

Technical Package Cover Page

This file contains the following documents:

- 1. Summary of application (in plain language)
 - English
 - Alternative Language (Spanish)
- 2. First notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
 - English
 - Alternative Language (Spanish)
- 3. Second notice (NAPD-Notice of Preliminary Decision)
 - English
 - Alternative Language (Spanish)
- 4. Application materials *
- 5. Draft permit *
- 6. Technical summary or fact sheet *
- * **NOTE:** This application was declared Administratively Complete before June 1, 2024. The application materials, draft permit, and technical summary or fact sheet are available for review at the Public Viewing Location provided in the NAPD.

Portada de Paquete Técnico

Este archivo contiene los siguientes documentos:

- 1. Resumen de la solicitud (en lenguaje sencillo)
 - Inglés
 - Idioma alternativo (español)
- 2. Primer aviso (NORI, Aviso de Recepción de Solicitud e Intención de Obtener un Permiso)
 - Inglés
 - Idioma alternativo (español)
- 3. Segundo aviso (NAPD, Aviso de Decisión Preliminar)
 - Inglés
 - Idioma alternativo (español)
- 4. Materiales de la solicitud **
- 5. Proyecto de permiso **
- 6. Resumen técnico u hoja de datos **
- ** NOTA: Esta solicitud se declaró administrativamente completa antes del 1 de junio de 2024. Los materiales de la solicitud, el proyecto de permiso, y los resumen técnico u hoja de datos están disponibles para revisión en la ubicación de consulta pública que se indica en el NAPD.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS

DOMESTIC WASTEWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

City of Galveston (CN # 600241376) operates Airport Wastewater Treatment Plant RN 10164303. an Activated Sludge Process Plant. The facility is located 7618 Mustang Road, in Galveston, Galveston County, Texas 77551.

Renewal to discharge 4.75 MGD of treated domestic wastewater

Discharges from the facility are expected to contain Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), Total Copper (CU), Enterococcus .Domestic Wastewater is treated by *Activated Sludge Process*.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS TPDES o TLAP

AGUAS RESIDUALES DOMÉSTICAS

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no son representaciones federales exigibles de la solicitud de permiso.

La Ciudad de Galveston CN600241376. Opera la Planta de Tratamiento de Aguas Residuales. RN10164303.Una Planta de proceso de lodos Activados. La instalación está ubicado en 7618 Mustang Road en Galveston, Condado de Galveston Texas,77551

Renovación para descargar 4.75 MGD. Este permiso no autorizará una descarga de contaminantes en el agua en el estado.

Se espera que las descargas de la instalación contengan demanda Bioquímica (BOD),solidos suspendidos totales (TSS), cobre total (CU) y Enterococos. Las aguas residuales domesticas tratado por Mediante un proceso de lodos activados.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL

PERMIT NO. WQ0010688002

APPLICATION. City of Galveston, 823 Rosenberg Street, Galveston, Texas 77550, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010688002 (EPA I.D. No. TX0027791) to authorize the discharge of treated wastewater at a volume not to exceed an annual average flow of 4,760,000 gallons per day The domestic wastewater treatment facility is located at 7618 Mustang Drive, in the city of Galveston, in Galveston County, Texas 77554 The discharge route is from the plant site to a tidal canal that connects Madeline Lake to Offats Bayou (Madeline Lake Channel); thence to Offatts Bayou; thence to West Bay. TCEQ received this application on June 17, 2024. The permit application will be available for viewing and copying at Galveston City Hall, 823 Rosenberg Street, Galveston, in Galveston County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-94.848055,29.270277&level=18

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at: <u>https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications</u>. El aviso de idioma alternativo en español está disponible en <u>https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications</u>.

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. **Notice of the Application and Preliminary Decision will be published and mailed to those who are on the county-wide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.**

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. **Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.**

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at <u>www.tceq.texas.gov/goto/cid</u>. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at <u>https://www14.tceq.texas.gov/epic/eComment/</u>, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at <u>www.tceq.texas.gov/goto/pep</u>. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Galveston at the address stated above or by calling Mr. Trino Pedraza, Director of Public Works, at 409-797-3630.

Issuance Date: July 22, 2024

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ0010688002

SOLICITUD. Ciudad de Galveston, 823 Rosenberg Street, Galveston, Texas 77550, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0010688002 (EPA I.D. No. TX 0027791) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio diario de 4.76 million galones por día.

La planta está ubicada 7618 Mustang Road en el Condado de Galveston, Texas. La ruta de descarga es del sitio de la planta a la parte baja de la Bahía de Galveston en el segmento 2424 de las bahías y estuarios. La TCEQ recibió esta solicitud el 30 de junio, 2023. La solicitud para el permiso estará disponible para leerla y copiarla en Galveston City Hall, 823 Rosenberg Street, Galveston, Texas antes de la fecha de publicación de este aviso en el periódico. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-94.827222,29.299444&level=18

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. **El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.**

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar

comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO.

Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos

esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, v número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta: proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y

solicitudes deben ser presentadas electrónicamente vía

http://www14.tceq.texas.gov/epic/eComment/o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional de la Ciudad de Galveston a la dirección indicada arriba o llamando al Sr. Trino Pedraza al numero 409-797-3630.

Fecha de emission: 22 de julio de 2024

Texas Commission on Environmental Quality

NOTICE OF APPLICATION AND PRELIMINARY DECISION FOR TPDES PERMIT FOR MUNICIPAL WASTEWATER

RENEWAL

PERMIT NO. WQ0010688002

APPLICATION AND PRELIMINARY DECISION. City of Galveston, 823 Rosenberg Street, Galveston, Texas 77550, has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010688002, which authorizes the discharge of treated domestic wastewater at an annual average flow not to exceed 4,760,000 gallons per day. TCEQ received this application on June 17, 2024.

The facility is located at 7618 Mustang Drive, in the City of Galveston, Galveston County, Texas 77554. The treated effluent is discharged to a tidal canal that connects Madeline Lake to Offatts Bayou (Madeline Lake Channel), thence to Offatts Bayou, thence to West Bay in Segment No. 2424 of the Bays and Estuaries. The unclassified receiving water uses are high aquatic life use for Tidal canal (Madeline Lake Channel), and Offatts Bayou. The designated uses for Segment No. 2424 are primary contact recreation high aquatic life use, and oyster waters. This link to an electronic map of the site or facility's general location is provided as a public courtesy and is not part of the application or notice. For the exact location, refer to the application. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-94.848055.29.270277&level=18

The TCEQ Executive Director has completed the technical review of the application and prepared a draft permit. The draft permit, if approved, would establish the conditions under which the facility must operate. The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The permit application, Executive Director's preliminary decision, and draft permit are available for viewing and copying at Galveston City Hall, Public Viewing Office, 823 Rosenberg Street, Galveston, Texas. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at <u>https://www.tceq.texas.gov/permitting/wastewater/plain-language-summaries-and-public-notices</u>. El aviso de idioma alternativo en español está disponible en <u>https://www.tceq.texas.gov/permitting/wastewater/plain-language-summaries-and-public-notices</u>.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting about this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ holds a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. **Unless the application is directly referred for a contested case hearing, the response to comments will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting a contested case hearing or reconsideration of the Executive Director's decision. A contested case hearing is a legal proceeding similar to a civil trial in a state district court.**

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period; and the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period. TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

EXECUTIVE DIRECTOR ACTION. The Executive Director may issue final approval of the application unless a timely contested case hearing request or request for reconsideration is filed. If a timely hearing request or request for reconsideration is filed, the Executive Director will not issue final approval of the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

All written public comments and public meeting requests must be submitted to the Office of the Chief Clerk, MC 105, Texas Commission on Environmental Quality, P.O. Box 13087, Austin, TX 78711-3087 or electronically at www.tceq.texas.gov/goto/comment within 30 days from the date of newspaper publication of this notice.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at <u>www.tceq.texas.gov/goto/cid</u>. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. Public comments and requests must be submitted either electronically at <u>www.tceq.texas.gov/goto/comment</u>, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC 105, P.O. Box 13087, Austin, Texas 78711-3087. Any personal information you submit to the TCEQ will become part of the agency's record; this includes email addresses. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at <u>www.tceq.texas.gov/goto/pep</u>. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Galveston at the address stated above or by calling Mr. Tyson Arnold, Director of Public Works, at 409-797-3630.

Issuance Date: May 9, 2025

Comisión De Calidad Ambiental Del Estado De Texas

AVISO DE LA SOLICITUD Y DECISIÓN PRELIMINAR PARA EL PERMISO DEL SISTEMA DE ELIMINACION DE DESCARGAS DE CONTAMINANTES DE TEXAS (TPDES) PARA AGUAS RESIDUALES MUNICIPALES

RENOVACIÓN

PERMISO NO. WQ0010688002

SOLICITUD Y DECISIÓN PRELIMINAR. La cuidad de Galveston, 823 Rosenberg Street, Galveston, Texas, 77550 ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) una renovación para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio diario de 375,000 galones por día. La TCEQ recibió esta solicitud el 17 de Junio 2024.

La planta está ubicada en 7618 Mustang Drive, en la cuidad de Galveston, Texas, 77554 Co El efluente tratado es descargado a un canal de mareas que conecta el lago Madeline con Offats Bayou(canal del lago Madeline), de allí a Offats Bayou y de allí a West bay en el segmento n 2424 de bahías de Galveston, Texas, Río Madeline Bay. Los usos no clasificados de las aguas receptoras son recreativos usos de la vida acuática para Madeline Bay. Los usos designados para el Segmento No. 2424 son uso excepcional de vida acuática; agua para ostras, navegación y recreación sin contacto.

El director ejecutivo de la TCEQ ha revisado esta medida para ver si está de acuerdo con los objetivos y las regulaciones del Programa de Administración Costero de Texas (CMP) de acuerdo con las regulaciones del Consejo Coordinador de la Costa (CCC) y ha determinado que la acción es conforme con las metas y regulaciones pertinentes del CMP.

El director ejecutivo de la TCEQ ha completado la revisión técnica de la solicitud y ha preparado un borrador del permiso. El borrador del permiso, si es aprobado, establecería las condiciones bajo las cuales la instalación debe operar. El director ejecutivo ha tomado una decisión preliminar que, si este permiso es emitido, cumple con todos los requisitos normativos y legales. La solicitud del permiso, la decisión preliminar del director ejecutivo y el borrador del permiso están disponibles para leer y copiar en 823 Rosenberg Street, City Hall, Galveston, Texas, 77550, Galveston. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web:

<u>https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications</u>. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud. <u>https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications</u> **AVISO DE IDIOMA ALTERNATIVO.** El aviso de idioma alternativo en español está disponible en <u>https://www.tceq.texas.gov/permitting/wastewater/plain-language-summaries-and-public-notices. https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.</u>

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos adicionales o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el director ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO.

Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una reconsideración de la solicitud de lo contencioso. Una audiencia administrativa de lo contencios es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta: proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el director ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso para descargar aguas residuales sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

ACCIÓN DEL DIRECTOR EJECUTIVO. El Director Ejecutivo puede emitir una aprobación final de la solicitud a menos que exista un pedido antes del plazo de vencimiento de una audiencia administrativa de lo contencioso o se ha presentado un pedido de reconsideración. Si un pedido ha llegado antes del plazo de vencimiento de la audiencia o el pedido de reconsideración ha sido presentado, el Director Ejecutivo no emitirá una aprobación final sobre el permiso y enviará la solicitud y el pedido a los Comisionados de la TECQ para consideración en una reunión programada de la Comisión.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

Todos los comentarios escritos del público y los pedidos una reunión deben ser presentados durante los 30 días después de la publicación del aviso a la Oficina del Secretario Principal, MC 105, TCEQ, P.O. Box 13087, Austin, TX 78711-3087 or por el internet a <u>www.tceq.texas.gov/about/comments.html</u>. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia.

CONTACTOS E INFORMACIÓN DE LA AGENCIA. Los comentarios y solicitudes públicas deben enviarse electrónicamente a <u>https://www14.tceq.texas.gov/epic/eComment/</u>, o por escrito a Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Cualquier información personal que envíe a al TCEQ pasará a formar parte del registro de la agencia; esto incluye las direcciones de correo electrónico. Para obtener más información sobre esta solicitud de permiso o el proceso de permisos, llame al Programa de Educación Pública de la TCEQ, sin cargo, al 1-800-687-4040 o visite su sitio web en www.tceq.texas.gov/goto/pep. Si desea información en español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional Del Ciudad de Galveston la dirección indicada arriba o llamando a Señor Tyson Arnold al 409-797-3630.

Fecha de emission: 9 de mayo de 2025

TPDES PERMIT NO. WQ0010688002 [For TCEQ office use only - EPA I.D. No. TX0027791]

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY P.O. Box 13087 Austin, Texas 78711-3087

> <u>PERMIT TO DISCHARGE WASTES</u> under provisions of Section 402 of the Clean Water Act and Chapter 26 of the Texas Water Code

This is a renewal that replaces TPDES Permit No. WQ0010688002 issued on February 11, 2020.

City of Galveston

whose mailing address is

823 Rosenberg Street Galveston, Texas 77550

is authorized to treat and discharge wastes from the Airport Wastewater Treatment Facility, SIC Code 4952

located at 7618 Mustang Drive, in the City of Galveston, Galveston County, Texas 77554

to a tidal canal that connects Madeline Lake to Offatts Bayou (Madeline Lake Channel), thence to Offatts Bayou, thence to West Bay in Segment No. 2424 of the Bays and Estuaries

only according to effluent limitations, monitoring requirements, and other conditions set forth in this permit, as well as the rules of the Texas Commission on Environmental Quality (TCEQ), the laws of the State of Texas, and other orders of the TCEQ. The issuance of this permit does not grant to the permittee the right to use private or public property for conveyance of wastewater along the discharge route described in this permit. This includes, but is not limited to, property belonging to any individual, partnership, corporation, or other entity. Neither does this permit authorize any invasion of personal rights nor any violation of federal, state, or local laws or regulations. It is the responsibility of the permittee to acquire property rights as may be necessary to use the discharge route.

This permit shall expire at midnight, **five years from the date of issuance**.

ISSUED DATE:

For the Commission

INTERIM EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

- <u>D MONITORING REQUIREMENTS</u> <u>Outfall Number 001</u>
- 1. During the period beginning upon the date of issuance and lasting through the completion of expansion to the 4.76 million gallons per day (MGD) facility, the permittee is authorized to discharge subject to the following effluent limitations:

The annual average flow of effluent shall not exceed 3.75 MGD, nor shall the average discharge during any two-hour period (2-hour peak) exceed 7,812 gallons per minute.

Effluent Characteristic	Discharge Limitations			Min. Self-Monitoring Requirements		
	Daily Avg	7-day Avg	Daily Max	Single Grab	Report Daily Avg. & Daily Max.	
	mg/l (lbs/day)	mg/l	mg/l	mg/l	Measurement Frequency	Sample Type
Flow, MGD	Report	N/A	Report	N/A	Continuous	Totalizing Meter
Biochemical Oxygen Demand (5-day)	20 (626)	30	45	65	Two/week	Composite
Total Suspended Solids	20 (626)	30	45	65	Two/week	Composite
Total Copper	0.0121 (0.378)	N/A	0.0256	0.0363	One/week	Composite
Enterococci, colony-forming units or most probable number per 100 ml	35	N/A	104	N/A	One/week	Grab

- 2. The effluent shall contain a total chlorine residual of at least 1.0 mg/l after a detention time of at least 20 minutes (based on peak flow) and shall be monitored daily by grab sample. The permittee shall dechlorinate the chlorinated effluent to less than 0.1 mg/l total chlorine residual and shall monitor total chlorine residual daily by grab sample after the dechlorination process. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.
- 3. The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample.
- 4. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.
- 5. Effluent monitoring samples shall be taken at the following location(s): Following the final treatment unit.
- 6. The effluent shall contain a minimum dissolved oxygen of 2.0 mg/l and shall be monitored twice per week by grab sample.
- 7. The annual average flow and maximum 2-hour peak flow shall be reported monthly.

Page 2

FINAL EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

1. During the period beginning upon the completion of expansion to the 4.76 million gallons per day (MGD) facility and lasting through the date of expiration, the permittee is authorized to discharge subject to the following effluent limitations:

The annual average flow of effluent shall not exceed 4.76 MGD, nor shall the average discharge during any two-hour period (2-hour peak) exceed 9,493 gallons per minute.

Effluent Characteristic	Discharge Limitations			Min. Self-Monitoring Requirements		
	Daily Avg mg/l (lbs/day)	7-day Avg mg/l	Daily Max mg/l	Single Grab mg/l	Report Daily Measurement Frequency	y Avg. & Daily Max. Sample Type
Flow, MGD	Report	N/A	Report	N/A	Continuous	Totalizing Meter
Biochemical Oxygen Demand (5-day)	10 (397)	15	25	35	Two/week	Composite
Total Suspended Solids	15 (595)	25	40	60	Two/week	Composite
Total Copper	0.0121 (0.48)	N/A	0.0256	0.0363	One/week	Composite
Enterococci, colony-forming units or most probable number per 100 ml	35	N/A	104	N/A	One/week	Grab

- 2. The effluent shall contain a total chlorine residual of at least 1.0 mg/l after a detention time of at least 20 minutes (based on peak flow) and shall be monitored daily by grab sample. The permittee shall dechlorinate the chlorinated effluent to less than 0.1 mg/l total chlorine residual and shall monitor total chlorine residual daily by grab sample after the dechlorination process. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.
- 3. The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample.
- 4. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.
- 5. Effluent monitoring samples shall be taken at the following location(s): Following the final treatment unit.
- 6. The effluent shall contain a minimum dissolved oxygen of 4.0 mg/l and shall be monitored twice per week by grab sample.
- 7. The annual average flow and maximum 2-hour peak flow shall be reported monthly.

Page 2a

Outfall Number 001

DEFINITIONS AND STANDARD PERMIT CONDITIONS

As required by Title 30 Texas Administrative Code (TAC) Chapter 305, certain regulations appear as standard conditions in waste discharge permits. 30 TAC § 305.121 - 305.129 (relating to Permit Characteristics and Conditions) as promulgated under the Texas Water Code (TWC) §§ 5.103 and 5.105, and the Texas Health and Safety Code (THSC) §§ 361.017 and 361.024(a), establish the characteristics and standards for waste discharge permits, including sewage sludge, and those sections of 40 Code of Federal Regulations (CFR) Part 122 adopted by reference by the Commission. The following text includes these conditions and incorporates them into this permit. All definitions in TWC § 26.001 and 30 TAC Chapter 305 shall apply to this permit and are incorporated by reference. Some specific definitions of words or phrases used in this permit are as follows:

- 1. Flow Measurements
 - a. Annual average flow the arithmetic average of all daily flow determinations taken within the preceding 12 consecutive calendar months. The annual average flow determination shall consist of daily flow volume determinations made by a totalizing meter, charted on a chart recorder and limited to major domestic wastewater discharge facilities with one million gallons per day or greater permitted flow.
 - b. Daily average flow the arithmetic average of all determinations of the daily flow within a period of one calendar month. The daily average flow determination shall consist of determinations made on at least four separate days. If instantaneous measurements are used to determine the daily flow, the determination shall be the arithmetic average of all instantaneous measurements taken during that month. Daily average flow determinations on days of discharge.
 - c. Daily maximum flow the highest total flow for any 24-hour period in a calendar month.
 - d. Instantaneous flow the measured flow during the minimum time required to interpret the flow measuring device.
 - e. 2-hour peak flow (domestic wastewater treatment plants) the maximum flow sustained for a two-hour period during the period of daily discharge. The average of multiple measurements of instantaneous maximum flow within a two-hour period may be used to calculate the 2-hour peak flow.
 - f. Maximum 2-hour peak flow (domestic wastewater treatment plants) the highest 2-hour peak flow for any 24-hour period in a calendar month.
- 2. Concentration Measurements
 - a. Daily average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar month, consisting of at least four separate representative measurements.
 - i. For domestic wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values in the previous four consecutive month period consisting of at least four measurements shall be utilized as the daily average concentration.

- ii. For all other wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values taken during the month shall be utilized as the daily average concentration.
- b. 7-day average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar week, Sunday through Saturday.
- c. Daily maximum concentration the maximum concentration measured on a single day, by the sample type specified in the permit, within a period of one calendar month.
- d. Daily discharge the discharge of a pollutant measured during a calendar day or any 24hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in terms of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the sampling day. For pollutants with limitations expressed in other units of measurement, the daily discharge is calculated as the average measurement of the pollutant over the sampling day.

The daily discharge determination of concentration made using a composite sample shall be the concentration of the composite sample. When grab samples are used, the daily discharge determination of concentration shall be the arithmetic average (weighted by flow value) of all samples collected during that day.

- e. Bacteria concentration (*E. coli* or Enterococci) Colony Forming Units (CFU) or Most Probable Number (MPN) of bacteria per 100 milliliters effluent. The daily average bacteria concentration is a geometric mean of the values for the effluent samples collected in a calendar month. The geometric mean shall be determined by calculating the nth root of the product of all measurements made in a calendar month, where n equals the number of measurements made; or, computed as the antilogarithm of the arithmetic mean of the logarithms of all measurements made in a calendar month. For any measurement of bacteria equaling zero, a substituted value of one shall be made for input into either computation method. If specified, the 7-day average for bacteria is the geometric mean of the values for all effluent samples collected during a calendar week.
- f. Daily average loading (lbs/day) the arithmetic average of all daily discharge loading calculations during a period of one calendar month. These calculations must be made for each day of the month that a parameter is analyzed. The daily discharge, in terms of mass (lbs/day), is calculated as (Flow, MGD x Concentration, mg/l x 8.34).
- g. Daily maximum loading (lbs/day) the highest daily discharge, in terms of mass (lbs/day), within a period of one calendar month.

3. Sample Type

a. Composite sample - For domestic wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (a). For industrial wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (b).

- b. Grab sample an individual sample collected in less than 15 minutes.
- 4. Treatment Facility (facility) wastewater facilities used in the conveyance, storage, treatment, recycling, reclamation and/or disposal of domestic sewage, industrial wastes, agricultural wastes, recreational wastes, or other wastes including sludge handling or disposal facilities under the jurisdiction of the Commission.
- 5. The term "sewage sludge" is defined as solid, semi-solid, or liquid residue generated during the treatment of domestic sewage in 30 TAC Chapter 312. This includes the solids that have not been classified as hazardous waste separated from wastewater by unit processes.
- 6. The term "biosolids" is defined as sewage sludge that has been tested or processed to meet Class A, Class AB, or Class B pathogen standards in 30 TAC Chapter 312 for beneficial use.
- 7. Bypass the intentional diversion of a waste stream from any portion of a treatment facility.

MONITORING AND REPORTING REQUIREMENTS

1. Self-Reporting

Monitoring results shall be provided at the intervals specified in the permit. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall conduct effluent sampling and reporting in accordance with 30 TAC §§ 319.4 - 319.12. Unless otherwise specified, effluent monitoring data shall be submitted each month, to the Enforcement Division (MC 224), by the 20th day of the following month for each discharge which is described by this permit whether or not a discharge is made for that month. Monitoring results must be submitted online using the NetDMR reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. Monitoring results must be signed and certified as required by Monitoring and Reporting Requirements No. 10.

As provided by state law, the permittee is subject to administrative, civil and criminal penalties, as applicable, for negligently or knowingly violating the Clean Water Act (CWA); TWC §§ 26, 27, and 28; and THSC § 361, including but not limited to knowingly making any false statement, representation, or certification on any report, record, or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or noncompliance, or falsifying, tampering with or knowingly rendering inaccurate any monitoring device or method required by this permit or violating any other requirement imposed by state or federal regulations.

- 2. Test Procedures
 - a. Unless otherwise specified in this permit, test procedures for the analysis of pollutants shall comply with procedures specified in 30 TAC §§ 319.11 319.12. Measurements, tests, and calculations shall be accurately accomplished in a representative manner.
 - b. All laboratory tests submitted to demonstrate compliance with this permit must meet the requirements of 30 TAC § 25, Environmental Testing Laboratory Accreditation and Certification.
- 3. Records of Results
 - a. Monitoring samples and measurements shall be taken at times and in a manner so as to be representative of the monitored activity.

- b. Except for records of monitoring information required by this permit related to the permittee's sewage sludge or biosolids use and disposal activities, which shall be retained for a period of at least five years (or longer as required by 40 CFR Part 503), monitoring and reporting records, including strip charts and records of calibration and maintenance, copies of all records required by this permit, records of all data used to complete the application for this permit, and the certification required by 40 CFR § 264.73(b)(9) shall be retained at the facility site, or shall be readily available for review by a TCEQ representative for a period of three years from the date of the record or sample, measurement, report, application or certification. This period shall be extended at the request of the Executive Director.
- c. Records of monitoring activities shall include the following:
 - i. date, time and place of sample or measurement;
 - ii. identity of individual who collected the sample or made the measurement.
 - iii. date and time of analysis;
 - iv. identity of the individual and laboratory who performed the analysis;
 - v. the technique or method of analysis; and
 - vi. the results of the analysis or measurement and quality assurance/quality control records.

The period during which records are required to be kept shall be automatically extended to the date of the final disposition of any administrative or judicial enforcement action that may be instituted against the permittee.

4. Additional Monitoring by Permittee

If the permittee monitors any pollutant at the location(s) designated herein more frequently than required by this permit using approved analytical methods as specified above, all results of such monitoring shall be included in the calculation and reporting of the values submitted on the approved self-report form. Increased frequency of sampling shall be indicated on the self-report form.

5. Calibration of Instruments

All automatic flow measuring or recording devices and all totalizing meters for measuring flows shall be accurately calibrated by a trained person at plant start-up and as often thereafter as necessary to ensure accuracy, but not less often than annually unless authorized by the Executive Director for a longer period. Such person shall verify in writing that the device is operating properly and giving accurate results. Copies of the verification shall be retained at the facility site and/or shall be readily available for review by a TCEQ representative for a period of three years.

6. Compliance Schedule Reports

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of the permit shall be submitted no later than 14 days following each schedule date to the Regional Office and the Enforcement

Division (MC 224).

- 7. Noncompliance Notification
 - a. In accordance with 30 TAC § 305.125(9) any noncompliance which may endanger human health or safety, or the environment shall be reported by the permittee to the TCEQ. Except as allowed by 30 TAC § 305.132, report of such information shall be provided orally or by facsimile transmission (FAX) to the Regional Office within 24 hours of becoming aware of the noncompliance. A written submission of such information shall also be provided by the permittee to the Regional Office and the Enforcement Division (MC 224) within five working days of becoming aware of the noncompliance. For Publicly Owned Treatment Works (POTWs), effective December 21, 2025, the permittee must submit the written report for unauthorized discharges and unanticipated bypasses that exceed any effluent limit in the permit using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. The written submission shall contain a description of the noncompliance and its cause; the potential danger to human health or safety, or the environment; the period of noncompliance, including exact dates and times; if the noncompliance has not been corrected, the time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance, and to mitigate its adverse effects.
 - b. The following violations shall be reported under Monitoring and Reporting Requirement 7.a.:
 - i. Unauthorized discharges as defined in Permit Condition 2(g).
 - ii. Any unanticipated bypass that exceeds any effluent limitation in the permit.
 - iii. Violation of a permitted maximum daily discharge limitation for pollutants listed specifically in the Other Requirements section of an Industrial TPDES permit.
 - c. In addition to the above, any effluent violation which deviates from the permitted effluent limitation by more than 40% shall be reported by the permittee in writing to the Regional Office and the Enforcement Division (MC 224) within 5 working days of becoming aware of the noncompliance.
 - d. Any noncompliance other than that specified in this section, or any required information not submitted or submitted incorrectly, shall be reported to the Enforcement Division (MC 224) as promptly as possible. For effluent limitation violations, noncompliances shall be reported on the approved self-report form.
- 8. In accordance with the procedures described in 30 TAC §§ 35.301 35.303 (relating to Water Quality Emergency and Temporary Orders) if the permittee knows in advance of the need for a bypass, it shall submit prior notice by applying for such authorization.
- 9. Changes in Discharges of Toxic Substances

All existing manufacturing, commercial, mining, and silvicultural permittees shall notify the Regional Office, orally or by facsimile transmission within 24 hours, and both the Regional Office and the Enforcement Division (MC 224) in writing within five (5) working days, after becoming aware of or having reason to believe:

- a. That any activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic pollutant listed at 40 CFR Part 122, Appendix D, Tables II and III (excluding Total Phenols) which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. One hundred micrograms per liter (100 μ g/L);
 - ii. Two hundred micrograms per liter (200 μ g/L) for acrolein and acrylonitrile; five hundred micrograms per liter (500 μ g/L) for 2,4-dinitrophenol and for 2-methyl-4,6-dinitrophenol; and one milligram per liter (1 mg/L) for antimony;
 - iii. Five (5) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.
- b. That any activity has occurred or will occur which would result in any discharge, on a nonroutine or infrequent basis, of a toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. Five hundred micrograms per liter (500 μ g/L);
 - ii. One milligram per liter (1 mg/L) for antimony;
 - iii. Ten (10) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.
- 10. Signatories to Reports

All reports and other information requested by the Executive Director shall be signed by the person and in the manner required by 30 TAC § 305.128 (relating to Signatories to Reports).

- 11. All POTWs must provide adequate notice to the Executive Director of the following:
 - a. Any new introduction of pollutants into the POTW from an indirect discharger which would be subject to CWA § 301 or § 306 if it were directly discharging those pollutants;
 - b. Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of issuance of the permit; and
 - c. For the purpose of this paragraph, adequate notice shall include information on:
 - i. The quality and quantity of effluent introduced into the POTW; and
 - ii. Any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW.

PERMIT CONDITIONS

- 1. General
 - a. When the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in an application or in any report to the Executive Director, it shall promptly submit such facts or information.
 - b. This permit is granted on the basis of the information supplied and representations made by the permittee during action on an application, and relying upon the accuracy and completeness of that information and those representations. After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked, in whole or in part, in accordance with 30 TAC Chapter 305, Subchapter D, during its term for good cause including, but not limited to, the following:
 - i. Violation of any terms or conditions of this permit;
 - ii. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts; or
 - iii. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.
 - c. The permittee shall furnish to the Executive Director, upon request and within a reasonable time, any information to determine whether cause exists for amending, revoking, suspending or terminating the permit. The permittee shall also furnish to the Executive Director, upon request, copies of records required to be kept by the permit.
- 2. Compliance
 - a. Acceptance of the permit by the person to whom it is issued constitutes acknowledgment and agreement that such person will comply with all the terms and conditions embodied in the permit, and the rules and other orders of the Commission.
 - b. The permittee has a duty to comply with all conditions of the permit. Failure to comply with any permit condition constitutes a violation of the permit and the Texas Water Code or the Texas Health and Safety Code, and is grounds for enforcement action, for permit amendment, revocation, or suspension, or for denial of a permit renewal application or an application for a permit for another facility.
 - c. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of the permit.
 - d. The permittee shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal or other permit violation that has a reasonable likelihood of adversely affecting human health or the environment.
 - e. Authorization from the Commission is required before beginning any change in the permitted facility or activity that may result in noncompliance with any permit requirements.
 - f. A permit may be amended, suspended and reissued, or revoked for cause in accordance

with 30 TAC §§ 305.62 and 305.66 and TWC§ 7.302. The filing of a request by the permittee for a permit amendment, suspension and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.

- g. There shall be no unauthorized discharge of wastewater or any other waste. For the purpose of this permit, an unauthorized discharge is considered to be any discharge of wastewater into or adjacent to water in the state at any location not permitted as an outfall or otherwise defined in the Other Requirements section of this permit.
- h. In accordance with 30 TAC § 305.535(a), the permittee may allow any bypass to occur from a TPDES permitted facility which does not cause permitted effluent limitations to be exceeded or an unauthorized discharge to occur, but only if the bypass is also for essential maintenance to assure efficient operation.
- i. The permittee is subject to administrative, civil, and criminal penalties, as applicable, under TWC §§ 7.051 7.075 (relating to Administrative Penalties), 7.101 7.111 (relating to Civil Penalties), and 7.141 7.202 (relating to Criminal Offenses and Penalties) for violations including, but not limited to, negligently or knowingly violating the federal CWA §§ 301, 302, 306, 307, 308, 318, or 405, or any condition or limitation implementing any sections in a permit issued under the CWA § 402, or any requirement imposed in a pretreatment program approved under the CWA §§ 402 (a)(3) or 402 (b)(8).
- 3. Inspections and Entry
 - a. Inspection and entry shall be allowed as prescribed in the TWC Chapters 26, 27, and 28, and THSC § 361.
 - b. The members of the Commission and employees and agents of the Commission are entitled to enter any public or private property at any reasonable time for the purpose of inspecting and investigating conditions relating to the quality of water in the state or the compliance with any rule, regulation, permit or other order of the Commission. Members, employees, or agents of the Commission and Commission contractors are entitled to enter public or private property at any reasonable time to investigate or monitor or, if the responsible party is not responsive or there is an immediate danger to public health or the environment, to remove or remediate a condition related to the quality of water in the state. Members, employees, Commission contractors, or agents acting under this authority who enter private property shall observe the establishment's rules and regulations concerning safety, internal security, and fire protection, and if the property has management in residence, shall notify management or the person then in charge of his presence and shall exhibit proper credentials. If any member, employee, Commission contractor, or agent is refused the right to enter in or on public or private property under this authority, the Executive Director may invoke the remedies authorized in TWC § 7.002. The statement above, that Commission entry shall occur in accordance with an establishment's rules and regulations concerning safety, internal security, and fire protection, is not grounds for denial or restriction of entry to any part of the facility, but merely describes the Commission's duty to observe appropriate rules and regulations during an inspection.
- 4. Permit Amendment and/or Renewal

- a. The permittee shall give notice to the Executive Director as soon as possible of any planned physical alterations or additions to the permitted facility if such alterations or additions would require a permit amendment or result in a violation of permit requirements. Notice shall also be required under this paragraph when:
 - i. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in accordance with 30 TAC § 305.534 (relating to New Sources and New Dischargers); or
 - ii. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants that are subject neither to effluent limitations in the permit, nor to notification requirements in Monitoring and Reporting Requirements No. 9; or
 - iii. The alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan.
- b. Prior to any facility modifications, additions, or expansions that will increase the plant capacity beyond the permitted flow, the permittee must apply for and obtain proper authorization from the Commission before commencing construction.
- c. The permittee must apply for an amendment or renewal at least 180 days prior to expiration of the existing permit in order to continue a permitted activity after the expiration date of the permit. If an application is submitted prior to the expiration date of the permit, the existing permit shall remain in effect until the application is approved, denied, or returned. If the application is returned or denied, authorization to continue such activity shall terminate upon the effective date of the action. If an application is not submitted prior to the expiration date of the permit, the permit shall expire and authorization to continue such activity shall terminate upon the effective shall expire and authorization to continue such activity shall terminate.
- d. Prior to accepting or generating wastes which are not described in the permit application or which would result in a significant change in the quantity or quality of the existing discharge, the permittee must report the proposed changes to the Commission. The permittee must apply for a permit amendment reflecting any necessary changes in permit conditions, including effluent limitations for pollutants not identified and limited by this permit.
- e. In accordance with the TWC § 26.029(b), after a public hearing, notice of which shall be given to the permittee, the Commission may require the permittee, from time to time, for good cause, in accordance with applicable laws, to conform to new or additional conditions.
- f. If any toxic effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is promulgated under CWA § 307(a) for a toxic pollutant which is present in the discharge and that standard or prohibition is more stringent than any limitation on the pollutant in this permit, this permit shall be modified or revoked and reissued to conform to the toxic effluent standard or prohibitions established under CWA § 307(a) for toxic pollutants within the time provided in the

regulations that established those standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.

- 5. Permit Transfer
 - a. Prior to any transfer of this permit, Commission approval must be obtained. The Commission shall be notified in writing of any change in control or ownership of facilities authorized by this permit. Such notification should be sent to the Applications Review and Processing Team (MC 148) of the Water Quality Division.
 - b. A permit may be transferred only according to the provisions of 30 TAC § 305.64 (relating to Transfer of Permits) and 30 TAC § 50.133 (relating to Executive Director Action on Application or WQMP update).
- 6. Relationship to Hazardous Waste Activities

This permit does not authorize any activity of hazardous waste storage, processing, or disposal that requires a permit or other authorization pursuant to the Texas Health and Safety Code.

7. Relationship to Water Rights

Disposal of treated effluent by any means other than discharge directly to water in the state must be specifically authorized in this permit and may require a permit pursuant to TWC Chapter 11.

8. Property Rights

A permit does not convey any property rights of any sort, or any exclusive privilege.

9. Permit Enforceability

The conditions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstances, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

10. Relationship to Permit Application

The application pursuant to which the permit has been issued is incorporated herein; provided, however, that in the event of a conflict between the provisions of this permit and the application, the provisions of the permit shall control.

- 11. Notice of Bankruptcy
 - a. Each permittee shall notify the Executive Director, in writing, immediately following the filing of a voluntary or involuntary petition for bankruptcy under any chapter of Title 11 (Bankruptcy) of the United States Code (11 USC) by or against:
 - i. the permittee;
 - ii. an entity (as that term is defined in 11 USC, § 101(14)) controlling the permittee or listing the permit or permittee as property of the estate; or
 - iii. an affiliate (as that term is defined in 11 USC, § 101(2)) of the permittee.

- b. This notification must indicate:
 - i. the name of the permittee;
 - ii. the permit number(s);
 - iii. the bankruptcy court in which the petition for bankruptcy was filed; and
 - iv. the date of filing of the petition.

OPERATIONAL REQUIREMENTS

- 1. The permittee shall at all times ensure that the facility and all of its systems of collection, treatment, and disposal are properly operated and maintained. This includes, but is not limited to, the regular, periodic examination of wastewater solids within the treatment plant by the operator in order to maintain an appropriate quantity and quality of solids inventory as described in the various operator training manuals and according to accepted industry standards for process control. Process control, maintenance, and operations records shall be retained at the facility site, or shall be readily available for review by a TCEQ representative, for a period of three years.
- 2. Upon request by the Executive Director, the permittee shall take appropriate samples and provide proper analysis in order to demonstrate compliance with Commission rules. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall comply with all applicable provisions of 30 TAC Chapter 312 concerning sewage sludge or biosolids use and disposal and 30 TAC §§ 319.21 319.29 concerning the discharge of certain hazardous metals.
- 3. Domestic wastewater treatment facilities shall comply with the following provisions:
 - a. The permittee shall notify the Municipal Permits Team, Wastewater Permitting Section (MC 148) of the Water Quality Division, in writing, of any facility expansion at least 90 days prior to conducting such activity.
 - b. The permittee shall submit a closure plan for review and approval to the Municipal Permits Team, Wastewater Permitting Section (MC 148) of the Water Quality Division, for any closure activity at least 90 days prior to conducting such activity. Closure is the act of permanently taking a waste management unit or treatment facility out of service and includes the permanent removal from service of any pit, tank, pond, lagoon, surface impoundment and/or other treatment unit regulated by this permit.
- 4. The permittee is responsible for installing prior to plant start-up, and subsequently maintaining, adequate safeguards to prevent the discharge of untreated or inadequately treated wastes during electrical power failures by means of alternate power sources, standby generators, and/or retention of inadequately treated wastewater.
- 5. Unless otherwise specified, the permittee shall provide a readily accessible sampling point and, where applicable, an effluent flow measuring device or other acceptable means by which effluent flow may be determined.
- 6. The permittee shall remit an annual water quality fee to the Commission as required by 30

TAC Chapter 21. Failure to pay the fee may result in revocation of this permit under TWC § 7.302(b)(6).

7. Documentation

For all written notifications to the Commission required of the permittee by this permit, the permittee shall keep and make available a copy of each such notification under the same conditions as self-monitoring data are required to be kept and made available. Except for information required for TPDES permit applications, effluent data, including effluent data in permits, draft permits and permit applications, and other information specified as not confidential in 30 TAC §§ 1.5(d), any information submitted pursuant to this permit may be claimed as confidential by the submitter. Any such claim must be asserted in the manner prescribed in the application form or by stamping the words confidential business information on each page containing such information. If no claim is made at the time of submission, information may be made available to the public without further notice. If the Commission or Executive Director agrees with the designation of confidentiality, the TCEQ will not provide the information for public inspection unless required by the Texas Attorney General or a court pursuant to an open records request. If the Executive Director does not agree with the designation of confidentiality, the person submitting the information will be notified.

- 8. Facilities that generate domestic wastewater shall comply with the following provisions; domestic wastewater treatment facilities at permitted industrial sites are excluded.
 - a. Whenever flow measurements for any domestic sewage treatment facility reach 75% of the permitted daily average or annual average flow for three consecutive months, the permittee must initiate engineering and financial planning for expansion and/or upgrading of the domestic wastewater treatment and/or collection facilities. Whenever the flow reaches 90% of the permitted daily average or annual average flow for three consecutive months, the permittee shall obtain necessary authorization from the Commission to commence construction of the necessary additional treatment and/or collection facilities. In the case of a domestic wastewater treatment facility which reaches 75% of the permitted daily average or annual average flow for three consecutive months, and the planned population to be served or the quantity of waste produced is not expected to exceed the design limitations of the treatment facility, the permittee shall submit an engineering report supporting this claim to the Executive Director of the Commission.

If in the judgment of the Executive Director the population to be served will not cause permit noncompliance, then the requirement of this section may be waived. To be effective, any waiver must be in writing and signed by the Director of the Enforcement Division (MC 219) of the Commission, and such waiver of these requirements will be reviewed upon expiration of the existing permit; however, any such waiver shall not be interpreted as condoning or excusing any violation of any permit parameter.

b. The plans and specifications for domestic sewage collection and treatment works associated with any domestic permit must be approved by the Commission and failure to secure approval before commencing construction of such works or making a discharge is a violation of this permit and each day is an additional violation until approval has been secured.

- c. Permits for domestic wastewater treatment plants are granted subject to the policy of the Commission to encourage the development of area-wide waste collection, treatment, and disposal systems. The Commission reserves the right to amend any domestic wastewater permit in accordance with applicable procedural requirements to require the system covered by this permit to be integrated into an area-wide system, should such be developed; to require the delivery of the wastes authorized to be collected in, treated by or discharged from said system, to such area-wide system; or to amend this permit in any other particular to effectuate the Commission's policy. Such amendments may be made when the changes required are advisable for water quality control purposes and are feasible on the basis of waste treatment technology, engineering, financial, and related considerations existing at the time the changes are required, exclusive of the loss of investment in or revenues from any then existing or proposed waste collection, treatment or disposal system.
- 9. Domestic wastewater treatment plants shall be operated and maintained by sewage plant operators holding a valid certificate of competency at the required level as defined in 30 TAC Chapter 30.
- 10. For Publicly Owned Treatment Works (POTWs), the 30-day average (or monthly average) percent removal for BOD and TSS shall not be less than 85%, unless otherwise authorized by this permit.
- 11. Facilities that generate industrial solid waste as defined in 30 TAC § 335.1 shall comply with these provisions:
 - a. Any solid waste, as defined in 30 TAC § 335.1 (including but not limited to such wastes as garbage, refuse, sludge from a waste treatment, water supply treatment plant or air pollution control facility, discarded materials, discarded materials to be recycled, whether the waste is solid, liquid, or semisolid), generated by the permittee during the management and treatment of wastewater, must be managed in accordance with all applicable provisions of 30 TAC Chapter 335, relating to Industrial Solid Waste Management.
 - b. Industrial wastewater that is being collected, accumulated, stored, or processed before discharge through any final discharge outfall, specified by this permit, is considered to be industrial solid waste until the wastewater passes through the actual point source discharge and must be managed in accordance with all applicable provisions of 30 TAC Chapter 335.
 - c. The permittee shall provide written notification, pursuant to the requirements of 30 TAC § 335.8(b)(1), to the Corrective Action Section (MC 127) of the Remediation Division informing the Commission of any closure activity involving an Industrial Solid Waste Management Unit, at least 90 days prior to conducting such an activity.
 - d. Construction of any industrial solid waste management unit requires the prior written notification of the proposed activity to the Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division. No person shall dispose of industrial solid waste, including sludge or other solids from wastewater treatment processes, prior to fulfilling the deed recordation requirements of 30 TAC § 335.5.
 - e. The term "industrial solid waste management unit" means a landfill, surface impoundment, waste-pile, industrial furnace, incinerator, cement kiln, injection well,

container, drum, salt dome waste containment cavern, or any other structure vessel, appurtenance, or other improvement on land used to manage industrial solid waste.

- f. The permittee shall keep management records for all sludge (or other waste) removed from any wastewater treatment process. These records shall fulfill all applicable requirements of 30 TAC § 335 and must include the following, as it pertains to wastewater treatment and discharge:
 - i. Volume of waste and date(s) generated from treatment process;
 - ii. Volume of waste disposed of on-site or shipped off-site;
 - iii. Date(s) of disposal;
 - iv. Identity of hauler or transporter;
 - v. Location of disposal site; and
 - vi. Method of final disposal.

The above records shall be maintained on a monthly basis. The records shall be retained at the facility site, or shall be readily available for review by authorized representatives of the TCEQ for at least five years.

12. For industrial facilities to which the requirements of 30 TAC § 335 do not apply, sludge and solid wastes, including tank cleaning and contaminated solids for disposal, shall be disposed of in accordance with THSC § 361.

TCEQ Revision 06/2020

SLUDGE PROVISIONS

The permittee is authorized to dispose of sludge only at a Texas Commission on Environmental Quality (TCEQ) authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge. **The disposal of sludge or biosolids by land application on property owned, leased or under the direct control of the permittee is a violation of the permit unless the site is authorized with the TCEQ. This provision does not authorize Distribution and Marketing of Class A or Class AB Biosolids. This provision does not authorize the permittee to land apply biosolids on property owned, leased or under the direct control of the permittee.**

SECTION I. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE OR BIOSOLIDS LAND APPLICATION

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC § 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge or biosolids.
- 2. In all cases, if the person (permit holder) who prepares the sewage sludge supplies the sewage sludge to another person for land application use or to the owner or lease holder of the land, the permit holder shall provide necessary information to the parties who receive the sludge to assure compliance with these regulations.
- 3. The land application of processed or unprocessed chemical toilet waste, grease trap waste, grit trap waste, milk solids, or similar non-hazardous municipal or industrial solid wastes, or any of the wastes listed in this provision combined with biosolids, WTP residuals or domestic septage is prohibited unless the grease trap waste is added at a fats, oil and grease (FOG) receiving facility as part of an anaerobic digestion process.

B. Testing Requirements

Sewage sludge or biosolids shall be tested annually in accordance with the method 1. specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I [Toxicity Characteristic Leaching Procedure (TCLP)] or other method that receives the prior approval of the TCEQ for the contaminants listed in 40 CFR Part 261.24, Table 1. Sewage sludge or biosolids failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal. Following failure of any TCLP test, the management or disposal of sewage sludge or biosolids at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge or biosolids no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division and the Regional Director (MC Region 12) within seven (7) days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped, and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Permitting and Registration Support Division (MC 129), Texas Commission on Environmental Quality, P.O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. The permittee shall submit the following information in an annual report to the TCEQ by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through TCEQ's website. If the permitee requests and obtains an electronic reporting waiver, the annual report can be submitted in hard copy to the TCEQ Regional Office (MC Region 12) and the Enforcement Division (MC 224).

2. Biosolids shall not be applied to the land if the concentration of the pollutants exceeds the pollutant concentration criteria in Table 1. The frequency of testing for pollutants in Table 1 is found in Section I.C. of this permit.

<u>Pollutant</u>	<u>Ceiling Concentration</u> (<u>Milligrams per kilogram</u>)*
Arsenic	75
Cadmium	85
Chromium	3000
Copper	4300
Lead	840
Mercury	57
Molybdenum	75
Nickel	420
PCBs	49
Selenium	100
Zinc	7500

TABLE 1

* Dry weight basis

3. Pathogen Control

All sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site must be treated by one of the following methods to ensure that the sludge meets either the Class A, Class AB or Class B biosolids pathogen requirements.

a. For sewage sludge to be classified as Class A biosolids with respect to pathogens, the density of fecal coliform in the sewage sludge must be less than 1,000 most probable number (MPN) per gram of total solids (dry weight basis), or the density of Salmonella sp. bacteria in the sewage sludge must be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met:

<u>Alternative 1</u> - The temperature of the sewage sludge that is used or disposed shall be maintained at or above a specific value for a period of time. See 30 TAC § 312.82(a)(2)(A) for specific information;

Alternative 5 (PFRP) - Sewage sludge that is used or disposed of must be treated in one of the Processes to Further Reduce Pathogens (PFRP) described in 40 CFR Part 503, Appendix B. PFRP include composting, heat drying, heat treatment, and thermophilic aerobic digestion; or

Alternative 6 (PFRP Equivalent) - Sewage sludge that is used or disposed of must be treated in a process that has been approved by the U. S. Environmental Protection Agency as being equivalent to those in Alternative 5.

b. For sewage sludge to be classified as Class AB biosolids with respect to pathogens, the density of fecal coliform in the sewage sludge must be less than 1,000 MPN per gram of total solids (dry weight basis), or the density of *Salmonella* sp. bacteria in the sewage sludge be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met:

<u>Alternative 2</u> - The pH of the sewage sludge that is used or disposed shall be raised to above 12 std. units and shall remain above 12 std. units for 72 hours.

The temperature of the sewage sludge shall be above 52° Celsius for 12 hours or longer during the period that the pH of the sewage sludge is above 12 std. units.

At the end of the 72-hour period during which the pH of the sewage sludge is above 12 std. units, the sewage sludge shall be air dried to achieve a percent solids in the sewage sludge greater than 50%; or

<u>Alternative 3</u> - The sewage sludge shall be analyzed for enteric viruses prior to pathogen treatment. The limit for enteric viruses is less than one Plaque-forming Unit per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC § 312.82(a)(2)(C)(i-iii) for specific information. The sewage sludge shall be analyzed for viable helminth ova prior to pathogen treatment. The limit for viable helminth ova is less than one per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC § 312.82(a)(2)(C)(iv-vi) for specific information; or

<u>Alternative 4</u> - The density of enteric viruses in the sewage sludge shall be less than one Plaque-forming Unit per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. The density of viable helminth ova in the sewage sludge shall be less than one per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed.

- c. Sewage sludge that meets the requirements of Class AB biosolids may be classified a Class A biosolids if a variance request is submitted in writing that is supported by substantial documentation demonstrating equivalent methods for reducing odors and written approval is granted by the executive director. The executive director may deny the variance request or revoke that approved variance if it is determined that the variance may potentially endanger human health or the environment, or create nuisance odor conditions.
- d. Three alternatives are available to demonstrate compliance with Class B biosolids criteria.

<u>Alternative 1</u>

- i. A minimum of seven random samples of the sewage sludge shall be collected within 48 hours of the time the sewage sludge is used or disposed of during each monitoring episode for the sewage sludge.
- ii. The geometric mean of the density of fecal coliform in the samples collected shall be less than either 2,000,000 MPN per gram of total solids (dry weight basis) or 2,000,000 Colony Forming Units per gram of total solids (dry weight basis).

<u>Alternative 2</u> - Sewage sludge that is used or disposed of shall be treated in one of the Processes to Significantly Reduce Pathogens (PSRP) described in 40 CFR Part 503, Appendix B, so long as all of the following requirements are met by the generator of the sewage sludge.

- i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;
- ii. An independent Texas Licensed Professional Engineer must make a certification to the generator of a sewage sludge that the wastewater treatment facility generating the sewage sludge is designed to achieve one of the PSRP at the permitted design loading of the facility. The certification need only be repeated if the design loading of the facility is increased. The certification shall include a statement indicating the design meets all the applicable standards specified in Appendix B of 40 CFR Part 503;
- iii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iv. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review; and
- v. If the sewage sludge is generated from a mixture of sources, resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the PSRP, and shall meet the certification, operation, and record keeping requirements of this paragraph.

<u>Alternative 3</u> - Sewage sludge shall be treated in an equivalent process that has been approved by the U.S. Environmental Protection Agency, so long as all of the following requirements are met by the generator of the sewage sludge.

i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;

- ii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iii. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review;
- iv. The Executive Director will accept from the U.S. Environmental Protection Agency a finding of equivalency to the defined PSRP; and
- v. If the sewage sludge is generated from a mixture of sources resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the Processes to Significantly Reduce Pathogens, and shall meet the certification, operation, and record keeping requirements of this paragraph.

In addition to the Alternatives 1 - 3, the following site restrictions must be met if Class B biosolids are land applied:

- i. Food crops with harvested parts that touch the biosolids/soil mixture and are totally above the land surface shall not be harvested for 14 months after application of biosolids.
- ii. Food crops with harvested parts below the surface of the land shall not be harvested for 20 months after application of biosolids when the biosolids remain on the land surface for 4 months or longer prior to incorporation into the soil.
- iii. Food crops with harvested parts below the surface of the land shall not be harvested for 38 months after application of biosolids when the biosolids remain on the land surface for less than 4 months prior to incorporation into the soil.
- iv. Food crops, feed crops, and fiber crops shall not be harvested for 30 days after application of biosolids.
- v. Domestic livestock shall not be allowed to graze on the land for 30 days after application of biosolids.
- vi. Turf grown on land where biosolids are applied shall not be harvested for 1 year after application of the biosolids when the harvested turf is placed on either land with a high potential for public exposure or a lawn.
- vii. Public access to land with a high potential for public exposure shall be restricted for 1 year after application of biosolids.
- viii. Public access to land with a low potential for public exposure shall be restricted

for 30 days after application of biosolids.

- ix. Land application of biosolids shall be in accordance with the buffer zone requirements found in 30 TAC § 312.44.
- 4. Vector Attraction Reduction Requirements

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site shall be treated by one of the following Alternatives 1 through 10 for vector attraction reduction.

- <u>Alternative 1</u> The mass of volatile solids in the sewage sludge shall be reduced by a minimum of 38%.
- <u>Alternative 2</u> If Alternative 1 cannot be met for an anaerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge anaerobically in the laboratory in a bench-scale unit for 40 additional days at a temperature between 30° and 37° Celsius. Volatile solids must be reduced by less than 17% to demonstrate compliance.
- <u>Alternative 3</u> If Alternative 1 cannot be met for an aerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge with percent solids of two percent or less aerobically in the laboratory in a bench-scale unit for 30 additional days at 20° Celsius. Volatile solids must be reduced by less than 15% to demonstrate compliance.
- <u>Alternative 4</u> The specific oxygen uptake rate (SOUR) for sewage sludge treated in an aerobic process shall be equal to or less than 1.5 milligrams of oxygen per hour per gram of total solids (dry weight basis) at a temperature of 20° Celsius.
- <u>Alternative 5</u> Sewage sludge shall be treated in an aerobic process for 14 days or longer. During that time, the temperature of the sewage sludge shall be higher than 40° Celsius and the average temperature of the sewage sludge shall be higher than 45° Celsius.
- <u>Alternative 6</u> The pH of sewage sludge shall be raised to 12 or higher by alkali addition and, without the addition of more alkali shall remain at 12 or higher for two hours and then remain at a pH of 11.5 or higher for an additional 22 hours at the time the sewage sludge is prepared for sale or given away in a bag or other container.
- <u>Alternative 7</u> The percent solids of sewage sludge that does not contain unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 75% based on the moisture content and total solids prior to mixing with other materials. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.
- <u>Alternative 8</u> The percent solids of sewage sludge that contains unstabilized solids

generated in a primary wastewater treatment process shall be equal to or greater than 90% based on the moisture content and total solids prior to mixing with other materials at the time the sludge is used. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

- <u>Alternative 9</u> i. Biosolids shall be injected below the surface of the land.
 - ii. No significant amount of the biosolids shall be present on the land surface within one hour after the biosolids are injected.
 - iii. When sewage sludge that is injected below the surface of the land is Class A or Class AB with respect to pathogens, the biosolids shall be injected below the land surface within eight hours after being discharged from the pathogen treatment process.
- <u>Alternative 10</u>- i. Biosolids applied to the land surface or placed on a surface disposal site shall be incorporated into the soil within six hours after application to or placement on the land.
 - ii. When biosolids that are incorporated into the soil is Class A or Class AB with respect to pathogens, the biosolids shall be applied to or placed on the land within eight hours after being discharged from the pathogen treatment process.

C. Monitoring Requirements

Toxicity Characteristic Leaching Procedure	- annually
(TCLP) Test	
PCBs	- annually

All metal constituents and fecal coliform or *Salmonella* sp. bacteria shall be monitored at the appropriate frequency shown below, pursuant to 30 TAC § 312.46(a)(1):

Monitoring Frequency
Once/Year
Once/Quarter
Once/Two Months
Once/Month

(*) The amount of bulk biosolids applied to the land (dry wt. basis).

Representative samples of sewage sludge shall be collected and analyzed in accordance with the methods referenced in 30 TAC § 312.7

Identify each of the analytic methods used by the facility to analyze enteric viruses, fecal

coliforms, helminth ova, *Salmonella* sp., and other regulated parameters.

Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.

Identify the nature of material generated by the facility (such as a biosolid for beneficial use or land-farming, or sewage sludge or biosolids for disposal at a monofill) and whether the material is ultimately conveyed off-site in bulk or in bags.

SECTION II. REQUIREMENTS SPECIFIC TO BULK SEWAGE SLUDGE OR BIOSOLIDS FOR APPLICATION TO THE LAND MEETING CLASS A, CLASS AB or B PATHOGEN REDUCTION AND THE CUMULATIVE LOADING RATES IN TABLE 2, OR CLASS B PATHOGEN REDUCTION AND THE POLLUTANT CONCENTRATIONS IN TABLE 3

For those permittees meeting Class A, Class AB or B pathogen reduction requirements and that meet the cumulative loading rates in Table 2 below, or the Class B pathogen reduction requirements and contain concentrations of pollutants below listed in Table 3, the following conditions apply:

A. Pollutant Limits

	Table 2	
Pollutant Arsenic Cadmium Chromium Copper Lead Mercury Molybdenum Nickel Selenium Zinc		Cumulative Pollutant Loading Rate (<u>pounds per acre</u>)* 36 35 2677 1339 268 15 Report Only 375 89 2500
	Table 3	
<u>Pollutant</u> Arsenic Cadmium Chromium Copper Lead Mercury		Monthly Average Concentration (<u>milligrams per kilogram</u>)* 41 39 1200 1500 300 17

B. Pathogen Control

Molvbdenum

Nickel

Zinc

Selenium

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, a reclamation site, shall be treated by either Class A, Class AB or Class B biosolids pathogen reduction requirements as defined above in Section I.B.3.

*Dry weight basis

Report Only

420

2800

36

C. Management Practices

- 1. Bulk biosolids shall not be applied to agricultural land, forest, a public contact site, or a reclamation site that is flooded, frozen, or snow-covered so that the bulk sewage sludge enters a wetland or other waters in the State.
- 2. Bulk biosolids not meeting Class A requirements shall be land applied in a manner which complies with Applicability in accordance with 30 TAC §312.41 and the Management Requirements in accordance with 30 TAC § 312.44.
- 3. Bulk biosolids shall be applied at or below the agronomic rate of the cover crop.
- 4. An information sheet shall be provided to the person who receives bulk Class A or AB biosolids sold or given away. The information sheet shall contain the following information:
 - a. The name and address of the person who prepared the Class A or AB biosolids that are sold or given away in a bag or other container for application to the land.
 - b. A statement that application of the biosolids to the land is prohibited except in accordance with the instruction on the label or information sheet.
 - c. The annual whole sludge application rate for the biosolids application rate for the biosolids that does not cause any of the cumulative pollutant loading rates in Table 2 above to be exceeded, unless the pollutant concentrations in Table 3 found in Section II above are met.

D. Notification Requirements

- 1. If bulk biosolids are applied to land in a State other than Texas, written notice shall be provided prior to the initial land application to the permitting authority for the State in which the bulk biosolids are proposed to be applied. The notice shall include:
 - a. The location, by street address, and specific latitude and longitude, of each land application site.
 - b. The approximate time period bulk biosolids will be applied to the site.
 - c. The name, address, telephone number, and National Pollutant Discharge Elimination System permit number (if appropriate) for the person who will apply the bulk biosolids.
- 2. The permittee shall give 180 days prior notice to the Executive Director in care of the Wastewater Permitting Section (MC 148) of the Water Quality Division of any change planned in the biosolids disposal practice.

E. Record Keeping Requirements

The documents will be retained at the facility site and/or shall be readily available for review by a TCEQ representative. The person who prepares bulk sewage sludge or a biosolids material shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative for a period of <u>five years</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply.

- 1. The concentration (mg/kg) in the sludge of each pollutant listed in Table 3 above and the applicable pollutant concentration criteria (mg/kg), <u>or</u> the applicable cumulative pollutant loading rate and the applicable cumulative pollutant loading rate limit (lbs/ac) listed in Table 2 above.
- 2. A description of how the pathogen reduction requirements are met (including site restrictions for Class AB and Class B biosolids, if applicable).
- 3. A description of how the vector attraction reduction requirements are met.
- 4. A description of how the management practices listed above in Section II.C are being met.
- 5. The following certification statement:

"I certify, under penalty of law, that the applicable pathogen requirements in 30 TAC § 312.82(a) or (b) and the vector attraction reduction requirements in 30 TAC § 312.83(b) have been met for each site on which bulk biosolids are applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices have been met. I am aware that there are significant penalties for false certification including fine and imprisonment."

- 6. The recommended agronomic loading rate from the references listed in Section II.C.3. above, as well as the actual agronomic loading rate shall be retained. The person who applies bulk biosolids shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative <u>indefinitely</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply:
 - a. A certification statement that all applicable requirements (specifically listed) have been met, and that the permittee understands that there are significant penalties for false certification including fine and imprisonment. See 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii), as applicable, and to the permittee's specific sludge treatment activities.
 - b. The location, by street address, and specific latitude and longitude, of each site on which biosolids are applied.
 - c. The number of acres in each site on which bulk biosolids are applied.
 - d. The date and time biosolids are applied to each site.
 - e. The cumulative amount of each pollutant in pounds/acre listed in Table 2 applied to each site.
 - f. The total amount of biosolids applied to each site in dry tons.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

F. Reporting Requirements

The permittee shall submit the following information in an annual report to the TCEQ by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through TCEQ's website. If the permitee requests and obtains an electronic reporting waiver, the annual report can be submitted in hard copy to the TCEQ Regional Office (MC Region 12) and the Enforcement Division (MC 224).

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. Identify the nature of material generated by the facility (such as a biosolid for beneficial use or land-farming, or sewage sludge for disposal at a monofill) and whether the material is ultimately conveyed off-site in bulk or in bags.
- 3. Results of tests performed for pollutants found in either Table 2 or 3 as appropriate for the permittee's land application practices.
- 4. The frequency of monitoring listed in Section I.C. that applies to the permittee.
- 5. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 6. PCB concentration in sludge or biosolids in mg/kg.
- 7. Identity of hauler(s) and TCEQ transporter number.
- 8. Date(s) of transport.
- 9. Texas Commission on Environmental Quality registration number, if applicable.
- 10. Amount of sludge or biosolids disposal dry weight (lbs/acre) at each disposal site.
- 11. The concentration (mg/kg) in the sludge of each pollutant listed in Table 1 (defined as a monthly average) as well as the applicable pollutant concentration criteria (mg/kg) listed in Table 3 above, or the applicable pollutant loading rate limit (lbs/acre) listed in Table 2 above if it exceeds 90% of the limit.
- 12. Level of pathogen reduction achieved (Class A, Class AB or Class B).
- 13. Alternative used as listed in Section I.B.3.(a. or b.). Alternatives describe how the pathogen reduction requirements are met. If Class B biosolids, include information on how site restrictions were met.
- 14. Identify each of the analytic methods used by the facility to analyze enteric viruses, fecal coliforms, helminth ova, *Salmonella* sp., and other regulated parameters.
- 15. Vector attraction reduction alternative used as listed in Section I.B.4.

- 16. Amount of sludge or biosolids transported in dry tons/year.
- 17. The certification statement listed in either 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii) as applicable to the permittee's sludge or biosolids treatment activities, shall be attached to the annual reporting form.
- 18. When the amount of any pollutant applied to the land exceeds 90% of the cumulative pollutant loading rate for that pollutant, as described in Table 2, the permittee shall report the following information as an attachment to the annual reporting form.
 - a. The location, by street address, and specific latitude and longitude.
 - b. The number of acres in each site on which bulk biosolids are applied.
 - c. The date and time bulk biosolids are applied to each site.
 - d. The cumulative amount of each pollutant (i.e., pounds/acre) listed in Table 2 in the bulk biosolids applied to each site.
 - e. The amount of biosolids (i.e., dry tons) applied to each site.

The above records shall be maintained on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION III. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE OR BIOSOLIDS DISPOSED IN A MUNICIPAL SOLID WASTE LANDFILL

- A. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC § 330 and all other applicable state and federal regulations to protect public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present. The permittee shall ensure that the sewage sludge meets the requirements in 30 TAC § 330 concerning the quality of the sludge or biosolids disposed in a municipal solid waste landfill.
- B. If the permittee generates sewage sludge and supplies that sewage sludge or biosolids to the owner or operator of a municipal solid waste landfill (MSWLF) for disposal, the permittee shall provide to the owner or operator of the MSWLF appropriate information needed to be in compliance with the provisions of this permit.
- C. The permittee shall give 180 days prior notice to the Executive Director in care of the Wastewater Permitting Section (MC 148) of the Water Quality Division of any change planned in the sewage sludge or biosolids disposal practice.
- D. Sewage sludge or biosolids shall be tested annually in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I (Toxicity Characteristic Leaching Procedure) or other method, which receives the prior approval of the TCEQ for contaminants listed in Table 1 of 40 CFR § 261.24. Sewage sludge or biosolids failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal.

Following failure of any TCLP test, the management or disposal of sewage sludge or biosolids at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge or biosolids no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division and the Regional Director (MC Region 12) of the appropriate TCEQ field office within 7 days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped, and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Permitting and Registration Support Division (MC 129), Texas Commission on Environmental Quality, P. O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. This annual report shall be submitted to the TCEQ Regional Office (MC Region 12) and the Enforcement Division (MC 224), by September 30 of each year.

- E. Sewage sludge or biosolids shall be tested as needed, in accordance with the requirements of 30 TAC Chapter 330.
- F. Record Keeping Requirements

The permittee shall develop the following information and shall retain the information for five years.

- 1. The description (including procedures followed and the results) of all liquid Paint Filter Tests performed.
- 2. The description (including procedures followed and results) of all TCLP tests performed.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

G. Reporting Requirements

The permittee shall submit the following information in an annual report to the TCEQ by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through TCEQ's website. If the permitee requests and obtains an electronic reporting waiver, the annual report can be submitted in hard copy to the TCEQ Regional Office (MC Region 12) and the Enforcement Division (MC 224).

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 3. Annual sludge or biosolids production in dry tons/year.
- 4. Amount of sludge or biosolids disposed in a municipal solid waste landfill in dry tons/year.
- 5. Amount of sludge or biosolids transported interstate in dry tons/year.
- 6. A certification that the sewage sludge or biosolids meets the requirements of 30 TAC § 330 concerning the quality of the sludge disposed in a municipal solid waste landfill.
- 7. Identity of hauler(s) and transporter registration number.
- 8. Owner of disposal site(s).
- 9. Location of disposal site(s).
- 10. Date(s) of disposal.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION IV. REQUIREMENTS APPLYING TO SLUDGE OR BIOSOLIDS TRANSPORTED TO ANOTHER FACILITY FOR FURTHER PROCESSING

These provisions apply to sludge or biosolids that is transported to another wastewater treatment facility or facility that further processes sludge or biosolids. These provisions are intended to allow transport of sludge or biosolids to facilities that have been authorized to accept sludge or biosolids. These provisions do not limit the ability of the receiving facility to determine whether to accept the sludge or biosolids, nor do they limit the ability of the receiving facility to request additional testing or documentation.

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC Chapter 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge.
- 2. Sludge or biosolids may only be transported using a registered transporter or using an approved pipeline.

B. Record Keeping Requirements

- 1. For sludge transported by an approved pipeline, the permittee must maintain records of the following:
 - a. the amount of sludge or biosolids transported;
 - b. the date of transport;
 - c. the name and TCEQ permit number of the receiving facility or facilities;
 - d. the location of the receiving facility or facilities;
 - e. the name and TCEQ permit number of the facility that generated the waste; and
 - f. copy of the written agreement between the permittee and the receiving facility to accept sludge or biosolids.
- 2. For sludge or biosolids transported by a registered transporter, the permittee must maintain records of the completed trip tickets in accordance with 30 TAC § 312.145(a)(1)-(7) and amount of sludge or biosolids transported.
- 3. The above records shall be maintained on-site on a monthly basis and shall be made available to the TCEQ upon request. These records shall be retained for at least five years.

C. Reporting Requirements

The permittee shall submit the following information in an annual report to the TCEQ by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through TCEQ's website. If the permitee requests and obtains an electronic reporting waiver, the annual report can be submitted in hard copy to the TCEQ Regional Office (MC Region 12) and the Enforcement Division (MC 224).

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. the annual sludge or biosolids production;
- 3. the amount of sludge or biosolids transported;
- 4. the owner of each receiving facility;
- 5. the location of each receiving facility; and
- 6. the date(s) of disposal at each receiving facility.

TCEQ Revision 06/2020

OTHER REQUIREMENTS

1. The permittee shall employ or contract with one or more licensed wastewater treatment facility operators or wastewater system operations companies holding a valid license or registration according to the requirements of 30 TAC Chapter 30, Occupational Licenses and Registrations, and in particular 30 TAC Chapter 30, Subchapter J, Wastewater Operators and Operations Companies.

This Category B facility must be operated by a chief operator or an operator holding a Class B license or higher. The facility must be operated a minimum of five days per week by the licensed chief operator or an operator holding the required level of license or higher. The licensed chief operator or operator holding the required level of license or higher must be available by telephone or pager seven days per week. Where shift operation of the wastewater treatment facility is necessary, each shift that does not have the on-site supervision of the licensed chief operator must be supervised by an operator in charge who is licensed not less than one level below the category for the facility.

- 2. The Executive Director has reviewed this action for consistency with the goals and policies of the Texas Coastal Management Program (CMP) in accordance with the regulations of the General Land Office (GLO) and has determined that the action is consistent with the applicable CMP goals and policies.
- 3. Chronic toxic criteria apply at the edge of the chronic aquatic life mixing zone. The mixing zone is defined as a volume within a radius of 100 feet from the point of discharge.
- 4. The permittee submitted evidence of legal restrictions prohibiting residential structures within the part of the buffer zone not owned by the permittee according to 30 TAC § 309.13(e)(3) (on file). The permittee shall comply with the requirements of 30 TAC § 309.13(a) through (d). (See Attachment A.)
- In accordance with 30 TAC § 319.9, a permittee that has at least twelve months of 5. uninterrupted compliance with its bacteria limit may notify the commission in writing of its compliance and request a less frequent measurement schedule. To request a less frequent schedule, the permittee shall submit a written request to the TCEQ Wastewater Permitting Section (MC 148) for each phase that includes a different monitoring frequency. The request must contain all of the reported bacteria values (Daily Avg. and Daily Max/Single Grab) for the twelve consecutive months immediately prior to the request. If the Executive Director finds that a less frequent measurement schedule is protective of human health and the environment, the permittee may be given a less frequent measurement schedule. For this permit, one/week may be reduced to two/month in both phases. A violation of any bacteria limit by a facility that has been granted a less frequent measurement schedule will require the permittee to return to the standard frequency schedule and submit written notice to the TCEQ Wastewater Permitting Section (MC 148). The permittee may not apply for another reduction in measurement frequency for at least 24 months from the date of the last violation. The Executive Director may establish a more frequent measurement schedule if necessary to protect human health or the environment.
- 6. Prior to construction of the Final phase treatment facility, the permittee shall submit to the TCEQ Wastewater Permitting Section (MC 148) a summary transmittal letter in accordance with the requirements in 30 TAC § 217.6(d). If requested by the Wastewater Permitting

Section, the permittee shall submit plans, specifications, and a final engineering design report which comply with 30 TAC Chapter 217, Design Criteria for Domestic Wastewater Systems. The permittee shall clearly show how the treatment system will meet the effluent limitations required on Page 2a of this permit. A copy of the summary transmittal letter shall be available at the plant site for inspection by authorized representatives of the TCEQ.

- 7. The permittee shall notify the TCEQ Regional Office (MC Region 12) and the Applications Review and Processing Team (MC 148) of the Water Quality Division in writing at least forty-five days prior to the completion of the new facility on Notification of Completion Form 20007.
- 8. Violations of daily maximum limitations for the following pollutants shall be reported orally or by facsimile to TCEQ Region 12 within 24 hours from the time the permittee becomes aware of the violation followed by a written report within five working days to the TCEQ Region 12 Office and the Enforcement Division (MC 224).

<u>POLLUTANT</u>	<u>MAL, μg/L</u>
Total Copper	2.0

Test methods utilized shall be sensitive enough to demonstrate compliance with the permit effluent limitations. Permit compliance/noncompliance determinations will be based on the effluent limitations contained in this permit with consideration given to the minimum analytical level (MAL) for the parameters specified above.

When an analysis of an effluent sample for any of the parameters listed above indicates no detectable levels above the MAL and the test method detection level is as sensitive as the specified MAL, a value of zero shall be used for that measurement when making calculations for the self-reporting form. This applies to determinations of daily maximum concentration, calculations of loading and daily averages, and other reportable results.

When a reported value is zero based on this MAL provision, the permittee shall submit the following statement with the self-reporting form either as a separate attachment to the form or as a statement in the comments section of the form.

"The reported value(s) of zero for <u>[list parameter(s)]</u> on the self-reporting form for <u>[monitoring period date range]</u> is based on the following conditions: 1) the analytical method used had a method detection level as sensitive as the MAL specified in the permit, and 2) the analytical results contained no detectable levels above the specified MAL."

When an analysis of an effluent sample for a parameter indicates no detectable levels and the test method detection level is not as sensitive as the MAL specified in the permit, or an MAL is not specified in the permit for that parameter, the level of detection achieved shall be used for that measurement when making calculations for the self-reporting form. A zero may not be used.

CONTRIBUTING INDUSTRIES AND PRETREATMENT REQUIREMENTS

1. The permittee shall operate an industrial pretreatment program in accordance with Sections 402(b)(8) and (9) of the Clean Water Act, the General Pretreatment Regulations (40 CFR Part 403), and the approved **City of Galveston** publicly owned treatment works (POTW) pretreatment program submitted by the permittee. The pretreatment program was approved on **May 16, 1984**, and modified on **January 8, 1993**, and on **April 22, 2013** (Streamlining Rule).

The POTW pretreatment program is hereby incorporated by reference and shall be implemented in a manner consistent with the following requirements:

- a. Industrial user (IU) information shall be kept current according to 40 CFR §§403.8(f)(2)(i) and (ii) and updated at a frequency set forth in the approved pretreatment program to reflect the accurate characterization of all IUs.
- b. The frequency and nature of IU compliance monitoring activities by the permittee shall be consistent with the approved POTW pretreatment program and commensurate with the character, consistency, and volume of waste. The permittee is required to inspect and sample the effluent from each significant industrial user (SIU) at least once per year, except as specified in 40 CFR §403.8(f)(2)(v). This is in addition to any industrial self-monitoring activities.
- c. The permittee shall enforce and obtain remedies for IU noncompliance with applicable pretreatment standards and requirements and the approved POTW pretreatment program.
- d. The permittee shall control through permit, order, or similar means, the contribution to the POTW by each IU to ensure compliance with applicable pretreatment standards and requirements and the approved POTW pretreatment program. In the case of SIUs (identified as significant under 40 CFR §403.3(v)), this control shall be achieved through individual permits or general control mechanisms, in accordance with 40 CFR §403.8(f)(1)(iii).

Both individual and general control mechanisms must be enforceable and contain, at a minimum, the following conditions:

- (1) Statement of duration (in no case more than five years);
- (2) Statement of non-transferability without, at a minimum, prior notification to the POTW and provision of a copy of the existing control mechanism to the new owner or operator;
- (3) Effluent limits, which may include enforceable best management practices (BMPs), based on applicable general pretreatment standards, categorical pretreatment standards, local limits, and State and local law;
- (4) Self-monitoring, sampling, reporting, notification and record keeping requirements, identification of the pollutants to be monitored (including, if applicable, the process for seeking a waiver for a pollutant neither present nor expected to be present in the IU's discharge in accordance with 40 CFR §403.12(e)(2), or a specific waived pollutant in the case of an individual control mechanism), sampling location, sampling frequency, and sample type, based on the applicable general pretreatment standards in 40 CFR Part 403, categorical pretreatment standards, local limits, and State and local law;

- (5) Statement of applicable civil and criminal penalties for violation of pretreatment standards and requirements, and any applicable compliance schedule. Such schedules may not extend the compliance date beyond federal deadlines; and
- (6) Requirements to control slug discharges, if determined by the POTW to be necessary.
- e. For those IUs who are covered by a general control mechanism, in order to implement 40 CFR §403.8(f)(1)(iii)(A)(2), a monitoring waiver for a pollutant neither present nor expected to be present in the IU's discharge is not effective in the general control mechanism until after the POTW has provided written notice to the SIU that such a waiver request has been granted in accordance with 40 CFR §403.12(e)(2).
- f. The permittee shall evaluate whether each SIU needs a plan or other action to control slug discharges, in accordance with 40 CFR §403.8(f)(2)(vi). If the POTW decides that a slug control plan is needed, the plan shall contain at least the minimum elements required in 40 CFR §403.8(f)(2)(vi).
- g. The permittee shall provide adequate staff, equipment, and support capabilities to carry out all elements of the pretreatment program.
- h. The approved program shall not be modified by the permittee without the prior approval of the Executive Director, according to 40 CFR §403.18.
- 2. The permittee is under a continuing duty to establish and enforce specific local limits to implement the provisions of 40 CFR §403.5, develop and enforce local limits as necessary, and modify the approved pretreatment program as necessary to comply with federal, state, and local law, as amended. The permittee may develop BMPs to implement 40 CFR §403.5(c)(1) and (2). Such BMPs shall be considered local limits and pretreatment standards. The permittee is required to effectively enforce such limits and to modify its pretreatment program, including the Legal Authority, Enforcement Response Plan, and Standard Operating Procedures (including forms), if required by the Executive Director to reflect changing conditions at the POTW. Substantial modifications will be approved in accordance with 40 CFR §403.18, and modifications will become effective upon approval by the Executive Director in accordance with 40 CFR §403.18.

The permittee shall submit to the TCEQ Pretreatment Team (MC 148) of the Water Quality Division, within **sixty (60) days** of the issued date of this permit, either:

- 1) a written certification that a technical reassessment has been performed, and that the evaluation demonstrates that existing technically based local limits (TBLLs) attain the Texas Surface Water Quality Standards [30 TAC Chapter 307] in water in the state, and are adequate to prevent pass through of pollutants, inhibition of or interference with the treatment facility, worker health and safety problems, and sludge contamination [submit the Reassessment Form No. TCEQ-20221]; **or**
- 2) a written notification that a technical redevelopment of the current TBLLs, draft legal authority which incorporates such revisions, and any additional modifications to the pretreatment program, as required by 40 CFR Part 403 *[rev. 10/14/05]*, and applicable state and local law, including an Enforcement Response Plan and Standard Operating Procedures (including forms), will be submitted within **twelve**

(12) months of the issued date of TPDES Permit No. WQ0010688001 The POTW is required to evaluate any enforceable BMP loadings during the redevelopment of the current TBLLs. The technical redevelopment of the current TBLLs should be developed in accordance with EPA's *Local Limits Development Guidance*, July 2004, and EPA Region 6's Technically Based Local Limits Development Guidance, October 12, 1993. This submission shall be signed and certified by the permittee *[according to 40 CFR §122.41(k)]*.

3. The permittee shall analyze the treatment facility influent and effluent for the presence of the toxic pollutants listed in the Texas Surface Water Quality Standards [30 TAC Chapter 307], and 40 CFR Part 122, Appendix D, Table II at least **once per year** and the toxic pollutants listed in 40 CFR Part 122, Appendix D, Table III at least **once per six months**. If, based upon information available to the permittee, there is reason to suspect the presence of any toxic or hazardous pollutant listed in 40 CFR Part 122, Appendix D, Table III at least **Once per six months**. If, based upon information available to the permittee, there is reason to suspect the presence of any toxic or hazardous pollutant listed in 40 CFR Part 122, Appendix D, Table V, or any other pollutant, known or suspected to adversely affect treatment plant operation, receiving water quality, or solids disposal procedures, analysis for those pollutants shall be performed at least **once per six months** on both the influent and the effluent.

The influent and effluent samples collected shall be composite samples consisting of at least 12 aliquots collected at approximately equal intervals over a representative 24-hour period and composited according to flow. Sampling and analytical procedures shall be in accordance with guidelines established in 40 CFR Part 136, as amended; as approved by the EPA through the application for alternate test procedures; or as suggested in Tables E-1 and E-2 of the *Procedures to Implement the Texas Surface Water Quality Standards* (RG-194), June 2010, as amended and adopted by the TCEQ. The effluent samples shall be analyzed to the minimum analytical level (MAL), if necessary, to determine compliance with the daily average water quality based effluent concentration from the TCEQ's Texas Toxicity Modeling Program (TEXTOX) and other applicable water quality discharge standards. Where composite samples are inappropriate due to sampling, holding time, or analytical constraints, at least four (4) grab samples shall be taken at equal intervals over a representative 24-hour period.

4. The permittee shall prepare annually a list of IUs, which during the preceding twelve (12) months were in significant noncompliance (SNC) with applicable pretreatment requirements. For the purposes of this section of the permit, "CONTRIBUTING INDUSTRIES AND PRETREATMENT REQUIREMENTS," SNC shall be determined based upon the more stringent of either criteria established at 40 CFR §403.8(f)(2)(viii) *[rev. 10/14/05]* or criteria established in the approved POTW pretreatment program. This list is to be published annually during the month of **January** in a newspaper of general circulation that provides meaningful public notice within the jurisdiction(s) served by the POTW.

In addition, each **January** the permittee shall submit an updated pretreatment program annual status report, in accordance with 40 CFR §§403.12(i) [*rev. 10/22/15*] and (m), to the TCEQ Pretreatment Team (MC148) of the Water Quality Division. The report summary shall be submitted on the Pretreatment Performance Summary (PPS) form [TCEQ-20218]. The report shall contain the following information as well as the information on the tables in this section:

a. An updated list of all regulated IUs as indicated in this section. For each listed IU, the following information shall be included:

- (1) Standard Industrial Classification (SIC) or North American Industry Classification System (NAICS) code *and* categorical determination.
- (2) If the pretreatment program has been modified and approved to incorporate reduced monitoring for any of the categorical IUs as provided by 40 CFR Part 403 [*rev.* 10/14/05], then the list must also identify:
 - categorical IUs subject to the conditions for reduced monitoring and reporting requirements under 40 CFR § 403.12(e)(1) [*rev. 10/22/15*] and (3);
 - those IUs that are non-significant categorical industrial users (NSCIUs) under 40 CFR §403.3(v)(2); and
 - those IUs that are middle tier categorical industrial users (MTCIUs) under 40 CFR §403.12(e)(3).
- (3) Control mechanism status.
 - Indicate whether the IU has an effective individual or general control mechanism, and the date such control mechanism was last issued, reissued, or modified;
 - Indicate which IUs were added to the system, or newly identified, during the pretreatment year reporting period;
 - Include the type of general control mechanisms; and
 - Report all NSCIU annual evaluations performed, as applicable.
- (4) A summary of all compliance monitoring activities performed by the POTW during the pretreatment year reporting period. The following information shall be reported:
 - Total number of inspections performed; and
 - Total number of sampling events conducted.
- (5) Status of IU compliance with effluent limitations, reporting, and narrative standard (which may include enforceable BMPs, narrative limits, and/or operational standards) requirements. Compliance status shall be defined as follows:
 - Compliant (C) no violations during the pretreatment year reporting period;
 - Non-compliant (NC) one or more violations during the pretreatment year reporting period but does not meet the criteria for SNC; and
 - Significant Noncompliance (SNC) in accordance with requirements described above in this section.

- (6) For noncompliant IUs, indicate the nature of the violations, the type and number of actions taken (notice of violation, administrative order, criminal or civil suit, fines or penalties collected, etc.), and the current compliance status. If any IU was on a schedule to attain compliance with effluent limits or narrative standards, indicate the date the schedule was issued and the date compliance is to be attained.
- b. A list of each IU whose authorization to discharge was terminated or revoked during the pretreatment year reporting period and the reason for termination.
- c. A report on any interference, pass through, Act of God, or POTW permit violations known or suspected to be caused by IUs and response actions taken by the permittee.
- d. The results of all influent and effluent analyses performed pursuant to Item 3 of this section.
- e. An original newspaper public notice, or copy of the newspaper publication with official affidavit, of the list of IUs that meet the criteria of SNC, giving the name of the newspaper and date the list was published.
- f. The daily average water quality based effluent concentrations (from the TCEQ's Texas Toxicity Modeling Program (TexTox)) necessary to attain the Texas Surface Water Quality Standards, 30 TAC Chapter 307, in water in the state.
- g. The maximum allowable headworks loading (MAHL) in pounds per day (lb/day) of the approved TBLLs or for each pollutant of concern (POC) for which the permittee has calculated a MAHL. In addition, the influent loading as a percent of the MAHL, using the annual average flow of the wastewater treatment plant in million gallons per day (MGD) during the pretreatment year reporting period, for each pollutant that has an adopted TBLL or for each POC for which the permittee has calculated a MAHL. (*See Endnotes No. 2 at the end of this section for the influent loading as a percent of the MAHL equation.*)
- h. The permittee may submit the updated pretreatment program annual status report information in tabular form using the example table format provided. Please attach, on a separate sheet, explanations to document the various pretreatment activities, including IU permits that have expired, BMP violations, and any sampling events that were not conducted by the permittee as required.
- i. A summary of changes to the POTW's approved pretreatment program that have not been previously reported to the Approval Authority.

Effective December 21, 2025, the permittee must submit the updated pretreatment program annual status report required by this section electronically using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. *[rev. Federal Register/ Vol. 80/ No. 204/ Friday, October 22, 2015/ Rules and Regulations, pages 64064-64158].*

5. The permittee shall provide adequate written notification to the Executive Director, care of the Wastewater Permitting Section (MC 148) of the Water Quality Division, within 30 days

of the permittee's knowledge of the following:

- a. Any new introduction of pollutants into the treatment works from an indirect discharger that would be subject to Sections 301 and 306 of the Clean Water Act, if the indirect discharger was directly discharging those pollutants; and
- b. Any substantial change in the volume or character of pollutants being introduced into the treatment works by a source introducing pollutants into the treatment works at the time of issuance of the permit.

Adequate notice shall include information on the quality and quantity of effluent to be introduced into the treatment works and any anticipated impact of the change on the quality or quantity of effluent to be discharged from the POTW.

Revised March 2022

TPDES Pretreatment Program Annual Report Form for Updated Industrial Users List

Reporting month/year: _____, ____ to _____, ____

TPDES Permit No.: Permittee: Treatment Plant:

PRE	FREATM	IENT	' PR(OGRA	M ST	TATUS	REP	ORT	' UPI	DAT	ΈD	INDU	STRL	AL US	ERS1	LIST
ə	e CONTROL MECHANISM					he CA	le CA		C = (uring t Re Compli	PLIAN he Pret porting ant, NC ificant	reatme g Perioc C = Nor	ent Ye 14 1comp	oliant,		
User Name	Code		or NR			or N)	ed by the	l by the		RI	EPORT	S				
Industrial User	SIC or NAICS Code	CIU ²	Y/N or NR5	IND or GEN or	Last Action ⁶	TBLLs or TBLLs only ⁷	New User ³ (Y	Times Inspected	Times Sampled	BMR	90-Day	Semi- Annual	Self- Monitoring ⁸	NSCIU Certifications	Effluent Limits	Narrative Standards

- Include all significant industrial users (SIUs), non-significant categorical industrial users (NSCIUs) as 1 defined in 40 CFR §403.3(v)(2), and/or middle tier categorical industrial users (MTCIUs) as defined in 40 CFR §403.12(e)(3). Please do not include non-significant noncategorical IUs that are covered under best management practices (BMPs) or general control mechanisms.
- Categorical determination (include 40 CFR citation and NSCIU or MTCIU status, if applicable). 2
- Indicate whether the IU is a new user. If the answer is No or N, then indicate the expiration date of the 3 last issued IU permit.
- The term SNC applies to a broader range of violations, such as daily maximum, long-term average, 4 instantaneous limits, and narrative standards (which may include enforceable BMPs, narrative limits and/or operational standards). Any other violation, or group of violations, which the POTW determines will adversely affect the operation or implementation of the local Pretreatment Program now includes BMP violations (40 CFR §403.8(f)(2)(viii)(H)).
- Code NR= None required (NSCIUs only): IND = individual control mechanism: GEN = general control 5 mechanism. Include as a footnote (or on a separate page) the name of the general control mechanism used for similar groups of IUs, identify the similar types of operations and types of wastes that are the same for each general control mechanism. Any BMPs through general control mechanisms that are applied to nonsignificant IUs need to be reported separately, e.g. the sector type and BMP description.
- Permit or NSCIU evaluations as applicable. 6
- According to 40 CFR §403.12(i)(1), indicate whether the IU is subject to technically based local limits 7 (TBLLs) that are more stringent than categorical pretreatment standards, e.g. where there is one endof-pipe sampling point at a CIU, and you have determined that the TBLLs are more stringent than the categorical pretreatment standards for any pollutant at the end-of-pipe sampling point; **OR** the IU is subject only to local limits (TBLLs only), e.g. the IU is a non-categorical SIU subject only to TBLLs at the end-of-pipe sampling point.
- For those IUs where a monitoring waiver has been granted, please add the code "W" (after either C, 8 NC. or SNC codes) and indicate the pollutant(s) for which the waiver has been granted.

TPDES Pretreatment Program Annual Report Form Revised July 2007 TCEQ-20218a

TPDES Pretreatment Program Annual Report Form for Industrial User Inventory Modifications

Reporting month/year: _____, ____ to _____, ____

TPDES Permit No: ______ Permittee: _____ Treatment Plant: _____

	INDUSTI	RIAL USER I	NVENTORY MC	DIFICATIONS	
FACILITY NAME,	ADD, CHANGE,	IF DELETION:	IF ADDITIO	ON OR SIGNIFICA	ANT CHANGE:
ADDRESS AND CONTACT PERSON	DELETE (Including categorical reclassification to NSCIU or MTCIU)	Reason For Deletion	PROCESS DESCRIPTION	POLLUTANTS (Including any sampling waiver given for each pollutant not present)	FLOW RATE ⁹ (In gpd) R = Regulated U = Unregulated T = Total

For NSCIUs, total flow must be given, if regulated flow is not determined. 9

TCEQ-20218b TPDES Pretreatment Program Annual Report Form

Revised July 2007

TPDES Pretreatment Program Annual Report Form for Enforcement Actions Taken

Reporting month/year: _____, ____ to _____, ____

 TPDES Permit No:
 Permittee:
 Treatment Plant:

Overall SNC % SNC ¹⁰ based on: Effluent Violations % Reporting Violations___% Narrative Standard Violations___%

	N	Jonc	ompli	ant In	dus	trial	Use	rs - l	Enfe	orceme	ent A	ctio	ns T	aken	
	Nature of Violation 11				Number of Actions Taken				d (Do arge)	Compliance Schedule			Returned (Y or N)		
Industrial User Name	Effluent Limits	Reports	NSCIU Certifications	Narrative Standards	NOV	A.O.	Civil	Criminal	Other	Penalties Collected (Do not Include Surcharge)	Y or N	Date Issued	Date Due	Current Status Rel to Compliance: (Y	Comments

10 <u># %</u>

Pretreatment Standards [WENDB-PSNC] (Local Limits/Categorical Standards)

_____ Reporting Requirements [WENDB-PSNC]

_____ Narrative Standards

Please specify a separate number for each type of violation, *e.g.* report, notification, 11 and/or NSCIU certification.

TCEQ-20218c TPDES Pretreatment Program Annual Report Form Revised July 2007

TPDES Pretreatment Program Annual Report Form for Influent and Effluent Monitoring Results¹

Reporting month/year:_____, ____ to _____, ____

 TPDES Permit No.:
 Permittee:
 Treatment Plant:

PRETREATMENT	F PROGRAM	INFL	UENT	AND	EFFL	UENT MO	ONITORI	NG RI	ESULI	ſS		
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in μg/L (Actual Concentration or < MAL)				Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in μg/L (Actual Concentration or < MAL) 4				
		Date	Date	Date	Date			Date	Date	Date	Date	
METALS, CYANIDE AND	PHENOLS											
Antimony, Total												
Arsenic, Total												
Beryllium, Total												
Cadmium, Total												
Chromium, Total												
Chromium (Hex)												
Chromium (Tri)₅												
Copper, Total												
Lead, Total												
Mercury, Total												
Nickel, Total												
Selenium, Total												
Silver, Total												
Thallium, Total												
Zinc, Total												

PRETREATMENT	PROGRAM	INFL	UENT	AND	EFFL	UENT MO	ONITORI	NG RI	ESUL	ГS	
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in μg/L (Actual Concentration or < MAL)			Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴				
	-	Date	Date	Date	Date			Date	Date	Date	Date
Cyanide, Available ⁶											
Cyanide, Total											
Phenols, Total											
VOLATILE COMPOUNDS	•				1	<u>. </u>			1	1	
Acrolein											
Acrylonitrile											
Benzene											
Bromoform							See TTHM				
Carbon Tetrachloride											
Chlorobenzene											
Chlorodibromomethane							See TTHM				
Chloroethane											
2-Chloroethylvinyl Ether											
Chloroform							See TTHM				
Dichlorobromomethane							See TTHM				
1,1-Dichloroethane											
1,2-Dichloroethane											
1,1-Dichloroethylene											
1,2-Dichloropropane											

PRETREATMENT	PROGRAM	INFL	UENT	AND	EFFL	UENT MO	ONITORI	NG RI	ESUL	ГS		
POLLUTANT	MAHL, if Applicable in lb/day		easure ual Co	uent d in µg ncentra MAL)		Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴				
		Date	Date Date Date					Date	Date	Date	Date	
1,3-Dichloropropylene												
Ethyl benzene												
Methyl Bromide												
Methyl Chloride												
Methylene Chloride												
1,1,2,2-Tetra-chloroethane												
Tetrachloroethylene												
Toluene												
1,2-Trans-Dichloroethylene												
1,1,1-Trichloroethane												
1,1,2-Trichloroethane												
Trichloroethylene												
Vinyl Chloride												
ACID COMPOUNDS	·		-	-							•	
2-Chlorophenol												
2,4-Dichlorophenol												
2,4-Dimethylphenol												
4,6-Dinitro-o-Cresol												
2,4-Dinitrophenol												
2-Nitrophenol												

PRETREATMENT	PROGRAM	INFL	UENT	AND	EFFL	UENT MO	DNITORI	NG RI	ESUL	ГS	
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in μg/L (Actual Concentration or < MAL)			Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴				
		Date Date Date Date					Date	Date	Date	Date	
4-Nitrophenol											
P-Chloro-m-Cresol											
Pentachlorophenol											
Phenol											
2,4,6-Trichlorophenol											
BASE/NEUTRAL COMPOU	JNDS								1	<u>I</u>	
Acenaphthene											
Acenaphthylene											
Anthracene											
Benzidine											
Benzo(a)Anthracene											
Benzo(a)Pyrene											
3,4-Benzofluoranthene											
Benzo(ghi)Perylene											
Benzo(k)Fluoranthene											
Bis(2- Chloroethoxy)Methane											
Bis(2-Chloroethyl)Ether											
Bis(2-Chloroisopropyl)Ether											
Bis(2-Ethylhexyl)Phthalate											
4-Bromophenyl Phenyl Ether											

PRETREATMEN	T PROGRAM	INFL	UENT	AND	EFFL	UENT MO	ONITORI	NG RI	ESUL	ГS		
POLLUTANT	MAHL, if Applicable in lb/day		easure ual Co	uent d in µg ncentr MAL)		Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴				
		Date	Date	Date	Date			Date	Date	Date	Date	
Butylbenzyl Phthalate												
2-Chloronaphthalene												
4-Chlorophenyl Phenyl Ether												
Chrysene												
Dibenzo(a,h)Anthracene												
1,2-Dichlorobenzene												
1,3-Dichlorobenzene												
1,4-Dichlorobenzene												
3,3-Dichlorobenzidine												
Diethyl Phthalate												
Dimethyl Phthalate												
Di-n-Butyl Phthalate												
2,4-Dinitrotoluene												
2,6-Dinitrotoluene												
Di-n-Octyl Phthalate												
1,2-Diphenyl Hydrazine												
Fluoranthene												
Fluorene												
Hexachlorobenzene												
Hexachlorobutadiene												

PRETREATMENT	PROGRAM	INFL	UENT	AND	EFFL	UENT MO	ONITORI	NG RI	ESUL	ГS	
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in μg/L (Actual Concentration or < MAL)			Average Influent % of the MAHL ²	Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴					
		Date	Date	Date	Date			Date	Date	Date	Date
Hexachloro- cyclopentadiene											
Hexachloroethane											
Indeno(1,2,3-cd)pyrene											
Isophorone											
Naphthalene											
Nitrobenzene											
N-Nitrosodimethylamine											
N-Nitrosodi-n-Propylamine											
N-Nitrosodiphenylamine											
Phenanthrene											
Pyrene											
1,2,4-Trichlorobenzene											
PESTICIDES										I	
Aldrin											
Alpha- hexachlorocyclohexane (BHC)											
beta-BHC											
gamma-BHC (Lindane)											
delta-BHC											
Chlordane											

PRETREATMENT	PROGRAM	INFL	UENT	AND	EFFL	UENT MO	ONITORI	NG RI	ESUL	ГS		
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in µg/L (Actual Concentration or < MAL)				Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	(Actual Concentration				
		Date	Date	Date	Date			Date	Date	Date	Date	
4,4-DDT												
4,4-DDE												
4,4-DDD												
Dieldrin												
alpha-Endosulfan												
beta-Endosulfan												
Endosulfan Sulfate												
Endrin												
Endrin Aldehyde												
Heptachlor												
Heptachlor Epoxide												
Polychlorinated biphenols (PCBs) The sum of PCB concentrations not to exceed daily average value.												
PCB-1242							See PCBs					
PCB-1254							See PCBs					
PCB-1221							See PCBs					
PCB-1232							See PCBs					
PCB-1248							See PCBs					
PCB-1260							See PCBs					

PRETREATMENT	PROGRAM	INFL	UENT	AND	EFFL	UENT MO	ONITORI	NG RI	ESUL	ГS	
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in μg/L (Actual Concentration or < MAL)			Average Influent % of the MAHL ² Daily Average Effluent Limit (µg/L) ³		Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴				
	-	Date	Date	Date	Date			Date	Date	Date	Date
PCB-1016							See PCBs				
Toxaphene											
ADDITIONAL TOXIC POI	LLUTANTS R	EGUI	ATEI) UNI	DER 3	o TAC CH	APTER 3	07	1	1	
Aluminum											
Barium											
Bis(chloromethyl)ether 7											
Carbaryl											
Chloropyrifos											
Cresols											
2,4-D											
Danitol ⁸											
Demeton											
Diazinon											
Dicofol											
Dioxin/Furans 9											
Diuron											
Epichlorohydrin 9											
Ethylene glycol 9											
Fluoride											
Guthion											

PRETREATMENT	PROGRAM	INFL	UENT	AND	EFFL	UENT MO	ONITORI	NG RI	ESUL	ГS	
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in μg/L (Actual Concentration or < MAL)			Average Influent % of the MAHL ²		Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴				
		Date	Date	Date	Date			Date	Date	Date	Date
Hexachlorophene											
4,4-Isopropylidenediphenol (bisphenol A) 9											
Malathion											
Methoxychlor											
Methyl Ethyl Ketone											
Methyl tert-butyl-ether (MTBE) 9											
Mirex											
Nitrate-Nitrogen											
N-Nitrosodiethylamine											
N-Nitroso-di-n-Butylamine											
Nonylphenol											
Parathion											
Pentachlorobenzene											
Pyridine											
1,2-Dibromoethane											
1,2,4,5-Tetrachlorobenzene											
2,4,5-TP (Silvex)											
Tributyltin 9											
2,4,5-Trichlorophenol											
TTHM (Total											

PRETREATMENT PROGRAM INFLUENT AND EFFLUENT MONITORING RESULTS											
POLLUTANT	MAHL, if Applicable in lb/day	Influent Measured in μg/L (Actual Concentration or < MAL)				Average Influent % of the MAHL ²	Daily Average Effluent Limit (µg/L) ³	(Act	Effluent Measured in μg/L (Actual Concentration or < MAL) ⁴		ation
		Date	Date	Date	Date			Date	Date	Date	Date
Trihalomethanes)											

Endnotes:

- 1. It is advised that the permittee collect the influent and effluent samples considering flow detention time through each wastewater treatment plant (WWTP).
- 2. The MAHL of the approved TBLLs or for each pollutant of concern (POC) for which the permittee has calculated a MAHL. Only complete the column labeled "Average Influent % of the MAHL," as a percentage, for pollutants that have approved TBLLs or for each POC for which the permittee has calculated a MAHL (U.S. Environmental Protection Agency *Local Limits Development Guidance*, July 2004, EPA933-R-04-002A).

The % of the MAHL is to be calculated using the following formulas:

Equation A: $L_{INF} = (C_{POLL} \times Q_{WWTP} \times 8.34) / 1000$

Equation B: $L_{\%}$ = (L_{INF} / MAHL) x 100

Where:	
$L_{INF} =$	Current Average (Avg) influent loading in lb/day
$C_{POLL} =$	Avg concentration in μ g/L of all influent samples collected during the pretreatment year.
Q _{WWTP} =	Annual average flow of the WWTP in MGD, defined as the arithmetic average of all daily flow determinations taken within the preceding 12 consecutive calendar months (or during the pretreatment year), and as described in the Definitions and Standard Permit Conditions section.
L% =	% of the MAHL
MAHL =	Calculated MAHL in lb/day
8.34 =	Unit conversion factor

- 3. Daily average effluent limit (metal values are for total metals) as derived by the Texas Toxicity Modeling Program (TexTox). Effluent limits as calculated are designed to be protective of the Texas Surface Water Quality Standards. The permittee shall determine and indicate which effluent limit is the most stringent between the 30 TAC Chapter 319, Subchapter B (Hazardous Metals) limit, TexTox values, or any applicable limit in the Effluent Limitations and Monitoring Requirements Section of this TPDES permit. Shaded blocks need not be filled in unless the permittee has received a permit requirement/limit for the particular parameter.
- 4. Minimum analytical levels (MALs) and analytical methods as suggested in Tables E-1 and E-2 of the *Procedures to Implement the Texas Surface Water Quality Standards* (June 2010), as amended and adopted by the TCEQ. Pollutants that are not detectable above the MAL need to be reported as less than (<) the MAL numeric value.
- 5. Report result by subtracting Hexavalent Chromium from Total Chromium.
- 6. Either the method for Amenable to Chlorination or Weak-Acid Dissociable is authorized.
- 7. Hydrolyzes in water. Will not require permittee to analyze at this time.
- 8. EPA procedure not approved. Will not require permittee to analyze at this time.
- 9. Analyses are not required at this time for these pollutants unless there is reason to believe that these pollutants may be present.

TCEQ-20218d TPDES Pretreatment Program Annual Report Form R

Revised February 2020

- 1. The following pollutants may not be introduced into the treatment facility:
 - a. Pollutants which create a fire or explosion hazard in the publicly owned treatment works (POTW), including, but not limited to, waste streams with a closed-cup flash point of less than 140° Fahrenheit (60° Celsius) using the test methods specified in 40 CFR § 261.21;
 - b. Pollutants which will cause corrosive structural damage to the POTW, but in no case shall there be discharges with a pH lower than 5.0 standard units, unless the works are specifically designed to accommodate such discharges;
 - c. Solid or viscous pollutants in amounts which will cause obstruction to the flow in the POTW, resulting in Interference;
 - d. Any pollutant, including oxygen-demanding pollutants (e.g., biochemical oxygen demand), released in a discharge at a flow rate and/or pollutant concentration which will cause Interference with the POTW;
 - e. Heat in amounts which will inhibit biological activity in the POTW, resulting in Interference, but in no case shall there be heat in such quantities that the temperature at the POTW treatment plant exceeds 104° Fahrenheit (40° Celsius) unless the Executive Director, upon request of the POTW, approves alternate temperature limits;
 - f. Petroleum oil, nonbiodegradable cutting oil, or products of mineral oil origin in amounts that will cause Interference or Pass Through;
 - g. Pollutants which result in the presence of toxic gases, vapors, or fumes within the POTW in a quantity that may cause acute worker health and safety problems; and
 - h. Any trucked or hauled pollutants except at discharge points designated by the POTW.
- 2. The permittee shall require any indirect discharger to the treatment works to comply with the reporting requirements of Sections 204(b), 307, and 308 of the Clean Water Act, including any requirements established under 40 CFR Part 403 [*rev. Federal Register/Vol.* 70/No. 198/ Friday, October 14, 2005/ Rules and Regulations, pages 60134-60798].
- 3. The permittee shall provide adequate notification to the Executive Director, care of the Wastewater Permitting Section (MC 148) of the Water Quality Division, within 30 days subsequent to the permittee's knowledge of either of the following:
 - a. Any new introduction of pollutants into the treatment works from an indirect discharger which would be subject to Sections 301 and 306 of the Clean Water Act if it were directly discharging those pollutants; and
 - b. Any substantial change in the volume or character of pollutants being introduced into the treatment works by a source introducing pollutants into the treatment works at the time of issuance of the permit.

Any notice shall include information on the quality and quantity of effluent to be introduced into the treatment works and any anticipated impact of the change on the quality or quantity of effluent to be discharged from the POTW.

Revised July 2007

BIOMONITORING REQUIREMENTS

CHRONIC BIOMONITORING REQUIREMENTS: MARINE

The provisions of this section apply to Outfall 001 for whole effluent toxicity (WET) testing.

- 1. <u>Scope, Frequency and Methodology</u>
 - a. The permittee shall test the effluent for toxicity in accordance with the provisions below. Such testing will determine if an appropriately dilute effluent sample adversely affects the survival or growth of the test organisms.
 - b. The permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified below and in accordance with "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms," third edition (EPA-821-R-02-014) or its most recent update:
 - 1) Chronic static renewal 7-day survival and growth test using the mysid shrimp (*Americamysis bahia*) (Method 1007.0). A minimum of eight replicates with five organisms per replicate shall be used in the control and in each dilution. This test shall be conducted once per quarter.
 - 2) Chronic static renewal 7-day larval survival and growth test using the inland silverside (*Menidia beryllina*) (Method 1006.0). A minimum of five replicates with eight organisms per replicate shall be used in the control and in each dilution. This test shall be conducted once per quarter.

The permittee must perform and report a valid test for each test species during the prescribed reporting period. An invalid test must be repeated during the same reporting period. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. The permittee shall use five effluent dilution concentrations and a control in each toxicity test. These effluent dilution concentrations are 6%, 8%, 11%, 15%, and 20% effluent. The critical dilution, defined as 15% effluent, is the effluent concentration representative of the proportion of effluent in the receiving water during critical low flow or critical mixing conditions.
- d. This permit may be amended to require a WET limit, a chemical-specific limit, a best management practice, or other appropriate actions to address toxicity. The permittee may be required to conduct a toxicity reduction evaluation (TRE) after multiple toxic events.
- e. Testing Frequency Reduction
 - 1) If none of the first four consecutive quarterly tests demonstrates significant toxicity, the permittee may submit this information in writing and, upon approval, reduce the testing frequency to once per six months

for the invertebrate test species and once per year for the vertebrate test species.

2) If one or more of the first four consecutive quarterly tests demonstrates significant toxicity, the permittee shall continue quarterly testing for that species until this permit is reissued. If a testing frequency reduction had been previously granted and a subsequent test demonstrates significant toxicity, the permittee will resume a quarterly testing frequency for that species until this permit is reissued.

2. <u>Required Toxicity Testing Conditions</u>

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control and all effluent dilutions, which fails to meet any of the following criteria:
 - 1) a control mean survival of 80% or greater;
 - 2) a control mean dry weight of surviving mysid shrimp of 0.20 mg or greater;
 - 3) a control mean dry weight for surviving unpreserved inland silverside of 0.50 mg or greater and 0.43 mg or greater for surviving preserved inland silverside.
 - 4) a control coefficient of variation percent (CV%) between replicates of 40 or less in the growth and survival tests;
 - 5) a critical dilution CV% of 40 or less in the growth and survival endpoints for either growth and survival test. However, if statistically significant lethal or nonlethal effects are exhibited at the critical dilution, a CV% greater than 40 shall not invalidate the test;
 - 6) a percent minimum significant difference of 37 or less for mysid shrimp growth; and
 - 7) a percent minimum significant difference of 28 or less for inland silverside growth.
- b. Statistical Interpretation
 - 1) For the mysid shrimp and the inland silverside larval survival and growth tests, the statistical analyses used to determine if there is a significant difference between the control and an effluent dilution shall be in accordance with the manual referenced in Part 1.b.
 - 2) The permittee is responsible for reviewing test concentration-response relationships to ensure that calculated test-results are interpreted and reported correctly. The document entitled "Method Guidance and Recommendation for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136)" (EPA 821-B-00-004) provides guidance on determining the validity of test results.

- 3) If significant lethality is demonstrated (that is, there is a statistically significant difference in survival at the critical dilution when compared to the survival in the control), the conditions of test acceptability are met, and the survival of the test organisms are equal to or greater than 80% in the critical dilution and all dilutions below that, then the permittee shall report a survival No Observed Effect Concentration (NOEC) of not less than the critical dilution for the reporting requirements.
- 4) The NOEC is defined as the greatest effluent dilution at which no significant effect is demonstrated. The Lowest Observed Effect Concentration (LOEC) is defined as the lowest effluent dilution at which a significant effect is demonstrated. A significant effect is herein defined as a statistically significant difference between the survival, reproduction, or growth of the test organism in a specified effluent dilution compared to the survival, reproduction, or growth of the test organism in the control (0% effluent).
- 5) The use of NOECs and LOECs assumes either a monotonic (continuous) concentration-response relationship or a threshold model of the concentration-response relationship. For any test result that demonstrates a non-monotonic (non-continuous) response, the NOEC should be determined based on the guidance manual referenced in Item 2.
- 6) Pursuant to the responsibility assigned to the permittee in Part 2.b.2), test results that demonstrate a non-monotonic (non-continuous) concentration-response relationship may be submitted, prior to the due date, for technical review. The guidance manual referenced in Part 1.b. will be used when making a determination of test acceptability.
- 7) TCEQ staff will review test results for consistency with rules, procedures, and permit requirements.
- c. Dilution Water
 - 1) Dilution water used in the toxicity tests must be the receiving water collected as close to the point of discharge as possible but unaffected by the discharge.
 - 2) Where the receiving water proves unsatisfactory as a result of preexisting instream toxicity (i.e., fails to fulfill the test acceptance criteria of Part 2.a.), the permittee may substitute synthetic dilution water for the receiving water in all subsequent tests provided the unacceptable receiving water test met the following stipulations:
 - a) a synthetic lab water control was performed (in addition to the receiving water control) which fulfilled the test acceptance requirements of Part 2.a;
 - b) the test indicating receiving water toxicity was carried out to

completion (i.e., 7 days); and

- c) the permittee submitted all test results indicating receiving water toxicity with the reports and information required in Part 3.
- 3) The synthetic dilution water shall consist of standard, reconstituted seawater. Upon approval, the permittee may substitute other dilution water with chemical and physical characteristics similar to that of the receiving water.
- d. Samples and Composites
 - 1) The permittee shall collect a minimum of three composite samples from Outfall 001. The second and third composite samples will be used for the renewal of the dilution concentrations for each toxicity test.
 - 2) The permittee shall collect the composite samples such that the samples are representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged on an intermittent basis.
 - 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the first composite sample. The holding time for any subsequent composite sample shall not exceed 72 hours. Samples shall be maintained at a temperature of 0-6 degrees Centigrade during collection, shipping, and storage.
 - 4) If Outfall 001 ceases discharging during the collection of effluent samples, the requirements for the minimum number of effluent sample holding time are waived during that sampling period. However, the permittee must have collected an effluent composite sample volume sufficient to complete the required toxicity tests with renewal of the effluent. When possible, the effluent samples used for the toxicity tests shall be collected on separate days if the discharge occurs over multiple days. The sample collection duration and the static renewal protocol associated with the abbreviated sample collection must be documented in the full report.
 - 5) The effluent samples shall not be dechlorinated after sample collection.

3. <u>Reporting</u>

All reports, tables, plans, summaries, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated whether carried to completion or not.
- b. The permittee shall routinely report the results of each biomonitoring test on the

Table 1 forms provided with this permit.

- 1) Annual biomonitoring test results are due on or before January 20th for biomonitoring conducted during the previous 12-month period.
- 2) Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.
- 3) Quarterly biomonitoring test results are due on or before April 20th, July 20th, October 20th, and January 20th, for biomonitoring conducted during the previous calendar quarter.
- 4) Monthly biomonitoring test results are due on or before the 20th day of the month following sampling.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the mysid shrimp, Parameter TLP3E, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) For the mysid shrimp, Parameter TOP3E, report the NOEC for survival.
 - 3) For the mysid shrimp, Parameter TXP3E, report the LOEC for survival.
 - 4) For the mysid shrimp, Parameter TWP3E, enter a "1" if the NOEC for growth is less than the critical dilution; otherwise, enter a "0."
 - 5) For the mysid shrimp, Parameter TPP3E, report the NOEC for growth.
 - 6) For the mysid shrimp, Parameter TYP3E, report the LOEC for growth.
 - 7) For the inland silverside, Parameter TLP6J, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 8) For the inland silverside, Parameter TOP6J, report the NOEC for survival.
 - 9) For the inland silverside, Parameter TXP6J, report the LOEC for survival.
 - 10) For the inland silverside, Parameter TWP6J, enter a "1" if the NOEC for growth is less than the critical dilution; otherwise, enter a "0."
 - 11) For the inland silverside, Parameter TPP6J, report the NOEC for growth.
 - 12) For the inland silverside, Parameter TYP6J, report the LOEC for growth.
- d. Enter the following codes for retests only:
 - 1) For retest number 1, Parameter 22415, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."

- 2) For retest number 2, Parameter 22416, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
- 4. <u>Persistent Toxicity</u>

The requirements of this part apply only when a test demonstrates a significant effect at the critical dilution. Significant effect and significant lethality were defined in Part 2.b. Significant sublethality is defined as a statistically significant difference in growth at the critical dilution when compared to the growth of the test organism in the control.

- a. The permittee shall conduct a total of 2 additional tests (retests) for any species that demonstrates a significant effect (lethal or sublethal) at the critical dilution. The two retests shall be conducted monthly during the next two consecutive months. The permittee shall not substitute either of the two retests in lieu of routine toxicity testing. All reports shall be submitted within 20 days of test completion. Test completion is defined as the last day of the test.
- b. If the retests are performed due to a demonstration of significant lethality, and one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall initiate the TRE requirements as specified in Part 5. The provisions of Part 4.a. are suspended upon completion of the two retests and submittal of the TRE Action plan and schedule defined in Part 5.

If neither test demonstrates significant lethality and the permittee is testing under the reduced testing frequency provision of Part 1.e., the permittee shall return to a quarterly testing frequency for that species.

- c. If the two retests are performed due to a demonstration of significant sublethality, and one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall again perform two retests as stipulated in Part 4.a.
- d. If the two retests are performed due to a demonstration of significant sublethality, and neither test demonstrates significant lethality, the permittee shall continue testing at the quarterly frequency.
- e. Regardless of whether retesting for lethal or sublethal effects or a combination of the two, no more than one retest per month is required for a species.

5. <u>Toxicity Reduction Evaluation</u>

- a. Within 45 days of the retest that demonstrates significant lethality, or within 45 days of being so instructed due to multiple toxic events, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, or within 90 days of being so instructed due to multiple toxic events, the permittee shall submit a TRE action plan and schedule for conducting a TRE. The plan shall

specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analyses to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall describe an approach for the reduction or elimination of lethality for both test species defined in Part 1.b. At a minimum, the TRE Action Plan shall include the following:

- Specific Activities The TRE action plan shall specify the approach the 1) permittee intends to utilize in conducting the TRE, including toxicity characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures" (EPA/600/6-91/003) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled, "Methods for Aquatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;
- 2) Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects specific pollutant and source of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;
- 3) Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
- 4) Project Organization The TRE action plan should describe the project staff, project manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly reports are due on or before April 20th, July

20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:

- 1) results and interpretation of any chemical-specific analyses for the identified and suspected pollutant performed during the quarter;
- 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;
- 3) any data and substantiating documentation which identifies the pollutant and source of effluent toxicity;
- 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
- 5) any data which identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to meet no significant lethality at the critical dilution; and
- 6) any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.
- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive months with at least monthly testing. At the end of the 12 months, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply as a result of corrective actions taken by the permittee. Corrective actions are herein defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

g. The permittee shall complete the TRE and submit a final report on the TRE

activities no later than 28 months from the last test day of the retest that confirmed significant lethal effects at the critical dilution. The permittee may petition the Executive Director (in writing) for an extension of the 28-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond their control stalled the toxicity identification evaluation/TRE. The report shall provide information pertaining to the specific control mechanism selected that will, when implemented, result in the reduction of effluent toxicity to no significant lethality at the critical dilution. The report shall also provide a specific corrective action schedule for implementing the selected control mechanism.

- h. Based upon the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements, where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and to specify a chemical-specific limit.
- i. Copies of any and all required TRE plans and reports shall also be submitted to the U.S. EPA Region 6 office, 6WQ-PO.

TABLE 1 (SHEET 1 OF 4)

MYSID SHRIMP SURVIVAL AND GROWTH

Dates and Times	I No. 1 FROM:	Date Time		Time
Composites Collected	No. 2 FROM:			
	No. 3 FROM:			
Test initiated:	am/pm _		_date	
		_		

Dilution water used: _____ Receiving water _____ Synthetic dilution water

MYSID SHRIMP SURVIVAL

Percent	Percent Survival in Replicate Chambers					Mean Percent Survival			CV%*			
Effluent	Α	В	C	D	E	F	G	Н	24h	48h	7 day	
0%												
6%												
8%												
11%												
15%												
20%												

* Coefficient of Variation = standard deviation x 100/mean

DATA TABLE FOR GROWTH OF MYSID SHRIMP

Replicate	Mean dry weight in milligrams in replicate chambers								
	0%	6%	8%	11%	15%	20%			
А									
В									
С									
D									
E									

TABLE 1 (SHEET 2 OF 4)

MYSID SHRIMP SURVIVAL AND GROWTH

DATA TABLE FOR GROWTH OF MYSID SHRIMP (Continued)

Popliesto	М	Mean dry weight in milligrams in replicate chambers								
Replicate	0%	6%	8%	11%	15%	20%				
F										
G										
Н										
Mean Dry Weight (mg)										
CV%*										
PMSD										

1. Dunnett's Procedure or Steel's Many-One Rank Test or Wilcoxon Rank Sum Test (with Bonferroni adjustment) or t-test (with Bonferroni adjustment) as appropriate:

Is the mean survival at 7 days significantly less than the control survival for the % effluent corresponding to lethality?

CRITICAL DILUTION (15%): _____ YES _____ NO

2. Dunnett's Procedure or Steel's Many-One Rank Test or Wilcoxon Rank Sum Test (with Bonferroni adjustment) or t-test (with Bonferroni adjustment) as appropriate:

Is the mean dry weight (growth) at 7 days significantly less than the control's dry weight (growth) for the % effluent corresponding to non-lethal effects?

CRITICAL DILUTION (15%): _____ YES _____ NO

- 3. Enter percent effluent corresponding to each NOEC\LOEC below:
 - a.) NOEC survival = ____% effluent
 - b.) LOEC survival = ____% effluent
 - c.) NOEC growth = ____% effluent
 - d.) LOEC growth = ____% effluent

TABLE 1 (SHEET 3 OF 4)

INLAND SILVERSIDE MINNOW LARVAL SURVIVAL AND GROWTH TEST

		Date	Time	Date	Time
Dates and Times Composites	No. 1	FROM:		TO:	
	No. 2	FROM:		ТО:	
	No. 3	FROM:		TO:	
Test initiated:		am/pm		_date	
Dilution water used:		_ Receiving water	Synt	thetic Dilutio	on water

INLAND SILVERSIDE SURVIVAL

Percent		Percer Replica				Mean Percent Survival			CV%*
Effluent	А	В	C	D	Е	24h	48h	7 days	
0%									
6%									
8%									
11%									
15%									
20%									

* Coefficient of Variation = standard deviation x 100/mean

TABLE 1 (SHEET 4 OF 4)

INLAND SILVERSIDE LARVAL SURVIVAL AND GROWTH TEST

INLAND SILVERSIDE GROWTH

Percent Effluent	Averag	ge Dry Weig	Mean Dry Weight	CV%*			
Linucit	А	В	C	D	E	(mg)	0170
0%							
6%							
8%							
11%							
15%							
20%							
PMSD							

Weights are for: _____ preserved larvae, or _____ unpreserved larvae

1. Dunnett's Procedure or Steel's Many-One Rank Test or Wilcoxon Rank Sum Test (with Bonferroni adjustment) or t-test (with Bonferroni adjustment) as appropriate:

Is the mean survival at 7 days significantly less than the control survival for the % effluent corresponding to lethality?

CRITICAL DILUTION (15%): _____ YES _____ NO

2. Dunnett's Procedure or Steel's Many-One Rank Test or Wilcoxon Rank Sum Test (with Bonferroni adjustment) or t-test (with Bonferroni adjustment) as appropriate:

Is the mean dry weight (growth) at 7 days significantly less than the control's dry weight (growth) for the % effluent corresponding to non-lethal effects?

CRITICAL DILUTION (15%): _____ YES _____ NO

3. Enter percent effluent corresponding to each NOEC/LOEC below:

a.) NOEC survival = ____% effluent

b.) LOEC survival = ____% effluent

c.) NOEC growth = ____% effluent

d.) LOEC growth = ____% effluent

24-HOUR ACUTE BIOMONITORING REQUIREMENTS: MARINE

The provisions of this section apply to Outfall 001 for WET testing.

- 1. <u>Scope, Frequency, and Methodology</u>
 - a. The permittee shall test the effluent for lethality in accordance with the provisions in this Section. Such testing will determine compliance with Texas Surface Water Quality Standard 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival of the appropriate test organisms in 100% effluent for a 24-hour period.
 - b. The toxicity tests specified shall be conducted once per six months. The permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified in this section of the permit and in accordance with "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms," fifth edition (EPA-821-R-02-012) or its most recent update:
 - 1) Acute 24-hour static toxicity test using the mysid shrimp (*Americamysis bahia*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.
 - 2) Acute 24-hour static toxicity test using the inland silverside (*Menidia beryllina*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.

A valid test result must be submitted for each reporting period. The permittee must report, then repeat, an invalid test during the same reporting period. The repeat test shall include the control and all effluent dilutions and use the appropriate number of organisms and replicates, as specified above. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. In addition to an appropriate control, a 100% effluent concentration shall be used in the toxicity tests. Except as discussed in Part 2.b., the control and dilution water shall consist of standard, synthetic, reconstituted seawater.
- d. This permit may be amended to require a WET limit, a best management practice, a chemical-specific limit, additional toxicity testing, and other appropriate actions to address toxicity. The permittee may be required to conduct a toxicity reduction evaluation (TRE) after multiple toxic events.

2. <u>Required Toxicity Testing Conditions</u>

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control, if the control fails to meet a mean survival equal to or greater than 90%.
- b. Dilution Water In accordance with Part 1.c., the control and dilution water shall consist of standard, synthetic, reconstituted seawater.

- c. Samples and Composites
 - 1) The permittee shall collect one composite sample from Outfall 001.
 - 2) The permittee shall collect the composite sample such that the sample is representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged on an intermittent basis.
 - 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the composite sample. The sample shall be maintained at a temperature of 0-6 degrees Centigrade during collection, shipping, and storage.
 - 4) If Outfall 001 ceases discharging during the collection of the effluent composite sample, the requirements for the minimum number of effluent portions are waived. However, the permittee must have collected a composite sample volume sufficient for completion of the required test. The abbreviated sample collection, duration, and methodology must be documented in the full report.
 - 5) The effluent sample shall not be dechlorinated after sample collection.

3. <u>Reporting</u>

All reports, tables, plans, summaries, and related correspondence required of this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 2 forms provided with this permit.
 - 1) Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.
 - 2) Quarterly biomonitoring test results are due on or before April 20th, July 20th, October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the mysid shrimp, Parameter TIE3E, enter a "0" if the mean survival at 24-hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."

- 2) For the inland silverside, Parameter TII6J, enter a "0" if the mean survival at 24-hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."
- d. Enter the following codes for retests only:
 - 1) For retest number 1, Parameter 22415, enter a "0" if the mean survival at 24-hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter "1."
 - 2) For retest number 2, Parameter 22416, enter a "0" if the mean survival at 24-hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter "1."
- 4. <u>Persistent Mortality</u>

The requirements of this part apply when a toxicity test demonstrates significant lethality, here defined as a mean mortality of 50% or greater to organisms exposed to the 100% effluent concentration after 24-hours.

- a. The permittee shall conduct 2 additional tests (retests) for each species that demonstrates significant lethality. The two retests shall be conducted once per week for 2 weeks. Five effluent dilution concentrations in addition to an appropriate control shall be used in the retests. These additional effluent concentrations are 6%, 13%, 25%, 50% and 100% effluent. The first retest shall be conducted within 15 days of the laboratory determination of significant lethality. All test results shall be submitted within 20 days of test completion of the second retest. Test completion is defined as the 24th hour.
- b. If one or both of the two retests specified in item 4.a. demonstrates significant lethality, the permittee shall initiate the TRE requirements as specified in Part 5 of this Section.

5. <u>Toxicity Reduction Evaluation</u>

- a. Within 45 days of the retest that demonstrates significant lethality, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, the permittee shall submit a TRE action plan and schedule for conducting a TRE. The plan shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analyses to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall lead to the successful elimination of significant lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:

- Specific Activities The TRE action plan shall specify the approach the 1) permittee intends to utilize in conducting the TRE, including toxicity characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures" (EPA/600/6-91/003) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;
- 2) Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects a specific pollutant and source of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;
- 3) Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
- 4) Project Organization The TRE action plan should describe the project staff, project manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly TRE activities reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:
 - 1) results and interpretation of any chemical-specific analyses for the identified and suspected pollutant performed during the quarter;
 - 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;

- 3) any data and substantiating documentation that identifies the pollutant and source of effluent toxicity;
- 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
- 5) any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to eliminate significant lethality; and
- 6) any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.
- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive weeks with at least weekly testing. At the end of the 12 weeks, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply as a result of corrective actions taken by the permittee. Corrective actions are defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 18 months from the last test day of the retest that demonstrates significant lethality. The permittee may petition the Executive Director (in writing) for an extension of the 18-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE. The report shall specify the control mechanism that will, when implemented, reduce effluent toxicity as specified in Part 5.h. The report shall also specify a corrective action

City of Galveston

schedule for implementing the selected control mechanism.

h. Within 3 years of the last day of the test confirming toxicity, the permittee shall comply with 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival of the test organism in 100% effluent at the end of 24-hours. The permittee may petition the Executive Director (in writing) for an extension of the 3-year limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE.

The permittee may be exempted from complying with 30 TAC § 307.6(e)(2)(B) upon proving that toxicity is caused by an excess, imbalance, or deficiency of dissolved salts. This exemption excludes instances where individually toxic components (e.g., metals) form a salt compound. Following the exemption, the permit may be amended to include an ion-adjustment protocol, alternate species testing, or single species testing.

- i. Based upon the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and to specify a chemical specific limit.
- j. Copies of any and all required TRE plans and reports shall also be submitted to the U.S. EPA Region 6 office, 6WQ-PO.

TABLE 2 (SHEET 1 OF 2)

MYSID SHRIMP SURVIVAL

GENERAL INFORMATION

	Time	Date
Composite Sample Collected		
Test Initiated		

PERCENT SURVIVAL

Time Rep	Dop		Percent effluent							
Time	кер	0%	6%	13%	25%	50%	100%			
	А									
	В									
o 4h	C									
24h	D									
	Е									
	MEAN									

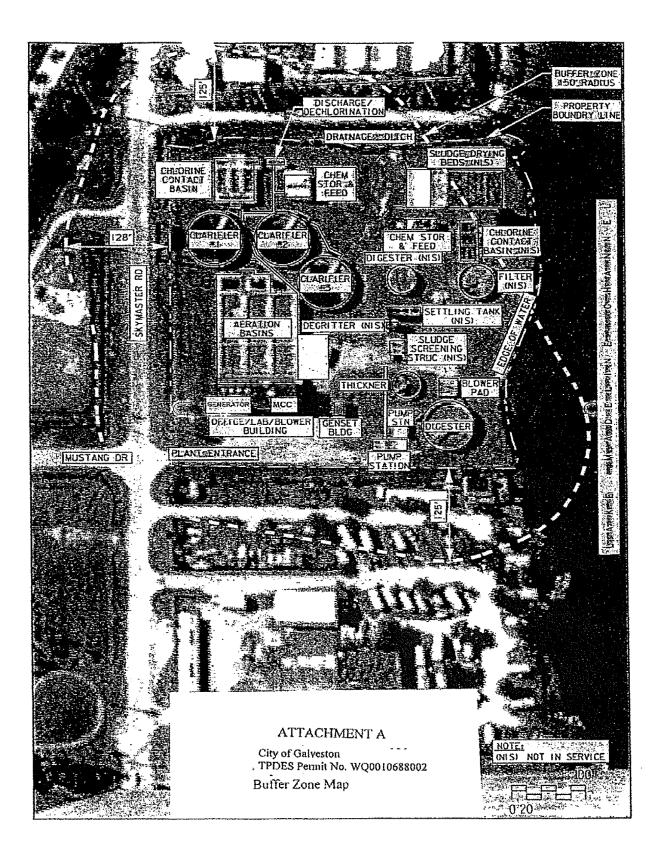
Enter percent effluent corresponding to the LC50 below:

24 hour LC50 = ____% effluent

TABLE 2 (SHEET 2 OF 2)

INLAND SILVERSIDE SURVIVAL

GENERAL INFORMATION


	Time	Date
Composite Sample Collected		
Test Initiated		

PERCENT SURVIVAL

Time Rep	Bon		Percent effluent								
Time	Time Rep	0%	6%	13%	25%	50%	100%				
	А										
	В										
o 4h	C										
24h	D										
	E										
	MEAN										

Enter percent effluent corresponding to the LC50 below:

24 hour LC50 = ____% effluent

FACT SHEET AND EXECUTIVE DIRECTOR'S PRELIMINARY DECISION

For draft Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010688002, EPA I.D. No. TX0027791, to discharge to water in the state.

Issuing Office:	Texas Commission on Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087
Applicant:	City of Galveston 823 Rosenberg Street Galveston, Texas 77550
Prepared By:	Abdur Rahim Municipal Permits Team Wastewater Permitting Section (MC 148) Water Quality Division (512) 239-0504
Date:	April 2, 2025

Permit Action: Renewal

1. EXECUTIVE DIRECTOR RECOMMENDATION

The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The draft permit includes an expiration date of **five years from the date of issuance**.

2. APPLICANT ACTIVITY

The applicant has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of the existing permit that authorizes the discharge of treated domestic wastewater at an annual average flow not to exceed 3.75 million gallons per day (MGD) in the Interim phase, and an annual average flow not to exceed 4.76 MGD in the Final phase. The existing wastewater treatment facility serves the portion of Galveston Island west of 59th Street.

3. FACILITY AND DISCHARGE LOCATION

The plant site is located at 7618 Mustang Drive, in the City of Galveston, in Galveston County, Texas 77554.

Outfall Location:

Outfall Number	Latitude	Longitude
001	29.271229 N	94.847890 W

The treated effluent is discharged to a tidal canal that connects Madeline Lake to Offatts Bayou (Madeline Lake Channel), thence to Offatts Bayou, thence to West Bay in Segment No. 2424 of the Bays and Estuaries. The unclassified receiving water uses are high aquatic life use for Tidal Canal (Madeline Lake Channel), and Offatts Bayou. The designated uses for Segment No. 2424 are primary contact recreation, high aquatic life use, and oyster waters.

4. TREATMENT PROCESS DESCRIPTION AND SEWAGE SLUDGE DISPOSAL

The Airport Wastewater Treatment Facility is an activated sludge process plant operated in the conventional mode. Treatment units in the Interim phase include two fine screens, two grit chambers, an aerated influent channel, three aeration basins, three final clarifiers, a sludge digester, a gravity sludge thickener, a chlorine contact chamber, and a dechlorination chamber. The same treatment units will be utilized for the Final phase. The facility is operating in the Interim phase.

Sludge generated from the treatment facility is hauled by a registered transporter to the City of Galveston Main Wastewater Treatment Facility, Permit No. WQ0010688001, to be digested, dewatered, and then disposed of with the bulk of the sludge from the plant accepting the sludge. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

5. INDUSTRIAL WASTE CONTRIBUTION

The draft permit includes pretreatment requirements that are appropriate for a facility of this size and complexity. The facility does not appear to receive significant industrial wastewater contributions.

6. SUMMARY OF SELF-REPORTED EFFLUENT ANALYSES

The following is a summary of the applicant's effluent monitoring data for the period from May 2022 through May 2024. The average of Daily Average value is computed by the averaging of all 30-day average values for the reporting period for each parameter: flow, five-day biochemical oxygen demand (BOD_5), total suspended solids (TSS), ammonia nitrogen (NH_3 -N), and total copper. The average of Daily Average value for Enterococci in colony-forming units (CFU) or most probable number (MPN) per 100 ml is calculated via geometric mean.

<u>Parameter</u>	<u>Average of Daily Avg</u>
Flow, MGD	2.22
BOD_5 , mg/l	3.1
TSS, mg/l	4.7
Total Copper, mg/l	0.007
Enterococci, CFU or MPN per 100	14
ml	

7. DRAFT PERMIT CONDITIONS AND MONITORING REQUIREMENTS

The effluent limitations and monitoring requirements for those parameters that are limited in the draft permit are as follows:

A. INTERIM PHASE EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS The annual average flow of effluent shall not exceed 3.75 MGD, nor shall the average discharge during any two-hour period (2-hour peak) exceed 7,812 gallons per minute.

<u>Parameter</u>	<u>30-Day Average</u>		<u>7-Day</u>	<u>Daily</u>
	0		<u>Average</u>	<u>Maximum</u>
	<u>mg/l</u>	<u>lbs/day</u>	<u>mg/l</u>	<u>mg/l</u>
BOD_5	20	626	30	45
TSS	20	626	30	45
Total Copper	0.0121	0.378	N/A	0.0256
DO (minimum)	2.0	N/A	N/A	N/A
Enterococci, CFU or MPN per 100 ml	35	N/A	N/A	104

The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.

The effluent shall contain a total chlorine residual of at least 1.0 mg/l after a detention time of at least 20 minutes (based on peak flow) and shall be monitored daily by grab sample. The permittee shall dechlorinate the chlorinated effluent to less than 0.1 mg/l total chlorine residual and shall monitor total chlorine residual daily by grab sample after the dechlorination process. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.

<u>Parameter</u>	Monitoring Requirement
Flow, MGD	Continuous
BOD_5	Two/week
TSS	Two/week
Total Copper	One/week
DO	Two/week
Enterococci	One/week

B. FINAL PHASE EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

The annual average flow of effluent shall not exceed 4.76 MGD, nor shall the average discharge during any two-hour period (2-hour peak) exceed 9,493 gallons per minute.

<u>Parameter</u>	<u>30-Day Average</u>		<u>7-Day</u>	<u>Daily</u>
	<u>mg/l</u>	<u>lbs/day</u>	<u>Average</u> <u>mg/l</u>	<u>Maximum</u> <u>mg/l</u>
BOD_5	<u>1115/1</u> 10	<u>397</u>	15	25
TSS	15	595	25	40
Total Copper	0.0121	0.48	N/A	0.0256
DO (minimum)	4.0	N/A	N/A	N/A
Enterococci, CFU or	35	N/A	N/A	104

MPN/100 ml

The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.

The effluent shall contain a total chlorine residual of at least 1.0 mg/l after a detention time of at least 20 minutes (based on peak flow) and shall be monitored daily by grab sample. The permittee shall dechlorinate the chlorinated effluent to less than 0.1 mg/l total chlorine residual and shall monitor total chlorine residual daily by grab sample after the dechlorination process. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.

<u>Parameter</u>	Monitoring Requirement
Flow, MGD	Continuous
BOD_5	Two/week
TSS	Two/week
Total Copper	One/week
DO	Two/week
Enterococci	One/week

C. SEWAGE SLUDGE REQUIREMENTS

The draft permit includes Sludge Provisions according to the requirements of 30 TAC Chapter 312, Sludge Use, Disposal, and Transportation. Sludge generated from the treatment facility is hauled by a registered transporter to the City of Galveston Main Wastewater Treatment Facility, Permit No. WQ0010688001, to be digested, dewatered, and then disposed of with the bulk of the sludge from the plant accepting the sludge. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

D. PRETREATMENT REQUIREMENTS

Permit requirements for pretreatment are based on TPDES regulations contained in 30 TAC Chapter 305 which references 40 CFR Part 403, General Pretreatment Regulations for Existing and New Sources of Pollution *[rev. Federal Register/ Vol. 70/ No. 198/ Friday, October 14, 2005/ Rules and Regulations, pages 60134-60798].* The permit includes specific requirements that establish responsibilities of local government, industry, and the public to implement the standards to control pollutants which pass through or interfere with treatment processes in publicly owned treatment works or which may contaminate the sewage sludge. This permit has appropriate pretreatment language for a facility of this size and complexity.

The permittee has a pretreatment program which was approved by the U.S. Environmental Protection Agency (EPA) on **May 16, 1984**, and modified on **January 8, 1993, and on April 22, 2013 (Streamlining Rule).** The permittee is required, under the conditions of the approved pretreatment program, to prepare annually a list of industrial users which during the preceding twelve months were in significant noncompliance with applicable pretreatment requirements for those facilities covered under the program. This list is to be published annually during the month of **January** in a newspaper of general circulation that provides meaningful public notice within the jurisdiction(s) served by the POTW.

Effective December 21, 2025, the permittee must submit the pretreatment program annual status report electronically using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. [rev. Federal Register/ Vol. 80/ No. 204/ Friday, October 22, 2015/ Rules and Regulations, pages 64064-64158].

The permittee is under a continuing duty to: establish and enforce specific local limits to implement the provisions of 40 CFR §403.5, to develop and enforce local limits as necessary, and to modify the approved POTW pretreatment program as necessary to comply with federal, state, and local law, as amended. The permittee is required to effectively enforce such limits and to modify their pretreatment program, including the Legal Authority, Enforcement Response Plan, and/or Standard Operating Procedures, if required by the Executive Director to reflect changing conditions at the POTW.

The permittee shall submit to the TCEQ Pretreatment Team (MC 148) of the Water Quality Division, within sixty (60) days of the issued date of this permit, either: (1) a WRITTEN CERTIFICATION that a technical reassessment has been performed and that the evaluation demonstrates that the existing technically based local limits (TBLLs) attain the Texas Surface Water Quality Standards [30 TAC Chapter 307] in water in the state, and are adequate to prevent pass through of pollutants, inhibition of or interference with the treatment facility, worker health and safety problems, and sludge contamination [submit the TBLLs Reassessment Form No. TCEQ-20221], OR (2) a WRITTEN **NOTIFICATION** that a technical redevelopment of the current TBLLs, a draft legal authority, which incorporates such revisions, and any additional modifications to the approved Pretreatment Program, as required by 40 CFR Part 403 [rev. 10/14/05] and applicable state and local law, including an Enforcement Response Plan and Standard Operating Procedures (including forms), will be submitted within twelve (12) months of the issued date of TPDES Permit No. WQ0010688002.

Substantial modifications will be approved in accordance with 40 CFR §403.18, and the modification will become effective upon approval by the Executive Director in accordance with 40 CFR §403.18.

E. WHOLE EFFLUENT TOXICITY (BIOMONITORING) REQUIREMENTS

(1) The draft permit includes chronic saltwater biomonitoring requirements as follows. The permit requires five dilutions in addition to the control (0% effluent) to be used in the toxicity tests. These additional effluent concentrations shall be 6%, 8%, 11%, 15%, and 20%. The low-flow effluent concentration (critical dilution) is defined as 15% effluent. The critical dilution is in accordance with the "Aquatic Life Criteria" section of the "Water Quality Based Effluent Limitations/Conditions" section.

- (a) Chronic static renewal survival and growth test using the mysid shrimp (*Americamysis bahia*. The frequency of the testing is once per quarter for at least the first year of testing, after which the permittee may apply for a testing frequency reduction.
- (b) Chronic static renewal 7-day larval survival and growth test using the inland silverside (*Menidia beryllina*). The frequency of the testing is once per quarter for at least the first year of testing, after which the permittee may apply for a testing frequency reduction.
- (2) The draft permit includes the following minimum 24-hour acute saltwater biomonitoring requirements at a frequency of once per six mionths:
 - (a) Acute 24-hour static toxicity test using the mysid shrimp (*Americamysis bahia*).
 - (b) Acute 24-hour static toxicity test using the inland silverside (*Menidia beryllina*).

F. BUFFER ZONE REQUIREMENTS

The permittee submitted evidence of legal restrictions prohibiting residential structures within the part of the buffer zone not owned by the permittee according to 30 TAC § 309.13(e)(3) (on file). The permittee shall comply with the requirements of 30 TAC § 309.13(a) through (d). (See Attachment A.)

G. SUMMARY OF CHANGES FROM APPLICATION

None.

H. SUMMARY OF CHANGES FROM EXISTING PERMIT

The Standard Permit Conditions, Sludge Provisions, Other Requirements, and Biomonitoring sections of the draft permit have been updated. Pretreatment requirements have been added to the draft permit.

For Publicly Owned Treatment Works (POTWs), effective December 21, 2025, the permittee must submit the written report for unauthorized discharges and unanticipated bypasses that exceed any effluent limit in the permit using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

Certain accidental discharges or spills of treated or untreated wastewater from wastewater treatment facilities or collection systems owned or operated by a local government may be reported on a monthly basis in accordance with 30 TAC § 305.132.

The draft permit includes all updates based on the 30 TAC § 312 rule change effective April 23, 2020.

8. DRAFT PERMIT RATIONALE

A. TECHNOLOGY-BASED EFFLUENT LIMITATIONS/CONDITIONS

Regulations promulgated in Title 40 of the CFR require that technology-based limitations be placed in wastewater discharge permits based on effluent limitations guidelines, where applicable, or on best professional judgment (BPJ) in the absence of guidelines.

Effluent limitations for maximum and minimum pH are in accordance with 40 CFR § 133.102(c) and 30 TAC § 309.1(b).

B. WATER QUALITY SUMMARY AND COASTAL MANAGEMENT PLAN

(1) WATER QUALITY SUMMARY

The treated effluent is discharged to a tidal canal that connects Madeline Lake to Offatts Bayou (Madeline Lake Channel), thence to Offatts Bayou, thence to West Bay in Segment No. 2424 of the Bays and Estuaries. The unclassified receiving water uses are high aquatic life use for Tidal canal (Madeline Lake Channel), and Offatts Bayou. The designated uses for Segment No. 2424 are primary contact recreation high aquatic life use, and oyster waters. The effluent limitations in the draft permit will maintain and protect the existing instream uses. All determinations are preliminary and subject to additional review and/or revisions.

The discharge from this permit action is not expected to have an effect on any federal endangered or threatened aquatic or aquatic dependent species or proposed species or their critical habitat. This determination is based on the United States Fish and Wildlife Service's (USFWS's) biological opinion on the State of Texas authorization of the TPDES (September 14, 1998; October 21, 1998, update). To make this determination for TPDES permits, TCEQ and EPA only considered aquatic or aquatic dependent species occurring in watersheds of critical concern or high priority as listed in Appendix A of the USFWS biological opinion. Though the piping plover, Charadrius melodus Ord, can occur in Segment No. 2424 in Galveston County, Segment No. 2424 is north of Copano Bay and not a watershed of high priority per Appendix A of the biological opinion. The determination is subject to reevaluation due to subsequent updates or amendments to the biological opinion. The permit does not require EPA review with respect to the presence of endangered or threatened species.

Segment No. 2424 is currently listed on the State's inventory of impaired and threatened waters (the 2022 CWA § 303(d) list). The listing is for dioxin in edible tissue and PCBs in edible tissue in West Bay [Assessment Unit (AU) 2424_01] and the area adjacent to Lower Galveston Island AU 2424_02. Additionally, Lake Madeline (2424B) is listed for depressed dissolved oxygen, dioxin in edible tissue, and PCBs in edible tissue between Jones Street, Stewart Street and Pine Street, north of the seawall on Galveston Island (AU 2424B_01). Offatts Bayou (2424D) is also listed for dioxin in edible tissue and PCBs in edible tissue through the entire water body (AUs 2424D_01, 2424D_02 and 2424D_03). This discharge is into the tidal canal connecting Lake Madeline and Offatts Bayou. This application is for renewal of an existing authorization and does not represent an increase in the permitted levels of oxygen demanding constituents to Lake Madeline. This is a public domestic wastewater treatment facility. The facility does not receive industrial wastewater contributions, therefore the effluent from this facility should not contribute to the dioxin, and PCBs in edible tissue impairment of this segment.

One finalized Total Maximum Daily Load (TMDL) Project is available for this segment: *Six Total Maximum Daily Loads for Bacteria in Waters of the Upper Gulf Coast Segments 2421, 2422, 2423, 2424, 2432, and 2439* (Project No. 74). In August 2008, the Texas Commission on Environmental Quality (TCEQ) adopted Six Total Maximum Daily Loads for Bacteria in Waters of the Upper Gulf Coast. The EPA approved the TMDL on February 4, 2009. This document describes TMDLs for six segments in the Galveston Bay system along the Texas upper Gulf Coast near Houston and Galveston, where concentrations of bacteria exceed the criteria used to evaluate the attainment of the designated oyster waters use. The waste load allocations (WLAs) specified in the TMDL and subsequent updates are applicable to discharges in close proximity to the six segments covered by the TMDL. This facility is located in the area covered by the WLA requirements of the TMDL. The draft permit limits for Enterococci are consistent with the requirements of the TMDL.

The effluent limitations and conditions in the draft permit comply with EPA-approved portions of the 2018 Texas Surface Water Quality Standards (TSWQS), 30 TAC §§ 307.1 - 307.10, effective March 1, 2018; 2014 TSWQS, effective March 6, 2014; 2010 TSWQS, effective July 22, 2010; and 2000 TSWQS, effective July 26, 2000.

(2) CONVENTIONAL PARAMETERS

Effluent limitations for the conventional effluent parameters (i.e., Five-Day Biochemical Oxygen Demand or Five-Day Carbonaceous Biochemical Oxygen Demand, Ammonia Nitrogen, etc.) are based on stream standards and waste load allocations for water quality-limited streams as established in the TSWQS and the State of Texas Water Quality Management Plan (WQMP).

The effluent limitations in the draft permit have been reviewed for consistency with the WQMP. The existing limits are consistent with the approved WQMP.

The effluent limitations in the draft permit meet the requirements for secondary treatment and the requirements for disinfection according to 30 TAC Chapter 309, Subchapter A: Effluent Limitations.

(3) COASTAL MANAGEMENT PLAN

The Executive Director has reviewed this action for consistency with the goals and policies of the Texas Coastal Management Program (CMP) in accordance with the regulations of the General Land Office (GLO) and has determined that the action is consistent with the applicable CMP goals and policies.

C. WATER QUALITY-BASED EFFLUENT LIMITATIONS/CONDITIONS

(1) GENERAL COMMENTS

The Texas Surface Water Quality Standards (30 TAC Chapter 307) state that surface waters will not be toxic to man, or to terrestrial or aquatic life. The methodology outlined in the "Procedures to Implement the Texas Surface Water Quality Standards, June 2010" is designed to ensure compliance with 30 TAC Chapter 307. Specifically, the methodology is designed to ensure that no source will be allowed to discharge any wastewater that: (1) results in instream aquatic toxicity; (2) causes a violation of an applicable narrative or numerical state water quality standard; (3) results in the endangerment of a drinking water supply; or (4) results in aquatic bioaccumulation that threatens human health.

(2) AQUATIC LIFE CRITERIA

(a) SCREENING

Water quality-based effluent limitations are calculated from marine aquatic life criteria found in Table 1 of the Texas Surface Water Quality Standards (30 TAC Chapter 307).

Acute marine criteria are applied at the edge of the zone of initial dilution (ZID), and chronic marine criteria are applied at the edge of the aquatic life mixing zone. The ZID for this discharge is defined as 25 feet from the point where the discharge enters the tidal canal (Madeline Lake Channel). The aquatic life mixing zone for this discharge is defined as a radius of 100 feet from the point where the discharge enters the tidal canal (Madeline Lake Channel).

TCEQ uses the U.S. Environmental Protection Agency horizontal jet plume model to estimate dilutions at the edges of the ZID and aquatic life mixing zone for discharges into sections of bays, estuaries, and wide tidal rivers that are less than 400 feet wide. General assumptions used in the horizontal jet plume model are a non-buoyant discharge, a submersed pipe, and no cross flow. Based on this analysis, the following critical effluent percentages are calculated based on the permitted flow of 4.76 MGD:

Acute Effluent %: 60% Chronic Effluent %: 15%

Waste load allocations (WLAs) are calculated using the above estimated effluent percentages, criteria outlined in the Texas Surface Water Quality

Standards, and partitioning coefficients for metals (when appropriate and designated in the implementation procedures). The WLA is the end-ofpipe effluent concentration that can be discharged when, after mixing in the receiving stream, instream numerical criteria will not be exceeded. From the WLA, a long-term average (LTA) is calculated using a log normal probability distribution, a given coefficient of variation (0.6), and a 99th percentile confidence level. The lower of the two LTAs (acute and chronic) is used to calculate a daily average and daily maximum effluent limitation for the protection of aquatic life using the same statistical considerations with the 99th percentile confidence level and a standard number of monthly effluent samples collected (12). Assumptions used in deriving the effluent limitations include segment values for hardness, chlorides, pH, and total suspended solids (TSS) according to the segmentspecific values contained in the TCEQ guidance document "Procedures to Implement the Texas Surface Water Ouality Standards, June 2010." The segment values are 13,100 mg/l for hardness (as calcium carbonate), 13,400 mg/l chlorides, 7.9 standard units for pH, and 11 mg/l for TSS. For additional details on the calculation of water quality-based effluent limitations, refer to the TCEQ guidance document.

TCEQ practice for determining significant potential is to compare the reported analytical data against percentages of the calculated daily average water quality-based effluent limitation. Permit limitations are required when analytical data reported in the application exceeds 85% of the calculated daily average water quality-based effluent limitation. Monitoring and reporting are required when analytical data reported in the application exceeds 70% of the calculated daily average water quality-based effluent limitation. See Attachment A of this Fact Sheet.

(b) PERMIT ACTION

Analytical data reported in the application was screened against calculated water quality-based effluent limitations for the protection of aquatic life. Reported analytical data does not exceed 70% of the calculated daily average water quality-based effluent limitations for aquatic life protection. The total copper limitations in the existing permit were continued in the draft permit.

(3) AQUATIC ORGANISM BIOACCUMULATION CRITERIA

(a) SCREENING

Water quality-based effluent limitations for the protection of human health are calculated using criteria for the consumption of marine fish tissue found in Table 2 of the Texas Surface Water Quality Standards (30 TAC Chapter 307). Marine fish tissue bioaccumulation criteria are applied at the edge of the human health mixing zone for discharges into bays, estuaries, and wide tidal rivers. The human health mixing zone for this discharge is defined as a 25-foot radius from the point where the discharge enters the tidal canal (Madeline Lake Channel). TCEQ uses the U.S. Environmental Protection Agency horizontal jet plume model to estimate dilution at the edge of the human health mixing zone for discharges into a bay, estuary, or wide tidal river or discharges into sections of bays, estuaries, or wide tidal rivers that are less than 400 feet wide. General assumptions used in the horizontal jet plume model are: a non-buoyant discharge, a submersed pipe, and no cross flow. Based on this analysis, the following critical effluent percentage is calculated based on the permitted flow of 4.76 MGD:

Human Health Effluent %: 8 %

Water quality-based effluent limitations for human health protection against the consumption of fish tissue are calculated using the same procedure as outlined for calculation of water quality-based effluent limitations for aquatic life protection. A 99th percentile confidence level in the long-term average calculation is used with only one long-term average value being calculated.

Significant potential is again determined by comparing reported analytical data against 70% and 85% of the calculated daily average water quality-based effluent limitation. See Attachment A of this Fact Sheet.

(b) PERMIT ACTION

Reported analytical data does not exceed 70% of the calculated daily average water quality-based effluent limitation for human health protection. The total copper limitations in the existing permit were continued in the draft permit.

(4) DRINKING WATER SUPPLY PROTECTION

(a) SCREENING

Water Quality Segment No. 2424, which receives the discharge from this facility, is not designated as a public water supply. Screening reported analytical data of the effluent against water quality-based effluent limitations calculated for the protection of a drinking water supply is not applicable.

(b) PERMIT ACTION

None.

(5) WHOLE EFFLUENT TOXICITY (BIOMONITORING) CRITERIA

(a) SCREENING

TCEQ has determined that there may be pollutants present in the effluent that may have the potential to cause toxic conditions in the receiving stream. Whole effluent biomonitoring is the most direct measure of potential toxicity that incorporates the effects of synergism of effluent components and receiving stream water quality characteristics. Biomonitoring of the effluent is, therefore, required as a condition of this permit to assess potential toxicity.

The existing permit includes chronic saltwater biomonitoring requirements. A summary of the biomonitoring testing for the facility indicates that in the past three years, the permittee has performed twentytwo chronic tests, with zero demonstrations of significant toxicity (i.e., zero failures)

(b) PERMIT ACTION

The test species are appropriate to measure the toxicity of the effluent consistent with the requirements of the State water quality standards. The biomonitoring frequency has been established to reflect the likelihood of ambient toxicity and to provide data representative of the toxic potential of the facility's discharge. This permit may be reopened to require effluent limits, additional testing, and/or other appropriate actions to address toxicity if biomonitoring data show actual or potential ambient toxicity to be the result of the permittee's discharge to the receiving stream or water body.

A reasonable potential (RP) determination was performed in accordance with 40 CFR §122.44(d)(1)(ii) to determine whether the discharge will reasonably be expected to cause or contribute to an exceedance of a state water quality standard or criterion within that standard. Each test species is evaluated separately. The RP determination is based on representative data from the previous three years of WET testing. This determination was performed in accordance with the methodology outlined in the TCEQ letter to the EPA dated December 28, 2015, and approved by the EPA in a letter dated December 28, 2015.

With zero failures, a determination of no RP was made. WET limits are not required, and the permittee may be eligible for the testing frequency reduction after one year of quarterly testing.

(6) WHOLE EFFLUENT TOXICITY CRITERIA (24-HOUR ACUTE)

(a) SCREENING

The existing permit includes 24-hour acute saltwater biomonitoring language. A summary of the biomonitoring testing for the facility indicates that in the past three years, the permittee has performed twelve 24-hour acute tests, with zero demonstrations of significant lethality (i.e., zero failures).

(b) PERMIT ACTION

The draft permit includes 24-hour 100% acute biomonitoring tests for the life of the permit.

9. WATER QUALITY VARIANCE REQUESTS

No variance requests have been received.

10. PROCEDURES FOR FINAL DECISION

When an application is declared administratively complete, the Chief Clerk sends a letter to the applicant advising the applicant to publish the Notice of Receipt of Application and Intent to Obtain Permit in the newspaper. In addition, the Chief Clerk instructs the applicant to place a copy of the application in a public place for review and copying in the county where the facility is or will be located. This application will be in a public place throughout the comment period. The Chief Clerk also mails this notice to any interested persons and, if required, to landowners identified in the permit application. This notice informs the public about the application and provides that an interested person may file comments on the application or request a contested case hearing or a public meeting.

Once a draft permit is completed, it is sent, along with the Executive Director's preliminary decision, as contained in the technical summary or fact sheet, to the Chief Clerk. At that time, the Notice of Application and Preliminary Decision will be mailed to the same people and published in the same newspaper as the prior notice. This notice sets a deadline for making public comments. The applicant must place a copy of the Executive Director's preliminary decision and draft permit in the public place with the application.

Any interested person may request a public meeting on the application until the deadline for filing public comments. A public meeting is intended for the taking of public comment and is not a contested case proceeding.

After the public comment deadline, the Executive Director prepares a response to all significant public comments on the application, or the draft permit raised during the public comment period. The Chief Clerk then mails the Executive Director's response to comments and final decision to people who have filed comments, requested a contested case hearing, or requested to be on the mailing list. This notice provides that if a person is not satisfied with the Executive Director's response and decision, they can request a contested case hearing or file a request to reconsider the Executive Director's decision within 30 days after the notice is mailed.

The Executive Director will issue the permit unless a written hearing request or request for reconsideration is filed within 30 days after the Executive Director's response to comments and final decision is mailed. If a hearing request or request for reconsideration is filed, the Executive Director will not issue the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting. If a contested case hearing is held, it will be a legal proceeding similar to a civil trial in state district court.

If the Executive Director calls a public meeting or the Commission grants a contested case hearing as described above, the Commission will give notice of the date, time, and place of the meeting or hearing. If a hearing request or request for reconsideration is made, the Commission will consider all public comments in making its decision and shall either adopt the Executive Director's response to public comments or prepare its own response.

For additional information about this application, contact Abdur Rahim at (512) 239-0504.

11. ADMINISTRATIVE RECORD

The following items were considered in developing the draft permit:

A. PERMIT(S)

TPDES Permit No. WQ0010688002 issued on February 11, 2020.

B. APPLICATION

Application received on June 17, 2024, and additional information received on July 2, 2024, and April 3, 2025.

C. MEMORANDA

Interoffice Memoranda from the Water Quality Assessment Section of the TCEQ Water Quality Division. Interoffice Memorandum from the Pretreatment Team of the TCEQ Water Quality Division.

D. MISCELLANEOUS

Federal Clean Water Act § 402; Texas Water Code § 26.027; 30 TAC Chapters 30, 305, 309, 312, and 319; Commission policies; and U.S. Environmental Protection Agency guidelines.

Texas Surface Water Quality Standards, 30 TAC §§ 307.1 - 307.10.

Procedures to Implement the Texas Surface Water Quality Standards (IP), Texas Commission on Environmental Quality, June 2010, as approved by the U.S. Environmental Protection Agency, and the IP, January 2003, for portions of the 2010 IP not approved by the U.S. Environmental Protection Agency.

Texas 2022 Clean Water Act Section 303(d) List, Texas Commission on Environmental Quality, June 1, 2022; approved by the U.S. Environmental Protection Agency on July 7, 2022.

Texas Natural Resource Conservation Commission, Guidance Document for Establishing Monitoring Frequencies for Domestic and Industrial Wastewater Discharge Permits, Document No. 98-001.000-OWR-WQ, May 1998.

Six Total Maximum Daily Loads for Bacteria in Waters of the Upper Gulf Coast Segment 2421, 2422, 2423, 2424, 2432, and 2439 (TMDL Project No. 74).

Attachment A: Calculated Water Quality Based Effluent Limitations

TEXTOX MENU #5 - BAY OR WIDE TIDAL RIVER

The water quality-based effluent limitations developed below are calculated using:

Table 1, 2014 Texas Surface Water Quality Standards (30 TAC 307) for Saltwater Aquatic Life Table 2, 2018 Texas Surface Water Quality Standards for Human Health "Procedures to Implement the Texas Surface Water Quality Standards," TCEQ, June 2010

PERMIT INFORMATION

Permittee Name:	City of Galveston
TPDES Permit No:	WQ0010688002
Outfall No:	001
Prepared by:	Abdur Rahim
Date:	March 20, 2025

DISCHARGE INFORMATION

Receiving Waterbody:	A tidal canal	(Madeline Lake Channel)
Segment No:	2424	
TSS (mg/L):	11	
Effluent Flow for Aquatic Life (MGD)	4.76	
% Effluent for Chronic Aquatic Life (Mixing Zone):	15	
% Effluent for Acute Aquatic Life (ZID):	60	
Oyster Waters?	No	
Effluent Flow for Human Health (MGD):	4.76	
% Effluent for Human Health:	8	

CALCULATE DISSOLVED FRACTION (AND ENTER WATER EFFECT RATIO IF APPLICABLE):

Estuarine Metal	Intercept (b)	Slope (m)	Partition Coefficient (Kp)	Dissolved Fraction (Cd/Ct)	Source	Water Effect Ratio (WER)	Source
		()		(,-,		()	Assume
Aluminum	N/A	N/A	N/A	1.00	Assumed	1.00	d
							Assume
Arsenic	N/A	N/A	N/A	1.00	Assumed	1.00	d
							Assume
Cadmium	N/A	N/A	N/A	1.00	Assumed	1.00	d
							Assume
Chromium (total)	N/A	N/A	N/A	1.00	Assumed	1.00	d
							Assume
Chromium (trivalent)	N/A	N/A	N/A	1.00	Assumed	1.00	d
							Assume
Chromium (hexavalent)	N/A	N/A	N/A	1.00	Assumed	1.00	d
							Assume
Copper	4.85	-0.72	12594.97	0.878		1.00	d
							Assume
Lead	6.06	-0.85	149560.26	0.378		1.00	d
							Assume
Mercury	N/A	N/A	N/A	1.00	Assumed	1.00	d
							Assume
Nickel	N/A	N/A	N/A	1.00	Assumed	1.00	d
							Assume
Selenium	N/A	N/A	N/A	1.00	Assumed	1.00	d
							Assume
Silver	5.86	-0.74	122848.37	0.425		1.00	d
							Assume
Zinc	5.36	-0.52	65837.87	0.580		1.00	d

AQUATIC LIFE

CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

Parameter	SW Acute Criterion (µg/L)	SW Chronic Criterion (μg/L)	WLAa (µg/L)	WLAc (µg/L)	LTAa (µg/L)	LTAc (µg/L)	Daily Avg. (µg/L)	Daily Max. (µg/L)
Acrolein	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Aldrin	1.3	N/A	2.17	N/A	0.693	N/A	1.01	2.15
Aluminum	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Arsenic	149	78	248	520	79.5	317	116	247
Cadmium	40.0	8.75	66.7	58.3	21.3	35.6	31.3	66.3
Carbaryl	613	N/A	1022	N/A	327	N/A	480	1016
Chlordane	0.09	0.004	0.150	0.0267	0.0480	0.0163	0.0239	0.0505
Chlorpyrifos	0.011	0.006	0.0183	0.0400	0.00587	0.0244	0.00862	0.0182
Chromium (trivalent)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chromium (hexavalent)	1090	49.6	1817	331	581	202	296	627
Copper	13.5	3.6	25.6	27.3	8.20	16.7	12.0	25.4
Copper (oyster waters)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cyanide (free)	5.6	5.6	9.33	37.3	2.99	22.8	4.39	9.28
4,4'-DDT	0.13	0.001	0.217	0.00667	0.0693	0.00407	0.00597	0.0126
Demeton	N/A	0.1	N/A	0.667	N/A	0.407	0.597	1.26
Diazinon	0.819	0.819	1.37	5.46	0.437	3.33	0.642	1.35
Dicofol [Kelthane]	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dieldrin	0.71	0.002	1.18	0.0133	0.379	0.00813	0.0119	0.0252
Diuron	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Endosulfan I (alpha)	0.034	0.009	0.0567	0.0600	0.0181	0.0366	0.0266	0.0563
Endosulfan II (<i>beta</i>)	0.034	0.009	0.0567	0.0600	0.0181	0.0366	0.0266	0.0563
Endosulfan sulfate	0.034	0.009	0.0567	0.0600	0.0181	0.0366	0.0266	0.0563
Endrin	0.037	0.002	0.0617	0.0133	0.0197	0.00813	0.0119	0.0252
Guthion [Azinphos Methyl]	N/A	0.01	N/A	0.0667	N/A	0.0407	0.0597	0.126
Heptachlor	0.053	0.004	0.0883	0.0267	0.0283	0.0163	0.0239	0.0505
Hexachlorocyclohexane (<i>gamma</i>) [Lindane]	0.16	N/A	0.267	N/A	0.0853	N/A	0.125	0.265
Lead	133	5.3	586	93.5	188	57.0	83.8	177
Malathion	N/A	0.01	N/A	0.0667	N/A	0.0407	0.0597	0.126
Mercury	2.1	1.1	3.50	7.33	1.12	4.47	1.64	3.48
Methoxychlor	N/A	0.03	N/A	0.200	N/A	0.122	0.179	0.379
Mirex	N/A	0.001	N/A	0.00667	, N/A	0.00407	0.00597	0.0126
Nickel	118	13.1	197	87.3	62.9	53.3	78.3	165
Nonylphenol	7	1.7	11.7	11.3	3.73	6.91	5.48	11.6
Parathion (ethyl)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pentachlorophenol	15.1	9.6	25.2	64.0	8.05	39.0	11.8	25.0
Phenanthrene	7.7	4.6	12.8	30.7	4.11	18.7	6.03	12.7
Polychlorinated Biphenyls [PCBs]	10	0.03	16.7	0.200	5.33	0.122	0.179	0.379
Selenium	564	136	940	907	301	553	442	935
Silver	2	N/A	7.84	N/A	2.51	N/A	3.68	7.80
						0.00081		0.0025
Toxaphene	0.21	0.0002	0.350	0.00133	0.112	3	0.00119	2
Tributyltin [TBT]	0.24	0.0074	0.400	0.0493	0.128	0.0301	0.0442	0.0935
2,4,5 Trichlorophenol	259	12	432	80.0	138	48.8	71.7	151
Zinc	92.7	84.2	266	968	85.2	590	125	265

HUMAN HEALTH

CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

Parameter	Fish Only Criterion (μg/L)	WLAh (µg/L)	LTAh (µg/L)	Daily Avg. (μg/L)	Daily Max. (μg/L)
Acrylonitrile	115	1438	1337	1965	4157
Aldrin	1.147E-05	0.000143	0.000133	0.000196	0.000414
Anthracene	1317	16463	15310	22505	47614
Antimony	1071	13388	12450	18302	38720
Arsenic	N/A	N/A	N/A	N/A	N/A
Barium	N/A	N/A	N/A	N/A	N/A
Benzene	581	7263	6754	9928	21005

Page 16

Daname 0.100 1.101 1.121 1.121 1.123 1.025 Bernacig/anthraceme 0.0025 0.0313 0.0291 0.0427 0.0903 Bernacig/anthraceme 0.025 0.0313 0.0291 0.0427 0.0903 Bic/Lothoreethyllether 0.235 3.43 3.19 4.69 9.92 Bic/Lothoreethyllether 1.235 9.44 8.78 1.29 7.27 Bic/Lothoroethane [Dichorobromomethane] 1.050 1.2230 1.2233 1.8114 3.8322 Bromodichoromethane [Dichorobromomethane] 1.050 1.325 7.85 7.86 1.663 Chiorobromomethane [Dichorobromomethane] 1.83 2.248 2.127 .84213 3.1812 2.7827 Chiorobromomethane [Dichorohoromethane] 1.663 1.6812 1.8132 2.7827 .94213 3.8142 3.9322 2.7827 Chiorobromomethane [Dichorohoromethane] 1.663 1.6812 1.8132 2.7827 3.4213 3.8132 2.7827 .7833 3.934 3.931	Benzidine	0.107	1.34	1.24	1.82	3.86
Benzolgymene 0.0025 0.0313 0.0291 0.0427 0.0493 Big/chtoromethyljether 0.2745 3.43 3.19 4.69 9.92 Big/chtoromethyljether 7.55 9.4.4 87.8 1.1548 Big/chtoromethane [Dichlorobromomethane] 7.55 9.4.4 87.8 1.139 9.72 Bromofom [Trichhoromethane] 1060 13250 13134 3.139 4.669 9.942 Bromofom [Trichhoromethane] 1060 13250 12323 13114 3.832 Carbon Terrachloride 46 575 535 7.86 1663 Chorobarcene 2737 34213 31818 46771 9.9821 Chorobarcene 7.87 34213 31522 278257 Chorobarcene 7.87 34213 31523 278257 Chorobarcene 7.59 9.6113 80478 13149 3420 Chorobarcene 7.59 9.613 80478 13149 3420 Chorobarcene 7						
Bis(chiloromethyljether 0.2745 3.43 3.19 4.69 9.92 Big(2-chroneethyl) phthalate [Di(2-ethylhexyl) 735 944. 87.8 1129 272 Bromadichioromethane [Dichlorobromomethane] 275 3438 3137 4669 9942 Bromadichioromethane 1060 13250 12323 18114 83322 Cadmium N/A N/A N/A N/A N/A Cadmium N/A N/A N/A N/A N/A Cadmium N/A 1814 6677 553 786 1663 Chordane 0.0021 0.0427 0.0993 11523 278275 Chordoner 1737 34213 31818 46771 99521 Chordoner 252 315 29.3 43.0 91.1 Cresolis (Methylphenol] 9301 11563 108124 15892 20.00469 Choroaner 0.0004 0.00250 0.00245 0.00248 0.0014 At-D						
Bit/2 -thrinkovity 1548 535 498 711 1548 Bit/2 -thrinkovity pithalare [Di(2-ethylhex)t] 7.55 94.4 87.8 129 272 Bromodic/Informethane [Dic/horobrroomethane] 1060 13250 12323 18114 38322 Cadmium N/A N/A N/A N/A N/A N/A Cadmium N/A N/A N/A N/A N/A N/A Chorobare 0.0025 0.0333 0.0291 0.0427 0.9933 Chorobarene 1237 34213 31818 46771 99822 Chorobarene 2737 34233 31515 278275 Chorobarene 2.52 31.5 29.3 43.0 91.1 Cresols (Methyphenols) 9301 116263 100124 0.0023 0.00134 0.00224 Cresols (Methyphenols) 0.9013 0.00163 0.00125 0.00224 33266 Cresols (Methyphenols) 0.9014 0.0025 0.0233 0.0144						
Big(2-ethylhexyl) 755 94.4 87.8 129 272 Bromodichloromethane [Dichlorobromomethane] 275 3438 3197 4699 9842 Bromodichloromethane [Dichlorobromomethane] 1060 12320 12323 18114 83222 Cadmium N/A N/A N/A N/A N/A N/A Carbon Tetrachloride 46 575 535 786 1663 Chorobarene 2737 34213 31818 4771 99952 Chorobarene 2737 96213 89478 131532 278275 Chromium (hexavalent) 502 6275 5386 8578 18149 Ornyane 0.0021 0.0250 0.0233 0.0331 0.0324 4.4'-DDT 0.0004 0.00500 0.0024 0.0024 A4'-DDT 0.0004 0.00500 0.00451 0.00649 0.0049 A4'-DDT 0.0004 0.00500 0.00445 0.0044 2.4'D 0.201 0.1167 <						
phthalaiej 7.55 94.4 87.8 129 272 Bromodichorenthane [Dichrobromomethane] 1060 13250 12323 18114 38322 Bromodichoronethane [Dichrobromomethane] 1060 13250 12323 18114 38322 Cadrium N/A N/A N/A N/A N/A N/A Cadrium N/A N/A N/A N/A N/A N/A Chirodane 0.0025 0.0313 0.0291 0.0427 0.9903 Chirodormethane 1737 34213 31818 46771 99621 Chirodorm (Trichloromethane] 7697 96213 89478 18149 Chrosene 2.52 31.5 29.3 43.0 91.1 Cresols [Methyphenols] 9001 0.002 0.0250 0.0243 0.0341 0.0723 Ad-DDE 0.004 0.00463 0.00463 0.00463 0.0044 2.4^4-D N/A N/A N/A N/A N/A N/A N/A <td></td> <td>12100</td> <td></td> <td></td> <td>/01</td> <td>2010</td>		12100			/01	2010
Bromstorm [Tribromomethane] 1060 13250 12223 18114 33822 Cadmium N/A N/A N/A N/A N/A N/A Carbon Tetrachloride 46 575 535 786 1663 Chorobarene 0.0027 0.0431 0.021 0.0427 0.093 Chorobarene 0.737 3.4213 31818 46771 98952 Chorobarene 0.737 3.4213 31818 46771 98952 Chorobartichoromethane 769 96213 89478 13152 278275 Chrorobartichoromethane 2.52 31.5 29.3 43.0 91.1 Chrorobartice (free) N/A N/A N/A N/A N/A N/A Cyranide (free) N/A N/A N/A N/A N/A N/A N/A Q4-DD 0.00013 0.00151 0.00242 0.0043 0.0144 2.4*D 0.0044 2.4*D 0.0044 2.4*DD 153 0.0043 <td></td> <td>7.55</td> <td>94.4</td> <td>87.8</td> <td>129</td> <td>272</td>		7.55	94.4	87.8	129	272
Cadmum N/A N/A<	Bromodichloromethane [Dichlorobromomethane]	275	3438	3197	4699	9942
Carbon Tetrachloride 46 575 535 786 1663 Chiordane 0.0025 0.0313 0.0291 0.0427 0.0903 Chiorobenzene 2737 34213 31818 46771 98952 Chiorobitromomethane Dibromochloromethane 7879 96213 89478 131532 278275 Chromium (hexavalent) 502 6275 5836 8578 18149 Crasols (Methylphenols) 9301 116163 108124 158942 336266 Crasols (Methylphenols) 9301 106163 0.00151 0.0022 0.0233 4.4'-DDD 0.0001 0.00360 0.00465 0.0083 0.0144 4.4'-DDT 0.004 0.00500 0.00465 0.0083 0.0144 4.4'-DDT 0.004 0.00500 0.00465 0.0083 0.0141 4.4'-DD N/A N/A N/A N/A N/A N/A 1.4'Dichrorobenzene [1.4-Dichrorobenzene] S913 5499 8022 1	Bromoform [Tribromomethane]	1060	13250	12323	18114	38322
Chlordane 0.0025 0.0131 0.0221 0.0427 0.0932 Chloroberzene 2737 34213 31818 46771 98952 Chloroberzene 2737 34213 31818 46771 98952 Chloroform [Trichloromethane] 183 2248 2127 3122 6616 Chromium (hexavalent) 502 6275 5836 8578 18149 Chrysene 252 31.5 29.3 43.0 911 Cresols [Methylphenols] 9301 11626 108124 158942 336266 Cyanide (free) N/A N/A </td <td>Cadmium</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td>	Cadmium	N/A	N/A	N/A	N/A	N/A
Chlorobenzene 2737 34213 31818 46771 98952 Chlorodm [Trichloromethane] 183 2288 2127 31327 6616 Chlorodm [Trichloromethane] 7697 96213 89478 131532 278275 Chronium (hexavalent) 502 6275 5836 8578 18149 Cresols [Methylphenols] 9301 116263 108124 158942 336266 Cyanide (free) N/A N/A N/A N/A N/A N/A 4.4'-DD 0.00013 0.00153 0.00222 0.0024 0.0023 0.0224 0.0042 2.4'-DD N/A N/A N/A N/A N/A N/A 2.01bromoenthane [Ethylene Dibromide] 4.42 530 493 72.4 153 <i>n</i> -Dichlorobenzene] 3299 41238 38315 56375 119271 <i>p</i> -Dichlorobenzene] 3299 41238 3831 56375 119271 <i>p</i> -Dichlorobenzene] 3299 41238	Carbon Tetrachloride	46	575	535	786	1663
Chlorodibromomethane [Dibromochloromethane] 183 2288 2117 3127 6616 Chloroform [Trichloromethane] 7697 96213 89478 13152 278275 Chromium (hexavlent) 502 6275 5836 8578 18149 Chrysene 2.52 31.5 29.3 43.0 91.1 Cresols [Methylphonds] 9301 116263 108124 158942 336266 Cyanide [free] N/A N/A N/A N/A N/A N/A 4.4'-DD 0.00013 0.00130 0.00151 0.00222 0.0049 4.4'-DDT 0.0004 0.00500 0.00465 0.00683 0.0144 2.4'-D N/A N/A N/A N/A N/A Dichlorobenzene [1,2-Dichlorobenzene] 595 7438 6917 10.167 12511 oDichlorobenzene [1,2-Dichlorobenzene] 244 24.0 26.0 38.2 80.9 1,2-Dichlorobenzene [1,2-Dichlorobenzene] 5114 684355 640700	Chlordane	0.0025	0.0313	0.0291	0.0427	0.0903
Chloroform [Trichloromethane] 7697 96213 89478 131532 278275 Chromum (hexavalent) 502 6275 5836 68578 18149 Chrysene 2.52 315 29.3 43.0 91.1 Cresols [Methylphenols] 9301 116263 108124 1158942 336266 Cyanide (free) N/A N/A N/A N/A N/A N/A 4.4'-DD 0.00013 0.00163 0.00151 0.00222 0.0042 4.4'-DD 0.0004 0.00050 0.00465 0.00683 0.0144 2.4'-D N/A N/A N/A N/A N/A J.2-Ditoromethane [Ethylene Dibromide] 4.24 53.0 49.3 77.24 133 J-2-Dichorobenzene [1,2-Dichlorobenzene] 595 7438 6917 10167 21511 J-Dichlorobenzene [1,4-Dichlorobenzene] N/A N/A N/A N/A N/A 13.3 J-Dichlorobenzene [1,4-Dichlorobenzene] 55114 688925	Chlorobenzene	2737	34213	31818	46771	98952
Chromum (hexavalent) 502 6275 5836 8578 118149 Chrysene 2.52 31.5 29.3 43.0 91.1 Cresols [Methylphenols] 9301 116263 108124 158942 336266 Cyanide (free) N/A N/A N/A N/A N/A N/A N/A A/4 A4'-DDD 0.00250 0.0233 0.0341 0.0723 4.0042 A4'-DDT 0.0040 0.00040 0.00465 0.00638 0.0144 A4'-DDT 0.004 0.00465 0.00648 0.0144 Q4'-D N/A	Chlorodibromomethane [Dibromochloromethane]	183	2288	2127	3127	6616
Chrysene 2.52 31.5 29.3 43.0 91.1 Cresols [Methylpenols] 9301 116263 108124 138942 336266 Cyanide (free) N/A N/A N/A N/A N/A A/A 4.4'-DD 0.0021 0.0233 0.0341 0.0723 4.4'-DD 0.0040 0.00500 0.00455 0.00683 0.0144 2.4'-D N/A N/A N/A N/A N/A N/A Danitol [Fenyropathrin] 473 5913 5499 8082 17100 1.2-Dichorobenzene [1,3-Dichorobenzene] 2299 41238 38351 55375 119271 p-Dichorobenzene [1,4-Dichorobenzene] 214 133 166653 154996 227844 482037 1,2-Dichorobenzene [1,4-Dichorobenzene] 5514 688925 640700 941829 1992577 Dichorobenzene [1,4-Dichorobenzene] 5144 688925 640700 941829 1992577 Dichorobenzene [1,4-Dichorobenzene] 51333 166	Chloroform [Trichloromethane]	7697	96213	89478	131532	278275
Cresols [Methylphenols] 9301 116263 108124 158942 336266 Cyanide (free) N/A N/A N/A N/A N/A N/A 4/4'DDD 0.0023 0.0331 0.00131 0.00233 0.0341 0.0723 4,4'DDT 0.0004 0.00050 0.00465 0.00633 0.01141 2,4'D N/A N/A N/A N/A N/A N/A 2,4'D N/A N/A N/A N/A N/A N/A 2,4'D N/A N/A N/A N/A N/A N/A Delichorobenzene [1,2-Dichlorobenzene] 595 7438 6917 10167 1157 p-Dichlorobenzene [1,4-Dichlorobenzene] 214 80 26.0 38.2 8020 119271 p-Dichlorobenzene [1,4-Dichlorobenzene] 5514 68825 640700 941829 199257 3,3'Dichloropenzidine 2.24 1133 166663 115499 221844 42037 1,2-Dichloropropyne	Chromium (hexavalent)	502	6275	5836	8578	18149
Cyanide (free) N/A N/A N/A N/A N/A 4.4'-DD 0.002 0.0233 0.0341 0.0723 4.4'-DD 0.00013 0.00163 0.00151 0.0022 0.0044 4.4'-DT 0.0004 0.00500 0.00465 0.00683 0.0144 2,4'-D N/A N/A N/A N/A N/A N/A Danitol [Fenpropathrin] 473 5913 5499 8082 17100 1,2-Dibromoethane [Li-Dichlorobenzene] 3299 41283 38951 56375 119271 p-Dichlorobenzene [1,2-Dichlorobenzene] 329 41283 38351 56375 119271 p-Dichloroethanie 2.4 80.0 2.6 38.2 80.9 1,2-Dichloroethanie 1.4 6663 154996 22784 48203 3,3-Dichloroethanie 0.30 3.75 3.49 51.2 0.00233 0.00341 0.000733 1,3-Dichloropropane 259 3238 3011 4425	Chrysene	2.52	31.5	29.3	43.0	91.1
4,4'-DDD 0.002 0.0250 0.0233 0.0341 0.0723 4,4'-DDE 0.00013 0.00163 0.00122 0.00422 4,4'-DDT 0.00040 0.000465 0.00683 0.0144 2,4'-D N/A N/A N/A N/A N/A 1,2-Dibromeethane [Ethylene Dibromide] 4.73 5913 5499 8082 17100 0.2-Dibromeethane [Ethylene Dibromide] 4.24 53.0 49.3 72.4 153 m-Dichlorobenzene [1,2-Dichlorobenzene] 3299 41238 38351 56375 119271 0-Dichlorobenzene [1,1-Dichlorobenzene] N/A N/A N/A N/A N/A 1,2-Dichlorobenzene [1,1-Dichlorobenzene] 55114 688925 640700 941829 1992577 Dichloropentape 259 3238 3011 4425 9363 1,2-Dichloropengene [1,3-Dichloropropylene] 119 1488 1383 2033 4302 Dicolofi [Kethane] 0.30 3.75 3.49 5.12 10.84 </td <td>Cresols [Methylphenols]</td> <td>9301</td> <td>116263</td> <td>108124</td> <td>158942</td> <td>336266</td>	Cresols [Methylphenols]	9301	116263	108124	158942	336266
4,4'-DDE 0.00013 0.00163 0.00151 0.00222 0.00469 4,4'-DDT 0.0004 0.0050 0.00465 0.00683 0.0141 2,4'-D N/A N/A N/A N/A N/A N/A Danitol [Fenpropathrin] 473 5913 5499 8082 17100 1,2-Dibromoethane [Ithylen Dibromide] 4.24 53.0 49.3 72.4 153 n-Dichlorobenzene [1,2-Dichlorobenzene] 595 7438 6917 10167 72151 n-Dichlorobenzidine 2.24 28.0 26.0 38.2 80.9 1,2-Dichlorobenzidine 2.44 4550 4232 6220 13159 1,2-Dichloropethylene [I,1-Dichloroethene] 15333 166663 154996 227844 482037 1,2-Dichloropropane 2.59 3238 3011 4425 9363 1,3-Dichloropropane 2.30 0.000250 0.000233 0.000341 0.000723 2,4-Dimethylenel 8436 105450 98069	Cyanide (free)	N/A	N/A	N/A	N/A	N/A
4,4'-DDT 0.0004 0.00500 0.00465 0.00683 0.0144 2,4'-D N/A N/A N/A N/A N/A N/A Danitol [Ferpropathrin] 473 5913 5499 8082 17100 1,2-Dibromoethane [Ethylene Dibromide] 4.24 53.0 49.3 72.4 153 m-Dichlorobenzene [1,2-Dichlorobenzene] 3299 41238 33351 55375 119271 p-Dichlorobenzene [1,4-Dichlorobenzene] N/A N/A N/A N/A N/A 1,2-Dichlorobenzine 2,24 28.0 26.0 38.2 80.9 1,2-Dichloroethane 364 4550 4232 6202 13159 1,2-Dichloropethane 1333 16663 15496 227844 48203 1,2-Dichloropropane 2,3-B 3011 4445 9363 1,3-Dichloropropane 1,3-Dichloropropane 0.000250 0.000233 0.000023 1,2-Dichloropropane 2,3-Dichloropropane 2,7-Dichloropane 2,70 0.000014 <td>4,4'-DDD</td> <td>0.002</td> <td></td> <td>0.0233</td> <td></td> <td>0.0723</td>	4,4'-DDD	0.002		0.0233		0.0723
2,4'-D N/A N/A N/A N/A N/A N/A Danitol [Fenpropathrin] 473 5913 5499 8082 17100 1,2-Dibromeethane [Ethylene Dibromide] 4.24 53.0 49.3 72.4 153 <i>m</i> -Dichlorobenzene [1,3-Dichlorobenzene] 395 7438 6917 10167 21511 <i>a</i> -Dichlorobenzene [1,4-Dichlorobenzene] N/A N/A N/A N/A N/A <i>g</i> -Dichlorobenzene [1,4-Dichlorobenzene] N/A N/A N/A N/A N/A <i>g</i> -Dichlorobenzene [1,1-Dichlorobenzene] N/A N/A N/A N/A N/A <i>g</i> -Dichlorobenzidine 2.24 2.8.0 2.6.0 38.2 80.9 <i>g</i> -Dichlorobenzidine 2.34 2.450 442.03 13.50 13.59 13.50 <i>g</i> -Dichlorobenzidine 2.34 1833 16663 154996 2.27844 482037 <i>g</i> -Dichloropropane 2.99 3.375 3.49 5.12 10.8 Dicofol [Kethane]	•	0.00013	0.00163	0.00151	0.00222	0.00469
Danitol [Fenpropathrin] 473 5913 5499 8082 17100 1,2-Dibromoethane [Ethylene Dibromide] 4.24 53.0 49.3 7.2.4 153 m-Dichlorobenzene [1,3-Dichlorobenzene] 595 7438 6917 10167 21511 o-Dichlorobenzene [1,4-Dichlorobenzene] 3299 41238 38351 556375 119271 p-Dichlorobenzene [1,4-Dichlorobenzene] N/A N/A N/A N/A N/A 3,3'-Dichlorobenzidline 2.24 28.0 26.0 38.2 80.9 1,2-Dichloropenzidline 2393 3011 4425 94323 1992577 Dichloromethane [Methylene Choride] 13333 166663 15496 227844 42033 1,3-Dichloropropane 259 3238 3011 4425 9433 1,2-Dichloropropane 259 3238 3011 4425 9400 21.8 1,3-Dichloropropane 21.0 10.8 1332 10.00171 0.000212 1.4 1108 1383 2033 0.000214 0.000029 1.4 10.6	4,4'-DDT	0.0004	0.00500	0.00465		0.0144
1,2-Dibromoethane [Ethylene Dibromide] 4.24 53.0 49.3 72.4 153 m-Dichlorobenzene [1,3-Dichlorobenzene] 3299 41238 38351 56375 119271 p-Dichlorobenzene [1,2-Dichlorobenzene] N/A S0.00 S0.0023 S0.00033 S0.0023 J0.00141 J0.00012 J0.0014 J0.00012 J0.4Dichioroporpopene [1,3-Dichioroporpopene [1,3-Dichioroporpopene [1,3-Dichioroporpopene [1,3-Dichioroporpopene [1,3-Dichioroporpopene [2,3-Dichioro			,			N/A
m-Dichlorobenzene [1,3-Dichlorobenzene] 595 7438 6917 10167 21511 o-Dichlorobenzene [1,2-Dichlorobenzene] 3299 41238 33351 56375 119271 p-Dichlorobenzene [1,4-Dichlorobenzene] N/A N/A N/A N/A N/A g-Dichlorobenzidine 2.24 28.0 26.0 38.2 80.9 1,2-Dichloroethyne [1,1-Dichloroethene] 55114 688925 640700 941829 1992577 Dichloromethylene [1,1-Dichloroethene] 151333 166663 154996 227844 482037 1,2-Dichloropropane 259 3238 3011 4425 9363 1,3-Dichloropropene [1,3-Dichloropropylene] 119 1488 1333 2033 4302 Dicofol [Kelthane] 0.30 3.75 3.49 5.12 10.8 Dicofol [Kelthane] 0.002 0.000230 0.000231 0.000014 0.000029 2,4-Dimethylphenol 8436 105450 98069 144160 304993 Dicoins/Furans [TCDD Equivalents]<						
o-Dichlorobenzene [1,2-Dichlorobenzene] 3299 41238 38351 56375 119271 p-Dichlorobenzene [1,4-Dichlorobenzene] N/A N/A N/A N/A N/A 3,3'-Dichlorobenzidine 2.24 28.0 26.0 38.2 80.9 1,2-Dichloroethane 364 4550 4232 6220 13159 1,1-Dichloroethylene [1,1-Dichloroethene] 55114 688925 640700 941829 1992577 Dichloropropane 1,3-Dichloropropane 259 3238 3011 4425 9363 1,3-Dichloropropene [1,3-Dichloropropylene] 119 1448 1333 0.00331 4.000723 2,4-Dimethylphenol 8436 105450 98069 144160 304993 Dio-n-Butyl Phthalate 92.4 1155 1074 1579 3340 Dioxins/Furans [TCDD Equivalents] 7.97E-08 9.96E-07 9.27E-07 0.000014 0.00029 Enchin 0.01 0.0220 0.233 0.301 0.7233 0.301 0.723					72.4	153
p-Dichlorobenzene [1,4-Dichlorobenzene] N/A N/A N/A N/A N/A 3.3'-Dichlorobenzidine 2.24 28.0 26.0 38.2 80.9 1,2-Dichloroethane 364 4550 4232 6220 13159 1,1-Dichloroethylene [1,1-Dichloroethene] 15314 688925 640700 941829 1992577 Dichloropropane 259 3238 3011 4425 9363 1,3-Dichloropropane 0.30 3.75 3.49 5.12 10.8 Dicofol [Kelthane] 0.30 3.75 3.49 5.12 10.8 Dicofol [Kelthane] 0.30 3.75 3.49 5.12 10.8 Dicolarity Phthalate 92.4 1155 1074 1579 3340 Dioxins/Furans [TCDD Equivalents] 7.97E-08 9.96E-07 9.27E-07 0.000014 0.000029 Enchlorobydrin 2013 25163 23401 34399 72777 Ethylenzene 1867 2338 21704 31904 67						
3.3-Dichlorobenzidine 2.24 28.0 26.0 38.2 80.9 1,2-Dichloroethane 364 4550 4232 6220 13159 1,1-Dichloroethylene [1,1-Dichloroethene] 55114 668925 640700 941829 1992577 1,2-Dichloropthane [Methylene Chloride] 1333 166663 154996 227844 482037 1,2-Dichloropropene [1,3-Dichloropropylene] 119 1488 1383 2033 4302 Dicofol [Kelthane] 0.30 3.75 3.49 5.12 10.8 Dicofol [Kelthane] 0.20 0.00233 0.000341 0.000723 2.4-Dimethylphenol 8436 105450 98069 144160 304993 Dioxins/Furans [TCDD Equivalents] 7.97E-08 9.96E-07 9.27E-07 0.000014 0.000029 Endrin 0.02 0.233 0.341 0.723 Epichlorohydrin 2103 25163 23401 34399 72777 Ethylene Glycol 1.68E+07 0 0 0 0 0 0						
1,2-Dichloroethane 364 4550 4232 6220 13159 1,1-Dichloroethylene [1,1-Dichloroethene] 55114 688925 640700 941829 1992577 Dichloromethane [Methylene Chloride] 13333 166663 154996 227844 482037 1,2-Dichloropropane 259 3238 3011 4425 9363 1,3-Dichloropropene [1,3-Dichloropropylene] 119 1488 1383 2003 4302 Dicofol [Kelthane] 0.30 3.75 3.49 5.12 10.8 Dieldrin 2.0E-05 0.000250 0.000233 0.000341 0.000723 Di-R-Butyl Phthalate 92.4 1155 1074 1579 3340 Dioxins/Furans [TCDD Equivalents] 7.97E-08 9.96E-07 9.27E-07 0.000014 0.000029 Enchlorohydrin 2013 25163 23401 34399 72777 Ethylbenzene 1867 2338 21704 31904 67499 21000000 19530000 28709100 603	· · · · · ·					-
1,1-Dichloroethylene [1,1-Dichloroethene] 55114 688925 640700 941829 1992577 Dichloromethane [Methylene Chloride] 13333 166663 154996 227844 482037 1,2-Dichloropropane 259 3238 3011 4425 9363 1,3-Dichloropropane 0.30 3.75 3.49 5.12 10.8 Dicofol [Kelthane] 0.30 3.75 3.49 5.12 10.8 Diedrin 2.0E-05 0.000250 0.000233 0.000341 0.000723 2,4-Dimethylphenol 8436 105450 98069 144160 304993 Dioxins/Furans [TCDD Equivalents] 7.97E-08 9.96E-07 9.27E-07 0.000014 0.0000029 Endrin 0.02 0.250 0.233 0.341 0.723 Epichlorohydrin 2133 251600 9.86E-07 9.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Dichloromethane [Methylene Chloride] 13333 166663 154996 227844 482037 1,2-Dichloropropane 259 3238 3011 4425 9363 1,3-Dichloropropene [1,3-Dichloropropylene] 119 1488 1383 2033 4302 Dicofol [Kelthane] 0.30 3.75 3.49 5.12 10.8 Dicofol [Kelthane] 0.00250 0.000233 0.00341 0.000723 2,4-Dimethylphenol 8436 105450 98069 144160 304993 Di-n-Butyl Phthalate 92.4 1155 1074 1579 3340 Dioxins/Furans [TCDD Equivalents] 7.97E-08 9.96E-07 9.27E-07 0.000014 0.0000029 Endrin 0.02 0.250 0.233 0.341 0.723 Epichlorohydrin 2013 25163 23401 34399 72777 Ethylene Glycol 1.68E+07 0 0 0 0 0 Fluoride N/A N/A N/A N/A N/A						
1,2-Dichloropropane 259 3238 3011 4425 9363 1,3-Dichloropropene [1,3-Dichloropropylene] 119 1488 1383 2033 4302 Dicofol [Kelthane] 0.30 3.75 3.49 5.12 10.8 Dieldrin 2.0E-05 0.000250 0.000233 0.000341 0.000723 2,4-Dimethylphenol 8436 105450 98069 144160 304993 Di-n-Butyl Phthalate 92.4 1155 1074 1579 3340 Dioxins/Furans [TCDD Equivalents] 7.97E-08 9.96E-07 9.27E-07 0.000014 0.000029 Endrin 0.02 0.233 0.341 0.723 2.3401 34399 72777 Ethylenzene 1867 23338 21704 31904 67499 Ethylenzene 1.68E+07 0 0 0 0 Fluoride N/A N/A N/A N/A N/A N/A Heyachlorocyclohexane (alpha) 0.0025 0.00116 0.00245<	· · · · · ·					
1,3-Dichloropropene 119 1488 1383 2033 4302 Dicofol [Kelthane] 0.30 3.75 3.49 5.12 10.8 Dieldrin 2.0E-05 0.000250 0.000233 0.000341 0.000723 2,4-Dimethylphenol 8436 105450 98069 144160 304993 2,4-Dimethylphenol 8436 105450 9.0274 1579 3340 Dioxins/Furans [TCDD Equivalents] 7.97E-08 9.96E-07 9.27E-07 0.0000014 0.000029 Endrin 0.02 0.250 0.233 0.341 0.723 Epichlorohydrin 2013 25163 23401 34399 72777 Ethylene Glycol 1.68E+07 0						
Dicofol [Kelthane] 0.30 3.75 3.49 5.12 10.8 Dieldrin 2.0E-05 0.000250 0.000233 0.000341 0.000723 2,4-Dimethylphenol 8436 105450 98069 144160 304993 Di-n-Butyl Phthalate 92.4 1155 1074 1579 3340 Dioxins/Furans [TCDD Equivalents] 7.97E-08 9.96E-07 9.27E-07 0.000014 0.000029 Endrin 0.02 0.250 0.233 0.341 0.723 Epichlorohydrin 2013 25163 23401 34399 72777 Ethylenzene 1867 23338 21704 31904 67499 Ethylene Glycol 1.68E+07 0 0 0 0 Fluoride N/A N/A N/A N/A N/A N/A Heptachlor 0.0001 0.00125 0.00116 0.00126 0.00337 0.00495 0.0104 Hexachlorocyclohexane (alpha) 0.26 3.25 3.202 4						
Dieldrin 2.0E-05 0.000250 0.000233 0.000341 0.000723 2,4-Dimethylphenol 8436 105450 98069 144160 304993 Di-n-Butyl Phthalate 92.4 1155 1074 1579 3340 Dioxins/Furans [TCDD Equivalents] 7.97E-08 9.96E-07 9.27E-07 0.000014 0.000002 Endrin 0.02 0.250 0.233 0.341 0.723 Epichlorohydrin 2013 25163 23401 34399 72777 Ethylbenzene 1867 23338 21704 31904 67499 21000000 19530000 28709100 60738300 Ethylene Glycol 1.68E+07 0 0 0 0 Fluoride N/A N/A N/A N/A N/A N/A N/A N/A N/A Heptachlor 0.00029 0.00363 0.00337 0.00495 0.0104 Heptachlor Epoxide 0.00029 0.0363 0.00791 0.0116 0.0245 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2,4-Dimethylphenol 8436 105450 98069 144160 304993 Di-n-Butyl Phthalate 92.4 1155 1074 1579 3340 Dioxins/Furans [TCDD Equivalents] 7.97E-08 9.96E-07 9.27E-07 0.000014 0.000029 Endrin 0.02 0.250 0.233 0.341 0.723 Epichlorohydrin 2013 25163 23401 34399 72777 Ethylbenzene 1867 2338 21704 31904 67499 Ethylene Glycol 1.68E+07 0 0 0 0 0 Fluoride N/A N/A N/A N/A N/A N/A N/A Heptachlor 0.0001 0.00125 0.00116 0.00170 0.00361 Heptachlor Epoxide 0.00029 0.0363 0.00371 0.0145 0.014 Hexachlorocyclohexane (beta) 0.26 3.25 3.02 4.44 0.303 Hexachlorocyclohexane (beta) 0.26 3.25 3.02 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Di-n-Butyl Phthalate 92.4 1155 1074 1579 3340 Dioxins/Furans [TCDD Equivalents] 7.97E-08 9.96E-07 9.27E-07 0.000014 0.000029 Endrin 0.02 0.250 0.233 0.341 0.723 Epichlorohydrin 2013 25163 23401 34399 72777 Ethylbenzene 1867 2338 21704 31904 67499 Z1000000 19530000 28709100 60738300 Ethylene Glycol 1.68E+07 0						
Dioxins/Furans [TCDD Equivalents] 7.97E-08 9.96E-07 9.27E-07 0.0000014 0.0000029 Endrin 0.02 0.250 0.233 0.341 0.723 Epichlorohydrin 2013 25163 23401 34399 72777 Ethylbenzene 1867 23338 21704 31904 67499 Ethylene Glycol 1.68E+07 0 0 0 0 Fluoride N/A N/A N/A N/A N/A Heptachlor 0.0001 0.00125 0.00116 0.00170 0.00361 Hexachlorobenzene 0.00068 0.00850 0.00791 0.0116 0.0245 Hexachlorocyclohexane (alpha) 0.026 3.25 3.02 4.44 9.39 Hexachlorocyclohexane (beta) 0.266 3.25 3.02 4.44 9.39 Hexachlorocyclohexane (gamma) [Lindane] 0.341 4.26 3.96 5.82 12.3 Hexachlorophene 2.90 36.3 33.7 49.5 104						
Endrin0.020.2300.2330.3410.723Epichlorohydrin201325163234013439972777Ethylbenzene18672333821704319046749921000000195300002870910060738300Ethylene Glycol1.68E+070000FluorideN/AN/AN/AN/AN/AHeptachlor0.00010.001250.001160.001700.00361Heptachlor Epoxide0.000290.003630.003370.004950.0116Hexachlorobenzene0.000680.008500.007710.1430.303Hexachlorocyclohexane (alpha)0.00840.1050.09770.1430.303Hexachlorocyclohexane (beta)0.23329.127.139.884.2Hexachlorochane2.3329.127.139.884.2Hexachlorophene2.9036.333.749.51044,4'-Isopropylidenediphenol [Bisphenol A]15982199775185791273112577809Lead3.83127118173366Mercury0.02500.3130.2910.4270.903Methyl Ethyl Ketone9.92E+0512400000115320001695204035864520	•					
Epichlorohydrin201325163234013439972777Ethylbenzene186723338217043190467499Ethylene Glycol1.68E+070000FluorideN/AN/AN/AN/AN/AHeptachlor0.00010.001250.00160.001700.00361Heptachlor Epoxide0.000290.003630.003370.004950.0104Hexachlorobenzene0.000680.008500.007910.01160.0245Hexachlorocyclohexane (alpha)0.0840.1050.09770.1430.303Hexachlorocyclohexane (beta)0.3414.263.965.8212.3Hexachlorocyclohexane (beta)11.6145135198419Hexachlorophene2.9036.333.749.5104Hexachlorophene3.83127118173366Metxorly Poylidenediphenol [Bisphenol A]15982199775185791273112577809Lead3.037.534.951.2108Methyl Ethyl Ketone9.92E+05124000011532001695204035864520						
Ethylbenzene1867233382170431904674992100000195300002870910060738300Ethylene Glycol1.68E+07000FluorideN/AN/AN/AN/AHeptachlor0.00010.001250.001160.001700.00361Heptachlor Epoxide0.000290.003630.003370.004950.0104Hexachlorobenzene0.000680.008500.007910.01160.0245Hexachlorocyclohexane (alpha)0.00840.1050.09770.1430.303Hexachlorocyclohexane (beta)0.263.253.024.449.39Hexachlorocyclohexane (gamma) [Lindane]0.3414.263.965.8212.3Hexachlorophene2.3329.127.139.884.2Hexachlorophene2.9036.333.749.51044,4'-Isopropylidenediphenol [Bisphenol A]15982199775185791273112577809Lead3.83127118173366Metnyt Ketone9.025+050.3130.2910.4270.903Methyl Ethyl Ketone9.92E+0512400000115320001695204035864520						
Ethylene Glycol195300002870910060738300Ethylene Glycol1.68E+070000FluorideN/AN/AN/AN/AN/AHeptachlor0.00010.001250.001160.001700.00361Heptachlor Epoxide0.000290.003630.003370.004950.0104Hexachlorobenzene0.000680.008500.007910.01160.0245Hexachlorobutadiene0.222.752.563.757.95Hexachlorocyclohexane (alpha)0.00840.1050.09770.1430.303Hexachlorocyclohexane (beta)0.263.253.024.449.39Hexachlorocyclohexane (gamma) [Lindane]0.3414.263.965.8212.3Hexachlorophene2.3329.127.139.884.2Hexachlorophene2.9036.333.749.51044,4'-Isopropylidenediphenol [Bisphenol A]15982199775185791273112577809Lead3.83127118173366Mercury0.02500.3130.2910.4270.903Methyl Ethyl Ketone9.92E+0512400000115320001695204035864520						
Ethylene Glycol1.68E+070000FluorideN/AN/AN/AN/AN/AHeptachlor0.00010.001250.001160.001700.00361Heptachlor Epoxide0.000290.003630.003370.004950.0104Hexachlorobenzene0.000680.008500.007910.01160.0245Hexachlorobutadiene0.222.752.563.757.95Hexachlorocyclohexane (alpha)0.00840.1050.09770.1430.303Hexachlorocyclohexane (beta)0.263.253.024.449.39Hexachlorocyclohexane (gamma) [Lindane]0.3414.263.965.8212.3Hexachlorophene2.3329.127.1139.884.2Hexachlorophene2.9036.333.749.51044,4'-Isopropylidenediphenol [Bisphenol A]15982199775185791273112577809Lead3.83127118173366Mercury0.02500.3130.2910.4270.903Methoxychlor3.037.534.951.2108Methoyt Ethyl Ketone9.92E+0512400000115320001695204035864520		1007				
FluorideN/AN/AN/AN/AN/AHeptachlor0.00010.001250.001160.001700.00361Heptachlor Epoxide0.000290.003630.003370.004950.0104Hexachlorobenzene0.000680.008500.007910.01160.0245Hexachlorobutadiene0.222.752.563.757.95Hexachlorocyclohexane (alpha)0.00840.1050.09770.1430.303Hexachlorocyclohexane (beta)0.263.253.024.449.39Hexachlorocyclohexane (gamma) [Lindane]0.3414.263.965.8212.3Hexachlorophene2.3329.127.139.884.2Hexachlorophene2.9036.333.749.51044,4'-Isopropylidenediphenol [Bisphenol A]15982199775185791273112577809Lead3.83127118173366Mercury0.02500.3130.2910.4270.903Methoxychlor3.037.534.951.2108Methyl Ethyl Ketone9.92E+0512400000115320001695204035864520	Ethylene Glycol	1.68E+07				0
Heptachlor Epoxide0.000290.003630.003370.004950.0104Hexachlorobenzene0.000680.008500.007910.01160.0245Hexachlorobutadiene0.222.752.563.757.95Hexachlorocyclohexane (alpha)0.00840.1050.09770.1430.303Hexachlorocyclohexane (beta)0.263.253.024.449.39Hexachlorocyclohexane (gamma) [Lindane]0.3414.263.965.8212.3Hexachlorocyclopentadiene11.6145135198419Hexachlorophene2.3329.127.139.884.2Hexachlorophene2.9036.333.749.51044,4'-Isopropylidenediphenol [Bisphenol A]15982199775185791273112577809Lead3.83127118173366Mercury0.02500.3130.2910.4270.903Methoxychlor3.037.534.951.2108Methyl Ethyl Ketone9.92E+0512400000115320001695204035864520		N/A	N/A	N/A	N/A	N/A
Hexachlorobenzene0.000680.008500.007910.01160.0245Hexachlorobutadiene0.222.752.563.757.95Hexachlorocyclohexane (alpha)0.00840.1050.09770.1430.303Hexachlorocyclohexane (beta)0.263.253.024.449.39Hexachlorocyclohexane (gamma) [Lindane]0.3414.263.965.8212.3Hexachlorocyclopentadiene11.6145135198419Hexachlorocyclopentadiene2.3329.127.139.884.2Hexachlorophene2.9036.333.749.51044,4'-Isopropylidenediphenol [Bisphenol A]15982199775185791273112577809Lead3.83127118173366Mercury0.02500.3130.2910.4270.903Methoxychlor3.037.534.951.2108Methyl Ethyl Ketone9.92E+0512400000115320001695204035864520	Heptachlor	0.0001	0.00125	0.00116	0.00170	0.00361
Hexachlorobutadiene0.222.752.563.757.95Hexachlorocyclohexane (alpha)0.00840.1050.09770.1430.303Hexachlorocyclohexane (beta)0.263.253.024.449.39Hexachlorocyclohexane (gamma) [Lindane]0.3414.263.965.8212.3Hexachlorocyclopentadiene11.6145135198419Hexachlorocyclopentadiene2.3329.127.139.884.2Hexachlorophene2.9036.333.749.51044,4'-Isopropylidenediphenol [Bisphenol A]15982199775185791273112577809Lead3.83127118173366Mercury0.02500.3130.2910.4270.903Methoxychlor3.037.534.951.2108Methyl Ethyl Ketone9.92E+0512400000115320001695204035864520	Heptachlor Epoxide	0.00029	0.00363	0.00337	0.00495	0.0104
Hexachlorocyclohexane (alpha)0.00840.1050.09770.1430.303Hexachlorocyclohexane (beta)0.263.253.024.449.39Hexachlorocyclohexane (gamma) [Lindane]0.3414.263.965.8212.3Hexachlorocyclopentadiene11.6145135198419Hexachlorocyclopentadiene2.3329.127.139.884.2Hexachlorophene2.9036.333.749.51044,4'-Isopropylidenediphenol [Bisphenol A]15982199775185791273112577809Lead3.83127118173366Mercury0.02500.3130.2910.4270.903Methoxychlor3.037.534.951.2108Methyl Ethyl Ketone9.92E+0512400000115320001695204035864520	Hexachlorobenzene	0.00068	0.00850	0.00791	0.0116	0.0245
Hexachlorocyclohexane (beta)0.263.253.024.449.39Hexachlorocyclohexane (gamma) [Lindane]0.3414.263.965.8212.3Hexachlorocyclopentadiene11.6145135198419Hexachlorocyclopentadiene2.3329.127.139.884.2Hexachlorophene2.9036.333.749.51044,4'-Isopropylidenediphenol [Bisphenol A]15982199775185791273112577809Lead3.83127118173366Mercury0.02500.3130.2910.4270.903Methoxychlor3.037.534.951.2108Methyl Ethyl Ketone9.92E+0512400000115320001695204035864520	Hexachlorobutadiene	0.22	2.75	2.56	3.75	7.95
Hexachlorocyclohexane (gamma) [Lindane]0.3414.263.965.8212.3Hexachlorocyclopentadiene11.6145135198419Hexachlorocyclopentadiene2.3329.127.139.884.2Hexachloroethane2.9036.333.749.51044,4'-Isopropylidenediphenol [Bisphenol A]15982199775185791273112577809Lead3.83127118173366Mercury0.02500.3130.2910.4270.903Methoxychlor3.037.534.951.2108Methyl Ethyl Ketone9.92E+0512400000115320001695204035864520	Hexachlorocyclohexane (alpha)	0.0084	0.105	0.0977	0.143	0.303
Hexachlorocyclopentadiene 11.6 145 135 198 419 Hexachlorochane 2.33 29.1 27.1 39.8 84.2 Hexachloroethane 2.90 36.3 33.7 49.5 104 4,4'-lsopropylidenediphenol [Bisphenol A] 15982 199775 185791 273112 577809 Lead 3.83 127 118 173 366 Mercury 0.0250 0.313 0.291 0.427 0.903 Methoxychlor 3.0 37.5 34.9 51.2 108 Methyl Ethyl Ketone 9.92E+05 12400000 11532000 16952040 35864520	Hexachlorocyclohexane (<i>beta</i>)	0.26	3.25	3.02	4.44	9.39
Hexachloroethane2.3329.127.139.884.2Hexachlorophene2.9036.333.749.51044,4'-lsopropylidenediphenol [Bisphenol A]15982199775185791273112577809Lead3.83127118173366Mercury0.02500.3130.2910.4270.903Methoxychlor3.037.534.951.2108Methyl Ethyl Ketone9.92E+0512400000115320001695204035864520	Hexachlorocyclohexane (gamma) [Lindane]	0.341	4.26	3.96	5.82	12.3
Hexachlorophene 2.90 36.3 33.7 49.5 104 4,4'-Isopropylidenediphenol [Bisphenol A] 15982 199775 185791 273112 577809 Lead 3.83 127 118 173 366 Mercury 0.0250 0.313 0.291 0.427 0.903 Methoxychlor 3.0 37.5 34.9 51.2 108 Methyl Ethyl Ketone 9.92E+05 12400000 11532000 16952040 35864520	Hexachlorocyclopentadiene	11.6	145	135	198	419
4,4'-Isopropylidenediphenol [Bisphenol A]15982199775185791273112577809Lead3.83127118173366Mercury0.02500.3130.2910.4270.903Methoxychlor3.037.534.951.2108Methyl Ethyl Ketone9.92E+0512400000115320001695204035864520	Hexachloroethane	2.33	29.1	27.1	39.8	84.2
Lead 3.83 127 118 173 366 Mercury 0.0250 0.313 0.291 0.427 0.903 Methoxychlor 3.0 37.5 34.9 51.2 108 Methyl Ethyl Ketone 9.92E+05 12400000 11532000 16952040 35864520	Hexachlorophene	2.90	36.3	33.7	49.5	104
Mercury 0.0250 0.313 0.291 0.427 0.903 Methoxychlor 3.0 37.5 34.9 51.2 108 Methyl Ethyl Ketone 9.92E+05 12400000 11532000 16952040 35864520	4,4'-Isopropylidenediphenol [Bisphenol A]	15982	199775	185791	273112	577809
Methoxychlor 3.0 37.5 34.9 51.2 108 Methyl Ethyl Ketone 9.92E+05 12400000 11532000 16952040 35864520	Lead	3.83	127	118	173	366
Methyl Ethyl Ketone 9.92E+05 12400000 11532000 16952040 35864520	Mercury	0.0250		0.291	0.427	0.903
	Methoxychlor	3.0	37.5	34.9	51.2	108
Methyl tert-butyl ether [MTBE] 10482 131025 121853 179124 378963	, , ,	9.92E+05	12400000	11532000	16952040	35864520
	Methyl tert-butyl ether [MTBE]	10482	131025	121853	179124	378963

Nickel	1140	14250	13253	19481	41215
Nitrate-Nitrogen (as Total Nitrogen)	N/A	N/A	N/A	N/A	N/A
Nitrobenzene	1873	23413	21774	32007	67715
N-Nitrosodiethylamine	2.1	26.3	24.4	35.8	75.9
N-Nitroso-di-n-Butylamine	4.2	52.5	48.8	71.7	151
Pentachlorobenzene	0.355	4.44	4.13	6.06	12.8
Pentachlorophenol	0.29	3.63	3.37	4.95	10.4
Polychlorinated Biphenyls [PCBs]	6.4E-04	0.00800	0.00744	0.0109	0.0231
Pyridine	947	11838	11009	16183	34237
Selenium	N/A	N/A	N/A	N/A	N/A
1,2,4,5-Tetrachlorobenzene	0.24	3.00	2.79	4.10	8.67
1,1,2,2-Tetrachloroethane	26.35	329	306	450	952
Tetrachloroethylene [Tetrachloroethylene]	280	3500	3255	4784	10123
Thallium	0.23	2.88	2.67	3.93	8.31
Toluene	N/A	N/A	N/A	N/A	N/A
Toxaphene	0.011	0.138	0.128	0.187	0.397
2,4,5-TP [Silvex]	369	4613	4290	6305	13340
1,1,1-Trichloroethane	784354	9804425	9118115	13403629	28357338
1,1,2-Trichloroethane	166	2075	1930	2836	6001
Trichloroethylene [Trichloroethene]	71.9	899	836	1228	2599
2,4,5-Trichlorophenol	1867	23338	21704	31904	67499
TTHM [Sum of Total Trihalomethanes]	N/A	N/A	N/A	N/A	N/A
Vinyl Chloride	16.5	206	192	281	596

CALCULATE 70% AND 85% OF DAILY AVERAGE EFFLUENT LIMITATIONS:

	70% of	85% of
Aquatic Life	Daily Avg.	Daily Avg.
Parameter	(μg/L)	<u>(μg/L)</u>
Acrolein	N/A	N/A
Aldrin	0.713	0.866
Aluminum	N/A	N/A
Arsenic	81.7	99.2
Cadmium	21.9	26.6
Carbaryl	336	408
Chlordane	0.0167	0.0203
Chlorpyrifos	0.00603	0.00733
Chromium (trivalent)	N/A	N/A
Chromium (hexavalent)	207	252
Copper	8.43	10.2
Copper (oyster waters)	N/A	N/A
Cyanide (free)	3.07	3.73
4,4'-DDT	0.00418	0.00508
Demeton	0.418	0.508
Diazinon	0.449	0.545
Dicofol [Kelthane]	N/A	N/A
Dieldrin	0.00836	0.0101
Diuron	N/A	N/A
Endosulfan I (<i>alpha</i>)	0.0186	0.0226
Endosulfan II (<i>beta</i>)	0.0186	0.0226
Endosulfan sulfate	0.0186	0.0226
Endrin	0.00836	0.0101
Guthion [Azinphos Methyl]	0.0418	0.0508
Heptachlor	0.0167	0.0203
Hexachlorocyclohexane (gamma) [Lindane]	0.0878	0.106
Lead	58.6	71.2
Malathion	0.0418	0.0508
Mercury	1.15	1.39
Methoxychlor	0.125	0.152
Mirex	0.00418	0.00508
Nickel	54.8	66.5

Page 18

Nonylphenol	3.84	4.66
Parathion (ethyl)	N/A	N/A
Pentachlorophenol	8.28	10.0
Phenanthrene	4.22	5.13
Polychlorinated Biphenyls [PCBs]	0.125	0.152
Selenium	309	375
Silver	2.58	3.13
Toxaphene	0.000836	0.00101
Tributyltin [TBT]	0.0309	0.0376
2,4,5 Trichlorophenol	50.2	60.9
Zinc	87.7	106
	70% of	85% of
Human Health	Daily Avg.	Daily Avg.
Parameter	(µg/L)	(µg/L)
Acrylonitrile	1375	1670
Aldrin	0.000137	0.000166
Anthracene	15754	19130
Antimony	12811	15556
Arsenic	N/A	N/A
Barium	N/A	N/A
Benzene	6949	8439
Benzidine	1.27	1.55
Benzo(a)anthracene	0.299	0.363
Benzo(<i>a</i>)pyrene	0.0299	0.0363
Bis(chloromethyl)ether	3.28	3.98
Bis(2-chloroethyl)ether	512	622
Bis(2-ethylhexyl) phthalate [Di(2-ethylhexyl)		
phthalate]	90.3	109
Bromodichloromethane [Dichlorobromomethane]	3289	3994
Bromoform [Tribromomethane]	12679	15396
Cadmium	N/A	N/A
Carbon Tetrachloride	550	668
Chlordane	0.0299	0.0363
Chlorobenzene	32740	39756
Chlorodibromomethane [Dibromochloromethane]	2189	2658
Chloroform [Trichloromethane]	92072	111802
Chromium (hexavalent)	6004	7291
Chrysene	30.1	36.6
Cresols [Methylphenols]	111259	135101
Cyanide (free)	N/A	N/A
4,4'-DDD	0.0239	0.0290
4,4'-DDE	0.00155	0.00188
4,4'-DDT	0.00478	0.00581
2,4'-D	N/A	N/A
Danitol [Fenpropathrin]	5658	6870
1,2-Dibromoethane [Ethylene Dibromide]	50.7	61.5
<i>m</i> -Dichlorobenzene [1,3-Dichlorobenzene]	7117	8642
o-Dichlorobenzene [1,2-Dichlorobenzene]	39463	47919
<i>p</i> -Dichlorobenzene [1,4-Dichlorobenzene]	N/A	N/A
3,3'-Dichlorobenzidine	26.7	32.5
1,2-Dichloroethane	4354	5287
1,1-Dichloroethylene [1,1-Dichloroethene]	659280	800554
Dichloromethane [Methylene Chloride]	159491	193667
1,2-Dichloropropane	3098	3762
1,3-Dichloropropene [1,3-Dichloropropylene]	1423	1728
Dicofol [Kelthane]	3.58	4.35
Dieldrin	0.000239	0.000290
Dielarin		
	100912	122536
2,4-Dimethylphenol Di- <i>n</i> -Butyl Phthalate	100912 1105	122536 1342

Epichlorohydrin2Ethylbenzene22009	0.239 4079 2333 6370 0	0.290 29239 27118
Ethylbenzene 22	2333 6370	27118
2009	6370	
		24402735
Ethylene Glycol	0	0
Fluoride	N/A	N/A
	, 0119	0.00145
•	0346	0.00421
	0813	0.00987
Hexachlorobutadiene	2.63	3.19
Hexachlorocyclohexane (<i>alpha</i>)	0.100	0.122
Hexachlorocyclohexane (beta)	3.11	3.77
	4.07	4.95
Hexachlorocyclopentadiene	138	168
Hexachloroethane	27.8	33.8
Hexachlorophene	34.6	42.1
	1178	232145
Lead	121	147
).299	0.363
Methoxychlor	35.8	43.5
Methyl Ethyl Ketone 1186		14409234
	5386	152255
	3636	16558
Nitrate-Nitrogen (as Total Nitrogen)	N/A	N/A
	2405	27206
N-Nitrosodiethylamine	25.1	30.5
N-Nitroso-di- <i>n</i> -Butylamine	50.2	61.0
Pentachlorobenzene	4.24	5.15
Pentachlorophenol	3.46	4.21
Polychlorinated Biphenyls [PCBs] 0.0	0765	0.00929
Pyridine 1	1328	13755
Selenium	N/A	N/A
1,2,4,5-Tetrachlorobenzene	2.87	3.48
1,1,2,2-Tetrachloroethane	315	382
Tetrachloroethylene [Tetrachloroethylene]	3349	4067
Thallium	2.75	3.34
Toluene	N/A	N/A
Toxaphene C).131	0.159
2,4,5-TP [Silvex]	4414	5359
1,1,1-Trichloroethane 938	2540	11393085
1,1,2-Trichloroethane	1985	2411
Trichloroethylene [Trichloroethene]	860	1044
2,4,5-Trichlorophenol 2.	2333	27118
TTHM [Sum of Total Trihalomethanes]	N/A	N/A
Vinyl Chloride	197	239

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST

Complete and submit this checklist with the application.

APPLICANT NAME: <u>City of Galveston</u> PERMIT NUMBER (If new, leave blank): WQ00 <u>10688002</u> **Indicate if each of the following items is included in your application.**

	Y	Ν
Administrative Report 1.0	\boxtimes	
Administrative Report 1.1		\boxtimes
SPIF	\boxtimes	
Core Data Form	\boxtimes	
Public Involvement Plan Form		
Technical Report 1.0	\boxtimes	
Technical Report 1.1		\boxtimes
Worksheet 2.0	\boxtimes	
Worksheet 2.1		\boxtimes
Worksheet 3.0		\boxtimes
Worksheet 3.1		\boxtimes
Worksheet 3.2		\boxtimes
Worksheet 3.3		\boxtimes
Worksheet 4.0	\boxtimes	
Worksheet 5.0	\boxtimes	
Worksheet 6.0	\boxtimes	
Worksheet 7.0		\boxtimes

		Y	N
Original USGS	Мар	\boxtimes	
Affected Land	owners Map		\boxtimes
Landowner Di	sk or Labels		\boxtimes
Buffer Zone M	lap	\boxtimes	
Flow Diagram	8	\boxtimes	
Site Drawing		\boxtimes	
Original Photo	ographs	\boxtimes	
Design Calcula	ations		\boxtimes
Solids Manage	ement Plan		\boxtimes
	CEIVED 17 2024 NITY Applications Team		

For TCEQ Use Only

Segment Number	County
Expiration Date	Region
Permit Number	

Cíty of Galveston Aírport Wastewater Treatment Facílíty TPDES 10688-002 Permít Renewal Applícatíon 2024 Admínístratíve Report

1.0

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION ADMINISTRATIVE REPORT 1.0

For any questions about this form, please contact the Applications Review and Processing Team at 512-239-4671.

Section 1. Application Fees (Instructions Page 26)

Indicate the amount submitted for the application fee (check only one).

Flow	New/Major Amendment	Renewal
<0.05 MGD	\$350.00 🗆	\$315.00 🗆
≥0.05 but <0.10 MGD	\$550.00 🗆	\$515.00 🗆
≥0.10 but <0.25 MGD	\$850.00 □	\$815.00
≥0.25 but <0.50 MGD	\$1,250.00 🗆	\$1,215.00
≥0.50 but <1.0 MGD	\$1,650.00 🗆	\$1,615.00 🗆
≥1.0 MGD	\$2,050.00 🗆	\$2,015.00 🛛

Minor Amendment (for any flow) \$150.00 □

Payment Information:

Mailed	Check/Money Order Number	: Click to enter text.	
Check/Money Order Amount: 2,015.00			
	Name Printed on Check: <u>T.C.</u>	E.Q	
EPAY	Voucher Number: Click to en	ter text.	
Copy of Pa	yment Voucher enclosed?	Yes □	

Section 2. Type of Application (Instructions Page 26)

- a. Check the box next to the appropriate authorization type.
 - Publicly-Owned Domestic Wastewater
 - Privately-Owned Domestic Wastewater
 - Conventional Wastewater Treatment
- **b.** Check the box next to the appropriate facility status.
 - \boxtimes Active \square Inactive

- **c.** Check the box next to the appropriate permit type.
 - **TPDES** Permit X
 - TLAP
 - **TPDES Permit with TLAP component**
 - Subsurface Area Drip Dispersal System (SADDS)
- **d.** Check the box next to the appropriate application type
 - New
 - Major Amendment with Renewal
 - Major Amendment *without* Renewal
- Minor Amendment with Renewal Minor Amendment without Renewal
- **Renewal without changes** \boxtimes

- Minor Modification of permit
- e. For amendments or modifications, describe the proposed changes: N/A
- f. For existing permits:

Permit Number: WQ00 10688002 EPA I.D. (TPDES only): TX 0027791 Expiration Date: 2/11/2025

Facility Owner (Applicant) and Co-Applicant Information Section 3. (Instructions Page 26)

A. The owner of the facility must apply for the permit.

What is the Legal Name of the entity (applicant) applying for this permit?

City of Galveston

(The legal name must be spelled exactly as filed with the Texas Secretary of State, County, or in the legal documents forming the entity.)

If the applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at http://www15.tceq.texas.gov/crpub/

CN: 600241376

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in 30 TAC § 305.44.

Credential: Mr. Trino Pedraza, Director of Public Works

B. Co-applicant information. Complete this section only if another person or entity is required to apply as a co-permittee.

What is the Legal Name of the co-applicant applying for this permit?

Click to enter text.

(The legal name must be spelled exactly as filed with the TX SOS, with the County, or in the legal documents forming the entity.)

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)?

You may search for your CN on the TCEQ website at: <u>http://www15.tceq.texas.gov/crpub/</u>

CN: Click to enter text.

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix: Click to enter text.	Last Name, First Name: Click to enter text.
Title: Click to enter text.	Credential: Click to enter text.

Provide a brief description of the need for a co-permittee:_Click to enter text.

C. Core Data Form

Complete the Core Data Form for each customer and include as an attachment. If the customer type selected on the Core Data Form is **Individual**, complete **Attachment 1** of Administrative Report 1.0. Click to enter text.

Section 4. Application Contact Information (Instructions Page 27)

This is the person(s) TCEQ will contact if additional information is needed about this application. Provide a contact for administrative questions and technical questions.

A.	Prefix: <u>Mrs.</u>	Last Name, First Name: <u>Diaz, Cynthia</u>					
	Title: Wastewater Superintendent	Credential: Click to	Credential: Click to enter text.				
	Organization Name: City of Galves	ton					
	Mailing Address: <u>823 Rosenberg S</u>	treet City, Sta	te, Zip Code: <u>G</u> a	llveston, Texas, 77550			
	Phone No.: <u>409-797-3785</u>	E-mail Address: <u>c</u>	diaz@galvestontx	<u>a.gov</u>			
	Check one or both: 🛛 Adr	ninistrative Contact	Technical Contact				
B.	Prefix: <u>Mr.</u>	Last Name, First Name: <u>Lirette Benjamin</u>					
	Title: Compliance Manager	Credential: Click to enter text.					
	Organization Name: City of Galves						
Mailing Address: <u>823 Rosenberg Street</u> City, State, Zip Code: <u>Galveston, Texas, 775</u>							
Phone No.: <u>409-797-3630</u> E-mail Address: <u>blirette@galvestontx.gov</u>							
	Check one or both: \boxtimes Adr	ninistrative Contact	\boxtimes	Technical Contact			

Section 5. Permit Contact Information (Instructions Page 27)

Provide the names and contact information for two individuals that can be contacted throughout the permit term.

Α.	Prefix: <u>Mrs.</u>	Last Nam	e, First Name: <u>Diaz, Cynthia</u>
	Title: Wastewater Superintendent	Credentia	l: Click to enter text.
	Organization Name: City of Galves	ston	
	Mailing Address: 823 Rosenberg S	treet	City, State, Zip Code: Galveston, Texas, 77550
	Phone No.: <u>409-797-3785</u>	E-mail A	ddress: <u>cdiaz@galvestontx.gov</u>

B.	Prefix: <u>Mr.</u>	Last Nam	e, First Name: <u>Lirette, Benjamin</u>
	Title: Compliance Manager	Credentia	l: Click to enter text.
	Organization Name: City of Galves	ton	
	Mailing Address: 823 Rosenberg St	treet	City, State, Zip Code: Galveston, Texas, 77550
	Phone No.: <u>409-797-3630</u>	E-mail A	ddress: <u>blirette@galvestontx.gov</u>

Section 6. Billing Contact Information (Instructions Page 27)

The permittee is responsible for paying the annual fee. The annual fee will be assessed to permits *in effect on September 1 of each year*. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (using form TCEQ-20029).

Prefix: <u>Mr.</u>	Last Name, First Name: Pedraza, Trino
Title: Director of Public Works	Credential: Click to enter text.
Organization Name: City of Galves	ton
Mailing Address: <u>823 Rosenberg S</u>	treet City, State, Zip Code: <u>Galveston, Texas, 77550</u>
Phone No.: <u>409-797-3630</u>	E-mail Address: <u>tpedraza@galvestontx.gov</u>

Section 7. DMR/MER Contact Information (Instructions Page 27)

Provide the name and complete mailing address of the person delegated to receive and submit Discharge Monitoring Reports (DMR) (EPA 3320-1) or maintain Monthly Effluent Reports (MER).

Prefix: <u>Mrs.</u>	Last Name, First Name: <u>Diaz, Cynthia</u>
Title: Wastewater Superintendent	Credential: Click to enter text.
Organization Name: City of Galves	ton
Mailing Address: 823 Rosenberg St	city, State, Zip Code: <u>Galveston, Texas, 77550</u>
Phone No.: <u>409-789-4221</u>	E-mail Address: cdiaz@galvestontx.gov

Section 8. Public Notice Information (Instructions Page 27)

A. Individual Publishing the Notices

Prefix: Mrs.

Last Name, First Name: Diaz, Cynthia

Title: Wastewater Superintendent Credential: Click to enter text.

Organization Name: City of Galveston

Mailing Address:823 Rosenberg StreetCity, State, Zip Code:Galveston, Texas, 77550Phone No.:409-797-3785E-mail Address:cdiaz@galvestontx.gov

B. Method for Receiving Notice of Receipt and Intent to Obtain a Water Quality Permit Package

Indicate by a check mark the preferred method for receiving the first notice and instructions:

- ⊠ E-mail Address
- □ Fax
- 🛛 Regular Mail

C. Contact permit to be listed in the Notices

Prefix: Mr. Last Name, First Name: Pedraza, Trino

Title: Director of Public Works Credential: Click to enter text.

Organization Name: City of Galveston

Mailing Address: <u>823 Rosenberg Street</u> City, State, Zip Code: <u>Galveston, Texas, 77550</u>

Phone No.: <u>409-797-3630</u> E-mail Address: <u>tpedraza@galvestontx.gov</u>

D. Public Viewing Information

If the facility or outfall is located in more than one county, a public viewing place for each county must be provided.

County: Galveston

Public building name: City Hall

Location within the building: <u>Public Information Office</u>

Physical Address of Building: 823 Rosenberg Street

City: <u>Galveston</u>

Contact (Last Name, First Name): <u>Alvarez, Martha</u>

Phone No.: 409-797-3630 Ext.: Click to enter text.

E. Bilingual Notice Requirements

This information **is required** for **new, major amendment, minor amendment or minor modification, and renewal** applications.

This section of the application is only used to determine if alternative language notices will be needed. Complete instructions on publishing the alternative language notices will be in your public notice package.

Please call the bilingual/ESL coordinator at the nearest elementary and middle schools and obtain the following information to determine whether an alternative language notices are required.

1. Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility?

🖾 Yes 🗆 No

If **no**, publication of an alternative language notice is not required; **skip to** Section 9 below.

2. Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school?

🛛 Yes 🗆 No

3. Do the students at these schools attend a bilingual education program at another location?

🗆 Yes 🖾 No

4. Would the school be required to provide a bilingual education program but the school has waived out of this requirement under 19 TAC §89.1205(g)?

🗆 Yes 🖾 No

5. If the answer is **yes** to **question 1, 2, 3, or 4**, public notices in an alternative language are required. Which language is required by the bilingual program? <u>Spanish</u>

F. Plain Language Summary Template

Complete the Plain Language Summary (TCEQ Form 20972) and include as an attachment. **Attachment:** Click to enter text.

G. Public Involvement Plan Form

Complete the Public Involvement Plan Form (TCEQ Form 20960) for each application for a **new permit or major amendment to a permit** and include as an attachment.

Attachment: Click to enter text.

Section 9. Regulated Entity and Permitted Site Information (Instructions Page 29)

A. If the site is currently regulated by TCEQ, provide the Regulated Entity Number (RN) issued to this site. **RN** <u>101614303</u>

Search the TCEQ's Central Registry at <u>http://www15.tceq.texas.gov/crpub/</u> to determine if the site is currently regulated by TCEQ.

B. Name of project or site (the name known by the community where located):

Airport Wastewater Treatment Plant

C. Owner of treatment facility: City of Galveston

Ownership of Facility:	\boxtimes	Public		Private		Both		Federal
------------------------	-------------	--------	--	---------	--	------	--	---------

- **D.** Owner of land where treatment facility is or will be:
 - Prefix: Click to enter text. Last Name, First Name: City of Galveston

Title: Click to enter text. Credential: Click to enter text.

Organization Name: City of Galveston

Mailing Address: <u>823 Rosenberg Street</u> City, State, Zip Code: <u>Galveston, Texas, 77550</u>

Phone No.: <u>409-797-3630</u> E-mail Address: <u>cityofgalveston.gov</u>

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: Click to enter text.

E. Owner of effluent disposal site:

Prefix: Click to enter text.Last Name, First Name: Click to enter text.Title: Click to enter text.Credential: Click to enter text.

Organization Name: Click to enter text.

Mailing Address: Click to enter text. City, State, Zip Code: Click to enter text.

Phone No.: Click to enter text. E-mail Address: Click to enter text.

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: Click to enter text.

F. Owner sewage sludge disposal site (if authorization is requested for sludge disposal on property owned or controlled by the applicant)::

Prefix: Click to enter text. Last Name, First Name: Click to enter text.

Title: Click to enter text. Credential: Click to enter text.

Organization Name: Click to enter text.

Mailing Address: Click to enter text. City, State, Zip Code: Click to enter text.

Phone No.: Click to enter text. E-mail Address: Click to enter text.

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: Click to enter text.

Section 10. TPDES Discharge Information (Instructions Page 31)

A. Is the wastewater treatment facility location in the existing permit accurate?

🖾 Yes 🗆 No

If **no**, **or a new permit application**, please give an accurate description:

Click to enter text.

B. Are the point(s) of discharge and the discharge route(s) in the existing permit correct?

🖾 Yes 🗆 No

If **no**, **or a new or amendment permit application**, provide an accurate description of the point of discharge and the discharge route to the nearest classified segment as defined in 30 TAC Chapter 307:

Click to enter text.

City nearest the outfall(s): <u>Galveston</u>

County in which the outfalls(s) is/are located: Galveston

- **C.** Is or will the treated wastewater discharge to a city, county, or state highway right-of-way, or a flood control district drainage ditch?
 - 🗆 Yes 🖾 No

If **yes**, indicate by a check mark if:

 \Box Authorization granted \Box Authorization pending

For **new and amendment** applications, provide copies of letters that show proof of contact and the approval letter upon receipt.

Attachment: Click to enter text.

D. For all applications involving an average daily discharge of 5 MGD or more, provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge: Click to enter text.

Section 11. TLAP Disposal Information (Instructions Page 32)

A. For TLAPs, is the location of the effluent disposal site in the existing permit accurate?

🗆 Yes 🗆 No

If **no**, **or a new or amendment permit application**, provide an accurate description of the disposal site location:

Click to enter text.

- B. City nearest the disposal site: Click to enter text.
- C. County in which the disposal site is located: Click to enter text.
- D. For TLAPs, describe the routing of effluent from the treatment facility to the disposal site:

Click to enter text.

E. For **TLAPs**, please identify the nearest watercourse to the disposal site to which rainfall runoff might flow if not contained: Click to enter text.

Section 12. Miscellaneous Information (Instructions Page 32)

A. Is the facility located on or does the treated effluent cross American Indian Land?

🗆 Yes 🖾 No

B. If the existing permit contains an onsite sludge disposal authorization, is the location of the sewage sludge disposal site in the existing permit accurate?

 \Box Yes \Box No \boxtimes Not Applicable

If No, or if a new onsite sludge disposal authorization is being requested in this permit application, provide an accurate location description of the sewage sludge disposal site.

Click to enter text.

- **C.** Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?
 - 🗆 Yes 🛛 No

If yes, list each person formerly employed by the TCEQ who represented your company and was paid for service regarding the application: Click to enter text.

D. Do you owe any fees to the TCEQ?

🗆 Yes 🖾 No

If **yes**, provide the following information:

Account number: Click to enter text.

Amount past due: Click to enter text.

E. Do you owe any penalties to the TCEQ?

🗆 Yes 🛛 No

If **yes**, please provide the following information:

Enforcement order number: Click to enter text.

Amount past due: Click to enter text.

Section 13. Attachments (Instructions Page 33)

Indicate which attachments are included with the Administrative Report. Check all that apply:

- □ Lease agreement or deed recorded easement, if the land where the treatment facility is located or the effluent disposal site are not owned by the applicant or co-applicant.
- Original full-size USGS Topographic Map with the following information:
 - Applicant's property boundary
 - Treatment facility boundary
 - Labeled point of discharge for each discharge point (TPDES only)
 - Highlighted discharge route for each discharge point (TPDES only)
 - Onsite sewage sludge disposal site (if applicable)
 - Effluent disposal site boundaries (TLAP only)
 - New and future construction (if applicable)
 - 1 mile radius information
 - 3 miles downstream information (TPDES only)
 - All ponds.
- Attachment 1 for Individuals as co-applicants
- □ Other Attachments. Please specify: Click to enter text.

If co-applicants are necessary, each entity must submit an original, separate signature page.

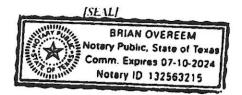
Permit Number: 10688002

Applicant: City of Galveston

Certification.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete, f am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.


Signatory name (typed or printed): Mr. Trino Pedraza

Signatory title: Director of Public Works

Date: 5-30-29 Signature:_ Terro Peaca2A (Use blue ink) Subscribed and Sworn to before me by the said on this______30 day of 10 My commission expires on the____ day of

Notary Public

County, Texas

TCEQ-10053 (01/09/2024) Domestic Wastewater Permit Application Administrative Report

Page 11 of 17

DOMESTIC WASTEWATER PERMIT APPLICATION ADMINISTRATIVE REPORT 1.0

The following information is required for new and amendment applications.

Section 1. Affected Landowner Information (Instructions Page 36)

- A. Indicate by a check mark that the landowners map or drawing, with scale, includes the following information, as applicable:
 - ☑ The applicant's property boundaries
 - Mathematical The facility site boundaries within the applicant's property boundaries
 - The distance the buffer zone falls into adjacent properties and the property boundaries of the landowners located within the buffer zone
 - □ The property boundaries of all landowners surrounding the applicant's property (Note: if the application is a major amendment for a lignite mine, the map must include the property boundaries of all landowners adjacent to the new facility (ponds).)
 - The point(s) of discharge and highlighted discharge route(s) clearly shown for one mile downstream
 - □ The property boundaries of the landowners located on both sides of the discharge route for one full stream mile downstream of the point of discharge
 - □ The property boundaries of the landowners along the watercourse for a one-half mile radius from the point of discharge if the point of discharge is into a lake, bay, estuary, or affected by tides
 - □ The boundaries of the effluent disposal site (for example, irrigation area or subsurface drainfield site) and all evaporation/holding ponds within the applicant's property
 - □ The property boundaries of all landowners surrounding the effluent disposal site
 - □ The boundaries of the sludge land application site (for land application of sewage sludge for beneficial use) and the property boundaries of landowners surrounding the applicant's property boundaries where the sewage sludge land application site is located
 - □ The property boundaries of landowners within one-half mile in all directions from the applicant's property boundaries where the sewage sludge disposal site (for example, sludge surface disposal site or sludge monofill) is located
- **B.** \square Indicate by a check mark that a separate list with the landowners' names and mailing addresses cross-referenced to the landowner's map has been provided.
- C. Indicate by a check mark in which format the landowners list is submitted:
 - □ USB Drive □ Four sets of labels
- D. Provide the source of the landowners' names and mailing addresses: Click to enter text.
- **E.** As required by *Texas Water Code § 5.115*, is any permanent school fund land affected by this application?
 - 🗆 Yes 🖾 No

If **yes**, provide the location and foreseeable impacts and effects this application has on the land(s):

Click to enter text.

Section 2. Original Photographs (Instructions Page 38)

Provide original ground level photographs. Indicate with checkmarks that the following information is provided.

- At least one original photograph of the new or expanded treatment unit location
- □ At least two photographs of the existing/proposed point of discharge and as much area downstream (photo 1) and upstream (photo 2) as can be captured. If the discharge is to an open water body (e.g., lake, bay), the point of discharge should be in the right or left edge of each photograph showing the open water and with as much area on each respective side of the discharge as can be captured.
- □ At least one photograph of the existing/proposed effluent disposal site
- □ A plot plan or map showing the location and direction of each photograph

Section 3. Buffer Zone Map (Instructions Page 38)

- **A.** Buffer zone map. Provide a buffer zone map on 8.5 x 11-inch paper with all of the following information. The applicant's property line and the buffer zone line may be distinguished by using dashes or symbols and appropriate labels.
 - The applicant's property boundary;
 - The required buffer zone; and
 - Each treatment unit; and
 - The distance from each treatment unit to the property boundaries.
- **B.** Buffer zone compliance method. Indicate how the buffer zone requirements will be met. Check all that apply.
 - ⊠ Ownership
 - Restrictive easement
 - □ Nuisance odor control
 - □ Variance
- **C.** Unsuitable site characteristics. Does the facility comply with the requirements regarding unsuitable site characteristic found in 30 TAC § 309.13(a) through (d)?
 - 🖾 Yes 🗆 No

DOMESTIC WASTEWATER PERMIT APPLICATION

SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

This form applies to TPDES permit applications only. Complete and attach the Supplemental Permit information Form (SPIF) (TCEQ Form 20971).

Attachment: <u>F</u>

ATTACHMENT 1

INDIVIDUAL INFORMATION

Section 1. Individual Information (Instructions Page 41)

Complete this attachment if the facility applicant or co-applicant is an individual. Make additional copies of this attachment if both are individuals.

Prefix (Mr., Ms., Miss): Click to enter text.

Full legal name (Last Name, First Name, Middle Initial): Click to enter text.

Driver's License or State Identification Number: Click to enter text.

Date of Birth: Click to enter text.

Mailing Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Phone Number: Click to enter text. Fax Number: Click to enter text.

E-mail Address: Click to enter text.

CN: Click to enter text.

For Commission Use Only: Customer Number: Regulated Entity Number: Permit Number:

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST OF COMMON DEFICIENCIES

Below is a list of common deficiencies found during the administrative review of domestic wastewater permit applications. To ensure the timely processing of this application, please review the items below and indicate by checking Yes that each item is complete and in accordance applicable rules at 30 TAC Chapters 21, 281, and 305. If an item is not required this application, indicate by checking N/A where appropriate. Please do not submit the application until the items below have been addressed.

Core Data Form (TCEQ Form No. 10400) (Required for all application types. Must be completed in its entirety and signed. Note: Form may be signed by applicant representative.)					
Correct and Current Industrial Wastewater Permit Application Forms (TCEQ Form Nos. 10053 and 10054. Version dated 6/25/2018 or later.)					
Water Quality Permit Payment Submittal Form (Page 19) (Original payment sent to TCEQ Revenue Section. See instructions for mailing add					
7.5 Minute USGS Quadrangle Topographic Map Attached (Full-size map if seeking "New" permit. 8 ½ x 11 acceptable for Renewals and Amendments)		Yes			
Current/Non-Expired, Executed Lease Agreement or Easement 🛛 N/.	A 🗆	Yes			
Landowners Map \boxtimes N/. (See instructions for landowner requirements)	₹ 🗆	Yes			

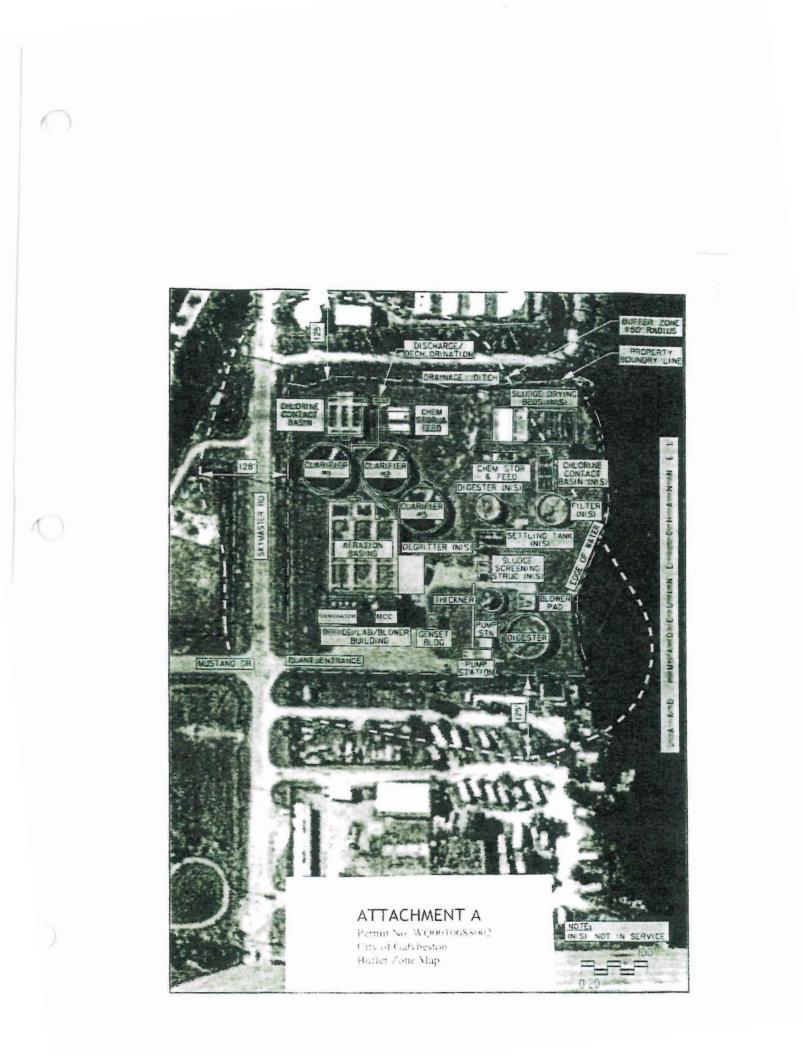
Things to Know:

- All the items shown on the map must be labeled.
- The applicant's complete property boundaries must be delineated which includes boundaries of contiguous property owned by the applicant.
- The applicant cannot be its own adjacent landowner. You must identify the landowners immediately adjacent to their property, regardless of how far they are from the actual facility.
- If the applicant's property is adjacent to a road, creek, or stream, the landowners on the opposite side must be identified. Although the properties are not adjacent to applicant's property boundary, they are considered potentially affected landowners. If the adjacent road is a divided highway as identified on the USGS topographic map, the applicant does not have to identify the landowners on the opposite side of the highway.

Landowners Cross Reference List (See instructions for landowner requirements)	\boxtimes	N/A		Yes
Landowners Labels or USB Drive attached (See instructions for landowner requirements)	\boxtimes	N/A		Yes
Original signature per 30 TAC § 305.44 – Blue Ink Preferred (If signature page is not signed by an elected official or principle exec a copy of signature authority/delegation letter must be attached)	utive	e officer	, ,	Yes
Plain Language Summary			\boxtimes	Yes

TCEQ-10053 (01/09/2024) Domestic Wastewater Permit Application Administrative Report Page 17 of 17

Airport Wastewater Treatment


Facility

TPDES 10688-002

Permit Renewal Application 2024

Attachment A

Buffer Zone

Cíty of Galveston Aírport Wastewater Treatment Facílíty TPDES 10688-002 Permít Renewal Applícatíon 2024 Attachment B Desígn Calculatíons

CITY OF GALVESTON AIRPORT WASTEWATER TREATMENT PLANT TPDES 10688-002

PERMIT RENEWAL APPLICATION

SUPPLEMENTAL REPORT

1.0 Introduction

The report was prepared to provide supporting information for the TPDES wastewater permit application for the City of Galveston's Airport Wastewater Treatment Facility. The application is for renewal of the current permit.

2.0 Treatment Processes

The treatment process descriptions are taken from the 2005 TPDES application.

2.1 Current (2006) Configuration

A flow diagram of the current treatment process configuration as it existed in 2006 is provided in the Attachments section. The current permitted flows are a monthly average of 3.75 million gallons per day (MGD) and a 2-hour peak average of 7.812 gallons per minute (300%) or 11.25 MGD. A description of the current treatment process follows.

Raw sewage is received into the onsite lift station and is pumped to the aeration basin splitter channel. This channel runs across the influent end of the three common wall aeration basins. The channel also receives return activated sludge (RAS). The channel is aerated with single-drop coarse bubble diffusers.

The conventional activated studge process is carried out in the three aeration basins. Aeration is by wideband coarse bubble diffusion. Level in the aeration basins is controlled by weirs. The mixed liquor overflows the weirs of the three basins and flows through a common channel. This channel is directed to three drop boxes and then the mixed liquor flows to three circular bottom draw clarifiers. These clarifiers have mechanical rakes.

The clarified effluent is routed to a chlorination contact chamber. The chlorination contact chamber consists of a single rapid mix chamber an inlet chamber that splits flow to three parallel serpentine channels, and a discharge chamber. The discharge chamber is also used as the pump well. The pumps which take feed from this well discharge to a holding pond at the municipal golf course prior to use in irrigation. These same Pumps also provide the plant with non-polable water. The treated effluent is also provided to Moody Botanical Gardens for beneficial reuse.

Water flows from the chlorination contact chamber to the discharge structure which also serves as a dechlorination unit. Dechlorination is achieved by the addition of sulfur dioxide. The effluent end of the dechlorination unit is the effluent sample point for the permit (Outfall 001).

Sludge is wasted to the aerobic digester. After digestion and thickening liquid sludge is transported by tank truck to the City's Main Wastewater Treatment. Plant for further digestion and dewatering.

Sizes and numbers of the current peatment units are provided in the following table

Current Treatment Units
Adwated Sindge Convertional
Aerated Inspend Charshe
One chanodinavoide in the an inisolade, used in 1920 taking a 1930 when x 15, 6.6 decg. 2, 1930 FABO
Aerotion Hasins
There has no encoll (02), to up with the ways (15) In (15040) (215) FRBD
Secondary Clarification
Times – Janikas antiouno antiperature mechanica – concentrates autobile tek iD z (2 ± 1 + SWD 13 75 thagtil see - Stiarg wells it DIA
Disménuice
Chicknaline
Rapid rais, character, if it long and it was a transmission of the RBD
in taout
Efficient characterization were 47 of those were site 67,755 VD, 203 ft FRBD
Dechioriodes)
Slud@n Treatment
Aerobic Diagoten - Choice - Choice 07 in DIA x33 for di SWE-1 2 di FR-80
Sludge Thickener standard ar thickener 35 ft 135 kits if SWC 3 9 FRBD

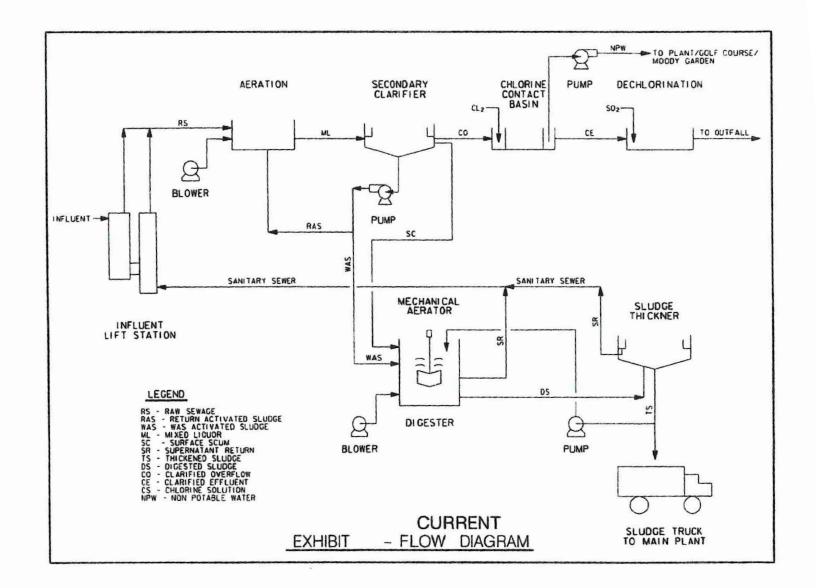
2.2 Headworks

 $\overline{}$

A flow diagram of the treatment system including this process change is provided in the Attachments section. This headworks consists of two fine screening units and two hydrausdafly induced degritting units Each fine screen has a capacity of 14.6 MGD. How is included though one screen with the other the screen providing redundancy. The bydraundafly induced gnt champers accounts at aspectly of 7.4 MGD. To provide proper operation over the entrie flow range, flow up to 2.4 MGD is directed through one of the two Degritters. Flow above 7.4 MGD is routed to

The second **Degritter**. Providions have been provided for bypossing the Degritter isnoulu the need arise **Currently** all flow to the place is source through the onsite lift station.

Airport Wastewater Treatment



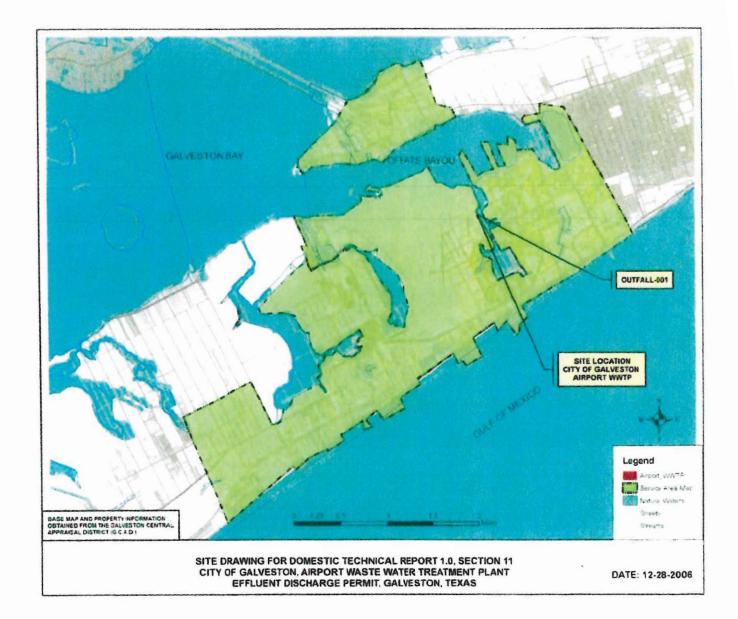
TPDES 10688-002

Permit Renewal Application 2024

Attachment C

Flow Diagram

Airport Wastewater Treatment


Facility

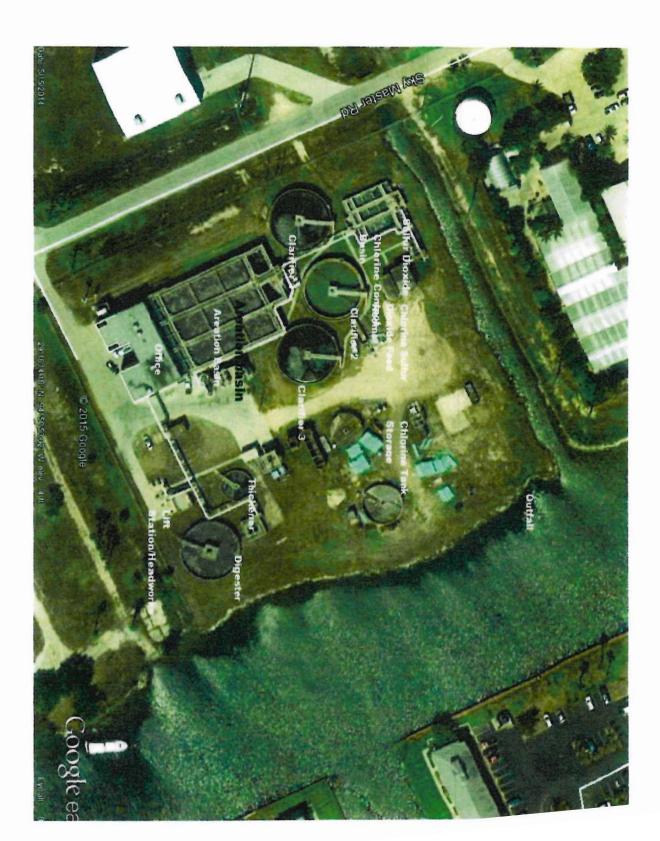
TPDES 10688-002

Permit Renewal Application 2024

Attachment D

Site Drawing

Airport Wastewater Treatment


Facility

TPDES 10688-002

Permit Renewal Application 2024

Attachment E

Oríginal Photographs

 \bigcirc

T

Airport Wastewater Treatment

Facility

TPDES 10688-002

Permit Renewal Application 2024

Attachment F

SPIF

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

TCEQ USE ONLY: Application type:RenewalMajor AmendmentMinor AmendmentNew		
County:		
Admin Complete Date:		
Agency Receiving SPIF:		
Texas Historical Commission	U.S. Fish and Wildlife	
Texas Parks and Wildlife Department	U.S. Army Corps of Engineers	

This form applies to TPDES permit applications only. (Instructions, Page 53)

Complete this form as a separate document. TCEQ will mail a copy to each agency as required by our agreement with EPA. If any of the items are not completely addressed or further information is needed, we will contact you to provide the information before issuing the permit. Address each item completely.

Do not refer to your response to any item in the permit application form. Provide each attachment for this form separately from the Administrative Report of the application. The application will not be declared administratively complete without this SPIF form being completed in its entirety including all attachments. Questions or comments concerning this form may be directed to the Water Quality Division's Application Review and Processing Team by email at <u>WO-ARPTeam@tceq.texas.gov</u> or by phone at (512) 239-4671.

The following applies to all applications:

1. Permittee: City of Galveston

Permit No. WQ00 10688-002

EPA ID No. TX 0027791

Address of the project (or a location description that includes street/highway, city/vicinity, and county):

7618 Mustang Drive, Galveston, Texas, Galveston County

Provide the name, address, phone and fax number of an individual that can be contacted to answer specific questions about the property.

Prefix (Mr., Ms., Miss): <u>Mrs.</u>		
First and Last Name: Cynthia Diaz	i.	
Credential (P.E, P.G., Ph.D., etc.): <u>CWP</u>		
Title: Wastewater Superintendent		
Mailing Address: 823 Rosenberg Street		
City, State, Zip Code: Galveston, Texas, 77550		
Phone No.: <u>409-789-4221</u> Ext.:	Fax No.:	
E-mail Address: cdiaz@galvestontx.gov		

- 2. List the county in which the facility is located: Galveston
- If the property is publicly owned and the owner is different than the permittee/applicant, please list the owner of the property.
 N/A
- 4. Provide a description of the effluent discharge route. The discharge route must follow the flow of effluent from the point of discharge to the nearest major watercourse (from the point of discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify the classified segment number.

To a Tidal canal which connects Madeline Bay to Offats Bayou (Madeline Lake Channel) Then to West Bay in Segment 2424 of the Bays & Estuaries.

5. Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report).

Provide original photographs of any structures 50 years or older on the property.

Does your project involve any of the following? Check all that apply.

- □ Proposed access roads, utility lines, construction easements
- □ Visual effects that could damage or detract from a historic property's integrity
- □ Vibration effects during construction or as a result of project design
- □ Additional phases of development that are planned for the future
- □ Sealing caves, fractures, sinkholes, other karst features

- Disturbance of vegetation or wetlands
- 1. List proposed construction impact (surface acres to be impacted, depth of excavation, sealing of caves, or other karst features):

N/A

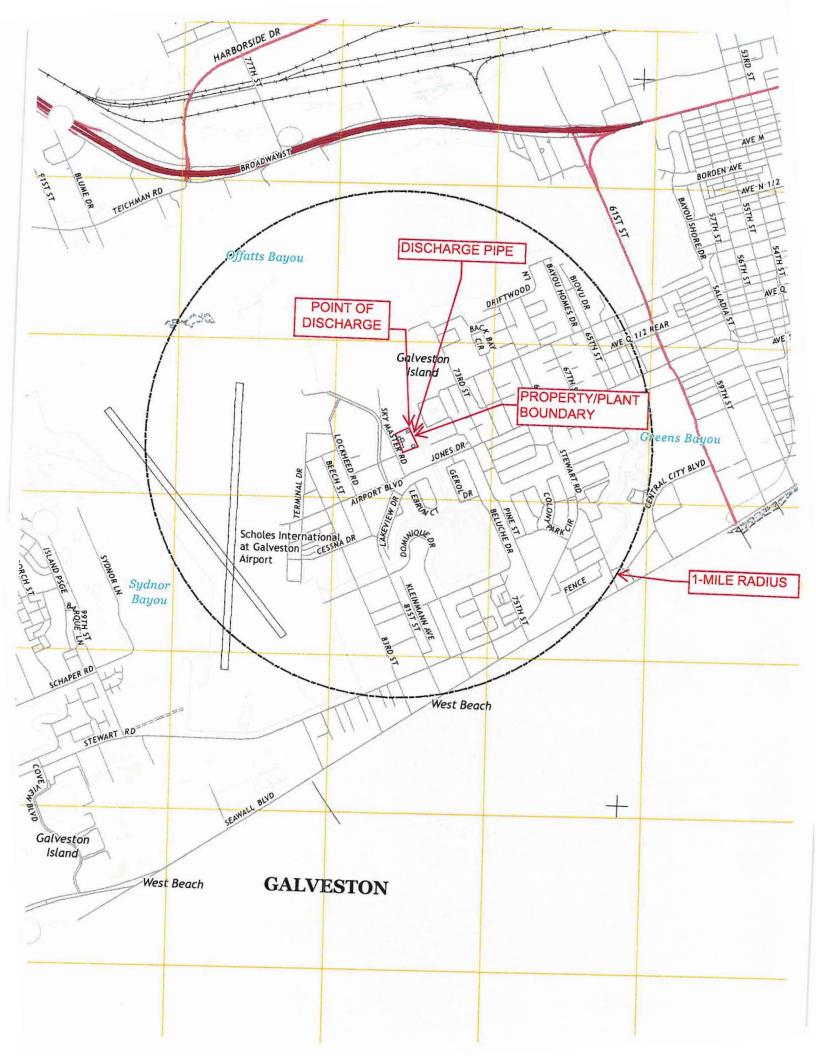
2. Describe existing disturbances, vegetation, and land use: <u>Typical Wastewater Treatment Plant site with units and support Buildings.</u>

THE FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR AMENDMENTS TO TPDES PERMITS

- 3. List construction dates of all buildings and structures on the property: N/A
- 4. Provide a brief history of the property, and name of the architect/builder, if known. <u>N/A</u>

City of Galveston

Airport Wastewater Treatment


Facility

TPDES 10688-002

Permit Renewal Application 2024

Attachment G

USGS Map

Cíty of Galveston Aírport Wastewater Treatment Facílíty TPDES 10688-002 Permít Renewal Applícatíon 2024 Attachment H Core Data Form

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please	e describe in space provided.)		
New Permit, Registration or Authorization (Core I	Data Form should be submitted with	the program application.)	
Renewal (Core Data Form should be submitted w	th the renewal form)	C Other	
2. Customer Reference Number (if issued)	Follow this link to search	3. Regulated Entity Reference Number (if issued)	
CN 600241376	for CN or RN numbers in Central Registry**	RN 101614303	

SECTION II: Customer Information

4. General C	ustomer l	nformatio	on	5. Effective Date for Customer Information Updates (mm/dd/yyyy)									
□ New Custo □Change in L		(Verifiable	100 million (100 million)	pdate to Custo kas Secretary o			mptro			egulated Ent unts)	tity Own	ership	
The Custome (SOS) or Texa			200 C 10 C		utomatica	lly base	ed on	what is c	urrent	and active	with th	ne Texas Sec	retary of State
6. Customer	Legal Nar	ne (If an in	dividual, pri	nt last name fir	st: eg: Doe,	John)			If new	v Customer,	enter pro	evious Custom	er below:
City of Galvest	on												
7. TX SOS/CP	A Filing N	lumber		8. TX State	Tax ID (11 o	digits)			(9 dig	deral Tax I ;its) 000904	D	10. DUNS applicable)	Number (if
11. Type of C	ustomer:		Corporat	ion				Individ	lual		Partne	rship: 🗌 Gen	eral 🗌 Limited
Government:	City 🗌	County 🗌	Federal 🗌	Local 🗌 State	Other			Sole P	roprieto	orship	🗌 Otl	ner:	
12. Number		/ees	251-	500 🗍 501	and higher			13. Independently Owned and Operated?				erated?	
14. Custome	r Role (Pro	oposed or A	Actual) – as i	relates to the	Regulated E	ntity lis	ted or	n this form.	Please	check one of	the follo	owing	
Owner Occupation	al Licensee	Oper	ator ponsible Pa		vner & Opera VCP/BSA App					Other:			
15. Mailing	823 Rose	enberg Stre	et										
Address:	City	Galvesto	on		State	ТХ		ZIP	77550	0		ZIP + 4	7755
16. Country I	Viailing In	formation	n (if outside	USA)			17.	E-Mail Ad	ddress	(if applicable	e)		
							city	ofgalvestor	n.gov				
18. Telephon	e Numbe	r		1	9. Extensio	on or C	Code 20. Fax Number (if applicable)						

1 409	1789-4221
-------	-----------

() -

SECTION III: Regulated Entity Information

21. General Regulated Entity Information (If 'New Regulated Entity" is selected, a new permit application is also required.)

🗌 New Regulated Entity 🔲 Update to Regulated Entity Name 🛛 Update to Regulated Entity Information

The Regulated Entity Name submitted may be updated, in order to meet TC	EQ Core Data Standards (removal of organizational endings such
as Inc, LP, or LLC).	

22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)

Airport Wastewater Treatment Plant

23. Street Address of the Regulated Entity:	7618 Mus	stang Drive						
(No PO Boxes)	City	Galveston	State	ТХ	ZIP	77551	ZIP + 4	
24. County								

If no Street Address is provided, fields 25-28 are required.

25. Description to								
Physical Location:								
26. Nearest City						State	Nea	rest ZIP Code
Latitude/Longitude are re used to supply coordinate					Data Standa	rds. (Geocoding of t	he Physical	Address may be
27. Latitude (N) In Decim	al:	29-16'-13.88'N		28. L	ongitude (W	/) In Decimal:	-94.50'-5	3.59'W
Degrees	Minutes	1	Seconds	Degre	es	Minutes		Seconds
29		16	13.8		-94	.50		59
29. Primary SIC Code (4 digits)		Secondary SIC C	Code	31. Primar (5 or 6 digit	y NAICS Coa	de 32. Seco (5 or 6 di	ondary NAI gits)	CS Code
33. What is the Primary B Wastewater treatment	usiness of t	his entity? (Do	not repeat the SIC or	NAICS descr	iption.)			
	1							
34. Mailing	823 Rosen	berg Street						
Address:	C 1							
	City	Galveston	State	ТХ	ZIP	77550	ZIP + 4	
35. E-Mail Address:	city	ofgalveston.gov						
36. Telephone Number			37. Extension or 0	Code	38. Fa	ax Number (if applical	ble)	
(409) 789-4221					()	-		

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

🗀 Dam Safety	Districts	Edwards Aquifer	Emissions Inventory Air	Industrial Hazardous Waste
Municipal Solid Waste	New Source Review Air	OSSF	Petroleum Storage Tank	D PWS
Sludge	Storm Water	Title V Air	Tires	Used Oil
Voluntary Cleanup	🛛 Wastewater	Wastewater Agriculture	Uwater Rights	C Other:

SECTION IV: Preparer Information

40. Name:	Cynthia Diaz			41. Title:	Wastewater Superintendent	
42. Telephon	e Number	43. Ext./Code	44. Fax Number	45. E-Mail	Address	
(409)789-422	1		() -			

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	City of Galveston	Job Title:	Director of Public Works	S
Name (In Print):	Trino Pedraza		Phone:	(409) 797- 3630
Signature:	TH		Date:	5-36-24

Cíty of Galveston Aírport Wastewater Treatment Facílíty TPDES 10688-002 Permít Renewal Applícatíon 2024 Technícal Report

1.0

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

<

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671.

The following information is required for all renewal, new, and amendment applications.

Section 1. Permitted or Proposed Flows (Instructions Page 43)

A. Existing/Interim I Phase

Design Flow (MGD): <u>3.75</u> 2-Hr Peak Flow (MGD): <u>11.25</u> Estimated construction start date: <u>N/A</u> Estimated waste disposal start date: <u>N/A</u>

B. Interim II Phase

Design Flow (MGD): <u>Click to enter text.</u> 2-Hr Peak Flow (MGD): <u>Click to enter text.</u> Estimated construction start date: <u>Click to enter text.</u> Estimated waste disposal start date: <u>Click to enter text.</u>

C. Final Phase

Design Flow (MGD): <u>Click to enter text.</u> 2-Hr Peak Flow (MGD): <u>Click to enter text.</u> Estimated construction start date: <u>Click to enter text.</u> Estimated waste disposal start date: <u>Click to enter text.</u>

D. Current Operating Phase

Provide the startup date of the facility: Existing

Section 2. Treatment Process (Instructions Page 43)

A. Current Operating Phase

Provide a detailed description of the treatment process. **Include the type of treatment plant, mode of operation, and all treatment units.** Start with the plant's head works and

finish with the point of discharge. Include all sludge processing and drying units. If more than one phase exists or is proposed, a description of *each phase* must be provided.

See Treatment Process in Attachments

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) **of each treatment unit, accounting for** *all* **phases of operation.**

Table 1.0(1) - Treatment Units

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
S <u>ee Treatment Process in</u> Attachments		

C. Process Flow Diagram

Provide flow diagrams for the existing facilities and **each** proposed phase of construction. Attachment: <u>See Diagram attachment in Supplement report</u>

Section 3. Site Information and Drawing (Instructions Page 44)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

- Latitude: <u>29 16' 16' N</u>
- Longitude: <u>-94 50' 52' W</u>

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

- Latitude: <u>N/A</u>
- Longitude: <u>N/A</u>

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and
- If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Attachment: Click to enter text.

Provide the name and a description of the area served by the treatment facility.

West of 59th Street, South of the English Bayou to Spanish Grant on 10 mile road, and west of 71st street on Broadway to the Causeway.

Collection System Information **for wastewater TPDES permits only**: Provide information for each **uniquely owned** collection system, existing and new, served by this facility, including satellite collection systems. **Please see the instructions for a detailed explanation and examples.**

Collection System Information

Collection System Name	Owner Name	Owner Type	Population Served
Lift Station 17 - 33	City of Galveston	Publicly Owned	10,000
		Choose an item.	
		Choose an item.	
		Choose an item.	

Section 4. Unbuilt Phases (Instructions Page 45)

Is the application for a renewal of a permit that contains an unbuilt phase or phases?

🗆 Yes 🖾 No

If yes, does the existing permit contain a phase that has not been constructed within five years of being authorized by the TCEQ?

🗆 Yes 🗆 No

If yes, provide a detailed discussion regarding the continued need for the unbuilt phase. **Failure to provide sufficient justification may result in the Executive Director recommending denial of the unbuilt phase or phases**.

Click to enter text.

Section 5. Closure Plans (Instructions Page 45)

Have any treatment units been taken out of service permanently, or will any units be taken out of service in the next five years?

🗆 Yes 🖾 No

If yes, was a closure plan submitted to the TCEQ?

🗆 Yes 🗆 No

If yes, provide a brief description of the closure and the date of plan approval.

Click to enter text.

Section 6. Permit Specific Requirements (Instructions Page 45)

For applicants with an existing permit, check the Other Requirements or Special Provisions of the permit.

A. Summary transmittal

Have plans and specifications been approved for the existing facilities and each proposed phase?

🗆 Yes 🛛 No

If yes, provide the date(s) of approval for each phase: Click to enter text.

Provide information, including dates, on any actions taken to meet a *requirement or provision* pertaining to the submission of a summary transmittal letter. **Provide a copy of** an approval letter from the TCEQ, if applicable.

Click to enter text.

B. Buffer zones

Have the buffer zone requirements been met?

🖾 Yes 🗆 No

Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the buffer zones.

See attachment

C. Other actions required by the current permit

Does the *Other Requirements* or *Special Provisions* section in the existing permit require submission of any other information or other required actions? Examples include Notification of Completion, progress reports, soil monitoring data, etc.

🗆 Yes 🛛 No

If yes, provide information below on the status of any actions taken to meet the conditions of an *Other Requirement* or *Special Provision*.

Click to enter text.	

D. Grit and grease treatment

1. Acceptance of grit and grease waste

Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?

🗆 Yes 🖾 No

If No, stop here and continue with Subsection E. Stormwater Management.

2. Grit and grease processing

Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility.

Click to enter text.

3. Grit disposal

Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal?

🗆 Yes 🛛 No

If No, contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.

Describe the method of grit disposal.

Click to enter text.

4. Grease and decanted liquid disposal

Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335.

Describe how the decant and grease are treated and disposed of after grit separation.

Click to enter text.

E. Stormwater management

1. Applicability

Does the facility have a design flow of 1.0 MGD or greater in any phase?

🖾 Yes 🗆 No

Does the facility have an approved pretreatment program, under 40 CFR Part 403?

🖾 Yes 🗆 No

If no to both of the above, then skip to Subsection F, Other Wastes Received.

2. MSGP coverage

Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?

🗆 Yes 🖾 No

If yes, please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:

TXR05 Click to enter text. or TXRNE Click to enter text.

If no, do you intend to seek coverage under TXR050000?

🗆 Yes 🖾 No

3. Conditional exclusion

Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?

🗆 Yes 🛛 No

If yes, please explain below then proceed to Subsection F, Other Wastes Received:

Click to enter text.

4. Existing coverage in individual permit

Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?

🗆 Yes 🛛 No

If yes, provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.

Click to enter text.

5. Zero stormwater discharge

Do you intend to have no discharge of stormwater via use of evaporation or other means?

🗆 Yes 🛛 No

If yes, explain below then skip to Subsection F. Other Wastes Received.

Click to enter text.

Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.

6. Request for coverage in individual permit

Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?

🗆 Yes 🖾 No

If yes, provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state.

Click to enter text.

Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.

F. Discharges to the Lake Houston Watershed

Does the facility discharge in the Lake Houston watershed?

🗆 Yes 🖾 No

If yes, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions. <u>Click to enter text.</u>

G. Other wastes received including sludge from other WWTPs and septic waste

1. Acceptance of sludge from other WWTPs

Does or will the facility accept sludge from other treatment plants at the facility site?

🗆 Yes 🖾 No

If yes, attach sewage sludge solids management plan. See Example 5 of the instructions.

In addition, provide the date the plant started or is anticipated to start accepting sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an

estimate of the BOD₅ concentration of the sludge, and the design BOD₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

N/A

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

2. Acceptance of septic waste

Is the facility accepting or will it accept septic waste?

🗆 Yes 🖾 No

If yes, does the facility have a Type V processing unit?

🗆 Yes 🖾 No

If yes, does the unit have a Municipal Solid Waste permit?

🗆 Yes 🛛 No

If yes to any of the above, provide the date the plant started or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD₅ concentration of the septic waste, and the

design BOD₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

Click to enter text.

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

3. Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)

Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above?

🗆 Yes 🖾 No

If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.

Click to enter text.

Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 50)

Is the facility in operation?

🖾 Yes 🗆 No

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). *Water treatment facilities* discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. These tables are not applicable for a minor amendment without renewal. See the instructions for guidance.

Note: The sample date must be within 1 year of application submission.

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l	<2.0	<2.0	1	Grab	5/6/2024
Total Suspended Solids, mg/l	7.8	7.8	1	Grab	5/06/2024
Ammonia Nitrogen, mg/l	<0.1	<0.1	1	Grab	5/06/2024
Nitrate Nitrogen, mg/l	5.67	5.67	1	Grab	5/6/2024

Table1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities

Total Kjeldahl Nitrogen, mg/l	2.1	2.1	1	Grab	5/06/2024
Sulfate, mg/l	253	253	1	Grab	5/06/2024
Chloride, mg/l	1680	1680	1	Grab	5/06/2024
Total Phosphorus, mg/l	2.75	2.75	1	Grab	5/06/2024
pH, standard units	7.1	7.1	1	Grab	5/06/2024
Dissolved Oxygen*, mg/l	6.8	6.8	1	Grab	5/06/2026
Chlorine Residual, mg/l	2.4	2.4	1	Grab	5/06/2024
E.coli (CFU/100ml) freshwater	24	24	1	Grab	5/06/2024
Entercocci (CFU/100ml) saltwater	NA	NA	NA		
Total Dissolved Solids, mg/l	3800	3800	1	Grab	5/06/2024
Electrical Conductivity, µmohs/cm, †	6502	6502	1	Grab	5/06/2024
Oil & Grease, mg/l	<5.4	<5.4	1	Grab	5/06/2024
Alkalinity (CaCO ₃)*, mg/l	140	140	1	Grab	5/06/2024

*TPDES permits only

†TLAP permits only

Table1.0(3) - Pollutant Analysis for Water Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Suspended Solids, mg/l	7.8	7.8	1	Grab	5/06/2024
Total Dissolved Solids, mg/l	3800	3800	1	Grab	5/06/2024
pH, standard units	7.1	7.1	1	Grab	5/06/2024
Fluoride, mg/l	144	144	1	Comp	5/06/2024
Aluminum, mg/l	40.7	40.7	1	Comp	5/06/2024
Alkalinity (CaCO ₃), mg/l	140	140	1	Grab	5/06/2024

Section 8. Facility Operator (Instructions Page 50)

Facility Operator Name: Cynthia Diaz

Facility Operator's License Classification and Level: A

Facility Operator's License Number: <u>WW0035005</u>

Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 51)

A. WWTP's Biosolids Management Facility Type

Check all that apply. See instructions for guidance

 \boxtimes Design flow>= 1 MGD

- Serves >= 10,000 people
- □ Class I Sludge Management Facility (per 40 CFR § 503.9)
- □ Biosolids generator
- □ Biosolids end user land application (onsite)
- Biosolids end user surface disposal (onsite)
- □ Biosolids end user incinerator (onsite)

B. WWTP's Biosolids Treatment Process

Check all that apply. See instructions for guidance.

- ☑ Aerobic Digestion
- □ Air Drying (or sludge drying beds)
- □ Lower Temperature Composting
- □ Lime Stabilization
- Higher Temperature Composting
- □ Heat Drying
- □ Thermophilic Aerobic Digestion
- Beta Ray Irradiation
- Gamma Ray Irradiation
- □ Pasteurization
- □ Preliminary Operation (e.g. grinding, de-gritting, blending)
- Main Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter)
- □ Sludge Lagoon
- □ Temporary Storage (< 2 years)
- □ Long Term Storage (>= 2 years)
- □ Methane or Biogas Recovery
- ☑ Other Treatment Process: <u>Transported off site</u>

C. Biosolids Management

Provide information on the *intended* biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize all biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

Biosolids Management

Management Practice	Handler or Preparer Type	Bulk or Bag Container	Amount (dry metric tons)	Pathogen Reduction Options	Vector Attraction Reduction Option
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): <u>Transport to other facility</u>

D. Disposal site

Disposal site name: Main Wastewater Plant

TCEQ permit or registration number: 21945

County where disposal site is located: Galveston

E. Transportation method

Method of transportation (truck, train, pipe, other): Truck

Name of the hauler: Christopher Gilbert

Hauler registration number: 21945

Sludge is transported as a:

Liquid \boxtimes semi-liquid \square

semi-solid □

solid 🗆

Section 10. Permit Authorization for Sewage Sludge Disposal (Instructions Page 53)

A. Beneficial use authorization

Does the existing permit include authorization for land application of sewage sludge for beneficial use?

🗆 Yes 🖾 No

If yes, are you requesting to continue this authorization to land apply sewage sludge for beneficial use?

🗆 Yes 🗆 No

If yes, is the completed Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451) attached to this permit application (see the instructions for details)?

🗆 Yes 🗆 No

B. Sludge processing authorization

Does the existing permit include authorization for any of the following sludge processing, storage or disposal options?

Sludge Composting	Yes	\boxtimes	No
Marketing and Distribution of sludge	Yes	\boxtimes	No
Sludge Surface Disposal or Sludge Monofill	Yes	\boxtimes	No
Temporary storage in sludge lagoons	Yes	\boxtimes	No

If yes to any of the above sludge options and the applicant is requesting to continue this authorization, is the completed **Domestic Wastewater Permit Application: Sewage Sludge Technical Report (TCEQ Form No. 10056)** attached to this permit application?

🗆 Yes 🗆 No

Section 11. Sewage Sludge Lagoons (Instructions Page 53)

Does this facility include sewage sludge lagoons?

🗆 Yes 🛛 No

If yes, complete the remainder of this section. If no, proceed to Section 12.

A. Location information

The following maps are required to be submitted as part of the application. For each map, provide the Attachment Number.

• Original General Highway (County) Map:

Attachment: Click to enter text.

• USDA Natural Resources Conservation Service Soil Map:

Attachment: Click to enter text.

• Federal Emergency Management Map:

Attachment: Click to enter text.

• Site map:

Attachment: Click to enter text.

Discuss in a description if any of the following exist within the lagoon area. Check all that apply.

- □ Overlap a designated 100-year frequency flood plain
- □ Soils with flooding classification
- Overlap an unstable area
- □ Wetlands
- □ Located less than 60 meters from a fault
- \Box None of the above

Attachment: Click to enter text.

If a portion of the lagoon(s) is located within the 100-year frequency flood plain, provide the protective measures to be utilized including type and size of protective structures:

B. Temporary storage information

Provide the results for the pollutant screening of sludge lagoons. These results are in addition to pollutant results in *Section 7 of Technical Report 1.0.*

Nitrate Nitrogen, mg/kg: <u>Click to enter text.</u> Total Kjeldahl Nitrogen, mg/kg: <u>Click to enter text.</u> Total Nitrogen (=nitrate nitrogen + TKN), mg/kg: <u>Click to enter text.</u> Phosphorus, mg/kg: <u>Click to enter text.</u> Potassium, mg/kg: <u>Click to enter text.</u> pH, standard units: <u>Click to enter text.</u> Ammonia Nitrogen mg/kg: <u>Click to enter text.</u> Arsenic: <u>Click to enter text.</u> Cadmium: <u>Click to enter text.</u> Cadmium: <u>Click to enter text.</u> Copper: <u>Click to enter text.</u> Lead: <u>Click to enter text.</u> Mercury: <u>Click to enter text.</u> Molybdenum: <u>Click to enter text.</u>

Selenium: Click to enter text.

Zinc: Click to enter text.

Total PCBs: <u>Click to enter text.</u>

Provide the following information:

Volume and frequency of sludge to the lagoon(s): <u>Click to enter text.</u>

Total dry tons stored in the lagoons(s) per 365-day period: Click to enter text.

Total dry tons stored in the lagoons(s) over the life of the unit: <u>Click to enter text.</u>

C. Liner information

Does the active/proposed sludge lagoon(s) have a liner with a maximum hydraulic conductivity of 1×10^{-7} cm/sec?

🗆 Yes 🗆 No

If yes, describe the liner below. Please note that a liner is required.

D. Site development plan

Provide a detailed description of the methods used to deposit sludge in the lagoon(s):

Click to enter text.

Attach the following documents to the application.

- Plan view and cross-section of the sludge lagoon(s)
 Attachment: <u>Click to enter text.</u>
- Copy of the closure plan

Attachment: Click to enter text.

- Copy of deed recordation for the site Attachment: <u>Click to enter text.</u>
- Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons Attachment: <u>Click to enter text.</u>
- Description of the method of controlling infiltration of groundwater and surface water from entering the site

Attachment: Click to enter text.

• Procedures to prevent the occurrence of nuisance conditions Attachment: <u>Click to enter text.</u>

E. Groundwater monitoring

Is groundwater monitoring currently conducted at this site, or are any wells available for groundwater monitoring, or are groundwater monitoring data otherwise available for the sludge lagoon(s)?

🗆 Yes 🛛 No

If groundwater monitoring data are available, provide a copy. Provide a profile of soil types encountered down to the groundwater table and the depth to the shallowest groundwater as a separate attachment.

Attachment: Click to enter text.

Section 12. Authorizations/Compliance/Enforcement (Instructions

Page 55)

A. Additional authorizations

Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc?

🖾 Yes 🗆 No

If yes, provide the TCEQ authorization number and description of the authorization:

R 10688-002 Reuse 1	Permit	

B. Permittee enforcement status

Is the permittee currently under enforcement for this facility?

🗆 Yes 🛛 No

Is the permittee required to meet an implementation schedule for compliance or enforcement?

🗆 Yes 🛛 No

If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:

Click to enter text.

Section 13. RCRA/CERCLA Wastes (Instructions Page 55)

A. RCRA hazardous wastes

Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste?

🗆 Yes 🖾 No

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

🗆 Yes 🖾 No

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment: Click to enter text.

TCEQ-10054 (01/09/2024) Domestic Wastewater Permit Application Technical Report

Section 14. Laboratory Accreditation (Instructions Page 56)

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the Signature Page section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of *30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.*

Printed Name: Trino Pedraza

Title: Director of Public Works

Signature: Date: 5-30-24

City of Galveston

Airport Wastewater Treatment

Facílíty

TPDES 10688-002

Permit Renewal Application 2024

Technical Worksheet

2.0

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

Section 1. Domestic Drinking Water Supply (Instructions Page 64)

Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge?

🗆 Yes 🖾 No

If no, proceed it Section 2. If yes, provide the following:

Owner of the drinking water supply: Click to enter text.

Distance and direction to the intake: Click to enter text.

Attach a USGS map that identifies the location of the intake.

Attachment: Click to enter text.

Section 2. Discharge into Tidally Affected Waters (Instructions Page 64)

Does the facility discharge into tidally affected waters?

🛛 Yes 🗆 No

If **no**, proceed to Section 3. **If yes**, complete the remainder of this section. If no, proceed to Section 3.

A. Receiving water outfall

Width of the receiving water at the outfall, in feet: 200

B. Oyster waters

Are there oyster waters in the vicinity of the discharge?

🗆 Yes 🖾 No

If yes, provide the distance and direction from outfall(s).

Click to enter text.

C. Sea grasses

Are there any sea grasses within the vicinity of the point of discharge?

🗆 Yes 🖾 No

If yes, provide the distance and direction from the outfall(s).

Click to enter text.

Section 3. Classified Segments (Instructions Page 64)

Is the discharge directly into (or within 300 feet of) a classified segment?

🖾 Yes 🗆 No

If yes, this Worksheet is complete.

If no, complete Sections 4 and 5 of this Worksheet.

Section 4. Description of Immediate Receiving Waters (Instructions Page 65)

Name of the immediate receiving waters: Madeline Bay

A. Receiving water type

Identify the appropriate description of the receiving waters.

- □ Stream
- Freshwater Swamp or Marsh
- □ Lake or Pond

Surface area, in acres: Click to enter text.

Average depth of the entire water body, in feet: Click to enter text.

Average depth of water body within a 500-foot radius of discharge point, in feet: <u>Click to enter text.</u>

- Man-made Channel or Ditch
- Open Bay
- 🛛 Tidal Stream, Bayou, or Marsh
- □ Other, specify: <u>Click to enter text.</u>

B. Flow characteristics

If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area *upstream* of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one).

□ Intermittent - dry for at least one week during most years

☑ Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses

Perennial - normally flowing

Check the method used to characterize the area upstream (or downstream for new dischargers).

- □ USGS flow records
- □ Historical observation by adjacent landowners
- Personal observation
- □ Other, specify: <u>Click to enter text</u>.

C. Downstream perennial confluences

List the names of all perennial streams that join the receiving water within three miles downstream of the discharge point.

Lake Madeline, Offats Bayou, Teichman Channel, West Bay

D. Downstream characteristics

Do the receiving water characteristics change within three miles downstream of the discharge (e.g., natural or man-made dams, ponds, reservoirs, etc.)?

🖾 Yes 🗆 No

If yes, discuss how.

The Effluent first enters a Tidal Canal, which is connected to Madeline Bay then to Offats Bayou, flows into Offats Bayou and then to West Bay.

E. Normal dry weather characteristics

Provide general observations of the water body during normal dry weather conditions.

Generally calm depending on tide.

Date and time of observation: 5/29/2024/ 9:50AM

Was the water body influenced by stormwater runoff during observations?

🗆 Yes 🖾 No

Section 5. General Characteristics of the Waterbody (Instructions Page 66)

A. Upstream influences

Is the immediate receiving water upstream of the discharge or proposed discharge site influenced by any of the following? Check all that apply.

- \Box Oil field activities \boxtimes Urba
- Upstream discharges
- 🛛 Urban runoff
- urges 🛛 Agricultural runoff
- Septic tanks

□ Other(s), specify: Click to enter text.

B. Waterbody uses

Observed or evidences of the following uses. Check all that apply.

- □ Livestock watering
 - Irrigation withdrawal
- \boxtimes Fishing
- Domestic water supply
- Park activities

C. Waterbody aesthetics

Check one of the following that best describes the aesthetics of the receiving water and the surrounding area.

- Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional
- Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored
- Common Setting: not offensive; developed but uncluttered; water may be colored X or turbid
- Offensive: stream does not enhance aesthetics; cluttered; highly developed; dumping areas; water discolored

- Non-contact recreation
- Navigation
- Industrial water supply
- Other(s), specify: Click to enter text.
- X Contact recreation

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Toxic Pollutants (Instructions Page 78)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab ⊠ Composite ⊠

Date and time sample(s) collected: 5/06/2024

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acrylonitrile	<5.0	<5.0	Grab	50
Aldrin	0.0184	0.0184	Comp	0.01
Aluminum	40.7	40.7	Comp	2.5
Anthracene	<1.04	<1.04	Comp	10
Antimony	<2.00	<2.00	Comp	5
Arsenic	2.10	2.10	Comp	0.5
Barium	<0.500	<0.500	Comp	3
Benzene	<10.0	<10.0	Comp	10
Benzidine	<20.7	<20.7	Grab	50
Benzo(a)anthracene	<1.04	<1.04	Comp	5
Benzo(a)pyrene	<1.04	<1.04	Comp	5
Bis(2-chloroethyl)ether	<1.04	<1.04	Comp	10
Bis(2-ethylhexyl)phthalate	0.944	0.944	Comp	10
Bromodichloromethane	<10.0	<10.0	Grab	10
Bromoform	156	156	Grab	10
Cadmium	<1.00	<1.00	Comp	1
Carbon Tetrachloride	<2.00	<2.00	Grab	2
Carbaryl	<2.63	<2.63	Comp	5
Chlordane*	<0.0105	< 0.0105	Comp	0.2
Chlorobenzene	<10.0	<10.0	Grab	10
Chlorodibromomethane	<10.0	<10.0	Grab	10

Table 4.0(1) – Toxics Analysis

TCEQ-10054 (01/09/2024) Domestic Wastewater Permit Application Technical Report

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Chloroform	<10.0	<10.0	1	10
Chlorpyrifos	<0.050	< 0.050	1	0.05
Chromium (Total)	<1.00	<1.0	1	3
Chromium (Tri) (*1)	<3	<3	1	N/A
Chromium (Hex)	<3	<3	1	3
Copper	9.39	9.39	1	2
Chrysene	<1.04	<1.04	1	5
p-Chloro-m-Cresol	<2.49	<2.49	1	10
4,6-Dinitro-o-Cresol	<8.30	<8.30	1	50
p-Cresol	<2.49	<2.49	1	10
Cyanide (*2)	10.2	10.2	1	10
4,4'- DDD	< 0.0105	<0.0105	1	0.1
4,4'- DDE	< 0.0105	<0.0105	1	0.1
4,4'- DDT	< 0.0105	< 0.0105	1	0.02
2,4-D	<0.520	<0.520	1	0.7
Demeton (O and S)	< 0.0526	<0.0526	1	0.20
Diazinon	< 0.0526	<0.0526	1	0.5/0.1
1,2-Dibromoethane	<10.0	<10.0	1	10
m-Dichlorobenzene	<1.04	<1.04	1	10
o-Dichlorobenzene	<1.04	<1.04	1	10
p-Dichlorobenzene	<1.04	<1.04		10
3,3'-Dichlorobenzidine	<5.00	<5.00	1	5
1,2-Dichloroethane	<10.0	<10.0	1	10
1,1-Dichloroethylene	<10.0	<10.0	1	10
Dichloromethane	<10.0	<10.0	1	20
1,2-Dichloropropane	<10.0	<10.0	1	10
1,3-Dichloropropene	<10.0	<10.0		10
Dicofol	<1.05	<1.05	1	1
Dieldrin	< 0.0105	< 0.0105	1	0.02
2,4-Dimethylphenol	<2.49	<2.49	1	10
Di-n-Butyl Phthalate	<7.78	<7.78	1	10
Diuron	2.07	2.07	1	0.09
Endosulfan I (alpha)	<0.010	<0.010	1	0.01

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Endosulfan II (beta)	<0.0105	< 0.0105	1	0.02
Endosulfan Sulfate	<0.0105	< 0.0105	1	0.1
Endrin	<0.0105	< 0.0105	1	0.02
Ethylbenzene	<10.0	<10.0	1	10
Fluoride	144	144	1	500
Guthion	<0.0526	<0.0526	1	0.1
Heptachlor	<0.010	< 0.010	1	0.01
Heptachlor Epoxide	<0.010	< 0.010	1	0.01
Hexachlorobenzene	<1.04	<1.04	1	5
Hexachlorobutadiene	<1.04	<1.04	1	10
Hexachlorocyclohexane (alpha)	< 0.0105	<0.0105	1	0.05
Hexachlorocyclohexane (beta)	<0.0105	< 0.0105	1	0.05
gamma-Hexachlorocyclohexane	<0.0105	< 0.0105	1	0.05
(Lindane)				
Hexachlorocyclopentadiene	<9.34	<9.34	1	10
Hexachloroethane	<1.04	<1.04	1	20
Hexachlorophene	<1.04	<1.04	1	10
Lead	<0.500	<0.500	1	0.5
Malathion	<0.0526	<0.0526	1	0.1
Mercury	0.000856	0.000856	1	0.005
Methoxychlor	<0.0105	< 0.0105	1	2
Methyl Ethyl Ketone	<50.0	<50.0	1	50
Mirex	< 0.0158	< 0.0158	1	0.02
Nickel	<2.00	<2.00	1	2
Nitrate-Nitrogen	5.67	5.67	1	100
Nitrobenzene	<1.04	<1.04	1	10
N-Nitrosodiethylamine	<1.04	<1.04	1	20
N-Nitroso-di-n-Butylamine	<1.04	<1.04	1	20
Nonylphenol	11	11	1	333
Parathion (ethyl)	<0.0526	<0.0526	1	0.1
Pentachlorobenzene	<1.04	<1.04	1	20
Pentachlorophenol	<1.04	<1.04	1	5
Phenanthrene	<1.04	<1.04	1	10

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Polychlorinated Biphenyls (PCB's) (*3)	1.4	1.4	1	0.2
Pyridine	<5.6	<5.6	1	20
Selenium	<2.00	<2.00		5
Silver	<0.500	<0.500	1	0.5
1,2,4,5-Tetrachlorobenzene	<1.04	<1.04	1	20
1,1,2,2-Tetrachloroethane	<10.0	<10.0	1	10
Tetrachloroethylene	<10.0	<10.0	1	10
Thallium	<0.500	<0.500	1	0.5
Toluene	<10.0	<10.0	1	10
Toxaphene	<0.211	<2.11	1	0.3
2,4,5-TP (Silvex)	<0.300	< 0.300	1	0.3
Tributyltin (see instructions for explanation)	<2	<2	2	0.01
1,1,1-Trichloroethane	<10.0	<10.0	1	10
1,1,2-Trichloroethane	<10.0	<10.0	1	10
Trichloroethylene	<10.0	<10.0	1	10
2,4,5-Trichlorophenol	<1.04	<1.04	1	50
TTHM (Total Trihalomethanes)	173	173	1	10
Vinyl Chloride	<10.0	<10.0	1	10
Zinc	39.3	39.3	1	5

(*1) Determined by subtracting hexavalent Cr from total Cr.

(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab □ Composite □

Date and time sample(s) collected: Click to enter text.

Table 4.0(2)A – Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)	
Antimony	<2.00	<2.00	1	5	
Arsenic	2.10	2.10	1	0.5	
Beryllium	<0.500	<0.500	1	0.5	
Cadmium	<1.00	<1.00	1	1	
Chromium (Total)	<1.00	<1.00	1	3	
Chromium (Hex)	<3	<3	1	3	
Chromium (Tri) (*1)	<3	<3	1	N/A	
Copper	9.39	9.39	1	2	
Lead	<0.500	<0.500	1	0.5	
Mercury	0.000856	0.000856		0.005	
Nickel	<2.00	<2.00	1	2	
Selenium	<2.00	<2.00	1	5	
Silver	<0.500	<0.500	1	0.5	
Thallium	<0.500	<0.500	1	0.5	
Zinc	39.3	39.3	1	5	
Cyanide (*2)	10.2	10.2	1	10	
Phenols, Total	<10.0	<10.0	1	10	
		La ma management and a second s		1	

(*1) Determined by subtracting hexavalent Cr from total Cr.

(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l) 50	
Acrolein	<10.0	<10.0	1		
Acrylonitrile	<50.0	<50.0	1	50	
Benzene	<10.0	<10.	1	10	
Bromoform	156	156	1	10	
Carbon Tetrachloride	<2.00	<2.00	1	2	
Chlorobenzene	<10.0	<10.0	1	10	
Chlorodibromomethane	24.3	24.3	1	10	
Chloroethane	<50.0	<50.0	1	50	
2-Chloroethylvinyl Ether	<10.0	<10.0	1	10	
Chloroform	<10.0	<10.0	1	10	
Dichlorobromomethane [Bromodichloromethane]	24.3	24.3	1	10	
1,1-Dichloroethane	<10.0	<10.0	1	10	
1,2-Dichloroethane	<10.0	<10.0	1	10	
1,1-Dichloroethylene	<10.0	<10.0	1	10	
1,2-Dichloropropane	<10.0	<10.0	1	10	
1,3-Dichloropropylene	<10.0	<10.0	1	10	
[1,3-Dichloropropene]					
1,2-Trans-Dichloroethylene	<10.0	<10.0	1	10	
Ethylbenzene	<10.0	<10.0	1	10	
Methyl Bromide	<50.0	<50.0	1	50	
Methyl Chloride	<50.0	<50.0	1	50	
Methylene Chloride	<10.0	<10.0	1	20	
1,1,2,2-Tetrachloroethane	<10.0	<10.0	1	10	
Tetrachloroethylene	<10.0	<10.0	1	10	
Toluene	<10.0	<10.0	1	10	
1,1,1-Trichloroethane	<10.0	<10.0	1	10	
1,1,2-Trichloroethane	<10.0	<10.0	1	10	
Trichloroethylene	<10.0	<10.0	1	10	
Vinyl Chloride	<10.0	<10.0	1	10	

Table 4.0(2)B - Volatile Compounds

Table 4.0(2)C – Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)	
2-Chlorophenol	<1.04	<1.04	1	10	
2,4-Dichlorophenol	<1.04	<1.04	1	10	
2,4-Dimethylphenol	<2.49	<2.49	1	10	
4,6-Dinitro-o-Cresol	<8.30	<8.30	1	50	
2,4-Dinitrophenol	<9.34	<9.34	1	50	
2-Nitrophenol	<1.04	<1.04	1	20	
4-Nitrophenol	<1.04	<1.04	1	50	
P-Chloro-m-Cresol	<2.49	<2.49	1	10	
Pentalchlorophenol	<1.04	<1.04	1	5	
Phenol	<1.56	<1.56	1	10	
2,4,6-Trichlorophenol	<1.04	<1.04	1	10	

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)	
Acenaphthene	<1.04	<1.04	1	10	
Acenaphthylene	<1.04	<1.04	1	10	
Anthracene	<1.04	<1.04	1	10	
Benzidine	<20.4	<20.4	1	50	
Benzo(a)Anthracene	<1.04	<1.04	1	5	
Benzo(a)Pyrene	<1.04	<1.04	1	5	
3,4-Benzofluoranthene	<1.04	<1.04	1	10	
Benzo(ghi)Perylene	<1.04	<1.04	1	20	
Benzo(k)Fluoranthene	<1.04	<1.04	1	5	
Bis(2-Chloroethoxy)Methane	<1.04	<1.04	1	10	
Bis(2-Chloroethyl)Ether	<1.04	<1.04	1	10	
Bis(2-Chloroisopropyl)Ether	<1.04	<1.04	1	10	
Bis(2-Ethylhexyl)Phthalate	<7.78	<7.78	1	10	
4-Bromophenyl Phenyl Ether	<1.04	<1.04	1	10	
Butyl benzyl Phthalate	0.944	0.944	1	10	
2-Chloronaphthalene	<1.04	<1.04	1	10	
4-Chlorophenyl phenyl ether	<1.04	<1.04	1	10	
Chrysene	<1.04	<1.04	1	5	
Dibenzo(a,h)Anthracene	<1.04	<1.04	1	5	
1,2-(o)Dichlorobenzene	<1.04	<1.04	1	10	
1,3-(m)Dichlorobenzene	<1.04	<1.04	1	10	
1,4-(p)Dichlorobenzene	<1.04	<1.04	1	10	
3,3-Dichlorobenzidine	<5.00	<5.00	1	5	
Diethyl Phthalate	<5.91	<5.91	1	10	
Dimethyl Phthalate	<4.98	<4.98	1	10	
Di-n-Butyl Phthalate	<7.78	<7.78	1	10	
2,4-Dinitrotoluene	<3.63	<3.63	1	10	
2,6-Dinitrotoluene	<1.04	<1.04	1	10	
Di-n-Octyl Phthalate	<1.04	<1.04	1	10	
1,2-Diphenylhydrazine (as Azo- benzene)	<1.04	<1.04	1	20	
Fluoranthene	<1.04	<1.04	1	10	

Table 4.0(2)D – Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)	
Fluorene	<1.04	<1.04	1	10	
Hexachlorobenzene	<1.04	<1.04	1	5	
Hexachlorobutadiene	<1.04	<1.04	1	10	
Hexachlorocyclo-pentadiene	<9.34	<9.34	1	10	
Hexachloroethane	<1.04	<1.04	1	20	
Indeno(1,2,3-cd)pyrene	<1.04	<1.04	1	5	
Isophorone	<1.04	<1.04	1	10	
Naphthalene	<1.04	<1.04	1	10	
Nitrobenzene	<1.04	<1.04	1	10	
N-Nitrosodimethylamine	<7.26	<7.26		50	
N-Nitrosodi-n-Propylamine	<1.04	<1.04	1	20	
N-Nitrosodiphenylamine	<1.04	<1.04	1	20	
Phenanthrene	<1.56	<1.56	1	10	
Pyrene	<1.04	<1.04	1	10	
1,2,4-Trichlorobenzene	<1.04	<1.04	1	10	

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Aldrin	0.0184	0.0184	1	0.01
alpha-BHC (Hexachlorocyclohexane)	<0.0105	< 0.0105	1	0.05
beta-BHC (Hexachlorocyclohexane)	< 0.0105	< 0.0105	1	0.05
gamma-BHC (Hexachlorocyclohexane)	<0.0105	<0.0105	1	0.05
delta-BHC (Hexachlorocyclohexane)	<0.0105	<0.0105	1	0.05
Chlordane	<0.0105	<0.0105	1	0.2
4,4-DDT	< 0.0105	< 0.0105	1	0.02
4,4-DDE	< 0.0105	<0.0105	1	0.1
4,4,-DDD	<0.0105	<0.0105	1	0.1
Dieldrin	< 0.0105	<0.0105	1	0.02
Endosulfan I (alpha)	<0.010	<0.010	1	0.01
Endosulfan II (beta)	< 0.0105	<0.0105	1	0.02
Endosulfan Sulfate	< 0.0105	< 0.0105	1	0.1
Endrin	< 0.0105	< 0.0105	1	0.02
Endrin Aldehyde	< 0.0105	< 0.0105	1	0.1
Heptachlor	<0.010	<0.010	1	0.01
Heptachlor Epoxide	<0.010	<0.010	1	0.01
PCB-1242	<0.200	<0.200	1	0.2
PCB-1254	<0.200	<0.200	1	0.2
PCB-1221	<0.200	<0.200	1	0.2
PCB-1232	<0.200	<0.200	1	0.2
PCB-1248	<0.200	<0.200	1	0.2
PCB-1260	<0.200	<0.200	1	0.2
PCB-1016	<0.200	<0.200	1	0.2
Toxaphene	<0.211	<0.211	1	0.3

* For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Section 3. Dioxin/Furan Compounds

- **A.** Indicate which of the following compounds from may be present in the influent from a contributing industrial user or significant industrial user. Check all that apply.
 - 2,4,5-trichlorophenoxy acetic acid
 Common Name 2,4,5-T, CASRN 93-76-5
 - 2-(2,4,5-trichlorophenoxy) propanoic acid
 Common Name Silvex or 2,4,5-TP, CASRN 93-72-1
 - 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate
 Common Name Erbon, CASRN 136-25-4
 - 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate
 Common Name Ronnel, CASRN 299-84-3
 - □ 2,4,5-trichlorophenol

Common Name TCP, CASRN 95-95-4

□ hexachlorophene

Common Name HCP, CASRN 70-30-4

For each compound identified, provide a brief description of the conditions of its/their presence at the facility.

Click to enter text.

B. Do you know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin (TCDD) or any congeners of TCDD may be present in your effluent?

🗆 Yes 🖾 No

If yes, provide a brief description of the conditions for its presence.

Click to enter text.

C. If any of the compounds in Subsection A or B are present, complete Table 4.0(2)F.

For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab □ Composite □

Date and time sample(s) collected: Click to enter text.

Table 4.0(2)F – Dioxin/Furan Compounds

Compound	Toxic Equivalenc y Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1					10
1,2,3,7,8 PeCDD	0.5					50
2,3,7,8 HxCDDs	0.1					50
1,2,3,4,6,7,8 HpCDD	0.01					50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05					50
2,3,4,7,8 PeCDF	0.5					50
2,3,7,8 HxCDFs	0.1					50
2,3,4,7,8 HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					0.5
PCB 81	0.0003					0.5
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total						

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: TOXICITY TESTING REQUIREMENTS

The following **is required** for facilities with a current operating design flow of**1.0 MGD or greater**, with an EPA-approved **pretreatment** program (or those required to have one under 40 CFR Part 403), or are required to perform Whole Effluent Toxicity testing. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Required Tests (Instructions Page 88)

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic: 12

48-hour Acute: 8

Section 2. Toxicity Reduction Evaluations (TREs)

Has this facility completed a TRE in the past four and a half years? Or is the facility currently performing a TRE?

🗆 Yes 🖾 No

If yes, describe the progress to date, if applicable, in identifying and confirming the toxicant.

Click to enter text.

Section 3. Summary of WET Tests

If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed.

Table 5.0(1) Summary of WET Tests

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works.

Section 1. All POTWs (Instructions Page 89)

A. Industrial users (IUs)

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

If there are no users, enter 0 (zero).

Categorical IUs:

Number of IUs: N/A

Average Daily Flows, in MGD: Click to enter text.

Significant IUs - non-categorical:

Number of IUs: Click to enter text.

Average Daily Flows, in MGD: Click to enter text.

Other IUs:

Number of IUs: Click to enter text.

Average Daily Flows, in MGD: Click to enter text.

B. Treatment plant interference

In the past three years, has your POTW experienced treatment plant interference (see instructions)?

🗆 Yes 🖾 No

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

Click to enter text.

C. Treatment plant pass through

In the past three years, has your POTW experienced pass through (see instructions)?

🗆 Yes 🛛 No

If yes, identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.

Click to enter text.

D. Pretreatment program

Does your POTW have an approved pretreatment program?

🖾 Yes 🗆 No

If yes, complete Section 2 only of this Worksheet.

Is your POTW required to develop an approved pretreatment program?

🗆 Yes 🖾 No

If yes, complete Section 2.c. and 2.d. only, and skip Section 3.

If no to either question above, skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.

E. Service Area Map

Attach a map indicating the service area of the POTW. The map should include the applicant's service area boundaries and the location of any known industrial users discharging to the POTW. Please see the instructions for guidance.

Attachment: Click to enter text.

Section 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 90)

A. Substantial modifications

Have there been any **substantial modifications** to the approved pretreatment program that have not been submitted to the TCEQ for approval according to *40 CFR §403.18*?

🗆 Yes 🖾 No

If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.

Click to enter text.

B. Non-substantial modifications

Have there been any **non-substantial modifications** to the approved pretreatment program that have not been submitted to TCEQ for review and acceptance?

🗆 Yes 🖾 No

If yes, identify all non-substantial modifications that have not been submitted to TCEQ, including the purpose of the modification.

Click to enter text.

C. Effluent parameters above the MAL

In Table 6.0(1), list all parameters measured above the MAL in the POTW's effluent monitoring during the last three years. Submit an attachment if necessary.

Table 6.0(1) -	Parameters	Above	the MAL	
----------------	------------	-------	---------	--

Pollutant	Concentration	MAL	Units	Date
N/A				

D. Industrial user interruptions

Has any SIU, CIU, or other IU caused or contributed to any problems (excluding interferences or pass throughs) at your POTW in the past three years?

🗆 Yes 🖾 No

If yes, identify the industry, describe each episode, including dates, duration, description of the problems, and probable pollutants.

Click to enter text.

Section 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 90)

A. General information

Company Name: <u>Click to enter text.</u>

SIC Code: Click to enter text.

Contact name: Click to enter text.

Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Telephone number: Click to enter text.

Email address: Click to enter text.

B. Process information

Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).

Click to enter text.

C. Product and service information

Provide a description of the principal product(s) or services performed.

Click to enter text.

D. Flow rate information

See the Instructions for definitions of "process" and "non-process wastewater."

Process Wastewater:

Discharge, in gallons/day: Click to enter text.

Discharge Type: □ Continuous □ Batch □ Intermittent

Non-Process Wastewater:

Discharge, in gallons/day: Click to enter text.

Discharge Type:
Continuous
Batch
Intermittent

E. Pretreatment standards

Is the SIU or CIU subject to technically based local limits as defined in the instructions?

🗆 Yes 🗆 No

Is the SIU or CIU subject to categorical pretreatment standards found in 40 CFR Parts 405-471?

🗆 Yes 🗆 No

If subject to categorical pretreatment standards, indicate the applicable category and subcategory for each categorical process.

Category: Subcategories: Click to enter text.

Click or tap here to enter text. Click to enter text.

Category: Click to enter text.

Subcategories: Click to enter text.

Category: Click to enter text.

Subcategories: Click to enter text.

Category: Click to enter text.

Subcategories: Click to enter text.

Category: Click to enter text.

Subcategories: Click to enter text.

F. Industrial user interruptions

Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years?

🗆 Yes 🗆 No

If yes, identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants.

Click to enter text.

June 10, 2024

City of Galveston Galveston Airport WWTP P.O. Box 779 Galveston, TX 77553

RE: Galveston Airport Permit Renewal

Enclosed are the results of analyses for samples received by the laboratory on 05/06/24 12:00, with Lab ID Number C4D4860. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mark Bourgeois Special Projects Manager

Galveston Airport WWTP P.O. Box 779 Galveston TX, 77553

LABORATORY ANALYTICAL REPORT

Project:	Galveston Airport Permit Renewal
Client Matrix:	Water

Sample Date & Time: 05/06/2024 00:00 Collector: Sample Type:Composite Print Date: 6/10/2024

Eff PR Comp C4D4860-01 (Water)

Analyte	Result	Reporting Limit	Units	Nelac	Batch	Analyzed Date & Time	Market	Mater
	Result			Status	Batch	Date & Time	Method	Notes
		<u>/</u>	letals					
- Aluminum - Total	40.7	2.50	ug/L	A	B4E1385	05/09/2024 13:01	EPA 200.8	
Antimony - Total	<2.00	2.00	ug/L	A	B4E1385	05/09/2024 13:01	EPA 200.8	
Arsenic, Total	2.10	0.500	ug/L	A	B4E1385	05/09/2024 13:01	EPA 200.8	
Barium, Total	64.9	1.00	ug/L	A	B4E1385	05/09/2024 13:01	EPA 200.8	
Beryllium, Total	<0.500	0.500	ug/L	А	B4E1385	05/09/2024 13:01	EPA 200.8	
Cadmium, Total	<1.00	1.00	ug/L	А	B4E1385	05/09/2024 13:01	EPA 200.8	
Chromium, Total	<1.00	1.00	ug/L	Α	B4E1385	05/09/2024 13:01	EPA 200.8	
Copper, Total	9.39	1.00	ug/L	А	B4E1385	05/09/2024 13:01	EPA 200.8	
Lead, Total	<0.500	0.500	ug/L	A	B4E1385	05/09/2024 13:01	EPA 200.8	
Nickel, Total	<2.00	2.00	ug/L	А	B4E1385	05/09/2024 13:01	EPA 200.8	
Selenium, Total	<2.00	2.00	ug/L	А	B4E1385	05/09/2024 13:01	EPA 200.8	
Silver, Total	<0.500	0.500	ug/L	۸	B4E1385	05/09/2024 13:01	EPA 200.8	
Thallium, Total	<0.500	0.500	ug/L	А	B4E1385	05/09/2024 13:01	EPA 200.8	
Zinc, Total	39.3	5.00	ug/L	۸	B4E1385	05/09/2024 13:01	EPA 200.8	
		и	let Lab					
-								
Chromium, (VI)	<3	3	ug/L	А	B4E0866	05/06/2024 16:00	SM 3500 Cr B	
Chromium, Trivalent	<3	3	ug/L	N	B4E2634	05/15/2024 12:00	-	
Fluoride	144	100	ug/L	A	B4E1010	05/06/2024 17:50	EPA 300.0	23
Nitrate as N	7750	50.0	ug/L	Α	B4E1010	05/06/2024 17:50	EPA 300.0	23

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

This analytical report must be reproduced in its entirety. *NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

Galveston Airport WWTP P.O. Box 779 Galveston TX, 77553

Project: Galveston Airport Permit Renewal Client Matrix: Water

Sample Date & Time: 05/06/2024 09:30 Collector: DMP Sample Type:Grab Print Date: 6/10/2024

Eff PR Grab C4D4860-02 (Water)

Analyte	Result	Reporting Limit	Units	Nelac Status	Batch	Analyzed Date & Time	Method	Notes
			<u>Field</u>					
Chlorine	2.4	0.1	mg/L	N	B4E0954	05/06/2024 08:30	SM 4500 CI F	
DO	6.8		mg/L	N	B4E0954	05/06/2024 08:30	SM 4500 O G	
pH	7.1		std unit	N	B4E0954	05/06/2024 08:30	SM 4500 H + B	
		1	Metals					
- Total Phosphorus	2.75	0.0600	mg/L	А	B4E1841	05/10/2024 15:01	EPA 200.7	
		Microb	iologica	Lab				
- E coli IDEXX	24	1	mpn/100ml	A	B4E1008	05/06/2024 14:37	Colilert 18	
			rganics					

<10.0	10.0	ug/L	A	B4E0979	05/06/2024 15:41	EPA 624.1	
<10.0	10.0	ug/L	А	B4E0979	05/06/2024 15:41	EPA 624.1	
<10.0	10.0	ug/L	А	B4E0979	05/06/2024 15:41	EPA 624.1	
<10.0	10.0	ug/L	А	B4E0979	05/06/2024 15:41	EPA 624.1	
<10.0	10.0	ug/L	A	B4E0979	05/06/2024 15:41	EPA 624.1	
<10.0	10.0	ug/L	А	B4E0979	05/06/2024 15:41	EPA 624.1	
<10.0	10.0	ug/L	A	B4E0979	05/06/2024 15:41	EPA 624.1	
<10.0	10.0	ug/L	A	B4E0979	05/06/2024 15:41	EPA 624.1	
<10.0	10.0	ug/L	Α	B4E0979	05/06/2024 15:41	EPA 624.1	
<10.0	10.0	ug/L	A	B4E0979	05/06/2024 15:41	EPA 624.1	
<50.0	50.0	ug/L	А	B4E0979	05/06/2024 15:41	EPA 624.1	
<10.0	10.0	ug/L	А	B4E0979	05/06/2024 15:41	EPA 624.1	
<10.0	10.0	ug/L	Α	B4E0979	05/06/2024 15:41	EPA 624.1	
156	50.0	ug/L	А	B4E0979	05/06/2024 15:41	EPA 624.1	2
<2.00	2.00	ug/L	A	B4E0979	05/06/2024 15:41	EPA 624.1	
	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <50.0 <10.0 <10.0 <50.0 <10.0	$\begin{array}{cccc} <10.0 & 10.0 \\ <10.0 & 10.0 \\ <10.0 & 10.0 \\ <10.0 & 10.0 \\ <10.0 & 10.0 \\ <10.0 & 10.0 \\ <10.0 & 10.0 \\ <10.0 & 10.0 \\ <10.0 & 10.0 \\ <50.0 & 50.0 \\ <10.0 & 10.0 \\ <10.0 & 10.0 \\ <10.0 & 10.0 \\ <10.0 & 10.0 \\ <10.0 & 10.0 \\ <10.0 & 10.0 \\ <10.0 & 10.0 \\ <10.0 & 10.0 \\ <10.0 & 10.0 \\ <10.0 & 10.0 \\ <10.0 & 10.0 \\ <10.0 & 10.0 \\ \\156 & 50.0 \end{array}$	<10.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<10.0	<10.0 10.0 ug/L A B4E0979 05/06/2024 15:41 <10.0	<10.0

Eastex Environmental Laboratory - Coldspring

This analytical report must be reproduced in its entirety. *NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

Project: Galveston Airport Permit Renewal Client Matrix: Water

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

Sample Date & Time: 05/06/2024 09:30 Collector: DMP Sample Type:Grab Print Date: 6/10/2024

Eff PR Grab C4D4860-02 (Water)

Analyte	Result	Reporting Limit	Units	Nelac Status	Batch	Analyzed Date & Time	Method	Notes
· · · · · · · · · · · · · · · · · · ·				Jiatus	Butch		Method	INDIC
		0	rganics					
		And a second						
Chlorobenzene	<10.0	10.0	ug/L	A	B4E0979	05/06/2024 15:41	EPA 624.1	
Chloroethane	<50.0	50.0	ug/L	A	B4E0979	05/06/2024 15:41	EPA 624.1	13
Chloroform	<10.0	10.0	ug/L	A	B4E0979	05/06/2024 15:41	EPA 624.1	
Dibromochloromethane	24.3	10.0	ug/L	A	B4E0979	05/06/2024 15:41	EPA 624.1	
(Chlorodibromomethane)								
Cis-1,3-Dichloropropene	<10.0	10.0	ug/L	A	B4E0979	05/06/2024 15:41	EPA 624.1	
Ethylbenzene	<10.0	10.0	ug/L	A	B4E0979	05/06/2024 15:41	EPA 624.1	
Methyl Bromide	<50.0	50.0	ug/L	A	B4E0979	05/06/2024 15:41	EPA 624.1	
Methyl Chloride	<50.0	50.0	ug/L	A	B4E0979	05/06/2024 15:41	EPA 624.1	
Methyl Ethyl Ketone	<50.0	50.0	ug/L	Α	B4E0979	05/06/2024 15:41	EPA 624.1	
Toluene	<10.0	10.0	ug/L	Α	B4E0979	05/06/2024 15:41	EPA 624.1	
rans-1,2-Dichloroethene	<10.0	10.0	ug/L	A	B4E0979	05/06/2024 15:41	EPA 624.1	
Frans-1,3-Dichloropropene	<10.0	10.0	ug/L	А	B4E0979	05/06/2024 15:41	EPA 624.1	
Frichloroethene	<10.0	10.0	ug/L	Α	B4E0979	05/06/2024 15:41	EPA 624.1	
Total Trihalomethanes	173	10.0	ug/L	A	B4E0979	05/06/2024 15:41	EPA 624.1	
Cis-1,2-Dichloroethene	<10.0	10.0	ug/L	А	B4E0979	05/06/2024 15:41	EPA 624.1	
Vinyl Chloride	<10.0	10.0	ug/L	А	B4E0979	05/06/2024 15:41	EPA 624.1	
,3-Dichloropropene	<10.0	10.0	ug/L	N	B4E0979	05/06/2024 15:41	EPA 624.1	
Methylene Chloride	<10.0	10.0	ug/L	А	B4E0979	05/06/2024 15:41	EPA 624.1	
Dichloromethane)								
Fetrachloroethene	<10.0	10.0	ug/L	Α	B4E0979	05/06/2024 15:41	EPA 624.1	
Tetrachloroethylene)								
Acetone	<10.0	10.0	ug/L	A	B4E0979	05/06/2024 15:41	EPA 624.1	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130		B4E0979	05/06/2024 15:41	EPA 624.1	
Surrogate: 4-Bromofluorobenzene		90.4 %	70-130		B4E0979	05/06/2024 15:41	EPA 624 1	
Surrogate: Dibromofluoromethane		102 %	70-130		B4E0979	05/06/2024 15:41	EPA 624.1	
Surrogate: Toluene-d8		89.4 %	70-130		B4E0979	05/06/2024 15:41	EPA 624.1	

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

This analytical report must be reproduced in its entirety. *NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

Galveston Airport WWTP P.O. Box 779 Galveston TX, 77553

Project: Galveston Airport Permit Renewal Client Matrix: Water

Sample Date & Time: 05/06/2024 09:30 Collector: DMP Sample Type:Grab Print Date: 6/10/2024

Eff PR Grab C4D4860-02 (Water)

Analyte	Result	Reporting Limit		Nelac Status	Batch	Analyzed Date & Time	Method	Notes
		<u> </u>	Wet Lab					
Alkalinity	140	20.0	mg CaCO3/L	Α	B4E1553	05/10/2024 13:44	SM 2320 B	
Ammonia as N	<0.1	0.1	mg/L	Α	B4E1507	05/10/2024 17:47	SM 4500 NH3 G	
CBOD 5	<2.0	2.0	mg/L	Α	B4E1053	05/07/2024 07:27	SM 5210 B	13
Chloride	1680	5.0	mg/L	Α	B4E1010	05/10/2024 15:10	EPA 300.0	
Conductivity	6502	10	µmhos/cm @25C	А	B4E1115	05/08/2024 14:15	SM 2510 B	
Nitrate as N	5.67	0.05	mg/L	А	B4E1010	05/06/2024 17:50	EPA 300.0	
Oil Grease, HEM	<5.4	5.4	mg/L	Α	B4E3302	05/20/2024 09:06	EPA 1664A	
Phenol, low level	<10.0	10.0	ррь	А	B4E1126	05/07/2024 13:00	EPA 420.1	
Sulfate	253	4.0	mg/L	Α	B4E1010	05/06/2024 17:50	EPA 300.0	
TDS	3800	10.0	ing/L	А	B4E1082	05/07/2024 17:20	SM 2540 C	
TKN	2.1	1.0	mg/L	Α	B4E1689	06/03/2024 10:30	EPA 351.2	В
TSS	7.8	1.0	mg/L	А	B4E1030	05/07/2024 10:31	SM 2540 D	

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

*NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

SM 3500 Cr B - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	DDD	RPD	
				Level	Readfi	70REC	Limits	RPD	Limit	Notes
Batch B4E0866 - No Prep	Prepared: 0	5/06/24 16:	00							
Blank (B4E0866-BLK1)				Analyzed:	5/6/2024	4:00:00PM				
Chromium, (VI)	ND	3	ug/L							
LCS (B4E0866-BS1)				Analyzed:	5/6/2024	4:00:00PM				
Chromium, (VI)	19.677		ug/L	20.0		98.4	95-105		-	
Matrix Spike (B4E0866-MS1)	Sourc	e: C4D4860-	-01	Analyzed:	5/6/2024	4:00:00PM				
Chromium, (VI)	37.393	3	ug/L	45.5	ND	82.2	80-120			
Aatrix Spike Dup (B4E0866-MSD1)	Sourc	e: C4D4860-	-01	Anaiyzed:	5/6/2024	4:00:00PM				
Chromium, (VI)	37.393	3	ug/L	45.5	ND	82.2	80-120	0.00	20	
Batch B4E0979 - EPA 5030C	Prepared: 0	5/06/24 10.	16							
lank (B4E0979-BLK1)	Trepared. 0	5/00/24 10.	15	Analyzed	5/6/2024	3:14:00PM				
.1,1-Trichloroethane	ND	10.0	ug/L	Analyzeu.	5/0/2024	5.14.00FM				
1,2,2-Tetrachloroethane	ND	10.0	ug/L							
1,2-Trichloroethane	ND	10.0	ug/L							
I-Dichloroethane	ND	10.0	ug/L							
1 - Dichloroethene	ND	10.0	ug/L							
2-Dibromoethane	ND	10.0	ug/L							
2-Dichloroethane	ND	10.0	ug/L							
2-Dichloropropane	ND	10.0	ug/L							
Chloroethyl vinyl ether	ND	10.0	ug/L							
crolein	ND	10.0	ug/L							
crylonitrile	ND	50.0	ug/L							
enzene	ND	10.0	ug/L							
romodichloromethane	ND	10.0	ug/L							
romoform	ND	10.0	ug/L							
arbon Tetrachloride	ND	2.00	ug/L							
hlorobenzene	ND	10.0	ug/L							
hloroethane	ND	50.0	ug/L							
nloroform	ND	10.0	ug/L							
bromochloromethane	ND	10.0	ug/L							
hlorodibromomethane)			(1 11)							
s-1,3-Dichloropropene	ND	10.0	ug/L							
hylbenzene	ND	10.0	ug/L							
ethyl Bromide	ND	50.0	ug/L							
ethyl Chloride	ND	50.0	ug/L							

Eastex Environmental Laboratory - Coldspring

This analytical report must be reproduced in its entirety. *NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

EPA 624.1 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B4E0979 - EPA 5030C	Prepared:	05/06/24 10:	15							
Blank (B4E0979-BLK1)				Analyzed:	5/6/2024	3:14:00PM				
Methyl Ethyl Ketone	ND	50.0	ug/L							
Toluene	ND	10.0	ug/L							
trans-1,2-Dichloroethene	ND	10.0	ug/L							
Frans-1,3-Dichloropropene	ND	10.0	ug/L							
Trichloroethene	ND	10.0	ug/L							
Fotal Trihalomethanes	ND	10.0	ug/L							
Cis-1,2-Dichloroethene	ND	10.0	ug/L							
Vinyl Chloride	ND	10.0	ug/L							
1,3-Dichloropropene	ND	10.0	ug/L							
Methylene Chloride (Dichloromethane)	ND	10.0	ug/L							
fetrachloroethene (Tetrachloroethylene)	ND	10.0	ug/L							
Aceione	ND	10.0	ug/L							
urrogate: 1,2-Dichloroethane-d4	18.0		ug/L	20.0		89.8	70-130			
Surrogate: 4-Bromofluorobenzene	176		ug/L	20.0		87.9	70-130			
urrogate: Dibromofluoromethane	20.0		ug/L	20.0		99.8	70-130			
urrogate: Toluene-d8	19.0		ug/L	20.0		94.8	70-130			
.CS (B4E0979-BS1)				Analyzed:	5/6/2024	2:21:00PM				
,1,1-Trichloroethane	19.9	10.0	ug/L	20.0		99.7	70-130	16-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
,1,2,2-Tetrachloroethane	18.4	10.0	ug/L	20.0		92.0	60-140			
,1,2-Trichloroethane	19.0	10.0	ug/L	20.0		95.1	70-130			
,1-Dichloroethane	19.3	10.0	ug/L	20.0		96.3	70-130			
,1- Dichloroethene	19.5	10.0	ug/L	20.0		97.3	50-150			
,2-Dibromoethane	19.2	10.0	ug/L	20.0		96.0	70-130			
,2-Dichloroethane	20.8	10.0	ug/L	20.0		104	70-130			
,2-Dichloropropane	20.1	10.0	ug/L	20.0		101	35-165			
-Chloroethyl vinyl ether	102	10.0	ug/L	100		102	0-225			
crolein	195	10.0	ug/L	200		97.5	60-140			
crylonitrile	18.1	50.0	ug/L	20.0		90.7	60-140			
enzene	19.2	10.0	ug/L	20.0		96.2	65-135			
romodichloromethane	20.8	10.0	ug/L	20.0		104	65-135			
romoform	21.1	10.0	ug/L	20.0		106	70-130			
arbon Tetrachloride	21.0	2.00	ug/L	20.0		105	70-130			
hlorobenzene	18.6	10.0	ug/L	20.0		92.9	65-135			
hloroethane	37.0	50.0	ug/L	20.0		185	40-160			
hloroform	20.0	10.0	ug/L	20.0		100	70-135			

Eastex Environmental Laboratory - Coldspring

Eastex Environmental Laboratory - Coldspring
The results in this report apply to the samples analyzed in accordance with the chain of custody document.
This analytical report must be reproduced in its entirety.
*NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

EPA 624.1 - Quality Control

Eastex Environmental Laboratory - Coldspring

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B4E0979 - EPA 5030C	Prepared	05/06/24 10:	15							
LCS (B4E0979-BS1)				Analyzed:	5/6/2024	2:21:00PM				
Dibromochloromethane	19.8	10.0	ug/L	20.0		98.8	70-135			
(Chlorodibromomethane)										
Cis-1,3-Dichloropropene	21.5	10.0	ug/L	20.0		107	25-175			
Ethylbenzene	18.2	10.0	ug/L	20.0		91.0	60-140			
Methyl Bromide	19.8	50.0	ug/L	20.0		99.0	70-130			
Methyl Chloride	13.1	50.0	ug/L	20.0		65.3	0-221			
dethyl Ethyl Ketone	99.8	50.0	ug/L	100		99.8	70-130			
Foluene	17.7	10.0	ug/L	20.0		88.5	70-130			
rans-1,2-Dichloroethene	19.4	10.0	ug/L	20.0		97.2	70-130			
rans-1,3-Dichloropropene	19.5	10.0	ug/L	20.0		97.3	50-150			
Frichloroethene	19.4	10.0	ug/L	20.0		97.0	65-135			
Cis-1,2-Dichloroethene	18.7	10.0	ug/L	20.0		93.4	63-137			
/inyl Chloride	15.3	10.0	ug/L	20.0		76.4	50-150			
Aethylene Chloride (Dichloromethane)	19.3	10.0	ug/L	20.0		96.4	60-140			
Fetrachloroethene (Tetrachloroethylene)	18.7	10.0	ug/L	20.0		93.4	70-130			
Acetone	92.7	10.0	ug/L	100		92.7	70-130			
urrogate: 1.2-Dichloroethane-d4	22.9		ug/L	20.0		115	70-130			
urrogate: 4-Bromofluorobenzene	19.3		ug/L	20.0		96.6	70-130			
urrogate: Dibromofluoromethane	21.9		ug/L	20.0		110	70-130			
urrogate: Toluene-d8	18.5		ug/L	20.0		92.5	70-130			
Aatrix Spike (B4E0979-MS1)	Sou	rce: C4D4860-	02	Analyzed:	5/6/2024	4:19:00PM				
1,1-Trichloroethane	19.0	10.0	ug/L	20.0	ND	95.2	52-162			
1,2,2-Tetrachioroethane	17.7	10.0	ug/L	20.0	ND	88.6	46-157			
,1,2-Trichloroethane	18.1	10.0	ug/L	20.0	ND	90.7	52-150			
l-Dichloroethane	18.8	10.0	ug/L	20.0	ND	93.8	59-155			
1 - Dichloroethene	17.5	10.0	ug/L	20.0	ND	87.6	0-234			
,2-Dibromoethane	17.8	10.0	ug/L	20.0	ND	88.9	70-130			
.2-Dichloroethane	20.3	10.0	ug/L	20.0	ND	101	49-155			
2-Dichloropropane	19.8	10.0	ug/L	20.0	ND	98.8	0-210			
-Chloroethyl vinyl ether	100	10.0	ug/L	100	ND	100	0-305			
crolein	176	10.0	ug/L	200	ND	88.1	40-160			
crylonitrile	17.4	50.0	ug/L	20.0	ND	86.9	40-160			
enzene	18.7	10.0	ug/L	20.0	ND	93.5	37-151			
romodichloromethane	24.6	10.0	ug/L	20.0	4.06	103	35-155			
romoform	160	10.0	ug/L	20.0	156	19.5	45-169			
arbon Tetrachloride	19.2	2.00	ug/L	20.0	ND	95.9	70-140			

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

This analytical report must be reproduced in its entirety. *NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

EPA 624.1 - Quality Control

Eastex Environmental Laboratory - Coldspring

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B4E0979 - EPA 5030C	Prepared	: 05/06/24 10:	15							
Matrix Spike (B4E0979-MS1)	Sou	irce: C4D4860	-02	Analyzed:	5/6/2024	4:19:00PM				
Chlorobenzene	17.5	10.0	ug/L	20.0	ND	87.7	37-160			
Chloroethane	32.9	50.0	ug/L	20.0	ND	165	14-230			1
Chloroform	20.5	10.0	ug/L	20.0	ND	103	51-138			
Dibromochloromethane (Chlorodibromomethane)	41.5	10.0	ug/L	20.0	24.3	85 9	53-149			
Cis-1,3-Dichloropropene	20.6	10.0	ug/L	20.0	ND	103	0-227			
Ethylbenzene	17.3	10.0	ug/L	20.0	ND	86.4	37-162			
Methyl Bromide	17.3	50.0	ug/L	20.0	ND	86.4	70-130			
Methyl Chloride	13.7	50.0	ug/L	20.0	ND	68.7	0-221			
Methyl Ethyl Ketone	94.2	50.0	ug/L	100	ND	94.2	70-130			
Tolucne	16.7	10.0	ug/L	20.0	ND	83.6	47-150			
trans-1,2-Dichloroethene	17.7	10.0	ug/L	20.0	ND	88.7	54-156			
Trans-1,3-Dichloropropene	18.5	10.0	ug/L	20.0	ND	92.6	17-183			
Trichloroethene	18.2	10.0	ug/L	20.0	ND	91.1	70-157			
Cis-1,2-Dichloroethene	19.0	10.0	ug/L	20.0	ND	94.9	63-137			
Vinyl Chloride	14.4	10.0	ug/L	20.0	ND	72.0	0-151			
Methylene Chloride (Dichloromethane)	18.6	10.0	ug/L	20.0	ND	92.8	0-221			
Tetrachloroethene (Tetrachloroethylene)	13.6	10.0	ug/L	20.0	ND	68.0	64-148			
Acetone	89.1	10.0	ug/L	100	ND	89.1	70-130			
Surrogate: 1,2-Dichloroethane-d4	22.7		ug/L	20.0		113	70-130			
Surrogate: 4-Bromofluorobenzene	19.2		ug/L	20.0		95.8	70-130			
Surrogate: Dibromofluoromethane	21.4		ug/L	20.0		107	70-130			
Surrogate: Toluene-d8	18.0		ug/L	20.0		90.2	70-130			
Matrix Spike Dup (B4E0979-MSD1)	Sou	rce: C4D4860-	02	Analyzed:	5/6/2024	4:47:00PM				
1,1,1-Trichloroethane	19.6	10.0	ug/L	20.0	ND	97.8	52-162	2.65	36	
,1,2,2-Tetrachloroethane	18.0	10.0	ug/L	20.0	ND	90.0	46-157	1.67	61	
,1,2-Trichloroethane	18.4	10.0	ug/L	20.0	ND	92.0	52-150	1.41	45	
.1-Dichloroethane	19.8	10.0	ug/L	20.0	ND	99.0	59-155	5.40	40	
,1- Dichloroethene	17.9	10.0	ug/L	20.0	ND	89.3	0-234	1.90	32	
,2-Dibromoethane	17.7	10.0	ug/L	20.0	ND	88.7	70-130	0.191	25	
,2-Dichloroethane	19.9	10.0	ug/L	20.0	ND	99.5	49-155	1.81	49	
,2-Dichloropropane	20.5	10.0	ug/L	20.0	ND	102	0-210	3.61	55	
-Chloroethyl vinyl ether	102	10.0	ug/L	100	ND	102	0-305	1.82	71	
crolein	161	10.0	ug/L	200	ND	80.5	40-160	9.03	60	
crylonitrile	16,3	50.0	ug/L	20.0	ND	81.7	40-160	6.21	60	
enzene	19.6	10.0	ug/L	20.0	ND	97.8	37-151	4.48	61	

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

This analytical report must be reproduced in its entirety. *NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

EPA 624.1 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B4E0979 - EPA 5030C	Prepared: 0	5/06/24 10:	15							
Matrix Spike Dup (B4E0979-MSD1)	Sourc	e: C4D4860	-02	Analyzed:	5/6/2024	4:47:00PM				
Bromodichloromethane	25.2	10.0	ug/L	20.0	4.06	106	35-155	2.51	56	
Bromoform	164	10.0	ug/L	20.0	156	42.5	45-169	2.84	42	
Carbon Tetrachloride	19.2	2.00	ug/L	20.0	ND	96.1	70-140	0.206	41	
Chlorobenzene	18.6	10.0	ug/L	20.0	ND	92.8	37-160	5.65	53	
Chloroethane	29.8	50.0	ug/L	20.0	ND	149	14-230	10.0	78	
Chloroform	21.4	10.0	ug/L	20,0	ND	107	51-138	4.46	54	
Dibromochloromethane (Chlorodibromomethane)	43.6	10.0	ug/L	20.0	24.3	96.7	53-149	5.09	50	
Cis-1.3-Dichloropropene	21.0	10.0	ug/L	20.0	ND	105	0-227	1.70	58	
Ethylbenzene	18.0	10.0	ug/L	20.0	ND	89.9	37-162	3.98	63	
Methyl Bromide	17.8	50.0	ug/L	20.0	ND	89.2	70-130	3.08	25	
Methyl Chloride	15.2	50.0	ug/L	20.0	ND	76.1	0-221	10.2	25	
Methyl Ethyl Ketone	82.1	50.0	ug/L	100	ND	82.1	70-130	13.7	25	
Toluene	18.1	10.0	ug/L	20.0	ND	90.3	47-150	7.61	41	
rans-1,2-Dichloroethene	18.9	10.0	ug/L	20.0	ND	94.4	54-156	6.26	45	
Frans-1,3-Dichloropropene	19.1	10.0	ug/L	20.0	ND	95.5	17-183	3.10	86	
Frichloroethene	18.7	10.0	ug/L	20.0	ND	93.4	70-157	2.55	48	
Cis-1,2-Dichloroethene	18.5	10.0	ug/L	20.0	ND	92.3	63-137	2.81	25	
/inyl Chloride	15.6	10.0	ug/L	20.0	ND	77.9	0-151	7.79	66	
Methylene Chloride (Dichloromethane)	19.4	10.0	ug/L	20.0	ND	97.1	0-221	4.44	28	
Tetrachloroethene (Tetrachloroethylene)	13.8	10.0	ug/L	20.0	ND	68.9	64-148	1.28	39	
Acetone	80.6	10.0	ug/L	100	ND	80.6	70-130	10.0	25	
urrogate: 1,2-Dichloroethane-d4	21.0		ug/L	20.0		105	70-130			· · · · · · · · · · · · · · · · · · ·
urrogate: 4-Bromofluorobenzene	18.8		ug/L	20.0		94.0	70-130			
Surrogate: Dibromofluoromethane	20.8		ug/L	20.0		104	70-130			
urrogate · Toluene-d8	18.6		ug/L	20.0		92.9	70-130			
Batch B4E1008 - No Prep Micro	Prepared: 0	5/06/24 14::	37							
Blank (B4E1008-BLK1)				Analyzed:	5/6/2024	2:37:00PM				
Coli IDEXX	ND	l r	npn/100m1							
Duplicate (B4E1008-DUP1)	Source	2: C4E1490-	01	Analyzed:	5/6/2024	2:37:00PM				
coli IDEXX	ND	10 m	npn/100ml		ND				200	
Batch B4E1010 - No Prep	Prepared: 05	5/06/24 17:5	50							
lank (B4E1010-BLK1)				Analyzed:	5/6/2024	5:50:00PM				
Eastex Environmental Laboratory - Coldspring	The	results in this	report dop	ly to the sound	es analura	d in accordance	with the ch-	in almost 1		

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

This analytical report must be reproduced in its entirety. *NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

EPA 300.0 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reportin Lim		Spike Is Level	Sourc Resul		%REC		RPD	
Batch B4E1010 - No Prep	Prepared:	05/06/24 1	7:50				2	s RPD	Limit	Notes
Blank (B4E1010-BLK1)										
Chloride	ND			Analyze	d: 5/6/2024	4 5:50:00P	м			
Nitrate as N	ND	5.0								
Sulfate		0.05		•						
Fluoride	ND ND	4.0								
Nitrate as N		100	-0.5							
LCS (PARIANA RAC)	ND	50.0	ug/L							
LCS (B4E1010-BS1) Chloride				2 2 2						
	23.4				: 5/6/2024	5:50:00PN	1			
Fluoride	0.471		mg/L	25.0		93.5	90-110			
Nitrate as N	1.4376		mg/L	0.500		94.2	90-110			
Sulfate	19.0		mg/L	1.50		95.8	90-110			
Matrix Spike (B4E1010-MS1)	0.0		mg/L	20.0		94.9	90-110			
Chloride	Source	e: C4D4860	-01	Analyzad	51612021	a 22.00				
Nitrate as N	1730	5.0	mg/L			5:50:00PM				
Sulfate	22.8671	0.05	mg/L	125	1650	64.2	80-120			
Fluoride	355	4.0		7.50	7.7471	202	80-120			2
Nitrate as N	2050	100	mg/L	100	253	102	80-120			2.
initiale as in	22867.1	50.0	ug/L	2500	144	76.1	80-120			
Matrix Spike Dup (B4E1010-MSD1)			ug/L	7500	7747.1	202	80-120			23
Chloride	Source	C4D4860-	01	Analyzed: 5	6/2024	5.50.000				23
Nitrale as N	1720	5.0	mg/L	125	1650					
Sulfate	22.7945	0.05	mg/L	7.50	7.7471	59.7	80-120	0.323	20	
Fluoride	354	4.0	mg/L	100	253	201	80-120	0.318	20	
Nitrate as N	2040	100	ug/L	2500	253 144	101	80-120	0.383	20	
	22794.5	50.0	ug/L	7500		75.9	80-120	0.274	20	
Batch B4E1030 - No Prep	2 			7500	7747.1	201	80-120	0.318	20	
	Prepared: 05/0	07/24 10:3	1							
Blank (B4E1030-BLK1)										
135	ND	1.0		Analyzed: 5/	7/2024 10	:31:00AM				
Duplicate (B4E1030-DUP1)		1.0	mg/L							
TSS	Source: (C4E1247-01		Analyzade 5/	1/2024 10					
	130		mg/L	Analyzed: 5/7		31:00AM				
Batch B4E1053 - No Prep		0.000	152		118			9.68	10	
	Prepared: 05/0	7/24 07:27							10	
Blank (B4E1053-BLK1)										
CBOD 5	ND		/	Analyzed: 5/7	/2024 7:2	7:00AM				
	nD.	2.0 n	ng/L							
Eastex Environmental Laboratory - Coldspring										
	The rest	dts in this ren	ort annh	to the same						
NELAC Status: A=Accredited, N=Accreditation	This and	alytical report	I must be re	to the samples an eproduced in its	nalyzed in a	ccordance wit	h the chain o	of custody do	Climent	
PromiumforCold.v5 W&O ; revision date 1119202	not offered, O=Not A	Accredited,	P=Appro	ved	entirely.			.,		

PromiumforCold.v5 W&O ; revision date 11192021

Page 10 of 16

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

SM 5210 B - Quality Control

Eastex Environmental Laboratory - Coldspring

	Analyte	Result	Reporting		Spike	Sc	ource		0/ P E/					
	Batch B4E1053 - No Prep				ls Level	R	esult %	REC		79.	D	RPD Limit	Notes	
	LCS (B4E1053-BS1)	rrepared:	05/07/24 0	7:27										-
	CBOD 5				Analyzed	1: 5/7/2	024 7.27							
	Dustant	16)		mg/L	. 198									Ī
	Duplicate (B4E1053-DUP1) CBOD 5	Sour	CP' CAFIAN	4 0 1				0.575		40.				-
	68003	0.900			Analyzed	: 5/7/20	024 7:27:	00AM		Limits RPD Limit Notes 2-115.40. 13 83.5 30 13 120 0.528 10				
	Batch B4E1082 - No Prep	Internation Limit Units Level Result %REC Limits RPD Limit Note Prepared: 05/07/24 07:27 Analyzed: 5/7/2024 7:27:00AM 161 mg/L 198 81.1 4.59-115.40. Source: C4E1404-01 Analyzed: 5/7/2024 7:27:00AM 83.5 30 9.900 2.0 mg/L 0.370 83.5 30 30 30 30 30 30 30 30 300 30.0 83.5 30 30 30 30 30.0 30.0 30.0 80-120 30.0 30.0 30.0 30.0 30.0 10.0 30.0 0.528 10 10 3780 10.0 3800 0.528 10 10 3780 10.0 380.0 0.528 10 30 30.0 37.0 380.0 0.528 10 30 30.0 37.0 30.0 35.2 30.0 30.0 30.0 30.												
		Prepared: (05/07/24 17	:20						00.0	RPD Limit Notes 13 13 13 13.5 30 13 28 10 10			
	Blank (B4E1082-BLK1) TDS					_								
	0.2017	ND	10.0	mu/I	Analyzed:	5/7/20	24 5:20:0	OPM						
	LCS (B4E1082-BS1)			ing/L								Limit Notes 30		
	TDS	200			Analyzed:	5/7/202	24 5:20:0	OPM						
	Duplicate (B4E1082-DUP1)	300		mg/L	300				80.100					
	TDS	Source	e: C4D4860-	07	Anaburat	5 (1) a c a			80-120					
		3780			Analyzed;			PM						
	Batch B4E1115 - No Prep			1.00		3800)			0.528		0		
	Blank (B4E1115-BLK1)	Prepared: 05	/08/24 14:1	5							8	5		
	Conductivity				Analyzed, 5	19/202						_		
		ND	10 µr	nhos/cm	indijzed, s	/8/2024	+ 2:15:00	PM						
i	LCS (B4E1115-BS1)			@25C										
	Conductivity				Analyzadi 6	0.000	2.0							
		1005	μπ	hos/cm	1000	8/2024		ΡM						
L	Duplicate (B4E1115-DUP1)				1000		100	8	0-120					
-	onductivity	Source:	C4D4860-02		Analysis									
					Analyzed: 5/		2:15:00P	M						
						6502				0.0923	20			
B	atch B4E1126 - No Prep	Prenared 05/0	7/2/ 10 00								20			
BI	ank (B4E1126-BLK1)	- Tepared. 05/0	//24 13:00		_									
Ph	enol, low level				Analyzed: 5/7	/2024	1.00.000	,						
1.0	CS (B4E1126-BS1)	ND	10.0 p	pb			1.00.00FN	4						
Pho	enol, low level				Amal	24								
		47.2		nh		2024	1:00:00PM	I						
Ma	trix Spike (B4E1126-MS1)	S							120	12.000				
Phe	nol, low level	Source: C	10.0	A	nalyzed: 5/7/	2024	1:00:00PM							
		V.FF	10.0 pp	ob		ND	110	80-1	20					
Ea	stex Environmental Laboratory - Coldspring							0041	20					
	story - Couspring	The resu	Its in this wars											

*NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved Its in this report apply to the samples analyzed in accordance with the chain of custody document. PromiumforCold.v5 W&O ; revision date 11192021

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

EPA 420.1 - Quality Control

Eastex Environmental Laboratory - Coldspring

Analyte	Result	Reporti Lin	1050	Spike Level	Source		%REC		RPD	
Batch B4E1126 - No Prep				cerei	Result	%REC	Limits	RPD	Limit	Note
	Prepareo	: 05/07/24	13:00						-	
Matrix Spike Dup (B4E1126-MSD1) Phenol, low level	So	urce: C4D4	860-02	Analyzad	£/2/2021					
	46.4	10.		Analyzed:		1:00:00PN	1			
Batch B4E1385 - EPA 200.8				40.0	ND	116	80-120	5.33	20	
	Prepared	05/08/24 (09:57						20	
Blank (B4E1385-BLK1)										
Aluminum - Total	ND		_	Analyzed:	5/9/2024 1	2:55:00PN	1			
Antimony - Total	ND	2.50	-6.2							
Arsenic, Total	ND	5.00	-6.2							
Barium, Total	ND	0.500	-6.2							
Beryllium, Total	ND	3.00	-0.4							
Cadmium, Total	ND	0.500								
Chromium, Total	ND	1.00	ug/L							
Copper, Total	ND	3.00	ug/L							
Lead, Total	ND	2.00	ug/L							
Nickel, Total	ND	0.500	ug/L							
Selenium, Total	ND	2.00	ug/L							
Silver, Total	ND	5.00	ug/L							
Thallium, Total	ND	0.500	ug/L							
Zinc, Total	ND	0.500	ug/L							
LCS (B4E1385-BS1)	ND	5.00	ug/L							
Aluminum - Total				A						
Antimony - Total	104	2.50		Analyzed: 5/9	/2024 12:5	8:00PM				
Arsenic, Total	106	5.00	ug/L	100		104	85-115			
Barium, Total	107	0.500	ug/L	100			85-115			
Beryllium, Total	107	3.00	ug/L	100		100000	85-115			
admium, Total	104	0.500	ug/L	100			35-115			
hromium, Total	108	1.00	ug/L	100		1.0.1	15-115			
opper, Total	106	3.00	ug/L	100		100	5-115			
ead, Total	99.9	2.00	ug/L	100			5-115			
ickel, Total	109	0.500	ug/L	100	\$	and B	5-115			
	109	2.00	ug/L	100	1		5-115			
lenium, Total Iver, Total	105	5.00	ug/L	100	1	6 March 1997	5-115			
	99.8		ug/L	100	1		5-115			
allium, Total	109	0.500	ug/L	100			-115			
ne, Total	108		ug/L	100			-115			
		5.00	ug/L	100		05	-115			
trix Spike (B4F1385 Mot)										
atrix Spike (B4E1385-MS1) minum - Total	Source: (C4D4860-01	A	nalyzed: 5/9/2(-115			

*NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved The results in this report apply to the samples analyzed in accordance with the chain of custody document. PromiumforCold.v5 W&O ; revision date 11192021

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

EPA 200.8 - Quality Control

Eastex Environmental Laboratory - Coldspring

Batch B4E1385 - EPA 200.8	Result		imit Units	Spik Leve	Doulet		%RE			RPD	
Matrix Spike (B4E1385-MS1)	Prepare	d: 05/08/24	09:57				C Limi	ts RF	סי	Limit	Notes
Antimony - Total	So	urce: C4D4	1860.01								
Arsenic, Total	102			Analyz	ed: 5/9/2024	1:08:001	PM				
Barium, Total	105	0.50	-6.0	100	0.585	101	70-13				
Beryllium, Total	167	3.(100	2.10	103	70-130				
Cadmium, Total	92.0	0.50	-6.5	100	64.9	102	70-130				
Chromium, Total	101	1.0		100	ND	92.0	70-130				
Copper, Total	101	3.0	-6.12	100	ND	101	70-130				
Lead, Total	100	2.00	-812	100	0.678	99.9	70-130				
Nickel, Total	99.2	0.500		100	9.39	90.9					
Selenium, Total	97.6	2.00		100	0.371	98.8	70-130				
Silver, Total	96.9	5.00	-E.C	100	1.74	95.9	70-130				
Thallium, Total	90.8	0.500	46/C	100	1.01	95.9	70-130				
Zinc, Total	104	0.500		100	ND	90.8	70-130				
	136		ug/L	100	0.0510	104	70-130				
Matrix Spike Dup (B4E1385-MSD1)		5.00	ug/L	100	39.3	96.8	70-130				
Aluminum - Total	Sourc	e: C4D4860	0-01	Anaburat			70-130				
Antimony - Total	149	2.50	ug/L	Analyzed:		:11:00PM					
Arsenic, Total	105	5.00	ug/L	100	40.7	108	70-130	0.0676			
Barium, Total	106	0.500	ug/L	100	0.585	104	70-130	0.0576 3.02	20		
Beryllium, Total	170	3.00	ug/L	100	2.10	104	70-130	0.270	20		
admium, Total	95.0	0.500	ug/L	100	64,9	105	70-130	1.57	20		
hromium, Total	101	1.00	ug/L	100	ND	95.0	70-130	3.12	20		
opper, Total	100	3.00	ug/L	100	ND	101	70-130	0.0635	20		
cad, Total	99.3	2.00	ug/L	100	0.678	99.7	70-130	0.183	20		
ckel, Total	96.8	0.500	ug/L	100	9.39	89.9	70-130	1.05	20		
lenium, Total	99.0	2.00	ug/L	100		96.5	70-130	2.44	20		
ver, Total	97.6	5.00	ug/L	100		07.2	70-130	1.43	20		
allium, Total	91.0	0.500	ug/L	100		nr .	70 120	0.692	20		
c, Total	102	0.500	ug/L	100		01.0	20	0.249	20		
	138	5.00	ug/L				0	2.14	20		
<u>tch B4E1507 - No Prep</u>	D			100	39.3 ş	10.0	0 120	1.59	20		
nk (B4E1507-BLK1)	Prepared: 05/1	0/24 17:47					18	1.59	20		
nonia as N											
	ND	01	Ana	lyzed: 5/1(0/2024 5:47	:00PM		_			
(B4E1507-BS1)		0.1 n	ng/L								
ionia as N			4	Wands 5110	12.0.0						
	3.63	In	ig/L 4	00	/2024 5:47:	00PM					
ex Environmental Laboratory - Coldspring			30 4	.00	90	.7 90	-110				

Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved mples analyzed in accordance with the chain of custody document. PromiumforCold.v5 W&O ; revision date 11192021

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

SM 4500 NH3 G - Quality Control

Eastex Environmental Laboratory - Coldspring

	and the second s					1	6				
Analyte	Result	Repor L				Source Result	%REC	%REC		RPD	
Batch B4E1507 - No Prep	Prenara	d. 05/10/2					TOREC	Limit	RPD	Limit	Notes
Matrix Spike (B4E1507-MS1)											
Ammonia as N		ource: C4D	4860-02	Anal	vzed: 5/10	/2024	5.47.000				
Matula C. H	2.7	1	0.1 mg	2/L 2				And a second second			
Matrix Spike Dup (B4E1507-MSD1)	Sa	urce: CAD	960.03					80-120			
Sumonta as N	2.7	147				2024	5:47:00P	М			
Batch B4E1553 - No Prop			5	/L 2.5	0 0	.08	105	80-120	1.65		
	Prepared	: 05/10/24	13:44						1.05	20	
Atkalinity	ND	20	0 0 0	Analy	zed: 5/10/	2024	1:44:00PN	Л			
LCS (B4E1553-BS1)		20.	0 mg CaC	:03/L							
Alkalinity				Analyz	ed: 5/10/5	024 1		-			
D	46.0		mg CaCe			.024 1					
Duplicate (B4E1553-DUP1)	Sou	FOR CADAD	(A					80-120			
Alkalinity	147			Analyz	ed: 5/10/2	024 1	:44:00PM				
Batch B4F1680 Che and	• .	20.0	ing CaCC	D3/L					1.42		
	Prepared:	05/30/24 1	5.15						1.42	20	
Blank (B4E1689-BLK1)			5.15								
TKN	0.672			Analyze	d: 6/3/202	4 10:3	0:00AM				
LCS (B4F1680 PS1)	0.072	1.0	mg/L								
TKN				Analum	1. (12 12 12 14						
	10.1		me/l		1: 6/3/202	4 10:3	0:00AM				
Matrix Spike (B4E1689-MS1)	0		1994 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -	10.0			101	90-110			
TKN			0-02	Analyzed	: 6/3/2024	10:30	0.00 V V				
Matrix Spiles Due (Departure)	11.9	1.0	mg/L	10.0		Construction of the		0.0.1			
TKN	Source	e: C4D4860	-07				10000	80-120			E
Reant Limit Units Level Result %REC L Batch B4E1507 - No Prep Prepared: 05/10/24 17:47 Matrix Spike (B4E1507-MS1) Source: C4D4860-02 Analyzed: 5/10/2024 5:47:00PM Ammonia as N 2.7 0.1 mg/L 2.50 0.08 107 80 Matrix Spike Dup (B4E1507-MSD1) Source: C4D4860-02 Analyzed: 5/10/2024 5:47:00PM 80 Ammonia as N 2.7 0.1 mg/L 2.50 0.08 107 80 Batch B4E1553 - No Prep Prepared: 05/10/24 13:44 Bank (B4E1553-BLK1) Analyzed: 5/10/2024 1:44:00PM 80 Alkalinity ND 20.0 mg CaCO3/L 50.0 92.0 80-1 Duplicate (B4E1553-DLP1) Source: C4D4860-02 Analyzed: 5/10/2024 1:44:00PM 80-1 Alkalinity 142 20.0 mg CaCO3/L 50.0 92.0 80-1 Duplicate (B4E1689 - SM 4500 Norg C Prepared: 05/30/24 15:15 142 10.0 1030:00AM 142 140 140 <											
Batch B4E1841 - EPA 200 7			1.	10.0	2.11	1	101 8	80-120	2.71	20	
	Prepared: 05	5/09/24 14:	00							20	В
Mank (B4E1841-BLK1)											
bial Phosphorus	ND	0.000		Analyzed:	5/10/2024	4 2:58	:02PM				
CS (PARIALI DA)		0.0600	nig/L								
CS (D4E1841-BS1)											
otal Phosphorus				Analyzed	5/10/2024	3.60					
otal Phosphorus	2.49	0.0600	mg/L		5/10/2024						
otal Phosphorus latrix Spike (B4E1841-MS1)				2.52		98	.9 85	-115			
otal Phosphorus Iatrix Spike (B4E1841-MS1)	Source:	C4D4860-0	12	2.52		98	.9 85	-115	·		
otal Phosphorus				2.52		98	.9 85 26PM	-115			

*NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved The results in this report apply to the samples analyzed in accordance with the chain of custody document. PromiumforCold.v5 W&O ; revision date 11192021

P.O. Box 1089 Coldspring Tx 77331 Website: eastexlabs.com Email: eastexlab@eastex.net Tel: 936 653 3249

EPA 200.7 - Quality Control

Eastex Environmental Laboratory - Coldspring

r										
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B4E1841 - EPA 200.7	Prepared:	05/09/24 14:	:00			_				
Matrix Spike Dup (B4E1841-MSD1)	Sour	ce: C4D4860	-02	Analyzed:	5/10/2024	3:06:02PN	1			
Total Phosphorus	5.47	0.0600	mg/L	2.52	2.75	108	70-130	1.33	20	
Batch B4E3302 - No Prep	Prepared:									
Blank (B4E3302-BLK1)				Analyzed:	5/20/2024	9:06:00AN	1			
Oil Grease, HEM	ND	5.0	mg/L							
LCS (B4E3302-BS1)				Analyzed:	5/20/2024	9:06:00AN	4			
Oil Grease, HEM	40.1	5.0	mg/L	40.0		100	78-114			
LCS Dup (B4E3302-BSD1)				Analyzed:	5/20/2024	9:06:00AN	1			
Dil Grease, HEM	40.2	5.0	mg/L	40.0		100	78-114	0.249	18	
Matrix Spike (B4E3302-MS1)	Sour	ce: C4E2758-	-01	Analyzed:	5/20/2024	9:06:00AN	1			
Oil Grease, HEM	42.8	5.4	mg/L	40.0	2.54	101	78-114			

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

This analytical report must be reproduced in its entirety. *NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved

Galveston Airport WWTP P.O. Box 779 Galveston TX, 77553

Notes and Definitions

- B Analyte detected in Method Blank.
- 23 Spike recovery outside of acceptance limits due to matrix interference.
- 13 LCS associated with sample batch outside of acceptance limits.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

Eastex Environmental Laboratory - Coldspring

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

This analytical report must be reproduced in its entirety. *NELAC Status: A=Accredited, N=Accreditation not offered, O=Not Accredited, P=Approved 2600 Dudley Rd. Kilgore, Texas 75662 24 Waterway Avenue, Suite 375 The Woodlands, TX 77380 Office: 903-984-0551 * Fax: 903-984-5914

Page 1 of 1

Printed 05/28/2024 13:09

EEL3-G

Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

TABLE OF CONTENTS

This report	consists of this Tab	le of Contents and	the following pages:
-------------	----------------------	--------------------	----------------------

<u>Report Name</u>	Description	Pages
1102507_r02_01_ProjectSamples	SPL Kilgore Project P:1102507 C:EEL3 Project Sample Cross Reference t:304	2
1102507_r03_03_ProjectResults	SPL Kilgore Project P:1102507 C:EEL3 Project Results t:304 PO: 050724C	10
1102507_r10_05_ProjectQC	SPL Kilgore Project P:1102507 C:EEL3 Project Quality Control Groups	16
1102507_r99_09_CoC_1_of_1	SPL Kilgore CoC EEL3 1102507_1_of_1	2
	Total Pages:	30

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 1 of 31

1

SAMPLE CROSS REFERENCE

		Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331			Printed	5/28/2024	Page 1 of 2 ww
Sample	Sample ID		Taken	Time		Received	
2297153	C4D4860-01		05/06/2024	00:00:00		05/08/2024	
Bottle 02 Client Bottle 03 Client Bottle 03 Client Bottle 04 Client Bottle 05 Client Bottle 07 Client Bottle 07 Client Bottle 10 Client Bottle 10 Client Bottle 12 Prepa Bottle 13 Prepa Bottle 14 Prepa Bottle 15 Prepa Bottle 16 Prepa Bottle 17 Prepa	red Bottle: GCXL\GCXS red Bottle: OPXL/OPXS red Bottle:PCBL 2 mL A red Bottle: 2 mL Autosar red Bottle: 2 mL Autosar	Glass mL Autosampler Vial (Batch 1) 2 mL Autosampler Vial (Batch 2 mL Autosampler Vial (Batch utosampler Viai (Batch 1) 1856 npler Vial (Batch 1) 1906) Vol npler Vial (Batch 1) 1921) Vol	11118559) Volume: 1. 1118560) Volume: 1. 5) Volume: 1.00000 n lume: 10.00000 mL <== lume: 1.00000 mL <==	00000 mL <== De 00000 mL <== De L <== Derived from = Derived from 10 Derived from 08	rived from 03 (95 rived from 03 (95 m 03 (950 ml) (962 ml) (964 ml)	50 ml)	
	Method		Bottle	PrepSet	Preparation	QcGroup	Analytical
	EPA 608.3		13	1118559	05/09/2024	1119046	05/11/2024
	EPA 608.3		15	1118565	05/09/2024	1119051	05/11/2024
	EPA 615		16	1118791	05/10/2024	1119920	05/16/2024
	EPA 632 EPA 625.1		12	1118551	05/09/2024	1120962	05/22/2024
	PPA h/1						
			17	1119006	05/13/2024	1119699	05/15/2024
	EPA 614	1	14	1118560	05/09/2024	1120024	05/15/2024 05/16/2024
	EPA 614 ASTM D7065-1	1	14 18	1118560 1119221	05/09/2024 05/14/2024	1120024 1120173	05/15/2024 05/16/2024 05/16/2024
	EPA 614	I	14	1118560	05/09/2024	1120024	05/15/2024 05/16/2024
Sample	EPA 614 ASTM D7065-1	1	14 18	1118560 1119221	05/09/2024 05/14/2024	1120024 1120173	05/15/2024 05/16/2024 05/16/2024

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 2 of 31

SAMPLE CROSS REFERENCE

Page 2 of 2

ww

Printed 5/28/2024 Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

Bottle 01 Client supplied HCl Clean Metals Bottle

Bottle 02 Client supplied HCl Clean Metals Bottle

Bottle 03 Client supplied HCl Clean Metals Bottle Bottle 04 Client supplied HCl Clean Metals Bottle

Bottle 05 Prepared Bottle: Mercury Preparation for Metals (Batch 1119120) Volume: 1500.00000 mL <== Derived from 02 (500 mL) 03 (500 mL) 01 (

500 ml) Bottle 06 Prepared Bottle: Mercury Preparation for Metals (Batch 1119325) Volume: 50.00000 mL <== Derived from 05 (47 ml) 02 (47 ml)

	Method EPA 245.7 2	Bottle 06	PrepSet 1119325	Preparation 05/15/2024	QcGroup 1119481	Analytical 05/15/2024
Sample	Sample ID	Taken	Time		Received	
2297168	C4D4860-01 FB	05/06/2024	00:00:00		05/08/2024	

Bottle 01 Client supplied HCl Clean Metals Bottle

Bottle 02 Prepared Bottle: Mercury Preparation for Metals (Batch 1119325) Volume: 50.00000 mL <== Derived from 01 (47 ml)

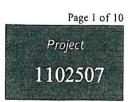
	Method EPA 245.7 2	Bottle 02	PrepSet 1119325	Preparation 05/15/2024	QcGroup 1119481	Analytical 05/15/2024
Sample	Sample ID	Taken	Time		Received	
2297169	C4D4860-02	05/06/2024	09:30:00		05/08/2024	

Bottle 01 Client supplied NaOH

Bottle 02 Prepared Bottle: CN TRAACS Autosampler Vial (Batch 1118429) Volume: 10.00000 mL <== Derived from 01 (5 ml)

Method	Bottle	PrepSet	Preparation	QcGroup	Analytical
SM 4500-CN ⁻ E-2016	02	1118429	05/09/2024	1118591	05/09/2024

Email: Kilgore.ProjectManagement@spllabs.com


Report Page 3 of 31

2600 Dudley Rd. Kilgore, Texas 75662 24 Waterway Avenue, Suite 375 The Woodlands, TX 77380 Office: 903-984-0551 * Fax: 903-984-5914

EEL3-G

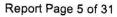
Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

Printed:

05/28/2024

RESULTS

	2297153 C4D4860-01								Received:	05/0	8/202
N	on-Potable Water	Collected by: Client		Eastex Env	vironmental			PO:		0	50724
		Taken: 05/06/2024		00	:00:00					0.	50724
A.	STM D7065-11	Pr	epared:	1119221 0	05/14/2024	13:00:00	Analyzed	1120173	05/16/2024	18:07:00	D
•	Parameter	Result	5	Unit	s RL		Flag	5	CAS		Bot
	Nonylphenol	<30.	3	ug/L			1 112.		25154-52-3		1
Eŀ	PA 608.3	Pr	epared:	1118559 0	05/10/2024	08:00:00	Analyzed	1119046	05/11/2024	00:50:00	к
	Parameter	Result	5	Units	s RL		Flags	ï	CAS		Bot
	4,4-DDD	<0.0	105	ug/L	0.0105				72-54-8		1
	4,4-DDE	<0.0	105	ug/L	0.0105				72-55-9		1
	4,4-DDT	<0.0	105	ug/L	0.0105				50-29-3		1
	Aldrin	0.01	84	ug/L	0.010				309-00-2		3
	Alpha-BHC(hexachlorocyclohexane)	<0.0	105	ug/L	0.0105				319-84-6		1
	alpha-Chlordane	<0.0	105	ug/L	0.0105				5103-71-9		1
	Beta-BHC(hexachlorocyclohexane)	⊲0.0	105	ug/L	0.0105				319-85-7		1
	Delta-BHC(hexachlorocyclohexane)	⊲0.0	105	ug/L	0.0105				319-86-8		1
	Dieldrin	⊲0,0	105	ug/L	0.0105				60-57-1		1
	Endosulfan I (alpha)	⊲0.0	10	ug/L	0.010				959-98-8		1
	Endosulfan II (beta)	⊲0.0	105	ug/L	0.0105				33213-65-9		1
	Endosulfan sulfate	<0.0	105	ug/L	0.0105				1031-07-8		1
	Endrin	<0.0	105	ug/L	0.0105				72-20-8		1
	Endrin aldehyde	<0.0	105	ug/L	0.0105				7421-93-4		1
	Gamma-BHC(Lindane)	<0.0	105	ug/L	0.0105		JM		58-89-9		i
	gamma-Chlordane	<0.0	105	ug/L	0.0105				5103-74-2		1
	Heptachlor	<0.0	10	ug/L	0.010				76-44-8		1
	Heptachlor epoxide	<0.0	10	ug/L	0.010				1024-57-3		1
	Kelthane (Dicofol)	<0.10	05	ug/L	0.105		x		115-32-2		1.
	Methoxychlor	<0.0	105	ug/L	0.0105				72-43-5		L
	Mirex	<0.0	58	ug/L	0.0158				2385-85-5		1.
	Toxaphene	<0.2	11	ug/L	0.211				8001-35-2		1.
ΞP/	4 608.3	Pre	pared:	1118565 0.	5/10/2024	08:00:00	Analyzed	1119051	05/11/2024	00:50:00	K,
-	Parameter	Results	;	Units	RL		Flags		CAS		Botti

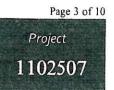


Report Page 4 of 31

LDSClient v2.24.5.34

EEL3-G

		Eastex Enviror Mark Bourgeoi PO Box 1089 35 Eastex Lane Coldspring, TX	s							Proje 1102		
	······								Printed:	05/2	8/2024	
	2297153	C4D4860-01								Received:	05/0)8/202
N	lon-Potable Water	ŗ	Collected by Taken: 05	c Client 5/06/2024		Environmental 00:00:00			PO:		0	50724
E	PA 608.3			Prepared.	1118565	05/10/2024	08:00:00	*Analyzed	1119051	05/11/2024	00:50:00	K.
	Parameter			Results	U	nits RL		Flag	\$	CAS		Bot
LAC	PCB-1016			<0.200	ug	/L 0.200		x		12674-11-2		1
ELAC	PCB-1221			<0.200	ug	/L 0.200				11104-28-2		1
LAC	PCB-1232			<0.200	ug	/L 0.200				11141-16-5		1
ELAC	PCB-1242			<0.200	ug	/L 0.200				53469-21-9		1
ELAC	PCB-1248			<0.200	ug	/L 0,200				12672-29-6		1
ELAC	PCB-1254			<0.200	ບຊ	/L 0.200				11097-69-1		1
ELAC	PCB-1260			<0.200	ug	/L 0.200				11096-82-5		۱
ELAC	PCB-1262			⊲0.211	ug	/L 0.211				37324-23-5		1
ELAC	PCB-1268			<0.211	ug	/L 0.211				11100-14-4		L
E	PA 614			Prepared:	1118560	05/10/2024	08:00:00	Analyzed	1120024	05/16/2024	04:18:00	K/
	Parameter			Results	U	nits RL		Flag.	5	CAS		Bott
ELAC	Azinphos-methy	yl (Guthion)		<0.0526	ug	/L 0.0526	i i i			86-50-0		1.
ELAC	Demeton			<0.0526	ug	/L 0.0526				8065-48-3		14
LAC	Diazinon			<0.0526	ug	/L 0.0526				333-41-5		14
LAC	Malathion			<0.0526	ug	/L 0.0526				121-75-5		14
LAC	Parathion, ethyl			<0.0526	ug	L 0.0526				56-38-2		14
LAC	Parathion, meth	yl		<0.050	ug	/L 0.050				298-00-0		14
E	PA 615			Prepared:	1118791	05/10/2024	13:30:00	Analyzed	1119920	05/16/2024	22:24:00	KA
	Parameter			Results	Ui	tis RL		Flags		CAS		Bott
LAC	2,4 Dichlorophe	noxyacetic acid		<0.520	ug	L 0.520		SD		94-75-7		16
LAC	2,4,5-TP (Silver	4)		<0.300	ug	L 0.300		S		93-72-1		16
El	PA 622			Prepared:	1118560	05/10/2024	08:00:00	Analyzed	1120015	05/16/2024	04:18:00	KA
	Parameter			Results	Un	its RL		Flags		CAS		Bottle
LAC	Chlorpyrifos			<0.050	ug/	L 0.050				2921-88-2		14
El	PA 625.1			Prepared:	1119006	05/13/2024	13:32:29	Analyzed	1119699	05/15/2024	19:23:00	DW
-	Parameter			Results	Un	its RL		Flags		CAS		Bottle
	1,2,4,5-Tetrachi			<1.04	ug							


The Science of Sure

Page 2 of 10

Form rptPROJRESN Created 12/19/2019v1.2

EEL3-G

Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331 Printed:

05/28/2024

 2297153
 C4D4860-01
 Received:
 05/08/2024

 Non-Potable Water
 Collected by:
 Client
 Eastex Environmental
 PO:
 05/0724C

 Taken:
 05/06/2024
 00:00:00
 00:00:00
 050724C

EPA 625.1		Prepared:	1119006	05/13/2024	13:32:29	Analyzed 1119699	05/15/2024	19:23:00	DW.
Parameter		Results	Unit	s RL		Flags	CAS		Bottle
1,2,4-Trichle	probenzene	<1.04	ug/L	1.04			120-82-1		17
1,2-Dichloro	obenzene	<1.04	ug/L	1.04			95-50-1		17
1,2-DPH (as	azobenzene)	<1.04	ug/L	1.04			122-66-7		17
1,3-Dichloro	benzene	<1.04	ug/L				541-73-1		17
1,4-Dichloro	benzene	<1.04	ug/L				106-46-7		17
2,4,5-Triohla	prophenol	<1.04	ug/L	1.04			95-95-4		17
2,4,6-Triohla	prophenol	<1.04	ug/L	1.04			88-06-2		17
2,4-Dichloro	phenol	<1.04	ug/L	1.04			120-83-2		17
2,4-Dimethy	tphenol	<2.49	ug/L	2.49			105-67-9		17
2,4-Dinitrop	henol	<9.34	ug/L	9.34			51-28-5		17
2,4-Dinitrota	Juene	<3.63	ug/L	3.63			121-14-2		17
2,6-Dinitroto	luene	<1.04	ug/L	1.04			606-20-2		17
2-Chloronap	hthalene	<1.04	ug/L	1.04			91-58-7		17
2-Chlorophe	nol	<1.04	ug/L	1.04			95-57-8		17
2-Methylphe	nol (o-Cresol)	<5.39	ug/L	5.39			95-48-7		17
2-Nitrophene	b l	<1.04	ug/L	1.04			88-75-5		17
3&4-Methyly	phenol (m&p-Cresol)	<6,43	ug/L	6.43			MEPH34		17
3,3'-Dichloro	benzidine	<5.00	ug/L	5.00			91-94-1		17
4,6-Dinitro-2	-methylphenol	<8.30	ug/L	8.30			534-52-1		17
4-Bromopher	nyl phenyl ether	<1.04	ug/L	1.04			101-55-3		17
4-Chloropher	nyl phenyl ethe	<1.04	ug/L	1.04			7005-72-3		17
4-Nitrophene	51	<1.04	ug/L	1.04			100-02-7		17
Acensphthen	0	<1,04	ug/L	1.04			83-32-9		17
Acenaphthyle	еде	<1.04	ug/L	1.04			208-96-8		17
Aniline		<1.04	ug/L	1.04		S	62-53-3		17
Anthracene		<1.04	ug/L	1.04			120-12-7		17
Benzidine		<20.7	ug/L	20.7			92-87-5		17
Benzo(a)anth	racene	<1.04	ug/L	1.04			56-55-3		17
Benzo(a)pyre	ne	<1.04	ug/L	1.04			50-32-8		17
Benzo(b)fluo	ranthene	<1.04	ug/L	1.04			205-99-2		17
Benzo(ghi)pe	rylene	<1.04	ug/L	1.04			191-24-2		17
Benzo(k)fluo	ranthene	<1.04	ug/L	1.04			207-08-9		17
Benzyl Butyl	phthalate	0.944	ug/L	7.78		Ĵ	85-68-7		17
Bis(2-ohloroe	thoxy)methane	<1.04	ug/L	1.04		5	111-91-1		17
Bis(2-chloroe	a dia mandria di Constanti ang ang	<1.04	ug/L	1.04			111-44-4		17
Bis(2-ohloroi	sopropyl)ether	<1.04	ug/L	1.04			108-60-1		17

Report Page 6 of 31

EEL3-G

Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

2297153 C4D4860-01

Non-Potable Water Collected by: Client 05/08/2024 Received: Eastex Environmental Taken: 05/06/2024 PO: 00:00:00 050724C EPA 625.1 Prepared: 1119006 05/13/2024 13-32-29 Analyzed 1119699 Parameter 05/15/2024 19:23:00 Results DWL NELAC Bis(2-ethylhexyl)phthalate Units RL Flags <7.78 NELAC Chrysene (Benzo(a)phenanthrene) CAS ug/L 7.78 Bottle <1.04 NELAC Dibenz(a,h)anthracene 117-81-7 ug/L 1.04 17 <1.04 NELAC Diethyl phthalate 218-01-9 ug/L 1.04 17 <5.91 NELAC Dimethyl phthalate 53-70-3 ug/L 5.91 17 <4.98 NELAC Di-n-butylphthalate ug/L 84-66-2 4.98 17 <7.78 NELAC Di-n-octylphthalate 131-11-3 ug/L 7.78 17 Fluoranthene(Benzo(j,k)fluorene) <1.04 NELAC 84-74-2 ug/L 1.04 17 <1.04 NELAC 117-84-0 Fluorene ug/L 1.04 17 <1.04 NELAC Hexachlorobenzene ug/L 206-44-0 1.04 17 <1.04 Hexachlorobutadiene NELAC ug/L 86-73-7 1.04 17 <1.04 NELAC Hexachlorocyclopentadiene 118-74-1 ug/L 1.04 17 <9.34 NELAC Hexachloroethane 87-68-3 ug/L 9.14 17 NELAC <1.04 Indeno(1,2,3-cd)pyrene ug/L 77-47-4 1.04 17 <1.04 NELAC Isophorone 67-72-1 ug/L 1.04 17 <1.04 NELAC Naphthalene 193-39-5 ug/L 1.04 17 <1.04 NELAC Nitrobenzene ug/L 78-59-1 1.04 17 <1.04 NELAC n-Nitrosodiethylamine ug/L 91-20-3 1.04 17 <1.04 NELAC N-Nitrosodimethylamine 98-95-3 ug/L 1.04 17 <7.26 NELAC n-Nitroso-di-n-butylamine 55-18-5 ug/L 7.26 17 <1.04 NELAC N-Nitrosodi-n-propylamine 62-75-9 ug/L 1.04 17 <1.04 NELAC N-Nitrosodiphenylamine (as DPA 924-16-3 ug/L 1.04 17 <1.04 p-Chloro-m-Cresol (4-Chloro-3-me NELAC ug/L 621-64-7 1.04 17 2.49 NELAC Pentachlorobenzene 86-30-6 ug/L 2.49 17 <1.04 NELAC Pentachlorophenol ug/L 59-50-7 1.04 17 NELAC <1.04 Phenanthrene 608-93-5 ug/L 1.04 17 NELAC Phenol <1.04 87-86-5 ug/L 1.04 17 <1.56 NELAC Рутепе 85-01-8 ug/L 1.56 17 <1.04 NELAC Pyridine ug/L 108-95-2 1.04 17 <5.60 129-00-0 ug/L 5.60 EPA 625.1 17 110-86-1 Prepared: 1119006 17 05/13/2024 13:32:29 Calculated 1119699 Parameter 05/17/2024 11:20:48 Results CAL NELAC Cresols Total Units RL Flags <6.43 CAS ug/L 6.43 Bottle 1319-77-3, etc. 17

Report Page 7 of 31

1102507

05/28/2024

Printed:

Project

The Science of Sure

Page 4 of 10

LDSClient v2.24.5.34

Parameter	Results	Units	RL		Flags		CAS		Bottle
SM 4500-CN ⁻ E-2016	Prepared:		09/2024	07:52:11	Analyzed	1118591	05/09/2024	09:46:00	AMB
2297169 C4D4860-02 Non-Potable Water	<i>Collected by:</i> Client <i>Taken:</i> 05/06/2024	Eastex Enviro 09:30				PO:	Received:	05/08 05(/2024 0724C
Parameter AC Mercury, Total (low level)	Results <0.00128	Units vg/L	<i>RL</i> 0.00128		Flags		CAS 7 439-97-6		Bottle 02
EPA 245.72			15/2024	09:30:00	Analyzed		05/15/2024	13:04:00	MPI
2297168 C4D4860-01 FB Non-Potable Water	Collected by: Client Taken: 05/06/2024	Eastex Enviro 00:00				PO:	Received:		3/2024 0724C
Parameter LAC Mercury, Total (low level)	Results 0.000856	Units ug/L	<i>RL</i> 0.00266	· · · · · · · · · · ·	Flags J		CAS 7439-97-6		Bottle 06
Non-Potable Water 	Collected by: Client Taken: 05/06/2024 Prepared:	Eastex Envire 00:00		09:30:00	Analyzcd	PO:	05/15/2024	05 13:01:00	0724C
2297167 C4D4860-01							Received:	05/08	8/2024
Parameter LAC Carbaryl (Sevin) Diuron	Results 2.63 2.07	Units ug/L ug/L	<i>RL</i> 2.63 0.0474		Flag.	5	CAS 63-25-2 330-54-1		<i>Bottle</i> 12 12
EPA 632			/10/2024	08:00:00	Analyzed	1120962	05/22/2024	07:34:00	BRL
2297153 C4D4860-01 Non-Potable Water	Collected by: Client Taken: 05/06/2024	Eastex Envir 00:00				PO:	Received:		8/2024 50724C
		* ••••				Printed:	05/2	28/2024	
Eastex Environr Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX							Proj 110	iect 2507	
EEL3-	-G							Page 5 of	10
2600 Dudley Rd. Kilgore, Texas 75 24 Waterway Avenue, Suite 375 Th Office: 903-984-0551 * Fax: 903-96	e Woodlands, TX 77380					Ð	The Scie	and lana	1ê

Report Page 8 of 31

15

NELAC

NELAC

NELAC

Z

Form rptPROJRESN Created 12/19/2019v1.2

2600 Dudley Rd. Kilgore, Texas 75662

2600 Dudley Rd. Kilgore, Texas 75662 24 Waterway Avenue, Suite 375 The Woodl Office: 903-984-0551 * Fax: 903-984-5914	ands, TX 77380				(9) Canadaan	ence of Sun	ė
EEL3-G Eastex Environmental La Mark Bourgeois PO Box 108g 35 Eastex Lane Coldspring, TX 77331	Ь					Printed:	110	Page 6 of 14 ject 2507	C
2297169 C4D4860-02 Non-Potable Water Collecto Taken:	ed by: Client 05/06/2024		nvironmental 9:30:00			PO:	Received:	05/08/ 050	/2024 0724C
SM 4500-CN E-2016 Parameter	Results	1118429 Un		07:52:11	Analyzed Flags	1118591	05/09/2024 CAS	09:46:00	AMB Bottle
NELAC Cyanide, total	10.2 S	/wg ample Pr	L 5.00 eparation						02
2297153 C4D4860-01	05/06/2024						Received:	05/08/ 050	/2024 0724C
	Prepared:		05/09/2024	08:09:10	Calculated		05/09/2024	08:09:10	CAL
2 Environmental Fee (per Project)	Verified								
ASTM D7065-11	Prepared:	1119221	05/14/2024	13:00:00	Analyzed	1120173	05/16/2024	18:07:00	DWL
z Nonyl Phenol Expansion	Entered								18
EPA 608.3	Prepared:	1118559	05/10/2024	08:00:00	Analyzed	1118559	05/10/2024	08:00:00	SAB
Liquid-Liquid Extr. W/Hex Ex EPA 608.3	1/950 Prepared:	ml 1118559	05/10/2024	08:00:00	Analyzed	1119046	05/11/2024	00:50:00	03 <i>KAP</i>
NELAC Pesticides Method 608.3 full lis EPA 608.3	Entered Prepared:	1118560	05/10/2024	08:00:00	Analyzed	118560	05/10/2024	08:00:00	13 <i>SAB</i>
Solvent Extraction	1/950	ml							03

Report Page 9 of 31

Form rptPROJRESN Created 12/19/2019v1.2

Office: 903-984-0551 * Fax: 903-984-5914 The Science of Sure EEL3-G Page 7 of 10 Project Eastex Environmental Lab Mark Bourgeois 1102507 PO Box 1089 35 Eastex Lane Coldspring, TX 77331 Printed: 05/28/2024 C4D4860-01 2297153 Received: 05/08/2024 050724C 05/06/2024 EPA 608.3 Prepared: 1118565 05/10/2024 08:00:00 Analyzed 1118565 05/10/2024 08:00:00 SAB PCB Lig-Lig Extr. W/Hex Exch. 1/950 ml 03 EPA 608.3 Prepared: 1118565 05/10/2024 08:00:00 Analyzed 1119051 05/11/2024 00:50:00 KAP NELAC Polychlorinated Biphenyls Entered 15 EPA 614 Prepared: 1118560 05/10/2024 08:00:00 Analyzed 1120024 05/16/2024 04:18:00 KAP Permit Organophos. Pesticides Entered Z 14 EPA 615 Prepared: 1118791 05/10/2024 13:30:00 Analyzed 1118791 05/10/2024 13:30:00 CRS NELAC Esterification of Sample 10/962 ml 10 EPA 615 Prepared: 1118791 05/10/2024 13:30:00 Analyzed 1119920 05/16/2024 22:24:00 KAP Herbicides by GC NELAC Entered 16 EPA 622 Prepared: 1118560 05/10/2024 08:00:00 Analyzed 1120015 05/16/2024 04:18:00 KAP NELAC For use with EXP !CPP only Entered 14 EPA 625.1 Prepared: 1119006 05/13/2024 13:32:29 Analyzed 1119006 05/13/2024 13:32:29 MCC Liquid-Liquid Extraction, BNA 1/964 ml 08 EPA 625.1 Prepared: 1119006 05/13/2024 13:32:29 Analyzed 1119699 05/15/2024 19:23:00 DWL NELAC Table D-1/ D-2 Semivolatiles Exp Entered 17

Report Page 10 of 31

1

2

2600 Dudley Rd. Kilgore, Texas 75662 24 Waterway Avenue, Suite 375 The We .. 1 71/ 77100

	C	05/06/2024							0507	724C
	2297168 C4D4860-01 FB							Received:	05/08/2	2024
NELAC	Low Level Mercury Liquid Metals	50/47	ml							05
E	EPA 245.7 2	Prepared:	1119120	05/14/2024	09:30:00	Analyzcd	1119325	05/15/2024	09:30:00	MPI
NELAC	Composite Low Level Hg Bottles	Complete	4	vials						01
		Prepared:	1119120	05/14/2024	09:30:00	Analyzed	1119120	05/14/2024	09:30:00	MPI
	9	05/06/2024							050	724C
	2297167 C4D4860-01							Received:	05/08/	2024
NELAC	Carbaryl/Diuron	Entered								12
)	EPA 632		1118551		08:00:00	Analyzed	1120962	05/22/2024	07:34:00	03 BRU
	Liquid-Liquid Extr. W/Hex Ex	1/950	1118551 		08:00:00	Analyzed	1118551	05/10/2024	08:00:00	SAB
: 	Nonylphonol Liq-Liq Extract EPA 632	1/989	m							11
	EPA 625.1		1119221	05/14/2024	13:00:00 -	Analyzed	1119221	05/14/2024	13:00:00	МСС
	a	05/06/2024								0724C
-	2297153 C4D4860-01							Received:	05/08	/2024
	35 Eastex Lane Coldspring, TX 77331						Printed:	05/	/28/2024	
	Mark Bourgeois PO Box 1089							110	2507	
	Eastex Environmental Lab							Pro	oject	
	EEL3-G							the scie	Page 8 of 1	
	Waterway Avenue, Suite 375 The Woodlan fice: 903-984-0551 * Fax: 903-984-5914	nds, TX 77380				(E		ence of Sur	×=:

Report Page 11 of 31

2600 Dudley Rd. Kilgore, Texas 75662 24 Waterway Avenue, Suite 375 The Woodlands, TX 77380

	24 Waterway A	d. Kilgore, Texas 75662 venue, Suite 375 The Wo 1-0551 * Fax: 903-984-59		180				(Θ	The Scie	ance of Sur	a
		EEL3-G									Page 9 of 1	0
		Eastex Environmenta	l Lab							Pro	oject	
		Mark Bourgeois								110	2507	
		PO Box 1089									2301	
		35 Eastex Lane									and the second second second	
		Coldspring, TX 77331	2						Printed:	05	/28/2024	
	2297168	C4D4860-01 FB								Received:		8/2024 0724C
			05/06/2024								05	07240
	EPA 245.72			Prepared:	1119325	0.5/1.5/2024	09:30:00	Analyzed	1119325	05/15/2024	09:30:00	MPI
NEI	AC Low Level M	Mercury Liquid Metals	50)/47	ml	ĺ.						01
	2297169	C4D4860-02								Received:	05/08	/2024
			05/06/2024								050	0724C
	SM 4500-CN ⁻ C	C-2016		Prepared:	1118429	05/09/2024	07:52:11	Analyzed	1118429	05:/09/2024	07:52:11	MEG
NEL	AC Cyanide Dis	tillation	10	/5	ml							01
-	Qualifiers											100
		below quantitation limit evel resulting from matrix interferer	D - Duplicate RPD			d Ier than desired.						
	S - Standard reads lo											
	We report results on a	an As Received (or Wet) basis unless	marked Dry Weight									
	Unless otherwise not	ed, testing was performed at SPL, I e see our Websites for details.		which holds	Internationa	l, Federal, and st	ate					
		n our NELAC scope of accreditation or NELAC scope of accreditation										
	SPL Kilgore. Unless of RL is the Reporting Li Abstract Service num Detection Limit (IDL), performed during san column of our report (number in the RL colu	Its relate to the sample tested. This otherwise specified, these test resul imit (sample specific quantitation lin ber. RL is our Reporting Limit, or M , Method Detection Limit (MDL), ar nple preparation (EQL). Our analyt (without a 'J' flag). Otherwise, we c imn. MAL is Minimum Analytical Le rferences prevent it, we work to have	ts meet the requirement mit) and is at or above l linimum Quantitation l d Practical Quantitation cal result must be abo report ND (Not Detector vel and is typically fror	nts of NELA the Method Level. The R on Limit (PO ve this RL be ed above RL m regulatory	C. Detection Lin IL takes into a L), and any di efore we repo), because the	nit (MDL). CAS is account the Instru- lutions and/or co rt a value in the ' e result is "<" (les	Chemical ument incentrations Results' s than) the					

Report Page 12 of 31

EEL3-G

Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

Bill 100

Bill Peery, MS, VP Technical Services

Printed:

05/28/2024

2

1

4

Report Page 13 of 31

EEL3-G

Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

۹Ŀ, 2

3

4

5

Printed 05/28/2024

	Analytical Set	1118591								SM	4500-C7	E-2016
					B	llank				5111		0.2010
Parameter		PrepSet	Reading	MDL	MQL	Units			File			
Cyanide, total		1118429	ND	0.00238	0.005	mg/L			126321346			
						ccv						
Parameter			Reading	Known	Units	Recover%	Limits%		File			
Cyanide, total			0.530	0.500	mg/L	106	90.0 - 110		126321321			
Cyanide, total			0.527	0.500	mg/L	105	90.0 - 110		126321331			
Cyanide, total			0.530	0.500	mg/L	106	90.0 - 110		126321337			
Cyanide, total			0.530	0.500	mg/L	106	90.0 - 110		126321342			
Cyanide, total			0.531	0.500	mg/L	106	90.0 - 110		126321343			
Cyanide, total			0.520	0.500	mg/L	104	90.0 - 110		126321344			
Cyanide, total			0.518	0.500	mg/L	104	90.0 - 110		126321345			
Cyanide, total			0.524	0.500	mg/L	105	90.0 - 110		126321348			
Cyanide, total			0.531	0.500	mg/L	106	90.0 - 110		126321356			
Cyanide, total			0.525	0.500	mg/L	105	90.0 - 110		126321357			
Cyanide, total			0.523	0.500	mg/L	105	90.0 - 110		126321358			
					Du	olicate						
Parameter		Sample		Result	Unknowi	7		Unit		RPD		Limit%
Cyanide, total		2296714		ND	0.0042			mg/L		200		20.0
Cyanide, total		2296795		0.0084	0.0082			mg/L		2.41		20.0
						CV						
Parameter			Reading	Known	Units	Recover%	Limits%		File			
Cyanide, total			0.203	0.200	mg/L	102	90.0 - 110		126321320			
2						SDup			120521520			
Parameter		PrepSet	LCS	LCSD			1 invient	1000	1.000		727527070	
Cyanide, total		1118429	0.403	0.411		Known 0.400	<i>Limits</i> [®] ^a 90.0 - 110	LCS%	LCSD%	Units	RPD	Limita
e junice, total		1110423	0.405	0.411	Mat	. Spike	90.0 - 110	101	103	mg/L	1.97	20.0
0		<i>.</i> .	a									
Parameter Cuanida, tatal		Sample	Spike	Unknown	Known	Units	Recovery %		File			
Cyanide, total Cyanide, total		2296714	0.411	0.0042	0.400	mg/L	103	90.0 - 110	126321352			
Cyallide, total		2296795	0.418	0.0082	0.400	mg/L	102	90.0 - 110	126321355			
	Analytical Set	1119481									EPA	245.7 2
					AWRI	L/LOQ C						
Parameter			Reading	Known	Units	Recover%	Limits%		File			
Mercury, Total (I	ow level)		5.67	5.00	ng/L	113	70.0 - 130		126340012			
					B	ank						
Parameter		PrepSet	Reading	MDL	MQL	Units			File			
Mercury, Total (1	ow level)	one falles and a second	ND	1.20	5.00	ng/L			126340009			
10.80 10.80			107568	94391757919		CB			ABSU 10007			
Parameter		PrepSet	Reading	MDL	MQL	Units			File			
Mercury, Total (1	ow level)	1119325	1.73	1.20	5.00	ng/L			File			
		- 1 - F - M - J		1.20	5.00	щу L			126340014			
Email: Kil	gore.ProjectMa	magement@s	pllabs.c	om		8				Report	Page	14 of 31

EEL3-G

Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

								Printe	ed 05/2	28/2024	
Parameter	D	C			ССВ						
Mercury, Total (low level)	Prep			MQL	Units						
Mercury, Total (low level)	1119		1.20	5.00	ng/L			File			
Mercury, Total (low level)	1119		1.20	5.00	ng/L			126340026			
	1119	481 1.68	1.20	5.00	ng/L			126340038			
					CCV			126340066			
Parameter		Readin	у Клон								
Mercury, Total (low level)		26.0		cinta	Recove	r% Limits	20	File			
Mercury, Total (low level)		26.5	25.0	ng/L	104	87.0 -	113	126340013			
Mercury, Total (low level)		26.8	25.0	ng/L	106	87.0 -)	13	126340025			
Mercury, Total (low level)		26.9	25.0	ng/L	107	87.0 - 1	13	126340037			
Mercury, Total (low level)		26.9	25.0	ng/L	108	87.0 - 1	13	126340043			
Mercury, Total (low level)		20.9	25.0	ng/L	108	87.0 - 1	13	126340043			
		2/.0	25.0	ng/L	110	87.0 - 1	13	126340054			
Parameter					ICL			120340065			
		Reading	Клоwл	Units	Recovers						
Mercury, Total (low level)		50.0	50.0	ng/L	100			File			
						90.0 - 1	10	126340007			
Parameter					ICV						
Mercury, Total (low level)		Reading	Known	Units	Recover%	6 Limits%					
· · · · · · · · · · · · · · · · · · ·		27.2	25.0	ng/L	109	90.0 - 11		File			
				10	S Dup	2010-11	•	126340008			
Parameter	PrepSet	LCS	LCCD	-							
Mercury, Total (low level)	111932		LCSD		Known	Limits%	LCS%	LCSD%			
		27.0	27.4		25.0	76.0 - 11:	5 108	110	Units		D Limit%
Parameter				N	ISD			110	ng/L	1.47	50.0
	Sample	MS	MSD	UNK	L.						
Mercury, Total (low level)	2296946	24.7	24.8	1.86	Known	Limits	MS%	MSD%	Units	RPD	
Mercury, Total (low level)	2297194	27.1	27.7	1.42	26.6 26.6	63.0 - 111		86.2	ng/L	0.437	2000.0
Analytical Set	1110000			1.74	20.0	63.0 - 111	96.5	98.8	ng/L	2.31	
Analytical Set	1119033						And the second			2.31	18.0
				м	SD					J	EPA 608.3
Parameter	Sample	MS	MSD								
4.4-DDD	2296362	0.390	0.328	UNK	Known	Limits	MS%	MSD%			
4,4-DDE	2296362	0.278	0.328	ND	0.974	31.0 - 141	40.3	33.9	Units	RPD	Limit%
4.4-DDT	2296362	0.272	0.244	ND	0.974	30.0 - 145	28.7 *	21.4 •	ug/L	17.3	39.0
Aldrin	2296362	0.287		ND	0.974	25.0 - 160	28.1	25.2	ug/L	29.3	35.0
Alpha-BHC(hexachlorocyclohexane)	2296362		0.215	ND	0.974	42.0 - 140	29.6 *	22.2 *	ug/L	10.9	42.0
alpha-Chlordane	2296362			ND	0.974	37.0 - 140	36.0 *	30.8 *	ug/L	28.7	35.0
Beta-BHC(hexachlorocyclohexane)	2296362			ND	0.974	45.0 - 140	40.5 *	30.9 •	ug/L	15.5	36.0
Delta-BHC(hexachlorocyclohexane)	2296362			ND	0.974	17.0 - 147	49.0	42.5	ug/L	26.9	35.0
Dieldrin	2296362	100000		ND	0.974	19.0 - 140	40.8	35.1	ug/L	14.2	44.0
Endosuifan I (alpha)	2296362			ND	0.974	36.0 - 146	43.8	37.5	ug/L	15.0	52.0
Endosulfan II (beta)	2296362		-		0.974	45.0 - 153	39.2 *	31.3 *	ug/L	15.5	49.0
Endosulfan sulfate	2296362	www.			0.974	0.100 - 202	25.5	28.2	ug/L	22.3	28.0
Endrin						26.0 - 144	32.6		ug/L	10.0	53.0
	2270302	0.378 0	.331 1	ND	- 12 CT	30.0 - 147	39.0	31.2	ug/L	4.53	38.0
T						5355		34.2	ug/L	13.3	48.0

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 15 of 31

The Science of Sure

Project

1102507

Printed 05/28/2024

Page 2 of 16

EEL3-G

Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

1 2 3

5

Printed 05/28/2024

1											
				1	MSD						
Parameter	Sample	MS	MSD	UNK	Клоwл	Limits	MS%	MSD%	Unite	RPD	1 inited
Endrin aldehyde	2296362		0.374	ND	0.974	37.6 - 158	43.6	38.6	Units	12.1	Limit%
Gamma-BHC(Lindane)	2296362		0.304	ND	0.974	32.0 - 140	36.9	31.4 *	ug/L	12.1	30.0
gamma-Chlordane	2296362	17.57 B (S)	0.287	ND	0.974	45.0 - 140	39.4 *	29.6 *	ug/L	28.1	39.0
Heptachlor	2296362		0.217	ND	0.974	34.0 - 140	27.9 *	22.4 *	ug/L	28.1	35.0
Heptachlor epoxide	2296362		0.361	ND	0.974	37.0 - 142	46.4	37.3	ug/L		43.0
Kelthane (Dicofol)	2296362		1.46	ND	0.974	70.0 - 130	180 *	151 *	ug/L	21.7	26.0
Methoxychlor	2296362		0.239	ND	0.974	33.1 - 137	33.3	24.7 *	ug/L	17.5	30.0
Mirex	2296362		0.307	ND	0.974	70.0 - 130	37.8 *	31.7 *	ug/L ug/L	29.6 17.5	30.0 30.0
									មេក		
Analytical S	et 1119046									EJ	PA 608.3
				E	Blank						
Parameter	PropSet	Reading	MDL	MQL	Units			File			
4,4-DDD	1118559	ND	0.731	1.00	ug/L			126330672			
4,4-DDE	1118559	ND	0.361	1.00	ug/L			126330672			
4,4-DDT	1118559	ND	0.862	1.00	ug/L			126330672			
Aldrin	1118559	ND	0.260	1.00	ug/L			126330672			
Alpha-BHC(hexachlorocycloh	exane) 1118559	ND	0.280	1.00	ug/L			126330672			
alpha-Chlordane	1118559	ND	0.615	1.00	ug/L			126330672			
Beta-BHC(hexachlorocyclohe)	(ane) 1118559	ND	0.579	1.00	ug/L			126330672			
Delta-BHC(hexachlorocyclohe	xanc) 1118559	ND	0.898	1.00	ug/L			126330672			
Dieldrin	1118559	ND	0.162	1.00	ug/L			126330672			
Endosulfan I (alpha)	1118559	ND	0.679	1.00	ug/L			126330672			
Endosulfan 11 (beta)	1118559	ND	0.356	1.00	ug/L			126330672			
Endosulfan sulfate	1118559	ND	0.588	1.00	ug/L			126330672			
Endrin	1118559	ND	0.538	1.00	ug/L			126330672			
Endrin aldehyde	1118559	ND	0.699	1.00	ug/L			126330672			
Gamma-BHC(Lindane)	1118559	ND	0.385	1.00	ug/L			126330672			
gamma-Chlordane	1118559	ND	0.415	1.00	ug/L			126330672			
Heptachlor	1118559	ND	0.207	1.00	ug/L			126330672			
Heptachlor epoxide	1118559	ND	0.660	1.00	ug/L			126330672			
Kelthane (Dicofol)	1118559	ND	0.0208	0.100	ug/L			126330672			
Methoxychlor	1118559	ND	0.898	1.00	ug/L			126330672			
Mirex	1118559	ND	0.00889	0.015	ug/L			126330672			
Toxaphene	1118559	ND	0.169	0.200	ug/L			126330672			
				(ccv						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
4,4-DDD		51.3	50.0	ug/L	103	75.0 - 125		126330671			
4,4-DDD		62.6	50.0	ug/L	125	75.0 - 125		126330679			
4,4-DDE		48.6	50.0	ug/L	97.2	75.0 - 125		126330671			
4,4-DDE		52.5	50.0	ug/L	105	75.0 - 125		126330679			
4,4-DDT		51.9	50.0	ug/L	104	75.0 - 125		126330671			
4,4-DDT		54.1	50.0	ug/L	108	75.0 - 125		126330679			
Aldrin		50.2	50.0	ug/L	100	75.0 - 125		126330671			
Aldrin		54.4	50.0	ug/L	109	75.0 - 125		126330679			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 16 of 31

EEL3-G

Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

A		
C	The Science of Sure	

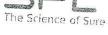
Page 4 of 16

Printed 05/28/2024

Parameter		Reading	Known	Units	Recover%	Limits%		File				
Alpha-BHC(hexachlorocyclohexane)		50.1	50.0	ug/L	100	75.0 - 125		126330671				
Alpha-BHC(hexachlorocyclohexane)		54.0	50.0	ug/L	108	75.0 - 125		126330679				
alpha-Chlordane		49.1	50.0	ug/L	98.2	75.0 - 125		126330671				
alpha-Chiordane		55.8	50.0	ug/L	112	75.0 - 125		126330679				
Beta-BHC(hexachlorocyclohexane)		48.0	50.0	ug/L	96.0	75.0 - 125		126330671				
Beta-BHC(hexachlorocyclohexane)		52.8	50.0	ug/L	106	75.0 - 125		126330679				
Delta-BHC(hexachlorocyclohexane)		50.2	50.0	ug/L	100	75.0 - 125		126330671				
Delta-BHC(hexachlorocyclohexane)		54.9	50.0	ug/L	110	75.0 - 125		126330679				
Dieldrin		50.2	50.0	ug/L	100	75.0 - 125		126330671				
Dieldrin		58.7	50.0	ug/L	117	75.0 - 125		126330679				
Endosulfan I (alpha)		49.7	50.0	ug/L	99.4	75.0 - 125		126330671				
Endosulfan 1 (alpha)		56.5	50.0	ug/L	113	75.0 - 125		126330679				
Endosulfan II (beta)		48.8	50.0	ug/L	97.6	75.0 - 125		126330671				
Endosulfan II (beta)		55.9	50.0	ug/L	112	75.0 - 125		126330679				
Endosulfan sulfate		46.4	50.0	ug/L	92,8	75.0 - 125		126330671				
Endosulfan sulfate		58.3	50.0	ug/L	117	75.0 - 125		126330679				
Endrin		50.2	50.0	ug/L	100	75.0 - 125		126330671				
Endrin		59.3	50.0	ug/L	119	75.0 - 125		126330679				
Endrin aldehyde		47.4	50.0	ug/L	94.8	75.0 - 125		126330671				
Endrin aldehyde		52.7	50.0	ug/L	105	75.0 - 125		126330679				
Gamma-BHC(Lindane)		49.0	50.0	ug/L	98.0	75.0 - 125		126330671				
Gamma-BHC(Lindane)		51.2	50.0	ug/L	102	75.0 - 125		126330679				
gamma-Chlordane		49.3	50.0	ug/L	98.6	75.0 - 125		126330671				
gamma-Chlordane		55.5	50.0	ug/L	111	75.0 - 125		126330679				
Heptachlor		47.1	50.0	ug/L	94.2	75.0 - 125		126330671				
Heptachlor		49.5	50.0	ug/L	99.0	75.0 - 125		126330679				
Heptachlor epoxide		48.4	50.0	ug/L	96.8	75.0 - 125		126330671				
Heptachlor epoxide		56.6	50.0	ug/L	113	75.0 - 125		126330679				
Kelthane (Dicofol)		99.7	100	ug/L	99 .7	75.0 - 125		126330671				
Kelthane (Dicofol)		139	100	ug/L	139	75.0 - 125	•	126330679				
Methoxychlor		46.9	50.0	ug/L	93.8	75.0 - 125		126330671				
Methoxychlor		51.3	50.0	ug/L	103	75.0 - 125		126330679				
Mirex		47.8	50.0	ug/L	95.6	75.0 - 125		126330671				
Mirex		59.0	50.0	ug/L	118	75.0 - 125		126330679				
				LCS	Dup							
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%	
4,4-DDD	1118559	41.5	41.3		50.0	31.0 - 141	83.0	82,6	ug/L	0.483	39.0	
4,4-DDE	1118559	42.0	37.7		50.0	30.0 - 145	84.0	75.4	ug/L	10.8	35.0	
4,4-DDT	1118559	40.6	40.5		50.0	25.0 - 160	81.2	81.0	ug/L	0.247	42.0	
Aldrin	1118559	40.7	35.8		50.0	42.0 - 140	81.4	71.6	ug/L	12.8	35.0	
Alpha-BHC(hexachlorocyclohexane)	1118559	45.9	43.7		50.0	37.0 - 140	91.8	87.4	ug/L	4.91	36.0	
alpha-Chlordane	1118559	42.7	39.7		50.0	45.0 - 140	85.4	79.4	ug/L	7.28	35.0	
Beta-BHC(hexachlorocyclohexane)	1118559	55.7	54.4		50.0	17.0 - 147	111	109	ug/L	1.82	44.0	
Delta-BHC(hexachlorocyclohexane)	1118559	46.7	44.8		50.0	19.0 - 140	93.4	89.6	ug/L	4.15	52.0	
									•	1903.65	10.000	

CCV

Email: Kilgore.ProjectManagement@spllabs.com


Report Page 17 of 31

Form IptPROJGCGN Created 12/30//2019 v1.0

EEL3-G

Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

Printed 05/28/2024

								Print	ed 05/28/2	024	
Parameter		22			LCS Dup						
Dieldrin	Prep		LCS	D	Know	n Linuts%	1.000				
Endosulfan I (alpha)	1118		43.0		50,0	36.0 - 14	10070	LCSD%	Units	RPD	Limit%
Endosulfan II (beta)	1118		38.0		50.0			86.0	ug/L	2.30	49.0
Endosulfan sulfate	1118		39.4		50.0	45.0 - 15		76.0	ug/L	5.38	
Endrin	1118:	559 37.9	37.8		50.0	0.100 - 20		78.8	ug/L	0.759	28.0
Endrin aldehyde	1118	559 45.0	44.2		50.0	26.0 - 14		75.6	սք/Ն		53.0
Gamma-BHC(Lindanc)	11185	59 45.0	45.2			30.0 - 147		88.4	ug/L	0.264	38.0
gamma-Chlordane	11185	59 42.9	43.1		50.0	37.6 - 158		90.4	ug/L	1.79	48.0
Heptachlor	11185	59 44.7	41.6		50.0	32.0 - 140		86.2		0.443	30.0
	11185	59 38.3	37.5		50.0	45.0 - 140		83.2	ug/L	0.465	39.0
Heptachlor epoxide	11185	59 42.6	41.1		50.0	34.0 - 140		75.0	ug/L	7.18	35.0
Kelthane (Dicofol)	111855		1.05		50.0	37.0 - 142	85.2	82.2	ug/L	2.11	43.0
Methoxychlor	111855		34.7		0.500	70.0 - 130	192 •	210 +	ug/L	3.58	26.0
Mirex	111855	ALL			50.0	33.1 - 137	70.8	69.4	ug/L	8.96	30.0
		0.040	0.624		0.500	70.0 - 130	128	125	ug/L	2.00	30.0
Parameter				Su	prrogate			123	ug/L	2.37	30.0
Decachlorobiphenyl	Sample	Турс	Reading			27					
Decachlorobiphenyl	624136	CCV	48.7	100	100	Recover%	Limits%	File			
Tetrachlore w Mit	624136	CCV	52.8	100	ug/L	48.7	0.100 - 144	126330671			
Tetrachloro-m-Xylene (Surr)	624136		46.3		ug/L	52.8	0.100 - 144	126330679			
Tetrachloro-m-Xylene (Surr)	624136	CCV	45.3	100	ug/L	46.3	0.100 - 107	126330671			
Decachlorobiphenyl	1118559		60.4	100	ug/L	45.3	0.100 - 107	126330679			
Decachlorobiphenyl	1118559		91.9	100	ug/L	60.4	0.100 - 144	126330672			
Decachlorobiphenyl	1118559			100	ug/L	91.9	0.100 - 144				
Tetrachloro-m-Xylene (Surr)	1118559			100	ug/L	80,7	0.100 - 144	126330673			
Tetrachloro-m-Xylene (Surr)	1118559		39.2	100	ug/L	39.2	0.100 - 107	126330674			
Tetrachloro-m-Xylene (Surr)	1118559		52.0	100	ug/L	52.0	0.100 - 107	126330672			
Decachlorobiphenyl	2297153	LCS Dup	47.7	100	ug/L		0.100 - 107	126330673			
Tetrachloro-m-Xylene (Surr)	2297153	Unknown		0.105	ug/L		0.100 - 144	126330674			
	2297133	Unknown	0.0447	0.105	ug/L		0.100 - 144	126330678			
Analytical Set	1119051						0.100 - 10/	126330678			
					ve 179				and the second		
Parameter				Bl	ank					EPA	608.3
PCB-1016	PrepSet	Reading	MDL	MQL	Units						
PCB-1221	1118565	ND	0.202	0.202	ug/L			File			
PCB-1232	1118565	ND	0.143	0.200	ug/L			126330784			
PCB-1242	1118565	ND	0.143	0.200	ug/L			126330784			
PCB-1248	1118565	ND	0.192	0.200	ug/L ug/L			126330784			
PCB-1254	1118565	ND	0.143	0.200				126330784			
PCB-1260	1118565			0.200	ug/L			126330784			
PCB-1262	1118565			0.200	ug/L			126330784			
PCB-1268	1118565				ug/L			126330784			
PCB-1268					ug/L			126330784			
			.143 (0.200	ug/L			126330784			
Parameter				CC	/						
PCB-1016	ŀ	Reading K	nown L	Units	Recover%	1					
	1					Limits%		File			
			-	8- J	12	80.0 - 115		126330783			
Email: Kilgore.ProjectManag	emont	11 1									
e ofooutimag	cinent@sp	uabs.con	n	A.	S B CCC B						
					100			-			
				-	Contraction of the			F	Report Page	9 18 of	31
											encode Tel

EEL3-G

Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

Parameter PCB-1016 PCB-1016 PCB-1260 PCB-1260 PCB-1260	1	4 1000	CCV Units Recove ug/L 116 ug/L 114 ug/L 92.4 ug/L 95.4 ug/L 92.4	 <i>Limits</i>²₀ 80.0 - 115 	Printed File 126330791 126330794 126330783 126330791	05/28/2024	
Parameter PCB-1016 PCB-1260 PCB-1260 Perameter Decachlorobiphenyl Tetrachloro-m-Xylene (Surr) Analytical Set	PrepSet LCC 1118565 797 1118565 697 Sample Type 1118565 Blank 1118565 Blank 1119681	620 557 Reading K	-g/1	Linuis% LCS% 39.8 - 135 79.7 36.1 - 134 69.7 Recover% Linuts% 60.4 10.0 - 200 39.2 10.0 - 200	126330794 LCSD% 62.0 55.7 File 126330784 126330784	Units RPD ug/L 25.0 ug/L 22.3	<i>Limit%</i> 30.0 30.0
<u>Parameter</u> Nonylphenol <u>Parameter</u> Nonylphenol	PrepSet Reading 111 9221 ND PrepSet LCS	^g MDL MQ 5.00 30.0 LCSD	LCS Dup		File 126343748	ASTM D70)65-11
<u>Parameter</u> Nonylphenol Analytical Set	1119221 142 Sample MS 2294826 125	147 MSD UNK 116 ND	150 5 MSD Known L	Limits% LCS% 66.0 - 112 94.7 imits MS% 5.0 - 112 86.2	98.0 ug. MSD%	/L 3.43 30.	77777777777777777777777777777777777777
Analytical Set Parameter 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,2-DPH (as azobenzene) 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4-Dinhtorophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene	1119006 ND 1119006 ND	MDL MQL 0.517 1.00 0.720 1.00 0.598 1.00 0.695 1.00 0.686 1.00 0.633 1.00 7.734 1.00 567 1.00 32 2.40 07 9.00 15 3.50 75 1.00	145 56 Blank Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 - 112 86.2 1 1 1 12 12 12 12 126 1263 1263	MSD% Um 80.0 ug/l 77/e 26343868 26343868 26343868 26343868 5343868 5343868 5343868 343868 343868 343868 43868 43868 43868	Lim	

Gulf Coast Region: 2030 West Grand Parkway N Katy TX 77449

Report Page 19 of 31

EEL3-G

Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

Parameter					Blank
2-Chlorophenol	PrepSe		MDL	MQL	
2-Methylphenol (o-Cresol)	111900	6 ND	0.367	1.00	Units
2-Nitropheno]	111900	- 10	5.13	5.20	ug/L
3&4-Methylphenol (m&p-Creso	111900		0.495	Carrier Carrier	ug/L
-Dichlorobenzidine	1119000		6.15	1.00	ug/L
4.6-Dinitro-2-methylphenol	1119006	ND	4.79	6.20	ug/L
4-Bromophenyl phenyl ether	1119006	ND	7.88	5.00	ug/L
4-C nlorophenyl phenyl etha	1119006	ND	0,311	8.00	ug/L
4-Nitrophenol	1119006	ND	0.281	1.00	ug/L
Acenaphthene	1119006			1.00	ug/L
Acenaphthylene	1119006	ND	0.932	1.00	ug/L
Aniline	1119006	ND	0.139	1.00	ug/L
Anthracene	1119006	ND	0.202	1.00	ug/L
Benzidine	1119006	ND	0.367	1.00	ug/L
Benzo(a)anthracene	1119006	ND	0.538	1.00	ug/L
Benzo(a)pyrene	1119006	MT	19.9	20.0	ug/L
Benzo(b)fluoranthene	111000	100	0.627	1.00	ug/L
Benzo(ghi)perylene		170	0.478	1.00	ug/L
Benzo(k)fluoranthene	111000		0.517	1.00	ug/L
Benzyl Butyl phthalate	111000).750	1.00	ug/L
Bis(2-chloroethoxy)methane	111000-	0.00		1.00	ug/L
Bis(2-chloroethyl)ether	111000		.696	7 50	-9/2 ug/L
Bis(2-chlore)	1110000		312 1	00	-g/L
Bis(2-chloroisopropyl)ether	111000	-		00	-g∕L
Bis(2-ethylhexyl)phthalate	111000			00	g/L
Chrysene (Benzo(a)phenanthrene)	1110000	1.0	53 7.	FO	g/L
Dibenz(a,h)anthracene Diethyl phthalate	111000	0.5	75 1.	00	g/L g/L
Dimethol	111000	V.8	72 1.0	00	yL VL
Dimethyl phthalate		U. /.	21 5.7	70	/L
Di-n-butylphthalate	114000	0.45	4.8	0	
Di-n-octylphthalate	1119006 ND	0.03	4 7.5	a ug	
Fluoranthene(Benzo(j,k)fluorene) Fluorene	1119006 ND	0.78	2 1.00	- ug	
ridorene	1119006 ND	0.77		ug/	
Hexachlorobenzene	1119006 ND	0.512		-6-	
Hexachlorobutadiene	1119006 ND	0.187		ug/1	
Hexachlorocyclopentadiene	1119006 ND	0.618		aB/1	
riexachloroethane	1119006 ND	8.69	9.00	ug/L	
Indeno(1,2,3-cd)pyrene	1119006 ND	0.789	1.00	ug/L	
Isophorone	1119006 ND	0.793	1.00	ug/L	
Naphthalene	1119006 ND	0.468	1.00	ug/L	
Nitrobenzene	1119006 ND	0.387	1.00	ug/L	
n-Nitrosodiethylamine	1119006 ND	0.390		ug/L	
N-Nitrosodimethylamine	1119006 ND	0.282	1.00	ug/L	
n-Nitroso-di-n-butylamina	1119006 ND	6.64	1.00	ug/L	
N-Nitrosodi-n-propulausia	1119006 ND	0.403	7.00	ug/L	
N-Nitrosodiphenylamine (as DPA	1119006 ND	0.777	1.00	ug/L	
	1119006 ND	0.427	1.00	ug/L	
Email: Kilgore Project)		0.42/	1.00	ug/L	

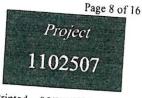
Email: Kilgore.ProjectManagement@spllabs.com

Gulf Coast Region: 2030 West Grand Parkway N Katy TX 77449

Printed 05/28/2024

Report Page 20 of 31

EEL3-G


Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

Parameter					Blank		Printee
	PrepSet	Reading	MDL				
p-Chloro-m-Cresol (4-Chloro-3-me Pentachlorobenzene	1119006	ND	2.35	MQ	contra		C ''
Pentachlorophenol	1119006	ND	0.420	2.40			File
Phenanthrene	1119006	ND	0.129	1.00	ug/L		126343868
Phenol	1119006	ND	0.624	1.00	ug/L		126343868
Pyrene	1119006	ND	1.50	1.00	ug/L		126343868
Pyridine	1119006	ND	0.587	1.50	ug/L		126343868
- young	1119006	ND	5.33	1.00	ug/L		126343868
			5.35	5.40	ug/L		126343868
Parameter					CCV		126343868
1,2,4,5-Tetrachlorobenzene		Reading	Known	Units	Recovers		
1,2,4-Trichlorobenzene	,	50600	50000	ug/L	101		File
1,2-Dichlorobenzene	0	50700	50000	ug/L	101	60.0 - 140	126343867
1.2-DPH (as azobenzene)	4	9100	50000	ug/L	98.2	61.0 - 130	126343867
1,3-Dichlorobenzene	4	6800	50000	ug/L		60.0 - 140	126343867
1,4-Dichlorobenzene	4	8800 5	0000	ug/L	93.6 97.6	60.0 - 140	126343867
2,4,5-Trichlorophenol	4	9700 5	0000	ug/L		60.0 - 140	126343867
2,4,6-Trichlorophenol	5	2800 5	0000	ug/L	99.4	60.0 - 140	126343867
2.4-Dichlorophenol	53		0000	ug/L	106	69.0 - 130	126343867
2,4-Dimethylphenol	50	000	0000	ug/L	108	69.0 - 130	126343867
2,4-Dinitrophenol	43		000	ug/L	102	64.0 - 130	126343867
2,4-Dinitrotoluene	48		000	ug/L	86.4	58.0 - 130	126343867
2,6-Dinitrotoluene	51:		000	ug/L	97.0	39.0 - 173	126343867
2-Chloronaphthalene	550		000	ug/L	103	53.0 - 130	126343867
2-Chlorophenol	470		000	ug/L	110	68.0 - 137	126343867
2-Methylphenol (o-Cresol)	510	00 500	00	ug/L	94.0	70.0 - 130	126343867
2-Nitrophenol	454			ug/L ug/L	102	55.0 - 130	126343867
3&4-Methylphenol (m&p-Cresol)	524		~~ `	ug/L ug/L	90.8	60,0 - 140	126343867
3.3'-Dichlorobenzidine	4810	00 500	2.0	ig/L	105	61.0 - 163	126343867
4,6-Dinitro-2-methylphenol	4460			g/L		60.0 - 140	126343867
4-Bromophenyl phenyl ether	5100			g/L		18.0 - 213	126343867
4-Chlorophenyl phenyl ethe	5220		<u> </u>			56.0 - 130	126343867
4-Nitrophenol	5160			21442		70.0 - 130	126343867
Acenaphthene	43800		. ~	~		57.0 - 145	126343867
Acenaphthylene	51600					5.0 - 135	126343867
Aniline	52200					0.0 - 130	126343867
Anthracene	46200		-6-	_		0.0 - 130	126343867
Benzidine	51400	50000		~		0.0 - 140	126343867
Benzo(a)anthracene	23600	50000	ug/			8.0 - 130	126343867
Benzo(a)pyrene	53000	50000	ug/			0.0 - 180	126343867
Benzo(b)fluoranthene	53100	50000	ug/l			2.0 - 133	126343867
Benzo(ghi)perylene	53300	50000	ug/I		54	.0 - 148	126343867
Benzo(k)fluoranthene	48800	50000	ug/L		14	.0 - 140	126343867
Benzyl Butyl phthalate	53800	50000	ug/L	• •		0 - 195	126343867
Bis(2-chloroethoxy)methane	49000	50000	ug/L			0 - 146	126343867
	48000	50000	ug/L			0 - 140	126343867
Email: Kilgora Projecto				96.	52.0	0 - 164	126343867

Email: Kilgore.ProjectManagement@spllabs.com

I

Printed 05/28/2024

Report Page 21 of 31

EEL3-G

- Eastex Environmental Lab Mark Bourgeois PO Box 1089 . 35 Eastex Lane
- Coldspring, TX 77331

Printed 05/28/2024

Parameter						ccv		Pri	inte
Bis(2-chloroethyl)ether			Reading	Клонт					
Bis(2-chloroisopropyl)ether			44000	50000	Chins	Reco	over% Limits%		
Bis(2-ethylhexyl)phthalate			45200	50000	ug/L	88.0	52.0 - 130	File	
Chrysene (Benzo(a)phenanthrene)			52400	50000	ug/L	90.4	63.0 - 139		67
Dibenz(a,h)anthracene			53100		ug/L	105	43.0 - 137	12634380	67
Diethyl phthalate			46100	50000	ug/L	106	44.0 - 140	12634386	57
Dimethyl phthalate			51500	50000	ug/L	92.2	13.0 - 200	12634386	
Di-n-butylphthalate			0400	50000	ug/L	103	47.0 - 130	12634386	
Di-n-octylphthalate			0200	50000	ug/L	105	50.0 - 130	12634386	
Fluoranthonach			1000	50000	ug/L	96.6	52.0 - 130	126343867	
Fluoranthene(Benzo(j,k)fluorene) Fluorene				50000	ug/L	130		126343867	
Hexachlorobenzene				0000	ug/L	101	21.0 - 132	126343867	,
Herachle				0000	ug/L	109	47.0 - 130	126343867	2 8
Hexachlorobutadiene				0000	ug/L	107	70.0 - 130	126343867	
Hexachlorocyclopentadiene				0000	ug/L	97.8	38.0 - 142	126343867	
Hexachloroethane				000	ug/L	96.6	68.0 - 130	126343867	
Indeno(1,2,3-cd)pyrene				000	ug/L		60.0 - 140	126343867	
Isophorone		454	100 50	000	ug/L	86.2	55.0 - 130		
Naphthalene		496	00 500	000	ug/L	90.8	13.0 - 151	126343867	
Nitrobenzene		495	00 500	100	ug/L	99.2	52.0 - 180	126343867	
n-Nitrosodiethylamine		4690			ug/L	99.0	70.0 - 130	126343867	
N-Nitrosodimethylamine		4700			and the second s	93.8	54.0 - 158	126343867	
n-Nitroso-di-n-butylamine		4010		10	2g/L	94.0	60.0 - 140	126343867	
N-Nitrosodi-n-propylamine		4340			ug∕L	80.2	60.0 - 140	126343867	
N-Nitrosodiphenylamine (as DD+		4660			lg∕L	86.8	60.0 - 140	126343867	
p-Cnioro-m-Cresol (4. Chiora a		47200		- 4		93.2	59.0 - 170	126343867	
- cinacinorobenzene		42000	5000			94.4	60.0 - 140	126343867	
Pentachlorophenol		48700				84.0	68.0 - 130	126343867	
Phenanthrene		51700	50000			97.4	60.0 - 140	126343867	
Phenol		50400	20000	-0		03	42.0 - 152	126343867	
Pyrene		48400	50000	-8		01	67.0 - 130	126343867	
Pyridine		50500	50000	ug/	L 9.	6.8	48.0 - 130	126343867	
		45300	50000	ug/	L 10	01	70.0 - 130	126343867	
		45500	50000	ug/l	L 90).6	60.0 - 140	126343867	
Parameter					DFTPP	10	00.0 - 140	126343867	
DFTPP Mass 127		RefMass	Reading						
DFTPP Mass 197	624702	198	36210			nits%		0.420 MPC	
DFTPP Mass 198	624702	198	0	55.8	τυ,	0 - 60.0		File	
DFTPP Mass 199	624702	198	64870	0.0		1.00		126343866	
DFTPP Mass 275	624702	198	4520	100.0	100	- 100		126343866	
DFTPP Mass 365	624702	198		7.0	5.00	9.00		126343866	
DFTPP Mass 441	624702	198	17069	26.3		- 30.0		126343866	
DFTPP Mass 442	624702	443	4457	6.9		- 100		126343866	
DFTPP Mass 443	624702	198	5866	77.3	0 - 1			126343866	
DFTPP Mass 51	624702	442	37309	57.5		- 100		126343866	
DFTPP Mass 68	624702	198	7589	20.3	17.0			126343866	
	624702		32461	50.0	30.0 -			126343866	
Remail Tota	C. (1977)		264	0.9	0 - 2.0			126343866	
Email: Kilgore.ProjectManage	manta					and the second sec		126343866	
RC	ment(a)s	Dilahs co	1771			2			

Email: Kilgore.ProjectManagement@spllabs.com

LDSClient v2.24.5.34

Gulf Coast Region: 2030 West Grand Parkway N Katy TX 77449

Report Page 22 of 31

EEL3-G

Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

Parameter DFTPP Mass 69 DFTPP Mass 70

			DFTPP			Printec	05/28	3/2024	
	624702	RefMass Reading 198 29715 59.0 121	% Limit. 45.8 0 - 10 0.4 0 - 2.0	0		File 126343866			
			LCS DUD			126343866			
Izene e nc) () -Cresol) bl er e	1119006 11 1119006 11	.3 13.1 .2 13.4 .0 19.7 6 19.9 9 18.5 4 6.86 8 12.2 5 15.9 7 18.4 18.0 17.2 15.1 18.8 13.6 23.0 16.2 20.0 18.9 6.32 17.1 17.3 17.2 17.8 2.57 257	LCS Dup <i>Know</i> 25.0 2	$\begin{array}{c} 27.5 - 8\\ 44.0 - 1.\\ 23.0 - 8\\ 12.6 - 11\\ 21.1 - 80\\ 21.4 - 76\\ 51.3 - 10\\ 37.0 - 14\\ 39.0 - 13\\ 23.0 - 120\\ 0.100 - 15\\ 39.0 - 139\\ 50.0 - 158\\ 60.0 - 120\\ 23.0 - 134\\ 38.9 - 76.1\\ 29.0 - 182\\ 33.0 - 70.4\\ 0.100 - 262\\ 0.100 - 181\\ 53.0 - 127\\ 25.0 - 158\\ 0.100 - 132\\ 47.0 - 145\\ 33.0 - 145\\ 33.0 - 130\\ 27.0 - 133\\ \end{array}$	35.5 72.4 42 60.0 1.8 52.4 10 93.6 0.5 49.2 5.9 48.8 09 84.0 44 86.4 5 75.6 0 45.6 91 47.2 9 61.2 8 79.6 67.2 55.6 2 97.6 74.0 92.8 78.4 78.4	LCSD% 65,2 58,8 54,4 84,0 52,4 53,6 78,8 79,6 74,0 27,4 48,8 63,6 73,6 72,0 68,8 60,4 75,2 54,4 92,0 64,8 80,0 75,6 25,3 68,4 69,2 68,8 * 71,2	ug/L ug/L	- 10. 2.0 3.7:	5 50.0 2 50.0 5 50.0 3 50.0 5 50.0 5 50.0 5 50.0
	1119006 21.4	19.2 20.3	25.0	33.0 - 143	84.8	76 0		79.2	90.0
	1119006 21.5	19.8	25.0		85.6	81 2		9.90	53.0
	1110000	17.0	25.0	24.0 160		01.2	uv/1. «	5 70	

The Science of Sure

					V. T	0 - 2.	00		12624200				
	Parameter					LCS Dup			12634386	6			
	1,2,4,5-Tetrachlorobenzene	PrepSet	LCS	LCSD		Know							
	1,2,4-Trichlorobenzene	1119006	18.1	16.3		25.0			LCSD%		Units	0.00	
	1,2-Dichlorobenzene	1119006	15.0	14.7		25.0	27.5 - 8		65.2		ug/L	RPD	Limit
	1,2-DPH (as azobenzene)	1119006	13.1	13.6		25.0	44.0 - 14		58.8		ig/L	10.5	50.0
	1,3-Dichlorobenzene	1119006	23.4	21.0		25.0	23.0 - 81		54.4			2.02	50.0
	1,4-Dichlorobenzene	1119006	12.3	13.1			12.6 - 11		84.0		1g/L	3.75	50.0
	2.4,5-Trichlorophenol	1119006	12.2	13.4		25.0	21.1 - 80		52,4		g/L	10.8	50.0
	2,4,6-Trichlorophenol	1119006	21.0	19.7		25.0	21.4 - 76		53.6			6.30	50.0
	2.4-Dichlorophenol	1119006	21.6	19.9		25.0	51.3 - 10		78.8	-		9.38	50.0
	2,4-Dimethylphenol	1119006	18.9	18.5		25.0	37.0 - 144		79.6			6.39	50.0
	2,4-Dinitrophenol	1119006	11.4	6.86		25.0	39.0 - 135		74.0	197		8.19	58.0
	2,4-Dinitrotoluene	1119006	11.8	12.2		25.0	23.0 - 120		27.4			2.14	50.0
	2,6-Dinitrotoluene	1119006	15.3	15.9		25.0	0.100 - 19		48.8	ug		9.9	68.0
	2-Chloronaphthalene	1119006	18.7	18.4		25.0	39.0 - 139	61.2	63.6	ug		.33	132
	2-Chlorophenol		19.9	18.0		25.0	50.0 - 158	74.8	73.6	ug	L 3	.85	42.0
	2-Chlorophenol		16.8	17.2		25.0	60.0 - 120	79.6	72.0	ug/	L 1.	.62	48.0
	2-Methylphenol (o-Cresol)		15.5			25.0	23.0 - 134			ug/	L 10	0.0	24.0
	2-Nitrophenol		19.8	15.1		25.0	38.9 - 76.1		68.8	ug/j	L 2.	35	61.0
	3&4-Methylphenol (m&p-Cresol)		3,9	18.8		25.0	29.0 - 182	79.2	60.4	ug/l	L 2.0	100	50.0
	3,3'-Dichlorobenzidine		4.4	13.6		25.0	33.0 - 70.4		75.2	ug/I	5.1		55.0
	4,6-Dinitro-2-methylphenol		7.4 8.5	23.0		25.0	0.100 - 262		54.4	ug/L	. 2.1		50.0
	4-Bromophenyl phenyl ether		a.5 3.2	16.2		25.0	0.100 - 181	74.0	92.0	ug/L	5.9		08
	4-Chlorophenyl phenyl ethe		9.6	20.0		25.0	53.0 - 127	92.8	64.8	ug/L	13.	-	103
	4-Nitrophenol			18.9		25.0	25.0 - 158	78.4	80.0	ug/L	14,		3.0
	Acenaphthene		49	6.32		25.0	0.100 - 132	26.0	75.6	ug/L	3.64		1.0
	Acenaphthylene		8.2	17.1		25.0	47.0 - 145	72.8	25.3	ug/L	2,73	1	31
	Aniline			17.3		25.0	33.0 - 145	74.4	68.4	ug/L	6.23		8.0
	Anthracene			17.2		25.0	70.0 - 130		69.2	ug/L	7.24		1.0
	Benzidine	1119006 19	38	17.8		25.0	27.0 - 133	60.8 *	68.8 *	ug/L	12.3	2.55	
	Benzo(a)anthracene	1119006 5.9		2.57		25.0	and a second statement of the	76.8	71.2	ug/L	7.57		
	Benzo(a)pyrene	1119006 21.		19.2		25.0		23.8	10.3	ug/L	79.2		
	Benzo(b)fluoranthene	1119006 21.		20.3		25.0		84.8	76.8	ug/L	9.90	90.	
	Benzo(ghi)perylene	1119006 21.	500 83	19.8		25.0		85.6	81.2	ug/L	5.28	53.	
	Benzo(k)fluoranthene	1119006 20.8		18.2		25.0		86.0	79.2	ug/L	8.23	72.	
	Benzyl Butyl phthalate	1119006 22.0	-	21.8		25.0		83.2	72.8	ug/L	13.3	71.0	
	Bis(2-chloroethoxy)methane	1119006 17.6		6.3		25.0		38.0	87.2	ug/L	0.913	97.(
	Bis(2-chloroethyl)ether	1119006 18,4		7.6				/0.4	65.2	ug/L	7.67	63.0	
	Bis(2-chloroisopropyl)ether	1119006 16.4	1	6.7				3.6	70.4	ug/L		60.0	
	Bis(2-ethylhexyl)phthalate	1119006 15.3	1:	5.4			A.c	5.6	66,8	ug/L	4.44	54.0	ļ
	Chrysene (Benzo(a)phenanthrene)	1119006 18.2	16	5.4				1.2	61.6	ug/L	1.81	108	
, İ	Dibenz(a,h)anthracene	1119006 22.6	20).7		0.50004000 8		2.8	65.6		0.651	76.0	
		1119006 19.8	17	.1).4	82.8	ug/L	10.4	82.0	
	Email: Kilgorn Drainer					w.0 (0.100 - 227 79	9.2	68.4	ug/L ug/I	8.78	87.0	
	Lillidi Aligoro Brossett									VE/L	146	120	

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 23 of 31

14.6

126

ug/L

EEL3-G

Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

									1 inneu	05/28/	2024	
Parameter					LCS Dup							
Diethyl phthalate	PrepSe			SD	Клон	n Limii	1.0.4	1.000				
Dimethyl phthalate	11190		17.2	2	25.0	Culli		LCS%	LCSD%	Unit	ts RPL	D Limit
Di-n-butylphthalate	111900		18.2	2	25.0			68.8	68.8	ug/L		100
Di-n-octylphthalate	111900	6 21.4	16,7	,	25.0	0.100		74.8	72.8	ug/L		183
Fluoranthene(Benzo(j,k)fluorene)	111900	6 16,9	17.1		25.0	1.00 -		85.6	66.8	ug/L		
Fluorene	111900	6 21.2	15.5		25.0	4.00 -	-	67.6	68.4	ug/L	1.18	47.0
Hexachlorobenzene	111900	6 16.3	16.9		25.0	26.0 -		84.8	62.0	ug/L	31.1	69.0
Hexachlorobutadiene	111900	6 21.0	19.1			59.0 -		55.2	67.6	ug/L		66.0
Hexachier	111900	5 13.0	12.7		25.0	0.100 -		84.0	76.4	ug/L	3.61	38.0
Hexachlorocyclopentadiene	1119000	5 11.3	10.2		25.0	24.0 - 1		52.0	50.8		9.48	55,0
Hexachloroethane	1119006	5 10.3	11.0		25,0	3.97 - 6		5.2	40.8	ug/L	2.33	62.0
Indeno(1,2,3-cd)pyrene	1119006		17.1		25.0	40.0 - 1		1.2	44.0	ug/L	10.2	50.0
Isophorone	1119006		16.6		25.0	0.100 -	171 8	1.6	68.4	ug/L	6.57	52.0
Naphthalene	1119006		15.4		25.0	21.0 - 1	96 6	8.4	66.4	ug/L	17.6	99.0
Nitrobenzene	1119006				25.0	21.0 - 1	33 6	4.4	61.6	ug/L	2.97	93.0
n-Nitrosodiethylamine	1119006	16.8	17.4		25.0	35.0 - 1	80 7	2.0	69.6	ug/L	4.44	65.0
N-Nitrosodimethylamine	1119006		17.6		25.0	18.0 - 10		7.2	70.4	ug/L	3.39	62.0
n-Nitroso-di-n-butylamine	1119006	10.7	12.4		25.0	30.2 - 74		.8		ug/L	4.65	50.0
N-Nitrosodi-n-propylamine	1119006	17.4	17.2		25.0	48.4 - 98			49.6	ug/L	14.7	50.0
N-Nitrosodiphenylamine (as DPA		16.0	16.6		25.0	0.100 - 2			68.8	ug/L	1.16	50.0
p-Chloro-m-Cresol (4-Chloro-3-me	1119006	21.1	19.5		25.0	49.3 - 94			66.4	ug/L	3.68	87.0
Pentachlorobenzene	1119006	17.2	16.2		25.0	22.0 - 14			78.0	ug/L	7.88	50.0
Pentachlorophenol	1119006	16.8	16.4		25.0	39.3 - 93.			64.8	ug/L	5.99	70.0
Phenanthrene	1119006	19.2	17.0		25.0	14.0 - 170			65.6	ug/L	2.41	50.0
Phenol	1119006	19.8	18.3		25.0	54.0 - 120			68.0	ug/L	12.2	86.0
Pyrene	1119006	7.40	7.84		25.0	5.00 - 120			73.2	ug/L	7.87	39.0
Pyridine	1119006	20.2	19.3		25.0	52.0 - 120			31.4	ug/L	5.90	64.0
	1119006	8.45	7.44		25.0				77.2	ug/L	4.56	49.0
				C 11		11.2 - 50.6	5 33,1	3	29.8	ug/L	12.6	50.0
Parameter	Sample	7			rrogate							50.0
2,4,6-Tribromophenol		Type	Reading	Known	Units	Recover%	lin	its%				
2-Fluorophenol-SURR		CCV	52600	100000	ug/L	52.6		- 150	File			
4-Terphenyl-d14-SURR		CCV	51200	100000	ug/L	51.2		- 150	126343867			
Nitrobenzene-d5-SURR		CCV	48800	50000	ug/L	97.6		- 150	126343867			
Phenol-d6-SURR	1.11.11.01.01.01.01.01.01.01.01.01.01.01	CCV	47600	50000	ug/L	95.2			126343867			
2,4,6-Tribromophenol		CCV	50700	100000	ug/L	50,7		- 150	126343867			
2.4,6-Tribromophenol	1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Blank	64.5	100	ug/L	64.5		- 150	126343867			
2,4,6-Tribromophenol		CS	78.0	100	ug/L	78.0	10.0		126343868			
2-Fluorophenol-SURR		.CS Dup	80.4	100	ug/L	80.4	10.0		126343869			
2-Fluorophenol-SURR		lank	42200	100000	ug/L	42.2	10.0 -		126343870			
2-Fluorophenol-SURR		CS	53200	100000	ug/L	53.2	10.0 -		126343868			
4-Terphenyl-d14-SURR		CS Dup	54700	100000	ug/L		10.0 -		126343869			
4-Terphenyl-d14-SURR	1119006 B	lank	34800	50000	ug/L	54.7	10.0 -		126343870			
4-Terphenyl-d14-SURR		CS	31600	50000	ug/L ug/L	69.6	30.0 -		126343868			
Nitrobenzene-d5-SURR	1119006 L	CS Dup	29900	50000		63.2	30.0 -		126343869			
Nitrobenzene-d5-SURR	the second s	ank	37300	50000	ug/L	59.8	30.0 -		126343870			
State of the state	1119006 LC	CS	33400	50000	ug/L	74.6	30.0 -		126343868			
D					ug/L	66.8	30.0	150	126343869			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 24 of 31

The Science of Sure

1

2

3

4

5

Limit% 100 183

Printed 05/28/2024

Project

1102507

LDSClient v2.24-5-34

EEL3-G

Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

Parameter		20			Surrog	late			Printed	05/28	/2024	
Nitrobenzene-d5-SURR Phenol-d6-SURR Phenol-d6-SURR 2,4,6-Tribromophenol 2-Fluorophenol-SURR 4-Terphenyl-d14-SURR Nitrobenzene-d5-SURR Phenol-d6-SURR Analytical Set	1 1 1 22 22 22 22 22	297153 97153 97153 97153 97153 97153	Blank LCS LCS Dup Unknown Unknown	Reading 30700 27500 36600 37600 56.4 48.4 6.0 8.8 1.0	Known 50000 1 100000 1 100000 1 100000 1 100000 1 104 1 51.9 1	Units Re ng/L 61. ng/L 27.: ng/L 36.0 g/L 37.6 g/L 63.8 g/L 63.8 g/L 69.4 /L 74.8	4 30, 5 10, 5 10, 5 10, 10,0 10,0 30,0 30,0	0 - 150 1263 0 - 150 1263 0 - 150 1263 1 - 150 1263 - 150 1265 - 150 1265 - 150 1265 - 150 1265	343870 343868 43869 43870 43871 43871 43871 43871			
Parameter 2,4 Dichlorophenoxyacetic acid 2,4,5-TP (Silvex)	Prep	Set R 8791 N	0.1	59 (Blank MQL Uni 0.500 ug/1 0.300 ug/1	2		File 126347				EPA 615
Parameter 2,4 Dichlorophenoxyacetic acid 2,4 Dichlorophenoxyacetic acid 2,4 Dichlorophenoxyacetic acid 2,4 Dichlorophenoxyacetic acid 2,4,5-TP (Silvex) 2,4,5-TP (Silvex) 2,4,5-TP (Silvex) 2,4,5-TP (Silvex)		Re. 157 96. 134 127 167 85.4 122 104	2 150 150 150 150	սք	/L 84.8 /L 111 /L 56.9 /L 81.3	80.0 - 1 80.0 - 1	15 15 * 15 5 5 5 5 5 5	126347 File 1263477 1263477 12634777 12634777 12634776 126347776 126347776	63 57 75 9 3 7			
<u>Parameter</u> 2,4 Dichlorophenoxyacetic acid 2,4,5-TP (Silvex) <u>Parameter</u>	PrepSet 1118791 1118791		LCSD 0.503 0.592	5	LCS Dup <i>Known</i> 1.00 1.00 Surrogate	80.0 - 115 Limits% 0.100 - 319 0.100 - 244	LCS% 98.6	126347779 LCSD% 50.3 59.2		L 64	PD .9 *	<i>Limit%</i> 30.0
2,4-Dichlorophenylacetic Acid 2,4-Dichlorophenylacetic Acid 2,4-Dichlorophenylacetic Acid 2,4-Dichlorophenylacetic Acid 2,4-Dichlorophenylacetic Acid 2,4-Dichlorophenylacetic Acid 2,4-Dichlorophenylacetic Acid 2,4-Dichlorophenylacetic Acid 2,4-Dichlorophenylacetic Acid		Type CCV CCV CCV CCV CCV Blank LCS LCS Dup Unknown				128 87.0	Limits% 0.100 - 313 0.100 - 313 0.100 - 313 0.100 - 313 0.100 - 313 0.100 - 313 0.100 - 313	File 126347763 126347767 126347775 126347779 126347764 126347765 126347766 126347847	-8	L 14.	U	30.0

Email: Kilgore.ProjectManagement@spllabs.com

Gulf Coast Region: 2030 West Grand Parkway N Katy TX 77449

EPA 622

Printed 05/28/2024

Form rptPROJQCGN Created 12/30//2019 v1.0

EEL3-G

Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

5

Printed 05/28/2024

								Printed	05/28/2	2024	
Parameter					Blank						
Chlorpyrifos	PrepSet	Reading	MDL	MQL	Units						
	1118560	ND	0.0904	50.0	ug/L			File			
					CCV			126350002			
Parameter		D /									
Chlorpyrifos		Reading	Known	Units	Recove	r% Limits%		E .(.			
Chlorpyrifos		1040	1000	ug/L	104	48.0 - 15	0	File			
Chlorpyrifos		1040	1000	ug/L	104	48.0 - 150		126350001			
Chlorpyrifos		1030	1000	ug/L	103	48.0 - 150		126350006			
Chlorpyrifos		974	1000	ug/L	97.4	48.0 - 150		126350008			
		962	1000	ug/L	96.2	48.0 - 150		126350016			
0				L	CS Dup			126350021			
Parameter	PrepSet	LCS	LCSD								
Chlorpyrifos	and the second	444			Known	Limits%	LCS%	LCSD%			
			483		1000	0.100 - 12	8 44.4	48.3	Units	RPD	Limit%
Parameter				Su	rrogate			-0.5	ug/L	8.41	30.0
Tributylphosphate	Sample	Type	Reading	Known		200					
		CCV	1090	1000		Recover%		File			
Tributylphosphate		CCV	1070		ug/L	109	0.100 - 115	126350001			
TributyIphosphate		CCV	1100	1000	ug/L	107	0.100 - 115	126350006			
Tributylphosphate			1050	1000	ug/L	110	0.100 - 115				
Tributylphosphate				1000	ug/L	105	0.100 - 115				
Triphenylphosphate			1040	1000	ug/L	104	0.100 - 115	126350021			
Triphenylphosphate		1000	1110	1000	ug/L	111	0.100 - 115	126350001			
Triphenylphosphate			1570	1000	ug/L	157 *	0.100 - 115	126350006			
Triphenylphosphate			2020	1000	ug/L	202 *	0.100 - 115	126350008			
Triphenylphosphate			1930	1000	ug/L	193 *	0.100 - 115	to be designed and the second s			
Tributylphosphate	A grant to be a set of the set of		2080	1000	ug/L	208 *	0.100 - 115	126350016			
Tributylphosphate		1000	93	1000	ug/L	39.3	0.100 - 115	126350021			
Tributylphosphate	warman and the second second			1000	ug/L	47.5	0.100 - 115	126350002			
Triphenylphosphate	and the second second second			1000	ug/L	55.7	0.100 - 115	126350003			
Triphenylphosphate	556 C			1000	ug/L	35.9	0.100 - 115	126350004			
Triphenylphosphate	1118560 LC			1000	ug/L		0.100 - 115	126350002			
	1118560 LC	S Dup 47	71 1	1000	ug/L		0.100 - 115	126350003			
Analytical Set	1120024						0.100 - 115	126350004			
				-	122.0						
Parameter	P			Bla	nk					EP.	A 614
Azinphos-methyl (Guthion)	 Constraints stored and store and stored and store and stored and	iding Mi	DL A	AQL.	Units			233			
Demeton	1118560 ND	41.	.4 5	0.0	ug/L			File			
Diazinon	1118560 ND	31.	9 5	0.0	ug/L			126350175			
Malathion	1118560 ND	19.	7 50		ug/L			126350175			
Parathion, ethyl	1118560 ND	24.	8 50	2003	ug/L			126350175			
Parathion, methyl	1118560 ND	23.9	9 50		ug/L			126350175			
,	1118560 ND	27.4	\$ 50		ug/L			126350175			
								126350175			
Parameter	Read	line K	100.04 append	CCV							
Azinphos-methyl (Guthion)	1060				Recover%	Limits%		File			
		1000	ug/	L 1	06	37.5 - 164		126350174			
Email: Kilgore.ProjectManag	emont () 1							-203301/4			
C	,cment@spilat	os.com		453	Julie 20						
					Cr y			De			-
					Contraction of the second			Re	port Pag	je 26 o	f 31
	and the second division of the second divisio										

EEL3-G

Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

Parman					ccv			Print	ted	05/28/20)24
Parameter		Rea	ding Kr	Lauran							
Azinphos-methyl (Guthion)		131				cover% Li	mits%	57			
Azinphos-methyl (Guthion)		100			ug/L 13.	1 37	.5 - 164	File			
Azinphos-methyl (Guthion)		790			ug/L 100		5 - 164	126350179			
Azinphos-methyl (Guthion)	<u>*</u>	825			1g/L 79.		5 - 164	126350181			
Demeton		1020			1g/L 82.		5 - 164	126350189			
Demeton			100		Ig/L 102		6 - 150	126350194			
Demeton		1020 999			g/L 102		5 - 150	126350174			
Demeton			100		g/L 99.9		5 - 150	126350179			
Demeton		913	100		g/L 91.3		- 150	126350181			
Diazinon		924	1000	-	yL 92.4		- 150	126350189			
Diazinon		1020	1000	~2	/L 102		- 138	126350194			
Diazinon		1040	1000	-6	/L 104		- 138	126350174			
Diazinon		1170	1000) ug	/L 117		- 138	126350179			
Diazinon		1070	1000	~6	/L 107		- 138	126350181			
Malathion		1050	1000	ug	L 105	65.4		126350189			
Malathion		1030	1000	ug	L 103	49.5		126350194			
Malathion		993	1000	ug/	L 99.3	49.5 -		126350174			
Malathion		971	1000	ug/	L 97,1	49.5 -		126350179			
Malathion		890	1000	ug/	C 89.0	49.5 -		126350181			
Parathion, ethyl		855	1000	ug/l	85.5	49.5 -		126350189			
Parathion, ethyl		1030	1000	ug/I	103	56.0 -		126350194			
Parathion, ethyl		916	1000	ug/I	91.6	56.0 -		126350174			
Parathion, ethyl		878	1000	ug/L	87.8	56.0 - 1		126350179			
Parathion, ethyl		817	1000	ug/L	81.7	56.0 - 1		126350181			
Parathion, methyl		818	1000	ug/L	81,8	56.0 - 1		126350189			
Parathion, methyl		1030	1000	ug/L	103	12.6 - 1		126350194			
Parathion, methyl		847	1000	ug/L	84.7	12.6 - 1		126350174			
Parathion, methyl		742	1000	ug/L	74.2	12.6 - 1		126350179			
Parathion, methyl		641	1000	ug/L	64.1	12.6 - 19		126350181			
		627	1000	ug/L	62.7	12.6 - 19		126350189			
Parameter				1	CS Dup	12.0 - 13	4	126350194			
Azinphos-methyl (Guthion)	PrepSet	LCS	LCSD								
Demeton	1118560		511		Known	Limits%	LCS%	LCSD%			
Diazinon	1118560	345	453		1000	0.100 - 1:	55 46.3	51.1	Un		Limit%
Malathion	1118560	358	414		1000	0.100 - 10		45.3	ug/l		30.0
Parathion, cthyl	1118560	453	513		1000	0.100 - 12	5 35.8	41.4	ug/L		30.0
Parathion, methyl	1118560	496	555		1000	0.100 - 13	0 45.3	51.3	ug/L	- 14.5	30.0
- Liamon, meny	1118560	448	497		1000	0.100 - 12	2 49.6	55.5	ug/L	- 12.4	30.0
			127		1000	0.100 - 13	1 44.8	49.7	ug/L	11.2	30.0
Parameter	e			Su	rrogate			43.1	ug/L	10.4	30.0
Tributylphosphate	Sample		Reading	Known	Units	Paar	1. 1. St. 191				
Tributylphosphate			1090	2000	ug/L	Recover%	Limits%	File			
Tributylphosphate			1070	2000	ug/L	54.5 53.5	0.100 - 106	126350174			
Tributylphosphate			100	2000	ug/L	55.0	0.100 - 106	126350179			
		CCV 1		2000	ug/L	52.5	0.100 - 106	126350181			
Email III						32.3	0.100 - 106	126350189			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 27 of 31

100

2

No.

5

Printed 05/28/2024

Form rptPROJOCGN Created 12/30//2019 v1.0

Cample

-

EEL3-G

Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

Parameter

250

:

C.

5

Printed 05/28/2024

Tributylphosphate Triphenylphosphate Triphenylphosphate Triphenylphosphate Triphenylphosphate Triphenylphosphate Tributylphosphate Tributylphosphate	San, 1118:		/ 104 / 111 / 157 / 202 193 208	40 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 1	2000 ug/ 2000 ug/ 2000 ug/ 000 ug/ 000 ug/ 000 ug/1 000 ug/1	L 52.0 L 55.5 L 78.5 L 101 L 96.5	0 0.1 0.1 0.1 0.1	imits% 100 - 106 00 - 172 00 - 172 00 - 172 00 - 172 00 - 172	File 126350194 126350174 126350179 126350181 126350189 126350194		
Tributy phosphate Tripheny phosphate	11185 11185		475	20	000 ug/l 000 ug/l	23.8	0.10	0 - 106 0 - 106	126350194 126350175 126350176		
Triphenylphosphate	11185			20	00 ug/L			0 - 106	126350176		
Triphenylphosphate	11185	60 LCS	409	20		20.0		0 - 172	126350175		
Tributylphosphate	11185			200	-6/2	20.4	0.100	0 - 172	126350176		
Triphenylphosphate	22971	~~~~~				23.6		- 172	126350177		
	229715	53 Unkno	wn 0.063		-92	31.5		- 106	126350180		
Analytical Set	1120173				. ug/L	3.03	0.100	- 172	126350180		
Parameter					CCV						ASTM D7065-11
Nonylphenol		Reading	Клочл	Unit	s Recov						
Nonylphenol		180000	150000						File		
		162000	150000			70.0 - 1			126353413		
Bostor				•	IS Areas	70.0 - 1	30		126353433		
Parameter Accessed at	Sample	Type	D . (
Acenaphthene-d10-ISTD	623252	CCV	Reading			High			F .1.		
Acenaphthene-d10-ISTD	623252	CCV	909500	9095(1364000	E.		File	PrepSet	•
Phenanthrene-d10-ISTD	623252	CCV	811100	90950		1364000			26353413	623252	
Phenanthrene-d10-ISTD	623252	CCV	1462000			2193000			26353433	623252	
Acenaphthene-d10-JSTD	2297153	Unknown	1264000	- 1020		2193000			26353413	623252	
Phenanthrene-d10-ISTD	2297153	Unknown		90950		1364000			26353433	623252	
		OUNIOWI	963500	146200	00 731100	2193000			26353420	1119221	
Parameter				15	RetTime			12	6353420	1119221	
Acenaphthene-d10-ISTD	Sample	Турс	Reading	CCVIS.							
Acenaphthene-d10-ISTD	623252	CCV	7.429	7.429	M Low 7.369	High		Fil	lc	D	
Phenanthrene-d10-ISTD	623252	CCV	7.435	7.429	7.369	7.489			5353413	PrepSet	
Phenanthrene-d10-ISTD	623252	CCV	8.679	8.679	8.619	7.489			353433	623252	
Acenaphthene-d10-ISTD	the second s		8.685	8.679	8.619	8.739			353413	623252 623252	
Phenanthrene-d10-ISTD			7.435	7.429	7.369	8.739			353433	623252	
	2297153	Unknown	8.679	8.679	8.619	7.489		126	353420	1119221	
D						8.739			157400	1119221	
<u>Parameter</u>	Sample	Type	2		rogate						
4-Nonylphenol-SURR				Κποινη	Units	Recover%	Limits%				
4-Nonylphenol-SURR				25000	ug/L	112	50.0 - 130	File			
4-Nonylphenol-SURR				25000	ug/L	102	50.0 - 130		53413		
Analytical Set		1	/.0	25.3	ug/L	70.4	50.0 - 130		53433		
, marylical Set	1120962							1203	53420		

Surrogate

Email: Kilgore.ProjectManagement@spllabs.com

EPA 632

Report Page 28 of 31

EEL3-G

Eastex Environmental Lab Mark Bourgeois PO Box 1089 35 Eastex Lane Coldspring, TX 77331

1

3

5

Printed 05/28/2024

				в	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Carbaryl (Sevin)	1118551	ND	66.1	2500	ug/L			126369536			
Diuron	1118551	ND	44.4	45.0	ug/L			126369536			
				c	cv						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Carbaryl (Sevin)		1040	1000	ug/L	104	70.0 - 130		126369535			
Carbaryl (Sevin)		911	1000	ug/L	91.1	70.0 - 130		126369543			
Carbaryl (Sevin)		1050	1000	ug/L	105	70.0 - 130		126369547			
Carbaryl (Sevin)		1080	1000	ug/L	108	70.0 - 130		126369551			
Carbaryl (Sevin)		893	1000	ug/L	89.3	70.0 - 130		126369554			
Carbaryl (Sevin)		1110	1000	ug/L	111	70.0 - 130		126369555			
Carbaryl (Sevin)		1210	1000	ug/L	121	70.0 - 130		126369557			
Diuron		1020	1000	ug/L	102	70.0 - 130		126369535			
Diuron		991	1000	ug/L	99.1	70.0 - 130		126369543			
Diuron		1010	1000	ug/L	101	70.0 - 130		126369547			
Diuron		1090	1000	ug/L	109	70.0 - 130		126369551			
Diuron		860	1000	ug/L	86.0	70.0 - 130		126369554			
Diuron		1160	1000	ug/L	116	70.0 - 130		126369555			
Diuron		1180	1000	ug/L	118	70.0 - 130		126369557			
				LCS	Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Carbaryl (Sevin)	1118551	904	978		1000	17.1 - 131	90.4	97.8	ug/L	7.86	30.0
Diuron	1118551	711	775		1000	0.100 - 138	71.1	77.5	ug/L	8.61	30.0
				м	ISD				46.0	0.01	50.0
Parameter	Sample	MS	MSD	UNK	Кпочл	Limits	MS%	MSD%	Units	RPD	Limit%
Carbaryl (Sevin)	2296362	0.886	0.861	ND	1000	0.100 - 215	88.8	86.3	ug/L	2.86	30.0
Diuron	2296362	0.482	0.449	ND	1000	0.100 - 148	48.3	45,0	ug/L ug/L	2.86 7.09	30.0 50.0

Blank

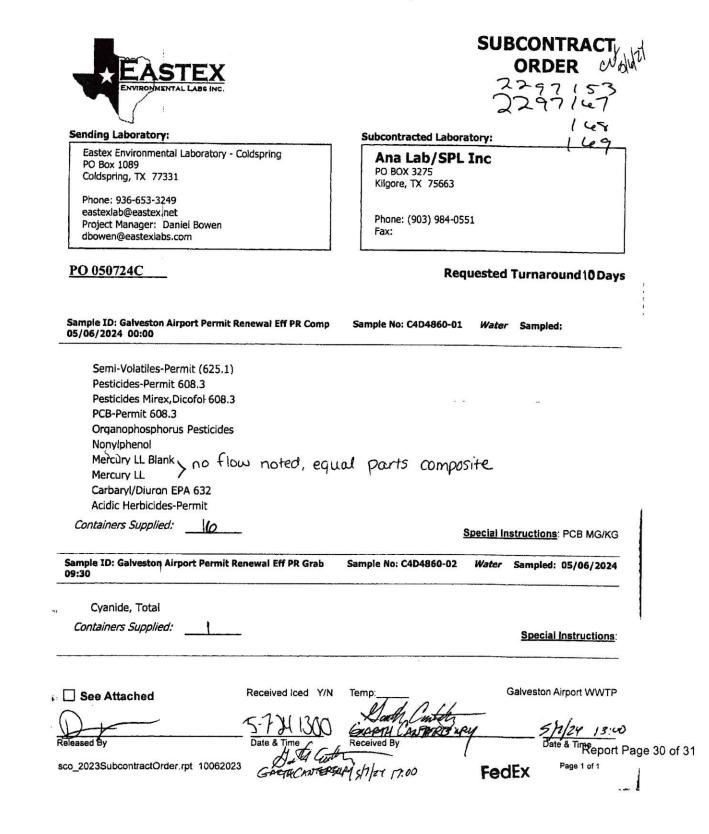
* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); CCV - Continuing Calibration Verification (same standard used to prepare the curve; typically a mid-range concentration; verifies the continued validity of the calibration curve); ICV - Initial Calibration Verification; LCS Dup -

Laboratory Control Sample Duplicate (replicate LCS; analyzed when there is insufficient sample for duplicate or MSD; quantifies accuracy and precision.); MSD - Matrix Spike Duplicate (replicate of the matrix spike; same solution and amount of target analyte added to the MS is added to a third aliquot of sample; quantifies matrix bias and precision.); Surrogate - Surrogate (mimics the analyte of interest but is unlikely to be found in environmental samples; added to analytical samples for QC purposes. **ANSI/ASOC E4 2994 Ref #4 TRADE QA Resources Guide.); CCB - Continuing Calibration Blank; AWRL/LOQ C - Ambient Water Reporting Limit/LOQ Check Std; DFTPP -GC/MS Tuning Compound; IS Areas - Internal Standard Area (The area of the internal stadard relative to a check standard.). Internal Standard is a known concentration of an analyte(s) that is not a sample component or standard that is added to the sample and standard and is used to measure the relative responses of other analytes in the sample or standard.). IS RetTime - Internal Standard that is added to the sample and standard and is used to measure the relative responses of other analytes in the same sample or standard.).

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 29 of 31

Gulf Coast Region: 2030 West Grand Parkway N Katy TX 77449

1 of 2

1102507 CoC Print Group 001 of 001

2 of 2

1102507 CoC Print Group 001 of 001

FedEx Ship Manager - Print Your Label(s)

After printing this label:

5/7/24, 1:21 PM

- Use the Print'button on this page to print your label to your laser or inkjet printer.
 Fold the printed page along the horizontal line.
 Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number. Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide, available in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's lees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Report Page 31 of 31

2 3 4

	Alternate Check In:	LAB USE ONLY	Relinquished By:	Nelliquisited by:	Dollar lists D.	Delinguished Dur									CHDHSPO	Work Order ID	Project Name:		Sampler's Name (print):		PO #	Email:	Phone#:	Attn:		Address:	Company:	REPORT TO:	\geq
			H			Field Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	O Effluent	D Sample ID	Galveston Airport WWTP		WILL WISTIN HAR							on file	City of Galveston		
		Sample Condition Acceptable:				1263110					26-240	もんとうら	262493	6 1-2-2	616910	Date T	MAL	Prese	Ker	M	0	ĩ	P	Þ		A	c	ĨŅ	
	Date	ceptable:	Kece	Rec		WW C	 WW	WW	WW	ww	3 ww	4,30 ww	20 ww	930 ww	130 ww	Time Matrix		Preservatives:	Container size:	Matrix:	C or G:	INSTRUCTIONS:	Phone#:	Attn:		Address:	Company:	INVOICE TO:	EASTEX ENVIRONM P.O. Box 1089 * Coldspring, TX 77331 (936) 653-3249 * (800) 525-0508
	*Ther	(YES	Received By and/or Checked in By	Received By:	Received by:	N N N	 2 0	× 0	× ℃	v C	N G	× ۵	× ۵	× ۵	ہ م	rix C or G	01-00				S = C	ONS:				on file	Y: SAME	×	EASTEX ENVIRONMENTAL LABORAT Nox 1089 * Coldspring, TX 77331 P.O. Box 631375 * (936) 653-3249 * (800) 525-0508 (936) 569-8879 * F
	Time	NO / (S	or Chegend			6.6										3 DO		led S=S	nL (4oz)	rinking Wa	C= Composite G= Grab					le	Ē		dspring, 9 * (800)
	Time 2.7 15			þ		7.1										рH	Field Data	C=Chilled S=Sulfuric Acid N=Nitric Acid	1-Gallion 2-1/2 Gallon 3-Quarititier 4-900mL 3- 6=125mL (4oz) 7=60mL (2 oz) 8= 40mL Vial 9=Other D- Diantin C- Chan T- Tolog 5- Statio	DW=Drinking Water WW=Wastewater	G= Grab							www.	RONN TX 7733 525-0508
	actor and														5		Data		oz) 8= 40	-Wastewat								www.eastexlabs.com	MENTA
	2.7	Temp	Į			C 169	 									Flow T	Other		mL Vial	er SO=S							70	bs.com	AL LABORA P.O. Box 631375 * (936) 569-8879 * F.
		റ് *1				610	 1	10	2	1	1	3	5	5	1	Temp #		B=Base/Caustic	4-ovumL o=zoumL L Vial 9=Other	SO=Soil/Sludge							Remarks:		BOR/ 631375 9-8879 *
	S	*Therm ID	Date	Date	Date		 ω	0 3	4,5	З	ω	00	3,4,5	3,4,5	-		Cont		DUML	• OT= Other							ŝ		• Nacog FAX (93
2 actual 0	K	Logge	169-5				G	G	q	р	P	G	P,G	P	P,S	Туре	Containers	Z≃ Zn Acetate		ther									FORY, INC. Nacogdoches, TX AX (936) 569-8951
CIIIDEI a	//	Logged In By:	}√ Time	Time	Time		 S,C	0	C	N,C	чаОн, С	H,C	ST,S,N,C	C	STC X	Pres ECC					AI	NAL	VSIS	REQ			_		
			-	ne	ne		 							×	_			TSS,	TDS,	ALK,	ee	ONE). C	LN	03				75963-1375
			día										×			NH3	N, T	ΈKΝ,	0&G,	Pher	100	DI, T	P						
	5			78	78		 					×				VOC	- 6	24.1									_		
	2-6-24	Da	eceive	eceive	eceive		 			×	×					CN Meta	als										4		White C /ellow (9ink Coj
		ē	Received Iced:	Received Iced:	Received Iced:				×									VI, N(3N, F								-		White Copy-Follows Samples Yellow Copy-Laboratory Pink Copy-Client Copy
	4			d: YES	d: YES			×								svo	C 6	25.1	Pest (08.3	P	CB,	Mir	ex			_		llows Si borato it Copy
	1424	Time	MES / N	1	1		_	×								Op 1	657	, Car	b/Diu	ron,	Her	rb 6	15						amples ry
	1		S	NO	NO		×				- 1					Non	ylph	enol											

Chain o. .stody Revision 3: 05/01/18

Eastex Environmenta, Laboratory, Inc.

Eastex
Enviror
Iment
borator
ory, Ir
õ

	Alternate Check In:	LAB USE ONLY	Relinquished By:	Kelinquisned By:	Relinquished By:						ł		-		CHDYSCOD	Work Order ID		Project Name:	Sampler's Signature:	Sampler's Name (print):		P.O. #	Email:	Phone#:	Attn:			Company: City	REPORT TO:		· .	
		Samp	T								LL HG BLANK	Eff Grab 4	Eff Grab 3	Eff Grab 2	Eff Grab1	Sample ID	Gaiveston Airport www.ir	Contra Alimont	P	" Oustin Parker						č		City of Galveston		2	EASTEX	
		Sample Condition Acceptable:										たのち	W/28/24 1200	U/28/20 1000	ndedn	Date			/	, <u> </u>											X	
	Date	Acceptable	Re	7	7									-	800	Time M		Preservatives:	Type:	Container Size:	Matrix:	C or G:	INSTRUCTIONS:	Phone#:	Attn:		Address.	Company:	INVOICE TO:	(9)	P.O. Box 1089 * Coldspring, TX 77331	1
L*			ceived By a	Received By:	Received By:	L						WW	WW	WW	WW	Matrix C or G	\square				DW	ĥ	TIONS:				- 1		iö:	36) 653-3	1089 ° C	201
hermom	-	KES I	Received By and/or Checked in By	sy:	y y		-		\vdash	 	G	n	G	G	G	r G DO		-Sodium T	Plastic G	1=Gallon 2= 6=125mL (4o	'=Drinking	C= Composite					on file	SAME		3249 * (8	Coldsprin	
eter has	Time	NO	ad in By:			-	-	-				-		-	\vdash		Fie	ST=Sodium Thiosulfate H=HCL O= Other	P= Plastic G= Glass T= Teflon S= Sterile	=1/2 Gallor z) 7=60m	Water \	e G= Grab							Ŵ	(936) 653-3249 * (800) 525-0508	A TX 7	
0.0 facto			$\left \right\rangle$											-	-	pH CI2	Field Data	H=HCL	T= Teflon	1 3=Qua	ww=Was	ab							ww.edst)508	NME 2	
ir and re	2	Te				-	\vdash		-							12 Flow		O= Othe	S= Steril	rt/Liter 4 8= 40mL \	tewater								www.eastexiabs.com	(936	P.O	
Thermometer has 0.0 factor and recorded temperature is actual temperature	L.7	Temp [°] C	Į									10.14				v Temp				1=Gailon 2=1/2 Gailon 3=Quart/Liter 4=500mL 5=250mL 6=125mL (4oz) 7=60mL (2 oz) 8= 40mL Vial 9=Other	DW=Drinking Water WW=Wastewater SO=Soil/Sludge OT= Other							Rem	OIT	(936) 569-8879 * FAX (936) 569-8951	EASTEX ENVIRONMENTAL LABORATORY, INC. pr. 0. Box 631375 * Nacogdoches, TX	
empera	ū	*The														#		pbase/Causiic		5=250r her	ludge							Remarks:		79 * FA	1375 · 1	1
ature is		*Therm ID	Dates (Date	Date											Size	Conta			루	OT= Ott									X (936	ORY	111
actua	4	Logg	18-2-96													Type	Containers	z= zn Acetate			ler) 569-8	oches,	
tempe	ľ	Logged In By:														Pres	Ĩ	œ)												×	,
rature		X	Time	Time	Time							×	×	×	×		HG	_				A	NAI	YSI	RE	QUES	TEL	2			75963-1375	
			Time V JOC								×					Bla	nk		HG								_				375	
	Ś															┝											-	-				
	5-6-24		Reci	Reco	Rec																									Pink	Whit	
	な	Date	Received Iced:	Received Iced:	Received Iced:																		-							Copy-(te Copy	
	_		Iced:	Iced:	Iced:																~~~									Pink Copy-Client Copy	White Copy-Follows Samples	
	ちとち	H	Ś	YES	YES																						-	\neg		opy	ws Sam	
	Ľ	Time	/ NO	/ NO	/ NO						-					-					_						-	-			ples	
L			<u> </u>	0	5																						_					

Francesca Findlay

From:	Cynthia Diaz <cdiaz@galvestontx.gov></cdiaz@galvestontx.gov>
Sent:	Tuesday, July 2, 2024 7:41 AM
То:	Francesca Findlay
Subject:	RE: WQ0010688002 City of Galveston
Attachments:	Municipal Discharge Renewal - englishxx.docx; Municipal TPDES and TLAP PLS Form
	(Spanish).docx; Municipal TPDES and TLAP PLS Form.docx

Cynthia Diaz, Wastewater Treatment Plant Superintendent Municipal Utilities Department P.O. Box 779 Galveston, TX 77553 | 3015 Market St. Galveston, TX 77550 D:409.797.3785 | C:409.789.4221 | F: 409.356.4007 | cdiaz@galvestontx.gov

Get social! Follow @cityofgalveston On Facebook, Twitter, & Instagram

From: Francesca Findlay <Francesca.Findlay@tceq.texas.gov>
Sent: Tuesday, June 25, 2024 9:19 AM
To: Cynthia Diaz <CDiaz@GalvestonTX.Gov>
Cc: Benjamin Lirette <BLirette@galvestontx.gov>
Subject: FW: WQ0010688002 City of Galveston

Good morning, Ms. Findlay,

Attached is the information requested. And yes I made a mistake on the flow it is 4.76 MGD. No errors on the NORI please let me know if there is anything else you need from me.

Have a Super Fantastic day!

Dear Ms. Diaz:

The attached Notice of Deficiency letter sent on June 25, 2024, requesting additional information needed to declare the application administratively complete. Please send the complete response to my attention July 9, 2024.

Thank you,

Iran Sindeag

Francesca Findlay License & Permit Specialist ARP Team | Water Quality Division 512-239-2441 Texas Commission on Environmental Quality

Please consider whether it is necessary to print this e-mail

ATTENTION: The material in this e-mail is intended only for the use of the named recipient(s) only and may contain information that is confidential, privileged, and exempt from disclosure under applicable law. If you are not an intended recipient, or an agent responsible for delivering it to an intended recipient, you have received this email in error. If you are not the intended recipient, you are hereby notified that any review, use, dissemination, forwarding, printing, copying, disclosure or distribution of this communication is strictly prohibited and may be unlawful. If you believe this message has been sent to you in error, please notify the sender by replying to this transmission and immediately delete and/or destroy this email and its attachments and all copies thereof.