

This file contains the following documents:

- 1. Summary of application (in plain language)
- 2. First notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
- 3. Second notice (NAPD-Notice of Preliminary Decision)
- 4. Application materials
- 5. Draft permit
- 6. Technical summary or fact sheet

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS

Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTIC WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

City of Commerce (CN 600729933) operates City of Commerce Wastewater Treatment Plant (RN102178233), an activated sludge process plant. The facility is located at approximately 0.5 mile south of the intersection of Charity Road and Farm-to-Market Road 3218, on the east side of Farm-to-Market Road 3218, in Commerce, Hunt County, Texas 75428. This application is for a renewal to discharge at an annual average flow of 2,000,000 gallons per day of treated domestic wastewater via Outfall 1.

Discharges from the facility are expected to contain total suspended solids (TSS), nitrate nitrogen, Kjeldahl nitrogen, sulfate, chloride, phosphorous, dissolved oxygen, chlorine residual, E.coli, and total dissolved solids. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7 Pollutant Analysis of Treated Effluent. Domestic wastewater will be treated by an activated sludge process plant and the treatment units will include a master lift station, fine screens, equalization basins, aeration basins, final clarifiers, aerobic digesters, chlorine contact chamber, and de-chlorination chamber. Sludge is aerobically digested before mixing with polymer and allowed to dewater in 2 sludge dewatering boxes.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL.

PERMIT NO. WQ0010555001

APPLICATION. City of Commerce, 1119 Alamo Street, Commerce, Texas 75428, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WO0010555001 (EPA I.D. No. TX0020591) to authorize the discharge of treated wastewater at a volume not to exceed an annual average flow of 2,000,000 gallons per day. The domestic wastewater treatment facility is located approximately 0.5 mile south of the intersection of Charity Road and Farm-to-Market Road 3218, near the city of Commerce, in Hunt County, Texas 75428. The discharge route is from the plant site to an unnamed tributary; thence to Upper South Sulphur River. TCEQ received this application on August 6, 2025. The permit application will be available for viewing and copying at Commerce City Hall, Foyer, Alamo Street, Commerce, in Hunt County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-95.8875,33.2175&level=18

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a

response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in

writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Commerce at the address stated above or by calling Molly Jacobson, City Secretary, at 903-886-1125.

Issuance Date: August 29, 2025

Texas Commission on Environmental Quality

NOTICE OF APPLICATION AND PRELIMINARY DECISION FOR TPDES PERMIT FOR MUNICIPAL WASTEWATER

RENEWAL

PERMIT NO. WQ0010555001

APPLICATION AND PRELIMINARY DECISION. City of Commerce, 1119 Alamo Street, Commerce, Texas 75428, has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010555001, which authorizes the discharge of treated domestic wastewater at an annual average flow not to exceed 2,000,000 gallons per day. TCEQ received this application on August 6, 2025.

The facility is located approximately 0.5 mile south of the intersection of Charity Road and Farm-to-Market Road 3218, in Hunt County, Texas 75428. The treated effluent is discharged to an unnamed tributary, thence to Upper South Sulphur River in Segment No. 0306 of the Sulphur River Basin. The unclassified receiving water use is minimal aquatic life use for the unnamed tributary. The designated uses for Segment No. 0306 are primary contact recreation and intermediate aquatic life use. This link to an electronic map of the site or facility's general location is provided as a public courtesy and is not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-95.8875,33.2175&level=18

The TCEQ Executive Director has completed the technical review of the application and prepared a draft permit. The draft permit, if approved, would establish the conditions under which the facility must operate. The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The permit application, Executive Director's preliminary decision, and draft permit are available for viewing and copying at Commerce City Hall, Foyer, Alamo Street, Commerce, in Hunt County, Texas. The application is available for viewing and copying at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting about this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ holds a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting a contested case hearing or reconsideration of the Executive Director's decision. A contested case hearing is a legal proceeding similar to a civil trial in a state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period; and the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period. TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

EXECUTIVE DIRECTOR ACTION. The Executive Director may issue final approval of the application unless a timely contested case hearing request or request for reconsideration is filed. If a timely hearing request or request for reconsideration is filed, the Executive Director will not issue final approval of the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

All written public comments and public meeting requests must be submitted to the Office of the Chief Clerk, MC 105, Texas Commission on Environmental Quality, P.O. Box 13087, Austin, TX 78711-3087 or electronically at www.tceq.texas.gov/goto/comment within 30 days from the date of newspaper publication of this notice.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. Public comments and requests must be submitted either electronically at www.tceq.texas.gov/goto/comment, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC 105, P.O. Box 13087, Austin, Texas 78711-3087. Any personal information you submit to the TCEQ will become part of the agency's record; this includes email addresses. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Commerce at the address stated above or by calling Molly Jacobson, City Secretary, at 903-886-1125.

Issuance Date: December 4, 2025

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST

Complete and submit this checklist with the application.

APPLICANT NAME: City of Commerce

PERMIT NUMBER (If new, leave blank): WQ00<u>10555001</u>

Indicate if each of the following items is included in your application.

	Y	N		Y	N
Administrative Report 1.0	\boxtimes		Original USGS Map	\boxtimes	
Administrative Report 1.1		\boxtimes	Affected Landowners Map		\boxtimes
SPIF	\boxtimes		Landowner Disk or Labels		\boxtimes
Core Data Form	\boxtimes		Buffer Zone Map		\boxtimes
Summary of Application (PLS)	\boxtimes		Flow Diagram	\boxtimes	
Public Involvement Plan Form			Site Drawing	\boxtimes	
Technical Report 1.0	\boxtimes		Original Photographs		\boxtimes
Technical Report 1.1		\boxtimes	Design Calculations		\boxtimes
Worksheet 2.0	\boxtimes		Solids Management Plan		\boxtimes
Worksheet 2.1		\boxtimes	Water Balance		\boxtimes
Worksheet 3.0		\boxtimes			
Worksheet 3.1		\boxtimes	RECEIVED		
Worksheet 3.2		\boxtimes	AUG 0 6 2025		
Worksheet 3.3		\boxtimes	Water Quality Applications Team		
Worksheet 4.0	\boxtimes				
Worksheet 5.0	\boxtimes				
Worksheet 6.0	\boxtimes				
Worksheet 7.0		\boxtimes			

For TCEQ Use Only	
Segment Number	County
Expiration Date	Region
Permit Number	

PARTITION WENTAL OUT

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION ADMINISTRATIVE REPORT 1.0

For any questions about this form, please contact the Applications Review and Processing Team at 512–239–4671.

Section 1. Application Fees (Instructions Page 26)

Indicate the amount submitted for the application fee (check only one).

Flow	New/Major Amendment	Renewal
<0.05 MGD	\$350.00 □	\$315.00 □
≥0.05 but <0.10 MGD	\$550.00 □	\$515.00 □
≥0.10 but <0.25 MGD	\$850.00 □	\$815.00 □
≥0.25 but <0.50 MGD	\$1,250.00 □	\$1,215.00 □
≥0.50 but <1.0 MGD	\$1,650.00 □	\$1,615.00 □
≥1.0 MGD	\$2,050.00 [□]	\$2,015.00 ⊠
Minor Amendment (for any	flow) \$150.00 □	

mior runchament (for any now) \$150.00 i

Payment Infoi	rmation
---------------	---------

Mailed Check/Money Order Number: 67362

Check/Money Order Amount: \$2,015.00

Name Printed on Check: TCEQ

EPAY Voucher Number: Click to enter text.

Copy of Payment Voucher enclosed? Yes \square

Section 2. Type of Application (Instructions Page 26)

a.	Check the box next to the appropriate authorization type.							
	\boxtimes	Publicly Owned Domestic Wastewater						
		Privately-Owned Domestic Wastewater						
		Conventiona	al W	ater Treatment				
b.	Che	ck the box ne	ext t	o the appropriate facility status.				
	\boxtimes	Active		Inactive				

C.	Che	eck the box next to the appropriate permit typ	e.		
	\boxtimes	TPDES Permit			
		TLAP			
	□ TPDES Permit with TLAP component				
		Subsurface Area Drip Dispersal System (SAD	DS)		
d.	Che	eck the box next to the appropriate application	ı typ	e	
		New			
		Major Amendment with Renewal		Minor Amendment with Renewal	
		Major Amendment without Renewal		Minor Amendment without Renewal	
	\boxtimes	Renewal without changes		Minor Modification of permit	
e.	For amendments or modifications, describe the proposed changes: Click to enter text.				
f.	For	existing permits:			
	Perr	nit Number: WQ00 <u>10555001</u>			
	EPA	I.D. (TPDES only): TX <u>0020591</u>			
	Expi	ration Date: <u>June 14, 2026</u>			

Section 3. Facility Owner (Applicant) and Co-Applicant Information (Instructions Page 26)

A. The owner of the facility must apply for the permit.

What is the Legal Name of the entity (applicant) applying for this permit?

City of Commerce

(The legal name must be spelled exactly as filed with the Texas Secretary of State, County, or in the legal documents forming the entity.)

If the applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at http://www15.tceq.texas.gov/crpub/

CN: 600729933

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix: Click to enter text. Last Name, First Name: Lisenbee, Howdy

Title: <u>City Manager</u> Credential: Click to enter text.

B. Co–applicant information. Complete this section only if another person or entity is required to apply as a co-permittee.

What is the Legal Name of the co-applicant applying for this permit?

Click to enter text.

(The legal name must be spelled exactly as filed with the TX SOS, with the County, or in the legal documents forming the entity.)

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at: http://www15.tceq.texas.gov/crpub/

CN: Click to enter text.

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix: Click to enter text.

Last Name, First Name: Click to enter text.

Title: Click to enter text.

Credential: Click to enter text.

Provide a brief description of the need for a co-permittee: Click to enter text.

C. Core Data Form

Complete the Core Data Form for each customer and include as an attachment. If the customer type selected on the Core Data Form is **Individual**, complete **Attachment 1** of Administrative Report 1.0. Attachment: 1

Section 4. Application Contact Information (Instructions Page 27)

This is the person(s) TCEQ will contact if additional information is needed about this application. Provide a contact for administrative questions and technical questions.

A. Prefix: Click to enter text.

Last Name, First Name: Hunter, Daniel

Title: Design Engineer

Credential: E.I.T.

Organization Name: Hayter Engineering

Mailing Address: 4445 SE Loop 286

City, State, Zip Code: Paris, TX, 75460

Phone No.: (903) 785-0303

E-mail Address: dhunter@haytereng.com

Check one or both:

□ Administrative Contact

□ Technical Contact

B. Prefix: Click to enter text.

Last Name, First Name: Dusenberry, Brandon

Title: Project Engineer

Credential: P.E.

Organization Name: Hayter Engineering

Mailing Address: 4445 SE Loop 286

City, State, Zip Code: Paris, TX, 75460

Phone No.: (903) 785-0303

E-mail Address: bdusenberry@haytereng.com

Check one or both:

 □ Technical Contact

Section 5. Permit Contact Information (Instructions Page 27)

Provide the names and contact information for two individuals that can be contacted throughout the permit term.

A. Prefix: Click to enter text.

Last Name, First Name: Jones, Timothy

Title: <u>Director of Public Utilities</u>

Credential: Click to enter text.

Organization Name: City of Commerce

Mailing Address: 1119 Alamo St.

City, State, Zip Code: Commerce, TX, 75428

Phone No.: (903) 886-1157

E-mail Address: timothy.jones@commercetx.org

B. Prefix: Click to enter text. Last Name, First Name: <u>Lisenbee, Howdy</u>

Title: <u>City Manager</u> Credential: Click to enter text.

Organization Name: City of Commerce

Mailing Address: 1119 Alamo St. City, State, Zip Code: Commerce, TX, 75428

Phone No.: (903) 886-1130 E-mail Address: ned.muse@commercetx.org

Section 6. Billing Contact Information (Instructions Page 27)

The permittee is responsible for paying the annual fee. The annual fee will be assessed to permits *in effect on September 1 of each year*. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (using form TCEQ-20029).

Prefix: Click to enter text.

Last Name, First Name: Jacobson, Molly

Title: City Secretary

Credential: Click to enter text.

Organization Name:

Mailing Address: 1119 Alamo St.

City, State, Zip Code: Commerce, TX, 75428

Phone No.: (903) 886-1125

E-mail Address: molly.jacobson@commercetx.org

Section 7. DMR/MER Contact Information (Instructions Page 27)

Provide the name and complete mailing address of the person delegated to receive and submit Discharge Monitoring Reports (DMR) (EPA 3320-1) or maintain Monthly Effluent Reports (MER).

Prefix: Click to enter text.

Last Name, First Name: Jones, Timothy

Title: Director of Public Utilities

Credential: Click to enter text.

Organization Name: City of Commerce

Mailing Address: 1119 Alamo St.

City, State, Zip Code: Commerce, TX, 75428

Phone No.: (903) 886-1157

E-mail Address: timothy.jones@commercetx.org

Section 8. Public Notice Information (Instructions Page 27)

A. Individual Publishing the Notices

Prefix: Click to enter text.

Last Name, First Name: <u>Dusenberry, Brandon</u>

Title: Project Engineer

Credential: P.E.

Organization Name: Hayter Engineering

Mailing Address: 4445 SE Loop 286

City, State, Zip Code: Paris, TX, 75460

Phone No.: (903) 785-0303

E-mail Address: bdusenberry@haytereng.com

	P	ickage
	Ir	dicate by a check mark the preferred method for receiving the first notice and instructions:
	\boxtimes	E-mail Address
		Fax
		Regular Mail
C.	C	ontact permit to be listed in the Notices
	Pı	efix: Click to enter text. Last Name, First Name: <u>Jacobson, Molly</u>
	Ti	tle: <u>City Secretary</u> Credential: Click to enter text.
	O:	ganization Name: <u>City of Commerce</u>
	M	niling Address: Click to enter text. City, State, Zip Code: Click to enter text.
	Pł	one No.: (903) 886-1125 E-mail Address: molly.jacobson@commercetx.org
D.	Pı	blic Viewing Information
	_	the facility or outfall is located in more than one county, a public viewing place for each unty must be provided.
	Pu	blic building name: <u>Commerce City Hall</u>
	Lo	cation within the building: <u>Foyer</u>
	Ph	ysical Address of Building: <u>1119 Alamo St.</u>
	Ci	y: <u>Commerce</u> County: <u>Hunt</u>
	Co	ntact (Last Name, First Name): <u>Jacobson, Molly</u>
	Ph	one No.: <u>(903) 886-1125</u> Ext.: Click to enter text.
E.	Bil	ingual Notice Requirements
		s information is required for new, major amendment, minor amendment or minor dification, and renewal applications.
	be	s section of the application is only used to determine if alternative language notices will needed. Complete instructions on publishing the alternative language notices will be in ir public notice package.
	ob	ase call the bilingual/ESL coordinator at the nearest elementary and middle schools and ain the following information to determine whether an alternative language notices are uired.
	1.	Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility?
		□ Yes ⊠ No
		If no , publication of an alternative language notice is not required; skip to Section 9 below.
9	2.	Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school?
		□ Yes □ No

B. Method for Receiving Notice of Receipt and Intent to Obtain a Water Quality Permit

	3.	Do the locatio	students at n?	these	e schools attend a bilingual education program at another
			Yes		No
	4.	Would waived	the school b out of this i	e req requi	quired to provide a bilingual education program but the school has rement under 19 TAC §89.1205(g)?
			Yes		No
	5.	If the a	nswer is yes ed. Which lan	to q iguag	uestion 1, 2, 3, or 4 , public notices in an alternative language are ge is required by the bilingual program? N/A
F.	Su	mmary	of Applicati	on in	n Plain Language Template
	Co als	mplete so know	the F. Summ n as the plair	ary o n lan	of Application in Plain Language Template (TCEQ Form 20972), guage summary or PLS, and include as an attachment.
	Att	tachmei	nt: Z		
G	Pul	blic Inv	olvement Pla	an Fo	orm
	Con	mplete t w perm i	the Public Inv it or major a	volve men	ment Plan Form (TCEQ Form 20960) for each application for a dment to a permit and include as an attachment.
		tachmer			
Se	ecti	on 9.			ntity and Permitted Site Information (Instructions
			Page 29)		
	If the	he site i	Page 29)		ntity and Permitted Site Information (Instructions atted by TCEQ, provide the Regulated Entity Number (RN) issued to
	If this	he site is s site. R l	Page 29) s currently ro N 102178233	egula ral R	ated by TCEQ, provide the Regulated Entity Number (RN) issued to egistry at http://www15.tceq.texas.gov/crpub/ to determine if
A.	If this Sea the	he site is s site. Ri rch the site is c	Page 29) s currently review 102178233 TCEQ's Centreurrently regressions	egula ral Re ulate	ated by TCEQ, provide the Regulated Entity Number (RN) issued to egistry at http://www15.tceq.texas.gov/crpub/ to determine if
A.	If this Sea the	he site is site. Ri rch the site is cone of pr	Page 29) s currently review 102178233 TCEQ's Centreurrently regressions	egularal Reulate	egistry at http://www15.tceq.texas.gov/crpub/ to determine if d by TCEQ. name known by the community where located):
A. B.	If this Sea the Nan	he site is site. Riversite is continuous to the is continuous to the is continuous to the interior of properties.	Page 29) s currently re N 102178233 TCEQ's Cent currently regulation oject or site	egularal Reulate	egistry at http://www15.tceq.texas.gov/crpub/ to determine if d by TCEQ. name known by the community where located):
A. B.	If this Sear the Nam	he site is site. Riversite is continuous of promerce Venezier of tree records and the site is continuous promerce venezier of tree records and the site is continuous promerce venezier of tree records and the site is continuous promerce venezier of tree records and the site is continuous promerce venezier of tree records and the site is continuous promerce venezier venez	Page 29) s currently re N 102178233 TCEQ's Cent currently regulation oject or site	egularal Reulated (the reatmostility: 9	egistry at http://www15.tceq.texas.gov/crpub/ to determine if d by TCEQ. name known by the community where located): ent Facility
A. B.	If this Sea the Nam Con Own	he site is site. Riversite is continued to the continued	Page 29) s currently re N 102178233 TCEQ's Cent currently regulation oject or site Vastewater Tr reatment facility:	egularal Reulate (the reatment lity: 9	egistry at http://www15.tceq.texas.gov/crpub/ to determine if d by TCEQ. name known by the community where located): ent Facility City of Commerce
A. B.	If this Sea the Nan Com Own	he site is site. Riversite is considered to the site is considered ton	Page 29) s currently re N 102178233 TCEQ's Cent currently regulation oject or site Vastewater Tr reatment facility:	egularal Reulated (the reatmetallity: 9	egistry at http://www15.tceq.texas.gov/crpub/ to determine if d by TCEQ. name known by the community where located): ent Facility City of Commerce Public
A. B.	If this Sea the Nan Con Own Own Own Pref	he site is site. Riverse is considered to the construction of the	Page 29) s currently review of Facility: nd where tree	egularal Reulated (the reatmetality: 9	egistry at http://www15.tceq.texas.gov/crpub/ to determine if d by TCEQ. name known by the community where located): ent Facility City of Commerce Public
А. В.	If this Seat the Nam Com Own Own Pref	he site is site. Risterich the site is come of promerce Viner of transfer of lafix: Click te: Click to	Page 29) s currently review of Facility: nd where treested to enter text.	egularal Reulated (the reatmetality: 9 leatmetatt.	egistry at http://www15.tceq.texas.gov/crpub/ to determine if d by TCEQ. name known by the community where located): ent Facility City of Commerce Public
А. В. С.	If this Sear the Nam Own Own Pref	he site is site. Rivership ner of la fix: Click tanization	Page 29) s currently revision of Facility: nd where treated to enter text.	egularal Reulated (the reatmetallity: 9	egistry at http://www15.tceq.texas.gov/crpub/ to determine if d by TCEQ. name known by the community where located): ent Facility City of Commerce Public
A.B.	If this Sear the Nam Own Own Pref Title Orga	he site is site. Rivership ner of la fix: Click tanization	Page 29) s currently revision of Facility: nd where treated where texts to enter texts. In Name: Clicked a currently region of the currently region of	egularal Reulated (the reatmetality: given by the latest meating).	egistry at http://www15.tceq.texas.gov/crpub/ to determine if d by TCEQ. name known by the community where located): ent Facility City of Commerce Public
A.B.	If the this sea the Nan Con Own Own Pref Title Orga Mail Phon If th	he site is site. Rister the site is come of promerce Vener of transfer of lack in anization and the No.: (All anizations and the No.: (All anizations and the landown as site.)	Page 29) s currently revision of Facility: nd where treatment facility: nd	egularal Reulated (the reatmetality: geatmetal.	egistry at http://www15.tceq.texas.gov/crpub/ to determine if d by TCEQ. name known by the community where located): ent Facility City of Commerce Public

B.

C.

D.

	Prefix: Click to enter text.	Last Name, First Name: <u>N/A</u>
	Title: Click to enter text.	Credential: Click to enter text.
	Organization Name: Click to ente	er text.
	Mailing Address: Click to enter to	ext. City, State, Zip Code: Click to enter text.
	Phone No.: Click to enter text.	E-mail Address: Click to enter text.
	If the landowner is not the same agreement or deed recorded ease	person as the facility owner or co-applicant, attach a lease ement. See instructions.
	Attachment: Click to enter te	xt.
F.	Owner sewage sludge disposal si property owned or controlled by	te (if authorization is requested for sludge disposal on the applicant)::
	Prefix: Click to enter text.	Last Name, First Name: <u>N/A</u>
	Title: Click to enter text.	Credential: Click to enter text.
	Organization Name: Click to ente	er text.
	Mailing Address: Click to enter te	ext. City, State, Zip Code: Click to enter text.
	Phone No.: Click to enter text.	E-mail Address: Click to enter text.
	If the landowner is not the same agreement or deed recorded ease	person as the facility owner or co-applicant, attach a lease ment. See instructions.
	Attachment: Click to enter tex	xt.
		7 () (7)
		ge Information (Instructions Page 31)
		ty location in the existing permit accurate?
	Is the wastewater treatment facili	
	Is the wastewater treatment facili	ty location in the existing permit accurate?
A.	Is the wastewater treatment facili	ty location in the existing permit accurate? n, please give an accurate description:
A.	Is the wastewater treatment facili	ty location in the existing permit accurate?
A. B.	Is the wastewater treatment facili	ty location in the existing permit accurate? n, please give an accurate description: the discharge route(s) in the existing permit correct?
A. B.	Is the wastewater treatment facili	ty location in the existing permit accurate? n, please give an accurate description: the discharge route(s) in the existing permit correct? rmit application, provide an accurate description of the
A. B.	Is the wastewater treatment facili	ty location in the existing permit accurate? n, please give an accurate description: the discharge route(s) in the existing permit correct?
A. B.	Is the wastewater treatment facili	ty location in the existing permit accurate? n, please give an accurate description: the discharge route(s) in the existing permit correct? rmit application, provide an accurate description of the
A. B.	Is the wastewater treatment facili	ty location in the existing permit accurate? n, please give an accurate description: the discharge route(s) in the existing permit correct? rmit application, provide an accurate description of the
A.	Is the wastewater treatment facili	n, please give an accurate description: the discharge route(s) in the existing permit correct? rmit application, provide an accurate description of the rge route to the nearest classified segment as defined in 30
A.	Is the wastewater treatment facili ✓ Yes □ No If no, or a new permit application N/A Are the point(s) of discharge and ✓ Yes □ No If no, or a new or amendment perpoint of discharge and the discharge TAC Chapter 307: N/A	ty location in the existing permit accurate? n, please give an accurate description: the discharge route(s) in the existing permit correct? rmit application, provide an accurate description of the rge route to the nearest classified segment as defined in 30 rce
A. B.	Is the wastewater treatment facili	ty location in the existing permit accurate? n, please give an accurate description: the discharge route(s) in the existing permit correct? rmit application, provide an accurate description of the rge route to the nearest classified segment as defined in 30 rece are located: Hunt ischarge to a city, county, or state highway right-of-way, or
A. B.	Is the wastewater treatment facili	ty location in the existing permit accurate? n, please give an accurate description: the discharge route(s) in the existing permit correct? rmit application, provide an accurate description of the rge route to the nearest classified segment as defined in 30 rece are located: Hunt ischarge to a city, county, or state highway right-of-way, or

E. Owner of effluent disposal site:

	If yes , indicate by a check mark if:
	☐ Authorization granted ☐ Authorization pending
	For new and amendment applications, provide copies of letters that show proof of contact and the approval letter upon receipt.
	Attachment: Click to enter text.
D	. For all applications involving an average daily discharge of 5 MGD or more, provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge: N/A
S	ection 11. TLAP Disposal Information (Instructions Page 32)
A	For TLAPs, is the location of the effluent disposal site in the existing permit accurate?
	□ Yes □ No N/A
	If no, or a new or amendment permit application , provide an accurate description of the disposal site location:
	N/A
В.	City nearest the disposal site: Click to enter text.
C.	County in which the disposal site is located: Click to enter text.
D.	For TLAPs, describe the routing of effluent from the treatment facility to the disposal site:
	N/A
E.	For TLAPs , please identify the nearest watercourse to the disposal site to which rainfall runoff might flow if not contained: Click to enter text.
Se	ection 12. Miscellaneous Information (Instructions Page 32)
A.	Is the facility located on or does the treated effluent cross American Indian Land?
	□ Yes ⊠ No
B.	If the existing permit contains an onsite sludge disposal authorization, is the location of the sewage sludge disposal site in the existing permit accurate?
	□ Yes □ No ⊠ Not Applicable
	If No, or if a new onsite sludge disposal authorization is being requested in this permit application, provide an accurate location description of the sewage sludge disposal site.
	N/A

C.	Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?						
	□ <i>Y</i>	Yes ⊠	No				
				rmerly employed by ding the application			ed your company and
D.	Do you o	we any fee	es to th	e TCEQ?			
	□ Y	∕es ⊠	No				
	If yes , pr	ovide the	follow	ng information:			
	Accou	ınt numbe	r: Clicl	to enter text.			
	Amou	ınt past du	ie: Clic	k to enter text.			
E.	Do you o	we any per	nalties	to the TCEQ?			
	□ Y	'es ⊠	No				
	If yes, pl	ease provi	de the	following informati	on:		
	Enfor	cement or	der nu	nber: Click to enter	text.		
	Amou	ınt past du	ie: Clic	k to enter text.			
CF-D's			CAN HERELYSIA				
Se	ection 13	3. Attac	hme	nts (Instruction	is Page 33		学 用等 全类公 家
				nts (Instruction re included with the			heck all that apply:
	licate whic Lease ag	ch attachm reement o	nents a or deed		e Administra	tive Report. C	tment facility is
Ind	licate whic Lease ag located	ch attachm reement o or the effl	nents a r deed uent d	re included with the	e Administra , if the land owned by th	tive Report. C where the trea e applicant or	atment facility is co-applicant.
Ind	dicate which Lease ag located Original	ch attachm greement of or the efflow full-size Use plicant's peatment faceled point ghlighted displicated site sewag luent dispose w and futunile radius	nents a or deed uent d JSGS T oropert cility h t of dis dischar ge sludg osal si ore con	re included with the recorded easement isposal site are not opographic Map with y boundary oundary echarge for each disge route for each disge disposal site (if a struction (if applica	e Administra c, if the land owned by the charge point ischarge point ipplicable) only) oble)	tive Report. C where the trea e applicant or ng informatio (TPDES only)	ntment facility is co-applicant. on:
Ind	dicate which Lease ag located Original	ch attachm greement of or the efflow full-size U oplicant's peatment factoried peled point ghlighted displayed site sewag luent displayed w and futuralle radius nile radius ponds.	nents a or deed uent d JSGS T oropert icility b t of dis dischar ie slud osal si ore con inform	re included with the recorded easement isposal site are not opographic Map with y boundary charge for each disge route for each dige disposal site (if a struction (if applicanation	c Administra c, if the land owned by the charge point ischarge point ischarge point ipplicable) only) able)	tive Report. C where the trea e applicant or ng informatio (TPDES only)	ntment facility is co-applicant. on:
Ind	dicate which Lease ag located Original	ch attachm greement of or the efflow full-size Use plicant's peatment fact beled point ghlighted displayed displighted displayed uent displayed w and futuralle radius nile radius niles down ponds.	nents a or deed uent d JSGS T oropert icility b t of dis dischar ie slud osal si ore con inform inform	re included with the recorded easement isposal site are not opographic Map with y boundary echarge for each disge route for each disge disposal site (if a se boundaries (TLAF struction (if application information (TPDE)	e Administra c, if the land owned by the charge point ischarge point ischarge point ipplicable) only) able)	tive Report. C where the trea e applicant or ng informatio (TPDES only)	ntment facility is co-applicant. on:

Section 14. Signature Page (Instructions Page 34)

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: <u>WQ0010555001</u> Applicant: <u>City of Commerce</u>

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory name (typed or printed): <u>Howdy Lisenbee</u>	
Signatory title: <u>City Manager</u>	
Signature: (Use blue ink)	_Date:
Subscribed and Sworn to before me by the said City	Manager, Howdy Lisenbee
on this 24th day of July	, 20 25 .
on this did of July	
My commission expires on theday of	<u>ctober</u> , 20 <u>28</u> .
14	
Notary Public Y	[SEAL]
Hunt County, Texas	HALEY RYE Notary Public STATE OF TEXAS Commission Expires 10/21/2028 Notary ID# 13514826-7

DOMESTIC WASTEWATER PERMIT APPLICATION SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

This form applies to TPDES permit applications only. Complete and attach the Supplemental Permit information Form (SPIF) (TCEQ Form 20971).

Attachment: 1

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

	TCEQ USE ONLY:
	Application type:RenewalMajor AmendmentMinor AmendmentNew
	County: Segment Number:
	Admin Complete Date:
	Agency Receiving SPIF:
	Texas Historical Commission U.S. Fish and Wildlife
	Texas Parks and Wildlife Department U.S. Army Corps of Engineers
<u>T</u>	his form applies to TPDES permit applications only. (Instructions, Page 53)
ou is	omplete this form as a separate document. TCEQ will mail a copy to each agency as required by ar agreement with EPA. If any of the items are not completely addressed or further information needed, we will contact you to provide the information before issuing the permit. Address ach item completely.
at ap co ma en	tachment for this form separately from the Administrative Report of the application. The oplication will not be declared administratively complete without this SPIF form being empleted in its entirety including all attachments. Questions or comments concerning this form ay be directed to the Water Quality Division's Application Review and Processing Team by nail at

	Prov ansv	ide the name, address, phone and fax number of an individual that can be contacted to ver specific questions about the property.
	Pref	x (Mr., Ms., Miss):
	First	and Last Name: <u>Timothy Jones</u>
	Cred	ential (P.E, P.G., Ph.D., etc.):
	Title	: <u>Director of Public Work Utilities</u>
	Maili	ng Address: <u>1119 Alamo St.</u>
	City,	State, Zip Code: Commerce, TX, 75428
	Phon	e No.: <u>(903) 886-1157</u> Ext.: Fax No.: <u>(903) 886-8929</u>
	E-ma	il Address: <u>timothy.jones@commercetx.org</u>
2.	List t	he county in which the facility is located: <u>Hunt</u>
3.	pleas	e property is publicly owned and the owner is different than the permittee/applicant, the owner of the property.
	N/A	- Site Owner
4.	Provi	de a description of the effluent discharge route. The discharge route must follow the flow
	disch	uent from the point of discharge to the nearest major watercourse (from the point of arge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify
		assified segment number.
	River	n unnamed tributary, thence to Upper South Sulphur River in Segment No. 0306 of the Sulphur Basin
5.	plotte route	provide a separate 7.5-minute USGS quadrangle map with the project boundaries d and a general location map showing the project area. Please highlight the discharge from the point of discharge for a distance of one mile downstream. (This map is ed in addition to the map in the administrative report).
	Provid	e original photographs of any structures 50 years or older on the property.
	Does y	our project involve any of the following? Check all that apply.
		Proposed access roads, utility lines, construction easements
		Visual effects that could damage or detract from a historic property's integrity
		Vibration effects during construction or as a result of project design
		Additional phases of development that are planned for the future
		Sealing caves, fractures, sinkholes, other karst features
TCE(Wast)-20971 ewater I	(08/31/2023) Page 2 of 3 ndividual Permit Application, Supplemental Permit Information Form (SPIF)

		Disturbance of vegetation or wetlands
1.	of cave	oposed construction impact (surface acres to be impacted, depth of excavation, sealing es, or other karst features): No construction- Renewal Only
2.		be existing disturbances, vegetation, and land use:
	Mowin	ng for Maintenance
		OWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR NTS TO TPDES PERMITS
3.		nstruction dates of all buildings and structures on the property:
	N/A	
ŧ.	Provide	a brief history of the property, and name of the architect/builder, if known.
	N/A	, and the property, and the property of the pr
ļ		

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.) New Permit, Registration or Authorization (Core Data Form should be submitted with the program application.)													
□ Renewa	(Core Dat	a Form should be subn	iitted with the re	enewal form	1)		☐ Other						
2. Custome	r Referen	ce Number (if issued,)	Follow this	link to se	earch	3. Regulated Entity Reference Number (if issued)						
CN 600729	93		ers in	RN	10217	8233							
SECTION II: Customer Information													
4. General Customer Information 5. Effective Date for Customer Information Updates (mm/dd/yyyy)													
4 - Langer M. Mark - Market	New Customer												
		ubmitted here may d troller of Public Acc			ly based	on w	hat is cu	irrent (and active v	vith the	e Texas Seci	etary of State	2
6. Customer	Legal Na	me (If an individual, p	orint last name j	first: eg: Do	e, John)			If ne	w Customer,	enter pr	evious Custor	ner below:	
C:t F.C													
7. TX SOS/O		g Number	8. TX State	Tax ID (1	1 digits)			9. Fo	ederal Tax gits)	ID	10. DUNS	S Number (if	
11. Type of	Customer	: Corporat	ion			1	☐ Indivi	dual		Partne	rship: 🔲 Gei	neral 🔲 Limite	d
Government:	☑ City 🔲	County Federal	Local State	Other			☐ Sole F	roprieto	orship	Oti	her:		
12. Number ⋈ 0-20 □	of Emplo 21-100 [yees ☐ 101-250 ☐ 251-	500 🗆 501	and higher				13. I ⊠ Y		tly Ow	ned and O	perated?	
14. Custome	r Role (Pr	oposed or Actual) - as	it relates to the	Regulated I	Entity list	ted on	this form	. Please	e check one o	f the foli	lowing		
□Owner □Occupationa	al Licensee	☐ Operator ☐ Responsible Par		Owner & Op VCP/BSA A		t			Other:				
15.	City of Commerce												
Mailing	1119 Ala	mo St.											
Address:	City	Commerce		State TX			ZIP	P 75428			ZIP+4		
16. Country	Mailing I	nformation (if outsid	e USA)			17. E	-Mail A	ddres	s (if applicab	le)	·	10. 20	
18. Telephon (903) 886-11			19). Extension	on or Co	ode		, ====	20. Fax N (903) 88		(if applicable	<i>;</i>)	
ECTION	III: Reg	gulated Entity	Informati	<u>on</u>									
21. General I	0.00000	Entity Information Update to Regula			" is selec					o requir	ed.)		
	The Regulated Entity Name submitted may be updated, in order to meet TCEQ Core Data Standards (removal of organizational endings such as Inc, LP, or LLC).												
22. Regulated	l Entity N	ame (Enter name of th	he site where the	e regulated	action is	taking	place.)						
Commerce Was	tewater Tre	atment Facility											
23. Street Ad													

TCEQ-10400 (11/22) Page 1 of 2

(No PO Boxes)											
	City	/			State		ZIP			ZIP+4	
24. County	Hunt	t								1	1
			If no St	reet Ad	dress is provi	ded, fields	25-28 are	require	d.		
25. Description to Physical Location		niles so	C14		of Charity Rd. an			200-2		COunty	
26. Nearest City								State	;	Nea	rest ZIP Code
Commerce								TX		7542	28
Latitude/Longitud used to supply coo							ata Stande	ards. (G	eocoding of t	he Physical	Address may be
27. Latitude (N) I	n Decimal:		33.2175			28. L	ongitude	(W) In	Decimal:	95.8875	
Degrees	Minu	tes		Seco	nds	Degre	es		Minutes		Seconds
33		-	13		3		95		53	***	15
29. Primary SIC ((4 digits)	Code	30. 3 (4 di	Secondary ! gits)	SIC Cod	de	31. Prima (5 or 6 digi		Code	32. Sec (5 or 6 d	ondary NA ligits)	ICS Code
4952						22132					
33. What is the Pr	imary Busin	ess of	this entity?	(Do no	ot repeat the SIC	or NAICS de	escription.)	***************************************			
	1119	9 Alam	o St.								
34. Mailing Address:											
Address:	С	ity	Commerce		State	TX	ZIP	7542	8	ZIP+4	
35. E-Mail Addres	ss:		<u> </u>			J					L
36. Telephone Nur	mber			37.	Extension or	Code	38. 1	ax Nu	mber (if applic	cable)	
(903) 886-1157							() -			
. TCEQ Programs m. See the Core Data	and ID Num	bers (Check all Prog	grams and	d write in the per	rmits/registra	tion number	s that wi	II be affected by	y the updates	submitted on this
☐ Dam Safety		Distr			vards Aquifer	T	☐ Emission	ns Inven	tory Air	☐ Industria	Hazardous Waste
☐ Municipal Solid W		☐ New Source									Trazardous waste
	P			Поя				m Storag	ve Tank	□ pws	Trazardous waste
		New leview		OSS			Petroleu	m Storag	ge Tank	□PWS	Trazaluous wasic
Sludge		eview A		□ OSS	SF			m Storag	ge Tank	☐ PWS	Trazaluous waste
☐ Sludge		eview A	Air		SF		Petroleu	m Storag	ge Tank		Trazaluous waste
		eview A	Air n Water	☐ Title	SF		Petroleu		ge Tank		Trazardous waste
	p	Storm Waste	Air n Water	☐ Title	SF e V Air		☐ Petroleu☐ Tires		ge Tank	Used Oil	Tiazaiuous wasic
☐ Voluntary Cleanup	p 🗵	Storm Waste	Air n Water ewater	☐ Title	SF e V Air		☐ Petroleu☐ Tires		ge Tank	Used Oil	Tiazaiuus wasie
□ Voluntary Cleanup	p 🗵	Storm Waste	Air n Water ewater	☐ Title	SF e V Air		☐ Petroleu ☐ Tires ☐ Water R			Used Oil	Tiazaiuous Wasie
□ Voluntary Cleanup CCTION IV: I Danie	we Preparer I	Storm Waste	Air n Water ewater 9555001 mation	☐ Title	e V Air stewater Agricul	ture 41. Title:	☐ Petroleu ☐ Tires ☐ Water R	ights Enginee		Used Oil	Tiazaiuous waste
□ Voluntary Cleanup CCTION IV: I Name: Danie Telephone Numl	we Preparer I	Storn Waste	Air n Water ewater 9555001 mation	☐ Title	e V Air stewater Agricul	41. Title: 45. E-Ma	☐ Petroleu ☐ Tires ☐ Water R ☐ Design	ights Enginee		Used Oil	Tiazaiuous Wasie
□ Voluntary Cleanup ECTION IV: I Danie: Danie Telephone Numl 003) 785-0303 ECTION V: A	Preparer I ber 43.	Storm Waste //Q0010 Infor Ext./C	Air n Water ewater 9555001 mation Code 44	☐ Title ☐ Was	e V Air stewater Agricul	41. Title: 45. E-Madhunter@l	☐ Petroleu ☐ Tires ☐ Water R ☐ Design nil Addres	Enginee s	r	Used Oil	
□ Voluntary Cleanup ECTION IV: I O. Name: Danie C. Telephone Numl O03) 785-0303 ECTION V: A By my signature belo	Preparer I ber 43. Authorize w, I certify, to	Storm Storm Waste /Q0010 Infor Ext./C	Air n Water ewater 0555001 mation Code 44 canature t of my know	☐ Title ☐ Was 4. Fax N)	e V Air stewater Agricul fumber	41. Title: 45. E-Ma dhunter@l	☐ Petroleu ☐ Tires ☐ Water R ☐ Design nil Addres naytereng.cc	Enginees s	r I complete, and	Used Oil Other:	
□ Voluntary Cleanup ECTION IV: I Danie Telephone Numb 1003) 785-0303 ECTION V: A By my signature belo nit this form on behal	Preparer I ber 43. Authorize w, I certify, to	Storm Storm Waste /Q0010 Infor Ext./C	Air n Water ewater 0555001 mation Code 44 canature t of my know	☐ Title ☐ Was 4. Fax N)	e V Air stewater Agricul fumber	41. Title: 45. E-Ma dhunter@l	☐ Petroleu ☐ Tires ☐ Water R ☐ Design nil Addres naytereng.cc this form is	Enginees s	r I complete, and ers identified ir	Used Oil Other:	
2. Telephone Number 2003) 785-0303 ECTION V: A By my signature belowit this form on behaltompany:	Preparer I ber 43. Authorize w., I certify, to f of the entity s	Storm Storm Waste /Q0010 Infor Ext./C	Air n Water ewater 0555001 mation Code 44 canature t of my know	☐ Title ☐ Was 4. Fax N)	e V Air stewater Agricul fumber	41. Title: 45. E-Ma dhunter@l	☐ Petroleu ☐ Tires ☐ Water R ☐ Design nil Addres naytereng.cc this form is	Enginee s om true and D numb	r I complete, and ers identified in er	Used Oil Other:	gnature authority to

TCEQ-10400 (11/22) Page 2 of 2

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS

Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTIC WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

City of Commerce (CN 60072993) operates City of Commerce Wastewater Treatment Plant (RN102178233), an activated sludge process plant. The facility is located at approximately 0.5 mile south of the intersection of Charity Road and Farm-to-Market Road 3218, on the east side of Farm-to-Market Road 3218, in Commerce, Hunt County, Texas 75428. This application is for a renewal to discharge at an annual average flow of 2,000,000 gallons per day of treated domestic wastewater via Outfall 1.

Discharges from the facility are expected to contain total suspended solids (TSS), nitrate nitrogen, Kjeldahl nitrogen, sulfate, chloride, phosphorous, dissolved oxygen, chlorine residual, E.coli, and total dissolved solids. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7 Pollutant Analysis of Treated Effluent. Domestic wastewater will be treated by an activated sludge process plant and the treatment units will include a master lift station, fine screens, equalization basins, aeration basins, final clarifiers, aerobic digesters, chlorine contact chamber, and de-chlorination chamber. Sludge is aerobically digested before mixing with polymer and allowed to dewater in 2 sludge dewatering boxes.

PARTIE COMMISSION OF THE PROPERTY OF THE PROPE

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671.

The following information is required for all renewal, new, and amendment applications.

Section 1. Permitted or Proposed Flows (Instructions Page 42)

A. Existing/Interim I Phase

Design Flow (MGD): <u>2.0</u>

2-Hr Peak Flow (MGD): 3.36

Estimated construction start date: N/A

Estimated waste disposal start date: N/A

B. Interim II Phase

Design Flow (MGD): N/A

2-Hr Peak Flow (MGD): N/A

Estimated construction start date: N/A

Estimated waste disposal start date: N/A

C. Final Phase

Design Flow (MGD): 2.0

2-Hr Peak Flow (MGD): 3.36

Estimated construction start date: N/A

Estimated waste disposal start date: N/A

D. Current Operating Phase

Provide the startup date of the facility: 1982

Section 2. Treatment Process (Instructions Page 42)

A. Current Operating Phase

Provide a detailed description of the treatment process. **Include the type of treatment plant, mode of operation, and all treatment units.** Start with the plant's head works and

finish with the point of discharge. Include all sludge processing and drying units. If more than one phase exists or is proposed, a description of *each phase* must be provided.

Existing facility is an activated sludge process operating in the complex mix mode. Units include a master lift station, fine screens, equalization basins, aeration basins, final clarifiers, aerobic digesters, chlorine contact chamber, and de-chlorination chamber. Sludge is aerobically digested before mixing with polymer and allowed to dewater in 2 sludge dewatering boxes.

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) of each treatment unit, accounting for *all* phases of operation.

Table 1.0(1) - Treatment Units

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
Fine screens	6	1 MGD capacity per screen
Concrete EQ Basins	2	940,000 gallons per basin
Lined EQ Basin	1	855,000 gallons
Aeration Basin	2	340,000 gallons per basin
Final Clarifier	2	55' X 12' D
Aerobic Digester	2	160,000 gallons each
Chlorine contact chamber	1	46,675 gallons
De-chlorination chamber	1	7,180 gallons
Sludge Drying Beds	6	105' X 50'
Sludge Dewatering Box	2	30 CY each

C. Process Flow Diagram

Provide flow diagrams for the existing facilities and each proposed phase of construction.

Attachment: 5

Section 3. Site Information and Drawing (Instructions Page 43)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

• Latitude: <u>33.2175</u>

• Longitude: 95.8875

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

• Latitude: N/A

• Longitude: N/A

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;

•	If land disposal of effluent, the boundaries of the disposal site and all storage/holding
	ponds; and

• If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Attachment: 6

Provide the name and a description of the area served by the treatment facility.

City of Commerce		

Collection System Information for wastewater TPDES permits only: Provide information for each uniquely owned collection system, existing and new, served by this facility, including satellite collection systems. Please see the instructions for a detailed explanation and examples.

Collection System Information

Collection System Name	Owner Name	Owner Type	Population Served
City of Commerce	City of Commerce	Publicly Owned	9,467
Collection System			
N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A

Secti	ion 4		U nbuilt Phases (Instructions Page 44)	
Is the	applic	atior	n for a renewal of a permit that contains an unbuilt phase or phases?	
	Yes	\boxtimes	No	
			existing permit contain a phase that has not been constructed within five athorized by the TCEQ?	
	Yes		No	
Failur	e to pi	ovid	detailed discussion regarding the continued need for the unbuilt phase. le sufficient justification may result in the Executive Director lenial of the unbuilt phase or phases.	
N/A				

S	ection 5. Closure Plans (Instructions Page 44)	
	we any treatment units been taken out of service permanently, or will any units be taken to f service in the next five years?	
	⊠ Yes □ No	
I	yes, was a closure plan submitted to the TCEQ?	
	⊠ Yes □ No	
I	yes, provide a brief description of the closure and the date of plan approval.	
	lick to enter text.	J
S	ction 6. Permit Specific Requirements (Instructions Page 44)	
F	applicants with an existing permit, check the Other Requirements or Special visions of the permit.	
A	Summary transmittal	
	Have plans and specifications been approved for the existing facilities and each proposed phase?	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	⊠ Yes □ No	
	If yes, provide the date(s) of approval for each phase: Click to enter text.	
	Provide information, including dates, on any actions taken to meet a <i>requirement or</i> provision pertaining to the submission of a summary transmittal letter. Provide a copy of an approval letter from the TCEQ, if applicable.	
	N/A	
		_
В.	Buffer zones	
	Have the buffer zone requirements been met?	
	⊠ Yes □ No	
	Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the	f

buffer zones.

N/A	
Other actions required by the current permit	
Does the <i>Other Requirements</i> or <i>Special Provisions</i> section in the existing permit req submission of any other information or other required actions? Examples include Notification of Completion, progress reports, soil monitoring data, etc.	uire
□ Yes ⊠ No	
If yes, provide information below on the status of any actions taken to meet the conditions of an <i>Other Requirement</i> or <i>Special Provision</i> .	
Grit and grease treatment	
1. Acceptance of grit and grease waste	
Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?	
□ Yes ⊠ No	
If No, stop here and continue with Subsection E. Stormwater Management.	
2. Grit and grease processing	
Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how and grease is processed at the facility.	
N/A	

3. Grit disposal

C.

D.

Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal?

		□ Yes □ No					
		If No, contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.					
		Describe the method of grit disposal.					
		N/A					
	4.	Grease and decanted liquid disposal					
		Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335.					
		Describe how the decant and grease are treated and disposed of after grit separation.					
		N/A					
E.	Sto	ormwater management					
E.		Applicability					
Е.		Applicability Does the facility have a design flow of 1.0 MGD or greater in any phase?					
Е.		Applicability					
Е.	1.	Applicability Does the facility have a design flow of 1.0 MGD or greater in any phase?					
E.	1.	ApplicabilityDoes the facility have a design flow of 1.0 MGD or greater in any phase?✓ Yes □ No					
E.	1.	Applicability Does the facility have a design flow of 1.0 MGD or greater in any phase?					
E.	1.	Applicability Does the facility have a design flow of 1.0 MGD or greater in any phase? □ Yes □ No Does the facility have an approved pretreatment program, under 40 CFR Part 403? □ Yes □ No					
E.	 2. 	Applicability Does the facility have a design flow of 1.0 MGD or greater in any phase? □ Yes □ No Does the facility have an approved pretreatment program, under 40 CFR Part 403? □ Yes □ No If no to both of the above, then skip to Subsection F, Other Wastes Received.					
E.	 2. 	Applicability Does the facility have a design flow of 1.0 MGD or greater in any phase? □ Yes □ No Does the facility have an approved pretreatment program, under 40 CFR Part 403? □ Yes □ No If no to both of the above, then skip to Subsection F, Other Wastes Received. MSGP coverage Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal					
E.	2.	Applicability Does the facility have a design flow of 1.0 MGD or greater in any phase? ☑ Yes □ No Does the facility have an approved pretreatment program, under 40 CFR Part 403? □ Yes ☑ No If no to both of the above, then skip to Subsection F, Other Wastes Received. MSGP coverage Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?					
E.	2.	Does the facility have a design flow of 1.0 MGD or greater in any phase? ☐ Yes ☐ No Does the facility have an approved pretreatment program, under 40 CFR Part 403? ☐ Yes ☐ No If no to both of the above, then skip to Subsection F, Other Wastes Received. MSGP coverage Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000? ☐ Yes ☐ No If yes, please provide MSGP Authorization Number and skip to Subsection F, Other					
E.	2.	Applicability Does the facility have a design flow of 1.0 MGD or greater in any phase? ☐ Yes ☐ No Does the facility have an approved pretreatment program, under 40 CFR Part 403? ☐ Yes ☒ No If no to both of the above, then skip to Subsection F, Other Wastes Received. MSGP coverage Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000? ☐ Yes ☐ No If yes, please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:					

0.	Convictional Chemister
	Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?
	□ Yes ⊠ No
	If yes, please explain below then proceed to Subsection F, Other Wastes Received:
	N/A
4.	Existing coverage in individual permit
	Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?
	□ Yes ⊠ No
	If yes, provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.
	N/A
<i>5.</i>	Zero stormwater discharge
	Do you intend to have no discharge of stormwater via use of evaporation or other means?
	□ Yes ⊠ No
	If yes, explain below then skip to Subsection F. Other Wastes Received.
	N/A
t i t	Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal

6. Request for coverage in individual permit

3 Conditional exclusion

Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?

located within the onsite property boundaries) that meet the applicability criteria of

above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.

		□ Yes ⊠ No
		If yes, provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state.
		N/A
		Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.
F.	Di	ischarges to the Lake Houston Watershed
	Do	oes the facility discharge in the Lake Houston watershed?
		□ Yes ⊠ No
		yes, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions. ick to enter text.
G.	Ot	her wastes received including sludge from other WWTPs and septic waste
	1.	Acceptance of sludge from other WWTPs
		Does or will the facility accept sludge from other treatment plants at the facility site?
		□ Yes ⊠ No
		If yes, attach sewage sludge solids management plan. See Example 5 of instructions.
		In addition, provide the date the plant started or is anticipated to start accepting sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an
		estimate of the BOD ₅ concentration of the sludge, and the design BOD ₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.
		N/A
		Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.
	2.	Acceptance of septic waste
		Is the facility accepting or will it accept septic waste?
		□ Yes ⊠ No

If yes, does the facility have a Type V processing unit?
□ Yes □ No
If yes, does the unit have a Municipal Solid Waste permit?
□ Yes □ No
If yes to any of the above, provide the date the plant started or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD_5 concentration of the septic waste, and the design BOD_5 concentration of the influent from the collection system. Also note if this
information has or has not changed since the last permit action.
N/A
Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.
 Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)
Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above?
□ Yes ⊠ No
If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.
N/A
Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 49)
Is the facility in operation?
⊠ Yes □ No
If no, this section is not applicable. Proceed to Section 8.
If yes, provide effluent analysis data for the listed pollutants. <i>Wastewater treatment facilities</i> complete Table 1.0(2). <i>Water treatment facilities</i> discharging filter backwash water,

complete Table 1.0(3). Provide copies of the laboratory results sheets. **These tables are not applicable for a minor amendment without renewal.** See the instructions for guidance.

Note: The sample date must be within 1 year of application submission.

Table 1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l	3.24		1	Grab	6/18/2025 13:11
Total Suspended Solids, mg/l	6.71		1	Grab	6/18/2025 12:03
Ammonia Nitrogen, mg/l	0.038		1	Grab	6/18/2025 8:26
Nitrate Nitrogen, mg/l	13.8		1	Grab	6/18/2025 15:04
Total Kjeldahl Nitrogen, mg/l	0.910		1	Grab	6/19/2025 8:25
Sulfate, mg/l	63.1		1	Grab	6/18/2025 15:04
Chloride, mg/l	44.6		1	Grab	6/18/2025 15:04
Total Phosphorus, mg/l	2.30		1	Grab	6/19/2025 7:00
pH, standard units	6.89		1	Grab	6/17/2025 9:30
Dissolved Oxygen*, mg/l	6.6		1	Grab	6/17/2025 7:25
Chlorine Residual, mg/l	1.54		1	Grab	6/17/2025 12:30
E.coli (CFU/100ml) freshwater	1.0		1	Grab	6/18/2025 12:29
Entercocci (CFU/100ml) saltwater					
Total Dissolved Solids, mg/l	340		1	Grab	6/20/2025 9:05
Electrical Conductivity, µmohs/cm, †					
Oil & Grease, mg/l	<4.49		1	Grab	6/23/2025 7:20
Alkalinity (CaCO ₃)*, mg/l	109		1	Grab	6/26/2025 7:50

^{*}TPDES permits only †TLAP permits only

Table 1.0(3) - Pollutant Analysis for Water Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Suspended Solids, mg/l	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	N/A	N/A	N/A	N/A	N/A
pH, standard units	N/A	N/A	N/A	N/A	N/A
Fluoride, mg/l	N/A	N/A	N/A	N/A	N/A
Aluminum, mg/l	N/A	N/A	N/A	N/A	N/A
Alkalinity (CaCO ₃), mg/l	N/A	N/A	N/A	N/A	N/A

Section 8. Facility Operator (Instructions Page 49)

Facility Operator Name: Timothy Jones

Facility Operator's License Classification and Level: Class B

Facility Operator's License Number: WW0046948

Sludge and Biosolids Management and Disposal Section 9. (Instructions Page 50)

A.	WW	TP's Sewage Sludge or Biosolids Management Facility Type
	Che	ck all that apply. See instructions for guidance
	\boxtimes	Design flow>= 1 MGD
		Serves >= 10,000 people
		Class I Sludge Management Facility (per 40 CFR § 503.9)
		Biosolids generator
		Biosolids end user – land application (onsite)
		Biosolids end user – surface disposal (onsite)
		Biosolids end user – incinerator (onsite)
B.	ww	TP's Sewage Sludge or Biosolids Treatment Process
	Che	ck all that apply. See instructions for guidance.
	\boxtimes	Aerobic Digestion
	\boxtimes	Air Drying (or sludge drying beds)
		Lower Temperature Composting
		Lime Stabilization
		Higher Temperature Composting
		Heat Drying
		Thermophilic Aerobic Digestion
		Beta Ray Irradiation

Gamma Ray Irradiation
Pasteurization
Preliminary Operation (e.g. grinding, de-gritting, blending)
Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter)
Sludge Lagoon
Temporary Storage (< 2 years)
Long Term Storage (>= 2 years)
Methane or Biogas Recovery
Other Treatment Process: Click to enter text.

C. Sewage Sludge or Biosolids Management

Provide information on the *intended* sewage sludge or biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize all sewage sludge or biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

Biosolids Management

Management Practice	Handler or Preparer Type	Bulk or Bag Container	Amount (dry metric tons)	Pathogen Reduction Options	Vector Attraction Reduction Option
Dispose in Landfill	Offsite Third Party	Bulk		N/A: Dispose in Landfill	N/A: Dispose in Landfill
N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): <u>Click to enter text.</u>

D. Disposal site

Disposal site name: <u>Republic Maloy Landfill</u>
TCEQ permit or registration number: <u>1195A</u>
County where disposal site is located: <u>Hunt</u>

E. Transportation method

Method of transportation (truck, train, pipe, other): Truck

Name of the hauler: <u>Duncan Disposal</u> Hauler registration number: <u>65352</u>

Sludge is transported as a:

Section 10. Permit Authorization for Sewage Sludge Disposal

(Instructions Page 52)

A.	Benefi	icial u	se a	uthorizati	on						
	Does t benefi			g permit ii	nclude authoriza	ation fo	r lar	nd app	lication	of biosolic	ls for
		Yes	\boxtimes	No							
	If yes, benefi			equesting	to continue this	author	izati	on to l	and ap	ply biosolio	ls for
		Yes		No							
		Form			pplication for Pe tached to this p						
		Yes		No							
В.	Sludge	proc	essiı	ng authori	zation						
				g permit in sal options	clude authoriza s?	tion fo	r any	of the	e follov	ing sludge	processing,
	Sluc	dge Co	omp	osting				Yes	\boxtimes	No	
	Mar	ketinį	g and	d Distribu	tion of Biosolids			Yes	\boxtimes	No	
	Sluc	dge Su	ırfac	e Disposa	or Sludge Mond	ofill		Yes	\boxtimes	No	
	Ten	npora	ry st	orage in sl	udge lagoons			Yes	\boxtimes	No	
	authori	zation	ı, is	the compl	ludge options a eted Domestic V orm No. 10056)	Wastew	ater	Permi	t Appl	ication: Sev	wage Sludge
		Yes		No							
Sac	ction	11 (Sam	zago Slu	dge Lagoons	(Inct	TIL	tions	Dage	53)	
							ıuc	UUIS	1 age	. 33)	
	□ Yes	2000	No		ge sludge lagoon	19;					
1					of this section.	If no n	roco	ad ta S	oction	10	
•		•			of this section.	n no, p	1000	eu to s	ection	12.	
	Locatio					. 21					
				ps are req hment Nu	uired to be subn mber.	nitted a	as pa	rt of tl	ne appl	ication. Foi	each map,
	• ()rigina	al Ge	eneral Higl	iway (County) M	ap:				e	
	A	ttach	men	ıt: <u>N/A</u>							
	• [ISDA 1	Vatu	ral Resoui	ces Conservatio	n Servi	ce S	oil Map);		
	A	ttach	men	it: <u>N/A</u>							
	• F	edera	l Em	ergency M	anagement Map	:					
	Α	ttach	men	t: <u>N/A</u>							

Site map: Attachment: N/A Discuss in a description if any of the following exist within the lagoon area. Check all that apply. Overlap a designated 100-year frequency flood plain Soils with flooding classification Overlap an unstable area Wetlands Located less than 60 meters from a fault None of the above **Attachment**: Click to enter text. If a portion of the lagoon(s) is located within the 100-year frequency flood plain, provide the protective measures to be utilized including type and size of protective structures: N/A B. Temporary storage information Provide the results for the pollutant screening of sludge lagoons. These results are in addition to pollutant results in Section 7 of Technical Report 1.0. Nitrate Nitrogen, mg/kg: Click to enter text. Total Kjeldahl Nitrogen, mg/kg: Click to enter text. Total Nitrogen (=nitrate nitrogen + TKN), mg/kg: Click to enter text. Phosphorus, mg/kg: Click to enter text. Potassium, mg/kg: Click to enter text. pH, standard units: Click to enter text. Ammonia Nitrogen mg/kg: Click to enter text. Arsenic: Click to enter text. Cadmium: Click to enter text. **Chromium:** Click to enter text. Copper: Click to enter text.

Nickel: <u>Click to enter text.</u>
Selenium: <u>Click to enter text.</u>

Mercury: Click to enter text.

Molybdenum: Click to enter text.

Lead: Click to enter text.

Zinc: Click to enter text.

Provide the following information: Volume and frequency of sludge to the lagoon(s): Click to enter text. Total dry tons stored in the lagoons(s) per 365-day period: Click to enter text. Total dry tons stored in the lagoons(s) over the life of the unit: Click to enter text. C. Liner information Does the active/proposed sludge lagoon(s) have a liner with a maximum hydraulic conductivity of 1x10⁻⁷ cm/sec? Yes □ No If yes, describe the liner below. Please note that a liner is required. N/A D. Site development plan Provide a detailed description of the methods used to deposit sludge in the lagoon(s): N/A Attach the following documents to the application. Plan view and cross-section of the sludge lagoon(s) **Attachment:** Click to enter text. Copy of the closure plan **Attachment:** Click to enter text. Copy of deed recordation for the site **Attachment:** Click to enter text. Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons Attachment: Click to enter text. Description of the method of controlling infiltration of groundwater and surface water from entering the site **Attachment**: Click to enter text. Procedures to prevent the occurrence of nuisance conditions

Total PCBs: Click to enter text.

Attachment: Click to enter text.

Is groundwater monitoring currently conducted at this site, or are any wells available groundwater monitoring, or are groundwater monitoring data otherwise available for sludge lagoon(s)?	
□ Yes □ No	
If groundwater monitoring data are available, provide a copy. Provide a profile of soil types encountered down to the groundwater table and the depth to the shallowest groundwater as a separate attachment.	ľ
Attachment: Click to enter text.	
Section 12. Authorizations/Compliance/Enforcement (Instructions Page 54)	
A. Additional authorizations	
Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc?	
□ Yes ⊠ No	
If yes, provide the TCEQ authorization number and description of the authorization:	
B. Permittee enforcement status	
Is the permittee currently under enforcement for this facility?	
□ Yes ⊠ No	
Is the permittee required to meet an implementation schedule for compliance or enforcement?	
□ Yes ⊠ No	
If yes to either question, provide a brief summary of the enforcement, the implement schedule, and the current status:	ation
N/A	

E. Groundwater monitoring

Section 13. RCRA/CERCLA Wastes (Instructions Page 55)

A. RCRA hazardous wastes

Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste?

□ Yes ⊠ No

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

□ Yes ⊠ No

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment: Click to enter text.

Section 14. Laboratory Accreditation (Instructions Page 55)

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25*, *Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the Signature Page section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Howdy Lisenbee

Title: City Manager

Signature:

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.1

The following information is required for new and amendment major applications.

Section 1. Justification for Permit (Instructions Page 56)

A	T C .		•		
Δ	HIGHTICS	finn	it nor	mit n	മെവ
	Justifica	tion (n her	mme m	ccu

Provide a detailed discussion regarding the need for any phase(s) not currently permitted
Failure to provide sufficient justification may result in the Executive Director
recommending denial of the proposed phase(s) or permit.

	Click to enter text.
В.	Regionalization of facilities
	For additional guidance, please review <u>TCEQ's Regionalization Policy for Wastewater Treatment</u> ¹ .
	Provide the following information concerning the potential for regionalization of domestic wastewater treatment facilities:
	1. Municipally incorporated areas
	If the applicant is a city, then Item 1 is not applicable. Proceed to Item 2 Utility CCN areas.
	Is any portion of the proposed service area located in an incorporated city?
	□ Yes ⊠ No □ Not Applicable
	If yes, within the city limits of: Click to enter text.
	If yes, attach correspondence from the city.
	Attachment: Click to enter text.
	If consent to provide service is available from the city, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the city versus the cost of the proposed facility or expansion attached.
	Attachment: Click to enter text.
	2. Utility CCN areas
	Is any portion of the proposed service area located inside another utility's CCN area?
	□ Yes □ No

¹ https://www.tceq.texas.gov/permitting/wastewater/tceq-regionalization-for-wastewater

If yes, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the CCN facilities versus the cost of the proposed facility or expansion. Attachment: Click to enter text. 3. Nearby WWTPs or collection systems Are there any domestic permitted wastewater treatment facilities or collection systems located within a three-mile radius of the proposed facility? Yes No If yes, attach a list of these facilities and collection systems that includes each permittee's name and permit number, and an area map showing the location of these facilities and collection systems. Attachment: Click to enter text. If yes, attach proof of mailing a request for service to each facility and collection system, the letters requesting service, and correspondence from each facility and collection system. Attachment: Click to enter text. If the facility or collection system agrees to provide service, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the facility or collection system versus the cost of the proposed facility or expansion. Attachment: Click to enter text. Section 2. Proposed Organic Loading (Instructions Page 58) Is this facility in operation? Yes □ No If no, proceed to Item B, Proposed Organic Loading. If yes, provide organic loading information in Item A, Current Organic Loading A. Current organic loading Facility Design Flow (flow being requested in application): Click to enter text. Average Influent Organic Strength or BOD₅ Concentration in mg/l: Click to enter text. Average Influent Loading (lbs/day = total average flow X average BOD₅ conc. X 8.34): Click to enter text. Provide the source of the average organic strength or BOD₅ concentration.

Click to enter text.

B. Proposed organic loading

This table must be completed if this application is for a facility that is not in operation or if this application is to request an increased flow that will impact organic loading.

Table 1.1(1) - Design Organic Loading

Source	Total Average Flow (MGD)	Influent BOD5 Concentration (mg/l)
Municipality		
Subdivision		
Trailer park - transient		
Mobile home park		
School with cafeteria and showers		
School with cafeteria, no showers		
Recreational park, overnight use		
Recreational park, day use		
Office building or factory		
Motel		
Restaurant		
Hospital		
Nursing home		
Other		
TOTAL FLOW from all sources		
AVERAGE BOD₅ from all sources		

Section 3. Proposed Effluent Quality and Disinfection (Instructions Page 58)

A. Existing/Interim I Phase Design Effluent Quality

Biochemical Oxygen Demand (5-day), mg/l: Click to enter text.

Total Suspended Solids, mg/l: Click to enter text.

Ammonia Nitrogen, mg/l: <u>Click to enter text</u>.

Total Phosphorus, mg/l: <u>Click to enter text</u>.

Dissolved Oxygen, mg/l: <u>Click to enter text</u>.

Other: Click to enter text.

B.	Interim II Phase Design Effluent Quality
	Biochemical Oxygen Demand (5-day), mg/l: Click to enter text.
	Total Suspended Solids, mg/l: Click to enter text.
	Ammonia Nitrogen, mg/l: Click to enter text.
	Total Phosphorus, mg/l: Click to enter text.
	Dissolved Oxygen, mg/l: Click to enter text.
	Other: Click to enter text.
C.	Final Phase Design Effluent Quality
	Biochemical Oxygen Demand (5-day), mg/l: Click to enter text.
	Total Suspended Solids, mg/l: Click to enter text.
	Ammonia Nitrogen, mg/l: Click to enter text.
	Total Phosphorus, mg/l: Click to enter text.
	Dissolved Oxygen, mg/l: Click to enter text.
	Other: Click to enter text.
D.	Disinfection Method
	Identify the proposed method of disinfection.
	☐ Chlorine: Click to enter text. mg/l after Click to enter text. minutes detention time at peak flow
	Dechlorination process: Click to enter text.
	□ Ultraviolet Light: Click to enter text. seconds contact time at peak flow
	□ Other: <u>Click to enter text.</u>
Sec	ction 4. Design Calculations (Instructions Page 58)
	ach design calculations and plant features for each proposed phase. Example 4 of the
	ructions includes sample design calculations and plant features.
8	Attachment: Click to enter text.
Sec	ction 5. Facility Site (Instructions Page 59)
	100-year floodplain
	Will the proposed facilities be located <u>above</u> the 100-year frequency flood level?
	□ Yes □ No
ī	f no, describe measures used to protect the facility during a flood event. Include a site
r	nap showing the location of the treatment plant within the 100-year frequency flood evel. If applicable, provide the size and types of protective structures.
	Click to enter text.

Provide the source(s) used to determine 100-year frequency flood plain.
Click to enter text.
For a new or expansion of a facility, will a wetland or part of a wetland be filled?
□ Yes □ No
If yes, has the applicant applied for a US Corps of Engineers 404 Dredge and Fill Permit?
☐ Yes ☐ No If yes provide the normit number Click to enter tout
If yes, provide the permit number: <u>Click to enter text.</u> If no, provide the approximate date you anticipate submitting your application to the
Corps: Click to enter text.
Wind rose
Attach a wind rose: Click to enter text.
ection 6. Permit Authorization for Sewage Sludge Disposal
(Instructions Page 59)
Beneficial use authorization
Are you requesting to include authorization to land apply sewage sludge for beneficial us on property located adjacent to the wastewater treatment facility under the wastewater permit?
□ Yes □ No
If yes, attach the completed Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451): Click to enter text.
Sludge processing authorization
Identify the sludge processing, storage or disposal options that will be conducted at the wastewater treatment facility:
□ Sludge Composting
☐ Marketing and Distribution of sludge
□ Sludge Surface Disposal or Sludge Monofill
If any of the above, sludge options are selected, attach the completed Domestic Wastewater Permit Application: Sewage Sludge Technical Report (TCEQ Form No. 10056): Click to enter text.
ction 7. Sewage Sludge Solids Management Plan (Instructions Page 60)

Attach a solids management plan to the application.

Attachment: Click to enter text.

The sewage sludge solids management plan must contain the following information:

Treatment units and processes dimensions and capacities

- Solids generated at 100, 75, 50, and 25 percent of design flow
- Mixed liquor suspended solids operating range at design and projected actual flow
- Quantity of solids to be removed and a schedule for solids removal
- Identification and ownership of the ultimate sludge disposal site
- For facultative lagoons, design life calculations, monitoring well locations and depths, and the ultimate disposal method for the sludge from the facultative lagoon

An example of a sewage sludge solids management plan has been included as Example 5 of the instructions.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

Section 1. Domestic Drinking Water Supply (Instructions Page 63)
Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge?
□ Yes ⊠ No
If no, proceed it Section 2. If yes, provide the following:
Owner of the drinking water supply: Click to enter text.
Distance and direction to the intake: Click to enter text.
Attach a USGS map that identifies the location of the intake.
Attachment: Click to enter text.
Section 2. Discharge into Tidally Affected Waters (Instructions Page 63)
Does the facility discharge into tidally affected waters?
□ Yes ⊠ No
If no , proceed to Section 3. If yes , complete the remainder of this section. If no, proceed to Section 3.
A. Receiving water outfall
Width of the receiving water at the outfall, in feet: Click to enter text.
B. Oyster waters
Are there oyster waters in the vicinity of the discharge?
□ Yes □ No
If yes, provide the distance and direction from outfall(s).
N/A
C. Sea grasses
Are there any sea grasses within the vicinity of the point of discharge?
□ Yes □ No

If yes, provide the distance and direction from the outfall(s).

N/A

Section 3. Classified Segments (Instructions Page 63) Is the discharge directly into (or within 300 feet of) a classified segment? Yes \boxtimes No If yes, this Worksheet is complete. If no, complete Sections 4 and 5 of this Worksheet. Section 4. **Description of Immediate Receiving Waters (Instructions Page** 63) Name of the immediate receiving waters: unnamed tributary of Sulphur River A. Receiving water type Identify the appropriate description of the receiving waters. X Stream Freshwater Swamp or Marsh Lake or Pond Surface area, in acres: Click to enter text. Average depth of the entire water body, in feet: Click to enter text. Average depth of water body within a 500-foot radius of discharge point, in feet: Click to enter text. Man-made Channel or Ditch Open Bay Tidal Stream, Bayou, or Marsh Other, specify: Click to enter text. B. Flow characteristics If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area upstream of the discharge. For new discharges, characterize the area downstream of the discharge (check one). X Intermittent - dry for at least one week during most years Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses Perennial - normally flowing Check the method used to characterize the area upstream (or downstream for new dischargers). USGS flow records Historical observation by adjacent landowners X Personal observation Other, specify: Click to enter text.

	List the names of all perennial streams that join the receiving water within three miles downstream of the discharge point.								
		h Sulphur River							
D.	Dow	stream characteristics							
		e receiving water characteristi arge (e.g., natural or man-mad		within three miles downstream of the onds, reservoirs, etc.)?					
		Yes ⊠ No							
	If yes	, discuss how.							
	N/A								
		06							
E.		al dry weather characteristic							
		le general observations of the	water bod	y during normal dry weather conditions.					
	N/A								
	Date a	nd time of observation: Click	to enter te	ext.					
		ne water body influenced by st							
		Yes ⊠ No							
Sa	ction	5 Conoral Character	ictics of	f the Waterbody (Instructions					
JC	Ction	Page 65)	isucs of	the waterbody (mstructions					
A	T.T								
		am influences	stroom of t	the discharge or proposed discharge site					
		inflictiate receiving water upsticed by any of the following? (the discharge or proposed discharge site hat apply.					
		Oil field activities	\boxtimes	Urban runoff					
		Upstream discharges		Agricultural runoff					
		Septic tanks		Other(s), specify: Click to enter text.					

C. Downstream perennial confluences

B.	Waterl	body uses								
	Observed or evidences of the following uses. Check all that apply.									
		Livestock watering	Contact recreation							
		Irrigation withdrawal	\boxtimes	Non-contact recreation						
		Fishing		Navigation						
		Domestic water supply		Industrial water supply						
		Park activities		Other(s), specify: Click to enter text.						
C.	Waterb	oody aesthetics								
	 Check one of the following that best describes the aesthetics of the receiving water and the surrounding area. □ Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional □ Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored 									
	☐ Common Setting: not offensive; developed but uncluttered; water may be colore or turbid									
		Offensive: stream does not enhance dumping areas; water discolored	e aes	thetics; cluttered; highly developed;						

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.1: STREAM PHYSICAL CHARACTERISTICS

Required for new applications, major facilities, and applications adding an outfall.

Worksheet 2.1 is not required for discharges to intermittent streams or discharges directly to (or within 300 feet of) a classified segment.

Section 1. General Information (Instructions Page 65)									
Date of study: Click to enter text. Time of study: Click to enter text.									
Stream name: Click to enter text.									
Location: Click to enter text.									
Type of stream upstream of existing discharge or downstream of proposed discharge (check one).									
\square Perennial \square Intermittent with perennial pools									
Section 2. Data Collection (Instructions Page 65)									
Number of stream bends that are well defined: Click to enter text.									
Number of stream bends that are moderately defined: Click to enter text.									
Number of stream bends that are poorly defined: Click to enter text.									
Number of riffles: Click to enter text.									
Evidence of flow fluctuations (check one):									
□ Minor □ moderate □ severe									
ndicate the observed stream uses and if there is evidence of flow fluctuations or channel obstruction/modification.									
Click to enter text.									

Stream transects

In the table below, provide the following information for each transect downstream of the existing or proposed discharges. Use a separate row for each transect.

Table 2.1(1) - Stream Transect Records

Stream type at transect	Transect location	Water surface	Stream depths (ft) at 4 to 10 points along each			
Select riffle, run, glide, or pool. See Instructions, Definitions section.		width (ft)	transect from the channel bed to the water surface. Separate the measurements with commas.			
Choose an item.						
Choose an item.						
Choose an item.						
Choose an item.						
Choose an item.						
Choose an item.						
Choose an item.						
Choose an item.						
Choose an item.						
Choose an item.						

Section 3. Summarize Measurements (Instructions Page 65)

Streambed slope of entire reach, from USGS map in feet/feet: Click to enter text.

Approximate drainage area above the most downstream transect (from USGS map or county highway map, in square miles): <u>Click to enter text.</u>

Length of stream evaluated, in feet: Click to enter text.

Number of lateral transects made: Click to enter text.

Average stream width, in feet: <u>Click to enter text.</u>
Average stream depth, in feet: <u>Click to enter text.</u>

Average stream velocity, in feet/second: Click to enter text.

Instantaneous stream flow, in cubic feet/second: Click to enter text.

Indicate flow measurement method (type of meter, floating chip timed over a fixed distance, etc.): <u>Click to enter text.</u>

Size of pools (large, small, moderate, none): Click to enter text.

Maximum pool depth, in feet: Click to enter text.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 3.0: LAND DISPOSAL OF EFFLUENT

The following is required for renewal, new, and amendment permit applications.

Section 1. Type of Disposal System (Instructions Page 67)

Identif	Identify the method of land disposal:									
	Surface application		Subsurface application							
	Irrigation		Subsurface soils absorption							
☐ Drip irrigation system			Subsurface area drip dispersal system							
	Evaporation	Evapotranspiration beds								
	☐ Other (describe in detail): Click to enter text.									
NOTE: All applicants without authorization or proposing new/amended subsurface disposal MUST complete and submit Worksheet 7.0.										
For existing authorizations, provide Registration Number: Click to enter text.										

Section 2. Land Application Site(s) (Instructions Page 67)

In table 3.0(1), provide the requested information for the land application sites. Include the agricultural or cover crop type (wheat, cotton, alfalfa, bermuda grass, native grasses, etc.), land use (golf course, hayland, pastureland, park, row crop, etc.), irrigation area, amount of effluent applied, and whether or not the public has access to the area. Specify the amount of land area and the amount of effluent that will be allotted to each agricultural or cover crop, if more than one crop will be used.

Table 3.0(1) - Land Application Site Crops

Crop Type & Land Use	Irrigation Area (acres)	Effluent Application (GPD)	Public Access? Y/N

Section 3. Storage and Evaporation Lagoons/Ponds (Instructions Page 67)

Table 3.0(2) - Storage and Evaporation Ponds

Pond Number	Surface Area (acres)	Storage Volume (acre-feet)	Dimensions	Liner Type

Attach a copy of a liner certification that was prepared, signed, and sealed by a Texas licensed professional engineer for each pond.

Attachment: Click to enter text.

Attachment: Click to enter text.
Section 4. Flood and Runoff Protection (Instructions Page 67)
Is the land application site within the 100-year frequency flood level?
□ Yes □ No
If yes, describe how the site will be protected from inundation.
Click to enter text.
Provide the source used to determine the 100-year frequency flood level:
Click to enter text.
Provide a description of tailwater controls and rainfall run-on controls used for the land application site.
Click to enter text.

Section 5. Annual Cropping Plan (Instructions Page 67)

Attach an Annual Cropping Plan which includes a discussion of each of the following items. If not applicable, provide a detailed explanation indicating why. Attachment: Click to enter text.

- Soils map with crops
- Cool and warm season plant species
- Crop yield goals
- Crop growing season
- Crop nutrient requirements
- Additional fertilizer requirements
- Minimum/maximum harvest height (for grass crops)
- Supplemental watering requirements
- Crop salt tolerances
- Harvesting method/number of harvests
- Justification for not removing existing vegetation to be irrigated

Section 6. Well and Map Information (Instructions Page 68)

Attach a USGS map with the following information shown and labeled. If not applicable, provide a detailed explanation indicating why. Attachment: <u>Click to enter text.</u>

- The boundaries of the land application site(s)
- Waste disposal or treatment facility site(s)
- On-site buildings
- Buffer zones
- Effluent storage and tailwater control facilities
- All water wells within 1-mile radius of the disposal site or property boundaries
- All springs and seeps onsite and within 500 feet of the property boundaries
- All surface waters in the state onsite and within 500 feet of the property boundaries
- All faults and sinkholes onsite and within 500 feet of the property

List and cross reference all water wells located within a half-mile radius of the disposal site or property boundaries shown on the USGS map in the following table. Attach additional pages as necessary to include all of the wells.

Table 3.0(3) - Water Well Data

Well ID	Well Use	Producing? Y/N	Open, cased, capped, or plugged?	Proposed Best Management Practice
			Choose an item.	
			Choose an item.	
			Choose an item.	
			Choose an item.	
			Choose an item.	

If water quality data or well log information is available please include the information in an attachment listed by Well ID.

Attachment: Click to enter text.

Section 7. Groundwater Quality (Instructions Page 68)

Attach a Groundwater Quality Technical Report which assesses the impact of the wastewater disposal system on groundwater. This report shall include an evaluation of the water wells (including the information in the well table provided in Item 6. above), the wastewater application rate, and pond liners. Indicate by a check mark that this report is provided.

Attachment:	lick t	o enter	text.						
Are groundwater	monit	oring w	vells av	ailable	e onsite?		Yes	No	
Do you plan to install ground water monitoring wells or lysimeters around the land application site? \Box Yes \Box No									
If yes, provide the proposed location of the monitoring wells or lysimeters on a site map.									
Attachment: C	lick to	o enter	text.						

Section 8. Soil Map and Soil Analyses (Instructions Page 69)

A. Soil map

Attach a USDA Soil Survey map that shows the area to be used for effluent disposal.

Attachment: Click to enter text.

B. Soil analyses

Attach the laboratory results sheets from the soil analyses. **Note**: for renewal applications, the current annual soil analyses required by the permit are acceptable as long as the test date is less than one year prior to the submission of the application.

Attachment: Click to enter text.

List all USDA designated soil series on the proposed land application site. Attach additional pages as necessary.

Table 3.0(4) - Soil Data

Soil Series	Depth from Surface	Permeability	Available Water Capacity	Curve Number
	18			

Section 9. Effluent Monitoring Data (Instructions Page 70)

Is the facility in operation?								
□ Yes □ No								
If no, this section is not applicable and the worksheet is complete.								
permit. If a para	If yes, provide the effluent monitoring data for the parameters regulated in the existing permit. If a parameter is not regulated in the existing permit, enter N/A. Table 3.0(5) – Effluent Monitoring Data							
Date 30 Day Avg BOD5 TSS pH Chlorine Residual mg/l irrigated								
						5		

Provide a discussion of all persistent excursions above the permitted limits and any corrective actions taken.
Click to enter text.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 3.1: SURFACE LAND DISPOSAL OF EFFLUENT

The following is required for new and major amendment permit applications. Renewal and minor amendment permit applications may be asked for this worksheet on a case by case basis.

Section 1. Surface Disposal (Instructions Page 71)

Complete the item that applies for the method of disposal being used.

A. Irrigation

Area under irrigation, in acres: Click to enter text.

Design application frequency:

hours/day Click to enter text. And days/week Click to enter text.

Land grade (slope):

average percent (%): Click to enter text.

maximum percent (%): Click to enter text.

Design application rate in acre-feet/acre/year: Click to enter text.

Design total nitrogen loading rate, in lbs N/acre/year: Click to enter text.

Soil conductivity (mmhos/cm): Click to enter text.

Method of application: Click to enter text.

Attach a separate engineering report with the water balance and storage volume calculations, method of application, irrigation efficiency, and nitrogen balance.

Attachment: Click to enter text.

B. Evaporation ponds

Daily average effluent flow into ponds, in gallons per day: Click to enter text.

Attach a separate engineering report with the water balance and storage volume calculations.

Attachment: Click to enter text.

C. Evapotranspiration beds

Number of beds: Click to enter text.

Area of bed(s), in acres: <u>Click to enter text</u>. Depth of bed(s), in feet: Click to enter text.

Void ratio of soil in the beds: Click to enter text.

Storage volume within the beds, in acre-feet: Click to enter text.

Attach a separate engineering report with the water balance and storage volume calculations, and a description of the lining.

Attachment: Click to enter text.

D	Over	hand	fl	OTAL
IJ.	UVE	lanu	11	OW

Area used for application, in acres: Click to enter text.

Slopes for application area, percent (%): Click to enter text.

Design application rate, in gpm/foot of slope width: Click to enter text.

Slope length, in feet: Click to enter text.

Design BOD5 loading rate, in lbs BOD5/acre/day: Click to enter text.

Design application frequency:

hours/day: Click to enter text. And days/week: Click to enter text.

Attach a separate engineering report with the method of application and design requirements according to *30 TAC Chapter 217*.

Attachment: Click to enter text.

Section 2. Edwards Aquifer (Instructions Page 72)

Is the facility subject to 30 TAC Chapter 213, Edwards Aquifer Rules?
□ Yes □ No
If yes , is the facility located on the Edwards Aquifer Recharge Zone?
□ Yes □ No
If yes, attach a geological report addressing potential recharge features.

Attachment: Click to enter text.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 3.2: SURFACE LAND DISPOSAL OF EFFLUENT

The following **is required** for **new and major amendment** permit applications. Renewal and minor amendments applicants may be asked for the worksheet on a case by case basis.

NOTE: All applicants proposing new/amended subsurface disposal MUST complete and submit Worksheet 7.0. This worksheet applies to any subsurface disposal system that **does not meet** the definition of a subsurface area drip dispersal system as defined in *30 TAC Chapter 222, Subsurface Area Drip Dispersal System.*

Section 1. Subsurface Application (Instructions Page 73)
Identify the type of system:
□ Conventional Gravity Drainfield, Beds, or Trenches (new systems must be less than 5,000 GPD)
□ Low Pressure Dosing
□ Other, specify: Click to enter text.
Application area, in acres: Click to enter text.
Area of drainfield, in square feet: Click to enter text.
Application rate, in gal/square foot/day: Click to enter text.
Depth to groundwater, in feet: Click to enter text.
Area of trench, in square feet: Click to enter text.
Dosing duration per area, in hours: Click to enter text.
Number of beds: Click to enter text.
Dosing amount per area, in inches/day: Click to enter text.
Infiltration rate, in inches/hour: Click to enter text.
Storage volume, in gallons: Click to enter text.
Area of bed(s), in square feet: Click to enter text.
Soil Classification: Click to enter text.
Attach a separate engineering report with the information required in $30\ TAC\ \S\ 309.20$, excluding the requirements of § 309.20 b(3)(A) and (B) design analysis which may be asked for on a case by case basis. Include a description of the schedule of dosing basin rotation.
Attachment: Click to enter text.
Section 2. Edwards Aquifer (Instructions Page 73)
Is the subsurface system over the Edwards Aquifer Recharge Zone as mapped by TCEQ?
□ Yes □ No
Is the subsurface system over the Edwards Aquifer Transition Zone as mapped by TCEQ?
□ Yes □ No
If yes to either question , the subsurface system may be prohibited by <i>30 TAC §213.8</i> . Please call the Municipal Permits Team, at 512-239-4671, to schedule a pre-application meeting.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 3.3: SUBSURFACE AREA DRIP DISPERSAL (SADDS) LAND DISPOSAL OF EFFLUENT

The following **is required** for **new and major amendment** subsurface area drip dispersal system permit applications. Renewal and minor amendments applicants may be asked for the worksheet on a case by case basis.

NOTE: All applicants proposing new/amended subsurface disposal MUST complete and submit Worksheet 7.0. This worksheet applies to any subsurface disposal system that **meets** the definition of a subsurface area drip dispersal system as defined in *30 TAC Chapter 222*, *Subsurface Area Drip Dispersal System*.

Section 1. Administrative Information (Instructions Page 74)

3	ection 1. Administrative information (instructions Page 74)
A.	Provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the owner of the treatment facility:
В.	<u>Click to enter text.</u> Is the owner of the land where the treatment facility is located the same as the owner of the treatment facility?
	□ Yes □ No
	If no , provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the owner of the land where the treatment facility is located.
	Click to enter text.
c.	Owner of the subsurface area drip dispersal system: Click to enter text.
D.	Is the owner of the subsurface area drip dispersal system the same as the owner of the wastewater treatment facility or the site where the wastewater treatment facility is located?
	□ Yes □ No
	If ${\bf no}$, identify the names of all corporations or other business entities managed, owned, or otherwise closely related to the entity identified in Item 1.C.
	Click to enter text.
E.	Owner of the land where the subsurface area drip dispersal system is located: $\underline{\text{Click to}}$ $\underline{\text{enter text.}}$
F.	Is the owner of the land where the subsurface area drip dispersal system is located the same as owner of the wastewater treatment facility, the site where the wastewater treatment facility is located, or the owner of the subsurface area drip dispersal system?
	□ Yes □ No
	If no , identify the name of all corporations or other business entities managed, owned, or otherwise closely related to the entity identified in item 1.E.
	Click to enter text.

Section 2. Subsurface Area Drip Dispersal System (Instructions Page 74)

A	. Тур	pe of system
		Subsurface Drip Irrigation
		Surface Drip Irrigation
		Other, specify: Click to enter text.
В.	Irriş	gation operations
	App	olication area, in acres: Click to enter text.
	Infil	tration Rate, in inches/hour: Click to enter text.
	Ave	rage slope of the application area, percent (%): Click to enter text.
	Max	imum slope of the application area, percent (%): Click to enter text.
	Stor	rage volume, in gallons: Click to enter text.
	Majo	or soil series: Click to enter text.
	Dep	th to groundwater, in feet: <u>Click to enter text.</u>
C.	App	olication rate
	vege	ne facility located west of the boundary shown in 30 TAC § 222.83 and also using a etative cover of non-native grasses over seeded with cool season grasses during the ter months (October-March)?
		□ Yes □ No
		f yes , then the facility may propose a hydraulic application rate not to exceed 0.1 gal/square foot/day.
		e facility located east of the boundary shown in 30 TAC § 222.83 or in any part of state when the vegetative cover is any crop other than non-native grasses?
		□ Yes □ No
		f yes , the facility must use the formula in $30\ TAC\ \S 222.83$ to calculate the maximum ydraulic application rate.
		ou plan to submit an alternative method to calculate the hydraulic application rate approval by the executive director?
		l Yes □ No
	Hydr	raulic application rate, in gal/square foot/day: Click to enter text.
	Nitro	gen application rate, in lbs/gal/day: Click to enter text.
D.	Dosi	ng information
	Num	ber of doses per day: <u>Click to enter text.</u>
	Dosii	ng duration per area, in hours: <u>Click to enter text.</u>
	Rest	period between doses, in hours: <u>Click to enter text.</u>
	Dosii	ng amount per area, in inches/day: Click to enter text.
	Numl	ber of zones: Click to enter text.

Does the proposed subsurface drip irrigation system use tree vegetative cover as a crop? Yes No If yes, provide a vegetation survey by a certified arborist. Please call the Water Quality Assessment Team at (512) 239-4671 to schedule a pre-application meeting. Attachment: Click to enter text. Section 3. **Required Plans (Instructions Page 74)** A. Recharge feature plan Attach a Recharge Feature Plan with all information required in 30 TAC §222.79. Attachment: Click to enter text. B. Soil evaluation Attach a Soil Evaluation with all information required in 30 TAC §222.73. **Attachment:** Click to enter text. C. Site preparation plan Attach a Site Preparation Plan with all information required in 30 TAC §222.75. Attachment: Click to enter text. D. Soil sampling/testing Attach soil sampling and testing that includes all information required in 30 TAC §222.157. **Attachment:** Click to enter text. Floodway Designation (Instructions Page 75) Section 4. A. Site location Is the existing/proposed land application site within a designated floodway? Yes □ No B. Flood map Attach either the FEMA flood map or alternate information used to determine the floodway. **Attachment:** Click to enter text. **Surface Waters in the State (Instructions Page 75)** Section 5. A. Buffer Map Attach a map showing appropriate buffers on surface waters in the state, water wells, and

Attachment: Click to enter text.

B. Buffer variance request

springs/seeps.

Do you plan to request a buffer variance from water wells or waters in the state? \Box Yes \Box No
If yes, then attach the additional information required in 30 TAC § 222.81(c).
Attachment: Click to enter text.
Section 6. Edwards Aquifer (Instructions Page 75)
A. Is the SADDS located over the Edwards Aquifer Recharge Zone as mapped by TCEQ? \Box Yes \Box No
B. Is the SADDS located over the Edwards Aquifer Transition Zone as mapped by TCEQ? ☐ Yes ☐ No
If yes to either question , then the SADDS may be prohibited by <i>30 TAC §213.8</i> . Please call the Municipal Permits Team at 512-239-4671 to schedule a pre-application meeting.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Toxic Pollutants (Instructions Page 76)

For pollutants identified in Table 4.0(1), indi	icate the type of sample.
---	---------------------------

Grab ⊠

Composite □

Date and time sample(s) collected: 6/18/2025 08:00

Table 4.0(1) - Toxics Analysis

Pollutant	AVG Effluent	MAX Effluent	Number of Samples	MAL (μg/l)
	Conc. (µg/l)	Conc. (µg/l)		
Nonylphenol	<34.2		1	
Trivalent Chromium	<0.003		1	
Total PCB	<0.200		1	
Phosphorous	2290.00		1	
Aluminum	115.00		1	
Antimony	<3.00		1	
Arsenic	2.41		1	
Barium	44.0		1	
Beryllium	<0.50		1	
Cadmium	<1.00		1	
Chromium	1.26		1	
Copper	14.0		1	
Lead	<01.00		1	
Nickel	2.26		1	
Selenium	<5.00		1	
Silver	<0.50		1	
Thallium	1.00		1	
Zinc	20.4		1	
Mercury	<0004.26		1	
Fluoride	<500		1	
Nitrate-Nitrogen	13,800		1	

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Phenolics	25.00		1	
Hexachlorophene	<2.57		1	
4,4-DDD	<0.00998		1	
4,4-DDE	<0.00998		1	
4,4-DDT	<0.00998		1	
Aldrin	<0.00998		1	
Alpha-BHC(hexachlorocyclohexane)	<0.00998		1	
Beta-BHC(hexachlorocyclohexane)	<0.00998		1	
Chlordane	<0.0998		1	
Delta-BHC(hexachlorocyclohexane)	<0.00998		1	
Diedrin	<0.00998		1	
Endosulfan I (alpha)	<0.00998		1	
Endosulfan II (beta)	<0.00998		1	
Endosulfan sulfate	<0.00998		1	
Endrin	<0.00998		1	
Endrin aldehyde	<0.00998		1	
Gamma-BHC (Lindane)	<0.00998		1	
Heptachlor	<0.00998		1	
Heptachlor epoxide	<0.00998		1	
Toxaphene	<0.0998		1	
PCB-1016	<0.200		1	
PCB-1221	<0.200		1	
PCB-1232	<0.200		1	
PCB-1242	<0.200		1	
PCB-1248	<0.200		1	
PCB-1254	<0.200		1	
PCB-1260	<0.200		1	
2,4 Dichlorophenoxyacetic acid	<0.502		1	
2,4,5-TP (Silvex)	<0.300		1	
Keltane (Dicofol)	<0.0998		1	
Methoxychlor	<0.00998		1	
Mirex	<0.00998		1	
Azinphos-methyl (Guthion)	<0.0499		1	

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Chlorpyrifos	<0.0399		1	
Demeton	<0.0499		1	
Diazinon	<0.0499		1	
Malathion	<0.0499		1	
Parathion, ethyl	<0.0499		1	
Parathion, methyl	<0.0499		1	
1,1,1-Trichloroethane	<1.00		1	1112
1,1,2,2-Tetrachloroethane	<1.00		1	
1,1,2-Trichloroethane	<1.00		1.	
1,1-Dichloroethane	<1.00		1	
1,1-Dichloroethylene	<1.00		1	
1,2-Dibromoethane (EDB)	<1.00		1	
1,2-Dichloroethane	<1.00		1	
1,2-Dichloropropane	<1.00		1	
2-Chloroethylvinyl ether	<1.00		1	
Benzene	<1.00		1	
Bromodichloromethane	23.0		1	
Bromoform	<1.00		1	
Bromomethane (Methyl Bromi	<1.00		1	
Carbon Tetrachloride	<1.00		1	
Chlorobenzene	<1.00		1	
Chloroethane	<1.00		1	
Chloroform	74.2		1	
Chloromethane (Methyl Chloride)	<1.00		1	
cis-1,3-Dichloropropene	<1.00		1	
Dibromochloromethane	4.45		1	
Dichloromethane	<1.00		1	
Ethylbenzene	<1.00		1	
m-Dichlorobenzene (1,3-DCB)	<1.00		1	
Methyl ethyl ketone (Butanone)	<1.00		1	
o-Dichlorobenzene (1,2-DCB)	<1.00		1	
p-Dichlorobenzene (1,4-DCB)	<1.00		1	
Tetrachloroethylene	<1.00		1	

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Toluene	<1.00	COIICI (µg/1)	1	
trans-1,2-Dichloroethylene	<1.00		1	
trans-1,3-Dichloropropene	<1.00		1	
Trichloroethylene	<1.00		1	
Vinyl chloride	<1.00		1	
Trihalomethanes	<101.65		1	
Acrolein	<2.00		1	
Acrylonitrile	<1.00		1	
1,2,4,5-Tetrachlorobenzene	<1.22		1	
1,2,4-Trichlorobenzene	<1.19		1	
1,2-Dichlorobenzene	<5.94		1	
1,2-DPH (as azobenzene)	<1.19		1	
1,3-Dichlorobenzene	<5.94		1	
1,4-Dichlorobenzene	<5.94		1	
2,4,5-Trichlorophenol	<5.94		1	
2,4,6-Trichlorophenol	<2.38		1	
2,4-Dichlorophenol	<1.19		1	
2,4-Dimethylphenol	<1.19		1	
2,4-Dinitrophenol	<2.38		1	
2,4-Dinitrotoluene	<2.38		1	
2,6-Dinitrotoluene	<2.38		1	
2-Chloronaphthalene	<1.19		1	

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

^(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab ⊠

Composite □

Date and time sample(s) collected: 6/18/2025 08:00

Table 4.0(2)A - Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Antimony	<3.00		1	5
Arsenic	2.41		1	0.5
Beryllium	<0.50		1	0.5
Cadmium	<1.0		1	1
Chromium (Total)	1.26		1	3
Chromium (Hex)	<3.0		1	3
Chromium (Tri) (*1)	<3.0		1	N/A
Copper	14.0		1	2
Lead	<1.0		1	0.5
Mercury	<.00426		1	0.005
Nickel	2.26		1	2
Selenium	<5.0		1	5
Silver	<0.5		1	0.5
Thallium	<1.0		1	0.5
Zinc	20.4		1	5
Cyanide (*2)	5.0		1	10
Phenols, Total	25.0		1	10

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)B - Volatile Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrolein	<1.22		1	50
Acrylonitrile	<1.00		1	50
Benzene	<1.00		1	10
Bromoform	<1.00		1	10
Carbon Tetrachloride	<1.00		1	2
Chlorobenzene	<1.00		1	10
Chlorodibromomethane	4.45		1	10
Chloroethane	<1.00		1	50
2-Chloroethylvinyl Ether	<1.00		1	10
Chloroform	742		1	10
Dichlorobromomethane [Bromodichloromethane]	23.0		1	10
1,1-Dichloroethane	<1.00		1	10
1,2-Dichloroethane	<1.00		1	10
1,1-Dichloroethylene	<1.00		1	10
1,2-Dichloropropane	<1.00		1	10
1,3-Dichloropropylene	<1.00		1	10
[1,3-Dichloropropene]				
1,2-Trans-Dichloroethylene	<1.00		1	10
Ethylbenzene	<1.00		1	10
Methyl Bromide	<1.00		1	50
Methyl Chloride	<1.00		1	50
Methylene Chloride	<1.00		1	20
1,1,2,2-Tetrachloroethane	<1.00		1	10
Tetrachloroethylene	<1.00		1	10
Toluene	<1.00		1	10
1,1,1-Trichloroethane	<1.00		1	10
1,1,2-Trichloroethane	<1.00		1	10
Trichloroethylene	<1.00		1	10
Vinyl Chloride	<1.00		1	10

Table 4.0(2)C - Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
2-Chlorophenol	<1.19		1	10
2,4-Dichlorophenol	<1.19		1	10
2,4-Dimethylphenol	<1.19		1	10
4,6-Dinitro-o-Cresol	<2.38		1	50
2,4-Dinitrophenol	<2.38		1	50
2-Nitrophenol	<1.19		1	20
4-Nitrophenol	<1.19		1	50
P-Chloro-m-Cresol	<1.19		1	10
Pentalchlorophenol	<5.00		1	5
Phenol	<1.19		1	10
2,4,6-Trichlorophenol	<2.38		1	10

Table 4.0(2)D - Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acenaphthene	<1.19		1	10
Acenaphthylene	<1.19	33.00	1	10
Anthracene	<1.19		1	10
Benzidine	<1.78		1	50
Benzo(a)Anthracene	<1.19		1	5
Benzo(a)Pyrene	<1.19		1	5
3,4-Benzofluoranthene	<1.19		1	10
Benzo(ghi)Perylene	<1.19		1	20
Benzo(k)Fluoranthene	<1.19		1	5
Bis(2-Chloroethoxy)Methane	<1.19		1	10
Bis(2-Chloroethyl)Ether	<1.19		1	10
Bis(2-Chloroisopropyl)Ether	<1.19		1	10
Bis(2-Ethylhexyl)Phthalate	<8.91		1	10
4-Bromophenyl Phenyl Ether	<1.19		1	10
Butyl benzyl Phthalate	<1.19	A A A A A A A A A A A A A A A A A A A	1	10
2-Chloronaphthalene	<1.19		1	10
4-Chlorophenyl phenyl ether	<1.19		1	10
Chrysene	<1.19		1	5
Dibenzo(a,h)Anthracene	<1.19		1	5
1,2-(o)Dichlorobenzene	<5.94		1	10
1,3-(m)Dichlorobenzene	<5.94		1	10
1,4-(p)Dichlorobenzene	<5.94		1	10
3,3-Dichlorobenzidine	<2.38		1	5
Diethyl Phthalate	<6.77		1	10
Dimethyl Phthalate	<5.70		1	10
Di-n-Butyl Phthalate	<8.91		1	10
2,4-Dinitrotoluene	<2.38		1	10
2,6-Dinitrotoluene	<2.38		1	10
Di-n-Octyl Phthalate	<2.38		1	10
1,2-Diphenylhydrazine (as Azo- benzene)	<1.19		1	20
Fluoranthene	<1.19		1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Fluorene	<1.19		1	10
Hexachlorobenzene	<1.19		1 .	5
Hexachlorobutadiene	<1.22		1	10
Hexachlorocyclo-pentadiene	<1.19		1	10
Hexachloroethane	<2.38		1	20
Indeno(1,2,3-cd)pyrene	<1.19		1	5
Isophorone	<1.19		1	10
Naphthalene	<1.19	<1.19	1	10
Nitrobenzene	<1.19		1	10
N-Nitrosodimethylamine	<1.19		1	50
N-Nitrosodi-n-Propylamine	<1.19		1	20
N-Nitrosodiphenylamine	<1.19		1	20
Phenanthrene	<1.19		1	10
Pyrene	<1.19		1	10
1,2,4-Trichlorobenzene	<1.19		1	10

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Aldrin	<0.00998		1	0.01
alpha-BHC (Hexachlorocyclohexane)	<0.00998		1	0.05
beta-BHC (Hexachlorocyclohexane)	<0.00998		1	0.05
gamma-BHC (Hexachlorocyclohexane)	<0.00998		1	0.05
delta-BHC (Hexachlorocyclohexane)	<0.00998		1	0.05
Chlordane	<0.0998		1	0.2
4,4-DDT	<0.00998		1	0.02
4,4-DDE	<0.00998		1	0.1
4,4,-DDD	<0.00998		1	0.1
Dieldrin	<0.00998		1	0.02
Endosulfan I (alpha)	<0.00998	*****	1	0.01
Endosulfan II (beta)	<0.00998		1	0.02
Endosulfan Sulfate	<0.00998		1	0.1
Endrin	<0.00998		1	0.02
Endrin Aldehyde	<0.00998		1	0.1
Heptachlor	<0.00998		1	0.01
Heptachlor Epoxide	<0.00998		1	0.01
PCB-1242	<0.200		1	0.2
PCB-1254	<0.200		1	0.2
PCB-1221	<0.200		1	0.2
PCB-1232	<0.200		1	0.2
PCB-1248	<0.200		1	0.2
PCB-1260	<0.200		1	0.2
PCB-1016	<0.200		1	0.2
Toxaphene	<0.0998		1	0.3

^{*} For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Section 3. Dioxin/Furan Compounds A Indicate which of the following compounds from may be present in the

Α.		ibuting industrial user or significant industrial user. Check all that apply.					
		2,4,5-trichlorophenoxy acetic acid					
		Common Name 2,4,5-T, CASRN 93-76-5					
		2-(2,4,5-trichlorophenoxy) propanoic acid					
		Common Name Silvex or 2,4,5-TP, CASRN 93-72-1					
		2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate					
		Common Name Erbon, CASRN 136-25-4					
		0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate					
		Common Name Ronnel, CASRN 299-84-3					
		2,4,5-trichlorophenol					
		Common Name TCP, CASRN 95-95-4					
		hexachlorophene					
		Common Name HCP, CASRN 70-30-4					
		ch compound identified, provide a brief description of the conditions of its/their ice at the facility.					
	N/A-	No compound Identified					
	3. Do you know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin (TCDD) or any congeners of TCDD may be present in your effluent?						
		Yes ⊠ No					
	If yes,	provide a brief description of the conditions for its presence.					
	Click	to enter text.					

C.	If any of the	compounds in Subsection A or B are present, complete Table 4.0(2)F.
	For pollutan	ts identified in Table 4.0(2)F, indicate the type of sample.
	Grab □	Composite □
	Date and tin	ne sample(s) collected: <u>Click to enter text.</u>

Table 4.0(2)F - Dioxin/Furan Compounds

Compound	Toxic Equivalenc y Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1					10
1,2,3,7,8 PeCDD	0.5					50
2,3,7,8 HxCDDs	0.1					50
1,2,3,4,6,7,8 HpCDD	0.01					50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05			******		50
2,3,4,7,8 PeCDF	0.5					50
2,3,7,8 HxCDFs	0.1					50
2,3,4,7,8 HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					0.5
PCB 81	0.0003					0.5
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total						

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: TOXICITY TESTING REQUIREMENTS

The following **is required** for facilities with a current operating design flow of **1.0 MGD or greater**, with an EPA-approved **pretreatment** program (or those required to have one under 40 CFR Part 403), or are required to perform Whole Effluent Toxicity testing. See Page 86 of the instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Required Tests

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic: 34 48-hour Acute: 16

Section 2. Toxicity Reduction Evaluations (TREs)

Has this facility completed a TRE in the past four and a half years? Or is the facility currently performing a TRE?

□ Yes ⊠ No

If yes, describe the progress to date, if applicable, in identifying and confirming the toxicant.

Click to enter text.	

Section 3. Summary of WET Tests

If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed.

Table 5.0(1) Summary of WET Tests

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal
2/23/2021	D. pulex	100%	N/A
2/23/2021	P. promelas	100%	N/A
2/23/2021	C. dubia	97%	97%
2/23/2021	P. promelas	97%	97%
4/27/2021	C. dubia	97%	97%
4/27/2021	P. promelas	97%	97%
8/3/2021	D. pulex	100%	N/A
8/3/2021	P. promelas	100%	N/A
8/3/2021	C. dubia	97%	97%
8/3/2021	P. promelas	97%	97%
12/7/2021	C. dubia	97%	97%
12/7/2021	P. promelas	97%	97%
3/1/2022	D. pulex	100%	N/A
3/1/2022	P. promelas	100%	N/A
3/1/2022	C. dubia	97%	97%
3/1/2022	P. promelas	97%	97%
4/26/2022	C. dubia	97%	97%
4/26/2022	P. promelas	97%	97%
8/2/2022	D. pulex	100%	N/A
8/2/2022	P. promelas	100%	N/A
8/2/2022	C. dubia	97%	97%
8/2/2022	P. promelas	97%	97%
12/6/2022	C. dubia	97%	97%
12/6/2022	P. promelas	97%	97%
2/28/2023	D. pulex	100%	N/A
2/28/2023	P. promelas	100%	N/A
2/28/2023	C. dubia	97%	97%
2/28/2023	P. promelas	97%	97%
5/2/2023	C. dubia	97%	97%
5/2/2023	P. promelas	97%	97%
8/1/2023	D. pulex	100%	N/A
8/1/2023	P. promelas	100%	N/A

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal
8/1/2023	C. dubia	97%	97%
8/1/2023	P. promelas	97%	97%
11/28/2023	C. dubia	97%	97%
11/28/2023	P. promelas	97%	97%
3/12/2024	D. pulex	100%	N/A
3/12/2024	P. promelas	100%	N/A
3/12/2024	C. dubia	97%	97%
3/12/2024	P. promelas	97%	97%
5/21/2024	C. dubia	97%	97%
5/21/2024	P. promelas	97%	97%
9/17/2024	D. pulex	100%	N/A
9/17/2024	P. promelas	100%	N/A
9/17/2024	C. dubia	97%	97%
9/17/2024	P. promelas	97%	97%
12/3/2024	C. dubia	97%	97%
12/3/2024	P. promelas	97%	97%
3/18/2025	D. pulex	100%	N/A
3/18/2025	P. promelas	100%	N/A
3/18/2025	C. dubia	97%	97%
3/18/2025	P. promelas	97%	97%

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works.

Section 1. All POTWs (Instructions Page 87)

A. Industrial users (IUs)

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

If there are no users, enter 0 (zero).

Categorical IUs:

Number of IUs: 1

Average Daily Flows, in MGD: 0.055

Significant IUs - non-categorical:

Number of IUs: 0

Average Daily Flows, in MGD: 0

Other IUs:

Number of IUs: 0

Average Daily Flows, in MGD: 0

B. Treatment plant interference

In the past three years,	has your POTW	experienced	treatment	plant interference	(see
instructions)?					

□ Yes ⊠ No

N/A

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

11/11	
- N	
1	
}	

C.	Treatment plant pass through
	In the past three years, has your POTW experienced pass through (see instructions)?
	□ Yes ⊠ No
	If yes, identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.
	N/A
ח	Pretreatment program
υ.	Does your POTW have an approved pretreatment program?
	□ Yes ⊠ No
	If yes, complete Section 2 only of this Worksheet.
	Is your POTW required to develop an approved pretreatment program?
	□ Yes ⊠ No
	If yes, complete Section 2.c. and 2.d. only, and skip Section 3.
	If no to either question above , skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.
Se	ction 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 87)
۸	Substantial modifications
556/5	Have there been any substantial modifications to the approved pretreatment program
	that have not been submitted to the TCEQ for approval according to 40 CFR §403.18?
	□ Yes ⊠ No
	If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.
	N/A

1040	ave not been sublint	ed to TCEO for	or review and acce	ed pretreatment eptance?		
□ Yes ⊠ No						
If yes, identify all non-substantial modifications that have not been submitted to TCEQ, including the purpose of the modification.						
N/A						
-	eters above the MAL			0.000		
	list all parameters me ing the last three year					
3,00	neters Above the MAL	1223				
Pollutant	Concentration	MAL	Units	Date		
N/A	N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A	N/A		
	interruptions f, or other IU caused of pass throughs) at you					

B. Non-substantial modifications

D.

Section 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 88)

A.	General information
	Company Name: <u>Hydro Aluminum</u>
	SIC Code: 3341, 3365
	Contact name: <u>David Westbrook</u>
	Address: 2000 Economic Dr.
	City, State, and Zip Code: Commerce, TX, 75428
	Telephone number: (903) 468-5011
	Email address: <u>Click to enter text.</u>
B.	Process information
	Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).
	Cooling tower blow-down discharged. Every 2-3 months, the casting pit is emptied into the cooling tower cold well for maintenance. In addition, the cooling tower cold well and hot well will be emptied annually for maintenance. These operations are not expected to create significant increase in discharge volume.
C.	Product and service information
	Provide a description of the principal product(s) or services performed.
	Manufactures aluminum billet for extrusion from external clean recycle scrap, painted scrap, sow, and internal recycle. Raw material- Aluminum Scrap: 30,899 lb/hr . Product- Aluminum Billet: 27,976 lb/hr.
D.	Flow rate information
	See the Instructions for definitions of "process" and "non-process wastewater."
	Process Wastewater:
	Discharge, in gallons/day: <u>51,000</u>
	Discharge Type: □ Continuous ⊠ Batch □ Intermittent
	Non-Process Wastewater:
	Discharge, in gallons/day: 4,000
	Discharge Type: ⊠ Continuous □ Batch □ Intermittent

E.	. Pretreatment standards						
	Is the SIU or CIU subject to technically based local limits as defined in the instructions?						
	□ Yes ⊠ No						
	Is the SIU or CIU subject to categorical pretreatment standards found in $40\ CFR\ Parts\ 405-471$?						
	⊠ Yes □ No						
	If subject to categorical pretreatment standards , indicate the applicable category and subcategory for each categorical process.						
	Category: Subcategories: 421						
	Click or tap here to enter text. <u>36,f,C</u>						
	Category: <u>Click to enter text.</u>						
	Subcategories: <u>Click to enter text.</u>						
	Category: Click to enter text.						
	Subcategories: <u>Click to enter text.</u>						
	Category: Click to enter text.						
	Subcategories: <u>Click to enter text.</u>						
	Category: <u>Click to enter text.</u>						
	Subcategories: <u>Click to enter text.</u>						
F.	Industrial user interruptions						
	Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years?						
	□ Yes ⊠ No						
	If yes , identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants.						
	N/A						
-		_					

F.

WORKSHEET 7.0

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

CLASS V INJECTION WELL INVENTORY/AUTHORIZATION FORM

Submit the completed form to:

TCEQ IUC Permits Team Radioactive Materials Division MC-233 PO Box 13087 Austin, Texas 78711-3087 512-239-6466

For TCEQ Use Only	
Reg. No	
Date Received	
Date Authorized	

Section 1. General Information (Instructions Page 90)

1. TCEQ Program Area

Program Area (PST, VCP, IHW, etc.): Click to enter text.

Program ID: Click to enter text.

Contact Name: <u>Click to enter text.</u>
Phone Number: Click to enter text.

2. Agent/Consultant Contact Information

Contact Name: Click to enter text.

Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Phone Number: Click to enter text.

3. Owner/Operator Contact Information

□ Owner □ Operator

Owner/Operator Name: Click to enter text.

Contact Name: Click to enter text.

Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Phone Number: Click to enter text.

4. Facility Contact Information

Facility Name: Click to enter text.

Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Location description (if no address is available): Click to enter text.

Facility Contact Person: Click to enter text.

Phone Number: Click to enter text.

5.	Latitu	de and Longitude, in degrees-minutes-seconds					
Latitude: <u>Click to enter text.</u>							
	Longit	tude: Click to enter text.					
	Metho	d of determination (GPS, TOPO, etc.): Click to enter text.					
	Attach topographic quadrangle map as attachment A.						
6.							
	Type o	of Well Construction, select one:					
		Vertical Injection					
		Subsurface Fluid Distribution System					
		Infiltration Gallery					
		Temporary Injection Points					
		Other, Specify: Click to enter text.					
	Numbe	er of Injection Wells: <u>Click to enter text.</u>					
7.	Purpos	se					
Detailed Description regarding purpose of Injection System:							
Click to enter text.							
	Attach approp	a Site Map as Attachment B (Attach the Approved Remediation Plan, if riate.)					
8.	Water V	Well Driller/Installer					
	Water Well Driller/Installer Name: Click to enter text.						
	City, St	ate, and Zip Code: Click to enter text.					
	Phone 1	Number: <u>Click to enter text.</u>					
	License	Number: Click to enter text.					
ction	2 D	roposed Down Hole Design					
	2. P	roposed Down Hole Design					

Sec

Attach a diagram signed and sealed by a licensed engineer as Attachment C.

Table 7.0(1) - Down Hole Design Table

Name of String	Size	Setting Depth	Sacks Cement/Grout – Slurry Volume – Top of Cement	Hole Size	Weight (lbs/ft) PVC/Steel
Casing					
Tubing					
Screen					

Section 3. Proposed Trench System, Subsurface Fluid Distribution System, or Infiltration Gallery

Attach a diagram signed and sealed by a licensed engineer as Attachment D.

System(s) Dimensions: <u>Click to enter text.</u>
System(s) Construction: Click to enter text.

Section 4.	Site Hydrog	geological	and In	ection Z	one Data
		o productional or productional of	Contract of the last of the la		

- 1. Name of Contaminated Aquifer: <u>Click to enter text.</u>
- 2. Receiving Formation Name of Injection Zone: Click to enter text.
- 3. Well/Trench Total Depth: Click to enter text.
- **4. Surface Elevation:** Click to enter text.
- 5. Depth to Ground Water: <u>Click to enter text.</u>
- **6.** Injection Zone Depth: <u>Click to enter text.</u>
- 7. Injection Zone vertically isolated geologically?

 Yes

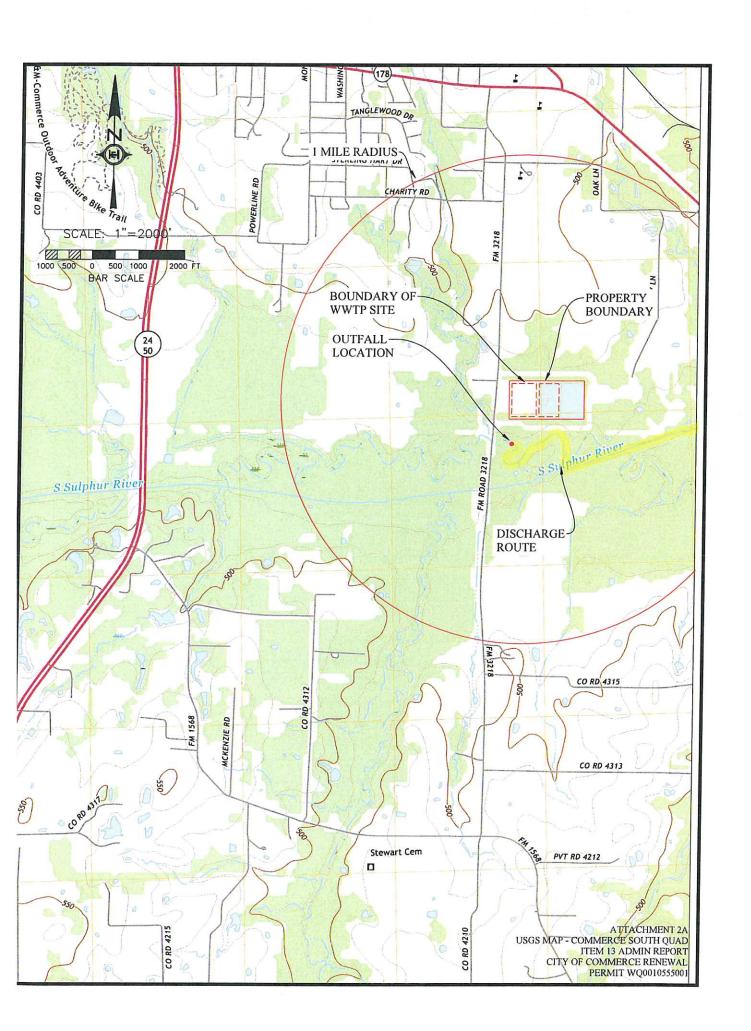
 No

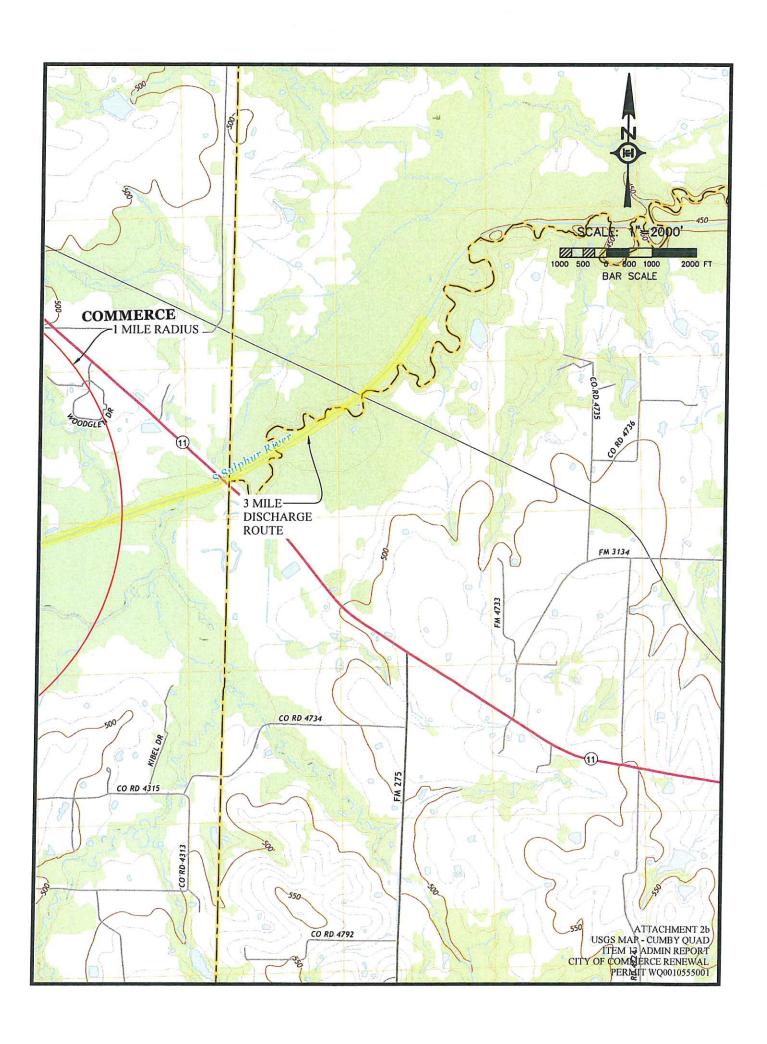
 Impervious Strata between Injection Zone and nearest Underground Source of Drinking Water:

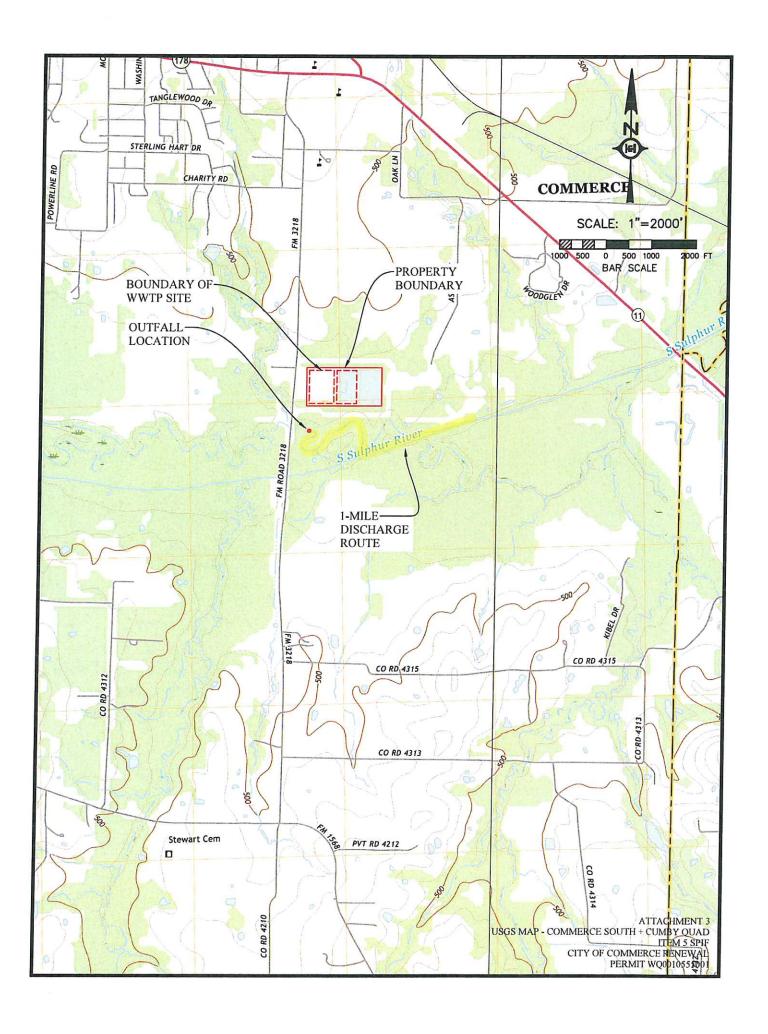
Name: Click to enter text.

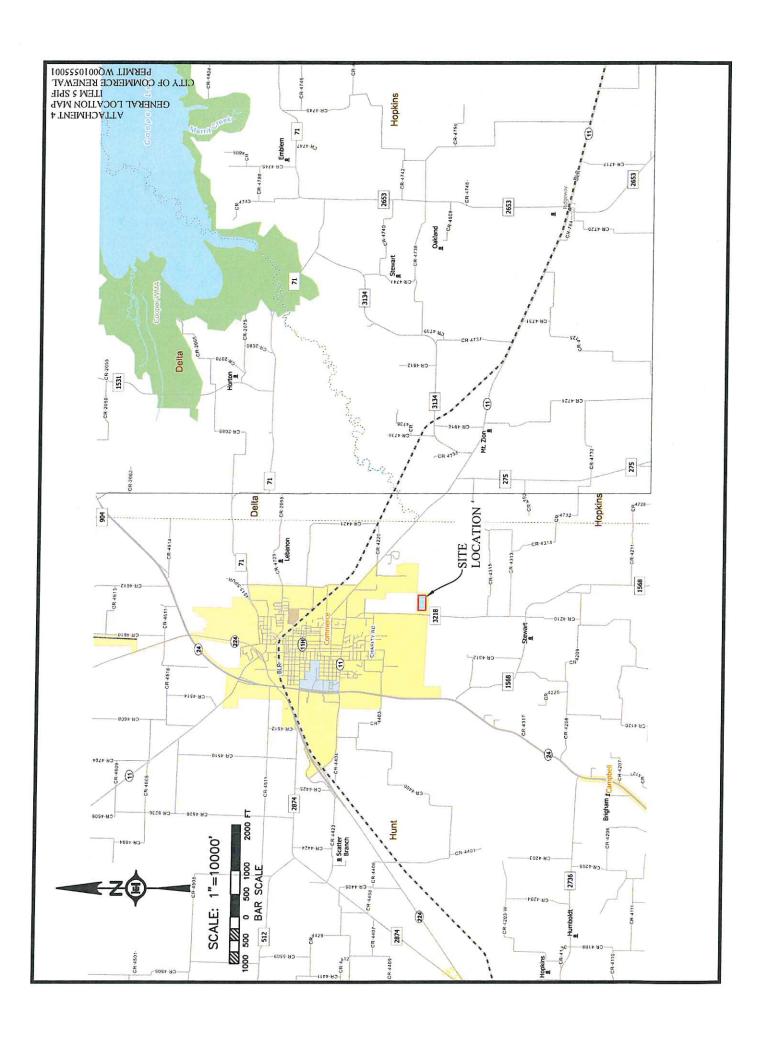
Thickness: Click to enter text.

- 8. Provide a list of contaminants and the levels (ppm) in contaminated aquifer Attach as Attachment E.
- 9. Horizontal and Vertical extent of contamination and injection plume Attach as Attachment F.
- **10.** Formation (Injection Zone) Water Chemistry (Background levels) TDS, etc. Attach as Attachment G.
- 11. Injection Fluid Chemistry in PPM at point of injection Attach as Attachment H.
- 12. Lowest Known Depth of Ground Water with < 10,000 PPM TDS: Click to enter text.
- 13. Maximum injection Rate/Volume/Pressure: Click to enter text.
- 14. Water wells within 1/4 mile radius (attach map as Attachment I): Click to enter text.
- 15. Injection wells within 1/4 mile radius (attach map as Attachment J): <u>Click to enter text.</u>
- 16. Monitor wells within 1/4 mile radius (attach drillers logs and map as Attachment K): Click to enter text.
- 17. Sampling frequency: Click to enter text.
- **18.** Known hazardous components in injection fluid: Click to enter text.

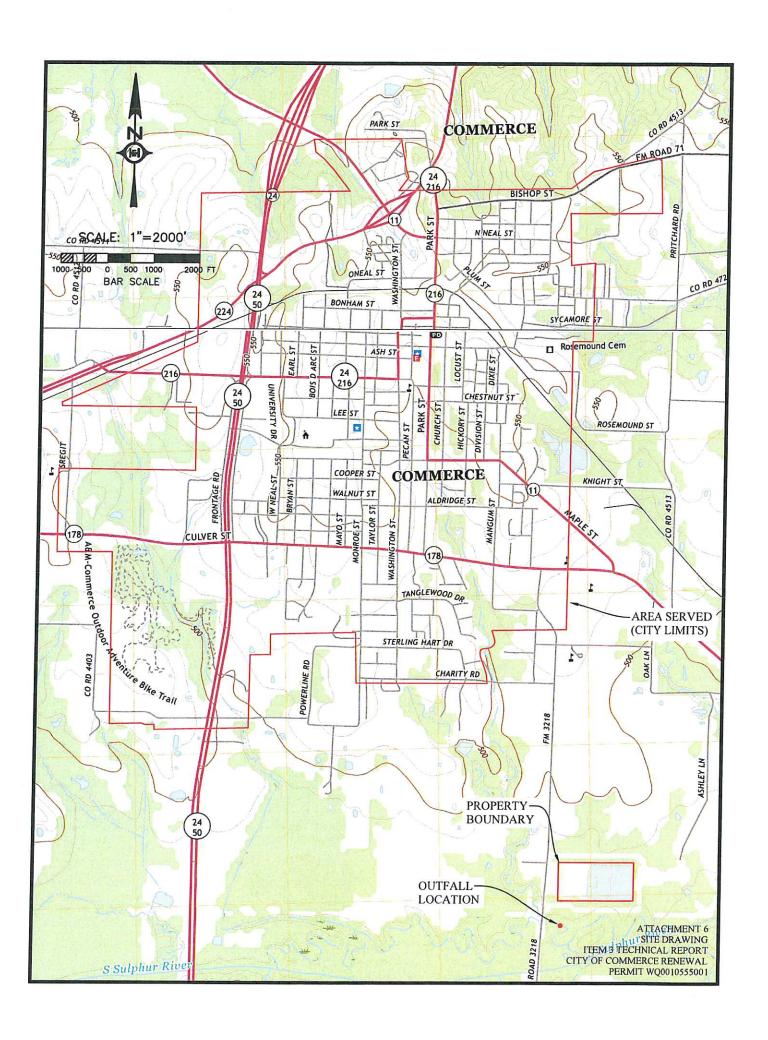

Section 5. Site History


- 1. Type of Facility: Click to enter text.
- 2. Contamination Dates: Click to enter text.
- 3. Original Contamination (VOCs, TPH, BTEX, etc.) and Concentrations (attach as Attachment L): <u>Click to enter text.</u>
- **4.** Previous Remediation (attach results of any previous remediation as attachment M): Click to enter text.


NOTE: Authorization Form should be completed in detail and authorization given by the TCEQ before construction, operation, and/or conversion can begin. Attach additional pages as necessary.


Class V Injection Well Designations

- 5A07 Heat Pump/AC return (IW used for groundwater to heat and/or cool buildings)
- 5A19 Industrial Cooling Water Return Flow (IW used to cool industrial process equipment)
- 5B22 Salt Water Intrusion Barrier (IW used to inject fluids to prevent the intrusion of salt water into an aquifer)
- 5D02 Storm Water Drainage (IW designed for the disposal of rain water)
- 5D04 Industrial Stormwater Drainage Wells (IW designed for the disposal of rain water associated with industrial facilities)
- 5F01 Agricultural Drainage (IW that receive agricultural runoff)
- 5R21 Aquifer Recharge (IW used to inject fluids to recharge an aquifer)
- 5S23 Subsidence Control Wells (IW used to control land subsidence caused by ground water withdrawal)
- 5W09 Untreated Sewage
- 5W10 Large Capacity Cesspools (Cesspools that are designed for 5,000 gpd or greater)
- 5W11 Large Capacity Septic systems (Septic systems designed for 5,000 gpd or greater)
- 5W12 WTTP disposal
- 5W20 Industrial Process Waste Disposal Wells
- 5W31 Septic System (Well Disposal method)
- 5W32 Septic System Drainfield Disposal
- 5X13 Mine Backfill (IW used to control subsidence, dispose of mining byproducts, and/or fill sections of a mine)
- 5X25 Experimental Wells (Pilot Test) (IW used to test new technologies or tracer dye studies)
- 5X26 Aguifer Remediation (IW used to clean up, treat, or prevent contamination of a USDW)
- 5X27 Other Wells
- 5X28 Motor Vehicle Waste Disposal Wells (IW used to dispose of waste from a motor vehicle site These are currently banned)
- 5X29 Abandoned Drinking Water Wells (waste disposal)



Francesca Findlay

From: Daniel Hunter <dhunter@haytereng.com>

Sent: Friday, August 15, 2025 7:53 AM

To: Francesca Findlay **Cc:** Brandon Dusenberry

Subject: RE: FW: WQ0010555001 City of Commerce

Attachments: City of Commerce Response to NOD 8.14.2025.pdf

Francesca,

Please see the City of Commerce's response attached.

Let us know if you have any questions.

Best regards,

Danny Hunter, E.I.T. *Design Engineer I*

Practical Infrastructure Solutions

TxEng F-315 | TxSurv F-10028600 | OSBPE/LS #603 | ASBPE #2521 4445 SE Loop 286 | Paris, TX 75460 D: 903.401.8607 O: 903.785.0303 C: 469.644.0703

www.haytereng.com

From: Francesca Findlay < Francesca. Findlay@tceq.texas.gov>

Sent: Friday, August 8, 2025 2:08 PM

To: Daniel Hunter <dhunter@haytereng.com>

Cc: Brandon Dusenberry
 Subject: FW: FW: WQ0010555001 City of Commerce

Dear Mr. Hunter:

The attached Notice of Deficiency letter sent on August 8, 2025, requesting additional information needed to declare the application administratively complete. Please send the complete response to my attention August 23, 2025.

Thank you,

Francesca Findlay
License & Permit Specialist
ARP Team | Water Quality Division
512-239-2441
Texas Commission on Environmental Quality

Please consider whether it is necessary to print this e-mail

How is our customer service? Fill out our online customer satisfaction survey at http://www.tceq.texas.gov/customersurvey.

Francesca Findlay
License & Permit Specialist
ARP Team | Water Quality Division
Texas Commission of Environmental Quality
P.O. Box 13087
Austin, Texas 78711-3087

August 14, 2025

Re: Application to Renew, for Permit No.: WQ0010555001 (EPA I.D. No. TX0020591)

Applicant Name: City of Commerce (CN600729933) Site Name: Commerce WWTP (RN102178233) Type of Application: Renewal without changes

MMZ

Ms. Findlay -

Enclosed within are one (1) original response and one (1) copies of the Notice of Deficiency (NOD) letter dated August 8, 2025 (see attached to this letter). Please see the following response to each of the items listed in the NOD letter.

1. The NORI shall have the following correction: "annual average flow of 2,000,000 gallons per day."

Thank you for your time reviewing this application. If you have any questions or need more information, please contact me at (903) 785-0303 or at dhunter@haytereng.com.

Sincerely,

Hayter Engineering

Daniel Hunter, EIT Design Engineer I 8/14/2025

Enclosures:

1. NOD Letter dated August 8, 2025.

Brooke T. Paup, *Chairwoman*Bobby Janecka, *Commissioner*Catarina R. Gonzales, *Commissioner*Kelly Keel, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

August 8, 2025

Mr. Daniel Hunter Design Engineer Hayter Engineering 4445 SouthEast Loop 286 Paris, Texas 75460

RE: Application to Renew, for Permit No.: WQ0010555001 (EPA I.D. No. TX0020591)

Applicant Name: City of Commerce (CN600729933)

Site Name: Commerce WWTF (RN102178233) Type of Application: Renewal without changes

VIA EMAII.

Dear Mr. Hunter:

We have received the application for the above referenced permit, and it is currently under review. Your attention to the following item(s) are requested before we can declare the application administratively complete. Please submit responses to the following items via email.

1. The following is a portion of the NORI which contains information relevant to your application. Please read it carefully and indicate if it contains any errors or omissions. The complete notice will be sent to you once the application is declared administratively complete.

APPLICATION. City of Commerce, 1119 Alamo Street, Commerce, Texas 75428, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010555001 (EPA I.D. No. TX0020591) to the discharge of treated wastewater at a volume not to exceed an annual average flow of 200,000 gallons per day. The domestic wastewater treatment facility is located approximately 0.5 mile south of the intersection of Charity Road and Farm-to-Market Road 3218, near the city of Commerce, in Hunt County, Texas 75428. The discharge route is from the plant site to an unnamed tributary; thence to Upper South Sulphur River. TCEQ received this application on August 6, 2025. The permit application will be available for viewing and copying at Commerce City Hall, 1119 Alamo Street, Commerce, in Hunt County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public

Mr. Daniel Hunter Page 2 August 8, 2025 Permit No. WQ0010555001

courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-95.8875,33.2175&level=18

Further information may also be obtained from City of Commerce at the address stated above or by calling Molly Jacobson, City Secretary, at 903-886-1125.

Please provide an electronic copy of the complete application in a single PDF file. The electronic copy may be submitted via email to www.ARPTeam@tceq.texas.gov (25MB size file or smaller) or via TCEQs file transfer protocol (FTP) server using the following steps.

- a. Sign in and upload your application as a single PDF file using the TCEQ FTP server: https://ftps.tceq.texas.gov/index.php.
- b. Share the uploaded file to the email address: WQDeCopy@tceq.texas.gov.

For complete instructions on using the TCEQ FTP server, please visit: https://ftps.tceq.texas.gov/help/. For other questions about the submittal of electronic copies, please view the frequently asked questions.

Please submit the complete response, addressed to my attention by August 23, 2025, If you should have any questions, please do not hesitate to contact me by phone at (512) 239-2441 or by email at Francesca.Findlay@tceq.texas.gov
Sincerely,

San Sindley

Francesca Findlay Application Review and Processing Team (MC148) Water Quality Division Texas Commission of Environmental Quality

ff

Enclosure(s)

cc: Mr. Brandon Dusenberry, P.E., Project Engineering, Hayter Engineering, 4445 Southeast Loop 286, Paris, Texas 75460

John Hearn

November 10, 2025

Application Review and Processing Team (MC148) Water Quality Division Texas Commission of Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087

Re: Application to Renew Permit No.: WQ0010733002 (EPA I.D. No. TX0053503)

Applicant Name: City of Avery (CN600644058) Site Name: City of Avery WWTP (RN101720829) Type of Application: Minor amendment (with renewal)

Mr. Hearn -

Enclosed within are one (1) original response. Please see the following response to each of the items listed in the NOD letter.

- 1. See attached revised Domestic Technical Report 1.0, Section 2, Treatment Process, Table 1.0(1), and revised attachment 5, Flow Diagram.
- 2. See attached revised Domestic Technical Report 1.0, Section 9, Sludge and Biosolids Management and Disposal, Disposal Site.
- 3. See attached Sludge Testing Data used to fill in Worksheet 4.0, Pollutant Analysis.

Thank you for your time reviewing this application. If you have any questions or need more information, please contact me at (903) 785-0303 or at dhunter@haytereng.com.

Sincerely,

Hayter Engineering

Daniel Hunter, EIT

Design Engineer I

11/10/2025

Enclosures:

- 1. Technical Report, pages 2 & 12
- 2. Flow Diagram
- 3. Sludge Testing Data

finish with the point of discharge. Include all sludge processing and drying units. **If more than one phase exists or is proposed, a description of** *each phase* **must be provided**.

Existing facility is an activated sludge process operating in the complex mix mode. Units include a master lift station, fine screens, equalization basins, aeration basins, final clarifiers, aerobic digesters, chlorine contact chamber, and de-chlorination chamber. Sludge is aerobically digested before mixing with polymer and allowed to dewater in 2 sludge dewatering boxes.

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) of each treatment unit, accounting for *all* phases of operation.

Table 1.0(1) - Treatment Units

Treatment Unit Type	Number of Units	Dimensions (L x W x D)	
Fine screens	6	1 MGD capacity per screen	
Concrete EQ Basins	2	940,000 gallons per basin	
Lined EQ Basin	1	855,000 gallons	
Aeration Basin	2	340,000 gallons per basin	
Final Clarifier	2	55' X 12' D	
Aerobic Digester	2	160,000 gallons each	
Chlorine contact chamber	1	46,675 gallons	
De-chlorination chamber	1	7,180 gallons	
Sludge Drying Beds	5	105' X 50'	
Sludge Dewatering Box	2	30 CY each	

C. Process Flow Diagram

Provide flow diagrams for the existing facilities and **each** proposed phase of construction.

Attachment: 5

Section 3. Site Information and Drawing (Instructions Page 43)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

Latitude: <u>33.2175</u>Longitude: <u>95.8875</u>

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

Latitude: N/ALongitude: N/A

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;

Gamma Ray Irradiation
Pasteurization
Preliminary Operation (e.g. grinding, de-gritting, blending)
Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter)
Sludge Lagoon
Temporary Storage (< 2 years)
Long Term Storage (>= 2 years)
Methane or Biogas Recovery
Other Treatment Process: Click to enter text.

C. Sewage Sludge or Biosolids Management

Provide information on the *intended* sewage sludge or biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize all sewage sludge or biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

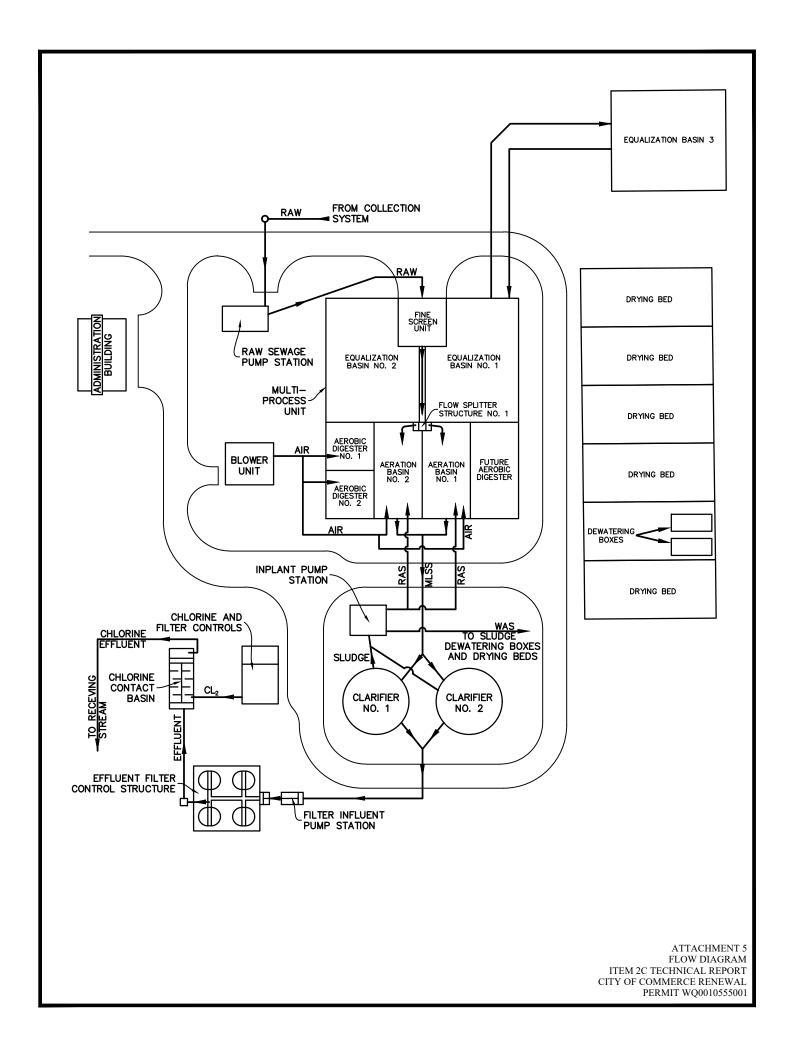
Biosolids Management

Management Practice	Handler or Preparer Type	Bulk or Bag Container	Amount (dry metric tons)	Pathogen Reduction Options	Vector Attraction Reduction Option
Dispose in Landfill	Offsite Third Party	Bulk		N/A: Dispose in Landfill	N/A: Dispose in Landfill
N/A	N/A	N/A	N/ A	N/ A	N/A
N/ A	N/ A	N/ A	N/ A	N/ A	N/A

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): <u>Click to enter text.</u>

D. Disposal site

Disposal site name: <u>Republic Maloy Landfill</u>
TCEQ permit or registration number: <u>1195B</u>
County where disposal site is located: Hunt


E. Transportation method

Method of transportation (truck, train, pipe, other): <u>Truck</u>

Name of the hauler: <u>Duncan Disposal</u> Hauler registration number: <u>65352</u>

Sludge is transported as a:

Section 10. Permit Authorization for Sewage Sludge Disposal

Page 1 of 1

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601 Printed

07/09/2025 16:20

TABLE OF CONTENTS

This report consists of this Table of Contents and the following pages:

Report Name	Description	<u>Pages</u>
1151501_r02_01_ProjectSamples	SPL Kilgore Project P:1151501 C:COM4 Project Sample Cross Reference t:304	3
1151501_r03_03_ProjectResults	SPL Kilgore Project P:1151501 C:COM4 Project Results t:304	17
1151501_r10_05_ProjectQC	SPL Kilgore Project P:1151501 C:COM4 Project Quality Control Groups	37
1151501_r99_09_CoC1_of_1	SPL Kilgore CoC COM4 1151501_1_of_1	8
	Total Pages:	65

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 1 of 66

SAMPLE CROSS REFERENCE

Printed

7/9/2025

Page 1 of 3

City of Commerce/WastewaterPlt

Timothy Jones
1119 Alamo St.

Commerce, TX 75428-2601

Sample	Sample ID	Taken	Time	Received
2419182	Domestic Worksheet 4.0	06/17/2025	12:30:00	06/17/2025
Bottle 01 Polyethy Bottle 03 Polyethy Bottle 04 Amber 3 Bottle 05 Amber 3 Bottle 06 Amber 3 Bottle 07 Amber 3	2 Oz 2 Oz 2 Oz			

Bottle 10 Amber 32 Oz Bottle 11 Amber 32 Oz Bottle 12 Amber 32 Oz

Bottle 08 Amber 32 Oz Bottle 09 Amber 32 Oz

Bottle 13 Amber 32 Oz

Bottle 14 Amber 32 Oz

Bottle 15 Amber 32 Oz

Bottle 16 H2SO4 to pH <2 Glass Qt w/Teflon lined lid

Bottle 17 H2SO4 to pH <2 Glass Qt w/Teflon lined lid

Bottle 20 Glass /clean metals w/HCl

Bottle 21 H2SO4 to pH <2 Amber Glass 250 mL w/Teflon lined lid(4)

Bottle 22 NaOH to pH >12 Polyethylene 250 mL/amber

Bottle 23 NaOH to pH >12 Polyethylene 250 mL/amber

Bottle 24 Na2S2O3 (0.008%) Glass 40 mL vial w/Teflon lined lid (zero headspace)

Bottle 25 Na2S2O3 (0.008%) Glass 40 mL vial w/Teflon lined lid (zero headspace)

Bottle 26 Na2S2O3 (0.008%) Glass 40 mL vial w/Teflon lined lid (zero headspace)

Bottle 27 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid

Bottle 28 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid

Bottle 29 Prepared Bottle: Special Preparation

Bottle 30 Prepared Bottle: CN TRAACS Autosampler Vial (Batch 1180706) Volume: 10.00000 mL <== Derived from 23 (5 ml)

Bottle 31 Prepared Bottle: Mercury Preparation for Metals (Batch 1180743) Volume: 50.00000 mL <= Derived from 20 (47 ml)

Bottle 32 Prepared Bottle: 2 mL Autosampler Vial (Batch 1180855) Volume: 5.00000 mL <== Derived from 06 (973 ml)

Bottle 33 Prepared Bottle: Phenol TRAACS Autosampler Vial (Batch 1180988) Volume: 6.00000 mL <= Derived from 21 (6 ml)

Bottle 34 Prepared Bottle: 2 mL Autosampler Vial (Batch 1181132) Volume: 1.00000 mL <== Derived from 04 (1008 ml)

Bottle 35 16 oz HNO3 Metals Plastic

Bottle 36 Prepared Bottle: CN TRAACS Autosampler Vial (Batch 1181274) Volume: 10.00000 mL <== Derived from 29 (5 ml)

Bottle 37 Prepared Bottle: CN TRAACS Autosampler Vial (Batch 1181274) Volume: 10.00000 mL <== Derived from 29 (5 ml)

Bottle~38~Prepared~Bottle:~CN~TRAACS~Autosampler~Vial~(Batch~1181274)~Volume:~10.00000~mL <== Derived~from~29~(~5~ml~)~10.00000~mL <== Derived~from~29~(~5~ml~)~10.00000~mL~(Section 1.000000~mL~(Section 1.000000~mL~(Section 1.000000~mL~(Section 1.0000000~mL~(Section 1.000000~mL~(Section 1.0000000~mL~(Section 1.0000000~mL~(Section 1.000000~mL~(Section 1.000000~mL~(Section 1.0000000~mL~(Section 1.0000000~mL~(Section 1.0000000~mL~(Section 1.0000000~mL~(Section 1.0000000~mL~(Section 1.0000000~mL~(Section 1.000000~mL~(Section 1.0000000~mL~(Section 1.0000000~mL~(Section 1.0000000~mL~(Section 1.000000~mL~(Section 1.0000000~mL~(Section 1

Bottle 39 Prepared Bottle: 632L\632S 2 mL Autosampler Vial (Batch 1181386) Volume: 1.00000 mL <== Derived from 05 (1002 ml) Bottle 40 Prepared Bottle: GCXL\GCXS 2 mL Autosampler Vial (Batch 1181387) Volume: 1.00000 mL <== Derived from 05 (1002 ml)

Bottle 41 Prepared Bottle: OPXL/OPXS 2 mL Autosampler Vial (Batch 1181388) Volume: 1.00000 mL <== Derived from 05 (1002 ml)

Bottle 42 Prepared Bottle:PCBL 2 mL Autosampler Vial (Batch 1181389) Volume: 1.00000 mL <== Derived from 05 (1002 ml)

Bottle 43 Prepared Bottle: 2 mL Autosampler Vial (Batch 1181580) Volume: 10.00000 mL <== Derived from 11 (997 ml)

Bottle 44 Prepared Bottle: 2 mL Autosampler Vial (Batch 1181604) Volume: 1.00000 mL <== Derived from 15 (842 ml)

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 2 of 66

SAMPLE CROSS REFERENCE

Method

Printed

Preparation

7/9/2025

QcGroup

Page 2 of 3

Analytical

City of Commerce/WastewaterPlt **Timothy Jones** 1119 Alamo St.

Commerce, TX 75428-2601

Bottle 45 Prepared Bottle: ICP Preparation for Metals (Batch 1181643) Volume: 50.00000 mL <== Derived from 35 (50 ml)

Bottle 46 Prepared Bottle: ICP Preparation for Metals (Batch 1181643) Volume: 50.00000 mL <== Derived from 35 (50 ml) Bottle 47 Prepared Bottle: ICP Preparation for Metals (Batch 1181643) Volume: 50.00000 mL <= Derived from 35 (50 ml) Bottle 48 Prepared Bottle: 2 mL Autosampler Vial (Batch 1181852) Volume: 1.00000 mL <== Derived from 17 (876 ml)

2419183	Final Effluent	06/17/2025	12:30:00		06/17/2025	
Sample	Sample ID	Taken	Time		Received	
	SM 4500-H+ B-2011		1180660	06/17/2025	1180660	06/17/2025
	EPA 622	41	1181388	06/20/2025	1182752	06/24/2025
	EPA 420.4 1	33	1180988	06/19/2025	1181355	06/20/2025
	SM 4500-O G-2016		1180656	06/17/2025	1180656	06/17/2025
	SM 3500-Cr B-2011	02	1181011	06/18/2025	1181011	06/18/2025
	Calculation			06/25/2025		06/25/2025
	SM 4500-CN E-2016	30	1180706	06/18/2025	1181088	06/19/2025
	SM 4500-CN G-2016	36	1181274	06/20/2025	1181601	06/23/2025
	SM 4500-CN G-2016			06/25/2025		06/25/2025
	EPA 200.8 5.4	45	1181643	06/23/2025	1182018	06/24/2025
	EPA 200.7 4.4	45	1181643	06/23/2025	1181841	06/24/2025
	EPA 245.7 2	31	1180743	06/18/2025	1180817	06/18/2025
	EPA 200.8 5.4	45	1181643	06/23/2025	1181977	06/24/2025
	TX 1001	34	1181132	06/19/2025	1183887	07/07/2025
	ASTM D7065-17	48	1181852	06/24/2025	1182434	06/25/2025
	EPA 624.1	25	1181205	06/18/2025	1181205	06/18/2025
	EPA 624.1	28	1181550	06/20/2025	1181550	06/20/2025
	EPA 625.1	44	1181604	06/23/2025	1182193	06/24/2025
	EPA 617	40	1181387	06/20/2025	1182048	06/24/2025
	EPA 604.1	32	1180855	06/18/2025	1181463	06/20/2025
	EPA 300.0 2.1	01	1181102	06/18/2025	1181102	06/18/2025
	1613	39	1101300	06/27/2025	1102/39	06/27/2025
	EPA 613 EPA 632	39	1181386	06/20/2025	1182739	06/25/2025
	EPA 608.5 EPA 615	43	1181589	06/20/2025	1182133	06/24/2025
	EPA 608.3 EPA 608.3	40	1181389	06/20/2025	1182034	06/24/2025
	EPA 608.3	40	1181387	06/20/2025	1182054	06/24/2025

Bottle

PrepSet

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 3 of 66

SAMPLE CROSS REFERENCE

Printed

7/9/2025

Page 3 of 3

City of Commerce/WastewaterPlt
Timothy Jones
1119 Alamo St.
Commerce, TX 75428-2601

Bottle 01 Polyethylene Quart

Bottle 02 16 oz HNO3 Metals Plastic

Bottle 04 8 oz Plastic H2SO4 pH < 2

Bottle 05 Na2S2O3 (0.008%) Polystyrene-100 mL Sterilized

Bottle 06 Na2S2O3 (0.008%) Polystyrene-100 mL Sterilized

Bottle 07 BOD Titration Beaker A (Batch 1180682) Volume: 100.00000 mL <== Derived from 01 (100 ml)

Bottle 08 BOD Analytical Beaker B (Batch 1180682) Volume: 100.00000 mL <= Derived from 01 (100 ml)

Bottle 09 Prepared Bottle: NH3N TRAACS Autosampler Vial (Batch 1180707) Volume: 6.00000 mL <== Derived from 04 (6 ml)

Bottle 10 Prepared Bottle: TKN TRAACS Autosampler Vial (Batch 1180996) Volume: 20.00000 mL <== Derived from 04 (20 ml)

Bottle 11 Prepared Bottle: ICP Preparation for Metals (Batch 1181022) Volume: 50.00000 mL <= Derived from 02 (50 ml)

Bottle 12 Polyethylene 1/2 gal (White)

Bottle 13 H2SO4 to pH <2 Glass Qt w/Teflon lined lid Bottle 14 H2SO4 to pH <2 Glass Qt w/Teflon lined lid

Method	Bottle	PrepSet	Preparation	QcGroup	Analytical
EPA 300.0 2.1	01	1181102	06/18/2025	1181102	06/18/2025
EPA 200.7 4.4	11	1181022	06/19/2025	1181171	06/19/2025
SM 2320 B-2011	12	1182418	06/26/2025	1182418	06/26/2025
SM 5210 B-2016 (TCMP Inhibitor)	01	1180682	06/23/2025	1180682	06/23/2025
SM 4500-O G-2016		1180621	06/17/2025	1180621	06/17/2025
EPA 1664B (HEM)	14	1181699	06/23/2025	1181699	06/23/2025
SM 9223 B (Colilert-18 QT)-2016	05	1180727	06/18/2025	1180727	06/18/2025
SM 9223 B (Colilert-18 QT)-2016	05	1180726	06/18/2025	1180726	06/18/2025
EPA 350.1 2	09	1180707	06/18/2025	1181156	06/19/2025
SM 2540 C-2020	12	1181751	06/20/2025	1181751	06/20/2025
EPA 351.2 2	10	1180996	06/19/2025	1181305	06/20/2025
SM 2540 D-2020	01	1181136	06/18/2025	1181136	06/18/2025
SM 4500-H+ B-2011	01	1181286	06/20/2025	1181286	06/20/2025

Email: Kilgore.ProjectManagement@spllabs.com

The Science of Sure

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

Printed: 07/09/2025

RESULTS

					Sample	Res	ults					
	2419182	Domestic Worksh	neet 4.0							Received:	06/17	7/2025
	Non-Potable Water		Collected by: Taken: 06/	Client 17/2025	•	Comm 12:30:	erce/Was		PO			
_				Prepared:		06/1	7/2025	18:17:36	Calculated	06/17/2025	18:17:36	CA
	Parameter SUB Shipped			Results Verified	UI	nits	RL		Flags	CAS		Bottle
				Prepared:	1180658	06/1	7/2025	13:01:00	Analyzed 118065	8 06/17/2025	13:01:00	GB
	Parameter Field C12 Chec	k for CNa		Results NEGATIVE	Uı	nits	RL		Flags	CAS		Bottle
				Prepared:	1180659	06/1	7/2025	13:01:00	Analyzed 118065	9 06/17/2025	13:01:00	GB/
	Parameter Field Sulfide C	heck for CNa		Results NEGATIVE	UI mg	nits g/L	RL		Flags	CAS		Bottle
_	1613			Prepared:		06/2	27/2025	18:54:00	Analyzed	06/27/2025	18:54:00	SUE
	Parameter Dioxins and Fu	ırans Subcontract		Results see attached	Uz	nits	RL		Flags	CAS ION1		Bottle
_	ASTM D7065-17			Prepared:	1181852	06/2	24/2025	14:30:00	Analyzed 118243	4 06/25/2025	21:30:00	PM
	Parameter Nonylphenol			Results <34.2	<i>Uz</i>	nits /L	<i>RL</i> 34.2		Flags	CAS 25154-52-3		Bottle 48
_	Calculation			Prepared:		06/2	25/2025	12:47:58	Calculated	06/25/2025	12:47:58	CAI
NELAC	Parameter Trivalent Chron	mium		Results <0.003	Un mg	nits g/L	<i>RL</i> 0.003		Flags	CAS 16065-83-1		Bottle
	Calculation			Prepared:	1181389	06/2	20/2025	14:10:00	Calculated 118215	3 06/27/2025	00:01:17	CAL
	Parameter			Results	Uı	iits	RL		Flags	CAS		Bottle

Report Page 5 of 66

City of Commerce/WastewaterPlt **Timothy Jones** 1119 Alamo St. Commerce, TX 75428-2601

Printed: 07/09/2025

2419182 Domestic Worksheet 4.0 Received: 06/17/2025

No	Non-Potable Water	Collected by: Client	City of C	ommerce/Was		PO:			
		Taken: 06/17/2025	1	2:30:00					
Cá	alculation	Prepared:	1181389	06/20/2025	14:10:00	Calculated 1182153	06/27/2025	00:01:17	CA
	Parameter	Results	Un	its RL		Flags	CAS		Bottle
	Total PCB	<0.200	ug/	L 0.200			Total PCB		42
EF	PA 200.7 4.4	Prepared:	1181643	06/23/2025	14:45:00	Analyzed 1181841	06/24/2025	09:13:00	AN
	Parameter	Results	Un	its RL		Flags	CAS		Bottle
LAC	Phosphorus	2,29	mg	/L 0.040			7723-14-0		45
EF	PA 200.8 5.4	Prepared:	1181643	06/23/2025	14:45:00	Analyzed 1181977	06/24/2025	10:48:00	ESC
	Parameter	Results	Un	its RL		Flags	CAS		Bottle
LAC	Aluminum, Total	0.115	mg	/L 0.005			7429-90-5		45
AC	Antimony, Total	<0.003	mg	/L 0.003			7440-36-0		45
.AC	Arsenic, Total	0.00241	mg	/L 0.001			7440-38-2		45
AC	Barium, Total	0.044	mg				7440-39-3		45
.AC	Beryllium, Total	<0.0005	mg	/L 0.0005			7440-41-7		45
AC	Cadmium, Total	<0.001	mg	/L 0.001			7440-43-9		45
AC	Chromium, Total	0.00126	mg	/ L 0.001			7440-47-3		45
AC	Copper, Total	0.014	mg	/L 0.001			7440-50-8		45
AC	Lead, Total	<0.001	mg	/ L 0.001			7439-92-1		45
.AC	Nickel, Total	0.00226	mg	/L 0.001			7440-02-0		45
.AC	Selenium, Total	<0.005	mg	/L 0.005			7782-49-2		45
AC	Silver, Total	<0.0005	mg	/L 0.0005			7440-22-4		45
.AC	Thallium, Total	<0.001	mg	/ L 0.001			7440-28-0		45
LAC	Zinc, Total	0.0204	mg	/L 0.001			7440-66-6		45
EF	PA 245.72	Prepared:	1180743	06/18/2025	08:00:00	Analyzed 1180817	06/18/2025	12:30:00	MP
-	Parameter	Results	Un	its RL		Flags	CAS		Bottle
LAC	Mercury, Total (low level)	<4.26	ng/	L 4.26			7439-97-6		31
EF	PA 300.0 2.1	Prepared:	1181102	06/18/2025	15:04:00	Analyzed 1181102	06/18/2025	15:04:00	KR
	Parameter	Results	Un	its RL		Flags	CAS		Bottle
LAC	Fluoride	<0.5	mg	/L 0.5					01

Report Page 6 of 66

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

Printed: 07/09/2025

2419182 Domestic Worksheet 4.0 Received: 06/17/2025

Non-Potable Water Collected by: Client City of Commerce/Was PO:

Taken: 06/17/2025 12:30:00

	Taken:	06/17/2025		12:30	:00						
E	PA 300.0 2.1	Prepared:	1181102	06/.	18/2025	15:04:00	Analyzed	1181102	06/18/2025	15:04:00	KRA
	Parameter	Results	U	nits	RL		Flags	S	CAS		Bottle
NELAC	Nitrate-Nitrogen Total	13.8	m	g/L	0.100				14797-55-8		01
E	PA 420.4 1	Prepared:	1180988	06/.	19/2025	08:03:19	Analyzed	1181355	06/20/2025	08:59:00	MEC
	Parameter	Results	U	nits	RL		Flag	S	CAS		Bottle
NELAC	Phenolics, Total Recoverable	0.025	m	g/L	0.005						33
E	PA 604.1	Prepared:	1180855	06/.	18/2025	13:45:00	Analyzed	1181463	06/20/2025	18:57:00	BRU
,	Parameter	Results	U	nits	RL		Flags	S	CAS		Bottle
Z	Hexachlorophene	<2.57	ug	/L	2.57				70-30-4		32
E	PA 608.3	Prepared:	1181387	06/2	20/2025	14:10:00	Analyzed	1182054	06/24/2025	22:08:00	KAP
	Parameter	Results	U	nits	RL		Flag	S	CAS		Bottle
NELAC	4,4-DDD	<0.00998	ug	/L	0.00998		X		72-54-8		40
NELAC	4,4-DDE	<0.00998	ug	/L	0.00998				72-55-9		40
NELAC	4,4-DDT	<0.00998	ug	/L	0.00998		X		50-29-3		40
VELAC	Aldrin	<0.00998	ug	/L	0.00998				309-00-2		40
NELAC	Alpha-BHC(hexachlorocyclohexane	<0.00998	ug	/L	0.00998				319-84-6		40
NELAC) Beta-BHC(hexachlorocyclohexane)	<0.00998	ug	/L	0.00998				319-85-7		40
NELAC	Chlordane	<0.0998	ug		0.0998				57-74-9		40
NELAC	Delta-BHC(hexachlorocyclohexane)	<0.00998	ug	/L	0.00998				319-86-8		40
NELAC	Dieldrin	< 0.00998	ug	/L	0.00998		X		60-57-1		40
NELAC	Endosulfan I (alpha)	<0.00998	ug	/L	0.00998		X		959-98-8		40
NELAC	Endosulfan II (beta)	<0.00998	ug	/L	0.00998				33213-65-9		40
NELAC	Endosulfan sulfate	<0.00998	ug		0.00998				1031-07-8		40
NELAC	Endrin	<0.00998	ug		0.00998		X		72-20-8		40
NELAC	Endrin aldehyde	<0.00998	ug	/L	0.00998				7421-93-4		40
NELAC	Gamma-BHC(Lindane)	<0.00998	ug	/L	0.00998				58-89-9		40
NELAC	Heptachlor	<0.00998	ug		0.00998				76-44-8		40
NELAC	Heptachlor epoxide	<0.00998	ug		0.00998				1024-57-3		40
NELAC	Toxaphene	< 0.0998	ug	/L	0.0998				8001-35-2		40

Report Page 7 of 66

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

Printed: 07/09/2025

2419182 Domestic Worksheet 4.0 *Received:* 06/17/2025

Non-Potable Water Collected by: Client City of Commerce/Was PO:

Taken: 06/17/2025 12:30:00

EF	PA 608.3	Prepared:	1181389	06/20/2025	14:10:00	Analyzed 1182153	06/24/2025	22:08:00	KA
-	Parameter	Results	Uni	its RL		Flags	CAS		Bottl
C	PCB-1016	<0.200	ug/l	L 0.20)		12674-11-2		42
C	PCB-1221	<0.200	ug/l	L 0.20)		11104-28-2		42
C	PCB-1232	<0.200	ug/l	L 0.20)		11141-16-5		42
C	PCB-1242	<0.200	ug/l	L 0.20	1		53469-21-9		42
C	PCB-1248	<0.200	ug/l	L 0.20	1		12672-29-6		42
C	PCB-1254	<0.200	ug/l	L 0.20	1		11097-69-1		42
С	PCB-1260	<0.200	ug/l	L 0.20	1		11096-82-5		42
EF	PA 615	Prepared:	1181580	06/23/2025	13:40:00	Analyzed 1182161	06/24/2025	17:33:00	KA
-	Parameter	Results	Uni	its RL		Flags	CAS		Bottl
C	2,4 Dichlorophenoxyacetic acid	<0.502	ug/l	L 0.50	!		94-75-7		43
С	2,4,5-TP (Silvex)	<0.300	ug/l	L 0.30	1		93-72-1		43
EF	A 617	Prepared:	1181387	06/20/2025	14:10:00	Analyzed 1182048	06/24/2025	22:08:00	K.
-	Parameter	Results	Uni	its RL		Flags	CAS		Bottl
	Kelthane (Dicofol)	< 0.0998	ug/l	L 0.099	8		115-32-2		40
	Methoxychlor	<0.00998	ug/l	L 0.009	98		72-43-5		40
	Mirex	<0.00998	ug/l	L 0.009	98		2385-85-5		40
EF	A 622	Prepared:	1181388	06/20/2025	14:10:00	Analyzed 1182752	06/24/2025	00:56:00	KA
-	Parameter	Results	Uni	its RL		Flags	CAS		Bottl
С	Azinphos-methyl (Guthion)	<0.0499	ug/I	L 0.049	9	D	86-50-0		41
C	Chlorpyrifos	<0.0399	ug/I	L 0.039	9		2921-88-2		4
C	Demeton	<0.0499	ug/I	L 0.049	9		8065-48-3		41
C	Diazinon	<0.0499	ug/I	L 0.049	9		333-41-5		4
C	Malathion	<0.0499	ug/I	L 0.049	9		121-75-5		4
C	Parathion, ethyl	<0.0499	ug/I	L 0.049	9		56-38-2		4

Report Page 8 of 66

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

Printed: 07/09/2025

PO:

2419182 Domestic Worksheet 4.0

Non-Potable Water

Collected by: Client

06/17/2025

Taken:

City of Commerce/Was

12:30:00

Received: 06/17/2025

E	PA 624.1	Prepared:	1181205 06/	18/2025	13:18:00	Analyzed 118120.	5 06/18/2025	13:18:00	DWL
	Parameter	Results	Units	RL		Flags	CAS		Bottle
NELAC	1,1,1-Trichloroethane	<1.00	ug/L	1.00			71-55-6		25
NELAC	1,1,2,2-Tetrachloroethane	<1.00	ug/L	1.00			79-34-5		25
NELAC	1,1,2-Trichloroethane	<1.00	ug/L	1.00			79-00-5		25
NELAC	1,1-Dichloroethane	<1.00	ug/L	1.00			75-34-3		25
NELAC	1,1-Dichloroethylene	<1.00	ug/L	1.00			75-35-4		25
NELAC	1,2-Dibromoethane (EDB)	<1.00	ug/L	1.00			106-93-4		25
NELAC	1,2-Dichloroethane	<1.00	ug/L	1.00			107-06-2		25
NELAC	1,2-Dichloropropane	<1.00	ug/L	1.00			78-87-5		25
NELAC	2-Chloroethylvinyl ether	<1.00	ug/L	1.00			110-75-8		25
NELAC	Benzene	<1.00	ug/L	1.00			71-43-2		25
NELAC	Bromodichloromethane	23.0	ug/L	1.00			75-27-4		25
NELAC	Bromoform	<1.00	ug/L	1.00			75-25-2		25
NELAC	Bromomethane (Methyl Bromi	<1.00	ug/L	1.00			74-83-9		25
NELAC	Carbon Tetrachloride	<1.00	ug/L	1.00			56-23-5		25
NELAC	Chlorobenzene	<1.00	ug/L	1.00			108-90-7		25
NELAC	Chloroethane	<1.00	ug/L	1.00			75-00-3		25
NELAC	Chloroform	74.2	ug/L	1.00			67-66-3		25
NELAC	Chloromethane (Methyl Chloride)	<1.00	ug/L	1.00			74-87-3		25
NELAC	cis-1,3-Dichloropropene	<1.00	ug/L	1.00			10061-01-5		25
NELAC	Dibromochloromethane	4.45	ug/L	1.00			124-48- 1		25
NELAC	Dichloromethane	<1.00	ug/L	1.00			75-09-2		25
NELAC	Ethylbenzene	<1.00	ug/L	1.00			100-41-4		25
NELAC	m-Dichlorobenzene (1,3-DCB)	<1.00	ug/L	1.00			541-73-1		25
NELAC	Methyl ethyl ketone (Butanone)	<1.00	ug/L	1.00			78-93-3		25
NELAC	o-Dichlorobenzene (1,2-DCB)	<1.00	ug/L	1.00			95-50-1		25
NELAC	p-Dichlorobenzene (1,4-DCB)	<1.00	ug/L	1.00			106-46-7		25
NELAC	Tetrachloroethylene	<1.00	ug/L	1.00			127-18-4		25
NELAC	Toluene	<1.00	ug/L	1.00			108-88-3		25
NELAC	trans-1,2-Dichloroethylene	<1.00	ug/L	1.00			156-60-5		25
NELAC	trans-1,3-Dichloropropene	<1.00	ug/L	1.00			10061-02-6		25
NELAC	Trichloroethylene	<1.00	ug/L	1.00			79-01-6		25
NELAC	Vinyl chloride	<1.00	ug/L	1.00			75-01-4		25

Report Page 9 of 66

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

Printed: 07/09/2025

2419182 Domestic Worksheet 4.0 *Received:* 06/17/2025

Non-Potable Water Collected by: Client City of Commerce/Was PO:

Taken: 06/17/2025 12:30:00

El	PA 624.1	Prepared:	1181205	06/2	23/2025	15:17:49	Calculated	1181205	06/23/2025	15:17:49	CAI
	Parameter	Results	Uı	its	RL		Flags	;	CAS		Bottle
ELAC	Trihalomethanes	0.10165	mg	z/L	0.001						25
El	PA 624.1	Prepared:	1181550	06/2	20/2025	13:32:00	Analyzed	1181550	06/20/2025	13:32:00	CCI
	Parameter	Results	Uı	iits	RL		Flags	3	CAS		Bottle
ELAC	Acrolein	<2.00	ug	/L	2.00		S		107-02-8		28
IELAC	Acrylonitrile	<1.00	ug	/L	1.00				107-13-1		28
El	PA 625.1	Prepared:	1181604	06/2	23/2025	14:00:00	Analyzed	1182193	06/24/2025	23:13:00	PM
	Parameter	Results	Uı	iits	RL		Flags	ī	CAS		Bottle
ELAC	1,2,4,5-Tetrachlorobenzene	<1.22	ug	/L	1.22				95-94-3		44
ELAC	1,2,4-Trichlorobenzene	<1.19	ug	/L	1.19		S		120-82-1		44
ELAC	1,2-Dichlorobenzene	<5.94	ug	/L	5.94		D		95-50-1		44
ELAC	1,2-DPH (as azobenzene)	<1.19	ug	/L	1.19				122-66-7		44
ELAC	1,3-Dichlorobenzene	<5.94	ug	/L	5.94		D		541-73-1		44
ELAC	1,4-Dichlorobenzene	<5.94	ug	/L	5.94		D		106-46-7		44
ELAC	2,4,5-Trichlorophenol	<5.94	ug	/L	5.94		S		95-95-4		44
ELAC	2,4,6-Trichlorophenol	<2.38	ug	/L	2.38				88-06-2		44
ELAC	2,4-Dichlorophenol	<1.19	ug	/L	1.19				120-83-2		44
ELAC	2,4-Dimethylphenol	<1.19	ug	/L	1.19		SD		105-67-9		44
ELAC	2,4-Dinitrophenol	<2.38	ug	/L	2.38				51-28-5		44
ELAC	2,4-Dinitrotoluene	<2.38	ug	/L	2.38				121-14-2		44
ELAC	2,6-Dinitrotoluene	<2.38	ug	/L	2.38				606-20-2		44
ELAC	2-Chloronaphthalene	<1.19	ug	/L	1.19		SD		91-58-7		44
ELAC	2-Chlorophenol	<1.19	ug	/L	1.19				95-57-8		44
ELAC	2-Methylphenol (o-Cresol)	<10.0	ug	/L	10.0				95-48-7		44
ELAC	2-Nitrophenol	<1.19	ug	/L	1.19				88-75-5		44
ELAC	3&4-Methylphenol (m&p-Cresol)	<9.50	ug	/L	9.50				МЕРН34		44
ELAC	3,3'-Dichlorobenzidine	<2.38	ug	/L	2.38				91-94-1		44
ELAC	4,6-Dinitro-2-methylphenol	<2.38	ug	/L	2.38				534-52-1		44
ELAC	4-Bromophenyl phenyl ether	<1.19	ug	/L	1.19				101-55-3		44
ELAC	4-Chlorophenyl phenyl ethe	<1.19	ug	/L	1.19				7005-72-3		44
ELAC	4-Nitrophenol	<1.19	ug	/L	1.19				100-02-7		44
ELAC	Acenaphthene	<1.19	ug	/L	1.19				83-32-9		44

Report Page 10 of 66

06/17/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

Printed: 07/09/2025

Received:

PO:

2419182 Domestic Worksheet 4.0

Non-Potable Water Collected by: Client

City of Commerce/Was

Taken: 06/17/2025 12:30:00

E	PA 625.1	Prepared:	1181604	06/23/2025	14:00:00 Analyzed 1182193	06/24/2025	23:13:00 PM1
	Parameter	Results	Unit	s RL	Flags	CAS	Bottle
NELAC	Acenaphthylene	<1.19	ug/L	1.19		208-96-8	44
Z	Aniline	<2.93	ug/L	2.93	S	62-53-3	44
NELAC	Anthracene	<1.19	ug/L	1.19		120-12-7	44
NELAC	Benzidine	<1.78	ug/L	1.78	D	92-87-5	44
NELAC	Benzo(a)anthracene	<1.19	ug/L	1.19		56-55-3	44
NELAC	Benzo(a)pyrene	<1.19	ug/L	1.19		50-32-8	44
NELAC	Benzo(b)fluoranthene	<1.19	ug/L	1.19		205-99-2	44
NELAC	Benzo(ghi)perylene	<1.19	ug/L	1.19		191-24-2	44
NELAC	Benzo(k)fluoranthene	<1.19	ug/L	1.19		207-08-9	44
NELAC	Benzyl Butyl phthalate	<8.91	ug/L	8.91		85-68-7	44
NELAC	Bis(2-chloroethoxy)methane	<1.19	ug/L	1.19		111-91-1	44
NELAC	Bis(2-chloroethyl)ether	<1.19	ug/L	1.19		111-44-4	44
NELAC	Bis(2-chloroisopropyl)ether	<1.19	ug/L	1.19		108-60-1	44
NELAC	Bis(2-ethylhexyl)phthalate	<8.91	ug/L	8.91		117-81-7	44
NELAC	Chrysene (Benzo(a)phenanthrene)	<1.19	ug/L	1.19		218-01-9	44
NELAC	Dibenz(a,h)anthracene	<1.19	ug/L	1.19		53-70-3	44
NELAC	Diethyl phthalate	<6.77	ug/L	6.77		84-66-2	44
NELAC	Dimethyl phthalate	<5.70	ug/L	5.70		131-11-3	44
NELAC	Di-n-butylphthalate	<8.91	ug/L	8.91		84-74-2	44
NELAC	Di-n-octylphthalate	<2.38	ug/L	2.38		117-84-0	44
NELAC	Fluoranthene(Benzo(j,k)fluorene)	<1.19	ug/L			206-44-0	44
NELAC	Fluorene	<1.19	ug/L	1.19	S	86-73-7	44
NELAC	Hexachlorobenzene	<1.19	ug/L	1.19		118-74-1	44
NELAC	Hexachlorobutadiene	<1.22	ug/L	1.22		87-68-3	44
NELAC	Hexachlorocyclopentadiene	<1.19	ug/L	1.19		77-47-4	44
NELAC	Hexachloroethane	<2.38	ug/L	2.38	SD	67-72-1	44
NELAC	Indeno(1,2,3-cd)pyrene	<1.19	ug/L	1.19		193-39-5	44
NELAC	Isophorone	<1.19	ug/L	1.19		78-59-1	44
NELAC	Naphthalene	<1.19	ug/L	1.19		91-20-3	44
NELAC	Nitrobenzene	<1.19	ug/L	1.19		98-95-3	44
NELAC	n-Nitrosodiethylamine	<1.19	ug/L	1.19	X	55-18-5	44
NELAC	N-Nitrosodimethylamine	<1.19	ug/L			62-75-9	44
NELAC	n-Nitroso-di-n-butylamine	<1.19	ug/L	1.19	S	924-16-3	44
NELAC	N-Nitrosodi-n-propylamine	<1.19	ug/L			621-64-7	44
NELAC	N-Nitrosodiphenylamine (as DPA	<1.19	ug/L	1.19		86-30-6	44

Report Page 11 of 66

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

06/17/2025

Printed: 07/09/2025

Received:

2419182 Domestic Worksheet 4.0

Non-Potable Water

Collected by: Client City of Commerce/Was PO:

Taken: 06/17/2025 12:30:00

EP.	4 625.1	Prepared:	1181604	06/23/2025	14:00:00	Analyzed 1182193	06/24/2025	23:13:00	PN
	Parameter	Results	Ut	nits RL		Flags	CAS		Botti
LAC	p-Chloro-m-Cresol (4-Chloro-3-me	<1.19	ug/	L 1.19			59-50-7		44
LAC	Pentachlorobenzene	<1.19	ug	L 1.19			608-93-5		44
	Pentachlorophenol	<5.00	ug/	L 5.00			87-86-5		44
LAC	Phenanthrene	<1.19	ug/	L 1.19			85-01-8		44
LAC	Phenol	<1.19	ug/				108-95-2		44
	Pyrene	<1.19	ug				129-00-0		44
LAC	Pyridine	<1.60	ug	L 1.60			110-86-1		44
EP	4 625.1	Prepared:	1181604	06/23/2025	14:00:00	Calculated 1182193	06/27/2025	00:01:17	CA
	Parameter	Results	Un	nits RL		Flags	CAS		Botti
LAC	Cresols Total	<9.50	ug	L 9.50			1319-77-3, e	etc.	44
EP	4 632	Prepared:	1181386	06/20/2025	14:10:55	Analyzed 1182739	06/25/2025	21:58:00	BI
_	Parameter	Results	Un	nits RL		Flags	CAS		Bott
LAC	Carbaryl (Sevin)	<2.50	ug	L 2.50			63-25-2		39
	Diuron	<0.0449	ug	L 0.04	19		330-54-1		39
SM	1 3500-Cr B-2011	Prepared:	1181011	06/18/2025	06:30:00	Analyzed 1181011	06/18/2025	06:30:00	Ai
_	Parameter	Results	Un	nits RL		Flags	CAS		Bott
LAC	Hexavalent Chromium	<3.00	ug	L 3.00		PD	18540-29-9		02
SM	1 4500-CN ⁻ E-2016	Prepared:	1180706	06/18/2025	08:24:12	Analyzed 1181088	06/19/2025	10:02:00	M
_	Parameter	Results	Un	nits RL		Flags	CAS		Bott
LAC	Cyanide, total	<0.005	mg	y/L 0.00	5				30
SM	1 4500-CN G-2016	Prepared:		06/25/2025	11:17:49	Calculated	06/25/2025	11:17:49	CA
_	Parameter	Results	Ut	nits RL		Flags	CAS		Bott
LAC	Cyanide - Available/Amenable	< 0.005	mg	L 0.00	_				

Report Page 12 of 66

City of Commerce/WastewaterPlt **Timothy Jones** 1119 Alamo St. Commerce, TX 75428-2601

_								Printed:	07/0	9/2025	
	2419182 Domestic World	ksheet 4.0							Received:	06/17	7/2025
	Non-Potable Water	Collected by: Client Taken: 06/17/2025	City of (Commer 12:30:0				PO:			
_	SM 4500-CN G-2016	Prepared:	1181274	06/20	/2025	08:40:09	Analyzed	1181601	06/23/2025	09:36:00	ME
	Parameter	Results		nits	RL		Flag.	S	CAS		Bottle
NELA	Cyanide After Chlorination	<0.005	m	g/L	0.005		P				36
	SM 4500-H+ B-2011	Prepared:	1180660	06/17	/2025	09:30:00	Analyzed	1180660	06/17/2025	09:30:00	CL
	Parameter	Results		nits	RL		Flag.	S	CAS		Bottle
NELA(pH (Onsite)	6.89	SU	J							
	SM 4500-O G-2016	Prepared:	1180656	06/17	/2025	07:25:00	Analyzed	1180656	06/17/2025	07:25:00	CL
	Parameter	Results	U	nits	RL		Flag	S	CAS		Bottle
NELA(Dissolved Oxygen Onsite	6.6	m	g/L	1.0						
	TX 1001	Prepared:	1181132	06/19	/2025	09:00:00	Analyzed	1183887	07/07/2025	17:47:00	DW
	Parameter	Results	U	nits	RL		Flag	S	CAS		Bottle
Z	Tributyltin hydride	<0.00694	ug	/L	0.00694		Е		688-73-3		34
Ī	2419183 Final Effluent								Received:	06/17	7/2025
	Non-Potable Water	Collected by: Client	City of 0	Comme	ce/Was			PO:			
		Taken: 06/17/2025	•	12:30:0							
_	Client	Prepared:	1180709	06/17	/2025	12:30:00	Analyzed	1180709	06/17/2025	12:30:00	CL
	Parameter	Results	U	nits	RL		Flag	S	CAS		Bottle
Z	Cl2 Res(Total)Analyzed by client	1.54	m	g/L							
_	EPA 1664B (HEM)	Prepared:	1181699	06/23	/2025	07:20:00	Analyzed	1181699	06/23/2025	07:20:00	BEI
	Parameter	Results	U	nits	RL		Flag.	S	CAS		Bottle
NELA	Oil and Grease (HEM)	<4.49	m	g/L	4.49						14

Report Page 13 of 66

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

Printed: 07/09/2025

2419183 Final Effluent Received: 06/17/2025

Non-Potable Water Collected by: Client City of Commerce/Was PO:

No	on-Potable Water	Collect Taken:	ed by: Client 06/17/2025	•	Comn 12:30	nerce/Was			PO:			
EF	PA 200.7 4.4		Prepared:	1181022	06/	19/2025	07:00:00	Analyzed	1181171	06/19/2025	13:28:00	ANG
-	Parameter		Results	Uı	nits	RL		Flag	S	CAS		Bottle
IELAC	Phosphorus		2.30	mį	z/L	0.040				7723-14-0		11
EF	PA 300.0 2.1		Prepared:	1181102	06/	18/2025	15:04:00	Analyzed	1181102	06/18/2025	15:04:00	KRA
-	Parameter		Results	Uı	nits	RL		Flag	S	CAS		Bottle
ELAC	Chloride		44.6	mį	z/L	3.00						01
ELAC	Nitrate-Nitrogen Total		13.8	mį	z/L	0.100				14797-55-8		01
IELAC	Sulfate		63.1	mį	z/L	3.00						01
EF	PA 350.1 2		Prepared:	1180707	06/	18/2025	08:26:56	Analyzed	1181156	06/19/2025	08:51:00	AMI
-	Parameter		Results	Uı	nits	RL		Flag	S	CAS		Bottle
ELAC	Ammonia Nitrogen		0.038	mį	z/L	0.020						09
EF	PA 351.2 2		Prepared:	1180996	06/	19/2025	08:25:34	Analyzed	1181305	06/20/2025	06:39:00	AMI
-	Parameter		Results	Uı	nits	RL		Flags	S	CAS		Bottle
ELAC	Total Kjeldahl Nitrogen		0.910	mį	g/L	0.050				7727-37-9		10
SA	M 2320 B-2011		Prepared:	1182418	06/.	26/2025	07:50:00	Analyzed	1182418	06/26/2025	07:50:00	TRC
-	Parameter		Results	Uı	nits	RL		Flag	S	CAS		Bottle
ELAC	Total Alkalinity (as CaCO3)		109	mį	z/L	1.00						12
SA	M 2540 C-2020		Prepared:	1181751	06/2	20/2025	09:05:00	Analyzed	1181751	06/20/2025	09:05:00	JMB
-	Parameter		Results	Uı	nits	RL		Flags	S	CAS		Bottle
ELAC	Total Dissolved Solids		340	mį	z/L	20.0						12
SA	M 2540 D-2020		Prepared:	1181136	06/	18/2025	12:03:00	Analyzed	1181136	06/18/2025	12:03:00	LSM
	Parameter		Results	Uı	nits	RL		Flag	S	CAS		Bottle
IELAC	Total Suspended Solids		6.71	mį	z/L	2.86						01

Report Page 14 of 66

City of Commerce/WastewaterPlt **Timothy Jones** 1119 Alamo St. Commerce, TX 75428-2601

Printed: 07/09/2025

2419183	Final Effluent	Received:	06/17/2025
---------	----------------	-----------	------------

Non-Potable Water	Collected by: Client	City of Commerce/Was	PO:
-------------------	----------------------	----------------------	-----

		Taken:	06/17/2025	12	2:30:00					
	SM 4500-H+ B-2011		Prepared:	1181286	06/20/2025	08:16:00	Analyzed 1181286	06/20/2025	08:16:00	MKL
	Parameter		Results	Uni	ts RL		Flags	CAS		Bottle
NELAC	Laboratory pH WW		6.7@19C	SU	2.00					01
S	SM 4500-O G-2016		Prepared:	1180621	06/17/2025	12:30:00	Analyzed 1180621	06/17/2025	12:30:00	CLI
	Parameter		Results	Uni	ts RL		Flags	CAS		Bottle
NELAC	Dissolved Oxygen by Client		6.6	mg/	L 1					
S	SM 5210 B-2016 (TCMP Inhibitor)		Prepared:	1180682	06/18/2025		Analyzed 1180682	06/23/2025	13:11:46	JW1
	Parameter		Results	Uni	ts RL		Flags	CAS		Bottle
NELAC	BOD Carbonaceous		3.24	mg/	L 2.00					01
.5	SM 9223 B (Colilert-18 QT)-2016		Prepared:	1180726	06/18/2025	12:29:00	Analyzed 1180726	06/18/2025	12:29:00	MDM
	Parameter		Results	Uni	ts RL		Flags	CAS		Bottle
NELAC	MPN, Total Coliform, Non-Pot		6.3	MP1 00m						05
5	SM 9223 B (Colilert-18 QT)-2016		Prepared:	1180727	06/18/2025	12:29:00	Analyzed 1180727	06/18/2025	12:29:00	MDM
	Parameter		Results	Uni	ts RL		Flags	CAS		Bottle
NELAC	MPN, E.coli, Col18 - Non-Pot		1.0	MP1 00m						05

Sample Preparation

2419182 Domestic Worksheet 4.0 Received: 06/17/2025

06/17/2025

The Science of Sure

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

Printed: 07/09/2025

2419182 Domestic Worksheet 4.0 Received: 06/17/2025

06/17/2025

	Prepared:		07/09/2025	16:14:00	Analyzed		07/09/2025	16:14:00	WJ.
Check Limits Check Limits	Completed Completed								
ASTM D7065-17	Prepared:	1181852	06/24/2025	14:30:00	Analyzed	1182434	06/25/2025	21:30:00	PN
Nonyl Phenol Expansion	Entered								48
EPA 200.2 2.8	Prepared:	1181643	06/23/2025	14:45:00	Analyzed	1181643	06/23/2025	14:45:00	TE
Liquid Metals Digestion	50/50	ml							35
EPA 245.72	Prepared:	1180743	06/18/2025	08:00:00	Analyzed	1180743	06/18/2025	08:00:00	MI
LAC Low Level Mercury Liquid Metals	50/47	ml							20
EPA 420.4 1	Prepared:	1180988	06/19/2025	08:03:19	Analyzed	1180988	06/19/2025	08:03:19	Al
LAC Phenol Distillation	6/6	ml							21
EPA 604.1	Prepared:	1180855	06/18/2025	13:45:00	Analyzed	1180855	06/18/2025	13:45:00	SA
Hexachlorophene Extraction	5/973	ml							06
EPA 604.1	Prepared:	1180855	06/18/2025	13:45:00	Analyzed	1181463	06/20/2025	18:57:00	BR
Hexachlorophene Expansion	Entered						70-30-4		32

Report Page 16 of 66

COM4-A

City of Commerce/WastewaterPlt **Timothy Jones** 1119 Alamo St. Commerce, TX 75428-2601

Printed: 07/09/2025

2419182 Domestic Worksheet 4.0 Received: 06/17/2025

06/17/2025

EPA 608.3	Prepared:	1181387	06/20/2025	14:10:00	Analyzed	1181387	06/20/2025	14:10:00	CR
Liquid-Liquid Extr. W/Hex Ex	1/1002	ml	l						05
EPA 608.3	Prepared:	1181387	06/20/2025	14:10:00	Analyzed	1182054	06/24/2025	22:08:00	KA
Table 1 Organochlorine Pesticide	Entered								40
EPA 608.3	Prepared:	1181388	06/20/2025	14:10:00	Analyzed	1181388	06/20/2025	14:10:00	CI
Solvent Extraction	1/1002	ml	l						0:
EPA 608.3	Prepared:	1181389	06/20/2025	14:10:00	Analyzed	1181389	06/20/2025	14:10:00	СЕ
PCB Liq-Liq Extr. W/Hex Exch.	1/1002	m1	L						0
EPA 608.3	Prepared:	1181389	06/20/2025	14:10:00	Analyzed	1182153	06/24/2025	22:08:00	K
AC Polychlorinated Biphenyls	Entered								42
EPA 615	Prepared:	1181580	06/23/2025	13:40:00	Analyzed	1181580	06/23/2025	13:40:00	М
AC Esterification of Sample	10/997	ml	l						1
EPA 615	Prepared:	1181580	06/23/2025	13:40:00	Analyzed	1182161	06/24/2025	17:33:00	K
AC Herbicides by GC	Entered								4:
EPA 617	Prepared:	1181387	06/20/2025	14:10:00	Analyzed	1182048	06/24/2025	22:08:00	K
For use with !PPR only	Entered								4

Report Page 17 of 66

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

Printed: 07/09/2025

2419182 Domestic Worksheet 4.0 Received: 06/17/2025

06/17/2025

Prepared:	1181388	06/20/2025	14:10:00	Analyzed	1182752	06/24/2025	00:56:00	KA
Entered								41
Prepared:	1181205	06/18/2025	13:18:00	Analyzed	1181205	06/18/2025	13:18:00	DW
Entered								25
Prepared:	1181550	06/20/2025	13:32:00	Analyzed	1181550	06/20/2025	13:32:00	CC
Entered								28
Prepared:	1181604	06/23/2025	14:00:00	Analyzed	1181604	06/23/2025	14:00:00	CR
1/842	m	l						15
Prepared:	1181604	06/23/2025	14:00:00	Analyzed	1182193	06/24/2025	23:13:00	PM
Entered								44
Prepared:	1181852	06/24/2025	14:30:00	Analyzed	1181852	06/24/2025	14:30:00	CR
1/876	m	I						17
Prepared:	1181386	06/20/2025	14:10:55	Analyzed	1181386	06/20/2025	14:10:55	CR
1/1002	m	I						05
Prepared:	1181386	06/20/2025	14:10:55	Analyzed	1182739	06/25/2025	21:58:00	BR
Entered								39
	Entered Prepared: Entered Prepared: Entered Prepared: 1/842 Prepared: Entered Prepared: 1/876 Prepared: 1/1002 Prepared:	### Prepared: 1181205 Entered	Entered Entered Prepared: 1181550 06/20/2025 Entered Intered Prepared: 1181604 06/23/2025 Entered Prepared: 1181852 06/23/2025 1/876 ml Prepared: 1181386 06/20/2025 1/1002 ml Prepared: 1181386 06/20/2025	Entered Prepared: 1181205 06/18/2025 13:18:00 Entered Prepared: 1181550 06/20/2025 13:32:00 Entered Prepared: 1181604 06/23/2025 14:00:00 Entered Prepared: 1181604 06/23/2025 14:00:00 Entered Prepared: 1181852 06/24/2025 14:30:00 1/876 ml Prepared: 1181386 06/20/2025 14:10:55 1/1002 ml Prepared: 1181386 06/20/2025 14:10:55	Entered Prepared: 1181205 06/18/2025 13:18:00 Analyzed Entered Prepared: 1181550 06/20/2025 13:32:00 Analyzed Entered Prepared: 1181604 06/23/2025 14:00:00 Analyzed 1/842 ml Prepared: 1181604 06/23/2025 14:00:00 Analyzed Entered Prepared: 1181852 06/24/2025 14:30:00 Analyzed 1/876 ml Prepared: 1181386 06/20/2025 14:10:55 Analyzed 1/1002 ml Prepared: 1181386 06/20/2025 14:10:55 Analyzed	Prepared: 1181205 06/18/2025 13:18:00 Analyzed 1181205	Entered	Entered Prepared: 1181205 06/18/2025 13:18:00 Analyzed 1181205 06/18/2025 13:18:00 Entered Prepared: 1181550 06/20/2025 13:32:00 Analyzed 1181550 06/20/2025 13:32:00 Entered Prepared: 1181604 06/23/2025 14:00:00 Analyzed 1181604 06/23/2025 14:00:00 1/842 ml Prepared: 1181604 06/23/2025 14:00:00 Analyzed 1182193 06/24/2025 23:13:00 Entered Prepared: 1181852 06/24/2025 14:30:00 Analyzed 1181852 06/24/2025 14:30:00 1/876 ml Prepared: 1181386 06/20/2025 14:10:55 Analyzed 1181386 06/20/2025 14:10:55 1/1002 ml Prepared: 1181386 06/20/2025 14:10:55 Analyzed 1182739 06/25/2025 21:58:00

Report Page 18 of 66

City of Commerce/WastewaterPlt **Timothy Jones** 1119 Alamo St. Commerce, TX 75428-2601

Printed: 07/09/2025

2419182 Domestic Worksheet 4.0 Received: 06/17/2025

		06/17/2025								
Si	M 4500-CN C-2016	Prepared:	1180706	06/18/2025	08:24:12	Analyzed I	1180706	06/18/2025	08:24:12	MEG
NELAC	Cyanide Distillation	10/5	ml							23
Si	M 4500-CN ⁻ C-2016	Prepared:	1181274	06/20/2025	08:40:09	Analyzed I	1181274	06/20/2025	08:40:09	CMS
NELAC	CN Dist After Chlorination	10/5	ml							29
T	X 1001	Prepared:	1181132	06/19/2025	09:00:00	Analyzed I	1181132	06/19/2025	09:00:00	МСС
Z	Butyltins Extraction	1/1008	ml							04
T	X 1001	Prepared:	1181132	06/19/2025	09:00:00	Analyzed I	1183887	07/07/2025	17:47:00	DWL
Z	Butyltin Expansion	Entered								34
	2419183 Final Effluent							Received:	06/17/	2025
		06/17/2025								
		Prepared:		06/17/2025	18:17:36	Calculated		06/17/2025	18:17:36	CAL
z	Enviro Fee (per Sampling Group)	Verified								
E	PA 1664B (HEM)	Prepared:	1181494	06/23/2025	07:20:00	Analyzed I	1181494	06/23/2025	07:20:00	BEK
NELAC	O&G HEM Started	Started								

Report Page 19 of 66

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

Printed: 07/09/2025

2419183 Final Effluent Received: 06/17/2025

06/17/2025

EPA 200.2 2.8	Prepared:	1181022	06/19/2025	07:00:00	Analyzed	1181022	06/19/2025	07:00:00	AMC
Z Liquid Metals Digestion	50/50	ml							02
EPA 350.1, Rev. 2.0	Prepared:	1180707	06/18/2025	08:26:56	Analyzed	1180707	06/18/2025	08:26:56	MEG
NELAC Ammonia Distillation	6/6	ml							04
EPA 351.2, Rev 2.0	Prepared:	1180996	06/19/2025	08:25:34	Analyzed	1180996	06/19/2025	08:25:34	MEG
NELAC TKN Block Digestion	20/20	ml							04
SM 2540 C-2015	Prepared:	1181312	06/20/2025	09:05:00	Analyzed	1181312	06/20/2025	09:05:00	JMB
NELAC Total Dissolved Solids Started	Started								
SM 2540 D-2011	Prepared:	1180244	06/18/2025	12:03:00	Analyzed	1180244	06/18/2025	12:03:00	LSM
NELAC TSS Set Started	Started								
SM 5210 B-2016 (TCMP Inhibitor)	Prepared:	1180682	06/18/2025		Analyzed	1180682	06/18/2025	06:14:11	JW1
NELAC BODc Set Started	Started								
SM 9223 B (Colilert-18 QT)-2016	Prepared:	1180718	06/17/2025	18:18:00	Analyzed	1180718	06/17/2025	18:18:00	MDM
NELAC MPN (Colilert-18) Start Non-Pot	STARTED								05

Report Page 20 of 66

Page 17 of 17

Project 1151501

Printed: 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

Qualifiers:

- D Duplicate RPD was higher than expected
- E Estimated Value
- P Spike recovery outside control limits due to matrix effects.
- X Standard reads higher than desired.

S - Standard reads lower than desired

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

Bill Peery, MS, VP Technical Services

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

COM4-A

Printed 07/09/2025

								Printed	07/09/2025	
Analytical Set	1180726							SM 922	23 B (Colilert-	18 QT)-2016
				В	lank					
Parameter_	PrepSet	Reading	MDL	MQL	Units			File		
MPN, Total Coliform, Non-Pot	1180726	<1.0	1.00	1.00	MPN/100m	L		127724240		
				Mici	ro Dup					
Parameter	Sample	Type	Result	Unknown	7		I Init		Range	Criterion
	•				1				_	0.7825
										0.7825
										0.7825
,,,	_ 11,5100	_ up	0.0		ndard		1,111,11,111		*****	*****
Danamatan	Comm.la	Dandina	V.,			Limita0/		Ella		
	•	_				LIIIIIS%				
•						-				
						-				
Standard K.varicola	1180/18	<i>>2</i> 419.0	<i>>24</i> 19.0	MPN/100	ш	-		12//24238		
Analytical Set	1180727							SM 922	23 B (Colilert-	18 QT)-2016
				В	lank					
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File		
MPN, E.coli, Col18 - Non-Pot	1180727	<1.0	1.00	1.00	MPN/100m	L		127724261		
				Mici	ro Dup					
Parameter	Sample	Type	Result	Unknown	7		Unit		Range	Criterion
·									_	0.7825
		-								0.7825
		-							0	0.7825
, ,		•			ndard					
Parameter	Sample	Reading	Known	Units	Recover%	Limits%		File		
·	•	_				_				
•						_				
						_				
		11.0	11.0	14111110	,m					
Analytical Set	1180682							SM 5210) B-2016 (TCN	AP Inhibitor)
				В	lank					
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File		
BOD Carbonaceous	1180682	0.08	0.200	0.500	mg/L			127722576		
BOD Carbonaceous	1180682	0.07	0.200	0.500	mg/L			127723978		
				Dup	olicate					
Parameter Parameter	Sample		Result	Unknown	1		Unit		RPD	Limit%
BOD Carbonaceous	2418671		4.12	4.04			mg/L		1.96	30.0
BOD Carbonaceous	2419153		3.12	2.16			mg/L		36.4 *	30.0
BOD Carbonaceous	2419246		123	107			mg/L		13.9	30.0
PN, Total Coliform, Non-Pot										
Parameter	PronSat	Reading	MDI		•			File		
1 di di il	Перзеі	Reading	MDL	MQL	Omis			THU		

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 22 of 66

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601 Page 2 of 37

Project

1151501

Printed 07/09/2025

				See	d Drop						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
BOD Carbonaceous	1180682	0.250	0.200	0.500	mg/L			127722578			
BOD Carbonaceous	1180682	0.367	0.200	0.500	mg/L			127723980			
				Sta	ndard						
<u>Parameter</u>	Sample	Reading	Known	Units	Recover%	Limits%		File			
BOD Carbonaceous		221	198	mg/L	112	83.7 - 116		127722579			
BOD Carbonaceous		205	198	mg/L	104	83.7 - 116		127723981			
Analytical Set	1181088								SM 4	500-CN	E-2016
				В	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Cyanide, total	1180706	ND	0.00238	0.005	mg/L			127732755			
				(ССВ						
Parameter Parame	PrepSet	Reading	MDL	MQL	Units			File			
Cyanide, total	1180706	ND	0.00238	0.005	mg/L			127732754			
Cyanide, total	1180706	ND	0.00238	0.005	mg/L			127732766			
Cyanide, total	1181088	ND	0.00238	0.005	mg/L			127732788			
				(CCV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Cyanide, total		0.541	0.500	mg/L	108	90.0 - 110		127732753			
Cyanide, total		0.539	0.500	mg/L	108	90.0 - 110		127732763			
Cyanide, total		0.534	0.500	mg/L	107	90.0 - 110		127732774			
Cyanide, total		0.535	0.500	mg/L	107	90.0 - 110		127732782			
Cyanide, total		0.531	0.500	mg/L	106	90.0 - 110		127732789			
				Du	olicate						
<u>Parameter</u>	Sample		Result	Unknown	1		Unit		RPD		Limit%
Cyanide, total	2418221		ND	ND			mg/L				20.0
				I	ICV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Cyanide, total		0.193	0.200	mg/L	96.5	90.0 - 110		127732752			
				LC	S Dup						
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Cyanide, total	1180706	0.375	0.364		0.400	90.0 - 110	93.8	91.0	mg/L	2.98	20.0
				Mat	. Spike						
Parameter	Sample	Spike	Unknown	Known	Units	Recovery %	Limits %	File			
Cyanide, total	2418221	0.376	ND	0.400	mg/L	94.0	90.0 - 110	127732760			
Analytical Set	1181156									EP	A 350.1 2
,				В	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Ammonia Nitrogen	1180707	ND	0.00336	0.020	mg/L			127734324			
-					=						

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 23 of 66

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601 Page 3 of 37

Project

1151501

Printed 07/09/2025

				C	ССВ						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Ammonia Nitrogen	1180707	ND	0.00336	0.020	mg/L			127734318			
Ammonia Nitrogen	1180707	ND	0.00336	0.020	mg/L			127734320			
Ammonia Nitrogen	1180707	ND	0.00336	0.020	mg/L			127734322			
Ammonia Nitrogen	1180707	ND	0.00336	0.020	mg/L			127734330			
Ammonia Nitrogen	1180707	ND	0.00336	0.020	mg/L			127734339			
Ammonia Nitrogen	1180707	ND	0.00336	0.020	mg/L			127734349			
				C	CCV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Ammonia Nitrogen		2.19	2.00	mg/L	110	90.0 - 110		127734301			
Ammonia Nitrogen		2.14	2.00	mg/L	107	90.0 - 110		127734311			
Ammonia Nitrogen		2.13	2.00	mg/L	106	90.0 - 110		127734319			
Ammonia Nitrogen		2.10	2.00	mg/L	105	90.0 - 110		127734321			
Ammonia Nitrogen		2.13	2.00	mg/L	106	90.0 - 110		127734323			
Ammonia Nitrogen		2.18	2.00	mg/L	109	90.0 - 110		127734329			
Ammonia Nitrogen		2.06	2.00	mg/L	103	90.0 - 110		127734337			
Ammonia Nitrogen		2.17	2.00	mg/L	108	90.0 - 110		127734346			
Ammonia Nitrogen		2.14	2.00	mg/L	107	90.0 - 110		127734357			
Ammonia Nitrogen		2.10	2.00	mg/L	105	90.0 - 110		127734366			
Ammonia Nitrogen		2.13	2.00	mg/L	106	90.0 - 110		127734376			
Ammonia Nitrogen		2.20	2.00	mg/L	110	90.0 - 110		127734386			
				Dup	olicate						
Parameter	Sample		Result	Unknown	1		Unit		RPD		Limit%
Ammonia Nitrogen	2418796		0.259	0.240			mg/L		7.62		20.0
Ammonia Nitrogen	2418877		ND	ND			mg/L				20.0
				ı	CV						
Parameter Parameter		Reading	Known	Units	Recover%	Limits%		File			
Ammonia Nitrogen		2.16	2.00	mg/L	108	90.0 - 110		127734300			
				LCS	5 Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Ammonia Nitrogen	1180707	2.18	2.17		2.00	90.0 - 110	109	108	mg/L	0.460	20.0
C				Mat	. Spike				Ü		
<u>Parameter</u>	Sample	Spike	Unknown		Units	Recovery %		File			
Ammonia Nitrogen	2418796	2.73	0.240	2.00	mg/L	124	80.0 - 120	127734334		*	
Ammonia Nitrogen	2418877	2.17	ND	2.00	mg/L	108	80.0 - 120	127734331			
Analytical Set	1181305									EPA	A 351.2 2
				В	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Total Kjeldahl Nitrogen	1180996	ND	0.00712	0.050	mg/L			127738216			
rour ryeldam ranogen	1100/90	1112	5.00/12					12//30210			
				C	СВ						

Email: Kilgore.ProjectManagement@spllabs.com

PrepSet

Reading

MDL

Units

Report Page 24 of 66

File

Parameter

MQL

Page 4 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

				(ССВ						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Total Kjeldahl Nitrogen	1180996	ND	0.00712	0.050	mg/L			127738212			
Total Kjeldahl Nitrogen	1180996	ND	0.00712	0.050	mg/L			127738223			
Total Kjeldahl Nitrogen	1180996	ND	0.00712	0.050	mg/L			127738235			
Total Kjeldahl Nitrogen	1180996	ND	0.00712	0.050	mg/L			127738250			
Total Kjeldahl Nitrogen	1181305	ND	0.00712	0.050	mg/L			127738256			
				(ccv						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Total Kjeldahl Nitrogen		5.22	5.00	mg/L	104	90.0 - 110		127738202			
Total Kjeldahl Nitrogen		5.26	5.00	mg/L	105	90.0 - 110		127738204			
Total Kjeldahl Nitrogen		5.25	5.00	mg/L	105	90.0 - 110		127738206			
Total Kjeldahl Nitrogen		5.23	5.00	mg/L	105	90.0 - 110		127738208			
Total Kjeldahl Nitrogen		5.26	5.00	mg/L	105	90.0 - 110		127738217			
Total Kjeldahl Nitrogen		5.24	5.00	mg/L	105	90.0 - 110		127738228			
Total Kjeldahl Nitrogen		5.28	5.00	mg/L	106	90.0 - 110		127738237			
Total Kjeldahl Nitrogen		5.30	5.00	mg/L	106	90.0 - 110		127738245			
Total Kjeldahl Nitrogen		5.26	5.00	mg/L	105	90.0 - 110		127738251			
Total Kjeldahl Nitrogen		5.33	5.00	mg/L	107	90.0 - 110		127738257			
				Dup	olicate						
Parameter	Sample		Result	Unknowi	7		Unit		RPD		Limit%
Total Kjeldahl Nitrogen	2417039		ND	ND			mg/L				20.0
Total Kjeldahl Nitrogen	2418242		ND	ND			mg/L				20.0
, c				I	ICV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Total Kjeldahl Nitrogen		4.77	5.00	mg/L	95.4	90.0 - 110		127738201			
rotai rejettain ruttogen		4.77	5.00	-	S Dup	70.0 110		127750201			
Danamatan	Duan Cat	I CC	LCCD		•	Timita0/	1.000/	LCCD0/	Iluita	D D D	T im 140/
Parameter Total Kieldahl Nitra con	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Total Kjeldahl Nitrogen	1180996	4.55	4.55		5.00	90.0 - 110	91.0	91.0	mg/L	0	20.0
					. Spike						
<u>Parameter</u>	Sample	Spike	Unknown		Units	Recovery %		File			
Total Kjeldahl Nitrogen	2417039	4.87	ND	5.00	mg/L	97.4	80.0 - 120	127738222			
Total Kjeldahl Nitrogen	2418242	4.79	ND	5.00	mg/L	95.8	80.0 - 120	127738226			
Analytical Set	1181355									EP	A 420.4 1
				В	lank						
Parameter Parame	PrepSet	Reading	MDL	MQL	Units			File			
Phenolics, Total Recoverable	1180988	ND	0.003	0.005	mg/L			127739176			
				(ССВ						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Phenolics, Total Recoverable	1180988	0.005	0.003	0.005	mg/L			127739175			
Phenolics, Total Recoverable	1180988	ND	0.003	0.005	mg/L			127739186			
Phenolics, Total Recoverable	1180988	ND	0.003	0.005	mg/L			127739198			
•					_						

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 25 of 66

Page 5 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

				C	ССВ						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Phenolics, Total Recoverable	1181355	ND	0.003	0.005	mg/L			127739202			
				C	CCV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Phenolics, Total Recoverable		0.212	0.200	mg/L	106	90.0 - 110		127739174			
Phenolics, Total Recoverable		0.211	0.200	mg/L	106	90.0 - 110		127739183			
Phenolics, Total Recoverable		0.213	0.200	mg/L	106	90.0 - 110		127739194			
Phenolics, Total Recoverable		0.210	0.200	mg/L	105	90.0 - 110		127739201			
Phenolics, Total Recoverable		0.215	0.200	mg/L	108	90.0 - 110		127739204			
				Dup	olicate						
<u>Parameter</u>	Sample		Result	Unknown	1		Unit		RPD		Limit%
Phenolics, Total Recoverable	2418808		0.079	0.077			mg/L		2.56		20.0
Phenolics, Total Recoverable	2418809		0.073	0.074			mg/L		1.36		20.0
				I	CV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Phenolics, Total Recoverable		0.214	0.200	mg/L	107	90.0 - 110		127739173			
				LCS	S Dup						
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Phenolics, Total Recoverable	1180988	0.207	0.214		0.200	90.0 - 110	104	107	mg/L	3.33	20.0
				Mat	. Spike						
<u>Parameter</u>	Sample	Spike	Unknown	Known	Units	Recovery %	Limits %	File			
Phenolics, Total Recoverable	2418808	0.308	0.077	0.200	mg/L	116	90.0 - 110	127739203		*	
Phenolics, Total Recoverable	2418809	0.271	0.074	0.200	mg/L	98.5	90.0 - 110	127739184			
Analytical Set 1	181601								SM 4:	500-CN	G-2016
,				В	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Cyanide After Chlorination	1181274	ND	0.00119	0.0025	mg/L			127746864			
				C	ССВ						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Cyanide After Chlorination	1181601	ND	0.00119	0.0025	mg/L			127746881			
				C	CCV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Cyanide After Chlorination		0.528	0.500	mg/L	106	90.0 - 110		127746844			
Cyanide After Chlorination		0.517	0.500	mg/L	103	90.0 - 110		127746845			
Cyanide After Chlorination		0.522	0.500	mg/L	104	90.0 - 110		127746847			
Cyanide After Chlorination		0.524	0.500	mg/L	105	90.0 - 110		127746849			
Cyanide After Chlorination		0.523	0.500	mg/L	105	90.0 - 110		127746855			
Cyanide After Chlorination		0.520	0.500	mg/L	104	90.0 - 110		127746866			
Cyanide After Chlorination		0.523	0.500	mg/L	105	90.0 - 110		127746880			
Cyanide After Chlorination		0.524	0.500	mg/L	105	90.0 - 110		127746882			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 26 of 66

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

Printed 07/09/2025

				Dup	olicate						
<u>Parameter</u>	Sample		Result	Unknown	1		Unit		RPD		Limit%
Cyanide After Chlorination	2419182 2419728		ND ND	ND ND			mg/L				20.0
Cyanide After Chlorination	2419728		ND		CV		mg/L				20.0
Pagamatan.		Dandina	V			Timita0/		Eile			
<u>Parameter</u> Cyanide After Chlorination		Reading 0.189	<i>Known</i> 0.200	<i>Units</i> mg/L	Recover% 94.5	<i>Limits%</i> 90.0 - 110		<i>File</i> 127746843			
Cyumuo Titor Cinormanon		0.105	0.200	-	5 Dup	70.0 110		12// 100 15			
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Cyanide After Chlorination	1181274	0.191	0.187		0.200	90.0 - 110	95.5	93.5	mg/L	2.12	20.0
				Mat	. Spike						
Parameter	Sample	Spike	Unknown	Known	Units	Recovery %	Limits %	File			
Cyanide After Chlorination	2419182	0.355	ND	0.400	mg/L	88.8	90.0 - 110	127746870		*	
Cyanide After Chlorination	2419728	0.377	ND	0.400	mg/L	94.2	90.0 - 110	127746879			
Analytical Set	1181136									SM 254	0 D-2020
				ВІ	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Total Suspended Solids	1181136	ND	2	2	mg/L			127733384			
				Cont	trolBlk						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Total Suspended Solids	1181136	0			grams			127733383			
				Dup	olicate						
<u>Parameter</u>	Sample		Result	Unknown	1		Unit		RPD		Limit%
Total Suspended Solids	2419184		378	364			mg/L		3.77		20.0
Total Suspended Solids	2419221		296	356			mg/L		18.4		20.0
Total Suspended Solids	2419312		973	1050	66		mg/L		7.61		20.0
					.CS						
Parameter Total Susmanded Solida	PrepSet	Reading		Known	Units	Recover%	Limits	File			
Total Suspended Solids	1181136	50.0		50.0	mg/L	100	90.0 - 110	127733417			
					ndard						
<u>Parameter</u>	Sample	Reading	Known	Units	Recover%	Limits%		File			
Total Suspended Solids		100	100	mg/L	100	90.0 - 110		127733416			
Analytical Set	1181699								EF	PA 1664	B (HEM)
				ВІ	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Oil and Grease (HEM)	1181699	1.00	0.804	4.00	mg/L			127748649			
				Cont	trolBlk						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Oil and Grease (HEM)	1181699	0.0004			grams			127748648			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 27 of 66

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601 Page 7 of 37

Project

1151501

Printed 07/09/2025

				Cont	trolBlk						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Oil and Grease (HEM)	1181699	0.0002			grams .CS			127748673			
Paramatar	Dran Cat	Donding				Pagarar0/	Limita	File			
<u>Parameter</u> Oil and Grease (HEM)	<i>PrepSet</i> 1181699	Reading 32.0		<i>Known</i> 40.0	<i>Units</i> mg/L	Recover% 80.0	<i>Limits</i> 78.0 - 114	127748650			
				Ņ	MS						
<u>Parameter</u>	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Oil and Grease (HEM)	2419423	32.7	0	1.10	40.0	78.0 - 114	81.8		mg/L		20.0
Analytical Set	1181751									SM 254	0 C-2020
				ВІ	ank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Total Dissolved Solids	1181751	ND	5.00	5.00	mg/L			127749793			
					trolBlk						
<u>Parameter</u> Total Dissolved Solids	<i>PrepSet</i> 1181751	Reading 0	MDL	MQL	Units grams			<i>File</i> 127749780			
Total Dissolved Solids	1101/31	v		Dun	olicate			12//49/60			
Parameter	Sample		Result	Unknown			Unit		RPD		Limit%
Total Dissolved Solids	2418873		92.0	96.0			mg/L		4.26		20.0
				L	.cs						
<u>Parameter</u>	PrepSet	Reading		Known	Units	Recover%	Limits	File			
Total Dissolved Solids	1181751	202		200	mg/L	101	85.0 - 115	127749781			
Analytical Set	1181102									EPA	300.0 2.1
				AWRL	_/LOQ C						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Fluoride Nitrate-Nitrogen Total		0.102 0.0262	0.100 0.0226	mg/L mg/L	102 116	70.0 - 130 70.0 - 130		127733036 127733036			
Wildle-Wildgen Total		0.0202	0.0220	_	ank	70.0 - 150		127755050			
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Chloride	1181102	ND	0.0593	0.300	mg/L			127733037			
Fluoride	1181102	ND	0.0112	0.100	mg/L			127733037			
Nitrate-Nitrogen Total Sulfate	1181102 1181102	ND ND	0.00331 0.0605	0.0226 0.300	mg/L mg/L			127733037 127733037			
Surface	1101102	ND	0.0005		CB			12//5505/			
Parameter Parame	PrepSet	Reading	MDL	MQL	Units			File			
Chloride	1181102	0.029	0.0593	0.300	mg/L			127733033			
Chloride	1181102	0	0.0593	0.300	mg/L			127733053			
Chloride	1101100										
Fluoride	1181102 1181102	0.082 0	0.0593 0.0112	0.300 0.100	mg/L mg/L			127733067 127733033			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 28 of 66

The Science of Sure

Page 8 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

				C	СВ						
Parameter Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Fluoride	1181102	0	0.0112	0.100	mg/L			127733067			
Nitrate-Nitrogen Total	1181102	0	0.00331	0.0226	mg/L			127733033			
Nitrate-Nitrogen Total	1181102	0	0.00331	0.0226	mg/L			127733053			
Nitrate-Nitrogen Total	1181102	0.0079	0.00331	0.0226	mg/L			127733067			
Sulfate	1181102	0	0.0605	0.300	mg/L			127733033			
Sulfate	1181102	0	0.0605	0.300	mg/L			127733053			
Sulfate	1181102	0	0.0605	0.300	mg/L			127733067			
				C	CV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Chloride		10.2	10.0	mg/L	102	90.0 - 110		127733032			
Chloride		10.3	10.0	mg/L	103	90.0 - 110		127733052			
Chloride		10.3	10.0	mg/L	103	90.0 - 110		127733061			
Chloride		10.8	10.0	mg/L	108	90.0 - 110		127733062			
Chloride		10.7	10.0	mg/L	107	90.0 - 110		127733066			
Fluoride		10.8	10.0	mg/L	108	90.0 - 110		127733032			
Fluoride		10.7	10.0	mg/L	107	90.0 - 110		127733052			
Fluoride		10.4	10.0	mg/L	104	90.0 - 110		127733061			
Fluoride		10.6	10.0	mg/L	106	90.0 - 110		127733062			
Fluoride		10.8	10.0	mg/L ~	108	90.0 - 110		127733066			
Nitrate-Nitrogen Total		2.39	2.26	mg/L	106	90.0 - 110		127733032			
Nitrate-Nitrogen Total		2.43	2.26	mg/L	108	90.0 - 110		127733052			
Nitrate-Nitrogen Total		2.42	2.26	mg/L	107	90.0 - 110		127733061			
Nitrate-Nitrogen Total		2.47	2.26	mg/L	109	90.0 - 110		127733062			
Nitrate-Nitrogen Total		2.48	2.26	mg/L	110	90.0 - 110		127733066			
Sulfate		9.40	10.0	mg/L	94.0	90.0 - 110		127733032			
Sulfate		9.55 9.58	10.0	mg/L	95.5 95.8	90.0 - 110		127733052			
Sulfate Sulfate		9.58 10.2	10.0 10.0	mg/L	95.8 102	90.0 - 110 90.0 - 110		127733061 127733062			
Sulfate		9.76	10.0	mg/L mg/L	97.6	90.0 - 110		127733062			
Surface		9.70	10.0		5 Dup	90.0 - 110		12//33000			
Parameter 1	B	LOG	I CCD			F 100 1000/	I CCO/	L CCD0/	TT. 30.	nnn	T 1 1/0/
<u>Parameter</u> Chloride	<i>PrepSet</i> 1181102	<i>LCS</i> 5.46	<i>LCSD</i> 5.43		<i>Known</i> 5.00	<i>Limits%</i> 85.0 - 115	LCS% 109	<i>LCSD%</i> 109	Units mg/I	<i>RPD</i> 0.551	<i>Limit%</i> 20.0
									mg/L		
Fluoride	1181102 1181102	5.69 1.28	5.59 1.28		5.00 1.13	88.0 - 118 86.3 - 117	114 113	112 113	mg/L	1.77 0	20.0 20.0
Nitrate-Nitrogen Total Sulfate	1181102	5.69	5.70		5.00	85.4 - 124	113	114	mg/L mg/L	0.176	20.0
Surface	1161102	3.09	3.70	M	ISD	65.4 - 124	114	114	mg/L	0.170	20.0
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
<u>Chloride</u>	Sample 2416501	255	252	145	100	80.0 - 120	110	107	mg/L	2.76	20.0
Fluoride	2416501	94.1	94.4	ND	100	80.0 - 120	94.1	94.4	mg/L	0.318	20.0
Nitrate-Nitrogen Total	2416501	26.4	26.0	ND	22.6	80.0 - 120 80.0 - 120	117	115	mg/L	1.53	20.0
Sulfate	2416501	883	878	760	100	80.0 - 120	123 *	118	mg/L	4.15	20.0
Chloride	2417348	59.8	62.3	49.0	10.0	80.0 - 120	108	133 *	mg/L	20.7 *	20.0
Fluoride	2417348	9.52	9.80	ND	10.0	80.0 - 120	95.2	98.0	mg/L	2.90	20.0
1 monde	471/370	7.52	2.00	1112	10.0	30.0 - 120	J.J.L	70.0	1118/12	2.70	20.0

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 29 of 66

Page 9 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

UNK MSD% Sample MS **MSD** Known Limits MS% Units **RPD** Limit% Parameter 2.74 2.26 80.0 - 120 Nitrate-Nitrogen Total 2417348 2.70 0.169 112 114 mg/L 1.57 20.0 40.7 28.5 80.0 - 120 104 122 * Sulfate 2417348 38.9 10.0 20.0 mg/L 15.9 1180817 EPA 245.7 2 **Analytical Set** Blank PrepSet Parameter 1 4 1 Reading MDL MOI Units File Mercury, Total (low level) 1180743 ND 1.20 4.00 ng/L 127726103 CCV Parameter Reading Known Units Recover% Limits% File 24.7 25.0 98.8 87.0 - 113 127726073 Mercury, Total (low level) ng/L ng/L Mercury, Total (low level) 26.4 25.0 106 87.0 - 113 127726084 Mercury, Total (low level) 26.3 105 87.0 - 113 127726095 25.0 ng/L Mercury, Total (low level) 26.1 25.0 ng/L 104 87.0 - 113 127726106 Mercury, Total (low level) 26.4 25.0 ng/L 106 87.0 - 113 127726114 26.3 25.0 105 87.0 - 113 Mercury, Total (low level) ng/L 127726125 Mercury, Total (low level) 27.2 25.0 87.0 - 113 ng/L 109 127726131 ICL Reading Units Recover% Limits% File Parameter Known 90.0 - 110 127726070 Mercury, Total (low level) 47.2 50.0 ng/L 94.4 ICV Reading Parameter Known Units Recover% Limits% File 127726071 Mercury, Total (low level) 24.2 25.0 ng/L 96.8 90.0 - 110 LCS Dup LCSD LCS% RPD PrepSet LCS Known Limits% LCSD% Parameter 1 4 1 Units Limit% Mercury, Total (low level) 1180743 19.0 19.1 25.0 76.0 - 113 76.0 76.4 ng/L 0.525 18.0 MSD MS MSD UNK Known Limits MS% MSD% Units RPD Limit% Parameter Sample Mercury, Total (low level) 2418148 22.0 23.7 ND 26.6 63.0 - 111 82.7 89.1 7.44 18.0 ng/L Mercury, Total (low level) 2418163 22.4 ND 26.6 63.0 - 111 84.2 26.6 100 ng/L 17.1 18.0 1181011 SM 3500-Cr B-2011 **Analytical Set** Blank MQL MDL Units File Parameter PrepSet Reading 1181011 3.00 127731452 Hexavalent Chromium ND 0.550 ug/L Hexavalent Chromium 1181011 ND 0.550 3.00 ug/L 127731460 CCV Parameter Reading Known Units Recover% Limits% File

MSD

Email: Kilgore.ProjectManagement@spllabs.com

102

102

90.0 - 110

90.0 - 110

127731453

127731461

Report Page 30 of 66

Hexavalent Chromium

Hexavalent Chromium

ug/L

ug/L

80.0

80.0

81.5

81.5

Page 10 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

					LC	S Dup						
<u>Parameter</u>		PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Hexavalent Ch	romium	1181011	82.5	82.2		80.0	85.0 - 115	103	103	ug/L	0.364	15.0
					ı	MSD						
<u>Parameter</u>		Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Hexavalent Ch	romium	2419182	9.97	16.4	ND	80.0	70.0 - 130	12.5 *	20.5 *	ug/L	48.8 *	20.0
	Analytical Set	1181171									EPA 2	200.7 4.4
					В	Blank						
<u>Parameter</u>		PrepSet	Reading	MDL	MQL	Units			File			
Phosphorus		1181022	ND	0.0353	0.040	mg/L			127734733			
					•	CCV						
<u>Parameter</u>			Reading	Known	Units	Recover%	Limits%		File			
Phosphorus			1.03	1.00	mg/L	103	90.0 - 110		127734732			
Phosphorus			1.04	1.00	mg/L	104	90.0 - 110		127734742			
Phosphorus			1.04	1.00	mg/L	104	90.0 - 110		127734750			
						ICL						
<u>Parameter</u>			Reading	Known	Units _	Recover%	Limits%		File			
Phosphorus			25.4	25.0	mg/L	102	95.0 - 105		127734730			
						ICV						
<u>Parameter</u>			Reading	Known	Units	Recover%	Limits%		File			
Phosphorus			1.06	1.00	mg/L	106	90.0 - 110		127734731			
					LC	S Dup						
<u>Parameter</u>		PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Phosphorus		1181022	4.10	4.13		4.00	85.0 - 115	102	103	mg/L	0.729	25.0
					ı	MSD						
<u>Parameter</u>		Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Phosphorus		2417205	4.94	4.98	0.924	4.00	75.0 - 125	100	101	mg/L	0.991	25.0
Phosphorus		2419422	4.12	4.11	ND	4.00	75.0 - 125	103	103	mg/L	0.243	25.0
	Analytical Set	1181841									EPA 2	200.7 4.4
					В	Blank						
<u>Parameter</u>		PrepSet	Reading	MDL	MQL	Units			File			
Phosphorus		1181643	ND	0.0353	0.040	mg/L			127751623			
					(CCV						
<u>Parameter</u>			Reading	Known	Units	Recover%	Limits%		File			
Phosphorus			1.02	1.00	mg/L	102	90.0 - 110		127751622			
Phosphorus			0.994	1.00	mg/L	99.4	90.0 - 110		127751632			
Phosphorus			1.00	1.00	mg/L	100	90.0 - 110		127751641			
						ICL						
<u>Parameter</u>			Reading	Known	Units	Recover%	Limits%		File			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 31 of 66

City of Commerce/WastewaterPlt **Timothy Jones** 1119 Alamo St. Commerce, TX 75428-2601

Page 11 of 37

Project 1151501

Printed 07/09/2025

					ICL						
Parameter Parameter		Reading	Known	Units	Recover%	Limits%		File			
Phosphorus		25.1	25.0	mg/L	100	95.0 - 105		127751620			
					ICV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Phosphorus		1.06	1.00	mg/L	106	90.0 - 110		127751621			
				LC	S Dup						
Parameter Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Phosphorus	1181643	4.07	4.06		4.00	85.0 - 115	102	102	mg/L	0.246	25.0
				ľ	MSD						
Parameter Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Phosphorus	2419182	6.24	6.23	2.29	4.00	75.0 - 125	98.8	98.5	mg/L	0.253	25.0
									1		

EPA 200.8 5.4 1181977 **Analytical Set** Blank PrepSet MDL MQLUnits File Reading Parameter ND 0.0039 0.005 mg/L Aluminum, Total 1181643 127755412 Aluminum, Total 1181643 ND 0.0039 0.005 mg/L 127755426 Antimony, Total ND 0.000847 0.003 127755412 1181643 mg/L Antimony, Total 1181643 0.000847 0.003 127755426 0.00109 mg/L 0.000902 0.001 127755412 Arsenic, Total 1181643 ND mg/L Arsenic, Total 1181643 ND 0.000902 0.001 mg/L 127755426 Barium, Total 1181643 ND 0.00207 0.005 mg/L 127755412 Barium, Total 1181643 0.00207 ND 0.005 mg/L 127755426 Beryllium, Total 1181643 ND 0.000162 0.001 mg/L 127755412 Beryllium, Total 0.000315 0.000162 0.001 127755426 1181643 mg/L Cadmium, Total 1181643 ND 0.00012 0.001 mg/L 127755412 Cadmium, Total 1181643 ND 0.00012 0.001 mg/L 127755426 Chromium, Total 1181643 ND 0.000392 0.001 mg/L 127755412 0.000392 Chromium, Total 1181643 0.000523 0.001 mg/L 127755426 0.000325 1181643 ND 0.001 mg/L 127755412 Copper, Total 0.000325 Copper, Total 1181643 0.000644 0.001 mg/L127755426 Lead, Total 1181643 ND 0.000549 0.001 mg/L 127755412 Lead, Total 1181643 ND 0.000549 0.001 127755426 mg/L Nickel, Total 0.000154 1181643 ND 0.001 mg/L 127755412 Nickel, Total 1181643 ND 0.000154 0.001 mg/L 127755426 0.000276 Silver, Total 1181643 ND 0.001 mg/L 127755412 0.000276 0.001 Silver, Total 1181643 ND mg/L 127755426 0.000966 0.001 127755412 Thallium, Total 1181643 ND mg/L Thallium, Total 1181643 ND 0.000966 0.001 mg/L 127755426 Zinc, Total 1181643 ND 0.000844 0.001 mg/L 127755412 Zinc, Total 1181643 ND 0.000844 0.001 mg/L 127755426 CCV Limits% File Units Recover% **Parameter** Reading Known

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 32 of 66

The Science of Sure

Page 12 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

CCV

Parameter	Reading	Known	Units	Recover%	Limits%	File
Aluminum, Total	0.0507	0.05	mg/L	101	90.0 - 110	127755425
Aluminum, Total	0.0506	0.05	mg/L	101	90.0 - 110	127755436
Aluminum, Total	0.0503	0.05	mg/L	101	90.0 - 110	127755445
Aluminum, Total	0.0512	0.05	mg/L	102	90.0 - 110	127755454
Aluminum, Total	0.0507	0.05	mg/L	101	90.0 - 110	127755465
Aluminum, Total	0.0495	0.05	mg/L	99.0	90.0 - 110	127755496
Aluminum, Total	0.0499	0.05	mg/L	99.8	90.0 - 110	127755507
Aluminum, Total	0.0493	0.05	mg/L	98.6	90.0 - 110	127755515
Antimony, Total	0.0489	0.05	mg/L	97.8	90.0 - 110	127755425
Antimony, Total	0.0498	0.05	mg/L	99.6	90.0 - 110	127755436
Antimony, Total	0.0487	0.05	mg/L	97.4	90.0 - 110	127755445
Antimony, Total	0.0486	0.05	mg/L	97.2	90.0 - 110	127755454
Antimony, Total	0.0479	0.05	mg/L	95.8	90.0 - 110	127755465
Antimony, Total	0.0467	0.05	mg/L	93.4	90.0 - 110	127755496
Antimony, Total	0.0473	0.05	mg/L	94.6	90.0 - 110	127755507
Antimony, Total	0.0473	0.05	mg/L	94.6	90.0 - 110	127755515
Arsenic, Total	0.0496	0.05	mg/L	99.2	90.0 - 110	127755425
Arsenic, Total	0.0506	0.05	mg/L	101	90.0 - 110	127755436
Arsenic, Total	0.0495	0.05	mg/L	99.0	90.0 - 110	127755445
Arsenic, Total	0.0484	0.05	mg/L	96.8	90.0 - 110	127755454
Barium, Total	0.0501	0.05	mg/L	100	90.0 - 110	127755425
Barium, Total	0.049	0.05	mg/L	98.0	90.0 - 110	127755436
Barium, Total	0.0503	0.05	mg/L	101	90.0 - 110	127755445
Barium, Total	0.0503	0.05	mg/L	101	90.0 - 110	127755454
Barium, Total	0.0503	0.05	mg/L	101	90.0 - 110	127755465
Barium, Total	0.0481	0.05	mg/L	96.2	90.0 - 110	127755496
Barium, Total	0.0494	0.05	mg/L	98.8	90.0 - 110	127755507
Barium, Total	0.0499	0.05	mg/L	99.8	90.0 - 110	127755515
Beryllium, Total	0.0482	0.05	mg/L	96.4	90.0 - 110	127755425
Beryllium, Total	0.0483	0.05	mg/L	96.6	90.0 - 110	127755436
Beryllium, Total	0.0489	0.05	mg/L	97.8	90.0 - 110	127755445
Beryllium, Total	0.0485	0.05	mg/L	97.0	90.0 - 110	127755454
Beryllium, Total	0.0484	0.05	mg/L	96.8	90.0 - 110	127755465
Beryllium, Total	0.0484	0.05	mg/L	96.8	90.0 - 110	127755496
Beryllium, Total	0.0486	0.05	mg/L	97.2	90.0 - 110	127755507
Beryllium, Total	0.0487	0.05	mg/L	97.4	90.0 - 110	127755515
Cadmium, Total	0.0489	0.05	mg/L	97.8	90.0 - 110	127755425
Cadmium, Total	0.0494	0.05	mg/L	98.8	90.0 - 110	127755436
Cadmium, Total	0.0496	0.05	mg/L	99.2	90.0 - 110	127755445
Cadmium, Total	0.0491	0.05	mg/L	98.2	90.0 - 110	127755454
Cadmium, Total	0.0488	0.05	mg/L	97.6	90.0 - 110	127755465
Cadmium, Total	0.047	0.05	mg/L	94.0	90.0 - 110	127755496
Cadmium, Total	0.048	0.05	mg/L	96.0	90.0 - 110	127755507
Cadmium, Total	0.0478	0.05	mg/L	95.6	90.0 - 110	127755515
Chromium, Total	0.0505	0.05	mg/L	101	90.0 - 110	127755425
Cinomidii, 10tai	0.0303	0.03	шЯ.Г	101	>0.0 - 110	141133443

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 33 of 66

The Science of Sure

Page 13 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

CCV

			C	CV		
<u>Parameter</u>	Reading	Known	Units	Recover%	Limits%	File
Chromium, Total	0.051	0.05	mg/L	102	90.0 - 110	127755436
Chromium, Total	0.0501	0.05	mg/L	100	90.0 - 110	127755445
Chromium, Total	0.0504	0.05	mg/L	101	90.0 - 110	127755454
Chromium, Total	0.0505	0.05	mg/L	101	90.0 - 110	127755465
Chromium, Total	0.0496	0.05	mg/L	99.2	90.0 - 110	127755496
Chromium, Total	0.0502	0.05	mg/L	100	90.0 - 110	127755507
Chromium, Total	0.0497	0.05	mg/L	99.4	90.0 - 110	127755515
Copper, Total	0.0497	0.05	mg/L	99.4	90.0 - 110	127755425
Copper, Total	0.0502	0.05	mg/L	100	90.0 - 110	127755436
Copper, Total	0.0486	0.05	mg/L	97.2	90.0 - 110	127755445
Copper, Total	0.0491	0.05	mg/L	98.2	90.0 - 110	127755454
Copper, Total	0.0492	0.05	mg/L	98.4	90.0 - 110	127755465
Copper, Total	0.0489	0.05	mg/L	97.8	90.0 - 110	127755476
Copper, Total	0.048	0.05	mg/L	96.0	90.0 - 110	127755486
Copper, Total	0.0484	0.05	mg/L	96.8	90.0 - 110	127755496
Copper, Total	0.0487	0.05	mg/L	97.4	90.0 - 110	127755507
Copper, Total	0.0487	0.05	mg/L	97.4	90.0 - 110	127755515
Lead, Total	0.0502	0.05	mg/L	100	90.0 - 110	127755425
Lead, Total	0.0523	0.05	mg/L	105	90.0 - 110	127755436
Lead, Total	0.0493	0.05	mg/L	98.6	90.0 - 110	127755445
Lead, Total	0.0493	0.05	mg/L	98.6	90.0 - 110	127755454
Lead, Total	0.0487	0.05	mg/L	97.4	90.0 - 110	127755465
Lead, Total	0.0473	0.05	mg/L	94.6	90.0 - 110	127755476
Lead, Total	0.0489	0.05	mg/L	97.8	90.0 - 110	127755486
Lead, Total	0.0479	0.05	mg/L	95.8	90.0 - 110	127755496
Lead, Total	0.0482	0.05	mg/L	96.4	90.0 - 110	127755507
Lead, Total	0.0471	0.05	mg/L	94.2	90.0 - 110	127755515
Nickel, Total	0.0507	0.05	mg/L	101	90.0 - 110	127755425
Nickel, Total	0.0501	0.05	mg/L	100	90.0 - 110	127755436
Nickel, Total	0.0495	0.05	mg/L	99.0	90.0 - 110	127755445
Nickel, Total	0.0496	0.05	mg/L	99.2	90.0 - 110	127755454
Silver, Total	0.0516	0.05	mg/L	103	90.0 - 110	127755425
Silver, Total	0.0519	0.05	mg/L	104	90.0 - 110	127755436
Silver, Total	0.052	0.05	mg/L	104	90.0 - 110	127755445
Silver, Total	0.0518	0.05	mg/L	104	90.0 - 110	127755454
Thallium, Total	0.0498	0.05	mg/L	99.6	90.0 - 110	127755425
Thallium, Total	0.0517	0.05	mg/L	103	90.0 - 110	127755436
Thallium, Total	0.0494	0.05	mg/L	98.8	90.0 - 110	127755445
Thallium, Total	0.0489	0.05	mg/L	97.8	90.0 - 110	127755454
Zinc, Total	0.0501	0.05	mg/L	100	90.0 - 110	127755425
Zinc, Total	0.0514	0.05	mg/L	103	90.0 - 110	127755436
Zinc, Total	0.0495	0.05	mg/L	99.0	90.0 - 110	127755445
Zinc, Total	0.0504	0.05	mg/L	101	90.0 - 110	127755454
Zinc, Total	0.0491	0.05	mg/L mg/L	98.2	90.0 - 110	127755465
	5.5.71	0.05		J U.Z.		,,55-105

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 34 of 66

The Science of Sure

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601 Page 14 of 37

Project 1151501

Printed 07/09/2025

ICV											
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Aluminum, Total		0.0501	0.05	mg/L	100	90.0 - 110		127755420			
Antimony, Total		0.0532	0.05	mg/L	106	90.0 - 110		127755420			
Arsenic, Total		0.0484	0.05	mg/L	96.8	90.0 - 110		127755420			
Barium, Total		0.050	0.05	mg/L	100	90.0 - 110		127755420			
Beryllium, Total		0.0491	0.05	mg/L	98.2	90.0 - 110		127755420			
Cadmium, Total		0.050	0.05	mg/L	100	90.0 - 110		127755420			
Chromium, Total		0.0508	0.05	mg/L	102	90.0 - 110		127755420			
Copper, Total		0.0501	0.05	mg/L	100	90.0 - 110		127755420			
Lead, Total		0.0508	0.05	mg/L	102	90.0 - 110		127755420			
Nickel, Total		0.0502	0.05	mg/L	100	90.0 - 110		127755420			
Silver, Total		0.0516	0.05	mg/L	103	90.0 - 110		127755420			
Thallium, Total		0.0504	0.05	mg/L	101	90.0 - 110		127755420			
Zinc, Total		0.0503	0.05	mg/L	101	90.0 - 110		127755420			
				LCS	Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Aluminum, Total	1181643	0.507	0.504		0.500	85.0 - 115	101	101	mg/L	0.593	20.0
Antimony, Total	1181643	0.508	0.507		0.500	85.0 - 115	102	101	mg/L	0.197	20.0
Arsenic, Total	1181643	0.493	0.484		0.500	85.0 - 115	98.6	96.8	mg/L	1.84	20.0
Barium, Total	1181643	0.484	0.483		0.500	85.0 - 115	96.8	96.6	mg/L	0.207	20.0
Beryllium, Total	1181643	0.194	0.195		0.200	85.0 - 115	97.0	97.5	mg/L	0.514	20.0
Cadmium, Total	1181643	0.243	0.244		0.250	85.0 - 115	97.2	97.6	mg/L	0.411	20.0
Chromium, Total	1181643	0.501	0.500		0.500	85.0 - 115	100	100	mg/L	0.200	20.0
Copper, Total	1181643	0.493	0.494		0.500	85.0 - 115	98.6	98.8	mg/L	0.203	20.0
Lead, Total	1181643	0.476	0.480		0.500	85.0 - 115	95.2	96.0	mg/L	0.837	20.0
Nickel, Total	1181643	0.496	0.496		0.500	85.0 - 115	99.2	99.2	mg/L	0	20.0
Silver, Total	1181643	0.0914	0.0882		0.100	85.0 - 115	91.4	88.2	mg/L	3.56	20.0
Thallium, Total	1181643	0.495	0.495		0.500	85.0 - 115	99.0	99.0	mg/L	0	20.0
Zinc, Total	1181643	0.502	0.505		0.500	85.0 - 115	100	101	mg/L	0.596	20.0
				L	DR				Č		
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Aluminum, Total		10.1	10	mg/L	101	90.0 - 110		127755422			
Antimony, Total		1.02	1	mg/L	102	90.0 - 110		127755422			
Arsenic, Total		9.63	10	mg/L	96.3	90.0 - 110		127755422			
Barium, Total		10.0	10	mg/L	100	90.0 - 110		127755422			
Beryllium, Total		9.28	10	mg/L	92.8	90.0 - 110		127755422			
Cadmium, Total		10.0	10	mg/L	100	90.0 - 110		127755422			
Chromium, Total		9.78	10	mg/L	97.8	90.0 - 110		127755422			
Copper, Total		9.50	10	mg/L	95.0	90.0 - 110		127755422			
Lead, Total		9.48	10	mg/L	94.8	90.0 - 110		127755422			
Nickel, Total		9.62	10	mg/L	96.2	90.0 - 110		127755422			
Zinc, Total		9.70	10	mg/L	97.0	90.0 - 110		127755422			
200, 1000		2.,0		-	Check	20.0 110		12,,00 122			

Email: Kilgore.ProjectManagement@spllabs.com

Recover%

Limits%

File

Report Page 35 of 66

Parameter

Units

Reading Known

Page 15 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

MRL Check

<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Copper, Total		0.00112	0.001	mg/L	112	25.0 - 175		127755421			
Lead, Total		0.000984	0.001	mg/L	98.4	85.0 - 115		127755421			
				М	ISD						
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Aluminum, Total	2419182	0.603	0.603	0.115	0.500	70.0 - 130	97.6	97.6	mg/L	0	20.0
Antimony, Total	2419182	0.517	0.512	0.00134	0.500	70.0 - 130	103	102	mg/L	0.974	20.0
Arsenic, Total	2419182	0.492	0.484	0.00241	0.500	70.0 - 130	97.9	96.3	mg/L	1.65	20.0
Barium, Total	2419182	0.519	0.516	0.044	0.500	70.0 - 130	95.0	94.4	mg/L	0.634	20.0
Beryllium, Total	2419182	0.197	0.195	0.00018	0.200	70.0 - 130	98.4	97.4	mg/L	1.02	20.0
Cadmium, Total	2419182	0.241	0.242	ND	0.250	70.0 - 130	96.4	96.8	mg/L	0.414	20.0
Chromium, Total	2419182	0.497	0.491	0.00126	0.500	70.0 - 130	99.1	97.9	mg/L	1.22	20.0
Copper, Total	2419182	0.499	0.495	0.014	0.500	70.0 - 130	97.0	96.2	mg/L	0.828	20.0
Lead, Total	2419182	0.478	0.480	ND	0.500	70.0 - 130	95.6	96.0	mg/L	0.418	20.0
Nickel, Total	2419182	0.487	0.483	0.00226	0.500	70.0 - 130	96.9	96.1	mg/L	0.829	20.0
Silver, Total	2419182	0.089	0.0879	ND	0.100	70.0 - 130	89.0	87.9	mg/L	1.24	20.0
Thallium, Total	2419182	0.488	0.494	ND	0.500	70.0 - 130	97.6	98.8	mg/L	1.22	20.0
Zinc, Total	2419182	0.513	0.509	0.0204	0.500	70.0 - 130	98.5	97.7	mg/L	0.815	20.0
Aluminum, Total	2420367	0.519	0.526	0.0287	0.500	70.0 - 130	98.1	99.5	mg/L	1.42	20.0
Antimony, Total	2420367	0.516	0.510	0.00202	0.500	70.0 - 130	103	102	mg/L	1.17	20.0
Arsenic, Total	2420367	0.504	0.501	0.00308	0.500	70.0 - 130	100	99.6	mg/L	0.601	20.0
Barium, Total	2420367	0.583	0.574	0.0887	0.500	70.0 - 130	98.9	97.1	mg/L	1.84	20.0
Beryllium, Total	2420367	0.196	0.194	ND	0.200	70.0 - 130	98.0	97.0	mg/L	1.03	20.0
Cadmium, Total	2420367	0.244	0.240	ND	0.250	70.0 - 130	97.6	96.0	mg/L	1.65	20.0
Chromium, Total	2420367	0.477	0.473	0.00166	0.500	70.0 - 130	95.1	94.3	mg/L	0.845	20.0
Copper, Total	2420367	0.468	0.466	0.00231	0.500	70.0 - 130	93.1	92.7	mg/L	0.430	20.0
Lead, Total	2420367	0.450	0.446	ND	0.500	70.0 - 130	90.0	89.2	mg/L	0.893	20.0
Nickel, Total	2420367	0.469	0.468	0.00408	0.500	70.0 - 130	93.0	92.8	mg/L	0.215	20.0
Silver, Total	2420367	0.0868	0.0851	ND	0.100	70.0 - 130	86.8	85.1	mg/L	1.98	20.0
Thallium, Total	2420367	0.465	0.461	ND	0.500	70.0 - 130	93.0	92.2	mg/L	0.864	20.0
Zinc, Total	2420367	0.487	0.481	0.0283	0.500	70.0 - 130	91.7	90.5	mg/L	1.32	20.0

Analytical Set 1182018 EPA 200.8 5.4

				Е	Blank		
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units		File
Selenium, Total	1181643	ND	0.00294	0.005	mg/L		127757552
Selenium, Total	1181643	ND	0.00294	0.005	mg/L		127757566
					CCV		
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%	File
Selenium, Total		0.0502	0.05	mg/L	100	90.0 - 110	127757565
Selenium, Total		0.0481	0.05	mg/L	96.2	90.0 - 110	127757576
Selenium, Total		0.0496	0.05	mg/L	99.2	90.0 - 110	127757585
Selenium, Total		0.0472	0.05	mg/L	94.4	90.0 - 110	127757594
Selenium, Total		0.051	0.05	mg/L	102	90.0 - 110	127757605

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 36 of 66

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601 Page 16 of 37

Project 1151501

Printed 07/09/2025

				(ccv						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Selenium, Total		0.049	0.05	mg/L	98.0	90.0 - 110		127757616			
Selenium, Total		0.0501	0.05	mg/L	100	90.0 - 110		127757626			
Selenium, Total		0.0495	0.05	mg/L	99.0	90.0 - 110		127757636			
Selenium, Total		0.0474	0.05	mg/L	94.8	90.0 - 110		127757647			
Selenium, Total		0.0472	0.05	mg/L	94.4	90.0 - 110		127757655			
				I	ICV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Selenium, Total		0.0494	0.05	mg/L	98.8	90.0 - 110		127757560			
				LC	S Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Selenium, Total	1181643	0.487	0.486		0.500	85.0 - 115	97.4	97.2	mg/L	0.206	20.0
				l	_DR						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Selenium, Total		9.49	10	mg/L	94.9	90.0 - 110		127757562			
				N	ISD						
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Selenium, Total	2419182	0.473	0.474	ND	0.500	70.0 - 130	94.6	94.8	mg/L	0.211	20.0
Selenium, Total	2420367	0.482	0.474	ND	0.500	70.0 - 130	96.4	94.8	mg/L	1.67	20.0
Analytical Set	1181205									E	PA 624.1
,				i	BFB						
Parameter	Sample	RefMass	Reading	%	Limits%			File			
BFB Mass 173	1181205	174	420	1.3	0 - 2.00			127735167			
BFB Mass 174	1181205	95.0	33331	81.2	50.0 - 100			127735167			
BFB Mass 175	1181205	174	2536	7.6	5.00 - 9.00			127735167			
BFB Mass 176	1181205	174	32347	97.0	95.0 - 101			127735167			
BFB Mass 177	1181205	176	2119	6.6	5.00 - 9.00			127735167			
BFB Mass 50	1181205	95.0	6550	15.9	15.0 - 40.0			127735167			
BFB Mass 75	1181205	95.0	18549	45.2	30.0 - 60.0			127735167			
BFB Mass 95		0.7.0		100.0	100 100			100000110			
	1181205	95.0	41067	100.0	100 - 100			127735167			
BFB Mass 96	1181205 1181205	95.0 95.0	41067 2601	6.3	5.00 - 9.00			127735167			

Email: Kilgore.ProjectManagement@spllabs.com

PrepSet

1181205

1181205

1181205

1181205

1181205

1181205

1181205

1181205

Reading

ND

ND

ND

ND

ND

ND

ND

ND

MDL

0.227

0.245

0.206

0.163

0.133

0.174

0.0922

0.158

Units

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Report Page 37 of 66

File

127735171

127735171

127735171

127735171

127735171

127735171

127735171

127735171

Benzene

Parameter

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,1-Dichloroethane

1,1-Dichloroethylene

1,2-Dichloroethane

1,2-Dichloropropane

1,2-Dibromoethane (EDB)

MQL

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

SPL The Science of Sure

Page 17 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

				Bla	nk			
Parameter	PrepSet	Reading	MDL	MQL	Units		File	
Bromodichloromethane	1181205	ND	0.174	1.00	ug/L		127735171	
Bromoform	1181205	ND	0.288	1.00	ug/L		127735171	
Carbon Tetrachloride	1181205	ND	0.137	1.00	ug/L		127735171	
Chlorobenzene	1181205	ND	0.146	1.00	ug/L		127735171	
Chloroethane	1181205	ND	0.595	1.00	ug/L		127735171	
Chloroform	1181205	ND	0.162	1.00	ug/L		127735171	
Chloromethane (Methyl Chloride)	1181205	ND	0.215	1.00	ug/L		127735171	
cis-1,3-Dichloropropene	1181205	ND	0.123	1.00	ug/L		127735171	
Dibromochloromethane	1181205	ND	0.143	1.00	ug/L		127735171	
Dichloromethane	1181205	ND	0.319	1.00	ug/L		127735171	
Ethylbenzene	1181205	ND	0.147	1.00	ug/L		127735171	
m-Dichlorobenzene (1,3-DCB)	1181205	ND	0.173	1.00	ug/L		127735171	
Methyl ethyl ketone (Butanone)	1181205	ND	0.466	1.00	ug/L		127735171	
o-Dichlorobenzene (1,2-DCB)	1181205	ND	0.190	1.00	ug/L		127735171	
p-Dichlorobenzene (1,4-DCB)	1181205	ND	0.158	1.00	ug/L		127735171	
Tetrachloroethylene	1181205	ND	0.239	1.00	ug/L		127735171	
Toluene	1181205	ND	0.181	1.00	ug/L		127735171	
trans-1,2-Dichloroethylene	1181205	ND	0.231	1.00	ug/L		127735171	
trans-1,3-Dichloropropene	1181205	ND	0.121	1.00	ug/L		127735171	
Trichloroethylene	1181205	ND	0.153	1.00	ug/L		127735171	
Vinyl chloride	1181205	ND	0.222	1.00	ug/L		127735171	
				IS A	reas			
<u>Parameter</u>	Sample	Туре	Reading	CCVISM	Low	High	File	PrepSet
1,4-DichlorobenzeneD4 (ISTD)	1181205	LCS	298300	288000	144000	432000	127735169	1181205
1,4-DichlorobenzeneD4 (ISTD)	1181205	LCS Dup	278300	288000	144000	432000	127735170	1181205
1,4-DichlorobenzeneD4 (ISTD)	1181205	Blank	267200	288000	144000	432000	127735171	1181205
ChlorobenzeneD5 (ISTD)	1181205	LCS	560000	533700	266900	800600	127735169	1181205
ChlorobenzeneD5 (ISTD)	1181205	LCS Dup	522700	533700	266900	800600	127735170	1181205
ChlorobenzeneD5 (ISTD)	1181205	Blank	533300	533700	266900	800600	127735171	1181205
1,4-DichlorobenzeneD4 (ISTD)	2415443	MS	259600	288000	144000	432000	127735174	1181205
1,4-DichlorobenzeneD4 (ISTD)	2415443	MSD	265700	288000	144000	432000	127735175	1181205
ChlorobenzeneD5 (ISTD)	2415443	MS	501800	533700	266900	800600	127735174	1181205
ChlorobenzeneD5 (ISTD)	2415443	MSD	507400	533700	266900	800600	127735175	1181205
1,4-DichlorobenzeneD4 (ISTD)	2419182	Unknown	260300	288000	144000	432000	127735172	1181205
ChlorobenzeneD5 (ISTD)	2419182	Unknown	512400	533700	266900	800600	127735172	1181205
				IS Re	tTime			
<u>Parameter</u>	Sample	Туре	Reading	CCVISM	Low	High	File	PrepSet
1,4-DichlorobenzeneD4 (ISTD)	1181205	LCS	11.90	11.90	11.84	11.96	127735169	1181205
1,4-DichlorobenzeneD4 (ISTD)	1181205	LCS Dup	11.90	11.90	11.84	11.96	127735170	1181205
1,4-DichlorobenzeneD4 (ISTD)	1181205	Blank	11.90	11.90	11.84	11.96	127735171	1181205
ChlorobenzeneD5 (ISTD)	1181205	LCS	9.530	9.530	9.470	9.590	127735169	1181205
ChlorobenzeneD5 (ISTD)	1181205	LCS Dup	9.530	9.530	9.470	9.590	127735170	1181205
ChlorobenzeneD5 (ISTD)	1181205	Blank	9.530	9.530	9.470	9.590	127735171	1181205
• /								

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 38 of 66

Page 18 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

IS RetTime

Parameter	Sample	Type	Reading	CCVISM	Low	High		File	PrepSe	t t	
1,4-DichlorobenzeneD4 (ISTD)	2415443	MS	11.90	11.90	11.84	11.96		127735174	118120		
1,4-DichlorobenzeneD4 (ISTD)	2415443	MSD	11.90	11.90	11.84	11.96		127735175	118120		
ChlorobenzeneD5 (ISTD)	2415443	MS	9.530	9.530	9.470	9.590		127735174	118120		
ChlorobenzeneD5 (ISTD)	2415443	MSD	9.530	9.530	9.470	9.590		127735175	118120		
1,4-DichlorobenzeneD4 (ISTD)	2419182	Unknown		11.90	11.84	11.96		127735172	118120		
ChlorobenzeneD5 (ISTD)	2419182	Unknown		9.530	9.470	9.590	*	127735172	118120		
emorocomenego (1812)	2117102	O LLLLOW WILL	,,,,,		Dup	3.030		12//301/2	110120		
				LCS	Бор						
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
1,1,1-Trichloroethane	1181205	15.9	16.3		20.0	70.0 - 130	79.5	81.5	ug/L	2.48	21.0
1,1,2,2-Tetrachloroethane	1181205	17.2	17.8		20.0	60.0 - 140	86.0	89.0	ug/L	3.43	36.0
1,1,2-Trichloroethane	1181205	17.2	17.8		20.0	70.0 - 130	86.0	89.0	ug/L	3.43	27.0
1,1-Dichloroethane	1181205	16.6	16.9		20.0	70.0 - 130	83.0	84.5	ug/L	1.79	24.0
1,1-Dichloroethylene	1181205	15.7	15.7		20.0	50.0 - 150	78.5	78.5	ug/L	0	40.0
1,2-Dibromoethane (EDB)	1181205	16.8	17.4		20.0	78.4 - 122	84.0	87.0	ug/L	3.51	30.0
1,2-Dichloroethane	1181205	17.3	17.5		20.0	70.0 - 130	86.5	87.5	ug/L	1.15	29.0
1,2-Dichloropropane	1181205	17.5	17.7		20.0	35.0 - 165	87.5	88.5	ug/L	1.14	69.0
2-Chloroethylvinyl ether	1181205	0.770	0.550		20.0	0.100 - 225	3.85	2.75	ug/L	33.3	130
Benzene	1181205	17.5	17.8		20.0	65.0 - 135	87.5	89.0	ug/L	1.70	33.0
Bromodichloromethane	1181205	16.0	16.3		20.0	65.0 - 135	80.0	81.5	ug/L	1.86	34.0
Bromoform	1181205	16.2	16.9		20.0	70.0 - 130	81.0	84.5	ug/L	4.23	25.0
Bromomethane (Methyl Bromi	1181205	16.4	15.9		20.0	15.0 - 185	82.0	79.5	ug/L	3.10	90.0
Carbon Tetrachloride	1181205	16.7	17.3		20.0	70.0 - 130	83.5	86.5	ug/L	3.53	26.0
Chlorobenzene	1181205	17.4	17.8		20.0	65.0 - 135	87.0	89.0	ug/L	2.27	29.0
Chloroethane	1181205	18.5	19.0		20.0	40.0 - 160	92.5	95.0	ug/L	2.67	47.0
Chloroform	1181205	16.3	16.6		20.0	70.0 - 135	81.5	83.0	ug/L	1.82	32.0
Chloromethane (Methyl Chloride)	1181205	15.2	15.1		20.0	0.100 - 205	76.0	75.5	ug/L	0.660	472
cis-1,3-Dichloropropene	1181205	15.2	15.4		20.0	25.0 - 175	76.0	77.0	ug/L	1.31	79.0
Dibromochloromethane	1181205	16.3	16.6		20.0	70.0 - 135	81.5	83.0	ug/L	1.82	30.0
Dichloromethane	1181205	15.1	15.9		20.0	60.0 - 140	75.5	79.5	ug/L	5.16	192
Ethylbenzene	1181205	17.7	17.9		20.0	60.0 - 140	88.5	89.5	ug/L	1.12	34.0
m-Dichlorobenzene (1,3-DCB)	1181205	17.2	17.5		20.0	70.0 - 130	86.0	87.5	ug/L	1.73	24.0
Methyl ethyl ketone (Butanone)	1181205	18.1	19.0		20.0	62.3 - 136	90.5	95.0	ug/L	4.85	30.0
o-Dichlorobenzene (1,2-DCB)	1181205	16.6	17.4		20.0	65.0 - 135	83.0	87.0	ug/L	4.71	31.0
p-Dichlorobenzene (1,4-DCB)	1181205	16.6	17.3		20.0	65.0 - 135	83.0	86.5	ug/L	4.13	31.0
Tetrachloroethylene	1181205	16.4	16.9		20.0	70.0 - 130	82.0	84.5	ug/L	3.00	23.0
Toluene	1181205	17.6	18.0		20.0	70.0 - 130	88.0	90.0	ug/L	2.25	22.0
trans-1,2-Dichloroethylene	1181205	15.2	15.5		20.0	70.0 - 130	76.0	77.5	ug/L	1.95	27.0
trans-1,3-Dichloropropene	1181205	16.0	16.6		20.0	50.0 - 150	80.0	83.0	ug/L	3.68	52.0
Trichloroethylene	1181205	16.0	16.7		20.0	65.0 - 135	80.0	83.5	ug/L	4.28	29.0
Vinyl chloride	1181205	16.9	16.1		20.0	5.00 - 195	84.5	80.5	ug/L	4.85	100
•				М	SD				Ü		
Donorodon	G1	MG	MCD			T 1 10	1.400/	MGD0/	F.T., 5/	nnn.	F 1 1/0/
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
1,1,1-Trichloroethane	2415443	86.3	84.2	ND	100	52.0 - 162	86.3	84.2	ug/L	2.46	36.0

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 39 of 66

Page 19 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt **Timothy Jones** 1119 Alamo St. Commerce, TX 75428-2601

UNK MSD% Sample MS **MSD** Known Limits MS% Units **RPD** Limit% Parameter ug/L 2415443 94.1 91.3 ND 100 46.0 - 157 94.1 91.3 3.02 61.0 1.1.2.2-Tetrachloroethane 91.4 89.2 ND 100 52.0 - 150 91.4 89.2 2.44 1,1,2-Trichloroethane 2415443 ug/L 45.0 1,1-Dichloroethane 2415443 89.0 85.9 ND 100 59.0 - 155 89.0 85.9 ug/L 3.54 40.0 1,1-Dichloroethylene 2415443 84.8 82.7 ND 100 0.100 - 234 84.8 82.7 ug/L 2.51 32.0 49.3 - 120 1,2-Dibromoethane (EDB) 2415443 89.4 87.8 ND 100 89.4 87.8 ug/L 1.81 30.0 87.8 ND 100 87.8 1.58 1,2-Dichloroethane 2415443 89.2 49.0 - 155 89.2 49.0 ug/L 1,2-Dichloropropane 2415443 92.8 90.0 ND 100 0.100 - 210 92.8 90.0 ug/L 3.06 55.0 0.100 - 305 ug/L 2-Chloroethylvinyl ether 2415443 4.10 4.25 ND 100 4.10 4.25 3.59 71.0 90.4 100 37.0 - 151 90.4 Benzene 2415443 92.4 ND 92.4 ug/L 2.19 61.0 85.3 ND 35.0 - 155 85.3 Bromodichloromethane 2415443 85.4 100 85.4 ug/L 0.117 56.0 Bromoform 2415443 89.2 85.2 ND 100 45.0 - 169 89.2 85.2 4.59 42.0 ug/L Bromomethane (Methyl Bromi 2415443 87.0 85.1 ND 100 0.100 - 242 87.0 85.1 2.21 61.0 ug/L 90.2 Carbon Tetrachloride 89.8 ND 100 70.0 - 140 90.2 89.8 0 444 41.0 2415443 ug/L Chlorobenzene 2415443 92.2 92.2 ND 100 37.0 - 160 92.2 92.2 ug/L 0 53.0 Chloroethane 97.8 2415443 101 97.8 ND 100 14.0 - 230 101 ug/L 3.22 78.0 90.1 86.2 100 86.8 83.0 Chloroform 2415443 3.25 51.0 - 138 4.59 54.0 ug/L 80.0 ND 80.0 Chloromethane (Methyl Chloride) 2415443 82.4 100 0.100 - 27382.4 ug/L 2.96 60.0 cis-1,3-Dichloropropene 2415443 78.0 77.0 ND 100 0.100 - 22778.0 77.0 1.29 58.0 ug/L Dibromochloromethane 2415443 84.8 83.8 ND 100 53.0 - 149 84.8 83.8 1.19 50.0 ug/L 2.98 81.8 79.4 ND 100 0.100 - 221 81.8 79.4 Dichloromethane 2415443 ug/L 28.0 37.0 - 162 Ethylbenzene 2415443 93.1 92.3 ND 100 93.1 92.3 ug/L 0.863 63.0 m-Dichlorobenzene (1,3-DCB) 2415443 91.4 88.0 ND 100 59.0 - 156 91.4 88.0 ug/L 3.79 43.0 ug/L Methyl ethyl ketone (Butanone) 2415443 94.6 93.0 ND 100 0.100 - 211 94.6 93.0 1.71 30.0 o-Dichlorobenzene (1,2-DCB) 88.4 85.8 ND 100 18.0 - 190 85.8 2415443 88.4 ug/L 2.99 57.0 p-Dichlorobenzene (1,4-DCB) 2415443 89.4 88.0 ND 100 18.0 - 190 89.4 88.0 ug/L 1.58 57.0 Tetrachloroethylene 2415443 89.0 87.6 ND 100 64.0 - 148 89.0 87.6 ug/L 1.59 39.0 100 47.0 - 150 Toluene 93.4 91.1 ND 93.4 91.1 2.49 41.0 2415443 ug/L ND 79.2 trans-1,2-Dichloroethylene 2415443 83.4 79.2 100 54.0 - 156 83.4 ug/L 5.17 45.0 trans-1,3-Dichloropropene 2415443 82.4 ND 100 17.0 - 183 84.2 82.4 ug/L 2.16 86.0 84.2 Trichloroethylene 2415443 86.8 84.2 ND 100 70.0 - 157 86.8 84.2 ug/L 3.04 48.0 85.5 0.100 - 251 90.4 Vinyl chloride 2415443 90.4 ND 100 85.5 5.57 66.0 ug/L Surrogate

MSD

<u>Parameter</u>	Sample	Type	Reading	Known	Units	Recover%	Limits%	File
1,2-DCA-d4 (SURR)	1181205	LCS	20.6	20.0	ug/L	103	70.0 - 130	127735169
1,2-DCA-d4 (SURR)	1181205	LCS Dup	20.9	20.0	ug/L	104	70.0 - 130	127735170
1,2-DCA-d4 (SURR)	1181205	Blank	20.8	20.0	ug/L	104	70.0 - 130	127735171
Bromofluorobenzene (SURR)	1181205	LCS	19.7	20.0	ug/L	98.5	70.0 - 130	127735169
Bromofluorobenzene (SURR)	1181205	LCS Dup	20.0	20.0	ug/L	100	70.0 - 130	127735170
Bromofluorobenzene (SURR)	1181205	Blank	20.4	20.0	ug/L	102	70.0 - 130	127735171
Dibromofluoromethane (SURR)	1181205	LCS	20.3	20.0	ug/L	102	70.0 - 130	127735169
Dibromofluoromethane (SURR)	1181205	LCS Dup	21.0	20.0	ug/L	105	70.0 - 130	127735170
Dibromofluoromethane (SURR)	1181205	Blank	20.2	20.0	ug/L	101	70.0 - 130	127735171
TolueneD8 (SURR)	1181205	LCS	20.2	20.0	ug/L	101	70.0 - 130	127735169
TolueneD8 (SURR)	1181205	LCS Dup	20.3	20.0	ug/L	102	70.0 - 130	127735170

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 40 of 66

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601 Page 20 of 37

Project 1151501

Printed 07/09/2025

				Suri	rogate						
Parameter	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
TolueneD8 (SURR)	1181205	Blank	19.7	20.0	ug/L	98.5	70.0 - 130	127735171			
1,2-DCA-d4 (SURR)	2415443	MS	20.4	20.0	ug/L	102	70.0 - 130	127735174			
1,2-DCA-d4 (SURR)	2415443	MSD	20.4	20.0	ug/L	102	70.0 - 130	127735175			
Bromofluorobenzene (SURR)	2415443	MS	20.2	20.0	ug/L	101	70.0 - 130	127735174			
Bromofluorobenzene (SURR)	2415443	MSD	20.2	20.0	ug/L	101	70.0 - 130	127735175			
Dibromofluoromethane (SURR)	2415443	MS	20.3	20.0	ug/L	102	70.0 - 130	127735174			
Dibromofluoromethane (SURR)	2415443	MSD	20.4	20.0	ug/L	102	70.0 - 130	127735175			
TolueneD8 (SURR)	2415443	MS	20.1	20.0	ug/L	100	70.0 - 130	127735174			
TolueneD8 (SURR)	2415443	MSD	19.8	20.0	ug/L	99.0	70.0 - 130	127735175			
1,2-DCA-d4 (SURR)	2419182	Unknown	20.8	20.0	ug/L	104	70.0 - 130	127735172			
Bromofluorobenzene (SURR)	2419182	Unknown	20.3	20.0	ug/L	102	70.0 - 130	127735172			
Dibromofluoromethane (SURR)	2419182	Unknown	20.2	20.0	ug/L	101	70.0 - 130	127735172			
TolueneD8 (SURR)	2419182	Unknown	19.5	20.0	ug/L	97.5	70.0 - 130	127735172			
Analytical Set	1181463									E	PA 604.1
7 that y clear Sec	1101100			В	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Hexachlorophene	1180855	ND	0.890	2.50	ug/L			127743097			
riexaemorophene	1100055	ND	0.050		CCV			12//4305/			
				,							
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Hexachlorophene		5480	5000	ug/L	110	70.0 - 130		127743096			
Hexachlorophene		5300	5000	ug/L	106	70.0 - 130		127743103			
Hexachlorophene		5750	5000	ug/L	115	70.0 - 130		127743106			
				LCS	S Dup						
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Hexachlorophene	1180855	29.8	37.6		50.0	25.5 - 145	59.6	75.2	ug/L	23.1	50.0
Analytical Set	1181550									E	PA 624.1
7,111				Е	BFB						
Parameter	Sample	RefMass	Reading	%	Limits%			File			
BFB Mass 173	1181550	174	375	1.0	0 - 2.00			127745410			
BFB Mass 174	1181550	95.0	36573	83.4	50.0 - 100			127745410			
BFB Mass 175	1181550	174	2643	7.2	5.00 - 9.00			127745410			
BFB Mass 176	1181550	174	35269	96.4	95.0 - 101			127745410			
BFB Mass 177	1181550	176	2300	6.5	5.00 - 9.00			127745410			
BFB Mass 50	1181550	95.0	7069	16.1	15.0 - 40.0			127745410			
BFB Mass 75	1181550	95.0	19974	45.5	30.0 - 60.0			127745410			
BFB Mass 95	1181550	95.0	43872	100.0	100 - 100			127745410			
BFB Mass 96	1181550	95.0	3017	6.9	5.00 - 9.00			127745410			
				В	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Acrolein	1181550	ND	1.93	2.00	ug/L			127745414			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 41 of 66

Page 21 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

				ВІ	ank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Acrylonitrile	1181550	ND	0.504	1.00	ug/L			127745414			
,				IS A	reas						
Parameter	Sample	Туре	Reading	CCVISM	Low	High		File	PrepSe	t .	
1,4-DichlorobenzeneD4 (IST	•	LCS	318000	325200	162600	487800		127745412	118155		
1,4-DichlorobenzeneD4 (IST	<i>'</i>	LCS Dup	311300	325200	162600	487800		127745413	118155		
1,4-DichlorobenzeneD4 (IST	<i>'</i>	Blank	281700	325200	162600	487800		127745414	118155		
ChlorobenzeneD5 (ISTD)	1181550	LCS	592500	597000	298500	895500		127745412	118155		
ChlorobenzeneD5 (ISTD)	1181550	LCS Dup	579100	597000	298500	895500		127745413	118155		
ChlorobenzeneD5 (ISTD)	1181550	Blank	562600	597000	298500	895500		127745414	118155		
1,4-DichlorobenzeneD4 (IST		MS	292200	325200	162600	487800		127745416	118155		
1,4-DichlorobenzeneD4 (IST	<i>'</i>	MSD	280200	325200	162600	487800		127745417	118155		
ChlorobenzeneD5 (ISTD)	2418512	MS	551000	597000	298500	895500		127745416	118155		
ChlorobenzeneD5 (ISTD)	2418512	MSD	522300	597000	298500	895500		127745417	118155		
1,4-DichlorobenzeneD4 (IST		Unknown		325200	162600	487800		127745418	118155		
ChlorobenzeneD5 (ISTD)	2419182	Unknown		597000	298500	895500		127745418	118155		
· · · · · · · · · · · · · · · · · · ·	2,13,102		33233		tTime					•	
Danous atom	Commite	T	Dandina			III al		File	Duna Ca	4	
<u>Parameter</u> 1,4-DichlorobenzeneD4 (IST	Sample	Type LCS	Reading 11.90	CCVISM		<i>High</i> 11.96		127745412	PrepSe		
,	<i>'</i>			11.90	11.84 11.84				118155		
1,4-DichlorobenzeneD4 (IST 1,4-DichlorobenzeneD4 (IST	<i>'</i>	LCS Dup	11.90	11.90		11.96		127745413 127745414	118155		
,	1181550	Blank LCS	11.90 9.530	11.90 9.530	11.84 9.470	11.96 9.590		127745414	118155		
ChlorobenzeneD5 (ISTD)		LCS Dup			9.470 9.470	9.590 9.590			118155		
ChlorobenzeneD5 (ISTD)	1181550 1181550	Blank	9.530 9.530	9.530	9.470 9.470	9.590		127745413 127745414	118155 118155		
ChlorobenzeneD5 (ISTD) 1,4-DichlorobenzeneD4 (IST		MS	11.90	9.530 11.90	11.84	11.96		127745414	118155		
1,4-DichlorobenzeneD4 (IST		MSD	11.90	11.90	11.84	11.96		127745417	118155		
ChlorobenzeneD5 (ISTD)	2418512 2418512	MS	9.530	9.530	9.470	9.590		127745417	118155		
ChlorobenzeneD5 (ISTD) ChlorobenzeneD5 (ISTD)	2418512	MSD	9.530	9.530	9.470 9.470	9.590		127745417	118155		
1,4-DichlorobenzeneD4 (IST		Unknown		11.90	9.470 11.84	9.390 11.96		127745417	118155		
ChlorobenzeneD5 (ISTD)	2419182	Unknown		9.530	9.470	9.590		127745418	118155		
Ciliotobelizened3 (131D)	2417102	OHKHOWII	9.550			9.390		127743416	110133	O	
				LCS	Dup						
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Acrolein	1181550	20.4	19.9		40.0	60.0 - 140	51.0 *	49.8 *	ug/L	2.38	30.0
Acrylonitrile	1181550	37.2	36.7		40.0	60.0 - 140	93.0	91.8	ug/L	1.30	30.0
				M	SD						
<u>Parameter</u>	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Acrolein	2418512	77.0	67.3	ND	200	40.0 - 160	38.5 *	33.6 *	ug/L	13.4	60.0
Acrylonitrile	2418512	194	208	ND	200	40.0 - 160	97.0	104	ug/L	6.97	60.0
				Surr	ogate						
Parameter	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
1,2-DCA-d4 (SURR)	1181550		21.4	20.0	ug/L	107	70.0 - 130	127745412			
1,2-DCA-d4 (SURR)	1181550			20.0	ug/L	106	70.0 - 130	127745413			
1,2-DCA-d4 (SURR)	1181550	-	21.1	20.0	ug/L	106	70.0 - 130	127745414			
. ,					_			•			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 42 of 66

Page 22 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

				Surr	ogate			
<u>Parameter</u>	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File
Bromofluorobenzene (SURR)	1181550	LCS	19.8	20.0	ug/L	99.0	70.0 - 130	127745412
Bromofluorobenzene (SURR)	1181550	LCS Dup	19.9	20.0	ug/L	99.5	70.0 - 130	127745413
Bromofluorobenzene (SURR)	1181550	Blank	20.2	20.0	ug/L	101	70.0 - 130	127745414
Dibromofluoromethane (SURR)	1181550	LCS	21.0	20.0	ug/L	105	70.0 - 130	127745412
Dibromofluoromethane (SURR)	1181550	LCS Dup	20.9	20.0	ug/L	104	70.0 - 130	127745413
Dibromofluoromethane (SURR)	1181550	Blank	20.6	20.0	ug/L	103	70.0 - 130	127745414
TolueneD8 (SURR)	1181550	LCS	20.5	20.0	ug/L	102	70.0 - 130	127745412
TolueneD8 (SURR)	1181550	LCS Dup	20.3	20.0	ug/L	102	70.0 - 130	127745413
TolueneD8 (SURR)	1181550	Blank	19.9	20.0	ug/L	99.5	70.0 - 130	127745414
1,2-DCA-d4 (SURR)	2418512	MS	21.0	20.0	ug/L	105	70.0 - 130	127745416
1,2-DCA-d4 (SURR)	2418512	MSD	21.1	20.0	ug/L	106	70.0 - 130	127745417
Bromofluorobenzene (SURR)	2418512	MS	20.2	20.0	ug/L	101	70.0 - 130	127745416
Bromofluorobenzene (SURR)	2418512	MSD	19.9	20.0	ug/L	99.5	70.0 - 130	127745417
Dibromofluoromethane (SURR)	2418512	MS	20.8	20.0	ug/L	104	70.0 - 130	127745416
Dibromofluoromethane (SURR)	2418512	MSD	20.7	20.0	ug/L	104	70.0 - 130	127745417
TolueneD8 (SURR)	2418512	MS	20.1	20.0	ug/L	100	70.0 - 130	127745416
TolueneD8 (SURR)	2418512	MSD	20.3	20.0	ug/L	102	70.0 - 130	127745417
1,2-DCA-d4 (SURR)	2419182	Unknown	19.9	20.0	ug/L	99.5	70.0 - 130	127745418
Bromofluorobenzene (SURR)	2419182	Unknown	20.4	20.0	ug/L	102	70.0 - 130	127745418
Dibromofluoromethane (SURR)	2419182	Unknown	20.4	20.0	ug/L	102	70.0 - 130	127745418
TolueneD8 (SURR)	2419182	Unknown	19.8	20.0	ug/L	99.0	70.0 - 130	127745418

	Analytical Set	1182048										EPA 617
	,				В	llank						
Parameter		PrepSet	Reading	MDL	MQL	Units			File			
Kelthane (Dicor	fol)	1181387	ND	7.98	10.0	ug/L			127758317			
Methoxychlor		1181387	ND	0.846	1.00	ug/L			127758317			
Mirex		1181387	ND	0.607	1.00	ug/L			127758317			
						ccv						
<u>Parameter</u>			Reading	Known	Units	Recover%	Limits%		File			
Kelthane (Dicor	fol)		106	100	ug/L	106	60.0 - 130		127758316			
Kelthane (Dicor	fol)		93.2	100	ug/L	93.2	60.0 - 130		127758330			
Methoxychlor			59.0	50.0	ug/L	118	70.0 - 130		127758316			
Methoxychlor			57.1	50.0	ug/L	114	70.0 - 130		127758330			
Mirex			49.6	50.0	ug/L	99.2	70.0 - 130		127758316			
Mirex			52.5	50.0	ug/L	105	70.0 - 130		127758330			
					LC	S Dup						
<u>Parameter</u>		PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Kelthane (Dicor	fol)	1181387	115	117		100	0.100 - 137	115	117	ug/L	1.72	30.0
Methoxychlor		1181387	73.4	75.3		100	21.5 - 151	73.4	75.3	ug/L	2.56	30.0
Mirex		1181387	51.4	53.1		100	11.6 - 140	51.4	53.1	ug/L	3.25	30.0
					ľ	MSD						
<u>Parameter</u>		Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 43 of 66

Page 23 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

MSD

					_						
<u>Parameter</u>	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Kelthane (Dicofol)	2418864	2.13	2.13	ND	0.991	70.0 - 130	222 *	222 *	ug/L	0	30.0
Methoxychlor	2418864	0.827	0.819	ND	0.991	70.0 - 130	86.1	85.3	ug/L	0.972	30.0
Mirex	2418864	0.254	0.226	ND	0.991	70.0 - 130	26.5 *	23.5 *	ug/L	11.7	30.0
				Surr	ogate						
<u>Parameter</u>	Sample	Type	Reading	Known	Units	Recover%	Limits%	File			
Decachlorobiphenyl		CCV	50.5	100	ug/L	50.5	10.0 - 150	127758316			
Decachlorobiphenyl		CCV	51.5	100	ug/L	51.5	10.0 - 150	127758330			
Tetrachloro-m-Xylene (Surr)		CCV	47.2	100	ug/L	47.2	10.0 - 150	127758316			
Tetrachloro-m-Xylene (Surr)		CCV	45.9	100	ug/L	45.9	10.0 - 150	127758330			
Decachlorobiphenyl	1181387	Blank	56.5	100	ug/L	56.5	10.0 - 150	127758317			
Decachlorobiphenyl	1181387	LCS	52.6	100	ug/L	52.6	10.0 - 150	127758318			
Decachlorobiphenyl	1181387	LCS Dup	43.7	100	ug/L	43.7	10.0 - 150	127758319			
Tetrachloro-m-Xylene (Surr)	1181387	Blank	40.6	100	ug/L	40.6	10.0 - 150	127758317			
Tetrachloro-m-Xylene (Surr)	1181387	LCS	37.3	100	ug/L	37.3	10.0 - 150	127758318			
Tetrachloro-m-Xylene (Surr)	1181387	LCS Dup	43.5	100	ug/L	43.5	10.0 - 150	127758319			
Decachlorobiphenyl	2418864	MS	0.277	0.960	ug/L	28.9	10.0 - 150	127758323			
Decachlorobiphenyl	2418864	MSD	0.235	0.991	ug/L	23.7	10.0 - 150	127758324			
Tetrachloro-m-Xylene (Surr)	2418864	MS	0.143	0.960	ug/L	14.9	10.0 - 150	127758323			
Tetrachloro-m-Xylene (Surr)	2418864	MSD	0.346	0.991	ug/L	34.9	10.0 - 150	127758324			
Decachlorobiphenyl	2419182	Unknown	0.0202	0.0998	ug/L	20.2	10.0 - 150	127758320			
Tetrachloro-m-Xylene (Surr)	2419182	Unknown	0.0294	0.0998	ug/L	29.5	10.0 - 150	127758320			

Analytical Set 1182054 EPA 608.3

				В	lank	
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units	File
4,4-DDD	1181387	ND	0.528	1.00	ug/L	127758401
4,4-DDE	1181387	ND	0.370	1.00	ug/L	127758401
4,4-DDT	1181387	ND	0.696	1.00	ug/L	127758401
Aldrin	1181387	ND	0.157	1.00	ug/L	127758401
Alpha-BHC(hexachlorocyclohexane)	1181387	ND	0.266	1.00	ug/L	127758401
Beta-BHC(hexachlorocyclohexane)	1181387	0.361	0.228	1.00	ug/L	127758401
Chlordane	1181387	ND	7.83	10.0	ug/L	127758401
Delta-BHC(hexachlorocyclohexane)	1181387	ND	0.601	1.00	ug/L	127758401
Dieldrin	1181387	ND	0.196	1.00	ug/L	127758401
Endosulfan I (alpha)	1181387	ND	0.257	1.00	ug/L	127758401
Endosulfan II (beta)	1181387	ND	0.287	1.00	ug/L	127758401
Endosulfan sulfate	1181387	0.381	0.371	1.00	ug/L	127758401
Endrin	1181387	ND	0.294	1.00	ug/L	127758401
Endrin aldehyde	1181387	ND	0.452	1.00	ug/L	127758401
Gamma-BHC(Lindane)	1181387	ND	0.398	1.00	ug/L	127758401
Heptachlor	1181387	ND	0.292	1.00	ug/L	127758401
Heptachlor epoxide	1181387	ND	0.287	1.00	ug/L	127758401
Toxaphene	1181387	ND	7.39	10.0	ug/L	127758401

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 44 of 66

The Science of Sure

Page 24 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

CCV

<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
4,4-DDD		52.8	50.0	ug/L	106	85.0 - 115		127758400			
4,4-DDD		58.5	50.0	ug/L	117	85.0 - 115	*	127758413			
4,4-DDE		49.4	50.0	ug/L	98.8	85.0 - 115		127758400			
4,4-DDE		54.5	50.0	ug/L	109	85.0 - 115		127758413			
4,4-DDT		58.7	50.0	ug/L	117	85.0 - 115	*	127758400			
4,4-DDT		60.1	50.0	ug/L	120	85.0 - 115	*	127758413			
Aldrin		49.2	50.0	ug/L	98.4	85.0 - 115		127758400			
Aldrin		54.6	50.0	ug/L	109	85.0 - 115		127758413			
Alpha-BHC(hexachlorocyclohexane)		49.1	50.0	ug/L	98.2	85.0 - 115		127758400			
Alpha-BHC(hexachlorocyclohexane)		55.3	50.0	ug/L	111	85.0 - 115		127758413			
Beta-BHC(hexachlorocyclohexane)		48.0	50.0	ug/L	96.0	85.0 - 115		127758400			
Beta-BHC(hexachlorocyclohexane)		55.9	50.0	ug/L	112	85.0 - 115		127758413			
Delta-BHC(hexachlorocyclohexane)		50.5	50.0	ug/L	101	85.0 - 115		127758400			
Delta-BHC(hexachlorocyclohexane)		57.7	50.0	ug/L	115	85.0 - 115		127758413			
Dieldrin		51.1	50.0	ug/L	102	85.0 - 115		127758400			
Dieldrin		59.4	50.0	ug/L	119	85.0 - 115	*	127758413			
Endosulfan I (alpha)		50.9	50.0	ug/L	102	85.0 - 115		127758400			
Endosulfan I (alpha)		58.6	50.0	ug/L	117	85.0 - 115	*	127758413			
Endosulfan II (beta)		52.1	50.0	ug/L	104	85.0 - 115		127758400			
Endosulfan II (beta)		56.9	50.0	ug/L	114	85.0 - 115		127758413			
Endosulfan sulfate		50.2	50.0	ug/L	100	85.0 - 115		127758400			
Endosulfan sulfate		50.2	50.0	ug/L	100	85.0 - 115		127758413			
Endrin		51.2	50.0	ug/L	102	85.0 - 115		127758400			
Endrin		60.4	50.0	ug/L	121	85.0 - 115	*	127758413			
Endrin aldehyde		51.5	50.0	ug/L	103	85.0 - 115		127758400			
Endrin aldehyde		51.4	50.0	ug/L	103	85.0 - 115		127758413			
Gamma-BHC(Lindane)		49.7	50.0	ug/L	99.4	85.0 - 115		127758400			
Gamma-BHC(Lindane)		52.2	50.0	ug/L	104	85.0 - 115		127758413			
Heptachlor		50.0	50.0	ug/L	100	85.0 - 115		127758400			
Heptachlor		56.8	50.0	ug/L	114	85.0 - 115		127758413			
Heptachlor epoxide		48.6	50.0	ug/L	97.2	85.0 - 115		127758400			
Heptachlor epoxide		57.0	50.0	ug/L	114	85.0 - 115		127758413			
				10	S Dup						
-	D 0		r can		•	T. 1. 0.	T 000/	T CCDA/		D.D.D.	
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	
4,4-DDD	1181387	60.3	64.2		100	32.8 - 155	60.3	64.2	ug/L	6.27	•
4,4-DDE	1181387	54.3	57.6		100	29.9 - 133	54.3	57.6	ug/L	5.90	•
4,4-DDT	1181387	72.4	76.5		100	30.5 - 141	72.4	76.5	ug/L	5.51	•
Aldrin	1181387	44.6	50.6		100	19.0 - 121	44.6	50.6	ug/L	12.6	
Alpha-BHC(hexachlorocyclohexane)	1181387	52.1	59.1		100	42.2 - 126	52.1	59.1	ug/L	12.6	

<u>Parameter</u>	PrepSet	LCS	LCSD	Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
4,4-DDD	1181387	60.3	64.2	100	32.8 - 155	60.3	64.2	ug/L	6.27	40.0
4,4-DDE	1181387	54.3	57.6	100	29.9 - 133	54.3	57.6	ug/L	5.90	40.0
4,4-DDT	1181387	72.4	76.5	100	30.5 - 141	72.4	76.5	ug/L	5.51	40.0
Aldrin	1181387	44.6	50.6	100	19.0 - 121	44.6	50.6	ug/L	12.6	40.0
Alpha-BHC(hexachlorocyclohexane)	1181387	52.1	59.1	100	42.2 - 126	52.1	59.1	ug/L	12.6	40.0
Beta-BHC(hexachlorocyclohexane)	1181387	53.0	57.5	100	47.1 - 157	53.0	57.5	ug/L	8.14	40.0
Delta-BHC(hexachlorocyclohexane)	1181387	58.5	63.4	100	43.5 - 142	58.5	63.4	ug/L	8.04	40.0
Dieldrin	1181387	58.5	63.7	100	34.0 - 132	58.5	63.7	ug/L	8.51	40.0
Endosulfan I (alpha)	1181387	57.6	63.1	100	40.3 - 129	57.6	63.1	ug/L	9.11	40.0
Endosulfan II (beta)	1181387	58.4	62.3	100	41.8 - 137	58.4	62.3	ug/L	6.46	40.0

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 45 of 66

Page 25 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

LCS Dup											
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Endosulfan sulfate	1181387	56.3	59.1		100	42.6 - 153	56.3	59.1	ug/L	4.85	40.0
Endrin	1181387	63.2	67.5		100	40.4 - 135	63.2	67.5	ug/L	6.58	40.0
Endrin aldehyde	1181387	61.4	64.0		100	20.3 - 199	61.4	64.0	ug/L	4.15	40.0
Gamma-BHC(Lindane)	1181387	50.6	57.4		100	44.5 - 129	50.6	57.4	ug/L	12.6	40.0
Heptachlor	1181387	47.8	54.0		100	17.6 - 134	47.8	54.0	ug/L	12.2	40.0
Heptachlor epoxide	1181387	54.7	60.0		100	38.2 - 125	54.7	60.0	ug/L	9.24	40.0
				М	SD						
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
4,4-DDD	2418864	0.506	0.495	ND	0.991	0.100 - 164	52.7	51.6	ug/L	2.20	30.0
4,4-DDE	2418864	0.308	0.287	ND	0.991	0.100 - 190	32.1	29.9	ug/L	7.06	30.0
4,4-DDT	2418864	0.530	0.493	ND	0.991	0.100 - 166	55.2	51.4	ug/L	7.23	30.0
Aldrin	2418864	0.247	0.335	ND	0.991	0.100 - 162	25.7	34.9	ug/L	30.2 *	30.0
Alpha-BHC(hexachlorocyclohexane)	2418864	0.348	0.596	ND	0.991	14.1 - 150	36.2	62.1	ug/L	52.5 *	30.0
Beta-BHC(hexachlorocyclohexane)	2418864	0.592	0.650	ND	0.991	2.35 - 183	61.7	67.7	ug/L	9.34	30.0
Delta-BHC(hexachlorocyclohexane)	2418864	0.627	0.688	ND	0.991	19.5 - 156	65.3	71.7	ug/L	9.28	30.0
Dieldrin	2418864	0.616	0.656	ND	0.991	0.100 - 248	64.2	68.3	ug/L	6.29	30.0
Endosulfan I (alpha)	2418864	0.552	0.614	ND	0.991	0.100 - 157	57.5	64.0	ug/L	10.6	30.0
Endosulfan II (beta)	2418864	0.688	0.682	ND	0.991	0.100 - 157	71.7	71.0	ug/L	0.876	30.0
Endosulfan sulfate	2418864	0.633	0.647	ND	0.991	14.0 - 152	65.9	67.4	ug/L	2.19	30.0
Endrin	2418864	0.590	0.618	ND	0.991	0.100 - 181	61.5	64.4	ug/L	4.64	30.0
Endrin aldehyde	2418864	0.576	0.602	ND	0.991	0.100 - 174	60.0	62.7	ug/L	4.41	30.0
Gamma-BHC(Lindane)	2418864	0.448	0.641	ND	0.991	6.82 - 158	46.7	66.8	ug/L	35.4 *	30.0
Heptachlor	2418864	0.312	0.485	ND	0.991	0.100 - 154	32.5	50.5	ug/L	43.4 *	30.0
Heptachlor epoxide	2418864	0.494	0.582	ND	0.991	0.100 - 161	51.5	60.6	ug/L	16.4	30.0
				Surr	ogate						
Parameter	Sample	Type	Reading	Known	Units	Recover%	Limits%	File			
Decachlorobiphenyl	*	CCV	50.5	100	ug/L	50.5	0.100 - 129	127758400			
Decachlorobiphenyl		CCV	51.5	100	ug/L	51.5	0.100 - 129	127758413			
Tetrachloro-m-Xylene (Surr)		CCV	47.2	100	ug/L	47.2	0.100 - 149	127758400			
Tetrachloro-m-Xylene (Surr)		CCV	45.9	100	ug/L	45.9	0.100 - 149	127758413			
Decachlorobiphenyl	1181387	Blank	56.5	100	ug/L	56.5	0.100 - 129	127758401			
Decachlorobiphenyl	1181387	LCS	52.6	100	ug/L	52.6	0.100 - 129	127758402			
Decachlorobiphenyl	1181387	LCS Dup	43.7	100	ug/L	43.7	0.100 - 129	127758403			
Tetrachloro-m-Xylene (Surr)	1181387	Blank	40.6	100	ug/L	40.6	0.100 - 149	127758401			
Tetrachloro-m-Xylene (Surr)	1181387	LCS	37.3	100	ug/L	37.3	0.100 - 149	127758402			
Tetrachloro-m-Xylene (Surr)	1181387	LCS Dup	43.5	100	ug/L	43.5	0.100 - 149	127758403			
Decachlorobiphenyl	2418864	MS	0.277	0.960	ug/L	28.9	0.100 - 129	127758406			
Decachlorobiphenyl	2418864	MSD	0.235	0.991	ug/L	23.7	0.100 - 129	127758407			
Tetrachloro-m-Xylene (Surr)	2418864	MS	0.143	0.960	ug/L	14.9	0.100 - 149	127758406			
Tetrachloro-m-Xylene (Surr)	2418864	MSD	0.346	0.991	ug/L	34.9	0.100 - 149	127758407			
Decachlorobiphenyl	2419182	Unknown	0.0202	0.0998	ug/L	20.2	0.100 - 129	127758404			
Tetrachloro-m-Xylene (Surr)	2419182	Unknown	0.0294	0.0998	ug/L	29.5	0.100 - 149	127758404			

Analytical Set 1182153 EPA 608.3

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 46 of 66

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601 Page 26 of 37

Project 1151501

Printed 07/09/2025

				ВІ	ank						
Parameter Parame	PrepSet	Reading	MDL	MQL	Units			File			
PCB-1016	1181389	ND	18.7	20.0	ug/L			127760279			
PCB-1221	1181389	ND	0.0143	0.020	ug/L			127760279			
PCB-1232	1181389	ND	0.0143	0.020	ug/L			127760279			
PCB-1242	1181389	ND	0.0192	0.020	ug/L			127760279			
PCB-1248	1181389	ND	0.0143	0.020	ug/L			127760279			
PCB-1254	1181389	ND	0.0143	0.020	ug/L			127760279			
PCB-1260	1181389	ND	19.0	20.0	ug/L			127760279			
				C	CV						
Parameter Parame		Reading	Known	Units	Recover%	Limits%		File			
PCB-1016		861	1000	ug/L	86.1	80.0 - 115		127760276			
PCB-1016		909	1000	ug/L	90.9	80.0 - 115		127760285			
PCB-1016		917	1000	ug/L	91.7	80.0 - 115		127760286			
PCB-1260		805	1000	ug/L	80.5	80.0 - 115		127760276			
PCB-1260		892	1000	ug/L	89.2	80.0 - 115		127760285			
PCB-1260		911	1000	ug/L	91.1	80.0 - 115		127760286			
				LCS	Dup						
Parameter Parame	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
PCB-1016	1181389	839	815		1000	39.8 - 135	83.9	81.5	ug/L	2.90	30.0
PCB-1260	1181389	854	782		1000	36.1 - 134	85.4	78.2	ug/L	8.80	30.0
				Surr	ogate						
Parameter	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
Decachlorobiphenyl	1181389	Blank	56.5	100	ug/L	56.5	10.0 - 200	127760279			
Tetrachloro-m-Xylene (Surr)	1181389	Blank	40.6	100	ug/L	40.6	10.0 - 200	127760279			
Decachlorobiphenyl	2419182	Unknown	0.0202	0.0998	ug/L	20.2	10.0 - 200	127760282			
Tetrachloro-m-Xylene (Surr)	2419182	Unknown	0.0294	0.0998	ug/L	29.5	10.0 - 200	127760282			
Analytical Set 1	182161										EPA 615
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				ВІ	ank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
2,4 Dichlorophenoxyacetic acid	1181580	24.7	15.9	50.0	ug/L			127760347			
2,4,5-TP (Silvex)	1181580	ND	8.93	30.0	ug/L			127760347			
				C	CV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
2,4 Dichlorophenoxyacetic acid		149	150	ug/L	99.3	80.0 - 115		127760346			
2,4 Dichlorophenoxyacetic acid		140	150	ug/L	93.1	80.0 - 115		127760352			
2,4,5-TP (Silvex)		151	150	ug/L	101	80.0 - 115		127760346			
2,4,5-TP (Silvex)		146	150	ug/L	97.3	80.0 - 115		127760352			
				LCS	Dup						
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
2,4 Dichlorophenoxyacetic acid	1181580	209	180		100	0.100 - 319	209	180	ug/L	14.9	30.0
2,4,5-TP (Silvex)	1181580	85.7	78.8		100	0.100 - 244	85.7	78.8	ug/L	8.39	30.0

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 47 of 66

Page 27 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

Surrogate

<u>Parameter</u>	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File
2,4-Dichlorophenylacetic Acid		CCV	138	200	ug/L	69.0	0.100 - 313	127760346
2,4-Dichlorophenylacetic Acid		CCV	136	200	ug/L	68.0	0.100 - 313	127760352
2,4-Dichlorophenylacetic Acid	1181580	Blank	128	200	ug/L	64.0	0.100 - 313	127760347
2,4-Dichlorophenylacetic Acid	1181580	LCS	104	200	ug/L	52.0	0.100 - 313	127760348
2,4-Dichlorophenylacetic Acid	1181580	LCS Dup	91.6	200	ug/L	45.8	0.100 - 313	127760349
2,4-Dichlorophenylacetic Acid	2419182	Unknown	1.05	2.01	ug/L	52.2	0.100 - 313	127760351

Analytical Set 1182193 EPA 625.1
Blank

				-	- iuiii	
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units	File
1,2,4,5-Tetrachlorobenzene	1181604	ND	1.03	1.03	ug/L	127760788
1,2,4-Trichlorobenzene	1181604	ND	0.941	1.00	ug/L	127760788
1,2-Dichlorobenzene	1181604	ND	1.04	5.00	ug/L	127760788
1,2-DPH (as azobenzene)	1181604	ND	0.238	1.00	ug/L	127760788
1,3-Dichlorobenzene	1181604	ND	0.954	5.00	ug/L	127760788
1,4-Dichlorobenzene	1181604	ND	1.01	5.00	ug/L	127760788
2,4,5-Trichlorophenol	1181604	ND	0.961	5.00	ug/L	127760788
2,4,6-Trichlorophenol	1181604	ND	1.24	2.00	ug/L	127760788
2,4-Dichlorophenol	1181604	ND	0.222	1.00	ug/L	127760788
2,4-Dimethylphenol	1181604	ND	0.536	1.00	ug/L	127760788
2,4-Dinitrophenol	1181604	ND	1.34	2.00	ug/L	127760788
2,4-Dinitrotoluene	1181604	ND	1.35	2.00	ug/L	127760788
2,6-Dinitrotoluene	1181604	ND	1.29	2.00	ug/L	127760788
2-Chloronaphthalene	1181604	ND	0.150	1.00	ug/L	127760788
2-Chlorophenol	1181604	ND	0.275	1.00	ug/L	127760788
2-Methylphenol (o-Cresol)	1181604	ND	8.48	10.0	ug/L	127760788
2-Nitrophenol	1181604	ND	0.554	1.00	ug/L	127760788
3&4-Methylphenol (m&p-Cresol)	1181604	ND	7.78	8.00	ug/L	127760788
3,3'-Dichlorobenzidine	1181604	ND	1.39	2.00	ug/L	127760788
4,6-Dinitro-2-methylphenol	1181604	ND	1.15	2.00	ug/L	127760788
4-Bromophenyl phenyl ether	1181604	ND	0.772	1.00	ug/L	127760788
4-Chlorophenyl phenyl ethe	1181604	ND	0.202	1.00	ug/L	127760788
4-Nitrophenol	1181604	ND	0.789	1.00	ug/L	127760788
Acenaphthene	1181604	ND	0.177	1.00	ug/L	127760788
Acenaphthylene	1181604	ND	0.240	1.00	ug/L	127760788
Aniline	1181604	ND	2470	2470	ug/L	127760788
Anthracene	1181604	ND	0.241	1.00	ug/L	127760788
Benzidine	1181604	ND	1.40	1.50	ug/L	127760788
Benzo(a)anthracene	1181604	ND	0.225	1.00	ug/L	127760788
Benzo(a)pyrene	1181604	ND	0.900	1.00	ug/L	127760788
Benzo(b)fluoranthene	1181604	ND	0.547	1.00	ug/L	127760788
Benzo(ghi)perylene	1181604	ND	0.881	1.00	ug/L	127760788
Benzo(k)fluoranthene	1181604	ND	0.252	1.00	ug/L	127760788
Benzyl Butyl phthalate	1181604	0.240	0.204	7.50	ug/L	127760788

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 48 of 66

The Science of Sure

Page 28 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

				В	lank			
Parameter Parame	PrepSet	Reading	MDL	MQL	Units		F	File
Bis(2-chloroethoxy)methane	1181604	ND	0.277	1.00	ug/L		1	27760788
Bis(2-chloroethyl)ether	1181604	ND	0.348	1.00	ug/L		1	27760788
Bis(2-chloroisopropyl)ether	1181604	ND	0.738	1.00	ug/L		1	27760788
Bis(2-ethylhexyl)phthalate	1181604	ND	1.12	7.50	ug/L		1	27760788
Chrysene (Benzo(a)phenanthrene)	1181604	ND	0.289	1.00	ug/L		1	27760788
Dibenz(a,h)anthracene	1181604	ND	0.689	1.00	ug/L		1	27760788
Diethyl phthalate	1181604	ND	0.253	5.70	ug/L		1	27760788
Dimethyl phthalate	1181604	ND	0.540	4.80	ug/L		1	27760788
Di-n-butylphthalate	1181604	ND	0.978	7.50	ug/L		1	27760788
Di-n-octylphthalate	1181604	ND	1.92	2.00	ug/L		1	27760788
Fluoranthene(Benzo(j,k)fluorene)	1181604	ND	0.318	1.00	ug/L		1	27760788
Fluorene	1181604	ND	0.275	1.00	ug/L		1	27760788
Hexachlorobenzene	1181604	ND	0.871	1.00	ug/L		1	27760788
Hexachlorobutadiene	1181604	ND	1.03	1.03	ug/L		1	27760788
Hexachlorocyclopentadiene	1181604	ND	0.536	1.00	ug/L		1	27760788
Hexachloroethane	1181604	ND	1.05	2.00	ug/L		1	27760788
Indeno(1,2,3-cd)pyrene	1181604	ND	0.596	1.00	ug/L		1	27760788
Isophorone	1181604	ND	0.429	1.00	ug/L		1	27760788
Naphthalene	1181604	ND	0.225	1.00	ug/L		1	27760788
Nitrobenzene	1181604	ND	0.271	1.00	ug/L			27760788
n-Nitrosodiethylamine	1181604	ND	0.747	1.00	ug/L		1	27760788
N-Nitrosodimethylamine	1181604	ND	0.542	1.00	ug/L			27760788
n-Nitroso-di-n-butylamine	1181604	ND	0.210	1.00	ug/L			27760788
N-Nitrosodi-n-propylamine	1181604	ND	0.425	1.00	ug/L			27760788
N-Nitrosodiphenylamine (as DPA	1181604	ND	0.404	1.00	ug/L			27760788
p-Chloro-m-Cresol (4-Chloro-3-me	1181604	ND	0.588	1.00	ug/L			27760788
Pentachlorobenzene	1181604	ND	0.977	1.00	ug/L			27760788
Pentachlorophenol	1181604	ND	0.960	5.00	ug/L			27760788
Phenanthrene	1181604	ND	0.269	1.00	ug/L			27760788
Phenol	1181604	ND	0.332	1.00	ug/L			27760788
Pyrene	1181604	ND	0.291	1.00	ug/L			27760788
Pyridine	1181604	ND	1.35	1.35	ug/L		1	27760788
				(CCV			
Parameter Parame		Reading	Known	Units	Recover%	Limits%	F	File
1,2,4,5-Tetrachlorobenzene		47200	50000	ug/L	94.4	60.0 - 140	1	27760787
1,2,4-Trichlorobenzene		57200	50000	ug/L	114	61.0 - 130	1	27760787
1,2-Dichlorobenzene		62000	50000	ug/L	124	60.0 - 140	1	27760787
1,2-DPH (as azobenzene)		49000	50000	ug/L	98.0	60.0 - 140	1	27760787
1,3-Dichlorobenzene		48300	50000	ug/L	96.6	60.0 - 140	1	27760787
1,4-Dichlorobenzene		51200	50000	ug/L	102	60.0 - 140	1	27760787
2,4,5-Trichlorophenol		50200	50000	ug/L	100	69.0 - 130	1	27760787
2,4,6-Trichlorophenol		48900	50000	ug/L	97.8	69.0 - 130	1	27760787
2,4-Dichlorophenol		52100	50000	ug/L	104	64.0 - 130	1	27760787
2,4-Dimethylphenol		42000	50000	ug/L	84.0	58.0 - 130	1	27760787

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 49 of 66

The Science of Sure

Page 29 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

CCV

Parameter	Reading	Known	Units	Recover%	Limits%	File
2,4-Dinitrophenol	43900	50000	ug/L	87.8	39.0 - 173	127760787
2,4-Dinitrotoluene	56000	50000	ug/L	112	53.0 - 130	127760787
2,6-Dinitrotoluene	55700	50000	ug/L	111	68.0 - 137	127760787
2-Chloronaphthalene	46900	50000	ug/L	93.8	70.0 - 130	127760787
2-Chlorophenol	54000	50000	ug/L	108	55.0 - 130	127760787
2-Methylphenol (o-Cresol)	47300	50000	ug/L	94.6	60.0 - 140	127760787
2-Nitrophenol	50000	50000	ug/L	100	61.0 - 163	127760787
3&4-Methylphenol (m&p-Cresol)	47500	50000	ug/L	95.0	60.0 - 140	127760787
3,3'-Dichlorobenzidine	66400	50000	ug/L	133	18.0 - 213	127760787
4,6-Dinitro-2-methylphenol	43000	50000	ug/L	86.0	56.0 - 130	127760787
4-Bromophenyl phenyl ether	52800	50000	ug/L	106	70.0 - 130	127760787
4-Chlorophenyl phenyl ethe	49600	50000	ug/L	99.2	57.0 - 145	127760787
4-Nitrophenol	40600	50000	ug/L	81.2	35.0 - 135	127760787
Acenaphthene	50300	50000	ug/L	101	70.0 - 130	127760787
Acenaphthylene	51200	50000	ug/L ug/L	102	60.0 - 130	127760787
Aniline	45200	50000	ug/L	90.4	60.0 - 140	127760787
Anthracene	50500	50000	ug/L ug/L	101	58.0 - 130	127760787
Benzidine	22200	50000	ug/L ug/L	44.4	20.0 - 180	127760787
Benzo(a)anthracene	60900	50000	ug/L ug/L	122	42.0 - 133	127760787
Benzo(a)pyrene	63400	50000	ug/L ug/L	127	32.0 - 148	127760787
Benzo(b)fluoranthene	57900	50000	ug/L ug/L	116	42.0 - 140	127760787
Benzo(ghi)perylene	67500	50000	ug/L ug/L	135	13.0 - 195	127760787
Benzo(k)fluoranthene	62400	50000	ug/L ug/L	125	25.0 - 146	127760787
Benzyl Butyl phthalate	65700	50000	ug/L ug/L	131	43.0 - 140	127760787
Bis(2-chloroethoxy)methane	54500	50000	ug/L ug/L	109	52.0 - 164	127760787
Bis(2-chloroethyl)ether	54200	50000	ug/L ug/L	109	52.0 - 130	127760787
Bis(2-chloroisopropyl)ether	56100	50000	ug/L ug/L	112	63.0 - 139	127760787
Bis(2-ethylhexyl)phthalate	55800	50000	ug/L ug/L	112	43.0 - 137	127760787
Chrysene (Benzo(a)phenanthrene)	57900	50000	ug/L ug/L	116	44.0 - 140	127760787
Dibenz(a,h)anthracene	65500	50000	ug/L ug/L	131	13.0 - 200	127760787
Diethyl phthalate	52500	50000	ug/L ug/L	105	47.0 - 130	127760787
Dimethyl phthalate	51400	50000	ug/L ug/L	103	50.0 - 130	127760787
Di-n-butylphthalate	50000	50000	ug/L ug/L	100	52.0 - 130	127760787
Di-n-octylphthalate	45600	50000	ug/L ug/L	91.2	21.0 - 132	127760787
Fluoranthene(Benzo(j,k)fluorene)	54200	50000	ug/L ug/L	108	47.0 - 130	127760787
Fluorene	51200	50000	ug/L ug/L	103	70.0 - 130	127760787
Hexachlorobenzene	53600	50000	ug/L ug/L	102	38.0 - 142	127760787
Hexachlorobutadiene	59100	50000	ug/L ug/L	118	68.0 - 130	127760787
Hexachlorocyclopentadiene	45600	50000	ug/L ug/L	91.2	60.0 - 140	127760787
Hexachloroethane	57500	50000		115	55.0 - 130	
Indeno(1,2,3-cd)pyrene	58700	50000	ug/L ug/L	117	13.0 - 151	127760787 127760787
Isophorone	52500	50000	ug/L ug/L	105	52.0 - 180	127760787
Naphthalene	55200	50000	ug/L ug/L	110	70.0 - 130	127760787
Nitrobenzene	46500	50000		93.0	54.0 - 158	127760787
			ug/L			
n-Nitrosodiethylamine	52900	50000	ug/L	106	60.0 - 140	127760787

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 50 of 66

The Science of Sure

Page 30 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

				C	CCV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
N-Nitrosodimethylamine		47800	50000	ug/L	95.6	60.0 - 140		127760787			
n-Nitroso-di-n-butylamine		53400	50000	ug/L	107	60.0 - 140		127760787			
N-Nitrosodi-n-propylamine		55200	50000	ug/L	110	59.0 - 170		127760787			
N-Nitrosodiphenylamine (as DPA		46900	50000	ug/L	93.8	60.0 - 140		127760787			
p-Chloro-m-Cresol (4-Chloro-3-me		52700	50000	ug/L	105	68.0 - 130		127760787			
Pentachlorobenzene		51600	50000	ug/L	103	60.0 - 140		127760787			
Pentachlorophenol		44200	50000	ug/L	88.4	42.0 - 152		127760787			
Phenanthrene		50100	50000	ug/L	100	67.0 - 130		127760787			
Phenol		51400	50000	ug/L	103	48.0 - 130		127760787			
Pyrene		62800	50000	ug/L	126	70.0 - 130		127760787			
Pyridine		40100	50000	ug/L	80.2	60.0 - 140		127760787			
				DF	FTPP						
Parameter		RefMass	Reading	%	Limits%			File			
DFTPP Mass 127	632253	198	66117	49.7	40.0 - 60.0			127760785			
DFTPP Mass 197	632253	198	187	0.1	0 - 1.00			127760785			
DFTPP Mass 198	632253	198	133104	100.0	100 - 100			127760785			
DFTPP Mass 199	632253	198	8761	6.6	5.00 - 9.00			127760785			
DFTPP Mass 275	632253	198	31499	23.7	10.0 - 30.0			127760785			
DFTPP Mass 365	632253	198	5168	3.9	1.00 - 100			127760785			
DFTPP Mass 441	632253	443	16520	76.9	0 - 100			127760785			
DFTPP Mass 442	632253	198	107581	80.8	40.0 - 100			127760785			
DFTPP Mass 443	632253	442	21471	20.0	17.0 - 23.0			127760785			
DFTPP Mass 51	632253	198	46004	34.6	30.0 - 60.0			127760785			
DFTPP Mass 68	632253	69.0	473	0.8	0 - 2.00			127760785			
DFTPP Mass 69	632253	198	58365	43.8	0 - 100			127760785			
DFTPP Mass 70	632253	69.0	350	0.6	0 - 2.00			127760785			
				LC:	S Dup						
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
1,2,4,5-Tetrachlorobenzene	1181604	10.5	16.4		25.0	27.5 - 85.5	42.0	65.6	ug/L	43.9	50.0
1,2,4-Trichlorobenzene	1181604	8.74	14.2		25.0	44.0 - 142	35.0 *	56.8	ug/L	47.5	50.0
1,2-Dichlorobenzene	1181604	9.25	16.6		25.0	23.0 - 81.8	37.0	66.4	ug/L	56.9 *	50.0
1,2-DPH (as azobenzene)	1181604	12.1	16.7		25.0	12.6 - 110	48.4	66.8	ug/L	31.9	50.0
1,3-Dichlorobenzene	1181604	7.24	12.6		25.0	21.1 - 80.5	29.0	50.4	ug/L	53.9 *	50.0
1,4-Dichlorobenzene	1181604	7.94	13.7		25.0	21.4 - 76.9	31.8	54.8	ug/L	53.1 *	50.0
2,4,5-Trichlorophenol	1181604	11.7	16.5		25.0	51.3 - 109	46.8 *	66.0	ug/L	34.0	50.0
2,4,6-Trichlorophenol	1181604	11.6	17.0		25.0	37.0 - 144	46.4	68.0	ug/L	37.8	58.0
2,4-Dichlorophenol	1181604	11.7	16.7		25.0	39.0 - 135	46.8	66.8	ug/L	35.2	50.0
2,4-Dimethylphenol	1181604	4.21	16.2		25.0	32.0 - 120	16.8 *	64.8	ug/L	118 *	68.0

Email: Kilgore.ProjectManagement@spllabs.com

1181604

1181604

1181604

1181604

1181604

9.66

13.0

13.0

11.3

11.1

25.0

25.0

25.0

25.0

25.0

0.100 - 191 38.6

52.0

52.0

45.2 *

44.4

39.0 - 139

50.0 - 158

60.0 - 120

23.0 - 134

46.0

70.8

73.6

66.0

60.4

Report Page 51 of 66

17.5

30.6

34.4

30.5

37.4 *

132

42.0

48.0

24.0

61.0

ug/L

ug/L

ug/L

ug/L

ug/L

2,4-Dinitrophenol

2,4-Dinitrotoluene

2,6-Dinitrotoluene

2-Chlorophenol

2-Chloronaphthalene

11.5

17.7

18.4

16.5

15.1

Page 31 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

LCS Dup

			LC	Dub						
<u>Parameter</u>	PrepSet	LCS	LCSD	Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
2-Methylphenol (o-Cresol)	1181604	11.4	15.6	25.0	38.9 - 76.1	45.6	62.4	ug/L	31.1	50.0
2-Nitrophenol	1181604	9.92	16.1	25.0	29.0 - 182	39.7	64.4	ug/L	47.5	55.0
3&4-Methylphenol (m&p-Cresol)	1181604	10.7	14.3	25.0	33.0 - 70.4	42.8	57.2	ug/L	28.8	50.0
3,3'-Dichlorobenzidine	1181604	12.2	17.6	25.0	0.100 - 262	48.8	70.4	ug/L	36.2	108
4,6-Dinitro-2-methylphenol	1181604	10.4	12.6	25.0	0.100 - 181	41.6	50.4	ug/L	19.1	203
4-Bromophenyl phenyl ether	1181604	14.2	19.4	25.0	53.0 - 127	56.8	77.6	ug/L	31.0	43.0
4-Chlorophenyl phenyl ethe	1181604	13.8	18.4	25.0	25.0 - 158	55.2	73.6	ug/L	28.6	61.0
4-Nitrophenol	1181604	5.11	5.53	25.0	0.100 - 132	20.4	22.1	ug/L	8.00	131
Acenaphthene	1181604	13.0	18.5	25.0	47.0 - 145	52.0	74.0	ug/L	34.9	48.0
Acenaphthylene	1181604	12.7	18.1	25.0	33.0 - 145	50.8	72.4	ug/L	35.1	74.0
Aniline	1181604	11900	12600	25000	70.0 - 130	47.6 *	50.4 *	ug/L	5.71	50.0
Anthracene	1181604	14.7	19.5	25.0	27.0 - 133	58.8	78.0	ug/L	28.1	66.0
Benzidine	1181604	0.940	2.67	25.0	0.100 - 36.9	3.76	10.7	ug/L	96.0 *	90.0
Benzo(a)anthracene	1181604	13.4	18.1	25.0	33.0 - 143	53.6	72.4	ug/L	29.8	53.0
Benzo(a)pyrene	1181604	13.9	18.7	25.0	17.0 - 163	55.6	74.8	ug/L	29.4	72.0
Benzo(b)fluoranthene	1181604	14.5	18.1	25.0	24.0 - 159	58.0	72.4	ug/L	22.1	71.0
Benzo(ghi)perylene	1181604	13.4	22.2	25.0	0.100 - 219	53.6	88.8	ug/L	49.4	97.0
Benzo(k)fluoranthene	1181604	16.1	19.4	25.0	11.0 - 162	64.4	77.6	ug/L	18.6	63.0
Benzyl Butyl phthalate	1181604	14.3	19.0	25.0	0.100 - 152	57.2	76.0	ug/L	28.2	60.0
Bis(2-chloroethoxy)methane	1181604	13.9	20.2	25.0	33.0 - 184	55.6	80.8	ug/L	37.0	54.0
Bis(2-chloroethyl)ether	1181604	9.01	14.4	25.0	12.0 - 158	36.0	57.6	ug/L	46.2	108
Bis(2-chloroisopropyl)ether	1181604	12.0	19.9	25.0	36.0 - 166	48.0	79.6	ug/L	49.5	76.0
Bis(2-ethylhexyl)phthalate	1181604	12.9	17.9	25.0	8.00 - 158	51.6	71.6	ug/L	32.5	82.0
Chrysene (Benzo(a)phenanthrene)	1181604	14.6	18.9	25.0	17.0 - 168	58.4	75.6	ug/L	25.7	87.0
Dibenz(a,h)anthracene	1181604	13.3	20.5	25.0	0.100 - 227	53.2	82.0	ug/L	42.6	126
Diethyl phthalate	1181604	15.3	19.9	25.0	0.100 - 120	61.2	79.6	ug/L	26.1	100
Dimethyl phthalate	1181604	14.4	19.0	25.0	0.100 - 120	57.6	76.0	ug/L	27.5	183
Di-n-butylphthalate	1181604	15.6	20.2	25.0	1.00 - 120	62.4	80.8	ug/L	25.7	47.0
Di-n-octylphthalate	1181604	12.5	15.2	25.0	4.00 - 146	50.0	60.8	ug/L	19.5	69.0
Fluoranthene(Benzo(j,k)fluorene)	1181604	14.6	19.3	25.0	26.0 - 137	58.4	77.2	ug/L	27.7	66.0
Fluorene	1181604	14.1	19.0	25.0	59.0 - 121	56.4 *	76.0	ug/L	29.6	38.0
Hexachlorobenzene	1181604	14.0	19.3	25.0	0.100 - 152	56.0	77.2	ug/L	31.8	55.0
Hexachlorobutadiene	1181604	7.78	12.9	25.0	24.0 - 120	31.1	51.6	ug/L	49.6	62.0
Hexachlorocyclopentadiene	1181604	7.88	13.0	25.0	3.97 - 68.7	31.5	52.0	ug/L	49.1	50.0
Hexachloroethane	1181604	6.85	12.5	25.0	40.0 - 120	27.4 *	50.0	ug/L	58.4 *	52.0
Indeno(1,2,3-cd)pyrene	1181604	12.4	19.4	25.0	0.100 - 171	49.6	77.6	ug/L	44.0	99.0
Isophorone	1181604	11.5	16.5	25.0	21.0 - 196	46.0	66.0	ug/L	35.7	93.0
Naphthalene	1181604	9.95	15.6	25.0	21.0 - 133	39.8	62.4	ug/L	44.2	65.0
Nitrobenzene	1181604	9.61	15.4	25.0	35.0 - 180	38.4	61.6	ug/L	46.4	62.0
n-Nitrosodiethylamine	1181604	24.0	32.7	25.0	18.0 - 100	96.0	131 *	ug/L	30.8	50.0
N-Nitrosodimethylamine	1181604	8.53	8.81	25.0	30.2 - 74.9	34.1	35.2	ug/L	3.17	50.0
n-Nitroso-di-n-butylamine	1181604	12.0	17.2	25.0	48.4 - 98.5	48.0 *	68.8	ug/L	35.6	50.0
N-Nitrosodi-n-propylamine	1181604	12.2	18.2	25.0	0.100 - 230	48.8	72.8	ug/L	39.5	87.0
N-Nitrosodiphenylamine (as DPA	1181604	14.5	19.3	25.0	49.3 - 94.2	58.0	77.2	ug/L	28.4	50.0
p-Chloro-m-Cresol (4-Chloro-3-me	1181604	12.3	15.4	25.0	22.0 - 147	49.2	61.6	ug/L	22.4	70.0

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 52 of 66

Page 32 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

				5 Dup						
Parameter Prep.	Set LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Pentachlorobenzene 1181	604 12.9	17.8		25.0	39.3 - 93.7	51.6	71.2	ug/L	31.9	50.0
Pentachlorophenol 1181	604 11.3	15.0		25.0	14.0 - 176	45.2	60.0	ug/L	28.1	86.0
Phenanthrene 1181	604 15.0	19.3		25.0	54.0 - 120	60.0	77.2	ug/L	25.1	39.0
Phenol 1181	604 4.90	5.77		25.0	5.00 - 120	19.6	23.1	ug/L	16.4	64.0
Pyrene 1181	604 14.3	18.3		25.0	52.0 - 120	57.2	73.2	ug/L	24.5	49.0
Pyridine 1181	604 6.04	7.00		25.0	11.2 - 50.6	24.2	28.0	ug/L	14.6	50.0
			Surr	ogate						
<u>Parameter</u> Sam _j	ole Type	Reading	Known	Units	Recover%	Limits%	File			
2,4,6-Tribromophenol 6321	90 CCV	51300	100000	ug/L	51.3	10.0 - 150	127760787			
2-Fluorophenol-SURR 6321	90 CCV	51700	100000	ug/L	51.7	10.0 - 150	127760787			
4-Terphenyl-d14-SURR 6321	90 CCV	51500	50000	ug/L	103	30.0 - 150	127760787			
Nitrobenzene-d5-SURR 6321	90 CCV	44600	50000	ug/L	89.2	30.0 - 150	127760787			
Phenol-d6-SURR 6321	90 CCV	53300	100000	ug/L	53.3	10.0 - 150	127760787			
2,4,6-Tribromophenol 1181	604 Blank	47.1	100	ug/L	47.1	10.0 - 150	127760788			
2,4,6-Tribromophenol	604 LCS	39.0	100	ug/L	39.0	10.0 - 150	127760789			
2,4,6-Tribromophenol 1181	604 LCS Du	p 52.7	100	ug/L	52.7	10.0 - 150	127760790			
2-Fluorophenol-SURR 1181	604 Blank	29100	100000	ug/L	29.1	10.0 - 150	127760788			
2-Fluorophenol-SURR 1181	604 LCS	25500	100000	ug/L	25.5	10.0 - 150	127760789			
2-Fluorophenol-SURR 1181	604 LCS Du	p 32000	100000	ug/L	32.0	10.0 - 150	127760790			
4-Terphenyl-d14-SURR 1181	604 Blank	42400	50000	ug/L	84.8	30.0 - 150	127760788			
4-Terphenyl-d14-SURR 1181	604 LCS	29100	50000	ug/L	58.2	30.0 - 150	127760789			
4-Terphenyl-d14-SURR 1181	604 LCS Du	р 36400	50000	ug/L	72.8	30.0 - 150	127760790			
Nitrobenzene-d5-SURR 1181	604 Blank	36300	50000	ug/L	72.6	30.0 - 150	127760788			
Nitrobenzene-d5-SURR 1181	604 LCS	22200	50000	ug/L	44.4	30.0 - 150	127760789			
Nitrobenzene-d5-SURR 1181	604 LCS Du	p 36400	50000	ug/L	72.8	30.0 - 150	127760790			
Phenol-d6-SURR 1181	604 Blank	19600	100000	ug/L	19.6	10.0 - 150	127760788			
Phenol-d6-SURR 1181	604 LCS	19400	100000	ug/L	19.4	10.0 - 150	127760789			
Phenol-d6-SURR 1181	604 LCS Du	p 22600	100000	ug/L	22.6	10.0 - 150	127760790			
2,4,6-Tribromophenol 2419	182 Unknov	n 59.3	119	ug/L	49.8	10.0 - 150	127760796			
2-Fluorophenol-SURR 2419	182 Unknov	n 40.3	119	ug/L	33.9	10.0 - 150	127760796			
4-Terphenyl-d14-SURR 2419	182 Unknov	n 44.0	59.4	ug/L	74.1	30.0 - 150	127760796			
Nitrobenzene-d5-SURR 2419	182 Unknov	n 44.9	59.4	ug/L	75.6	30.0 - 150	127760796			
Phenol-d6-SURR 2419	182 Unknov	n 27.7	119	ug/L	23.3	10.0 - 150	127760796			

Analytical Set 1182434 ASTM D7065-17
Blank

<u>Parameter</u> Nonylphenol	<i>PrepSet</i> 1181852	Reading ND	<i>MDL</i> 5.00	<i>MQL</i> 30.0	<i>Units</i> ug/L		<i>File</i> 127765563
					CCV		
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%	File
Nonylphenol		166000	150000	ug/L	111	70.0 - 130	127765562
Nonylphenol		175000	150000	ug/L	116	70.0 - 130	127765574

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 53 of 66

Page 33 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

IS Areas

				.57	cus						
<u>Parameter</u>	Sample	Туре	Reading	CCVISM	Low	High		File	PrepSei	t	
Acenaphthene-d10-ISTD	631656	CCV	618500	618500	309200	927700		127765562	631656		
Acenaphthene-d10-ISTD	631656	CCV	551600	618500	309200	927700		127765574	631656		
Phenanthrene-d10-ISTD	631656	CCV	1039000	1039000	519300	1558000		127765562	631656		
Phenanthrene-d10-ISTD	631656	CCV	911000	1039000	519300	1558000		127765574	631656		
Acenaphthene-d10-ISTD	1181852	Blank	412900	618500	309200	927700		127765563	118185	2	
Acenaphthene-d10-ISTD	1181852	LCS	499900	618500	309200	927700		127765564	118185	2	
Acenaphthene-d10-ISTD	1181852	LCS Dup	535500	618500	309200	927700		127765565	118185	2	
Phenanthrene-d10-ISTD	1181852	Blank	706500	1039000	519300	1558000		127765563	118185	2	
Phenanthrene-d10-ISTD	1181852	LCS	826600	1039000	519300	1558000		127765564	118185	2	
Phenanthrene-d10-ISTD	1181852	LCS Dup	906400	1039000	519300	1558000		127765565	118185	2	
Acenaphthene-d10-ISTD	2419182	Unknown	490100	618500	309200	927700		127765570	118185	2	
Phenanthrene-d10-ISTD	2419182	Unknown	840600	1039000	519300	1558000		127765570	118185	2	
				IS Re	tTime						
Paramatar	Campla	Trmo	Reading	CCVISM	Low	High		File	Dran Ca	4	
Parameter Acenaphthene-d10-ISTD	<i>Sample</i> 631656	Type CCV	7.659	7.659	<i>Low</i> 7.599	<i>High</i> 7.719		127765562	<i>PrepSet</i> 631656		
Acenaphthene-d10-ISTD	631656	CCV	7.653	7.659 7.659	7.599 7.599	7.719 7.719		127765574	631656		
Phenanthrene-d10-ISTD	631656	CCV	8.909	8.909	8.849	8.969		127765562	631656		
Phenanthrene-d10-ISTD	631656	CCV	8.909	8.909	8.849	8.969		127765574	631656		
Acenaphthene-d10-ISTD	1181852	Blank	7.653	7.659	7.599	7.719		127765563	118185		
Acenaphthene-d10-ISTD	1181852	LCS	7.653	7.659	7.599 7.599	7.719		127765564	118185		
Acenaphthene-d10-ISTD	1181852	LCS Dup	7.653	7.659	7.599	7.719		127765565	118185		
Phenanthrene-d10-ISTD	1181852	Blank	8.909	8.909	8.849	8.969		127765563	118185		
Phenanthrene-d10-ISTD	1181852	LCS	8.909	8.909	8.849	8.969		127765564	118185		
Phenanthrene-d10-ISTD	1181852	LCS Dup	8.909	8.909	8.849	8.969		127765565	118185		
Acenaphthene-d10-ISTD	2419182	Unknown	7.653	7.659	7.599	7.719		127765570	118185		
Phenanthrene-d10-ISTD	2419182	Unknown		8.909	8.849	8.969		127765570	118185		
Thenanthene-div-151D	2417102	CHRIOWII	0.505			0.505		127703370	110103	_	
				LCS	Dup						
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Nonylphenol	1181852	118	118		150	56.0 - 112	78.7	78.7	ug/L	0	30.0
				М	SD						
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Nonylphenol	2417833	101	128	ND	145	56.0 - 112	69.2	87.7	ug/L	23.6 *	22.0
ronyiphonor	2117033	101	120			30.0 112	07.2	07.7	ug/L	25.0	22.0
				3011	ogate						
<u>Parameter</u>	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
4-Nonylphenol-SURR	631656	CCV	28200	25000	ug/L	113	50.0 - 130	127765562			
4-Nonylphenol-SURR	631656	CCV	30800	25000	ug/L	123	50.0 - 130	127765574			
4-Nonylphenol-SURR	1181852	Blank	12700	25000	ug/L	50.8	50.0 - 130	127765563			
4-Nonylphenol-SURR	1181852	LCS	19200	25000	ug/L	76.8	50.0 - 130	127765564			
4-Nonylphenol-SURR	1181852	LCS Dup	19000	25000	ug/L	76.0	50.0 - 130	127765565			
4-Nonylphenol-SURR	2419182	Unknown	21.6	28.5	ug/L	75.8	50.0 - 130	127765570			

Analytical Set 1182739 EPA 632

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 54 of 66

Page 34 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

								Pillited	07/09/202	23	
				В	Blank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Carbaryl (Sevin)	1181386	ND	66.1	2500	ug/L			127775708			
Diuron	1181386	ND	44.4	45.0	ug/L			127775708			
					ccv						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Carbaryl (Sevin)		1070	1000	ug/L	107	70.0 - 130		127775707			
Carbaryl (Sevin)		948	1000	ug/L	94.8	70.0 - 130		127775711			
Carbaryl (Sevin)		1040	1000	ug/L	104	70.0 - 130		127775715			
Carbaryl (Sevin)		1100	1000	ug/L	110	70.0 - 130		127775718			
Diuron		1030	1000	ug/L	103	70.0 - 130		127775707			
Diuron		1110	1000	ug/L	111	70.0 - 130		127775711			
Diuron		1070	1000	ug/L	107	70.0 - 130		127775715			
Diuron		1030	1000	ug/L	103	70.0 - 130		127775718			
				LC	S Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Carbaryl (Sevin)	1181386	709	536		1000	17.1 - 131	70.9	53.6	ug/L	27.8	30.0
Diuron	1181386	134	88.0		1000	0.100 - 138	13.4	8.80	ug/L	41.4 *	30.0
				ı	MSD						
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Carbaryl (Sevin)	2418861	0.746	0.332	ND	1000	0.100 - 215	0.0747 *	0.0333 *	ug/L	76.8 *	30.0
Diuron	2418861	1.85	0	ND	1000	0.100 - 148	0.185	0 *	ug/L	200 *	50.0
Analytical Set	1182752]	EPA 622
,				В	Blank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Azinphos-methyl (Guthion)	1181388	ND	0.152	50.0	ug/L			127775986			
Chlorpyrifos	1181388	ND	0.0672	40.0	ug/L			127775986			
Demeton	1181388	ND	0.0964	50.0	ug/L			127775986			

Allalytical Set	1102/32							LI II OZZ
				Е	Blank			
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units		File	
Azinphos-methyl (Guthion)	1181388	ND	0.152	50.0	ug/L		127775986	
Chlorpyrifos	1181388	ND	0.0672	40.0	ug/L		127775986	
Demeton	1181388	ND	0.0964	50.0	ug/L		127775986	
Diazinon	1181388	ND	0.03856	50.0	ug/L		127775986	
Malathion	1181388	ND	0.0756	50.0	ug/L		127775986	
Parathion, ethyl	1181388	ND	0.0632	50.0	ug/L		127775986	
Parathion, methyl	1181388	ND	0.074	50.0	ug/L		127775986	
					CCV			
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%	File	
Azinphos-methyl (Guthion)		1070	1000	ug/L	107	37.0 - 150	127775981	
Azinphos-methyl (Guthion)		1190	1000	ug/L	119	37.0 - 150	127775985	
Azinphos-methyl (Guthion)		1170	1000	ug/L	117	37.0 - 150	127775993	
Chlorpyrifos		1030	1000	ug/L	103	48.0 - 150	127775981	
Chlorpyrifos		999	1000	ug/L	99.9	48.0 - 150	127775985	
Chlorpyrifos		1030	1000	ug/L	103	48.0 - 150	127775993	
Demeton		1030	1000	ug/L	103	16.0 - 150	127775981	
Demeton		1060	1000	ug/L	106	16.0 - 150	127775985	
Demeton		1080	1000	ug/L	108	16.0 - 150	127775993	

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 55 of 66

Page 35 of 37

Project 1151501

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

				C	cv						
Parameter Parameter		Reading	Known	Units	Recover%	Limits%		File			
Diazinon		1040	1000	ug/L	104	50.0 - 150		127775981			
Diazinon		1040	1000	ug/L	104	50.0 - 150		127775985			
Diazinon		1060	1000	ug/L	106	50.0 - 150		127775993			
Malathion		1030	1000	ug/L	103	50.0 - 150		127775981			
Malathion		1020	1000	ug/L	102	50.0 - 150		127775985			
Malathion		1040	1000	ug/L	104	50.0 - 150		127775993			
Parathion, ethyl		1050	1000	ug/L	105	50.0 - 150		127775981			
Parathion, ethyl		1060	1000	ug/L	106	50.0 - 150		127775985			
Parathion, ethyl		1080	1000	ug/L	108	50.0 - 150		127775993			
Parathion, methyl		1040	1000	ug/L	104	50.0 - 150		127775981			
Parathion, methyl		1080	1000	ug/L	108	50.0 - 150		127775985			
Parathion, methyl		1100	1000	ug/L	110	50.0 - 150		127775993			
				LCS	Dup						
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Azinphos-methyl (Guthion)	1181388	425	593		1000	0.100 - 167	42.5	59.3	ug/L	33.0 *	30.0
Chlorpyrifos	1181388	394	473		1000	0.100 - 128	39.4	47.3	ug/L	18.2	30.0
Demeton	1181388	333	390		1000	0.100 - 119	33.3	39.0	ug/L	15.8	30.0
Diazinon	1181388	382	428		1000	0.100 - 143	38.2	42.8	ug/L	11.4	30.0
Malathion	1181388	426	487		1000	0.100 - 156	42.6	48.7	ug/L	13.4	30.0
Parathion, ethyl	1181388	422	509		1000	0.100 - 148	42.2	50.9	ug/L	18.7	30.0
Parathion, methyl	1181388	407	459		1000	0.100 - 154	40.7	45.9	ug/L	12.0	30.0
				М	SD						
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Azinphos-methyl (Guthion)	2418862	0.334	0.545	ND	0.973	70.0 - 130	34.8 *	56.8 *	ug/L	48.0 *	30.0
Chlorpyrifos	2418862	0.354	0.390	ND	0.973	70.0 - 130	36.9 *	40.7 *	ug/L	9.68	30.0
Demeton	2418862	0.278	0.354	ND	0.973	70.0 - 130	29.0 *	36.9 *	ug/L	24.1	30.0
Diazinon	2418862	0.382	0.419	ND	0.973	70.0 - 130	39.8 *	43.7 *	ug/L	9.24	30.0
Malathion	2418862	0.412	0.505	ND	0.973	70.0 - 130	43.0 *	52.7 *	ug/L	20.3	30.0
Parathion, ethyl	2418862	0.508	0.604	ND	0.973	70.0 - 130	53.0 *	63.0 *	ug/L	17.3	30.0
Parathion, methyl	2418862	0.449	0.596	ND	0.973	70.0 - 130	46.8 *	62.1 *	ug/L	28.1	30.0
				Surr	ogate						
<u>Parameter</u>	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
Tributylphosphate		CCV	1030	1000	ug/L	103	0.100 - 115	127775981			
Tributylphosphate		CCV	1030	1000	ug/L	103	0.100 - 115	127775985			
Tributylphosphate		CCV	1050	1000	ug/L	105	0.100 - 115	127775993			
Triphenylphosphate		CCV	1030	1000	ug/L	103	0.100 - 115	127775981			
Triphenylphosphate		CCV	1020	1000	ug/L	102	0.100 - 115	127775985			
Triphenylphosphate		CCV	1040	1000	ug/L	104	0.100 - 115	127775993			
Tributylphosphate	1181388	Blank	512	1000	ug/L	51.2	0.100 - 115	127775986			
Tributylphosphate	1181388	LCS	407	1000	ug/L	40.7	0.100 - 115	127775987			
Tributylphosphate	1181388	LCS Dup	467	1000	ug/L	46.7	0.100 - 115	127775988			
Triphenylphosphate	1181388	Blank	504	1000	ug/L	50.4	0.100 - 115	127775986			
Triphenylphosphate	1181388	LCS	385	1000	ug/L	38.5	0.100 - 115	127775987			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 56 of 66

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

Printed 07/09/2025

								Printed	0 //09/20.	25	
				Suri	rogate						
Parameter	Sample	Type	Reading	Known	Units	Recover%	Limits%	File			
Triphenylphosphate	1181388	LCS Dup	479	1000	ug/L	47.9	0.100 - 115	127775988			
Tributylphosphate	2418862	MS	0.410	0.959	ug/L ug/L	42.8	0.100 - 115	127775991			
Tributylphosphate	2418862	MSD	0.410	0.939		45.5	0.100 - 115	127775991			
* * *					ug/L						
Triphenylphosphate	2418862	MS	0.405	0.959	ug/L	42.2	0.100 - 115	127775991			
Triphenylphosphate	2418862	MSD	0.475	0.973	ug/L	48.8	0.100 - 115	127775992			
Tributylphosphate	2419182	Unknown		0.998	ug/L	44.2	0.100 - 115	127775989			
Triphenylphosphate	2419182	Unknown	0.408	0.998	ug/L	40.9	0.100 - 115	127775989			
Analytical Set	1183887										TX 1001
				В	lank						
Parameter Parame	PrepSet	Reading	MDL	MQL	Units			File			
Tributyltin hydride	1181132	ND	0.005	0.007	ug/L			127800970			
				C	ccv						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Tributyltin hydride		55000	50000	ug/L	110	70.0 - 130		127800969			
200000, 100000				=	S Dup						
_				LC.	-						
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Tributyltin hydride	1181132	206	210		500	0.100 - 211	41.2	42.0	ug/L	1.92	30.0
Analytical Set	1181286								SM	4500-H	+ B-2011
				Dup	olicate						
Parameter	Sample		Result	Unknown	1		Unit		RPD		Limit%
Laboratory pH WW	2419183		6.70	6.70			SU		0		20.0
				Sta	ndard						
Parameter Parame	Sample	Reading	Known	Units	Recover%	Limits%		File			
Laboratory pH WW	1181286	6.03	6.00	SU	100	90.0 - 110		127737813			
Laboratory pH WW	1181286	7.92	8.00	SU	99.0	90.0 - 110		127737814			
Laboratory pH WW	1181286	6.04	6.00	SU	101	90.0 - 110		127737817			
Laboratory pH WW	1181286	7.92	8.00	SU	99.0	90.0 - 110		127737818			
										G1 / 000	0 D 0011
Analytical Set	1182418			ь	lank					SM 232	0 B-2011
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Total Alkalinity (as CaCO3)	1182418	ND	1.00	1.00	mg/L			127765424			
				(CCV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Total Alkalinity (as CaCO3)		26.4	25.0	mg/L	106	90.0 - 110		127765423			
Total Alkalinity (as CaCO3)		27.4	25.0	mg/L	110	90.0 - 110		127765437			
Total Alkalinity (as CaCO3)		24.5	25.0	mg/L	98.0	90.0 - 110		127765450			
				Dup	olicate						
<u>Parameter</u>	Sample		Result	Unknown	1		Unit		RPD		Limit%

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 57 of 66

Page 37 of 37

Printed 07/09/2025

COM4-A

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601

Duplicate

				•							
<u>Parameter</u>	Sample		Result	Unknown			Unit		RPD	Limit%	
Total Alkalinity (as CaCO3)	2418728		130	142			mg/L		8.82	20.0	
Total Alkalinity (as CaCO3)	2419369		243	264			mg/L		8.28	20.0	
				I	CV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Total Alkalinity (as CaCO3)		26.4	25.0	mg/L	106	90.0 - 110		127765422			
				Mat.	Spike						
<u>Parameter</u>	Sample	Spike	Unknown	Known	Units	Recovery %	Limits %	File			
Total Alkalinity (as CaCO3)	2418728	160	142	25.0	mg/L	72.0	70.0 - 130	127765427			
Total Alkalinity (as CaCO3)	2419369	280	264	25.0	mg/L	64.0	70.0 - 130	127765440		*	

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); CCV - Continuing Calibration Verification (same standard used to prepare the curve; typically a mid-range concentration; verifies the continued validity of the calibration curve); MSD - Matrix Spike Duplicate (replicate of the

matrix spike; same solution and amount of target analyte added to the MS is added to a third aliquot of sample; quantifies matrix bias and precision.); ICV - Initial

Calibration Verification; LCS Dup - Laboratory Control Sample Duplicate (replicate LCS; analyzed when there is insufficient sample for duplicate or MSD; quantifies

accuracy and precision.); CCB - Continuing Calibration Blank; AWRL/LOQ C - Ambient Water Reporting Limit/LOQ Check Std; LCS - Laboratory Control Sample (reagent water or other blank matrices that is spiked with a known quantity of target analyte(s) and carried through preparation and analytical procedures exactly like a sample;

typically a mid-range concentration; verifies that bias and precision of the analytical process are within control limits; determines usability of the data.); BFB -

Bromofluorobenzene, GC/MS Tuning Compound (mass intensity used as tuning acceptance criteria.); Surrogate - Surrogate (mimics the analyte of interest but is unlikel

to be found in environmental samples; added to analytical samples for QC purposes. **ANSI/ASQC E4 1994 Ref #4 TRADE QA Resources Guide.); IS Areas - Internal Standard Area (The area of the internal stadard relative to a check standard. Internal Standard is a known concentration of an analyte(s) that is not a sample component or standard that is added to the sample and standard and is used to measure the relative responses of other analytes in the same sample or standard.); IS RetTime - Internal Standard Retention Time (the time the internal standard comes off the column. Internal Stardard is a known concentration of an analyte(s) that is not a sample component or standard that is added to the sample and standard and is used to measure the relative responses of other analytes in the same sample or standard.); MS - Matrix Spike (same solution and amount of target analyte added to the LCS is added to a second aliquot of sample; quantifies matrix bias.); LDR - Linear Dynamic Range Standard; MRL Check - Minimum Reporting Limit Check Std; DFTPP - GC/MS Tuning Compound

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 58 of 66

1151501 CoC Print Group 001 of 001

2600 Dudley Rd. Kilgore, Texas 75662	
Office: 903-984-0551 * Fax: 903-984-5914	Thumand I
	The Science of Sure
CHAIN OF CUSTODY	Printed 06/17/2025 Page 1 of 5
	1110101
	Lab Number / Lul 1 8 / 2
City of Commerce/WastewaterPlt	COM4-A
Timothy Jones	127 PO Number
1119 Alamo St.	Phone 903/886-1157
Commerce, TX 75428-2601	705/880-1157
Domestic	d Worksheet 4.0
	N 2" " " " " " " " " " " " " " " " " " "
	Hand Delivered by Client to Region or LAB
Matrix: Non-Potable Water	
Sample Collection Start	
Date: 4-17-25 Time: 1230	
Sampler Printed Name: <u>BARON SHIRLE</u>	
Sampler Affiliation: COM 4-127	
C/1 1	
Sampler Signature:	
Samples Radioactive? Samples	cs Contains Dioxin? Samples Biological Hazard?
0 On Site Testing	
CICk Field C12 Check for CNa	
Field Cl2 Check for CNa	
000 100	7.1 1.725
Collected By ANN Date 19 Time 1300 Analyzed By	BN Date 6-17- Time [30]
ResultsUnitsTemp(Ujefts C
RI RZ QCRI Q) CR2
<u> </u>	
	,
NELAC Short Hold DO Dissolved Oxygen Onsite	SM 4500-O G-2016 (0.0104 days)
Bhotriod	
Dissolved Oxygen Onsite	
((112 2725	
Collected By SS Date 6:17 Time 0725 Analyzed By	Date Time
Results 6 6 Units My/L Temp. 26.3 C Duplicate	Visite Toma C
Results V Omis NIGIC Temp. 2007 C Duplicate	CmsC
_	
NELAC Short Hold pH pH (Onsite)	SM 4500-H+ B-2011 (0.0104 days)
1 1881881 118181 18811 111 8181	
	Corporate - Kilgore: 2600 Dudley Road Kilgore TX 75662
3.25.6.7	Form rpteoc ISPL1 Created 12/13/2019 v1.0
630710303	
	Corporate - Kilgore: 2600 Dudley Road Kilgore TX 75662
3.25.6.7	Form rpteoc ISPL1 Created 12/13/2019 v1.0

City of Commerce/Wastewater Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601	Plt	C	OM4-A 127		
pH (Onsite)					
Collected By 6 Date 6	/17 Time 093	Analyzed By	DateT	ĭme	
Results 6.89 Units	Temp	C Duplicate	Units	C	
	S2Ck F	rield Sulfide Check for CN			
Field Sulfide Check for CNa					
•	12.	2 00		25 1	
Collected By ODV Date	(1' A Prime 130	Analyzed By 681	Date U-11a	130/	
Results Units	GHTI	V C Duplicate	Units	Temp. C	
R1	R2	QC R1QC I		С	
KI	_~	Q.KIQ.I	·		
9	Amber Glass (Qt w/Teflon lined i	d		
NELAC	!D2S	able D-1/ D-2 Semivolatiles	Exp	EPA 625.1 (7.00 days)	
NELAC	!HER I	Herbicides by GC		EPA 615 (7.00 days)	
NELAC	IPCB P	Polychlorinated Biphenyls		EPA 608.3 (7.00 days)	
z	#MDR F	or use with !PPR only		EPA 617 (7.00 days)	
	BTIN E	Butyltins Analysis		TX 1001 (14.0 days)	
	HXPE I	Hexachlorophene Expansion		EPA 604.1 CAS:70-30-4 (7.00 days)	
	TIOC T	Cable 1 Organochlorine Postic	ride	EPA 608.3 (7.00 days)	
	T1OP T	able 1 Organophosphorous F	estic	EPA 622 (7.00 days)	
NELAC	TYLC	Carbaryl/Diuron EXP		EPA 632 (7.00 days)	
	Glass Vial 40:	mL (Zero Headspac	e) w/Teflon line	ed lid	
			c) w/ Ichon iiii		
NELAC Short Hold		Acrolein/Acrylonitrile Exp		EPA 624.1 (3.00 days)	
2	H2SO4 to pH	<2 GlQt w/Tef-line	d lid		
	NYPE N	Nonyl Phenol Expansion		ASTM D7065-17 (14.0 days)	

2600 Dudley Rd. Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St.		C	OM4-A 127	
Commerce, TX 75428-2601	SO4 to n	H <2 Amber Glass 2	50 mL w/Teflon	lined lid
NELAC NELAC	Phna	Phenolics, Total Recoverab		EPA 420.4 1 (28.0 days)
	15.00	POSS DESIGN AND THE	×	
		s Liter w/Teflon line		
Subcontract	!DIX	Dioxins and Furans Subcon	tract	1613 CAS:ION1 (30.0 days)
1 Pol	lyethylen	e 1/2 gal (White)		
	PCBT	Total PCB		CAS:Total PCB
0 Z -	- No bott	le required		
Subcontract	100S	SUB Shipped		
	CKLM	Check Limits		
NELAC Short Hold	Cr+3	Trivalent Chromium		Calculation CAS:16065-83-1 (1.00 days)
	SKL	Sub Hold: PM Attn		
1 HN	NO3 to pH	I <2 Polyethylene 50	0 mL for Metals	S
NELAC	*AgM	Silver, Total		EPA 200.8 5.4 CAS:7440-22-4 (180 days)
NELAC	*AIM	Aluminum, Total		EPA 200.8 5.4 CAS:7429-90-5 (180 days)
NELAC	*AsM	Arsenic, Total		EPA 200.8 5.4 CAS:7440-38-2 (180 days)
NELAC	*BaM	Barium, Total		EPA 200.8 5.4 CAS:7440-39-3 (180 days)
NELAC	*BeM	Beryllium, Total		EPA 200.8 5.4 CAS:7440-41-7 (180 days)
NELAC	*CdM	Cadmium, Total		EPA 200.8 5.4 CAS:7440-43-9 (180 days)
NELAC	*CrM	Chromium, Total		EPA 200.8 5.4 CAS:7440-47-3 (180 days)
NELAC	*CuM	Copper, Total		EPA 200.8 5.4 CAS:7440-50-8 (180 days)
NELAC	*NiM	Nickel, Total		EPA 200.8 5.4 CAS:7440-02-0 (180 days)
NELAC	*РЬМ	Lead, Total		EPA 200.8 5.4 CAS:7439-92-1 (180 days)
NELAC	*PI	Phosphorus		EPA 200.7 4.4 CAS:7723-14-0 (28.0 days)
NELAC	*SbM	Antimony, Total		EPA 200.8 5.4 CAS:7440-36-0 (180 days)
NELAC	*SeM	Selenium, Total		EPA 200.8 5.4 CAS:7782-49-2 (180 days)
NELAC	*TIM	Thallium, Total		EPA 200.8 5.4 CAS:7440-28-0 (180 days)

1151501 CoC Print Group 001 of 001

2600 Dudley Rd. Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914

Short Hold ID2V Table D-1/D-2 Volatile Expansion EPA 200.8 5.4 CAS:7440-66-6 (180 days)	
3 Na2S2O3 (0.008%) Glass 40 mL vial w/Teflon lined lid (zero headspace) Short Hold ID2V Table D-1/D-2 Volatile Expansion EPA 624.1 (3.00 days)	
Short Hold ID2V Table D-1/D-2 Volatile Explusion EPA 624.1 (3.00 days)	
1 Glass /clean metals w/HCl	
NELAC *Hgl Mercury, Total (low level) EPA 245.7 2 CAS:7439-97-6 (90.0 days)	
NELAC 2451 Low Level Mercury Liquid Metals EPA 245.7 2 (90.0 days)	
2 NaOH to pH >12 Polyethylene 250 mL/amber	
NELAC CNa Cyanide, total SM 4500-CN ⁻ E-2016 (14.0 days)	
NELAC Cyanide - Available/Amena ple SM 4500-CN G-2016 (14.0 days)	
NELAC Cyanide After Chlorination SM 4500-CN G-2016 (14.0 days)	
1 Polyethylene Quart	
NELAC IFIL Fluoride EPA 300.0 2.1 (28.0 days)	
NELAC Short Hold IN3L Nitrate-Nitrogen Total EPA 300.0 2.1 CAS:14797-55-8 (2.00 days)	
abient Conditions/Comments	
e Time Relinquished Received Printed Name Affiliation Printed Name Affiliation	. 0
1/25 Jab Signature Police (on 4-127 Signature)	27
Printed Nagel Afflication SPL Printed Name Sarah Shivers - SPL, Inc. Affiliation	
38 30 Signature 37 Signature A 7101	
Printed Name Affiliation Printed Name Affiliation	
Signature Signature	
Printed Name Affiliation Printed Name Affiliation	
Signature Signature	

1151501 CoC Print Group 001 of 001

2600 Dudley Rd. Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914 CHAIN OF CUSTODY City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601	COM4-A 128	The Printed 06/17/202 Lab Number PO Number Phone	
	Final Effluent	2.50	
		Hand Delivered by Clies	nt to Region or LAB
Matrix: Non-Potable Water			
Sample Collection Start			
Date: 6-17-25 Time: 12:30pm			
Sampler Printed Name: <u>CARON SHIRLEY</u> Sampler Affiliation: OM 4 - 128			
401.1			
Sampler Signature: Samples Radioactive?	Samples Contains Dioxin?	Samples Biological Hazard?	п
0 On Site Testing	Samples Solianis Dioxini	Samples Biological Hazard?	Ш
	lual (Onsite/IC)	SM 4500-Cl G-2011	
	idai (Olisite/10)	3.W 4300-Ci G-2011	
Chlorine Residual (Onsite/TC)			
Collected By 65 Date 6/17 Time 0805 Analyze	d By Date	Time	
Results 1.54 Units N6/L Temp. C Dup	olicate / 55 Units A	// Term. C	
R1R2QCR1			
		_	_
NEL LC CHI LIVE LE POR LE LA			
NELAC Short Hold DO Dissolved Oxyg	gen Onsite	SM 4500-O G-2016 (0.0104 days)	
Dissolved Oxygen Onsite			
Collected By 65 Date 617 Time 0725 Analyze	d By Date		
Results 6.6 Units MS/L Temp. 26.3 C Duplicate	Units		
-			
			-
1 Na2S2O3 (0.008%) Pol	ystyrene-100 mL Steril	ized	
NELAC Short Hold MPNW MPN, E.coli, C	Col18 - Not -Pot	SM 9223 B (Colilert-18 QT)-2016 (0.333	3 days)

2600 Dudley Rd. Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914

City of Commerce/WastewaterPlt		C	OM4-A	1
Timothy Jones 1119 Alamo St.			128	
Commerce, TX 75428-2601				
	2SO4 to p	H <2 GlQt w/Tef-lin	ed lid	
NELAC	нем	Oil and Grease (HEM)		EPA 1664B (HEM) (28.0 days)
1 Po	olyethylen	e 1/2 gal (White)		
NELAC Short Hold	BODc	BOD Carbonaceous		SM 5210 B-2016 (TCMP Inhibitor) (2.04 days)
NELAC	TSS	Total Suspended Solids		SM 2540 D-2020 (7.00 days)
0 Z	No bott	le required		
	Cl2t	Chlorine Residual Type		
Chlorine Residual Type				
Collected By 65 Date 6-1	7 0	CONT ALL IN	D.t.	·
Results 1. 54 Units MC/	Temp	C Duplicate /	Units Mg	/LTempC
		QCR1Q		
	NO2 4= -T	I 🔿 Delevate den a 50)OT M-4-1	
		I <2 Polyethylene 5	O IIIL TOT Metal	
NELAC	*PI	Phosphorus		EPA 200.7 4.4 CAS:7723-14-0 (28.0 days)
	301L	Liquid Metals Digestion		EPA 200.2 2.8 (180 days)
1 H	2SO4 to p	H <2 250 ml Polyeti	ylene	
NELAC	NHaN	Ammonia Nitrogen		EPA 350.1 2 (28.0 days)
NELAC	TKN	Total Kjeldahl Nitrogen		EPA 351.2 2 CAS:7727-37-9 (28.0 days)
1 Po	olyethylen	e Quart		
NELAC	!CIL	Chloride		EPA 300.0 2.1 (28.0 days)
NELAC Short Hold	IN3L	Nitrate-Nitrogen Total		EPA 300.0 2.1 CAS:14797-55-8 (2.00 days)
NELAC	!S4L	Sulfate		EPA 300.0 2.1 (28.0 days)
NELAC	AlkT	Total Alkalinity (as CaCO)	SM 2320 B-2011 (14.0 days)
NELAC	pHWW	Laboratory pH WW		SM 4500-H+ B-2011 (5.00 days)
NELAC	TDS	Total Dissolved Solids		SM 2540 C-2020 (7.00 days)

1151501 CoC Print Group 001 of 001

2600 Dudley Rd. Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914

CHAIN OF CUSTODY

City of Commerce/WastewaterPlt Timothy Jones 1119 Alamo St. Commerce, TX 75428-2601 COM4-A 128

Amoient C	Conditions/	Comments		
Date	Time	Relinquished		Received
6-17-25	1240	Printed Many: ARON SHIRLEY Signature A Right Signature	128	Printed North Study Affiliation 572 Signature
6-1735	1710	Printer Signature Attifficion Attifficion Signature	5PL	Printed Name Sarah Shivers - SPL, Inc. Affiliation Signature
		Printed Name Affiliation		Printed Name Affiliation
		Signature		Signature
		Printed Name Affiliation		Printed Name Affiliation
		Signature		Signature

Sample Received on Ice? Cooler/Sample Secure?

If Shipped: Tracking Number & Temp - See Attached

The accredited column designates accreditation by A - A2LA, N - NELAC, or z - not listed under scope of accreditation. Unless otherwise specified, SPL shall provide these ordered services pursuant to our Standard Terms & Conditions Agreement. SPL personnel collect samples as specified by SPL SOP #000323.

Comments

COOLER CHECKIN

Region/Driver/Client

Date / Time:

Cooler:

Shipping Company:

6.17.27/110 of

Temp Label:

(0.17.27) 110/DT)
Date STime Sch3 c

Therm#: 7242 Corr Fact: -0.3 C

Report Page 66 of 66

TPDES PERMIT NO.
WQ0010555001
[For TCEQ office use only - EPA I.D.
No. TX0020591]

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY P.O. Box 13087 Austin, Texas 78711-3087

This is a renewal that replaces TPDES Permit No. WQ0010555001 issued on June 14, 2021.

PERMIT TO DISCHARGE WASTES

under provisions of Section 402 of the Clean Water Act and Chapter 26 of the Texas Water Code

City of Commerce

whose mailing address is

1119 Alamo Street Commerce, Texas 75428

is authorized to treat and discharge wastes from the Commerce Wastewater Treatment Facility, SIC Code 4952

located approximately 0.5 mile south of the intersection of Charity Road and Farm-to-Market Road 3218, in Hunt County, Texas 75428

to an unnamed tributary, thence to Upper South Sulphur River in Segment No. 0306 of the Sulphur River Basin

only according to effluent limitations, monitoring requirements, and other conditions set forth in this permit, as well as the rules of the Texas Commission on Environmental Quality (TCEQ), the laws of the State of Texas, and other orders of the TCEQ. The issuance of this permit does not grant to the permittee the right to use private or public property for conveyance of wastewater along the discharge route described in this permit. This includes, but is not limited to, property belonging to any individual, partnership, corporation, or other entity. Neither does this permit authorize any invasion of personal rights nor any violation of federal, state, or local laws or regulations. It is the responsibility of the permittee to acquire property rights as may be necessary to use the discharge route.

This permit shal	l expire at midnight,	five years from t	the date of issuance.

ISSUED DATE:	
	For the Commission

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

Outfall Number 001

1. During the period beginning upon the date of issuance and lasting through the date of expiration, the permittee is authorized to discharge subject to the following effluent limitations:

The annual average flow of effluent shall not exceed 2.0 million gallons per day, nor shall the average discharge during any two-hour period (2-hour peak) exceed 2,334 gallons per minute.

Effluent Characteristic		Discharge Limitations			Min. Self-Monitoring Requirements	
	Daily Avg	7-day Avg Daily Max Single Grab		Report Daily Avg. & Daily Max.		
	mg/l (lbs/day)	mg/l	mg/l	mg/l	Measurement Frequency	Sample Type
Flow, MGD	Report	N/A	Report	N/A	Continuous	Totalizing Meter
Carbonaceous Biochemical Oxygen Demand (5-day)	10 (167)	15	25	35	Two/week	Composite
Total Suspended Solids	15 (250)	25	40	60	Two/week	Composite
Ammonia Nitrogen	2 (33)	5	7	15	Two/week	Composite
<i>E. coli</i> , colony-forming units or most probable number per 100 ml	126	N/A	399	N/A	One/week	Grab

- 2. The effluent shall contain a total chlorine residual of at least 1.0 mg/l after a detention time of at least 20 minutes (based on peak flow) and shall be monitored daily by grab sample. The permittee shall dechlorinate the chlorinated effluent to less than 0.1 mg/l total chlorine residual and shall monitor total chlorine residual daily by grab sample after the dechlorination process. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.
- 3. The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample.
- 4. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.
- 5. Effluent monitoring samples shall be taken at the following location(s): Following the final treatment unit.
- 6. The effluent shall contain a minimum dissolved oxygen of 6.0 mg/l and shall be monitored twice per week by grab sample.
- 7. The annual average flow and maximum 2-hour peak flow shall be reported monthly.

DEFINITIONS AND STANDARD PERMIT CONDITIONS

As required by Title 30 Texas Administrative Code (TAC) Chapter 305, certain regulations appear as standard conditions in waste discharge permits. 30 TAC § 305.121 - 305.129 (relating to Permit Characteristics and Conditions) as promulgated under the Texas Water Code (TWC) §§ 5.103 and 5.105, and the Texas Health and Safety Code (THSC) §§ 361.017 and 361.024(a), establish the characteristics and standards for waste discharge permits, including sewage sludge, and those sections of 40 Code of Federal Regulations (CFR) Part 122 adopted by reference by the Commission. The following text includes these conditions and incorporates them into this permit. All definitions in TWC § 26.001 and 30 TAC Chapter 305 shall apply to this permit and are incorporated by reference. Some specific definitions of words or phrases used in this permit are as follows:

1. Flow Measurements

- a. Annual average flow the arithmetic average of all daily flow determinations taken within the preceding 12 consecutive calendar months. The annual average flow determination shall consist of daily flow volume determinations made by a totalizing meter, charted on a chart recorder and limited to major domestic wastewater discharge facilities with one million gallons per day or greater permitted flow.
- b. Daily average flow the arithmetic average of all determinations of the daily flow within a period of one calendar month. The daily average flow determination shall consist of determinations made on at least four separate days. If instantaneous measurements are used to determine the daily flow, the determination shall be the arithmetic average of all instantaneous measurements taken during that month. Daily average flow determination for intermittent discharges shall consist of a minimum of three flow determinations on days of discharge.
- c. Daily maximum flow the highest total flow for any 24-hour period in a calendar month.
- d. Instantaneous flow the measured flow during the minimum time required to interpret the flow measuring device.
- e. 2-hour peak flow (domestic wastewater treatment plants) the maximum flow sustained for a two-hour period during the period of daily discharge. The average of multiple measurements of instantaneous maximum flow within a two-hour period may be used to calculate the 2-hour peak flow.
- f. Maximum 2-hour peak flow (domestic wastewater treatment plants) the highest 2-hour peak flow for any 24-hour period in a calendar month.

2. Concentration Measurements

- a. Daily average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar month, consisting of at least four separate representative measurements.
 - i. For domestic wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values in the previous four consecutive month period consisting of at least four measurements shall be utilized as the daily average concentration.

- ii. For all other wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values taken during the month shall be utilized as the daily average concentration.
- b. 7-day average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar week, Sunday through Saturday.
- c. Daily maximum concentration the maximum concentration measured on a single day, by the sample type specified in the permit, within a period of one calendar month.
- d. Daily discharge the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in terms of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the sampling day. For pollutants with limitations expressed in other units of measurement, the daily discharge is calculated as the average measurement of the pollutant over the sampling day.
 - The daily discharge determination of concentration made using a composite sample shall be the concentration of the composite sample. When grab samples are used, the daily discharge determination of concentration shall be the arithmetic average (weighted by flow value) of all samples collected during that day.
- e. Bacteria concentration (*E. coli* or Enterococci) Colony Forming Units (CFU) or Most Probable Number (MPN) of bacteria per 100 milliliters effluent. The daily average bacteria concentration is a geometric mean of the values for the effluent samples collected in a calendar month. The geometric mean shall be determined by calculating the nth root of the product of all measurements made in a calendar month, where n equals the number of measurements made; or, computed as the antilogarithm of the arithmetic mean of the logarithms of all measurements made in a calendar month. For any measurement of bacteria equaling zero, a substituted value of one shall be made for input into either computation method. If specified, the 7-day average for bacteria is the geometric mean of the values for all effluent samples collected during a calendar week.
- f. Daily average loading (lbs/day) the arithmetic average of all daily discharge loading calculations during a period of one calendar month. These calculations must be made for each day of the month that a parameter is analyzed. The daily discharge, in terms of mass (lbs/day), is calculated as (Flow, MGD x Concentration, mg/l x 8.34).
- g. Daily maximum loading (lbs/day) the highest daily discharge, in terms of mass (lbs/day), within a period of one calendar month.

3. Sample Type

a. Composite sample - For domestic wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (a). For industrial wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (b).

- b. Grab sample an individual sample collected in less than 15 minutes.
- 4. Treatment Facility (facility) wastewater facilities used in the conveyance, storage, treatment, recycling, reclamation and/or disposal of domestic sewage, industrial wastes, agricultural wastes, recreational wastes, or other wastes including sludge handling or disposal facilities under the jurisdiction of the Commission.
- 5. The term "sewage sludge" is defined as solid, semi-solid, or liquid residue generated during the treatment of domestic sewage in 30 TAC Chapter 312. This includes the solids that have not been classified as hazardous waste separated from wastewater by unit processes.
- 6. The term "biosolids" is defined as sewage sludge that has been tested or processed to meet Class A, Class AB, or Class B pathogen standards in 30 TAC Chapter 312 for beneficial use.
- 7. Bypass the intentional diversion of a waste stream from any portion of a treatment facility.

MONITORING AND REPORTING REQUIREMENTS

1. Self-Reporting

Monitoring results shall be provided at the intervals specified in the permit. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall conduct effluent sampling and reporting in accordance with 30 TAC §§ 319.4 - 319.12. Unless otherwise specified, effluent monitoring data shall be submitted each month, to the Enforcement Division (MC 224), by the 20th day of the following month for each discharge which is described by this permit whether or not a discharge is made for that month. Monitoring results must be submitted online using the NetDMR reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. Monitoring results must be signed and certified as required by Monitoring and Reporting Requirements No. 10.

As provided by state law, the permittee is subject to administrative, civil and criminal penalties, as applicable, for negligently or knowingly violating the Clean Water Act (CWA); TWC §§ 26, 27, and 28; and THSC § 361, including but not limited to knowingly making any false statement, representation, or certification on any report, record, or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or noncompliance, or falsifying, tampering with or knowingly rendering inaccurate any monitoring device or method required by this permit or violating any other requirement imposed by state or federal regulations.

2. Test Procedures

- a. Unless otherwise specified in this permit, test procedures for the analysis of pollutants shall comply with procedures specified in 30 TAC §§ 319.11 319.12. Measurements, tests, and calculations shall be accurately accomplished in a representative manner.
- b. All laboratory tests submitted to demonstrate compliance with this permit must meet the requirements of 30 TAC § 25, Environmental Testing Laboratory Accreditation and Certification.

3. Records of Results

a. Monitoring samples and measurements shall be taken at times and in a manner so as to be representative of the monitored activity.

- b. Except for records of monitoring information required by this permit related to the permittee's sewage sludge or biosolids use and disposal activities, which shall be retained for a period of at least five years (or longer as required by 40 CFR Part 503), monitoring and reporting records, including strip charts and records of calibration and maintenance, copies of all records required by this permit, records of all data used to complete the application for this permit, and the certification required by 40 CFR § 264.73(b)(9) shall be retained at the facility site, or shall be readily available for review by a TCEQ representative for a period of three years from the date of the record or sample, measurement, report, application or certification. This period shall be extended at the request of the Executive Director.
- c. Records of monitoring activities shall include the following:
 - i. date, time and place of sample or measurement;
 - ii. identity of individual who collected the sample or made the measurement.
 - iii. date and time of analysis;
 - iv. identity of the individual and laboratory who performed the analysis;
 - v. the technique or method of analysis; and
 - vi. the results of the analysis or measurement and quality assurance/quality control records.

The period during which records are required to be kept shall be automatically extended to the date of the final disposition of any administrative or judicial enforcement action that may be instituted against the permittee.

4. Additional Monitoring by Permittee

If the permittee monitors any pollutant at the location(s) designated herein more frequently than required by this permit using approved analytical methods as specified above, all results of such monitoring shall be included in the calculation and reporting of the values submitted on the approved self-report form. Increased frequency of sampling shall be indicated on the self-report form.

5. Calibration of Instruments

All automatic flow measuring or recording devices and all totalizing meters for measuring flows shall be accurately calibrated by a trained person at plant start-up and as often thereafter as necessary to ensure accuracy, but not less often than annually unless authorized by the Executive Director for a longer period. Such person shall verify in writing that the device is operating properly and giving accurate results. Copies of the verification shall be retained at the facility site and/or shall be readily available for review by a TCEQ representative for a period of three years.

6. Compliance Schedule Reports

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of the permit shall be submitted no later than 14 days following each schedule date to the Regional Office and the Enforcement

Division (MC 224).

7. Noncompliance Notification

- a. In accordance with 30 TAC § 305.125(9) any noncompliance which may endanger human health or safety, or the environment shall be reported by the permittee to the TCEQ. Except as allowed by 30 TAC § 305.132, report of such information shall be provided orally or by facsimile transmission (FAX) to the Regional Office within 24 hours of becoming aware of the noncompliance. A written submission of such information shall also be provided by the permittee to the Regional Office and the Enforcement Division (MC 224) within five working days of becoming aware of the noncompliance. For Publicly Owned Treatment Works (POTWs), effective December 21, 2025, the permittee must submit the written report for unauthorized discharges and unanticipated bypasses that exceed any effluent limit in the permit using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. The written submission shall contain a description of the noncompliance and its cause; the potential danger to human health or safety, or the environment; the period of noncompliance, including exact dates and times; if the noncompliance has not been corrected, the time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance, and to mitigate its adverse effects.
- b. The following violations shall be reported under Monitoring and Reporting Requirement 7.a.:
 - i. Unauthorized discharges as defined in Permit Condition 2(g).
 - ii. Any unanticipated bypass that exceeds any effluent limitation in the permit.
 - iii. Violation of a permitted maximum daily discharge limitation for pollutants listed specifically in the Other Requirements section of an Industrial TPDES permit.
- c. In addition to the above, any effluent violation which deviates from the permitted effluent limitation by more than 40% shall be reported by the permittee in writing to the Regional Office and the Enforcement Division (MC 224) within 5 working days of becoming aware of the noncompliance.
- d. Any noncompliance other than that specified in this section, or any required information not submitted or submitted incorrectly, shall be reported to the Enforcement Division (MC 224) as promptly as possible. For effluent limitation violations, noncompliances shall be reported on the approved self-report form.
- 8. In accordance with the procedures described in 30 TAC §§ 35.301 35.303 (relating to Water Quality Emergency and Temporary Orders) if the permittee knows in advance of the need for a bypass, it shall submit prior notice by applying for such authorization.
- 9. Changes in Discharges of Toxic Substances
 - All existing manufacturing, commercial, mining, and silvicultural permittees shall notify the Regional Office, orally or by facsimile transmission within 24 hours, and both the Regional Office and the Enforcement Division (MC 224) in writing within five (5) working days, after becoming aware of or having reason to believe:

- a. That any activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic pollutant listed at 40 CFR Part 122, Appendix D, Tables II and III (excluding Total Phenols) which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. One hundred micrograms per liter (100 μ g/L);
 - ii. Two hundred micrograms per liter (200 μ g/L) for acrolein and acrylonitrile; five hundred micrograms per liter (500 μ g/L) for 2,4-dinitrophenol and for 2-methyl-4,6-dinitrophenol; and one milligram per liter (1 mg/L) for antimony;
 - iii. Five (5) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.
- b. That any activity has occurred or will occur which would result in any discharge, on a nonroutine or infrequent basis, of a toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. Five hundred micrograms per liter (500 μ g/L);
 - ii. One milligram per liter (1 mg/L) for antimony;
 - iii. Ten (10) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.

10. Signatories to Reports

All reports and other information requested by the Executive Director shall be signed by the person and in the manner required by 30 TAC § 305.128 (relating to Signatories to Reports).

- 11. All POTWs must provide adequate notice to the Executive Director of the following:
 - a. Any new introduction of pollutants into the POTW from an indirect discharger which would be subject to CWA § 301 or § 306 if it were directly discharging those pollutants;
 - b. Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of issuance of the permit; and
 - c. For the purpose of this paragraph, adequate notice shall include information on:
 - i. The quality and quantity of effluent introduced into the POTW; and
 - ii. Any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW.

PERMIT CONDITIONS

1. General

- a. When the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in an application or in any report to the Executive Director, it shall promptly submit such facts or information.
- b. This permit is granted on the basis of the information supplied and representations made by the permittee during action on an application, and relying upon the accuracy and completeness of that information and those representations. After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked, in whole or in part, in accordance with 30 TAC Chapter 305, Subchapter D, during its term for good cause including, but not limited to, the following:
 - i. Violation of any terms or conditions of this permit;
 - ii. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts; or
 - iii. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.
- c. The permittee shall furnish to the Executive Director, upon request and within a reasonable time, any information to determine whether cause exists for amending, revoking, suspending or terminating the permit. The permittee shall also furnish to the Executive Director, upon request, copies of records required to be kept by the permit.

2. Compliance

- a. Acceptance of the permit by the person to whom it is issued constitutes acknowledgment and agreement that such person will comply with all the terms and conditions embodied in the permit, and the rules and other orders of the Commission.
- b. The permittee has a duty to comply with all conditions of the permit. Failure to comply with any permit condition constitutes a violation of the permit and the Texas Water Code or the Texas Health and Safety Code, and is grounds for enforcement action, for permit amendment, revocation, or suspension, or for denial of a permit renewal application or an application for a permit for another facility.
- c. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of the permit.
- d. The permittee shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal or other permit violation that has a reasonable likelihood of adversely affecting human health or the environment.
- e. Authorization from the Commission is required before beginning any change in the permitted facility or activity that may result in noncompliance with any permit requirements.
- f. A permit may be amended, suspended and reissued, or revoked for cause in accordance

with 30 TAC §§ 305.62 and 305.66 and TWC§ 7.302. The filing of a request by the permittee for a permit amendment, suspension and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.

- g. There shall be no unauthorized discharge of wastewater or any other waste. For the purpose of this permit, an unauthorized discharge is considered to be any discharge of wastewater into or adjacent to water in the state at any location not permitted as an outfall or otherwise defined in the Other Requirements section of this permit.
- h. In accordance with 30 TAC § 305.535(a), the permittee may allow any bypass to occur from a TPDES permitted facility which does not cause permitted effluent limitations to be exceeded or an unauthorized discharge to occur, but only if the bypass is also for essential maintenance to assure efficient operation.
- i. The permittee is subject to administrative, civil, and criminal penalties, as applicable, under TWC §§ 7.051 7.075 (relating to Administrative Penalties), 7.101 7.111 (relating to Civil Penalties), and 7.141 7.202 (relating to Criminal Offenses and Penalties) for violations including, but not limited to, negligently or knowingly violating the federal CWA §§ 301, 302, 306, 307, 308, 318, or 405, or any condition or limitation implementing any sections in a permit issued under the CWA § 402, or any requirement imposed in a pretreatment program approved under the CWA §§ 402 (a)(3) or 402 (b)(8).

3. Inspections and Entry

- a. Inspection and entry shall be allowed as prescribed in the TWC Chapters 26, 27, and 28, and THSC \S 361.
- b. The members of the Commission and employees and agents of the Commission are entitled to enter any public or private property at any reasonable time for the purpose of inspecting and investigating conditions relating to the quality of water in the state or the compliance with any rule, regulation, permit or other order of the Commission. Members, employees, or agents of the Commission and Commission contractors are entitled to enter public or private property at any reasonable time to investigate or monitor or, if the responsible party is not responsive or there is an immediate danger to public health or the environment, to remove or remediate a condition related to the quality of water in the state. Members, employees, Commission contractors, or agents acting under this authority who enter private property shall observe the establishment's rules and regulations concerning safety, internal security, and fire protection, and if the property has management in residence, shall notify management or the person then in charge of his presence and shall exhibit proper credentials. If any member, employee, Commission contractor, or agent is refused the right to enter in or on public or private property under this authority, the Executive Director may invoke the remedies authorized in TWC § 7.002. The statement above, that Commission entry shall occur in accordance with an establishment's rules and regulations concerning safety, internal security, and fire protection, is not grounds for denial or restriction of entry to any part of the facility, but merely describes the Commission's duty to observe appropriate rules and regulations during an inspection.

4. Permit Amendment and/or Renewal

- a. The permittee shall give notice to the Executive Director as soon as possible of any planned physical alterations or additions to the permitted facility if such alterations or additions would require a permit amendment or result in a violation of permit requirements. Notice shall also be required under this paragraph when:
 - i. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in accordance with 30 TAC § 305.534 (relating to New Sources and New Dischargers); or
 - ii. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants that are subject neither to effluent limitations in the permit, nor to notification requirements in Monitoring and Reporting Requirements No. 9; or
 - iii. The alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan.
- b. Prior to any facility modifications, additions, or expansions that will increase the plant capacity beyond the permitted flow, the permittee must apply for and obtain proper authorization from the Commission before commencing construction.
- c. The permittee must apply for an amendment or renewal at least 180 days prior to expiration of the existing permit in order to continue a permitted activity after the expiration date of the permit. If an application is submitted prior to the expiration date of the permit, the existing permit shall remain in effect until the application is approved, denied, or returned. If the application is returned or denied, authorization to continue such activity shall terminate upon the effective date of the action. If an application is not submitted prior to the expiration date of the permit, the permit shall expire and authorization to continue such activity shall terminate.
- d. Prior to accepting or generating wastes which are not described in the permit application or which would result in a significant change in the quantity or quality of the existing discharge, the permittee must report the proposed changes to the Commission. The permittee must apply for a permit amendment reflecting any necessary changes in permit conditions, including effluent limitations for pollutants not identified and limited by this permit.
- e. In accordance with the TWC § 26.029(b), after a public hearing, notice of which shall be given to the permittee, the Commission may require the permittee, from time to time, for good cause, in accordance with applicable laws, to conform to new or additional conditions.
- f. If any toxic effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is promulgated under CWA § 307(a) for a toxic pollutant which is present in the discharge and that standard or prohibition is more stringent than any limitation on the pollutant in this permit, this permit shall be modified or revoked and reissued to conform to the toxic effluent standard or prohibition. The permittee shall comply with effluent standards or prohibitions established under CWA § 307(a) for toxic pollutants within the time provided in the

regulations that established those standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.

5. Permit Transfer

- a. Prior to any transfer of this permit, Commission approval must be obtained. The Commission shall be notified in writing of any change in control or ownership of facilities authorized by this permit. Such notification should be sent to the Applications Review and Processing Team (MC 148) of the Water Quality Division.
- b. A permit may be transferred only according to the provisions of 30 TAC § 305.64 (relating to Transfer of Permits) and 30 TAC § 50.133 (relating to Executive Director Action on Application or WQMP update).

6. Relationship to Hazardous Waste Activities

This permit does not authorize any activity of hazardous waste storage, processing, or disposal that requires a permit or other authorization pursuant to the Texas Health and Safety Code.

7. Relationship to Water Rights

Disposal of treated effluent by any means other than discharge directly to water in the state must be specifically authorized in this permit and may require a permit pursuant to TWC Chapter 11.

8. Property Rights

A permit does not convey any property rights of any sort, or any exclusive privilege.

9. Permit Enforceability

The conditions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstances, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

10. Relationship to Permit Application

The application pursuant to which the permit has been issued is incorporated herein; provided, however, that in the event of a conflict between the provisions of this permit and the application, the provisions of the permit shall control.

11. Notice of Bankruptcy

- a. Each permittee shall notify the Executive Director, in writing, immediately following the filing of a voluntary or involuntary petition for bankruptcy under any chapter of Title 11 (Bankruptcy) of the United States Code (11 USC) by or against:
 - i. the permittee;
 - ii. an entity (as that term is defined in 11 USC, \S 101(14)) controlling the permittee or listing the permit or permittee as property of the estate; or
 - iii. an affiliate (as that term is defined in 11 USC, § 101(2)) of the permittee.

- b. This notification must indicate:
 - i. the name of the permittee;
 - ii. the permit number(s);
 - iii. the bankruptcy court in which the petition for bankruptcy was filed; and
 - iv. the date of filing of the petition.

OPERATIONAL REQUIREMENTS

- 1. The permittee shall at all times ensure that the facility and all of its systems of collection, treatment, and disposal are properly operated and maintained. This includes, but is not limited to, the regular, periodic examination of wastewater solids within the treatment plant by the operator in order to maintain an appropriate quantity and quality of solids inventory as described in the various operator training manuals and according to accepted industry standards for process control. Process control, maintenance, and operations records shall be retained at the facility site, or shall be readily available for review by a TCEQ representative, for a period of three years.
- 2. Upon request by the Executive Director, the permittee shall take appropriate samples and provide proper analysis in order to demonstrate compliance with Commission rules. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall comply with all applicable provisions of 30 TAC Chapter 312 concerning sewage sludge or biosolids use and disposal and 30 TAC §§ 319.21 319.29 concerning the discharge of certain hazardous metals.
- 3. Domestic wastewater treatment facilities shall comply with the following provisions:
 - a. The permittee shall notify the Domestic Permits Team, Domestic Wastewater Section (MC 148) of the Water Quality Division, in writing, of any facility expansion at least 90 days prior to conducting such activity.
 - b. The permittee shall submit a closure plan for review and approval to the Domestic Permits Team, Domestic Wastewater Section (MC 148) of the Water Quality Division, for any closure activity at least 90 days prior to conducting such activity. Closure is the act of permanently taking a waste management unit or treatment facility out of service and includes the permanent removal from service of any pit, tank, pond, lagoon, surface impoundment and/or other treatment unit regulated by this permit.
- 4. The permittee is responsible for installing prior to plant start-up, and subsequently maintaining, adequate safeguards to prevent the discharge of untreated or inadequately treated wastes during electrical power failures by means of alternate power sources, standby generators, and/or retention of inadequately treated wastewater.
- 5. Unless otherwise specified, the permittee shall provide a readily accessible sampling point and, where applicable, an effluent flow measuring device or other acceptable means by which effluent flow may be determined.
- 6. The permittee shall remit an annual water quality fee to the Commission as required by 30

TAC Chapter 21. Failure to pay the fee may result in revocation of this permit under TWC § 7.302(b)(6).

7. Documentation

For all written notifications to the Commission required of the permittee by this permit, the permittee shall keep and make available a copy of each such notification under the same conditions as self-monitoring data are required to be kept and made available. Except for information required for TPDES permit applications, effluent data, including effluent data in permits, draft permits and permit applications, and other information specified as not confidential in 30 TAC §§ 1.5(d), any information submitted pursuant to this permit may be claimed as confidential by the submitter. Any such claim must be asserted in the manner prescribed in the application form or by stamping the words confidential business information on each page containing such information. If no claim is made at the time of submission, information may be made available to the public without further notice. If the Commission or Executive Director agrees with the designation of confidentiality, the TCEQ will not provide the information for public inspection unless required by the Texas Attorney General or a court pursuant to an open records request. If the Executive Director does not agree with the designation of confidentiality, the person submitting the information will be notified.

- 8. Facilities that generate domestic wastewater shall comply with the following provisions; domestic wastewater treatment facilities at permitted industrial sites are excluded.
 - a. Whenever flow measurements for any domestic sewage treatment facility reach 75% of the permitted daily average or annual average flow for three consecutive months, the permittee must initiate engineering and financial planning for expansion and/or upgrading of the domestic wastewater treatment and/or collection facilities. Whenever the flow reaches 90% of the permitted daily average or annual average flow for three consecutive months, the permittee shall obtain necessary authorization from the Commission to commence construction of the necessary additional treatment and/or collection facilities. In the case of a domestic wastewater treatment facility which reaches 75% of the permitted daily average or annual average flow for three consecutive months, and the planned population to be served or the quantity of waste produced is not expected to exceed the design limitations of the treatment facility, the permittee shall submit an engineering report supporting this claim to the Executive Director of the Commission.

If in the judgment of the Executive Director the population to be served will not cause permit noncompliance, then the requirement of this section may be waived. To be effective, any waiver must be in writing and signed by the Director of the Enforcement Division (MC 219) of the Commission, and such waiver of these requirements will be reviewed upon expiration of the existing permit; however, any such waiver shall not be interpreted as condoning or excusing any violation of any permit parameter.

b. The plans and specifications for domestic sewage collection and treatment works associated with any domestic permit must be approved by the Commission and failure to secure approval before commencing construction of such works or making a discharge is a violation of this permit and each day is an additional violation until approval has been secured.

- c. Permits for domestic wastewater treatment plants are granted subject to the policy of the Commission to encourage the development of area-wide waste collection, treatment, and disposal systems. The Commission reserves the right to amend any domestic wastewater permit in accordance with applicable procedural requirements to require the system covered by this permit to be integrated into an area-wide system, should such be developed; to require the delivery of the wastes authorized to be collected in, treated by or discharged from said system, to such area-wide system; or to amend this permit in any other particular to effectuate the Commission's policy. Such amendments may be made when the changes required are advisable for water quality control purposes and are feasible on the basis of waste treatment technology, engineering, financial, and related considerations existing at the time the changes are required, exclusive of the loss of investment in or revenues from any then existing or proposed waste collection, treatment or disposal system.
- 9. Domestic wastewater treatment plants shall be operated and maintained by sewage plant operators holding a valid certificate of competency at the required level as defined in 30 TAC Chapter 30.
- 10. For Publicly Owned Treatment Works (POTWs), the 30-day average (or monthly average) percent removal for BOD and TSS shall not be less than 85%, unless otherwise authorized by this permit.
- 11. Facilities that generate industrial solid waste as defined in 30 TAC § 335.1 shall comply with these provisions:
 - a. Any solid waste, as defined in 30 TAC § 335.1 (including but not limited to such wastes as garbage, refuse, sludge from a waste treatment, water supply treatment plant or air pollution control facility, discarded materials, discarded materials to be recycled, whether the waste is solid, liquid, or semisolid), generated by the permittee during the management and treatment of wastewater, must be managed in accordance with all applicable provisions of 30 TAC Chapter 335, relating to Industrial Solid Waste Management.
 - b. Industrial wastewater that is being collected, accumulated, stored, or processed before discharge through any final discharge outfall, specified by this permit, is considered to be industrial solid waste until the wastewater passes through the actual point source discharge and must be managed in accordance with all applicable provisions of 30 TAC Chapter 335.
 - c. The permittee shall provide written notification, pursuant to the requirements of 30 TAC § 335.8(b)(1), to the Corrective Action Section (MC 127) of the Remediation Division informing the Commission of any closure activity involving an Industrial Solid Waste Management Unit, at least 90 days prior to conducting such an activity.
 - d. Construction of any industrial solid waste management unit requires the prior written notification of the proposed activity to the Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division. No person shall dispose of industrial solid waste, including sludge or other solids from wastewater treatment processes, prior to fulfilling the deed recordation requirements of 30 TAC § 335.5.
 - e. The term "industrial solid waste management unit" means a landfill, surface impoundment, waste-pile, industrial furnace, incinerator, cement kiln, injection well,

container, drum, salt dome waste containment cavern, or any other structure vessel, appurtenance, or other improvement on land used to manage industrial solid waste.

- f. The permittee shall keep management records for all sludge (or other waste) removed from any wastewater treatment process. These records shall fulfill all applicable requirements of 30 TAC § 335 and must include the following, as it pertains to wastewater treatment and discharge:
 - i. Volume of waste and date(s) generated from treatment process;
 - ii. Volume of waste disposed of on-site or shipped off-site;
 - iii. Date(s) of disposal;
 - iv. Identity of hauler or transporter;
 - v. Location of disposal site; and
 - vi. Method of final disposal.

The above records shall be maintained on a monthly basis. The records shall be retained at the facility site, or shall be readily available for review by authorized representatives of the TCEQ for at least five years.

12. For industrial facilities to which the requirements of 30 TAC § 335 do not apply, sludge and solid wastes, including tank cleaning and contaminated solids for disposal, shall be disposed of in accordance with THSC § 361.

TCEO Revision 06/2020

SLUDGE PROVISIONS

The permittee is authorized to dispose of sludge only at a Texas Commission on Environmental Quality (TCEQ) authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge. The disposal of sludge or biosolids by land application on property owned, leased or under the direct control of the permittee is a violation of the permit unless the site is authorized with the TCEQ. This provision does not authorize Distribution and Marketing of Class A or Class AB Biosolids. This provision does not authorize the permittee to land apply biosolids on property owned, leased or under the direct control of the permittee.

SECTION I. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE OR BIOSOLIDS LAND APPLICATION

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC § 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge or biosolids.
- 2. In all cases, if the person (permit holder) who prepares the sewage sludge supplies the sewage sludge to another person for land application use or to the owner or lease holder of the land, the permit holder shall provide necessary information to the parties who receive the sludge to assure compliance with these regulations.
- 3. The land application of processed or unprocessed chemical toilet waste, grease trap waste, grit trap waste, milk solids, or similar non-hazardous municipal or industrial solid wastes, or any of the wastes listed in this provision combined with biosolids, WTP residuals or domestic septage is prohibited unless the grease trap waste is added at a fats, oil and grease (FOG) receiving facility as part of an anaerobic digestion process.

B. Testing Requirements

1. Sewage sludge or biosolids shall be tested annually in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I [Toxicity Characteristic Leaching Procedure (TCLP)] or other method that receives the prior approval of the TCEQ for the contaminants listed in 40 CFR Part 261.24, Table 1. Sewage sludge or biosolids failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal. Following failure of any TCLP test, the management or disposal of sewage sludge or biosolids at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge or biosolids no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division and the Regional Director (MC Region 4) within seven (7) days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped, and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Permitting and Registration Support Division (MC 129), Texas Commission on Environmental Quality, P.O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. The permittee shall submit the following information in an annual report to the TCEQ by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through TCEQ's website. If the permittee requests and obtains an electronic reporting waiver, the annual report can be submitted in hard copy to the TCEQ Regional Office (MC Region 4) and the Enforcement Division (MC 224).

2. Biosolids shall not be applied to the land if the concentration of the pollutants exceeds the pollutant concentration criteria in Table 1. The frequency of testing for pollutants in Table 1 is found in Section I.C. of this permit.

TABLE 1

<u>Pollutant</u>	<u>Ceiling Concentration</u> (Milligrams per kilogram)*
Arsenic	75
Cadmium	85
Chromium	3000
Copper	4300
Lead	840
Mercury	57
Molybdenum	75
Nickel	420
PCBs	49
Selenium	100
Zinc	7500

^{*} Dry weight basis

3. Pathogen Control

All sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site must be treated by one of the following methods to ensure that the sludge meets either the Class A, Class AB or Class B biosolids pathogen requirements.

a. For sewage sludge to be classified as Class A biosolids with respect to pathogens, the density of fecal coliform in the sewage sludge must be less than 1,000 most probable number (MPN) per gram of total solids (dry weight basis), or the density of Salmonella sp. bacteria in the sewage sludge must be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met:

<u>Alternative 1</u> - The temperature of the sewage sludge that is used or disposed shall be maintained at or above a specific value for a period of time. See 30 TAC § 312.82(a)(3)(A) for specific information;

Alternative 5 (PFRP) - Sewage sludge that is used or disposed of must be treated in one of the Processes to Further Reduce Pathogens (PFRP) described in 40 CFR Part 503, Appendix B. PFRP include composting, heat drying, heat treatment, and thermophilic aerobic digestion; or

Alternative 6 (PFRP Equivalent) - Sewage sludge that is used or disposed of must be treated in a process that has been approved by the U. S. Environmental Protection Agency as being equivalent to those in Alternative 5.

b. For sewage sludge to be classified as Class AB biosolids with respect to pathogens, the density of fecal coliform in the sewage sludge must be less than 1,000 MPN per gram of total solids (dry weight basis), or the density of *Salmonella* sp. bacteria in the sewage sludge be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met:

<u>Alternative 2</u> - The pH of the sewage sludge that is used or disposed shall be raised to above 12 std. units and shall remain above 12 std. units for 72 hours.

The temperature of the sewage sludge shall be above 52° Celsius for 12 hours or longer during the period that the pH of the sewage sludge is above 12 std. units.

At the end of the 72-hour period during which the pH of the sewage sludge is above 12 std. units, the sewage sludge shall be air dried to achieve a percent solids in the sewage sludge greater than 50%; or

<u>Alternative 3</u> - The sewage sludge shall be analyzed for enteric viruses prior to pathogen treatment. The limit for enteric viruses is less than one Plaque-forming Unit per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC \S 312.82(a)(2)(C)(i-iii) for specific information. The sewage sludge shall be analyzed for viable helminth ova prior to pathogen treatment. The limit for viable helminth ova is less than one per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC \S 312.82(a)(2)(C)(iv-vi) for specific information; or

<u>Alternative 4</u> - The density of enteric viruses in the sewage sludge shall be less than one Plaque-forming Unit per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. The density of viable helminth ova in the sewage sludge shall be less than one per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed.

- c. Sewage sludge that meets the requirements of Class AB biosolids may be classified a Class A biosolids if a variance request is submitted in writing that is supported by substantial documentation demonstrating equivalent methods for reducing odors and written approval is granted by the executive director. The executive director may deny the variance request or revoke that approved variance if it is determined that the variance may potentially endanger human health or the environment, or create nuisance odor conditions.
- d. Three alternatives are available to demonstrate compliance with Class B biosolids criteria.

Alternative 1

- i. A minimum of seven random samples of the sewage sludge shall be collected within 48 hours of the time the sewage sludge is used or disposed of during each monitoring episode for the sewage sludge.
- ii. The geometric mean of the density of fecal coliform in the samples collected shall be less than either 2,000,000 MPN per gram of total solids (dry weight basis) or 2,000,000 Colony Forming Units per gram of total solids (dry weight basis).

<u>Alternative 2</u> - Sewage sludge that is used or disposed of shall be treated in one of the Processes to Significantly Reduce Pathogens (PSRP) described in 40 CFR Part 503, Appendix B, so long as all of the following requirements are met by the generator of the sewage sludge.

- i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;
- ii. An independent Texas Licensed Professional Engineer must make a certification to the generator of a sewage sludge that the wastewater treatment facility generating the sewage sludge is designed to achieve one of the PSRP at the permitted design loading of the facility. The certification need only be repeated if the design loading of the facility is increased. The certification shall include a statement indicating the design meets all the applicable standards specified in Appendix B of 40 CFR Part 503;
- iii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iv. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review; and
- v. If the sewage sludge is generated from a mixture of sources, resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the PSRP, and shall meet the certification, operation, and record keeping requirements of this paragraph.

<u>Alternative 3</u> - Sewage sludge shall be treated in an equivalent process that has been approved by the U.S. Environmental Protection Agency, so long as all of the following requirements are met by the generator of the sewage sludge.

i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;

- ii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iii. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review;
- iv. The Executive Director will accept from the U.S. Environmental Protection Agency a finding of equivalency to the defined PSRP; and
- v. If the sewage sludge is generated from a mixture of sources resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the Processes to Significantly Reduce Pathogens, and shall meet the certification, operation, and record keeping requirements of this paragraph.

In addition to the Alternatives 1 - 3, the following site restrictions must be met if Class B biosolids are land applied:

- i. Food crops with harvested parts that touch the biosolids/soil mixture and are totally above the land surface shall not be harvested for 14 months after application of biosolids.
- ii. Food crops with harvested parts below the surface of the land shall not be harvested for 20 months after application of biosolids when the biosolids remain on the land surface for 4 months or longer prior to incorporation into the soil.
- iii. Food crops with harvested parts below the surface of the land shall not be harvested for 38 months after application of biosolids when the biosolids remain on the land surface for less than 4 months prior to incorporation into the soil.
- iv. Food crops, feed crops, and fiber crops shall not be harvested for 30 days after application of biosolids.
- v. Domestic livestock shall not be allowed to graze on the land for 30 days after application of biosolids.
- vi. Turf grown on land where biosolids are applied shall not be harvested for 1 year after application of the biosolids when the harvested turf is placed on either land with a high potential for public exposure or a lawn.
- vii. Public access to land with a high potential for public exposure shall be restricted for 1 year after application of biosolids.

- viii. Public access to land with a low potential for public exposure shall be restricted for 30 days after application of biosolids.
- ix. Land application of biosolids shall be in accordance with the buffer zone requirements found in 30 TAC § 312.44.

4. Vector Attraction Reduction Requirements

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site shall be treated by one of the following Alternatives 1 through 10 for vector attraction reduction.

- <u>Alternative 1</u> The mass of volatile solids in the sewage sludge shall be reduced by a minimum of 38%.
- Alternative 2 If Alternative 1 cannot be met for an anaerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge anaerobically in the laboratory in a bench-scale unit for 40 additional days at a temperature between 30° and 37° Celsius. Volatile solids must be reduced by less than 17% to demonstrate compliance.
- Alternative 3 If Alternative 1 cannot be met for an aerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge with percent solids of two percent or less aerobically in the laboratory in a bench-scale unit for 30 additional days at 20° Celsius. Volatile solids must be reduced by less than 15% to demonstrate compliance.
- Alternative 4 The specific oxygen uptake rate (SOUR) for sewage sludge treated in an aerobic process shall be equal to or less than 1.5 milligrams of oxygen per hour per gram of total solids (dry weight basis) at a temperature of 20° Celsius.
- Alternative 5 Sewage sludge shall be treated in an aerobic process for 14 days or longer. During that time, the temperature of the sewage sludge shall be higher than 40° Celsius and the average temperature of the sewage sludge shall be higher than 45° Celsius.
- Alternative 6 The pH of sewage sludge shall be raised to 12 or higher by alkali addition and, without the addition of more alkali shall remain at 12 or higher for two hours and then remain at a pH of 11.5 or higher for an additional 22 hours at the time the sewage sludge is prepared for sale or given away in a bag or other container.
- Alternative 7 The percent solids of sewage sludge that does not contain unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 75% based on the moisture content and total solids prior to mixing with other materials. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

Alternative 8 -

The percent solids of sewage sludge that contains unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 90% based on the moisture content and total solids prior to mixing with other materials at the time the sludge is used. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

Alternative 9 -

- i. Biosolids shall be injected below the surface of the land.
- ii. No significant amount of the biosolids shall be present on the land surface within one hour after the biosolids are injected.
- iii. When sewage sludge that is injected below the surface of the land is Class A or Class AB with respect to pathogens, the biosolids shall be injected below the land surface within eight hours after being discharged from the pathogen treatment process.

Alternative 10-

- i. Biosolids applied to the land surface or placed on a surface disposal site shall be incorporated into the soil within six hours after application to or placement on the land.
- ii. When biosolids that are incorporated into the soil is Class A or Class AB with respect to pathogens, the biosolids shall be applied to or placed on the land within eight hours after being discharged from the pathogen treatment process.

C. Monitoring Requirements

Toxicity Characteristic Leaching Procedure - annually (TCLP) Test
PCBs - annually

All metal constituents and fecal coliform or *Salmonella* sp. bacteria shall be monitored at the appropriate frequency shown below, pursuant to 30 TAC § 312.46(a)(1):

Amount of biosolids (*)

metric tons per 365-day period Monitoring Frequency

o to less than 290 Once/Year

290 to less than 1,500 Once/Quarter

1,500 to less than 15,000 Once/Two Months

15,000 or greater Once/Month

(*) The amount of bulk biosolids applied to the land (dry wt. basis).

Representative samples of sewage sludge shall be collected and analyzed in accordance with the methods referenced in 30 TAC § 312.7

Identify each of the analytic methods used by the facility to analyze enteric viruses, fecal coliforms, helminth ova, *Salmonella* sp., and other regulated parameters.

Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.

Identify the nature of material generated by the facility (such as a biosolid for beneficial use or land-farming, or sewage sludge or biosolids for disposal at a monofill) and whether the material is ultimately conveyed off-site in bulk or in bags.

SECTION II. REQUIREMENTS SPECIFIC TO BULK SEWAGE SLUDGE OR BIOSOLIDS FOR APPLICATION TO THE LAND MEETING CLASS A, CLASS AB or B PATHOGEN REDUCTION AND THE CUMULATIVE LOADING RATES IN TABLE 2, OR CLASS B PATHOGEN REDUCTION AND THE POLLUTANT CONCENTRATIONS IN TABLE 3

For those permittees meeting Class A, Class AB or B pathogen reduction requirements and that meet the cumulative loading rates in Table 2 below, or the Class B pathogen reduction requirements and contain concentrations of pollutants below listed in Table 3, the following conditions apply:

A. Pollutant Limits

Table 2

Pollutant	Cumulative Pollutant Loading Rate (pounds per acre)*
Arsenic	
	36
Cadmium	35
Chromium	2677
Copper	1339
Lead	268
Mercury	15
Molybdenum	Report Only
Nickel	375
Selenium	89
Zinc	2500

Table 3

Monthly Average
Concentration
(milligrams per kilogram)*
41
39
1200
1500
300
17
Report Only
420
36
2800

^{*}Dry weight basis

B. Pathogen Control

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, a reclamation site, shall be treated by either Class A, Class AB or Class B biosolids pathogen reduction requirements as defined above in Section I.B.3.

C. Management Practices

- 1. Bulk biosolids shall not be applied to agricultural land, forest, a public contact site, or a reclamation site that is flooded, frozen, or snow-covered so that the bulk sewage sludge enters a wetland or other waters in the State.
- 2. Bulk biosolids not meeting Class A requirements shall be land applied in a manner which complies with Applicability in accordance with 30 TAC §312.41 and the Management Requirements in accordance with 30 TAC § 312.44.
- 3. Bulk biosolids shall be applied at or below the agronomic rate of the cover crop.
- 4. An information sheet shall be provided to the person who receives bulk Class A or AB biosolids sold or given away. The information sheet shall contain the following information:
 - a. The name and address of the person who prepared the Class A or AB biosolids that are sold or given away in a bag or other container for application to the land.
 - b. A statement that application of the biosolids to the land is prohibited except in accordance with the instruction on the label or information sheet.
 - c. The annual whole sludge application rate for the biosolids application rate for the biosolids that does not cause any of the cumulative pollutant loading rates in Table 2 above to be exceeded, unless the pollutant concentrations in Table 3 found in Section II above are met.

D. Notification Requirements

- 1. If bulk biosolids are applied to land in a State other than Texas, written notice shall be provided prior to the initial land application to the permitting authority for the State in which the bulk biosolids are proposed to be applied. The notice shall include:
 - a. The location, by street address, and specific latitude and longitude, of each land application site.
 - b. The approximate time period bulk biosolids will be applied to the site.
 - c. The name, address, telephone number, and National Pollutant Discharge Elimination System permit number (if appropriate) for the person who will apply the bulk biosolids.

E. Record Keeping Requirements

The documents will be retained at the facility site and/or shall be readily available for review by a TCEQ representative. The person who prepares bulk sewage sludge or a biosolids material shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative for a period of <u>five years</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply.

- 1. The concentration (mg/kg) in the sludge of each pollutant listed in Table 3 above and the applicable pollutant concentration criteria (mg/kg), or the applicable cumulative pollutant loading rate and the applicable cumulative pollutant loading rate limit (lbs/ac) listed in Table 2 above.
- 2. A description of how the pathogen reduction requirements are met (including site restrictions for Class AB and Class B biosolids, if applicable).
- 3. A description of how the vector attraction reduction requirements are met.
- 4. A description of how the management practices listed above in Section II.C are being met.
- 5. The following certification statement:
 - "I certify, under penalty of law, that the applicable pathogen requirements in 30 TAC § 312.82(a) or (b) and the vector attraction reduction requirements in 30 TAC § 312.83(b) have been met for each site on which bulk biosolids are applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices have been met. I am aware that there are significant penalties for false certification including fine and imprisonment."
- 6. The recommended agronomic loading rate from the references listed in Section II.C.3. above, as well as the actual agronomic loading rate shall be retained. The person who applies bulk biosolids shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative <u>indefinitely</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply:
 - a. A certification statement that all applicable requirements (specifically listed) have been met, and that the permittee understands that there are significant penalties for false certification including fine and imprisonment. See 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii), as applicable, and to the permittee's specific sludge treatment activities.
 - b. The location, by street address, and specific latitude and longitude, of each site on which biosolids are applied.
 - c. The number of acres in each site on which bulk biosolids are applied.
 - d. The date and time biosolids are applied to each site.
 - e. The cumulative amount of each pollutant in pounds/acre listed in Table 2 applied to each site.
 - f. The total amount of biosolids applied to each site in dry tons.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

F. Reporting Requirements

The permittee shall submit the following information in an annual report to the TCEQ by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through TCEQ's website. If the permittee requests and obtains an electronic reporting waiver, the annual report can be submitted in hard copy to the TCEQ Regional Office (MC Region 4) and the Enforcement Division (MC 224).

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. Identify the nature of material generated by the facility (such as a biosolid for beneficial use or land-farming, or sewage sludge for disposal at a monofill) and whether the material is ultimately conveyed off-site in bulk or in bags.
- 3. Results of tests performed for pollutants found in either Table 2 or 3 as appropriate for the permittee's land application practices.
- 4. The frequency of monitoring listed in Section I.C. that applies to the permittee.
- 5. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 6. PCB concentration in sludge or biosolids in mg/kg.
- 7. Identity of hauler(s) and TCEQ transporter number.
- 8. Date(s) of transport.
- 9. Texas Commission on Environmental Quality registration number, if applicable.
- 10. Amount of sludge or biosolids disposal dry weight (lbs/acre) at each disposal site.
- 11. The concentration (mg/kg) in the sludge of each pollutant listed in Table 1 (defined as a monthly average) as well as the applicable pollutant concentration criteria (mg/kg) listed in Table 3 above, or the applicable pollutant loading rate limit (lbs/acre) listed in Table 2 above if it exceeds 90% of the limit.
- 12. Level of pathogen reduction achieved (Class A, Class AB or Class B).
- 13. Alternative used as listed in Section I.B.3.(a. or b.). Alternatives describe how the pathogen reduction requirements are met. If Class B biosolids, include information on how site restrictions were met.
- 14. Identify each of the analytic methods used by the facility to analyze enteric viruses, fecal coliforms, helminth ova, *Salmonella* sp., and other regulated parameters.
- 15. Vector attraction reduction alternative used as listed in Section I.B.4.
- 16. Amount of sludge or biosolids transported in dry tons/year.

- 17. The certification statement listed in either 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii) as applicable to the permittee's sludge or biosolids treatment activities, shall be attached to the annual report.
- 18. When the amount of any pollutant applied to the land exceeds 90% of the cumulative pollutant loading rate for that pollutant, as described in Table 2, the permittee shall report the following information as an attachment to the annual report.
 - a. The location, by street address, and specific latitude and longitude.
 - b. The number of acres in each site on which bulk biosolids are applied.
 - c. The date and time bulk biosolids are applied to each site.
 - d. The cumulative amount of each pollutant (i.e., pounds/acre) listed in Table 2 in the bulk biosolids applied to each site.
 - e. The amount of biosolids (i.e., dry tons) applied to each site.

The above records shall be maintained on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION III. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE OR BIOSOLIDS DISPOSED IN A MUNICIPAL SOLID WASTE LANDFILL

- A. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC § 330 and all other applicable state and federal regulations to protect public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present. The permittee shall ensure that the sewage sludge meets the requirements in 30 TAC § 330 concerning the quality of the sludge or biosolids disposed in a municipal solid waste landfill.
- B. If the permittee generates sewage sludge and supplies that sewage sludge or biosolids to the owner or operator of a municipal solid waste landfill (MSWLF) for disposal, the permittee shall provide to the owner or operator of the MSWLF appropriate information needed to be in compliance with the provisions of this permit.
- C. Sewage sludge or biosolids shall be tested annually in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I (Toxicity Characteristic Leaching Procedure) or other method, which receives the prior approval of the TCEQ for contaminants listed in Table 1 of 40 CFR § 261.24. Sewage sludge or biosolids failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal.

Following failure of any TCLP test, the management or disposal of sewage sludge or biosolids at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge or biosolids no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division and the Regional Director (MC Region 4) of the appropriate TCEQ field office within 7 days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped, and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Permitting and Registration Support Division (MC 129), Texas Commission on Environmental Quality, P. O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. This annual report shall be submitted to the TCEQ Regional Office (MC Region 4) and the Enforcement Division (MC 224), by September 30 of each year.

- D. Sewage sludge or biosolids shall be tested as needed, in accordance with the requirements of 30 TAC Chapter 330.
- E. Record Keeping Requirements

The permittee shall develop the following information and shall retain the information for five years.

- 1. The description (including procedures followed and the results) of all liquid Paint Filter Tests performed.
- 2. The description (including procedures followed and results) of all TCLP tests performed.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

F. Reporting Requirements

The permittee shall submit the following information in an annual report to the TCEQ by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through TCEQ's website. If the permittee requests and obtains an electronic reporting waiver, the annual report can be submitted in hard copy to the TCEQ Regional Office (MC Region 4) and the Enforcement Division (MC 224).

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 3. Annual sludge or biosolids production in dry tons/year.
- 4. Amount of sludge or biosolids disposed in a municipal solid waste landfill in dry tons/year.
- 5. Amount of sludge or biosolids transported interstate in dry tons/year.
- 6. A certification that the sewage sludge or biosolids meets the requirements of 30 TAC § 330 concerning the quality of the sludge disposed in a municipal solid waste landfill.
- 7. Identity of hauler(s) and transporter registration number.
- 8. Owner of disposal site(s).
- 9. Location of disposal site(s).
- 10. Date(s) of disposal.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION IV. REQUIREMENTS APPLYING TO SLUDGE OR BIOSOLIDS TRANSPORTED TO ANOTHER FACILITY FOR FURTHER PROCESSING

These provisions apply to sludge or biosolids that is transported to another wastewater treatment facility or facility that further processes sludge or biosolids. These provisions are intended to allow transport of sludge or biosolids to facilities that have been authorized to accept sludge or biosolids. These provisions do not limit the ability of the receiving facility to determine whether to accept the sludge or biosolids, nor do they limit the ability of the receiving facility to request additional testing or documentation.

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC Chapter 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge.
- 2. Sludge or biosolids may only be transported using a registered transporter or using an approved pipeline.

B. Record Keeping Requirements

- 1. For sludge transported by an approved pipeline, the permittee must maintain records of the following:
 - a. the amount of sludge or biosolids transported;
 - b. the date of transport;
 - c. the name and TCEQ permit number of the receiving facility or facilities;
 - d. the location of the receiving facility or facilities;
 - e. the name and TCEQ permit number of the facility that generated the waste; and
 - f. copy of the written agreement between the permittee and the receiving facility to accept sludge or biosolids.
- 2. For sludge or biosolids transported by a registered transporter, the permittee must maintain records of the completed trip tickets in accordance with 30 TAC § 312.145(a)(1)-(7) and amount of sludge or biosolids transported.
- 3. The above records shall be maintained on-site on a monthly basis and shall be made available to the TCEQ upon request. These records shall be retained for at least five years.

C. Reporting Requirements

The permittee shall submit the following information in an annual report to the TCEQ by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through TCEQ's website. If the permittee requests and obtains an electronic reporting waiver, the annual report can be submitted in hard copy to the TCEQ Regional Office (MC Region 4) and the Enforcement Division (MC 224).

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. the annual sludge or biosolids production;
- 3. the amount of sludge or biosolids transported;
- 4. the owner of each receiving facility;
- 5. the location of each receiving facility; and
- 6. the date(s) of disposal at each receiving facility.

TCEQ Revision 06/2020

OTHER REQUIREMENTS

- 1. The permittee shall employ or contract with one or more licensed wastewater treatment facility operators or wastewater system operations companies holding a valid license or registration according to the requirements of 30 TAC Chapter 30, Occupational Licenses and Registrations, and in particular 30 TAC Chapter 30, Subchapter J, Wastewater Operators and Operations Companies.
 - This Category B facility must be operated by a chief operator or an operator holding a Class B license or higher. The facility must be operated a minimum of five days per week by the licensed chief operator or an operator holding the required level of license or higher. The licensed chief operator or operator holding the required level of license or higher must be available by telephone or pager seven days per week. Where shift operation of the wastewater treatment facility is necessary, each shift that does not have the on-site supervision of the licensed chief operator must be supervised by an operator in charge who is licensed not less than one level below the category for the facility.
- 2. The facility is not located in the Coastal Management Program boundary.
- 3. There is no mixing zone established for this discharge to an intermittent stream. Acute toxic criteria apply at the point of discharge.
- 4. The permittee shall comply with the requirements of 30 TAC § 309.13(a) through (d). In addition, by ownership of the required buffer zone area, the permittee shall comply with the requirements of 30 TAC § 309.13(e).
- 5. The permittee shall provide facilities for the protection of its wastewater treatment facility from a 100-year flood.
- 6. In accordance with 30 TAC § 319.9, a permittee that has at least twelve months of uninterrupted compliance with its bacteria limit may notify the commission in writing of its compliance and request a less frequent measurement schedule. To request a less frequent schedule, the permittee shall submit a written request to the TCEQ Domestic Wastewater Section (MC 148) for each phase that includes a different monitoring frequency. The request must contain all of the reported bacteria values (Daily Avg. and Daily Max/Single Grab) for the twelve consecutive months immediately prior to the request. If the Executive Director finds that a less frequent measurement schedule is protective of human health and the environment, the permittee may be given a less frequent measurement schedule. For this permit, one/week may be reduced to two/month. A violation of any bacteria limit by a facility that has been granted a less frequent measurement schedule will require the permittee to return to the standard frequency schedule and submit written notice to the TCEO Domestic Wastewater Section (MC 148). The permittee may not apply for another reduction in measurement frequency for at least 24 months from the date of the last violation. The Executive Director may establish a more frequent measurement schedule if necessary to protect human health or the environment.

CONTRIBUTING INDUSTRIES AND PRETREATMENT REQUIREMENTS

- 1. The following pollutants may not be introduced into the treatment facility:
 - a. Pollutants which create a fire or explosion hazard in the publicly owned treatment works (POTW), including, but not limited to, waste streams with a closed-cup flash point of less than 140° Fahrenheit (60° Celsius) using the test methods specified in 40 CFR § 261.21;
 - b. Pollutants which will cause corrosive structural damage to the POTW, but in no case shall there be discharges with a pH lower than 5.0 standard units, unless the works are specifically designed to accommodate such discharges;
 - c. Solid or viscous pollutants in amounts which will cause obstruction to the flow in the POTW, resulting in Interference;
 - d. Any pollutant, including oxygen-demanding pollutants (e.g., biochemical oxygen demand), released in a discharge at a flow rate and/or pollutant concentration which will cause Interference with the POTW;
 - e. Heat in amounts which will inhibit biological activity in the POTW, resulting in Interference, but in no case shall there be heat in such quantities that the temperature at the POTW treatment plant exceeds 104° Fahrenheit (40° Celsius) unless the Executive Director, upon request of the POTW, approves alternate temperature limits;
 - f. Petroleum oil, nonbiodegradable cutting oil, or products of mineral oil origin in amounts that will cause Interference or Pass Through;
 - g. Pollutants which result in the presence of toxic gases, vapors, or fumes within the POTW in a quantity that may cause acute worker health and safety problems; and
 - h. Any trucked or hauled pollutants except at discharge points designated by the POTW.
- 2. The permittee shall require any indirect discharger to the treatment works to comply with the reporting requirements of Sections 204(b), 307, and 308 of the Clean Water Act, including any requirements established under 40 CFR Part 403 [rev. Federal Register/ Vol. 70/ No. 198/ Friday, October 14, 2005/ Rules and Regulations, pages 60134-60798].
- 3. The permittee shall provide adequate notification to the Executive Director, care of the Domestic Wastewater Section (MC 148) of the Water Quality Division, within 30 days subsequent to the permittee's knowledge of either of the following:
 - a. Any new introduction of pollutants into the treatment works from an indirect discharger which would be subject to Sections 301 and 306 of the Clean Water Act if it were directly discharging those pollutants; and
 - b. Any substantial change in the volume or character of pollutants being introduced into the treatment works by a source introducing pollutants into the treatment works at the time of issuance of the permit.

Any notice shall include information on the quality and quantity of effluent to be introduced into the treatment works and any anticipated impact of the change on the quality or quantity of effluent to be discharged from the POTW.

Revised July 2007

BIOMONITORING REQUIREMENTS

CHRONIC BIOMONITORING REQUIREMENTS: FRESHWATER

The provisions of this section apply to Outfall 001 for whole effluent toxicity (WET) testing.

- 1. Scope, Frequency, and Methodology
 - a. The permittee shall test the effluent for toxicity in accordance with the provisions below. Such testing will determine if an appropriately dilute effluent sample adversely affects the survival, reproduction, or growth of the test organisms.
 - b. The permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified in this part of this permit and in accordance with "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms," fourth edition (EPA-821-R-02-013) or its most recent update:
 - 1) Chronic static renewal survival and reproduction test using the water flea (*Ceriodaphnia dubia*) (Method 1002.0). This test should be terminated when 60% of the surviving adults in the control produce three broods or at the end of eight days, whichever occurs first. This test shall be conducted once per quarter.
 - 2) Chronic static renewal 7-day larval survival and growth test using the fathead minnow (*Pimephales promelas*) (Method 1000.0). A minimum of five replicates with eight organisms per replicate shall be used in the control and in each dilution. This test shall be conducted once per quarter.

The permittee must perform and report a valid test for each test species during the prescribed reporting period. An invalid test must be repeated during the same reporting period. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. The permittee shall use five effluent dilution concentrations and a control in each toxicity test. These effluent dilution concentrations are 31%, 41%, 55%, 73%, and 97% effluent. The critical dilution, defined as 97% effluent, is the effluent concentration representative of the proportion of effluent in the receiving water during critical low flow or critical mixing conditions.
- d. This permit may be amended to require a WET limit, a chemical-specific effluent limit, a best management practice, or other appropriate actions to address toxicity. The permittee may be required to conduct a toxicity reduction evaluation (TRE) after multiple toxic events.
- e. Testing Frequency Reduction
 - 1) If none of the first four consecutive quarterly tests demonstrates significant toxicity, the permittee may submit this information in writing

- and, upon approval, reduce the testing frequency to once per six months for the invertebrate test species and once per year for the vertebrate test species.
- 2) If one or more of the first four consecutive quarterly tests demonstrates significant toxicity, the permittee shall continue quarterly testing for that species until this permit is reissued. If a testing frequency reduction had been previously granted and a subsequent test demonstrates significant toxicity, the permittee shall resume a quarterly testing frequency for that species until this permit is reissued.

2. Required Toxicity Testing Conditions

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control and all effluent dilutions, which fail to meet the following criteria:
 - 1) a control mean survival of 80% or greater;
 - 2) a control mean number of water flea neonates per surviving adult of 15 or greater;
 - 3) a control mean dry weight of surviving fathead minnow larvae of 0.25 mg or greater;
 - a control coefficient of variation percent (CV%) of 40 or less in between replicates for the young of surviving females in the water flea test; and the growth and survival endpoints in the fathead minnow test;
 - 5) a critical dilution CV% of 40 or less for the young of surviving females in the water flea test; and the growth and survival endpoints for the fathead minnow test. However, if statistically significant lethal or nonlethal effects are exhibited at the critical dilution, a CV% greater than 40 shall not invalidate the test;
 - 6) a percent minimum significant difference of 47 or less for water flea reproduction; and
 - 7) a percent minimum significant difference of 30 or less for fathead minnow growth.

b. Statistical Interpretation

- 1) For the water flea survival test, the statistical analyses used to determine if there is a significant difference between the control and an effluent dilution shall be the Fisher's exact test as described in the manual referenced in Part 1.b.
- 2) For the water flea reproduction test and the fathead minnow larval survival and growth tests, the statistical analyses used to determine if there is a significant difference between the control and an effluent dilution shall be in accordance with the manual referenced in Part 1.b.

- 3) The permittee is responsible for reviewing test concentration-response relationships to ensure that calculated test-results are interpreted and reported correctly. The document entitled "Method Guidance and Recommendation for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136)" (EPA 821-B-00-004) provides guidance on determining the validity of test results.
- 4) If significant lethality is demonstrated (that is, there is a statistically significant difference in survival at the critical dilution when compared to the survival in the control), the conditions of test acceptability are met, and the survival of the test organisms are equal to or greater than 80% in the critical dilution and all dilutions below that, then the permittee shall report a survival No Observed Effect Concentration (NOEC) of not less than the critical dilution for the reporting requirements.
- 5) The NOEC is defined as the greatest effluent dilution at which no significant effect is demonstrated. The Lowest Observed Effect Concentration (LOEC) is defined as the lowest effluent dilution at which a significant effect is demonstrated. A significant effect is defined as a statistically significant difference between the survival, reproduction, or growth of the test organism in a specified effluent dilution when compared to the survival, reproduction, or growth of the test organism in the control.
- 6) The use of NOECs and LOECs assumes either a monotonic (continuous) concentration-response relationship or a threshold model of the concentration-response relationship. For any test result that demonstrates a non-monotonic (non-continuous) response, the NOEC should be determined based on the guidance manual referenced in Item 3.
- Pursuant to the responsibility assigned to the permittee in Part 2.b.3), test results that demonstrate a non-monotonic (non-continuous) concentration-response relationship may be submitted, prior to the due date, for technical review. The guidance manual referenced in Item 3 will be used when making a determination of test acceptability.
- 8) TCEQ staff will review test results for consistency with rules, procedures, and permit requirements.

c. Dilution Water

- Dilution water used in the toxicity tests must be the receiving water collected at a point upstream of the discharge point as close as possible to the discharge point but unaffected by the discharge. Where the toxicity tests are conducted on effluent discharges to receiving waters that are classified as intermittent streams, or where the toxicity tests are conducted on effluent discharges where no receiving water is available due to zero flow conditions, the permittee shall:
 - a) substitute a synthetic dilution water that has a pH, hardness, and

- alkalinity similar to that of the closest downstream perennial water unaffected by the discharge; or
- b) use the closest downstream perennial water unaffected by the discharge.
- Where the receiving water proves unsatisfactory as a result of pre-existing instream toxicity (i.e. fails to fulfill the test acceptance criteria of Part 2.a.), the permittee may substitute synthetic dilution water for the receiving water in all subsequent tests provided the unacceptable receiving water test met the following stipulations:
 - a) a synthetic lab water control was performed (in addition to the receiving water control) which fulfilled the test acceptance requirements of Part 2.a;
 - b) the test indicating receiving water toxicity was carried out to completion (i.e., 7 days); and
 - c) the permittee submitted all test results indicating receiving water toxicity with the reports and information required in Part 3.
- 3) The synthetic dilution water shall consist of standard, moderately hard, reconstituted water. Upon approval, the permittee may substitute other appropriate dilution water with chemical and physical characteristics similar to that of the receiving water.

d. Samples and Composites

- 1) The permittee shall collect a minimum of three composite samples from Outfall 001. The second and third composite samples will be used for the renewal of the dilution concentrations for each toxicity test.
- 2) The permittee shall collect the composite samples such that the samples are representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged on an intermittent basis.
- 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the first composite sample. The holding time for any subsequent composite sample shall not exceed 72 hours. Samples shall be maintained at a temperature of 0-6 degrees Centigrade during collection, shipping, and storage.
- 4) If Outfall 001 ceases discharging during the collection of effluent samples, the requirements for the minimum number of effluent samples, the minimum number of effluent portions, and the sample holding time are waived during that sampling period. However, the permittee must have collected an effluent composite sample volume sufficient to complete the required toxicity tests with renewal of the effluent. When possible, the effluent samples used for the toxicity tests shall be collected on separate

days if the discharge occurs over multiple days. The sample collection duration and the static renewal protocol associated with the abbreviated sample collection must be documented in the full report.

5) The effluent samples shall not be dechlorinated after sample collection.

3. Reporting

All reports, tables, plans, summaries, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated whether carried to completion or not.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 1 forms provided with this permit.
 - 1) Annual biomonitoring test results are due on or before January 20th for biomonitoring conducted during the previous 12-month period.
 - 2) Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.
 - 3) Quarterly biomonitoring test results are due on or before April 20th, July 20th, October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.
 - 4) Monthly biomonitoring test results are due on or before the 20th day of the month following sampling.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the water flea, Parameter TLP3B, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) For the water flea, Parameter TOP3B, report the NOEC for survival.
 - 3) For the water flea, Parameter TXP3B, report the LOEC for survival.
 - 4) For the water flea, Parameter TWP3B, enter a "1" if the NOEC for reproduction is less than the critical dilution; otherwise, enter a "o."
 - 5) For the water flea, Parameter TPP3B, report the NOEC for reproduction.
 - 6) For the water flea, Parameter TYP3B, report the LOEC for reproduction.
 - 7) For the fathead minnow, Parameter TLP6C, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."

- 8) For the fathead minnow, Parameter TOP6C, report the NOEC for survival.
- 9) For the fathead minnow, Parameter TXP6C, report the LOEC for survival.
- For the fathead minnow, Parameter TWP6C, enter a "1" if the NOEC for growth is less than the critical dilution; otherwise, enter a "0."
- 11) For the fathead minnow, Parameter TPP6C, report the NOEC for growth.
- 12) For the fathead minnow, Parameter TYP6C, report the LOEC for growth.
- d. Enter the following codes for retests only:
 - 1) For retest number 1, Parameter 22415, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) For retest number 2, Parameter 22416, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."

4. Persistent Toxicity

The requirements of this Part apply only when a test demonstrates a significant effect at the critical dilution. Significant lethality and significant effect were defined in Part 2.b. Significant sublethality is defined as a statistically significant difference in growth/reproduction at the critical dilution when compared to the growth/reproduction in the control.

- a. The permittee shall conduct a total of 2 additional tests (retests) for any species that demonstrates a significant effect (lethal or sublethal) at the critical dilution. The two retests shall be conducted monthly during the next two consecutive months. The permittee shall not substitute either of the two retests in lieu of routine toxicity testing. All reports shall be submitted within 20 days of test completion. Test completion is defined as the last day of the test.
- b. If the retests are performed due to a demonstration of significant lethality, and one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall initiate the TRE requirements as specified in Part 5. The provisions of Part 4.a. are suspended upon completion of the two retests and submittal of the TRE action plan and schedule defined in Part 5.
 - If neither test demonstrates significant lethality and the permittee is testing under the reduced testing frequency provision of Part 1.e., the permittee shall return to a quarterly testing frequency for that species.
- c. If the two retests are performed due to a demonstration of significant sublethality, and one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall again perform two retests as stipulated in Part 4.a.
- d. If the two retests are performed due to a demonstration of significant

- sublethality, and neither test demonstrates significant lethality, the permittee shall continue testing at the quarterly frequency.
- e. Regardless of whether retesting for lethal or sublethal effects, or a combination of the two, no more than one retest per month is required for a species.

5. <u>Toxicity Reduction Evaluation</u>

- a. Within 45 days of the retest that demonstrates significant lethality, or within 45 days of being so instructed due to multiple toxic events, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, or within 90 days of being so instructed due to multiple toxic events, the permittee shall submit a TRE action plan and schedule for conducting a TRE. The plan shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analyses to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall describe an approach for the reduction or elimination of lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:
 - Specific Activities The TRE action plan shall specify the approach the 1) permittee intends to utilize in conducting the TRE, including toxicity characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Toxicity Identification Evaluation: Characterization of Chronically Toxic Effluents, Phase I" (EPA/600/6-91/005F) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aquatic Toxicity Identification Evaluations, Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;
 - 2) Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects a specific pollutant and source of effluent toxicity, the permittee shall

- conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;
- 3) Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
- 4) Project Organization The TRE action plan should describe the project staff, project manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:
 - 1) results and interpretation of any chemical-specific analyses for the identified and suspected pollutant performed during the quarter;
 - 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;
 - any data and substantiating documentation which identifies the pollutant(s) and source of effluent toxicity:
 - 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
 - 5) any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to meet no significant lethality at the critical dilution; and
 - 6) any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.
- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive months with at least monthly testing. At the end of the 12 months, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply as a result of corrective actions taken by the permittee. Corrective actions are defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

- g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 28 months from the last test day of the retest that confirmed significant lethal effects at the critical dilution. The permittee may petition the Executive Director (in writing) for an extension of the 28-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE. The report shall provide information pertaining to the specific control mechanism selected that will, when implemented, result in the reduction of effluent toxicity to no significant lethality at the critical dilution. The report shall also provide a specific corrective action schedule for implementing the selected control mechanism.
- h. Based on the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements, where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and specify a chemical-specific limit.
- i. Copies of any and all required TRE plans and reports shall also be submitted to the U.S. EPA Region 6 office, 6WQ-PO.

TABLE 1 (SHEET 1 OF 4)

BIOMONITORING REPORTING

CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION

		Date Time	Date Time
Dates and Times Composites	No. 1 FROM:		_ TO:
Collected	No. 2 FROM: _		_ TO:
	No. 3 FROM:		_ TO:
Test initiated:		am/pm	date
Dilution wa	ter used:	_ Receiving water	Synthetic Dilution water

NUMBER OF YOUNG PRODUCED PER ADULT AT END OF TEST

	Percent effluent							
REP	0%	31%	41%	55%	73%	97%		
A								
В								
С								
D								
Е								
F								
G								
Н								
I								
J								
Survival Mean								
Total Mean								
CV%*								
PMSD								

^{*}Coefficient of Variation = standard deviation x 100/mean (calculation based on young of the surviving adults)

Designate males (M), and dead females (D), along with number of neonates (x) released prior to death.

TABLE 1 (SHEET 2 OF 4)

CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION TEST

1. Dunnett's Procedure or Steel's Many-One Rank Test or Wilcoxon Rank Sum Test (with Bonferroni adjustment) or t-test (with Bonferroni adjustment) as appropriate:

Is the mean number of young produced per adult significantly less than the number of young per adult in the control for the % effluent corresponding to significant nonlethal effects?

CRITICAL DILUTION	(97%):	YES	NO
-------------------	--------	-----	----

PERCENT SURVIVAL

	Percent effluent					
Time of Reading	0%	31%	41%	55%	73%	97%
24h						
48h						
End of Test	_				_	_

2. Fisher's Exact Test:

Is the mean survival at test end significantly less than the control survival for the % effluent corresponding to lethality?

CRITICAL DILUTION	(97%):	YES	NO

- 3. Enter percent effluent corresponding to each NOEC\LOEC below:
 - a.) NOEC survival = ______% effluent
 - b.) LOEC survival = ______% effluent
 - c.) NOEC reproduction = ______% effluent
 - d.) LOEC reproduction = _____ % effluent

TABLE 1 (SHEET 3 OF 4)

BIOMONITORING REPORTING

FATHEAD MINNOW LARVAE GROWTH AND SURVIVAL

	No.1 FRO	D OM:	ate Tim			ate Time		
Composites Collected	No. 2 FR	OM:			TO:			
	No. 3 FR	OM:			TO:			
Test initiated:				am/pm			date	
Dilution water	used:	R	leceiving v	water		Synthetic di	lution water	
	FAT	THEAD MI	INNOW G	ROWTH	DATA			
Effluent Concentration	Avera	ge Dry We	ight in re	plicate cha	mbers	Mean Dry CV%*		
Concentration	A	В	С	D	Е	Weight		
0%								
31%								
41%								
55%								
73%								
97%								
PMSD				·				
* Coefficient of Variati 1. Dunnett's Proc Bonferroni adj Is the mean dr (growth) for th	edure or S ustment) o y weight (g e % effluer	teel's Man or t-test (w growth) at or correspo	ny-One Ra rith Bonfe 7 days sig onding to	nk Test or rroni adju- nificantly significan	stment) as less than t t nonletha	s appropriat the control's l effects?	e:	
	CKITICAL	DILUTIO	л (97%):	_ YES	NO		

TABLE 1 (SHEET 4 OF 4)

BIOMONITORING REPORTING

FATHEAD MINNOW GROWTH AND SURVIVAL TEST

FATHEAD MINNOW SURVIVAL DATA

Effluent	Percent Survival in replicate chambers			Mean percent survival		CV%*			
Concentration	A	В	С	D	E	24h	48h	7 day	
0%									
31%									
41%									
55%									
73%									
97%									

^{*} Coefficient of Variation = standard deviation x 100/mean

iicieiit (or variation – standard deviation x 100/mean					
2.	Dunnett's Procedure or Steel's Many-One Rank Test or Wilcoxon Rank Sum Test (with Bonferroni adjustment) or t-test (with Bonferroni adjustment) as appropriate:					
	Is the mean survival at 7 days significantly less than the control survival for the $\%$ effluent corresponding to lethality?					
	CRITICAL DILUTION (97%): YES NO					
3.	Enter percent effluent corresponding to each NOEC\LOEC below:					
	a.) NOEC survival =% effluent					
	b.) LOEC survival =% effluent					
	c.) NOEC growth =% effluent					
	d.) LOEC growth =% effluent					

24-HOUR ACUTE BIOMONITORING REQUIREMENTS: FRESHWATER

The provisions of this section apply to Outfall 001 for whole effluent toxicity (WET) testing.

1. Scope, Frequency, and Methodology

- a. The permittee shall test the effluent for lethality in accordance with the provisions in this section. Such testing will determine compliance with Texas Surface Water Quality Standard 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival of the appropriate test organisms in 100% effluent for a 24-hour period.
- b. The toxicity tests specified shall be conducted once per six months. The permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified in this section of the permit and in accordance with "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms," fifth edition (EPA-821-R-02-012) or its most recent update:
 - 1) Acute 24-hour static toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.
 - 2) Acute 24-hour static toxicity test using the fathead minnow (*Pimephales promelas*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.

A valid test result must be submitted for each reporting period. The permittee must report, and then repeat, an invalid test during the same reporting period. The repeat test shall include the control and the 100% effluent dilution and use the appropriate number of organisms and replicates, as specified above. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. In addition to an appropriate control, a 100% effluent concentration shall be used in the toxicity tests. The control and dilution water shall consist of standard, synthetic, moderately hard, reconstituted water.
- d. This permit may be amended to require a WET limit, a best management practice, a chemical-specific limit, or other appropriate actions to address toxicity. The permittee may be required to conduct a toxicity reduction evaluation (TRE) after multiple toxic events.

2. Required Toxicity Testing Conditions

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control, if the control fails to meet a mean survival equal to or greater than 90%.
- b. Dilution Water In accordance with Part 1.c., the control and dilution water shall consist of standard, synthetic, moderately hard, reconstituted water.

c. Samples and Composites

- 1) The permittee shall collect one composite sample from Outfall 001.
- 2) The permittee shall collect the composite sample such that the sample is representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged.
- 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the composite sample. The sample shall be maintained at a temperature of o-6 degrees Centigrade during collection, shipping, and storage.
- 4) If Outfall 001 ceases discharging during the collection of the effluent composite sample, the requirements for the minimum number of effluent portions are waived. However, the permittee must have collected a composite sample volume sufficient for completion of the required test. The abbreviated sample collection, duration, and methodology must be documented in the full report.
- 5) The effluent sample shall not be dechlorinated after sample collection.

3. Reporting

All reports, tables, plans, summaries, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 2 forms provided with this permit.
 - 1) Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.
 - 2) Quarterly biomonitoring test results are due on or before April 20th, July 20th, and October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the water flea, Parameter TIE3D, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."
 - 2) For the fathead minnow, Parameter TIE6C, enter a "o" if the mean

survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."

- d. Enter the following codes for retests only:
 - 1) For retest number 1, Parameter 22415, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."
 - 2) For retest number 2, Parameter 22416, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."

4. <u>Persistent Mortality</u>

The requirements of this part apply when a toxicity test demonstrates significant lethality, which is defined as a mean mortality of 50% or greater of organisms exposed to the 100% effluent concentration for 24 hours.

- a. The permittee shall conduct 2 additional tests (retests) for each species that demonstrates significant lethality. The two retests shall be conducted once per week for 2 weeks. Five effluent dilution concentrations in addition to an appropriate control shall be used in the retests. These effluent concentrations are 6%, 13%, 25%, 50% and 100% effluent. The first retest shall be conducted within 15 days of the laboratory determination of significant lethality. All test results shall be submitted within 20 days of test completion of the second retest. Test completion is defined as the 24th hour.
- b. If one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall initiate the TRE requirements as specified in Part 5.

5. <u>Toxicity Reduction Evaluation</u>

- a. Within 45 days of the retest that demonstrates significant lethality, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, the permittee shall submit a TRE action plan and schedule for conducting a TRE. The plan shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analyses to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall lead to the successful elimination of significant lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:
 - 1) Specific Activities The TRE action plan shall specify the approach the permittee intends to utilize in conducting the TRE, including toxicity

characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures" (EPA/600/6-91/003) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;

- 2) Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects specific pollutant and source of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;
- Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
- 4) Project Organization The TRE Action Plan should describe the project staff, project manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly TRE activities reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:
 - 1) results and interpretation of any chemical-specific analyses for the identified and suspected pollutant performed during the quarter;
 - 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;
 - 3) any data and substantiating documentation that identifies the pollutant

and source of effluent toxicity;

- 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
- 5) any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to eliminate significant lethality; and
- 6) any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.
- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive weeks with at least weekly testing. At the end of the 12 weeks, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply as a result of corrective actions taken by the permittee. Corrective actions are defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 18 months from the last test day of the retest that demonstrates significant lethality. The permittee may petition the Executive Director (in writing) for an extension of the 18-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE. The report shall specify the control mechanism that will, when implemented, reduce effluent toxicity as specified in Part 5.h. The report shall also specify a corrective action schedule for implementing the selected control mechanism.

- h. Within 3 years of the last day of the test confirming toxicity, the permittee shall comply with 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival of the test organism in 100% effluent at the end of 24-hours. The permittee may petition the Executive Director (in writing) for an extension of the 3-year limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE.
 - The permittee may be exempted from complying with 30 TAC § 307.6(e)(2)(B) upon proving that toxicity is caused by an excess, imbalance, or deficiency of dissolved salts. This exemption excludes instances where individually toxic components (e.g., metals) form a salt compound. Following the exemption, this permit may be amended to include an ion-adjustment protocol, alternate species testing, or single species testing.
- i. Based upon the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and specify a chemical-specific limit.
- j. Copies of any and all required TRE plans and reports shall also be submitted to the U.S. EPA Region 6 office, 6WQ-PO.

TABLE 2 (SHEET 1 OF 2)

WATER FLEA SURVIVAL

GENERAL INFORMATION

	Time	Date
Composite Sample Collected		
Test Initiated		

PERCENT SURVIVAL

Time	Don			Percent	t effluent		
Time	Rep	0%	6%	13%	25%	50%	100%
	A						
	В						
1	С						
24h	D						
	E						
	MEAN						

Enter percent	effluent corres	enonding to	the I Con	halow
Emer bercem	. emuem corres	sponania to	me Leso	Delow.

24 hour LC50 = _____% effluent

TABLE 2 (SHEET 2 OF 2)

FATHEAD MINNOW SURVIVAL

GENERAL INFORMATION

	Time	Date
Composite Sample Collected		
Test Initiated		

PERCENT SURVIVAL

Time	Rep	Percent effluent						
		0%	6%	13%	25%	50%	100%	
	A							
	В							
	С							
24h	D							
	Е							
	MEAN	_					_	

Enter	percent e	ffluent	corresp	onding	to the	LC50	below
Linu		mucm	COLLCSP	onunis	to the	LCOU	DCION

24 hour LC50 = _____% effluent

FACT SHEET AND EXECUTIVE DIRECTOR'S PRELIMINARY DECISION

For draft Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010555001, EPA I.D. No. TX0020591, to discharge to water in the state.

Issuing Office: Texas Commission on Environmental Quality

P.O. Box 13087

Austin, Texas 78711-3087

Applicant: City of Commerce

1119 Alamo Street

Commerce, Texas 75428

Prepared By: John Hearn

Domestic Permits Team

Domestic Wastewater Section (MC 148)

Water Quality Division

(512) 239-5239

Date: November 14, 2025

Permit Action: Renewal

1. EXECUTIVE DIRECTOR RECOMMENDATION

The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The draft permit includes an expiration date of **five years from the date of issuance**.

2. APPLICANT ACTIVITY

The applicant has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of the existing permit that authorizes the discharge of treated domestic wastewater at an annual average flow not to exceed 2.0 million gallons per day (MGD). The existing wastewater treatment facility serves the City of Commerce.

3. FACILITY AND DISCHARGE LOCATION

The plant site is located approximately 0.5 mile south of the intersection of Charity Road and Farm-to-Market Road 3218, in Hunt County, Texas 75428.

Outfall Location:

Outfall Number	Latitude	Longitude	
001	33.214741 N	95.888370 W	

The treated effluent is discharged to an unnamed tributary, thence to Upper South Sulphur River in Segment No. 0306 of the Sulphur River Basin. The unclassified receiving water use is minimal aquatic life use for the unnamed tributary. The designated uses for Segment No. 0306 are primary contact recreation and intermediate aquatic life use.

4. TREATMENT PROCESS DESCRIPTION AND SEWAGE SLUDGE DISPOSAL

The Commerce Wastewater Treatment Facility (WWTF) is an activated sludge process plant operated in the complete mix aeration mode. Treatment units include fine screens, three equalization basins, two aeration basins, two final clarifiers, a chlorine contact chamber, a dechlorination chamber, two sludge digesters, five sludge drying beds, and two sludge dewatering boxes. The facility is in operation.

Sludge generated from the treatment facility is hauled by a registered transporter and disposed of at a TCEQ-permitted landfill, Republic Maloy Landfill, Permit No. 1195B, in Hunt County. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

5. INDUSTRIAL WASTE CONTRIBUTION

The draft permit includes pretreatment requirements that are appropriate for a facility of this size and complexity. The facility does not appear to receive significant industrial wastewater contributions. The Commerce WWTF receives process wastewater from one significant industrial user (SIU). The process wastewater flow from the SIU contributes less than 0.1% of the WWTF current maximum hydraulic capacity. The POTW has not experienced any instances of pass through or interference, therefore, at this time, the TCEQ is not requiring the permittee to develop a pretreatment program.

6. SUMMARY OF SELF-REPORTED EFFLUENT ANALYSES

The following is a summary of the applicant's effluent monitoring data for the period July 2023 through July 2025. The average of Daily Average value is computed by the averaging of all 30-day average values for the reporting period for each parameter: flow, five-day carbonaceous biochemical oxygen demand (CBOD $_5$), total suspended solids (TSS), and ammonia nitrogen (NH $_3$ -N). The average of Daily Average value for *Escherichia coli* (*E. coli*) in colony-forming units (CFU) or most probable number (MPN) per 100 ml is calculated via geometric mean.

<u>Average of Daily Avg</u>
1.1
4.0
3.1
0.77
2

7. DRAFT PERMIT CONDITIONS AND MONITORING REQUIREMENTS

The effluent limitations and monitoring requirements for those parameters that are limited in the draft permit are as follows:

A. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

The annual average flow of effluent shall not exceed 2.0 MGD, nor shall the average discharge during any two-hour period (2-hour peak) exceed 2,334 gallons per minute.

<u>Parameter</u>	30-Day Average		<u>7-Day</u>	<u>Daily</u>
			<u>Average</u>	<u>Maximum</u>
	<u>mg/l</u>	<u>lbs/day</u>	<u>mg/l</u>	<u>mg/l</u>
$CBOD_5$	10	167	15	25
TSS	15	250	25	40
NH_3 -N	2	33	5	7
DO (minimum)	6.0	N/A	N/A	N/A
E. coli, CFU or	126	N/A	N/A	399
MPN/100 ml				

The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.

The effluent shall contain a total chlorine residual of at least 1.0 mg/l after a detention time of at least 20 minutes (based on peak flow) and shall be monitored daily by grab sample. The permittee shall dechlorinate the chlorinated effluent to less than 0.1 mg/l total chlorine residual and shall monitor total chlorine residual daily by grab sample after the dechlorination process. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.

<u>Parameter</u>	Monitoring Requirement
Flow, MGD	Continuous
$CBOD_5$	Two/week
TSS	Two/week
NH ₃ -N	Two/week
DO	Two/week
E. coli	One/week

B. SEWAGE SLUDGE REQUIREMENTS

The draft permit includes Sludge Provisions according to the requirements of 30 TAC Chapter 312, Sludge Use, Disposal, and Transportation. Sludge generated from the treatment facility is hauled by a registered transporter and disposed of at a TCEQ-permitted landfill, Republic Maloy Landfill, Permit No. 1195B, in Hunt County. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

C. PRETREATMENT REQUIREMENTS

Permit requirements for pretreatment are based on TPDES regulations contained in 30 TAC Chapter 305, which references 40 Code of Federal Regulations (CFR) Part 403, "General Pretreatment Regulations for Existing and New Sources of Pollution" [rev. Federal Register/ Vol. 70/ No. 198/ Friday, October 14, 2005/ Rules and Regulations, pages 60134-60798]. The permit includes specific requirements that establish responsibilities of local government, industry, and the public to implement the standards to control pollutants which pass through or interfere with treatment processes in publicly owned treatment works or which

may contaminate the sewage sludge. This permit has appropriate pretreatment language for a facility of this size and complexity.

D. WHOLE EFFLUENT TOXICITY (BIOMONITORING) REQUIREMENTS

- (1) The draft permit includes chronic freshwater biomonitoring requirements as follows. The permit requires five dilutions in addition to the control (0% effluent) to be used in the toxicity tests. These additional effluent concentrations shall be 31%, 41%, 55%, 73%, and 97%. The low-flow effluent concentration (critical dilution) is defined as 97% effluent. The critical dilution is in accordance with the "Aquatic Life Criteria" section of the "Water Quality Based Effluent Limitations/Conditions" section.
 - (a) Chronic static renewal survival and reproduction test using the water flea (*Ceriodaphnia dubia*). The frequency of the testing is once per quarter for at least the first year of testing, after which the permittee may apply for a testing frequency reduction.
 - (b) Chronic static renewal 7-day larval survival and growth test using the fathead minnow (*Pimephales promelas*). The frequency of the testing is once per quarter for at least the first year of testing, after which the permittee may apply for a testing frequency reduction.
- (2) The draft permit includes the following minimum 24-hour acute freshwater biomonitoring requirements at a frequency of once per six months:
 - (a) Acute 24-hour static toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*).
 - (b) Acute 24-hour static toxicity test using the fathead minnow (*Pimephales promelas*).

E. SUMMARY OF CHANGES FROM APPLICATION

None.

F. SUMMARY OF CHANGES FROM EXISTING PERMIT

Effluent limitations and monitoring requirements in the draft permit remain the same as the existing permit requirements.

The Standard Permit Conditions, Sludge Provisions, Other Requirements, and Biomonitoring sections of the draft permit have been updated. Pretreatment requirements have been continued in the draft permit.

For Publicly Owned Treatment Works (POTWs), effective December 21, 2025, the permittee must submit the written report for unauthorized discharges and unanticipated bypasses that exceed any effluent limit in the permit using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

Certain accidental discharges or spills of treated or untreated wastewater from wastewater treatment facilities or collection systems owned or operated by a local government may be reported on a monthly basis in accordance with 30 TAC § 305.132.

The draft permit includes all updates based on the 30 TAC § 312 rule change effective April 23, 2020.

8. DRAFT PERMIT RATIONALE

A. TECHNOLOGY-BASED EFFLUENT LIMITATIONS/CONDITIONS

Regulations promulgated in Title 40 of the CFR require that technology-based limitations be placed in wastewater discharge permits based on effluent limitations guidelines, where applicable, or on best professional judgment (BPJ) in the absence of guidelines.

Effluent limitations for maximum and minimum pH are in accordance with 40 CFR § 133.102(c) and 30 TAC § 309.1(b).

B. WATER QUALITY SUMMARY AND COASTAL MANAGEMENT PLAN

(1) WATER QUALITY SUMMARY

The treated effluent is discharged to an unnamed tributary, thence to Upper South Sulphur River in Segment No. 0306 of the Sulphur River Basin. The unclassified receiving water use is minimal aquatic life use for the unnamed tributary. The designated uses for Segment No. 0306 are primary contact recreation and intermediate aquatic life use. The effluent limitations in the draft permit will maintain and protect the existing instream uses. All determinations are preliminary and subject to additional review and/or revisions.

The discharge from this permit action is not expected to have an effect on any federal endangered or threatened aquatic or aquatic-dependent species or proposed species or their critical habitat. This determination is based on the United States Fish and Wildlife Service's (USFWS's) biological opinion on the State of Texas authorization of the TPDES (September 14, 1998; October 21, 1998, update). To make this determination for TPDES permits, TCEQ and EPA only considered aquatic or aquatic-dependent species occurring in watersheds of critical concern or high priority as listed in Appendix A of the USFWS biological opinion. The determination is subject to reevaluation due to subsequent updates or amendments to the biological opinion. The permit does not require EPA review with respect to the presence of endangered or threatened species.

Segment No. 0306 is currently listed on the state's inventory of impaired and threatened waters (the 2024 CWA § 303(d) list). The listing is for elevated levels of bacteria in the portion of the Upper South Sulphur River from a point 1 kilometer (0.7 miles) upstream of State Highway 71

upstream approximately 10 kilometers (6 miles) to Dunbar Creek (Assessment Unit 0306_01). This facility is designed to provide adequate disinfection and, when operated properly, should not add to the bacterial impairment of the segment. In addition, in order to ensure that the proposed discharge meets the stream bacterial standard, an effluent limitation of 126 CFU or MPN of *E. coli* per 100 ml has been continued in the draft permit.

The pollutant analysis of treated effluent provided by the permittee in the application indicated 340 mg/l total dissolved solids (TDS), 63 mg/l sulfate, and 45 mg/l chloride present in the effluent. The segment criteria for Segment No. 0306 are 600 mg/l for TDS, 180 mg/l for sulfate, and 80 mg/l for chlorides. Based on dissolved solids screening, no additional limits or monitoring requirements are needed for total dissolved solids, chloride, or sulfate. See Attachment A of this Fact Sheet.

The effluent limitations and conditions in the draft permit comply with EPA-approved portions of the 2018 Texas Surface Water Quality Standards (TSWQS), 30 TAC §§ 307.1 - 307.10, effective March 1, 2018; 2014 TSWQS, effective March 6, 2014; 2010 TSWQS, effective July 22, 2010; and 2000 TSWQS, effective July 26, 2000.

(2) CONVENTIONAL PARAMETERS

Effluent limitations for the conventional effluent parameters (i.e., Five-Day Biochemical Oxygen Demand or Five-Day Carbonaceous Biochemical Oxygen Demand, Ammonia Nitrogen, etc.) are based on stream standards and waste load allocations for water quality-limited streams as established in the TSWQS and the State of Texas Water Quality Management Plan (WQMP).

The effluent limitations in the draft permit have been reviewed for consistency with the WQMP. The existing effluent limitations are consistent with the approved WQMP.

The effluent limitations in the draft permit meet the requirements for secondary treatment and the requirements for disinfection according to 30 TAC Chapter 309, Subchapter A: Effluent Limitations.

(3) COASTAL MANAGEMENT PLAN

The facility is not located in the Coastal Management Program boundary.

C. WATER QUALITY-BASED EFFLUENT LIMITATIONS/CONDITIONS

(1) GENERAL COMMENTS

The Texas Surface Water Quality Standards (30 TAC Chapter 307) state that surface waters will not be toxic to man, or to terrestrial or aquatic life. The methodology outlined in the "Procedures to Implement the Texas Surface Water Quality Standards" is designed to ensure compliance with

30 TAC Chapter 307. Specifically, the methodology is designed to ensure that no source will be allowed to discharge any wastewater that: (1) results in instream aquatic toxicity; (2) causes a violation of an applicable narrative or numerical state water quality standard; (3) results in the endangerment of a drinking water supply; or (4) results in aquatic bioaccumulation that threatens human health.

(2) AQUATIC LIFE CRITERIA

(a) SCREENING

Water quality-based effluent limitations are calculated from freshwater aquatic life criteria found in Table 1 of the Texas Surface Water Quality Standards (30 TAC Chapter 307).

There is no mixing zone or zone of initial dilution for this discharge directly to an intermittent stream; acute freshwater criteria apply at the end of pipe. Chronic freshwater criteria are applied in the perennial freshwater stream.

For the intermittent stream, the percent effluent for acute protection of aquatic life is 100% because the 7Q2 of the intermittent stream is 0.0 cfs. This effluent percentage also provides acute protection of aquatic life in the perennial stream. TCEQ uses the mass balance equation to estimate dilution in the perennial stream during critical conditions. The estimated dilution for chronic protection of aquatic life is calculated using the permitted flow of 2.0 MGD and the 7-day, 2-year (7Q2) flow of 0.1 cubic feet per second (cfs) for unnamed tributary within three miles of Upper South Sulphur River, the perennial stream. The following critical effluent percentages are being used:

Acute Effluent %: 100% Chronic Effluent %: 96.87%

Waste load allocations (WLAs) are calculated using the above estimated effluent percentages, criteria outlined in the Texas Surface Water Quality Standards, and partitioning coefficients for metals (when appropriate and designated in the implementation procedures). The WLA is the end-ofpipe effluent concentration that can be discharged when, after mixing in the receiving stream, instream numerical criteria will not be exceeded. From the WLA, a long-term average (LTA) is calculated using a log normal probability distribution, a given coefficient of variation (0.6), and a 90th percentile confidence level. The LTA is the long-term average effluent concentration for which the WLA will never be exceeded using a selected percentile confidence level. The lower of the two LTAs (acute and chronic) is used to calculate a daily average and daily maximum effluent limitation for the protection of aquatic life using the same statistical considerations with the 99th percentile confidence level and a standard number of monthly effluent samples collected (12). Assumptions used in deriving the effluent limitations include segment values for hardness, chlorides, pH, and TSS according to the segment-specific values contained in the TCEQ guidance document "Procedures to Implement the Texas Surface Water Quality Standards." The segment values are 59 mg/l for hardness (as calcium carbonate), 28 mg/l chlorides, 7.5 standard units for pH, and 19 mg/l for TSS. For additional details on the calculation of water quality-based effluent limitations, refer to the TCEQ guidance document.

TCEQ practice for determining significant potential is to compare the reported analytical data against percentages of the calculated daily average water quality-based effluent limitation. Permit limitations are required when analytical data reported in the application exceeds 85% of the calculated daily average water quality-based effluent limitation. Monitoring and reporting is required when analytical data reported in the application exceeds 70% of the calculated daily average water quality-based effluent limitation. See Attachment B of this Fact Sheet.

(b) PERMIT ACTION

Analytical data reported in the application was screened against calculated water quality-based effluent limitations for the protection of aquatic life. Reported analytical data does not exceed 70% of the calculated daily average water quality-based effluent limitations for aquatic life protection.

(3) AQUATIC ORGANISM BIOACCUMULATION CRITERIA

(a) SCREENING

Water quality-based effluent limitations for the protection of human health are calculated using criteria for the consumption of freshwater fish tissue found in Table 2 of the Texas Surface Water Quality Standards (30 TAC Chapter 307). Freshwater fish tissue bioaccumulation criteria are applied for human health protection in the perennial stream. TCEQ uses the mass balance equation to estimate dilution in the perennial stream during average flow conditions. The estimated dilution for human health protection is calculated using the permitted flow of 2.0 MGD and the harmonic mean flow of 0.2 cfs for unnamed tributary within three miles of Upper South Sulphur River. The following critical effluent percentage is being used:

Human Health Effluent %: 93.93%

Water quality-based effluent limitations for human health protection against the consumption of fish tissue are calculated using the same procedure as outlined for calculation of water quality-based effluent limitations for aquatic life protection. A 99th percentile confidence level in the long-term average calculation is used with only one long-term average value being calculated.

Significant potential is again determined by comparing reported analytical data against 70% and 85% of the calculated daily average water quality-based effluent limitation. See Attachment B of this Fact Sheet.

(b) PERMIT ACTION

Reported analytical data does not exceed 70% of the calculated daily average water quality-based effluent limitation for human health protection.

(4) DRINKING WATER SUPPLY PROTECTION

(a) SCREENING

Water Quality Segment No. 0306, which receives the discharge from this facility, is not designated as a public water supply. Screening reported analytical data of the effluent against water quality-based effluent limitations calculated for the protection of a drinking water supply is not applicable.

(b) PERMIT ACTION

None.

(5) WHOLE EFFLUENT TOXICITY (BIOMONITORING) CRITERIA

(a) SCREENING

TCEQ has determined that there may be pollutants present in the effluent that may have the potential to cause toxic conditions in the receiving stream. Whole effluent biomonitoring is the most direct measure of potential toxicity that incorporates the effects of synergism of effluent components and receiving stream water quality characteristics. Biomonitoring of the effluent is, therefore, required as a condition of this permit to assess potential toxicity.

The existing permit includes chronic freshwater biomonitoring requirements. A summary of the biomonitoring testing for the facility indicates that in the past three years, the permittee has performed twenty-two chronic tests, with zero demonstrations of significant toxicity (i.e., zero failures).

A reasonable potential (RP) determination was performed in accordance with 40 CFR §122.44(d)(1)(ii) to determine whether the discharge will reasonably be expected to cause or contribute to an exceedance of a state water quality standard or criterion within that standard. Each test species is evaluated separately. The RP determination is based on representative data from the previous three years of chronic WET testing. This determination was performed in accordance with the methodology outlined in the TCEQ letter to the EPA dated December 28, 2015, and approved by the EPA in a letter dated December 28, 2015.

With zero failures, a determination of no RP was made. WET limits are not required, and both test species may be eligible for the testing frequency reduction after one year of quarterly testing.

(b) PERMIT ACTION

The test species are appropriate to measure the toxicity of the effluent consistent with the requirements of the State water quality standards. The biomonitoring frequency has been established to reflect the likelihood of ambient toxicity and to provide data representative of the toxic potential of the facility's discharge. This permit may be reopened to require effluent limits, additional testing, and/or other appropriate actions to address toxicity if biomonitoring data show actual or potential ambient toxicity to be the result of the permittee's discharge to the receiving stream or water body.

(6) WHOLE EFFLUENT TOXICITY CRITERIA (24-HOUR ACUTE)

(a) SCREENING

The existing permit includes 24-hour acute freshwater biomonitoring language. A summary of the biomonitoring testing for the facility indicates that in the past three years, the permittee has performed eight 24-hour acute tests, with zero demonstrations of significant mortality (i.e., zero failures).

(b) PERMIT ACTION

The draft permit includes 24-hour 100% acute biomonitoring tests for the life of the permit.

9. WATER QUALITY VARIANCE REQUESTS

No variance requests have been received.

10. PROCEDURES FOR FINAL DECISION

When an application is declared administratively complete, the Chief Clerk sends a letter to the applicant advising the applicant to publish the Notice of Receipt of Application and Intent to Obtain Permit in the newspaper. In addition, the Chief Clerk instructs the applicant to place a copy of the application in a public place for review and copying in the county where the facility is or will be located. This application will be in a public place throughout the comment period. The Chief Clerk also mails this notice to any interested persons and, if required, to landowners identified in the permit application. This notice informs the public about the application and provides that an interested person may file comments on the application or request a contested case hearing or a public meeting.

Once a draft permit is completed, it is sent, along with the Executive Director's preliminary decision, as contained in the technical summary or fact sheet, to the Chief Clerk. At that time, the Notice of Application and Preliminary Decision will be mailed to the same people and published in the same newspaper as the prior notice. This notice sets a deadline for making public comments. The applicant must place a copy of the Executive Director's preliminary decision and draft permit in the public place with the application.

Any interested person may request a public meeting on the application until the deadline for filing public comments. A public meeting is intended for the taking of public comment and is not a contested case proceeding.

After the public comment deadline, the Executive Director prepares a response to all significant public comments on the application or the draft permit raised during the public comment period. The Chief Clerk then mails the Executive Director's response to comments and final decision to people who have filed comments, requested a contested case hearing, or requested to be on the mailing list. This notice provides that if a person is not satisfied with the Executive Director's response and decision, they can request a contested case hearing or file a request to reconsider the Executive Director's decision within 30 days after the notice is mailed.

The Executive Director will issue the permit unless a written hearing request or request for reconsideration is filed within 30 days after the Executive Director's response to comments and final decision is mailed. If a hearing request or request for reconsideration is filed, the Executive Director will not issue the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting. If a contested case hearing is held, it will be a legal proceeding similar to a civil trial in state district court.

If the Executive Director calls a public meeting or the Commission grants a contested case hearing as described above, the Commission will give notice of the date, time, and place of the meeting or hearing. If a hearing request or request for reconsideration is made, the Commission will consider all public comments in making its decision and shall either adopt the Executive Director's response to public comments or prepare its own response.

For additional information about this application, contact John Hearn at (512) 239-5239.

11. ADMINISTRATIVE RECORD

The following items were considered in developing the draft permit:

A. PERMIT(S)

TPDES Permit No. WQ0010555001 issued on June 14, 2021.

B. APPLICATION

Application received on August 6, 2025, and additional information received on November 10, 2025.

C. MEMORANDA

Interoffice Memoranda from the Water Quality Assessment Section of the TCEQ Water Quality Division. Interoffice Memorandum from the Pretreatment Team of the TCEQ Water Quality Division.

D. MISCELLANEOUS

Federal Clean Water Act § 402; Texas Water Code § 26.027; 30 TAC Chapters 30, 305, 309, 312, and 319; Commission policies; and U.S. Environmental Protection Agency guidelines.

Texas Surface Water Quality Standards, 30 TAC §§ 307.1 - 307.10.

Procedures to Implement the Texas Surface Water Quality Standards (IP), Texas Commission on Environmental Quality, June 2010, as approved by the U.S. Environmental Protection Agency, and the IP, January 2003, for portions of the 2010 IP not approved by the U.S. Environmental Protection Agency.

Texas 2024 Clean Water Act Section 303(d) List, Texas Commission on Environmental Quality, June 26, 2024; approved by the U.S. Environmental Protection Agency on November 13, 2024.

Texas Natural Resource Conservation Commission, Guidance Document for Establishing Monitoring Frequencies for Domestic and Industrial Wastewater Discharge Permits, Document No. 98-001.000-OWR-WQ, May 1998.

Attachment A: Screening Calculations for Total Dissolved Solids, Chloride, and Sulfate

Screening Calculations for Total Dissolved Solids, Chloride, and Sulfate Menu 2 - Discharge to an Intermittent Stream within 3 Miles of a Perennial Stream

Screen the Perennial Stream

Applicant Name:

Permit Number, Outfall:

Segment Number:

City of Commerce

10555001, Outfall 001

0306

			D : 6 / 10:55 155
Enter values needed for screening:			Data Source (edit if different)
QE - Average effluent flow	2	MGD	
QS - Perennial stream harmonic mean flow	0.20	cfs	Critical conditions memo
	3.094		
QE - Average effluent flow	5	cfs	Calculated
CA - TDS - ambient segment concentration		mg/L	2022 IP, Appendix D
CA - chloride - ambient segment			
concentration		mg/L	2022 IP, Appendix D
CA - sulfate - ambient segment concentration		mg/L	2022 IP, Appendix D
		•	
			2022 TSWQS, Appendix
CC - TDS - segment criterion	600	mg/L	A
			2022 TSWQS, Appendix
CC - chloride - segment criterion	80	mg/L	A
			2022 TSWQS, Appendix
CC - sulfate - segment criterion	180	mg/L	Α
CE - TDS - average effluent concentration	340	mg/L	Permit application
CE - chloride - average effluent concentration	45	mg/L	Permit application
CE - sulfate - average effluent concentration	63	mg/L	Permit application

TDS

Calculate the WLA	WLA = [CC(QE+QS) - (QS)(CA)]/QE	638.78	
Calculate the LTA	LTA = WLA * 0.93	594.06	
Calculate the daily average	Daily Avg. = LTA * 1.47	873.27	
Calculate the daily maximum	Daily Max. = LTA * 3.11	1847.54	
	70% of Daily Avg.		
Calculate 70% of the daily average	=	611.29	

Calculate 85% of the daily average	85% of Daily Avg. =			742.28	
No permit limitations needed if:	340	≤	611.29		742.2
Reporting needed if:	340	>	611.29	but ≤	8
Permit limits may be needed if:	340	>	742.28		

No permit limitations needed for TDS

Chloride

Chioride					
Calculate the WLA	WLA= [0	85.17			
Calculate the LTA	LTA = W	'LA * 0.93		79.21	
Calculate the daily average	Daily Av	g. = LTA * 1	L.47	116.44	
Calculate the daily maximum	Daily M	ax. = LTA *	3.11	246.34	
	70% of I	Daily Avg.			
Calculate 70% of the daily average	=			81.51	
85% of Daily Avg.					
Calculate 85% of the daily average	=			98.97	
No permit limitations needed if:	45	≤	81.51		
Reporting needed if:	45	>	81.51	but ≤	98.97
Permit limits may be needed if:	45	>	98.97		
· · · · · · · · · · · · · · · · · · ·			·	·	· · · · · · · · · · · · · · · · · · ·

No permit limitations needed for chloride

Sulfate

222.6
9

No permit limitations needed for sulfate

Attachment B: Calculated Water Quality Based Effluent Limitations

TEXTOX MENU #2 - INTERMITTENT STREAM WITHIN 3 MILES OF A FRESHWATER PERENNIAL STREAM/RIVER

The water quality-based effluent limitations developed below are calculated using:

Table 1, 2014 Texas Surface Water Quality Standards (30 TAC 307) for Freshwater Aquatic Life

Table 2, 2018 Texas Surface Water Quality Standards for Human Health

"Procedures to Implement the Texas Surface Water Quality Standards," TCEQ, June 2010

PERMIT INFORMATION

 Permittee Name:
 City of Commerce

 TPDES Permit No.:
 WQ0010555001

 Outfall No.:
 001

 Prepared by:
 John Hearn

 Date:
 11/12/2025

DISCHARGE INFORMATION

DISCHARGE INFORMATION			
Intermittent Receiving Waterbody:	An unnamed tributary		
Perennial Stream/River within 3 Miles:	Upper South Sulphur River		
Segment No.:	0306		
TSS (mg/L):	19		
pH (Standard Units):	7.5		
Hardness (mg/L as CaCO₃):	59		
Chloride (mg/L):	28		
Effluent Flow for Aquatic Life (MGD):	2		
Critical Low Flow [7Q2] (cfs) for intermittent:	0		
Critical Low Flow [7Q2] (cfs) for perennial:	0.1		
% Effluent for Chronic Aquatic Life (Mixing			
Zone):	96.87		
% Effluent for Acute Aquatic Life (ZID):	100		
Effluent Flow for Human Health (MGD):	2		
Harmonic Mean Flow (cfs) for perennial:	0.2		
% Effluent for Human Health:	93.929_		
Human Health Criterion (select: PWS, FISH,			
or INC)	FISH		

CALCULATE DISSOLVED FRACTION (AND ENTER WATER EFFECT RATIO IF APPLICABLE):

			Partitio n	Dissolve d		Water Effect	
Stream/River Metal	Intercep t (b)	Slope (m)	Coefficie nt (Kp)	Fraction (Cd/Ct)	Source	Ratio (WER)	Source
					Assume		Assume
Aluminum	N/A	N/A	N/A	1.00	d	1.00	d
			55784.0				Assume
Arsenic	5.68	-0.73	3	0.485		1.00	d
			142892.				Assume
Cadmium	6.60	-1.13	17	0.269		1.00	d
			214170.				Assume
Chromium (total)	6.52	-0.93	25	0.197		1.00	d
			214170.				Assume
Chromium (trivalent)	6.52	-0.93	25	0.197		1.00	d
					Assume		Assume
Chromium (hexavalent)	N/A	N/A	N/A	1.00	d	1.00	d
·			118501.				Assume
Copper	6.02	-0.74	09	0.308		1.00	d

			267298.				Assume
Lead	6.45	-0.80	87	0.165		1.00	d
					Assume		Assume
Mercury	N/A	N/A	N/A	1.00	d	1.00	d
			91434.5				Assume
Nickel	5.69	-0.57	7	0.365		1.00	d
					Assume		Assume
Selenium	N/A	N/A	N/A	1.00	d	1.00	d
			115580.				Assume
Silver	6.38	-1.03	29	0.313		1.00	d
			160277.				Assume
Zinc	6.10	-0.70	47	0.247		1.00	d

AQUATIC LIFE

CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

		FW						
	FW	Chronic						
	Acute	Criterio					Daily	Daily
Darameter	Criterio	n (ua/1)	WLAa (ua/L)	WLAc	LTAa (u.a.(L)	LTAc	Avg.	Max.
Parameter	n (μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Aldrin	3.0	N/A	3.00	N/A	1.72	N/A	2.52	5.34
Aluminum	991	N/A	991	N/A	568	N/A	834	1765
Arsenic	340	150	700	319	401	246	361	763
Cadmium	5.1	0.170	19.1	0.654	10.9	0.503	0.739	1.56
Carbaryl	2.0	N/A	2.00	N/A	1.15	N/A	1.68	3.56
Chlordane	2.4	0.004	2.40	0.00413	1.38	0.00318	0.00467	0.0098 8
Chlorpyrifos	0.083	0.041	0.0830	0.0423	0.0476	0.0326	0.0479	0.101
Chromium (trivalent)	370	48	1875	252	1074	194	284	602
Chromium (hexavalent)	15.7	10.6	15.7	10.9	9.00	8.43	12.3	26.2
Copper	8.6	6.0	28.1	20.2	16.1	15.6	22.9	48.4
Cyanide (free)	45.8	10.7	45.8	11.0	26.2	8.51	12.5	26.4
, , ,						0.00079		0.0024
4,4'-DDT	1.1	0.001	1.10	0.00103	0.630	5	0.00116	7
Demeton	N/A	0.1	N/A	0.103	N/A	0.0795	0.116	0.247
Diazinon	0.17	0.17	0.170	0.175	0.0974	0.135	0.143	0.302
Dicofol [Kelthane]	59.3	19.8	59.3	20.4	34.0	15.7	23.1	48.9
								0.0049
Dieldrin	0.24	0.002	0.240	0.00206	0.138	0.00159	0.00233	4
Diuron	210	70	210	72.3	120	55.6	81.7	173
Endosulfan I (alpha)	0.22	0.056	0.220	0.0578	0.126	0.0445	0.0654	0.138
Endosulfan II (<i>beta</i>)	0.22	0.056	0.220	0.0578	0.126	0.0445	0.0654	0.138
Endosulfan sulfate	0.22	0.056	0.220	0.0578	0.126	0.0445	0.0654	0.138
Fadria	0.086	0.002	0.0860	0.00206	0.0493	0.00150	0.00233	0.0049
Endrin Guthion [Azinphos Methyl]	0.086 N/A	0.002	0.0860 N/A	0.00208	0.0493 N/A	0.00159 0.00795	0.00233	0.0247
Gutilion [Aziriphios Metriyi]	IN/A	0.01	IN/A	0.0103	IN/A	0.00793	0.0116	0.0247
Heptachlor	0.52	0.004	0.520	0.00413	0.298	0.00318	0.00467	8
Hexachlorocyclohexane (gamma) [Lindane]	1.126	0.08	1.13	0.0826	0.645	0.0636	0.0934	0.197
Lead	36	1.41	220	8.85	126	6.82	10.0	21.1
Malathion	N/A	0.01	N/A	0.0103	N/A	0.00795	0.0116	0.0247
Mercury	2.4	1.3	2.40	1.34	1.38	1.03	1.51	3.21
Methoxychlor	N/A	0.03	N/A	0.0310	N/A	0.0238	0.0350	0.0741
	,		,		,	0.00079		0.0024
Mirex	N/A	0.001	N/A	0.00103	N/A	5	0.00116	7
Nickel	300	33.3	820	94.0	470	72.4	106	225
Nonylphenol	28	6.6	28.0	6.81	16.0	5.25	7.71	16.3
Parathion (ethyl)	0.065	0.013	0.0650	0.0134	0.0372	0.0103	0.0151	0.0321
Pentachlorophenol	14.4	11.1	14.4	11.4	8.26	8.79	12.1	25.6

Phenanthrene	30	30	30.0	31.0	17.2	23.8	25.2	53.4
Polychlorinated Biphenyls [PCBs]	2.0	0.014	2.00	0.0145	1.15	0.0111	0.0163	0.0346
Selenium	20	5	20.0	5.16	11.5	3.97	5.84	12.3
Silver	0.8	N/A	6.92	N/A	3.97	N/A	5.82	12.3
				0.00020		0.00015	0.00023	0.0004
Toxaphene	0.78	0.0002	0.780	6	0.447	9	3	94
Tributyltin [TBT]	0.13	0.024	0.130	0.0248	0.0745	0.0191	0.0280	0.0593
2,4,5 Trichlorophenol	136	64	136	66.1	77.9	50.9	74.7	158
Zinc	75	76	303	315	174	243	255	540

HUMAN HEALTH

CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

	14/6-4	Fish	lm of d = 4				
	Water and Fish	Only Criterio	Incident al Fish			Daily	Daily
	Criterio	n	Criterion	WLAh	LTAh	Avg.	Max.
Parameter	n (μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Acrylonitrile	1.0	115	1150	122	114	167	354
	1.146E-	1.147E-	1.147E-	0.00001	0.00001	0.00001	0.00003
Aldrin	05	05	04	22	14	66	53
Anthracene	1109	1317	13170	1402	1304	1916	4055
Antimony	6	1071	10710	1140	1060	1558	3297
Arsenic	10	N/A	N/A	N/A	N/A	N/A	N/A
Barium	2000	N/A	N/A	N/A	N/A	N/A	N/A
Benzene	5	581	5810	619	575	845	1789
Benzidine	0.0015	0.107	1.07	0.114	0.106	0.155	0.329
Benzo(a)anthracene	0.024	0.025	0.25	0.0266	0.0248	0.0363	0.0769
Benzo(a)pyrene	0.0025	0.0025	0.025	0.00266	0.00248	0.00363	0.00769
Bis(chloromethyl)ether	0.0024	0.2745	2.745	0.292	0.272	0.399	0.845
Bis(2-chloroethyl)ether	0.60	42.83	428.3	45.6	42.4	62.3	131
Bis(2-ethylhexyl) phthalate [Di(2-ethylhexyl)							
phthalate]	6	7.55	75.5	8.04	7.48	10.9	23.2
Bromodichloromethane	10.2	275	2750	202	272	400	0.47
[Dichlorobromomethane]	10.2	275	2750	293	272		3365
Bromoform [Tribromomethane]	66.9	1060	10600	1129	1050	1542	3263
Cadmium Carlo an Tatrach la rida	5	N/A	N/A	N/A	N/A	N/A	N/A
Carbon Tetrachloride	4.5	46	460	49.0	45.5	66.9	141
Chlordane	0.0025	0.0025	0.025	0.00266	0.00248	0.00363	0.00769
Chlorobenzene Chlorodibromomethane	100	2737	27370	2914	2710	3983	8427
[Dibromochloromethane]	7.5	183	1830	195	181	266	563
Chloroform [Trichloromethane]	70	7697	76970	8194	7621	11202	23700
Chromium (hexavalent)	62	502	5020	534	497	730	1545
Chrysene	2.45	2.52	25.2	2.68	2.50	3.66	7.75
Cresols [Methylphenols]	1041	9301	93010	9902	9209	13537	28639
Cyanide (free)	200	N/A	N/A	N/A	N/A	N/A	N/A
4,4'-DDD	0.002	0.002	0.02	0.00213	0.00198	0.00291	0.00615
,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.002	0.002	0.02	0.00013	0.00012	0.00018	0.00040
4,4'-DDE	0.00013	0.00013	0.0013	8	9	9	(
				0.00042	0.00039	0.00058	
4,4'-DDT	0.0004	0.0004	0.004	6	6	2	0.00123
2,4'-D	70	N/A	N/A	N/A	N/A	N/A	N/A
Danitol [Fenpropathrin]	262	473	4730	504	468	688	1456
1,2-Dibromoethane [Ethylene Dibromide]	0.17	4.24	42.4	4.51	4.20	6.17	13.0
<i>m</i> -Dichlorobenzene [1,3-Dichlorobenzene]	322	595	5950	633	589	865	1832
o-Dichlorobenzene [1,2-Dichlorobenzene]	600	3299	32990	3512	3266	4801	1015
<i>p</i> -Dichlorobenzene [1,4-Dichlorobenzene]	75	N/A	N/A	N/A	N/A	N/A	N/A

3,3'-Dichlorobenzidine	0.79	2.24	22.4	2.38	2.22	3.26	6.89
1,2-Dichloroethane	5	364	3640	388	360	529	1120
1,1-Dichloroethylene [1,1-Dichloroethene]	7	55114	551140	58676	54569	80216	169708
Dichloromethane [Methylene Chloride]	5	13333	133330	14195	13201	19405	41055
1,2-Dichloropropane	5	259	2590	276	256	376	797
1,3-Dichloropropene [1,3-							
Dichloropropylene]	2.8	119	1190	127	118	173	366
Dicofol [Kelthane]	0.30	0.30	3	0.319	0.297	0.436	0.923
				0.00002	0.00001	0.00002	0.00006
Dieldrin	2.0E-05	2.0E-05	2.0E-04	13	98	91	15
2,4-Dimethylphenol	444	8436	84360	8981	8353	12278	25976
Di- <i>n</i> -Butyl Phthalate	7.80E-	92.4 7.97E-	924	98.4 8.49E-	91.5 7.89E-	134 1.16E-	284 2.45E-
Dioxins/Furans [TCDD Equivalents]	7.80E- 08	7.97E- 08	7.97E-07	8.49E- 08	7.89E- 08	07	2.43E- 07
Endrin	0.02	0.02	0.2	0.0213	0.0198	0.0291	0.0615
Epichlorohydrin	53.5	2013	20130	2143	1993	2929	6198
Ethylbenzene	700	1867	18670	1988	1849	2717	5748
Ethylbenzene	700	1.68E+0	1.68E+0	178858	166338	244517	517311
Ethylene Glycol	46744	7	8	18	10	01	50
Fluoride	4000	N/A	N/A	N/A	N/A	N/A	N/A
				0.00010	0.00009	0.00014	0.00030
Heptachlor	8.0E-05	0.0001	0.001	6	90	5	7
	0.00000		0.0000	0.00030	0.00028	0.00042	0.00089
Heptachlor Epoxide	0.00029	0.00029	0.0029	9	7	0.00008	2
Hexachlorobenzene	0.00068	0.00068	0.0068	0.00072 4	0.00067 3	0.00098 9	0.00209
Hexachlorobutadiene	0.21	0.22	2.2	0.234	0.218	0.320	0.677
Hexachlorocyclohexane (alpha)	0.0078	0.0084	0.084	0.00894	0.00832	0.0122	0.0258
Hexachlorocyclohexane (beta)	0.0078	0.0034	2.6	0.277	0.00832	0.378	0.800
Hexachlorocyclohexane (gamma) [Lindane]	0.13	0.341	3.41	0.363	0.237	0.496	1.05
Hexachlorocyclopentadiene Hexachlorocyclopentadiene	10.7	11.6	116	12.3	11.5	16.8	35.7
Hexachloroethane	1.84	2.33	23.3	2.48	2.31	3.39	7.17
Hexachlorophene	2.05	2.90	29	3.09	2.87	4.22	8.92
4,4'-lsopropylidenediphenol [Bisphenol A]	1092	15982	159820	17015	15824	23261	49212
Lead	1.15	3.83	38.3	24.8	23.1	33.8	71.6
Mercury	0.0122	0.0122	0.122	0.0130	0.0121	0.0177	0.0375
Methoxychlor	2.92	3.0	30	3.19	2.97	4.36	9.23
Wethoxychio	2.32	9.92E+0	9.92E+0	105611	2.37	144381	305460
Methyl Ethyl Ketone	13865	5	6	5	982187	4	1
Methyl tert-butyl ether [MTBE]	15	10482	104820	11159	10378	15256	32276
Nickel	332	1140	11400	3322	3090	4541	9608
Nitrate-Nitrogen (as Total Nitrogen)	10000	N/A	N/A	N/A	N/A	N/A	N/A
Nitrobenzene	45.7	1873	18730	1994	1854	2726	5767
N-Nitrosodiethylamine	0.0037	2.1	21	2.24	2.08	3.05	6.46
N-Nitroso-di- <i>n</i> -Butylamine	0.119	4.2	42	4.47	4.16	6.11	12.9
Pentachlorobenzene	0.348	0.355	3.55	0.378	0.351	0.516	1.09
Pentachlorophenol	0.22	0.29	2.9	0.309	0.287	0.422	0.892
	-			0.00068	0.00063	0.00093	
Polychlorinated Biphenyls [PCBs]	6.4E-04	6.4E-04	6.40E-03	1	4	1	0.00197
Pyridine	23	947	9470	1008	938	1378	2916
Selenium	50	N/A	N/A	N/A	N/A	N/A	N/A
1,2,4,5-Tetrachlorobenzene	0.23	0.24	2.4	0.256	0.238	0.349	0.739
1,1,2,2-Tetrachloroethane	1.64	26.35	263.5	28.1	26.1	38.3	81.1
Tetrachloroethylene [Tetrachloroethylene]	5	280	2800	298	277	407	862
Thallium	0.12	0.23	2.3	0.245	0.228	0.334	0.708
Toluene	1000	N/A	N/A	N/A	N/A	N/A	N/A
Toxaphene	0.011	0.011	0.11	0.0117	0.0109	0.0160	0.0338

2,4,5-TP [Silvex]	50	369	3690	393	365	537	1136
						114159	241521
1,1,1-Trichloroethane	200	784354	7843540	835048	776595	4	0
1,1,2-Trichloroethane	5	166	1660	177	164	241	511
Trichloroethylene [Trichloroethene]	5	71.9	719	76.5	71.2	104	221
2,4,5-Trichlorophenol	1039	1867	18670	1988	1849	2717	5748
TTHM [Sum of Total Trihalomethanes]	80	N/A	N/A	N/A	N/A	N/A	N/A
Vinyl Chloride	0.23	16.5	165	17.6	16.3	24.0	50.8

CALCULATE 70% AND 85% OF DAILY AVERAGE EFFLUENT LIMITATIONS:

Annakia lifa	70% of Daily	85% of Daily
Aquatic Life	Avg.	Avg.
Parameter	(μg/L)	(μg/L)
Aluminum	1.76	2.14
Aluminum	584	709
Arsenic	252	306
Cadmium	0.517	0.628
Chlanter	1.17	1.43
Chlordane	0.00327	0.00397
Chlorpyrifos	0.0335	0.0407
Chromium (trivalent)	199	242
Chromium (hexavalent)	8.67	10.5
Copper	16.0	19.4
Cyanide (free)	8.75	10.6
4,4'-DDT	0.00081 7	0.00099
Demeton	0.0817	0.0993
Diazinon	0.100	0.121
Dicofol [Kelthane]	16.1	19.6
Dieldrin	0.00163	0.00198
Diuron	57.2	69.5
Endosulfan I (alpha)	0.0458	0.0556
Endosulfan II (<i>beta</i>)	0.0458	0.0556
Endosulfan sulfate	0.0458	0.0556
Endrin	0.00163	0.00198
Guthion [Azinphos Methyl]	0.00103	0.00138
Heptachlor	0.00317	0.00333
Hexachlorocyclohexane (gamma) [Lindane]	0.0654	0.00337
Lead	7.01	8.51
Malathion	0.00817	0.00993
Mercury	1.06	1.29
Methoxychlor	0.0245	0.0297
Wethoxyemor	0.00081	0.00099
Mirex	7	3
Nickel	74.5	90.4
Nonylphenol	5.39	6.55
Parathion (ethyl)	0.0106	0.0129
Pentachlorophenol	8.50	10.3
Phenanthrene	17.6	21.4
Polychlorinated Biphenyls [PCBs]	0.0114	0.0139
Selenium	4.08	4.96
Silver	4.08	4.95

Toxaphene	0.00016	0.00019 8
Tributyltin [TBT]	0.0196	0.0238
2,4,5 Trichlorophenol	52.3	63.5
Zinc	178	217

Zinc	178	217
Human Health	70% of Daily Avg.	85% of Daily Avg.
Parameter	(μg/L)	(μg/L)
Acrylonitrile	117	142
	0.00001	0.00001
Aldrin	16	41
Anthracene	1341	1629
Antimony	1091	1324
Arsenic	N/A	N/A
Barium	N/A	N/A
Benzene	591	718
Benzidine	0.109	0.132
Benzo(a)anthracene	0.0254	0.0309
Benzo(a)pyrene	0.00254	0.00309
Bis(chloromethyl)ether	0.279	0.339
Bis(2-chloroethyl)ether	43.6	52.9
Bis(2-ethylhexyl) phthalate [Di(2-ethylhexyl)		
phthalate]	7.69	9.34
Bromodichloromethane	200	240
[Dichlorobromomethane]	280 1079	340 1311
Bromoform [Tribromomethane]		
Cadmium Cash an Tatrach lavid a	N/A	N/A
Carbon Tetrachloride	46.8	56.9
Chlordane	0.00254	0.00309
Chlorobenzene Chlorodibromomethane	2788	3386
[Dibromochloromethane]	186	226
Chloroform [Trichloromethane]	7841	9522
Chromium (hexavalent)	511	621
Chrysene	2.56	3.11
Cresols [Methylphenols]	9476	11506
Cyanide (free)	N/A	N/A
4,4'-DDD	0.00203	0.00247
7,7 000	0.00203	0.00016
4,4'-DDE	2	0
	0.00040	0.00049
4,4'-DDT	7	4
2,4'-D	N/A	N/A
Danitol [Fenpropathrin]	481	585
1,2-Dibromoethane [Ethylene Dibromide]	4.31	5.24
<i>m</i> -Dichlorobenzene [1,3-Dichlorobenzene]	606	736
o-Dichlorobenzene [1,2-Dichlorobenzene]	3361	4081
<i>p</i> -Dichlorobenzene [1,4-Dichlorobenzene]	N/A	N/A
3,3'-Dichlorobenzidine	2.28	2.77
1,2-Dichloroethane	370	450
1,1-Dichloroethylene [1,1-Dichloroethene]	56151	68183
Dichloromethane [Methylene Chloride]	13583	16494
1,2-Dichloropropane	263	320
1,3-Dichloropropene [1,3-		
Dichloropropylene]	121	147

Dicofol [Kelthane]	0.305	0.371
Discret [Retainer]	0.00002	0.00002
Dieldrin	03	47
2,4-Dimethylphenol	8594	10436
Di-n-Butyl Phthalate	94.1	114
	8.12E-	9.86E-
Dioxins/Furans [TCDD Equivalents]	08	08
Endrin	0.0203	0.0247
Epichlorohydrin	2050	2490
Ethylbenzene	1902	2309
Ethylene Glycol	171161 90	207839 46
Fluoride		
Fluoride	0.00010	N/A 0.00012
Heptachlor	1	3
	0.00029	0.00035
Heptachlor Epoxide	5	8
	0.00069	0.00084
Hexachlorobenzene	2	1
Hexachlorobutadiene	0.224	0.272
Hexachlorocyclohexane (alpha)	0.00855	0.0103
Hexachlorocyclohexane (beta)	0.264	0.321
Hexachlorocyclohexane (gamma) [Lindane]	0.347	0.421
Hexachlorocyclopentadiene	11.8	14.3
Hexachloroethane	2.37	2.88
Hexachlorophene	2.95	3.58
4,4'-Isopropylidenediphenol [Bisphenol A]	16282	19771
Lead	23.7	28.8
Mercury	0.0124	0.0150
Methoxychlor	3.05	3.71
	101067	122724
Methyl Ethyl Ketone	0	2
Methyl tert-butyl ether [MTBE]	10679	12967
Methyl <i>tert</i> -butyl ether [MTBE] Nickel	10679 3179	12967 3860
Methyl <i>tert</i> -butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen)	10679	12967
Methyl <i>tert</i> -butyl ether [MTBE] Nickel	10679 3179	12967 3860
Methyl <i>tert</i> -butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen)	10679 3179 N/A	12967 3860 N/A 2317 2.59
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene	10679 3179 N/A 1908	12967 3860 N/A 2317
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine	10679 3179 N/A 1908 2.13	12967 3860 N/A 2317 2.59
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine	10679 3179 N/A 1908 2.13 4.27 0.361 0.295	12967 3860 N/A 2317 2.59 5.19 0.439 0.358
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol	10679 3179 N/A 1908 2.13 4.27 0.361 0.295 0.00065	12967 3860 N/A 2317 2.59 5.19 0.439 0.358 0.00079
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs]	10679 3179 N/A 1908 2.13 4.27 0.361 0.295 0.00065 2	12967 3860 N/A 2317 2.59 5.19 0.439 0.358 0.00079
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine	10679 3179 N/A 1908 2.13 4.27 0.361 0.295 0.00065 2	12967 3860 N/A 2317 2.59 5.19 0.439 0.358 0.00079 1
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium	10679 3179 N/A 1908 2.13 4.27 0.361 0.295 0.00065 2 964 N/A	12967 3860 N/A 2317 2.59 5.19 0.439 0.358 0.00079 1 1171 N/A
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene	10679 3179 N/A 1908 2.13 4.27 0.361 0.295 0.00065 2 964 N/A 0.244	12967 3860 N/A 2317 2.59 5.19 0.439 0.358 0.00079 1 1171 N/A 0.296
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane	10679 3179 N/A 1908 2.13 4.27 0.361 0.295 0.00065 2 964 N/A 0.244 26.8	12967 3860 N/A 2317 2.59 5.19 0.439 0.358 0.00079 1 1171 N/A 0.296 32.5
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene]	10679 3179 N/A 1908 2.13 4.27 0.361 0.295 0.00065 2 964 N/A 0.244 26.8 285	12967 3860 N/A 2317 2.59 5.19 0.439 0.358 0.00079 1 1171 N/A 0.296 32.5 346
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene] Thallium	10679 3179 N/A 1908 2.13 4.27 0.361 0.295 0.00065 2 964 N/A 0.244 26.8 285 0.234	12967 3860 N/A 2317 2.59 5.19 0.439 0.358 0.00079 1 1171 N/A 0.296 32.5 346 0.284
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene] Thallium Toluene	10679 3179 N/A 1908 2.13 4.27 0.361 0.295 0.00065 2 964 N/A 0.244 26.8 285	12967 3860 N/A 2317 2.59 5.19 0.439 0.358 0.00079 1 1171 N/A 0.296 32.5 346 0.284 N/A
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene] Thallium Toluene Toxaphene	10679 3179 N/A 1908 2.13 4.27 0.361 0.295 0.00065 2 964 N/A 0.244 26.8 285 0.234	12967 3860 N/A 2317 2.59 5.19 0.439 0.358 0.00079 1 1171 N/A 0.296 32.5 346 0.284
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene] Thallium Toluene	10679 3179 N/A 1908 2.13 4.27 0.361 0.295 0.00065 2 964 N/A 0.244 26.8 285 0.234 N/A	12967 3860 N/A 2317 2.59 5.19 0.439 0.358 0.00079 1 1171 N/A 0.296 32.5 346 0.284 N/A
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene] Thallium Toluene Toxaphene 2,4,5-TP [Silvex] 1,1,1-Trichloroethane	10679 3179 N/A 1908 2.13 4.27 0.361 0.295 0.00065 2 964 N/A 0.244 26.8 285 0.234 N/A 0.0112	12967 3860 N/A 2317 2.59 5.19 0.439 0.358 0.00079 1 1171 N/A 0.296 32.5 346 0.284 N/A 0.0136 456 970355
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene] Thallium Toluene Toxaphene 2,4,5-TP [Silvex]	10679 3179 N/A 1908 2.13 4.27 0.361 0.295 0.00065 2 964 N/A 0.244 26.8 285 0.234 N/A 0.0112 375	12967 3860 N/A 2317 2.59 5.19 0.439 0.358 0.00079 1 1171 N/A 0.296 32.5 346 0.284 N/A 0.0136 456
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene] Thallium Toluene Toxaphene 2,4,5-TP [Silvex] 1,1,1-Trichloroethane	10679 3179 N/A 1908 2.13 4.27 0.361 0.295 0.00065 2 964 N/A 0.244 26.8 285 0.234 N/A 0.0112 375 799116	12967 3860 N/A 2317 2.59 5.19 0.439 0.358 0.00079 1 1171 N/A 0.296 32.5 346 0.284 N/A 0.0136 456 970355
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene] Thallium Toluene Toxaphene 2,4,5-TP [Silvex] 1,1,1-Trichloroethane 1,1,2-Trichloroethane	10679 3179 N/A 1908 2.13 4.27 0.361 0.295 0.00065 2 964 N/A 0.244 26.8 285 0.234 N/A 0.0112 375 799116	12967 3860 N/A 2317 2.59 5.19 0.439 0.358 0.00079 1 1171 N/A 0.296 32.5 346 0.284 N/A 0.0136 456 970355 205
Methyl tert-butyl ether [MTBE] Nickel Nitrate-Nitrogen (as Total Nitrogen) Nitrobenzene N-Nitrosodiethylamine N-Nitroso-di-n-Butylamine Pentachlorobenzene Pentachlorophenol Polychlorinated Biphenyls [PCBs] Pyridine Selenium 1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane Tetrachloroethylene [Tetrachloroethylene] Thallium Toluene Toxaphene 2,4,5-TP [Silvex] 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene [Trichloroethene]	10679 3179 N/A 1908 2.13 4.27 0.361 0.295 0.00065 2 964 N/A 0.244 26.8 285 0.234 N/A 0.0112 375 799116 169 73.2	12967 3860 N/A 2317 2.59 5.19 0.439 0.358 0.00079 1 1171 N/A 0.296 32.5 346 0.284 N/A 0.0136 456 970355 205 88.9