physical	Address may be
used to supply coordinate	es where n	one have been	provided	d or to gain	ассиі	acy).					
27. Latitude (N) In Decim	al:	26.148333				28. Lo	ngitude (\	W) In De	ecimal:	-98.0533	33
Degrees	Minutes		Second	ls		Degree	25		Minutes		Seconds
26		8		54			98		3		12
29. Primary SIC Code	30). Secondary SIC	Code				NAICS Co	ode	32. Seco	ndary NAI	CS Code
(4 digits)	(4	digits)			(5 o	r 6 digit:	5)		(5 or 6 dig	gits)	
4952					2213	320					
33. What is the Primary B	usiness of	this entity? (Do not rep	peat the SIC o	r NAIC	S descri _l	otion.)				
Wastewater Collection and Tr	reatment										
	307 Sout	h 12 th St									
34. Mailing									4.4.00		
Address:	City	Donna		State	тх		ZIP	7853	7	ZIP + 4	3337
35. E-Mail Address:	jp	ena@cityofdonna	,org								
36. Telephone Number			37. E	xtension or	Code		38. I	ax Num	nber (if applicab	ile)	
(956) 464-3314							(956) 464-99)23		
CEO-10400 (11/22)											Page 2 of 3

form. See the Core Dat	a Form instructions for additiona	l guidance.				
☐ Dam Safety	Districts	Edwards Aquifer	Emissions Ir		ventory Air	☐ Industrial Hazardous Waste
Municipal Solid	Waste Review Air	☐ OSSF		Petroleum S	torage Tank	☐ PWS
Sludge	Storm Water	☐ Title V Air		Tires		☐ Used Oil
☐ Voluntary Clean	up 🛮 🖾 Wastewater	☐ Wastewater Agricu	lture [] Water Rights	5	Other:
	WQ0010504001					
SECTION I	V: Preparer In	<u>formation</u>				
40. Name: Javi	er Ramirez		41. Title:	Senior Infra	astructure Adv	isor
42. Telephone Nun	aber 43. Ext./Code	44. Fax Number	45. E-Mail	Address		
(956) 353-8640		() -	jramirez.city	ofdonna@gm	ail.com	
SECTION V	: Authorized S	Signature				
	low, I certify, to the best of my kn behalf of the entity specified in Se					e, and that I have signature authority entified in field 39.
Company:	City of Donna		Job Title:	City Mana	iger	
Name (In Print):	Jorge Pena				Phone:	(956) 464- 3314
Signature:					Date:	9/22/25

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this

TCEQ-10400 (11/22) Page 3 of 3



Javier A. Ramírez, CWP
956-353-8640
javier@artisanservicesgroup.com

USGS MAP

Javier A. Ramírez, CWP
956-353-8640
javier@artisanservicesgroup.com

USGS MAP

DONNA, TX

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS

Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary of your facility and application as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. You may modify the template as necessary to accurately describe your facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how you will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements. After filling in the information for your facility delete these instructions.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTIC WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

City of Donna (CN#600737886) operates the Donna Wastewater Treatment Plant (RN#102080751), an Activated Sludge Wastewater Treatment Plant. The facility is located at 1800 S. River Rd., in Donna, Hidalgo County, Texas 78537. The application is for the renewal of the TPDS permit to discharge 1,800,000 gallons of domestic treated effluent per day via outfall 001.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), ammonia nitrogen (NH₃-N), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a bar screen, a grit chamber, aeration basins, final clarifiers, sludge drying beds, a screw press, chlorine contact chambers and a dechlorination

chamber.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES DOMESTICAS /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

City of Donna (CN#600737886) opera Donna Wastewater Treatment Plant (RN#102080751), una Planta de Tratamiento de Aguas Residuales con Lodos Activados. La instalación está ubicada en 1800 S. River Rd., en Donna, Condado de Hidalgo, Texas 78537. La solicitud es para la renovación del permiso TPDS para descargar 1,800,000 galones de efluente doméstico tratado por día a través del punto de descarga 001.

Se espera que las descargas de la instalación contengan demanda bioquímica de oxígeno carbonácea a cinco días (DBO5c), sólidos suspendidos totales (SST), nitrógeno amoniacal (NH3-N) y *Escherichia coli*. Contaminantes adicionales se incluyen en el Informe Técnico Doméstico 1.0, Sección 7. Análisis de Contaminantes del Efluente Tratado y en la Hoja de Cálculo Doméstica 4.0 del paquete de solicitud del permiso.

Las aguas residuales domésticas son tratadas en una planta de proceso de lodos activados y las unidades de tratamiento incluyen una reja de desbaste, un desarenador, tanques de aireación, clarificadores finales, camas de secado de lodos, una prensa de tornillo, cámaras de contacto con cloro y una cámara de decloración

INSTRUCTIONS

- 1. Enter the name of applicant in this section. The applicant name should match the name associated with the customer number.
- 2. Enter the Customer Number in this section. Each Individual or Organization is issued a unique 11-digit identification number called a CN (e.g. CN123456789).
- 3. Choose "operates" in this section for existing facility applications or choose "proposes to operate" for new facility applications.
- 4. Enter the name of the facility in this section. The facility name should match the name associated with the regulated entity number.
- 5. Enter the Regulated Entity number in this section. Each site location is issued a unique 11-digit identification number called an RN (e.g. RN123456789).
- 6. Choose the appropriate article (a or an) to complete the sentence.
- 7. Enter a description of the facility in this section. For example: steam electric generating facility, nitrogenous fertilizer manufacturing facility, etc.
- 8. Choose "is" for an existing facility or "will be" for a new facility.
- 9. Enter the location of the facility in this section.
- 10. Enter the City nearest the facility in this section.
- 11. Enter the County nearest the facility in this section.
- 12. Enter the zip code for the facility address in this section.
- 13. Enter a summary of the application request in this section. For example: renewal to discharge 25,000 gallons per day of treated domestic wastewater, new application to discharge process wastewater and stormwater on an intermittent and flow-variable basis, or major amendment to reduce monitoring frequency for pH, etc. If more than one outfall is included in the application, provide applicable information for each individual outfall.
- 14. List all pollutants expected in the discharge from this facility in this section. If applicable, refer to the pollutants from any federal numeric effluent limitations that apply to your facility.
- 15. Enter the discharge types from your facility in this section (e.g., stormwater, process wastewater, once through cooling water, etc.)
- 16. Choose the appropriate verb tense to complete the sentence.
- 17. Enter a description of the wastewater treatment used at your facility. Include a description of each process, starting with initial treatment and finishing with the outfall/point of disposal. Use additional lines for individual discharge types if necessary.

Questions or comments concerning this form may be directed to the Water Quality Division's Application Review and Processing Team by email at wq-ARPTeam@tceq.texas.gov or by phone at (512) 239-4671.

Example 1: Industrial Wastewater TPDES Application (ENGLISH)

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

ABC Corporation (CN600000000) operates the Starr Power Station (RN10000000000), a two-unit gas-fired electric generating facility. Unit 1 has a generating capacity of 393 megawatts (MWs) and Unit 2 has a generating capacity of 528 MWs. The facility is located at 1356 Starr Street, near the City of Austin, Travis County, Texas 78753.

This application is for a renewal to discharge 870,000,000 gallons per day of once through cooling water, auxiliary cooling water, and also authorizes the following waste streams monitored inside the facility (internal outfalls) before it is mixed with the other wastewaters authorized for discharge via main Outfall 001, referred to as "previously monitored effluents" (low-volume wastewater, metal-cleaning waste, and stormwater (from diked oil storage area yards and storm drains)) via Outfall 001. Low-volume waste sources, metal-cleaning waste, and stormwater drains on a continuous and flow-variable basis via internal Outfall 101.

The discharge of once through cooling water via Outfall 001 and low-volume waste and metal-cleaning waste via Outfall 101 from this facility is subject to federal effluent limitation guidelines at 40 CFR Part 423. The pollutants expected from these discharges based on 40 CFR Part 423 are: free available chlorine, total residual chlorine, total suspended solids, oil and grease, total iron, total copper, and pH. Temperature is also expected from these discharges. Additional potential pollutants are included in the Industrial Wastewater Application Technical Report, Worksheet 2.0.

Cooling water and boiler make-up water are supplied by Lake Starr Reservoir. The City of Austin municipal water plant (CN600000000, PWS 00000) supplies the facility's potable water and serves as an alternate source of boiler make-up water. Water from the Lake Starr Reservoir is withdrawn at the intake structure and treated with sodium hypochlorite to prevent biofouling and sodium bromide as a chlorine enhancer to improve efficacy and then passed through condensers and auxiliary equipment on a once-through basis to cool equipment and condense exhaust steam.

Low-volume wastewater from blowdown of boiler Units 1 and 2 and metal-cleaning wastes receive no treatment prior to discharge via Outfall 101. Plant floor and equipment drains and stormwater runoff from diked oil storage areas, yards, and storm drains are routed through an oil and water separator prior to discharge via Outfall 101. Domestic wastewater, blowdown, and backwash water from the service water filter, clarifier, and sand filter are routed to the Starr Creek Domestic Sewage Treatment Plant, TPDES Permit No. WQ0010000001, for treatment and disposal. Metal-cleaning waste from equipment cleaning is generally disposed of off-site.

Example 2: Domestic Wastewater TPDES Renewal application

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

The City of Texas (CN000000000) operates the City of Texas wastewater treatment plant (RN00000000), an activated sludge process plant operated in the complete mix mode. The facility is located at 123 Texas Street, near the City of More Texas, Texas County, Texas 71234.

This application is for a renewal to discharge at an annual average flow of 1,200,000 gallons per day of treated domestic wastewater via Outfalls 001 and 002.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), ammonia nitrogen (NH₃-N), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a bar screen, a grit chamber, aeration basins, final clarifiers, sludge digesters, a belt filter press, chlorine contact chambers and a dechlorination chamber.

Example 3: Domestic Wastewater TPDES New Application

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

The City of Texas (CN000000000) proposes to operate the City of Texas wastewater treatment plant (RN00000000), an activated sludge process plant operated in the extended aeration mode. The facility will be located at 123 Texas Street, in the City of More Texas, Texas County, Texas 71234.

This application is for a new application to discharge at a daily average flow of 200,000 gallons per day of treated domestic wastewater.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), ammonia nitrogen (NH₃-N), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent in the permit application package. Domestic wastewater will be treated by an activated sludge process plant and the treatment units will include a bar screen, a grit chamber, aeration basins, final clarifiers, sludge digesters, a belt filter press, chlorine contact chambers and a dechlorination chamber.

Example 4: Domestic Wastewater TLAP Renewal application

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations

of the permit application.

The City of Texas (CN000000000) operates the City of Texas wastewater treatment plant (RN00000000), an activated sludge process plant operated in the complete mix mode. The facility is located at 123 Texas Street, near the City of More Texas, Texas County, Texas 71234.

This application is for a renewal to dispose a daily average flow not to exceed 76,500 gallons per day of treated domestic wastewater via public access subsurface drip irrigation system with a minimum area of 32 acres. This permit will not authorize a discharge of pollutants into water in the state.

Land application of domestic wastewater from the facility are expected to contain five-day biochemical oxygen demand (BOD_s), total suspended solids (TSS), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a bar screen, an equalization basin, an aeration basin, a final clarifier, an aerobic sludge digester, tertiary filters, and a chlorine contact chamber. In addition, the facility includes a temporary storage that equals to at least three days of the daily average flow.

STATE OF THE PARTY OF THE PARTY

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671.

The following information is required for all renewal, new, and amendment applications.

Section 1. Permitted or Proposed Flows (Instructions Page 42)

A. Existing/Interim I Phase

Design Flow (MGD): 1.8

2-Hr Peak Flow (MGD): 5.4

Estimated construction start date: Click to enter text.

Estimated waste disposal start date: Click to enter text.

B. Interim II Phase

Design Flow (MGD): Click to enter text.

2-Hr Peak Flow (MGD): Click to enter text.

Estimated construction start date: Click to enter text.

Estimated waste disposal start date: Click to enter text.

C. Final Phase

Design Flow (MGD): Click to enter text.

2-Hr Peak Flow (MGD): Click to enter text.

Estimated construction start date: Click to enter text.

Estimated waste disposal start date: Click to enter text.

D. Current Operating Phase

Provide the startup date of the facility: Existing Phase

Section 2. Treatment Process (Instructions Page 42)

A. Current Operating Phase

Provide a detailed description of the treatment process. **Include the type of treatment plant, mode of operation, and all treatment units.** Start with the plant's head works and

finish with the point of discharge. Include all sludge processing and drying units. If more than one phase exists or is proposed, a description of *each phase* must be provided.

Wastewater flows into an on-site lift station where it is lifted to the headworks for screening and grit removal. The influent is then split at a flow splitter box with portions going to three parallel extended aeration activated sludge basin units. Mixed liquor from the aeration basins then flow to final circular center feed/ peripheral weir clarifiers for settling where sludge is removed and returned to the head of the aeration process. Clarified effluent flows to a chlorine contact chamber for disinfection followed by sodium thiosulfate injection for de-chlorination. The effluent flows then are discharged into an unnamed ditch flowing into the Arroyo Colorado (Segment 2202). Waste activated sludge is gravity fed to either the existing sludge drying beds or a mechanical screw press where it is dewatered and ultimately disposed at a local landfill.

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) of each treatment unit, accounting for *all* phases of operation.

Table 1.0(1) - Treatment Units

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
Plant Lift Station	1	18' x 36'
Headworks Structure	1	80' x 14' x 16'
Aeration Basins	3	110' x 55' x 15'
Clarifiers	3	(2) 54'D x 12.5' & (1) 70'D x 12.5'
RAS/WAS Pump Stations	1	26' x 12' x 18'
Sludge/Grit/Grease Drying Beds	8	20' x 45' x 2.5'
Mechanical Dewatering Area	1	
Chlorine Contact Basin	1	30' x 40' x 6'
De-Chlorination Contact Basin	1	54' x 4' x 6'

C. Process Flow Diagram

Provide flow diagrams for the existing facilities and each proposed phase of construction.

Attachment: Process Flow Diagram

Section 3. Site Information and Drawing (Instructions Page 43)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

Latitude: <u>26.147628</u>Longitude: <u>98.051751</u>

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

Latitude: <u>Click to enter text.</u>
Longitude: <u>Click to enter text.</u>

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and
- If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Attachment: <u>Click to enter text.</u> Provide the name and a description of the area served by the treatment facility.	
City of Donna	

Collection System Information **for wastewater TPDES permits only**: Provide information for each **uniquely owned** collection system, existing and new, served by this facility, including satellite collection systems. **Please see the instructions for a detailed explanation and examples.**

Collection System Information

Collection System Name	Owner Name	Owner Type	Population Served
City of Donna Collection System	City of Donna	Publicly Owned	16,774
		Choose an item.	
		Choose an item.	
		Choose an item.	

Section 4. Unbuilt Phases (Instructions Page 44)

section 4. Official Phases (instructions Page 44)		
Is the application for a renewal of a permit that contains an unbuilt phase or phases?		
□ Yes ⊠ No		
if yes, does the existing permit contain a phase that has not been constructed within five years of being authorized by the TCEQ?		
□ Yes □ No		
If yes, provide a detailed discussion regarding the continued need for the unbuilt phase. Failure to provide sufficient justification may result in the Executive Director recommending denial of the unbuilt phase or phases.		

_		
(Click to enter text.	
L		
S	ection 5. Closure Plans (Instructions Page 44)	
		•
	ave any treatment units been taken out of service permanently, or will any units be taken at of service in the next five years?	
	□ Yes ⊠ No	
If	yes , was a closure plan submitted to the TCEQ?	
	□ Yes □ No	
If	yes, provide a brief description of the closure and the date of plan approval.	
(lick to enter text.	
a	etion C. Downit Considia Deminorate (Instruction Demo	
) (ection 6. Permit Specific Requirements (Instructions Page 44)	
	r applicants with an existing permit, check the Other Requirements or Special ovisions of the permit.	
A.	Summary transmittal	
	Have plans and specifications been approved for the existing facilities and each proposed phase?	
	□ Yes ⊠ No	
	If yes, provide the date(s) of approval for each phase: Click to enter text.	
	Provide information, including dates, on any actions taken to meet a <i>requirement or</i>	
	provision pertaining to the submission of a summary transmittal letter. Provide a copy of an approval letter from the TCEQ, if applicable.	

	Click to enter text.			
В.	Buffer zones			
	Have the buffer zone requirements been met?			
	⊠ Yes □ No			
	Provide information below, including dates, on any actions taken to meet the condition the buffer zone. If available, provide any new documentation relevant to maintaining the buffer zones.			
	City continues to work to secure legal restrictions in buffer zones not owned by the city.			
C.	Other actions required by the current permit			
	Does the <i>Other Requirements</i> or <i>Special Provisions</i> section in the existing permit require submission of any other information or other required actions? Examples include Notification of Completion, progress reports, soil monitoring data, etc.			
	□ Yes ⊠ No			
	If yes, provide information below on the status of any actions taken to meet the conditions of an <i>Other Requirement</i> or <i>Special Provision</i> .			
	Click to enter text.			
D.	Grit and grease treatment			
	1. Acceptance of grit and grease waste			
	Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?			
	□ Yes ⊠ No			
	If No, stop here and continue with Subsection E. Stormwater Management.			
	2. Grit and grease processing			

Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment

		and grease is processed at the facility.
		Click to enter text.
	3.	Grit disposal
		Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal?
		□ Yes □ No
		If No, contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.
		Describe the method of grit disposal.
		Click to enter text.
	4.	Grease and decanted liquid disposal
		Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335.
		Describe how the decant and grease are treated and disposed of after grit separation.
		Click to enter text.
167	C+n	
E.		ormwater management
		Applicability Does the facility have a design flow of 1 0 MCD on greater in any phase?
		Does the facility have a design flow of 1.0 MGD or greater in any phase?
		⊠ Yes □ No
		Does the facility have an approved pretreatment program, under 40 CFR Part 403?

works and how it is separated or processed. Provide a flow diagram showing how grit

	□ Yes ⊠ No
	If no to both of the above, then skip to Subsection F, Other Wastes Received.
2.	MSGP coverage
	Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?
	□ Yes ⊠ No
	If yes , please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:
	TXR05 Click to enter text, or TXRNE Click to enter text.
	If no, do you intend to seek coverage under TXR050000?
	□ Yes ⊠ No
3.	Conditional exclusion
	Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?
	□ Yes ⊠ No
	If yes, please explain below then proceed to Subsection F, Other Wastes Received:
	Click to enter text.
4.	Existing coverage in individual permit
	Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?
	□ Yes ⊠ No
	If yes, provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.
	Click to enter text.
5.	Zero stormwater discharge
	Do you intend to have no discharge of stormwater via use of evaporation or other means?
	□ Yes ⊠ No
	If yes, explain below then skip to Subsection F. Other Wastes Received.

		Click to enter text.
		Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.
	6.	Request for coverage in individual permit
		Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?
		□ Yes ⊠ No
		If yes, provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state.
		Click to enter text.
		Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.
F.	Dis	scharges to the Lake Houston Watershed
	Do	es the facility discharge in the Lake Houston watershed?
		□ Yes ⊠ No
	-	res, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions. ok to enter text.
G.	Otl	her wastes received including sludge from other WWTPs and septic waste

1. Acceptance of sludge from other WWTPs

Does or will the facility accept sludge from other treatment plants at the facility site?

	If you attack carroes alades calide management alon Con Evenuela E of instructions
	If yes, attach sewage sludge solids management plan. See Example 5 of instructions.
	In addition, provide the date the plant started or is anticipated to start accepting sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an
	estimate of the BOD ₅ concentration of the sludge, and the design BOD ₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.
	Click to enter text.
	Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.
2.	Acceptance of septic waste
	Is the facility accepting or will it accept septic waste?
	□ Yes ⊠ No
	If yes, does the facility have a Type V processing unit?
	□ Yes □ No
	If yes, does the unit have a Municipal Solid Waste permit?
	□ Yes □ No
	If yes to any of the above , provide the date the plant started or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD₅ concentration of the septic waste, and the
	design BOD ₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.
	Click to enter text.
	Note: Demoits that agent slydge from other westweet treatment plants may be
	Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.
3.	Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)
	Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above?
	□ Yes ⊠ No
	If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or

□ Yes ⊠ No

other physical characteristic of the waste. Also note if this information has or has no
changed since the last permit action.

Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 49)

Is the facility in operation?

⊠ Yes □ No

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). *Water treatment facilities* discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. **These tables are not applicable for a minor amendment without renewal.** See the instructions for guidance.

Note: The sample date must be within 1 year of application submission.

Table 1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l	8.20	NA	1	Compo site	6/5/25 10:00 am
Total Suspended Solids, mg/l	2.4	NA	1	Compo site	6/5/25 10:00 am
Ammonia Nitrogen, mg/l	4.02	NA	1	Compo site	6/5/25 10:00 am
Nitrate Nitrogen, mg/l	3.225	NA	1	Compo site	6/5/25 10:00 am
Total Kjeldahl Nitrogen, mg/l	6.72	NA	1	Compo site	6/5/25 10:00 am
Sulfate, mg/l	550	NA	1	Compo site	6/5/25 10:00 am
Chloride, mg/l	409	NA	1	Compo site	6/5/25 10:00 am
Total Phosphorus, mg/l	3.64	NA	1	Compo site	6/5/25 10:00 am
pH, standard units	7.69	NA	1	Grab	6/18/25 9:00 am

Dissolved Oxygen*, mg/l	8.62	NA	1	Grab	6/04/25 9:45 am
Chlorine Residual, mg/l	0.03	NA	1	Grab	6/4/25 9:45 am
E.coli (CFU/100ml) freshwater	<1.0	NA	1	Grab	6/4/25 10:00 am
Entercocci (CFU/100ml) saltwater	NA	NA	NA	NA	NA
Total Dissolved Solids, mg/l	1510	NA	1	Compo site	6/5/25 10:00 am
Electrical Conductivity, µmohs/cm, †	2320	NA	1	Compo site	6/5/25 10:00 am
Oil & Grease, mg/l	<4.75	NA	1	Grab	6/4/25 9:45 am
Alkalinity (CaCO ₃)*, mg/l	80.8	NA	1	Compo site	6/5/25 10:00 am

^{*}TPDES permits only

Table 1.0(3) – Pollutant Analysis for Water Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Suspended Solids, mg/l					
Total Dissolved Solids, mg/l					
pH, standard units					
Fluoride, mg/l					
Aluminum, mg/l					
Alkalinity (CaCO ₃), mg/l					

Section 8. Facility Operator (Instructions Page 49)

Facility Operator Name: Javier F. Cavazos, Jr.

Facility Operator's License Classification and Level: <u>B/WASETWATER TREATMENT OPERATOR</u>

Facility Operator's License Number: WW0036814

Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 50)

A. WWTP's Sewage Sludge or Biosolids Management Facility Type

Check all that apply. See instructions for guidance

- \boxtimes Design flow>= 1 MGD
- \boxtimes Serves >= 10,000 people
- ☐ Class I Sludge Management Facility (per 40 CFR § 503.9)

[†]TLAP permits only

		Biosolids generator							
		Biosolids end user – land application (onsite)							
		Biosolids end user – surface disposal (onsite)							
		Biosolids end user – incinerator (onsite)							
В.	ww	TP's Sewage Sludge or Biosolids Treatment Process							
		ck all that apply. See instructions for guidance.							
	\boxtimes	Aerobic Digestion							
		Air Drying (or sludge drying beds)							
		Lower Temperature Composting							
		Lime Stabilization							
		Higher Temperature Composting							
		Heat Drying							
		Thermophilic Aerobic Digestion							
		Beta Ray Irradiation							
		Gamma Ray Irradiation							
		Pasteurization							
		Preliminary Operation (e.g. grinding, de-gritting, blending)							
		Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter)							
		Sludge Lagoon							
		Temporary Storage (< 2 years)							
		Long Term Storage (>= 2 years)							
		Methane or Biogas Recovery							
	\boxtimes	Other Treatment Process: Mechanical Dewatering							

C. Sewage Sludge or Biosolids Management

Provide information on the *intended* sewage sludge or biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize all sewage sludge or biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

Biosolids Management

Management Practice	Handler or Preparer Type	Bulk or Bag Container	Amount (dry metric tons)	Pathogen Reduction Options	Vector Attraction Reduction Option	
Disposal in Landfill	On-Site Owner or Operator	Bulk		N/A: Disposal in Landfill	N/A: Disposal in Landfill	

Management Practice	Handler or Preparer Type	Bulk or Bag Container	Amount (dry metric tons)	Pathogen Reduction Options	Vector Attraction Reduction Option
Disposal in Landfill	Off-site Third-Party Handler or Preparer	Bulk		N/A: Disposal in Landfill	N/A: Disposal in Landfill
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): Click to enter text.

D. Disposal site

Disposal site name: Edinburg Regional Disposal Facility

TCEQ permit or registration number: <u>956C</u> County where disposal site is located: <u>Hidalgo</u>

E. Transportation method

Method of transportation (truck, train, pipe, other): Truck

Name of the hauler: City of Donna Solid Waste Department/Denali

Hauler registration number: <u>26769/</u>

Sludge is transported as a:

Section 10. Permit Authorization for Sewage Sludge Disposal (Instructions Page 52)

A. Beneficial use authorization

Does tl	he exi	sting	permit	include	authoriz	ation	for	land	application	ı of	biosoli	ds i	for
benefic	cial us	e?											
П	Vac	∇	Mo										

If yes, are you requesting to continue this authorization to land apply biosolids for beneficial use?

□ Yes □ No

If yes, is the completed Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451) attached to this permit application (see the instructions for details)?

□ Yes □ No

B. Sludge processing authorization

Does the existing permit include authorization for any of the following sludge processing, storage or disposal options?

Slu	idge Composting		Yes	\boxtimes	No
Ма	rketing and Distribution of Biosolids		Yes	\boxtimes	No
Slu	idge Surface Disposal or Sludge Monofill		Yes	\boxtimes	No
Te	mporary storage in sludge lagoons		Yes	\boxtimes	No
author	to any of the above sludge options and the rization, is the completed Domestic Wastev ical Report (TCEQ Form No. 10056) attach	vate	r Permit A	Appli	ication: Sewage Sludge
	Yes □ No				
Section	11. Sewage Sludge Lagoons (Ins	truo	tions F	age	53)
to the group of the section of the section of the	facility include sewage sludge lagoons?				
	es \boxtimes No				
	nplete the remainder of this section. If no, p	proce	eed to Sec	tion	12.
A. Locati	on information				
	ollowing maps are required to be submitted le the Attachment Number.	as p	art of the	appl	ication. For each map,
•	Original General Highway (County) Map:				
	Attachment: Click to enter text.				
∞	USDA Natural Resources Conservation Serv	лice S	Soil Map:		
	Attachment: Click to enter text.				
•	Federal Emergency Management Map:				
	Attachment: Click to enter text.				
•	Site map:				
	Attachment : Click to enter text.				
Discus apply.	s in a description if any of the following ex	ist w	ithin the	lagoo	on area. Check all that
	Overlap a designated 100-year frequency	flood	l plain		
	Soils with flooding classification				
	Overlap an unstable area				
	Wetlands				
	Located less than 60 meters from a fault				
	None of the above				
Att	achment: Click to enter text.				
	rtion of the lagoon(s) is located within the 1 otective measures to be utilized including ty				

	Click to enter text.
В.	Temporary storage information
	Provide the results for the pollutant screening of sludge lagoons. These results are in addition to pollutant results in <i>Section 7 of Technical Report 1.0.</i>
	Nitrate Nitrogen, mg/kg: Click to enter text.
	Total Kjeldahl Nitrogen, mg/kg: Click to enter text.
	Total Nitrogen (=nitrate nitrogen + TKN), mg/kg: Click to enter text.
	Phosphorus, mg/kg: Click to enter text.
	Potassium, mg/kg: Click to enter text.
	pH, standard units: <u>Click to enter text.</u>
	Ammonia Nitrogen mg/kg: Click to enter text.
	Arsenic: Click to enter text.
	Cadmium: Click to enter text.
	Chromium: Click to enter text.
	Copper: Click to enter text.
	Lead: <u>Click to enter text.</u>
	Mercury: Click to enter text.
	Molybdenum: Click to enter text.
	Nickel: Click to enter text.
	Selenium: <u>Click to enter text.</u>
	Zinc: Click to enter text.
	Total PCBs: Click to enter text.
	Provide the following information:
	Volume and frequency of sludge to the lagoon(s): Click to enter text.
	Total dry tons stored in the lagoons(s) per 365-day period: Click to enter text.
	Total dry tons stored in the lagoons(s) over the life of the unit: <u>Click to enter text.</u>
C.	Liner information
	Does the active/proposed sludge lagoon(s) have a liner with a maximum hydraulic conductivity of $1x10^{-7}$ cm/sec?
	□ Yes □ No

C.

	If yes	s, describe the liner below. Please note that a liner is required.
	Clicl	t to enter text.
	Site d	evelopment plan
	Provi	de a detailed description of the methods used to deposit sludge in the lagoon(s):
	Click	to enter text.
4	Attac	h the following documents to the application.
	•	Plan view and cross-section of the sludge lagoon(s)
		Attachment: Click to enter text.
	•	Copy of the closure plan
		Attachment: Click to enter text.
	•	Copy of deed recordation for the site
		Attachment: Click to enter text.
	•	Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons
		Attachment: Click to enter text.
	•	Description of the method of controlling infiltration of groundwater and surface water from entering the site
		Attachment: Click to enter text.
	•	Procedures to prevent the occurrence of nuisance conditions
		Attachment: Click to enter text.
(Groui	ndwater monitoring
٤	groun	undwater monitoring currently conducted at this site, or are any wells available for dwater monitoring, or are groundwater monitoring data otherwise available for the lagoon(s)?
		Yes ⊠ No
ŧ	ypes	andwater monitoring data are available, provide a copy. Provide a profile of soil encountered down to the groundwater table and the depth to the shallowest dwater as a separate attachment.
	At	tachment: Click to enter text.

Section 12. Authorizations/Compliance/Enforcement (Instructions Page 54)

Α.	Additional authorizations	
	Does the permittee have additional authorizations for this facility, such as reuse uthorization, sludge permit, etc?	
	□ Yes ⊠ No	
	f yes, provide the TCEQ authorization number and description of the authorization:	
C	k to enter text.	
В.	ermittee enforcement status	
	s the permittee currently under enforcement for this facility?	
	□ Yes ⊠ No	
	s the permittee required to meet an implementation schedule for compliance or inforcement?	
	□ Yes ⊠ No	
	f yes to either question, provide a brief summary of the enforcement, the implementati chedule, and the current status:	or.
C]	k to enter text.	
11.1		
Se	tion 13. RCRA/CERCLA Wastes (Instructions Page 55)	
4.	CRA hazardous wastes	
	as the facility received in the past three years, does it currently receive, or will it receive CRA hazardous waste?	e
	□ Yes ⊠ No	

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

□ Yes ⊠ No

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment: Click to enter text.

Section 14. Laboratory Accreditation (Instructions Page 55)

All laboratory tests performed must meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the Signature Page section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Jorge Pena

Title: City Manager

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

Section 1. Domestic Drinking Water Supply (Instructions Page 63)
Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge?
□ Yes ⊠ No
If no , proceed it Section 2. If yes , provide the following:
Owner of the drinking water supply: <u>Click to enter text.</u>
Distance and direction to the intake: <u>Click to enter text</u> .
Attach a USGS map that identifies the location of the intake.
Attachment: Click to enter text.
Section 2. Discharge into Tidally Affected Waters (Instructions Page 63)
Does the facility discharge into tidally affected waters?
□ Yes ⊠ No
If no , proceed to Section 3. If yes , complete the remainder of this section. If no , proceed to Section 3.
A. Receiving water outfall
Width of the receiving water at the outfall, in feet: Click to enter text.
B. Oyster waters
Are there oyster waters in the vicinity of the discharge?
□ Yes ⊠ No
If yes, provide the distance and direction from outfall(s).
Click to enter text.
C. Sea grasses
Are there any sea grasses within the vicinity of the point of discharge?
□ Yes ⊠ No

If yes, provide the distance and direction from the outfall(s).

Click to enter text.

Section 3. Classified Segments (Instructions Page 63) Is the discharge directly into (or within 300 feet of) a classified segment? Yes 🛛 No If yes, this Worksheet is complete. If no, complete Sections 4 and 5 of this Worksheet. **Description of Immediate Receiving Waters (Instructions** Section 4. **Page 63)** Name of the immediate receiving waters: Unnamed Ditch A. Receiving water type Identify the appropriate description of the receiving waters. Stream Freshwater Swamp or Marsh Lake or Pond Surface area, in acres: Click to enter text. Average depth of the entire water body, in feet: Click to enter text. Average depth of water body within a 500-foot radius of discharge point, in feet: Click to enter text. Man-made Channel or Ditch \boxtimes Open Bay Tidal Stream, Bayou, or Marsh Other, specify: Click to enter text. B. Flow characteristics If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area upstream of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one). Intermittent - dry for at least one week during most years Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses Perennial - normally flowing Check the method used to characterize the area upstream (or downstream for new dischargers). □ USGS flow records

Historical observation by adjacent landowners

Personal observation

Other, specify: Click to enter text.

 \times

	downs			
	Unna	med Ditch		
D.	Down	stream characteristics		
		e receiving water characteristics arge (e.g., natural or man-made		vithin three miles downstream of the nds, reservoirs, etc.)?
		Yes ⊠ No		
	If yes,	, discuss how.		
	Click	to enter text.		
				i
**	D. II			
		al dry weather characteristics		
	Provid	e general observations of the w	<u>-</u>	during normal dry weather conditions.
	Provid	e general observations of the w	<u>-</u>	during normal dry weather conditions.
	Provid	e general observations of the w	<u>-</u>	
	Provid	e general observations of the w	<u>-</u>	
	Provid	e general observations of the w	<u>-</u>	
	Provid Wet d	e general observations of the w	grass and	
	Provid Wet d Date a	e general observations of the warring dry weather conditions with	grass and	native vegetation surrounding the ditch.
	Provid Wet d Date a	e general observations of the waring dry weather conditions with and time of observation: 04/01/2	grass and	native vegetation surrounding the ditch.
	Provid Wet d Date a Was th	te general observations of the watering dry weather conditions with and time of observation: 04/01/2 ne water body influenced by sto Yes No	grass and	native vegetation surrounding the ditch. runoff during observations?
	Provid Wet d Date a Was th	te general observations of the water ing dry weather conditions with and time of observation: o4/o1/2 The water body influenced by sto Yes \to No 5. General Characterical conditions with the water body influenced by sto Yes \to No	grass and	native vegetation surrounding the ditch.
	Provid Wet d Date a Was th	te general observations of the watering dry weather conditions with and time of observation: 04/01/2 ne water body influenced by sto Yes No	grass and	native vegetation surrounding the ditch. runoff during observations?
Sec	Provid Wet d Date a Was th	te general observations of the water ing dry weather conditions with and time of observation: o4/o1/2 The water body influenced by sto Yes \to No 5. General Characterical conditions with the water body influenced by sto Yes \to No	grass and	native vegetation surrounding the ditch. runoff during observations?
Sec. 4. 1	Provid Wet d Date a Was th Ction Upstre	nd time of observations of the water body influenced by sto Yes No General Characteric Page 65) cam influences	grass and 2025 rmwater stics of	runoff during observations? the Waterbody (Instructions) the discharge or proposed discharge site
Sec. 4. 1	Provid Wet d Date a Was th Ction Upstre	nd time of observations of the water body influenced by sto Yes No General Characteric Page 65) cam influences immediate receiving water upst	grass and 2025 rmwater stics of	runoff during observations? the Waterbody (Instructions) the discharge or proposed discharge site
Sec	Provid Wet d Date a Was th Ction Upstre Is the influer	nd time of observations of the water body influenced by sto Yes No General Characteric Page 65) cam influences immediate receiving water upstoned by any of the following? Claracteric Page 65 can be supported by any of the following? Claracteric Page 65 can be supported by any of the following? Claracteric Page 65 can be supported by any of the following? Claracteric Page 65 can be supported by any of the following? Claracteric Page 65 can be supported by any of the following? Claracteric Page 65 can be supported by any of the following? Claracteric Page 65 can be supported by any of the following? Claracteric Page 65 can be supported by any of the following? Claracteric Page 65 can be supported by any of the following? Claracteric Page 65 can be supported by any of the following?	grass and 2025 rmwater stics of	runoff during observations? the Waterbody (Instructions) the discharge or proposed discharge site nat apply.

C. Downstream perennial confluences

B.	Waterbody uses					
	Observed or evidences of the following uses. Check all that apply.					
		Livestock watering		Contact recreation		
		Irrigation withdrawal		Non-contact recreation		
		Fishing		Navigation		
		Domestic water supply		Industrial water supply		
		Park activities		Other(s), specify: <u>Click to enter text.</u>		
C.	Waterl	oody aesthetics				
	the aesthetics of the receiving water and					
	 Wilderness: outstanding natural beauty; usually wooded or unpastured area clarity exceptional 					
	\boxtimes	Natural Area: trees and/or native fields, pastures, dwellings); water	~	ation; some development evident (from ty discolored		
		Common Setting: not offensive; de or turbid	evelop	oed but uncluttered; water may be colored		
		Offensive: stream does not enhance dumping areas: water discolored	ce aes	thetics; cluttered; highly developed;		

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Toxic Pollutants (Instructions Page 76)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab □ Composite □

Date and time sample(s) collected: Click to enter text.

Table 4.0(1) - Toxics Analysis

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL. (μg/l)
Acrylonitrile	<10		1	50
Aldrin	<0.01		1	0.01
Aluminum	22		1	2.5
Anthracene	<10		1	10
Antimony	<5		1	5
Arsenic	<0.5		1	0.5
Barium	<3		1	3
Benzene	<10		1	10
Benzidine	<50		1	50
Benzo(a)anthracene	<5		1	5
Benzo(a)pyrene	<5		1	5
Bis(2-chloroethyl)ether	<10		1	10
Bis(2-ethylhexyl)phthalate	<10		1	10
Bromodichloromethane	<10		1	10
Bromoform	<10		1	10
Cadmium	<1		1	1
Carbon Tetrachloride	<2		1	2
Carbaryl	<5		1	5
Chlordane*	<0.2	**************************************	1	0.2
Chlorobenzene	<10		1	10
Chlorodibromomethane	<10		1	10

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Chloroform	<10		1	10
Chlorpyrifos	<0.05		1	0.05
Chromium (Total)	<3		1	3
Chromium (Tri) (*1)	<5.00		1	N/A
Chromium (Hex)	<3	<u>" ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</u>	1	3
Copper	<4		1	2
Chrysene	<5		1	5
p-Chloro-m-Cresol	<10		1	10
4,6-Dinitro-o-Cresol	<50		1	50
p-Cresol	<10		1	10
Cyanide (*2)	<10		1	10
4,4'- DDD	<0.1		1	0.1
4,4'- DDE	<0.1		1	0.1
4,4'- DDT	<0.02		1	0.02
2,4-D	<0.7		1	0.7
Demeton (O and S)	<0.20		1	0.20
Diazinon	<0.5		1	0.5/0.1
1,2-Dibromoethane	<10		1	10
m-Dichlorobenzene	<10		1	10
o-Dichlorobenzene	<10		1	10
p-Dichlorobenzene	<10		1	10
3,3'-Dichlorobenzidine	<10		1	5
1,2-Dichloroethane	<10		1	10
1,1-Dichloroethylene	<10		1	10
Dichloromethane	<20		1	20
1,2-Dichloropropane	<10		1	10
1,3-Dichloropropene	<10		1	10
Dicofol	<1		1	1
Dieldrin	<0.02		1	0.02
2,4-Dimethylphenol	<10		1	10
Di-n-Butyl Phthalate	<10		1	10
Diuron	<0.09		1	0.09
Endosulfan I (alpha)	<0.01		1	0.01

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Endosulfan II (beta)	<0.02		1	0.02
Endosulfan Sulfate	<0.1		1	0.1
Endrin	<0.02		1	0.02
Epichlorohydrin				
Ethylbenzene	<10		1	10
Ethylene Glycol				
Fluoride	<500		1	500
Guthion	<0.1		1	0.1
Heptachlor	<0.01		1	0.01
Heptachlor Epoxide	<0.01		1	0.01
Hexachlorobenzene	<10		1	5
Hexachlorobutadiene	<10		1	10
Hexachlorocyclohexane (alpha)	<0.05		1	0.05
Hexachlorocyclohexane (beta)	<0.05		1	0.05
gamma-Hexachlorocyclohexane	<0.05		1	0.05
(Lindane)				
Hexachlorocyclopentadiene	<10		1	10
Hexachloroethane	<20		1	20
Hexachlorophene	<10		1	10
4,4'-Isopropylidenediphenol	<1		1	1
Lead	4		1	0.5
Malathion	<0.1		1	0.1
Mercury	<5.00		1	0.005
Methoxychlor	<2		1	2
Methyl Ethyl Ketone	<50		1	50
Methyl tert-butyl ether			1	
Mirex	<0.02		1	0.02
Nickel	3		1	2
Nitrate-Nitrogen	<100		1	100
Nitrobenzene	<10		1	10
N-Nitrosodiethylamine	<20		1	20
N-Nitroso-di-n-Butylamine	<20		1	20
Nonylphenol	<333		1	333

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Parathion (ethyl)	<0.1		1	0.1
Pentachlorobenzene	<20		1	20
Pentachlorophenol	<5		1	5
Phenanthrene	<10		1	10
Polychlorinated Biphenyls (PCB's) (*3)	<0.2		1	0.2
Pyridine	<20		1	20
Selenium	<5		1	5
Silver	<0.5		1	0.5
1,2,4,5-Tetrachlorobenzene	<20		1	20
1,1,2,2-Tetrachloroethane	<10		1	10
Tetrachloroethylene	<10		1	10
Thallium	<0.5		1	0.5
Toluene	<10		1	10
Toxaphene	<0.3		1	0.3
2,4,5-TP (Silvex)	<0.3		1	0.3
Tributyltin (see instructions for explanation)	<0.01		1	0.01
1,1,1-Trichloroethane	<10		1	10
1,1,2-Trichloroethane	<10		1	10
Trichloroethylene	<10		1	10
2,4,5-Trichlorophenol	<50		1	50
TTHM (Total Trihalomethanes)	<10		1	10
Vinyl Chloride	<10		1	10
Zinc	<5		1	5

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

^(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab □ Composite □

Date and time sample(s) collected: Click to enter text.

Table 4.0(2)A - Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Antimony	<5		1	5
Arsenic	<0.5		1	0.5
Beryllium	<0.5		1	0.5
Cadmium	<1		1	1
Chromium (Total)	<3		1	3
Chromium (Hex)	<3		1	3
Chromium (Tri) (*1)	<5.00		1	N/A
Copper	4		1	2
Lead	<0.2		11	0.5
Mercury	<5.00		1	0.005
Nickel	3		1	2
Selenium	<5		1	5
Silver	<0.5		1	0.5
Thallium	<0.5		1	0.5
Zinc	5		1	5
Cyanide (*2)	<10		1	10
Phenols, Total	<10		1	10

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)B - Volatile Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrolein	<10		1	50
Acrylonitrile	<10		1	50
Benzene	<10		1	10
Bromoform	<10		1	10
Carbon Tetrachloride	<2		1	2
Chlorobenzene	<10		1	10
Chlorodibromomethane	<10		1	10
Chloroethane	<10		1	50
2-Chloroethylvinyl Ether	<10		1	10
Chloroform	<10		1	10
Dichlorobromomethane [Bromodichloromethane]	<10		1	10
1,1-Dichloroethane	<10		1	10
1,2-Dichloroethane	<10		1	10
1,1-Dichloroethylene	<10		1	10
1,2-Dichloropropane	<10		1	10
1,3-Dichloropropylene	<10		1	10
[1,3-Dichloropropene]				
1,2-Trans-Dichloroethylene	<10		1	10
Ethylbenzene	<10		1	10
Methyl Bromide	<50		1	50
Methyl Chloride	<50		1	50
Methylene Chloride	<20		1	20
1,1,2,2-Tetrachloroethane	<10		1	10
Tetrachloroethylene	<10		1	10
Toluene	<10		1	10
1,1,1-Trichloroethane	<10		1	10
1,1,2-Trichloroethane	<10		1	10
Trichloroethylene	<10		1	10
Vinyl Chloride	<10		1	10

Table 4.0(2)C - Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
2-Chlorophenol	<10		1	10
2,4-Dichlorophenol	<10		1	10
2,4-Dimethylphenol	<10		1	10
4,6-Dinitro-o-Cresol	<50		1	50
2,4-Dinitrophenol	<10		1	50
2-Nitrophenol	<20		1	20
4-Nitrophenol	<50		1	50
P-Chloro-m-Cresol	<10		1	10
Pentalchlorophenol	<5		1	5
Phenol	<10		1	10
2,4,6-Trichlorophenol	<10		pend	10

Table 4.0(2)D - Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acenaphthene	<10		1	10
Acenaphthylene	<10		1	10
Anthracene	<10		1	10
Benzidine	<50		1	50
Benzo(a)Anthracene	<5		1	5
Benzo(a)Pyrene	<5		1	5
3,4-Benzofluoranthene	<10		1	10
Benzo(ghi)Perylene	<20		1	20
Benzo(k)Fluoranthene	<5		1	5
Bis(2-Chloroethoxy)Methane	<10		1	10
Bis(2-Chloroethyl)Ether	<10		1	10
Bis(2-Chloroisopropyl)Ether	<10		1	10
Bis(2-Ethylhexyl)Phthalate	<10		1	10
4-Bromophenyl Phenyl Ether	<10		1	10
Butyl benzyl Phthalate	<10		1	10
2-Chloronaphthalene	<10		1	10
4-Chlorophenyl phenyl ether	<10		1	10
Chrysene	<5		1	5
Dibenzo(a,h)Anthracene	<5		1	5
1,2-(o)Dichlorobenzene	<10		1	10
1,3-(m)Dichlorobenzene	<10		1	10
1,4-(p)Dichlorobenzene	<10	·	1	10
3,3-Dichlorobenzidine	<5		1	5
Diethyl Phthalate	<10		1	10
Dimethyl Phthalate	<10		1	10
Di-n-Butyl Phthalate	<10		1	10
2,4-Dinitrotoluene	<10		1	10
2,6-Dinitrotoluene	<10	****	1	10
Di-n-Octyl Phthalate	<10		1	10
1,2-Diphenylhydrazine (as Azobenzene)	<20		1	20
Fluoranthene	<10		1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Fluorene	<10		1	10
Hexachlorobenzene	<10		1	5
Hexachlorobutadiene	<10		1	10
Hexachlorocyclo-pentadiene	<10		1	10
Hexachloroethane	<20		1	20
Indeno(1,2,3-cd)pyrene	<5		1	5
Isophorone	<10		1	10
Naphthalene	<10		1	10
Nitrobenzene	<10		1	10
N-Nitrosodimethylamine	<50		1	50
N-Nitrosodi-n-Propylamine	<20		1	20
N-Nitrosodiphenylamine	<20		1	20
Phenanthrene	<10		1	10
Pyrene	<10		1	10
1,2,4-Trichlorobenzene	<10	b	1	10

Table 4.0(2)E - Pesticides

AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
<0.01		1	0.01
<0.05		1	0.05
<0.05		1	0.05
<0.05		1	0.05
<0.05		1	0.05
<0.2		1	0.2
<0.02		1	0.02
<0.1		1	0.1
<0.1		1	0.1
<0.02		1	0.02
<0.01		1	0.01
<0.02		1	0.02
<0.1		1	0.1
<0.02		1	0.02
<0.1		1	0.1
<0.01		1	0.01
<0.01		1	0.01
<0.2		1	0.2
<0.2		1	0.2
<0.2		1	0.2
<0.2		1	0.2
<0.2		1	0.2
<0.2		1	0.2
<0.2		1	0.2
<0.3		1	0.3
	Effluent Conc. (µg/l) <0.01 <0.05 <0.05 <0.05 <0.05 <0.02 <0.02 <0.1 <0.02 <0.01 <0.02 <0.1 <0.02 <0.1 <0.02 <0.1 <0.02 <0.1 <0.02 <0.1 <0.02 <0.1 <0.02 <0.1 <0.02 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.	Effluent Conc. (μg/l) Effluent Conc. (μg/l) <0.01	Effluent Conc. (μg/l) Effluent Conc. (μg/l) Samples <0.01

^{*} For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Section 3. Dioxin/Furan Compounds

Α.		te which of the following compounds from may be present in the influent from a buting industrial user or significant industrial user. Check all that apply.			
		2,4,5-trichlorophenoxy acetic acid			
		Common Name 2,4,5-T, CASRN 93-76-5			
		2-(2,4,5-trichlorophenoxy) propanoic acid			
		Common Name Silvex or 2,4,5-TP, CASRN 93-72-1			
		2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate			
		Common Name Erbon, CASRN 136-25-4			
		0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate			
		Common Name Ronnel, CASRN 299-84-3			
		2,4,5-trichlorophenol			
		Common Name TCP, CASRN 95-95-4			
		hexachlorophene			
	Common Name HCP, CASRN 70-30-4				
	For each compound identified, provide a brief description of the conditions of its/their presence at the facility.				
	Click to enter text.				
В.		know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin or any congeners of TCDD may be present in your effluent?			
		Yes ⊠ No			
	If yes,	provide a brief description of the conditions for its presence.			
	Click	to enter text.			

C.	If any of the	compounds in Subsection A ${f or}$ B are present, complete Table 4.0(2)F.
	For pollutan	ts identified in Table 4.0(2)F, indicate the type of sample.
	Grab □	Composite 🗆 —————
	Date and tin	ne sample(s) collected: Click to enter text

Table 4.0(2)F - Dioxin/Furan Compounds

Compound	Toxic Equivalenc y Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1					10
1,2,3,7,8 PeCDD	0.5					50
2,3,7,8 HxCDDs	0.1					50
1,2,3,4,6,7,8 HpCDD	0.01					50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05					50
2,3,4,7,8 PeCDF	0.5					50
2,3,7,8 HxCDFs	0.1					50
2,3,4,7,8 HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					0.5
PCB 81	0.0003					0.5
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total						

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works.

Section 1. All POTWs (Instructions Page 87)

A. Industrial users (IUs)

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

If there are no users, enter 0 (zero).
Categorical IUs:
Number of IUs: \underline{o}
Average Daily Flows, in MGD: \underline{o}
Significant IUs - non-categorical:
Number of IUs: <u>o</u>
Average Daily Flows, in MGD: \underline{o}
Other IUs:
Number of IUs: <u>o</u>
Average Daily Flows, in MGD: o

B. Treatment plant interference

In the past three years,	has your POTW	' experienced	treatment p	lant interf	'erence (see
instructions)?		_	•			

□ Yes ⊠ No

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

Click to enter text.		

C.	Treatment plant pass through
	In the past three years, has your POTW experienced pass through (see instructions)?
	□ Yes ⊠ No
	If yes, identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.
	Click to enter text.
D.	Pretreatment program
	Does your POTW have an approved pretreatment program?
	□ Yes ⊠ No
	If yes, complete Section 2 only of this Worksheet.
	Is your POTW required to develop an approved pretreatment program?
	□ Yes ⊠ No
	If yes, complete Section 2.c. and 2.d. only, and skip Section 3.
	If no to either question above , skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.
Se	ction 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 87)
A.	Substantial modifications
	Have there been any substantial modifications to the approved pretreatment program that have not been submitted to the TCEQ for approval according to <i>40 CFR §403.18</i> ?
	□ Yes □ No
	If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.
	N <u>A</u>

B. Non-substa	antial modifications			
	been any non-substantia nat have not been submitt			
□ Yes	s □ No			
	tify all non-substantial m he purpose of the modifi		nat have not been	submitted to TCEQ,
N <u>A</u>				
In Table 6.0 monitoring	arameters above the MAI 0(1), list all parameters m g during the last three yea Parameters Above the MAI	easured above ers. Submit an		
Pollutant	Concentration	MAL	Units	Date
D. Industrial	user interruptions			
Has any SIU	J, CIU, or other IU caused es or pass throughs) at yo			
□ Yes	i □ No			
	tify the industry, describe lems, and probable pollu		, including dates,	duration, description
N <u>A</u>				

Section 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 88)

A.	General information
	Company Name: Click to enter text.
	SIC Code: Click to enter text.
	Contact name: Click to enter text.
	Address: Click to enter text.
	City, State, and Zip Code: <u>Click to enter text.</u>
	Telephone number: <u>Click to enter text.</u>
	Email address: <u>Click to enter text.</u>
B.	Process information
	Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).
	N <u>A</u>
C.	Product and service information
	Provide a description of the principal product(s) or services performed.
	N <u>A</u>
D.	Flow rate information
	See the Instructions for definitions of "process" and "non-process wastewater."
	December 147 - Assessment and
	Process Wastewater:
	Discharge, in gallons/day: <u>Click to enter text.</u>
	Discharge, in gallons/day: <u>Click to enter text.</u>
	Discharge, in gallons/day: Click to enter text. Discharge Type: \square Continuous \square Batch \square Intermittent

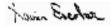
E.	Pretreatment standards
	Is the SIU or CIU subject to technically based local limits as defined in the <i>i</i> nstructions?
	□ Yes □ No
	Is the SIU or CIU subject to categorical pretreatment standards found in 40 CFR Parts 405-471?
	□ Yes □ No
	If subject to categorical pretreatment standards , indicate the applicable category and subcategory for each categorical process.
	Category: Subcategories: <u>Click to enter text.</u>
	Click or tap here to enter text. <u>Click to enter text.</u>
	Category: Click to enter text.
	Subcategories: <u>Click to enter text.</u>
	Category: <u>Click to enter text.</u>
	Subcategories: <u>Click to enter text.</u>
	Category: <u>Click to enter text</u> .
	Subcategories: <u>Click to enter text.</u>
	Category: <u>Click to enter text.</u>
	Subcategories: <u>Click to enter text</u> .
F.	Industrial user interruptions
	Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years?
	□ Yes □ No
	If yes , identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants.
	N <u>A</u>

June 24, 2025

Chris Ewert

Integrity Testing 8127 Mesa Dr #C-305 Austin, TX 78759

SATL Report No.: 2506103


RE: City of Donna Permit Renewal

Dear Chris Ewert

SATL received 1 Sample(s) on 06/05/2025 for analyses identified on the chain of custody. The analyses were performed using methods indicated on the laboratory report. Any deviations observed at sample receiving are notated on the Sample Receipt Checklist and/or Chain of Custody documents attached as part of this analytical report.

Sincerely,

For San Antonio Testing Laboratory, Inc.

Xavier Escobar Business Unit Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/24/25 13:59 Received: 06/05/25 08:00

Report No. 2506103

SAMPLE SUMMARY

Total Samples received in this work order:

The following samples were requested for analysis as per the CoC. Any re-runs or re-analyses requested are identified as such.

Sample ID	<u>Laboratory ID</u>	<u>Matrix</u>	Sampling Method	Date Sampled	Date Received
Grab Effluent	2506103-01	Liquid	Grab	06/04/25 09:45	06/05/25 08:00

Notes

All quality control samples and checks are within acceptance limits unless otherwise indicated.

Test results pertain only to those items tested.

All samples were in good condition when received by the laboratory unless otherwise noted.

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert

Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/24/25 13:59 **Received:** 06/05/25 08:00

Report No. 2506103

Sample ID #: Grab Effluent Sampling Method: Grab Lab Sample ID #: 2506103-01

Sample Matrix: Liquid Date/Time Collected: 06/04/25 09:45

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
General Chemistry									
Cyanide, Total *	<20	ug/L	20	SM4500-CNC	B524277	06/13/25 09:40	SM4500CN_E	JA	
Dissolved Oxygen *	8.62	mg/L	2.00	EPA 360.1	B523343	06/06/25 09:00	SM4500-O G	DD	Н
Oil & Grease (HEM) *	<4.75	mg/L	4.75	EPA 1664A	B523298	06/05/25 16:30	EPA 1664A	DD	Q
Residual Chlorine *	0.03	mg/L	0.01	SM4500ClG	B524304	06/05/25 10:15	SM4500ClG	JA	
Volatile Organic Compounds b	y GC/MS								AB
1,1,1-Trichloroethane *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
1,1,2,2-Tetrachloroethane *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
1,1,2-Trichloroethane *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
1,1-Dichloroethane *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
1,1-Dichloroethene *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
1,2-Dibromoethane *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
1,2-Dichlorobenzene *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
1,2-Dichloroethane *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
1,2-Dichloropropane *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
1,3-Dichlorobenzene *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
1,3-Dichloropropene	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
1,4-Dichlorobenzene *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
2-Chloroethyl Vinyl Ether *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Acrolein *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Acrylonitrile *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Benzene *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Bromodichloromethane *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Bromoform *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Bromomethane *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	CH
Carbon Tetrachloride *	<2	ug/L	2	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Chlorobenzene *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Chloroethane *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	CH
Chloroform *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Chloromethane *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	CH
cis-1,2-Dichloroethylene *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
cis-1,3-Dichloropropylene *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Chlorodibromomethane *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Ethylbenzene *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
m,p-Xylenes *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Methylene Chloride *	<20	ug/L	20	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Methyl-tert-Butyl Ether *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Naphthalene *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
o-Xylene *	<10	ug/L	10	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

www.satestinglab.com

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert

Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/24/25 13:59 **Received:** 06/05/25 08:00

Report No. 2506103

Sample ID #: Grab Effluent Sampling Method: Grab Lab Sample ID #: 2506103-01

Sample Matrix: Liquid Date/Time Collected: 06/04/25 09:45

Sample Matrix: Liquid			Da	ite/Time Collected	1: 06/04/25 09	2:45				
Analyte	Result	Unit	s PQL		Prep Meth	od Batch	Analyzed	Method	Analyst	Notes
Volatile Organic Compounds by C	GC/MS									AB
Tetrachloroethene *	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Toluene *	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
trans-1,2-Dichloroethylene *	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
trans-1,3-Dichloropropylene *	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Trichloroethene *	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Trichlorofluoromethane *	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Vinyl chloride [Chloroethene] *	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Total Trihalomethanes *	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Isopropylbenzene (Cumene)	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Methacrylonitrile	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Methyl Butyl Ketone (2-Hexanone)	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Methyl Iodide [Iodomethane]	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Methyl Isobutyl Ketone [MIBK]	< 50	ug/L	50		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Methyl Methacrylate	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Propylbenzene	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
sec-Butylbenzene	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Styrene	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
tert-Butylbenzene	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
trans-1,4-Dichloro-2-butene	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Vinyl acetate	<10	ug/L	10		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	СН
Surrogate: 4-Bromofluorobenzene		94 %	80-106		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Surrogate: Dibromofluoromethane		130 %	83-118	SurrH	EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	
Surrogate: Toluene-d8		94 %	91-109		EPA 5030B	B524252	06/10/25 16:43	EPA 624.1	ME	

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Additional Notes: Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/24/25 13:59 **Received:** 06/05/25 08:00

Report No. 2506103

General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B523298 - EPA 1664A										
Blank (B523298-BLK1)				Prepared: 0	06/04/25 16:	00 Analyz	ed: 06/04/2	5 17:45		
Oil & Grease (HEM)	<4.75	4.75	mg/L							
LCS (B523298-BS1)				Prepared: (06/04/25 16:	00 Analyz	ed: 06/04/2	5 17:46		
Oil & Grease (HEM)	40.1	4.75	mg/L	40.0		100	78-114			
LCS Dup (B523298-BSD1)				Prepared: (06/04/25 16:	00 Analyz	ed: 06/04/2	5 17:47		
Oil & Grease (HEM)	44.9	4.75	mg/L	40.0		112	78-114	11	18	
Batch B523343 - EPA 360.1										
Duplicate (B523343-DUP1)		Source: 250610	3-01	Prepared: 0	06/06/25 09:	00 Analyz	ed: 06/06/2	5 09:15		
Dissolved Oxygen	8.64	2.00	mg/L		8.62			0.3	20	Н
Batch B524277 - SM4500-CNC										
Blank (B524277-BLK1)				Prepared: 0	06/12/25 09:	00 Analyz	ed: 06/12/2	5 10:50		
Cyanide, Total	<20	20	ug/L							
LCS (B524277-BS1)				Prepared: (06/12/25 09:	00 Analyz	ed: 06/12/2	5 10:50		
Cyanide, Total	105	20	ug/L	100		105	80-120			
LCS Dup (B524277-BSD1)				Prepared: 0	06/12/25 09:	00 Analyz	ed: 06/12/2	5 10:50		
Cyanide, Total	102	20	ug/L	100		102	80-120	3	20	
Duplicate (B524277-DUP1)		Source: 250618	7-01	Prepared: (06/12/25 09:	00 Analyz	ed: 06/12/2	5 10:50		
Cyanide, Total	<20	20	ug/L		<20				20	
Matrix Spike (B524277-MS1)		Source: 250618	7-01	Prepared: 0	06/12/25 09:	00 Analyz	ed: 06/12/2	5 10:50		
Cyanide, Total	92.0	20	ug/L	100	<20	92	80-120			
Matrix Spike Dup (B524277-MSD1)		Source: 250618	7-01	Prepared: (06/12/25 09:	00 Analyz	ed: 06/12/2	5 10:50		
Cyanide, Total	90.0	20	ug/L	100	<20	90	80-120	2	20	
Batch B524304 - SM4500ClG										
Blank (B524304-BLK1)				Prepared: (06/05/25 10:	00 Analyz	ed: 06/05/2	5 10:15		
Residual Chlorine	< 0.01	0.01	mg/L							
LCS (B524304-BS1)				Prepared: (06/05/25 10:	00 Analyz	ed: 06/05/2	5 10:15		
Residual Chlorine	0.239	0.01	mg/L	0.250		96	80-120			

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Additional Notes: Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/24/25 13:59 **Received:** 06/05/25 08:00

Report No. 2506103

General Chemistry - Quality Control

		Reporting		Spike	Source		%REC		RPD
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch B524304 - SM4500ClG									
LCS Dup (B524304-BSD1)				Prepared:	06/05/25 10	:00 Analyz	zed: 06/05/2	5 10:15	
Residual Chlorine	0.234	0.01	mg/L	0.250		94	80-120	2	20
Duplicate (B524304-DUP1)		Source: 250610	03-01	Prepared:	06/05/25 10	:00 Analyz	zed: 06/05/2	5 10:15	
Residual Chlorine	0.0320	0.01	mg/L		0.0340			6	20
Matrix Spike (B524304-MS1)		Source: 250610	Source: 2506103-01		Prepared: 06/05/25 10:00 Analyze			5 10:15	
Residual Chlorine	0.280	0.01	mg/L	0.250	0.0340	98	80-120		
Matrix Spike Dup (B524304-MSD	1)	Source: 250610	03-01	Prepared:	06/05/25 10	:00 Analyz	zed: 06/05/2	5 10:15	
Residual Chlorine	0.270	0.01	mg/L	0.250	0.0340	94	80-120	4	20
Volatile Organic Compound	de by CC/MS	Quality Control							
voiathe Organic Compound	us by GC/MS - V	- v							
		Reporting		Spike	Source		%REC		RPD
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit

Batch B524252 - EPA 5030B					
Blank (B524252-BLK1)				Prepared: 06/10/25 10:00 Analyzed: 06/10/25 12:17	
1,1,1-Trichloroethane	<5	5	ug/L		
1,1,2,2-Tetrachloroethane	<5	5	ug/L		
1,1,2-Trichloroethane	<5	5	ug/L		
1,1-Dichloroethane	<5	5	ug/L		
1,1-Dichloroethene	<5	5	ug/L		
1,2-Dichlorobenzene	<5	5	ug/L		
1,2-Dichloroethane	<5	5	ug/L		
1,2-Dichloropropane	<5	5	ug/L		
1,3-Dichlorobenzene	<5	5	ug/L		
1,4-Dichlorobenzene	<5	5	ug/L		
2-Chloroethyl Vinyl Ether	<5	5	ug/L		
Acrolein	<5	5	ug/L		
Acrylonitrile	<5	5	ug/L		
Benzene	<5	5	ug/L		
Bromodichloromethane	<5	5	ug/L		
Bromoform	<5	5	ug/L		
Bromomethane	<5	5	ug/L		CH
Carbon Tetrachloride	<5	5	ug/L		

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

www.satestinglab.com

%REC

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Spike

Source

Project Number: [none]

Reporting

Reported: 06/24/25 13:59 **Received:** 06/05/25 08:00

Report No. 2506103

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B524252 - EPA 5030B										
Blank (B524252-BLK1)				Prepared: (06/10/25 10	:00 Analyz	ed: 06/10/2	5 12:17		
Chlorobenzene	<5	5	ug/L							
Chloroethane	<5	5	ug/L							CH
Chloroform	<5	5	ug/L							
Chloromethane	<5	5	ug/L							CH
cis-1,2-Dichloroethylene	<5	5	ug/L							
cis-1,3-Dichloropropylene	<5	5	ug/L							
Chlorodibromomethane	<5	5	ug/L							
Ethylbenzene	<5	5	ug/L							
m,p-Xylenes	<5	5	ug/L							
Methylene Chloride	<5	5	ug/L							
Methyl-tert-Butyl Ether	<5	5	ug/L							
Naphthalene	<5	5	ug/L							
o-Xylene	<5	5	ug/L							
Tetrachloroethene	<5	5	ug/L							
Toluene	<5	5	ug/L							
trans-1,2-Dichloroethylene	<5	5	ug/L							
trans-1,3-Dichloropropylene	<5	5	ug/L							
Trichloroethene	<5	5	ug/L							
Trichlorofluoromethane	<5	5	ug/L							
Vinyl chloride [Chloroethene]	<5	5	ug/L							
Total Trihalomethanes	<40	40	ug/L							
Isopropylbenzene (Cumene)	<5	5	ug/L							
Methacrylonitrile	<5	5	ug/L							
Methyl Butyl Ketone (2-Hexanone)	<5	5	ug/L							
Methyl Iodide [Iodomethane]	<5	5	ug/L							
Methyl Isobutyl Ketone [MIBK]	<5	5	ug/L							
Methyl Methacrylate	<5	5	ug/L							
Propylbenzene	<5	5	ug/L							
sec-Butylbenzene	<5	5	ug/L							
Styrene	<5	5	ug/L							
tert-Butylbenzene	<5	5	ug/L							
trans-1,4-Dichloro-2-butene	<5	5	ug/L							
Vinyl acetate	<2	2	ug/L							CH
Surrogate: 4-Bromofluorobenzene	44.8		ug/L	50.0		90	80-106			
Surrogate: Dibromofluoromethane	64.0		ug/L	50.0		128	83-118			SurrH

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/24/25 13:59 **Received:** 06/05/25 08:00

Report No. 2506103

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

Blank (B524252-BLK1)				Prepared: 06/10/	25 10:00 Analy	zed: 06/10/25 12:17	
Surrogate: Toluene-d8	45.5		ug/L	50.0	91	91-109	
LCS (B524252-BS1)				Prepared: 06/10/	25 10:00 Analy	zed: 06/10/25 10:21	
1,1,1-Trichloroethane	48.0	5	ug/L	50.0	96	70-130	
1,1,2,2-Tetrachloroethane	59.6	5	ug/L	50.0	119	60-140	
1,1,2-Trichloroethane	53.6	5	ug/L	50.0	107	70-130	
1,1-Dichloroethane	51.6	5	ug/L	50.0	103	70-130	
1,1-Dichloroethene	46.1	5	ug/L	50.0	92	50-150	
1,2-Dichlorobenzene	49.0	5	ug/L	50.0	98	65-135	
1,2-Dichloroethane	48.4	5	ug/L	50.0	97	70-130	
1,2-Dichloropropane	53.6	5	ug/L	50.0	107	35-165	
1,3-Dichlorobenzene	50.8	5	ug/L	50.0	102	70-130	
1,4-Dichlorobenzene	49.4	5	ug/L	50.0	99	65-135	
2-Chloroethyl Vinyl Ether	46.8	5	ug/L	50.0	94	1-225	
Acrolein	58.2	5	ug/L	50.0	116	60-140	
Acrylonitrile	53.0	5	ug/L	50.0	106	60-140	
Benzene	52.2	5	ug/L	50.0	104	65-135	
Bromodichloromethane	45.1	5	ug/L	50.0	90	65-135	
Bromoform	41.2	5	ug/L	50.0	82	70-130	
Bromomethane	68.2	5	ug/L	50.0	136	15-185	СН
Carbon Tetrachloride	49.0	5	ug/L	50.0	98	70-130	
Chlorobenzene	46.2	5	ug/L	50.0	92	65-135	
Chloroethane	69.9	5	ug/L	50.0	140	40-160	СН
Chloroform	50.9	5	ug/L	50.0	102	70-135	
Chloromethane	77.5	5	ug/L	50.0	155	1-205	СН
cis-1,2-Dichloroethylene	52.7	5	ug/L	50.0	105	63.1-136	
cis-1,3-Dichloropropylene	49.5	5	ug/L	50.0	99	25-175	
Chlorodibromomethane	43.4	5	ug/L	50.0	87	70-135	
Ethylbenzene	49.8	5	ug/L	50.0	100	60-140	
m,p-Xylenes	95.9	5	ug/L	100	96	27.4-146	
Methylene Chloride	61.8	5	ug/L	50.0	124	60-140	
Methyl-tert-Butyl Ether	51.1	5	ug/L	50.0	102	16.3-183	
Naphthalene	45.1	5	ug/L	50.0	90	5.3-152	
o-Xylene	48.0	5	ug/L	50.0	96	64.9-129	
Tetrachloroethene	42.8	5	ug/L	50.0	86	70-130	

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/24/25 13:59 **Received:** 06/05/25 08:00

Report No. 2506103

Volatile Organic Compounds by GC/MS - Quality Control

Annalogie	D14	Reporting	T.T	Spike	Source	0/DEC	%REC	DDD	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B524252 - EPA 5030B										
LCS (B524252-BS1)				Prepared: (06/10/25 10:	:00 Analyz	zed: 06/10/25	5 10:21		
Toluene	49.3	5	ug/L	50.0		99	70-130			
trans-1,2-Dichloroethylene	47.8	5	ug/L	50.0		96	70-130			
trans-1,3-Dichloropropylene	46.6	5	ug/L	50.0		93	50-150			
Trichloroethene	46.9	5	ug/L	50.0		94	65-135			
Trichlorofluoromethane	58.7	5	ug/L	50.0		117	50-150			
Vinyl chloride [Chloroethene]	65.2	5	ug/L	50.0		130	5-195			
Isopropylbenzene (Cumene)	43.0	5	ug/L	50.0		86	89.1-134			L
Methacrylonitrile	55.1	5	ug/L	50.0		110	54.3-133			
Methyl Butyl Ketone (2-Hexanone)	49.9	5	ug/L	50.0		100	52.8-142			
Methyl Iodide [Iodomethane]	43.4	5	ug/L	50.0		87	61.4-149			
Methyl Isobutyl Ketone [MIBK]	49.6	5	ug/L	50.0		99	63.1-137			
Methyl Methacrylate	45.9	5	ug/L	50.0		92	65.4-135			
Propylbenzene	51.0	5	ug/L	50.0		102	81.3-135			
sec-Butylbenzene	50.3	5	ug/L	50.0		101	85.9-132			
Styrene	47.4	5	ug/L	50.0		95	89.9-132			
tert-Butylbenzene	47.3	5	ug/L	50.0		95	83.2-135			
trans-1,4-Dichloro-2-butene	55.2	5	ug/L	50.0		110	59.9-141			
Vinyl acetate	63.6	2	ug/L	50.0		127	25.6-169			СН
Surrogate: 4-Bromofluorobenzene	55.1		ug/L	50.0		110	80-106			SurrH
Surrogate: Dibromofluoromethane	53.2		ug/L	50.0		106	83-118			
Surrogate: Toluene-d8	50.3		ug/L	50.0		101	91-109			
LCS Dup (B524252-BSD1)				Prepared: (06/10/25 10:	:00 Analyz	zed: 06/10/25	5 10:50		
1,1,1-Trichloroethane	50.0	5	ug/L	50.0		100	70-130	4	36	
1,1,2,2-Tetrachloroethane	62.7	5	ug/L	50.0		125	60-140	5	61	
1,1,2-Trichloroethane	56.0	5	ug/L	50.0		112	70-130	4	45	
1,1-Dichloroethane	53.4	5	ug/L	50.0		107	70-130	3	40	
1,1-Dichloroethene	47.8	5	ug/L	50.0		96	50-150	4	32	
1,2-Dichlorobenzene	50.0	5	ug/L	50.0		100	65-135	2	57	
1,2-Dichloroethane	50.3	5	ug/L	50.0		101	70-130	4	49	
1,2-Dichloropropane	55.5	5	ug/L	50.0		111	35-165	4	55	
1,3-Dichlorobenzene	52.2	5	ug/L	50.0		104	70-130	3	43	
1,4-Dichlorobenzene	50.7	5	ug/L ug/L	50.0		101	65-135	3	57	
2-Chloroethyl Vinyl Ether	48.1	5	ug/L ug/L	50.0		96	1-225	3	71	
Acrolein	61.6	5	ug/L ug/L	50.0		123	60-140	6	60	
Acrolein Acrylonitrile	55.6	5	ug/L ug/L	50.0		111	60-140	5	60	

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

www.satestinglab.com

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/24/25 13:59 **Received:** 06/05/25 08:00

Report No. 2506103

Volatile Organic Compounds by GC/MS - Quality Control

Prepared: 06/10/25 10:00 Analyzed: 06/10/25	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Benzene	Batch B524252 - EPA 5030B										
Bromodichloromethane	LCS Dup (B524252-BSD1)				Prepared: (06/10/25 10:	:00 Analy	zed: 06/10/2:	5 10:50		
Bromoform 43.4 5 ug/L 50.0 87 70-130 5 Bromomethane 70.0 5 ug/L 50.0 140 15-185 3 Carbon Tetrachloride 50.6 19 50.0 101 70-130 3 Chlorochane 47.2 5 ug/L 50.0 143 40-160 3 Chlorochane 71.6 5 ug/L 50.0 143 40-160 3 Chlorochane 71.6 5 ug/L 50.0 163 70-135 3 Chlorochane 79.0 5 ug/L 50.0 168 63-1-136 2 Chlorochtane 54.1 5 ug/L 50.0 168 63-1-136 3 Chlorochtane 54.1 5 ug/L 50.0 101 25-175 2 Chlorochtane 54.1 2 ug/L 50.0 101 70-135 4 Chlorochtoromethane 45.3 3	Benzene	54.4	5	ug/L	50.0		109	65-135	4	61	
Bromomethane 70.0 5 ug/L 50.0 140 15-185 3 1 1 1 1 1 1 1 1 1	Bromodichloromethane	46.3	5	ug/L	50.0		93	65-135	3	56	
Carbon Tetrachloride 50.6 5 ug/L 50.0 94 65-135 2 Chlorobenzene 47.2 5 ug/L 50.0 94 65-135 2 Chlorochtane 71.6 5 ug/L 50.0 143 40-160 3 Chloromethane 79.0 5 ug/L 50.0 158 1-205 2 Chloromethane 79.0 5 ug/L 50.0 168 63.1-136 3 Chloromethane 54.1 5 ug/L 50.0 101 25-175 2 Chlorodiromemethane 45.3 5 ug/L 50.0 91 70-155 4 Ethylbenzene 51.3 5 ug/L 50.0 91 70-155 4 Ethylbenzene 51.3 5 ug/L 50.0 99 27-4146 3 Methylene Chloride 63.5 ug/L 50.0 107 16.3-183 5 Napthalaene 48.7	Bromoform	43.4	5	ug/L	50.0		87	70-130	5	42	
Chlorobenzene	Bromomethane	70.0	5	ug/L	50.0		140	15-185	3	61	CH
Chloroethane	Carbon Tetrachloride	50.6	5	ug/L	50.0		101	70-130	3	41	
Chloroform	Chlorobenzene	47.2	5	ug/L	50.0		94	65-135	2	53	
Chloromethane	Chloroethane	71.6	5	ug/L	50.0		143	40-160	3	78	CH
cis-1,2-Dichloroethylene 54.1 5 ug/L 50.0 108 63.1-136 3 cis-1,3-Dichloropropylene 50.6 5 ug/L 50.0 101 25-175 2 Chlorodibromomethane 45.3 5 ug/L 50.0 91 70-135 4 Ethylbenzene 51.3 5 ug/L 50.0 103 60-140 3 Methylenes 99.1 5 ug/L 50.0 127 60-140 3 Methylene Chloride 63.5 5 ug/L 50.0 127 60-140 3 Methyleter-Butyl Ether 53.5 5 ug/L 50.0 107 16.3-183 5 Naphthalene 48.7 5 ug/L 50.0 97 64.9-129 3 C-Yalene 49.6 5 ug/L 50.0 99 64.9-129 3 Tetrachloroethene 44.4 5 ug/L 50.0 101 70-130 4	Chloroform	52.6	5	ug/L	50.0		105	70-135	3	54	
cis-1,3-Dichloropropylene 50.6 5 ug/L 50.0 101 25-175 2 Chlorodibromomethane 45.3 5 ug/L 50.0 91 70-135 4 Ethylbenzene 51.3 5 ug/L 50.0 103 60-140 3 mcp-Xylenes 99.1 5 ug/L 50.0 127 60-140 3 Methyl-nerChoride 63.5 5 ug/L 50.0 127 60-140 3 Methyl-tert-Butyl Ether 53.5 5 ug/L 50.0 107 16.3-183 5 Naphthalene 48.7 5 ug/L 50.0 97 5.3-152 8 o-Xylene 49.6 5 ug/L 50.0 99 64.9-129 3 Tetrachloroethene 44.4 5 ug/L 50.0 89 70-130 4 Toluene 50.4 5 ug/L 50.0 101 70-130 5 trans-1,2-D	Chloromethane	79.0	5	ug/L	50.0		158	1-205	2	60	CH
Chlorodibromomethane 45.3 5 ug/L 50.0 91 70-135 4 Ethylbenzene 51.3 5 ug/L 50.0 103 60-140 3 m.pXylenes 99.1 5 ug/L 100 99 27.4-146 3 Methyl-tert-Butyl Ether 53.5 5 ug/L 50.0 107 16.3-183 5 Naphthalene 48.7 5 ug/L 50.0 97 5.3-152 8 o-Xylene 49.6 5 ug/L 50.0 99 64.9-129 3 Tetrachloroethene 44.4 5 ug/L 50.0 99 64.9-129 3 Toluene 50.4 5 ug/L 50.0 99 64.9-129 3 Toluene 50.4 5 ug/L 50.0 99 64.9-129 3 trans-1,2-Dichloroethylene 50.4 5 ug/L 50.0 97 50-150 3 Trichloroftuorop	cis-1,2-Dichloroethylene	54.1	5	ug/L	50.0		108	63.1-136	3	23.5	
Ethylbenzene	cis-1,3-Dichloropropylene	50.6	5	ug/L	50.0		101	25-175	2	58	
m.pXylenes 99.1 5 ug/L 100 99 27.4-146 3 Methylene Chloride 63.5 5 ug/L 50.0 127 60-140 3 Methyl-tert-Butyl Ether 53.5 5 ug/L 50.0 107 16.3-183 5 Naphthalene 48.7 5 ug/L 50.0 97 5.3-152 8 c-Xylene 49.6 5 ug/L 50.0 99 64.9-129 3 Tetrachloroethene 44.4 5 ug/L 50.0 89 70-130 4 Toluene 50.4 5 ug/L 50.0 101 70-130 2 trans-1,2-Dichloroethylene 50.4 5 ug/L 50.0 97 50-150 3 trans-1,2-Dichloroethylene 48.3 5 ug/L 50.0 97 50-150 3 Trichloroethene 48.3 5 ug/L 50.0 97 65-135 3 V	Chlorodibromomethane	45.3	5	ug/L	50.0		91	70-135	4	50	
m.pXylenes 99.1 5 ug/L 100 99 27.4-146 3 Methylene Chloride 63.5 5 ug/L 50.0 127 60-140 3 Methyl-tert-Butyl Ether 53.5 5 ug/L 50.0 107 16.3-183 5 Naphthalene 48.7 5 ug/L 50.0 97 5.3-152 8 c-Xylene 49.6 5 ug/L 50.0 99 64.9-129 3 Tetrachloroethene 44.4 5 ug/L 50.0 89 70-130 4 Toluene 50.4 5 ug/L 50.0 101 70-130 2 trans-1,2-Dichloroethylene 50.4 5 ug/L 50.0 97 50-150 3 trans-1,2-Dichloroethylene 48.3 5 ug/L 50.0 97 65-135 3 Trichloroethenel 60.6 5 ug/L 50.0 121 50-150 3 <th< td=""><td>Ethylbenzene</td><td>51.3</td><td>5</td><td>ug/L</td><td>50.0</td><td></td><td>103</td><td>60-140</td><td>3</td><td>63</td><td></td></th<>	Ethylbenzene	51.3	5	ug/L	50.0		103	60-140	3	63	
Methyl-tert-Butyl Ether 53.5 5 ug/L 50.0 107 16.3-183 5 Naphthalene 48.7 5 ug/L 50.0 97 5.3-152 8 o-Xylene 49.6 5 ug/L 50.0 99 64.9-129 3 Tetrachloroethene 44.4 5 ug/L 50.0 89 70-130 4 Toluene 50.4 5 ug/L 50.0 101 70-130 2 trans-1,2-Dichloroethylene 50.4 5 ug/L 50.0 101 70-130 5 trans-1,3-Dichloropropylene 48.3 5 ug/L 50.0 97 50-150 3 Trichlorofluoromethane 60.6 5 ug/L 50.0 97 65-135 3 Vinyl chloride [Chloroethene] 66.9 5 ug/L 50.0 134 5-195 3 Isopropylbenzene (Cumene) 44.7 5 ug/L 50.0 19 61.4149 3	m,p-Xylenes	99.1	5		100		99	27.4-146	3	24.5	
Methyl-tert-Butyl Ether 53.5 5 ug/L 50.0 107 16.3-183 5 Naphthalene 48.7 5 ug/L 50.0 97 5.3-152 8 o-Xylene 49.6 5 ug/L 50.0 99 64.9-129 3 Tetrachloroethene 44.4 5 ug/L 50.0 89 70-130 4 Toluene 50.4 5 ug/L 50.0 101 70-130 2 trans-1,2-Dichloroethylene 50.4 5 ug/L 50.0 101 70-130 5 trans-1,3-Dichloropropylene 48.3 5 ug/L 50.0 97 50-150 3 Trichlorofluoromethane 60.6 5 ug/L 50.0 97 65-135 3 Vinyl chloride [Chloroethene] 66.9 5 ug/L 50.0 134 5-195 3 Isopropylbenzene (Cumene) 44.7 5 ug/L 50.0 19 61.4149 3	Methylene Chloride	63.5	5	ug/L	50.0		127	60-140	3	28	
o-Xylene 49.6 5 ug/L 50.0 99 64.9-129 3 Tetrachloroethene 44.4 5 ug/L 50.0 89 70-130 4 Toluene 50.4 5 ug/L 50.0 101 70-130 2 trans-1,2-Dichloroethylene 50.4 5 ug/L 50.0 101 70-130 5 trans-1,3-Dichloropropylene 48.3 5 ug/L 50.0 97 50-150 3 Trichloroethene 48.3 5 ug/L 50.0 97 65-135 3 Trichlorofluoromethane 60.6 5 ug/L 50.0 97 65-135 3 Vinyl chloride [Chloroethene] 66.9 5 ug/L 50.0 134 5-195 3 Isopropylbenzene (Cumene) 44.7 5 ug/L 50.0 115 54.3-133 4 Methyl Butyl Ketone (2-Hexanone) 52.2 5 ug/L 50.0 104 52.8-142	Methyl-tert-Butyl Ether	53.5	5		50.0		107	16.3-183	5	25.8	
Tetrachloroethene 44.4 5 ug/L 50.0 89 70-130 4 Toluene 50.4 5 ug/L 50.0 101 70-130 2 trans-1,2-Dichloroethylene 50.4 5 ug/L 50.0 101 70-130 5 trans-1,3-Dichloropropylene 48.3 5 ug/L 50.0 97 50-150 3 Trichlorofluoromethane 60.6 5 ug/L 50.0 97 65-135 3 Vinyl chloride [Chloroethene] 66.9 5 ug/L 50.0 121 50-150 3 Isopropylbenzene (Cumene) 44.7 5 ug/L 50.0 134 5-195 3 Methyl Butyl Ketone (2-Hexanone) 52.2 5 ug/L 50.0 115 54.3-133 4 Methyl Isobutyl Ketone [MIBK] 52.6 5 ug/L 50.0 104 52.8-142 4 Methyl Methacrylate 47.4 5 ug/L 50.0 105	Naphthalene	48.7	5	ug/L	50.0		97	5.3-152	8	30	
Toluene 50.4 5 ug/L 50.0 101 70-130 2 trans-1,2-Dichloroethylene 50.4 5 ug/L 50.0 101 70-130 5 trans-1,3-Dichloropropylene 48.3 5 ug/L 50.0 97 50-150 3 Trichloroethene 48.3 5 ug/L 50.0 97 65-135 3 Trichlorofluoromethane 60.6 5 ug/L 50.0 121 50-150 3 Vinyl chloride [Chloroethene] 66.9 5 ug/L 50.0 134 5-195 3 Isopropylbenzene (Cumene) 44.7 5 ug/L 50.0 89 89.1-134 4 Methyl Butyl Ketone (2-Hexanone) 52.2 5 ug/L 50.0 115 54.3-133 4 Methyl Isobutyl Ketone [MIBK] 52.6 5 ug/L 50.0 90 61.4-149 3 Methyl Methacrylate 47.4 5 ug/L 50.0 95	o-Xylene	49.6	5	ug/L	50.0		99	64.9-129	3	24.5	
trans-1,2-Dichloroethylene 50.4 5 ug/L 50.0 101 70-130 5 trans-1,3-Dichloropropylene 48.3 5 ug/L 50.0 97 50-150 3 Trichloroethene 48.3 5 ug/L 50.0 97 65-135 3 Trichlorofluoromethane 60.6 5 ug/L 50.0 121 50-150 3 Vinyl chloride [Chloroethene] 66.9 5 ug/L 50.0 134 5-195 3 Isopropylbenzene (Cumene) 44.7 5 ug/L 50.0 89 89.1-134 4 Methyl Butyl Ketone (2-Hexanone) 52.2 5 ug/L 50.0 104 52.8-142 4 Methyl Isobutyl Ketone [MIBK] 52.6 5 ug/L 50.0 105 63.1-137 6 Methyl Methacrylate 47.4 5 ug/L 50.0 105 63.1-137 6 Methyl Methacrylate 47.4 5 ug/L 50.0 <th< td=""><td>Tetrachloroethene</td><td>44.4</td><td>5</td><td>ug/L</td><td>50.0</td><td></td><td>89</td><td>70-130</td><td>4</td><td>39</td><td></td></th<>	Tetrachloroethene	44.4	5	ug/L	50.0		89	70-130	4	39	
trans-1,2-Dichloroethylene 50.4 5 ug/L 50.0 101 70-130 5 trans-1,3-Dichloropropylene 48.3 5 ug/L 50.0 97 50-150 3 Trichloroethene 48.3 5 ug/L 50.0 97 65-135 3 Trichlorofluoromethane 60.6 5 ug/L 50.0 121 50-150 3 Vinyl chloride [Chloroethene] 66.9 5 ug/L 50.0 134 5-195 3 Isopropylbenzene (Cumene) 44.7 5 ug/L 50.0 89 89.1-134 4 Methyl Butyl Ketone (2-Hexanone) 52.2 5 ug/L 50.0 104 52.8-142 4 Methyl Isobutyl Ketone [MIBK] 52.6 5 ug/L 50.0 105 63.1-137 6 Methyl Methacrylate 47.4 5 ug/L 50.0 105 63.1-137 6 Methyl Methacrylate 47.4 5 ug/L 50.0 <th< td=""><td>Toluene</td><td>50.4</td><td>5</td><td>ug/L</td><td>50.0</td><td></td><td>101</td><td>70-130</td><td>2</td><td>41</td><td></td></th<>	Toluene	50.4	5	ug/L	50.0		101	70-130	2	41	
Trichloroethene 48.3 5 ug/L 50.0 97 65-135 3 Trichlorofluoromethane 60.6 5 ug/L 50.0 121 50-150 3 Vinyl chloride [Chloroethene] 66.9 5 ug/L 50.0 134 5-195 3 Isopropylbenzene (Cumene) 44.7 5 ug/L 50.0 89 89.1-134 4 Methacrylonitrile 57.5 5 ug/L 50.0 115 54.3-133 4 Methyl Butyl Ketone (2-Hexanone) 52.2 5 ug/L 50.0 104 52.8-142 4 Methyl Isobutyl Ketone [MiBK] 52.6 5 ug/L 50.0 90 61.4-149 3 Methyl Methacrylate 47.4 5 ug/L 50.0 95 65.4-135 3 Propylbenzene 53.8 5 ug/L 50.0 108 81.3-135 5 sec-Butylbenzene 54.2 5 ug/L 50.0 108 8	trans-1,2-Dichloroethylene	50.4	5		50.0		101	70-130	5	45	
Trichlorofluoromethane 60.6 5 ug/L 50.0 121 50-150 3 Vinyl chloride [Chloroethene] 66.9 5 ug/L 50.0 134 5-195 3 Isopropylbenzene (Cumene) 44.7 5 ug/L 50.0 89 89.1-134 4 Methacrylonitrile 57.5 5 ug/L 50.0 115 54.3-133 4 Methyl Butyl Ketone (2-Hexanone) 52.2 5 ug/L 50.0 104 52.8-142 4 Methyl Iodide [Iodomethane] 44.8 5 ug/L 50.0 90 61.4-149 3 Methyl Isobutyl Ketone [MIBK] 52.6 5 ug/L 50.0 105 63.1-137 6 Methyl Methacrylate 47.4 5 ug/L 50.0 95 65.4-135 3 Propylbenzene 53.8 5 ug/L 50.0 108 81.3-135 5 sec-Butylbenzene 54.2 5 ug/L 50.0 108 <td>trans-1,3-Dichloropropylene</td> <td>48.3</td> <td>5</td> <td>ug/L</td> <td>50.0</td> <td></td> <td>97</td> <td>50-150</td> <td>3</td> <td>86</td> <td></td>	trans-1,3-Dichloropropylene	48.3	5	ug/L	50.0		97	50-150	3	86	
Trichlorofluoromethane 60.6 5 ug/L 50.0 121 50-150 3 Vinyl chloride [Chloroethene] 66.9 5 ug/L 50.0 134 5-195 3 Isopropylbenzene (Cumene) 44.7 5 ug/L 50.0 89 89.1-134 4 Methacrylonitrile 57.5 5 ug/L 50.0 115 54.3-133 4 Methyl Butyl Ketone (2-Hexanone) 52.2 5 ug/L 50.0 104 52.8-142 4 Methyl Iodide [Iodomethane] 44.8 5 ug/L 50.0 90 61.4-149 3 Methyl Isobutyl Ketone [MIBK] 52.6 5 ug/L 50.0 105 63.1-137 6 Methyl Methacrylate 47.4 5 ug/L 50.0 95 65.4-135 3 Propylbenzene 53.8 5 ug/L 50.0 108 81.3-135 5 sec-Butylbenzene 54.2 5 ug/L 50.0 108 <td>Trichloroethene</td> <td>48.3</td> <td>5</td> <td>ug/L</td> <td>50.0</td> <td></td> <td>97</td> <td>65-135</td> <td>3</td> <td>48</td> <td></td>	Trichloroethene	48.3	5	ug/L	50.0		97	65-135	3	48	
Vinyl chloride [Chloroethene] 66.9 5 ug/L 50.0 134 5-195 3 Isopropylbenzene (Cumene) 44.7 5 ug/L 50.0 89 89.1-134 4 Methacrylonitrile 57.5 5 ug/L 50.0 115 54.3-133 4 Methyl Butyl Ketone (2-Hexanone) 52.2 5 ug/L 50.0 104 52.8-142 4 Methyl Iodide [Iodomethane] 44.8 5 ug/L 50.0 90 61.4-149 3 Methyl Isobutyl Ketone [MIBK] 52.6 5 ug/L 50.0 105 63.1-137 6 Methyl Methacrylate 47.4 5 ug/L 50.0 95 65.4-135 3 Propylbenzene 53.8 5 ug/L 50.0 108 81.3-135 5 sec-Butylbenzene 54.2 5 ug/L 50.0 108 85.9-132 7	Trichlorofluoromethane	60.6	5		50.0		121	50-150	3	84	
Methacrylonitrile 57.5 5 ug/L 50.0 115 54.3-133 4 Methyl Butyl Ketone (2-Hexanone) 52.2 5 ug/L 50.0 104 52.8-142 4 Methyl Iodide [Iodomethane] 44.8 5 ug/L 50.0 90 61.4-149 3 Methyl Isobutyl Ketone [MIBK] 52.6 5 ug/L 50.0 105 63.1-137 6 Methyl Methacrylate 47.4 5 ug/L 50.0 95 65.4-135 3 Propylbenzene 53.8 5 ug/L 50.0 108 81.3-135 5 sec-Butylbenzene 54.2 5 ug/L 50.0 108 85.9-132 7	Vinyl chloride [Chloroethene]	66.9	5		50.0		134	5-195	3	66	
Methyl Butyl Ketone (2-Hexanone) 52.2 5 ug/L 50.0 104 52.8-142 4 Methyl Iodide [Iodomethane] 44.8 5 ug/L 50.0 90 61.4-149 3 Methyl Isobutyl Ketone [MIBK] 52.6 5 ug/L 50.0 105 63.1-137 6 Methyl Methacrylate 47.4 5 ug/L 50.0 95 65.4-135 3 Propylbenzene 53.8 5 ug/L 50.0 108 81.3-135 5 sec-Butylbenzene 54.2 5 ug/L 50.0 108 85.9-132 7	Isopropylbenzene (Cumene)	44.7	5	ug/L	50.0		89	89.1-134	4	15.5	
Methyl Iodide [Iodomethane] 44.8 5 ug/L 50.0 90 61.4-149 3 Methyl Isobutyl Ketone [MIBK] 52.6 5 ug/L 50.0 105 63.1-137 6 Methyl Methacrylate 47.4 5 ug/L 50.0 95 65.4-135 3 Propylbenzene 53.8 5 ug/L 50.0 108 81.3-135 5 sec-Butylbenzene 54.2 5 ug/L 50.0 108 85.9-132 7	Methacrylonitrile	57.5	5	ug/L	50.0		115	54.3-133	4	16.1	
Methyl Iodide [Iodomethane] 44.8 5 ug/L 50.0 90 61.4-149 3 Methyl Isobutyl Ketone [MIBK] 52.6 5 ug/L 50.0 105 63.1-137 6 Methyl Methacrylate 47.4 5 ug/L 50.0 95 65.4-135 3 Propylbenzene 53.8 5 ug/L 50.0 108 81.3-135 5 sec-Butylbenzene 54.2 5 ug/L 50.0 108 85.9-132 7	Methyl Butyl Ketone (2-Hexanone)	52.2	5	ug/L	50.0		104	52.8-142	4	18.5	
Methyl Isobutyl Ketone [MIBK] 52.6 5 ug/L 50.0 105 63.1-137 6 Methyl Methacrylate 47.4 5 ug/L 50.0 95 65.4-135 3 Propylbenzene 53.8 5 ug/L 50.0 108 81.3-135 5 sec-Butylbenzene 54.2 5 ug/L 50.0 108 85.9-132 7				-					3	15.7	
Methyl Methacrylate 47.4 5 ug/L 50.0 95 65.4-135 3 Propylbenzene 53.8 5 ug/L 50.0 108 81.3-135 5 sec-Butylbenzene 54.2 5 ug/L 50.0 108 85.9-132 7	• •		5	_			105		6	16.9	
Propylbenzene 53.8 5 ug/L 50.0 108 81.3-135 5 sec-Butylbenzene 54.2 5 ug/L 50.0 108 85.9-132 7		47.4	5	-	50.0		95	65.4-135	3	16.6	
sec-Butylbenzene 54.2 5 ug/L 50.0 108 85.9-132 7	Propylbenzene	53.8	5	ug/L	50.0		108	81.3-135	5	17.4	
	**	54.2	5		50.0		108	85.9-132	7	17.2	
Styrene 49.3 5 ug/L 50.0 99 89.9-132 4	•		5				99	89.9-132	4	14.6	
tert-Butylbenzene 50.3 5 ug/L 50.0 101 83.2-135 6	•	50.3	5	_	50.0		101	83.2-135	6	16.3	

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

www.satestinglab.com

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/24/25 13:59 **Received:** 06/05/25 08:00

Report No. 2506103

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B524252 - EPA 5030B										
LCS Dup (B524252-BSD1)				Prepared: (06/10/25 10:	:00 Analyz	zed: 06/10/25	5 10:50		
trans-1,4-Dichloro-2-butene	59.5	5	ug/L	50.0		119	59.9-141	7	26	
Vinyl acetate	66.0	2	ug/L	50.0		132	25.6-169	4	18	CH
Surrogate: 4-Bromofluorobenzene	55.7		ug/L	50.0		111	80-106			SurrH
Surrogate: Dibromofluoromethane	53.2		ug/L	50.0		106	83-118			
Surrogate: Toluene-d8	50.2		ug/L	50.0		100	91-109			

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/24/25 13:59 **Received:** 06/05/25 08:00

Report No. 2506103

SAMPLE QUALIFIERS

Additional Sample volumes were NOT provided to the laboratory for the analysis of an MS sample as required by EPA Method 1664.
 This parameter should be analyzed within 15 minutes of sample collection. Due to transportation, hold time has been exceeded.

CH CCV recovery is outside QC limits, the results may have a slight high bias.

DEFINITIONS

* TNI / NELAC accredited analyte
PQL Practical Quantitation Limit
MCL Maximum Contaminant Level

mg/Kg Milligrams per Kilogram (Parts per Million)
mg/L Milligrams per Liter (Parts per Million)

PPM Parts per Million

L LCS recovery is outside QC acceptance limits, the results may have a slight bias.

M MS recovery is outside QC limits, the results may have a slight bias due to possible matrix interferences.

NR Not Recovered due to source sample concentration exceeds spiked concentration.

RMCCL Recommended Maximum Concentration of Contaminants Level

Surr L Surrogate recovery is low outside QC limits.

Surr H Surrogate recovery is high outside QC limits.

HT Sample received past holdtime
IC Improper Container for this analyte(s)
IP Improper preservation for this analyte(s)

IT Improper Temperature
V Inssuficient Volume
B Sample collected in Bulk
S RPD is outside QC limits.
AB VOA Vial contained air bubbles.

OP ortho-Phosphate was not filtered in the field within 15minutes of collection.

CCV Continuing Calibration Verification Standard.
ICV Initial Calibration Verification Standard.

Test Methods followed by the laboratory are referenced in the following approved methodology, unless otherwise specified.

Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017

 $Methods \ for \ Chemical \ Analysis \ of \ Water \ and \ Wastes, EPA \ 600/4-79-020, \ Rev. \ March \ 1983$

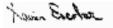
EPA SW Test Methods for the Examination of Solid Waste, SW-846, 1996

Subcontracted Analyses

Subcontractor Lab	Lab Number	Analysis
Eurofins - Houston	2506103-01	Total Phenolics

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:


Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/24/25 13:59 **Received:** 06/05/25 08:00

Report No. 2506103

Aimee Landon For Marissa Esquivel, Lab Manager For

Xavier Escobar, Business Unit Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1- proposes vac O-S. DAJEKTIME 25m1 P/Um へかるもま AUTHORIZE TO 9 REMARKS TSDF Class 2 Cl PRESERVED PROCEED REPORT NUMBER YES CI SAME DAY WHEN POSSIBLE : Dup: SUBDONTRACTED TO VEST OF SUBDON SEAL IN PLACE & INTACT I YES YNO EQUESTED P.O. # E-MAIL 00 PST / SPECIAL REQ.: INSUFFICIENT SAMPLE AMOUNT FOR (TCLP/SPLP/OTHER): IF NO, INITIAL HERE TO AUTHORIZE ANALYSIS □ Next Day 6 C; LCS/D: ZIP ANALYSIS DATE/UNE DATE / TIME CHAIN-OF-CUSTODY RECORD LPST PCLS D THE TURNAROUND TIME FOR SAMPLES RECEIVED AFTER 3:00 PM SHALL BEGIN AT 8:00 AM THE FOLLOWING BUSINESS DAY PHONE # O 2DAYS INVOICE TO: B N/A X on to O 3 DAYS RELINQUISHED BY CHRINT NAMED S RELINODISHED BY STRUM TURE TRRP 13 O 多 十 8 H 5035 METHOD OF SHIPMENT S □ 4 Days 2 CANARY - CLIENT COMPANY same ADDRESS BULK (Initial) ATTN: O N O SODNIAM CITY 250ml SAMPLE ICED Z 750ms □ 5 Days +25% YES YES Y DATE NAME DATE / TIME DATE / TIME DATE / TIME ZIP 00 Z F 4 - Z W E 0 WHITE - LAB C 7-10 Days Z D Z M W C О 1 GUN # PHONE # Other (Specify) REPORT TO: で作りから RECEIVED BY GROWN THINKY - 4-2 STATE CORRECTED TEMP. **IDENTIFICATION** REQUESTED TURNAROUND TIME IN BUSINESS DAYS & SURCHARGE RECEIVED BY (BIGINAT NAME) CAN PROFESIVED BY (SIGNATURE) RRC [RECEIVED BY (PRINT NAME) ATTN: Chris Ewert 512-891-7777 ADDRESS 8127 Mesa Dr. #C-305 DATA TO TCEQ [OBSERVED TEMP. CITY Austin, TX 78759 COMPANY Integrity Testing 6-1- DATE/TIME DATE / TIME DATE / TIME 子である Ω H **4** B SAN ANTONIO TESTING 1610 S. Laredo Street, San Antonio, Texas 78207 LABORATORY, LLC PROJECT NAME OCATION SITE OF CHILL 30 5000 IQUISHED BY (PRINT MAME) CERTON www.satestinglab.com IRM: COC REV 04/2022 Phone (210) 229-9920 AQUISHED BY (PRINT NAME) NOUISHED BY (SIGNATURE) IQUISHED BY (SIGNATURE) Fax (210) 229-9921 DONNA 125945cm 54-25 9:45cm -4-25 9:45cm 6-4-259:45 on 4-25 9:45cm イーコンタがん TAVIEL CANA TIME DATE PROJECT NO. SAMPLED BY SATL ZDZMWC

NAZUIM

Page 14 of 32

Table 4.0(2)B - Volatile Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acrolein				50
Acrylonitrile				50
Benzene				10
Bromoform				10
Carbon Tetrachloride				2
Chlorobenzene				10
Chlorodibromomethane				10
Chloroethane				50
2-Chloroethylvinyl Ether				10
Chloroform				10
Dichlorobromomethane [Bromodichloromethane]				10
1,1-Dichloroethane				10
1,2-Dichloroethane				10
1,1-Dichloroethylene				10
1,2-Dichloropropane			and the same of th	10
1,3-Dichloropropylene [1,3-Dichloropropene]				10
1,2-Trans-Dichloroethylene				10
Ethylbenzene				10
Methyl Bromide				50
Methyl Chloride				50
Methylene Chloride	5			20
1,1,2,2-Tetrachloroethane				10
Tetrachloroethylene				10
Toluene				10
1,1,1-Trichloroethane				10
1,1,2-Trichloroethane				10
Trichloroethylene				10
Vinyl Chloride				10

ENVIRONMENTAL EXPRES	SEAL CUSTORY SEAL		
Person Collecting Sample	(signature)	Sample No.	
Date Collected	5/4/25	Time Collected	
ENVIRONMENTAL EXPRES	ਜ਼ਿੰ , CUSTODY SEAL		
Person Collecting Sample	(Signature)	Sample No	
Pate Collected	14/25	Time Collected	

Sample Receipt Checklist

Client: Integrity Tes Project: City of Donr	_	Project Manager: Marissa Es	squivei
Report To: Chris Ewert		SATL Report Numb	per:2506103
Work Order Due by: Received By: Logged In By:	06/16/25 19:00 (7 day TAT) Hannah Thigpen Hannah Thigpen	Date Received: 06/05/25 08:00 Date Logged In: 06/05/25 09:21	
Sample(s) Received or	ICE/evidence of Ice (cooler w	th melted ice,etc):	les
Sample temperature at	receipt *:		PC
Custody Seals Present:			les
All containers intact:			les
Sample labels/COC ag	ree:		Yes
Samples Received with	nin Holding time :		Yes
Samples appropriately	preserved **:		Yes
Containers received br	oken/damaged/leaking:		No
Air bubbles present in	VOA vials for VOC/TPH analy	ses, if applicable:	Yes
TRRP 13 Reporting re-	quested?		No
BacT Sample bottles fi	lled to volume (100mL mark), i	f applicable:	Not Applicable
LCR Sample bottles fi	lled to volume (1 Liter mark), if	applicable:	Not Applicable
Subcontracting require	d for any analyses:		No
RUSH turnaround time	e requested:		No
Requested Turnaround	Time:		No
Samples delivered via	:		Courier
Air bill included if Sar	nples were shipped:		No
Other deviations not m	eeting SATL sample acceptance	e criteria notated on CoC:	None
hut are acceptable, if the	he laboratory on the same day that ey arrive on ice. ed. notate client authorization on C	they are collected may not meet thermal pres	ervation criteria (>0°C but <6°C)
Checked By :	Hannah Thigpen	Date: 06/05/25 08:00	SATL#F000 Revised 09/15/202

12 13

ANALYTICAL REPORT

PREPARED FOR

Attn: Aimee Landon San Antonio Testing Laboratory Inc 1610 S Laredo Street San Antonio, Texas 78207

Generated 6/18/2025 6:28:37 PM

JOB DESCRIPTION

2506103

JOB NUMBER

860-103640-1

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477

Eurofins Houston

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 6/18/2025 6:28:37 PM

Authorized for release by Lindy Maingot, Project Manager II <u>Lindy.Maingot@et.eurofinsus.com</u> (210)344-9751 8

3

5

6

4.0

4.4

12

13

Client: San Antonio Testing Laboratory Inc Project/Site: 2506103

Laboratory Job ID: 860-103640-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
QC Sample Results	8
QC Association Summary	9
Lab Chronicle	10
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	14
Racaint Chacklists	15

Definitions/Glossary

Client: San Antonio Testing Laboratory Inc Job ID: 860-103640-1

Project/Site: 2506103

Glossary

RL

RPD

TEF

TEQ

TNTC

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

Abbreviation	These commonly used abbreviations may or may not be present in this report.
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

Eurofins Houston

Case Narrative

Client: San Antonio Testing Laboratory Inc.

Job ID: 860-103640-1

Project: 2506103

Eurofins Houston Job ID: 860-103640-1

> Job Narrative 860-103640-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 6/17/2025 9:13 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.9°C.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

5 6

Detection Summary

Client: San Antonio Testing Laboratory Inc Job ID: 860-103640-1

Project/Site: 2506103

Client Sample ID: 2506103-01

Lab Sample ID: 860-103640-1

No Detections.

Client Sample Results

Client: San Antonio Testing Laboratory Inc Job ID: 860-103640-1

Project/Site: 2506103

Client Sample ID: 2506103-01 Lab Sample ID: 860-103640-1

Date Collected: 06/04/25 09:45 Matrix: Water

Date Received: 06/17/25 09:13

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenols, Total (EPA 420.4)	ND		10	5.8	ug/L			06/18/25 15:59	1

1

5

7

0

10

IUI.

13

QC Sample Results

Client: San Antonio Testing Laboratory Inc Job ID: 860-103640-1

Project/Site: 2506103

Method: 420.4 - Phenolics, Total Recoverable

Lab Sample ID: MB 860-243410/16

Matrix: Water

Analysis Batch: 243410

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenols, Total	ND		10	5.8	ug/L			06/18/25 15:46	1

Lab Sample ID: 860-103640-1 MS

Matrix: Water

Analysis Batch: 243410

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Phenols, Total	ND		100	93.5		ug/L		94	90 - 110	

Lab Sample ID: 860-103640-1 MSD

Matrix: Water

Analysis Batch: 243410

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Phenols, Total	ND		100	92.2		ug/L		92	90 - 110	1	20

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: 2506103-01

Client Sample ID: 2506103-01

QC Association Summary

Client: San Antonio Testing Laboratory Inc

Project/Site: 2506103

Job ID: 860-103640-1

General Chemistry

Analysis Batch: 243410

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-103640-1	2506103-01	Total/NA	Water	420.4	
MB 860-243410/16	Method Blank	Total/NA	Water	420.4	
860-103640-1 MS	2506103-01	Total/NA	Water	420.4	
860-103640-1 MSD	2506103-01	Total/NA	Water	420.4	

)_1

3

2

4

_

9

. .

11

13

Lab Chronicle

Client: San Antonio Testing Laboratory Inc Job ID: 860-103640-1

Project/Site: 2506103

Client Sample ID: 2506103-01 Lab Sample ID: 860-103640-1

Date Collected: 06/04/25 09:45 Matrix: Water

Date Received: 06/17/25 09:13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	420.4		1	10 mL	10 mL	243410	06/18/25 15:59	BW	EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

_

5

7

8

10

12

13

Accreditation/Certification Summary

Client: San Antonio Testing Laboratory Inc Job ID: 860-103640-1

Project/Site: 2506103

Laboratory: Eurofins Houston

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Texas	NELAF	P	T104704215	06-30-25
The following analytes	are included in this report, but	it the laboratory is not cortif	fied by the governing outhority. This lie	et may include analyte
• •	•	it the laboratory is not certif	ied by the governing authority. This lis	st may include analyte
for which the agency d	oes not offer certification.	•	, , ,	st may include analyte:
• •	•	ut the laboratory is not certif	ied by the governing authority. This lis	st may include analyte:

1

2

3

4

7

O

8

4.0

11

13

Method Summary

Client: San Antonio Testing Laboratory Inc

Project/Site: 2506103

Job ID: 860-103640-1

Method	Method Description	Protocol	Laboratory
420.4	Phenolics, Total Recoverable	EPA	EET HOU

4

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

6

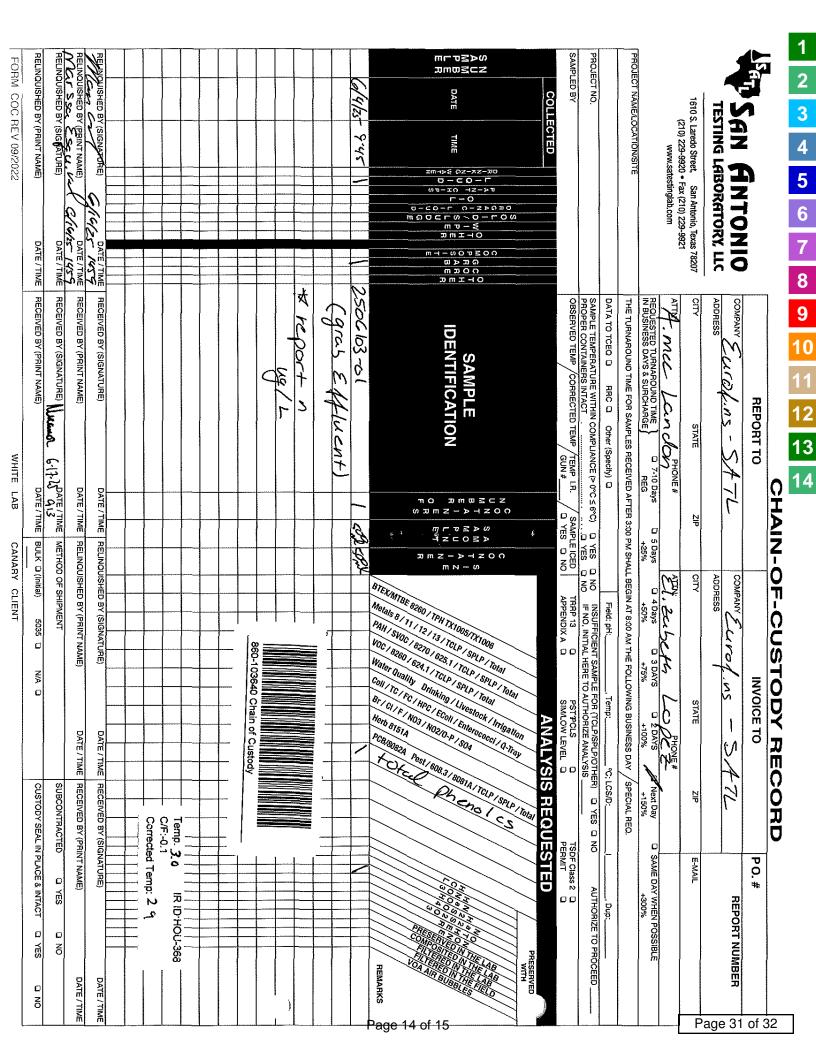
_

9

10

13

Sample Summary


Client: San Antonio Testing Laboratory Inc

Project/Site: 2506103

Job ID: 860-103640-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-103640-1	2506103-01	Water	06/04/25 09:45	06/17/25 09:13

2

Login Sample Receipt Checklist

Job Number: 860-103640-1

Login Number: 103640 List Source: Eurofins Houston

List Number: 1

Creator: Jimenez, Nicanor

Client: San Antonio Testing Laboratory Inc

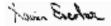
Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

June 26, 2025

Chris Ewert

Integrity Testing 8127 Mesa Dr #C-305 Austin, TX 78759

SATL Report No.: 2506153


RE: City of Donna Permit Renewal

Dear Chris Ewert

SATL received 3 Sample(s) on 06/06/2025 for analyses identified on the chain of custody. The analyses were performed using methods indicated on the laboratory report. Any deviations observed at sample receiving are notated on the Sample Receipt Checklist and/or Chain of Custody documents attached as part of this analytical report.

Sincerely,

For San Antonio Testing Laboratory, Inc.

Xavier Escobar Business Unit Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

SAMPLE SUMMARY

Total Samples received in this work order: 3

The following samples were requested for analysis as per the CoC. Any re-runs or re-analyses requested are identified as such.

Sample ID	Laboratory ID	<u>Matrix</u>	Sampling Method	Date Sampled	Date Received
24-Hr Composite Effluent	2506153-01	Liquid	Composite	06/05/25 10:00	06/06/25 10:52

Notes

All quality control samples and checks are within acceptance limits unless otherwise indicated.

Test results pertain only to those items tested.

All samples were in good condition when received by the laboratory unless otherwise noted.

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert

Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

Sample ID #: 24-Hr Composite Effluent

Sampling Method: Composite

Lab Sample ID #: 2506153-01

Sample Matrix: Liquid				Date/Time Collected: 0	6/05/25 10:	00		
Analyte	Result	Units	PQL	RMCCL Prep Method	Batch	Analyzed	Method	Analyst Notes
General Chemistry								
Total Alkalinity *	80.8	mg/L as CaCO3	20.0	SM2320B	B524180	06/09/25 10:36	SM2320B	DD
Total Kjeldahl Nitrogen *	6.72	mg/L	1.00	EPA 351.3	B524310	06/12/25 17:38	EPA 351.3	DD
Total Phosphorous *	3.64	mg/L	0.05	EPA 365.3	B525203	06/17/25 15:20	EPA 365.3	JA
Anions by Ion Chromatography								
Fluoride *	370	ug/L	20	EPA 300.0	B525184	06/06/25 20:41	EPA 300.0	JA
Chloride *	409	mg/L	2.50	EPA 300.0	B525184	06/06/25 20:41	EPA 300.0	JA
Nitrate as N *	3225	ug/L	100	EPA 300.0	B525184	06/06/25 20:41	EPA 300.0	JA
Sulfate *	550	mg/L	2.50	EPA 300.0	B525184	06/06/25 20:41	EPA 300.0	JA
Total Mercury by EPA 245.7								
Mercury	< 5.00	ng/L	5.00	EPA 245.7	B524249	06/11/25 14:11	EPA 245.7	TW
Total Metals By ICP-MS								
Aluminum *	22	ug/L	2	EPA 200.8	B524221	06/10/25 16:39	EPA 200.8	SJ
Arsenic *	< 0.5	ug/L	0.5	EPA 200.8	B524221	06/10/25 16:39	EPA 200.8	SJ
Beryllium *	< 0.5	ug/L	0.5	EPA 200.8	B524221	06/10/25 16:39	EPA 200.8	SJ
Copper *	4	ug/L	2	EPA 200.8	B524221	06/10/25 16:39	EPA 200.8	SJ
Lead *	< 0.2	ug/L	0.2	EPA 200.8	B524221	06/10/25 16:39	EPA 200.8	SJ
Nickel *	3	ug/L	2	EPA 200.8	B524221	06/10/25 16:39	EPA 200.8	SJ
Selenium *	<5	ug/L	5	EPA 200.8	B524221	06/10/25 16:39	EPA 200.8	SJ
Silver *	< 0.5	ug/L	0.5	EPA 200.8	B524221	06/10/25 16:39	EPA 200.8	SJ
Thallium *	< 0.5	ug/L	0.5	EPA 200.8	B524221	06/10/25 16:39	EPA 200.8	SJ
Semivolatile Organic Compound	ls by GC/MS							
1,2,4,5-Tetrachlorobenzene *	<20	ug/L	20	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
1,2,4-Trichlorobenzene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
1,2-Dichlorobenzene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
1,3-Dichlorobenzene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
1,4-Dichlorobenzene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
2,4,5-Trichlorophenol *	< 50	ug/L	50	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
2,4,6-Trichlorophenol *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
2,4-Dichlorophenol *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
2,4-Dimethylphenol *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	ZZZ
2,4-Dinitrophenol *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
2,4-Dinitrotoluene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
2,6-Dinitrotoluene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
2-Chloronaphthalene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
2-Chlorophenol *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
2-Nitrophenol *	<20	ug/L	20	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
3,3'-Dichlorobenzidine	<5	ug/L	5	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert

Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

Sample ID #: 24-Hr Composite Effluent

Sampling Method: Composite

Lab Sample ID #: 2506153-01

ample Matrix: Liquid	Date/Time Collected: 06/05/25 10:00
----------------------	--

Analyte	Result	Units	PQL	RMCCL Prep Method	Batch	Analyzed	Method	Analyst Not
Semivolatile Organic Compounds b	y GC/MS							
3/4-Methylphenol *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
4,6-Dinitro-2-methylphenol *	< 50	ug/L	50	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
4-Bromophenyl-phenylether *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
4-Chloro-3-methylphenol *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
4-Chlorophenyl-phenylether *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
4-Nitrophenol *	< 50	ug/L	50	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Acenaphthene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Acenaphthylene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Anthracene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Azobenzene [1,2-Diphenylhydrazine] *	<20	ug/L	20	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Benz(a)anthracene *	<5	ug/L	5	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Benzidine *	< 50	ug/L	50	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Benzo(a)pyrene *	<5	ug/L	5	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Benzo[b]fluoranthene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Benzo[g,h,i]perylene *	<20	ug/L	20	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Benzo[k]fluoranthene *	<5	ug/L	5	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
bis(2-Chloroethoxy)methane *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Bis(2-Chloroethyl)ether *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Bis(2-chloroisopropyl)ether *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Bis(2-Ethylhexyl)phthalate *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Butylbenzylphthalate *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Chrysene *	<5	ug/L	5	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Dibenz[a,h]anthracene *	<5	ug/L	5	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Diethylphthalate *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Dimethylphthalate *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Di-n-butylphthalate *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Di-n-octylphthalate *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Fluoranthene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Fluorene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Hexachlorobenzene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Hexachlorobutadiene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Hexachlorocyclopentadiene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Hexachloroethane *	<20	ug/L	20	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Indeno[1,2,3-cd]pyrene *	<5	ug/L	5	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Isophorone *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Naphthalene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Nitrobenzene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
N-Nitrosodiethylamine *	<20	ug/L	20	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert

Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

Sample 1D #. 24-111 Composite Emucht Sample 1D #. 2500155-	Sample ID #: 24-Hr Composite Effluent	Sampling Method: Composite	Lab Sample ID #: 2506153-01
--	---------------------------------------	----------------------------	-----------------------------

Sample Matrix: Liquid				Date/Time Collecte	d: 06/05/25 10	0:00		
Analyte	Result	Units	PQL	RMCCL Prep Met	hod Batch	Analyzed	Method	Analyst Notes
Semivolatile Organic Compound	ls by GC/MS							
N-Nitrosodimethylamine *	< 50	ug/L	50	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
N-Nitrosodi-n-butylamine *	<20	ug/L	20	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
N-Nitroso-di-n-propylamine *	<20	ug/L	20	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
N-Nitrosodiphenylamine *	<20	ug/L	20	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Pentachlorobenzene *	<20	ug/L	20	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Pentachlorophenol *	<5	ug/L	5	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Phenanthrene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Phenol *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Pyrene *	<10	ug/L	10	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Pyridine *	<20	ug/L	20	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Surrogate: 2,4,6-Tribromophenol		72 %	5-134	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Surrogate: 2-Fluorobiphenyl		59 %	12.8-101	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Surrogate: 2-Fluorophenol		43 %	5-101	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Surrogate: Nitrobenzene-d5		55 %	10.7-118	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Surrogate: Phenol-d5		33 %	5-87	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Surrogate: Terphenyl-d14		83 %	25-133	EPA 625.1	B525227	06/17/25 14:44	EPA 625.1	MF
Semivolatile Organic Compound	ls by GC/MS (I	Nonylphenol)					
Nonylphenol	<333	ug/L	333	ASTM D706	5-11 B525220	06/17/25 14:44	ASTM D706	5 MF
Surrogate: 2,4,6-Tribromophenol		71 %	5-89.9	ASTM D7065-11	B525220	06/17/25 14:44	ASTM D7065	MF
Surrogate: 2-Fluorobiphenyl		54 %	27-111	ASTM D7065-11	B525220	06/17/25 14:44	ASTM D7065	MF
Surrogate: Phenol-d5		27 %	5-64.3	ASTM D7065-11	B525220	06/17/25 14:44	ASTM D7065	MF
Surrogate: 2-Fluorophenol		34 %	5-64.3	ASTM D7065-11	B525220	06/17/25 14:44	ASTM D7065	MF
Surrogate: Terphenyl-d14		77 %	5-114	ASTM D7065-11	B525220	06/17/25 14:44	ASTM D7065	MF
Surrogate: Nitrobenzene-d5		47 %	22-117	ASTM D7065-11	B525220	06/17/25 14:44	ASTM D7065	MF

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert

Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:**

06/06/25 10:52

Report No. 2506153

Sample ID #: 24-Hr Composite Effluent Sam

Sampling Method: Composite

Lab Sample ID #: 2506153-01

Sample Matrix: Liquid				Date/Ti	ne Collecte	d: 06/05/25 10	0:00		
Analyte	Result	Unit	s PQL	RMCC	Prep Met	hod Batch	Analyzed	Method	Analyst Note
Polychlorinated Biphenyls [PCB]									
PCB 1016	< 0.2	ug/L	0.2		EPA 608.3	B525191	06/16/25 19:16	EPA 608.3	MF
PCB 1221	< 0.2	ug/L	0.2		EPA 608.3	B525191	06/16/25 19:16	EPA 608.3	MF
PCB 1232	< 0.2	ug/L	0.2		EPA 608.3	B525191	06/16/25 19:16	EPA 608.3	MF
PCB 1242	< 0.2	ug/L	0.2		EPA 608.3	B525191	06/16/25 19:16	EPA 608.3	MF
PCB 1248	< 0.2	ug/L	0.2		EPA 608.3	B525191	06/16/25 19:16	EPA 608.3	MF
PCB 1254	< 0.2	ug/L	0.2		EPA 608.3	B525191	06/16/25 19:16	EPA 608.3	MF
PCB 1260	< 0.2	ug/L	0.2		EPA 608.3	B525191	06/16/25 19:16	EPA 608.3	MF
Total PCBs	< 0.2	ug/L	0.2		EPA 608.3	B525191	06/16/25 19:16	EPA 608.3	MF
Surrogate: Decachlorobiphenyl		65 %	15.3-112	EPA	608.3	B525191	06/16/25 19:16	EPA 608.3	MF
Surrogate: Tetrachloro-meta-xylene		51 %	10.2-92.4	EPA	608.3	B525191	06/16/25 19:16	EPA 608.3	MF
Chlorinated Pesticides by GC/ECD									
alpha-BHC	< 0.05	ug/L	0.05		EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
gamma-BHC (Lindane)	< 0.05	ug/L	0.05	8000	EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
beta-BHC	< 0.05	ug/L	0.05		EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
delta-BHC	< 0.05	ug/L	0.05		EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
Heptachlor	< 0.01	ug/L	0.01	160	EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
Aldrin	< 0.1	ug/L	0.1		EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
Heptachlor Epoxide	< 0.01	ug/L	0.01	160	EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
gamma-Chlordane	< 0.1	ug/L	0.1		EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
alpha-Chlordane	< 0.1	ug/L	0.1		EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
Endosulfan I	< 0.01	ug/L	0.01		EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
4,4′-DDE	< 0.1	ug/L	0.1		EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
Dieldrin	< 0.02	ug/L	0.02		EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
Endrin	< 0.02	ug/L	0.02	400	EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
4,4'-DDD	< 0.1	ug/L	0.1		EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
Endosulfan II	< 0.02	ug/L	0.02		EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
4,4'-DDT	< 0.02	ug/L	0.02		EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
Endrin Aldehyde	< 0.1	ug/L	0.1		EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
Endosulfan Sulfate	< 0.1	ug/L	0.1		EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
Methoxychlor	<2	ug/L	2	200000	EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
Toxaphene	< 0.3	ug/L	0.3	10000	EPA 608.3	B525193	06/17/25 12:33	EPA 608.3	MF
Endrin Ketone	< 0.1	ug/L	0.1		EPA 608.3	B525192	06/17/25 12:33	EPA 608.3	MF
Chlordane	< 0.2	ug/L	0.2	30	EPA 608.3	B525194	06/17/25 12:33	EPA 608.3	MF
Surrogate: Decachlorobiphenyl		77 %	17.2-134	EPA	608.3	B525192	06/17/25 12:33	EPA 608.3	MF
Surrogate: Decachlorobiphenyl		77 %	34-133	EPA	608.3	B525193	06/17/25 12:33	EPA 608.3	MF
Surrogate: Decachlorobiphenyl		77 %	25-143	EPA	608.3	B525194	06/17/25 12:33	EPA 608.3	MF
Surrogate: Tetrachloro-meta-xylene		62 %	10.7-112		608.3	B525194	06/17/25 12:33	EPA 608.3	MF
Surrogate: Tetrachloro-meta-xylene		62 %	10.7-112	EPA	608.3	B525193	06/17/25 12:33	EPA 608.3	MF

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

www.satestinglab.com

Page 6 of 59

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

Sample ID #: 24-Hr Composite Effluent Sampling Method: Composite Lab Sample ID #: 2506153-01

Sample Matrix: Liquid Date/Time Collected: 06/05/25 10:00

Sample Matrix. Liquid				Date/Time v	Conected. 00	103/23 10	.00		
Analyte	Result	Unit	s PQL	RMCCL	Prep Method	Batch	Analyzed	Method	Analyst Notes
Chlorinated Pesticides by GC/ECI)								
Surrogate: Tetrachloro-meta-xylene		62 %	10.7-112	EPA 608	B.3 B525	192	06/17/25 12:33	EPA 608.3	MF
Chlorinated Herbicides by Gas Ch	romatograj	phy							
2,4-D *	<4.70	ug/L	4.70	EPA	A 8151	B525188	06/17/25 16:52	EPA 8151A	MF
2,4,5-TP (Silvex) *	<4.75	ug/L	4.75	EPA	A 8151	B525188	06/17/25 16:52	EPA 8151A	MF
Surrogate: 2,4-Dichlorophenylacetic acid		91 %	44.8-124	EPA 81:	51 B525	188	06/17/25 16:52	EPA 8151A	MF

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Additional Notes: Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

General Chemistry - Quality Control

Analysta	Result	Reporting Limit	Units	Spike Level	Source	0/DEC	%REC	DDD	RPD Limit	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B524180 - SM2320B										
Blank (B524180-BLK1)				Prepared: (06/09/25 08:	10 Analyz	zed: 06/09/2	5 08:12		
Total Alkalinity	<20.0	20.0	mg/L as CaCO3							
LCS (B524180-BS1)				Prepared: (06/09/25 08:	10 Analyz	zed: 06/09/2	5 08:14		
Total Alkalinity	102	20.0	mg/L as CaCO3	100		102	80-120			
LCS Dup (B524180-BSD1)				Prepared: (06/09/25 08:	10 Analyz	zed: 06/09/2	5 08:16		
Total Alkalinity	95.1	20.0	mg/L as CaCO3	100		95	80-120	7	20	
Batch B524310 - EPA 351.3										
Blank (B524310-BLK1)				Prepared: (06/12/25 12:	30 Analyz	zed: 06/12/2	5 17:30		
Total Kjeldahl Nitrogen	<1.00	1.00	mg/L							
LCS (B524310-BS1)				Prepared: (06/12/25 12:	30 Analyz	zed: 06/12/2	5 17:31		
Total Kjeldahl Nitrogen	19.1	1.00	mg/L	20.0		95	80-120			
LCS Dup (B524310-BSD1)				Prepared: (06/12/25 12:	30 Analyz	zed: 06/12/2	5 17:32		
Total Kjeldahl Nitrogen	19.6	1.00	mg/L	20.0		98	80-120	3	20	
Duplicate (B524310-DUP1)		Source: 2506	054-01	Prepared: (06/12/25 12:	30 Analyz	red: 06/12/2	5 17:34		
Total Kjeldahl Nitrogen	<1.00	1.00	mg/L		<1.00				20	
Matrix Spike (B524310-MS1)		Source: 2506	054-01	Prepared: (06/12/25 12:	30 Analyz	zed: 06/12/2	5 17:35		
Total Kjeldahl Nitrogen	19.1	1.00	mg/L	20.0	<1.00	95	80-120			
Batch B525203 - EPA 365.3										
Blank (B525203-BLK1)				Prepared: (06/17/25 09:	00 Analyz	zed: 06/17/2	5 15:20		
Total Phosphorous	< 0.05	0.05	mg/L							
LCS (B525203-BS1)				Prepared: (06/17/25 09:	00 Analyz	zed: 06/17/2	5 15:20		
Total Phosphorous	0.472	0.05	mg/L	0.500		94	80-120			
LCS Dup (B525203-BSD1)				Prepared: (06/17/25 09:	00 Analyz	zed: 06/17/2	5 15:20		
Total Phosphorous	0.460	0.05	mg/L	0.500		92	80-120	3	20	
Duplicate (B525203-DUP1)		Source: 2506	273-01	Prepared: (06/17/25 09:	00 Analyz	zed: 06/17/2	5 15:20		
Total Phosphorous	0.109	0.05	mg/L		0.108			0.9	20	
Matrix Spike (B525203-MS1)		Source: 2506	273-01	Prepared: (06/17/25 09:	00 Analyz	ed: 06/17/2	5 15:20		

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Additional Notes:

Analyte

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Units

Spike

Level

Source

Result

%REC

Project Number: [none]

Reporting

Limit

Result

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

RPD

Limit

%REC

Limits

RPD

General Chemistry - Quality Control

Matrix Spike (B525203-MS1)									
matrix opike (Dozozoo-mior)		Source: 250627	73-01	Prepared:	06/17/25 09:	00 Analyz	zed: 06/17/2:	5 15:20	
Total Phosphorous	0.556	0.05	mg/L	0.500	0.108	90	80-120		
Matrix Spike Dup (B525203-MSD	01)	Source: 250627	73-01	Prepared:	06/17/25 09:	00 Analyz	zed: 06/17/2	5 15:20	
Total Phosphorous	0.564	0.05	mg/L	0.500	0.108	91	80-120	1	20
Anions by Ion Chromatogra	aphy - Quality (Control							
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	Result	Limit	Onts	Level	Result	70KEC	Lillits	KI D	Limit
Batch B525184 - EPA 300.0									
Blank (B525184-BLK1)				Prepared:	06/06/25 15:	00 Analyz	zed: 06/06/2:	5 15:38	
Fluoride	<20	20	ug/L						
Chloride	< 0.100	0.100	mg/L						
Nitrate as N	<100	100	ug/L						
Sulfate	< 0.10	0.10	mg/L						
LCS (B525184-BS1)				Prepared:	06/06/25 15:	00 Analyz	zed: 06/06/2	5 15:56	
Fluoride	1080	20	ug/L	1000		108	90-110		
Chloride	4.84	0.100	mg/L	5.00		97	90-110		
Nitrate as N	5000	100	ug/L	5000		100	90-110		
Sulfate	4.93	0.10	mg/L	5.00		99	90-110		
				Prepared:	06/06/25 16:	00 Analyz	zed: 06/06/2	5 16:13	
LCS Dup (B525184-BSD1)				i repared.					
* ` '	1090	20	ug/L	1000		109	90-110	0.7	20
Fluoride	1090 4.84	20 0.100	ug/L mg/L	•		109 97	90-110 90-110	0.7 0.03	20 20
LCS Dup (B525184-BSD1) Fluoride Chloride Nitrate as N			-	1000					
Fluoride Chloride Nitrate as N	4.84	0.100	mg/L	1000 5.00		97	90-110	0.03	20
Fluoride Chloride Nitrate as N Sulfate	4.84 5000	0.100 100	mg/L ug/L mg/L	1000 5.00 5000 5.00	06/06/25 16:	97 100 98	90-110 90-110 90-110	0.03 0.06 0.9	20 20
Fluoride Chloride Nitrate as N Sulfate Duplicate (B525184-DUP1)	4.84 5000	0.100 100 0.10	mg/L ug/L mg/L	1000 5.00 5000 5.00		97 100 98	90-110 90-110 90-110	0.03 0.06 0.9	20 20
Fluoride Chloride	4.84 5000 4.89	0.100 100 0.10 Source: 25061	mg/L ug/L mg/L	1000 5.00 5000 5.00	06/06/25 16:	97 100 98	90-110 90-110 90-110	0.03 0.06 0.9 5 19:48	20 20 20
Fluoride Chloride Nitrate as N Sulfate Duplicate (B525184-DUP1) Fluoride	4.84 5000 4.89	0.100 100 0.10 Source: 25061 2	mg/L ug/L mg/L 15-02 ug/L	1000 5.00 5000 5.00	06/06/25 16:	97 100 98	90-110 90-110 90-110	0.03 0.06 0.9 5 19:48	20 20 20 20
Fluoride Chloride Nitrate as N Sulfate Duplicate (B525184-DUP1) Fluoride Chloride	4.84 5000 4.89 246 2.70	0.100 100 0.10 Source: 25061 2 20 0.100	mg/L ug/L mg/L 15-02 ug/L mg/L	1000 5.00 5000 5.00	06/06/25 16: 246 2.72	97 100 98	90-110 90-110 90-110	0.03 0.06 0.9 5 19:48	20 20 20 20 20

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Additional Notes: Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

Anions by Ion Chromatography - Quality Control

imons by for enromatograp		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B525184 - EPA 300.0										
Matrix Spike (B525184-MS1)		Source: 250614	5-02	Prepared:	06/06/25 16	:00 Analyz	zed: 06/06/2	5 21:35		
Fluoride	1200	20	ug/L	1000	246	95	80-120			
Chloride	7.55	0.100	mg/L	5.00	2.72	97	80-120			
Nitrate as N	4940	100	ug/L	5000	11.1	99	80-120			
Sulfate	11.1	0.10	mg/L	5.00	6.57	90	80-120			
Matrix Spike Dup (B525184-MSD1))	Source: 250614	5-02	Prepared:	06/06/25 16	:00 Analyz	zed: 06/06/2	5 22:11		
Fluoride	1200	20	ug/L	1000	246	95	80-120	0.2	20	
Chloride	7.56	0.100	mg/L	5.00	2.72	97	80-120	0.1	20	
Nitrate as N	4950	100	ug/L	5000	11.1	99	80-120	0.2	20	
Sulfate	11.3	0.10	mg/L	5.00	6.57	94	80-120	2	20	
Total Mercury by EPA 245.7 Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B524249 - EPA 245.7										
Blank (B524249-BLK1)				Prepared:	06/11/25 10	:30 Analyz	red: 06/11/2:	5 13:45		
Mercury	<5.00	5.00	ng/L							
LCS (B524249-BS1)				Prepared:	06/11/25 10	:30 Analyz	ed: 06/11/2:	5 13:48		
Mercury	22.0	5.00	ng/L	25.0		88	75-125			
LCS Dup (B524249-BSD1)				Prepared:	06/11/25 10	:30 Analyz	ed: 06/11/2:	5 13:50		
Mercury	22.2	5.00	ng/L	25.0		89	75-125	1	25	
Duplicate (B524249-DUP1)		Source: 250609	4-01	Prepared:	06/11/25 10	:30 Analyz	ed: 06/11/2:	5 13:56		
Mercury	3.32	5.00	ng/L		< 5.00				25	
Matrix Spike (B524249-MS1)		Source: 250609	4-01	Prepared:	06/11/25 10	:30 Analyz	ed: 06/11/2:	5 13:59		
Mercury	25.8	5.00	ng/L	25.0	<5.00	103	63-111			
Total Metals By ICP-MS - Q	uality Control									
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

Total Metals By ICP-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B524221 - EPA 200.8										
Blank (B524221-BLK1)				Prepared: (06/10/25 09:	:40 Analyz	ed: 06/10/2	5 15:45		
Aluminum	<2500	2500	ug/L							
Arsenic	< 500	500	ug/L							
Beryllium	<1	1	ug/L							
Copper	<1	1	ug/L							
Lead	<1	1	ug/L							
Nickel	<1	1	ug/L							
Selenium	<1	1	ug/L							
Silver	<1	1	ug/L							
Thallium	<2	2	ug/L							
LCS (B524221-BS1)				Prepared: (06/10/25 09:	:40 Analyz	ed: 06/10/2	5 15:48		
Aluminum	899	2500	ug/L	1000		90	85-115			
Arsenic	94.5	500	ug/L	100		94	85-115			
Beryllium	92.9	1	ug/L	100		93	85-115			
Copper	96.2	1	ug/L	100		96	85-115			
Lead	91.2	1	ug/L	100		91	85-115			
Nickel	94.6	1	ug/L	100		95	85-115			
Selenium	90.3	1	ug/L	100		90	85-115			
Silver	89.8	1	ug/L	100		90	85-115			
Thallium	93.6	2	ug/L	100		94	85-115			
LCS Dup (B524221-BSD1)				Prepared: (06/10/25 09:	:40 Analyz	ed: 06/10/2	5 15:52		
Aluminum	897	2500	ug/L	1000		90	85-115	0.2	20	
Arsenic	92.7	500	ug/L	100		93	85-115	2	20	
Beryllium	91.8	1	ug/L	100		92	85-115	1	20	
Copper	92.8	1	ug/L	100		93	85-115	4	20	
Lead	91.7	1	ug/L	100		92	85-115	0.6	20	
Nickel	96.0	1	ug/L	100		96	85-115	1	20	
Selenium	89.1	1	ug/L	100		89	85-115	1	20	
Silver	92.7	1	ug/L	100		93	85-115	3	20	
Thallium	97.9	2	ug/L	100		98	85-115	5	20	
Duplicate (B524221-DUP1)		Source: 250615	3-01	Prepared: (06/10/25 09:	:40 Analyz	ed: 06/10/2	5 16:43		
Aluminum	16.7	2500	ug/L		21.6			25	20	
Arsenic	< 500	500	ug/L		< 500				20	
Beryllium	<1	1	ug/L		<1				20	

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

Total Metals By ICP-MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B524221 - EPA 200.8										
Duplicate (B524221-DUP1)		Source: 250615	3-01	Prepared:	06/10/25 09	:40 Analyz	ed: 06/10/2:	5 16:43		
Copper	3.49	1	ug/L		3.79			8	20	
Lead	0.0977	1	ug/L		0.114			15	20	
Nickel	2.50	1	ug/L		2.72			9	20	
Selenium	4.15	1	ug/L		3.68			12	20	
Silver	<1	1	ug/L		0.110				20	
Гhallium	<2	2	ug/L		<2				20	
Matrix Spike (B524221-MS1)		Source: 250615	3-01	Prepared:	06/10/25 09	:40 Analyz	ed: 06/10/2:	5 16:46		
Aluminum	846	2500	ug/L	1000	21.6	82	75-125			
Arsenic	94.8	500	ug/L	100	< 500	95	75-125			
Beryllium	86.8	1	ug/L	100	<1	87	75-125			
Copper	87.9	1	ug/L	100	3.79	84	75-125			
Lead	97.2	1	ug/L	100	0.114	97	75-125			
Nickel	87.4	1	ug/L	100	2.72	85	75-125			
Selenium	101	1	ug/L	100	3.68	98	75-125			
Silver	99.9	1	ug/L	100	0.110	100	75-125			
Гhallium	95.6	2	ug/L	100	<2	96	75-125			
Matrix Spike Dup (B524221-MSD1)		Source: 250615	3-01	Prepared:	06/10/25 09	:40 Analyz	ed: 06/10/2:	5 16:50		
Aluminum	831	2500	ug/L	1000	21.6	81	75-125	2	20	
Arsenic	96.5	500	ug/L	100	< 500	96	75-125	2	20	
Beryllium	86.7	1	ug/L	100	<1	87	75-125	0.2	20	
Copper	88.1	1	ug/L	100	3.79	84	75-125	0.2	20	
Lead	98.6	1	ug/L	100	0.114	98	75-125	1	20	
Nickel	87.7	1	ug/L	100	2.72	85	75-125	0.4	20	
Selenium	106	1	ug/L	100	3.68	102	75-125	4	20	
Silver	101	1	ug/L	100	0.110	101	75-125	1	20	
Thallium	95.5	2	ug/L	100	<2	95	75-125	0.1	20	

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

Batch B525227 - EPA 625.1

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

Blank (B525227-BLK1)				Prepared: 06/17/25 09:00 Analyzed: 06/17/25 13:40
1,2,4,5-Tetrachlorobenzene	<20	20	ug/L	
1,2,4-Trichlorobenzene	<10	10	ug/L	
,2-Dichlorobenzene	<10	10	ug/L	
1,3-Dichlorobenzene	<10	10	ug/L	
,4-Dichlorobenzene	<10	10	ug/L	
,3,4,6-Tetrachlorophenol	<2	2	ug/L	
,4,5-Trichlorophenol	< 50	50	ug/L	
4,6-Trichlorophenol	<10	10	ug/L	
,4-Dichlorophenol	<10	10	ug/L	
4-Dimethylphenol	<10	10	ug/L	
4-Dinitrophenol	<10	10	ug/L	
4-Dinitrotoluene	<10	10	ug/L	
6-Dinitrotoluene	<10	10	ug/L	
Chloronaphthalene	<10	10	ug/L	
Chlorophenol	<10	10	ug/L	
Methylphenol [o-Cresol]	<2	2	ug/L	
Nitrophenol	<20	20	ug/L	
'-Dichlorobenzidine	<5	5	ug/L	
-Methylphenol	<10	10	ug/L	
5-Dinitro-2-methylphenol	< 50	50	ug/L	
Bromophenyl-phenylether	<10	10	ug/L	
Chloro-3-methylphenol	<10	10	ug/L	
Chlorophenyl-phenylether	<10	10	ug/L	
Nitrophenol	< 50	50	ug/L	
cenaphthene	<10	10	ug/L	
enaphthylene	<10	10	ug/L	
thracene	<10	10	ug/L	
obenzene [1,2-Diphenylhydrazine]	<20	20	ug/L	
enz(a)anthracene	<5	5	ug/L	
nzidine	< 50	50	ug/L	
nzo(a)pyrene	<5	5	ug/L	
enzo[b]fluoranthene	<10	10	ug/L	
nzo[g,h,i]perylene	<20	20	ug/L	
nzo[k]fluoranthene	<5	5	ug/L	
2-Chloroethoxy)methane	<10	10	ug/L	

%REC

Limits

12.8-101

5-101

RPD

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Surrogate: 2-Fluorobiphenyl

Surrogate: 2-Fluorophenol

Analyte

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Units

Spike

Level

Source

Result

%REC

Project Number: [none]

Reporting

Limit

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

RPD

Limit

Semivolatile Organic Compounds by GC/MS - Quality Control

Result

56.2

97.8

Allalyte	Result	Liiiit	Omis	Level	Kesuit	/orec	Lillits	KrD	Lilliit	
Batch B525227 - EPA 625.1										
Blank (B525227-BLK1)				Prepared: (06/17/25 09:	00 Analyz	zed: 06/17/2	25 13:40		
Bis(2-Chloroethyl)ether	<10	10	ug/L							
Bis(2-chloroisopropyl)ether	<10	10	ug/L							
Bis(2-Ethylhexyl)phthalate	<10	10	ug/L							
Butylbenzylphthalate	<10	10	ug/L							
Chrysene	<5	5	ug/L							
Dibenz[a,h]anthracene	<5	5	ug/L							
Diethylphthalate	<10	10	ug/L							
Dimethylphthalate	<10	10	ug/L							
Di-n-butylphthalate	<10	10	ug/L							
Di-n-octylphthalate	<10	10	ug/L							
Fluoranthene	<20	20	ug/L							
Fluorene	<10	10	ug/L							
Hexachlorobenzene	<10	10	ug/L							
Hexachlorobutadiene	<10	10	ug/L							
Hexachlorocyclopentadiene	<10	10	ug/L							
Hexachloroethane	<2	2	ug/L							
Indeno[1,2,3-cd]pyrene	<5	5	ug/L							
Isophorone	<10	10	ug/L							
Naphthalene	<10	10	ug/L							
Nitrobenzene	<10	10	ug/L							
N-Nitrosodiethylamine	<20	20	ug/L							
N-Nitrosodimethylamine	<50	50	ug/L							
N-Nitrosodi-n-butylamine	<20	20	ug/L							
N-Nitroso-di-n-propylamine	<20	20	ug/L							
N-Nitrosodiphenylamine	<20	20	ug/L							
Pentachlorobenzene	<20	20	ug/L							
Pentachlorophenol	<5	5	ug/L							
Phenanthrene	<10	10	ug/L							
Phenol	<100	100	ug/L							
Pyrene	<10	10	ug/L							
Pyridine	<20	20	ug/L							
Atrazine	<10	10	ug/L							
Surrogate: 2,4,6-Tribromophenol	135		ug/L	200		67	5-134			
G y.y			J							

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

100

200

ug/L

ug/L

%REC

Limits

RPD

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Batch B525227 - EPA 625.1

Additional Notes:

Analyte

Acenaphthylene

Benz(a)anthracene

Benzo(a)pyrene

Benzidine

Azobenzene [1,2-Diphenylhydrazine]

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Units

Spike

Level

Source

Result

%REC

Project Number: [none]

Reporting

Limit

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

RPD

Limit

Semivolatile Organic Compounds by GC/MS - Quality Control

Result

55.5

61.7

58.5

67.9

11.0

73.5

Blank (B525227-BLK1)		Prepared: 06/17/25 09:00 Analyzed: 06/17/25 13:40								
Surrogate: Nitrobenzene-d5	56.6		ug/L	100	57	10.7-118				
Surrogate: Phenol-d5	93.1		ug/L	200	47	5-87				
Surrogate: Terphenyl-d14	92.9		ug/L	100	93	25-133				
LCS (B525227-BS1)				Prepared: 06/17/2	25 09:00 Analy	zed: 06/17/25 14:01				
1,2,4,5-Tetrachlorobenzene	48.8	20	ug/L	80.0	61	25-138				
1,2,4-Trichlorobenzene	46.5	10	ug/L	80.0	58	57-130				
1,2-Dichlorobenzene	41.7	10	ug/L	80.0	52	11.4-57.3				
1,3-Dichlorobenzene	41.6	10	ug/L	80.0	52	35.7-64.2				
1,4-Dichlorobenzene	43.0	10	ug/L	80.0	54	34.8-66.4				
2,3,4,6-Tetrachlorophenol	51.7	2	ug/L	80.0	65	50.5-83.3				
2,4,5-Trichlorophenol	55.4	50	ug/L	80.0	69	51.3-84.1				
2,4,6-Trichlorophenol	54.7	10	ug/L	80.0	68	52-129				
2,4-Dichlorophenol	49.6	10	ug/L	80.0	62	53-122				
2,4-Dimethylphenol	66.8	10	ug/L	80.0	84	42-120				
2,4-Dinitrophenol	58.0	10	ug/L	80.0	73	5-173				
2,4-Dinitrotoluene	63.6	10	ug/L	80.0	80	48-127				
2,6-Dinitrotoluene	58.0	10	ug/L	80.0	73	68-137				
2-Chloronaphthalene	52.4	10	ug/L	80.0	65	65-120				
2-Chlorophenol	47.1	10	ug/L	80.0	59	36-120				
2-Methylphenol [o-Cresol]	51.7	2	ug/L	80.0	65	41.8-84.1				
2-Nitrophenol	50.8	20	ug/L	80.0	64	45-167				
3,3'-Dichlorobenzidine	69.1	5	ug/L	80.0	86	8-213				
3/4-Methylphenol	48.8	10	ug/L	80.0	61	43-88.9				
4,6-Dinitro-2-methylphenol	64.7	50	ug/L	80.0	81	53-130				
4-Bromophenyl-phenylether	58.0	10	ug/L	80.0	73	65-120				
4-Chloro-3-methylphenol	59.1	10	ug/L	80.0	74	41-128				
4-Chlorophenyl-phenylether	53.4	10	ug/L	80.0	67	38-145				
4-Nitrophenol	44.4	50	ug/L	80.0	56	13-129				
Acenaphthene	49.0	10	ug/L	80.0	61	70-130	L			

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

ug/L

ug/L

ug/L

ug/L

ug/L

80.0

80.0

80.0

80.0

80.0

80.0

69

77

73

85

14

60-130

58-130

50.4-98.2

42-133

18.1-101

32-148

10

10

20

50

L

%REC

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Pyridine

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Spike

Project Number: [none]

Reporting

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

33.8

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B525227 - EPA 625.1										
LCS (B525227-BS1)				Prepared: (06/17/25 09	:00 Analy	zed: 06/17/2	5 16:37		
Benzo[b]fluoranthene	70.1	10	ug/L	80.0		88	42-140			
Benzo[g,h,i]perylene	71.6	20	ug/L	80.0		90	5-195			
Benzo[k]fluoranthene	69.7	5	ug/L	80.0		87	25-146			
bis(2-Chloroethoxy)methane	52.1	10	ug/L	80.0		65	49-165			
Bis(2-Chloroethyl)ether	44.8	10	ug/L	80.0		56	43-126			
Bis(2-chloroisopropyl)ether	46.5	10	ug/L	80.0		58	63-139			L
Bis(2-Ethylhexyl)phthalate	75.4	10	ug/L	80.0		94	29-137			
Butylbenzylphthalate	73.8	10	ug/L	80.0		92	5-140			
Chrysene	62.6	5	ug/L	80.0		78	44-140			
Dibenz[a,h]anthracene	69.4	5	ug/L	80.0		87	5-200			
Diethylphthalate	61.3	10	ug/L	80.0		77	5-120			
Dimethylphthalate	56.5	10	ug/L	80.0		71	5-120			
Di-n-butylphthalate	73.2	10	ug/L	80.0		92	8-120			
Di-n-octylphthalate	80.1	10	ug/L	80.0		100	19-132			
Fluoranthene	67.9	20	ug/L	80.0		85	43-121			
Fluorene	54.4	10	ug/L	80.0		68	70-120			L
Hexachlorobenzene	57.0	10	ug/L	80.0		71	8-142			
Hexachlorobutadiene	45.9	10	ug/L	80.0		57	38-120			
Hexachlorocyclopentadiene	39.7	10	ug/L	80.0		50	7.82-72.2			
Hexachloroethane	43.6	2	ug/L	80.0		55	55-120			L
Indeno[1,2,3-cd]pyrene	73.8	5	ug/L	80.0		92	5-151			
Isophorone	53.8	10	ug/L	80.0		67	47-180			
Naphthalene	45.9	10	ug/L	80.0		57	36-120			
Nitrobenzene	47.5	10	ug/L	80.0		59	54-158			
N-Nitrosodiethylamine	46.6	20	ug/L	80.0		58	27.8-84.4			
N-Nitrosodimethylamine	38.2	50	ug/L	80.0		48	32.6-70.3			
N-Nitrosodi-n-butylamine	53.8	20	ug/L	80.0		67	43.2-77.9			
N-Nitroso-di-n-propylamine	54.6	20	ug/L	80.0		68	51-94.8			
N-Nitrosodiphenylamine	56.8	20	ug/L	80.0		71	54.5-90.5			
Pentachlorobenzene	55.6	20	ug/L	80.0		70	43.1-84.4			
Pentachlorophenol	51.4	5	ug/L ug/L	80.0		64	38-152			
Phenanthrene	57.4	10	ug/L ug/L	80.0		72	65-120			
Phenol	32.9	100	ug/L ug/L	80.0		41	17-120			
Pyrene	65.9	10	ug/L ug/L	80.0		82	70-120			
1 yiele	03.9	10	ug/L	00.0		04	70-120			

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

80.0

42

29.2-68.7

ug/L

%REC

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Spike

Source

Project Number: [none]

Reporting

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B525227 - EPA 625.1										
LCS (B525227-BS1)				Prepared: (06/17/25 09	:00 Analy	zed: 06/17/25	5 16:37		
Atrazine	75.6	10	ug/L	80.0		94	0-200			
Surrogate: 2,4,6-Tribromophenol	143		ug/L	200		72	5-134			
Surrogate: 2-Fluorobiphenyl	66.8		ug/L	100		67	12.8-101			
Surrogate: 2-Fluorophenol	97.1		ug/L	200		49	5-101			
Surrogate: Nitrobenzene-d5	59.5		ug/L	100		59	46-219			
Surrogate: Phenol-d5	186		ug/L	200		93	48-208			
Surrogate: Terphenyl-d14	90.0		ug/L	100		90	25-133			
LCS Dup (B525227-BSD1)				Prepared: (06/17/25 09	:00 Analy	zed: 06/17/25	5 14:22		
1,2,4,5-Tetrachlorobenzene	54.1	20	ug/L	80.0		68	25-138	10	13.6	
1,2,4-Trichlorobenzene	45.7	10	ug/L	80.0		57	57-130	2	12.8	
1,2-Dichlorobenzene	40.0	10	ug/L	80.0		50	11.4-57.3	4	15.4	
1,3-Dichlorobenzene	40.9	10	ug/L	80.0		51	35.7-64.2	2	15.6	
1,4-Dichlorobenzene	40.9	10	ug/L	80.0		51	34.8-66.4	5	15.5	
2,3,4,6-Tetrachlorophenol	50.9	2	ug/L	80.0		64	50.5-83.3	2	17.6	
2,4,5-Trichlorophenol	54.3	50	ug/L	80.0		68	51.3-84.1	2	16.1	
2,4,6-Trichlorophenol	54.2	10	ug/L	80.0		68	52-129	0.9	14.6	
2,4-Dichlorophenol	52.4	10	ug/L	80.0		66	53-122	6	12.1	
2,4-Dimethylphenol	65.8	10	ug/L	80.0		82	42-120	2	10.7	
2,4-Dinitrophenol	57.5	10	ug/L	80.0		72	5-173	0.9	152	
2,4-Dinitrotoluene	63.1	10	ug/L	80.0		79	48-127	0.8	12.3	
2,6-Dinitrotoluene	57.1	10	ug/L	80.0		71	68-137	2	15.7	
2-Chloronaphthalene	49.6	10	ug/L	80.0		62	65-120	5	12.2	L
2-Chlorophenol	46.0	10	ug/L	80.0		57	36-120	3	11.4	
2-Methylphenol [o-Cresol]	48.1	2	ug/L	80.0		60	41.8-84.1	7	9.85	
2-Nitrophenol	51.0	20	ug/L	80.0		64	45-167	0.4	149	
3,3'-Dichlorobenzidine	64.9	5	ug/L	80.0		81	8-213	6	23.3	
3/4-Methylphenol	48.6	10	ug/L	80.0		61	43-88.9	0.4	7.98	
4,6-Dinitro-2-methylphenol	65.9	50	ug/L	80.0		82	53-130	2	14.2	
4-Bromophenyl-phenylether	57.5	10	ug/L	80.0		72	65-120	0.9	16.1	
4-Chloro-3-methylphenol	55.2	10	ug/L	80.0		69	41-128	7	13.2	
4-Chlorophenyl-phenylether	51.8	10	ug/L	80.0		65	38-145	3	16.4	
4-Nitrophenol	43.0	50	ug/L	80.0		54	13-129	3	11.9	
Acenaphthene	47.1	10	ug/L	80.0		59	70-130	4	17.1	L
Acenaphthylene	54.9	10	ug/L	80.0		69	60-130	1	17.2	
Anthracene	61.1	10	ug/L	80.0		76	58-130	1	19.8	

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

www.satestinglab.com

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B525227 - EPA 625.1										
LCS Dup (B525227-BSD1)				Prepared: (06/17/25 09:	00 Analy	zed: 06/17/25	5 16:59		
Azobenzene [1,2-Diphenylhydrazine]	56.6	20	ug/L	80.0		71	50.4-98.2	3	15.7	
Benz(a)anthracene	63.7	5	ug/L	80.0		80	42-133	6	21.1	
Benzidine	9.74	50	ug/L	80.0		12	18.1-101	12	22.9	L
Benzo(a)pyrene	68.3	5	ug/L	80.0		85	32-148	7	18.3	
Benzo[b]fluoranthene	65.2	10	ug/L	80.0		82	42-140	7	18.4	
Benzo[g,h,i]perylene	65.8	20	ug/L	80.0		82	5-195	8	19.7	
Benzo[k]fluoranthene	63.6	5	ug/L	80.0		80	25-146	9	18.5	
bis(2-Chloroethoxy)methane	49.0	10	ug/L	80.0		61	49-165	6	13	
Bis(2-Chloroethyl)ether	46.4	10	ug/L	80.0		58	43-126	3	12.9	
Bis(2-chloroisopropyl)ether	44.7	10	ug/L	80.0		56	63-139	4	12.2	L
Bis(2-Ethylhexyl)phthalate	69.1	10	ug/L	80.0		86	29-137	9	30.9	
Butylbenzylphthalate	68.0	10	ug/L	80.0		85	5-140	8	14	
Chrysene	59.2	5	ug/L	80.0		74	44-140	6	37.7	
Dibenz[a,h]anthracene	64.3	5	ug/L	80.0		80	5-200	8	17.9	
Diethylphthalate	60.7	10	ug/L	80.0		76	5-120	0.9	17	
Dimethylphthalate	56.2	10	ug/L	80.0		70	5-120	0.5	16.1	
Di-n-butylphthalate	69.7	10	ug/L	80.0		87	8-120	5	15.1	
Di-n-octylphthalate	75.4	10	ug/L	80.0		94	19-132	6	12.4	
Fluoranthene	65.0	20	ug/L	80.0		81	43-121	4	17.8	
Fluorene	53.2	10	ug/L	80.0		67	70-120	2	16.5	L
Hexachlorobenzene	55.2	10	ug/L	80.0		69	8-142	3	14.5	
Hexachlorobutadiene	44.1	10	ug/L	80.0		55	38-120	4	14	
Hexachlorocyclopentadiene	40.0	10	ug/L	80.0		50	7.82-72.2	0.6	23	
Hexachloroethane	38.9	2	ug/L	80.0		49	55-120	11	15	L
Indeno[1,2,3-cd]pyrene	66.5	5	ug/L	80.0		83	5-151	10	21.7	
Isophorone	51.9	10	ug/L	80.0		65	47-180	4	10.9	
Naphthalene	45.0	10	ug/L	80.0		56	36-120	2	12.3	
Nitrobenzene	45.9	10	ug/L	80.0		57	54-158	3	12.6	
N-Nitrosodiethylamine	48.8	20	ug/L	80.0		61	27.8-84.4	5	16.4	
N-Nitrosodimethylamine	37.1	50	ug/L	80.0		46	32.6-70.3	3	9.16	
N-Nitrosodi-n-butylamine	52.1	20	ug/L	80.0		65	43.2-77.9	3	19.9	
N-Nitroso-di-n-propylamine	53.7	20	ug/L	80.0		67	51-94.8	2	11	
N-Nitrosodiphenylamine	56.0	20	ug/L	80.0		70	54.5-90.5	1	15	
Pentachlorobenzene	58.3	20	ug/L	80.0		73	43.1-84.4	5	21.7	
Pentachlorophenol	48.5	5	ug/L	80.0		61	38-152	6	14.4	

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

www.satestinglab.com

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert

Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

Semivolatile Organic Compounds by GC/MS - Quality Control

Amalanta	Result	Reporting Limit	Units	Spike	Source Result	0/DEC	%REC	RPD	RPD Limit	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B525227 - EPA 625.1										
LCS Dup (B525227-BSD1)				Prepared: (06/17/25 09:	00 Analy	zed: 06/17/2:	5 16:59		
Phenanthrene	56.7	10	ug/L	80.0		71	65-120	1	19.1	
Phenol	31.2	100	ug/L	80.0		39	17-120	5	8.34	
Pyrene	63.1	10	ug/L	80.0		79	70-120	4	16.9	
Pyridine	33.2	20	ug/L	80.0		42	29.2-68.7	2	19.3	
Atrazine	72.8	10	ug/L	80.0		91	0-200	4	200	
Surrogate: 2,4,6-Tribromophenol	140		ug/L	200		70	5-134			
Surrogate: 2-Fluorobiphenyl	64.5		ug/L	100		65	12.8-101			
Surrogate: 2-Fluorophenol	95.7		ug/L	200		48	5-101			
Surrogate: Nitrobenzene-d5	60.9		ug/L	100		61	46-219			
Surrogate: Phenol-d5	91.0		ug/L	200		45	48-208			SurrL
Surrogate: Terphenyl-d14	83.5		ug/L	100		84	25-133			
Matrix Spike (B525227-MS1)		Source: 250615	3-01	Prepared: (06/12/25 15:	00 Analy	zed: 06/17/2:	5 15:05		
1,2,4,5-Tetrachlorobenzene	188	20	ug/L	320	<20	59	2-200			
1,2,4-Trichlorobenzene	<10	10	ug/L	160	<10		44-142			
1,2-Dichlorobenzene	<10	10	ug/L	160	<10		33.3-64.3			
1,3-Dichlorobenzene	<10	10	ug/L	160	<10		31.1-63			
1,4-Dichlorobenzene	<10	10	ug/L	160	<10		32.2-63			
2,3,4,6-Tetrachlorophenol	<2	2	ug/L	160	<2		17.3-119			
2,4,5-Trichlorophenol	< 50	50	ug/L	160	< 50		24.1-108			
2,4,6-Trichlorophenol	<10	10	ug/L	160	<10		37-144			
2,4-Dichlorophenol	<10	10	ug/L	160	<10		39-135			
2,4-Dimethylphenol	<10	10	ug/L	160	<10		32-120			
2,4-Dinitrophenol	<10	10	ug/L	160	<10		5-191			
2,4-Dinitrotoluene	<10	10	ug/L	160	<10		39-139			
2,6-Dinitrotoluene	<10	10	ug/L	160	<10		50-158			
2-Chloronaphthalene	<10	10	ug/L	160	<10		60-120			
2-Chlorophenol	<10	10	ug/L	160	<10		23-134			
2-Methylphenol [o-Cresol]	<2	2	ug/L	160	<2		18.1-104			
2-Nitrophenol	<20	20	ug/L	160	<20		29-182			
3,3'-Dichlorobenzidine	<5	5	ug/L	160	<5		5-262			
3/4-Methylphenol	<10	10	ug/L	160	<10		15.1-103			
4,6-Dinitro-2-methylphenol	<50	50	ug/L	160	<50		5-181			
4-Bromophenyl-phenylether	<10	10	ug/L	160	<10		53-127			
4-Chloro-3-methylphenol	<10	10	ug/L	160	<10		22-147			
1-Chlorophenyl-phenylether	<10	10	ug/L	160	<10		25-128			

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

www.satestinglab.com

Page 19 of 59

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

В	atch	B525227	- EP	A 625.1
---	------	---------	------	---------

Matrix Spike (B525227-MS1)		Source: 250615	53-01	Prepared	: 06/12/25	15:00 Analyzed: 06/17/25 15:05
4-Nitrophenol	<50	50	ug/L	160	<50	5-132
Acenaphthene	<10	10	ug/L	160	<10	47-145
cenaphthylene	<10	10	ug/L	160	<10	33-145
thracene	<10	10	ug/L	160	<10	27-133
obenzene [1,2-Diphenylhydrazine]	<20	20	ug/L	160	<20	44-97.1
nz(a)anthracene	<5	5	ug/L	160	<5	33-143
nzidine	< 50	50	ug/L	160	< 50	5-108
nzo(a)pyrene	<5	5	ug/L	160	<5	17-163
zo[b]fluoranthene	<10	10	ug/L	160	<10	24-159
nzo[g,h,i]perylene	<20	20	ug/L	160	<20	5-219
nzo[k]fluoranthene	<5	5	ug/L	160	<5	11-162
2-Chloroethoxy)methane	<10	10	ug/L	160	<10	33-184
s(2-Chloroethyl)ether	<10	10	ug/L	160	<10	12-158
s(2-chloroisopropyl)ether	<10	10	ug/L	160	<10	36-166
(2-Ethylhexyl)phthalate	<10	10	ug/L	160	<10	8-158
ylbenzylphthalate	<10	10	ug/L	160	<10	5-152
ysene	<5	5	ug/L	160	<5	17-168
enz[a,h]anthracene	<5	5	ug/L	160	<5	5-227
nylphthalate	<10	10	ug/L	160	<10	5-120
ethylphthalate	<10	10	ug/L	160	<10	5-120
-butylphthalate	<10	10	ug/L	160	<10	1-120
n-octylphthalate	<10	10	ug/L	160	<10	4-146
oranthene	<20	20	ug/L	160	<20	26-137
orene	<10	10	ug/L	160	<10	59-121
achlorobenzene	<10	10	ug/L	160	<10	5-152
achlorobutadiene	<10	10	ug/L	160	<10	24-120
achlorocyclopentadiene	<10	10	ug/L	160	<10	5-87
chloroethane	<2	2	ug/L	160	<2	40-120
no[1,2,3-cd]pyrene	<5	5	ug/L	160	<5	5-171
horone	<10	10	ug/L	160	<10	21-196
nthalene	<10	10	ug/L	160	<10	21-133
bbenzene	<10	10	ug/L	160	<10	35-180
itrosodiethylamine	143	20	ug/L	320	<20	45 43.8-72.7
itrosodimethylamine	< 50	50	ug/L	160	< 50	14.5-77.4
itrosodi-n-butylamine	188	20	ug/L	320	<20	59 51.5-65.1

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

www.satestinglab.com

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

Ratch	B525227 -	. EPA	625 1

Matrix Spike (B525227-MS1)		Source: 250615	53-01	Prepared	: 06/12/25 1	5:00 Analy	vzed: 06/17/25 15:05
N-Nitroso-di-n-propylamine	<20	20	ug/L	160	<20		46.5-86.3
N-Nitrosodiphenylamine	<20	20	ug/L	160	<20		40.6-98.3
Pentachlorobenzene	206	20	ug/L	320	<20	64	54.7-80
Pentachlorophenol	<5	5	ug/L	160	<5		14-176
Phenanthrene	<10	10	ug/L	160	<10		54-120
Phenol	<100	100	ug/L	160	<100		5-120
yrene	<10	10	ug/L	160	<10		52-120
yridine	<20	20	ug/L	160	<20		3.89-92.1
trazine	261	10	ug/L	320	<10	82	0-200
rogate: 2,4,6-Tribromophenol	343		ug/L	400		86	5-134
rrogate: 2-Fluorobiphenyl	114		ug/L	200		57	12.8-101
rrogate: 2-Fluorophenol	151		ug/L	400		38	5-101
urrogate: Nitrobenzene-d5	103		ug/L	200		52	15-314
rrogate: Phenol-d5	153		ug/L	400		38	8-424
rrogate: Terphenyl-d14	167		ug/L	200		84	25-133

Semivolatile Organic Compounds by GC/MS (Nonylphenol) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

Batch B525220 - ASTM D7065-11

Blank (B525220-BLK1)				Prepared: 06/17/	25 09:00 Analy	zed: 06/17/25 13:40
Nonylphenol	<50	50	ug/L			
Surrogate: 2,4,6-Tribromophenol	132		ug/L	200	66	5-89.9
Surrogate: 2-Fluorobiphenyl	52.1		ug/L	100	52	27-111
Surrogate: Phenol-d5	73.5		ug/L	200	37	5-64.3
Surrogate: Terphenyl-d14	86.5		ug/L	100	87	5-114
Surrogate: 2-Fluorophenol	76.5		ug/L	200	38	5-64.3
Surrogate: Nitrobenzene-d5	48.1		ug/L	100	48	22-117
LCS (B525220-BS1)				Prepared: 06/17/	25 09:00 Analy	zed: 06/17/25 14:01
Nonylphenol	349	50	ug/L	500	70	32.3-103
Surrogate: 2,4,6-Tribromophenol	334		ug/L	400	83	5-89.9
Surrogate: Phenol-d5	178		ug/L	400	44	5-64.3

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

www.satestinglab.com

Page 21 of 59

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

Semivolatile Organic Compounds by GC/MS (Nonylphenol) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B525220 - ASTM D7065-	11									
LCS (B525220-BS1)				Prepared: (06/17/25 09	:00 Analyz	zed: 06/17/25	5 14:01		
Surrogate: 2-Fluorobiphenyl	133		ug/L	200		67	27-111			
Surrogate: Terphenyl-d14	177		ug/L	200		89	5-114			
Surrogate: 2-Fluorophenol	180		ug/L	400		45	5-64.3			
Surrogate: Nitrobenzene-d5	113		ug/L	200		56	22-117			
LCS Dup (B525220-BSD1)				Prepared: (06/17/25 09	:00 Analyz	zed: 06/17/25	14:22		
Nonylphenol	395	50	ug/L	500		79	32.3-103	12	21.4	
Surrogate: 2,4,6-Tribromophenol	161		ug/L	200		80	5-89.9			
Surrogate: 2-Fluorobiphenyl	66.1		ug/L	100		66	27-111			
Surrogate: Phenol-d5	86.8		ug/L	200		43	5-64.3			
Surrogate: Terphenyl-d14	87.6		ug/L	100		88	5-114			
Surrogate: 2-Fluorophenol	94.7		ug/L	200		47	5-64.3			
Surrogate: Nitrobenzene-d5	55.6		ug/L	100		56	22-117			
Matrix Spike (B525220-MS1)		Source: 250615	3-01	Prepared: (06/12/25 15	:00 Analyz	zed: 06/17/25	5 15:05		
Nonylphenol	678	50	ug/L	1000	<50	68	26-117			
Surrogate: 2,4,6-Tribromophenol	312		ug/L	400		78	5-89.9			
Surrogate: Phenol-d5	146		ug/L	400		36	5-64.3			
Surrogate: 2-Fluorobiphenyl	114		ug/L	200		57	27-111			
Surrogate: 2-Fluorophenol	143		ug/L	400		36	5-64.3			
Surrogate: Terphenyl-d14	167		ug/L	200		83	5-114			
Surrogate: Nitrobenzene-d5	91.7		ug/L	200		46	22-117			

Polychlorinated Biphenyls [PCB] - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

Batch B525191 - EPA 608.3

Blank (B525191-BLK1)				Prepared: 06/16/25 08:30 Analyzed: 06/16/25 13:25
PCB 1016	< 0.5	0.5	ug/L	
PCB 1221	< 0.5	0.5	ug/L	
PCB 1232	< 0.5	0.5	ug/L	
PCB 1242	< 0.5	0.5	ug/L	
PCB 1248	< 0.5	0.5	ug/L	

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

Polychlorinated Biphenyls [PCB] - Quality Control

		Reporting		Spike	Source		%REC		RPD
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch B525191 - EPA 608.3									
Blank (B525191-BLK1)				Prepared: (06/16/25 08	:30 Analy	zed: 06/16/2	5 13:25	
PCB 1254	< 0.5	0.5	ug/L						
PCB 1260	< 0.5	0.5	ug/L						
Surrogate: Decachlorobiphenyl	0.627		ug/L	1.00		63	15.3-112		
Surrogate: Tetrachloro-meta-xylene	0.389		ug/L	1.00		39	10.2-92.4		
LCS (B525191-BS1)				Prepared:	06/16/25 09	:00 Analy	zed: 06/16/2	5 13:38	
PCB 1016	2.77	0.5	ug/L	5.00		55	13.9-125		
PCB 1260	3.28	0.5	ug/L	5.00		66	29.3-140		
Surrogate: Decachlorobiphenyl	0.352		ug/L	0.500		70	15.3-112		
Surrogate: Tetrachloro-meta-xylene	0.211		ug/L	0.500		42	10.2-92.4		
LCS Dup (B525191-BSD1)				Prepared:	06/16/25 09	:00 Analy	zed: 06/16/2	5 13:49	
PCB 1016	3.03	0.5	ug/L	5.00		61	13.9-125	9	29.5
PCB 1260	3.50	0.5	ug/L	5.00		70	29.3-140	6	23.1
Surrogate: Decachlorobiphenyl	0.343		ug/L	0.500		69	15.3-112		
Surrogate: Tetrachloro-meta-xylene	0.195		ug/L	0.500		39	10.2-92.4		
Matrix Spike (B525191-MS1)		Source: 250615	53-01	Prepared:	06/12/25 15	:00 Analy	zed: 06/16/2	5 19:27	
PCB 1016	7.07	0.5	ug/L	10.0	< 0.5	71	23.5-116		
PCB 1260	7.91	0.5	ug/L	10.0	< 0.5	79	13.3-134		
Surrogate: Decachlorobiphenyl	0.761		ug/L	1.00		76	15.3-112		
Surrogate: Tetrachloro-meta-xylene	0.616		ug/L	1.00		62	10.2-92.4		

Chlorinated Pesticides by GC/ECD - Quality Control

Analyte	Result	Limit Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	
Batch B525192 - EPA 608.3										
LCS (B525192-BS1)				Prepared: 0	06/16/25 09	:00 Analyz	ed: 06/17/2	5 11:26		

alpha-BHC 71 35.7-97.8 0.715 0.1 ug/L 1.00 gamma-BHC (Lindane) 0.764 35-104 0.1 ug/L 1.00 76 beta-BHC L 1.43 0.1 ug/L 1.00 143 26.2-118 ug/L delta-BHC 0.778 0.1 1.00 78 30.2-111 Heptachlor 0.668 0.1 ug/L 1.00 31.1-107

1610 S. Laredo Street, San Antonio, Texas 78207-7029

(210) 229-9920

Fax (210) 229-9921

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

Chlorinated Pesticides by GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B525192 - EPA 608.3										
LCS (B525192-BS1)				Prepared: (06/16/25 09	:00 Analyz	zed: 06/17/25	5 11:26		
Aldrin	0.635	0.1	ug/L	1.00		64	19.5-108			
Heptachlor Epoxide	0.837	0.1	ug/L	1.00		84	38.4-107			
gamma-Chlordane	0.774	0.1	ug/L	1.00		77	46.4-95.4			
alpha-Chlordane	0.779	0.1	ug/L	1.00		78	51.2-99.6			
Endosulfan I	0.831	0.1	ug/L	1.00		83	42.3-108			
4,4'-DDE	0.833	0.1	ug/L	1.00		83	35.6-103			
Dieldrin	0.852	0.1	ug/L	1.00		85	39.4-112			
Endrin	0.991	0.1	ug/L	1.00		99	45.4-131			
4,4′-DDD	0.868	0.1	ug/L	1.00		87	41.7-121			
Endosulfan II	0.898	0.1	ug/L	1.00		90	42.3-116			
4,4'-DDT	0.877	0.1	ug/L	1.00		88	35.1-123			
Endrin Aldehyde	0.841	0.1	ug/L	1.00		84	18.6-121			
Endosulfan Sulfate	0.920	0.1	ug/L	1.00		92	33.8-131			
Methoxychlor	1.01	0.1	ug/L	1.00		101	34.2-147			
Endrin Ketone	0.863	0.1	ug/L	1.00		86	33.4-122			
Surrogate: Decachlorobiphenyl	0.884		ug/L	1.00		88	17.2-134			
Surrogate: Tetrachloro-meta-xylene	0.504		ug/L	1.00		50	10.7-112			
LCS Dup (B525192-BSD1)				Prepared: 0	06/16/25 09	:00 Analyz	zed: 06/17/25	5 11:38		
alpha-BHC	0.605	0.1	ug/L	1.00		60	35.7-97.8	17	20.7	
gamma-BHC (Lindane)	0.645	0.1	ug/L	1.00		65	35-104	17	21.1	
beta-BHC	1.25	0.1	ug/L	1.00		125	26.2-118	13	20.3	L
delta-BHC	0.661	0.1	ug/L	1.00		66	30.2-111	16	19.1	
Heptachlor	0.566	0.1	ug/L	1.00		57	31.1-107	17	28.6	
Aldrin	0.539	0.1	ug/L	1.00		54	19.5-108	16	32.9	
Heptachlor Epoxide	0.715	0.1	ug/L	1.00		72	38.4-107	16	21.9	
gamma-Chlordane	0.658	0.1	ug/L	1.00		66	46.4-95.4	16	24.3	
alpha-Chlordane	0.665	0.1	ug/L	1.00		66	51.2-99.6	16	22.9	
Endosulfan I	0.738	0.1	ug/L	1.00		74	42.3-108	12	22.6	
4,4'-DDE	0.686	0.1	ug/L	1.00		69	35.6-103	19	20.2	
Dieldrin	0.730	0.1	ug/L	1.00		73	39.4-112	15	22.1	
Endrin	0.844	0.1	ug/L	1.00		84	45.4-131	16	20.7	
4,4'-DDD	0.740	0.1	ug/L	1.00		74	41.7-121	16	21.9	
Endosulfan II	0.771	0.1	ug/L	1.00		77	42.3-116	15	22	
4,4'-DDT	0.739	0.1	ug/L	1.00		74	35.1-123	17	21.3	
Endrin Aldehyde	0.714	0.1	ug/L	1.00		71	18.6-121	16	24	

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

www.satestinglab.com

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 Received: 06/06/25 10:52

Report No. 2506153

Chlorinated Pesticides by GC/ECD - Quality Control

	ъ.	Reporting	TT 1.	Spike	Source	0/855	%REC	D.P.S	RPD
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch B525192 - EPA 608.3									
LCS Dup (B525192-BSD1)				Prepared:	06/16/25 09:	00 Analyz	zed: 06/17/25	5 11:38	
Endosulfan Sulfate	0.786	0.1	ug/L	1.00		79	33.8-131	16	21.2
Methoxychlor	0.862	0.1	ug/L	1.00		86	34.2-147	16	22.8
Endrin Ketone	0.727	0.1	ug/L	1.00		73	33.4-122	17	23.1
Surrogate: Decachlorobiphenyl	0.772		ug/L	1.00		77	17.2-134		
Surrogate: Tetrachloro-meta-xylene	0.425		ug/L	1.00		43	10.7-112		
Matrix Spike (B525192-MS1)		Source: 250615	3-01	Prepared:	06/12/25 15:	00 Analyz	zed: 06/17/25	5 12:58	
alpha-BHC	1.18	0.1	ug/L	2.00	<0.1	59	40.6-95.7		
gamma-BHC (Lindane)	1.27	0.1	ug/L	2.00	< 0.1	64	41-99.6		
beta-BHC	1.85	0.1	ug/L	2.00	< 0.1	93	45.4-106		
delta-BHC	1.34	0.1	ug/L	2.00	< 0.1	67	46.1-107		
Heptachlor	1.40	0.1	ug/L	2.00	< 0.1	70	33.1-104		
Aldrin	1.29	0.1	ug/L	2.00	< 0.1	65	40.3-87.4		
Heptachlor Epoxide	1.39	0.1	ug/L	2.00	< 0.1	69	42.7-104		
gamma-Chlordane	1.37	0.1	ug/L	2.00	< 0.1	68	27.5-107		
alpha-Chlordane	1.29	0.1	ug/L	2.00	< 0.1	64	39.5-103		
Endosulfan I	1.48	0.1	ug/L	2.00	< 0.1	74	42.9-105		
4,4′-DDE	1.35	0.1	ug/L	2.00	< 0.1	67	38.9-106		
Dieldrin	1.37	0.1	ug/L	2.00	< 0.1	69	40.5-111		
Endrin	1.69	0.1	ug/L	2.00	< 0.1	84	29.3-144		
4,4′-DDD	1.37	0.1	ug/L	2.00	< 0.1	68	45.3-112		
Endosulfan II	1.47	0.1	ug/L	2.00	< 0.1	73	41-114		
4,4´-DDT	1.39	0.1	ug/L	2.00	< 0.1	70	43.1-111		
Endrin Aldehyde	1.36	0.1	ug/L	2.00	< 0.1	68	43-101		
Endosulfan Sulfate	1.58	0.1	ug/L	2.00	< 0.1	79	39-126		
Methoxychlor	1.71	0.1	ug/L	2.00	< 0.1	86	30.2-150		
Endrin Ketone	1.43	0.1	ug/L	2.00	< 0.1	72	50.3-104		
Surrogate: Decachlorobiphenyl	1.55		ug/L	2.00		77	17.2-134		
Surrogate: Tetrachloro-meta-xylene	1.12		ug/L	2.00		56	10.7-112		
Batch B525193 - EPA 608.3									
Blank (B525193-BLK1)				Prepared:	06/16/25 08:	30 Analyz	zed: 06/17/25	5 11:15	
Toxaphene	<0.3	0.3	ug/L						
Surrogate: Decachlorobiphenyl	0.734		ug/L	1.00		73	34-133		
Surrogate: Tetrachloro-meta-xylene	0.414		ug/L	1.00		41	10.7-112		

(210) 229-9920 1610 S. Laredo Street, San Antonio, Texas 78207-7029

Fax (210) 229-9921

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

Chlorinated Pesticides by GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B525193 - EPA 608.3										
LCS (B525193-BS1)				Prepared:	06/16/25 09	:00 Analyz	zed: 06/17/2	5 11:49		
Toxaphene	8.61	0.3	ug/L	10.0		86	56-130			
Surrogate: Decachlorobiphenyl	1.04		ug/L	1.00		104	34-133			
Surrogate: Tetrachloro-meta-xylene	0.627		ug/L	1.00		63	10.7-112			
LCS Dup (B525193-BSD1)				Prepared:	06/16/25 09	:00 Analyz	zed: 06/17/2	5 12:00		
Toxaphene	9.09	0.3	ug/L	10.0		91	56-130	5	30	
Surrogate: Decachlorobiphenyl	1.08		ug/L	1.00		108	34-133			
Surrogate: Tetrachloro-meta-xylene	0.602		ug/L	1.00		60	10.7-112			
Matrix Spike (B525193-MS1)		Source: 250615	3-01	Prepared:	06/12/25 15	:00 Analyz	zed: 06/17/2	5 13:12		
Toxaphene	17.8	0.3	ug/L	20.0	<0.3	89	56-130			
Surrogate: Decachlorobiphenyl	2.15		ug/L	2.00		107	34-133			
Surrogate: Tetrachloro-meta-xylene	1.64		ug/L	2.00		82	10.7-112			
Batch B525194 - EPA 608.3										
Blank (B525194-BLK1)				Prepared:	06/16/25 08	:30 Analyz	zed: 06/17/2	5 11:15		
Chlordane	<0.2	0.2	ug/L							
Surrogate: Decachlorobiphenyl	0.734		ug/L	1.00		73	25-143			
Surrogate: Tetrachloro-meta-xylene	0.414		ug/L	1.00		41	10.7-112			
LCS (B525194-BS1)				Prepared:	06/16/25 09	:00 Analyz	zed: 06/17/2	5 12:11		
Chlordane	4.37	0.2	ug/L	5.00		87	45-140			
Surrogate: Decachlorobiphenyl	0.999		ug/L	1.00		100	25-143			
Surrogate: Tetrachloro-meta-xylene	0.572		ug/L	1.00		57	10.7-112			
LCS Dup (B525194-BSD1)				Prepared:	06/16/25 09	:00 Analyz	zed: 06/17/2	5 12:22		
Chlordane	4.61	0.2	ug/L	5.00		92	45-140	5	30	
Surrogate: Decachlorobiphenyl	1.04		ug/L	1.00		104	25-143			
Surrogate: Tetrachloro-meta-xylene	0.617		ug/L	1.00		62	10.7-112			
Matrix Spike (B525194-MS1)		Source: 250615	3-01	Prepared:	06/12/25 15	:00 Analyz	zed: 06/17/2	5 13:23		
Chlordane	9.56	0.2	ug/L	10.0	<0.2	96	45-140			
Surrogate: Decachlorobiphenyl	2.11		ug/L	2.00		105	25-143			
Surrogate: Tetrachloro-meta-xylene	1.65		ug/L	2.00		83	10.7-112			

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

Chlorinated Herbicides by Gas Chromatography - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
2 mary to	Result	Limit	Omis	Level	Result	/orche	Limits	МЪ	Ziiiit	
Batch B525188 - EPA 8151										
Blank (B525188-BLK1)				Prepared:	06/12/25 16	:00 Analyz	zed: 06/17/2	5 15:01		
2,4-D	<4.70	4.70	ug/L							
2,4,5-TP (Silvex)	<4.75	4.75	ug/L							
Surrogate: 2,4-Dichlorophenylacetic acid	7.09		ug/L	7.83		91	44.8-124			
LCS (B525188-BS1)				Prepared:	06/12/25 16	:00 Analyz	zed: 06/17/2	5 15:22		
2,4-D	9.13	4.70	ug/L	7.83		117	34.4-150			
2,4,5-TP (Silvex)	7.88	4.75	ug/L	7.92		100	42.8-132			
Surrogate: 2,4-Dichlorophenylacetic acid	7.57		ug/L	7.83		97	44.8-124			
LCS Dup (B525188-BSD1)				Prepared:	06/12/25 16	:00 Analyz	zed: 06/17/2	5 15:42		
2,4-D	8.90	4.70	ug/L	7.83		114	34.4-150	3	21.9	
2,4,5-TP (Silvex)	7.65	4.75	ug/L	7.92		97	42.8-132	3	27.1	
Surrogate: 2,4-Dichlorophenylacetic acid	7.47		ug/L	7.83		95	44.8-124			
Matrix Spike (B525188-MS1)		Source: 250615	53-01	Prepared:	06/12/25 16	:00 Analyz	zed: 06/17/2	5 17:12		
2,4-D	8.88	4.70	ug/L	7.83	<4.70	113	48.7-146			
2,4,5-TP (Silvex)	7.78	4.75	ug/L	7.92	<4.75	98	40.7-133			
Surrogate: 2,4-Dichlorophenylacetic acid	7.13		ug/L	7.83		91	44.8-124			

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

DEFINITIONS

* TNI / NELAC accredited analyte

PQL Practical Quantitation Limit

MCL Maximum Contaminant Level

mg/Kg Milligrams per Kilogram (Parts per Million)

mg/L Milligrams per Kilogram (Parts per Million)

Milligrams per Liter (Parts per Million)

PPM Parts per Million

L LCS recovery is outside QC acceptance limits, the results may have a slight bias.

M MS recovery is outside QC limits, the results may have a slight bias due to possible matrix interferences.

NR Not Recovered due to source sample concentration exceeds spiked concentration.

RMCCL Recommended Maximum Concentration of Contaminants Level

Surr L Surrogate recovery is low outside QC limits.

Surr H Surrogate recovery is high outside QC limits.

HT Sample received past holdtime
IC Improper Container for this analyte(s)
IP Improper preservation for this analyte(s)

IT Improper Temperature

V Inssuficient Volume

B Sample collected in Bulk

S RPD is outside QC limits.

AB VOA Vial contained air bubbles.

OP ortho-Phosphate was not filtered in the field within 15minutes of collection.

CCV Continuing Calibration Verification Standard.
ICV Initial Calibration Verification Standard.

Test Methods followed by the laboratory are referenced in the following approved methodology, unless otherwise specified.

Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017

Methods for Chemical Analysis of Water and Wastes, EPA 600/4-79-020, Rev. March 1983

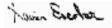
EPA SW Test Methods for the Examination of Solid Waste, SW-846, 1996

Subcontracted Analyses

Subcontractor Lab	Lab Number	Analysis
SPL, Inc Kilgore (Lab)	2506153-01	Sub _Integrity_SPL

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:


Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/26/25 17:49 **Received:** 06/06/25 10:52

Report No. 2506153

Aimee Landon For Marissa Esquivel, Lab Manager For

Xavier Escobar, Business Unit Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CHAIN-OF-CUSTODY RECORD

THESTING CONTRINGENT CONTRICTOR CONTRIC				CHAIN-OF	-CUSIODY RECORD			
TOWA 2.05 CHART PUBLIC COMMON TOWAY CHART PUBL	(INVOICE TO:		P.O. #	
RAY, LLC Control Cont	S	ANTONIO	>Neg Mod Mod	8	MPANY		REPORT	REPORT NUMBER
CAMPACE CAMP	less:	CANDATODY IIC	COMPANY Integrity Testing	i i i i i i i i i i i i i i i i i i i	Te		1866	ロル
CAA 105 CAB			ADDRESS 8127 Mesa Dr. #C-305	AD	DRESS		2002	000
THE THORNESS OF THE PRODUCT OF THE P						ZIP	E-MAIL cewert@austin.rr.com	stin.rr.com
PEMIT ELOCAMA The LUMAN CONDUMENTS A 1900 A 190		_	- FEE	No.	PHONE			
CAMPATOR THE THINNING LING HOLD ANTER SOO PAN SHALL BEGON AT SOC PAN SHALL BEGON AT THE POLLONNO BLENKESS DAY		www.satestinglab.com		0	4 Days 1 3 DAYS 1 2 DAYS +50% +75% +100%		SAME DAY WHEN POSSIBLE +300%	SIBLE
CANA 265 CANA 2	PRC.	(-	PLES	D AFTER 3:00 PM SHALL B		SPECIAL REQ.:		
CAAA 205 CAAA 205 CAAA 205 CAAA 205 CAAA 205 CAAAA 205 CAAAAA 205 CAAAA 205 CAAAAA 205 CAAAA		4	BRC 0		Field: pH: ; Temp: , C; L	CS/D:	J : Dup:	
ANALYSIS OSSENDATE STATE OF COURT THE PARTY THE PROPERTY OF COURT	PRO	JECT NO.	SAMPLE TEMPERATURE WITHIN COMPLIANCE (> (VES D		LP/OTHER):	□ YES NO	AUTHORIZE TO PROCEED
ANALYSIS SAMPLE SAMP	SAN	0 40	OBSERVED TEMP. CORRECTED TEMP. I.I.	AMPLE ICED	F	PST	00	TSDF Class 2 D
SAMPLE SAMPLE		5	77.0			REGU	STED	
SAMPLE SAMPLE		ZO:			187			PRESERVED WITH
THE COLOR THE SAMPLE THE COLOR THE CHARGE STATE	, o	Ο Σ - L O - P Δ - P Δ - Σ - 20 - Σ - 20		0 Z I V O Z I V V V V	ledot / 2. Jost / 4J42 / Jedot Jedot Jedot Jedot	1801/070	m/////	OF SECTION
THE STATE OF THE COMPOSITE EFFLUENT 13 X ON 1 C MANY THE PLANT WERE STATES TO STATE STATES THE STAT	4 ∑0_	M A TO - D W O S B B H H O S B B H H O S B B B H H O S B B B B B B B B B B B B B B B B B B	SAMPLE IDENTIFICATION	- A - C - C - C - C - C - C - C - C - C	SOATT BU	TOWN AS A SECOND TO SECOND		THE NICE OF THE PARTY OF THE PA
THE COMPOSITE EFFLUENT 13 * 10 00 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ш 💉	T		Z W CC	131/828/101/101/101/101/101/101/101/101/101/10	Dei		
FOOTH AND HELLOSING STANDS HELLOSING STA		CC.			Mater Que			REMARKS
FOR THE PRODUCT OF TH			CONPOSITE EF	13 ×			× × ×	
1 COMMENDED PROPERTY HAVE 1 COMMENDED PROPERTY		×	からないか	200	(And it	`>		
1 X 700 M. PARTON CONTRIBUTIONS OF STREETING BY SIGNATURES CONTRIBUTED			9	1 4004	Amber H	*		
FY-SE (0.00 cm. March HCL. 1.00 cm. March Hall HCL. 1.00 cm. March								
FOR THE LINE BY (PRINT NAME) FOR THE LINE								
FIGURE CONTRIBUTIONS DATE L'TIME RECEIVED BY (PRINT NAME) NOUISHEID BY (SIGNATURE) NOUISHEID BY (PRINT NAME) NOUISHEID BY (PRI		1		X O X	1 C Amber			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				l X	Oak Amber H			
FOR STANDARD BY SIGNATURE) OUTSINED BY SIGNATURE BY		2000000 Sent		İXİ	Cont			
Company Comp		6-4-3-5 (0.00 cm		×	य			
NQUISHER BY (SIGNATURE) NQUISHER BY (SIGNATURE) NQUISHER BY (SIGNATURE) DATE / TIME RECEIVED BY (SIGNATURE) DATE / TIME RECEIVED BY (SIGNATURE) NQUISHER BY (SIGNATURE) DATE / TIME RECEIVED BY (SIGNATURE) NQUISHED BY (PRINT NAME) DATE / TIME RECEIVED BY (SIGNATURE) NAME - CO. REV. O4/2022 WHITE - LAB CANARY - CLIENT		6-5-35 10:00 am		X	Owl K			
MQUISHER PRINTINAME) LOCATE / TIME RECEIVED BY (SIGNATURE) DATE / TIME RECEIVED BY (PRINTINAME) RECEIVED BY	<u> </u>							
NOUISHED BY (PRINT NAME) DATE / TIME RECEIVED BY (SIGNATURE) DATE / TIME RECEIVED BY (PRINT NAME) RECEIV	rag	NAUISHERARY (SIGNATURE)	5	DATE LAIME RELINGUI	12	RECEIVED BY (SIGNATURE)	IGNATURE)	DATE / TIME
NQUISHED BY (PRINT NAME) DATE / TIME RECEIVED BY (PRINT NAME) WHITE - LAB CANARY - CLIENT	je 3	NOUISHEABY (PRINT NAME)	RECEIVED OF TPRINTINGHED		(PRINT, NAME)	RECEIVED BY (PRINT NAME)	RINT NAME)	DATE / TIME
NQUISHED BY (PRINT NAME) DATE / TIME RECEIVED BY (PRINT NAME) ODATE / TIME BULK (Initial) 5035 NIA NO NIA NO NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA	U 01	NQUISHED BY (SIGNATURE)	RECEIVED BY (SIGNATURE)		Y ST	SUBCONTRACTED	O YES	NO
ABM: COC BEV 04/2022 WHITE-LAB	59	NQUISHED BY (PRINT NAME)	RECEIVED BY (PRÍNT NAME)	-	5035 D N/A	CUSTODY SEAL	CUSTODY SEAL IN PLACE & INTACT	X ES D NO
			WHITE		r - CLIENT			

SATESTING

From:

Chris Ewert <cewert@austin.rr.com>

Sent:

Friday, June 6, 2025 12:51 PM

To:

SATESTING

Cc:

Marissa Esquivel

Subject:

Re: City of Donna Permit Renewal

Got it

Thanks,

Chris Ewert
Integrity Testing
8127 Mesa Dr. #C-305
Austin, TX 78759
(512) 891-7777
cewert@austin.rr.com
www.integritytestingaustin.com

This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error, please notify the system manager. This message contains confidential information and is intended only for the individual named. If you are not the named addressee, you should not disseminate, distribute or copy this email. Please notify the sender immediately by email if you have received this email by mistake and delete this email from your system. If you are not the intended recipient, you are notified that disclosing, copying, distributing or taking any action in reliance on the contents of this information is strictly prohibited.

On Jun 6, 2025, at 12:45 PM, SATESTING <satesting@satestinglab.com> wrote:

It just occurred to me that it would be easier to resample both the Hexcr and the Tricr since we need the Hexcr to make the calculation. So ,we would need a 125ml bottle with NAOH and a bottle preserved with HNO3 for the Cr.

Aimee Landon
Project Manager
Eurofins Environment Testing South Central San Antonio
San Antonio Testing Laboratory
1610 S. Laredo St.
San Antonio, TX 78207
210-229-9920

From: Chris Ewert <cewert@austin.rr.com>

Sent: Friday, June 6, 2025 9:40 AM

The 24-hour composite was collected on Thursday rather than Wednesday as I anticipated. It was also collected early in the morning and I suspect Hexavalent Chromium will be out of holding time when it arrives today. Please let me know next week if any other parameters were not able to be managed within holding time and we'll follow up with another sample for these parameters.

Thanks,

Chris Ewert
Integrity Testing
8127 Mesa Dr. #C-305
Austin, TX 78759
(512) 891-7777
cewert@austin.rr.com
www.integritytestingaustin.com

This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error, please notify the system manager. This message contains confidential information and is intended only for the individual named. If you are not the named addressee, you should not disseminate, distribute or copy this email. Please notify the sender immediately by email if you have received this email by mistake and delete this email from your system. If you are not the intended recipient, you are notified that disclosing, copying, distributing or taking any action in reliance on the contents of this information is strictly prohibited.

City of Donna WWTP TPDES Permit Analysis

Note: The sample date must be within 1 year of application submission.

Table1.0(1) – Pollutant Analysis for Wastewater Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l					
Total Suspended Solids, mg/l					
Ammonia Nitrogen, mg/l					
Nitrate Nitrogen, mg/l					
Total Kjeldahl Nitrogen, mg/l					
Sulfate, mg/l					
Chloride, mg/l					
Total Phosphorus, mg/l					
pH, standard units					
Dissolved Oxygen*, mg/l	9				
Chlorine Residual, mg/l					
<i>E.coli</i> (CFU/100ml) freshwater					
Entercocci (CFU/100ml) saltwater					
Total Dissolved Solids, mg/l					
Electrical Conductivity, µmohs/cm, †					
Oil & Grease, mg/l					
Alkalinity (CaCO ₃)*, mg/l					

^{*}TPDES permits only †TLAP permits only

For pollutants identified in Table 4.0(1), indicate the type of sample. Grab \square Composite \square Date and time sample(s) collected: Click to enter text.

Table 4.0(1) - Toxics Analysis

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrylonitrile				50
Aldrin				0.01
Aluminum				2.5
Anthracene				10
Antimony				5
Arsenic				0.5
Barium				3
Benzene				10
Benzidine				50
Benzo(a)anthracene				5
Benzo(a)pyrene				5
Bis(2-chloroethyl)ether				10
Bis(2-ethylhexyl)phthalate				10
Bromodichloromethane				10
Bromoform	***************************************			10
Cadmium				1
Carbon Tetrachloride				2
Carbaryl				5
Chlordane*				0.2
Chlorobenzene				10
Chlorodibromomethane				10
Chloroform				10
Chlorpyrifos				0.05
Chromium (Total)				3
Chromium (Tri) (*1)				N/A

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (µg/l)
Chromium (Hex)				3
Copper				2
Chrysene				5
p-Chloro-m-Cresol				10
4,6-Dinitro-o-Cresol		***************************************		50
p-Cresol				10
Cyanide (*2)				10
4,4'- DDD				0.1
4,4'- DDE				0.1
4,4'- DDT				0.02
2,4-D				0.7
Demeton (O and S)				0.20
Diazinon				0.5/0.1
1,2-Dibromoethane				10
m-Dichlorobenzene				10
o-Dichlorobenzene				10
p-Dichlorobenzene				10
3,3'-Dichlorobenzidine				5
1,2-Dichloroethane				10
1,1-Dichloroethylene				10
Dichloromethane				20
1,2-Dichloropropane				10
1,3-Dichloropropene				10
Dicofol				1
Dieldrin				0.02
2,4-Dimethylphenol				10
Di-n-Butyl Phthalate				10
Diuron				0.09
Endosulfan I (alpha)				0.01
Endosulfan II (beta)				0.02
Endosulfan Sulfate				0.1

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (µg/l)
Endrin				0.02
Epichlorohydrin				
Ethylbenzene				10
Ethylene Glycol				
Fluoride				500
Guthion				0.1
Heptachlor				0.01
Heptachlor Epoxide				0.01
Hexachlorobenzene				5
Hexachlorobutadiene				10
Hexachlorocyclohexane (alpha)				0.05
Hexachlorocyclohexane (beta)				0.05
gamma-Hexachlorocyclohexane (Lindane)				0.05
Hexachlorocyclopentadiene				10
Hexachloroethane				20
Hexachlorophene				10
4,4'-Isopropylidenediphenol				1
Lead				0.5
Malathion				0.1
Mercury				0.005
Methoxychlor				2
Methyl Ethyl Ketone				50
Methyl tert-butyl ether				
Mirex				0.02
Nickel				2
Nitrate-Nitrogen				100
Nitrobenzene				10
N-Nitrosodiethylamine				20
N-Nitroso-di-n-Butylamine				20
Nonylphenol				333

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Parathion (ethyl)				0.1
Pentachlorobenzene				20
Pentachlorophenol				5
Phenanthrene				10
Polychlorinated Biphenyls (PCB's) (*3)				0.2
Pyridine				20
Selenium				5
Silver				0.5
1,2,4,5-Tetrachlorobenzene				20
1,1,2,2-Tetrachloroethane				10
Tetrachloroethylene				10
Thallium				0.5
Toluene				10
Toxaphene				0.3
2,4,5-TP (Silvex)				0.3
Tributyltin (see instructions for explanation)				0.01
1,1,1-Trichloroethane				10
1,1,2-Trichloroethane				10
Trichloroethylene				10
2,4,5-Trichlorophenol				50
TTHM (Total Trihalomethanes)				10
Vinyl Chloride				10
7inc				5

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

^(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample. Grab \square Composite \square Date and time sample(s) collected: Click to enter text.

Table 4.0(2)A - Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
-Antimony				5
Arsenic				0.5
Beryllium				0.5
Cadmium				1
Chromium (Total)				3
Chromium (Hex)				3
Chromium (Tri) (*1)				N/A
Copper				2
Lead				0.5
Mercury				0.005
Nickel				2
Selenium				5
Silver				0.5
Thallium				0.5
-Zine -				5
C yanide (*2) /				10
Phenols, Total-				10

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)C - Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
2-Chlorophenol				10
2,4-Dichlorophenol				10
2,4-Dimethylphenol				10
4,6-Dinitro-o-Cresol				50
2,4-Dinitrophenol				50
2-Nitrophenol				20
4-Nitrophenol				50
P-Chloro-m-Cresol				10
Pentalchlorophenol				5
Phenol				10
2,4,6-Trichlorophenol				10

Table 4.0(2)D - Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acenaphthene				10
Acenaphthylene				10
Anthracene				10
Benzidine				50
Benzo(a)Anthracene				5
Benzo(a)Pyrene				5
3,4-Benzofluoranthene				10
Benzo(ghi)Perylene	:			20
Benzo(k)Fluoranthene				5
Bis(2-Chloroethoxy)Methane				10
Bis(2-Chloroethyl)Ether				10
Bis(2-Chloroisopropyl)Ether				10
Bis(2-Ethylhexyl)Phthalate				10
4-Bromophenyl Phenyl Ether				10
Butyl benzyl Phthalate				10
2-Chloronaphthalene				10
4-Chlorophenyl phenyl ether				10
Chrysene				5
Dibenzo(a,h)Anthracene				5
1,2-(o)Dichlorobenzene				10
1,3-(m)Dichlorobenzene				10
1,4-(p)Dichlorobenzene				10
3,3-Dichlorobenzidine				5
Diethyl Phthalate				10
Dimethyl Phthalate				10
Di-n-Butyl Phthalate				10
2,4-Dinitrotoluene				10
2,6-Dinitrotoluene				10
Di-n-Octyl Phthalate				10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
1,2-Diphenylhydrazine (as Azobenzene)				20
Fluoranthene				10
Fluorene				10
Hexachlorobenzene				5
Hexachlorobutadiene				10
Hexachlorocyclo-pentadiene				10
Hexachloroethane				20
Indeno(1,2,3-cd)pyrene				5
Isophorone				10
Naphthalene				10
Nitrobenzene				10
N-Nitrosodimethylamine				50
N-Nitrosodi-n-Propylamine				20
N-Nitrosodiphenylamine				20
Phenanthrene				10
Pyrene				10
1,2,4-Trichlorobenzene				10

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Aldrin				0.01
alpha-BHC (Hexachlorocyclohexane)				0.05
beta-BHC (Hexachlorocyclohexane)				0.05
gamma-BHC (Hexachlorocyclohexane)				0.05
delta-BHC (Hexachlorocyclohexane)		· · · · · · · · · · · · · · · · · · ·		0.05
Chlordane				0.2
4,4-DDT		 		0.02
4,4-DDE				0.1
4,4,-DDD				0.1
Dieldrin				0.02
Endosulfan I (alpha)				0.01
Endosulfan II (beta)			*	0.02
Endosulfan Sulfate				0.1
Endrin			****************	0.02
Endrin Aldehyde				0.1
Heptachlor				0.01
Heptachlor Epoxide				0.01
PCB-1242				0.2
PCB-1254				0.2
PCB-1221				0.2
PCB-1232				0.2
PCB-1248				0.2
PCB-1260				0.2
PCB-1016				0.2
Toxaphene				0.3

^{*} For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Sample Receipt Checklist

Client:	Integrity Testing	Project Manager:	Marissa Esquivel

Project: City of Donna Permit Renewal Project Number: [none]

Report To:

Chris Ewert SATL Report Number: 2506153

Work Order Due by:

06/17/25 19:00 (7 day TAT)

Received By: Logged In By: Arielle Zertuche

Date Received:

06/06/25 10:52

Hannah Thigpen

Date Logged In: 06/06/25 11:53

Sample(s) Received on ICE/evidence of Ice (cooler with melted ice,etc):	Yes
Sample temperature at receipt *:	0.5°C
Custody Seals Present:	Yes
All containers intact:	Yes
Sample labels/COC agree:	Yes
Samples Received within Holding time :	Yes
Samples appropriately preserved **:	Yes
Containers received broken/damaged/leaking:	No
Air bubbles present in VOA vials for VOC/TPH analyses, if applicable:	Not Applicable
TRRP 13 Reporting requested?	No
BacT Sample bottles filled to volume (100mL mark), if applicable:	Not Applicable
LCR Sample bottles filled to volume (1 Liter mark), if applicable:	Not Applicable
Subcontracting required for any analyses:	No
RUSH turnaround time requested:	No
Requested Turnaround Time:	No
Samples delivered via :	Hand Delivered
Air bill included if Samples were shipped:	No
Other deviations not meeting SATL sample acceptance criteria notated on CoC:	None

11-1	
NOTES	

Checked By:	Arielle Zertuche	Date:	06/06/25 10:52
-			

SATL#FO001 Revised 09/15/2022

^{*} Samples delivered to the laboratory on the same day that they are collected may not meet thermal preservation criteria (>0°C but <6°C) but are acceptable, if they arrive on ice.

^{**} If improperly preserved, notate client authorization on CoC to proceed with analysis.

SAMPLE CROSS REFERENCE

Project 1150735

Printed

6/26/2025

Page 1 of 1

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St.

San Antonio, TX 78207

Sample	Sample ID	Taken	Time	Received
2417055	2506153-01	06/05/2025	10:00:00	06/11/2025

Bottle 01 Amber Glass Qt w/Teflon lined lid

Bottle 02 Amber Glass Qt w/Teflon lined lid

Bottle 03 Amber Glass Qt w/Teflon lined lid

Bottle 04 Amber Glass Qt w/Teflon lined lid

Bottle 05 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid

Bottle 06 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid

Bottle 07 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid

Bottle 08 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid

Bottle 09 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid

Bottle 10 Prepared Bottle: 2 mL Autosampler Vial (Batch 1179766) Volume: 1.00000 mL <== Derived from 02 (1013 ml)

Bottle 11 Prepared Bottle: 2 mL Autosampler Vial (Batch 1179862) Volume: 5.00000 mL <== Derived from 04 (1004 ml)

Bottle 12 Prepared Bottle: 632L\632S 2 mL Autosampler Vial (Batch 1180031) Volume: 1.00000 mL <== Derived from 01 (1009 ml)

Bottle 13 Prepared Bottle: GCXL\GCXS 2 mL Autosampler Vial (Batch 1180032) Volume: 1.00000 mL <== Derived from 01 (1009 ml)

Bottle 14 Prepared Bottle: OPXL/OPXS 2 mL Autosampler Vial (Batch 1180033) Volume: 1.00000 mL <== Derived from 01 (1009 ml)

Bottle 15 Prepared Bottle: 2 mL Autosampler Vial (Batch 1181132) Volume: 1.00000 mL <== Derived from 05 (1012 ml)

Method	Bottle	PrepSet	Preparation	QcGroup	Analytical
EPA 632	12	1180031	06/12/2025	1181555	06/20/2025
EPA 8015C	06	1180766	06/17/2025	1180766	06/17/2025
EPA 604.1	11	1179862	06/12/2025	1180198	06/13/2025
EPA 608.3	13	1180032	06/12/2025	1181844	06/16/2025
EPA 614	14	1180033	06/12/2025	1180851	06/16/2025
EPA 624.1	07	1181176	06/18/2025	1181176	06/18/2025
EPA 625.1	10	1179766	06/11/2025	1180091	06/12/2025
EPA 622	14	1180033	06/12/2025	1180849	06/16/2025

Email: Kilgore.ProjectManagement@spllabs.com

Page 1 of 5

Project 1150735

06/26/2025

Printed:

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

RESULTS

				Sample Re	sults							
	2417055	2506153-01	6-4-	1000-6-5-10	00				Received:	06/11	1/2025	
	on-Potable Water omposite Stop 10		Collected by: Client Taken: 06/05/2025	San Antonio				PO:				
E	PA 604.1		Prepared:	1179862 06	/12/2025	14:15:05	Analyzed	1180198	06/13/2025	22:04:00	BRU	
	Parameter Hexachlorophe	ne	Results <0.00249	Units mg/L	<i>RL</i> 0.00249	ı	Flag	S	CAS 70-30-4		Bottle 11	
E	PA 608.3		Prepared:	1180032 06	/12/2025	14:30:00	Analyzed	1181844	06/16/2025	21:49:00	KAI	
	Parameter		Results	Units	RL		Flag	s	CAS		Bottle	
	Kelthane (Dico	fol)	<0.0000991	mg/L	0.00009				115-32-2		13	
	Mirex		<0.00000991	mg/L	0.00000 1	99	S		2385-85-5		13	
E	PA 614		Prepared:	1180033 06	/12/2025	14:30:00	Analyzed	1180851	06/16/2025	21:36:00	KAI	
	Parameter		Results	Units	RL		Flag	S	CAS		Bottle	
IELAC	Azinphos-meth	yl (Guthion)	<0.0000496	mg/L	0.00004	96	S		86-50-0		14	
IELAC	Demeton		<0.0000496	mg/L	0.00004				8065-48-3		14	
IELAC	Diazinon		<0.0000496 <0.0000496	mg/L	0.00004				333-41-5 121-75-5		14	
IELAC IELAC	Malathion Parathion, ethy	1	<0.0000496 <0.0000496	mg/L mg/L	0.00004 0.00004				56-38-2		14 14	
IELAC	Parathion, meth		<0.0000496	mg/L	0.00004				298-00-0		14	
E	PA 622		Prepared:	1180033 06	/12/2025	14:30:00	Analyzed	1180849	06/16/2025	21:36:00	KAF	
	Parameter		Results	Units	RL		Flag	S	CAS		Bottle	
IELAC	Chlorpyrifos		<0.0000496	mg/L	0.00004	96			2921-88-2		14	
E	PA 624.1		Prepared:	1181176 06	/18/2025	14:53:00	Analyzed	1181176	06/18/2025	14:53:00	DWI	
	Parameter		Results	Units	RL		Flag	S	CAS		Bottle	
IELAC	Epichlorohydri	n	<0.0200	mg/L	0.0200				106-89-8		07	

Report Page 2 of 16

6/5/25

Composite Stop 10:00

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

Taken:

Page 2 of 5

Project 1150735

Printed: 06/26/2025

2417055 2506153-01 6-4-1000-6-5-1000 06/11/2025 Received:

10:00:00

Non-Potable Water San Antonio Testing PO: Collected by: Client

06/05/2025

E	PA 625.1	Prepared:	1179766	06/11/2025	14:25:00	Analyzed 1180091	06/12/2025	21:55:00	PM1
	Parameter	Results	Un	nits RL		Flags	CAS		Bottle
Z	Bisphenol A	<0.00987	mg	yL 0.0098	7		80-05-7		10
E	PA 632	Prepared:	1180031	06/12/2025	14:30:00	Analyzed 1181555	06/20/2025	21:08:00	BRU
	Parameter	Results	Un	nits RL		Flags	CAS		Bottle
NELAC	Carbaryl (Sevin)	<0.00248	mg	/L 0.0024	8		63-25-2		12
z	Diuron	<0.0000446	mg	/L 0.0000	446		330-54-1		12
E	PA 8015C	Prepared:	1180766	06/17/2025	18:58:00	Analyzed 1180766	06/17/2025	18:58:00	KAP
	Parameter	Results	Un	uits RL		Flags	CAS		Bottle
NELAC	Ethylene Glycol	<50.0	mg	/L 50.0			107-21-1		06

Sample Preparation

2417055 2506153-01 6-4-1000-6-5-1000 06/11/2025 Received:

Composite Stop 10:00 6/5/25 06/05/2025

Enviro Fee (per Sampling Group)

Check Limits

06/11/2025 13:47:16 Calculated 06/11/2025 13:47:16 Prepared: CALDW Volatiles Dechlorination Vial Verified 06/11/2025 14:17:26 Calculated 06/11/2025 14:17:26 Prepared: CAL

Corporate - Kilgore: 2600 Dudley Road Kilgore TX 75662

Verified

Prepared:

Completed

06/26/2025

10:28:00

Analyzed

Report Page 3 of 16

10:28:00

06/26/2025

WJP

Page 3 of 5

Project 1150735

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

> Printed: 06/26/2025

2417055 2506153-01	6-4-	1000-6-5		Received:	06/11/	/2025			
Composite Stop 10:00 6/5/25	06/05/2025								
EPA 604.1	Prepared:	1179862	06/12/2025	14:15:05	Analyzed	1179862	06/12/2025	14:15:05	SA
Hexachlorophene Extraction	5/1004	m l	l						0
EPA 604.1	Prepared:	1179862	06/12/2025	14:15:05	Analyzed	1180198	06/13/2025	22:04:00	Bi
Hexachlorophene Expansion	Entered						70-30-4		1
EPA 608.3	Prepared:	1180032	06/12/2025	14:30:00	Analyzed	1180032	06/12/2025	14:30:00	C
Liquid-Liquid Extr. W/Hex Ex	1/1009	m	l						0
EPA 608.3	Prepared:	1180032	06/12/2025	14:30:00	Analyzed	1181844	06/16/2025	21:49:00	K
Dicofol and Mirex Exp	Entered								1
EPA 608.3	Prepared:	1180033	06/12/2025	14:30:00	Analyzed	1180033	06/12/2025	14:30:00	C.
Solvent Extraction	1/1009	ml	l						C
EPA 614	Prepared:	1180033	06/12/2025	14:30:00	Analyzed	1180851	06/16/2025	21:36:00	K
Permit Organophos. Pesticides	Entered								1
EPA 622	Prepared:	1180033	06/12/2025	14:30:00	Analyzed	1180849	06/16/2025	21:36:00	K
€ For use with EXP !CPP only	Entered								1
EPA 624.1	Prepared:	1181176	06/18/2025	14:53:00	Analyzed	1181176	06/18/2025	14:53:00	D
	Entered								0

Report Page 4 of 16

Page 4 of 5

Project 1150735

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

Printed: 06/26/2025

	2417055 2506153-0		Received:	06/11/	2025					
C	Composite Stop 10:00 6/5/25	06/05/2025								
E	EPA 625.1	Prepared:	1179766 (06/11/2025	14:25:00	Analyzed	1179766	06/11/2025	14:25:00	SAE
	Liquid-Liquid Extraction, BN	A 1/1013	ml							02
Е	EPA 625.1	Prepared:	1179766 ()6/11/2025	14:25:00	Analyzed	1180091	06/12/2025	21:55:00	PM1
Z	Bisphenol A Expansion	Entered						80-05-7		10
Е	EPA 632	Prepared:	1180031 (06/12/2025	14:30:00	Analyzed	1180031	06/12/2025	14:30:00	CRS
	Liquid-Liquid Extr. W/Hex E	1/1009	ml							01
E	EPA 632	Prepared:	1180031	06/12/2025	14:30:00	Analyzed	1181555	06/20/2025	21:08:00	BRU
NELAC	Carbaryl/Diuron EXP	Entered								12
Е	EPA METHOD 8015C	Prepared:	1180766 (06/17/2025	18:58:00	Analyzed	1180766	06/17/2025	18:58:00	KAP
NELAC	Ethylene Glycol Expansion	Entered						107-21-1		06
T	X 1001	Prepared:	1181132 (06/19/2025	09:00:00	Analyzed	1181132	06/19/2025	09:00:00	МСС
Z	Butyltins Extraction	1/1012	ml							05

Page 5 of 5

Project 1150735

Printed: 06/26/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

Qualifiers:

S - Standard reads lower than desired

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

 $These \ analytical \ results \ relate \ to \ the \ sample \ tested. \ This \ report \ may \ NOT \ be \ reproduced \ EXCEPT \ in \ FULL \ without \ written \ approval \ analytical \ results \ relate \ to \ the \ sample \ tested.$ of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC. RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

Bill Peery, MS, VP Technical Services

Page 1 of 7

Project 1150735

Printed 06/26/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

									Printed	06/26/202	25	
	Analytical Set	1180091									Е	PA 625.
					E	llank						
Parameter		PrepSet	Reading	MDL	MQL	Units			File			
Bisphenol A		1179766	ND	1.86	10.0	ug/L			127706648			
						CCV						
Parameter			Reading	Known	Units	Recover%	Limits%		File			
Bisphenol A			51400	50000	ug/L	103	70.0 - 130		127706646			
	Analytical Set	1180198									Е	PA 604.
					E	llank						
Parameter		PrepSet	Reading	MDL	MQL	Units			File			
Hexachlorophene	e	1179862	ND	0.890	2.50	ug/L			127710151			
						CCV						
Parameter			Reading	Known	Units	Recover%	Limits%		File			
Hexachlorophene			6210	5000	ug/L	124	70.0 - 130		127710150			
Hexachlorophene			5380	5000	ug/L	108	70.0 - 130		127710156			
Hexachlorophene	2		5510	5000	ug/L	110	70.0 - 130		127710159			
					LC	S Dup						
<u>Parameter</u>		PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Hexachlorophene	9	1179862	32.9	34.8		50.0	25.5 - 145	65.8	69.6	ug/L	5.61	50.0
	Analytical Set	1180766								EPA N	METHO	DD 80150
					E	Blank						
Parameter		PrepSet	Reading	MDL	MQL	Units			File			
Ethylene Glycol		1180766	ND	20.0	50.0	mg/L			127725136			
						CCV						
Parameter			Reading	Known	Units	Recover%	Limits%		File			
Ethylene Glycol			476	500	mg/L	95.3	70.0 - 130		127725133			
Ethylene Glycol			487	500	mg/L	97.5	70.0 - 130		127725141			
Ethylene Glycol			505	500	mg/L	101	70.0 - 130		127725142			
					LC	S Dup						
Parameter		PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Ethylene Glycol		1180766	508	494		500	46.1 - 157	102	98.8	mg/L	3.19	30.0
					I	MSD						
Parameter		Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Ethylene Glycol		2415671	1560	1520	1240	500	3.50 - 183	64.0	56.0	mg/L	13.3	30.0
		1100040										EPA 622
	Analytical Set	1180849										
	Analytical Set	1180849			E	lank						
Parameter	Analytical Set	1180849 PrepSet	Reading	MDL	MQL	Blank <i>Units</i>			File			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 7 of 16

Page 2 of 7

Project 1150735

Printed 06/26/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

				C	.cv						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Chlorpyrifos		992	1000	ug/L	99.2	48.0 - 150		127726965			
Chlorpyrifos		1020	1000	ug/L	102	48.0 - 150		127726976			
				LCS	5 Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Chlorpyrifos	1180033	0.502	0.501		1.00	0.100 - 128	50.2	50.1	ug/L	0.199	30.0
				N	ISD						
<u>Parameter</u>	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Chlorpyrifos	2416945	0.299	0.430	ND	0.996	70.0 - 130	30.8 *	44.3 *	ug/L	35.9 *	30.0
				Suri	rogate						
<u>Parameter</u>	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
Tributylphosphate		CCV	985	1000	ug/L	98.5	0.100 - 115	127726965			
Tributylphosphate		CCV	1210	1000	ug/L	121 *	0.100 - 115	127726976			
Triphenylphosphate		CCV	992	1000	ug/L	99.2	0.100 - 115	127726965			
Triphenylphosphate		CCV	1410	1000	ug/L	141 *	0.100 - 115	127726976			
Tributylphosphate	1180033	Blank	982	1000	ug/L	98.2	0.100 - 115	127726966			
Tributylphosphate	1180033	LCS	965	1000	ug/L	96.5	0.100 - 115	127726967			
Tributylphosphate	1180033	LCS Dup	483	1000	ug/L	48.3	0.100 - 115	127726968			
Triphenylphosphate	1180033	Blank	536	1000	ug/L	53.6	0.100 - 115	127726966			
Triphenylphosphate	1180033	LCS	492	1000	ug/L	49.2	0.100 - 115	127726967			
Triphenylphosphate	1180033	LCS Dup	499	1000	ug/L	49.9	0.100 - 115	127726968			
Tributylphosphate	2416945	MS	0.380	0.970	ug/L	39.2	0.100 - 115	127726972			
Tributylphosphate	2416945	MSD	0.418	0.996	ug/L	42.0	0.100 - 115	127726973			
Triphenylphosphate	2416945	MS	0.435	0.970	ug/L	44.8	0.100 - 115	127726972			
Triphenylphosphate	2416945	MSD	0.659	0.996	ug/L	66.2	0.100 - 115	127726973			
Tributylphosphate	2417055	Unknown	0.958	0.991	ug/L	96.7	0.100 - 115	127726969			
Triphenylphosphate	2417055	Unknown	0.408	0.991	ug/L	41.2	0.100 - 115	127726969			
	1100051										ED A C14

EPA 614 1180851 Analytical Set Blank PrepSet Reading MDLMQLUnits File Parameter Azinphos-methyl (Guthion) 1180033 ND 38.0 40.0 ug/L 127726990 1180033 24.1 127726990 Demeton ND 30.0 ug/L Diazinon 1180033 ND 9.64 30.0 127726990 ug/L Malathion 1180033 ND 18.9 30.0 ug/L 127726990 Parathion, ethyl 1180033 ND 15.8 30.0 ug/L 127726990 Parathion, methyl 1180033 ND 18.5 30.0 ug/L 127726990 CCV Recover% Limits% File Parameter 1 4 1 Reading Known Units1020 37.5 - 164 127726989 Azinphos-methyl (Guthion) 1000 ug/L 102 Azinphos-methyl (Guthion) 297 1000 ug/L 29.7 37.5 - 164 127727000 1000 ug/L 58.6 - 150 127726989 Demeton 996 99.6

Email: Kilgore.ProjectManagement@spllabs.com

1160

1000

116

58.6 - 150

Report Page 8 of 16

127727000

Demeton

ug/L

Page 3 of 7

Project 1150735

Printed 06/26/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

				c	cv						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Diazinon		1020	1000	ug/L	102	65.4 - 138		127726989			
Diazinon		1070	1000	ug/L	107	65.4 - 138		127727000			
Malathion		991	1000	ug/L	99.1	49.5 - 160		127726989			
Malathion		792	1000	ug/L	79.2	49.5 - 160		127727000			
Parathion, ethyl		999	1000	ug/L	99.9	56.0 - 142		127726989			
Parathion, ethyl		904	1000	ug/L	90.4	56.0 - 142		127727000			
Parathion, methyl		1000	1000	ug/L	100	12.6 - 194		127726989			
Parathion, methyl		612	1000	ug/L	61.2	12.6 - 194		127727000			
, ,				_	Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Azinphos-methyl (Guthion)	1180033	628	608		1000	0.100 - 155	62.8	60.8	ug/L	3.24	30.0
Demeton	1180033	394	433		1000	0.100 - 109	39.4	43.3	ug/L	9.43	30.0
Diazinon	1180033	457	466		1000	0.100 - 125	45.7	46.6	ug/L	1.95	30.0
Malathion	1180033	535	529		1000	0.100 - 130	53.5	52.9	ug/L	1.13	30.0
Parathion, ethyl	1180033	544	538		1000	0.100 - 122	54.4	53.8	ug/L	1.11	30.0
Parathion, methyl	1180033	544	529		1000	0.100 - 131		52.9	ug/L	2.80	30.0
, ,				М	SD				C		
Parameter	Sample	MS	MSD	UNK		Limits	MS%	MSD%	Units	RPD	Limit%
Parameter Azimphos methyl (Guthion)	2416945	0.590	0.802	ND	<i>Known</i> 996	30.0 - 150	0.0591 *	0.0803 *		30.5 *	30.0
Azinphos-methyl (Guthion) Demeton	2416945	0.341	0.802	ND ND	996	0.100 - 124	0.0391 *	0.0461 *	ug/L	29.9	30.0
Diazinon	2416945	0.341	0.478	ND ND	996	0.100 - 124	0.0341 *	0.0478 *	ug/L	39.6 *	30.0
Malathion	2416945	0.320	0.557	ND ND	996	0.100 - 212	0.032 *	0.0558 *	ug/L ug/L	35.0 *	30.0
Parathion, ethyl	2416945	0.331	0.611	ND ND	996		0.0436 *	0.0612 *	ug/L ug/L	33.4 *	30.0
Parathion, methyl	2416945	0.473	0.646	ND ND	996	0.100 - 195		0.0647 *	ug/L ug/L	30.9 *	30.0
i matilion, methyl	2410743	0.475	0.010			0.100 - 175	0.0475	0.0047	ug/L	30.7	30.0
					ogate						
<u>Parameter</u>	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
Tributylphosphate		CCV	985	2000	ug/L	49.2	0.100 - 106	127726989			
Tributylphosphate		CCV	1210	2000	ug/L	60.5	0.100 - 106	127727000			
Triphenylphosphate		CCV	992	2000	ug/L	49.6	0.100 - 172	127726989			
Triphenylphosphate	4400000	CCV	1410	2000	ug/L	70.5	0.100 - 172	127727000			
Tributylphosphate	1180033	Blank	982	2000	ug/L	49.1	0.100 - 106	127726990			
Tributylphosphate	1180033	LCS	965	2000	ug/L	48.2	0.100 - 106	127726991			
Tributylphosphate	1180033	LCS Dup	483	2000	ug/L	24.2	0.100 - 106	127726992			
Triphenylphosphate	1180033	Blank	536	2000	ug/L	26.8	0.100 - 172	127726990			
Triphenylphosphate	1180033	LCS	492	2000	ug/L	24.6	0.100 - 172	127726991			
Triphenylphosphate	1180033	LCS Dup	499	2000	ug/L	25.0	0.100 - 172	127726992			
Tributylphosphate	2416945	MS	0.380	1.94	ug/L	19.6	0.100 - 106	127726996			
Tributylphosphate	2416945	MSD	0.418	1.99	ug/L	21.0	0.100 - 106	127726997			
Triphenylphosphate	2416945	MS	0.435	1.94	ug/L	22.4	0.100 - 172	127726996			
Triphenylphosphate	2416945	MSD	0.659	1.99	ug/L	33.1	0.100 - 172	127726997			
Tributylphosphate	2417055	Unknown	0.958	1.98	ug/L	48.4	0.100 - 106	127726993			
Triphenylphosphate	2417055	Unknown	U. 4 U8	1.98	ug/L	20.6	0.100 - 172	127726993			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 9 of 16

Page 4 of 7

Project 1150735

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

San Antonio, TX 782	207							Printed	06/26/20	25	_
Analytical Set	1181176									I	EPA 624.1
7,111				В	FB						
<u>Parameter</u>	Sample	RefMass	Reading	%	Limits%			File			
BFB Mass 173	1181176	174	0	0.0	0 - 2.00			127734790			
BFB Mass 174	1181176	95.0	8241	54.9	50.0 - 100			127734790			
BFB Mass 175	1181176	174	700	8.5	5.00 - 9.00			127734790			
BFB Mass 176	1181176	174	8223	99.8	95.0 - 101			127734790			
BFB Mass 177	1181176	176	627	7.6	5.00 - 9.00			127734790			
BFB Mass 50	1181176	95.0	3067	20.4	15.0 - 40.0			127734790			
BFB Mass 75	1181176	95.0	8867	59.1	30.0 - 60.0			127734790			
BFB Mass 95	1181176	95.0	14998	100.0	100 - 100			127734790			
BFB Mass 96	1181176	95.0	1140	7.6	5.00 - 9.00			127734790			
				ы	ank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Epichlorohydrin	1181176	ND	6.85	20.0	ug/L			127734794			
r · · · · · · · · ·					cv						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Epichlorohydrin		153	200	ug/L	76.4	70.0 - 130		127734791			
				-	reas						
Parameter	Sample	Туре	Reading	CCVISM	Low	High		File	PrepSe	of.	
1,4-DichlorobenzeneD4 (ISTD)	1181176	CCV	67140	67140	33570	100700		127734791	118117		
1,4-DichlorobenzeneD4 (ISTD)	1181176	LCS	66220	67140	33570	100700		127734792	118117		
1,4-DichlorobenzeneD4 (ISTD)	1181176	LCS Dup	62240	67140	33570	100700		127734792	118117		
1,4-DichlorobenzeneD4 (ISTD)	1181176	Blank	59310	67140	33570	100700		127734794	118117		
ChlorobenzeneD5 (ISTD)	1181176	CCV	147100	147100	73540	220600		127734791	118117		
ChlorobenzeneD5 (ISTD)	1181176	LCS	142700	147100	73540	220600		127734791	118117		
ChlorobenzeneD5 (ISTD)	1181176	LCS Dup	133900	147100	73540	220600		127734793	118117		
ChlorobenzeneD5 (ISTD)	1181176	Blank	131300	147100	73540	220600		127734794	118117		
1,4-DichlorobenzeneD4 (ISTD)	2417055	Unknown		67140	33570	100700		127734795	118117		
ChlorobenzeneD5 (ISTD)	2417055	Unknown		147100	73540	220600		127734795	118117		
Chiologeness (1315)	2417033	CHKHOWH	123000		tTime	220000		12//54/95	110117		
Parameter	Sample	Туре	Reading	CCVISM		High		File	PrepSe	et.	
1,4-DichlorobenzeneD4 (ISTD)	1181176	LCS	11.07	11.07	11.01	11.13		127734792	118117		
1,4-DichlorobenzeneD4 (ISTD)	1181176	LCS Dup	11.07	11.07	11.01	11.13		127734793	118117		
1,4-DichlorobenzeneD4 (ISTD)	1181176	Blank	11.07	11.07	11.01	11.13		127734794	118117		
ChlorobenzeneD5 (ISTD)	1181176	LCS	8.714	8.708	8.648	8.768		127734792	118117		
ChlorobenzeneD5 (ISTD)	1181176	LCS Dup	8.714	8.708	8.648	8.768		127734792	118117		
ChlorobenzeneD5 (ISTD)	1181176	Blank	8.714	8.708	8.648	8.768		127734794	118117		
1,4-DichlorobenzeneD4 (ISTD)	2417055	Unknown		11.07	11.01	11.13		127734795	118117		
ChlorobenzeneD5 (ISTD)	2417055	Unknown		8.708	8.648	8.768		127734795	118117		
Chrotochiche (191D)	2417033	CHRIDAII	3./17		Dup	0.700		121137173	11011/		
Revenueter	D	LCC	LCCD		-	Time!c=0/	I CCO/	LCCD4/	TT 52	D D D	T 2m 2007
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	<i>RPD</i>	Limit%
Epichlorohydrin	1181176	146	150		200	27.5 - 189	73.0	75.0	ug/L	2.70	30.0

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 10 of 16

Page 5 of 7

Project 1150735

Printed 06/26/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

				Surr	ogate			
<u>Parameter</u>	Sample	Type	Reading	Known	Units	Recover%	Limits%	File
1,2-DCA-d4 (SURR)	1181176	CCV	15.7	20.0	ug/L	78.5	72.3 - 106	127734791
1,2-DCA-d4 (SURR)	1181176	LCS	16.2	20.0	ug/L	81.0	72.3 - 106	127734792
1,2-DCA-d4 (SURR)	1181176	LCS Dup	16.7	20.0	ug/L	83.5	72.3 - 106	127734793
1,2-DCA-d4 (SURR)	1181176	Blank	16.3	20.0	ug/L	81.5	72.3 - 106	127734794
Bromofluorobenzene (SURR)	1181176	CCV	20.9	20.0	ug/L	104	87.2 - 122	127734791
Bromofluorobenzene (SURR)	1181176	LCS	20.8	20.0	ug/L	104	87.2 - 122	127734792
Bromofluorobenzene (SURR)	1181176	LCS Dup	20.2	20.0	ug/L	101	87.2 - 122	127734793
Bromofluorobenzene (SURR)	1181176	Blank	20.9	20.0	ug/L	104	87.2 - 122	127734794
Dibromofluoromethane (SURR)	1181176	CCV	14.7	20.0	ug/L	73.5	46.7 - 114	127734791
Dibromofluoromethane (SURR)	1181176	LCS	15.1	20.0	ug/L	75.5	46.7 - 114	127734792
Dibromofluoromethane (SURR)	1181176	LCS Dup	14.9	20.0	ug/L	74.5	46.7 - 114	127734793
Dibromofluoromethane (SURR)	1181176	Blank	15.0	20.0	ug/L	75.0	46.7 - 114	127734794
TolueneD8 (SURR)	1181176	CCV	17.9	20.0	ug/L	89.5	57.4 - 112	127734791
TolueneD8 (SURR)	1181176	LCS	18.0	20.0	ug/L	90.0	57.4 - 112	127734792
TolueneD8 (SURR)	1181176	LCS Dup	17.5	20.0	ug/L	87.5	57.4 - 112	127734793
TolueneD8 (SURR)	1181176	Blank	16.5	20.0	ug/L	82.5	57.4 - 112	127734794
1,2-DCA-d4 (SURR)	2417055	Unknown	16.2	20.0	ug/L	81.0	72.3 - 106	127734795
Bromofluorobenzene (SURR)	2417055	Unknown	20.4	20.0	ug/L	102	87.2 - 122	127734795
Dibromofluoromethane (SURR)	2417055	Unknown	14.9	20.0	ug/L	74.5	46.7 - 114	127734795
TolueneD8 (SURR)	2417055	Unknown	16.6	20.0	ug/L	83.0	57.4 - 112	127734795

	Analytical Set	1181555]	EPA 632
					В	lank						
<u>Parameter</u>		PrepSet	Reading	MDL	MQL	Units			File			
Carbaryl (Sevi	1)	1180031	ND	66.1	2500	ug/L			127745481			
Diuron		1180031	ND	44.4	45.0	ug/L			127745481			
					(CCV						
Parameter Parame			Reading	Known	Units	Recover%	Limits%		File			
Carbaryl (Sevi	1)		900	1000	ug/L	90.0	70.0 - 130		127745480			
Carbaryl (Sevi	1)		936	1000	ug/L	93.6	70.0 - 130		127745484			
Carbaryl (Sevi	1)		950	1000	ug/L	95.0	70.0 - 130		127745488			
Carbaryl (Sevi	1)		972	1000	ug/L	97.2	70.0 - 130		127745491			
Carbaryl (Sevi	1)		990	1000	ug/L	99.0	70.0 - 130		127745494			
Diuron			862	1000	ug/L	86.2	70.0 - 130		127745480			
Diuron			892	1000	ug/L	89.2	70.0 - 130		127745484			
Diuron			892	1000	ug/L	89.2	70.0 - 130		127745488			
Diuron			923	1000	ug/L	92.3	70.0 - 130		127745491			
Diuron			940	1000	ug/L	94.0	70.0 - 130		127745494			
					LC	S Dup						
<u>Parameter</u>		PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Carbaryl (Sevi	1)	1180031	629	593		1000	17.1 - 131	62.9	59.3	ug/L	5.89	30.0
Diuron		1180031	230	393		1000	0.100 - 138	23.0	39.3	ug/L	52.3 *	30.0

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 11 of 16

Page 6 of 7

Project 1150735

Printed 06/26/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

MSD

<u>Parameter</u> Carbaryl (Sevin) Diuron	Sample 2416932 2416932	<i>MS</i> 7.16 2.76	MSD 0.604 0.975	UNK ND ND	Known 1000 1000	Limits 0.100 - 215 0.100 - 148	<i>MS%</i> 0.716 0.276	MSD% 0.0604 * 0.0975 *	<i>Units</i> ug/L ug/L	RPD 169 * 95.6 *	Limit% 30.0 50.0
Analytical Set	1181844									EI	PA 608.3
				Bl	ank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Kelthane (Dicofol)	1180032	0.052	0.0208	0.100	ug/L			127751677			
Mirex	1180032	ND	0.00889	0.015	ug/L			127751677			
				C	CV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Kelthane (Dicofol)		102	100	ug/L	102	70.0 - 130		127751676			
Kelthane (Dicofol)		112	100	ug/L	112	70.0 - 130		127751685			
Mirex		46.5	50.0	ug/L	93.1	70.0 - 130		127751676			
Mirex		52.1	50.0	ug/L	104	70.0 - 130		127751685			
				LCS	Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Kelthane (Dicofol)	1180032	0.784	0.779		1.00	50.0 - 231	78.4	77.9	ug/L	0.640	30.0
Mirex	1180032	0.458	0.476		1.00	50.0 - 130	45.8 *	47.6 *	ug/L	3.85	30.0
				Surr	ogate						
Parameter	Sample	Type	Reading	Known	Units	Recover%	Limits%	File			
Decachlorobiphenyl	Î	CCV	47.0	100	ug/L	47.0	10.0 - 150	127751676			
Decachlorobiphenyl		CCV	51.7	100	ug/L	51.7	10.0 - 150	127751685			
Tetrachloro-m-Xylene (Surr)		CCV	48.1	100	ug/L	48.1	10.0 - 150	127751676			
Tetrachloro-m-Xylene (Surr)		CCV	44.8	100	ug/L	44.8	10.0 - 150	127751685			
Decachlorobiphenyl	1180032	Blank	47.4	100	ug/L	47.4	10.0 - 150	127751677			
Decachlorobiphenyl	1180032	LCS	44.1	100	ug/L	44.1	10.0 - 150	127751678			
Decachlorobiphenyl	1180032	LCS Dup	36.0	100	ug/L	36.0	10.0 - 150	127751679			
Tetrachloro-m-Xylene (Surr)	1180032	Blank	56.4	100	ug/L	56.4	10.0 - 150	127751677			
Tetrachloro-m-Xylene (Surr)	1180032	LCS	42.0	100	ug/L	42.0	10.0 - 150	127751678			
Tetrachloro-m-Xylene (Surr)	1180032	LCS Dup	42.0	100	ug/L	42.0	10.0 - 150	127751679			
Decachlorobiphenyl	2417055	Unknown	0.0323	0.00991	ug/L	326 *	10.0 - 150	127751680			
Tetrachloro-m-Xylene (Surr)	2417055	Unknown	0.0431	0.00991	ug/L	435 *	10.0 - 150	127751680			

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 12 of 16

Page 7 of 7

(same standard

(replicate of the

Project 1150735

Printed 06/26/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); CCV - Continuing Calibration Verification

used to prepare the curve; typically a mid-range concentration; verifies the continued validity of the calibration curve); LCS Dup - Laboratory Control Sample Duplicate (replicate LCS; analyzed when there is insufficient sample for duplicate or MSD; quantifies accuracy and precision.); MSD - Matrix Spike Duplicate

matrix spike; same solution and amount of target analyte added to the MS is added to a third aliquot of sample; quantifies matrix bias and precision.); Surrogate Surrogate (mimics the analyte of interest but is unlikely to be found in environmental samples; added to analytical samples for QC purposes. **ANSI/ASQC E4 1994 Ref #4
TRADE QA Resources Guide.); BFB - Bromofluorobenzene, GC/MS Tuning Compound (mass intensity used as tuning acceptance criteria.); IS Areas - Internal Standard Area
(The area of the internal stadard relative to a check standard. Internal Standard is a known concentration of an analyte(s) that is not a sample component or standard that
is added to the sample and standard and is used to measure the relative responses of other analytes in the same sample or standard.); IS RetTime - Internal Standard
Retention Time (the time the internal standard comes off the column. Internal Stardard is a known concentration of an analyte(s) that is not a sample component or
standard that is added to the sample and standard and is used to measure the relative responses of other analytes in the same sample or standard.)

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 13 of 16

2

1150735 CoC Print Group 001 of 001

2600 Dudley Rd. Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914

CHAIN OF CUSTODY

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

SATL-A 215

Phone PO Number 210/229-9920

Table 4.0(1) Condensed List

√ Hand Delivered by Client to Region or LAB

Matrix: Non-Po	table Water						
Sampler Printed Name Sampler Affiliation	_ Ja	ier C	avarus				
Sampler Signature							
Samples Radioactive?	Samples Con	tains Dioxin?	Samp	oles Biological H	azard?		
SPL Kilgore # (Lab Only)	Sample ID			Bottles	Date	Time	Notes
2417055	2506153-0	1/24h	lomp. B	PALL OF	41slas	1000	
				11-11			
	5 Amber	Glass Ot w	Teflon line	d lid			
	J Amour	нхре	Hexachlorophe			EPA 604	.1 CAS:70-30-4 (7.00 days)
		!MKE	Dicofol and Mi	rex Exp		EPA 608	.3 (7.00 days)
		!CPP	Permit Organoj	phos. Pesticides		EPA 614	(7.00 days)
NELAC		402E	For use with E	XP !CPP only		EPA 622	(7.00 days)
		BPAE	Bisphenol A E	xpansion		EPA 625	.1 CAS:80-05-7 (7.00 days)
NELAC		TYLC	Carbaryl/Diuro	n EXP		EPA 632	(7.00 days)
		TBTE	Butylun Expan	sion		TX 1001	(14.0 days)
	4 Glass V	ial 40 mL	(Zero Heads	space) w/Te	eflon lined	lid	
NELAC		\$EPI	Epichlorohydri	n Exp.		EPA 624	.1 (14.0 days)
NELAC		!EGE	Ethylene Glyco	ol Expansion		EPA ME	THOD 8015C CAS:107-21-1 (30.0 days)

Corporate - Kilgore: 2600 Dudley Road Kilgore TX 75662

Form rptcocproj2SPL Created 02/21/2022 Pepport Page 14 of 16

1150735 CoC Print Group 001 of 001

2600 Dudley Rd. Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914

CHAIN OF CUSTODY

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

SATL-A 215

Phone

210/229-9920

Table 4.0(1) Condensed List

0	Z No bottle req	uired
	CKLM	Check Limits

Date Time	Relinquis	shed	Date Time	Received	
	A mee Guder	Eurofins-SAR	19175	Printed Name	Affiliation
	Court			Signature	
	Printed Name	Affiliation		Printed Name	Affiliation
	Signature			Signature	
	Printed Name	Affiliation		Printed Name	Affiliation
	Signature	The second second second		Signature	
	Printed Name	Affliation		Printed Name	Affiliation
	Signature			Signature	

	2 - 1 S S S S	- Western	
Sample Recieved on Ice?	Yes	No	If Shipped: Tracking Number & Temp - See Attache
Cooler/Sample Secure?	Yes	No	If Shipped: Tracking Number & Temp - See Attache

The accredited column designates accreditation by A - A2LA, N - NELAC, or z - not listed under scope of accreditation. Unless otherwise specified, SPL Kilgore shall provide these ordered services pursuant to our Standard Terms & Conditions Agreement (available for download from the welcome page at http://www.ana-lab.com). Ana-Lab personnel collect samples as specified by SPL Kilgore SOP #000323.

Comments

Corporate - Kilgore: 2600 Dudley Road Kilgore TX 75662

Form rptcocproj2SPL Created 02/21/2024 v1:0

2

ORIGIN ID:SVZA AIMEE LANDON (210) 229-9920

SHIP DATE: 09JUN25 ACTWGT: 58.60 LB CAD: 108257983/INET4535

, 1610 S. LAREDO STREET

SAN ANTONIO, TX 78207 UNITED STATES US BILL SENDER

TO SAMPLE RECEIVING SPL - KILGORE 2600 DUDLEY RD

KILGORE TX 75562

∡. REF:

DEPT:

Fedex.

TRK# 8818 9674 4013

TUE - 10 JUN 5:00P PRIORITY OVERNIGHT

XS TXKA

75562 _{TX-US} SHV

Date Time Tech C

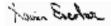
Therm#: 7242 Corr Fact: -0.3 C

June 30, 2025

Chris Ewert

Integrity Testing 8127 Mesa Dr #C-305 Austin, TX 78759

SATL Report No.: 2506404


RE: City of Donna Permit Renewal

Dear Chris Ewert

SATL received 1 Sample(s) on 06/19/2025 for analyses identified on the chain of custody. The analyses were performed using methods indicated on the laboratory report. Any deviations observed at sample receiving are notated on the Sample Receipt Checklist and/or Chain of Custody documents attached as part of this analytical report.

Sincerely,

For San Antonio Testing Laboratory, Inc.

Xavier Escobar Business Unit Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/30/25 13:31 **Received:** 06/19/25 08:07

Report No. 2506404

SAMPLE SUMMARY

Total Samples received in this work order: 1

The following samples were requested for analysis as per the CoC. Any re-runs or re-analyses requested are identified as such.

Sample ID	<u>Laboratory ID</u>	<u>Matrix</u>	Sampling Method	Date Sampled	Date Received
24-HR Composite	2506404-01	Liquid	Composite	06/18/25 12:00	06/19/25 08:07

Notes

All quality control samples and checks are within acceptance limits unless otherwise indicated.

Test results pertain only to those items tested.

All samples were in good condition when received by the laboratory unless otherwise noted.

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/30/25 13:31 **Received:** 06/19/25 08:07

Report No. 2506404

Sample Matrix: Liquid				Date/Time Collected: 0	6/18/25 12:	00			
Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
General Chemistry									
Hexavalent Chromium *	<3	ug/L	3	I-1230-85	B526205	06/19/25 10:30	I-1230-85	JA	
Total Metals By ICP-MS									P1
Chromium *	<5	ug/L	5	EPA 200.8	B526279	06/27/25 14:46	EPA 200.8	SJ	
Trivalent Chromium (Calculated)								
Trivalent Chromium	< 5.00	ug/L	5.00	[CALC]	[CALC]	06/27/25 14:46	CALC	JA	

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Additional Notes: Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/30/25 13:31 **Received:** 06/19/25 08:07

Report No. 2506404

General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B526205 - I-1230-85		2	31110							
Blank (B526205-BLK1)				Prepared: 0	06/19/25 10:	:00 Analyz	ed: 06/19/2	5 10:30		
Hexavalent Chromium	<10	10	ug/L							
LCS (B526205-BS1)				Prepared: 0	6/19/25 10:	:00 Analyz	ed: 06/19/2	5 10:30		
Hexavalent Chromium	384	10	ug/L	400		96	90-110			
LCS Dup (B526205-BSD1)				Prepared: 0	6/19/25 10:	:00 Analyz	ed: 06/19/2	5 10:30		
Hexavalent Chromium	375	10	ug/L	400		94	90-110	2	20	
Duplicate (B526205-DUP1)		Source: 2506404	1-01	Prepared: 0	6/19/25 10:	:00 Analyz	ed: 06/19/2	5 10:30		
Hexavalent Chromium	<10	10	ug/L		<10				20	
Matrix Spike (B526205-MS1)		Source: 2506404	1-01	Prepared: 0	6/19/25 10:	:00 Analyz	ed: 06/19/2	5 10:30		
Hexavalent Chromium	377	10	ug/L	400	<10	94	80-120			
Matrix Spike Dup (B526205-MSD1)		Source: 2506404-01		Prepared: 0	6/19/25 10:	:00 Analyz	ed: 06/19/2	5 10:30		
Hexavalent Chromium	381	10	ug/L	400	<10	95	80-120	1	20	

Total Metals By ICP-MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B526279 - EPA 200.8										
Blank (B526279-BLK1)				Prepared: (06/27/25 09	:00 Analyz	ed: 06/27/2	5 14:20		
Chromium	<5	5	ug/L							
LCS (B526279-BS1)				Prepared: (06/27/25 09	:00 Analyz	ed: 06/27/2	5 14:24		
Chromium	88.2	5	ug/L	100		88	85-115			
LCS Dup (B526279-BSD1)				Prepared: (06/27/25 09	:00 Analyz	ed: 06/27/2	5 14:28		
Chromium	89.6	5	ug/L	100		90	85-115	1	20	
Duplicate (B526279-DUP1)		Source: 250640	4-01	Prepared: (06/27/25 09	:00 Analyz	ed: 06/27/2	5 14:49		
Chromium	0.633	5	ug/L		0.366			53	20	S
Matrix Spike (B526279-MS1)		Source: 250640	4-01	Prepared: (06/27/25 09	:00 Analyz	ed: 06/27/2	5 14:53		
Chromium	93.1	5	ug/L	100	0.366	93	75-125			

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:

Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/30/25 13:31 **Received:** 06/19/25 08:07

Report No. 2506404

Total Metals By ICP-MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

Batch B526279 - EPA 200.8

Matrix Spike Dup (B526279-MSD1)		Source: 2506404-01		Prepared	: 06/27/25 0					
Chromium	93.8	5	ug/L	100	0.366	93	75-125	0.8	20	

SAMPLE QUALIFIERS

P1 Sample was received at a pH of greater 2.0.

DEFINITIONS

* TNI / NELAC accredited analyte
PQL Practical Quantitation Limit
MCL Maximum Contaminant Level

mg/Kg Milligrams per Kilogram (Parts per Million)
mg/L Milligrams per Liter (Parts per Million)

PPM Parts per Million

L LCS recovery is outside QC acceptance limits, the results may have a slight bias.

M MS recovery is outside QC limits, the results may have a slight bias due to possible matrix interferences.

NR Not Recovered due to source sample concentration exceeds spiked concentration.

RMCCL Recommended Maximum Concentration of Contaminants Level

Surr L Surrogate recovery is low outside QC limits.

Surr H Surrogate recovery is high outside QC limits.

HT Sample received past holdtime IC Improper Container for this analyte(s)

IP Improper preservation for this analyte(s)

IT Improper Temperature
 V Inssuficient Volume
 B Sample collected in Bulk
 S RPD is outside QC limits.
 AB VOA Vial contained air bubbles.

OP ortho-Phosphate was not filtered in the field within 15minutes of collection.

CCV Continuing Calibration Verification Standard.
ICV Initial Calibration Verification Standard.

Test Methods followed by the laboratory are referenced in the following approved methodology, unless otherwise specified.

Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017

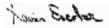
Methods for Chemical Analysis of Water and Wastes, EPA 600/4-79-020, Rev. March 1983

EPA SW Test Methods for the Examination of Solid Waste, SW-846, 1996

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Additional Notes:


Project Manager: Chris Ewert Project: City of Donna Permit Renewal

Project Number: [none]

Reported: 06/30/25 13:31 **Received:** 06/19/25 08:07

Report No. 2506404

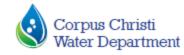
Aimee Landon For Marissa Esquivel, Lab Manager For

Xavier Escobar, Business Unit Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AUTHORIZE TO ONO TSDF Class 2 Cl HEMARKS PROCEED REPORT NUMBER h0h9052 cewert@austin.rr.com CI SAME DAY WHEN POSSIBLE O YES : Dup: CUSTODY SEAL IN PLACE & INTACT I YES ANO P.O. 4 ANALYSIS REQUESTED RECEIVED BY (RIGNATURE)
RECEIVED BY (PRINT NAME) 00 PST / SPECIAL REQ.: INSUFFICIENT SAMPLE AMOUNT FOR (TCL.P/SPLP/OTHER): IF NO, INITIAL HERE TO AUTHORIZE ANALYSIS D Next Day C: LCS/D: CHAIN-OF-CUSTODY RECORD 328 LPST PCLS CI THE TURNAROUND TIME FOR SAMPLES RECEIVED AFTER 3:00 PM SHALL BEGIN AT 8:00 AM THE FOLLOWING BUSINESS DAY PHONE # O 2DAYS INVOICE TO: : Temp: Hard O 3 DAYS TRRP 13 D APPENDIX A D 5035 Field: pH: C 4 Days CANARY - CLIENT COMPANY ADDRESS RELINQUISHED BY DATE / TIME | METHOD OF SHIP YES D NO BULK (Initial) CHY DATE / TIME | RELINGUIS SAMPLE ICED O 5 Days 00x - 4 - x m E R L P M A A を見る ZID SAMPLE TEMPERATURE WITHIN COMPLIANCE (> 0°C ≤ 6°C)
PROPER CONTAINERS.

OBSERVED TEMP./ CORRECTED TEMP./ TEMP. I.R. SA 7-10 Days WHITE - LAB REG Other (Specify) REPORT TO 22-th Consola STATE IDENTIFICATION Lariod Koly REQUESTED TURNAROUND TIME IN BUSINESS DAYS & SURCHARGE RRC D RECEIVED BY (SIGNATURE) RECEIVED BY (PRINT NAME) ATTN: Chris Ewert 512-891-7777 ADDRESS 8127 Mesa Dr. #C-305 DATA TO TCEQ O CITY Austin, TX 78759 COMPANY Integrity Testing RECEIVE 6-18-35 DAPPOTUNE DATE / TIME DATE / TIME SAN ANTONIO TESTING O E ★ B 1610 S. Laredo Street, San Antonio, Texas 78207 といりと CANAZOS 上るこ LABORATORY, LLC INQUISHED BY (PRINT NAME) J. 6-(8-35 04042-0 1-05-0 Phone (210) 229-9920 www.satestinglab.com PROJECT NAME LOCATION SITE **JRM: COC REV 04/2022** INQUISHED BY SIGNATURE) NOUISHED BY (PRINT NAME) DE-2X-20 34 Fax (210) 229-9921 NQUISHED BY (SIGNATURE) Wa SAMPLED BY COLLECTED TIME 26-31 PROJECT NO. SATL ZDZmma SAMLLE Page 7 of 9


Sample Receipt Checklist

Client: Integrity Test	_	Project Manager: Marissa Esquivel
Project: City of Donna	Permit Renewal	Project Number: [none]
Report To: Chris Ewert		SATL Report Number: 2506404
Work Order Due by: Received By: Logged In By:	06/30/25 19:00 (7 day TAT) Arielle Zertuche Arielle Zertuche	Date Received: 06/19/25 08:07 Date Logged In: 06/19/25 08:28
Sample(s) Received on IC	CE/evidence of Ice (cooler with r	nelted ice,etc):
Sample temperature at rec	ceipt *:	0.9°C
Custody Seals Present:		Yes
All containers intact:		Yes
Sample labels/COC agree	:	Yes
Samples Received within	Holding time :	Yes
Samples appropriately pre	eserved **:	No
Containers received broke	en/damaged/leaking:	No
Air bubbles present in VC	OA vials for VOC/TPH analyses,	if applicable: Not Applicable
TRRP 13 Reporting reque	ested?	No
BacT Sample bottles filled	d to volume (100mL mark), if ap	plicable: Not Applicable
LCR Sample bottles filled	l to volume (1 Liter mark), if app	licable: Not Applicable
Subcontracting required for	or any analyses:	No
RUSH turnaround time re	quested:	No
Requested Turnaround Tir	me:	No
Samples delivered via :		Hand Delivered
Air bill included if Sample	es were shipped:	No
Other deviations not meet	ing SATL sample acceptance cri	teria notated on CoC: None
but are acceptable, if they a		are collected may not meet thermal preservation criteria (>0°C but <6°C) to proceed with analysis.

Page 8 of 9

Revised 09/15/2022

Collecting Sample	(signature)	Sample No
lected	6-13-15	Time Collected
ENVIRONMENTAL		DY SEAL
ENVIRONMENTAL Person Collecting Sample		Sample No
	Man ul	

City of Corpus Christi
Water Utilities Laboratory
13101 Leopard Street
361-826-1200 Fax: 361-242-9131

Analytical Report

Report Date:

6/5/25

Client Info City of Donna

1800 S. Old River Rd Donna, Texas 78537 (956) 435-2211 Report# /Lab ID#: AC59598

Sample Name: EFFLUENT

Phone: EMAIL: hsanchez@cityofdonna.org

F	arameter	Result	Unit	Flag	RL 5	Date/Time Analyzed	Method	Analyst	Analysis Comments
E. coli (MPN)		<1.0	MPN		1.0	6/4/25 15:13	SM 9223 B - Coli	FK	

Sample Comments:

This analytical report is respectfully submitted by the Water Utilities Laboratory. The enclosed results reflect only the sample(s) identified above. The results have been carefully reviewed and, unless otherwise indicated, meet the NELAC requirements as described by the Water Utilities Lab's QA/QC program. No part of this report shall be reproduced or transmitted in any form or by any means without the written consent of the City of Corpus Christi-Water Utilities Lab.

Respectfully Submitted,

- 1. Quality assurance data for the sample batch which included this sample.
- 2. Precision (PREC) is the absolute value of the relative percent difference between duplicate results .
- 3. Recovery (RECOV) is the percent of analyte recovered from a spiked sample.
- 4. Laboratory Control Sample (LCS) results are expressed as the percent recovery of analyte.
- 5. Reporting Limit (RL), typically at or above the Limit of Quantitation (LOQ) of the analytical method.
- 6. Data Qualifiers:

N=Analysis not performed as per client request. H=Sample exceeded holding time. P=Analysis is from an unpreserved sample. J=Value reported is less than the RL but greater than the MDL.

X=MS/MSD recovery or duplicates analysis exceeded the acceptance limit or Standard failed. LA=Lab accident. LE=Lab error. OA=Outside the scope of the lab's NELAC accreditation.

U=Unsuitable; sample turned turbid after incubation. T=Sample below temp requirement; not on ice. EQ=Equipment failure. I=Information on sample bottle and COC does not match.

S=Slow to filter; sample contains floc and/or large amount of residue on filter. **O**=Analysis performed by an outside NELAC accredited lab; **O^**=Analysis flagged by outside laboratory.

Z=Too many colonies present to provide a result (TNTC). A=Value reported is the mean of two or more determinations. R=Reagent water contamination suspected. B=Sample broken in transit.

NI=Not analyzed due to interferences. K=BOD result estimated due to blank exceeding the allowable oxygen depletion. D=Sample dilution required for analysis/ quality control.

SC=BOD/CBOD calculated using a seed correction factor not within acceptable range. QB=No QC data assigned to sample; sample result not affected.

EL=Oxygen usage is less than 2mg/L for all dilutions analyzed. The reported value is an estimated less than value and is calculated for the dilution containing the greatest concentration of sample.

EG=Less than 1mg/L DO remained for all dilutions analyzed. The reported value is an estimated greater than value and is calculated for the dilution containing the least concentration of sample.

E= The data exceed the upper calibration limit; therefore the concentration is reported as an estimate.

			CHA	IN OF	C	UST	OE) YC	RE	CO	RD																		
ame: <u>City</u> of 114 south 12 2000 - 246 - 2666 applicable):	000 Donus 3th St. State: TX Zip: 00 Fax: 956 - 4	<u> 78537</u> 164-50	ol -				ity	of		,			tilities La P.O. s Christi, Ph: (361) ax: (361)	Box	927	7			16	0:	LOIN								
er (PLEASE PRINT) Hecto	r M. Sanchez				1	Con	io, of	re/		Matri	İx	R	esidual hiorine						Ar	aly	ze F	or			17.				Sec. 15.
Sample ID	Lab ID#	Date Sampled	Time Sampled	-Grab	Other	П		None	WW Influent	WW Effluent	Water Specific	1	rotal Free	CBOD	TEC	TDS	Ammonia-N	TICN	Critoto	Phosphorus	Nitrate	Nitrib	Total Alkalinity	200	Fecal Coliform	Total Coliform	Entarococci	E coll	Other*
Felvent	MSISI8	dc-04-25	10.00A.	1/1			V	1		1			.34															V	語達是法院
							+																						
							1	+				1							1						1 4 5 14 7 1 4 7			1 C 25	100
Inquished By: Heck	or m. Sanchez		ate: 66-	04-29		7	Time	e: It	5 /	SAN	T	pec her	cial Instr	ucti	ons	/Co	mm	ent	s:		_	_	_			-			
Received By:	100	D	ale.	1-20	5	-	Γlme		4	10	2	u ioi								- The state of the					-1/200	V sett	y 2 425	4 450	0.73
Received By:	nel 3)	ate:				Tim				子经验		100 700 100 100 100 100 100 100 100 100		~	** Fo	7	1.18	1 3.		700	y ***	**		110	2000 漢字			
Received By:			ate:				Tim				1/2		ole(s) on lo	:	TT	NO		pH S	1.5	140	4	0	Line	(8)	#:				
Relinquished By:			Date:		_		<u>Tim</u> Tim				-	-	lving Temp	1	11	4		Data			1	-			F. 75		2	W	V

City of Corpus Christi
Water Utilities Laboratory
13101 Leopard Street
361-826-1200 Fax: 361-242-9131

Analytical Report

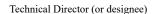
Report Date:

6/5/25

Client Info City of Donna

1800 S. Old River Rd Donna, Texas 78537 (956) 435-2211 Report# /Lab ID#: AC59599

Sample Name: EFFLUENT


Phone: EMAIL: JCAVAZOS@cityofdonna.org

Parameter	Result	Unit	Flag	RL 5	Date/Time Analyzed	Method	Analyst	Analysis Comments
E. coli (MPN)	<1.0	MPN		1.0	6/4/25 15:13	SM 9223 B - Coli	FK	

Sample Comments:

This analytical report is respectfully submitted by the Water Utilities Laboratory. The enclosed results reflect only the sample(s) identified above. The results have been carefully reviewed and, unless otherwise indicated, meet the NELAC requirements as described by the Water Utilities Lab's QA/QC program. No part of this report shall be reproduced or transmitted in any form or by any means without the written consent of the City of Corpus Christi-Water Utilities Lab.

Respectfully Submitted,

- 1. Quality assurance data for the sample batch which included this sample.
- 2. Precision (PREC) is the absolute value of the relative percent difference between duplicate results .
- 3. Recovery (RECOV) is the percent of analyte recovered from a spiked sample.
- 4. Laboratory Control Sample (LCS) results are expressed as the percent recovery of analyte.
- 5. Reporting Limit (RL), typically at or above the Limit of Quantitation (LOQ) of the analytical method.
- 6. Data Qualifiers:

N=Analysis not performed as per client request. H=Sample exceeded holding time. P=Analysis is from an unpreserved sample. J=Value reported is less than the RL but greater than the MDL.

X=MS/MSD recovery or duplicates analysis exceeded the acceptance limit or Standard failed. LA=Lab accident. LE=Lab error. OA=Outside the scope of the lab's NELAC accreditation.

U=Unsuitable; sample turned turbid after incubation. T=Sample below temp requirement; not on ice. EQ=Equipment failure. I=Information on sample bottle and COC does not match.

S=Slow to filter; sample contains floc and/or large amount of residue on filter. **O**=Analysis performed by an outside NELAC accredited lab; **O^**=Analysis flagged by outside laboratory.

Z=Too many colonies present to provide a result (TNTC). A=Value reported is the mean of two or more determinations. R=Reagent water contamination suspected. B=Sample broken in transit.

NI=Not analyzed due to interferences. K=BOD result estimated due to blank exceeding the allowable oxygen depletion. D=Sample dilution required for analysis/ quality control.

SC=BOD/CBOD calculated using a seed correction factor not within acceptable range. QB=No QC data assigned to sample; sample result not affected.

EL=Oxygen usage is less than 2mg/L for all dilutions analyzed. The reported value is an estimated less than value and is calculated for the dilution containing the greatest concentration of sample.

EG=Less than 1mg/L DO remained for all dilutions analyzed. The reported value is an estimated greater than value and is calculated for the dilution containing the least concentration of sample.

E= The data exceed the upper calibration limit; therefore the concentration is reported as an estimate.

Email report to: Cavazos@cityofdonna.org	TNI
Email report to: jCaVaZOS@cityofdonna.org Ph: (361) 826-1200 Implementation of the control of the contr	BORATOR
ampler (PLEASE PRINT) Javier Cavazos No. of Containers Matrix Chlorine (Kapat Haland	ABORATOR.
Preservative (If applicable) (II FOR Insteed Delrow, Check Other and II	at test mesucated
Sampled Sample	ا ا ـ اوا ا
Effluent 159599 6-4-25 10:00cm 1 1 1 002	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Effluent ACE9600 6-4-25 10:00cm 1 1 0.02	-
Relinquished By: Date: 6-4-35 Time: 10:30a.m For Laboratory Use Only *** Received By: Date: 6-4-25 Time: 10:30a.m Sample(s) on ice: (YES) NO pH Strip Lot/ ID:	**
Relinquished By: 5 Date: 6-4-25 Time: / 4/0 Receiving Temp (°C): \\ \U pH < 27 YES NO	Line #(s):
Received By: Date: 4/4/25 Time: 14/0 Corrected Temp (°C): 1. 4 Data Flag(s):	
Temp. Device ID: 6	
pecial Instructions/Comments: Please invoice to Integrity Testing, Austin, TX Corpus Christi Water	

Revision 1.1. June 2022

TE (ORIGINAL) - Lab Copy

YELLOW - Submitter Copy

City of Corpus Christi
Water Utilities Laboratory
13101 Leopard Street
361-826-1200 Fax: 361-242-9131

Analytical Report

Client Info City of Donna

1800 S. Old River Rd Donna, Texas 78537 (956) 435-2211 Report# /Lab ID#: AC59600

Report Date:

6/5/25

Sample Name: EFFLUENT Date Received: 06/04/2025

Time: 14:10

Date Sampled: 06/04/2025

Time: 10:00

Phone:

EMAIL: JCAVAZOS@cityofdonna.org

Parameter	Result	Unit	Flag	RL 5	Date/Time Analyzed	Method	Analyst	Analysis Comments
Enterococci	221.1	MPN		1.0	6/4/25 14:40	Enterolert	FK	

Sample Comments:

This analytical report is respectfully submitted by the Water Utilities Laboratory. The enclosed results reflect only the sample(s) identified above. The results have been carefully reviewed and, unless otherwise indicated, meet the NELAC requirements as described by the Water Utilities Lab's QA/QC program. No part of this report shall be reproduced or transmitted in any form or by any means without the written consent of the City of Corpus Christi-Water Utilities Lab.

Respectfully Submitted,

Technical Director (or designee)

- 1. Quality assurance data for the sample batch which included this sample.
- 2. Precision (PREC) is the absolute value of the relative percent difference between duplicate results .
- 3. Recovery (RECOV) is the percent of analyte recovered from a spiked sample.
- 4. Laboratory Control Sample (LCS) results are expressed as the percent recovery of analyte.
- 5. Reporting Limit (RL), typically at or above the Limit of Quantitation (LOQ) of the analytical method.
- 6. Data Qualifiers:

N=Analysis not performed as per client request. H=Sample exceeded holding time. P=Analysis is from an unpreserved sample. J=Value reported is less than the RL but greater than the MDL.

X=MS/MSD recovery or duplicates analysis exceeded the acceptance limit or Standard failed. LA=Lab accident. LE=Lab error. OA=Outside the scope of the lab's NELAC accreditation.

U=Unsuitable; sample turned turbid after incubation. T=Sample below temp requirement; not on ice. EQ=Equipment failure. I=Information on sample bottle and COC does not match.

S=Slow to filter; sample contains floc and/or large amount of residue on filter. O=Analysis performed by an outside NELAC accredited lab; O^=Analysis flagged by outside laboratory.

Z=Too many colonies present to provide a result (TNTC). A=Value reported is the mean of two or more determinations. R=Reagent water contamination suspected. B=Sample broken in transit.

NI=Not analyzed due to interferences. K=BOD result estimated due to blank exceeding the allowable oxygen depletion. D=Sample dilution required for analysis/ quality control.

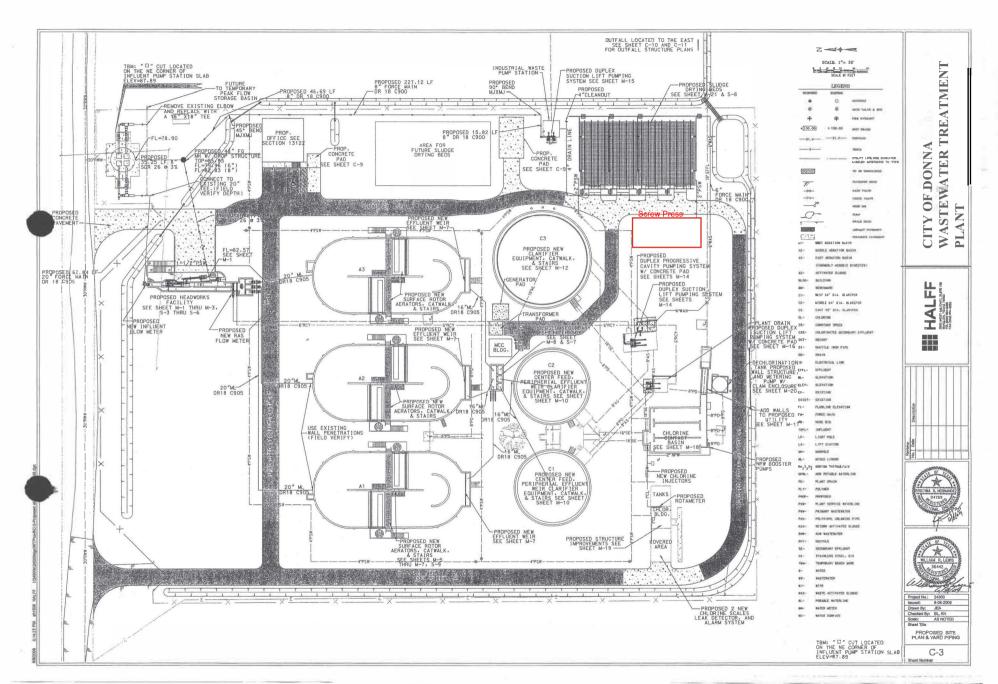
SC=BOD/CBOD calculated using a seed correction factor not within acceptable range. QB=No QC data assigned to sample; sample result not affected.

EL=Oxygen usage is less than 2mg/L for all dilutions analyzed. The reported value is an estimated less than value and is calculated for the dilution containing the greatest concentration of sample.

EG=Less than 1mg/L DO remained for all dilutions analyzed. The reported value is an estimated greater than value and is calculated for the dilution containing the least concentration of sample.

E= The data exceed the upper calibration limit; therefore the concentration is reported as an estimate.

nt Name: City of D	onna		СНА				,,,,,,		. _																		
ress: 114 South 13		Hard S.			4	OU .	5 00															,	OA	CCR	En		
Donna		p: 78537			A			B				Wa	ater		ities Lec			ato	ry			NE	S.	W.	E	2	
ne:956-464-7861	Fax:				N.	1	=	归					Corp	us C	hrist	i, TX	784	10					7	TN	11	1	
Email report to: JCAVAZ	os@cityofdonna	a.org			6		IF	7					P	n: (3	61) 8	26-1	1200					4	AB0	RAT	OR	/	
ampler (PLEASE PRINT)	Javier Cavazos					Co	No. of			Matri	lx	Chi	idual orine		OF	not li	iclad	halau	An		te Fo		iet to	et ro	alle	etad	
Sample ID	Lab ID# (Lab Use Only)	Date Sampled	Time Sampled	Grab	Composite	П	HNO ₂		WW Influent	WW Effluent	Water Other -Specify	Tota mg/L		CBOD	800		Ammonia-N	T	Chloride -	I		T	Tocal Alkalinity	Coli/ E.coli	E	Enterococci	
=ffluent	W59599	6-4-25	10:00cm	+-+			1			-	1	-	07			1	П					1					v
=ffluent	AC59600	_		_		П	1			~	T	0,0	5			T	П	T						T		~	
4.									Ц					Ц								1					
				\sqcup	1	Ц			Ц	1	1	L		Ц	1	_	Ш	_	_		1	1	_	L	L		
					_	Ш					_	L												L			
Relinquished By:	122	Da	ite: 6-4	1-2	5	Т	ime:	10	013	Oa.	m					*****	For	Labo	rator	y Us	e Onl	ly ***	***				
Received By:	A0	ANT-COLUMN	ite: 6-4	-2	5	Т	ime:	0	20	0		Sam	ple(s)	on ice	-	$\overline{}$) NO		H Strip	100-11				388			
Relinquished By:	0-	Da	ite: 6-4	-2	5		ime:	1	4	10)	Rec	eiving	Tem	p (°C	4	io	р	H < 27	YE	s N	0	Line	#(s)):		
Received By:	bull'x	Da	ite: 6/4	25	5	Т	ime:	1,	41	0		Con	rected	Tem	p (°C	11	4		ata Fl	ag(s)							
)								_		Ten	p. De	vice I	D: {	5		L									
pecial Instructions/ Please invoice to ther*:		ng, Austir	n, TX														Cor		s Wa	ter	V	7					
																-	Servir	g th	e Cov	istal	Beno	1					


Revision 1.1. June 2022

TE (ORIGINAL) - Lab Copy

YELLOW - Submitter Copy

C-3 Proposed Site Plan and Yard Piping (45% of Scale). Donna Wastewater Trealment Plant Improvements, Projects, 5/28/2009 08 16 AM

Javier F. Cavazos Jr City of Donna 114 South 13th St. Donna, Texas 78537 Report Date: 06/27/2025 Report #: I251492 Project ID: Permit Renewal

Dear Javier F. Cavazos Jr,

Integrity Testing received samples from the above referenced project on 06/06/2025 for the analyses presented in the following report.

The analytical data relates directly to the samples received by Integrity Testing and for only the analytes requested. Samples were intact and properly preserved unless otherwise noted in the Case Narrative. Results are reported as received unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. This laboratory report may only be reproduced in full.

If you need any assistance with this report, please let me know.

Sincerely,

Chris Ewert

Laboratory Manager

TCEQ Laboratory ID: T104704525

Javier F. Cavazos Jr City of Donna 114 South 13th St. Donna, Texas 78537 Report Date: 06/27/2025 Report #: 1251492 Project ID: Permit Renewal

CASE NARRATIVE

Integrity Testing certifies that this report meets the project requirements for analytical data produced for the samples as received at Integrity Testing and as stated on the COC. Integrity Testing certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the Integrity Testing Quality Manual and the requirements of NELAC (TNI) except as noted in this Case Narrative. For more information, please refer to the analytical results, QC summary pages, and the Sample Receipt Checklist.

QC21896: The Total Suspended Solids duplicate was prepared on an unrelated sample.

QC21903: The Total Dissolved Solids duplicate was prepared on an unrelated sample.

QC21908: The CBOD5 duplicate was prepared on an unrelated sample.

QC21911: The Ammonia MS/MSD was prepared on an unrelated sample.

QC21920: The Specific Conductivity duplicate was prepared on an unrelated sample.

QC21928: The Total Metals MS/MSD was prepared on an unrelated sample.

Javier F. Cavazos Jr City of Donna 114 South 13th St. Donna, Texas 78537 Report Date: 06/27/2025 Report #: 1251492 Project ID: Permit Renewal

SAMPLE SUMMARY

Lab Sample IDClient Sample IDMatrixDate CollectedDate Received1251492-124-Hr Composite SampleWater06/05/2025 10:0006/06/2025

Javier F. Cavazos Jr City of Donna 114 South 13th St. Donna, Texas 78537 Report Date: 06/27/2025 Report #: I251492 Project ID: Permit Renewal

ANALYTICAL DATA REPORT

Client Sample ID: 24-Hr Composite Sample

24 In Composite Sumple

Date Collected: 06/05/2025 **Date Received:** 06/06/2025

Lab Sample ID: 1251492-1

Matrix: Water

Total Dis	solved Solids	Method:	SM25400	C	Prep	Method	: SM2540	C	QC Batch ID: Q	C21903
CAS#	<u>Analyte</u>	Result	<u>SDL</u>	<u>MQL</u>	<u>Units</u>	Q	<u>DF</u>	Prep Date	Date Analyzed	<u>Analyst</u>
	Total Dissolved Solids(TDS)	1510	10.0	10.0	mg/L		1		06/09/2025	JF
Total Sus	spended Solids	Method:	SM2540I)	Prep	Method	: SM2540	D (QC Batch ID: Q	C21896
CAS#	<u>Analyte</u>	Result	SDL	MQL	<u>Units</u>	Q	<u>DF</u>	Prep Date	Date Analyzed	Analyst
	TSS	2.40	2.00	2.00	mg/L		1		06/10/2025	JF
Specific (<u>Conductivity</u>	Method:	EPA 905	0M	Prep	Method	: null	(QC Batch ID: (C21920
CAS#	<u>Analyte</u>	Result	<u>SDL</u>	<u>MQL</u>	<u>Units</u>	Q	<u>DF</u>	Prep Date	Date Analyzed	<u>Analyst</u>
7732-18-532	Specific Conductance @25 C	2320	5.00	5.00	uhmos/cm	1	1		06/13/2025	JF
CBOD5		Method:	SM 5210	В	Prep	Method	: SM 5210)B	QC Batch ID: (C21908
CAS#	<u>Analyte</u>	Result	<u>SDL</u>	<u>MQL</u>	<u>Units</u>	Q	<u>DF</u>	Prep Date	Date Analyzed	<u>Analyst</u>
	CBOD5	8.20	2.00	2.00	mg/L		1		06/06/2025 12:15	JF
Ammonia	<u>a</u>	Method:	SM4500-	NH3 D	Prep	Method	: SM4500	-NH3 D (QC Batch ID: Q	C21911
CAS#	Analyte	Result	SDL	MQL	<u>Units</u>	Q	<u>DF</u>	Prep Date	Date Analyzed	Analyst
7664-41-7	Ammonia	4.02	0.0822	0.0822	mg/L		1		06/11/2025	JF
Total Me	<u>tals</u>	Method:	EPA 200	.7	Prep	Method	: EPA 200).7	QC Batch ID: (C21928
CAS#	<u>Analyte</u>	Result	SDL	MQL	<u>Units</u>	Q	<u>DF</u>	Prep Date	Date Analyzed	Analyst
7440-36-0	Antimony	< 0.00500	0.00500	0.0200	mg/L		1	06/15/2025	06/16/2025	CE
7440-39-3	Barium	0.0871	0.00100	0.0150	mg/L		1	06/15/2025	06/16/2025	CE
7440-43-9	Cadmium	< 0.00100	0.00100	0.0150	mg/L		1	06/15/2025	06/16/2025	CE
7440-47-3	Chromium	< 0.00100	0.00100	0.0150	mg/L		1	06/15/2025	06/16/2025	CE
7440-66-6	Zinc	0.0325	0.00500	0.0200	mg/L		1	06/15/2025	06/16/2025	CE

Javier F. Cavazos Jr City of Donna 114 South 13th St. Donna, Texas 78537 Report Date: 06/27/2025 Report #: I251492 Project ID: Permit Renewal

QC REPORT

QC Batch ID: QC21908 Matrix: Water

Analyte	Blank	Sample	<u>DUP</u>	<u>RPD</u>	Limit	LCS%	Limits
CBOD5	<2	259	260	0.39	20	86	74-109

Javier F. Cavazos Jr City of Donna 114 South 13th St. Donna, Texas 78537 Report Date: 06/27/2025 Report #: 1251492 Project ID: Permit Renewal

QC REPORT

QC Batch ID: QC21896 Matrix: Water

Analyte	Blank	Sample	<u>DUP</u>	<u>RPD</u>	Limit	LCS%	Limits
TSS	<2	108	104	3.8	20	90	80-120

Javier F. Cavazos Jr City of Donna 114 South 13th St. Donna, Texas 78537 Report Date: 06/27/2025 Report #: I251492 Project ID: Permit Renewal

QC REPORT

QC Batch ID: QC21911 Matrix: Water

<u>Analyte</u>	Blank	<u>MS%</u>	MSD%	Limits	<u>RPD</u>	Limit	LCS%	Limits
Ammonia	< 0.082	91	96	80-120	5.3	20	107	90-110

Javier F. Cavazos Jr City of Donna 114 South 13th St. Donna, Texas 78537 Report Date: 06/27/2025 Report #: I251492 Project ID: Permit Renewal

QC REPORT

QC Batch ID: QC21903 Matrix: Water

Analyte	Blank	<u>Sample</u>	<u>DUP</u>	<u>RPD</u>	Limit	LCS%	Limits
Total Dissolved Solids(TDS)	<10	577	571	1	5	99	90-110

Javier F. Cavazos Jr City of Donna 114 South 13th St. Donna, Texas 78537 Report Date: 06/27/2025 Report #: I251492 Project ID: Permit Renewal

QC REPORT

QC Batch ID: QC21920 Matrix: Water

Analyte	<u>Blank</u>	Sample	<u>DUP</u>	<u>RPD</u>	Limit	LCS%	Limits
Specific Conductance @25 C	<5	1498	1502	0.27	20	101	90-110

Javier F. Cavazos Jr City of Donna 114 South 13th St. Donna, Texas 78537 Report Date: 06/27/2025 Report #: 1251492 Project ID: Permit Renewal

QC REPORT

QC Batch ID: QC21928 Matrix: Water

Analyte	Blank	<u>MS%</u>	MSD%	<u>Limits</u>	<u>RPD</u>	Limit	LCS%	LCSD%	Limits	<u>RPD</u>	Limit
Antimony	< 0.005	101	100	70-130	1	20	103	103	85-115	0	20
Barium	< 0.001	105	102	70-130	2.9	20	103	103	85-115	0	20
Cadmium	< 0.001	103	101	70-130	2	20	100	99	85-115	1	20
Chromium	< 0.001	102	100	70-130	2	20	98	97	85-115	1	20
Zinc	< 0.005	101	101	70-130	0	20	104	103	85-115	0.97	20

CHAIN OF CUSTODY

INTEGRATY
umanaund Time Bequested:

COC Number I 251492

Name	Javier F. Cavazos	s, Jr.				_		4		_	ヹ		~		T	7	7	<u>.</u>	ر سر	<u>.</u>		(COC	Nu	mbei	<u>-</u>	. O-	ગપ		<u>a. </u>	
Company	City of Donna				_						┸	上	<u>. </u>	ک		_		Ц	_}										_		
Address	114 South 13th S	St.				7			me R														ıg R								
City/State/Zip	Donna, TX 7853	7				•	ndaro	i			<u> </u>	_					-Da	-				•	lard			TRRP					
Phone	(956) 464-7861				Ш	2-D	ay				No	ext-I	Day		<u> </u>	S	ame-	-Day	<u> </u>		!]	PST			<u> </u>						
FAX	(956) 464-5001				Ty	pe/#	of S	amp	le Co	ntai	ners	_	_	,	A	n al	ysis	Re	que	sted	T			-			1				
e-mail	jcavazos@cityofdon	ma.org				ji.		1						ļ	li					ŀ	- 1	디									
Project	Permit Renewal					Plast	ᇫ	۱ ۶					-									آڏِ	ı				ļ				
Reference/PO					l d	lon	HZ	Ĭ							nia	١	sny	_	E	in m	- 1	2	-								
Collected By	Jevier F. C	cvc70	<u>5 I (</u>		120mL unp	Z Gal	120mL H2SO4		İ				ğ	ြုလ္	Ammonia	اچ	time	ig	Cadmium	rom	Zinc	CONDUCTIVITY	-								
Sample Descri	ption	Date		Matrix	12	7/1	12	2	—			19	<u>ت</u> ا.	E	¥	Ë	Ā	ñ	రి	ਂ	Ż	ଧ	\bot	4	\bot	↓	┨┌	Lab#	<i>‡</i>		
Grab Sample		6-5-35	10.00	water	╆		#	#	+		Ħ	<u> </u> *	+	F				=	=	_	#	#	#	\pm	#	1	#	<u>'</u>	=		
24-Hr Composit	e Sample	ļ		water	_	1	1	1	—		Ш	L	X	X	х	X	X	х	х	х	X	4	+		┿	╄	╢		4		
					<u> </u>		_	4	╀-			<u> </u>	╄	┡	Ш		_	_	_	_	_	4	+	1	4-	-	╢		4		
					_	Ш	_	+	_	igspace	Ш	-	\bot	┞	Н	\dashv	_			\dashv	\dashv	4	+	+	╁	┿	╂		4		
					<u> </u>	Щ	_	\bot	_	_	lacksquare	\perp	\downarrow	╀	Ш		\sqcup		4	_	_	4	+		+	+	┨┞		4		
		ļ			 	Ш	_	4	\bot	_		L	\downarrow	╄	Н		4				_	_	+	4	-	╄	╂		-		
		<u> </u>		1	<u> </u>	\sqcup	_	+	+		Щ	<u> </u>	┿	╄	Н		\dashv	_		-	\dashv	\dashv	+	4		┼	╁		4		
				1	<u> </u>	Ш	4	4	\bot	<u> </u>		L	+	╄	Ш	Ц	\dashv				_	4	+	4	+	+	┨┡		4		
	·	ļ			<u> </u>	_	_	4			Ш	 	+	╄			4				_		+	+	+	+	╂		4		
		ļ	<u> </u>		·			\bot	_		Ш	-	1	┞	Ш	Ц	\dashv			\dashv		\dashv	+	+	 -	+	╁		4		
	·	ļ			<u> </u>	Ш	_	4	_	_			\bot	╀	Щ	\Box			-		_	4	4	_	+	╁	╂		4		
					L			+	1	1	Ш		\bot	╀							\dashv	4	+	_	┦	+	╁		4		
					┡	Ш	_		\bot	1	Н	L	4	<u> </u>			Ц	\blacksquare				4	+	+	+	-	╂		4		
			<u> </u>								Ш	L		L												Т.	JL				
Relinquished By Relinquished By	Date 6-5-25	Time Time	7:30	Receiv	<u> </u>	4	<u>K</u>	D	ate	<u> </u>	Time	12	3	Ca P	mm	ents	s:	ς. Υ.	- 3 - 3	, ρα + 5	55/	4 e	<u>.</u> - 5-	-3	2 m	ρl	e	_,	1	Grab sample not received only composit	
- Int	Date 6-5-25		300																				002			(Arr		7	_	- 1 to	
Relinquished By	Date	Time		Receiv							Time		n										Ice p			(Y)	<i>y</i> / N	N			

SAMPLE RECEIPT CHECKLIST

Laboratory Number <u>I251492</u>	Checklist Completed by	<u>SM</u>
Custody		
Custody seals present?	Yes No	
Custody seals intact?	Ves No	<u>NA</u>
Chain-of-Custody included?	(Yes) No	
Chain-of-Custody signed and dated by client?	Ves No	
Samples collected and delivered the same day?	Yes (No	
Samples received within holding time?	Yes No	
Thermal Preservation >0°C to 6°C		
Thermal Preservation Applicable	Yes No	
Samples received on ice?	Yes No	
Uncorrected Temperature 2-6 °C Corrected Temperature	erature 2-66°C	
IR Gun# <u>1</u>		
Sample Numbers Unacceptable		
Samples		
Samples properly labeled?	Yes No	
Sample containers intact?	Yes No	
Chain-of-Custody information matches samples?	Yes No	
Chain-of-Custody filled out correctly and completely?	YES No	
Sample volume sufficient for requested analyses?	Ves No	_
Were samples received in hermetically sealed contain	ers? Yes No	_(NA)
Volatile vials received with no headspace?	Yes No	
BOD/CBOD samples contain residual chlorine?	Yes (No)	<u>NA</u>
Chlorine residual strip lot# 3951A		
Sample Numbers Unacceptable		
Chemical Preservation - pH		
Chemical Preservation Applicable	<u>(Yes) No</u>	
pH acceptable upon receipt?	Yes No	<u>NA</u>
pH paper lot # OH-OOL	 -	
Were unacceptable preservations adjusted upon rece		(NA)
Sample Numbers/Fraction Unacceptable:		
Date of preservation		
Adjusted by:		
Chemical NameLot#		
Subcontracting		
Sample Numbers Subcontracted:		
Samples subcontracted to:		
Analyses Subcontracted:		
Shipped Via:		
Date Shipped:		
Comments:		
		_

Sample Receiving Checklist 5-21-25

Javier F. Cavazos Jr City of Donna 114 South 13th St. Donna, Texas 78537 Report Date: 06/27/2025 Report #: 1251492 Project ID: Permit Renewal

QUALIFIERS AND ACRONYMS

Qualifier	<u>Description</u>
В	Analyte detected in the associated method blank above the detection limit
E	Concentration exceeds the calibration range of the instrument
Н	Analyzed outside holding time
J	Indicates an estimated value
*	Value outside QC limits
D	Diluted analyte
N	This identification is based on a mass spectral library search, indicates presumptive evidence of a compound
NC	Integrity Testing does not hold TCEQ NELAC drinking water certification for this analyte.
C	Integrity Testing does not hold TCEQ NELAC certification for this analyte.
NR	Accreditation not available for this method
M	Modified Method
FB	Analyte detected in the associated field blank above the detection limit
TB	Analyte detected in the associated Trip/Field blank above the detection limit

Acronym Description

DCS	Detection Check Study

DUP Duplicate

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

Blank Method Blank

MDL Method Detection Limit
MQL Method Quantitation Limit

MS Matrix Spike

MSD Matrix Spike Duplicate
SDL Sample Detection Limit
SUB Subcontracted Parameter

TRRP Texas Risk Reduction Program

DF Dilution Factor

Q Qualifiers

3540C-M TCEQ Accepted, Integrity Testing validated modified continuous extraction tumbling method

END OF REPORT

Javier F. Cavazos Jr City of Donna 114 South 13th St. Donna, Texas 78537 Report Date: 06/27/2025 Report #: 1251583 Project ID: Permit Renewal

Dear Javier F. Cavazos Jr,

Integrity Testing received a sample from the above referenced project on 06/19/2025 for the analyses presented in the following report.

The analytical data relates directly to the samples received by Integrity Testing and for only the analytes requested. Samples were intact and properly preserved unless otherwise noted in the Case Narrative. Results are reported as received unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. This laboratory report may only be reproduced in full.

If you need any assistance with this report, please let me know.

Sincerely,

Chris Ewert

Laboratory Manager

TCEQ Laboratory ID: T104704525

Javier F. Cavazos Jr City of Donna 114 South 13th St. Donna, Texas 78537 Report Date: 06/27/2025 Report #: I251583 Project ID: Permit Renewal

CASE NARRATIVE

Integrity Testing certifies that this report meets the project requirements for analytical data produced for the samples as received at Integrity Testing and as stated on the COC. Integrity Testing certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the Integrity Testing Quality Manual and the requirements of NELAC (TNI) except as noted in this Case Narrative. For more information, please refer to the analytical results, QC summary pages, and the Sample Receipt Checklist.

QC21971: No comments necessary.

Javier F. Cavazos Jr City of Donna 114 South 13th St. Donna, Texas 78537 Report Date: 06/27/2025 Report #: 1251583 Project ID: Permit Renewal

SAMPLE SUMMARY

Lab Sample IDClient Sample IDMatrixDate CollectedDate Received1251583-1Grab SampleWater06/18/2025 09:0006/19/2025

Javier F. Cavazos Jr City of Donna 114 South 13th St. Donna, Texas 78537 Report Date: 06/27/2025
Report #: I251583
Project ID: Permit Renewal

ANALYTICAL DATA REPORT

Client Sample ID: Grab Sample ID: I251583-1

Date Collected: 06/18/2025 Matrix: Water

Date Received: 06/19/2025

<u>pH</u>		Method:	SM 4500-	-H+ B	QC B	satch ID:	QC21971			
CAS#	Analyte	Result	<u>SDL</u>	<u>MQL</u>	<u>Units</u>	Q	<u>DF</u>	Prep Date	Date Analyzed	<u>Analyst</u>
12408-02-5	pH	7.69	0.100	2.00	pH units	Н	1		06/19/2025 09:20	AG
	pH-Temp	18.8	0	100	°C	Н	1		06/19/2025 09:20	AG

Javier F. Cavazos Jr City of Donna 114 South 13th St. Donna, Texas 78537 Report Date: 06/27/2025 Report #: 1251583 Project ID: Permit Renewal

QC REPORT

QC Batch ID: QC21971 Matrix: Water

Analyte	Sample	<u>DUP</u>	<u>RPD</u>	Limit
pH	7.69	7.7	0.13	2.8
pH-Temp	18.8	18.8	0	0

Name	Javier F. Cavazos	Jr			-	TT	١.	1.	4	~	נ נ	r <i>J</i>	Y	<u> </u>	_ _		(C OC 1	Numb	er	:77128
Company	City of Donna									<u>e</u>			L_	\Box	8	,					
Address	114 South 13th S	St.			Tu	rnarou	ıd Tin	ne Re	queste	1:							Reporting Requirements:				
City/State/Zip	Donna, TX 7853	37			1	Standa	rd			-Day		☐ 3-Day				☐ Standard ☐ TRRP					1
Phone	(956) 464-7861				☐ 2-Day ☐ Next-Day		☐ Same-Day			Γ PST Γ											
FAX	(956) 464-5001				Ту	pe/# of	Sampl	e Con	tainer	§			Analy:	is Re	queste	d					7
e-mail	jcavazos@cityofdon	na.org			unpreserved									ŀ					1		
Project	Permit Renewal				pres																
Reference/PO	I : F.G	T.	******		l un											[į
Collected By	Javier F. Cavazos				120ml					띰										- 1	Lab#
Sample Descri	otion	Date	Time		_			+		1		\vdash	++	+ +		H	-+	+		+	Lau #
Grab Sample		6-18-25	4.06m	water	1	\vdash		+	\dashv	×	+	├┼	++	+ 1	-	\vdash	_	+	\vdash	\dashv	
					-	$\vdash\vdash$		╂╌╂		┨├	+	\vdash	++	╅┪	\dashv	\vdash	\dashv	+	╁┼	+	
					-		\vdash	+		┨┝	-	╀	++	+-+	-	+	\dashv	+	\vdash	+	
					<u> </u>		-	+	\perp	┨┞	+	\vdash	+	++	+	\vdash	-	-	1 1		┫┡───┤
					_	<u> </u>				┦┝	1	-	44	+		-	-	+	+	-	┦┝───┤
		<u> </u>						\perp		 _		\sqcup	44-	\bot			\sqcup	_			
							Ш.			IJL	_						\Box				<u> </u>
										JL	ŀ								$oldsymbol{ol}}}}}}}}}}}}}}}}}}$		
					Г					Ш											
		1						П		1Г			\top								
										11	T						П		П		
		 			-	\vdash				11	†		11			T	П				
										11	╅	ff	11	+	_		\Box	\top	1 1		1
		 		 	╟		\vdash	+		┨┞╴	+	f	++	11	\top			十	\Box	\top	
L		1		L	L	<u> </u>				J L					L_		L L	!			
Relinquished By	6-18-25	Time //	:40	Receiv	od By	201		ate L	Tin 3—25	ne /	():4	Com	ments:								
Relinquished By	1216-B	75 Z	300	Receiv	ed By		Di	ate	Tir	ne											
Relinquished By	Date	Time		I_ ^		Laborato		ate 19 2	Tir 2 < \ \		~		al Temp	•	6 c			Ice pro IR Gu		(Y) / N

SAMPLE RECEIPT CHECKLIST

Laboratory Number <u>TQ51583</u> Checklist	Completed	by <u>S</u> 1	ω
Custody	_		
Custody seals present?	(Ves)	<u>No</u>	
Custody seals intact?	(Yes)	No	<u>NA</u>
Chain-of-Custody included?	Yes	No	
Chain-of-Custody signed and dated by client?	Yes	No	
Samples collected and delivered the same day?	Yes	(No)	
Samples received within holding time?	(Yes)	No	
Thermal Preservation >0°C to 6°C			
Thermal Preservation Applicable	Yes	No	
Samples received on ice?	Yes	No	
Uncorrected Temperature 1.6 °C Corrected Temperature 1.	66°C		
IR Gun# <u>1</u>			
Sample Numbers Unacceptable			
Samples			
Samples properly labeled?	(Yes)	No	
Sample containers intact?	(Yês)	No	
Chain-of-Custody information matches samples?	Yes	No	
Chain-of-Custody filled out correctly and completely?	(Yes)	No	
Sample volume sufficient for requested analyses?	Yes	No	
Were samples received in hermetically sealed containers?	Yes	No	(NA)
Volatile vials received with no headspace?	Yes	No	(NA)
BOD/CBOD samples contain residual chlorine?	Yes	No	NĀ
Chlorine residual strip lot#			_
Sample Numbers Unacceptable			
Chemical Preservation - pH			
Chemical Preservation Applicable	Yes	(No)	
pH acceptable upon receipt?	Yes	No	
pH paper lot #			
Were unacceptable preservations adjusted upon receipt?	Yes	No	NA
Sample Numbers/Fraction Unacceptable:			
Date of preservation			
Adjusted by:			
Chemical NameLot#			
Subcontracting			
Sample Numbers Subcontracted:			
Samples subcontracted to:			
Analyses Subcontracted:			
Shipped Via:			
Date Shipped:			
Comments:	······································		v.

Sample Receiving Checklist 5-21-25

Javier F. Cavazos Jr City of Donna 114 South 13th St. Donna, Texas 78537 Report Date: 06/27/2025 Report #: I251583 Project ID: Permit Renewal

QUALIFIERS AND ACRONYMS

Qualifier	<u>Description</u>
В	Analyte detected in the associated method blank above the detection limit
Е	Concentration exceeds the calibration range of the instrument
Н	Analyzed outside holding time
J	Indicates an estimated value
*	Value outside QC limits
D	Diluted analyte
N	This identification is based on a mass spectral library search, indicates presumptive evidence of a compound
NC	Integrity Testing does not hold TCEQ NELAC drinking water certification for this analyte.
C	Integrity Testing does not hold TCEQ NELAC certification for this analyte.
NR	Accreditation not available for this method
M	Modified Method
FB	Analyte detected in the associated field blank above the detection limit
TB	Analyte detected in the associated Trip/Field blank above the detection limit

Acronym Description

DCS	Detection Check Study

DUP Duplicate

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

Blank Method Blank

MDL Method Detection Limit
MQL Method Quantitation Limit

MS Matrix Spike

MSD Matrix Spike Duplicate
SDL Sample Detection Limit
SUB Subcontracted Parameter

TRRP Texas Risk Reduction Program

DF Dilution Factor

Q Qualifiers

3540C-M TCEQ Accepted, Integrity Testing validated modified continuous extraction tumbling method

END OF REPORT

Your transaction is complete. Thank you for using TCEQ ePay.

Note: It may take up to 3 working days for this electronic payment to be processed and be reflected in the TCEQ ePay system. Print this receipt and the vouchers for your records. An email receipt has also been sent.

Transaction Information

Trace Number: 582EA000685892

Date: 09/22/2025 03:07 PM

Payment Method: ACH - Authorization 0000000000

ePay Actor: JAVIER RAMIREZ

Actor Email: javier@artisanservicesgroup.com

IP: 74.122.69.18 **TCEQ Amount:** \$2,015.00

Texas.gov Fee: \$0.00
Texas.gov Price: \$2,015.00*

Payment Contact Information

Name: JAVIER RAMIREZ

Company: ARTISAN CONSULTING LLC

Address: 2773 FOURTH ST, ROMA, TX 78584

Phone: 956-353-8640

Cart Items

Click on the voucher number to see the voucher details.

Voucher	Fee Description	AR Number	Amount
784336	WW PERMIT - FACILITY WITH FLOW >= 1.0 MGD - RENEWAL		\$2,000.00
784337	30 TAC 305.53B WQ RENEWAL NOTIFICATION FEE		\$15.00
	T	CEQ Amount:	\$2,015.00

ePay Again | Exit ePay

Note: It may take up to 3 working days for this electronic payment to be processed and be reflected in the TCEQ ePay system. Print this receipt for your records.

^{*} This service is provided by Texas.gov, the official website of Texas. The price of this service includes funds that support the ongoing operations and enhancements of Texas.gov, which is provided by a third party in partnership with the State.

Rainee Trevino

512-239-4324

From: Sent: To: Cc: Subject: Attachments:	Javier Ramirez < jramirez.cityofdonna@gmail.com> Friday, September 26, 2025 2:30 PM Rainee Trevino javier@javierhinojosaeng.com Re: Application to Renew Permit No. WQ0010504001- Notice of Deficiency Letter Donna Municipal Discharge Renewal Spanish NORI.docx; WW Treatment Plant 911.pdf
Categories:	NOD Response Review
Hi Rainee	
Rd, Donna, TX 78537. Pleas	ricial addressing letter for the WWTP site. The correct address is 1252 Walker the let me know if you need us to update the core data form. Also, please find form with the revised physical address.
I will send the revised USGS	S map shortly.
Thanks	
Javier Ramirez	
On Fri, Sep 26, 2025 at 11:2	5 AM Rainee Trevino < <u>Rainee. Trevino@tceq.texas.gov</u> > wrote:
Good morning, Mr. Ramirez	22
	ciency letter sent on September 26, 2025, requests additional information needed to nistratively complete. Please send the complete response to my attention by
Regards,	
Rainee Trevino	
Water Quality Division AR	P Team
Texas Commission on Envir	ronmental Quality

September 26, 2025

Re: 911 Address Verification

To whom it may concern:

This is to inform you that city staff has reviewed your property location and indicated your address(s) to be:

Owner Name: CITY OF DONNA

Property Identification Number: 579613

Geo Identification Number: L0250-00-124-0000-00

Legal Description: LOTT, TOWN & IMPROVEMENTS E760.69'-W1032.69'N683.93' BLK

124 11.94AC NET

Address: 1252 Walker Rd. Donna, TX 78537

You are required to display the address on your structure and/or place a mailbox on the property. In order to update your address with other entities and minimize the chance of lost mail, please provide a copy of this letter and notify the Post Office, Utility Company, Phone Company, School System, Place of Employment, Insurance Company, DMV, Cell Phone Company, Cable Company, Credit Card Company, Newspapers, Bank, Magazines, Voter Registration, Tax Office, Appraisal District, and Schools attended by your child/children.

Should you have any questions or concerns please contact my office at (956) 464-6917.

Sincerely,

Jazzmyn Moreno, Assistant Director of Planning City of Donna

Office: (956) 464-6917

Rainee Trevino

From: Sent:	Javier Ramirez <jramirez.cityofdonna@gmail.com> Thursday, November 13, 2025 11:55 AM</jramirez.cityofdonna@gmail.com>
То:	Rainee Trevino
Subject:	Re: Application to Renew Permit No. WQ0010504001- Notice of Deficiency Letter
Attachments:	2025-City of Donna WTP.pdf
Good afternoon	
Please find attached the	updated map.
Thanks	
Javier Ramirez	
On Mon, Oct 20, 2025 at	9:30 AM Rainee Trevino < Rainee. Trevino@tceq.texas.gov > wrote:
Good morning,	
	e updated USGS map with the one-mile radius. Is it possible to submit this today? The ssed. If more time is needed, please let me know as soon as possible.
Regards,	
Rainee Trevino	
Water Quality Division	ARP Team

512-239-4324

Texas Commission on Environmental Quality

Sent: Monday, September 29, 2025 9:06 AM
To: Javier Ramirez < jramirez.cityofdonna@gmail.com
Cc: javier@javierhinojosaeng.com Subject: RE: Application to Renew Permit No. WQ0010504001- Notice of Deficiency Letter
Good morning, Javier,
Thank you for your response, yes, the section III of the Core Data Form will need to be submitted with the correct address to make the change. The Spanish NORI is sufficient and we are just needing the map.
Please let me know if you have any questions.
Regards,
Rainee Trevino
From: Javier Ramirez < jramirez.cityofdonna@gmail.com >
Sent: Friday, September 26, 2025 2:30 PM To: Rainee Trevino < Rainee. Trevino@tceq.texas.gov >
Cc: javier@javierhinojosaeng.com
Subject: Re: Application to Renew Permit No. WQ0010504001- Notice of Deficiency Letter
Hi Rainee
Please find attached the official addressing letter for the WWTP site. The correct address is 1252 Walke Rd, Donna, TX 78537. Please let me know if you need us to update the core data form. Also, please find attached the Spanish NORI form with the revised physical address.
I will send the revised USGS map shortly.
Thanks

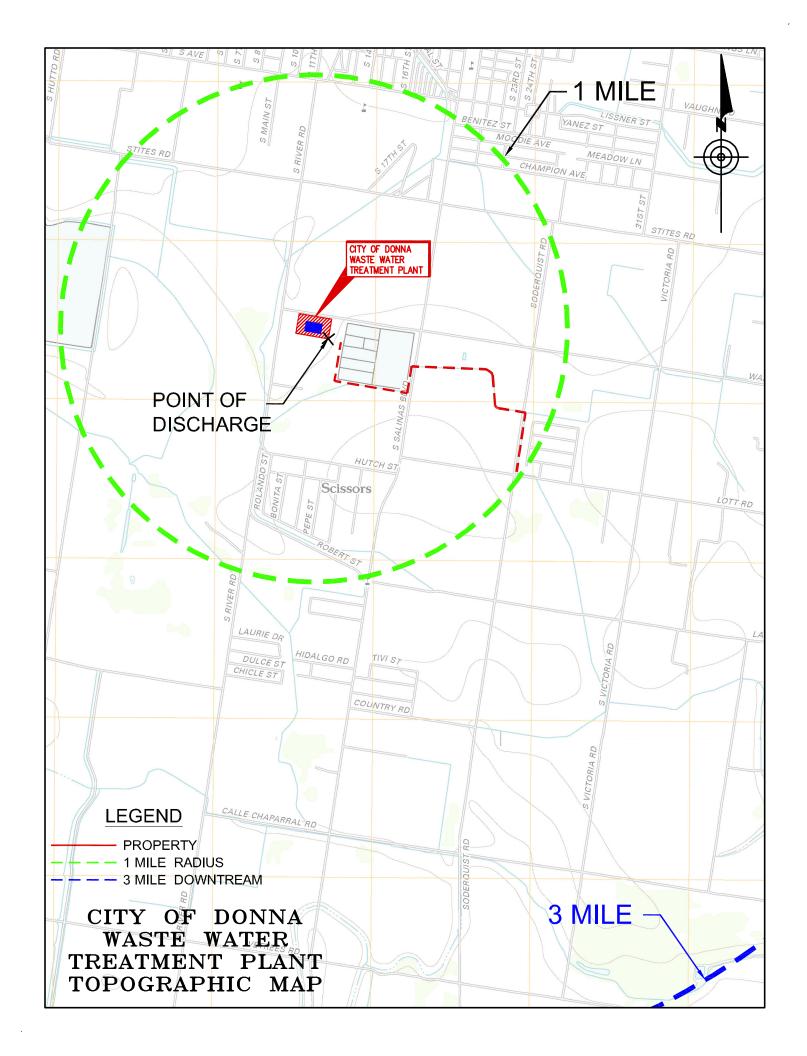
Javier Ramirez

On Fri, Sep 26, 2025 at 11:25 AM Rainee Trevino < Rainee. Trevino@tceq.texas.gov > wrote:

Good morning, Mr. Ramirez,

The attached Notice of Deficiency letter sent on September 26, 2025, requests additional information needed to declare the application administratively complete. Please send the complete response to my attention by October 10, 2025.

Regards,


Rainee Trevino

Water Quality Division | ARP Team

Texas Commission on Environmental Quality

512-239-4324

Rainee Trevino

From: Javier Ramirez < jramirez.cityofdonna@gmail.com>

Sent: Friday, November 21, 2025 4:13 PM

To: Rainee Trevino

Subject: Re: Application to Renew Permit No. WQ0010504001- Notice of Deficiency Letter

Attachments: Scan_2025_11_21_15_17_09_963.pdf

Good afternoon

Please find attached the revised core data form.

Thanks

Javier Ramirez

On Fri, Nov 14, 2025 at 8:11 AM Rainee Trevino < Rainee. Trevino@tceq.texas.gov > wrote:

I am looking back at the previous response, and I don't see that an updated Core Data Form with the correct address was ever submitted. Can you send over the updated Core Data form with the correct address as soon as possible? This is the only item needed to admin complete the application.

Thank you,

Rainee Trevino

Water Quality Division | ARP Team

Texas Commission on Environmental Quality

512-239-4324

From: Rainee Trevino

Sent: Friday, November 14, 2025 7:56 AM

TCEQ Use Only

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)													
☐ New Perr	mit, Registra	ition or	Authorization (Core Data Fori	m should be s	ubmitte	ed witi	h the prog	ram application.)				
Renewal (Core Data Form should be submitted with the renewal form)							☐ Other						
					Follow this link to search			3. Re	3. Regulated Entity Reference Number (if issued)				
CN 6007378	386				for CN or RN numbers in Central Registry**			RN 102080751					
SECTIO	N II:	Cus	tomer	Inforn	nation			L					
4. General Cu	4. General Customer Information 5. Effective Date for Custome							r Information Updates (mm/dd/yyyy) 4/1/2025					
☐ New Custo	mer		×ΙΝ	pdate to Custo	mer Informat	ion		☐ Char	nge in Regulated Ent	itv Owne	ership		
Change in L	egal Name	(Verifiab					ptrolle			,			
The Custome	r Name su	bmitte	d here may b	e updated a	utomaticall	y base	d on	what is c	urrent and active	with th	e Texas Sec	retary of State	
(SOS) or Texa	s Comptro	oller of	Public Accou	nts (CPA).									
6. Customer	Legal Nam	e (If an	individual, prii	nt last name fir	st: eg: Doe, Jo	ohn)			If new Customer,	enter pre	evious Custom	er below:	
City of Donna													
7. TX SOS/CP	A Filing N	umber		8. TX State	Tax ID (11 di	gits)			9. Federal Tax ID 10. D			DUNS Number (if	
									(9 digits) applicable				
								74-6000690					
			I				Т			I			
11. Type of C			Corporat					Individ	Individual Partnership:			General Limited	
Government:			Federal 🗌	Local 🔲 State	Other			Sole P	oprietorship				
12. Number	of Employ	ees							13. Independer	itly Ow	ned and Op	erated?	
0-20	21-100	101-2	250 251-	500 🗌 501	and higher				Yes	⊠ No			
14. Custome	r Role (Pro	posed o	r Actual) – as it	relates to the	Regulated En	itity list	ed on	this form.	Please check one of	the follo	wing		
□ Owner □ Operator □ Owner & Operator □ Occupational Licensee □ Responsible Party □ VCP/BSA Applicant													
307 South 12 th St.													
15. Mailing													
Address:	City	Donna			State	ТХ		ZIP	78537		ZIP + 4	2227	
	City	Domin	a		State	'^		ZIF	76337		ZIP T 4	3337	
16. Country I	Mailing Inf	ormati	ion (if outside	USA)			17.	E-Mail A	ddress (if applicable	e)			
							jpena@cityofdonna.org						

TCEQ-10400 (11/22) Page 1 of 3

18. Telephone Number			19. Extension or	20. Fax Number (if applicable)						
(956) 464-3314				(956) 464-9923						
SECTION III: I	Regula	ated Enti	ty Inform	<u>nation</u>						
21. General Regulated En	tity Informa	ition (If 'New Regu	lated Entity" is selec	ted, a new pe	rmit applicat	tion is also	required.)			
New Regulated Entity	Update to	Regulated Entity N	ame Update to	o Regulated I	Entity Informa	ation				
The Regulated Entity Nanas Inc, LP, or LLC).	ne submitte	d may be update	d, in order to mee	et TCEQ Cor	e Data Stan	dards (re	moval of or	ganization	al endings such	
22. Regulated Entity Nam	e (Enter nam	e of the site where	the regulated action	is taking pla	ce.)					
City of Donna Wastewater Tre	eatment Plan	t								
23. Street Address of the Regulated Entity:										
(No PO Boxes)	City	Donna	State	тх	ZIP	78537		ZIP + 4		
24. County		<u> </u>	1		L	1			<u> </u>	
<u> </u>		If no Street	Address is provid	led, fields 2	5-28 are re	quired.		***************************************		
25. Description to				1000 01						
Physical Location:	0.6 miles Sc	outhwest of the inte	ersection of FM 493 a	and Stites Rd.						
26. Nearest City						State		Near	rest ZIP Code	
Donna						TX		78537		
Latitude/Longitude are re used to supply coordinate					ata Standa	rds. (Geo	coding of th	e Physical .	Address may be	
27. Latitude (N) In Decima	al:	26.148333	28. Longitud			/) In Decii	mal:	-98.053333		
Degrees	Minutes	S	Seconds	Degre	es	N	linutes		Seconds	
26		8	54	98		3		12		
29. Primary SIC Code	30.	Secondary SIC C	Code 31. Primary NAICS			de	S Code			
(4 digits)	(4 c	ligits)		ts)	(5 or 6 digits)					
4952				221320						
33. What is the Primary B		this entity? (Do	not repeat the SIC or	· NAICS descr	iption.)					
Wastewater Collection and Ti	reatment	· · · · · · · · · · · · · · · · · · ·								
34. Mailing	307 South	12 th St								
Address:										
	City	Donna	State	тх	ZIP	78537		ZIP + 4	3337	
35. E-Mail Address:	jpe	na@cityofdonna,o	rg	1	<u> </u>	.1			I	
36. Telephone Number			37. Extension or	Code	38. F	ax Numbe	er (if applicat	ole)		
(956) 464-3214		(956)464-9923								

18. Telephone Number

TCEQ-10400 (11/22) Page 2 of 3 form. See the Core Data Form instructions for additional guidance. Districts ☐ Dam Safety ☐ Edwards Aquifer ☐ Emissions Inventory Air ☐ Industrial Hazardous Waste ☐ New Source ■ Municipal Solid Waste OSSF Petroleum Storage Tank ☐ PWS Review Air ☐ Sludge Storm Water ☐ Title V Air ☐ Tires Used Oil ☐ Voluntary Cleanup ☐ Wastewater Agriculture ☐ Water Rights Other: WQ0010504001 **SECTION IV: Preparer Information** 40. Name: 41. Title: Senior Infrastructure Advisor Javier Ramirez 42. Telephone Number 43. Ext./Code 44. Fax Number 45. E-Mail Address (956) 353-8640) jramirez.cityofdonna@gmail.com **SECTION V: Authorized Signature** 46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39. Company: Job Title: City Manager City of Donna Name (In Print): Jorge Pena Phone: (956) 464-3314 Signature: 11/21/2025 Date: Jorge L Penn -1.21.25

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this

TCEQ-10400 (11/22) Page 3 of 3