

This file contains the following documents:

- 1. Summary of application (in plain language)
 - English
 - Alternative Language (Spanish)
- 2. First notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
 - English
 - Alternative Language (Spanish)
- 3. Second notice (NAPD-Notice of Preliminary Decision)
 - English
 - Alternative Language (Spanish)
- 4. Application materials
- 5. Draft permit
- 6. Technical summary or fact sheet

Este archivo contiene los siguientes documentos:

- 1. Resumen de la solicitud (en lenguaje sencillo)
 - Inglés
 - Idioma alternativo (español)
- 2. Primer aviso (NORI, Aviso de Recepción de Solicitud e Intención de Obtener un Permiso)
 - Inglés
 - Idioma alternativo (español)
- 3. Segundo aviso (NAPD, Aviso de Decisión Preliminar)
 - Inglés
 - Idioma alternativo (español)
- 4. Materiales de la solicitud
- 5. Proyecto de permiso
- 6. Resumen técnico u hoja de datos

TCEQ

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

PLAIN LANGUAGE SUMMARY FOR TPDES OR TLAP PERMIT APPLICATIONS

Plain Language Summary Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary as required by <u>Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H</u>. Applicants may modify the template as necessary to accurately describe their facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how the applicant will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTIC WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

City of El Campo (CN600539423) operates El Campo Wastewater Treatment Plant (RN101607745), a domestic wastewater treatment facility. The facility is located at 201 Thompson Street, in El Campo, Wharton County, Texas 77437. This application is for a renewal to discharge an average flow of 2.6 MGD of treated domestic wastewater.

Discharges from the facility are expected to contain carbonaceous biochemical oxygen demand, total suspended solids, and ammonia nitrogen. Domestic wastewater is treated by one of two activated sludge treatment trains containing an aeration basin, final clarifier, and sludge digester. From a final clarifier, treated wastewater flows to the chlorine contact basin where it undergoes disinfection. Finally, the disinfected effluent gravity flows to a discharge point on the Tres Palacios River adjacent to the facility. The digested sludge is dewatered by a belt filter press and transported by a licensed hauler to a permitted landfill for disposal.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES DOMESTICAS /**AGUAS PLUVIALES**

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

Ciudad de El Campo (CN600539423) opera la Planta de Tratamiento de Aguas Residuales de el Ciudad de El Campo (RN101607745), un instalación de tratamiento de aguas residuales domésticas. La instalación está ubicada en 201 Thompson Street, en El Campo, Condado de Wharton, Texas 77437. Esta solicitud es para una renovación para descargar un flujo promedio de 2.6 MGD de aguas residuales domésticas tratadas.

Se espera que las descargas de la instalación contengan demanda bioquímica de oxígeno carbonoso, sólidos suspendidos totales y nitrógeno amoniacal. Las aguas residuales domésticas. están tratado por uno de los dos trenes de tratamiento de lodos activados que contiene una cuenca de aireación, un clarificador final y un digestor de lodos. Desde un clarificador final, las aguas residuales tratadas fluyen hasta el depósito de contacto con el cloro donde se someten a una desinfección. Finalmente, el efluente desinfectado por gravedad fluye hasta un punto de descarga en el río Tres Palacios adyacente a la instalación. El lodo digerido se deshidrata mediante un filtro prensa de banda y es transportado por un transportista autorizado a un vertedero autorizado para su eliminación.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL.

PERMIT NO. WQ0010844001

APPLICATION. City of El Campo, 315 East Jackson Street, El Campo, Texas 77437, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010844001 (EPA I.D. No. TX0021474) to authorize the discharge of treated wastewater at a volume not to exceed an annual average flow of 2,628,000 gallons per day. The domestic wastewater treatment facility is located at 201 Thompson Street, in the city of El Campo, in Wharton County, Texas 77437. The discharge route is from the plant site directly to Tres Palacios Creek Above Tidal. TCEQ received this application on July 29, 2024. The permit application will be available for viewing and copying at City of El Campo City Hall, 315 East Jackson Street, El Campo, in Wharton County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-96.258333,29.184444&level=18

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public

interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of El Campo at the address stated above or by calling Ms. Courtney Sladek, City Manager, at 979-541-5004.

Issuance Date: August 15, 2024

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ0010844001

SOLICITUD. La Ciudad de El Campo, 201 Thompson Street, El Campo, Texas 77437, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0010844001 (EPA I.D. No. TX0021474) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio diario de 2,628,000 galones por día. La planta está ubicada en 201 Thompson Street, El Campo, Texas 77437 en el Condado de Wharton, Texas. La ruta de descarga es del sitio de la planta directamente al arroyo Tres Palacios Above Tidal. La TCEQ recibió esta solicitud el 29 julio 2024. La solicitud para el permiso estará disponible para leerla y copiarla en Ayuntamiento de la Ciudad de El Campo, 315 East Jackson Street, El Campo, en el Condado de Wharton, Texas, antes de la fecha de publicación de este aviso en el periódico. La aplicación, incluidas las actualizaciones y los avisos asociados están disponibles electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-96.258333,29.184444&level=18

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO/REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO.

Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas

designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía http://www14.tceq.texas.gov/epic/eComment/o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional del La Ciudad de El Campo a la dirección indicada arriba o llamando a Ms. Courtney Sladek, City Manager al 979-541-5004.

Fecha de emission: 15 de agosto de 2024

Texas Commission on Environmental Quality

NOTICE OF APPLICATION AND PRELIMINARY DECISION FOR TPDES PERMIT FOR MUNICIPAL WASTEWATER

RENEWAL

PERMIT NO. WQ0010844001

APPLICATION AND PRELIMINARY DECISION. City of El Campo, 315 East Jackson Street, El Campo, Texas 77437, has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010844001, which authorizes the discharge of treated domestic wastewater at an annual average flow not to exceed 2,628,000 gallons per day. TCEQ received this application on July 29, 2024.

The facility is located at 201 Thompson Street, in the City of El Campo, Wharton County, Texas 77437. The treated effluent is discharged directly to Tres Palacios Creek Above Tidal in Segment No. 1502 of the Colorado-Lavaca Coastal Basin. The designated uses for Segment No. 1502 are primary contact recreation and high aquatic life use. This link to an electronic map of the site or facility's general location is provided as a public courtesy and is not part of the application or notice. For the exact location, refer to the application. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-96.258333,29.184444&level=18

The TCEQ Executive Director has completed the technical review of the application and prepared a draft permit. The draft permit, if approved, would establish the conditions under which the facility must operate. The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The permit application, Executive Director's preliminary decision, and draft permit are available for viewing and copying at City of El Campo City Hall, 315 East Jackson Street, El Campo, in Wharton County, Texas. The application, including any updates, and associated notices are available electronically at the following webpage:

https://www.tceq.texas.gov/permitting/wastewater/tpdes- applications.

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at https://www.tceq.texas.gov/permitting/wastewater/plain-language-summaries-and-public-notices. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/plain-language-summaries-and-public-notices.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting about this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ holds a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting a contested case hearing or reconsideration of the Executive Director's decision. A contested case hearing is a legal proceeding similar to a civil trial in a state district court. TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period; and the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period. TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

EXECUTIVE DIRECTOR ACTION. The Executive Director may issue final approval of the application unless a timely contested case hearing request or request for reconsideration is filed. If a timely hearing request or request for reconsideration is filed, the Executive Director will not issue final approval of the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

All written public comments and public meeting requests must be submitted to the Office of the Chief Clerk, MC 105, Texas Commission on Environmental Quality,

P.O. Box 13087, Austin, TX 78711-3087 or electronically at www.tceq.texas.gov/goto/comment within 30 days from the date of newspaper publication of this notice.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. Public comments and requests must be submitted either electronically at www.tceq.texas.gov/goto/comment, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC 105, P.O. Box 13087, Austin, Texas 78711-3087. Any personal information you submit to the TCEQ will become part of the agency's record; this includes email addresses. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of El Campo at the address stated above or by calling Ms. Courtney Sladek, City Manager, at 979-541-5004.

Issuance Date: September 30, 2025

Comisión De Calidad Ambiental Del Estado De Texas

AVISO DE LA SOLICITUD Y DECISIÓN PRELIMINAR PARA EL PERMISO DEL SISTEMA DE ELIMINACION DE DESCARGAS DE CONTAMINANTES DE TEXAS (TPDES) PARA AGUAS RESIDUALES INDUSTRIALES

RENOVACIÓN

PERMISO NO. WQ0010844001

SOLICITUD Y DECISIÓN PRELIMINAR. La Ciudad de El Campo, 315 East Jackson Street, El Campo, Texas 77437 ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) Permiso n.º WQ0010844001 una renovación para autorizar la descarga de aguas residuales domésticas tratadas con un caudal medio anual que no supere los 2,628,000 galones por día. La TCEQ recibió esta solicitud el 29 de julio de 2024.

La planta está ubicada en 201 Thompson Street, El Campo, Texas, en el Condado de Wharton, Texas 77437. El efluente tratado es descargado directamente al Arroyo Tres Palacios por encima de la marea en el segmento n.º 1502 de la Cuenca Costera Colorado-Lavaca. Los usos designados para el Segmento No. 1502 son la recreación de contacto primario y el uso intensivo de la vida acuática. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-96.258333,29.184444&level=18

El Director Ejecutivo de la TCEQ ha completado la revisión técnica de la solicitud y ha preparado un borrador del permiso. El borrador del permiso, si es aprobado, establecería las condiciones bajo las cuales la instalación debe operar. El Director Ejecutivo ha tomado una decisión preliminar que si este permiso es emitido, cumple con todos los requisitos normativos y legales. La solicitud del permiso, la decisión preliminar del Director Ejecutivo y el borrador del permiso están disponibles para leer y copiar en el Ayuntamiento de El Campo, ubicado en 315 East Jackson Street, El Campo, Condado de Wharton, Texas. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pnding-permits/tpdes-applications.

AVISO DE IDIOMA ALTERNATIVO. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/plain-language-summaries-and-public-notices.

COMENTARIO PUBLICO / REUNION PUBLICA. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD PARA UNA AUDIENCIA DE CASO IMPUGNADO. Después de la fecha límite para los comentarios públicos, el director ejecutivo considerará los comentarios y preparará una respuesta a todos los comentarios públicos relevantes y materiales, o significativos. La respuesta a los comentarios, junto con la decisión del director ejecutivo sobre la solicitud, se enviará por correo a todos los que enviaron comentarios públicos o que solicitaron estar en una lista de correo para esta solicitud. Si se reciben comentarios, el correo también proporcionará instrucciones para solicitar una audiencia de caso impugnado o reconsiderar la decisión del director ejecutivo. Una audiencia de caso disputado es un procedimiento legal similar a un juicio civil en un tribunal de distrito estatal.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general: una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión.

La Comisión otorgará solamente una audiencia administrativa de lo contencioso sobre los hechos reales disputados del caso que son pertinentes y esenciales para la decisión de la Comisión sobre la solicitud. Además, la Comisión sólo otorgará una audiencia administrativa de lo contencioso sobre los asuntos que fueron presentados antes del plazo de vencimiento y que no fueron retirados posteriormente. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso para descargar aguas residuales sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

ACCIÓN DEL DIRECTOR EJECUTIVO. El Director Ejecutivo puede emitir la aprobación final de la solicitud a menos que se presente una solicitud de audiencia de caso impugnado oportunamente o una solicitud de reconsideración. Si se presenta una solicitud de audiencia oportuna o una solicitud de reconsideración, el Director Ejecutivo no emitirá la aprobación final

del permiso y enviará la solicitud y la petición a los Comisionados de la TCEQ para su consideración en una reunión programada de la Comisión.

LISTA DE CORREO. Si envía comentarios públicos, una solicitud de una audiencia de caso impugnado o una reconsideración de la decisión del Director Ejecutivo, se le agregará a la lista de correo para que esta solicitud reciba avisos públicos futuros enviadas por correo por la Oficina del Secretario Oficial. Además, puede solicitar ser colocado en: (1) la lista de correo permanente para un nombre de solicitante específico y número de permiso; y/o (2) la lista de correo para un condado específico. Para ser colocado en la lista de correo permanente y / o del condado, especifique claramente qué lista(s) y envíe su solicitud a la Oficina del Secretario Oficial de la TCEQ a la dirección a continuación.

Todos los comentarios públicos escritos y las solicitudes de reunión pública deben enviarse a la Oficina del Secretario Oficial, MC-105, TCEQ, P.O. Box 13087, Austin, TX 78711-3087 o electrónicamente a https://www14.tceq.texas.gov/epic/eComment/ dentro de los 30 días a partir de la fecha de publicación de este aviso en el periódico.

INFORMACIÓN DISPONIBLE EN LÍNEA. Para obtener detalles sobre el estado de la solicitud, visite la Base de Datos Integrada de los Comisionados en www.tceq.texas.gov/goto/cid. Busque en la base de datos utilizando el número de permiso para esta solicitud, que se proporciona en la parte superior de este aviso.

CONTACTOS E INFORMACIÓN DE LA AGENCIA. Los comentarios y solicitudes públicas deben enviarse electrónicamente a https://www14.tceq.texas.gov/epic/eComment/, o por escrito a Comisión de Calidad Ambiental de Texas, Oficina del Secretario Oficial, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Cualquier información personal que envíe a al TCEQ pasará a formar parte del registro de la agencia; esto incluye las direcciones de correo electrónico. Para obtener más información sobre esta solicitud de permiso o el proceso de permisos, llame al Programa de Educación Pública de la TCEQ, sin cargo, al 1-800-687-4040 o visite su sitio web en www.tceq.texas.gov/goto/pep. Si desea información en español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional de la Ciudad de El Campo, Texas, a la dirección indicada arriba o llamando a Sra./Srta. Courtney Sladek, Administradora de la Ciudad, al 979-541-5004.

Fecha de emission: el 30 de septiembre de 2025

Strand Associates, Inc.

1906 Niebuhr Street
Brenham, TX 77833
(P) 979.836.7937
www.strand.com

July 26, 2024

Applications Review and Processing Team Texas Commission on Environmental Quality 12100 Park 35 Circle, Building F, Room 2101 Austin, TX 78753

Re:

2024 El Campo Wastewater Treatment Plants (WWTP) Permit Renewal Texas Pollutant Discharge Elimination System Permit No. WQ0010844-001 City of El Campo, Texas (City)

To Whom It May Concern:

Enclosed are one original and three copies of the above-referenced WWTP permit renewal application documents. An application and postage fee in the amount of \$2,015.00 for the WWTP has been sent by the City under separate cover to the Texas Commission on Environmental Quality (TCEQ). A copy of the check is included with the enclosed application.

The enclosed application documents are being submitted for the TCEQ's consideration due to the expiration of the City's WWTP discharge permit in January 2025.

Please do not hesitate to call 979-836-7937, should there be any questions.

Sincerely,

Much Rudold

Mark A. Rudolph, P.E.

Enclosures

c:

Jerry Lewis, City of El Campo

TBPE No. F-8405 TBPLS No. 10030000

THE TONMENTAL OUR

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST

Complete and submit this checklist with the application.

APPLICANT	NAME:	City o	of El	Campo

PERMIT NUMBER (If new, leave blank): WQ00 10844-001

Indicate if each of the following items is included in your application.

	Y	IN		Y	N
Administrative Report 1.0	\boxtimes		Original USGS Map		
Administrative Report 1.1		\boxtimes	Affected Landowners Map		\boxtimes
SPIF	\boxtimes		Landowner Disk or Labels		\boxtimes
Core Data Form	\boxtimes		Buffer Zone Map		\boxtimes
Public Involvement Plan Form		\boxtimes	Flow Diagram		
Technical Report 1.0	\boxtimes		Site Drawing		
Technical Report 1.1			Original Photographs		\boxtimes
Worksheet 2.0		\boxtimes	Design Calculations		\boxtimes
Worksheet 2.1		\boxtimes	Solids Management Plan		\boxtimes
Worksheet 3.0		\boxtimes	Water Balance		\boxtimes
Worksheet 3.1		\boxtimes			
Worksheet 3.2		\boxtimes			
Worksheet 3.3		\boxtimes			
Worksheet 4.0	\boxtimes				
Worksheet 5.0	\boxtimes				
Worksheet 6.0	\boxtimes				
Worksheet 7.0		\boxtimes			

For TCEQ Use Only	
Segment Number	County
Expiration Date	Region
Permit Number	

THE THE PARTY OF T

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION ADMINISTRATIVE REPORT 1.0

For any questions about this form, please contact the Applications Review and Processing Team at 512-239-4671.

Section 1. Application Fees (Instructions Page 26)

Indicate the amount submitted for the application fee (check only one).

Flow	New/Major Amendment	Renewal
< 0.05 MGD	\$350.00 □	\$315.00 □
≥0.05 but <0.10 MGD	\$550.00 □	\$515.00 □
≥0.10 but <0.25 MGD	\$850.00 □	\$815.00 □
≥0.25 but <0.50 MGD	\$1,250.00 □	\$1,215.00 □
≥0.50 but <1.0 MGD	\$1,650.00 □	\$1,615.00
≥1.0 MGD	\$2,050.00 □	\$2,015.00

Minor Amendment (for any flow) \$150.00 □

Pavment	Inform	ation
Pavmem	шиогш	auon.

Mailed Check/Money Order Number: Click to enter text.

Check/Money Order Amount: \$2,015.00

Name Printed on Check: City of El Campo

EPAY Voucher Number: Click to enter text.

Copy of Payment Voucher enclosed? Yes \square

Section 2. Type of Application (Instructions Page 26)

a.	Che	ck the box next to the appropriate authorization type.
	\boxtimes	Publicly-Owned Domestic Wastewater
		Privately-Owned Domestic Wastewater
		Conventional Wastewater Treatment
b.	Che	ck the box next to the appropriate facility status.

□ Inactive

c.	Che	eck the box next to the appropria	te permit type	e.	
	\boxtimes	TPDES Permit			
		TLAP			
		TPDES Permit with TLAP compo	nent		
		Subsurface Area Drip Dispersal	System (SAD)	DS)	
d.	Che	eck the box next to the appropria	te application	typ	e
		New			
		Major Amendment with Renewa	l		Minor Amendment <u>with</u> Renewal
		Major Amendment without Rene	ewal		Minor Amendment <u>without</u> Renewal
	\boxtimes	Renewal without changes			Minor Modification of permit
e.	For	amendments or modifications, d	escribe the p	ropo	sed changes: <u>N/A</u>
f.	For	existing permits:			
	Per	mit Number: WQ00 <u>10844-001</u>			
	EP/	A I.D. (TPDES only): TX <u>0021474</u>			
	Exp	iration Date: <u>January 24, 2025</u>			
S _c	oti	on 2 Facility Oyman (Ar	anligant) a	nd	Co Applicant Information
36	CUI	on 3. Facility Owner (Ap (Instructions Page		IIu	Co-Applicant Information
A.	The	e owner of the facility must appl	ly for the per	mit.	
	Wh	at is the Legal Name of the entity	(applicant) a	pplyi	ing for this permit?
	City	of El Campo			
		e legal name must be spelled exac legal documents forming the enti		ith th	ne Texas Secretary of State, County, or in
					, what is the Customer Number (CN)? http://www15.tceq.texas.gov/crpub/
		CN: <u>600539423</u>			
		at is the name and title of the per cutive official meeting signatory i			pplication? The person must be an <i>OTAC § 305.44</i> .
		Prefix: <u>Mr.</u>	Last Name, F	irst	Name: <u>Bustamante, Eugene</u>
		Title: <u>Mayor</u>	Credential:		
D	Ca	anniant information Complete	this sostion	onler	if another nerson or entity is required

B. Co-applicant information. Complete this section only if another person or entity is required to apply as a co-permittee.

What is the Legal Name of the co-applicant applying for this permit?

N/A

(The legal name must be spelled exactly as filed with the TX SOS, with the County, or in the legal documents forming the entity.)

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at: http://www15.tceq.texas.gov/crpub/

CN: <u>N/A</u>

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix: N/A Last Name, First Name: N/A

Title: N/A Credential: N/A

Provide a brief description of the need for a co-permittee: N/A

C. Core Data Form

Complete the Core Data Form for each customer and include as an attachment. If the customer type selected on the Core Data Form is **Individual**, complete **Attachment 1** of Administrative Report 1.0. See Exhibit A

Section 4. Application Contact Information (Instructions Page 27)

This is the person(s) TCEQ will contact if additional information is needed about this application. Provide a contact for administrative questions and technical questions.

A. Prefix: Mrs. Last Name, First Name: Sladek, Courtney

Title: City Manager Credential: Click to enter text.

Organization Name: <u>City of El Campo</u>

Mailing Address: 315 E. Jackson Street City, State, Zip Code: El Campo, TX 77437

Phone No.: 979-541-5009 E-mail Address: csladek@cityofelcampo.org

Check one or both:

B. Prefix: Mr. Last Name, First Name: Rudolph, Mark

Title: <u>Project Manager</u> Credential: <u>P.E.</u>

Organization Name: Strand Associates, Inc

Mailing Address: 1906 Niebuhr Street City, State, Zip Code: Brenham, TX 77833

Phone No.: 979-836-7937 E-mail Address: mark.rudolph@strand.com

Check one or both: Administrative Contact Machine Technical Contact

Section 5. Permit Contact Information (Instructions Page 27)

Provide the names and contact information for two individuals that can be contacted throughout the permit term.

A. Prefix: Mrs. Last Name, First Name: Sladek, Courtney

Title: <u>City Manager</u> Credential: Click to enter text.

Organization Name: City of El Campo

Mailing Address: 315 E. Jackson Street City, State, Zip Code: EL Campo, TX 77437

Phone No.: <u>979-541-5009</u> E-mail Address: <u>csladek@cityofelcampo.org</u>

B. Prefix: Mr. Last Name, First Name: Lewis, Jerry

Title: <u>Director of Utilities</u> Credential: Click to enter text.

Organization Name: City of El Campo

Mailing Address: 618 E Monseratte Street City, State, Zip Code: El Campo, TX 77437

Phone No.: <u>979-541-5075</u> E-mail Address: <u>jlewis@cityofelcampo.org</u>

Section 6. Billing Contact Information (Instructions Page 27)

The permittee is responsible for paying the annual fee. The annual fee will be assessed to permits *in effect on September 1 of each year*. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (using form TCEQ-20029).

Prefix: Mrs. Last Name, First Name: Sladek, Courtney

Title: <u>City Manager</u> Credential: Click to enter text.

Organization Name: City of El Campo

Mailing Address: 315 E. Jackson Street City, State, Zip Code: El Campo, TX 77437

Phone No.: <u>979-541-5009</u> E-mail Address: <u>csladek@cityofelcampo.org</u>

Section 7. DMR/MER Contact Information (Instructions Page 27)

Provide the name and complete mailing address of the person delegated to receive and submit Discharge Monitoring Reports (DMR) (EPA 3320-1) or maintain Monthly Effluent Reports (MER).

Prefix: Ms. Last Name, First Name: Sladek, Courtney

Title: <u>City Manager</u> Credential: <u>Click to enter text.</u>

Organization Name: City of El Campo

Mailing Address: 315 East Jackson Street City, State, Zip Code: El Campo, TX, 77437

Phone No.: 979-541-5004 E-mail Address: csladek@cityofelcampo.org

Section 8. Public Notice Information (Instructions Page 27)

A. Individual Publishing the Notices

Prefix: Ms. Last Name, First Name: Sladek, Courtney

Title: <u>City Manager</u> Credential: Click to enter text.

Organization Name: <u>City of El Campo</u>

Mailing Address: 315 East Jackson Street City, State, Zip Code: El Campo, TX, 77437

Phone No.: 979-541-5004 E-mail Address: csladek@cityofelcampo.org

		ethod for Receiving Notice of Receipt and Intent to Obtain a Water Quality Permit ackage						
	Inc	licate by a check mark the preferred method for receiving the first notice and instructions:						
	\boxtimes	E-mail Address						
		Fax						
	\boxtimes	Regular Mail						
C.	Co	ntact permit to be listed in the Notices						
	Pre	efix: <u>Ms.</u> Last Name, First Name: <u>Sladek, Courtney</u>						
	Tit	le: <u>City Manager</u> Credential: Click to enter text.						
	Or	ganization Name: <u>City of El Campo</u>						
	Ma	iling Address: 315 East Jackson Street City, State, Zip Code: El Campo, TX, 77437						
	Ph	one No.: <u>979-541-5004</u> E-mail Address: <u>csladek@cityofelcampo.org</u>						
D.	Pu	blic Viewing Information						
	•	the facility or outfall is located in more than one county, a public viewing place for each unty must be provided.						
	Pu	blic building name: <u>City Hall</u>						
	Location within the building: <u>N/A</u>							
	Ph	ysical Address of Building: <u>315 East Jackson Street</u>						
	Cit	y: <u>El Campo</u> County: <u>Wharton</u>						
	Co	ntact (Last Name, First Name): <u>Sladek, Courtney</u>						
	Ph	one No.: <u>979-541-5004</u> Ext.: Click to enter text.						
E.	Bil	ingual Notice Requirements						
		is information is required for new, major amendment, minor amendment or minor odification, and renewal applications.						
	be	is section of the application is only used to determine if alternative language notices will needed. Complete instructions on publishing the alternative language notices will be in ur public notice package.						
	ob	ase call the bilingual/ESL coordinator at the nearest elementary and middle schools and tain the following information to determine whether an alternative language notices are quired.						
	1.	Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility?						
		⊠ Yes □ No						
		If no , publication of an alternative language notice is not required; skip to Section 9 below.						
	2.	Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school?						

No

 \boxtimes

Yes

	3.	Do the locatio	students a n?	it these	e schools a	ttend	a bilingua	l educa	tion prog	gram a	t another	
			Yes	\boxtimes	No							
	4.		the school out of thi							gram l	out the school has	
		\boxtimes	Yes		No							
	5.		nswer is y ed. Which l	_							tive language are	
F.	Pla	in Lang	guage Sum	mary 7	Template							
	Co	mplete	the Plain L	anguag	ge Summar	у (ТСЕ	EQ Form 2	20972) a	and inclu	de as a	an attachment.	
	At	tachme	nt: <u>See Exh</u>	<u>ibit J</u>								
G.	Pu	blic Inv	olvement	Plan Fo	orm							
	_					Form	(TCEO Fo	rm 209)60) for e	ach ap	plication for a	
		-	it or majo							_	-	
	At	tachme	nt: <u>N/A</u>									
									- 0			
Se	cti	on 9.			entity ar	ıd Pe	rmitted	l Site	Inform	ation	(Instructions	
_	TC .	1	Page 2		. 11 mc		. 1 . 1	D 1	. 15	NT		ı
Α.			is currenti LN <u>1016077</u>		ated by 1C	.EQ, pi	oviae tne	Reguia	itea Entit	y Num	iber (RN) issued to	
			TCEQ's Co				/www15.t	tceq.tex	as.gov/c	rpub/	to determine if	
B.	Na	me of p	roject or s	ite (the	name kno	own by	the com	nunity	where lo	cated):		
	<u>Cit</u>	y of El C	ampo Wast	ewater '	Treatment 1	Facility						
C.	Ov	vner of	treatment	facility:	City of El	<u>Campo</u>						
	Ow	vnership	of Facility	y: 🖂	Public		Private		Both		Federal	
D.	Ow	vner of l	land where	treatn	nent facilit	y is or	will be:					
	Pre	efix: N/A	A		Last	Name	, First Na	me: <u>Cit</u> y	of El Car	<u>npo</u>		
	Tit	le: N/A			Cred	dential	: N/A					
	Or	ganizati	ion Name:	City of 1	El Campo							
		Maili	ng Addres	s: <u>315 E</u>	ast Jackson	Street	City,	State,	Zip Code	: El Car	mpo, TX 77437	
	Ph	one No.	: <u>979-541-5</u>	000	E-n	nail Ad	ldress: N/	Ά				
			lowner is n						or co-ap	plican	t, attach a lease	
		Attach	ment: N/A									

F.

	Prefix: N/A	Last Name, First Name: N/A
	Title: N/A	Credential: N/A
	Organization Name: N/A	
	Mailing Address: N/A	City, State, Zip Code: N/A
	Phone No.: N/A	E-mail Address: N/A
	If the landowner is not the same agreement or deed recorded eas	e person as the facility owner or co-applicant, attach a lease sement. See instructions.
	Attachment: N/A	
F.	Owner sewage sludge disposal s property owned or controlled by	ite (if authorization is requested for sludge disposal on the applicant)::
	Prefix: N/A	Last Name, First Name: N/A
	Title: N/A	Credential: N/A
	Organization Name: N/A	
	Mailing Address: N/A	City, State, Zip Code: N/A
	Phone No.: N/A	E-mail Address: N/A
	If the landowner is not the same agreement or deed recorded eas	e person as the facility owner or co-applicant, attach a lease sement. See instructions.
	Attachment: N/A	
	Attachment: N/A	
Se		ge Information (Instructions Page 31)
	ection 10. TPDES Dischar	ge Information (Instructions Page 31) lity location in the existing permit accurate?
	ection 10. TPDES Dischar	
	Is the wastewater treatment faci Yes No No If no, or a new permit application	-
	ection 10. TPDES Dischar Is the wastewater treatment faci Yes No	lity location in the existing permit accurate?
	Is the wastewater treatment faci Yes No No If no, or a new permit application	lity location in the existing permit accurate?
A.	Is the wastewater treatment faci	lity location in the existing permit accurate?
A.	Is the wastewater treatment faci	lity location in the existing permit accurate? on, please give an accurate description:
A.	Is the wastewater treatment faci Yes No If no, or a new permit application N/A Are the point(s) of discharge and Yes No If no, or a new or amendment propoint of discharge and the discharge	lity location in the existing permit accurate? on, please give an accurate description:
A.	Is the wastewater treatment faci Yes No If no, or a new permit application N/A Are the point(s) of discharge and Yes No If no, or a new or amendment processor of the point of the poin	on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the
A.	Is the wastewater treatment facion N/A Are the point(s) of discharge and Signature N/A If no, or a new or amendment proposed to the discharge and the dis	on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the
A.	Is the wastewater treatment faci Yes No If no, or a new permit application in the point (s) of discharge and in the point of discharge and the discharge and the discharge and the discharge in the point of discharge in	on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the harge route to the nearest classified segment as defined in 30
A.	Is the wastewater treatment faci Yes No If no, or a new permit application in the point (s) of discharge and wastewater treatment facion in the point of discharge and the discharge and the discharge and the discharge and the discharge in the point of discharge and the discharge and the discharge in the point of discharge and the discharge and the discharge and the discharge in the point of discharge	on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the harge route to the nearest classified segment as defined in 30 fel Campo
A.B.	Is the wastewater treatment faci Yes No If no, or a new permit application in the point (s) of discharge and in the point of discharge and the discharge in the point of discharge and the dis	on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the harge route to the nearest classified segment as defined in 30 s/are located: Wharton
A.B.	Is the wastewater treatment faci Yes No If no, or a new permit application in the point (s) of discharge and in the point of discharge and the discharge in the point of discharge and the dis	on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the narge route to the nearest classified segment as defined in 30 s/are located: Wharton discharge to a city, county, or state highway right-of-way, or
A.B.	Is the wastewater treatment faci	on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the narge route to the nearest classified segment as defined in 30 s/are located: Wharton discharge to a city, county, or state highway right-of-way, or

E. Owner of effluent disposal site:

	If yes , indicate by a check mark if:
	\square Authorization granted \square Authorization pending
	For new and amendment applications, provide copies of letters that show proof of contact and the approval letter upon receipt.
	Attachment: N/A
D.	For all applications involving an average daily discharge of 5 MGD or more, provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge: N/A
Se	ection 11. TLAP Disposal Information (Instructions Page 32)
	For TLAPs, is the location of the effluent disposal site in the existing permit accurate?
А.	Yes No
	If no, or a new or amendment permit application , provide an accurate description of the
	disposal site location:
	N/A
В.	City nearest the disposal site: N/A
	County in which the disposal site is located: N/A
	For TLAPs , describe the routing of effluent from the treatment facility to the disposal site:
	N/A
F.,	For TLAPs , please identify the nearest watercourse to the disposal site to which rainfall
	runoff might flow if not contained: N/A
	ction 12. Miscellaneous Information (Instructions Page 32)
Α.	Is the facility located on or does the treated effluent cross American Indian Land?
	□ Yes ⊠ No
B.	If the existing permit contains an onsite sludge disposal authorization, is the location of the sewage sludge disposal site in the existing permit accurate?
	□ Yes □ No ⊠ Not Applicable
	If No, or if a new onsite sludge disposal authorization is being requested in this permit application, provide an accurate location description of the sewage sludge disposal site.
	N/A

C.	Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?
	⊠ Yes □ No
	If yes, list each person formerly employed by the TCEQ who represented your company and was paid for service regarding the application: Mark Rudolph – former TCEQ intern
D.	Do you owe any fees to the TCEQ?
	□ Yes ⊠ No
	If yes , provide the following information:
	Account number: N/A
	Amount past due: N/A
E.	Do you owe any penalties to the TCEQ?
	□ Yes ⊠ No
	If yes , please provide the following information:
	Enforcement order number: N/A
	Amount past due: N/A
Se	ection 13. Attachments (Instructions Page 33)
Inc	dicate which attachments are included with the Administrative Report. Check all that apply:
	Lease agreement or deed recorded easement, if the land where the treatment facility is located or the effluent disposal site are not owned by the applicant or co-applicant.
\boxtimes	Original full-size USGS Topographic Map with the following information:
	 Applicant's property boundary Treatment facility boundary Labeled point of discharge for each discharge point (TPDES only) Highlighted discharge route for each discharge point (TPDES only) Onsite sewage sludge disposal site (if applicable) Effluent disposal site boundaries (TLAP only) New and future construction (if applicable) 1 mile radius information 3 miles downstream information (TPDES only) All ponds.
	Attachment 1 for Individuals as co-applicants
	Other Attachments. Please specify: Click to enter text.

Section 14. Signature Page (Instructions Page 34)

Signatory name (typed or printed): Eugene Bustamante

Subscribed and Sworn to before me by the said

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: WQ0010844-001

Applicant: <u>City of El Campo</u>

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory title: <u>Mayor</u>	
Signature:	Date: 67/16/2024
(Use blue ink)	
	0 0

day of

Karly Fublic Andla

My commission expires on the

County, Texas

on this

KAYLEE KOUDELA My Comm. Expires 03-09-2025

[SEAL]

DOMESTIC WASTEWATER PERMIT APPLICATION ADMINISTRATIVE REPORT 1.0

The following information is required for new and amendment applications.

A.

B.

C.

D.

E.

Section 1. Affected Landowner Information (Instructions Page 36)

	cate by a check mark that the landowners map or drawing, with scale, includes the owing information, as applicable:
	The applicant's property boundaries
	The facility site boundaries within the applicant's property boundaries
	The distance the buffer zone falls into adjacent properties and the property boundaries of the landowners located within the buffer zone
	The property boundaries of all landowners surrounding the applicant's property (Note: if the application is a major amendment for a lignite mine, the map must include the property boundaries of all landowners adjacent to the new facility (ponds).)
	The point(s) of discharge and highlighted discharge route(s) clearly shown for one mile downstream
	The property boundaries of the landowners located on both sides of the discharge route for one full stream mile downstream of the point of discharge
	The property boundaries of the landowners along the watercourse for a one-half mile radius from the point of discharge if the point of discharge is into a lake, bay, estuary, or affected by tides
	The boundaries of the effluent disposal site (for example, irrigation area or subsurface drainfield site) and all evaporation/holding ponds within the applicant's property
	The property boundaries of all landowners surrounding the effluent disposal site
	The boundaries of the sludge land application site (for land application of sewage sludge for beneficial use) and the property boundaries of landowners surrounding the applicant's property boundaries where the sewage sludge land application site is located
	The property boundaries of landowners within one-half mile in all directions from the applicant's property boundaries where the sewage sludge disposal site (for example, sludge surface disposal site or sludge monofill) is located
	Indicate by a check mark that a separate list with the landowners' names and mailing resses cross-referenced to the landowner's map has been provided.
Indic	cate by a check mark in which format the landowners list is submitted: USB Drive Four sets of labels
Prov	ide the source of the landowners' names and mailing addresses: Click to enter text.
	equired by $Texas\ Water\ Code\ \S\ 5.115$, is any permanent school fund land affected by application?
	□ Yes □ No

	-	ves, provide the location and foreseeable impacts and effects this application has on the ad(s):
	Cli	lick to enter text.
Se	cti	on 2. Original Photographs (Instructions Page 38)
Pro	ovid	te original ground level photographs. Indicate with checkmarks that the following nation is provided.
		At least one original photograph of the new or expanded treatment unit location
		At least two photographs of the existing/proposed point of discharge and as much area downstream (photo 1) and upstream (photo 2) as can be captured. If the discharge is to an open water body (e.g., lake, bay), the point of discharge should be in the right or left edge of each photograph showing the open water and with as much area on each respective side of the discharge as can be captured.
		At least one photograph of the existing/proposed effluent disposal site
		A plot plan or map showing the location and direction of each photograph
Se	cti	on 3. Buffer Zone Map (Instructions Page 38)
A.	info	ffer zone map. Provide a buffer zone map on 8.5×11 -inch paper with all of the following ormation. The applicant's property line and the buffer zone line may be distinguished by ng dashes or symbols and appropriate labels.
		 The applicant's property boundary; The required buffer zone; and Each treatment unit; and The distance from each treatment unit to the property boundaries.
В.		ffer zone compliance method. Indicate how the buffer zone requirements will be met. eck all that apply.
		 Ownership Restrictive easement Nuisance odor control Variance
C.	uns	suitable site characteristics. Does the facility comply with the requirements regarding suitable site characteristic found in 30 TAC § 309.13(a) through (d)? Yes No

DOMESTIC WASTEWATER PERMIT APPLICATION SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

This form applies to TPDES permit applications only. Complete and attach the Supplemental Permit information Form (SPIF) (TCEQ Form 20971).

Attachment: See Exhibit I

WATER QUALITY PERMIT

PAYMENT SUBMITTAL FORM

Use this form to submit the Application Fee, if the mailing the payment.

- Complete items 1 through 5 below.
- Staple the check or money order in the space provided at the bottom of this document.
- Do Not mail this form with the application form.
- Do not mail this form to the same address as the application.
- Do not submit a copy of the application with this form as it could cause duplicate permit entries.

Mail this form and the check or money order to:

BY REGULAR U.S. MAIL

BY OVERNIGHT/EXPRESS MAIL

Texas Commission on Environmental Quality Texas Commission on Environmental Quality

Financial Administration Division Financial Administration Division

Cashier's Office, MC-214 Cashier's Office, MC-214

P.O. Box 13088 12100 Park 35 Circle
Austin, Texas 78711-3088 Austin, Texas 78753

Fee Code: WQP Waste Permit No: WQ0010844-004

1. Check or Money Order Number: Click to enter text.

2. Check or Money Order Amount: \$2,015.00

3. Date of Check or Money Order: Click to enter text.

4. Name on Check or Money Order: Click to enter text.

5. APPLICATION INFORMATION

Name of Project or Site: City of El Campo Wastewater Treatment Facility

Physical Address of Project or Site: 201 Thompson Street, El Campo, TX 77437

If the check is for more than one application, attach a list which includes the name of each Project or Site (RE) and Physical Address, exactly as provided on the application.

Staple Check or Money Order in This Space

ATTACHMENT 1

INDIVIDUAL INFORMATION

Section 1. Individual Information (Instructions Page 41)

Complete this attachment if the facility applicant or co-applicant is an individual. Make additional copies of this attachment if both are individuals.

Prefix (Mr., Ms., Miss): Click to enter text.

Full legal name (Last Name, First Name, Middle Initial): Click to enter text.

Driver's License or State Identification Number: Click to enter text.

Date of Birth: Click to enter text.

Mailing Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Phone Number: Click to enter text. Fax Number: Click to enter text.

E-mail Address: Click to enter text.

CN: Click to enter text.

For Commission Use Only:

Customer Number:

Regulated Entity Number:

Permit Number:

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST OF COMMON DEFICIENCIES

Below is a list of common deficiencies found during the administrative review of domestic wastewater permit applications. To ensure the timely processing of this application, please review the items below and indicate by checking Yes that each item is complete and in accordance applicable rules at 30 TAC Chapters 21, 281, and 305. If an item is not required this application, indicate by checking N/A where appropriate. Please do not submit the application until the items below have been addressed.

Core Data Form (TCEQ Form No. 10400) (Required for all application types. Must be completed in its entirety of Note: Form may be signed by applicant representative.)	and s	igned.		Yes
Correct and Current Industrial Wastewater Permit Application Form (TCEQ Form Nos. 10053 and 10054. Version dated 6/25/2018 or late				Yes
Water Quality Permit Payment Submittal Form (Page 19) (Original payment sent to TCEQ Revenue Section. See instructions for	r mai	iling ad	□ dress	Yes
7.5 Minute USGS Quadrangle Topographic Map Attached (Full-size map if seeking "New" permit. 8 ½ x 11 acceptable for Renewals and Amendments)				Yes
Current/Non-Expired, Executed Lease Agreement or Easement		N/A		Yes
Landowners Map (See instructions for landowner requirements)		N/A		Yes
 Things to Know: All the items shown on the map must be labeled. The applicant's complete property boundaries must be de boundaries of contiguous property owned by the applicant. The applicant cannot be its own adjacent landowner. You landowners immediately adjacent to their property, regar from the actual facility. If the applicant's property is adjacent to a road, creek, or on the opposite side must be identified. Although the property applicant's property boundary, they are considered potent if the adjacent road is a divided highway as identified on map, the applicant does not have to identify the landowner the highway. 	nt. mus dless strea perti tially the U	t identi of how am, the es are i affecto JSGS to	fy the far lande and lande	e they are owners djacent to idowners. aphic
Landowners Cross Reference List (See instructions for landowner requirements)		N/A		Yes
Landowners Labels or USB Drive attached (See instructions for landowner requirements)		N/A		Yes
Original signature per 30 TAC § 305.44 - Blue Ink Preferred (If signature page is not signed by an elected official or principle executed a copy of signature authority/delegation letter must be attached)	cutive	e officei		Yes
Plain Language Summary				Yes

THE TONMENTAL OUR THE

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671.

The following information is required for all renewal, new, and amendment applications.

Section 1. Permitted or Proposed Flows (Instructions Page 43)

A. Existing/Interim I Phase

Design Flow (MGD): 2.628

2-Hr Peak Flow (MGD): 8.992

Estimated construction start date: <u>N/A</u>
Estimated waste disposal start date: <u>N/A</u>

B. Interim II Phase

Design Flow (MGD): N/A

2-Hr Peak Flow (MGD): N/A

Estimated construction start date: N/A

Estimated waste disposal start date: N/A

C. Final Phase

Design Flow (MGD): N/A

2-Hr Peak Flow (MGD): N/A

Estimated construction start date: N/A

Estimated waste disposal start date: N/A

D. Current Operating Phase

Provide the startup date of the facility: 04/01/1999

Section 2. Treatment Process (Instructions Page 43)

A. Current Operating Phase

Provide a detailed description of the treatment process. **Include the type of treatment plant, mode of operation, and all treatment units.** Start with the plant's head works and

than one phase exists or is proposed, a description of *each phase* must be provided.

See Exhibit C.

finish with the point of discharge. Include all sludge processing and drying units. If more

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) of each treatment unit, accounting for *all* phases of operation.

Table 1.0(1) - Treatment Units

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
See Exhibit E		

C. Process Flow Diagram

Provide flow diagrams for the existing facilities and **each** proposed phase of construction.

Attachment: See Exhibit E.

Section 3. Site Information and Drawing (Instructions Page 44)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

• Latitude: 29.18444

• Longitude: <u>-96.258333</u>

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

Latitude: <u>N/A</u>Longitude: <u>N/A</u>

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and
- If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Attachment: See Exhibit G.

Provide the name and a des	cription of the area s	erved by the treatmen	t facility.
City of El Campo, see Exhibit	G		
Collection System Informati		_ ,	
each uniquely owned collection avetages			
satellite collection systems. examples.	Please see the mstr	actions for a detailed	explanation and
Collection System Informatio	ın.		
Collection System Name	Owner Name	Owner Type	Population Served
City of El Campo Collection System	City of El Campo	Publicly Owned	12,602
		Choose an item.	
		Choose an item.	
		Choose an item.	
			I
Section 4. Unbuilt F	Phases (Instructi	ons Page 45)	
Is the application for a rene	wal of a permit that o	contains an unbuilt ph	ase or phases?
□ Yes ⊠ No	•	•	1
If yes , does the existing per	mit contain a phase t	that has not been cons	tructed within five
years of being authorized b	_	and has not been cons	are control of the co
□ Yes □ No			
If yes, provide a detailed di	scussion regarding th	ne continued need for	the unbuilt phase.
Failure to provide sufficier			e Director
recommending denial of th	ie unbuiit phase or p	onases.	
N/A			
Section 5. Closure I	Plans (Instructio	ns Page 45)	
			ll any units he taken
Have any treatment units be out of service in the next fix		ice permanently, or wi	ii aiiy uiiits de takeii
□ Yes ⊠ No			

If y	yes, was a closure plan submitted to the TCEQ?
	□ Yes □ No
If y	yes, provide a brief description of the closure and the date of plan approval.
	ction 6. Permit Specific Requirements (Instructions Page 45)
Pro	r applicants with an existing permit, check the Other Requirements or Special ovisions of the permit.
Α.	Summary transmittal
	Have plans and specifications been approved for the existing facilities and each proposed phase?
	⊠ Yes □ No
	If yes, provide the date(s) of approval for each phase: Prior to 04/1999.
	Provide information, including dates, on any actions taken to meet a <i>requirement or provision</i> pertaining to the submission of a summary transmittal letter. Provide a copy of an approval letter from the TCEQ, if applicable .
	N/A
В.	Buffer zones
	Have the buffer zone requirements been met?
	⊠ Yes □ No
	Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the buffer zones.
	N/A

C.	Ot	her actions required by the current permit
	sul	es the <i>Other Requirements</i> or <i>Special Provisions</i> section in the existing permit require omission of any other information or other required actions? Examples include tification of Completion, progress reports, soil monitoring data, etc.
		⊠ Yes □ No
		ves, provide information below on the status of any actions taken to meet the additions of an Other Requirement or Special Provision.
	M lir	ne current permit requires a daily reporting for Total Cyanide along with the Total Lead-0.005 AL(mg/l). For the past five years the City of El Campo has received samples under the nitations for these two pollutants. Therefore, the City of El Campo is requesting that these two bllutants are removed from the next permit.
D.	Gri	it and grease treatment
	1.	Acceptance of grit and grease waste
		Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?
		□ Yes ⊠ No
		If No, stop here and continue with Subsection E. Stormwater Management.
	2.	Grit and grease processing
		Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility.
		Click to enter text.
	•	
	3.	Grit disposal Does the facility have a Municipal Solid Wests (MSW) registration or permit for grit
		Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal?
		□ Yes □ No

disposal requirements and restrictions.

If No, contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit

		Describe the method of grit disposal.
		Click to enter text.
	4.	Grease and decanted liquid disposal
		Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335.
		Describe how the decant and grease are treated and disposed of after grit separation.
		Click to enter text.
E.	Sto	ormwater management
	1.	Applicability
		Does the facility have a design flow of 1.0 MGD or greater in any phase?
		⊠ Yes □ No
		Does the facility have an approved pretreatment program, under 40 CFR Part 403?
		□ Yes ⊠ No
		If no to both of the above, then skip to Subsection F, Other Wastes Received.
	2.	MSGP coverage
		Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?
		⊠ Yes □ No
		If yes , please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:
		TXR05 <u>FI99</u> or TXRNE <u>N/A</u>
		If no, do you intend to seek coverage under TXR050000?
		□ Yes □ No
	<i>3.</i>	Conditional exclusion
		Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?
		□ Yes □ No

	If yes, please explain below then proceed to Subsection F, Other Wastes Received:
	N/A
_	
4.	Existing coverage in individual permit
	Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?
	□ Yes □ No
	If yes , provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.
	N/A
5.	Zero stormwater discharge
-	Do you intend to have no discharge of stormwater via use of evaporation or other
	means?
	□ Yes □ No
	If yes, explain below then skip to Subsection F. Other Wastes Received.
	N/A
	Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.
6.	Request for coverage in individual permit
	Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?
	□ Yes □ No
	If yes , provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you

		intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state.
		N/A
		Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.
F.	Dis	scharges to the Lake Houston Watershed
	Do	es the facility discharge in the Lake Houston watershed?
		□ Yes ⊠ No
		ves, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions. ck to enter text.
G.	Ot	her wastes received including sludge from other WWTPs and septic waste
	1.	Acceptance of sludge from other WWTPs
		Does or will the facility accept sludge from other treatment plants at the facility site?
		□ Yes ⊠ No
		If yes, attach sewage sludge solids management plan. See Example 5 of instructions.
		In addition, provide the date the plant started or is anticipated to start accepting sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an
		estimate of the BOD_5 concentration of the sludge, and the design BOD_5 concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.
		N/A
		Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.
	2.	Acceptance of septic waste
		Is the facility accepting or will it accept septic waste?
		□ Yes ⊠ No
		If yes, does the facility have a Type V processing unit?
		□ Yes □ No
		If yes, does the unit have a Municipal Solid Waste permit?
		□ Yes □ No

	design BOD ₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.
	N/A
	Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.
3.	Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)
	Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above?
	□ Yes ⊠ No
	If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.
	N/A
Secti	ion 7. Pollutant Analysis of Treated Effluent (Instructions Page
	50)
s the	facility in operation?
\boxtimes	Yes □ No
f no.	this section is not applicable. Proceed to Section 8.
	, provide effluent analysis data for the listed pollutants. <i>Wastewater treatment</i>

If yes to any of the above, provide the date the plant started or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or

Note: The sample date must be within 1 year of application submission.

facilities complete Table 1.0(2). *Water treatment facilities* discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. **These tables are not applicable for a minor amendment without renewal.** See the instructions for guidance.

Table 1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l	3.1	3.1	1	Comp	5-30-24/0930
Total Suspended Solids, mg/l	3.5	3.5	1	Comp	5-30-24/0930
Ammonia Nitrogen, mg/l	<0.20	<0.20	1	Comp	5-30-24/0930
Nitrate Nitrogen, mg/l	7.22	7.22	1	Comp	5-30-24/0930
Total Kjeldahl Nitrogen, mg/l	<0.50	<0.50	1	Comp	5-30-24/0930
Sulfate, mg/l	33.2	33.2	1	Comp	5-30-24/0930
Chloride, mg/l	160	160	1	Comp	5-30-24/0930
Total Phosphorus, mg/l	4.56	4.56	1	Comp	5-30-24/0930
pH, standard units	7.41	7.41	1	Grab	5-30-24/0930
Dissolved Oxygen*, mg/l	6.37	6.37	1	Grab	5-30-24/0930
Chlorine Residual, mg/l	<0.01	< 0.01	1		5-30-24/0930
E.coli (CFU/100ml) freshwater	<1	<1	1	Grab	5-30-24/0930
Entercocci (CFU/100ml) saltwater	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	532	532	1	Comp	5-30-24/0930
Electrical Conductivity, µmohs/cm, †	929	929	N/A	Comp	5-30-24/0930
Oil & Grease, mg/l	<5.0	<5.0	1	Grab	5-30-24/0930
Alkalinity (CaCO ₃)*, mg/l	183	183	1	Comp	5-30-24/0930

^{*}TPDES permits only

Table1.0(3) - Pollutant Analysis for Water Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Suspended Solids, mg/l	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	N/A	N/A	N/A	N/A	N/A
pH, standard units	N/A	N/A	N/A	N/A	N/A
Fluoride, mg/l	N/A	N/A	N/A	N/A	N/A
Aluminum, mg/l	N/A	N/A	N/A	N/A	N/A
Alkalinity (CaCO ₃), mg/l	N/A	N/A	N/A	N/A	N/A

Section 8. Facility Operator (Instructions Page 50)

Facility Operator Name: <u>Jerry Lewis</u>

Facility Operator's License Classification and Level: Wastewater, Class B

Facility Operator's License Number: <u>WW0012688</u>

[†]TLAP permits only

Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 51)

A. WWTP's Biosolids Management Facility Type Check all that apply. See instructions for guidance Design flow>= 1 MGD \boxtimes Serves $\geq 10,000$ people Class I Sludge Management Facility (per 40 CFR § 503.9) Biosolids generator Biosolids end user - land application (onsite) Biosolids end user - surface disposal (onsite) Biosolids end user - incinerator (onsite) **B.** WWTP's Biosolids Treatment Process Check all that apply. See instructions for guidance. \boxtimes **Aerobic Digestion** Air Drying (or sludge drying beds) **Lower Temperature Composting** Lime Stabilization **Higher Temperature Composting Heat Drying** Thermophilic Aerobic Digestion **Beta Ray Irradiation** Gamma Ray Irradiation Pasteurization Preliminary Operation (e.g. grinding, de-gritting, blending) \boxtimes Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter) Sludge Lagoon Temporary Storage (< 2 years)

C. Biosolids Management

Long Term Storage (>= 2 years)

Methane or Biogas Recovery

Provide information on the *intended* biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize

Other Treatment Process: Click to enter text.

all biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

Biosolids Management

Management Practice	Handler or Preparer Type	Bulk or Bag Container	Amount (dry metric tons)	Pathogen Reduction Options	Vector Attraction Reduction Option
Disposal in Landfill	Off-site Third-Party Handler or Preparer	Bulk	1,300 (annually)	Choose an item.	Choose an item.
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): N/A.

D. Disposal site

Disposal site name: <u>Fort Bend Regional Landfill</u> TCEQ permit or registration number: <u>2270</u>

County where disposal site is located: Fort Bend

E. Transportation method

Method of transportation (truck, train, pipe, other): Truck

Name of the hauler: Waste Connections of Texas, LLC

Hauler registration number: 775195

Sludge is transported as a:

Liquia 🗆 Semi-liquia 🗀 Semi-solia 🗵 Solia	Liquid □	semi-liquid □	semi-solid ⊠	solid □
---	----------	---------------	--------------	---------

Section 10. Permit Authorization for Sewage Sludge Disposal (Instructions Page 53)

A. Beneficial use authorization

Does the existing permit include authorization for land application of sewage sludge for beneficial use?

□ Yes ⊠ No

If yes, are you requesting to continue this authorization to land apply sewage sludge for beneficial use?

□ Yes □ No

If yes, is the completed Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451) attached to this permit application (see the instructions for details)?

□ Yes □ No				
B. Sludge processing authorization				
Does the existing permit include authorization factorized or disposal options?	or an	y of the	follov	ving sludge processing,
Sludge Composting		Yes	\boxtimes	No
Marketing and Distribution of sludge		Yes	\boxtimes	No
Sludge Surface Disposal or Sludge Monofill		Yes	\boxtimes	No
Temporary storage in sludge lagoons		Yes	\boxtimes	No
If yes to any of the above sludge options and the authorization, is the completed Domestic Waste Technical Report (TCEQ Form No. 10056) attacks	ewate	r Permi	t Appl	lication: Sewage Sludge
□ Yes □ No				
Section 11. Sewage Sludge Lagoons (In	stru	ctions	Page	e 53)
Does this facility include sewage sludge lagoons?				,
□ Yes ⊠ No				
If yes, complete the remainder of this section. If no	, proc	eed to S	ection	12.
A. Location information				
The following maps are required to be submitte provide the Attachment Number.	d as p	oart of t	ne app	olication. For each map,
 Original General Highway (County) Map: 				
Attachment : <u>Click to enter text.</u>				
 USDA Natural Resources Conservation Se 	rvice	Soil Map):	
Attachment: <u>Click to enter text.</u>				
• Federal Emergency Management Map:				
Attachment: <u>Click to enter text.</u>				
• Site map:				
Attachment: Click to enter text.				
Discuss in a description if any of the following eapply.	exist v	vithin th	ie lago	oon area. Check all that
☐ Overlap a designated 100-year frequence	y floo	d plain		
\square Soils with flooding classification				
□ Overlap an unstable area				
□ Wetlands				
☐ Located less than 60 meters from a faul	t			
\square None of the above				
Attachment: Click to enter text.				

1	Temporary storage information
	rovide the results for the pollutant screening of sludge lagoons. These results are in ddition to pollutant results in <i>Section 7 of Technical Report 1.0.</i>
	Nitrate Nitrogen, mg/kg: Click to enter text.
	Total Kjeldahl Nitrogen, mg/kg: Click to enter text.
	Total Nitrogen (=nitrate nitrogen + TKN), mg/kg: Click to enter text.
	Phosphorus, mg/kg: Click to enter text.
	Potassium, mg/kg: Click to enter text.
	pH, standard units: Click to enter text.
	Ammonia Nitrogen mg/kg: Click to enter text.
	Arsenic: Click to enter text.
	Cadmium: Click to enter text.
	Chromium: Click to enter text.
	Copper: Click to enter text.
	Lead: Click to enter text.
	Mercury: <u>Click to enter text.</u>
	Molybdenum: <u>Click to enter text.</u>
	Nickel: Click to enter text.
	Selenium: <u>Click to enter text.</u>
	Zinc: Click to enter text.
	Total PCBs: <u>Click to enter text.</u>
P	rovide the following information:
	Volume and frequency of sludge to the lagoon(s): <u>Click to enter text.</u>
	Total dry tons stored in the lagoons(s) per 365-day period: Click to enter text.

Yes □ No

Does the active/proposed sludge lagoon(s) have a liner with a maximum hydraulic conductivity of $1x10^{-7}$ cm/sec?

	If yes	, describe the liner below. Please note that a liner is required.			
	Click	to enter text.			
D.	Site development plan				
	Provid	le a detailed description of the methods used to deposit sludge in the lagoon(s):			
	Click	to enter text.			
	Attacl	n the following documents to the application.			
	•	Plan view and cross-section of the sludge lagoon(s)			
		Attachment: Click to enter text.			
	•	Copy of the closure plan			
		Attachment: Click to enter text.			
	•	Copy of deed recordation for the site			
		Attachment: Click to enter text.			
	•	Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons			
		Attachment: Click to enter text.			
	•	Description of the method of controlling infiltration of groundwater and surface water from entering the site			
		Attachment: Click to enter text.			
	•	Procedures to prevent the occurrence of nuisance conditions			
		Attachment: Click to enter text.			
E.	Groui	ndwater monitoring			
	groun	undwater monitoring currently conducted at this site, or are any wells available for dwater monitoring, or are groundwater monitoring data otherwise available for the e lagoon(s)?			
		Yes □ No			
	types	undwater monitoring data are available, provide a copy. Provide a profile of soil encountered down to the groundwater table and the depth to the shallowest dwater as a separate attachment.			
	At	tachment: Click to enter text.			

Section 12. Authorizations/Compliance/Enforcement (Instructions Page 55)

Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc? ☐ Yes ☑ No If yes, provide the TCEQ authorization number and description of the authorization: N/A	
authorization, sludge permit, etc? □ Yes ⋈ No If yes, provide the TCEQ authorization number and description of the authorization: N/A B. Permittee enforcement status Is the permittee currently under enforcement for this facility? □ Yes ⋈ No Is the permittee required to meet an implementation schedule for compliance or enforcement? □ Yes ⋈ No If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:	A. Additional authorizations
If yes, provide the TCEQ authorization number and description of the authorization: N/A B. Permittee enforcement status Is the permittee currently under enforcement for this facility? □ Yes ☑ No Is the permittee required to meet an implementation schedule for compliance or enforcement? □ Yes ☑ No If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:	
B. Permittee enforcement status Is the permittee currently under enforcement for this facility? ☐ Yes ☒ No Is the permittee required to meet an implementation schedule for compliance or enforcement? ☐ Yes ☒ No If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:	□ Yes ⊠ No
B. Permittee enforcement status Is the permittee currently under enforcement for this facility? □ Yes ⋈ No Is the permittee required to meet an implementation schedule for compliance or enforcement? □ Yes ⋈ No If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:	If yes, provide the TCEQ authorization number and description of the authorization:
Is the permittee currently under enforcement for this facility? ☐ Yes ☑ No Is the permittee required to meet an implementation schedule for compliance or enforcement? ☐ Yes ☑ No If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:	N/A
Is the permittee currently under enforcement for this facility? ☐ Yes ☑ No Is the permittee required to meet an implementation schedule for compliance or enforcement? ☐ Yes ☑ No If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:	
Is the permittee currently under enforcement for this facility? ☐ Yes ☑ No Is the permittee required to meet an implementation schedule for compliance or enforcement? ☐ Yes ☑ No If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:	
Is the permittee currently under enforcement for this facility? ☐ Yes ☑ No Is the permittee required to meet an implementation schedule for compliance or enforcement? ☐ Yes ☑ No If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:	
Is the permittee currently under enforcement for this facility? ☐ Yes ☑ No Is the permittee required to meet an implementation schedule for compliance or enforcement? ☐ Yes ☑ No If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:	
Is the permittee currently under enforcement for this facility? ☐ Yes ☑ No Is the permittee required to meet an implementation schedule for compliance or enforcement? ☐ Yes ☑ No If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:	
Is the permittee currently under enforcement for this facility? ☐ Yes ☑ No Is the permittee required to meet an implementation schedule for compliance or enforcement? ☐ Yes ☑ No If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:	
 □ Yes ⋈ No Is the permittee required to meet an implementation schedule for compliance or enforcement? □ Yes ⋈ No If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status: 	B. Permittee enforcement status
Is the permittee required to meet an implementation schedule for compliance or enforcement? ☐ Yes ☑ No If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:	Is the permittee currently under enforcement for this facility?
enforcement? ☐ Yes ☑ No If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:	□ Yes ⊠ No
If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:	
schedule, and the current status:	□ Yes ⊠ No
N/A	
	N/A

Section 13. RCRA/CERCLA Wastes (Instructions Page 55)

A. RCRA hazardous wastes

Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste?

Yes	\boxtimes	No

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

□ Yes ⊠ No

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment: N/A

Section 14. Laboratory Accreditation (Instructions Page 56)

All laboratory tests performed must meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - o performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the Signature Page section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Eugene Bustamante

Title: Mayor

Signature:

Date: .

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.1

The following information is required for new and amendment major applications.

Section 1. Justification for Permit (Instructions Page 57)

Δ	Justification	of	nermit	need
л.	Justification	O1	рстиис	nccu

B.

Provide a detailed discussion regarding the need for any phase(s) not currently permitted
Failure to provide sufficient justification may result in the Executive Director
recommending denial of the proposed phase(s) or permit.

	Click to enter text.
Re	gionalization of facilities
	r additional guidance, please review <u>TCEQ's Regionalization Policy for Wastewater</u> <u>eatment</u> ¹ .
	ovide the following information concerning the potential for regionalization of domestic astewater treatment facilities:
1.	Municipally incorporated areas
	If the applicant is a city, then Item 1 is not applicable. Proceed to Item 2 Utility CCN areas.
	Is any portion of the proposed service area located in an incorporated city?
	□ Yes □ No □ Not Applicable
	If yes, within the city limits of: Click to enter text.
	If yes, attach correspondence from the city.
	Attachment: Click to enter text.
	If consent to provide service is available from the city, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the city versus the cost of the proposed facility or expansion attached.
	Attachment: Click to enter text.
2.	Utility CCN areas
	Is any portion of the proposed service area located inside another utility's CCN area?
	□ Yes □ No

¹ https://www.tceq.texas.gov/permitting/wastewater/tceq-regionalization-for-wastewater

If yes, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the CCN facilities versus the cost of the proposed facility or expansion.				
Attachment: Click to enter text.				
3. Nearby WWTPs or collection systems				
Are there any domestic permitted wastewater treatment facilities or collection systems located within a three-mile radius of the proposed facility?				
□ Yes □ No				
If yes, attach a list of these facilities and collection systems that includes each permittee's name and permit number, and an area map showing the location of these facilities and collection systems.				
Attachment: Click to enter text.				
If yes, attach proof of mailing a request for service to each facility and collection system, the letters requesting service, and correspondence from each facility and collection system.				
Attachment: Click to enter text.				
If the facility or collection system agrees to provide service, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the facility or collection system versus the cost of the proposed facility or expansion.				
Attachment: Click to enter text.				
Section 2. Proposed Organic Loading (Instructions Page 59)				
Is this facility in operation?				
□ Yes □ No				
If no, proceed to Item B, Proposed Organic Loading.				
If yes, provide organic loading information in Item A, Current Organic Loading				
A. Current organic loading				
Facility Design Flow (flow being requested in application): Click to enter text.				
Average Influent Organic Strength or BOD ₅ Concentration in mg/l: Click to enter text.				
Average Influent Loading (lbs/day = total average flow X average BOD ₅ conc. X 8.34): $\underline{\text{Click}}$ to enter text.				
Provide the source of the average organic strength or BOD ₅ concentration.				
Click to enter text				

B. Proposed organic loading

This table must be completed if this application is for a facility that is not in operation or if this application is to request an increased flow that will impact organic loading.

Table 1.1(1) - Design Organic Loading

Source	Total Average Flow (MGD)	Influent BOD5 Concentration (mg/l)
Municipality		
Subdivision		
Trailer park - transient		
Mobile home park		
School with cafeteria and showers		
School with cafeteria, no showers		
Recreational park, overnight use		
Recreational park, day use		
Office building or factory		
Motel		
Restaurant		
Hospital		
Nursing home		
Other		
TOTAL FLOW from all sources		
AVERAGE BOD ₅ from all sources		

Section 3. Proposed Effluent Quality and Disinfection (Instructions Page 59)

A. Existing/Interim I Phase Design Effluent Quality

Biochemical Oxygen Demand (5-day), mg/l: Click to enter text.

Total Suspended Solids, mg/l: Click to enter text.

Ammonia Nitrogen, mg/l: Click to enter text.

Total Phosphorus, mg/l: Click to enter text.

Dissolved Oxygen, mg/l: Click to enter text.

Other: Click to enter text.

В.	interim ii Phase Design Efficient Quanty					
	Biochemical Oxygen Demand (5-day), mg/l: Click to enter text.					
	Total Suspended Solids, mg/l: Click to enter text.					
	Ammonia Nitrogen, mg/l: Click to enter text.					
	Total Phosphorus, mg/l: <u>Click to enter text.</u>					
	Dissolved Oxygen, mg/l: Click to enter text.					
	Other: Click to enter text.					
C.	Final Phase Design Effluent Quality					
	Biochemical Oxygen Demand (5-day), mg/l: Click to enter text.					
	Total Suspended Solids, mg/l: Click to enter text.					
	Ammonia Nitrogen, mg/l: Click to enter text.					
	Total Phosphorus, mg/l: <u>Click to enter text.</u>					
	Dissolved Oxygen, mg/l: Click to enter text.					
	Other: Click to enter text.					
D.	Disinfection Method					
	Identify the proposed method of disinfection.					
	Chlorine: Click to enter text. mg/l after Click to enter text. minutes detention time at peak flow					
	Dechlorination process: <u>Click to enter text.</u>					
	□ Ultraviolet Light: <u>Click to enter text.</u> seconds contact time at peak flow					
	□ Other: Click to enter text.					
Ca	etion 4 Decima Calculations (Instruction Bers 50)					
	ection 4. Design Calculations (Instructions Page 59)					
	tach design calculations and plant features for each proposed phase. Example 4 of the structions includes sample design calculations and plant features.					
1110	Attachment: Click to enter text.					
	Actuellisent: Check to their texts					
Se	ection 5. Facility Site (Instructions Page 60)					
Α.	100-year floodplain					
	Will the proposed facilities be located <u>above</u> the 100-year frequency flood level?					
	□ Yes □ No					
	If no, describe measures used to protect the facility during a flood event. Include a site map showing the location of the treatment plant within the 100-year frequency flood level. If applicable, provide the size and types of protective structures.					
	Click to enter text.					

	Provide the source(s) used to determine 100-year frequency flood plain.
	Click to enter text.
	For a new or expansion of a facility, will a wetland or part of a wetland be filled?
	□ Yes □ No
	If yes, has the applicant applied for a US Corps of Engineers 404 Dredge and Fill Permit?
	□ Yes □ No
	If yes, provide the permit number: <u>Click to enter text.</u>
	If no, provide the approximate date you anticipate submitting your application to the Corps: Click to enter text.
B.	Wind rose
	Attach a wind rose: Click to enter text.
Se	ection 6. Permit Authorization for Sewage Sludge Disposal
	(Instructions Page 60)
A.	Beneficial use authorization
	Are you requesting to include authorization to land apply sewage sludge for beneficial use on property located adjacent to the wastewater treatment facility under the wastewater permit?
	□ Yes □ No
	If yes, attach the completed Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451) : Click to enter text.
B.	Sludge processing authorization
	Identify the sludge processing, storage or disposal options that will be conducted at the wastewater treatment facility:
	□ Sludge Composting
	☐ Marketing and Distribution of sludge
	□ Sludge Surface Disposal or Sludge Monofill
	If any of the above, sludge options are selected, attach the completed Domestic Wastewater Permit Application: Sewage Sludge Technical Report (TCEQ Form No. 10056): Click to enter text.
Se	ection 7. Sewage Sludge Solids Management Plan (Instructions Page 61)

Attach a solids management plan to the application.

Attachment: Click to enter text.

The sewage sludge solids management plan must contain the following information:

Treatment units and processes dimensions and capacities

- Solids generated at 100, 75, 50, and 25 percent of design flow
- Mixed liquor suspended solids operating range at design and projected actual flow
- Quantity of solids to be removed and a schedule for solids removal
- Identification and ownership of the ultimate sludge disposal site
- For facultative lagoons, design life calculations, monitoring well locations and depths, and the ultimate disposal method for the sludge from the facultative lagoon

An example of a sewage sludge solids management plan has been included as Example 5 of the instructions.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

• • • • • • • • • • • • • • • • • • • •
Section 1. Domestic Drinking Water Supply (Instructions Page 64)
Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge?
□ Yes ⊠ No
If no , proceed it Section 2. If yes , provide the following:
Owner of the drinking water supply: N/A
Distance and direction to the intake: N/A
Attach a USGS map that identifies the location of the intake.
Attachment: N/A
Section 2. Discharge into Tidally Affected Waters (Instructions Page 64)
Does the facility discharge into tidally affected waters?
□ Yes ⊠ No
If no , proceed to Section 3. If yes , complete the remainder of this section. If no, proceed to Section 3.
A. Receiving water outfall
Width of the receiving water at the outfall, in feet: Click to enter text.
B. Oyster waters
Are there oyster waters in the vicinity of the discharge?
□ Yes □ No
If yes, provide the distance and direction from outfall(s).
Click to enter text.
C. Sea grasses
Are there any sea grasses within the vicinity of the point of discharge?
□ Yes □ No
If yes, provide the distance and direction from the outfall(s).
Click to enter text.

Section 3. **Classified Segments (Instructions Page 64)** Is the discharge directly into (or within 300 feet of) a classified segment? Yes □ No **If yes**, this Worksheet is complete. **If no**, complete Sections 4 and 5 of this Worksheet. Section 4. **Description of Immediate Receiving Waters (Instructions Page 65)** Name of the immediate receiving waters: Click to enter text. A. Receiving water type Identify the appropriate description of the receiving waters. Stream Freshwater Swamp or Marsh Lake or Pond Surface area, in acres: Click to enter text. Average depth of the entire water body, in feet: Click to enter text. Average depth of water body within a 500-foot radius of discharge point, in feet: Click to enter text. Man-made Channel or Ditch Open Bay Tidal Stream, Bayou, or Marsh Other, specify: Click to enter text. **B.** Flow characteristics If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area upstream of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one). Intermittent - dry for at least one week during most years Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses Perennial - normally flowing Check the method used to characterize the area upstream (or downstream for new dischargers). USGS flow records Historical observation by adjacent landowners Personal observation Other, specify: Click to enter text.

	List the names of all perennial streams that join the receiving water within three miles downstream of the discharge point.				
	Click t	o enter text.			
D.	Downs	stream characteristics			
		receiving water characteristics cha rge (e.g., natural or man-made dam	_	rithin three miles downstream of the ads, reservoirs, etc.)?	
		Yes □ No			
	If yes,	discuss how.			
	Click t	o enter text.			
E.	Norma	l dry weather characteristics			
	Provid	e general observations of the water	body	during normal dry weather conditions.	
Click to enter text.					
	Date a	nd time of observation: Click to ent	er tex	ct.	
	Was th	e water body influenced by stormw	ater 1	runoff during observations?	
		Yes □ No			
Se	Section 5. General Characteristics of the Waterbody (Instructions Page 66)				
A.	Upstre	am influences			
		mmediate receiving water upstrean nced by any of the following? Check		he discharge or proposed discharge site nat apply.	
		Oil field activities		Urban runoff	
		Upstream discharges		Agricultural runoff	
		Septic tanks		Other(s), specify: Click to enter text.	

C. Downstream perennial confluences

B. Waterbody uses Observed or evidences of the following uses. Check all that apply. Livestock watering Contact recreation Irrigation withdrawal Non-contact recreation **Fishing Navigation** Domestic water supply Industrial water supply Park activities Other(s), specify: Click to enter text. C. Waterbody aesthetics Check one of the following that best describes the aesthetics of the receiving water and the surrounding area. Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored Common Setting: not offensive; developed but uncluttered; water may be colored or turbid Offensive: stream does not enhance aesthetics; cluttered; highly developed; dumping areas; water discolored

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.1: STREAM PHYSICAL CHARACTERISTICS

Required for new applications, major facilities, and applications adding an outfall.

Worksheet 2.1 is not required for discharges to intermittent streams or discharges directly to (or within 300 feet of) a classified segment.

Section 1. General information (instructions Page 66)				
Date of study: Click to enter text. Time of study: Click to enter text.				
Stream name: <u>Click to enter text.</u>				
Location: Click to enter text.				
Type of stream upstream of existing discharge or downstream of proposed discharge (check one).				
□ Perennial □ Intermittent with perennial pools				
Section 2. Data Collection (Instructions Page 66)				
Number of stream bends that are well defined: Click to enter text.				
Number of stream bends that are moderately defined: Click to enter text.				
Number of stream bends that are poorly defined: Click to enter text.				
Number of riffles: Click to enter text.				
Evidence of flow fluctuations (check one):				
□ Minor □ moderate □ severe				
Indicate the observed stream uses and if there is evidence of flow fluctuations or channel obstruction/modification.				
Click to enter text.				

Stream transects

In the table below, provide the following information for each transect downstream of the existing or proposed discharges. Use a separate row for each transect.

Table 2.1(1) - Stream Transect Records

Stream type at transect	Transect location	Water surface	Stream depths (ft) at 4 to 10 points along each
Select riffle, run, glide, or pool. See Instructions,		width (ft)	transect from the channel bed to the water surface. Separate the measurements
Definitions section.			with commas.
Choose an item.			

Section 3. Summarize Measurements (Instructions Page 66)

Streambed slope of entire reach, from USGS map in feet/feet: Click to enter text.

Approximate drainage area above the most downstream transect (from USGS map or county highway map, in square miles): <u>Click to enter text.</u>

Length of stream evaluated, in feet: Click to enter text.

Number of lateral transects made: <u>Click to enter text.</u>

Average stream width, in feet: Click to enter text.

Average stream depth, in feet: <u>Click to enter text.</u>

Average stream velocity, in feet/second: Click to enter text.

Instantaneous stream flow, in cubic feet/second: Click to enter text.

Indicate flow measurement method (type of meter, floating chip timed over a fixed distance, etc.): Click to enter text.

Size of pools (large, small, moderate, none): Click to enter text.

Maximum pool depth, in feet: Click to enter text.

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 3.0: LAND DISPOSAL OF EFFLUENT

The following is required for renewal, new, and amendment permit applications.

Section 1. Type of Disposal System (Instructions Page 68) Identify the method of land disposal: Surface application Subsurface application Subsurface soils absorption Drip irrigation system Subsurface area drip dispersal system

☐ Other (describe in detail): Click to enter text.

NOTE: All applicants without authorization or proposing new/amended subsurface disposal MUST complete and submit Worksheet 7.0.

Evapotranspiration beds

For existing authorizations, provide Registration Number: Click to enter text.

Section 2. Land Application Site(s) (Instructions Page 68)

In table 3.0(1), provide the requested information for the land application sites. Include the agricultural or cover crop type (wheat, cotton, alfalfa, bermuda grass, native grasses, etc.), land use (golf course, hayland, pastureland, park, row crop, etc.), irrigation area, amount of effluent applied, and whether or not the public has access to the area. Specify the amount of land area and the amount of effluent that will be allotted to each agricultural or cover crop, if more than one crop will be used.

Table 3.0(1) - Land Application Site Crops

Evaporation

Crop Type & Land Use	Irrigation Area (acres)	Effluent Application (GPD)	Public Access? Y/N

Section 3. Storage and Evaporation Lagoons/Ponds (Instructions Page 68)

Table 3.0(2) – Storage and Evaporation Ponds

Pond Number	Surface Area (acres)	Storage Volume (acre-feet)	Dimensions	Liner Type

Attach a copy of a liner certification that was prepared, signed, and sealed by a Texas licensed professional engineer for each pond.
Attachment: Click to enter text.
Section 4. Flood and Runoff Protection (Instructions Page 68)
Is the land application site <u>within</u> the 100-year frequency flood level?
□ Yes □ No
If yes, describe how the site will be protected from inundation.
Click to enter text.
Provide the source used to determine the 100-year frequency flood level:
Click to enter text.
Provide a description of tailwater controls and rainfall run-on controls used for the land
application site.
Click to enter text.

Section 5. Annual Cropping Plan (Instructions Page 68)

Attach an Annual Cropping Plan which includes a discussion of each of the following items. If not applicable, provide a detailed explanation indicating why. **Attachment**: Click to enter text.

- Soils map with crops
- Cool and warm season plant species
- Crop yield goals
- Crop growing season
- Crop nutrient requirements
- Additional fertilizer requirements
- Minimum/maximum harvest height (for grass crops)
- Supplemental watering requirements
- Crop salt tolerances
- Harvesting method/number of harvests
- Justification for not removing existing vegetation to be irrigated

Section 6. Well and Map Information (Instructions Page 69)

Attach a USGS map with the following information shown and labeled. If not applicable, provide a detailed explanation indicating why. **Attachment**: <u>Click to enter text.</u>

- The boundaries of the land application site(s)
- Waste disposal or treatment facility site(s)
- On-site buildings
- Buffer zones
- Effluent storage and tailwater control facilities
- All water wells within 1-mile radius of the disposal site or property boundaries
- All springs and seeps onsite and within 500 feet of the property boundaries
- All surface waters in the state onsite and within 500 feet of the property boundaries
- All faults and sinkholes onsite and within 500 feet of the property

List and cross reference all water wells located within a half-mile radius of the disposal site or property boundaries shown on the USGS map in the following table. Attach additional pages as necessary to include all of the wells.

Table 3.0(3) - Water Well Data

Well ID	Well Use	Producing? Y/N	Open, cased, capped, or plugged?	Proposed Best Management Practice
			Choose an item.	
			Choose an item.	
			Choose an item.	
			Choose an item.	
			Choose an item.	

If water quality data or well log information is available please include the information in an attachment listed by Well ID.

Attachment: Click to enter text.

Section 7. Groundwater Quality (Instructions Page 69)

Attach a Groundwater Quality Technical Report which assesses the impact of the wastewater disposal system on groundwater. This report shall include an evaluation of the water wells (including the information in the well table provided in Item 6. above), the wastewater application rate, and pond liners. Indicate by a check mark that this report is provided.

Attachment: Click to enter text.
Are groundwater monitoring wells available onsite? Yes No
Do you plan to install ground water monitoring wells or lysimeters around the land application site? \Box Yes \Box No
If yes, provide the proposed location of the monitoring wells or lysimeters on a site map.
Attachment: Click to enter text.

Section 8. Soil Map and Soil Analyses (Instructions Page 70)

A. Soil map

Attach a USDA Soil Survey map that shows the area to be used for effluent disposal.

Attachment: Click to enter text.

B. Soil analyses

Attach the laboratory results sheets from the soil analyses. **Note**: for renewal applications, the current annual soil analyses required by the permit are acceptable as long as the test date is less than one year prior to the submission of the application.

Attachment: Click to enter text.

List all USDA designated soil series on the proposed land application site. Attach additional pages as necessary.

Table 3.0(4) - Soil Data

Soil Series	Depth from Surface	Permeability	Available Water Capacity	Curve Number

Section 9. Effluent Monitoring Data (Instructions Page 71) Is the facility in operation? Yes □ No **If no**, this section is not applicable and the worksheet is complete. If yes, provide the effluent monitoring data for the parameters regulated in the existing permit. If a parameter is not regulated in the existing permit, enter N/A. Table 3.0(5) – Effluent Monitoring Data Chlorine **Date** 30 Day Avg BOD5 **TSS** рН Acres Flow MGD mg/l Residual mg/l irrigated mg/l

corrective actions taken.		
Click to enter text.		

Provide a discussion of all persistent excursions above the permitted limits and any

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 3.1: SURFACE LAND DISPOSAL OF EFFLUENT

The following is required for new and major amendment permit applications. Renewal and minor amendment permit applications may be asked for this worksheet on a case by case basis.

Section 1. Surface Disposal (Instructions Page 72)

Complete the item that applies for the method of disposal being used.

A. Irrigation

Area under irrigation, in acres: Click to enter text.

Design application frequency:

hours/day <u>Click to enter text</u>. **And** days/week <u>Click to enter text</u>.

Land grade (slope):

average percent (%): Click to enter text.

maximum percent (%): Click to enter text.

Design application rate in acre-feet/acre/year: Click to enter text.

Design total nitrogen loading rate, in lbs N/acre/year: Click to enter text.

Soil conductivity (mmhos/cm): Click to enter text.

Method of application: Click to enter text.

Attach a separate engineering report with the water balance and storage volume calculations, method of application, irrigation efficiency, and nitrogen balance.

Attachment: Click to enter text.

B. Evaporation ponds

Daily average effluent flow into ponds, in gallons per day: Click to enter text.

Attach a separate engineering report with the water balance and storage volume calculations.

Attachment: Click to enter text.

C. Evapotranspiration beds

Number of beds: Click to enter text.

Area of bed(s), in acres: <u>Click to enter text.</u>

Depth of bed(s), in feet: Click to enter text.

Void ratio of soil in the beds: <u>Click to enter text.</u>

Storage volume within the beds, in acre-feet: Click to enter text.

Attach a separate engineering report with the water balance and storage volume calculations, and a description of the lining.

Attachment: Click to enter text.

Area used for application, in acres: Click to enter text. Slopes for application area, percent (%): Click to enter text. Design application rate, in gpm/foot of slope width: Click to enter text. Slope length, in feet: Click to enter text. Design BOD₅ loading rate, in lbs BOD₅/acre/day: Click to enter text. Design application frequency: hours/day: Click to enter text. And days/week: Click to enter text. Attach a separate engineering report with the method of application and design requirements according to 30 TAC Chapter 217. Attachment: Click to enter text.

Section 2. Edwards Aquifer (Instructions Page 73)

-
Is the facility subject to 30 TAC Chapter 213, Edwards Aquifer Rules?
□ Yes □ No
If yes , is the facility located on the Edwards Aquifer Recharge Zone?
□ Yes □ No
If yes, attach a geological report addressing potential recharge features
Attachment: Click to enter text.

DOMESTIC WASTEWATER PERMIT APPLICATION **WORKSHEET 3.2: SURFACE LAND DISPOSAL OF EFFLUENT**

The following is required for new and major amendment permit applications. Renewal and minor amendments applicants may be asked for the worksheet on a case by case basis.

NOTE: All applicants proposing new/amended subsurface disposal MUST complete and submit Worksheet 7.0. This worksheet applies to any subsurface disposal system that **does not meet** the definition of a subsurface area drip dispersal system as defined in 30 TAC Chapter 222, Subsurface Area Drip Dispersal System.

Section 1. Subsurface Application (Instructions Page 74)
Identify the type of system:
□ Conventional Gravity Drainfield, Beds, or Trenches (new systems must be less than 5,000 GPD)
□ Low Pressure Dosing
☐ Other, specify: <u>Click to enter text.</u>
Application area, in acres: Click to enter text.
Area of drainfield, in square feet: Click to enter text.
Application rate, in gal/square foot/day: Click to enter text.
Depth to groundwater, in feet: Click to enter text.
Area of trench, in square feet: Click to enter text.
Dosing duration per area, in hours: <u>Click to enter text.</u>
Number of beds: Click to enter text.
Dosing amount per area, in inches/day: Click to enter text.
Infiltration rate, in inches/hour: Click to enter text.
Storage volume, in gallons: <u>Click to enter text.</u>
Area of bed(s), in square feet: Click to enter text.
Soil Classification: <u>Click to enter text.</u>
Attach a separate engineering report with the information required in $30\ TAC\ \S\ 309.20$, excluding the requirements of $\S\ 309.20\ b(3)(A)$ and (B) design analysis which may be asked for on a case by case basis. Include a description of the schedule of dosing basin rotation.
Attachment: Click to enter text.
Section 2. Edwards Aquifer (Instructions Page 74)
Is the subsurface system over the Edwards Aquifer Recharge Zone as mapped by TCEQ?
□ Yes □ No
Is the subsurface system over the Edwards Aquifer Transition Zone as mapped by TCEQ?
□ Yes □ No
If yes to either question , the subsurface system may be prohibited by <i>30 TAC §213.8</i> . Please

call the Municipal Permits Team, at 512-239-4671, to schedule a pre-application meeting.

DOMESTIC WASTEWATER PERMIT APPLICATION **WORKSHEET 3.3: SUBSURFACE AREA DRIP DISPERSAL** (SADDS) LAND DISPOSAL OF EFFLUENT

The following **is required** for **new and major amendment** subsurface area drip dispersal system permit applications. Renewal and minor amendments applicants may be asked for the worksheet on a case by case basis.

NOTE: All applicants proposing new/amended subsurface disposal MUST complete and submit Worksheet 7.0. This worksheet applies to any subsurface disposal system that meets the definition of a subsurface area drip dispersal system as defined in 30 TAC Chapter 222, Subsurface Area Drip Dispersal System.

Se	ection 1. Administrative Information (Instructions Page 75)
Α.	Provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the owner of the treatment facility:
В.	<u>Click to enter text.</u> Is the owner of the land where the treatment facility is located the same as the owner of the treatment facility?
	□ Yes □ No
	If no , provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the owner of the land where the treatment facility is located.
	Click to enter text.
C.	Owner of the subsurface area drip dispersal system: <u>Click to enter text.</u>
D.	Is the owner of the subsurface area drip dispersal system the same as the owner of the wastewater treatment facility or the site where the wastewater treatment facility is located?
	□ Yes □ No
	If no , identify the names of all corporations or other business entities managed, owned, or otherwise closely related to the entity identified in Item 1.C.
	Click to enter text.
Е.	Owner of the land where the subsurface area drip dispersal system is located: <u>Click to enter text.</u>
F.	Is the owner of the land where the subsurface area drip dispersal system is located the same as owner of the wastewater treatment facility, the site where the wastewater treatment facility is located, or the owner of the subsurface area drip dispersal system?
	□ Yes □ No
	If no , identify the name of all corporations or other business entities managed, owned, or otherwise closely related to the entity identified in item 1.E.
	Click to enter text.

Section 2. Subsurface Area Drip Dispersal System (Instructions Page

A.	Type of system
	□ Subsurface Drip Irrigation
	□ Surface Drip Irrigation
	□ Other, specify: <u>Click to enter text.</u>
B.	Irrigation operations
	Application area, in acres: Click to enter text.
	Infiltration Rate, in inches/hour: Click to enter text.
	Average slope of the application area, percent (%): Click to enter text.
	Maximum slope of the application area, percent (%): Click to enter text.
	Storage volume, in gallons: <u>Click to enter text.</u>
	Major soil series: Click to enter text.
	Depth to groundwater, in feet: <u>Click to enter text.</u>
C.	Application rate
	Is the facility located west of the boundary shown in <i>30 TAC § 222.83</i> and also using a vegetative cover of non-native grasses over seeded with cool season grasses during the winter months (October-March)?
	□ Yes □ No
	If yes, then the facility may propose a hydraulic application rate not to exceed 0.1 gal/square foot/day.
	Is the facility located east of the boundary shown in <i>30 TAC § 222.83</i> or in any part of the state when the vegetative cover is any crop other than non-native grasses?
	□ Yes □ No
	If yes , the facility must use the formula in <i>30 TAC §222.83</i> to calculate the maximum hydraulic application rate.
	Do you plan to submit an alternative method to calculate the hydraulic application rate for approval by the executive director?
	□ Yes □ No
	Hydraulic application rate, in gal/square foot/day: Click to enter text.
	Nitrogen application rate, in lbs/gal/day: <u>Click to enter text.</u>
D.	Dosing information
	Number of doses per day: Click to enter text.
	Dosing duration per area, in hours: <u>Click to enter text.</u>

Rest period between doses, in hours: Click to enter text.

Dosing amount per area, in inches/day: Click to enter text.

Number of zones: <u>Click to enter text.</u>	
Does the proposed subsurface drip irrigation system use tree vegetative cover as a crop?	
□ Yes □ No	
If yes , provide a vegetation survey by a certified arborist. Please call the Water Quality Assessment Team at (512) 239-4671 to schedule a pre-application meeting.	
Attachment: Click to enter text.	
Section 3. Required Plans (Instructions Page 75)	
A. Recharge feature plan	
Attach a Recharge Feature Plan with all information required in 30 TAC §222.79. Attachment: Click to enter text.	
B. Soil evaluation	
Attach a Soil Evaluation with all information required in <i>30 TAC §222.73</i> .	
Attachment: Click to enter text.	
C. Site preparation plan	
Attach a Site Preparation Plan with all information required in 30 TAC §222.75.	
Attachment: Click to enter text.	
D. Soil sampling/testing	
Attach soil sampling and testing that includes all information required in 30 TAC §222.157.	
Attachment: Click to enter text.	
Section 4. Floodway Designation (Instructions Page 76)	
A. Site location	
Is the existing/proposed land application site within a designated floodway?	
☐ Yes ☐ No	
B. Flood map	
Attach either the FEMA flood map or alternate information used to determine the	
floodway.	
Attachment: Click to enter text.	
Section 5. Surface Waters in the State (Instructions Page 76)	

A. Buffer Map

Attach a map showing appropriate buffers on surface waters in the state, water wells, and springs/seeps.

Attachment: Click to enter text.

Do you plan to request a buffer variance from water wells or waters in the state?
□ Yes □ No
If yes, then attach the additional information required in 30 TAC § 222.81(c).
Attachment: Click to enter text.
Section 6 Edwards Aquifor (Instructions Dags 76)
Section 6. Edwards Aquifer (Instructions Page 76)
A. Is the SADDS located over the Edwards Aquifer Recharge Zone as mapped by TCEQ?
□ Yes □ No
B. Is the SADDS located over the Edwards Aquifer Transition Zone as mapped by TCEQ?
□ Yes □ No
If yes to either question , then the SADDS may be prohibited by <i>30 TAC §213.8</i> . Please call the Municipal Permits Team at 512-239-4671 to schedule a pre-application meeting.

B. Buffer variance request

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Toxic Pollutants (Instructions Page 78)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab ⊠ Composite ⊠

Date and time sample(s) collected: <u>05-30-2024</u> @ <u>0930</u>

Table 4.0(1) - Toxics Analysis

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrylonitrile	<50	<50	1	50
Aldrin	<0.01	<0.01	1	0.01
Aluminum	38.9	38.9	1	2.5
Anthracene	<10	<10	1	10
Antimony	<5	<5	1	5
Arsenic	2.5	2.5	1	0.5
Barium	128	128	1	3
Benzene	<10	<10	1	10
Benzidine	<50	<50	1	50
Benzo(a)anthracene	<5	<5	1	5
Benzo(a)pyrene	<5	<5	1	5
Bis(2-chloroethyl)ether	<10	<10	1	10
Bis(2-ethylhexyl)phthalate	<10	<10	1	10
Bromodichloromethane	11.1	11.1	1	10
Bromoform	<10	<10	1	10
Cadmium	2.9	2.9	1	1
Carbon Tetrachloride	<2	<2	1	2
Carbaryl	<5	<5	1	5
Chlordane*	<0.2	<0.2	1	0.2
Chlorobenzene	<10	<10	1	10
Chlorodibromomethane	<10	<10	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Chloroform	16.1	16.1	1	10
Chlorpyrifos	< 0.05	<0.05	1	0.05
Chromium (Total)	<3	<3	1	3
Chromium (Tri) (*1)	<3	<3	1	N/A
Chromium (Hex)	<3	<3	1	3
Copper	2.3	2.3	1	2
Chrysene	<5	<5	1	5
p-Chloro-m-Cresol	<10	<10	1	10
4,6-Dinitro-o-Cresol	<50	<50	1	50
p-Cresol	<10	<10	1	10
Cyanide (*2)	<10	<10	1	10
4,4'- DDD	<0.1	<0.1	1	0.1
4,4'- DDE	<0.1	<0.1	1	0.1
4,4'- DDT	<0.02	<0.02	1	0.02
2,4-D	<0.7	<0.7	1	0.7
Demeton (O and S)	<0.20	<0.20	1	0.20
Diazinon	<0.5	<0.5	1	0.5/0.1
1,2-Dibromoethane	<10	<10	1	10
m-Dichlorobenzene	<10	<10	1	10
o-Dichlorobenzene	<10	<10	1	10
p-Dichlorobenzene	<10	<10	1	10
3,3'-Dichlorobenzidine	<5	<5	1	5
1,2-Dichloroethane	<10	<10	1	10
1,1-Dichloroethylene	<10	<10	1	10
Dichloromethane	<20	<20	1	20
1,2-Dichloropropane	<10	<10	1	10
1,3-Dichloropropene	<10	<10	1	10
Dicofol	<1	<1	1	1
Dieldrin	<0.02	<0.02	1	0.02
2,4-Dimethylphenol	<10	<10	1	10
Di-n-Butyl Phthalate	<10	<10	1	10
Diuron	<0.09	<0.09	1	0.09
Endosulfan I (alpha)	<0.01	<0.01	1	0.01

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Endosulfan II (beta)	<0.02	<0.02	1	0.02
Endosulfan Sulfate	<0.1	<0.1	1	0.1
Endrin	<0.02	<0.02	1	0.02
Ethylbenzene	<10	<10	1	10
Fluoride	<500	<500	1	500
Guthion	<0.1	<0.1	1	0.1
Heptachlor	<0.01	<0.01	1	0.01
Heptachlor Epoxide	<0.01	<0.01	1	0.01
Hexachlorobenzene	<5	<5	1	5
Hexachlorobutadiene	<10	<10	1	10
Hexachlorocyclohexane (alpha)	<0.05	<0.05	1	0.05
Hexachlorocyclohexane (beta)	<0.05	<0.05	1	0.05
gamma-Hexachlorocyclohexane	<0.05	<0.05	1	0.05
(Lindane)				
Hexachlorocyclopentadiene	<10	<10	1	10
Hexachloroethane	<20	<20	1	20
Hexachlorophene	<10	<10	1	10
Lead	<0.50	<0.50	1	0.5
Malathion	<0.1	<0.1	1	0.1
Mercury	<0.005	<0.005	1	0.005
Methoxychlor	<2	<2	1	2
Methyl Ethyl Ketone	<50	<50	1	50
Mirex	<0.02	<0.02	1	0.02
Nickel	2.5	2.5	1	2
Nitrate-Nitrogen	7220	7220	1	100
Nitrobenzene	<10	<10	1	10
N-Nitrosodiethylamine	<20	<20	1	20
N-Nitroso-di-n-Butylamine	<20	<20	1	20
Nonylphenol	<333	<333	1	333
Parathion (ethyl)	<0.1	<0.1	1	0.1
Pentachlorobenzene	<20	<20	1	20
Pentachlorophenol	<5	<5	1	5
Phenanthrene	<10	<10	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Polychlorinated Biphenyls (PCB's) (*3)	<0.2	<0.2	1	0.2
Pyridine	<20	<20	1	20
Selenium	<5	<5	1	5
Silver	<0.5	<0.5	1	0.5
1,2,4,5-Tetrachlorobenzene	<20	<20	1	20
1,1,2,2-Tetrachloroethane	<10	<10	1	10
Tetrachloroethylene	<10	<10	1	10
Thallium	<0.5	<0.5	1	0.5
Toluene	<10	<10	1	10
Toxaphene	<0.3	<0.3	1	0.3
2,4,5-TP (Silvex)	<0.3	<0.3	1	0.3
Tributyltin (see instructions for explanation)	N/A	N/A	N/A	0.01
1,1,1-Trichloroethane	<10	<10	1	10
1,1,2-Trichloroethane	<10	<10	1	10
Trichloroethylene	<10	<10	1	10
2,4,5-Trichlorophenol	<50	<50	1	50
TTHM (Total Trihalomethanes)	27.2	27.2	1	10
Vinyl Chloride	<10	<10	1	10
Zinc	55.3	55.3	1	5

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

^(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab □ Composite □

Date and time sample(s) collected: Click to enter text.

Table 4.0(2)A - Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Antimony	<5	<5	1	5
Arsenic	2.5	2.5	1	0.5
Beryllium	<0.5	<0.5	1	0.5
Cadmium	2.9	2.9	1	1
Chromium (Total)	<3	<3	1	3
Chromium (Hex)	<3	<3	1	3
Chromium (Tri) (*1)	<3	<3	1	N/A
Copper	2.3	2.3	1	2
Lead	<0.5	<0.5	1	0.5
Mercury	< 0.005	< 0.005	1	0.005
Nickel	2.5	2.5	1	2
Selenium	<5	<5	1	5
Silver	<0.5	<0.5	1	0.5
Thallium	<0.5	<0.5	1	0.5
Zinc	55.3	55.3	1	5
Cyanide (*2)	<10	<10	1	10
Phenols, Total	<10	<10	1	10
			+	

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)B - Volatile Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrolein	<50	<50	1	50
Acrylonitrile	<50	<50	1	50
Benzene	<10	<10	1	10
Bromoform	<10	<10	1	10
Carbon Tetrachloride	<2	<2	1	2
Chlorobenzene	<10	<10	1	10
Chlorodibromomethane	<10	<10	1	10
Chloroethane	<50	<50	1	50
2-Chloroethylvinyl Ether	<10	<10	1	10
Chloroform	16.1	16.1	1	10
Dichlorobromomethane [Bromodichloromethane]	11.1	11.1	1	10
1,1-Dichloroethane	<10	<10	1	10
1,2-Dichloroethane	<10	<10	1	10
1,1-Dichloroethylene	<10	<10	1	10
1,2-Dichloropropane	<10	<10	1	10
1,3-Dichloropropylene	<10	<10	1	10
[1,3-Dichloropropene]				
1,2-Trans-Dichloroethylene	<10	<10	1	10
Ethylbenzene	<10	<10	1	10
Methyl Bromide	<50	<50	1	50
Methyl Chloride	<50	<50	1	50
Methylene Chloride	<20	<20	1	20
1,1,2,2-Tetrachloroethane	<10	<10	1	10
Tetrachloroethylene	<10	<10	1	10
Toluene	<10	<10	1	10
1,1,1-Trichloroethane	<10	<10	1	10
1,1,2-Trichloroethane	<10	<10	1	10
Trichloroethylene	<10	<10	1	10
Vinyl Chloride	<10	<10	1	10

Table 4.0(2)C - Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
2-Chlorophenol	<10	<10	1	10
2,4-Dichlorophenol	<10	<10	1	10
2,4-Dimethylphenol	<10	<10	1	10
4,6-Dinitro-o-Cresol	<50	<50	1	50
2,4-Dinitrophenol	<50	<50	1	50
2-Nitrophenol	<20	<20	1	20
4-Nitrophenol	<50	<50	1	50
P-Chloro-m-Cresol	<10	<10	1	10
Pentalchlorophenol	<5	<5	1	5
Phenol	<10	<10	1	10
2,4,6-Trichlorophenol	<10	<10	1	10

Table 4.0(2)D - Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acenaphthene	<10	<10	1	10
Acenaphthylene	<10	<10	1	10
Anthracene	<10	<10	1	10
Benzidine	<50	<50	1	50
Benzo(a)Anthracene	<5	<5	1	5
Benzo(a)Pyrene	<5	>5	1	5
3,4-Benzofluoranthene	<10	<10	1	10
Benzo(ghi)Perylene	<20	<20	1	20
Benzo(k)Fluoranthene	<5	<5	1	5
Bis(2-Chloroethoxy)Methane	<10	<10	1	10
Bis(2-Chloroethyl)Ether	<10	<10	1	10
Bis(2-Chloroisopropyl)Ether	<10	<10	1	10
Bis(2-Ethylhexyl)Phthalate	<10	<10	1	10
4-Bromophenyl Phenyl Ether	<10	<10	1	10
Butyl benzyl Phthalate	<10	<10	1	10
2-Chloronaphthalene	<10	<10	1	10
4-Chlorophenyl phenyl ether	<10	<10	1	10
Chrysene	<5	<5	1	5
Dibenzo(a,h)Anthracene	<5	<5	1	5
1,2-(o)Dichlorobenzene	<10	<10	1	10
1,3-(m)Dichlorobenzene	<10	<10	1	10
1,4-(p)Dichlorobenzene	<10	<10	1	10
3,3-Dichlorobenzidine			1	5
Diethyl Phthalate	<10	<10	1	10
Dimethyl Phthalate	<10	<10	1	10
Di-n-Butyl Phthalate	<10	<10	1	10
2,4-Dinitrotoluene	<10	<10	1	10
2,6-Dinitrotoluene	<10	<10	1	10
Di-n-Octyl Phthalate	<10	<10	1	10
1,2-Diphenylhydrazine (as Azobenzene)	<20	<20	1	20
Fluoranthene	<10	<10	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Fluorene	<10	<10	1	10
Hexachlorobenzene	<5	<5	1	5
Hexachlorobutadiene	<10	<10	1	10
Hexachlorocyclo-pentadiene	<10	<10	1	10
Hexachloroethane	<20	<20	1	20
Indeno(1,2,3-cd)pyrene	<5	<5	1	5
Isophorone	<10	<10	1	10
Naphthalene	<10	<10	1	10
Nitrobenzene	<10	<10	1	10
N-Nitrosodimethylamine	<50	<50	1	50
N-Nitrosodi-n-Propylamine	<20	<20	1	20
N-Nitrosodiphenylamine	<20	<20	1	20
Phenanthrene	<10	<10	1	10
Pyrene	<10	<10	1	10
1,2,4-Trichlorobenzene	<10	<10	1	10

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Aldrin	<0.01	<0.01	1	0.01
alpha-BHC (Hexachlorocyclohexane)	< 0.05	< 0.05	1	0.05
beta-BHC (Hexachlorocyclohexane)	<0.05	<0.05	1	0.05
gamma-BHC (Hexachlorocyclohexane)	<0.05	<0.05	1	0.05
delta-BHC (Hexachlorocyclohexane)	<0.05	<0.05	1	0.05
Chlordane	<0.2	<0.2	1	0.2
4,4-DDT	<0.02	<0.02	1	0.02
4,4-DDE	<0.1	<0.1	1	0.1
4,4,-DDD	<0.1	<0.1	1	0.1
Dieldrin	<0.02	<0.02	1	0.02
Endosulfan I (alpha)	<0.01	<0.01	1	0.01
Endosulfan II (beta)	<0.02	< 0.02	1	0.02
Endosulfan Sulfate	<0.1	<0.1	1	0.1
Endrin	<0.02	<0.02	1	0.02
Endrin Aldehyde	<0.1	<0.1	1	0.1
Heptachlor	<0.01	< 0.01	1	0.01
Heptachlor Epoxide	<0.01	<0.01	1	0.01
PCB-1242	<0.2	<0.2	1	0.2
PCB-1254	<0.2	<0.2	1	0.2
PCB-1221	<0.2	<0.2	1	0.2
PCB-1232	<0.2	<0.2	1	0.2
PCB-1248	<0.2	<0.2	1	0.2
PCB-1260	<0.2	<0.2	1	0.2
PCB-1016	<0.2	<0.2	1	0.2
Toxaphene	<0.3	<0.3	1	0.3
	<u>l</u>	I		I

^{*} For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Section 3. Dioxin/Furan Compounds A. Indicate which of the following compounds from may be present in the influent from a contributing industrial user or significant industrial user. Check all that apply. 2,4,5-trichlorophenoxy acetic acid Common Name 2,4,5-T, CASRN 93-76-5 2-(2,4,5-trichlorophenoxy) propanoic acid Common Name Silvex or 2,4,5-TP, CASRN 93-72-1 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate Common Name Erbon, CASRN 136-25-4 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate Common Name Ronnel, CASRN 299-84-3 2,4,5-trichlorophenol Common Name TCP, CASRN 95-95-4 hexachlorophene Common Name HCP, CASRN 70-30-4 For each compound identified, provide a brief description of the conditions of its/their presence at the facility. Click to enter text.

В.	Do you know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin
	(TCDD) or any congeners of TCDD may be present in your effluent?

□ Yes □ No

If **yes**, provide a brief description of the conditions for its presence.

Click to enter t	ext.			

C.	If any of the compounds in Subsection A ${f or}$ B are present, complete Table 4.0(2)F.
	For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab □ Composite □

Date and time sample(s) collected: Click to enter text.

Table 4.0(2)F - Dioxin/Furan Compounds

Compound	Toxic Equivalenc y Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1					10
1,2,3,7,8 PeCDD	0.5					50
2,3,7,8 HxCDDs	0.1					50
1,2,3,4,6,7,8 HpCDD	0.01					50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05					50
2,3,4,7,8 PeCDF	0.5					50
2,3,7,8 HxCDFs	0.1					50
2,3,4,7,8 HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					0.5
PCB 81	0.0003					0.5
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total						

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: TOXICITY TESTING REQUIREMENTS

The following **is required** for facilities with a current operating design flow of **1.0 MGD or greater**, with an EPA-approved **pretreatment** program (or those required to have one under 40 CFR Part 403), or are required to perform Whole Effluent Toxicity testing. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Required Tests (Instructions Page 88)

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic: <u>17</u> 48-hour Acute: 9

Section 2. Toxicity Reduction Evaluations (TREs)

Has this facility	completed a	TRE in the	past four	and a ha	alf years?	Or is the	facility	currently
performing a TI	RE?							

□ Yes ⊠ No

If yes, describe the progress to date, if applicable, in identifying and confirming the toxicant.

N/A			

Section 3. Summary of WET Tests

If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed.

Table 5.0(1) Summary of WET Tests

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal
N/A			

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works.

Section 1. All POTWs (Instructions Page 89)

A. Industrial users (IUs)

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

If there are no users, enter 0 (zero). Categorical IUs: Number of IUs: o Average Daily Flows, in MGD: o Significant IUs - non-categorical: Number of IUs: o Average Daily Flows, in MGD: o Other IUs: Number of IUs: o

Average Daily Flows, in MGD: o

B. Treatment plant interference

In the past three years, has your POTW experienced treatment plant interference (see instructions)?

Yes	\boxtimes	No

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

N/A

	in the past three years, has your POTW experienced pass through (see instructions)?
	□ Yes ⊠ No
	If yes , identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.
	N/A
D.	Pretreatment program
_	Does your POTW have an approved pretreatment program?
	□ Yes ⊠ No
	If yes, complete Section 2 only of this Worksheet.
	Is your POTW required to develop an approved pretreatment program?
	□ Yes ⊠ No
	If yes, complete Section 2.c. and 2.d. only, and skip Section 3.
	If no to either question above , skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.
	muuotiui uoti ana tategoritaa muuotiini uoti.
Se	ection 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 90)
	ection 2. POTWs with Approved Programs or Those Required to
	ection 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 90)
	ection 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 90) Substantial modifications Have there been any substantial modifications to the approved pretreatment program
	Ection 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 90) Substantial modifications Have there been any substantial modifications to the approved pretreatment program that have not been submitted to the TCEQ for approval according to 40 CFR §403.18? Yes No If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.
	POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 90) Substantial modifications Have there been any substantial modifications to the approved pretreatment program that have not been submitted to the TCEQ for approval according to 40 CFR §403.18? Yes No If yes, identify the modifications that have not been submitted to TCEQ, including the
	Ection 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 90) Substantial modifications Have there been any substantial modifications to the approved pretreatment program that have not been submitted to the TCEQ for approval according to 40 CFR §403.18? Yes No If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.
	Ection 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 90) Substantial modifications Have there been any substantial modifications to the approved pretreatment program that have not been submitted to the TCEQ for approval according to 40 CFR §403.18? Yes No If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.
	Ection 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 90) Substantial modifications Have there been any substantial modifications to the approved pretreatment program that have not been submitted to the TCEQ for approval according to 40 CFR §403.18? Yes No If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.
	Ection 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 90) Substantial modifications Have there been any substantial modifications to the approved pretreatment program that have not been submitted to the TCEQ for approval according to 40 CFR §403.18? Yes No If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.

C. Treatment plant pass through

	Have there been any non-substantial modifications to the approved pretreatment program that have not been submitted to TCEQ for review and acceptance?										
	□ Yes □ I	No									
		non-substantial moo		ave not been subn	nitted to TCEQ,						
	Click to enter text.										
C.	Effluent paramete	ers above the MAL									
Tal		all parameters meant the last three years									
P	ollutant	Concentration	MAL	Units	Date						
D.	Industrial user int	terruptions									
		or other IU caused cass throughs) at you			rluding						
	□ Yes □ 1	No									
		industry, describe nd probable polluta		luding dates, dura	ation, description						
	Click to enter text	-									

B. Non-substantial modifications

Section 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 90)

	General information
	Company Name: N/A N/A
	SIC Code: N/A
	Contact name: N/A
	Address: N/A
	City, State, and Zip Code: N/A
	Telephone number: N/A
	Email address: N/A
B.	Process information
	Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).
	N/A
C.	Product and service information
	Provide a description of the principal product(s) or services performed.
	N/A
D.	N/A Flow rate information
D.	
D.	Flow rate information
D.	Flow rate information See the Instructions for definitions of "process" and "non-process wastewater."
D.	Flow rate information See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater:
D.	Flow rate information See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater: Discharge, in gallons/day: N/A
D.	Flow rate information See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater: Discharge, in gallons/day: N/A Discharge Type: □ Continuous □ Batch □ Intermittent Non-Process Wastewater:
D.	Flow rate information See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater: Discharge, in gallons/day: N/A Discharge Type: Continuous Batch Intermittent

Pretreatment standards
Is the SIU or CIU subject to technically based local limits as defined in the <i>i</i> nstructions?
□ Yes □ No
Is the SIU or CIU subject to categorical pretreatment standards found in 40 CFR Parts 405-471?
□ Yes □ No
If subject to categorical pretreatment standards , indicate the applicable category and subcategory for each categorical process.
Category: Subcategories: Click to enter text.
Click or tap here to enter text. Click to enter text.
Category: Click to enter text.
Subcategories: <u>Click to enter text.</u>
Category: Click to enter text.
Subcategories: <u>Click to enter text.</u>
Category: Click to enter text.
Subcategories: <u>Click to enter text.</u>
Category: Click to enter text.
Subcategories: <u>Click to enter text.</u>
Industrial user interruptions
Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years?
□ Yes □ No
If yes , identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants.
N/A

E.

F.

WORKSHEET 7.0

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

CLASS V INJECTION WELL INVENTORY/AUTHORIZATION FORM

Submit the completed form to:

TCEQ IUC Permits Team Radioactive Materials Division MC-233 PO Box 13087 Austin, Texas 78711-3087 512-239-6466

For TCEQ Use Only
Reg. No
Date Received
Date Authorized

Section 1. General Information (Instructions Page 92)

1	TCFO	Program	Araa
ı.	ICEO	riugiaiii	Area

Program Area (PST, VCP, IHW, etc.): Click to enter text.

Program ID: Click to enter text.

Contact Name: <u>Click to enter text.</u> Phone Number: <u>Click to enter text.</u>

2. Agent/Consultant Contact Information

Contact Name: Click to enter text.

Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Phone Number: Click to enter text.

3. Owner/Operator Contact Information

□ Owner □ Operator

Owner/Operator Name: Click to enter text.

Contact Name: Click to enter text.

Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Phone Number: Click to enter text.

4. Facility Contact Information

Facility Name: Click to enter text.

Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Location description (if no address is available): <u>Click to enter text.</u>

Facility Contact Person: Click to enter text.

Phone Number: Click to enter text.

5.	Latitude and Longitude, in degrees-minutes-seconds
	Latitude: Click to enter text.
	Longitude: Click to enter text.
	Method of determination (GPS, TOPO, etc.): Click to enter text.
	Attach topographic quadrangle map as attachment A.
6.	Well Information
	Type of Well Construction, select one:
	□ Vertical Injection
	□ Subsurface Fluid Distribution System
	□ Infiltration Gallery
	□ Temporary Injection Points
	□ Other, Specify: <u>Click to enter text.</u>
	Number of Injection Wells: <u>Click to enter text.</u>
7.	Purpose
	Detailed Description regarding purpose of Injection System:
	Click to enter text.
	Attach a Site Map as Attachment B (Attach the Approved Remediation Plan, if appropriate.)
8.	Water Well Driller/Installer
	Water Well Driller/Installer Name: <u>Click to enter text.</u>
	City, State, and Zip Code: <u>Click to enter text.</u>
	Phone Number: <u>Click to enter text.</u>
	License Number: <u>Click to enter text.</u>
Section	2. Proposed Down Hole Design
Attach a	diagram signed and sealed by a licensed engineer as Attachment C.
Table 7.0((1) – Down Hole Design Table

Name of String	Size	Setting Depth	Sacks Cement/Grout - Slurry Volume - Top of Cement	Hole Size	Weight (lbs/ft) PVC/Steel
Casing					
Tubing					
Screen					

Section 3. Proposed Trench System, Subsurface Fluid Distribution System, or Infiltration Gallery

Attach a diagram signed and sealed by a licensed engineer as Attachment D.

System(s) Dimensions: <u>Click to enter text.</u> System(s) Construction: Click to enter text.

Section 4.	Site Hydro	geological	and Injection	n Zone Data
9 6 6 6 6 6	<u> </u>			

- 1. Name of Contaminated Aquifer: Click to enter text.
- 2. Receiving Formation Name of Injection Zone: Click to enter text.
- 3. Well/Trench Total Depth: Click to enter text.
- **4.** Surface Elevation: Click to enter text.
- **5.** Depth to Ground Water: <u>Click to enter text.</u>
- **6.** Injection Zone Depth: <u>Click to enter text.</u>
- 7. Injection Zone vertically isolated geologically?

 Yes

 No

 Impervious Strata between Injection Zone and nearest Underground Source of Drinking Water:

Name: Click to enter text.

Thickness: Click to enter text.

- **8.** Provide a list of contaminants and the levels (ppm) in contaminated aquifer Attach as Attachment E.
- **9.** Horizontal and Vertical extent of contamination and injection plume Attach as Attachment F.
- **10.** Formation (Injection Zone) Water Chemistry (Background levels) TDS, etc. Attach as Attachment G.
- **11.** Injection Fluid Chemistry in PPM at point of injection Attach as Attachment H.
- 12. Lowest Known Depth of Ground Water with < 10,000 PPM TDS: Click to enter text.
- 13. Maximum injection Rate/Volume/Pressure: Click to enter text.
- 14. Water wells within 1/4 mile radius (attach map as Attachment I): Click to enter text.
- 15. Injection wells within 1/4 mile radius (attach map as Attachment J): <u>Click to enter text.</u>
- 16. Monitor wells within 1/4 mile radius (attach drillers logs and map as Attachment K): Click to enter text.
- **17.** Sampling frequency: Click to enter text.
- **18.** Known hazardous components in injection fluid: Click to enter text.

Section 5. Site History

- **1.** Type of Facility: Click to enter text.
- **2.** Contamination Dates: Click to enter text.
- 3. Original Contamination (VOCs, TPH, BTEX, etc.) and Concentrations (attach as Attachment L): Click to enter text.
- **4.** Previous Remediation (attach results of any previous remediation as attachment M): Click to enter text.

NOTE: Authorization Form should be completed in detail and authorization given by the TCEQ before construction, operation, and/or conversion can begin. Attach additional pages as necessary.

Class V Injection Well Designations

- 5A07 Heat Pump/AC return (IW used for groundwater to heat and/or cool buildings)
- 5A19 Industrial Cooling Water Return Flow (IW used to cool industrial process equipment)
- 5B22 Salt Water Intrusion Barrier (IW used to inject fluids to prevent the intrusion of salt water into an aquifer)
- 5D02 Storm Water Drainage (IW designed for the disposal of rain water)
- 5D04 Industrial Stormwater Drainage Wells (IW designed for the disposal of rain water associated with industrial facilities)
- 5F01 Agricultural Drainage (IW that receive agricultural runoff)
- 5R21 Aquifer Recharge (IW used to inject fluids to recharge an aquifer)
- 5S23 Subsidence Control Wells (IW used to control land subsidence caused by ground water withdrawal)
- 5W09 Untreated Sewage
- 5W10 Large Capacity Cesspools (Cesspools that are designed for 5,000 gpd or greater)
- 5W11 Large Capacity Septic systems (Septic systems designed for 5,000 gpd or greater)
- 5W12 WTTP disposal
- 5W20 Industrial Process Waste Disposal Wells
- 5W31 Septic System (Well Disposal method)
- 5W32 Septic System Drainfield Disposal
- 5X13 Mine Backfill (IW used to control subsidence, dispose of mining byproducts, and/or fill sections of a mine)
- 5X25 Experimental Wells (Pilot Test) (IW used to test new technologies or tracer dye studies)
- 5X26 Aguifer Remediation (IW used to clean up, treat, or prevent contamination of a USDW)
- 5X27 Other Wells
- 5X28 Motor Vehicle Waste Disposal Wells (IW used to dispose of waste from a motor vehicle site These are currently banned)
- 5X29 Abandoned Drinking Water Wells (waste disposal)

CITY OF EL CAMPO WASTEWATER TREATMENT PLANT TPDES PERMIT NO. WQ0010844-001

EXHIBIT A

Core Data Form

TCEQ CORE DATA FORM

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: GENERAL INFORMATION

1. Reason for Submission (If other is checked please describe in space provided.)											
☐ New Per	mit, Regist	ration or Authorizati	on (<i>Core Data</i>	Form shou	ıld be su	ubmitted	d with t	he program applic	ation.)		
□ Renewal	(Core Dat	a Form should be su	ubmitted with ti	he renewal	form)			Other			
2. Custome	r Referer	nce Number (if iss		ollow this li			3. Re	gulated Entity	Refere	ence Numb	er (if issued)
CN 600539	1423		<u>fo</u>	r CN or RN Central R			RN	101607745			
SECTION II: CUSTOMER INFORMATION 4. General Customer Information 5. Effective Date for Customer Information Undates (mm/dd/seas) 4/1/2024											
4. General Customer Information 5. Effective Date for Customer Information Updates (mm/dd/yyyy) 4/1/2024 ☐ New Customer ☐ Change in Regulated Entity Ownership											
□ New Customer □ Update to Customer Information □ Change in Regulated Entity Ownership □ Change in Legal Name (Verifiable with the Texas Secretary of State or Texas Comptroller of Public Accounts)											
		e submitted here SOS) or Texas Co				_		d on what is c	urrent	and activ	e with the Texas
6. Custome	r Legal N	lame (If an individua	al, print last na	me first: eg	g: Doe, J	John)		If new Custome	r, enter	previous Cu	stomer below:
City of ELO											
City of El Campo 7. TX SOS/CPA Filing Number 8. TX State Tax ID (11 digits) 9. Federal Tax ID (9 digits) 10. DUNS Number applicable)										,	
11. Type of	Custome	er: Corpora	tion] Individ	dual	Partn	ership: 🔲 G	eneral 🗌 Limited
		County Federal	☐ Local ☐ S	tate 🗌 Oth	ner] Sole F	Proprietorship	☐ Ot	her:	
12. Number □ 0-20 □	of Emplo 21-100		251-500	501 and hi	gher			13. Independe ☐ Yes	ently C		Operated?
14. Customer Role (Proposed or Actual) – as it relates to the Regulated Entity listed on this form. Please check one of the following											
⊠Owner □Occupation	al License	☐ Ope		□ VCP/		Owner oplicant		erator			
15.	315 East	Jackson Street									
Mailing											
Address:	City	El Campo		State	TX	- 2	ZIP	77437			
16. Country	Mailing	Information (if out	tside USA)			17. E-	-Mail A	Address (if appli	cable)		
18. Telephone Number 19. Extension or Code 20. Fax Number (if applicable) (979) 541-5000 (979) 543-0027									ble)		
SECTION III: REGULATED ENTITY INFORMATION											
21. General	Regulate	ed Entity Informa	tion (If 'New I	Regulated i	Entity" is	s select	ted, a n	ew permit applica	tion is a	also required.)
☐ New Regu	lated Entity	y ☐ Update to R	egulated Entity	Name	☑ Upda	ate to R	Regulat	ed Entity Informat	ion		
		/ Name submitted , LP, or LLC).	d may be upo	dated, in o	order to	o meet	t TCE	Q Core Data Sta	ndard	s (removal	of organizational
22. Regulate	ed Entity	Name (Enter name	e of the site wh	ere the reg	gulated a	action is	s taking	g place.)			
City of El Cam	npo Waste	water Treatment Fac	cility								

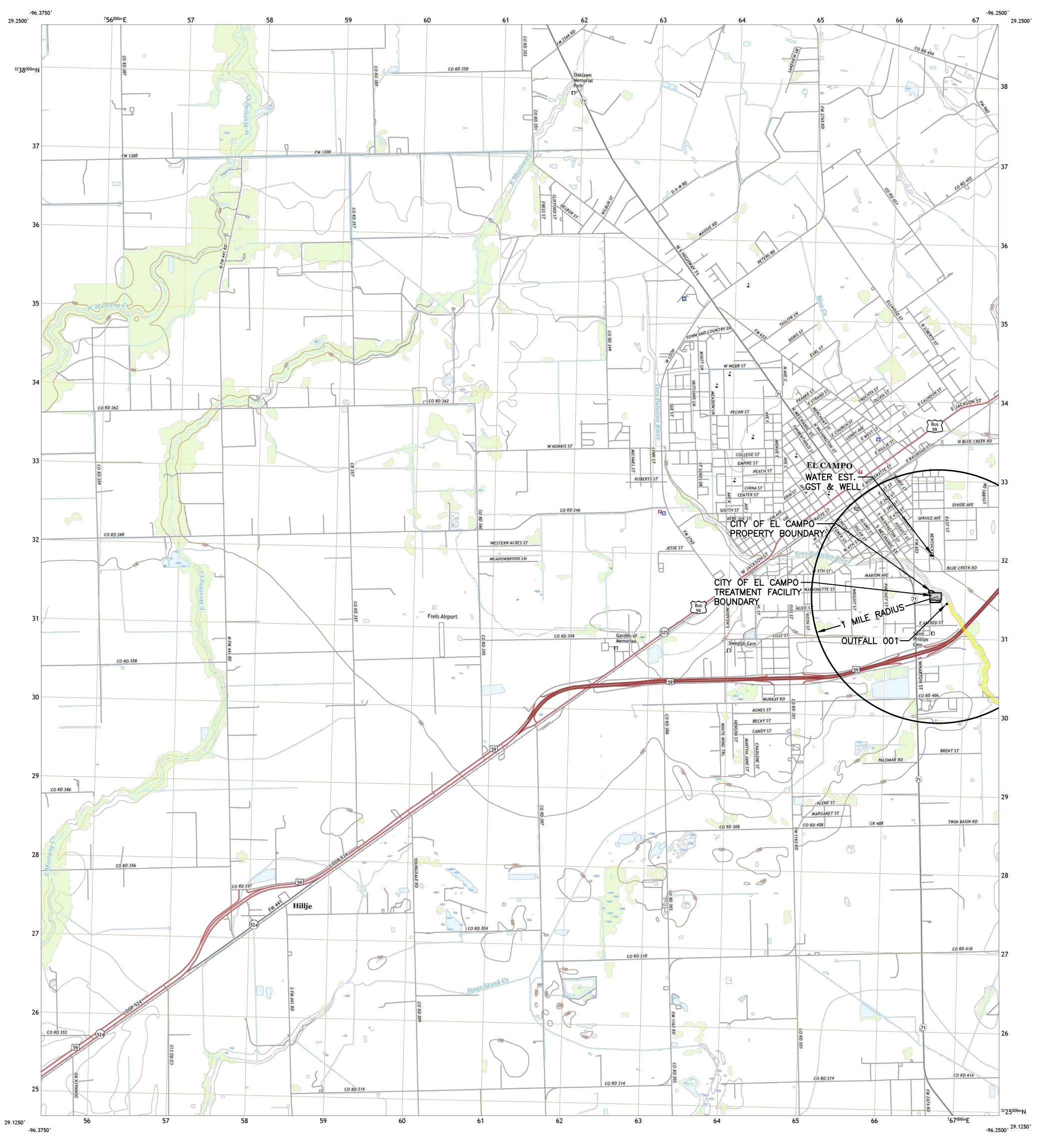
23. Street Add of the Regul	1 20	1 Thom	pson Stree	et							-	
Entity: (No PO Boxes)		ty	El Cam	ро	State	TX	z	IP.	77437		ZIP + 4	
24. County												_
•			If no St	root Add	ress is prov	idad fial	de 25	. 28 ara	roquiro	۸ 		
25. Description t Physical Location			11 110 51	reet Add	ress is prov	ided, liel	us 20	5-20 are	require	u.		
26. Nearest City							; =	State Nearest Z				
El Campo								26	TX			
Latitude/Longitude are required and may be added/updated to meet TCEQ Core Data Standards. (Geocoding of the Phy Address may be used to supply coordinates where none have been provided or to gain accuracy).												
27. Latitude (N) I	n Decima	I:	29.18444	1		28.	Lon	gitude	(W) In D	ecimal:	-96.2583	333
Degrees	Min	utes		Sec	onds	Deg	grees		M	inutes		Seconds
29			11		04		,	96		15		30
29. Primary SIC ((4 digits)	Code		Seconda igits)	ary SIC C	ode	31. Pri (5 or 6 d		NAIC	S Code	32. Sec (5 or 6 di		AICS Code
4952		N/A				221320				N/A		
33. What is the P	rimary Bu	usines	s of this	entity?	(Do not repea	t the SIC o	or NAI	CS desc	ription.)			
34. Mailing	31	315 East Jackson Street										
Address:												
Sale decision reason from	(City	El Cam	00	State	TX		ZIP	77437		ZIP + 4	
35. E-Mail Addres	ss:	N/A	•			•	•					
36. Telephone Nu	ımber			37.	Extension	or Code		38. F	ax Numb	er (if applic	cable)	
(979) 541-5000							(979) 543-0027					
39. TCEQ Programs on this form. See the Co	and ID No	umbers	S Check al	ll Programs r additiona	s and write in th	ne permits/	registi	ration nu	mbers tha	t will be affe	cted by the	updates submitted
☐ Dam Safety		☐ Disti						☐ Emissions Inventory Air			☐ Industrial Hazardous Waste	
☐ Municipal Solid W		☐ Ne	w Source Air	os	SF	☐ Petroleum Storage Ta			Tank [k PWS		
Sludge		☐ Storm Water ☐ Title V Air			☐ Tires			☐ Us		1		
☐ Voluntary Cleanu	р	☐ Wastewater ☐ Wastewater Agric			culture				Other:			
	,	0844-001			10							
SECTION IV: F	PREPA	RER	INFO	RMAT	<u>ION</u>							
40. Name: Mark	40. Name: Mark Rudolph					41. Title	e:	Project I	Manager			
42. Telephone Nun	nber 4	3. Ext./	Code	44. Fax	Number	45. E-I	Mail A	Addres	3			9
(979) 836-7937 () - mark.rudolph@strand.com												
(979) 836-7937				()	-	mark.ru	adolphi		.00111			l l
(979) 836-7937 SECTION V: A	\ \UTHO	RIZE	ED SIG	() SNATL	- JRE	mark.ru	adipii					
	ow, I certify	, to the	best of my	knowledg	e, that the info	rmation pro	ovided	d in this f	orm is true	e and compl ates to the	ete, and th ID number	at I have signature 's identified in field

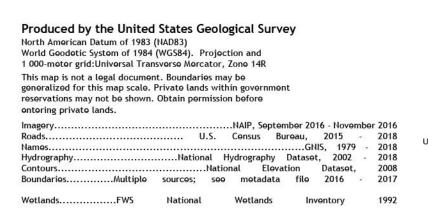
Eugene Bustamante

Name (In Print):

Signature:

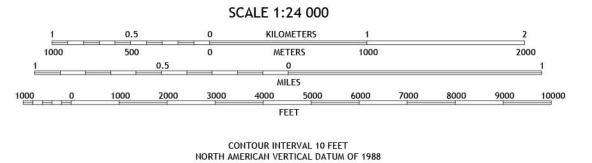
Phone:


Date:


(979)541-5000 07/16/2024

CITY OF EL CAMPO WASTEWATER TREATMENT PLANT TPDES PERMIT NO. WQ0010844-001

EXHIBIT B


USGS Map

QΤ

This map was produced to conform with the National Geospatial Program US Topo Product Standard, 2011. A metadata file associated with this product is draft version 0.6.18

5 Pierce

6 Louise

8 7 El Campo SE

8 Danevang

ADJOINING QUADRANGLES

EXHIBIT B DOMESTIC ADMINISTRATIVE REPORT 1.0, SECTION 13. USGS MAP

CITY OF EL CAMPO WASTEWATER TREATMENT PLANT TPDES PERMIT NO. WQ0010844-001

EXHIBIT C

Description of Treatment Process

CITY OF EL CAMPO TPDES NO. WQ0010844-001

EXHIBIT C

Description of Treatment Process

The treatment plant has two treatment trains. One train utilizes a standard oxidation ditch operating in extended aeration mode of the activated sludge process. The oxidation ditch flow train is equipped with final clarification and return sludge capabilities. The other train operates in the complete mix mode.

The raw sewage from the collection system enters the treatment plant facility via the wet well of an influent lift station. The influent lift station pumps the raw sewage to a barscreen structure where it is screened. Screenings from the barscreen are collected and disposed of in a safe and legal manner. Following screening, the raw sewage then flows through a grit chamber and into a splitter box where the flow is split between the two flow trains.

Approximately 45% of the flow enters the complete mix flow train. This portion enters the aeration basin where it is aerated by coarse bubble diffused air. The mixed liquor then flows to the clarifier where the sludge solids settle to the bottom and the settled effluent overtops a weir. The settled effluent then flows to the shared chlorine contact chamber.

The remaining 55% of the flow enters a race track oxidation ditch that operates in extended aeration mode where it is retained and aerated with rotors. Following treatment in the oxidation ditch, the mixed liquor flows to the final clarifier where sludge solids settle to the bottom of the basin and settled effluent is discharged over a weir at the top of the basin. The settled effluent goes from the clarifier to the shared chlorine contact chamber for disinfection.

A liquid chlorine solution is injected into the settled effluent as it enters the chlorine contact chamber structure. After entering the chlorine contact chamber, the effluent is retained for a minimum of 20 minutes based on peak hydraulic flow. After disinfection, the treated effluent passes through a dechlorination chamber where it is treated with sulphur dioxide. The effluent is then measured using an ultrasonic level indicator as the water flows through a Parshall flume. Following measurement, the treated effluent is then discharged through a 36" pipe into the Tres Palacios River.

The plant is also equipped with a sludge treatment train. Sludge from the bottom of both clarifiers is either returned to the oxidation ditch for mixing with raw influent or wasted to a common sludge thickener. Following thickening, the sludge is sent to an aerobic digester. A belt press is utilized for dewatering the digested sludge.

After dewatering, the sewage sludge is transported by a registered/permitted transporter to a permitted landfill.

CITY OF EL CAMPO WASTEWATER TREATMENT PLANT TPDES PERMIT NO. WQ0010844-001

EXHIBIT D

Copy of Application Payment & Cover Letter to TCEQ

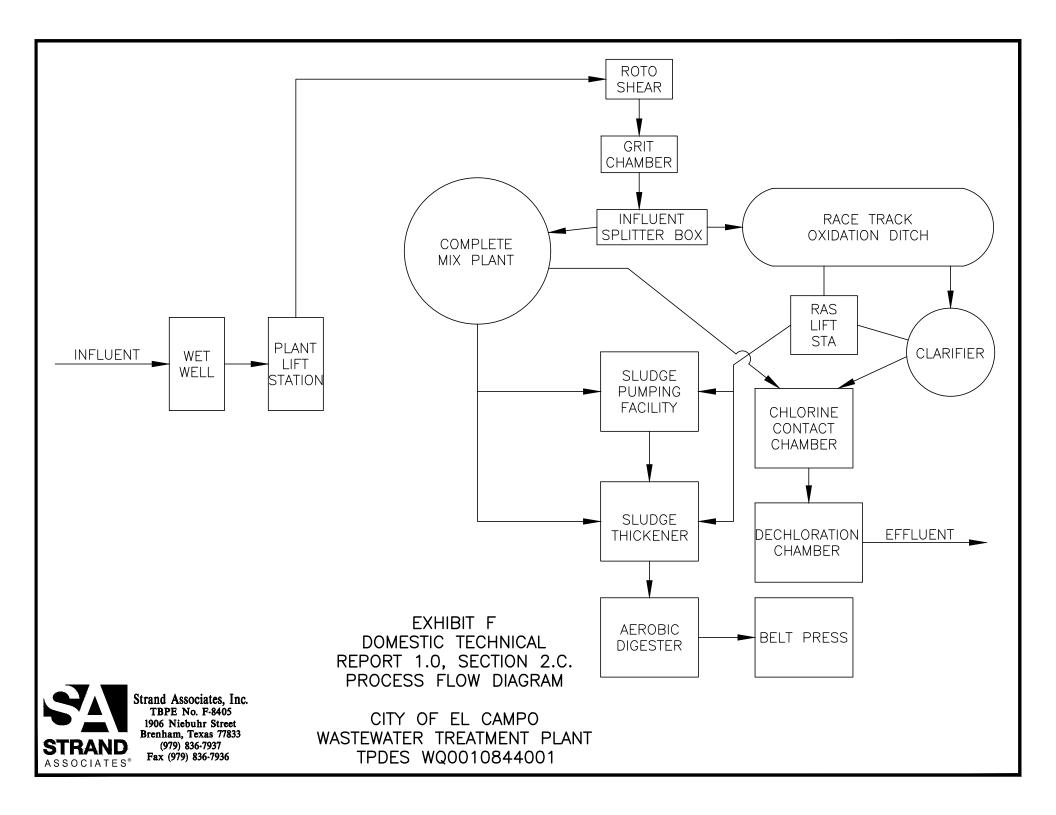
CITY OF EL CAMPO WASTEWATER TREATMENT PLANT TPDES PERMIT NO. WQ0010844-001

EXHIBIT E

Types & Dimensions of Treatment Units

CITY OF EL CAMPO WWTP TPDES NO. WQ0010844-001

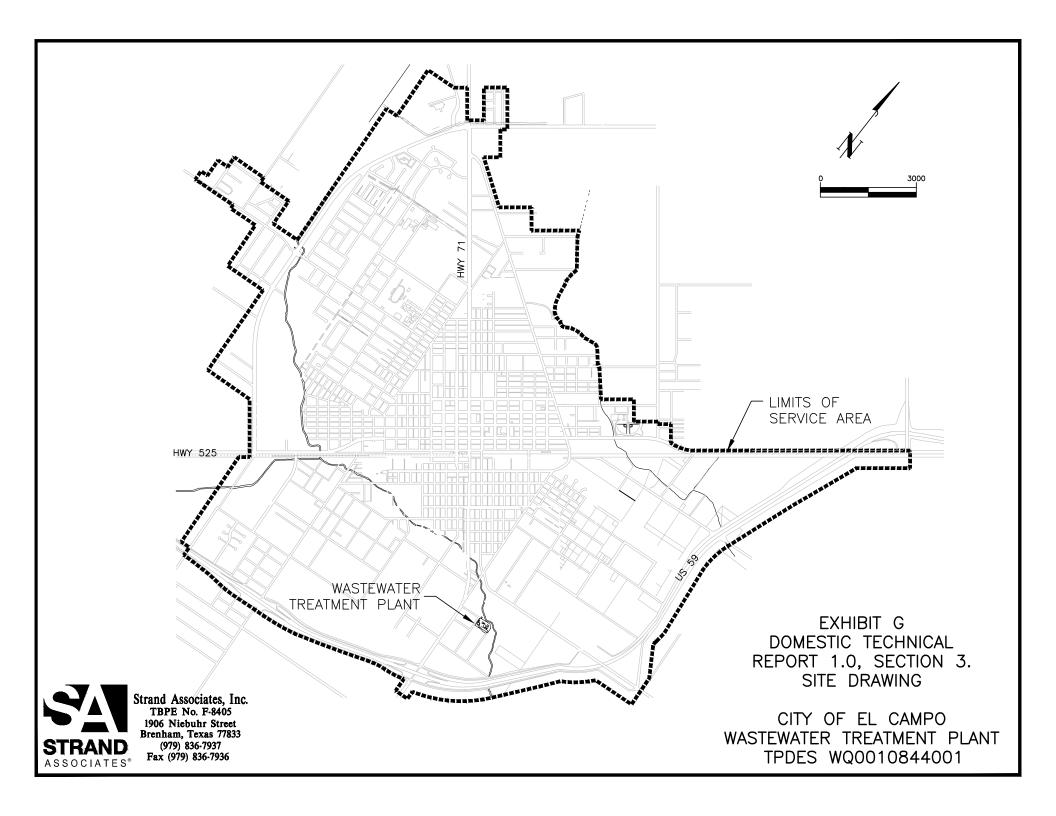
EXHIBIT E


Treatment Units

Type	Dimensions
Influent lift pumps (3)	2,350 gpm each
Complete Mix Flow Train (1.233 mgd/3.157 mgd)	
Aeration basin (1)	58,785 c.f.
Clarifier (1)	60' diameter x 9'4" SWD (2,770 s.f.)
Oxidation Ditch Flow Train (1.405 mgd/5.835 mga	
Oxidation ditch (1)	157,410 c.f.
Mechanical rotors (3)	109.35 lb oxygen/hr each
Clarifier (1)	80' diameter x 14'3" SWD (5,027 s.f.)
RAS pumps (3)	475 gpm each
Return sludge pumps (3)	2 @ 380 gpm 1 @ 750 gpm
Sludge thickener (1)	26' x 26' x 16'
Blowers (3)	3,750 cfm each
Aerobic digester (1)	53,248 c.f.
Chlorine contact chamber (1)	18,578 c.f.
Dechlorination basin (1)	8' x 10' x 16'
Belt press (1)	2 meter

CITY OF EL CAMPO WASTEWATER TREATMENT PLANT TPDES PERMIT NO. WQ0010844-001

EXHIBIT F


Process Flow Diagram

CITY OF EL CAMPO WASTEWATER TREATMENT PLANT TPDES PERMIT NO. WQ0010844-001

EXHIBIT G

Site Drawing

CITY OF EL CAMPO WASTEWATER TREATMENT PLANT TPDES PERMIT NO. WQ0010844-001

EXHIBIT H

Laboratory Results

04 July 2024

Envirodyne Laboratories, Inc 11011 Brooklet Dr., # 230 Houston, TX 77099 281.568.7880 Phone www.envirodyne.com

El Campo, City of Chris England 201 E. Thompson El Campo, TX 77437

El Campo, (City of) WWTP Permit Renewal

Enclosed are the results of analyses for samples received by the laboratory on 31-May-24 16:30. The analytical data provided relates only to the samples as received in this laboratory report.

ELI certifies that all results are NELAP compliant and performed in accordance with the referenced method except as noted in the Case Narrative or as noted with a qualifier. Any reproductions of this laboratory report should be in full and only with the written authorization from the client.

The total number of pages in this report is 34

Thank you for selecting ELI for your analytical needs. If you have any questions regarding this report, please contact us.

Sincerely,

Laura Bonjonia For Amanda Heiman

Laura Brynin

Client Service Manager

Certificate No: T104704265-22-20

Client: El Campo, City of

Project: El Campo, (City of) WWTP Permit Renewal

Work Order: 24F0477

Reported: 04-Jul-24 13:31

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Effluent (Comp)	24F0477-01	Water	30-May-24 09:30	31-May-24 16:30
Effluent (Grab)	24F0477-02	Water	30-May-24 09:46	31-May-24 16:30

Envirodyne Laboratories, Inc.

Laura Brynin

If yes to any of the above, provide the date the plant started or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD₅ concentration of the septic waste, and the design BOD₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

information has or has not changed since the ra-	T
Click to enter text.	
	the treatment plants may be

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

3. Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)

Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above?

Yes		No
1 00	_	

If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.

changed since the last permit detroil	
Click to enter text.	

Pollutant Analysis of Treated Effluent (Instructions Page Section 7. 50)

Is the facility in operation?

	Yes		No
--	-----	--	----

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. Wastewater treatment facilities complete Table 1.0(2). Water treatment facilities discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. These tables are not applicable for a minor amendment without renewal. See the instructions for guidance.

Note: The sample date must be within 1 year of application submission.

Table 1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities

able1.0(2) - Pollutant Analysis n Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
-non/	3.1	3.1	1	Comp	5-30-24/0930
CBOD ₅ , mg/l	3.5	3.5	1	Comp	5-30-24/0930
Total Suspended Solids, mg/l	<0.20	<0.20	1	Comp	5-30-24/0930
Ammonia Nitrogen, mg/l	7.22	7.22	1	Comp	5-30-24/0930
Nitrate Nitrogen, mg/l	7.22	7.22		Standard (I) (I)	

< 0.50	< 0.50	1	Comp	5-30-24/0930
	33.2	1	Comp	5-30-24/0930
		1	Comp	5-30-24/0930
	55,55 - 550	S.277	Comp	5-30-24/0930
1 - Table 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			000000000000000000000000000000000000000	5-30-24/0930
7.41	7.41		100 M	5-30-24/0946
6.37	6.37	1	Grab	
< 0.01	< 0.01	1		5-30-24/0946
<1	<1	1	Grab	5-31-24/0930
N/A	N/A	N/A	N/A	N/A
532	532	1	Comp	5-30-24/0930
929	929	1	Comp	5-30-24/0930
<5.0	<5.0	1	Grab	5-30-24/0946
183	183	1	Comp	5-30-24/0930
	<0.01 <1 N/A 532 929 <5.0	33.2 33.2 160 160 4.56 4.56 7.41 7.41 6.37 6.37 <0.01 <0.01 <1 <1 N/A N/A 532 532 929 929 <5.0 <5.0	33.2 33.2 1 160 160 1 4.56 4.56 1 7.41 7.41 1 6.37 6.37 1 <0.01 <0.01 1 <1 <1 1 N/A N/A N/A 532 532 1 929 929 1 <5.0 <5.0 1	33.2 33.2 1 Comp 160 160 1 Comp 4.56 4.56 1 Comp 7.41 7.41 1 Grab 6.37 6.37 1 Grab <0.01 <0.01 1 <1 <1 1 Grab N/A N/A N/A N/A 532 532 1 Comp 929 929 1 Comp <5.0 <5.0 1 Grab

^{*}TPDES permits only †TLAP permits only

Table1.0(3) - Pollutant Analysis for Water Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Suspended Solids, mg/l					
Total Dissolved Solids, mg/l					
pH, standard units					
Fluoride, mg/l					
Aluminum, mg/l					
Alkalinity (CaCO ₃), mg/l					

Section 8. Facility Operator (Instructions Page 50)

Facility Operator Name: Click to enter text.

Facility Operator's License Classification and Level: Click to enter text.

Facility Operator's License Number: Click to enter text.

Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 51)

A. WWTP's Biosolids Management Facility Type

Check all that apply. See instructions for guidance

□ Design flow>= 1 MGD

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Toxic Pollutants (Instructions Page 78)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab ⊠

Composite ⊠

Date and time sample(s) collected: 5-30-24 @ 0930

Table 4.0(1) - Toxics Analysis

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Acrylonitrile	<50	<50	1	50
Aldrin	<0.01	<0.01	1	0.01
Aluminum	38.9	38.9	1	2.5
Anthracene	<10	<10	1	10
Antimony	<5	<5	1	5
Arsenic	2.5	2.5	1	0.5
Barium	128	128	1	3
Benzene	<10	<10	1	10
Benzidine	<50	<50	1	50
Benzo(a)anthracene	<5	<5	1	5
Benzo(a)pyrene	<5	<5	1	5
Bis(2-chloroethyl)ether	<10	<10	1	10
Bis(2-ethylhexyl)phthalate	<10	<10	1	10
Bromodichloromethane	11.1	11.1	1	10
Bromoform	<10	<10	1	10
Cadmium	2.9	2.9	1	1
Carbon Tetrachloride	<2	<2	1	2
Carbaryl	<5	<5	1	5
Chlordane*	<0.2	<0.2	1	0.2
Chlorobenzene	<10	<10	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Chlorodibromomethane	<10	<10	1	10
Chloroform	16.1	16.1	1	10
Chlorpyrifos	< 0.05	<0.05	1	0.05
Chromium (Total)	<3	<3	1	3
Chromium (Tri) (*1)	<3	<3	1	N/A
Chromium (Hex)	<3	<3	1	3
Copper	2.3	2.3	1	2
Chrysene	<5	<5	1	5
p-Chloro-m-Cresol	<10	<10	1	10
4,6-Dinitro-o-Cresol	<50	<50	1	50
p-Cresol	<10	<10	1	10
Cyanide (*2)	<10	<10	1	10
4,4'- DDD	<0.1	<0.1	1	0.1
4,4'- DDE	<0.1	<0.1	1	0.1
4,4'- DDT	<0.02	<0.02	1	0.02
2,4-D	<0.7	<0.7	1	0.7
Demeton (O and S)	<0.20	<0.20	1	0.20
Diazinon	<0.5	<0.5	1	0.5/0.1
1,2-Dibromoethane	<10	<10	1	10
m-Dichlorobenzene	<10	<10	1	10
o-Dichlorobenzene	<10	<10	1	10
p-Dichlorobenzene	<10	<10	1	10
3,3'-Dichlorobenzidine	<5	<5	1	5
1,2-Dichloroethane	<10	<10	1	10
1,1-Dichloroethylene	<10	<10	1	10
Dichloromethane	<20	<20	1	20
1,2-Dichloropropane	<10	<10	1	10
1,3-Dichloropropene	<10	<10	1	10
Dicofol	<1	<1	1	1
Dieldrin	<0.02	<0.02	1	0.02
2,4-Dimethylphenol	<10	<10	1	10
Di-n-Butyl Phthalate	<10	<10	1	10
Diuron	<0.09	<0.09	1	0.09

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Endosulfan I (alpha)	< 0.01	<0.01	1	0.01
Endosulfan II (beta)	< 0.02	<0.02	1	0.02
Endosulfan Sulfate	< 0.1	<0.1	1	0.1
Endrin	<0.02	<0.02	1	0.02
Ethylbenzene	<10	<10	1	10
Fluoride	<500	<500	1	500
Guthion	<0.1	<0.1	1	0.1
Heptachlor	< 0.01	<0.01	1	0.01
Heptachlor Epoxide	< 0.01	<0.01	1	0.01
Hexachlorobenzene	<5	<5	1	5
Hexachlorobutadiene	<10	<10	1	10
Hexachlorocyclohexane (alpha)	< 0.05	< 0.05	1	0.05
Hexachlorocyclohexane (beta)	<0.05	<0.05	1	0.05
gamma-Hexachlorocyclohexane	<0.05	<0.05	1	0.05
(Lindane)				
Hexachlorocyclopentadiene	<10	<10	1	10
Hexachloroethane	<20	<20	1	20
Hexachlorophene	<10	<10	1	10
Lead	<0.50	< 0.50	1	0.5
Malathion	<0.1	<0.1	1	0.1
Mercury	<0.005	<0.005	1	0.005
Methoxychlor	<2	<2	1	2
Methyl Ethyl Ketone	<50	<50	1	50
Mirex	<0.02	<0.02	1	0.02
Nickel	2.5	2.5	1	2
Nitrate-Nitrogen	7220	7220	1	100
Nitrobenzene	<10	<10	1	10
N-Nitrosodiethylamine	<20	<20	1	20
N-Nitroso-di-n-Butylamine	<20	<20	1	20
Nonylphenol	<333	<333	1	333
Parathion (ethyl)	<0.1	<0.1	1	0.1
Pentachlorobenzene	<20	<20	1	20
Pentachlorophenol	<5	<5	1	5

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)	
Phenanthrene	<10	<10	1	10	
Polychlorinated Biphenyls (PCB's) (*3)	<0.2	<0.2	1	0.2	
	<20	<20	1	20	
Pyridine	<5	<5	1	5	
Selenium	<0.5	<0.5	1	0.5	
Silver	<20	<20	1	20	
1,2,4,5-Tetrachlorobenzene 1,1,2,2-Tetrachloroethane	<10	<10	1	10	
	<10	<10	1	10	
Tetrachloroethylene	<0.5	<0.5	1	0.5	
Thallium	<10	<10	1	10	
Toluene	<0.3	<0.3	1	0.3	
Toxaphene			1	0.3	
2,4,5-TP (Silvex)	<0.3	<0.3		Constitution of the consti	
Tributyltin (see instructions for explanation)	N/A	N/A	N/A	0.01	
1,1,1-Trichloroethane	<10	<10	1	10	
1,1,2-Trichloroethane	<10	<10	1	10	
Trichloroethylene	<10	<10	1	10	
2,4,5-Trichlorophenol	<50	<50	1	50	
TTHM (Total Trihalomethanes)	27.2	27.2	1	10	
Vinyl Chloride	<10	<10	1	10	
Zinc	55.3	55.3	1	5	

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

^(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab ⊠ Composite ⊠

Date and time sample(s) collected: 5-30-24 @ 0930

Table 4.0(2)A - Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)	
Antimony	<5	<5	1	5	
Arsenic	2.5	2.5	1	0.5	
Beryllium	<0.5	<0.5	1	0.5	
Cadmium	2.9	2.9	1	1	
Chromium (Total)	<3	<3	1	3	
Chromium (Hex)	<3	<3	1	3	
Chromium (Tri) (*1)	<3	<3	1	N/A	
Copper	2.3	2.3	1	2	
Lead	<0.5	<0.5	1	0.5	
Mercury	< 0.005	< 0.005	1	0.005	
Nickel	2.5	2.5	1	2	
Selenium	<5	<5	1	5	
Silver	<0.5	<0.5	1	0.5	
Thallium	<0.5	<0.5	1	0.5	
Zinc	55.3	55.3	1	5	
Cyanide (*2)	<10	<10	1	10	
Phenols, Total	<10	<10	1	10	

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)B - Volatile Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acrolein	<50	<50	1	50
Acrylonitrile	<50	<50	1	50
Benzene	<10	<10	1	10
Bromoform	<10	<10	1	10
Carbon Tetrachloride	<2	<2	1	2
Chlorobenzene	<10	<10	1	10
Chlorodibromomethane	<10	<10	1	10
Chloroethane	<50	<50	1	50
2-Chloroethylvinyl Ether	<10	<10	1	10
Chloroform	16.1	16.1	1	10
Dichlorobromomethane [Bromodichloromethane]	11.1	11.2	1	10
1,1-Dichloroethane	<10	<10	1	10
1,2-Dichloroethane	<10	<10	1	10
1,1-Dichloroethylene	<10	<10	1	10
1,2-Dichloropropane	<10	<10	1	10
1,3-Dichloropropylene	<10	<10	1	10
[1,3-Dichloropropene]				
1,2-Trans-Dichloroethylene	<10	<10	1	10
Ethylbenzene	<10	<10	1	10
Methyl Bromide	<50	<50	1	50
Methyl Chloride	<50	<50	1	50
Methylene Chloride	<20	<20	1	20
1,1,2,2-Tetrachloroethane	<10	<10	1	10
Tetrachloroethylene	<10	<10	1	10
Toluene	<10	<10	1	10
1,1,1-Trichloroethane	<10	<10	1	10
1,1,2-Trichloroethane	<10	<10	1	10
Trichloroethylene	<10	<10	1	10
Vinyl Chloride	<10	<10	1	10

Table 4.0(2)C - Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)	
a Chlaranhanal	<10	<10	1	10	
2-Chlorophenol	<10	<10	1	10	
2,4-Dichlorophenol	<10	<10	1	10	
2,4-Dimethylphenol	<50	<50	1	50	
4,6-Dinitro-o-Cresol	<50	<50	1	50	
2,4-Dinitrophenol	<20	<20	1	20	
2-Nitrophenol	<50	<50	1	50	
4-Nitrophenol	<10	<10	1	10	
P-Chloro-m-Cresol	<5	<5	1	5	
Pentalchlorophenol	<10	<10	1	10	
Phenol 2,4,6-Trichlorophenol	<10	<10	1	10	

Table 4.0(2)D - Base/Neutral Compounds

able 4.0(2)D – Base/Neutra Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)	
Acenaphthene	<10	<10	1	10	
Acenaphthylene	<10	<10	1	10	
Anthracene	<10	<10	1	10	
Benzidine	<50	<50	1	50	
Benzo(a)Anthracene	<5	<5	1	5	
Benzo(a)Pyrene	<5	<5	1	5	
3,4-Benzofluoranthene	<10	<10	1	10	
Benzo(ghi)Perylene	<20	<20	1	20	
Benzo(k)Fluoranthene	<5	<5	1	5	
Bis(2-Chloroethoxy)Methane	<10	<10	1	10	
Bis(2-Chloroethyl)Ether	<10	<10	1	10	
Bis(2-Chloroisopropyl)Ether	<10	<10	1	10	
Bis(2-Ethylhexyl)Phthalate	<10	<10	1	10	
4-Bromophenyl Phenyl Ether	<10	<10	1	10	
Butyl benzyl Phthalate	<10	<10	1	10	
2-Chloronaphthalene	<10	<10	1	10	
4-Chlorophenyl phenyl ether	<10	<10	1	10	
Chrysene	<5	<5	1	5	
Dibenzo(a,h)Anthracene	<5	<5	1	5	
1,2-(o)Dichlorobenzene	<10	<10	1	10	
1,3-(m)Dichlorobenzene	<10	<10	1	10	
1,4-(p)Dichlorobenzene	<10	<10	1	10	
3,3-Dichlorobenzidine	<5	<5	1	5	
Diethyl Phthalate	<10	<10	1	10	
Dimethyl Phthalate	<10	<10	1	10	
Di-n-Butyl Phthalate	<10	<10	1	10	
2,4-Dinitrotoluene	<10	<10	1	10	
2,6-Dinitrotoluene	<10	<10	1	10	
Di-n-Octyl Phthalate	<10	<10	1	10	
1,2-Diphenylhydrazine (as Azobenzene)	<20	<20	1	20	
Fluoranthene	<10	<10	1	10	

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Fluorene	<10	<10	1	10
Hexachlorobenzene	<5	<5	1	5
Hexachlorobutadiene	<10	<10	1	10
Hexachlorocyclo-pentadiene	<10	<10	1	10
Hexachloroethane	<20	<20	1	20
Indeno(1,2,3-cd)pyrene	<5	<5	1	5
Isophorone	<10	<10	1	10
Naphthalene	<10	<10	1	10
Nitrobenzene	<10	<10	1	10
N-Nitrosodimethylamine	<50	<50	1	50
N-Nitrosodi-n-Propylamine	<20	<20	1	20
N-Nitrosodiphenylamine	<20	<20	1	20
Phenanthrene	<10	<10	1	10
Pyrene	<10	<10	1	10
1,2,4-Trichlorobenzene	<10	<10	1	10

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)	
Aldrin	<0.01	<0.01	1	0.01	
alpha-BHC (Hexachlorocyclohexane)	< 0.05	<0.05	1	0.05	
beta-BHC (Hexachlorocyclohexane)	< 0.05	<0.05	1	0.05	
gamma-BHC (Hexachlorocyclohexane)	<0.05	<0.05	1	0.05	
delta-BHC (Hexachlorocyclohexane)	<0.05	<0.05	1	0.05	
Chlordane	<0.2	<0.2	1	0.2	
4,4-DDT	<0.02	<0.02	1	0.02	
4,4-DDE	<0.1	<0.1	1	0.1	
4,4,-DDD	<0.1	<0.1	1	0.1	
Dieldrin	<0.02	<0.02	1	0.02	
Endosulfan I (alpha)	<0.01	<0.01	1	0.01	
Endosulfan II (beta)	<0.02	<0.02	1	0.02	
Endosulfan Sulfate	<0.1	<0.1	1	0.1	
Endrin	<0.02	<0.02	1	0.02	
Endrin Aldehyde	<0.1	<0.1	1	0.1	
Heptachlor	<0.01	<0.01	1	0.01	
Heptachlor Epoxide	<0.01	<0.01	1	0.01	
PCB-1242	<0.2	<0.2	1	0.2	
PCB-1254	<0.2	<0.2	1	0.2	
PCB-1221	<0.2	<0.2	1	0.2	
PCB-1232	<0.2	<0.2	1	0.2	
PCB-1248	<0.2	<0.2	1	0.2	
PCB-1260	<0.2	<0.2	1	0.2	
PCB-1016	<0.2	<0.2	1	0.2	
Toxaphene	<0.3	<0.3	1	0.3	

^{*} For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

ENVIRODYNE LABORATORIES, INC.

CERTIFICATE OF ANALYSIS

CLIENT: CITY OF EL CAMPO PERMIT RENEWAL LAB NUMBER: 24F0477-01

DATE COLLECTED: 30-May-24 DATE RECEIVED: 31-May-24

DATE COMPLETED: 06-Jun-24 SAMPLED BY: CE

LOCATION: EFFLUENT - Grab

PARAMETERS:	VOLATILES	CONC.	DETECTION LIMITS
			(ug/l)
ACROLEIN (ug/l)		50.0 U	50.0
ACRYLONITRILE (ug	/l) (ug/l) g/l) ug/l) g/l) METHANE (ug/l)	50.0 U	50.0
CHLOROMETHANE	(ug/l)	10.0 U	10.0
VINYL CHLORIDE (up	g/l)	10.0 U	10.0
BROMOMETHANE (L	ıg/l)	50.0 U	50.0
CHLOROETHANE (u	g/I)	50.0 U	50.0
TRICHLOROFUORO	METHANE (ug/l)	10.0 U	10.0
I, I-DICHLOROETHT	LEINE (ug/I)	10.0 U	10.0
METHYLENE CHLOR	RIDE (ug/l)	20.0 U	20.0
trans-1,2-DICHLORO	ETHYLENE (ug/l)	10.0 U	10.0
1,1-DICHLOROETHA		10.0 U	10.0
1,1,1-TRICHLOROET	HANE (ug/l)	10.0 U	10.0
METHYL BROMIDE (50.0 U	50.0
METHYL CHLORIDE	(ug/l)	10.0 U	10.0
CHLOROFORM (ug/l)		16.1	10.0
CARBON TETRACHL	ORIDE (ug/l)	2.0 U	2.0
1,2-DICHLOROETHA	NE (ug/l)	10.0 U	10.0
TRICHLOROETHANE	(ug/l)	10.0 U	10.0
BENZENE (ug/l)		10.0 U	10.0
TRICHLOROETHYLE	NE (ug/l)	10.0 U	10.0
1,2-DICHLOROPROP	ANE (ug/l)	10.0 U	10.0
DICHLOROBROMOM	ETHANE (ug/l)	11.1	10.0
1,3 DICHLOROPROP	YLENE (ug/l)	10.0 U	10.0
TOLUENE (ug/l)		10.0 U	10.0
trans-1,3-DICHLOROF	PROPENE (ug/l)	10.0 U	10.0
1,1,2-TRICHLOROET		10.0 U	10.0
TETRACHLOROETHY		10.0 U	10.0
DIBROMOCHLOROM		10.0 U	10.0
CHLOROBENZENE (L		10.0 U	10.0
2-CHLOROETHYLVIN		10.0 U	10.0
1,2-DIBROMOETHAN		2.0 U	2.0
ETHYLBENZENE (ug/	1)	10.0 U	10.0
BROMOFORM (ug/l)		10.0 U	10.0
1,1,2,2-TETRACHLOR		10.0 U	10.0
TOTAL TRIHALOMET		27.2	10.0
METHYL ETHYL KET		50.0 U	50.0
1,3 DICHLORBENZEN		10.0 U	10.0
1,4 DICHLORBENZEN		10.0 U	10.0
1,2 DICHLORBENZEN	IE (ug/l)	10.0 U	10.0
XYLENE (ug/l)		10.0 U	10.0
			MG/

Ref. EPA 624.1 (VOLATILES)

U - Analyte Not Detected at the Listed Detection Limit

J - Analyte Present but Below Detection Limit

LAB REPRESENTATIVE

ENVIRODYNE LABORATORIES, INC.

CERTIFICATE OF ANALYSIS

CLIENT: CITY OF EL CAMPO PERMIT RENEWAL

LAB NUMBER: 24F0477B

DATE COLLECTED: 30-May-24

DATE RECEIVED: 31-May-24

DATE COMPLETED: 07-Jun-24

SAMPLED BY: CE

LOCATION: EFFLUENT

PARAMETERS: BASE/ NEUTRALS

ACENAPHTHENE (ug/l)	10.0 U	ISOPHORONE (ug/l)	10.011
ACENAPHTHYLENE (ug/I)	10.0 U	NAPHTHALENE (ug/l)	10.0 U
ANTHRACENE (ug/l)	10.0 U	NITROBENZENE (ug/l)	10.0 U
BENZIDINE (ug/l)	50.0 U	N-NITROSO-di-n-PROPYLAMINE (ug/l)	10.0 U
BENZO (a) ANTHRACENE (ug/l)	5.0 U	N-NITROSODIPHENYLAMINE (ug/l)	20.0 U
BENZO (a) PYRENE (ug/l)	5.0 U	N-NITROSODIMETHYLAMINE (ug/l)	20.0 U
BENZO (B) FLUORANTHENE (ug/l)	10.0 U	PHENANTHRENE (ug/l)	50.0 U
BENZO (GHI) PERYLENE (ug/l)	20.0 U	PYRENE (ug/l)	10.0 U
BENZO (k) FLUORANTHENE (ug/l)	5.0 U	1,2,4-TRICHLOROBENZENE (ug/l)	10.0 U
BIS (2-CHLOROETHYL) ETHER (ug/l)	10.0 U	1,2,4,5-TETRACHLOROBENZENE (ug/l	10.0 U
BIS (2-CHLOROETHOXY) METHANE (ug/l)	10.0 U	2, 4-DINITROTOLUENE (ug/l)	20.0 U
BIS (2-CHLOROISOPROPYL) ETHER (ug/l)	10.0 U	2, 6-DINTROTOLUENE (ug/l)	10.0 U
BIS (2-ETHYLHEXYL) PHTHALATE (ug/l)	10.0 U	2-METHYLNAPHTHALENE (ug/l)	10.0 U
4-BROMOPHENYL PHENYL ETHER (ug/l)	10.0 U	Di-n-octyl PHTHALATE (ug/l)	10.0 U
BUTYL BENZYL PHTHALATE (ug/l)	10.0 U	PYRIDINE (ug/l)	10.0 U
2-CHLORONAPHTHALENE (ug/l)	10.0 U	p-CRESOL (ug/l)	20.0 U
4-CHLOROPHENYL PHENYL ETHER (ug/l)	10.0 U	p-oncool (ug/i)	10.0 U
CHRYSENE (ug/l)	5.0 U	ACID COMPOUNDS	
DIBENZO (a,h) ANTHRACENE (ug/l)	5.0 U	EFFLUENT (Cont.)	
1,2-DICHLOROBENZENE (ug/l)	10.0 U	Lite Edelit (Odile)	
1,3-DICHLOROBENZENE (ug/l)	10.0 U	2-CHLOROPHENOL (ug/l)	10.011
(p)1,4-DICHLOROBENZENE (ug/l)	10.0 U	2,4-DICHLOROPHENOL (ug/l)	10.0 U
3,3-DICHLOROBENZIDINE (ug/l)	5.0 U	2,4-DIMETHYLPHENOL (ug/l)	10.0 U
DIETHYL PHTHALATE (ug/I)	10.0 U	4, 6-DINITRO-o-CRESOL (ug/l)	10.0 U
DIMETHYL PHTHALATE (ug/l)	10.0 U	4,6-DINITRO-2-METHYLPHENOL (ug/l)	50.0 U
DI-N-BUTYL PHTHALATE (ug/l)	10.0 U	2,4-DINITROPHENOL (ug/l)	20.0 U
DIBENZOFURAN (ug/l)	10.0 U	2-NITROPHENOL (ug/l)	50.0 U
FLUORANTHENE (ug/l)	10.0 U	4-NITROPHENOL (ug/l)	20.0 U 50.0 U
FLUORENE (ug/l)	10.0 U	p-CHLORO-m-CRESOL (ug/l)	CONTRACTOR OF THE PARTY OF THE
HEXACHLOROBENZENE (ug/l)	5.0 U	2-METHYLPHENOL (ug/l)	10.0 U 10.0 U
HEXACHLOROBUTADIENE (ug/l)	10.0 U	PENTACHLOROPHENOL (ug/l)	5.0 U
HEXACHLOROETHANE (ug/l)	20.0 U	PHENOL (ug/l)	10.0 U
HEXACHLOROCYCLOPENTADIENE (ug/l)	10.0 U	2,4,6-TRICHLOROPHENOL (ug/l)	10.0 U
HEXACHLOROPHENE (ug/l)	10.0 U	2,4,5-TRICHLOROPHENOL (ug/l)	50.0 U
IDENO (1,2,3,cd) PYRENE (ug/l)	5.0 U	PENTACHLOROBENZENE (ug/l)	20.0 U
1,2-Diphenyl Hydrazine (ug/l)	20.0 U	4-CHLORO-3-METHYL PHENOL (ug/l)	10.0 U
N-NITROSO-di-n-BUTYLAMINE (ug/l)	20.0 U	NONYLPHENOL (ug/l)	5.0 U
N-NITROSO-DI-ETHYLAMINE (ug/l)	20.0 U		0.00
A DESCRIPTION OF THE SECURE AND ADDRESS OF T		0	

Analyzed by NELAC certified lab T104704231 Ref. EPA-625.1 (Base/Neutrals & Acids)

U - Analyte Not Detected at the listed Detection Limit

J - Analyte Present but below Detection Limit

ENVIRODYNE LABORATORIES, INC.

CLIENT: CITY OF EL CAMPO PERMIT RENEWAL LAB NUMBER: 24E2248C

DATE COLLECTED: 30-May-24 DATE RECEIVED: 31-May-24

DATE COMPLETED: 13-Jun-24 SAMPLED BY: CE

Comp

LOCATION: EFFLUENT

PARAMETERS:

METALS	CONCENTRATION	METHOD	INITIALS	MAL
TOTAL ALUMINUM (ug/l)	38.9	EPA 200.8	JMM	2.5
TOTAL ANTIMONY (ug/l)	<5.0	EPA 200.8	JMM	5.0
TOTAL ARSENIC (ug/l)	2.5	EPA 200.8	JMM	0.5
TOTAL BARIUM (ug/l)	128.0	EPA 200.8	JMM	3.0
TOTAL BERYLLIUM (ug/l)	<0.5	EPA 200.8	JMM	0.5
TOTAL CADMIUM (ug/l)	2.9	EPA 200.8	JMM	1.0
TOTAL CHROMIUM (ug/l)	<3.0	EPA 200.8	JMM	3.0
HEX CHROMIUM (ug/l)	<3.0	3500 - Cr D	SSJ	3.0
TRI CHROMIUM (ug/l)	<3.0	N/A	JMM	3.0
TOTAL COPPER (ug/l)	2.3	EPA 200.8	JMM	2.0
TOTAL LEAD (ug/l)	<0.5	EPA 200.8	JMM	<0.5
TOTAL MERCURY (ug/l)	*<0.005	EPA 245.1	SUB	0.0
TOTAL NICKEL (ug/l)	2.5	EPA 200.8	JMM	2.0
TOTAL SELENIUM (ug/l)	<5.0	EPA 200.8	JMM	5.0
TOTAL SILVER (ug/l)	<0.5	EPA 200.8	JMM	0.5
TOTAL THALLIUM (ug/l)	<0.5	EPA 200.8	JMM	0.5
TOTAL ZINC (ug/l)	55.3	EPA 200.8	JMM	5.0
AMENABLE CYANIDE (ug/l)	*<10.0	EPA 335.4	SUB	10.0
TOTAL PHENOLS (ug/l)	*<10.0	EPA 420.4	SUB	10.0
FLUORIDE (ug/l)	<500.0	SM 4500-F C	SKP	500.0
NITRATE-N (ug/l)	7,220.0	EPA 353.1	SSJ	100.0

LAB REPRESENTATIVE

Ref. EPA METHODS FOR CHEMICAL ANALYSIS *Analyzed by NELAC certified lab T104704231

CERTIFICATE OF ANALYSIS

CLIENT: C	ITY OF EL CAMPO PERMIT RENEWAL	LAB NUMBER:	24F0477D
DATE COLLECTED:	30-May-24	DATE RECEIVED:	31-May-24
DATE COMPLETED	07-Jun-24	SAMPLED BY:	CE
SAMPLE TYPE: LOCATION:	EFFLUENT		EFFLUENT
PARAMETERS:	PESTICIDES-PCB		PESTICIDES-PCB
EPA 1657*		EPA 608*	
Guthion (Azinphos Met	hyl) (ug/l) < 0.10	Chlordane (ug/l) 4-4' - DDD (ug/l)	< 0.15 < 0.10
Chlorpyrifos (ug/l)	< 0.05	4-4' - DDE (ug/l) 4-4' - DDT (ug/l)	< 0.10 < 0.10 < 0.02
Demeton -O (ug/l)	< 0.20	Dieldrin (ug/l) Dicofol (ug/l)	< 0.02 < 0.02 < 1.0
Demeton -S (ug/I)	< 0.20	Endosulfan I (ug/l) Endosulfan II (ug/l)	< 0.01 < 0.02
Diazinon (ug/l)	< 0.5	Endosulfan Sulfate (ug/l) Endrin (ug/l)	< 0.10
Disulfoton (ug/l)	< 0.5	Gamma-BHC (Lindane) (ug/l)	< 0.02 < 0.05
EPN (ug/l)	< 0.5	Heptachlor (ug/l) Heptaclor Epoxide (ug/l)	< 0.01 < 0.01
Ethion (ug/l)	< 0.5	Methoxychlor (ug/l) Mirex (ug/l)	< 0.20 < 0.02
Ethyl Parathion (ug/l)	< 0.1	Total PCBs (ug/l) PCB-1016 (ug/l)	< 0.2 < 0.2
Malathion (ug/l)	< 0.10	PCB-1221 (ug/l) PCB-1232 (ug/l)	< 0.2 < 0.2
Methyl Parathion (ug/l)	< 0.1	PCB-1242 (ug/l) PCB-1248 (ug/l)	< 0.2 < 0.2
Parathion (ug/l) EPA 608*	< 0.10	PCB-1254 (ug/l) PCB-1260 (ug/l)	< 0.2 < 0.2
Aldrin (ug/l)	< 0.01	Toxaphene (ug/l) Endrin Aldehyde (ug/l)	< 0.3 < 0.10
Alpha - BHC (ug/l) (Hexachlorocyclohexane	< 0.05	Delta - BHC (ug/l) EPA 632*	< 0.05
Beta - BHC (ug/l)	< 0.05	Diuron (ug/l)	<0.09
		EPA 8151*	< 0.7
		2,4-D (ug/l) 2,4,5-TP (Silvex) (ug/l)	< 0.3
		EPA 625*	
		Carbaryl (ug/l)	< 5.0
*Analyzed by NELAP ce	ertified lab T104704231	LAB REPRESENTATIVE	

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order:

24F0477

Reported: 09-Jul-24 15:04

Effluent (Comp)

24F0477-01 (Water) Sampled: 30-May-24 09:30

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Analyst	Notes
			Envirod	yne Labo	ratories, I	nc.				
Wet Chemistry										
Alkalinity (Total) as CaCO3	183	20.0	mg/L	1	B4F3266	05-Jun-24	05-Jun-24 09:55	EPA 310.2	SSJ	
Ammonia-N (NH3-N)	< 0.20	0.20	mg/L	1	B4F3598	07-Jun-24	07-Jun-24 14:15	EPA 350.1	SSJ	P
CBOD-5	3.1	2.0	mg/L	1	B4F3529	31-May-24	31-May-24 22:20	SM5210 B	AGT	1
Chloride	160	30.0	mg/L	10	B4F3429	06-Jun-24	06-Jun-24 14:32	SM4500 Cl-B	DRJ	
Conductivity at 25 C	929	30	umho/cm	1	B4F4191	13-Jun-24	13-Jun-24 15:09	SM2510 B	DRJ	
Fluoride	0.38	0.10	mg/L	1	B4F4190	13-Jun-24	13-Jun-24 15:27	SM 4500-F C	SKP	
Nitrate-N	7.22	1.00	mg/L	2	B4F3581	06-Jun-24	06-Jun-24 08:15	EPA 353.1	SSJ	
Phosphorus, Total	4.56	0.20	mg/L	2	B4F3541	07-Jun-24	07-Jun-24 14:30	SM4500-P E	DRJ	
Sulfate	33.2	2.00	mg/L	1	B4F3550	07-Jun-24	07-Jun-24 09:35	EPA 375.4	SSJ	
ГDS	532	50.0	mg/L	1	B4F3540	06-Jun-24	06-Jun-24 10:38	SM2540 C	SKP	
rkn-n	< 0.50	0.50	mg/L	1	B4F5537	07-Jun-24	07-Jun-24 14:15	SM 4500-NH3 I	SSJ C	
rss	3.5	2.0	mg/L	1	B4F3488	07-Jun-24	07-Jun-24 13:32	SM2540 D	MLM	

Envirodyne Laboratories, Inc.

Laura Brynin

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order: 24F0477

Reported: 09-Jul-24 15:50

Effluent (Grab)

24F0477-02 (Water) Sampled: 30-May-24 09:46

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Analyst	Notes
			Envirod	yne Labo	ratories, I	nc.				
Field Analysis										
Chlorine Residual, Total	< 0.01	0.01	mg/L	1	B4F3267	30-May-24	30-May-24 09:46	SM 4500-C1 G	AS	a
Dissolved Oxygen (DO)	6.37		mg/L	1	B4F3267	30-May-24	30-May-24 09:46	SM4500-O C	AS	a
Н	7.41		SU	1	B4F3267	30-May-24	30-May-24 09:46	SM4500H+ B	AS	a
Wet Chemistry										
Cyanide, Amenable	< 0.005	0.005	mg/L	1	B4F4248	04-Jun-24	04-Jun-24 15:44	EPA 335.4	SUB	L
Dil & Grease	<5.0	5.0	mg/L	1	B4F5069	20-Jun-24	20-Jun-24 15:47	EPA 1664 A	DRJ	

Envirodyne Laboratories, Inc.

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order:

24F0477

Reported:

09-Jul-24 15:50

Effluent (Grab) 24F0477-03 (Water) Sampled: 31-May-24 09:30

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Analyst	Notes
			Envirody	ne Labor	ratories, I	nc.				
Microbiology										
E.coli	<1	1 M	PN/100 mL	1	B4F3448	31-May-24	31-May-24 15:30	SM9223 B	LN	

Envirodyne Laboratories, Inc.

Client: El Campo, City of

Project: El Campo, (City of) WWTP Permit Renewal

Work Order: 24F0477

Analyte

Reported: 04-Jul-24 13:31

RPD

Limit

Notes

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Reporting

Limit

Result

< 2.50

< 2.50

<2.50

2.50

2.50

2.50

Blank (B4F3475-BLK1)			
Dichlorodifluoromethane	<2.50	2.50	ug/L
Chloromethane	<2.50	2.50	
Vinyl Chloride	<2.50	2.50	
Bromomethane	<2.50	2.50	
Chloroethane	<2.50	2.50	
Trichlorofluoromethane	<2.50	2,50	20
Acetone	<10.0	10.0	**
Aerolein	<2.50	2.50	**
1,1-Dichloroethene	<2.50	2.50	
Carbon Disulfide	<2.50	2.50	**
Acetonitrile	<2.50	2.50	
Methylene Chloride	<2.50	2.50	
Acrylonitrile	<2.50	2.50	**
MTBE (Methyl tert-butyl ether)	<2.50	2.50	**
trans-1,2-Dichloroethene	<2.50	2.50	"
1,1-Dichloroethane	<2.50	2.50	W.
Vinyl Acetate	<2.50	2.50	н
2,2-Dichloropropane	<2.50	2.50	**
cis-1,2-Dichloroethene	<2.50	2.50	"
Bromochloromethane	<2.50	2.50	*
Chloroform	<2.50	2.50	н
2-Butanone	<10.0	10.0	H
1,2-Dichloroethane	<2.50	2.50	
1,1,1-Trichloroethane	<2.50	2.50	
Tetrahydrofuran	<2.50	2.50	
Carbon Tetrachloride	<2.50	2.50	
1,1-Dichloropropene	<2.50	2.50	
Benzene	<2.50	2.50	
Trichloroethene	<2.50	2.50	

Envirodyne Laboratories, Inc.

1,2-Dichloropropane

Dibromomethane

2-Pentanone

Client: El Campo, City of

Project: El Campo, (City of) WWTP Permit Renewal

Work Order: 24F0477

Reported: 04-Jul-24 13:31

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch	B4F34	75 - C)rganics
-------	-------	--------	----------

Blank (B4F3475-BLK1)				Prepared & Analyzed: 06-Jun-24
Bromodichloromethane	<2.50	2.50	ug/L	
2-Chloroethyl vinyl ether	<2.50	2.50	**	
cis-1,3-Dichloropropene	<2.50	2.50		
trans-1,3-Dichloropropene	<2.50	2.50		
1,1,2-Trichloroethane	<2.50	2.50		
Dibromochloromethane	<2.50	2.50	**	
1,2-Dibromoethane	<2.50	2.50		
I-Methyl-2-Pentanone	<10.0	10.0	100	
Toluene	<2.50	2.50		
Tetrachloroethene	<2.50	2.50		
,3-Dichloropropane	<2.50	2.50		
-Hexanone	<10.0	10.0	**	
Chlorobenzene	<2.50	2.50		
,1,1,2-Tetrachloroethane	<2.50	2.50	"	
thylbenzene	<2.50	2.50	**	
ı,p-Xylene	<10.0	10.0	"	
-Xylene	<2.50	2.50	"	
tyrene	<2.50	2.50		
romoform	<2.50	2.50	"	
opropylbenzene (Cumene)	<2.50	2.50	**	
1,2,2-Tetrachloroethane	<2.50	2.50	*	
2,3-Trichloropropane	<2.50	2.50	**	
romobenzene	<2.50	2.50		
ropylbenzene	<2.50	2.50		
Chlorotoluene	<2.50	2.50	*	
3,5-Trimethylbenzene	<2.50	2.50	*	
Chlorotoluene	<2.50	2.50	*	
rt-butyl Benzene	<2.50	2.50		
2,4-Trimethylbenzene	<2.50	2.50		
ec-butyl Benzene	<2.50	2.50	**	
-Isopropyltoluene	<2.50	2.50	**	
,3-Dichlorobenzene	<2.50	2.50	**	

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Brynin

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order:

1,2-Dibromo-3-chloropropane

24F0477

Reported: 04-Jul-24 13:31

RPD

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Reporting

2.50

< 2.50

Spike

Source

%REC

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B4F3475 - Organics										
Blank (B4F3475-BLK1)				Prepared &	Analyzed:	06-Jun-24				
1,4-Dichlorobenzene	<2.50	2.50	ug/L							
Benzyl Chloride	<2.50	2.50								
n-butyl Benzene	<2.50	2.50								
1,2-Dichlorobenzene	< 2.50	2.50								

A CONTROL OF CONTROL O		BA - D - TO						
1,2,4-Trichlorobenzene	<2.50	2.50	**					
Hexachlorobutadiene	<2.50	2.50	**					
Naphthalene	<2.50	2.50	**					
1,2,3-Trichlorobenzene	<2.50	2.50	-					
Total Trihalomethanes	<10.0	10.0	-					
Total Xylenes	<7.50	7.50						
Surrogate: Dihromofluoromethane	31		"	30.0	104	70-130		
Surrogate: 1,2-Dichloroethane-d4	31		**	30.0	103	70-130		
Surrogate: Toluene-d8	29		*	30.0	97.5	70-130		
Surrogate: 4-Bromofluorobenzene	30			30.0	101	70-130		

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Bonjonia For Amanda Heiman, Client Service Manager

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order:

24F0477

Reported: 04-Jul-24 13:31

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B4F347	5 - OI	ganics
--------------	--------	--------

LCS (B4F3475-BS1)				Prepared & Ana	alyzed: 06-Jun-24		
Dichlorodifluoromethane	21.7	2.50	ug/L	20.0	109	1.16-250	
Chloromethane	20.9	2.50	n	20.0	105	1-205	
Vinyl Chloride	23.6	2.50		20.0	118	1-251	
Bromomethane	26.0	2.50		20.0	130	15-185	
Chloroethane	24.8	2.50		20.0	124	40-160	
Trichlorofluoromethane	24.5	2.50		20.0	122	17-181	
Acetone	20.4	10.0		20.0	102	35.9-210	
Acrolein	19.9	2.50		20.0	99.4	60-140	
1,1-Dichloroethene	23.8	2.50		20.0	119	50-150	
Carbon Disulfide	23.4	2.50	-	20.0	117	7-120	
Acetonitrile	23.4	2.50		20.0	117	70-120	
Methylene Chloride	23.3	2.50		20.0	116	60-140	
Acrylonitrile	22.5	2.50		20.0	112	60-140	
MTBE (Methyl tert-butyl ether)	23.7	2.50	*	20.0	118	70-120	
trans-1,2-Dichloroethene	24.2	2.50		20.0	121	70-130	
1,1-Dichloroethane	22.6	2.50		20.0	113	70-130	
Vinyl Acetate	23.8	2.50		20.0	119	60-140	
2,2-Dichloropropane	25.7	2.50		20.0	128	70-120	(
cis-1,2-Dichloroethene	23.0	2.50		20.0	115	70-120	1.0
Bromochloromethane	22.8	2.50	**	20.0	114	70-120	
Chloroform	22.4	2.50		20.0	112	70-135	
2-Butanone	18.7	10.0	**	20.0	93.7	48.6-151	
1,2-Dichloroethane	21.8	2.50	*	20.0	109	70-130	
1,1,1-Trichloroethane	22.0	2.50	w	20.0	110	56-162	
Tetrahydrofuran	20.8	2.50	***	20.0	104	70-130	
Carbon Tetrachloride	22.6	2.50	100	20.0	113	70-130	
1,1-Dichloropropene	21.7	2.50		20.0	109	70-120	
Benzene	21.4	2.50		20.0	107	65-135	
Trichloroethene	23.6	2.50	**	20.0	118	70-157	
1,2-Dichloropropane	21.8	2.50		20.0	109	35-165	
2-Pentanone	19.9	2.50		20.0	99.4	70-120	
Dibromomethane	22.0	2.50		20.0	110	70-120	

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Brynin

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order:

24F0477

Reported: 04-Jul-24 13:31

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note:
Batch B4F3475 - Organics						701120	Cilitis	KID	Limit	Notes
LCS (B4F3475-BS1)				Prepared &	Analyzed	06 Jun 24				
Bromodichloromethane	22.6	2.50	ug/L	20.0	Allalyzeu.	113	65-135			
2-Chloroethyl vinyl ether	23,0	2.50	"	20.0		115	1-225			
cis-1,3-Dichloropropene	22.7	2.50		20.0		114	25-175			
trans-1,3-Dichloropropene	22.2	2.50		20.0		111	50-150			
1,1,2-Trichloroethane	21.6	2.50		20.0		108	52-150			
Dibromochloromethane	22.5	2.50	*	20.0		112	70-135			
1,2-Dibromocthane	21.8	2.50		20.0		109	70-130			
4-Methyl-2-Pentanone	20.6	10.0	**	20.0		103	58.2-144			
Toluene	20.5	2.50	**	20.0		103	47-150			
Tetrachloroethene	19.2	2.50	**	20.0		95.8	64-148			
1,3-Dichloropropane	21.3	2.50	*	20.0		106	70-120			
2-Hexanone	20.4	10.0		20.0		100				
Chlorobenzene	22.0	2.50		20.0		110	51.8-156			
,1,1,2-Tetrachloroethane	20.4	2.50		20.0		102	65-135			
Ethylbenzene	21.0	2.50	*	20.0		102	46-157			
n,p-Xylene	42.8	10.0	"	40.0		107	60-140			
-Xylene	21.1	2.50		20.0		106	70-120			
Styrene	20.0	2.50		20.0		100	70-120			
Bromoform	20.8	2.50		20.0		104	70-120			
sopropylbenzene (Cumene)	22.3	2.50		20.0		111	70-130			
,1,2,2-Tetrachloroethane	19.2	2.50		20.0			70-120			
,2,3-Trichloropropane	20.4	2.50		20.0		96.0	46-157			
romobenzene	20.2	2.50		20.0		102	70-120			
ropylbenzene	21.0	2.50		20.0		101	70-120			
Chlorotoluene	20.8	2.50		20.0		105	70-120			
3,5-Trimethylbenzene	21.1	2.50		20.0		104	70-120			
Chlorotoluene	20.2	2.50		20.0		106	70-120			
rt-butyl Benzene	21.4	2.50	,,	20.0		101	70-120			
2,4-Trimethylbenzene	20.8	2.50	,,	20.0		107	70-120			
ec-butyl Benzene	20.7	2.50		20.0		104	70-120			
-Isopropyltoluene	21.3	2.50				104	70-130			
.3-Dichlorobenzene	21.1			20.0		107	70-120			
D-Dictioroctizene	21.1	2.50	10757	20.0		106	70-130			

Envirodyne Laboratories, Inc.

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order:

24F0477

Reported: 04-Jul-24 13:31

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B4F3475 - Organics										
LCS (B4F3475-BS1)				Prepared &	: Analyzed:	06-Jun-24				
1,4-Dichlorobenzene	21.2	2.50	ug/L	20.0		106	65-135			
Benzyl Chloride	20.8	2.50		20.0		104	70-120			
n-butyl Benzene	20.9	2.50		20.0		104	70-120			
1,2-Dichlorobenzene	20.1	2.50		20.0		100	65-135			
1,2-Dibromo-3-chloropropane	18.8	2.50		20.0		94.1	60-140			
1,2,4-Trichlorobenzene	21.3	2.50		20.0		107	70-120			
Hexachlorobutadiene	20.4	2.50		20.0		102	70-120			
Naphthalene	20.5	2.50		20.0		102	60-140			
1,2,3-Trichlorobenzene	20.4	2.50	*	20.0		102	60-140			
Total Trihalomethanes	88.2	0.01	*	80.0		110	35-155			
Total Xylenes	64.0	7.50		60.0		107	70-120			
Surrogate: Dibromofluoromethane	31		"	30.0		102	70-130			
Surrogate: 1,2-Dichloroethane-d4	31		-	30.0		102	70-130			
Surrogate: Toluene-d8	29		"	30.0		97.4	70-130			
Surrogate: 4-Bromofluorobenzene	30		**	30.0		102	70-130			

Envirodyne Laboratories, Inc. Laura Brymin

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order:

24F0477

Reported:

04-Jul-24 13:31

Volatile Organic Compounds by EPA 624.1 - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

LCS Dup (B4F3475-BSD1)				Prepared & Ana	lvzed: 06-Jun-2	4		
Dichlorodifluoromethane	21.0	2.50	ug/L	20.0	105	1.16-250	3.37	20
Chloromethane	19.8	2.50		20.0	98.8	1-205	5.85	60
Vinyl Chloride	22.9	2.50		20.0	115	1-251	2.92	66
Bromomethane	22.4	2.50	"	20.0	112	15-185	14.7	61
Chloroethane	20.0	2.50		20.0	100	40-160	21.4	78
Frichlorofluoromethane	23.4	2.50		20.0	117	17-181	4.46	84
Acetone	18.2	10.0		20.0	91.0	35.9-210	11.6	25.2
Acrolein	23.2	2.50		20.0	116	60-140	15.5	60
,1-Dichloroethene	21.8	2.50		20.0	109	50-150	8.89	32
Carbon Disulfide	22.1	2.50		20.0	110	7-120	5.72	20
acetonitrile	22.0	2.50	*	20.0	110	70-120	5.95	20
Methylene Chloride	21.5	2.50		20.0	108	60-140	7.99	28
crylonitrile	21.3	2.50		20.0	107	60-140	5.25	60
ITBE (Methyl tert-butyl ether)	23.0	2.50	*	20.0	115	70-120	2.91	20
ans-1,2-Dichloroethene	22.6	2.50		20.0	113	70-120	7.01	45
1-Dichloroethane	22.3	2.50		20.0	111	70-130	1.69	40
nyl Acetate	23.3	2.50		20.0	116	60-140	2.25	20
2-Dichloropropane	23.7	2.50		20.0	118	70-120	7.98	20
s-1,2-Dichloroethene	23.0	2.50		20.0	115	70-120	0.0435	20
romochloromethane	22.4	2.50		20.0	112	70-120	2.04	20
hloroform	22.2	2.50		20.0	111	70-125	0.988	54
Butanone	19.3	10.0		20.0	96.4	48.6-151	2.79	21.6
2-Dichloroethane	24.6	2.50		20.0	123	70-130	11.9	49
1,1-Trichloroethane	21.9	2.50		20.0	109	56-162	0.411	36
trahydrofuran	21.1	2.50		20.0	105	70-130	1.39	20
arbon Tetrachloride	22.0	2.50		20.0	110	70-130	2.42	41
-Dichloropropene	21.2	2.50		20.0	106	70-130	2.61	20
nzene	21.2	2.50		20.0	106	65-135	0.799	61
ichloroethene	23.5	2.50	**	20.0	118	70-157	0.799	48
2-Dichloropropane	20.8	2.50		20.0	104	35-165	4.65	55
Pentanone	19.9	2.50		20.0	99.3	70-120	0.0503	20
ibromomethane	22.4	2.50	,,	20.0	112	70-120	1.53	20

Envirodyne Laboratories, Inc.

Client: El Campo, City of

Project: El Campo, (City of) WWTP Permit Renewal

Work Order: 24F0477

Reported: 04-Jul-24 13:31

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B4F3475 - Organics	-				resur	ANCEC	Lillints	KFD	Limit	Notes
LCS Dup (B4F3475-BSD1)				Prepared &	Analyzadi	06 Jun 24				
Bromodichloromethane	22,4	2.50	ug/L	20.0	Allalyzeu.	112	65-135	0.622		
2-Chloroethyl vinyl ether	22.1	2.50	"	20.0		110		0.622	56	
cis-1,3-Dichloropropene	22.4	2.50	**	20.0		112	1-225	4.00	71	
trans-1,3-Dichloropropene	22.2	2.50		20.0		111	25-175 50-150	1.28	58	
1,1,2-Trichloroethane	22.3	2.50	**	20.0		111	52-150	0.0900	86	
Dibromochloromethane	21.3	2.50		20.0		107	70-135	2.96	45	
,2-Dibromoethane	22.6	2.50		20.0		113	70-130	5.25	50	
4-Methyl-2-Pentanone	19.9	10.0	**	20.0		99.4	58.2-144	3.78	20	
Toluene	20.6	2.50		20.0		103	47-150	3.31 0.341	24.8	
Tetrachloroethene	18.4	2.50		20.0		92.2	64-148	3.83	41	
,3-Dichloropropane	20.5	2.50	**	20.0		103	70-120	3.59	39	
-Hexanone	19.6	10.0		20.0		98.0	51.8-156	4.05	20	
hlorobenzene	21.4	2.50		20.0		107	65-135	2.77	23.6 53	
1,1,2-Tetrachloroethane	21.4	2.50		20.0		107	46-157	4.69		
thylbenzene	20.9	2.50		20.0		105	60-140	0.620	20	
ı,p-Xylene	41.5	10.0	200	40.0		104	70-120	3.16	63	
Xylene	20.9	2.50		20.0		105	70-120	0.951	20 20	
tyrene	19.5	2.50	*	20.0		97.4	70-120	2.78		
romoform	19.6	2.50		20.0		98.1	70-120	5.60	20 42	
opropylbenzene (Cumene)	21.7	2.50		20.0		108	70-130	2.87		
1,2,2-Tetrachloroethane	19.6	2.50		20.0		98.2	46-157	2.26	20 61	
2,3-Trichloropropane	20.8	2.50		20.0		104	70-120	1.80	20	
romobenzene	20.7	2.50		20.0		104	70-120	2.64	20	
ropylbenzene	20.5	2.50	**	20.0		102	70-120			
Chlorotoluene	20.1	2.50	"	20.0		100	70-120	2.27 3.47	20	
3,5-Trimethylbenzene	20.8	2.50		20.0		104	70-120	1.72	20 20	
Chlorotoluene	19.8	2.50		20.0		98.8	70-120	2.40		
t-butyl Benzene	21.3	2.50		20.0		107	70-120	0.234	20 20	
2,4-Trimethylbenzene	20.0	2.50	**	20.0		100	70-120	4.01	20	
ec-butyl Benzene	20.5	2.50		20.0		102	70-120	0.971	20	
Isopropyltoluene	20.5	2.50		20.0		103	70-130	3.78	20	
3-Dichlorobenzene	20.7	2.50		20.0		103	70-120	2.15	43	

Envirodyne Laboratories, Inc.

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order: 24F0477

Reported: 04-Jul-24 13:31

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B4F3475 - Organics		Historia de la companya della companya della companya de la companya de la companya della compan								
LCS Dup (B4F3475-BSD1)				Prepared &	Analyzed:	06-Jun-24				
1,4-Dichlorobenzene	21.0	2.50	ug/L	20.0	. mary zou.	105	65-135	0.759	57	
Benzyl Chloride	20.7	2.50	,,	20.0		104	70-120	0.386	20	
n-butyl Benzene	20.4	2.50	*	20.0		102	70-120	2.08	20	
1,2-Dichlorobenzene	20.4	2.50	**	20.0		102	65-135	1.48	57	
1,2-Dibromo-3-chloropropane	18.3	2.50		20.0		91.6	60-140	2.64	20	
1,2,4-Trichlorobenzene	21.9	2.50		20.0		110	70-120	2.78	20	
Hexachlorobutadiene	20.4	2.50	-	20.0		102	70-120	0.0982	20	
Naphthalene	21.2	2.50		20,0		106	60-140	3.36	20	
,2,3-Trichlorobenzene	20.2	2.50		20.0		101	60-140	0.887	20	
Total Trihalomethanes	85.3	10.0		80.0		107	35-155	3.26	20	
Total Xylenes	62.4	7.50	*	60.0		104	70-120	2.42	20	
Surrogate: Dibromofluoromethane	32		*	30.0		106	70-130			
Surrogate: 1,2-Dichloroethane-d4	31		"	30.0		104	70-130			
urrogate: Toluene-d8	29		*	30.0		96.5	70-130			
urrogate: 4-Bromofluorobenzene	30		"	30.0		101	70-130			

Envirodyne Laboratories, Inc.

Client: El Campo, City of

Project: El Campo, (City of) WWTP Permit Renewal

Work Order: 24F0477

Reported: 04-Jul-24 13:31

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

		365								
1		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch	B4F3475 -	Organics
-------	-----------	----------

Matrix Spike (B4F3475-MS1)	Source	e: 24F0477-	02	Prepared &	k Analyzed	: 06-Jun-24	1	
Dichlorodifluoromethane	17.1	2.50	ug/L	20.0	ND	85.4	1.16-250	
Chloromethane	16.6	2.50	-	20.0	ND	83.1	1-273	
Vinyl Chloride	17.6	2.50	"	20.0	ND	88.1	5-195	
Bromomethane	20.5	2.50	"	20.0	ND	103	1-242	
Chloroethane	18.1	2.50		20.0	ND	90.6	14-230	
Trichlorofluoromethane	19.5	2.50		20.0	ND	97.6	50-150	
Acetone	23.2	10.0		20.0	ND	116	11.5-191	
Acrolein	19.2	2.50		20.0	ND	96.1	40-160	
,1-Dichloroethene	19.5	2.50	"	20.0	ND	97.3	1-234	
arbon Disulfide	18.2	2.50	*	20.0	ND	90.8	7-120	
cetonitrile	19.2	2.50		20.0	ND	96.0	70-120	
lethylene Chloride	18.9	2.50	**	20.0	ND	94.6	1-221	
crylonitrile	20.5	2.50	*	20.0	ND	102	40-160	
TBE (Methyl tert-butyl ether)	19.2	2.50	*	20.0	ND	96.2	70-120	
ans-1,2-Dichloroethene	18.4	2.50		20.0	ND	91.9	54-156	
1-Dichloroethane	18.6	2.50		20.0	ND	93.0	59-155	
nyl Acetate	18.7	2.50	**	20.0	ND	93.5	60-140	
2-Dichloropropane	18.3	2.50		20.0	ND	91.3	70-120	
s-1,2-Dichloroethene	19.5	2.50	**	20.0	ND	97.4	70-120	
romochloromethane	19.6	2.50	"	20.0	ND	97.8	70-120	
hloroform	35.4	2.50		20.0	16.1	96.4	51-138	
Butanone	18.4	10.0		20.0	ND	91.8	32.5-154	
2-Dichloroethane	18.8	2.50		20.0	ND	94.0	49-155	
1,1-Trichloroethane	19.0	2.50		20.0	ND	95.2	70-130	
etrahydrofuran	19.6	2.50	**	20.0	ND	97.9	70-130	
arbon Tetrachloride	18.8	2.50	**	20.0	ND	94.2	70-140	
1-Dichloropropene	18.8	2.50		20.0	ND	94.2	70-120	
enzene	18.0	2.50	"	20.0	ND	90.2	37-151	
ichloroethene	18.9	2.50	**	20.0	ND	94.6	65-135	
2-Dichloropropane	18.7	2.50	**	20.0	ND	93.4	1-210	
Pentanone	19.8	2.50	**	20.0	ND	99.2	70-120	
bromomethane	19.5	2.50	**	20.0	ND	97.3	70-120	

Envirodyne Laboratories, Inc.

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order: 24F0477

Reported: 04-Jul-24 13:31

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B4F3475 - Organics

Matrix Spike (B4F3475-MS1)	Source	e: 24F0477-	02	Prepared &	Analyzed:	06-Jun-24	1		
Bromodichloromethane	32.6	2.50	ug/L	20.0	11.1	107	35-155		
2-Chloroethyl vinyl ether	<2.50	2.50		20.0	<2.50		1-305	0	Q
cis-1,3-Dichloropropene	19.1	2.50	#	20.0	ND	95.3	1-227		~
trans-1,3-Dichloropropene	19.2	2.50		20.0	ND	95.8	17-183		
1,1,2-Trichloroethane	20.0	2.50		20.0	ND	99.8	70-130		
Dibromochloromethane	24.0	2.50	**	20.0	4.10	99.4	53-149		
1,2-Dibromoethane	20.0	2.50		20.0	ND	99.9	70-120		
4-Methyl-2-Pentanone	19.0	10.0	*	20.0	ND	94.8	44.3-156		
Toluene	15.0	2.50		20.0	ND	75.2	70-130		
Tetrachloroethene	17.7	2.50		20.0	ND	88.6	70-130		
1,3-Dichloropropane	18.0	2.50		20.0	ND	90.0	70-120		
2-Hexanone	19.8	10.0		20.0	ND	98.8	39.5-157		
Chlorobenzene	16.9	2.50	n	20.0	ND	84.6	37-160		
1,1,1,2-Tetrachloroethane	18.0	2.50		20.0	ND	89.8	46-157		
Ethylbenzene	17.7	2.50		20.0	ND	88.5	37-162		
m,p-Xylene	36.1	10.0	*	40.0	ND	90.2	70-120		
o-Xylene	17.6	2.50	**	20.0	ND	87.8	70-120		
Styrene	17.4	2.50		20.0	ND	86.9	70-120		
Bromoform	17.9	2.50	,	20.0	ND	89.4	45-169		
Isopropylbenzene (Cumene)	18.9	2.50	**	20.0	ND	94.4	70-120		
1,1,2,2-Tetrachloroethane	17.2	2.50		20.0	ND	86.1	60-140		
1,2,3-Trichloropropane	17.2	2.50		20.0	ND	85.8	70-120		
Bromobenzene	18.4	2.50	"	20.0	ND	92.0	70-120		
Propylbenzene	18.6	2.50		20.0	ND	92.8	70-120		
2-Chlorotoluene	18.1	2.50		20.0	ND	90.4	70-120		
1,3,5-Trimethylbenzene	18.4	2.50		20.0	ND	92.2	70-120		
4-Chlorotoluene	18.0	2.50		20.0	ND	89.8	70-120		
ert-butyl Benzene	19.3	2.50	**	20.0	ND	96.4	70-120		
,2,4-Trimethylbenzene	18.5	2.50		20.0	ND	92.6	70-120		
ec-butyl Benzene	18.3	2.50		20.0	ND	91.4	70-120		
o-Isopropyltoluene	18.6	2.50	*	20.0	ND	93.2	70-120		
,3-Dichlorobenzene	18.3	2.50		20.0	ND	91.4	59-156		

Envirodyne Laboratories, Inc.

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order: 24F047

Reported: 04-Jul-24 13:31

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

		277.00								
Analyte		Reporting		Spike	Source		%REC		RPD	
Allaryte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B4F3475 - Organics

Matrix Spike (B4F3475-MS1)	Source	e: 24F0477-	02	Prepared &	Analyzed:	06-Jun-24	
1,4-Dichlorobenzene	34.5	2.50	ug/L	20.0	14.6	99.4	18-190
Benzyl Chloride	16.0	2.50		20.0	ND	79.8	70-120
n-butyl Benzene	18.9	2.50		20.0	ND	94.7	70-120
1,2-Dichlorobenzene	17.8	2.50	**	20.0	ND	88.8	18-190
1,2-Dibromo-3-chloropropane	16.0	2.50	н	20.0	ND	79.8	60-140
1,2,4-Trichlorobenzene	18.9	2.50	*	20.0	ND	94.4	70-120
Hexachlorobutadiene	16.6	2.50		20.0	ND	83.2	70-120
Naphthalene	18.1	2.50	**	20.0	ND	90.6	60-140
1,2,3-Trichlorobenzene	18.8	2.50	n	20.0	ND	93.8	60-140
Total Trihalomethanes	110	10.0	н	80.0	31.7	97.6	35-155
Total Xylenes	53.6	7.50		60.0	ND	89.4	70-120
Surrogate: Dibromofluoromethane	29		**	30.0		96.8	70-130
Surrogate: 1,2-Dichloroethane-d4	30		,,	30.0		101	70-130
Surrogate: Toluene-d8	28		**	30.0		94.9	70-130
Surrogate: 4-Bromofluorobenzene	30		,,	30.0		98.4	70-130

Envirodyne Laboratories, Inc.

Client:

El Campo, City of

Project: El Campo, (City of) WWTP Permit Renewal

Work Order:

Reported: 04-Jul-24 13:31

RPD

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Spike

Source

%REC

Reporting

Analyte	D 1	reporting		Spike	Source		%REC		RPD	
Timiye	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B4F3475 - Organics										
Matrix Spike Dup (B4F3475-MSD1)	Sour	ce: 24F0477-	02	Prepared &	Analyzed:	06-Jun 2/	r.			
Dichlorodifluoromethane	13.5	2.50	ug/L	20.0	ND	67.6	1.16-250	22.2		
Chloromethane	16,8	2.50		20.0	ND	84.2	1-273	23.3	20	
Vinyl Chloride	17.3	2.50	,	20.0	ND	86.5		1.31	60	
Bromomethane	16.2	2.50	**	20.0	ND	81.2	5-195	1.83	66	
Chloroethane	18.9	2.50		20.0	ND		1-242	23.4	61	
Trichlorofluoromethane	18.4	2.50		20.0	ND	94.6 92.0	14-230	4.37	78	
Acetone	24.5	10.0		20.0	ND		50-150	5.96	84	
Acrolein	16.9	2.50		20.0	ND	122	11.5-191	5.24	27.6	
1,1-Dichloroethene	18.8	2.50		20.0	ND	84.4 93.8	40-160	13.0	60	
Carbon Disulfide	17.7	2.50	n	20.0	ND	93.8 88.6	1-234	3.66	32	
Acetonitrile	18.9	2.50		20.0	ND		7-120	2.45	20	
Methylene Chloride	18.4	2.50		20.0	ND	94.7	70-120	1.31	20	
Acrylonitrile	20.0	2.50	**	20.0	ND	91.9	1-221	2.90	28	
ATBE (Methyl tert-butyl ether)	19.1	2.50		20.0	ND	100	40-160	2.27	60	
rans-1,2-Dichloroethene	19.4	2.50		20.0	ND	95.3	70-120	0.940	20	
,1-Dichloroethane	18.3	2.50		20.0	ND	97.2	54-156	5.61	45	
/inyl Acetate	18.9	2.50		20.0		91.6	59-155	1.63	40	
,2-Dichloropropane	17.5	2.50			ND	94.6	60-140	1.17	20	
is-1,2-Dichloroethene	18.6	2.50	,,	20.0	ND	87.6	70-120	4.14	20	
Fromochloromethane	19.2	2.50		20.0	ND	93.0	70-120	4.57	20	
hloroform	34.2			20.0	ND	96.0	70-120	1.81	20	
-Butanone	18.3	2.50 10.0		20.0	16.1	90.6	51-138	3.39	54	
.2-Dichloroethane	22.2			20.0	ND	91.7	32.5-154	0.109	21.6	
1,1-Trichloroethane	19.0	2.50		20.0	ND	111	49-155	16.5	49	
etrahydrofuran	21.5	2.50		20.0	ND	95.2	70-130	0.105	36	
arbon Tetrachloride	18.6	2.50		20.0	ND	107	70-130	9.25	20	
1-Dichloropropene	17.6	2.50		20.0	ND	93.0	70-140	1.34	41	
enzene	18.7	2.50		20.0	ND	88.0	70-120	6.75	20	
ichloroethene		2.50		20.0	ND	93.5	37-151	3.54	61	
,2-Dichloropropane	19.4	2.50	"	20.0	ND	97.0	65-135	2.40	48	
	18.8	2.50	*	20.0	ND	93.9	1-210	0.480	55	
-Pentanone	19.6	2.50	"	20.0	ND	98.2	70-120	1.01	20	
libromomethane	19.1	2.50	**	20.0	ND	95.3	70-120	2.08	20	

Envirodyne Laboratories, Inc.

Client: El Campo, City of

Project: El Campo, (City of) WWTP Permit Renewal

Work Order: 24F0477

Batch B4F3475 - Organics

Analyte

Reported: 04-Jul-24 13:31

RPD

Limit

Notes

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Units

Spike

Level

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

ND

89.2

93.6

92.4

91.4

93.4

90.6

96.4

90.2

92.8

93.7

91.4

70-120

70-120

70-120

70-120

70-120

70-120

70-120

70-120

70-120

70-120

59-156

3.83

1.73

0.540

0.990

1.29

0.942

0.104

2.57

1.52

0.481

0.109

20

20

20

20

20

20

20

20

20

20

43

Source

Result

%REC

%REC

Limits

RPD

Reporting

Limit

Result

17.8

18.7

18.5

18.3

18.7

18.1

19.3

18.0

18.6

18.7

18.3

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

Matrix Spike Dup (B4F3475-MSD1)	Source	e: 24F0477-	02	Prepared &	Analyzed:	06-Jun-24	i.			
Bromodichloromethane	31.8	2.50	ug/L	20.0	11.1	104	35-155	2.27	56	
2-Chloroethyl vinyl ether	<2.50	2.50	**	20.0	< 2.50		1-305	0	71	Q
cis-1,3-Dichloropropene	18.5	2.50		20.0	ND	92.6	1-227	2.93	58	
trans-1,3-Dichloropropene	19.6	2.50	**	20.0	ND	98.2	17-183	2.37	86	
1,1,2-Trichloroethane	19.8	2.50	"	20.0	ND	99.0	70-130	0.805	45	
Dibromochloromethane	24.8	2.50		20.0	4.10	103	53-149	3.36	50	
1,2-Dibromoethane	20.7	2.50	**	20.0	ND	103	70-120	3.49	20	
4-Methyl-2-Pentanone	18.6	10.0	•	20.0	ND	93.0	44.3-156	1.92	27.4	
Toluene	18.2	2.50	**	20.0	ND	91.0	70-130	19.0	41	
Tetrachloroethene	16.0	2.50		20.0	ND	79.9	70-130	10.4	39	
1,3-Dichloropropane	18.5	2.50		20.0	ND	92.7	70-120	2.96	20	
2-Hexanone	19.3	10.0		20.0	ND	96.7	39.5-157	2.10	23.6	
Chlorobenzene	17.1	2.50		20.0	ND	85.5	37-160	0.999	53	
1,1,1,2-Tetrachloroethane	18.7	2.50	N.	20.0	ND	93.5	46-157	3.98	20	
Ethylbenzene	18.1	2.50		20.0	ND	90.4	37-162	2.12	63	
m,p-Xylene	36.4	10.0	**	40.0	ND	90.9	70-120	0.690	20	
o-Xylene	17.8	2.50	н	20.0	ND	88.8	70-120	1.19	20	
Styrene	17.5	2.50		20.0	ND	87.4	70-120	0.517	20	
Bromoform	18.7	2.50		20.0	ND	93.3	45-169	4.33	42	
sopropylbenzene (Cumene)	19.6	2.50		20.0	ND	98.2	70-120	3.84	20	
,1,2,2-Tetrachloroethane	17.7	2.50		20,0	ND	88.4	60-140	2.69	61	
1000										

Envirodyne Laboratories, Inc.

1,2,3-Trichloropropane

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

Bromobenzene

Propylbenzene

2-Chlorotoluene

4-Chlorotoluene

tert-butyl Benzene

sec-butyl Benzene

p-Isopropyltoluene

1,3-Dichlorobenzene

Client: El Campo, City of

Project: El Campo, (City of) WWTP Permit Renewal

Work Order: 24F0477

Reported:

04-Jul-24 13:31

Volatile Organic Compounds by EPA 624.1 - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B4F3475 - Organics

Matrix Spike Dup (B4F3475-MSD1)	Sourc	e: 24F0477-	02	Prepared &	Analyzed:	06-Jun-24	1		***************************************
1,4-Dichlorobenzene	34.4	2.50	ug/L	20.0	14.6	99.2	18-190	0.0871	57
Benzyl Chloride	15.6	2.50	,	20.0	ND	77.8	70-120	2.47	20
n-butyl Benzene	19.3	2.50		20,0	ND	96.4	70-120	1.78	20
1,2-Dichlorobenzene	17.9	2.50		20.0	ND	89.6	18-190	0.841	57
1,2-Dibromo-3-chloropropane	17.0	2.50		20.0	ND	84.8	60-140	6.02	20
1,2,4-Trichlorobenzene	19.1	2.50	*	20.0	ND	95.6	70-120	1.26	20
Hexachlorobutadiene	16.7	2.50		20.0	ND	83.7	70-120	0.599	20
Naphthalene	18.4	2.50		20.0	ND	91.9	60-140	1.48	20
,2,3-Trichlorobenzene	18.6	2.50		20.0	ND	93.2	60-140	0.749	20
Total Trihalomethanes	110	10.0		80.0	31.7	97.2	35-155	0.274	20
Total Xylenes	54.1	7.50		60,0	ND	90.2	70-120	0.854	20
Surrogate: Dihromofluoromethane	28		,,	30.0	-	93.6	70-130		
Surrogate: 1,2-Dichloroethane-d4	30			30.0		101	70-130		
urrogate: Toluene-d8	29			30.0		95.1	70-130		
Surrogate: 4-Bromofluorobenzene	30		PF	30.0		98.9	70-130		

Envirodyne Laboratories, Inc.

El Campo, City of Client:

Project: El Campo, (City of) WWTP Permit Renewal

Work Order: 24F0477 Reported:

04-Jul-24 13:31

Volatile Organic Compounds by EPA 624.1 - Quality Control

Envirodyne Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
		Microbiolo	ogy - Qua	ality Cont	rol					
		Envirodyn	e Labor	atories,	Inc.					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B4F3448-BLK1) Prepared & Analyzed: 31-May-24 1 MPN/100 mL E.coli

Duplicate (B4F3448-DUP1) Source: 24F0669-02 Prepared & Analyzed: 31-May-24

E.coli 2 MPN/100 mL <2 0.402

Envirodyne Laboratories, Inc.

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order:

24F0477

Reported:

04-Jul-24 13:31

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD	
Batch B4F3266 - Inorganics	30000000		Cinto	Devel	Result	/orcec	Limits	KPD	Limit	Notes
Blank (B4F3266-BLK1)				Prepared &	Analyzed:	05-Jun-24				
Alkalinity (Total) as CaCO3	<20.0	20.0	mg/L	r repared to	Tindiyzed.	03-3411-24				
LCS (B4F3266-BS1)				Prepared &	Analyzadi	05 Jun 24				
Alkalinity (Total) as CaCO3	104		mg/L	100	Allalyzed.	104	90-110			
Duplicate (B4F3266-DUP1)	Sour	ce: 24E3366-	01	Prepared &	Analyzed	05 Jun 24				
Alkalinity (Total) as CaCO3	96.1	20.0	mg/L	i repared &	95.3	03-Juli-24		0.825	20	
Batch B4F3429 - Inorganics										
Blank (B4F3429-BLK1)				Prepared &	Applyrade	06 Jun 24				
Chloride	<3.0	3.0	mg/L	r repared &	Analyzed.	00-Jun-24				
LCS (B4F3429-BS1)				Prepared &	Amalamada	06 1 24				
Chloride	106		mg/L	100	Analyzed:	106	90-110			
Matrix Spike (B4F3429-MS1)	Sour	ce: 24E3419-() I	Prepared &	Analyzada (06 1 24				
Chloride	78.0	12.0	mg/L	20.0	58.0	100	80-120			
Matrix Spike Dup (B4F3429-MSD1)	Source	e: 24E3419-0	11	Dranged &	Analius d. (06 1 24				
Chloride	80.0	12.0	mg/L	Prepared &	58.0	110	80-120	2.53	20	4
Batch B4F3488 - Inorganics								· model	20	
Blank (B4F3488-BLK1)				Prepared &	Analyzad: C	7 Iun 24			-	
rss	<2.0	2.0	mg/L	r repared &	maiyzed: (77-Jun-24				

Envirodyne Laboratories, Inc.

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order: 2

24F0477

Reported:

04-Jul-24 13:31

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B4F3488 - Inorganics										
LCS (B4F3488-BS1)				Prepared &	: Analyzed:	07-Jun-24	1			
TSS	83.0		mg/L	100		83.0	80-120			
Duplicate (B4F3488-DUP1)	Sou	rce: 24F0159-	-01	Prepared &	Analyzed:	07 Ivn 24	В			
TSS	4.2	2.0	mg/L	repared &	5,8	07-3411-24		32.0	20	
Batch B4F3529 - Inorganics										
Blank (B4F3529-BLK1)				Prepared &	Analyzed:	31_May_2	1			
CBOD-5	<2.0	2.0	mg/L	1 topared &	Analyzeu.	31-May-2	+			
LCS (B4F3529-BS1)				Prepared &	Analyzed:	31-May-2	4			
CBOD-5	190		mg/L	198		96.0	84.6-115.4		the same of the sa	
Duplicate (B4F3529-DUP1)	Sour	ce: 24E2828-	01	Prepared &	Analyzed:	21 May 2				
CBOD-5	<2.0	2.0	mg/L	r repared &	<2.0	31-May-2	•	0.00	20	
Batch B4F3540 - Inorganics										
Blank (B4F3540-BLK1)				Prepared &	Analyzed: ()6-Jun-24				
TDS	<50.0	50.0	mg/L	· · · · · · · · ·	rinary zecu.	30-3M1-24				
LCS (B4F3540-BS1)				Prepared &	Analyzed: ()6-Jun-24				
TDS	510		mg/L	500		102	0-200			
Duplicate (B4F3540-DUP1)	Source	e: 24F0477-0	1	Prepared &	Analyzed: 0	6-Jun-24				
TDS	554	50.0	mg/L	-	532			4.05	20	

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Bonjonia For Amanda Heiman, Client Service Manager

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order: 24F047

Reported: 04-Jul-24 13:31

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
			Prepared &	Analyzed:	07-Jun 24	6			
< 0.10	0.10	mg/L	. repared of	Tinalyzed.	07-Juli-24				
			Prepared &	Analyzada	07 1 24				
1.00		mg/L	1.00	Analyzeu:	100		-		
Sour	rce: 24E2867-	-01	Prepared &	Analyzad	07 Ivn 24	57537 - 823			
3.56	0.40	mg/L	1.00	2.60	96.0	80-120			
Sour	ce: 24E2867-	01	Prenared &	Analyzed:	07 Jun 24				
3.68	0.40	mg/L,	1,00	2.60	108	80-120	3.31	20	
			Prepared &	Apolygada (07 1 24				
<2.00	2.00	mg/L	r repared &	Analyzed: (37-Jun-24				
			Proposed 6	Analom de C	77. 24				
18.8		mg/L	20.0	Analyzed: C		90-110			
Source	es 24F0003 f	11	December 1 0	A l 1. 0		70 110			
406	40.0	mg/L	400	ND ND	-	80-120			
Source	24E0002 0		D1 0			80-120			
408	40.0		400			80-120	0.630	20	
			0.55			50-120	0.039	20	
			D 1-						
			Prepared & A	nalyzed · O	6- Jun-24				
	<0.10 1.00 Sour 3.56 Sour 3.68 <2.00 18.8 Sour 406 Sour Sour	Color Colo	Cource: 24E2867-01 Cource:	Prepared & Prepared &	Result Limit Units Level Result	Prepared & Analyzed: 07-Jun-24	Prepared & Analyzed: 07-Jun-24	Prepared & Analyzed: 07-Jun-24	Result Limit Units Level Result %REC Limits RPD Limit

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Brymin

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order: 24

24F0477

Reported:

04-Jul-24 13:31

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

Analyte	22 10	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B4F3581 - Inorganics										
LCS (B4F3581-BS1)				Prepared &	Analyzed:	06-Jun-24	X			
Nitrate-N	3.14		mg/L	3.00	· · · · · · · · · · · · · · · · · · ·	105	90-110			
Matrix Spike (B4F3581-MS1)	Sour	rce: 24F0273-	03	Prepared &	Analyzadi	06 I 24				
Nitrate-N	2.77	0.50	mg/L	3.00	ND ND	92.3	80-120			
Matrix Spike Dup (B4F3581-MSD1)	Sour	ce: 24F0273-	03	Prepared &	Analyzed:	06-Jun-24				
Nitrate-N	2.76	0.50	mg/L	3.00	ND ND	92.0	80-120	0.362	20	-
Batch B4F3598 - Inorganics										
Blank (B4F3598-BLK1)				Prepared &	Analyzed:	07-lun-24			-11-7	-
Ammonia-N (NH3-N)	<0.20	0.20	mg/L		- mily zedi	0, Juli 24				
LCS (B4F3598-BS1)				Prepared &	Analyzed:	07 Jun 24				
Ammonia-N (NH3-N)	0.96		mg/L	1.00	riiaiyzed.	96.0	90-110			
Matrix Spike (B4F3598-MS1)	Source	ce: 24F0178-0	1	Prepared &	Analyzed: (7-Iun-24				
Ammonia-N (NH3-N)	1.01	0.20	mg/L	1.00	0.06	95.0	90-110			
Matrix Spike Dup (B4F3598-MSD1)	Sourc	e: 24F0178-0	1	Prepared &	Analyzed: (7- Jun-24				
ammonia-N (NH3-N)	1.02	0.20	mg/L	1.00	0.06	96.0	90-110	0.985	20	
Batch B4F4190 - Inorganics										
Blank (B4F4190-BLK1)				Prepared & A	Analyzed 1	3- Jun-24				
luoride	< 0.10	0.10	mg/L	· · · · · · · · · · · · · · · · · · ·	maryzeu. 1	3-Jun-24				

Envirodyne Laboratories, Inc.

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order: 24F0477

Reported: 04-Jul-24 13:31

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B4F4190 - Inorganics										
LCS (B4F4190-BS1)				Prepared &	Analyzed:	13-Jun-24				
Fluoride	0.50		mg/L	0.500		99.4	90-110			
Matrix Spike (B4F4190-MS1)	Source	e: 24E3368	10-1	Prenared &	Analyzed:	13-Jun-24				
Fluoride	1.18	0.20	mg/L	1.00	ND	118	80-120			
Matrix Spike Dup (B4F4190-MSD1)	Source	e: 24E3368	G-01	Prepared &	: Analyzed:	13-Jun-24				
Fluoride	1.20	0.20	mg/L	1.00	ND	120	80-120	1.68	20	
Batch B4F4191 - Inorganics										
Blank (B4F4191-BLK1)				Prepared &	Analyzed:	13-Jun-24				
Conductivity at 25 C	<30	30	umho/cm							
Duplicate (B4F4191-DUP1)	Source	e: 24E2523	-01	Prepared &	Analyzed:	13-Jun-24				
Conductivity at 25 C	2040	60	umho/cm	Tropared &	2060	13-7411-24		0.683	20	
Reference (B4F4191-SRM1)				Prepared &	Analyzed:	13-Jun-24				
Conductivity at 25 C	178		umho/cm	180		99.0	90-110			
Batch B4F5069 - Inorganics										
Blank (B4F5069-BLK1)				Prepared &	Analyzed: 2	20-Jun-24				
Oil & Grease	<5.0	5.0	mg/L		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
LCS (B4F5069-BS1)				Prepared &	Analyzed: 2	20-Jun-24				
Oil & Grease	35.6		mg/L	40.0		88.9	78-114	177		

Envirodyne Laboratories, Inc.

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order: 24F0477

Reported: 04-Jul-24 13:31

Wet Chemistry - Quality Control Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B4F5069 - Inorganics

1.00 p			The same of the sa					
LCS Dup (B4F5069-BSD1)			Prepared & Ana	ilyzed: 20-Jun-24				
Oil & Grease	34.2	mg/L	40.0	85.6	78-114	3.84	18	

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Bonjonia For Amanda Heiman, Client Service Manager

Page 30 of 34

Client: El Campo, City of

Project: El Campo, (City of) WWTP Permit Renewal

Work Order: 24F0477

Reported:

04-Jul-24 13:31

Metals - Quality Control

Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B4F3086 - Inorganics										
Blank (B4F3086-BLK1)				Prepared &	Analyzed:	03-Jun-24				
Chromium, Hexavalent	<1.0	1.0	ug/L							
LCS (B4F3086-BS1)				Prepared &	Analyzed:	03-Jun-24		4-34-00-00-00-20-00-00-00-00-00-00-00-00-00-		
Chromium, Hexavalent	51.1		ug/L	50.0		102	95-105			
Matrix Spike (B4F3086-MS1)	Sour	ce: 24F0477-	01	Prepared &	Analyzed:	03-Jun-24				
Chromium, Hexavalent	50.4	1.0	ug/L	50.0	ND	101	80-120			
Matrix Spike Dup (B4F3086-MSD1)	Sour	ce: 24F0477-	01	Prepared &	Analyzed:	03-Jun-24				
Chromium, Hexavalent	50.6	1.0	ug/L	50.0	ND	101	80-120	0.396	20	

Envirodyne Laboratories, Inc.

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order:

24F0477

Reported:

04-Jul-24 13:31

Total Metals by ICP-MS - Quality Control

Envirodyne Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch	B4F4449 -	Metals -	EPA 200.2

Blank (B4F4449-BLK1)				Prepared: 11-Jun-	-24 Analyzed: 1	3-Jun-24	
3arium	<2.0	2.0	ug/L				
Arsenic	< 0.5	0.5					
Beryllium	< 0.5	0.5	**				
Cadmium	<0.50	0.50	*				
hallium	< 0.5	0.5	**				
Chromium	<2.0	2.0					
ilver	< 0.5	0.5	"				
'opper	< 0.5	0.5	"				
ead	< 0.5	0.5	"				
lickel	< 0.5	0.5	"				
inc	<2.0	2.0	**				
elenium	<2.0	2.0	**				
ntimony	<0.5	0.5					
aluminum	<2.0	2.0	**				
CS (B4F4449-BS1)				Prepared: 11-Jun-	-24 Analyzed: 1	3-Jun-24	
				riepared. Il sun	-24 / Mary Zed. 1.	7 0 000 2 1	
cad	81		ug/L	75.0	107	85-115	
cad	81 80.7		ug/L				
ead rrsenic				75.0	107	85-115	
ead Arsenic Rickel	80.7			75.0 75.0	107 108	85-115 85-115	
ead rrsenic tickel sarium	80.7 81.4			75.0 75.0 75.0	107 108 108	85-115 85-115 85-115	
ead Arsenic Rickel Barium Cadmium	80.7 81.4 74.0			75.0 75.0 75.0 75.0	107 108 108 98.7	85-115 85-115 85-115	
ead Arsenic Rickel Barium Padmium Thallium	80.7 81.4 74.0 80			75.0 75.0 75.0 75.0 75.0	107 108 108 98.7 107	85-115 85-115 85-115 85-115	
ead arsenic dickel darium dadmium dhallium Thromium	80.7 81.4 74.0 80 80.9			75.0 75.0 75.0 75.0 75.0 75.0	107 108 108 98.7 107 108	85-115 85-115 85-115 85-115 85-115	
ead Arsenic Bickel Barium Cadmium Chromium Copper	80.7 81.4 74.0 80 80.9 77.9			75.0 75.0 75.0 75.0 75.0 75.0 75.0	107 108 108 98.7 107 108	85-115 85-115 85-115 85-115 85-115 85-115	
ead rsenic lickel arium admium hallium thromium	80.7 81.4 74.0 80 80.9 77.9 81.9			75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0	107 108 108 98.7 107 108 104	85-115 85-115 85-115 85-115 85-115 85-115 85-115	
ead arsenic dickel farium fadmium fhallium fhromium fopper ilver feryllium	80.7 81.4 74.0 80 80.9 77.9 81.9		" " " " " " " " " " " " " " " " " " " "	75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0	107 108 108 98.7 107 108 104 109	85-115 85-115 85-115 85-115 85-115 85-115 85-115 85-115	
ead arsenic bickel farium admium challium chromium copper ilver deryllium clenium	80.7 81.4 74.0 80 80.9 77.9 81.9 76			75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0	107 108 108 98.7 107 108 104 109 101	85-115 85-115 85-115 85-115 85-115 85-115 85-115 85-115 85-115	
	80.7 81.4 74.0 80 80.9 77.9 81.9 76 78.1			75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0	107 108 108 98.7 107 108 104 109 101 104	85-115 85-115 85-115 85-115 85-115 85-115 85-115 85-115 85-115 85-115	

Envirodyne Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laura Bonjonia For Amanda Heiman, Client Service Manager

Client:

El Campo, City of

Project:

El Campo, (City of) WWTP Permit Renewal

Work Order: 24F0477

Reported: 04-Jul-24 13:31

RPD

Total Metals by ICP-MS - Quality Control

Envirodyne Laboratories, Inc.

Spike

Source

%REC

Reporting

		Reporting		Spike	Source		70KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B4F4449 - Metals - EPA 200.2										
Matrix Spike (B4F4449-MS1)	Sour	rce: 24E2248-	01	Prepared:	l 1-Jun-24 A	nalyzed: 1	3-Jun-24			
Thallium	106	0.5	ug/L	100	ND	106	70-130			
Chromium	109	2.0		100	ND	109	70-130			
rsenic	117	0.5		100	0.758	117	70-130			
Sarium	330	4.0		100	212	118	70-130			
Beryllium	106	0.5	**	100	ND	106	70-130			
lickel	112	0.5	**	100	2.23	109	70-130			
ilver	100	0.5		100	ND	105	70-130			
Cadmium	110	0.50	**	100	ND	111	70-130			
ead	100	0.5		100	ND	105	70-130			
Copper	107	0.5	*	100	1.19	106	70-130			
inc	145	2.0		100	25.4	120	70-130			
elenium	113	2.0		100	0.869	112	70-130			
luminum	126	4.0	**	100	13.9	112	70-130			
ntimony	113	1.0	*	100	ND	113	70-130			
fatrix Spike Dup (B4F4449-MSD1)	Sour	rce: 24E2248-	01	Prepared: 1	1-Jun-24 A	nalyzed: 13	-Jun-24			
ickel	112	0.5	ug/L	100	2.23	110	70-130	0.618	20	
ead	110	0.5	22	100	ND	106	70-130	0.899	20	
opper	107	0.5		100	1.19	105	70-130	0.688	20	
arium	332	4.0	"	100	212	120	70-130	0.587	20	
hallium	106	0.5	"	100	ND	106	70-130	0.0325	20	
admium	110	0.50		100	ND	111	70-130	0.0571	20	
ilver	100	0.5	*	100	ND	101	70-130	3.38	20	
eryllium	106	0.5	•	100	ND	106	70-130	0.381	20	
rsenic	116	0.5		100	0.758	116	70-130	0.880	20	
hromium	110	2.0	=	100	ND	110	70-130	0.172	20	
elenium	113	2.0	*	100	0.869	112	70-130	0.0354	20	
ine	141	2.0		100	25.4	115	70-130	2.91	20	
ntimony	115	1.0	**	100	ND	115	70-130	1.14	20	
luminum	123	4.0	**	001	13.9	109	70-130	2.38	20	

Envirodyne Laboratories, Inc.

Client: El Campo, City of

Project: El Campo, (City of) WWTP Permit Renewal

Work Order: 24F0477

Reported: 04-Jul-24 13:31

Notes and Definitions

Q	QC did not meet ELI acceptance criteria
P	Sample preserved at bench
L	Analyzed by third party laboratory
1	Greater than 30% difference between highest and lowest values
Н	Hold time exceeded
ND	Analyte NOT DETECTED at or above the reporting limit
<	Result is less than the RL
а	Analyte not available for TNI/NELAP accreditation
n	Not accredited

Envirodyne Laboratories, Inc.

Envirodyne Laboratories, Inc.

2450477

TCEQ Certification # T104704265

315 East Jackson City of El Campo

Address:

Name:

Houston, Texas 77099-3543 11011 Brooklet. Ste. 230

143462 Ö Page

Analysis Request and Chain of Custody Record

Phone (281)568-7880 - Fax (281)568-8004

Time Analysis aboratory No. 7.4/637245 .dmaT Seal Intact? Date:5131 24 Seal Intact? Below .O.Q Date 3704 Time: 1630 Hd Time: 12.35 Sb, As, Be, Cd, Cr, Cu, Pb, Hg, Ni, Se, Ag, TI, Zn SOB, TSS, TDS, SO4, CI, Cond, Cr+6, F, Alka 4- 3/31/24 lime: 979-543-3228 Date: Date: Tine NH3-N, TKN-N, T. PO4,NO3-N VOC (624) (6 24.1) ANALYSIS REQUESTED BNA, Pesticides, PCBs City of El Campo-Permit Renew pH,DO,CI2 residual Cyanide, Amenable Oil & Grease Email: Ecoli Phenol H, Ba ス・コト・フ Site Representative: Arrival Temp. Data Results To: chis E Received by Lab: Received by: Received by: (Signature) (Signature) 36 (Signature) 979-541-5096 CBOD 18 Sample Container Sample Type (Liquid, (Size/Mat') Sludge, etc.) Ice, Sod Thio Time: 93 day Ice, NaOH Tce. H2SO4 HN03 Ice, HCI Ice, HCI Ice, V ¥ Dates ime: / Time: Date: Phone: Liquid Client/Project 500 mL P 500 ml P (2) 120 ml P (3) 40ml 250 ml P Amber (3)1L1 gal cubie 1 L G Amber VOA MA Сошр C. TOF MCHAMARelinquished by: (Signature) 5/3/24 E Relinquished by Grab Meter Reading: (Signature) St 3024 (Signature) 5-130/24 Mn Correction: 30 h Cl. Residual: Date & 563 6 330 MM Time Chris Englund El Campo, TX Field Sample No./ Indentification Effluent Samplers: (Signature) Effluent Effluent Effluent Effluent Effluent Effluent Effluent Effluent Effluent Project No Contact: Remarks: Lab ID No.

CITY OF EL CAMPO WASTEWATER TREATMENT PLANT TPDES PERMIT NO. WQ0010844-001

EXHIBIT I

Supplemental Permit Information (SPIF)

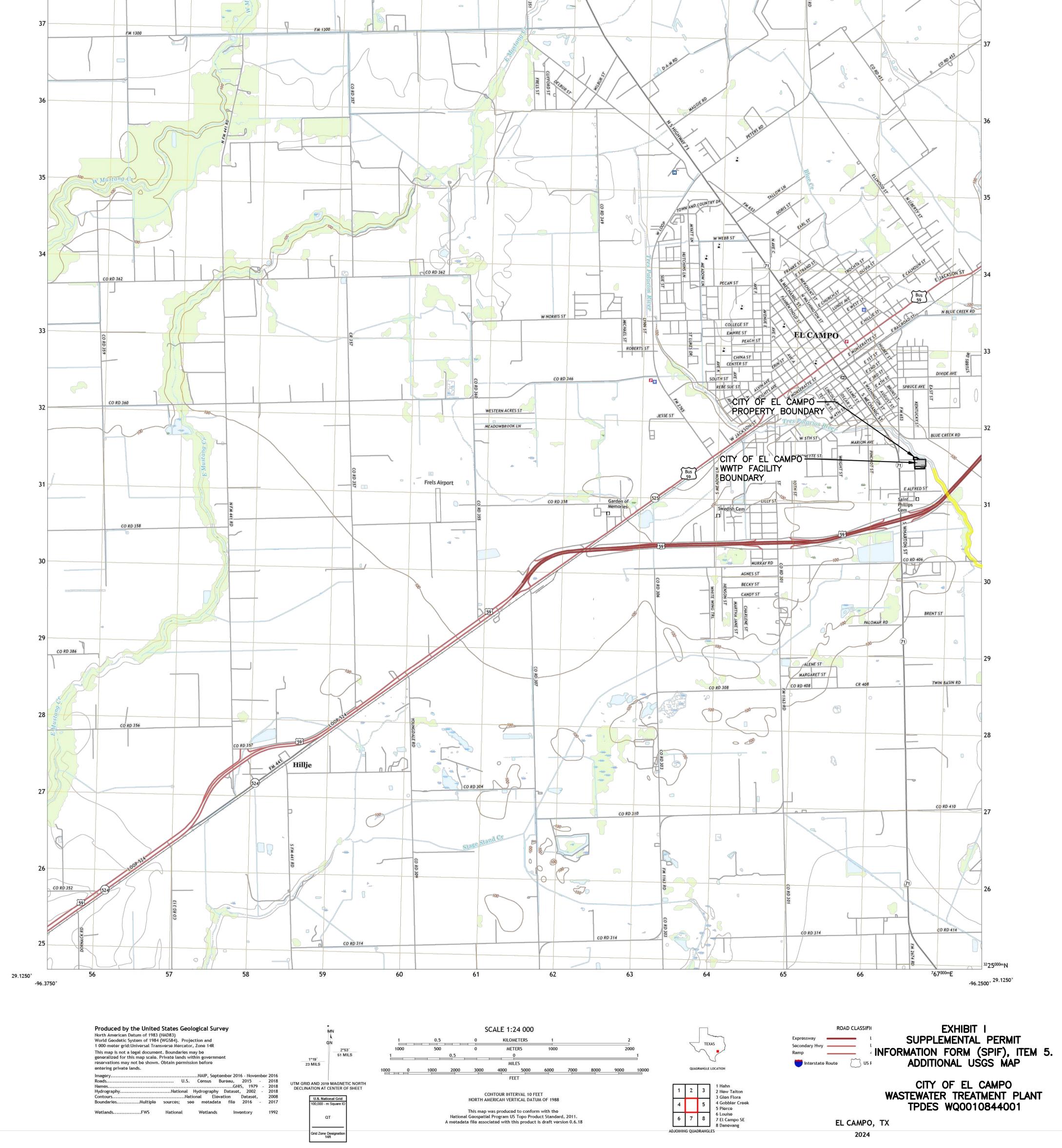
Additional USGS Map

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

TCEQ USE ONLY:				
Application type:RenewalMajor Ame	endment Minor Amendment New			
County:				
Admin Complete Date:				
Agency Receiving SPIF:				
Texas Historical Commission	U.S. Fish and Wildlife			
Texas Parks and Wildlife Department	U.S. Army Corps of Engineers			
This form applies to TPDES permit applications	only. (Instructions, Page 53)			
Complete this form as a separate document. TCE our agreement with EPA. If any of the items are n is needed, we will contact you to provide the info each item completely.	Q will mail a copy to each agency as required by ot completely addressed or further information			
Do not refer to your response to any item in the attachment for this form separately from the Adrapplication will not be declared administratively completed in its entirety including all attachment may be directed to the Water Quality Division's A email at				

	e the name, address, phone and fax number of an individual that can be contacted to r specific questions about the property.
Prefix	(Mr., Ms., Miss): <u>Ms.</u>
First a	nd Last Name: <u>Courtney Sladek</u>
Creder	ntial (P.E, P.G., Ph.D., etc.):
Title: C	<u>City Manager</u>
Mailing	g Address: <u>315 East Jackson Street</u>
City, St	tate, Zip Code: <u>El Campo, TX 77437</u>
Phone	No.: <u>979-547-5004</u> Ext.: Fax No.: <u>979-541-0027</u>
E-mail	Address: <u>csladek@cityofelcampo.org</u>
List the	e county in which the facility is located: <u>Wharton</u>
-	property is publicly owned and the owner is different than the permittee/applicant,
	list the owner of the property. as permitee
Bulle	<u>ko permitee</u>
	e a description of the effluent discharge route. The discharge route must follow the flow
	ent from the point of discharge to the nearest major watercourse (from the point of rge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify
	ssified segment number.
To Tr	es Palacios Creek above Tidal in Segment No. 1502 of the Colorado-Lavaca Coastal
<u>Basin</u> .	<u> </u>
plotted route f	provide a separate 7.5-minute USGS quadrangle map with the project boundaries d and a general location map showing the project area. Please highlight the discharge from the point of discharge for a distance of one mile downstream. (This map is ed in addition to the map in the administrative report).
Provid	e original photographs of any structures 50 years or older on the property.
Does y	our project involve any of the following? Check all that apply.
	Proposed access roads, utility lines, construction easements
	Visual effects that could damage or detract from a historic property's integrity
	Vibration effects during construction or as a result of project design
	Additional phases of development that are planned for the future
	Sealing caves, fractures, sinkholes, other karst features


2.3.

4.

5.

1.	List proposed construction impact (surface acres to be impacted, depth of excavation, sealing of caves, or other karst features):
	N/A
2.	Describe existing disturbances, vegetation, and land use:
	$\frac{N/A}{}$
тц	E FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR
	ENDMENTS TO TPDES PERMITS
3.	List construction dates of all buildings and structures on the property:
	N/A
4.	Provide a brief history of the property, and name of the architect/builder, if known.
	N/A

Disturbance of vegetation or wetlands

CITY OF EL CAMPO WASTEWATER TREATMENT PLANT TPDES PERMIT NO. WQ0010844-001

EXHIBIT J
Plain Language Summary (PLS)

TCEQ

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

PLAIN LANGUAGE SUMMARY FOR TPDES OR TLAP PERMIT APPLICATIONS

Plain Language Summary Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. Applicants may modify the template as necessary to accurately describe their facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how the applicant will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTIC WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

City of El Campo (CN600539423) operates El Campo Wastewater Treatment Plant (RN101607745), a domestic wastewater treatment facility. The facility is located at 201 Thompson Street, in El Campo, Wharton County, Texas 77437. This application is for a renewal to discharge an average flow of 2.6 MGD of treated domestic wastewater.

Discharges from the facility are expected to contain carbonaceous biochemical oxygen demand, total suspended solids, and ammonia nitrogen. Domestic wastewater is treated by one of two activated sludge treatment trains containing an aeration basin, final clarifier, and sludge digester. From a final clarifier, treated wastewater flows to the chlorine contact basin where it undergoes disinfection. Finally, the disinfected effluent gravity flows to a discharge point on the Tres Palacios River adjacent to the facility. The digested sludge is dewatered by a belt filter press and transported by a licensed hauler to a permitted landfill for disposal.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES DOMESTICAS /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

Ciudad de El Campo (CN600539423) opera la Planta de Tratamiento de Aguas Residuales de el Ciudad de El Campo (RN101607745), un instalación de tratamiento de aguas residuales domésticas. La instalación está ubicada en 201 Thompson Street, en El Campo, Condado de Wharton, Texas 77437. Esta solicitud es para una renovación para descargar un flujo promedio de 2.6 MGD de aguas residuales domésticas tratadas.

Se espera que las descargas de la instalación contengan demanda bioquímica de oxígeno carbonoso, sólidos suspendidos totales y nitrógeno amoniacal. Las aguas residuales domésticas. están tratado por uno de los dos trenes de tratamiento de lodos activados que contiene una cuenca de aireación, un clarificador final y un digestor de lodos. Desde un clarificador final, las aguas residuales tratadas fluyen hasta el depósito de contacto con el cloro donde se someten a una desinfección. Finalmente, el efluente desinfectado por gravedad fluye hasta un punto de descarga en el río Tres Palacios adyacente a la instalación. El lodo digerido se deshidrata mediante un filtro prensa de banda y es transportado por un transportista autorizado a un vertedero autorizado para su eliminación.

INSTRUCTIONS

- 1. Enter the name of applicant in this section. The applicant name should match the name associated with the customer number.
- 2. Enter the Customer Number in this section. Each Individual or Organization is issued a unique 11-digit identification number called a CN (e.g. CN123456789).
- 3. Choose "operates" in this section for existing facility applications or choose "proposes to operate" for new facility applications.
- 4. Enter the name of the facility in this section. The facility name should match the name associated with the regulated entity number.
- 5. Enter the Regulated Entity number in this section. Each site location is issued a unique 11-digit identification number called an RN (e.g. RN123456789).
- 6. Choose the appropriate article (a or an) to complete the sentence.
- 7. Enter a description of the facility in this section. For example: steam electric generating facility, nitrogenous fertilizer manufacturing facility, etc.
- 8. Choose "is" for an existing facility or "will be" for a new facility.
- 9. Enter the location of the facility in this section.
- 10. Enter the City nearest the facility in this section.
- 11. Enter the County nearest the facility in this section.
- 12. Enter the zip code for the facility address in this section.
- 13. Enter a summary of the application request in this section. For example: renewal to discharge 25,000 gallons per day of treated domestic wastewater, new application to discharge process wastewater and stormwater on an intermittent and flow-variable basis, or major amendment to reduce monitoring frequency for pH, etc. If more than one outfall is included in the application, provide applicable information for each individual outfall.
- 14. List all pollutants expected in the discharge from this facility in this section. If applicable, refer to the pollutants from any federal numeric effluent limitations that apply to your facility.
- 15. Enter the discharge types from your facility in this section (e.g., stormwater, process wastewater, once through cooling water, etc.)
- 16. Choose the appropriate verb tense to complete the sentence.
- 17. Enter a description of the wastewater treatment used at your facility. Include a description of each process, starting with initial treatment and finishing with the outfall/point of disposal. Use additional lines for individual discharge types if necessary.

Questions or comments concerning this form may be directed to the Water Quality Division's Application Review and Processing Team by email at <a href="https://www.wevenue.com

Example

Individual Industrial Wastewater Application

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

ABC Corporation (CN600000000) operates the Starr Power Station (RN10000000000), a two-unit gas-fired electric generating facility. Unit 1 has a generating capacity of 393 megawatts (MWs) and Unit 2 has a generating capacity of 528 MWs. The facility is located at 1356 Starr Street, near the City of Austin, Travis County, Texas 78753.

This application is for a renewal to discharge 870,000,000 gallons per day of once through cooling water, auxiliary cooling water, and also authorizes the following waste streams monitored inside the facility (internal outfalls) before it is mixed with the other wastewaters authorized for discharge via main Outfall 001, referred to as "previously monitored effluents" (low-volume wastewater, metal-cleaning waste, and stormwater (from diked oil storage area yards and storm drains)) via Outfall 001. Low-volume waste sources, metal-cleaning waste, and stormwater drains on a continuous and flow-variable basis via internal Outfall 101.

The discharge of once through cooling water via Outfall 001 and low-volume waste and metal-cleaning waste via Outfall 101 from this facility is subject to federal effluent limitation guidelines at 40 CFR Part 423. The pollutants expected from these discharges based on 40 CFR Part 423 are: free available chlorine, total residual chlorine, total suspended solids, oil and grease, total iron, total copper, and pH. Temperature is also expected from these discharges. Additional potential pollutants are included in the Industrial Wastewater Application Technical Report, Worksheet 2.0.

Cooling water and boiler make-up water are supplied by Lake Starr Reservoir. The City of Austin municipal water plant (CN600000000, PWS 00000) supplies the facility's potable water and serves as an alternate source of boiler make-up water. Water from the Lake Starr Reservoir is withdrawn at the intake structure and treated with sodium hypochlorite to prevent biofouling and sodium bromide as a chlorine enhancer to improve efficacy and then passed through condensers and auxiliary equipment on a once-through basis to cool equipment and condense exhaust steam.

Low-volume wastewater from blowdown of boiler Units 1 and 2 and metal-cleaning wastes receive no treatment prior to discharge via Outfall 101. Plant floor and equipment drains and stormwater runoff from diked oil storage areas, yards, and storm drains are routed through an oil and water separator prior to discharge via Outfall 101. Domestic wastewater, blowdown, and backwash water from the service water filter, clarifier, and sand filter are routed to the Starr Creek Domestic Sewage Treatment Plant, TPDES Permit No. WQ0010000001, for treatment and disposal. Metal-cleaning waste from equipment cleaning is generally disposed of off-site.

Candice Calhoun

From: Rudolph, Mark <Mark.Rudolph@strand.com>
Sent: Wednesday, August 7, 2024 11:39 AM

To: Candice Calhoun

Cc:csladek@cityofelcampo.org; Lewis, Jerry; Huebner, William; Rodriguez, ArelleSubject:RE: Application to Renew Permit No. WQ0010844001 - City of El Campo; City of El

Campo WWTP 1

Attachments: wq0010844001-nod1.pdf; Copy of Check to TCEQ.pdf; Municipal Discharge Renewal

Spanish NORI.docx

Follow Up Flag: Follow up Flag Status: Flagged

Candice,

Please see below responses to each item in the attached NOD letter:

- Item 1 Attached is a copy of the check sent from the City of El Campo to the TCEQ, including tracking information for your records.
- Item 2 We have reviewed the provided NORI language and do not have any comments.
- Item 3 Attached is a translated copy of the English NORI, for the TCEQ's use.

Please let me know if you have any questions or need additional information.

Regards,

Mark Rudolph, P.E.

Strand Associates, Inc.® (F-8405)
979.836.7937 ext. 6234
Mark.Rudolph@strand.com | www.strand.com
P.E. (TX)

Excellence in EngineeringSM

From: Candice Calhoun < Candice.Calhoun@tceq.texas.gov>

Sent: Thursday, August 1, 2024 4:02 PM

To: csladek@cityofelcampo.org

Cc: Rudolph, Mark < Mark.Rudolph@strand.com >

Subject: Application to Renew Permit No. WQ0010844001 - City of El Campo; City of El Campo WWTP 1 [Filed 01 Aug

2024 16:09] Importance: High

You don't often get email from candice.calhoun@tceq.texas.gov. Learn why this is important

[EXTERNAL EMAIL]: Verify sender before opening links or attachments.

Good afternoon, Ms. Sladek,

Water Quality Receipt Report

AUG-08-24 09:00 PM

Paid In By: EDMISTER HINSHAW RUSS & ASSCIATES INC								
Acct.Name	Fee	Endorse. #	Ref#2	PayTyp	Check#	Card#	Tran.Date	Rec.Amnt
WATER QUALITY PERMIT APPLICATION	WQP	M301524A		CK	56720		17-OCT-22	-\$800.00
NOTICE FEES WQP	PTGQ	M301524B		CK	56720		17-OCT-22	-\$50.00
WATER QUALITY PMT								
Paid In By: EDWI	N CEN	TENO						
Acct.Name	<u>Fee</u>	Endorse. #	Ref#2	PayTyp	<u>Check#</u>	<u>Card#</u>	<u>Tran.Date</u>	Rec.Amnt
WATER QUALITY	WQP	PI00851184	625301	IFCE	582EA0005		09-MAR-23	-\$300.00
PERMIT APPLICATION					35953			
NOTICE FEES WQP	PTGQ	PI00851185	625302	IFCE	582EA0005		09-MAR-23	-\$15.00
WATER QUALITY PMT					35953			
WATER QUALITY	WQP	PI00948559	696361	IFCE	582EA0006		15-MAR-24	-\$300.00
PERMIT APPLICATION	DTTCO	DT00040E60	696362	IFCE	01688 582EA0006		15-MAR-24	-\$50.00
NOTICE FEES WQP WATER QUALITY PMT	PTGQ	PI00948560	090302	IFCE	01688		15-MAR-24	-\$50.00
WAIDE QUADITI FMI					01000			
Paid In By: EHRA	ENGI	NEERING						
Acct.Name	Fee	Endorse. #	Ref#2	PayTyp	Check#	<u>Card#</u>	<u>Tran.Date</u>	Rec.Amnt
WATER QUALITY	WQP	M301972A	001194100	CK	56784		25-OCT-22	-\$1600.00
PERMIT APPLICATION			1					
NOTICE FEES WQP	PTGQ	M301972B	001194100	CK	56784		25-OCT-22	-\$15.00
WATER QUALITY PMT			1					
WATER QUALITY	WQP	M401158A	14740001	CK	57893		13-OCT-23	-\$1600.00
PERMIT APPLICATION NOTICE FEES WQP	PTGO	M401158B	14740001	CK	57893		13-OCT-23	-\$50.00
WATER QUALITY PMT	FIGQ	M401130B	14740001	CK	37833		13-001-23	-\$50.00
WATER QUALITY	WQP	M412940A		CK	58247		20-FEB-24	-\$1200.00
PERMIT APPLICATION	~							·
NOTICE FEES WQP	PTGQ	M412940B		CK	58247		20-FEB-24	-\$50.00
WATER QUALITY PMT								
WATER QUALITY	WQP	M414578A	15595001	CK	58324		12-MAR-24	-\$1600.00
PERMIT APPLICATION								
NOTICE FEES WQP	PTGQ	M414578B	15595001	CK	58324		12-MAR-24	-\$15.00
WATER QUALITY PMT	WQP	M414835A	13623001	CK	58376		15-MAR-24	-\$1200.00
WATER QUALITY PERMIT APPLICATION	WQP	M414033A	13623001	CK	36376		15-MAR-24	-\$1200.00
NOTICE FEES WQP	PTGQ	M414835B	13623001	CK	58376		15-MAR-24	-\$50.00
WATER QUALITY PMT	~							,
WATER QUALITY	WQP	M415741A	14635001	CK	58430		04-APR-24	-\$1600.00
PERMIT APPLICATION								
NOTICE FEES WQP	PTGQ	M415741B	14635001	CK	58430		04-APR-24	-\$15.00
WATER QUALITY PMT								
Paid In By: EL CAMPO, CITY OF								
Acct.Name	Fee	Endorse. #	Ref#2	PayTyp	Check#	Card#	Tran.Date	Rec.Amnt
WATER QUALITY	WQP	M419867A	10844004	CK	115714		29-JUL-24	-\$2000.00
PERMIT APPLICATION	~							
NOTICE FEES WQP	PTGQ	M419867B	10844004	CK	115714		29-JUL-24	-\$15.00
WATER QUALITY PMT								
Paid In By: EL PASO COUNTY WCID 4								
				D	Oh1-#	G4"	Maran Date	Dan 3
Acct.Name	<u>Fee</u>	Endorse. #	Ref#2		Check#	Card#	Tran.Date	Rec.Amnt
WATER QUALITY	WQP	M316363A	10166001	CK	51764		09-MAY-23	-\$2000.00
PERMIT APPLICATION NOTICE FEES WQP	PTGO	M316363B	10166001	CK	51764		09-MAY-23	-\$15.00
WATER QUALITY PMT	1190	222 203 03 0	T0T0000T	CI	J1101		0.) HAI-20	٠٠٠٠٠
2								

Report_ID: A00161 Page 59

TPDES PERMIT NO.
WQ0010844001
[For TCEQ office use only - EPA I.D.
No. TX0021474]

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY P.O. Box 13087 Austin, Texas 78711-3087

This is a renewal that replaces TPDES Permit No. WQ0010844001 issued on January 24, 2020.

PERMIT TO DISCHARGE WASTES

under provisions of Section 402 of the Clean Water Act and Chapter 26 of the Texas Water Code

City of El Campo

whose mailing address is

315 East Jackson Street El Campo, Texas 77437

is authorized to treat and discharge wastes from the City of El Campo Wastewater Treatment Facility, SIC Code 4952

located at 201 Thompson Street, in the City of El Campo, Wharton County, Texas 77437

directly to Tres Palacios Creek Above Tidal in Segment No. 1502 of the Colorado-Lavaca Coastal Basin

only according to effluent limitations, monitoring requirements, and other conditions set forth in this permit, as well as the rules of the Texas Commission on Environmental Quality (TCEQ), the laws of the State of Texas, and other orders of the TCEQ. The issuance of this permit does not grant to the permittee the right to use private or public property for conveyance of wastewater along the discharge route described in this permit. This includes, but is not limited to, property belonging to any individual, partnership, corporation, or other entity. Neither does this permit authorize any invasion of personal rights nor any violation of federal, state, or local laws or regulations. It is the responsibility of the permittee to acquire property rights as may be necessary to use the discharge route.

This permit shall expire at midnight, **five years from the date of issuance**.

ISSUED DATE:		
	For the Commission	_

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

Outfall Number 001

1. During the period beginning upon the date of issuance and lasting through the date of expiration, the permittee is authorized to discharge subject to the following effluent limitations:

The annual average flow of effluent shall not exceed 2.628 million gallons per day (MGD), nor shall the average discharge during any two-hour period (2-hour peak) exceed 6,244 gallons per minute.

Effluent Characteristic	Discharge Limitations				Min. Self-Monitoring Requirements		
	Daily Avg	7-day Avg Daily Max Single Grab			Report Daily Avg. & Daily Max.		
	mg/l (lbs/day)	mg/l	mg/l	mg/l	Measurement Frequency	Sample Type	
Flow, MGD	Report	N/A	Report	N/A	Continuous	Totalizing Meter	
Carbonaceous Biochemical Oxygen Demand (5-day)	10 (219)	15	25	35	Two/week	Composite	
Total Suspended Solids	15 (329)	25	40	60	Two/week	Composite	
Ammonia Nitrogen	2 (44)	5	10	15	Two/week	Composite	
Total Lead	0.015 (0.33)	N/A	0.032	0.047	One/week	Composite	
E. coli, colony-forming units or most probable number per 100 ml	120	N/A	380	N/A	One/week	Grab	

- 2. The effluent shall contain a total chlorine residual of at least 1.0 mg/l after a detention time of at least 20 minutes (based on peak flow) and shall be monitored daily by grab sample. The permittee shall dechlorinate the chlorinated effluent to less than 0.1 mg/l total chlorine residual and shall monitor total chlorine residual daily by grab sample after the dechlorination process. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.
- 3. The pH shall not be less than 6.5 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample.
- 4. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.
- 5. Effluent monitoring samples shall be taken at the following location(s): Following the final treatment unit.
- 6. The effluent shall contain a minimum dissolved oxygen of 6.0 mg/l and shall be monitored twice per week by grab sample.
- 7. The annual average flow and maximum 2-hour peak flow shall be reported monthly.

Page 2

DEFINITIONS AND STANDARD PERMIT CONDITIONS

As required by Title 30 Texas Administrative Code (TAC) Chapter 305, certain regulations appear as standard conditions in waste discharge permits. 30 TAC § 305.121 - 305.129 (relating to Permit Characteristics and Conditions) as promulgated under the Texas Water Code (TWC) §§ 5.103 and 5.105, and the Texas Health and Safety Code (THSC) §§ 361.017 and 361.024(a), establish the characteristics and standards for waste discharge permits, including sewage sludge, and those sections of 40 Code of Federal Regulations (CFR) Part 122 adopted by reference by the Commission. The following text includes these conditions and incorporates them into this permit. All definitions in TWC § 26.001 and 30 TAC Chapter 305 shall apply to this permit and are incorporated by reference. Some specific definitions of words or phrases used in this permit are as follows:

1. Flow Measurements

- a. Annual average flow the arithmetic average of all daily flow determinations taken within the preceding 12 consecutive calendar months. The annual average flow determination shall consist of daily flow volume determinations made by a totalizing meter, charted on a chart recorder and limited to major domestic wastewater discharge facilities with one million gallons per day or greater permitted flow.
- b. Daily average flow the arithmetic average of all determinations of the daily flow within a period of one calendar month. The daily average flow determination shall consist of determinations made on at least four separate days. If instantaneous measurements are used to determine the daily flow, the determination shall be the arithmetic average of all instantaneous measurements taken during that month. Daily average flow determination for intermittent discharges shall consist of a minimum of three flow determinations on days of discharge.
- c. Daily maximum flow the highest total flow for any 24-hour period in a calendar month.
- d. Instantaneous flow the measured flow during the minimum time required to interpret the flow measuring device.
- e. 2-hour peak flow (domestic wastewater treatment plants) the maximum flow sustained for a two-hour period during the period of daily discharge. The average of multiple measurements of instantaneous maximum flow within a two-hour period may be used to calculate the 2-hour peak flow.
- f. Maximum 2-hour peak flow (domestic wastewater treatment plants) the highest 2-hour peak flow for any 24-hour period in a calendar month.

2. Concentration Measurements

- a. Daily average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar month, consisting of at least four separate representative measurements.
 - i. For domestic wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values in the previous four consecutive month period consisting of at least four measurements shall be utilized as the daily average concentration.

- ii. For all other wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values taken during the month shall be utilized as the daily average concentration.
- b. 7-day average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar week, Sunday through Saturday.
- c. Daily maximum concentration the maximum concentration measured on a single day, by the sample type specified in the permit, within a period of one calendar month.
- d. Daily discharge the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in terms of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the sampling day. For pollutants with limitations expressed in other units of measurement, the daily discharge is calculated as the average measurement of the pollutant over the sampling day.

The daily discharge determination of concentration made using a composite sample shall be the concentration of the composite sample. When grab samples are used, the daily discharge determination of concentration shall be the arithmetic average (weighted by flow value) of all samples collected during that day.

- e. Bacteria concentration (*E. coli* or Enterococci) Colony Forming Units (CFU) or Most Probable Number (MPN) of bacteria per 100 milliliters effluent. The daily average bacteria concentration is a geometric mean of the values for the effluent samples collected in a calendar month. The geometric mean shall be determined by calculating the nth root of the product of all measurements made in a calendar month, where n equals the number of measurements made; or, computed as the antilogarithm of the arithmetic mean of the logarithms of all measurements made in a calendar month. For any measurement of bacteria equaling zero, a substituted value of one shall be made for input into either computation method. If specified, the 7-day average for bacteria is the geometric mean of the values for all effluent samples collected during a calendar week.
- f. Daily average loading (lbs/day) the arithmetic average of all daily discharge loading calculations during a period of one calendar month. These calculations must be made for each day of the month that a parameter is analyzed. The daily discharge, in terms of mass (lbs/day), is calculated as (Flow, MGD x Concentration, mg/l x 8.34).
- g. Daily maximum loading (lbs/day) the highest daily discharge, in terms of mass (lbs/day), within a period of one calendar month.

3. Sample Type

a. Composite sample - For domestic wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (a). For industrial wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (b).

- b. Grab sample an individual sample collected in less than 15 minutes.
- 4. Treatment Facility (facility) wastewater facilities used in the conveyance, storage, treatment, recycling, reclamation and/or disposal of domestic sewage, industrial wastes, agricultural wastes, recreational wastes, or other wastes including sludge handling or disposal facilities under the jurisdiction of the Commission.
- 5. The term "sewage sludge" is defined as solid, semi-solid, or liquid residue generated during the treatment of domestic sewage in 30 TAC Chapter 312. This includes the solids that have not been classified as hazardous waste separated from wastewater by unit processes.
- 6. The term "biosolids" is defined as sewage sludge that has been tested or processed to meet Class A, Class AB, or Class B pathogen standards in 30 TAC Chapter 312 for beneficial use.
- 7. Bypass the intentional diversion of a waste stream from any portion of a treatment facility.

MONITORING AND REPORTING REQUIREMENTS

1. Self-Reporting

Monitoring results shall be provided at the intervals specified in the permit. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall conduct effluent sampling and reporting in accordance with 30 TAC §§ 319.4 - 319.12. Unless otherwise specified, effluent monitoring data shall be submitted each month, to the Compliance Monitoring Team of the Enforcement Division (MC 224), by the 20th day of the following month for each discharge which is described by this permit whether or not a discharge is made for that month. Monitoring results must be submitted online using the NetDMR reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. Monitoring results must be signed and certified as required by Monitoring and Reporting Requirements No. 10.

As provided by state law, the permittee is subject to administrative, civil and criminal penalties, as applicable, for negligently or knowingly violating the Clean Water Act (CWA); TWC §§ 26, 27, and 28; and THSC § 361, including but not limited to knowingly making any false statement, representation, or certification on any report, record, or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or noncompliance, or falsifying, tampering with or knowingly rendering inaccurate any monitoring device or method required by this permit or violating any other requirement imposed by state or federal regulations.

2. Test Procedures

- a. Unless otherwise specified in this permit, test procedures for the analysis of pollutants shall comply with procedures specified in 30 TAC §§ 319.11 319.12. Measurements, tests, and calculations shall be accurately accomplished in a representative manner.
- b. All laboratory tests submitted to demonstrate compliance with this permit must meet the requirements of 30 TAC § 25, Environmental Testing Laboratory Accreditation and Certification.

3. Records of Results

a. Monitoring samples and measurements shall be taken at times and in a manner so as to be representative of the monitored activity.

- b. Except for records of monitoring information required by this permit related to the permittee's sewage sludge or biosolids use and disposal activities, which shall be retained for a period of at least five years (or longer as required by 40 CFR Part 503), monitoring and reporting records, including strip charts and records of calibration and maintenance, copies of all records required by this permit, records of all data used to complete the application for this permit, and the certification required by 40 CFR § 264.73(b)(9) shall be retained at the facility site, or shall be readily available for review by a TCEQ representative for a period of three years from the date of the record or sample, measurement, report, application or certification. This period shall be extended at the request of the Executive Director.
- c. Records of monitoring activities shall include the following:
 - i. date, time and place of sample or measurement;
 - ii. identity of individual who collected the sample or made the measurement.
 - iii. date and time of analysis;
 - iv. identity of the individual and laboratory who performed the analysis;
 - v. the technique or method of analysis; and
 - vi. the results of the analysis or measurement and quality assurance/quality control records.

The period during which records are required to be kept shall be automatically extended to the date of the final disposition of any administrative or judicial enforcement action that may be instituted against the permittee.

4. Additional Monitoring by Permittee

If the permittee monitors any pollutant at the location(s) designated herein more frequently than required by this permit using approved analytical methods as specified above, all results of such monitoring shall be included in the calculation and reporting of the values submitted on the approved self-report form. Increased frequency of sampling shall be indicated on the self-report form.

5. Calibration of Instruments

All automatic flow measuring or recording devices and all totalizing meters for measuring flows shall be accurately calibrated by a trained person at plant start-up and as often thereafter as necessary to ensure accuracy, but not less often than annually unless authorized by the Executive Director for a longer period. Such person shall verify in writing that the device is operating properly and giving accurate results. Copies of the verification shall be retained at the facility site and/or shall be readily available for review by a TCEQ representative for a period of three years.

6. Compliance Schedule Reports

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of the permit shall be submitted no later than 14 days following each schedule date to the Regional Office and the Compliance

Monitoring Team of the Enforcement Division (MC 224).

7. Noncompliance Notification

- a. In accordance with 30 TAC § 305.125(9) any noncompliance which may endanger human health or safety, or the environment shall be reported by the permittee to the TCEQ. Except as allowed by 30 TAC § 305.132, report of such information shall be provided orally or by facsimile transmission (FAX) to the Regional Office within 24 hours of becoming aware of the noncompliance. A written submission of such information shall also be provided by the permittee to the Regional Office and the Compliance Monitoring Team of the Enforcement Division (MC 224) within five working days of becoming aware of the noncompliance. For Publicly Owned Treatment Works (POTWs), effective December 21, 2025, the permittee must submit the written report for unauthorized discharges and unanticipated bypasses that exceed any effluent limit in the permit using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. The written submission shall contain a description of the noncompliance and its cause; the potential danger to human health or safety, or the environment; the period of noncompliance, including exact dates and times: if the noncompliance has not been corrected, the time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance, and to mitigate its adverse effects.
- b. The following violations shall be reported under Monitoring and Reporting Requirement 7.a.:
 - i. Unauthorized discharges as defined in Permit Condition 2(g).
 - ii. Any unanticipated bypass that exceeds any effluent limitation in the permit.
 - iii. Violation of a permitted maximum daily discharge limitation for pollutants listed specifically in the Other Requirements section of an Industrial TPDES permit.
- c. In addition to the above, any effluent violation which deviates from the permitted effluent limitation by more than 40% shall be reported by the permittee in writing to the Regional Office and the Compliance Monitoring Team of the Enforcement Division (MC 224) within 5 working days of becoming aware of the noncompliance.
- d. Any noncompliance other than that specified in this section, or any required information not submitted or submitted incorrectly, shall be reported to the Compliance Monitoring Team of the Enforcement Division (MC 224) as promptly as possible. For effluent limitation violations, noncompliances shall be reported on the approved self-report form.
- 8. In accordance with the procedures described in 30 TAC §§ 35.301 35.303 (relating to Water Quality Emergency and Temporary Orders) if the permittee knows in advance of the need for a bypass, it shall submit prior notice by applying for such authorization.
- 9. Changes in Discharges of Toxic Substances

All existing manufacturing, commercial, mining, and silvicultural permittees shall notify the Regional Office, orally or by facsimile transmission within 24 hours, and both the Regional Office and the Compliance Monitoring Team of the Enforcement Division (MC 224) in writing within five (5) working days, after becoming aware of or having reason to believe:

- a. That any activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic pollutant listed at 40 CFR Part 122, Appendix D, Tables II and III (excluding Total Phenols) which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. One hundred micrograms per liter (100 μ g/L);
 - ii. Two hundred micrograms per liter (200 μ g/L) for acrolein and acrylonitrile; five hundred micrograms per liter (500 μ g/L) for 2,4-dinitrophenol and for 2-methyl-4,6-dinitrophenol; and one milligram per liter (1 mg/L) for antimony;
 - iii. Five (5) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.
- b. That any activity has occurred or will occur which would result in any discharge, on a nonroutine or infrequent basis, of a toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. Five hundred micrograms per liter (500 μ g/L);
 - ii. One milligram per liter (1 mg/L) for antimony;
 - iii. Ten (10) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.

10. Signatories to Reports

All reports and other information requested by the Executive Director shall be signed by the person and in the manner required by 30 TAC § 305.128 (relating to Signatories to Reports).

- 11. All POTWs must provide adequate notice to the Executive Director of the following:
 - a. Any new introduction of pollutants into the POTW from an indirect discharger which would be subject to CWA § 301 or § 306 if it were directly discharging those pollutants;
 - b. Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of issuance of the permit; and
 - c. For the purpose of this paragraph, adequate notice shall include information on:
 - i. The quality and quantity of effluent introduced into the POTW; and
 - ii. Any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW.

PERMIT CONDITIONS

1. General

- a. When the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in an application or in any report to the Executive Director, it shall promptly submit such facts or information.
- b. This permit is granted on the basis of the information supplied and representations made by the permittee during action on an application, and relying upon the accuracy and completeness of that information and those representations. After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked, in whole or in part, in accordance with 30 TAC Chapter 305, Subchapter D, during its term for good cause including, but not limited to, the following:
 - i. Violation of any terms or conditions of this permit;
 - ii. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts; or
 - iii. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.
- c. The permittee shall furnish to the Executive Director, upon request and within a reasonable time, any information to determine whether cause exists for amending, revoking, suspending or terminating the permit. The permittee shall also furnish to the Executive Director, upon request, copies of records required to be kept by the permit.

2. Compliance

- a. Acceptance of the permit by the person to whom it is issued constitutes acknowledgment and agreement that such person will comply with all the terms and conditions embodied in the permit, and the rules and other orders of the Commission.
- b. The permittee has a duty to comply with all conditions of the permit. Failure to comply with any permit condition constitutes a violation of the permit and the Texas Water Code or the Texas Health and Safety Code, and is grounds for enforcement action, for permit amendment, revocation, or suspension, or for denial of a permit renewal application or an application for a permit for another facility.
- c. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of the permit.
- d. The permittee shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal or other permit violation that has a reasonable likelihood of adversely affecting human health or the environment.
- e. Authorization from the Commission is required before beginning any change in the permitted facility or activity that may result in noncompliance with any permit requirements.
- f. A permit may be amended, suspended and reissued, or revoked for cause in accordance

with 30 TAC §§ 305.62 and 305.66 and TWC§ 7.302. The filing of a request by the permittee for a permit amendment, suspension and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.

- g. There shall be no unauthorized discharge of wastewater or any other waste. For the purpose of this permit, an unauthorized discharge is considered to be any discharge of wastewater into or adjacent to water in the state at any location not permitted as an outfall or otherwise defined in the Other Requirements section of this permit.
- h. In accordance with 30 TAC § 305.535(a), the permittee may allow any bypass to occur from a TPDES permitted facility which does not cause permitted effluent limitations to be exceeded or an unauthorized discharge to occur, but only if the bypass is also for essential maintenance to assure efficient operation.
- i. The permittee is subject to administrative, civil, and criminal penalties, as applicable, under TWC §§ 7.051 7.075 (relating to Administrative Penalties), 7.101 7.111 (relating to Civil Penalties), and 7.141 7.202 (relating to Criminal Offenses and Penalties) for violations including, but not limited to, negligently or knowingly violating the federal CWA §§ 301, 302, 306, 307, 308, 318, or 405, or any condition or limitation implementing any sections in a permit issued under the CWA § 402, or any requirement imposed in a pretreatment program approved under the CWA §§ 402 (a)(3) or 402 (b)(8).

3. Inspections and Entry

- a. Inspection and entry shall be allowed as prescribed in the TWC Chapters 26, 27, and 28, and THSC § 361.
- b. The members of the Commission and employees and agents of the Commission are entitled to enter any public or private property at any reasonable time for the purpose of inspecting and investigating conditions relating to the quality of water in the state or the compliance with any rule, regulation, permit or other order of the Commission. Members, employees, or agents of the Commission and Commission contractors are entitled to enter public or private property at any reasonable time to investigate or monitor or, if the responsible party is not responsive or there is an immediate danger to public health or the environment, to remove or remediate a condition related to the quality of water in the state. Members, employees, Commission contractors, or agents acting under this authority who enter private property shall observe the establishment's rules and regulations concerning safety, internal security, and fire protection, and if the property has management in residence, shall notify management or the person then in charge of his presence and shall exhibit proper credentials. If any member, employee, Commission contractor, or agent is refused the right to enter in or on public or private property under this authority, the Executive Director may invoke the remedies authorized in TWC § 7.002. The statement above, that Commission entry shall occur in accordance with an establishment's rules and regulations concerning safety, internal security, and fire protection, is not grounds for denial or restriction of entry to any part of the facility, but merely describes the Commission's duty to observe appropriate rules and regulations during an inspection.

4. Permit Amendment and/or Renewal

- a. The permittee shall give notice to the Executive Director as soon as possible of any planned physical alterations or additions to the permitted facility if such alterations or additions would require a permit amendment or result in a violation of permit requirements. Notice shall also be required under this paragraph when:
 - i. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in accordance with 30 TAC § 305.534 (relating to New Sources and New Dischargers); or
 - ii. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants that are subject neither to effluent limitations in the permit, nor to notification requirements in Monitoring and Reporting Requirements No. 9; or
 - iii. The alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan.
- b. Prior to any facility modifications, additions, or expansions that will increase the plant capacity beyond the permitted flow, the permittee must apply for and obtain proper authorization from the Commission before commencing construction.
- c. The permittee must apply for an amendment or renewal at least 180 days prior to expiration of the existing permit in order to continue a permitted activity after the expiration date of the permit. If an application is submitted prior to the expiration date of the permit, the existing permit shall remain in effect until the application is approved, denied, or returned. If the application is returned or denied, authorization to continue such activity shall terminate upon the effective date of the action. If an application is not submitted prior to the expiration date of the permit, the permit shall expire and authorization to continue such activity shall terminate.
- d. Prior to accepting or generating wastes which are not described in the permit application or which would result in a significant change in the quantity or quality of the existing discharge, the permittee must report the proposed changes to the Commission. The permittee must apply for a permit amendment reflecting any necessary changes in permit conditions, including effluent limitations for pollutants not identified and limited by this permit.
- e. In accordance with the TWC § 26.029(b), after a public hearing, notice of which shall be given to the permittee, the Commission may require the permittee, from time to time, for good cause, in accordance with applicable laws, to conform to new or additional conditions.
- f. If any toxic effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is promulgated under CWA § 307(a) for a toxic pollutant which is present in the discharge and that standard or prohibition is more stringent than any limitation on the pollutant in this permit, this permit shall be modified or revoked and reissued to conform to the toxic effluent standard or

prohibition. The permittee shall comply with effluent standards or prohibitions established under CWA § 307(a) for toxic pollutants within the time provided in the regulations that established those standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.

5. Permit Transfer

- a. Prior to any transfer of this permit, Commission approval must be obtained. The Commission shall be notified in writing of any change in control or ownership of facilities authorized by this permit. Such notification should be sent to the Applications Review and Processing Team (MC 148) of the Water Quality Division.
- b. A permit may be transferred only according to the provisions of 30 TAC § 305.64 (relating to Transfer of Permits) and 30 TAC § 50.133 (relating to Executive Director Action on Application or WQMP update).

6. Relationship to Hazardous Waste Activities

This permit does not authorize any activity of hazardous waste storage, processing, or disposal that requires a permit or other authorization pursuant to the Texas Health and Safety Code.

7. Relationship to Water Rights

Disposal of treated effluent by any means other than discharge directly to water in the state must be specifically authorized in this permit and may require a permit pursuant to TWC Chapter 11.

8. Property Rights

A permit does not convey any property rights of any sort, or any exclusive privilege.

9. Permit Enforceability

The conditions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstances, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

10. Relationship to Permit Application

The application pursuant to which the permit has been issued is incorporated herein; provided, however, that in the event of a conflict between the provisions of this permit and the application, the provisions of the permit shall control.

11. Notice of Bankruptcy

- a. Each permittee shall notify the Executive Director, in writing, immediately following the filing of a voluntary or involuntary petition for bankruptcy under any chapter of Title 11 (Bankruptcy) of the United States Code (11 USC) by or against:
 - i. the permittee;
 - ii. an entity (as that term is defined in 11 USC, § 101(14)) controlling the permittee or listing the permit or permittee as property of the estate; or

- iii. an affiliate (as that term is defined in 11 USC, § 101(2)) of the permittee.
- b. This notification must indicate:
 - i. the name of the permittee;
 - ii. the permit number(s);
 - iii. the bankruptcy court in which the petition for bankruptcy was filed; and
 - iv. the date of filing of the petition.

OPERATIONAL REQUIREMENTS

- 1. The permittee shall at all times ensure that the facility and all of its systems of collection, treatment, and disposal are properly operated and maintained. This includes, but is not limited to, the regular, periodic examination of wastewater solids within the treatment plant by the operator in order to maintain an appropriate quantity and quality of solids inventory as described in the various operator training manuals and according to accepted industry standards for process control. Process control, maintenance, and operations records shall be retained at the facility site, or shall be readily available for review by a TCEQ representative, for a period of three years.
- 2. Upon request by the Executive Director, the permittee shall take appropriate samples and provide proper analysis in order to demonstrate compliance with Commission rules. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall comply with all applicable provisions of 30 TAC Chapter 312 concerning sewage sludge or biosolids use and disposal and 30 TAC §§ 319.21 319.29 concerning the discharge of certain hazardous metals.
- 3. Domestic wastewater treatment facilities shall comply with the following provisions:
 - a. The permittee shall notify the Municipal Permits Team, Wastewater Permitting Section (MC 148) of the Water Quality Division, in writing, of any facility expansion at least 90 days prior to conducting such activity.
 - b. The permittee shall submit a closure plan for review and approval to the Municipal Permits Team, Wastewater Permitting Section (MC 148) of the Water Quality Division, for any closure activity at least 90 days prior to conducting such activity. Closure is the act of permanently taking a waste management unit or treatment facility out of service and includes the permanent removal from service of any pit, tank, pond, lagoon, surface impoundment and/or other treatment unit regulated by this permit.
- 4. The permittee is responsible for installing prior to plant start-up, and subsequently maintaining, adequate safeguards to prevent the discharge of untreated or inadequately treated wastes during electrical power failures by means of alternate power sources, standby generators, and/or retention of inadequately treated wastewater.
- 5. Unless otherwise specified, the permittee shall provide a readily accessible sampling point and, where applicable, an effluent flow measuring device or other acceptable means by which effluent flow may be determined.

6. The permittee shall remit an annual water quality fee to the Commission as required by 30 TAC Chapter 21. Failure to pay the fee may result in revocation of this permit under TWC § 7.302(b)(6).

7. Documentation

For all written notifications to the Commission required of the permittee by this permit, the permittee shall keep and make available a copy of each such notification under the same conditions as self-monitoring data are required to be kept and made available. Except for information required for TPDES permit applications, effluent data, including effluent data in permits, draft permits and permit applications, and other information specified as not confidential in 30 TAC §§ 1.5(d), any information submitted pursuant to this permit may be claimed as confidential by the submitter. Any such claim must be asserted in the manner prescribed in the application form or by stamping the words confidential business information on each page containing such information. If no claim is made at the time of submission, information may be made available to the public without further notice. If the Commission or Executive Director agrees with the designation of confidentiality, the TCEQ will not provide the information for public inspection unless required by the Texas Attorney General or a court pursuant to an open records request. If the Executive Director does not agree with the designation of confidentiality, the person submitting the information will be notified.

- 8. Facilities that generate domestic wastewater shall comply with the following provisions; domestic wastewater treatment facilities at permitted industrial sites are excluded.
 - a. Whenever flow measurements for any domestic sewage treatment facility reach 75% of the permitted daily average or annual average flow for three consecutive months, the permittee must initiate engineering and financial planning for expansion and/or upgrading of the domestic wastewater treatment and/or collection facilities. Whenever the flow reaches 90% of the permitted daily average or annual average flow for three consecutive months, the permittee shall obtain necessary authorization from the Commission to commence construction of the necessary additional treatment and/or collection facilities. In the case of a domestic wastewater treatment facility which reaches 75% of the permitted daily average or annual average flow for three consecutive months, and the planned population to be served or the quantity of waste produced is not expected to exceed the design limitations of the treatment facility, the permittee shall submit an engineering report supporting this claim to the Executive Director of the Commission.

If in the judgment of the Executive Director the population to be served will not cause permit noncompliance, then the requirement of this section may be waived. To be effective, any waiver must be in writing and signed by the Director of the Enforcement Division (MC 219) of the Commission, and such waiver of these requirements will be reviewed upon expiration of the existing permit; however, any such waiver shall not be interpreted as condoning or excusing any violation of any permit parameter.

b. The plans and specifications for domestic sewage collection and treatment works associated with any domestic permit must be approved by the Commission and failure to secure approval before commencing construction of such works or making a discharge is a violation of this permit and each day is an additional violation until approval has been

secured.

- c. Permits for domestic wastewater treatment plants are granted subject to the policy of the Commission to encourage the development of area-wide waste collection, treatment, and disposal systems. The Commission reserves the right to amend any domestic wastewater permit in accordance with applicable procedural requirements to require the system covered by this permit to be integrated into an area-wide system, should such be developed; to require the delivery of the wastes authorized to be collected in, treated by or discharged from said system, to such area-wide system; or to amend this permit in any other particular to effectuate the Commission's policy. Such amendments may be made when the changes required are advisable for water quality control purposes and are feasible on the basis of waste treatment technology, engineering, financial, and related considerations existing at the time the changes are required, exclusive of the loss of investment in or revenues from any then existing or proposed waste collection, treatment or disposal system.
- 9. Domestic wastewater treatment plants shall be operated and maintained by sewage plant operators holding a valid certificate of competency at the required level as defined in 30 TAC Chapter 30.
- 10. For Publicly Owned Treatment Works (POTWs), the 30-day average (or monthly average) percent removal for BOD and TSS shall not be less than 85%, unless otherwise authorized by this permit.
- 11. Facilities that generate industrial solid waste as defined in 30 TAC § 335.1 shall comply with these provisions:
 - a. Any solid waste, as defined in 30 TAC § 335.1 (including but not limited to such wastes as garbage, refuse, sludge from a waste treatment, water supply treatment plant or air pollution control facility, discarded materials, discarded materials to be recycled, whether the waste is solid, liquid, or semisolid), generated by the permittee during the management and treatment of wastewater, must be managed in accordance with all applicable provisions of 30 TAC Chapter 335, relating to Industrial Solid Waste Management.
 - b. Industrial wastewater that is being collected, accumulated, stored, or processed before discharge through any final discharge outfall, specified by this permit, is considered to be industrial solid waste until the wastewater passes through the actual point source discharge and must be managed in accordance with all applicable provisions of 30 TAC Chapter 335.
 - c. The permittee shall provide written notification, pursuant to the requirements of 30 TAC § 335.8(b)(1), to the Corrective Action Section (MC 127) of the Remediation Division informing the Commission of any closure activity involving an Industrial Solid Waste Management Unit, at least 90 days prior to conducting such an activity.
 - d. Construction of any industrial solid waste management unit requires the prior written notification of the proposed activity to the Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division. No person shall dispose of industrial solid waste, including sludge or other solids from wastewater treatment processes, prior to fulfilling the deed recordation requirements of 30 TAC § 335.5.

- e. The term "industrial solid waste management unit" means a landfill, surface impoundment, waste-pile, industrial furnace, incinerator, cement kiln, injection well, container, drum, salt dome waste containment cavern, or any other structure vessel, appurtenance, or other improvement on land used to manage industrial solid waste.
- f. The permittee shall keep management records for all sludge (or other waste) removed from any wastewater treatment process. These records shall fulfill all applicable requirements of 30 TAC § 335 and must include the following, as it pertains to wastewater treatment and discharge:
 - i. Volume of waste and date(s) generated from treatment process;
 - ii. Volume of waste disposed of on-site or shipped off-site;
 - iii. Date(s) of disposal;
 - iv. Identity of hauler or transporter;
 - v. Location of disposal site; and
 - vi. Method of final disposal.

The above records shall be maintained on a monthly basis. The records shall be retained at the facility site, or shall be readily available for review by authorized representatives of the TCEQ for at least five years.

12. For industrial facilities to which the requirements of 30 TAC § 335 do not apply, sludge and solid wastes, including tank cleaning and contaminated solids for disposal, shall be disposed of in accordance with THSC § 361.

TCEQ Revision 06/2020

SLUDGE PROVISIONS

The permittee is authorized to dispose of sludge only at a Texas Commission on Environmental Quality (TCEQ) authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge. The disposal of sludge or biosolids by land application on property owned, leased or under the direct control of the permittee is a violation of the permit unless the site is authorized with the TCEQ. This provision does not authorize Distribution and Marketing of Class A or Class AB Biosolids. This provision does not authorize the permittee to land apply biosolids on property owned, leased or under the direct control of the permittee.

SECTION I. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE OR BIOSOLIDS LAND APPLICATION

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC § 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge or biosolids.
- 2. In all cases, if the person (permit holder) who prepares the sewage sludge supplies the sewage sludge to another person for land application use or to the owner or lease holder of the land, the permit holder shall provide necessary information to the parties who receive the sludge to assure compliance with these regulations.
- 3. The land application of processed or unprocessed chemical toilet waste, grease trap waste, grit trap waste, milk solids, or similar non-hazardous municipal or industrial solid wastes, or any of the wastes listed in this provision combined with biosolids, WTP residuals or domestic septage is prohibited unless the grease trap waste is added at a fats, oil and grease (FOG) receiving facility as part of an anaerobic digestion process.

B. Testing Requirements

1. Sewage sludge or biosolids shall be tested annually; in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I [Toxicity Characteristic Leaching Procedure (TCLP)] or other method that receives the prior approval of the TCEQ for the contaminants listed in 40 CFR Part 261.24, Table 1. Sewage sludge or biosolids failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal. Following failure of any TCLP test, the management or disposal of sewage sludge or biosolids at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge or biosolids no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division and the Regional Director (MC Region 12) within seven (7) days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped, and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Permitting and Registration Support Division (MC 129), Texas Commission on Environmental Quality, P.O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. This annual report shall be submitted to the TCEQ Regional Office (MC Region 12) and the Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

2. Biosolids shall not be applied to the land if the concentration of the pollutants exceeds the pollutant concentration criteria in Table 1. The frequency of testing for pollutants in Table 1 is found in Section I.C. of this permit.

TABLE 1

<u>Pollutant</u>	Ceiling Concentration
	(Milligrams per kilogram)*
Arsenic	75
Cadmium	85
Chromium	3000
Copper	4300
Lead	840
Mercury	57
Molybdenum	75
Nickel	420
PCBs	49
Selenium	100
Zinc	7500

^{*} Dry weight basis

3. Pathogen Control

All sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site must be treated by one of the following methods to ensure that the sludge meets either the Class A, Class AB or Class B biosolids pathogen requirements.

a. For sewage sludge to be classified as Class A biosolids with respect to pathogens, the density of fecal coliform in the sewage sludge must be less than 1,000 most probable number (MPN) per gram of total solids (dry weight basis), or the density of Salmonella sp. bacteria in the sewage sludge must be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met:

<u>Alternative 1</u> - The temperature of the sewage sludge that is used or disposed shall be maintained at or above a specific value for a period of time. See 30 TAC § 312.82(a)(2)(A) for specific information;

Alternative 5 (PFRP) - Sewage sludge that is used or disposed of must be treated in one of the Processes to Further Reduce Pathogens (PFRP) described in 40 CFR Part 503, Appendix B. PFRP include composting, heat drying, heat treatment, and thermophilic aerobic digestion; or

Alternative 6 (PFRP Equivalent) - Sewage sludge that is used or disposed of must be treated in a process that has been approved by the U. S. Environmental Protection Agency as being equivalent to those in Alternative 5.

b. For sewage sludge to be classified as Class AB biosolids with respect to pathogens, the density of fecal coliform in the sewage sludge must be less than 1,000 MPN per gram of total solids (dry weight basis), or the density of *Salmonella* sp. bacteria in the sewage sludge be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met:

<u>Alternative 2</u> - The pH of the sewage sludge that is used or disposed shall be raised to above 12 std. units and shall remain above 12 std. units for 72 hours.

The temperature of the sewage sludge shall be above 52° Celsius for 12 hours or longer during the period that the pH of the sewage sludge is above 12 std. units.

At the end of the 72-hour period during which the pH of the sewage sludge is above 12 std. units, the sewage sludge shall be air dried to achieve a percent solids in the sewage sludge greater than 50%; or

Alternative 3 - The sewage sludge shall be analyzed for enteric viruses prior to pathogen treatment. The limit for enteric viruses is less than one Plaque-forming Unit per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC \S 312.82(a)(2)(C)(i-iii) for specific information. The sewage sludge shall be analyzed for viable helminth ova prior to pathogen treatment. The limit for viable helminth ova is less than one per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC \S 312.82(a)(2)(C)(iv-vi) for specific information; or

<u>Alternative 4</u> - The density of enteric viruses in the sewage sludge shall be less than one Plaque-forming Unit per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. The density of viable helminth ova in the sewage sludge shall be less than one per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed.

- c. Sewage sludge that meets the requirements of Class AB biosolids may be classified a Class A biosolids if a variance request is submitted in writing that is supported by substantial documentation demonstrating equivalent methods for reducing odors and written approval is granted by the executive director. The executive director may deny the variance request or revoke that approved variance if it is determined that the variance may potentially endanger human health or the environment, or create nuisance odor conditions.
- d. Three alternatives are available to demonstrate compliance with Class B biosolids

criteria.

Alternative 1

- i. A minimum of seven random samples of the sewage sludge shall be collected within 48 hours of the time the sewage sludge is used or disposed of during each monitoring episode for the sewage sludge.
- ii. The geometric mean of the density of fecal coliform in the samples collected shall be less than either 2,000,000 MPN per gram of total solids (dry weight basis) or 2,000,000 Colony Forming Units per gram of total solids (dry weight basis).

<u>Alternative 2</u> - Sewage sludge that is used or disposed of shall be treated in one of the Processes to Significantly Reduce Pathogens (PSRP) described in 40 CFR Part 503, Appendix B, so long as all of the following requirements are met by the generator of the sewage sludge.

- i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;
- ii. An independent Texas Licensed Professional Engineer must make a certification to the generator of a sewage sludge that the wastewater treatment facility generating the sewage sludge is designed to achieve one of the PSRP at the permitted design loading of the facility. The certification need only be repeated if the design loading of the facility is increased. The certification shall include a statement indicating the design meets all the applicable standards specified in Appendix B of 40 CFR Part 503;
- iii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iv. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review; and
- v. If the sewage sludge is generated from a mixture of sources, resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the PSRP, and shall meet the certification, operation, and record keeping requirements of this paragraph.

<u>Alternative 3</u> - Sewage sludge shall be treated in an equivalent process that has been approved by the U.S. Environmental Protection Agency, so long as all of the following requirements are met by the generator of the sewage sludge.

i. Prior to use or disposal, all the sewage sludge must have been generated from a

single location, except as provided in paragraph v. below;

- ii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iii. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review;
- iv. The Executive Director will accept from the U.S. Environmental Protection Agency a finding of equivalency to the defined PSRP; and
- v. If the sewage sludge is generated from a mixture of sources resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the Processes to Significantly Reduce Pathogens, and shall meet the certification, operation, and record keeping requirements of this paragraph.

In addition to the Alternatives 1 - 3, the following site restrictions must be met if Class B biosolids are land applied:

- Food crops with harvested parts that touch the biosolids/soil mixture and are totally above the land surface shall not be harvested for 14 months after application of biosolids.
- ii. Food crops with harvested parts below the surface of the land shall not be harvested for 20 months after application of biosolids when the biosolids remain on the land surface for 4 months or longer prior to incorporation into the soil.
- iii. Food crops with harvested parts below the surface of the land shall not be harvested for 38 months after application of biosolids when the biosolids remain on the land surface for less than 4 months prior to incorporation into the soil.
- iv. Food crops, feed crops, and fiber crops shall not be harvested for 30 days after application of biosolids.
- v. Domestic livestock shall not be allowed to graze on the land for 30 days after application of biosolids.
- vi. Turf grown on land where biosolids are applied shall not be harvested for 1 year after application of the biosolids when the harvested turf is placed on either land with a high potential for public exposure or a lawn.
- vii. Public access to land with a high potential for public exposure shall be restricted for 1 year after application of biosolids.

- viii. Public access to land with a low potential for public exposure shall be restricted for 30 days after application of biosolids.
- ix. Land application of biosolids shall be in accordance with the buffer zone requirements found in 30 TAC § 312.44.

4. Vector Attraction Reduction Requirements

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site shall be treated by one of the following Alternatives 1 through 10 for vector attraction reduction.

- <u>Alternative 1</u> The mass of volatile solids in the sewage sludge shall be reduced by a minimum of 38%.
- Alternative 2 If Alternative 1 cannot be met for an anaerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge anaerobically in the laboratory in a bench-scale unit for 40 additional days at a temperature between 30° and 37° Celsius. Volatile solids must be reduced by less than 17% to demonstrate compliance.
- Alternative 3 If Alternative 1 cannot be met for an aerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge with percent solids of two percent or less aerobically in the laboratory in a bench-scale unit for 30 additional days at 20° Celsius. Volatile solids must be reduced by less than 15% to demonstrate compliance.
- Alternative 4 The specific oxygen uptake rate (SOUR) for sewage sludge treated in an aerobic process shall be equal to or less than 1.5 milligrams of oxygen per hour per gram of total solids (dry weight basis) at a temperature of 20° Celsius.
- Alternative 5 Sewage sludge shall be treated in an aerobic process for 14 days or longer. During that time, the temperature of the sewage sludge shall be higher than 40° Celsius and the average temperature of the sewage sludge shall be higher than 45° Celsius.
- Alternative 6 The pH of sewage sludge shall be raised to 12 or higher by alkali addition and, without the addition of more alkali shall remain at 12 or higher for two hours and then remain at a pH of 11.5 or higher for an additional 22 hours at the time the sewage sludge is prepared for sale or given away in a bag or other container.
- Alternative 7 The percent solids of sewage sludge that does not contain unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 75% based on the moisture content and total solids prior to mixing with other materials. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

Alternative 8 -

The percent solids of sewage sludge that contains unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 90% based on the moisture content and total solids prior to mixing with other materials at the time the sludge is used. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

Alternative 9 -

- i. Biosolids shall be injected below the surface of the land.
- ii. No significant amount of the biosolids shall be present on the land surface within one hour after the biosolids are injected.
- iii. When sewage sludge that is injected below the surface of the land is Class A or Class AB with respect to pathogens, the biosolids shall be injected below the land surface within eight hours after being discharged from the pathogen treatment process.

Alternative 10-

- i. Biosolids applied to the land surface or placed on a surface disposal site shall be incorporated into the soil within six hours after application to or placement on the land.
- ii. When biosolids that are incorporated into the soil is Class A or Class AB with respect to pathogens, the biosolids shall be applied to or placed on the land within eight hours after being discharged from the pathogen treatment process.

C. Monitoring Requirements

Toxicity Characteristic Leaching Procedure - annually (TCLP) Test
PCBs - annually

All metal constituents and fecal coliform or *Salmonella* sp. bacteria shall be monitored at the appropriate frequency shown below, pursuant to 30 TAC § 312.46(a)(1):

Amount of biosolids (*)

metric tons per 365-day period Monitoring Frequency

o to less than 290 Once/Year

290 to less than 1,500 Once/Quarter

1,500 to less than 15,000 Once/Two Months

15,000 or greater Once/Month

(*) The amount of bulk biosolids applied to the land (dry wt. basis).

Representative samples of sewage sludge shall be collected and analyzed in accordance with the methods referenced in 30 TAC § 312.7

Identify each of the analytic methods used by the facility to analyze enteric viruses, fecal coliforms, helminth ova, *Salmonella* sp., and other regulated parameters.

Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.

Identify the nature of material generated by the facility (such as a biosolid for beneficial use or land-farming, or sewage sludge or biosolids for disposal at a monofill) and whether the material is ultimately conveyed off-site in bulk or in bags.

SECTION II. REQUIREMENTS SPECIFIC TO BULK SEWAGE SLUDGE OR BIOSOLIDS FOR APPLICATION TO THE LAND MEETING CLASS A, CLASS AB or B PATHOGEN REDUCTION AND THE CUMULATIVE LOADING RATES IN TABLE 2, OR CLASS B PATHOGEN REDUCTION AND THE POLLUTANT CONCENTRATIONS IN TABLE 3

For those permittees meeting Class A, Class AB or B pathogen reduction requirements and that meet the cumulative loading rates in Table 2 below, or the Class B pathogen reduction requirements and contain concentrations of pollutants below listed in Table 3, the following conditions apply:

A. Pollutant Limits

Table 2

Pollutant	Cumulative Pollutant Loading Rate (pounds per acre)*
Arsenic	_
	36
Cadmium	35
Chromium	2677
Copper	1339
Lead	268
Mercury	15
Molybdenum	Report Only
Nickel	375
Selenium	89
Zinc	2500

Table 3

Monthly Average
Concentration
(milligrams per kilogram)*
41
39
1200
1500
300
17
Report Only
420
36
2800

^{*}Dry weight basis

B. Pathogen Control

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, a reclamation site, shall be treated by either Class A, Class AB or Class B biosolids pathogen reduction requirements as defined above in Section I.B.3.

C. Management Practices

- 1. Bulk biosolids shall not be applied to agricultural land, forest, a public contact site, or a reclamation site that is flooded, frozen, or snow-covered so that the bulk sewage sludge enters a wetland or other waters in the State.
- 2. Bulk biosolids not meeting Class A requirements shall be land applied in a manner which complies with Applicability in accordance with 30 TAC §312.41 and the Management Requirements in accordance with 30 TAC § 312.44.
- 3. Bulk biosolids shall be applied at or below the agronomic rate of the cover crop.
- 4. An information sheet shall be provided to the person who receives bulk Class A or AB biosolids sold or given away. The information sheet shall contain the following information:
 - a. The name and address of the person who prepared the Class A or AB biosolids that are sold or given away in a bag or other container for application to the land.
 - b. A statement that application of the biosolids to the land is prohibited except in accordance with the instruction on the label or information sheet.
 - c. The annual whole sludge application rate for the biosolids application rate for the biosolids that does not cause any of the cumulative pollutant loading rates in Table 2 above to be exceeded, unless the pollutant concentrations in Table 3 found in Section II above are met.

D. Notification Requirements

- 1. If bulk biosolids are applied to land in a State other than Texas, written notice shall be provided prior to the initial land application to the permitting authority for the State in which the bulk biosolids are proposed to be applied. The notice shall include:
 - a. The location, by street address, and specific latitude and longitude, of each land application site.
 - b. The approximate time period bulk biosolids will be applied to the site.
 - c. The name, address, telephone number, and National Pollutant Discharge Elimination System permit number (if appropriate) for the person who will apply the bulk biosolids.

E. Record Keeping Requirements

The documents will be retained at the facility site and/or shall be readily available for review by a TCEQ representative. The person who prepares bulk sewage sludge or a biosolids material shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative for a period of <u>five years</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply.

- 1. The concentration (mg/kg) in the sludge of each pollutant listed in Table 3 above and the applicable pollutant concentration criteria (mg/kg), or the applicable cumulative pollutant loading rate and the applicable cumulative pollutant loading rate limit (lbs/ac) listed in Table 2 above.
- 2. A description of how the pathogen reduction requirements are met (including site restrictions for Class AB and Class B biosolids, if applicable).
- 3. A description of how the vector attraction reduction requirements are met.
- 4. A description of how the management practices listed above in Section II.C are being met.
- 5. The following certification statement:
 - "I certify, under penalty of law, that the applicable pathogen requirements in 30 TAC § 312.82(a) or (b) and the vector attraction reduction requirements in 30 TAC § 312.83(b) have been met for each site on which bulk biosolids are applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices have been met. I am aware that there are significant penalties for false certification including fine and imprisonment."
- 6. The recommended agronomic loading rate from the references listed in Section II.C.3. above, as well as the actual agronomic loading rate shall be retained. The person who applies bulk biosolids shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative <u>indefinitely</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply:
 - a. A certification statement that all applicable requirements (specifically listed) have been met, and that the permittee understands that there are significant penalties for false certification including fine and imprisonment. See 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii), as applicable, and to the permittee's specific sludge treatment activities.
 - b. The location, by street address, and specific latitude and longitude, of each site on which biosolids are applied.
 - c. The number of acres in each site on which bulk biosolids are applied.
 - d. The date and time biosolids are applied to each site.
 - e. The cumulative amount of each pollutant in pounds/acre listed in Table 2 applied to each site.
 - f. The total amount of biosolids applied to each site in dry tons.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

F. Reporting Requirements

The permittee shall report annually to the TCEQ Regional Office (MC Region 12) and Compliance Monitoring Team (MC 224) of the Enforcement Division, by September 30th of each year the following information. The permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

- Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. Identify the nature of material generated by the facility (such as a biosolid for beneficial use or land-farming, or sewage sludge for disposal at a monofill) and whether the material is ultimately conveyed off-site in bulk or in bags.
- 3. Results of tests performed for pollutants found in either Table 2 or 3 as appropriate for the permittee's land application practices.
- 4. The frequency of monitoring listed in Section I.C. that applies to the permittee.
- 5. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 6. PCB concentration in sludge or biosolids in mg/kg.
- 7. Identity of hauler(s) and TCEQ transporter number.
- 8. Date(s) of transport.
- 9. Texas Commission on Environmental Quality registration number, if applicable.
- 10. Amount of sludge or biosolids disposal dry weight (lbs/acre) at each disposal site.
- 11. The concentration (mg/kg) in the sludge of each pollutant listed in Table 1 (defined as a monthly average) as well as the applicable pollutant concentration criteria (mg/kg) listed in Table 3 above, or the applicable pollutant loading rate limit (lbs/acre) listed in Table 2 above if it exceeds 90% of the limit.
- 12. Level of pathogen reduction achieved (Class A, Class AB or Class B).
- 13. Alternative used as listed in Section I.B.3.(a. or b.). Alternatives describe how the pathogen reduction requirements are met. If Class B biosolids, include information on how site restrictions were met.
- 14. Identify each of the analytic methods used by the facility to analyze enteric viruses, fecal coliforms, helminth ova, *Salmonella* sp., and other regulated parameters.
- 15. Vector attraction reduction alternative used as listed in Section I.B.4.
- 16. Amount of sludge or biosolids transported in dry tons/year.

- 17. The certification statement listed in either 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii) as applicable to the permittee's sludge or biosolids treatment activities, shall be attached to the annual reporting form.
- 18. When the amount of any pollutant applied to the land exceeds 90% of the cumulative pollutant loading rate for that pollutant, as described in Table 2, the permittee shall report the following information as an attachment to the annual reporting form.
 - a. The location, by street address, and specific latitude and longitude.
 - b. The number of acres in each site on which bulk biosolids are applied.
 - c. The date and time bulk biosolids are applied to each site.
 - d. The cumulative amount of each pollutant (i.e., pounds/acre) listed in Table 2 in the bulk biosolids applied to each site.
 - e. The amount of biosolids (i.e., dry tons) applied to each site.

The above records shall be maintained on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION III. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE OR BIOSOLIDS DISPOSED IN A MUNICIPAL SOLID WASTE LANDFILL

- A. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC § 330 and all other applicable state and federal regulations to protect public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present. The permittee shall ensure that the sewage sludge meets the requirements in 30 TAC § 330 concerning the quality of the sludge or biosolids disposed in a municipal solid waste landfill.
- B. If the permittee generates sewage sludge and supplies that sewage sludge or biosolids to the owner or operator of a municipal solid waste landfill (MSWLF) for disposal, the permittee shall provide to the owner or operator of the MSWLF appropriate information needed to be in compliance with the provisions of this permit.
- C. Sewage sludge or biosolids shall be tested annually; in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I (Toxicity Characteristic Leaching Procedure) or other method, which receives the prior approval of the TCEQ for contaminants listed in Table 1 of 40 CFR § 261.24. Sewage sludge or biosolids failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal.

Following failure of any TCLP test, the management or disposal of sewage sludge or biosolids at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge or biosolids no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division and the Regional Director (MC Region 12) of the appropriate TCEQ field office within 7 days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped, and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Permitting and Registration Support Division (MC 129), Texas Commission on Environmental Quality, P. O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. This annual report shall be submitted to the TCEQ Regional Office (MC Region 12) and the Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30 of each year.

- D. Sewage sludge or biosolids shall be tested as needed, in accordance with the requirements of 30 TAC Chapter 330.
- E. Record Keeping Requirements

The permittee shall develop the following information and shall retain the information for five years.

- 1. The description (including procedures followed and the results) of all liquid Paint Filter Tests performed.
- 2. The description (including procedures followed and results) of all TCLP tests performed.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

F. Reporting Requirements

The permittee shall report annually to the TCEQ Regional Office (MC Region 12) and Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30th of each year the following information. The permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 3. Annual sludge or biosolids production in dry tons/year.
- 4. Amount of sludge or biosolids disposed in a municipal solid waste landfill in dry tons/year.
- 5. Amount of sludge or biosolids transported interstate in dry tons/year.
- 6. A certification that the sewage sludge or biosolids meets the requirements of 30 TAC § 330 concerning the quality of the sludge disposed in a municipal solid waste landfill.
- 7. Identity of hauler(s) and transporter registration number.
- 8. Owner of disposal site(s).
- 9. Location of disposal site(s).
- 10. Date(s) of disposal.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION IV. REQUIREMENTS APPLYING TO SLUDGE OR BIOSOLIDS TRANSPORTED TO ANOTHER FACILITY FOR FURTHER PROCESSING

These provisions apply to sludge or biosolids that is transported to another wastewater treatment facility or facility that further processes sludge or biosolids. These provisions are intended to allow transport of sludge or biosolids to facilities that have been authorized to accept sludge or biosolids. These provisions do not limit the ability of the receiving facility to determine whether to accept the sludge or biosolids, nor do they limit the ability of the receiving facility to request additional testing or documentation.

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC Chapter 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge.
- 2. Sludge or biosolids may only be transported using a registered transporter or using an approved pipeline.

B. Record Keeping Requirements

- 1. For sludge transported by an approved pipeline, the permittee must maintain records of the following:
 - a. the amount of sludge or biosolids transported;
 - b. the date of transport;
 - c. the name and TCEQ permit number of the receiving facility or facilities;
 - d. the location of the receiving facility or facilities;
 - e. the name and TCEQ permit number of the facility that generated the waste; and
 - f. copy of the written agreement between the permittee and the receiving facility to accept sludge or biosolids.
- 2. For sludge or biosolids transported by a registered transporter, the permittee must maintain records of the completed trip tickets in accordance with 30 TAC § 312.145(a)(1)-(7) and amount of sludge or biosolids transported.
- The above records shall be maintained on-site on a monthly basis and shall be made available to the TCEQ upon request. These records shall be retained for at least five years.

C. Reporting Requirements

The permittee shall report the following information annually to the TCEQ Regional Office (MC Region 12) and Compliance Monitoring Team (MC 224) of the Enforcement Division, by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. the annual sludge or biosolids production;
- 3. the amount of sludge or biosolids transported;
- 4. the owner of each receiving facility;
- 5. the location of each receiving facility; and
- 6. the date(s) of disposal at each receiving facility.

TCEQ Revision 06/2020

OTHER REQUIREMENTS

1. The permittee shall employ or contract with one or more licensed wastewater treatment facility operators or wastewater system operations companies holding a valid license or registration according to the requirements of 30 TAC Chapter 30, Occupational Licenses and Registrations, and in particular 30 TAC Chapter 30, Subchapter J, Wastewater Operators and Operations Companies.

This Category B facility must be operated by a chief operator or an operator holding a Class B license or higher. The facility must be operated a minimum of five days per week by the licensed chief operator or an operator holding the required level of license or higher. The licensed chief operator or operator holding the required level of license or higher must be available by telephone or pager seven days per week. Where shift operation of the wastewater treatment facility is necessary, each shift that does not have the on-site supervision of the licensed chief operator must be supervised by an operator in charge who is licensed not less than one level below the category for the facility.

- 2. The facility is not located in the Coastal Management Program boundary.
- 3. Chronic toxic criteria apply at the edge of the mixing zone. The mixing zone is defined as 300 feet downstream and 100 feet upstream from the point of discharge.
- 4. The permittee has provided sufficient evidence of legal restrictions prohibiting residential structures within the part of the buffer zone not owned by the permittee according to 30 TAC § 309.13 (e)(3). The evidence of legal restrictions has been submitted to the Executive Director in care of the TCEQ Wastewater Permitting Section (MC 148). The permittee shall comply with the requirements of 30 TAC § 309.13 (a) through (d). See Attachment A.
- 5. The permittee shall provide facilities for the protection of its wastewater treatment facility from a 100-year flood.
- 6. Violations of daily maximum limitations for the following pollutants shall be reported orally or by facsimile to TCEQ Region 12 within 24 hours from the time the permittee becomes aware of the violation followed by a written report within five working days to TCEQ Region 12 and the Enforcement Division (MC 224).

POLLUTANT MAL(mg/l)
Total Lead 0.0005

Test methods utilized shall be sensitive enough to demonstrate compliance with the permit effluent limitations. Permit compliance/noncompliance determinations will be based on the effluent limitations contained in this permit with consideration given to the MAL for the parameters specified above.

When an analysis of an effluent sample for any of the parameters listed above indicates no detectable levels above the MAL and the test method detection level is as sensitive as the specified MAL, a value of zero (0) shall be used for that measurement when determining calculations and reporting requirements for the self-reporting form. This applies to determinations of daily maximum concentration, calculations of loading and daily averages, and other reportable results.

When a reported value is zero (o) based on this MAL provision, the permittee shall submit the following statement with the self-reporting form either as a separate attachment to the form or as a statement in the comments section of the form.

"The reported value(s) of zero (0) for <u>[list parameter(s)]</u> on the self-reporting form for <u>[monitoring period date range]</u> is based on the following conditions: 1) the analytical method used had a method detection level as sensitive as the MAL specified in the permit, and 2) the analytical results contained no detectable levels above the specified MAL."

When an analysis of an effluent sample for a parameter indicates no detectable levels and the test method detection level is not as sensitive as the MAL specified in the permit, or an MAL is not specified in the permit for that parameter, the level of detection achieved shall be used for that measurement when determining calculations and reporting requirements for the self-reporting form. A zero (o) may not be used.

7. In accordance with 30 TAC § 319.9, a permittee that has at least twelve months of uninterrupted compliance with its bacteria limit may notify the commission in writing of its compliance and request a less frequent measurement schedule. To request a less frequent schedule, the permittee shall submit a written request to the TCEO Wastewater Permitting Section (MC 148) for each phase that includes a different monitoring frequency. The request must contain all of the reported bacteria values (Daily Avg. and Daily Max/Single Grab) for the twelve consecutive months immediately prior to the request. If the Executive Director finds that a less frequent measurement schedule is protective of human health and the environment, the permittee may be given a less frequent measurement schedule. For this permit, one/week may be reduced to two/month. A violation of any bacteria limit by a facility that has been granted a less frequent measurement schedule will require the permittee to return to the standard frequency schedule and submit written notice to the TCEQ Wastewater Permitting Section (MC 148). The permittee may not apply for another reduction in measurement frequency for at least 24 months from the date of the last violation. The Executive Director may establish a more frequent measurement schedule if necessary to protect human health or the environment.

CONTRIBUTING INDUSTRIES AND PRETREATMENT REQUIREMENTS

- 1. The following pollutants may not be introduced into the treatment facility:
 - a. Pollutants which create a fire or explosion hazard in the publicly owned treatment works (POTW), including, but not limited to, waste streams with a closed-cup flash point of less than 140° Fahrenheit (60° Celsius) using the test methods specified in 40 CFR § 261.21;
 - b. Pollutants which will cause corrosive structural damage to the POTW, but in no case shall there be discharges with a pH lower than 5.0 standard units, unless the works are specifically designed to accommodate such discharges;
 - c. Solid or viscous pollutants in amounts which will cause obstruction to the flow in the POTW, resulting in Interference;
 - d. Any pollutant, including oxygen-demanding pollutants (e.g., biochemical oxygen demand), released in a discharge at a flow rate and/or pollutant concentration which will cause Interference with the POTW;
 - e. Heat in amounts which will inhibit biological activity in the POTW, resulting in Interference, but in no case shall there be heat in such quantities that the temperature at the POTW treatment plant exceeds 104° Fahrenheit (40° Celsius) unless the Executive Director, upon request of the POTW, approves alternate temperature limits;
 - f. Petroleum oil, nonbiodegradable cutting oil, or products of mineral oil origin in amounts that will cause Interference or Pass Through;
 - g. Pollutants which result in the presence of toxic gases, vapors, or fumes within the POTW in a quantity that may cause acute worker health and safety problems; and
 - h. Any trucked or hauled pollutants except at discharge points designated by the POTW.
- 2. The permittee shall require any indirect discharger to the treatment works to comply with the reporting requirements of Sections 204(b), 307, and 308 of the Clean Water Act, including any requirements established under 40 CFR Part 403 [rev. Federal Register/ Vol. 70/ No. 198/ Friday, October 14, 2005/ Rules and Regulations, pages 60134-60798].
- 3. The permittee shall provide adequate notification to the Executive Director, care of the Wastewater Permitting Section (MC 148) of the Water Quality Division, within 30 days subsequent to the permittee's knowledge of either of the following:
 - a. Any new introduction of pollutants into the treatment works from an indirect discharger which would be subject to Sections 301 and 306 of the Clean Water Act if it were directly discharging those pollutants; and
 - b. Any substantial change in the volume or character of pollutants being introduced into the treatment works by a source introducing pollutants into the treatment works at the time of issuance of the permit.

Any notice shall include information on the quality and quantity of effluent to be introduced into the treatment works and any anticipated impact of the change on the quality or quantity of effluent to be discharged from the POTW.

Revised July 2007

BIOMONITORING REQUIREMENTS

CHRONIC BIOMONITORING REQUIREMENTS: FRESHWATER

The provisions of this section apply to Outfall 001 for whole effluent toxicity (WET) testing.

- 1. Scope, Frequency, and Methodology
 - a. The permittee shall test the effluent for toxicity in accordance with the provisions below. Such testing will determine if an appropriately dilute effluent sample adversely affects the survival, reproduction, or growth of the test organisms.
 - b. The permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified in this part of this permit and in accordance with "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms," fourth edition (EPA-821-R-02-013) or its most recent update:
 - 1) Chronic static renewal survival and reproduction test using the water flea (*Ceriodaphnia dubia*) (Method 1002.0). This test should be terminated when 60% of the surviving adults in the control produce three broods or at the end of eight days, whichever occurs first. This test shall be conducted once per quarter.
 - 2) Chronic static renewal 7-day larval survival and growth test using the fathead minnow (*Pimephales promelas*) (Method 1000.0). A minimum of five replicates with eight organisms per replicate shall be used in the control and in each dilution. This test shall be conducted once per quarter.

The permittee must perform and report a valid test for each test species during the prescribed reporting period. An invalid test must be repeated during the same reporting period. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. The permittee shall use five effluent dilution concentrations and a control in each toxicity test. These effluent dilution concentrations are 26%, 34%, 46%, 61%, and 81% effluent. The critical dilution, defined as 81% effluent, is the effluent concentration representative of the proportion of effluent in the receiving water during critical low flow or critical mixing conditions.
- d. This permit may be amended to require a WET limit, a chemical-specific effluent limit, a best management practice, or other appropriate actions to address toxicity. The permittee may be required to conduct a toxicity reduction evaluation (TRE) after multiple toxic events.
- e. Testing Frequency Reduction
 - 1) If none of the first four consecutive quarterly tests demonstrates significant toxicity, the permittee may submit this information in writing

- and, upon approval, reduce the testing frequency to once per six months for the invertebrate test species and once per year for the vertebrate test species.
- 2) If one or more of the first four consecutive quarterly tests demonstrates significant toxicity, the permittee shall continue quarterly testing for that species until this permit is reissued. If a testing frequency reduction had been previously granted and a subsequent test demonstrates significant toxicity, the permittee shall resume a quarterly testing frequency for that species until this permit is reissued.

2. Required Toxicity Testing Conditions

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control and all effluent dilutions, which fail to meet the following criteria:
 - 1) a control mean survival of 80% or greater;
 - 2) a control mean number of water flea neonates per surviving adult of 15 or greater;
 - 3) a control mean dry weight of surviving fathead minnow larvae of 0.25 mg or greater;
 - a control coefficient of variation percent (CV%) of 40 or less in between replicates for the young of surviving females in the water flea test; and the growth and survival endpoints in the fathead minnow test;
 - 5) a critical dilution CV% of 40 or less for the young of surviving females in the water flea test; and the growth and survival endpoints for the fathead minnow test. However, if statistically significant lethal or nonlethal effects are exhibited at the critical dilution, a CV% greater than 40 shall not invalidate the test;
 - 6) a percent minimum significant difference of 47 or less for water flea reproduction; and
 - 7) a percent minimum significant difference of 30 or less for fathead minnow growth.

b. Statistical Interpretation

- 1) For the water flea survival test, the statistical analyses used to determine if there is a significant difference between the control and an effluent dilution shall be the Fisher's exact test as described in the manual referenced in Part 1.b.
- 2) For the water flea reproduction test and the fathead minnow larval survival and growth tests, the statistical analyses used to determine if there is a significant difference between the control and an effluent dilution shall be in accordance with the manual referenced in Part 1.b.

- 3) The permittee is responsible for reviewing test concentration-response relationships to ensure that calculated test-results are interpreted and reported correctly. The document entitled "Method Guidance and Recommendation for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136)" (EPA 821-B-00-004) provides guidance on determining the validity of test results.
- 4) If significant lethality is demonstrated (that is, there is a statistically significant difference in survival at the critical dilution when compared to the survival in the control), the conditions of test acceptability are met, and the survival of the test organisms are equal to or greater than 80% in the critical dilution and all dilutions below that, then the permittee shall report a survival No Observed Effect Concentration (NOEC) of not less than the critical dilution for the reporting requirements.
- 5) The NOEC is defined as the greatest effluent dilution at which no significant effect is demonstrated. The Lowest Observed Effect Concentration (LOEC) is defined as the lowest effluent dilution at which a significant effect is demonstrated. A significant effect is defined as a statistically significant difference between the survival, reproduction, or growth of the test organism in a specified effluent dilution when compared to the survival, reproduction, or growth of the test organism in the control.
- 6) The use of NOECs and LOECs assumes either a monotonic (continuous) concentration-response relationship or a threshold model of the concentration-response relationship. For any test result that demonstrates a non-monotonic (non-continuous) response, the NOEC should be determined based on the guidance manual referenced in Item 3.
- Pursuant to the responsibility assigned to the permittee in Part 2.b.3), test results that demonstrate a non-monotonic (non-continuous) concentration-response relationship may be submitted, prior to the due date, for technical review. The guidance manual referenced in Item 3 will be used when making a determination of test acceptability.
- 8) TCEQ staff will review test results for consistency with rules, procedures, and permit requirements.

c. Dilution Water

- 1) Dilution water used in the toxicity tests must be the receiving water collected at a point upstream of the discharge point as close as possible to the discharge point but unaffected by the discharge. Where the toxicity tests are conducted on effluent discharges to receiving waters that are classified as intermittent streams, or where the toxicity tests are conducted on effluent discharges where no receiving water is available due to zero flow conditions, the permittee shall:
 - a) substitute a synthetic dilution water that has a pH, hardness, and

- alkalinity similar to that of the closest downstream perennial water unaffected by the discharge; or
- b) use the closest downstream perennial water unaffected by the discharge.
- Where the receiving water proves unsatisfactory as a result of pre-existing instream toxicity (i.e. fails to fulfill the test acceptance criteria of Part 2.a.), the permittee may substitute synthetic dilution water for the receiving water in all subsequent tests provided the unacceptable receiving water test met the following stipulations:
 - a) a synthetic lab water control was performed (in addition to the receiving water control) which fulfilled the test acceptance requirements of Part 2.a;
 - b) the test indicating receiving water toxicity was carried out to completion (i.e., 7 days); and
 - c) the permittee submitted all test results indicating receiving water toxicity with the reports and information required in Part 3.
- 3) The synthetic dilution water shall consist of standard, moderately hard, reconstituted water. Upon approval, the permittee may substitute other appropriate dilution water with chemical and physical characteristics similar to that of the receiving water.

d. Samples and Composites

- 1) The permittee shall collect a minimum of three composite samples from Outfall 001. The second and third composite samples will be used for the renewal of the dilution concentrations for each toxicity test.
- 2) The permittee shall collect the composite samples such that the samples are representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged on an intermittent basis.
- 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the first composite sample. The holding time for any subsequent composite sample shall not exceed 72 hours. Samples shall be maintained at a temperature of 0-6 degrees Centigrade during collection, shipping, and storage.
- 4) If Outfall 001 ceases discharging during the collection of effluent samples, the requirements for the minimum number of effluent samples, the minimum number of effluent portions, and the sample holding time are waived during that sampling period. However, the permittee must have collected an effluent composite sample volume sufficient to complete the required toxicity tests with renewal of the effluent. When possible, the effluent samples used for the toxicity tests shall be collected on separate

days if the discharge occurs over multiple days. The sample collection duration and the static renewal protocol associated with the abbreviated sample collection must be documented in the full report.

5) The effluent samples shall not be dechlorinated after sample collection.

3. Reporting

All reports, tables, plans, summaries, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated whether carried to completion or not.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 1 forms provided with this permit.
 - 1) Annual biomonitoring test results are due on or before January 20th for biomonitoring conducted during the previous 12-month period.
 - 2) Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.
 - 3) Quarterly biomonitoring test results are due on or before April 20th, July 20th, October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.
 - 4) Monthly biomonitoring test results are due on or before the 20th day of the month following sampling.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the water flea, Parameter TLP3B, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) For the water flea, Parameter TOP3B, report the NOEC for survival.
 - 3) For the water flea, Parameter TXP3B, report the LOEC for survival.
 - 4) For the water flea, Parameter TWP3B, enter a "1" if the NOEC for reproduction is less than the critical dilution; otherwise, enter a "o."
 - 5) For the water flea, Parameter TPP3B, report the NOEC for reproduction.
 - 6) For the water flea, Parameter TYP3B, report the LOEC for reproduction.
 - 7) For the fathead minnow, Parameter TLP6C, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."

- 8) For the fathead minnow, Parameter TOP6C, report the NOEC for survival.
- 9) For the fathead minnow, Parameter TXP6C, report the LOEC for survival.
- For the fathead minnow, Parameter TWP6C, enter a "1" if the NOEC for growth is less than the critical dilution; otherwise, enter a "0."
- 11) For the fathead minnow, Parameter TPP6C, report the NOEC for growth.
- 12) For the fathead minnow, Parameter TYP6C, report the LOEC for growth.
- d. Enter the following codes for retests only:
 - 1) For retest number 1, Parameter 22415, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) For retest number 2, Parameter 22416, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."

4. Persistent Toxicity

The requirements of this Part apply only when a test demonstrates a significant effect at the critical dilution. Significant lethality and significant effect were defined in Part 2.b. Significant sublethality is defined as a statistically significant difference in growth/reproduction at the critical dilution when compared to the growth/reproduction in the control.

- a. The permittee shall conduct a total of 2 additional tests (retests) for any species that demonstrates a significant effect (lethal or sublethal) at the critical dilution. The two retests shall be conducted monthly during the next two consecutive months. The permittee shall not substitute either of the two retests in lieu of routine toxicity testing. All reports shall be submitted within 20 days of test completion. Test completion is defined as the last day of the test.
- b. If the retests are performed due to a demonstration of significant lethality, and one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall initiate the TRE requirements as specified in Part 5. The provisions of Part 4.a. are suspended upon completion of the two retests and submittal of the TRE action plan and schedule defined in Part 5.
 - If neither test demonstrates significant lethality and the permittee is testing under the reduced testing frequency provision of Part 1.e., the permittee shall return to a quarterly testing frequency for that species.
- c. If the two retests are performed due to a demonstration of significant sublethality, and one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall again perform two retests as stipulated in Part 4.a.
- d. If the two retests are performed due to a demonstration of significant

- sublethality, and neither test demonstrates significant lethality, the permittee shall continue testing at the quarterly frequency.
- e. Regardless of whether retesting for lethal or sublethal effects, or a combination of the two, no more than one retest per month is required for a species.

5. <u>Toxicity Reduction Evaluation</u>

- a. Within 45 days of the retest that demonstrates significant lethality, or within 45 days of being so instructed due to multiple toxic events, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, or within 90 days of being so instructed due to multiple toxic events, the permittee shall submit a TRE action plan and schedule for conducting a TRE. The plan shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analyses to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall describe an approach for the reduction or elimination of lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:
 - Specific Activities The TRE action plan shall specify the approach the 1) permittee intends to utilize in conducting the TRE, including toxicity characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Toxicity Identification Evaluation: Characterization of Chronically Toxic Effluents, Phase I" (EPA/600/6-91/005F) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aquatic Toxicity Identification Evaluations, Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;
 - 2) Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects a specific pollutant and source of effluent toxicity, the permittee shall

- conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;
- 3) Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
- 4) Project Organization The TRE action plan should describe the project staff, project manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:
 - 1) results and interpretation of any chemical-specific analyses for the identified and suspected pollutant performed during the quarter;
 - 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;
 - any data and substantiating documentation which identifies the pollutant(s) and source of effluent toxicity:
 - 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
 - 5) any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to meet no significant lethality at the critical dilution; and
 - 6) any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.
- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive months with at least monthly testing. At the end of the 12 months, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply as a result of corrective actions taken by the permittee. Corrective actions are defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

- g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 28 months from the last test day of the retest that confirmed significant lethal effects at the critical dilution. The permittee may petition the Executive Director (in writing) for an extension of the 28-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE. The report shall provide information pertaining to the specific control mechanism selected that will, when implemented, result in the reduction of effluent toxicity to no significant lethality at the critical dilution. The report shall also provide a specific corrective action schedule for implementing the selected control mechanism.
- h. Based on the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements, where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and specify a chemical-specific limit.
- i. Copies of any and all required TRE plans and reports shall also be submitted to the U.S. EPA Region 6 office, 6WQ-PO.

Time

Date

TABLE 1 (SHEET 1 OF 4)

BIOMONITORING REPORTING

CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION

Time

Date

Dates and Time Composites	es No. 1	FROM:		_ TO:		
Collected	No. 2	FROM:		_ TO:		
	No. 3	FROM:		_ TO:		
Test initiated:			am/	pm		date
Dilutio	n water used	:	Receiving wat	er	Synthetic Γ	Dilution water
	NUMBER	OF YOUNG	PRODUCED	PER ADULT	AT END OF TI	EST
			Percent	effluent		
REP	0%	26%	34%	45%	61%	81%
A						
В						
С						
D						
Е						
F						
G						
Н						

Designate males (M), and dead females (D), along with number of neonates (x) released prior to death.

Ι

J
Survival
Mean
Total
Mean
CV%*

PMSD

^{*}Coefficient of Variation = standard deviation x 100/mean (calculation based on young of the surviving adults)

TABLE 1 (SHEET 2 OF 4)

CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION TEST

1. Dunnett's Procedure or Steel's Many-One Rank Test or Wilcoxon Rank Sum Test (with Bonferroni adjustment) or t-test (with Bonferroni adjustment) as appropriate:

Is the mean number of young produced per adult significantly less than the number of young per adult in the control for the % effluent corresponding to significant nonlethal effects?

CRITICAL DILUTION	(81%):	YES	NO

PERCENT SURVIVAL

	Percent effluent						
Time of Reading	0%	26%	34%	46%	61%	81%	
24h							
48h							
End of Test	_			_			

2. Fisher's Exact Test:

Is the mean survival at test end significantly less than the control survival for the % effluent corresponding to lethality?

CRITICAL DILUTION ((81%):	YES	NC)

- 3. Enter percent effluent corresponding to each NOEC\LOEC below:
 - a.) NOEC survival = ______% effluent
 - b.) LOEC survival = ______% effluent
 - c.) NOEC reproduction = ______% effluent
 - d.) LOEC reproduction = _____ % effluent

TABLE 1 (SHEET 3 OF 4)

BIOMONITORING REPORTING

FATHEAD MINNOW LARVAE GROWTH AND SURVIVAL

	OIVI				ate Time	
No. 2 FR	OM:			TO:		
No. 3 FR	OM:			TO:		
			m/pm			date
used:	Re	eceiving w	ater		Synthetic di	ilution water
	FATHEAD	MINNOV	V GROW"	ГН DATA		
Avera	ge Dry Wei	ght in rep	licate cha	mbers	Mean Dry	CV%*
A	В	С	D	E	Weight	
	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		11	11		
edure or S ustment) o y weight (g e % efflue	Steel's Many or t-test (wit growth) at 7 nt correspon	y-One Ran th Bonfer days sign ading to s	nk Test or roni adjust nificantly significan	stment) a less than t nonletha	s appropriate the control's al effects?	e:
	Avera A Avera A on = stance edure or S sustment) of the second secon	No. 3 FROM: used: Re FATHEAD Average Dry Weig A B On = standard deviati edure or Steel's Many ustment) or t-test (with y weight (growth) at 7 e % effluent correspond	No. 3 FROM:	A B C D Average Dry Weight in replicate chate the second	No. 3 FROM:	A B C D E Weight A B C D E

TABLE 1 (SHEET 4 OF 4)

BIOMONITORING REPORTING

FATHEAD MINNOW GROWTH AND SURVIVAL TEST

FATHEAD MINNOW SURVIVAL DATA

Effluent Concentration	Percent Survival in replicate chambers				Mean percent survival			CV%*	
	A	В	С	D	E	24h	48h	7 day	2770
0%									
26%									
34%									
46%									
61%	-	-	_		_	-	_		
81%		_		_					

^{*} Coefficient of Variation = standard deviation x 100/mean

2.	Dunnett's Procedure or Steel's Many-One Rank Test or Wilcoxon Rank Sum Test (with Bonferroni adjustment) or t-test (with Bonferroni adjustment) as appropriate:
	Is the mean survival at 7 days significantly less than the control survival for the % effluent corresponding to lethality?
	CRITICAL DILUTION (81%): YES NO
3.	Enter percent effluent corresponding to each NOEC\LOEC below:
	a.) NOEC survival =% effluent
	b.) LOEC survival =% effluent
	c.) NOEC growth =% effluent
	d.) LOEC growth =% effluent

24-HOUR ACUTE BIOMONITORING REQUIREMENTS: FRESHWATER

The provisions of this section apply to Outfall 001 for WET testing.

1. Scope, Frequency, and Methodology

- a. The permittee shall test the effluent for lethality in accordance with the provisions in this section. Such testing will determine compliance with Texas Surface Water Quality Standard 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival of the appropriate test organisms in 100% effluent for a 24-hour period.
- b. The toxicity tests specified shall be conducted once per six months. The permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified in this section of the permit and in accordance with "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms," fifth edition (EPA-821-R-02-012) or its most recent update:
 - 1) Acute 24-hour static toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.
 - 2) Acute 24-hour static toxicity test using the fathead minnow (*Pimephales promelas*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.

A valid test result must be submitted for each reporting period. The permittee must report, and then repeat, an invalid test during the same reporting period. The repeat test shall include the control and the 100% effluent dilution and use the appropriate number of organisms and replicates, as specified above. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. In addition to an appropriate control, a 100% effluent concentration shall be used in the toxicity tests. The control and dilution water shall consist of standard, synthetic, moderately hard, reconstituted water.
- d. This permit may be amended to require a WET limit, a best management practice, a chemical-specific limit, or other appropriate actions to address toxicity. The permittee may be required to conduct a toxicity reduction evaluation (TRE) after multiple toxic events.

2. Required Toxicity Testing Conditions

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control, if the control fails to meet a mean survival equal to or greater than 90%.
- b. Dilution Water In accordance with Part 1.c., the control and dilution water shall consist of standard, synthetic, moderately hard, reconstituted water.

c. Samples and Composites

- 1) The permittee shall collect one composite sample from Outfall 001.
- 2) The permittee shall collect the composite sample such that the sample is representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged.
- 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the composite sample. The sample shall be maintained at a temperature of o-6 degrees Centigrade during collection, shipping, and storage.
- 4) If Outfall 001 ceases discharging during the collection of the effluent composite sample, the requirements for the minimum number of effluent portions are waived. However, the permittee must have collected a composite sample volume sufficient for completion of the required test. The abbreviated sample collection, duration, and methodology must be documented in the full report.
- 5) The effluent sample shall not be dechlorinated after sample collection.

3. Reporting

All reports, tables, plans, summaries, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 2 forms provided with this permit.
 - 1) Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.
 - 2) Quarterly biomonitoring test results are due on or before April 20th, July 20th, and October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the water flea, Parameter TIE3D, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."
 - 2) For the fathead minnow, Parameter TIE6C, enter a "o" if the mean

survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."

- d. Enter the following codes for retests only:
 - 1) For retest number 1, Parameter 22415, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."
 - 2) For retest number 2, Parameter 22416, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."

4. <u>Persistent Mortality</u>

The requirements of this part apply when a toxicity test demonstrates significant lethality, which is defined as a mean mortality of 50% or greater of organisms exposed to the 100% effluent concentration for 24 hours.

- a. The permittee shall conduct 2 additional tests (retests) for each species that demonstrates significant lethality. The two retests shall be conducted once per week for 2 weeks. Five effluent dilution concentrations in addition to an appropriate control shall be used in the retests. These effluent concentrations are 6%, 13%, 25%, 50% and 100% effluent. The first retest shall be conducted within 15 days of the laboratory determination of significant lethality. All test results shall be submitted within 20 days of test completion of the second retest. Test completion is defined as the 24th hour.
- b. If one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall initiate the TRE requirements as specified in Part 5.

5. <u>Toxicity Reduction Evaluation</u>

- a. Within 45 days of the retest that demonstrates significant lethality, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, the permittee shall submit a TRE action plan and schedule for conducting a TRE. The plan shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analyses to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall lead to the successful elimination of significant lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:
 - 1) Specific Activities The TRE action plan shall specify the approach the permittee intends to utilize in conducting the TRE, including toxicity

characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures" (EPA/600/6-91/003) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;

- 2) Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects specific pollutant and source of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;
- Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
- 4) Project Organization The TRE Action Plan should describe the project staff, project manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly TRE activities reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:
 - 1) results and interpretation of any chemical-specific analyses for the identified and suspected pollutant performed during the quarter;
 - 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;
 - any data and substantiating documentation that identifies the pollutant

and source of effluent toxicity;

- 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
- 5) any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to eliminate significant lethality; and
- 6) any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.
- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive weeks with at least weekly testing. At the end of the 12 weeks, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply as a result of corrective actions taken by the permittee. Corrective actions are defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 18 months from the last test day of the retest that demonstrates significant lethality. The permittee may petition the Executive Director (in writing) for an extension of the 18-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE. The report shall specify the control mechanism that will, when implemented, reduce effluent toxicity as specified in Part 5.h. The report shall also specify a corrective action schedule for implementing the selected control mechanism.

h. Within 3 years of the last day of the test confirming toxicity, the permittee shall comply with 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival of the test organism in 100% effluent at the end of 24-hours. The permittee may petition the Executive Director (in writing) for an extension of the 3-year limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE.

The permittee may be exempted from complying with 30 TAC § 307.6(e)(2)(B) upon proving that toxicity is caused by an excess, imbalance, or deficiency of dissolved salts. This exemption excludes instances where individually toxic components (e.g., metals) form a salt compound. Following the exemption, this permit may be amended to include an ion-adjustment protocol, alternate species testing, or single species testing.

- i. Based upon the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and specify a chemical-specific limit.
- j. Copies of any and all required TRE plans and reports shall also be submitted to the U.S. EPA Region 6 office, 6WQ-PO.

TABLE 2 (SHEET 1 OF 2)

WATER FLEA SURVIVAL

GENERAL INFORMATION

	Time	Date
Composite Sample Collected		
Test Initiated		

PERCENT SURVIVAL

Time Bon		Percent effluent						
Time Rep	Rep	0%	6%	13%	25%	50%	100%	
	A							
	В							
o 4h	С							
24h	D							
	E							
	MEAN							

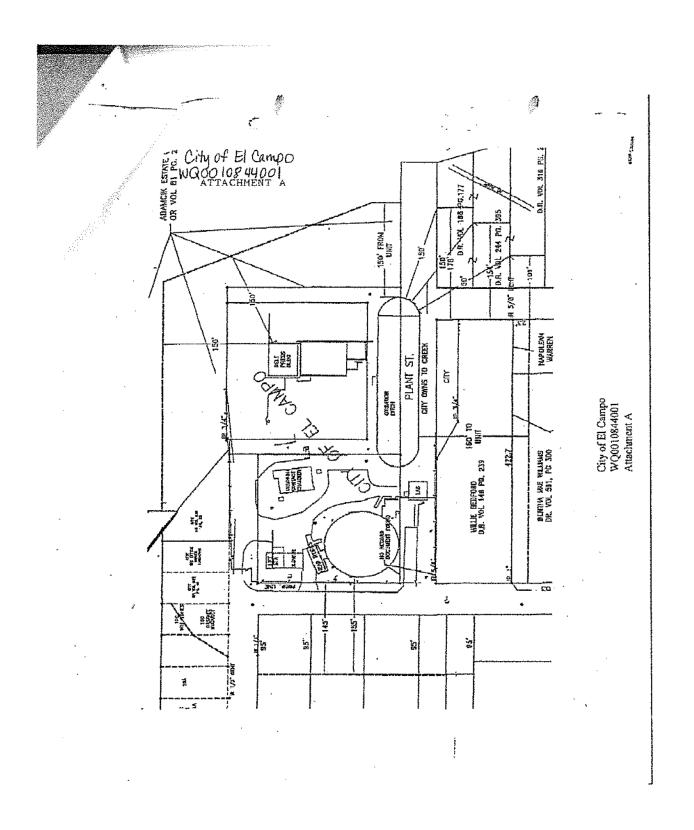
Enter percent	effluent corres	enonding to	the I Con	halow
Emer bercem	. emuem corres	sponania to	me Leso	Delow.

24 hour LC50 = _____% effluent

TABLE 2 (SHEET 2 OF 2)

FATHEAD MINNOW SURVIVAL

GENERAL INFORMATION


	Time	Date
Composite Sample Collected		
Test Initiated		_

PERCENT SURVIVAL

Time Rep	Don	Percent effluent							
	Кер	0%	6%	13%	25%	50%	100%		
	A								
	В								
o 4h	С								
24h	D								
	Е								
	MEAN	_					_		

Enter	percent e	ffluent	corresp	onding	to the	LC50	below
Linu		mucm	COLLCSP	onunis	to the	LCOU	DCION

24 hour LC50 = _____% effluent

FACT SHEET AND EXECUTIVE DIRECTOR'S PRELIMINARY DECISION

For draft Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0010844001, EPA I.D. No. TX0021474, to discharge to water in the state.

Issuing Office: Texas Commission on Environmental Quality

P.O. Box 13087

Austin, Texas 78711-3087

Applicant: City of El Campo

315 East Jackson Street El Campo, Texas 77437

Prepared By: Sonia Bhuiya

Municipal Permits Team

Wastewater Permitting Section (MC 148)

Water Quality Division

(512) 239-1205

Date: July 30, 2025

Permit Action: Renewal

1. EXECUTIVE DIRECTOR RECOMMENDATION

The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The draft permit includes an expiration date of **five years from the date of issuance**.

2. APPLICANT ACTIVITY

The applicant has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of the existing permit that authorizes the discharge of treated domestic wastewater at an annual average flow not to exceed 2.628 million gallons per day (MGD). The existing wastewater treatment facility serves the City of El Campo.

3. FACILITY AND DISCHARGE LOCATION

The plant site is located at 201 Thompson Street, in the City of El Campo, Wharton County, Texas 77437.

Outfall Location:

Outfall Number	Latitude	Longitude	
001	29.18444 N	96.258333 W	

The treated effluent is discharged directly to Tres Palacios Creek Above Tidal in Segment No. 1502 of the Colorado-Lavaca Coastal Basin. The designated uses for Segment No. 1502 are primary contact recreation and high aquatic life use.

4. TREATMENT PROCESS DESCRIPTION AND SEWAGE SLUDGE DISPOSAL

The City of El Campo Wastewater Treatment Facility is an activated sludge process plant operated in the extended aeration mode in one train and in the complete mix aeration mode in the second train. Treatment units include a lift station, grit chamber, an aeration basin, and a clarifier in the complete mix flow train, and a lift station, grit chamber, an oxidation ditch, and a final clarifier in the oxidation ditch flow train. There is a shared chlorine contact chamber and dechlorination chamber for both trains following their clarifiers. There is also a shared sludge thickener, aerobic digester, and belt press. The facility is in operation.

Sludge generated from the treatment facility is hauled by a registered transporter and disposed of at a TCEQ-permitted landfill, Fort Bend Regional Landfill, Permit No. 2270, in Fort Bend County. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

5. INDUSTRIAL WASTE CONTRIBUTION

The draft permit includes pretreatment requirements that are appropriate for a facility of this size and complexity. The City of El Campo WWTP does not appear to receive significant industrial wastewater contributions. Based on the information provided by the permittee in the most recent TPDES permit application, the TCEQ determined that there are no significant industrial wastewater contributions currently being discharged to the permittee's POTW.

6. SUMMARY OF SELF-REPORTED EFFLUENT ANALYSES

The following is a summary of the applicant's effluent monitoring data for the period June 2022 through June 2024. The average of Daily Average value is computed by the averaging of all 30-day average values for the reporting period for each parameter: flow, five-day carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), ammonia nitrogen (NH₃-N), Total Lead, and Total Cyanide. The average of Daily Average value for *Escherichia coli* (*E. coli*) in colony-forming units (CFU) or most probable number (MPN) per 100 ml is calculated via geometric mean.

<u>Parameter</u>	Average of Daily Avg
Flow, MGD	1.05
CBOD ₅ , mg/l	4.2
TSS, mg/l	3.5
NH ₃ -N, mg/l	0.25
E. coli, CFU or MPN per 100 ml	3
Total Lead, mg/l	0.0002
Total Cyanide, mg/l	0.01

7. DRAFT PERMIT CONDITIONS AND MONITORING REQUIREMENTS

The effluent limitations and monitoring requirements for those parameters that are limited in the draft permit are as follows:

A. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

The annual average flow of effluent shall not exceed 2.628 MGD, nor shall the average discharge during any two-hour period (2-hour peak) exceed 6,244 gallons per minute.

<u>Parameter</u>	30-Day Average		<u>7-Day</u>	<u>Daily</u>
			<u>Average</u>	<u>Maximum</u>
	<u>mg/l</u>	<u>lbs/day</u>	<u>mg/l</u>	<u>mg/l</u>
CBOD_5	10	219	15	25
TSS	15	329	25	40
NH_3 -N	2	44	5	10
Total Lead	0.015	0.33	N/A	0.032
Total Cyanide	Report	Report	N/A	Report
DO (minimum)	6.0	N/A	N/A	N/A
E. coli, CFU or MPN	120	N/A	N/A	380
per 100 ml				

The pH shall not be less than 6.5 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.

The effluent shall contain a total chlorine residual of at least 1.0 mg/l after a detention time of at least 20 minutes (based on peak flow) and shall be monitored daily by grab sample. The permittee shall dechlorinate the chlorinated effluent to less than 0.1 mg/l total chlorine residual and shall monitor total chlorine residual daily by grab sample after the dechlorination process. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.

<u>Parameter</u>	Monitoring Requirement
Flow, MGD	Continuous
$CBOD_5$	Two/week
TSS	Two/week
$\mathrm{NH_{3}\text{-}N}$	Two/week
Total lead	One/week
Total Cyanide	Two/week
DO	Two/week
E. coli	One/week

B. SEWAGE SLUDGE REQUIREMENTS

The draft permit includes Sludge Provisions according to the requirements of 30 TAC Chapter 312, Sludge Use, Disposal, and Transportation. Sludge generated from the treatment facility is hauled by a registered transporter and disposed of at a TCEQ-permitted landfill, Fort Bend Regional Landfill, Permit No. 2270, in Fort Bend County. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

C. PRETREATMENT REQUIREMENTS

Permit requirements for pretreatment are based on TPDES regulations contained in 30 TAC Chapter 305, which references 40 Code of Federal Regulations (CFR) Part 403, "General Pretreatment Regulations for Existing and New Sources of Pollution" [rev. Federal Register/ Vol. 70/No. 198/ Friday, October 14, 2005/ Rules and Regulations, pages 60134-60798]. The permit includes specific requirements that establish responsibilities of local government, industry, and the public to implement the standards to control pollutants which pass through or interfere with treatment processes in publicly owned treatment works or which may contaminate the sewage sludge. This permit has appropriate pretreatment language for a facility of this size and complexity.

D. WHOLE EFFLUENT TOXICITY (BIOMONITORING) REQUIREMENTS

- (1) The draft permit includes chronic freshwater biomonitoring requirements as follows. The permit requires five dilutions in addition to the control (0% effluent) to be used in the toxicity tests. These additional effluent concentrations shall be 26%, 34%, 46%, 61%, and 81%. The low-flow effluent concentration (critical dilution) is defined as 81% effluent. The critical dilution is in accordance with the "Aquatic Life Criteria" section of the "Water Quality Based Effluent Limitations/Conditions" section.
 - (a) Chronic static renewal survival and reproduction test using the water flea (*Ceriodaphnia dubia*). The frequency of the testing is once per quarter for at least the first year of testing, after which the permittee may apply for a testing frequency reduction.
 - (b) Chronic static renewal 7-day larval survival and growth test using the fathead minnow (*Pimephales promelas*). The frequency of the testing is once per quarter for at least the first year of testing, after which the permittee may apply for a testing frequency reduction.
- (2) The draft permit includes the following minimum 24-hour acute freshwater biomonitoring requirements at a frequency of once per six months:
 - (a) Acute 24-hour static toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*).
 - (b) Acute 24-hour static toxicity test using the fathead minnow (*Pimephales promelas*).

E. SUMMARY OF CHANGES FROM APPLICATION

None.

F. SUMMARY OF CHANGES FROM EXISTING PERMIT

The Standard Permit Conditions, Sludge Provisions, Other Requirements, and Biomonitoring sections of the draft permit have been updated.

Based on a pH screening for Outfall 001, the pH limits of 6.5 to 9.0 standard units are recommended to be protective of Segment No. 1205 criteria.

Based on the facility's effluent monitoring data and TexTox screening, reporting requirement for Total Cyanide in the existing permit has been removed in the draft permit. Accordingly, Other Requirement No. 8 in the existing permit has also been removed in the draft permit.

Certain accidental discharges or spills of treated or untreated wastewater from wastewater treatment facilities or collection systems owned or operated by a local government may be reported on a monthly basis in accordance with 30 TAC § 305.132.

The draft permit includes all updates based on the 30 TAC § 312 rule change effective April 23, 2020.

8. DRAFT PERMIT RATIONALE

A. TECHNOLOGY-BASED EFFLUENT LIMITATIONS/CONDITIONS

Regulations promulgated in Title 40 of the CFR require that technology-based limitations be placed in wastewater discharge permits based on effluent limitations guidelines, where applicable, or on best professional judgment (BPJ) in the absence of guidelines.

Effluent limitations for maximum and minimum pH are in accordance with 40 CFR § 133.102(c) and 30 TAC § 309.1(b).

A mixing zone evaluation for pH is included within Attachment 1 of this Fact Sheet. The evaluation has demonstrated that water quality based pH limitations of 6.0 to 6.5 standard units are required to ensure compliance with the TSWQS. See Attachment A of this Fact Sheet.

B. WATER QUALITY SUMMARY AND COASTAL MANAGEMENT PLAN

(1) WATER QUALITY SUMMARY

The treated effluent is discharged directly to Tres Palacios Creek Above Tidal in Segment No. 1502 of the Colorado-Lavaca Coastal Basin. The designated uses for Segment No. 1502 are primary contact recreation and high aquatic life use. The effluent limitations in the draft permit will maintain and protect the existing instream uses. All determinations are preliminary and subject to additional review and/or revisions.

The discharge from this permit action is not expected to have an effect on any federal endangered or threatened aquatic or aquatic-dependent species or proposed species or their critical habitat. This determination is based on the United States Fish and Wildlife Service's (USFWS's) biological opinion on the State of Texas authorization of the TPDES (September 14, 1998; October 21, 1998, update). To make this

determination for TPDES permits, TCEQ and EPA only considered aquatic or aquatic-dependent species occurring in watersheds of critical concern or high priority as listed in Appendix A of the USFWS biological opinion. The determination is subject to reevaluation due to subsequent updates or amendments to the biological opinion. The permit does not require EPA review with respect to the presence of endangered or threatened species.

Segment No. 1502 is not currently listed on the State's inventory of impaired and threatened waters (the 2022 Clean Water Act Section 303(d) list).

A TDS screening was not performed because the effluent TDS, chloride, and sulfate were all below segment criteria.

One finalized Total Maximum Daily Load (TMDL) Project is applicable to dischargers in the watershed of Tres Palacios Creek Above Tidal: *One Total Maximum Daily Load for Indicator Bacteria in Tres Palacios Creek Tidal* (Project No. 108B). On January 28, 2018, the TCEQ was adopted and EPA) has approved the TMDL on March 29, 2018. The TMDL addresses elevated levels of bacteria in one classified segment with one assessment unit (Tres Palacios Creek Tidal – 1501_01) in this watershed. This project takes a watershed approach, so two upstream classified and unclassified segments are also subject to this TMDL (Wilson Creek – 1501A_01; and Tres Palacios Creek Above Tidal – 1502_01, 1502_02, and 1502_03).

The WLA for WWTFs was established as the final permitted flow for each facility multiplied by the geometric mean criterion for bacteria multiplied by a conversion factor (to get to units per day) multiplied by 95 percent (to take into account the margin of safety). The allocated loads were calculated for *E. coli* and *Enterococcus*. The two indicators allow flexibility in establishing permit limits so the WWTFs are subject to the limits for the chosen indicator bacteria in their permits. Future growth from existing or new permitted sources is not limited by these TMDLs as long as the sources do not exceed the limits provided.

The effluent limitations and conditions in the draft permit comply with EPA-approved portions of the 2018 Texas Surface Water Quality Standards (TSWQS), 30 TAC §§ 307.1 - 307.10, effective March 1, 2018; 2014 TSWQS, effective March 6, 2014; 2010 TSWQS, effective July 22, 2010; and 2000 TSWQS, effective July 26, 2000.

(2) CONVENTIONAL PARAMETERS

Effluent limitations for the conventional effluent parameters (i.e., Five-Day Biochemical Oxygen Demand or Five-Day Carbonaceous Biochemical Oxygen Demand, Ammonia Nitrogen, etc.) are based on stream standards and waste load allocations for water quality-limited streams as established in the TSWQS and the State of Texas Water Quality Management Plan (WQMP).

The existing effluent limits have been reviewed for consistency with the State of Texas Water Quality Management Plan (WQMP). The existing limits are consistent with the approved WQMP.

The effluent limitations in the draft permit meet the requirements for secondary treatment and the requirements for disinfection according to 30 TAC Chapter 309, Subchapter A: Effluent Limitations.

(3) COASTAL MANAGEMENT PLAN

The facility is not located in the Coastal Management Program boundary.

C. WATER QUALITY-BASED EFFLUENT LIMITATIONS/CONDITIONS

(1) GENERAL COMMENTS

The Texas Surface Water Quality Standards (30 TAC Chapter 307) state that surface waters will not be toxic to man, or to terrestrial or aquatic life. The methodology outlined in the *Procedures to Implement the Texas Surface Water Quality Standards* (IP) (June 2010) is designed to ensure compliance with 30 TAC Chapter 307. Specifically, the methodology is designed to ensure that no source will be allowed to discharge any wastewater that: (1) results in instream aquatic toxicity; (2) causes a violation of an applicable narrative or numerical state water quality standard; (3) results in the endangerment of a drinking water supply; or (4) results in aquatic bioaccumulation that threatens human health.

(2) AQUATIC LIFE CRITERIA

(a) SCREENING

Water quality-based effluent limitations are calculated from freshwater aquatic life criteria found in Table 1 of the Texas Surface Water Quality Standards (30 TAC Chapter 307).

Acute freshwater criteria are applied at the edge of the zone of initial dilution (ZID), and chronic freshwater criteria are applied at the edge of the aquatic life mixing zone. The ZID for this discharge is defined as 20 feet upstream and 60 feet downstream from the point where the discharge enters Tres Palacios Above Tidal (Segment No. 1502). The aquatic life mixing zone for this discharge is defined as 100 feet upstream and 300 feet downstream from the point where the discharge enters Tres Palacios Above Tidal (Segment No. 1502).

TCEQ uses the mass balance equation to estimate dilutions at the edges of the ZID and aquatic life mixing zone during critical conditions. The estimated dilution at the edge of the aquatic life mixing zone is calculated using the permitted flow of 2.628 MGD and the 7-day, 2-year (7Q2) flow of 0.97 cfs for Tres Palacios Above Tidal (Segment No. 1502). The estimated dilution at the edge of the ZID is calculated using the permitted

flow of 2.628 MGD and 25% of the 7Q2 flow. The following critical effluent percentages are being used:

Acute Effluent %: 94.37% Chronic Effluent %: 80.74%

Waste load allocations (WLAs) are calculated using the above estimated effluent percentages, criteria outlined in the Texas Surface Water Quality Standards, and partitioning coefficients for metals (when appropriate and designated in the implementation procedures). The WLA is the end-of-pipe effluent concentration that can be discharged when, after mixing in the receiving stream, instream numerical criteria will not be exceeded. From the WLA, a long-term average (LTA) is calculated using a log normal probability distribution, a given coefficient of variation (0.6), and a 99th percentile confidence level. The lower of the two LTAs (acute and chronic) is used to calculate a daily average and daily maximum effluent limitation for the protection of aquatic life using the same statistical considerations with the 99th percentile confidence level and a standard number of monthly effluent samples collected (12).

Assumptions used in deriving the effluent limitations include segment values for hardness, chlorides, pH, and total suspended solids (TSS) according to the segment-specific values contained in the TCEQ guidance document *Procedures to Implement the Texas Surface Water Quality Standards*. The segment values are 71 mg/l for hardness (as calcium carbonate), 124 mg/l for chlorides, 7.4 standard units for pH, and 16 mg/l for TSS. For additional details on the calculation of water quality-based effluent limitations, refer to the TCEQ guidance document.

TCEQ practice for determining significant potential is to compare the reported analytical data against percentages of the calculated daily average water quality-based effluent limitation. Permit limitations are required when analytical data reported in the application exceeds 85% of the calculated daily average water quality-based effluent limitation. Monitoring and reporting is required when analytical data reported in the application exceeds 70% of the calculated daily average water quality-based effluent limitation. See Attachment B of this Fact Sheet.

(b) PERMIT ACTION

Analytical data reported in the application was screened against calculated water quality-based effluent limitations for the protection of aquatic life. Reported analytical data does not exceed 70% of the calculated daily average water quality-based effluent limitations for aquatic life protection.

(3) AQUATIC ORGANISM BIOACCUMULATION CRITERIA

(a) SCREENING

Water quality-based effluent limitations for the protection of human health are calculated using criteria for the consumption of freshwater fish tissue found in Table 2 of the Texas Surface Water Quality Standards (30 TAC Chapter 307). Freshwater fish tissue bioaccumulation criteria are applied at the edge of the human health mixing zone. The human health mixing zone for this discharge is identical to the aquatic life mixing zone. TCEQ uses the mass balance equation to estimate dilution at the edge of the human health mixing zone during average flow conditions. The estimated dilution at the edge of the human health mixing zone is calculated using the permitted flow of 2.628 MGD and the harmonic mean flow of 1.83 cfs for Tres Palacios Above Tidal. The following critical effluent percentage is being used:

Human Health Effluent %: 68.96%

Water quality-based effluent limitations for human health protection against the consumption of fish tissue are calculated using the same procedure as outlined for calculation of water quality-based effluent limitations for aquatic life protection. A 99th percentile confidence level in the long-term average calculation is used with only one long-term average value being calculated.

Significant potential is again determined by comparing reported analytical data against 70% and 85% of the calculated daily average water quality-based effluent limitation. See Attachment B of this Fact Sheet.

(b) PERMIT ACTION

Reported analytical data does not exceed 70% of the calculated daily average water quality-based effluent limitation for human health protection.

(4) DRINKING WATER SUPPLY PROTECTION

(a) SCREENING

Water Quality Segment No. 1502, which receives the discharge from this facility, is not designated as a public water supply. Screening reported analytical data of the effluent against water quality-based effluent limitations calculated for the protection of a drinking water supply is not applicable.

(b) PERMIT ACTION

None.

(5) WHOLE EFFLUENT TOXICITY (BIOMONITORING) CRITERIA

(a) SCREENING

TCEQ has determined that there may be pollutants present in the effluent that may have the potential to cause toxic conditions in the receiving stream. Whole effluent biomonitoring is the most direct measure of potential toxicity that incorporates the effects of synergism of effluent components and receiving stream water quality characteristics. Biomonitoring of the effluent is, therefore, required as a condition of this permit to assess potential toxicity.

In the past three years, the permittee performed twenty-four chronic tests, with no demonstration of significant toxicity (i.e., zero failures) by either species.

A reasonable potential (RP) determination was performed in accordance with 40 CFR §122.44(d)(1)(ii) to determine whether the discharge will reasonably be expected to cause or contribute to an exceedance of a state water quality standard or criterion within that standard. Each test species is evaluated separately. The RP determination is based on representative data from the previous three years of chronic WET testing. This determination was performed in accordance with the methodology outlined in the TCEQ letter to the EPA dated December 28, 2015, and approved by the EPA in a letter dated December 28, 2015.

With zero failures, a determination of no RP was made. WET limits are not required, and the permittee may be eligible for the testing frequency reduction after one year of quarterly testing occurs.

All test data results were used for this determination.

(b) PERMIT ACTION

The test species are appropriate to measure the toxicity of the effluent consistent with the requirements of the State water quality standards. The biomonitoring frequency has been established to reflect the likelihood of ambient toxicity and to provide data representative of the toxic potential of the facility's discharge. This permit may be reopened to require effluent limits, additional testing, and/or other appropriate actions to address toxicity if biomonitoring data show actual or potential ambient toxicity to be the result of the permittee's discharge to the receiving stream or water body.

(6) WHOLE EFFLUENT TOXICITY CRITERIA (24-HOUR ACUTE)

(a) SCREENING

The existing permit includes 24-hour acute freshwater biomonitoring language. A summary of the biomonitoring testing for the facility indicates that in the past three years, the permittee performed twenty-four chronic tests, with no demonstration of significant toxicity (i.e., zero failures) by either species.

(b) PERMIT ACTION

The draft permit includes 24-hour 100% acute biomonitoring tests for the life of the permit.

9. WATER QUALITY VARIANCE REQUESTS

No variance requests have been received.

10. PROCEDURES FOR FINAL DECISION

When an application is declared administratively complete, the Chief Clerk sends a letter to the applicant advising the applicant to publish the Notice of Receipt of Application and Intent to Obtain Permit in the newspaper. In addition, the Chief Clerk instructs the applicant to place a copy of the application in a public place for review and copying in the county where the facility is or will be located. This application will be in a public place throughout the comment period. The Chief Clerk also mails this notice to any interested persons and, if required, to landowners identified in the permit application. This notice informs the public about the application and provides that an interested person may file comments on the application or request a contested case hearing or a public meeting.

Once a draft permit is completed, it is sent, along with the Executive Director's preliminary decision, as contained in the technical summary or fact sheet, to the Chief Clerk. At that time, the Notice of Application and Preliminary Decision will be mailed to the same people and published in the same newspaper as the prior notice. This notice sets a deadline for making public comments. The applicant must place a copy of the Executive Director's preliminary decision and draft permit in the public place with the application.

Any interested person may request a public meeting on the application until the deadline for filing public comments. A public meeting is intended for the taking of public comment and is not a contested case proceeding.

After the public comment deadline, the Executive Director prepares a response to all significant public comments on the application or the draft permit raised during the public comment period. The Chief Clerk then mails the Executive Director's response to comments and final decision to people who have filed comments, requested a contested case hearing, or requested to be on the mailing list. This notice provides that if a person is not satisfied with the Executive Director's response and decision, they can request a contested case hearing or file a request to reconsider the Executive Director's decision within 30 days after the notice is mailed.

The Executive Director will issue the permit unless a written hearing request or request for reconsideration is filed within 30 days after the Executive Director's response to comments and final decision is mailed. If a hearing request or request for reconsideration is filed, the Executive Director will not issue the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting. If a contested case hearing is held, it will be a legal proceeding similar to a civil trial in state district court.

If the Executive Director calls a public meeting or the Commission grants a contested case hearing as described above, the Commission will give notice of the date, time, and

place of the meeting or hearing. If a hearing request or request for reconsideration is made, the Commission will consider all public comments in making its decision and shall either adopt the Executive Director's response to public comments or prepare its own response.

For additional information about this application, contact Sonia Bhuiya at (512) 239-1205.

11. ADMINISTRATIVE RECORD

The following items were considered in developing the draft permit:

A. PERMIT(S)

TPDES Permit No. WQ0010844001 issued on January 24, 2020.

B. APPLICATION

Application received on July 24, 2024, and additional information received on August 15, 2024.

C. MEMORANDA

Interoffice Memoranda from the Water Quality Assessment Section of the TCEQ Water Quality Division. Interoffice Memorandum from the Pretreatment Team of the TCEQ Water Quality Division.

D. MISCELLANEOUS

Federal Clean Water Act § 402; Texas Water Code § 26.027; 30 TAC Chapters 30, 305, 309, 312, and 319; Commission policies; and U.S. Environmental Protection Agency guidelines.

Texas Surface Water Quality Standards, 30 TAC §§ 307.1 - 307.10.

Procedures to Implement the Texas Surface Water Quality Standards (IP), Texas Commission on Environmental Quality, June 2010, as approved by the U.S. Environmental Protection Agency, and the IP, January 2003, for portions of the 2010 IP not approved by the U.S. Environmental Protection Agency.

Texas 2022 Clean Water Act Section 303(d) List, Texas Commission on Environmental Quality, June 1, 2022; approved by the U.S. Environmental Protection Agency on July 7, 2022.

Texas Natural Resource Conservation Commission, Guidance Document for Establishing Monitoring Frequencies for Domestic and Industrial Wastewater Discharge Permits, Document No. 98-001.000-OWR-WQ, May 1998.

One Total Maximum Daily Load for Indicator Bacteria in Tres Palacios Creek Tidal (TMDL Project No. 108B).

Attachment A: pH Screening

Calculation of pH of a mixture of two flows. Based on the procedure in EPA's DESCON program (EPA, 1988. Technical Guidance on Supplementary Stream Design Conditions for Steady State Modeling. USEPA Office of Water, Washington D.C.)

City of El Campo WQ0010844001 Outfall 001, Segment 1502

INPUT			Source Data:
DILUTION FACTOR AT MIXING ZONE BOUNDARY	1.24	1.24	effluent % at edge of chronic mixing zone: 80.75 MGD in cfs: 4.07 7Q2 flow: 1
RECEIVING WATER CHARACTERISTICS	25.00	20.00	Variana tamanarahuran tantad
2. Temperature (deg C):	25.00 7.30	30.00 7.30	Various temperatures tested pH Table D-15 (Ips. 2010 7.3
3. pH:4. Alkalinity (mg CaCO3/L):	95.00	150.00	pH Table D-15 (Ips, 2010 7.3 Hardness Table D-15 (Ips 95
4. Alkalinity (mg CaCO3/L):	95.00	150.00	naruless lable D-15 (1):
EFFLUENT CHARACTERISTICS			
5. Temperature (deg C):	25.00	30.00	
6. pH:	6.50	9.00	
7. Alkalinity (mg CaCO3/L):	20.00 *		Various alkalinities tested
, , ,			
OUTPUT			
1. IONIZATION CONSTANTS	6.25	6.22	
Upstream/Background pKa:	6.35	6.32	
Effluent pKa:	6.35	6.32	
2. IONIZATION FRACTIONS			
Upstream/Background Ionization Fraction:	0.90	0.90	
Effluent Ionization Fraction:	0.59	1.00	
3. TOTAL INORGANIC CARBON			
Upstream/Background Total Inorganic Carbon (mg			
CaCO3/L):	105.66	165.85	
Effluent Total Inorganic Carbon (mg CaCO3/L):	34.16	200.42	
4. CONDITIONS AT MIXING ZONE BOUNDARY			
Temperature (deg C):	25.00	30.00	
Alkalinity (mg CaCO3/L):	34.43	190.38	
Total Inorganic Carbon (mg CaCO3/L):	47.92	193.77	
pKa:	6.35	6.32	
F	0.55	0.32	
pH at Mixing Zone Boundary:	6.76	8.07	Segment 1502 pH criteria: 6.5 to 9.0

^{*} Assume minimal total alkalinity at low effluent pH based on carbonate equilibrium chemistry of natural and treated waters

Attachment B: Calculated Water Quality Based Effluent Limitations

TEXTOX MENU #3 - PERENNIAL STREAM OR RIVER

The water quality-based effluent limitations developed below are calculated using:

Table 1, 2014 Texas Surface Water Quality Standards (30 TAC 307) for Freshwater Aquatic Life Table 2, 2018 Texas Surface Water Quality Standards for Human Health "Procedures to Implement the Texas Surface Water Quality Standards," TCEQ, June 2010

PERMIT INFORMATION

 Permittee Name:
 City of El Campo

 TPDES Permit No.:
 WQ0010844001

 Outfall No.:
 001

Prepared by: Sonia Bhuiya
Date: July 30, 2025

DISCHARGE INFORMATION

Receiving Waterbody: Tres Palacios Above Tidal Segment No.: 1502 TSS (mg/L): 16 pH (Standard Units): 7.4 Hardness (mg/L as CaCO₃): 71 124 Chloride (mg/L): 2.628 Effluent Flow for Aquatic Life (MGD): Critical Low Flow [7Q2] (cfs): 0.97 % Effluent for Chronic Aquatic Life (Mixing Zone): 80.74 % Effluent for Acute Aquatic Life (ZID): 94.37 Effluent Flow for Human Health (MGD): 2.628 Harmonic Mean Flow (cfs): 1.83 % Effluent for Human Health: 68.96 Human Health Criterion (select: PWS, FISH, or INC) FISH

CALCULATE DISSOLVED FRACTION (AND ENTER WATER EFFECT RATIO IF APPLICABLE):

Stream/River Metal	Intercept (b)	Slope (m)	Partition Coefficien t (Kp)	Dissolved Fraction (Cd/Ct)	Source	Water Effect Ratio (WER)	Source
Aluminum	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Arsenic	5.68	-0.73	63240.08	0.497		1.00	Assumed
Cadmium	6.60	-1.13	173517.95	0.265		1.00	Assumed
Chromium (total)	6.52	-0.93	251286.07	0.199		1.00	Assumed
Chromium (trivalent)	6.52	-0.93	251286.07	0.199		1.00	Assumed
Chromium (hexavalent)	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Copper	6.02	-0.74	134570.92	0.317		1.00	Assumed
Lead	6.45	-0.80	306693.11	0.169		1.00	Assumed
Mercury	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Nickel	5.69	-0.57	100844.36	0.383		1.00	Assumed
Selenium	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Silver	6.38	-1.03	137961.03	0.312		1.00	Assumed
Zinc	6.10	-0.70	180765.69	0.257		1.00	Assumed

AQUATIC LIFE CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

		FW						
Parameter	FW Acute Criterion (μg/L)	Chronic Criterion (µg/L)	WLAa (μg/L)	WLAc (μg/L)	LTAa (μg/L)	LTAc (μg/L)	Daily Avg. (µg/L)	Daily Max. (μg/L)
Aldrin	3.0	N/A	3.18	N/A	1.82	N/A	2.67	5.66
Aluminum	991	N/A	1050	N/A	602	N/A	884	1871
Arsenic	340	150	725	374	415	288	423	895
Cadmium	6.2	0.194	24.6	0.907	14.1	0.698	1.02	2.17
Carbaryl	2.0	N/A	2.12	N/A	1.21	N/A	1.78	3.77
Chlordane	2.4	0.004	2.54	0.00495	1.46	0.00381	0.00560	0.0118
Chlorpyrifos	0.083	0.041	0.0880	0.0508	0.0504	0.0391	0.0574	0.121
Chromium (trivalent)	430	56	2290	348	1312	268	394	833
Chromium (hexavalent)	15.7	10.6	16.6	13.1	9.53	10.1	14.0	29.6
Copper	10.3	7.1	34.4	27.6	19.7	21.2	28.9	61.2

Page 14

Cyanide (free)	45.8	10.7	48.5	13.3	27.8	10.2	15.0	31.7
4,4'-DDT	1.1	0.001	1.17	0.00124	0.668	0.000954	0.00140	0.00296
Demeton	N/A	0.1	N/A	0.124	N/A	0.0954	0.140	0.296
Diazinon	0.17	0.17	0.180	0.211	0.103	0.162	0.151	0.321
Dicofol [Kelthane]	59.3	19.8	62.8	24.5	36.0	18.9	27.7	58.7
Dieldrin	0.24	0.002	0.254	0.00248	0.146	0.00191	0.00280	0.00593
Diuron	210	70	223	86.7	128	66.8	98.1	207
Endosulfan I (alpha)	0.22	0.056	0.233	0.0694	0.134	0.0534	0.0785	0.166
Endosulfan II (beta)	0.22	0.056	0.233	0.0694	0.134	0.0534	0.0785	0.166
Endosulfan sulfate	0.22	0.056	0.233	0.0694	0.134	0.0534	0.0785	0.166
Endrin	0.086	0.002	0.0911	0.00248	0.0522	0.00191	0.00280	0.00593
Guthion [Azinphos Methyl]	N/A	0.01	N/A	0.0124	N/A	0.00954	0.0140	0.0296
Heptachlor	0.52	0.004	0.551	0.00495	0.316	0.00381	0.00560	0.0118
Hexachlorocyclohexane (gamma) [Lindane]	1.126	0.08	1.19	0.0991	0.684	0.0763	0.112	0.237
Lead	44	1.73	278	12.7	159	9.75	14.3	30.3
Malathion	N/A	0.01	N/A	0.0124	N/A	0.00954	0.0140	0.0296
Mercury	2.4	1.3	2.54	1.61	1.46	1.24	1.82	3.85
Methoxychlor	N/A	0.03	N/A	0.0372	N/A	0.0286	0.0420	0.0889
Mirex	N/A	0.001	N/A	0.00124	N/A	0.000954	0.00140	0.00296
Nickel	350	38.9	971	126	556	97.0	142	301
Nonylphenol	28	6.6	29.7	8.17	17.0	6.29	9.25	19.5
Parathion (ethyl)	0.065	0.013	0.0689	0.0161	0.0395	0.0124	0.0182	0.0385
Pentachlorophenol	13.0	10.0	13.8	12.4	7.92	9.54	11.6	24.6
Phenanthrene	30	30	31.8	37.2	18.2	28.6	26.7	56.6
Polychlorinated Biphenyls [PCBs]	2.0	0.014	2.12	0.0173	1.21	0.0134	0.0196	0.0415
Selenium	20	5	21.2	6.19	12.1	4.77	7.00	14.8
Silver	0.8	N/A	27.3	N/A	15.6	N/A	22.9	48.6
								0.00059
Toxaphene	0.78	0.0002	0.827	0.000248	0.474	0.000191	0.000280	3
Tributyltin [TBT]	0.13	0.024	0.138	0.0297	0.0789	0.0229	0.0336	0.0711
2,4,5 Trichlorophenol	136	64	144	79.3	82.6	61.0	89.7	189
Zinc	88	88	362	426	207	328	304	644

HUMAN HEALTH

CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

	Water and Fish	Fish Only	Incidental Fish				Daily
Parameter	Criterion (μg/L)	Criterion (μg/L)	Criterion (μg/L)	WLAh (μg/L)	LTAh (μg/L)	Daily Avg. (μg/L)	Max. (μg/L)
Acrylonitrile	1.0	115	1150	167	155	227	482
·				0.000016	0.000015	0.000022	0.000048
Aldrin	1.146E-05	1.147E-05	1.147E-04	6	5	7	1
Anthracene	1109	1317	13170	1910	1776	2610	5523
Antimony	6	1071	10710	1553	1444	2123	4491
Arsenic	10	N/A	N/A	N/A	N/A	N/A	N/A
Barium	2000	N/A	N/A	N/A	N/A	N/A	N/A
Benzene	5	581	5810	842	784	1151	2436
Benzidine	0.0015	0.107	1.07	0.155	0.144	0.212	0.448
Benzo(a)anthracene	0.024	0.025	0.25	0.0363	0.0337	0.0495	0.104
Benzo(a)pyrene	0.0025	0.0025	0.025	0.00363	0.00337	0.00495	0.0104
Bis(chloromethyl)ether	0.0024	0.2745	2.745	0.398	0.370	0.544	1.15
Bis(2-chloroethyl)ether	0.60	42.83	428.3	62.1	57.8	84.9	179
Bis(2-ethylhexyl) phthalate [Di(2-ethylhexyl)							
phthalate]	6	7.55	75.5	10.9	10.2	14.9	31.6
Bromodichloromethane [Dichlorobromomethane]	10.2	275	2750	399	371	545	1153
Bromoform [Tribromomethane]	66.9	1060	10600	1537	1429	2101	4445
Cadmium	5	N/A	N/A	N/A	N/A	N/A	N/A

Carbon Tetrachloride	4.5	46	460	66.7	62.0	91.1	192
Chlordane	0.0025	0.0025	0.025	0.00363	0.00337	0.00495	0.0104
Chlorobenzene	100	2737	27370	3969	3691	5425	11479
Chlorodibromomethane [Dibromochloromethane]	7.5	183	1830	265	247	362	767
Chloroform [Trichloromethane]	70	7697	76970	11161	10380	15258	32281
Chromium (hexavalent)	62	502	5020	728	677	995	2105
Chrysene	2.45	2.52	25.2	3.65	3.40	4.99	10.5
Cresols [Methylphenols]	1041	9301	93010	13487	12543	18438	39008
Cyanide (free)	200	N/A	N/A	N/A	N/A	N/A	N/A
4,4'-DDD	0.002	0.002	0.02	0.00290	0.00270	0.00396	0.00838
4,4'-DDE	0.00013	0.00013	0.0013	0.000189	0.000175	0.000257	0.000545
4,4'-DDT	0.0004	0.0004	0.004	0.000580	0.000539	0.000792	0.00167
2,4'-D	70	N/A	N/A	N/A	N/A	N/A	N/A
Danitol [Fenpropathrin]	262	473	4730	686	638	937	1983
1,2-Dibromoethane [Ethylene Dibromide]	0.17	4.24	42.4	6.15	5.72	8.40	17.7
m-Dichlorobenzene [1,3-Dichlorobenzene]	322	595	5950	863	802	1179	2495
o-Dichlorobenzene [1,2-Dichlorobenzene]	600	3299	32990	4784	4449	6539	13836
p-Dichlorobenzene [1,4-Dichlorobenzene]	75	N/A	N/A	N/A	N/A	N/A	N/A
3,3'-Dichlorobenzidine	0.79	2.24	22.4	3.25	3.02	4.44	9.39
1,2-Dichloroethane	5	364	3640	528	491	721	1526
1,1-Dichloroethylene [1,1-Dichloroethene]	<u></u>	55114	551140	79919	74324	109256	231149
Dichloromethane [Methylene Chloride]	5	13333	133330	19334	17980	26431	55918
1,2-Dichloropropane	5	259	2590	376	349	513	1086
1,3-Dichloropropene [1,3-Dichloropropylene]	2.8	119	1190	173	160	235	499
Dicofol [Kelthane]	0.30	0.30	3	0.435	0.405	0.594	1.25
bicolor [keltilahe]	0.30	0.50		0.000029	0.000027	0.000039	0.000083
Dieldrin	2.0E-05	2.0E-05	2.0E-04	0	0	6	8
2,4-Dimethylphenol	444	8436	84360	12233	11376	16723	35380
Di-n-Butyl Phthalate	88.9	92.4	924	134	125	183	387
Dioxins/Furans [TCDD Equivalents]	7.80E-08	7.97E-08	7.97E-07	1.16E-07	1.07E-07	1.57E-07	3.34E-07
Endrin	0.02	0.02	0.2	0.0290	0.0270	0.0396	0.0838
Epichlorohydrin	53.5	2013	20130	2919	2715	3990	8442
Ethylbenzene	700	1867	18670	2707	2518	3701	7830
Ethylene Glycol	46744	1.68E+07	1.68E+08	24361059	22655785	33304003	70459489
Fluoride	4000	N/A	N/A	N/A	N/A	N/A	N/A
Heptachlor	8.0E-05	0.0001	0.001	0.000145	0.000135	0.000198	0.000419
Heptachlor Epoxide	0.00029	0.00029	0.0029	0.000421	0.000391	0.000574	0.00121
Hexachlorobenzene	0.00068	0.00068	0.0068	0.000986	0.000917	0.00134	0.00285
Hexachlorobutadiene	0.21	0.22	2.2	0.319	0.297	0.436	0.922
Hexachlorocyclohexane (alpha)	0.0078	0.0084	0.084	0.0122	0.0113	0.0166	0.0352
Hexachlorocyclohexane (beta)	0.15	0.26	2.6	0.377	0.351	0.515	1.09
Hexachlorocyclohexane (gamma) [Lindane]	0.2	0.341	3.41	0.494	0.460	0.675	1.43
Hexachlorocyclopentadiene	10.7	11.6	116	16.8	15.6	22.9	48.6
Hexachloroethane	1.84	2.33	23.3	3.38	3.14	4.61	9.77
Hexachlorophene	2.05	2.90	29	4.21	3.91	5.74	12.1
4,4'-Isopropylidenediphenol	1092	15982	159820	23175	21553	31682	67028
Lead	1.15	3.83	38.3	32.8	30.5	44.8	94.8
Mercury	0.0122	0.0122	0.122	0.0177	0.0165	0.0241	0.0511
Methoxychlor	2.92	3.0	30	4.35	4.05	5.94	12.5
Methyl Ethyl Ketone	13865	9.92E+05	9.92E+06	1438463	1337770	1966522	4160465
Methyl tert-butyl ether [MTBE]	15	10482	104820	15200	14136	20779	43961
Nickel	332	1140	11400	4320	4018	5906	12495
Nitrate-Nitrogen (as Total Nitrogen)	10000	N/A	N/A	N/A	N/A	N/A	N/A
Nitrobenzene	45.7	1873	18730	2716	2526	3712	7855
N-Nitrosodiethylamine	0.0037	2.1	21	3.05	2.83	4.16	8.80
N-Nitroso-di- <i>n</i> -Butylamine	0.119	4.2	42	6.09	5.66	8.32	17.6

Pentachlorobenzene	0.348	0.355	3.55	0.515	0.479	0.703	1.48
Pentachlorophenol	0.22	0.29	2.9	0.421	0.391	0.574	1.21
Polychlorinated Biphenyls [PCBs]	6.4E-04	6.4E-04	6.40E-03	0.000928	0.000863	0.00126	0.00268
Pyridine	23	947	9470	1373	1277	1877	3971
Selenium	50	N/A	N/A	N/A	N/A	N/A	N/A
1,2,4,5-Tetrachlorobenzene	0.23	0.24	2.4	0.348	0.324	0.475	1.00
1,1,2,2-Tetrachloroethane	1.64	26.35	263.5	38.2	35.5	52.2	110
Tetrachloroethylene [Tetrachloroethylene]	5	280	2800	406	378	555	1174
Thallium	0.12	0.23	2.3	0.334	0.310	0.455	0.964
Toluene	1000	N/A	N/A	N/A	N/A	N/A	N/A
Toxaphene	0.011	0.011	0.11	0.0160	0.0148	0.0218	0.0461
2,4,5-TP [Silvex]	50	369	3690	535	498	731	1547
1,1,1-Trichloroethane	200	784354	7843540	1137363	1057747	1554888	3289594
1,1,2-Trichloroethane	5	166	1660	241	224	329	696
Trichloroethylene [Trichloroethene]	5	71.9	719	104	97.0	142	301
2,4,5-Trichlorophenol	1039	1867	18670	2707	2518	3701	7830
TTHM [Sum of Total Trihalomethanes]	80	N/A	N/A	N/A	N/A	N/A	N/A
Vinyl Chloride	0.23	16.5	165	23.9	22.3	32.7	69.2

CALCULATE 70% AND 85% OF DAILY AVERAGE EFFLUENT LIMITATIONS:

Parameter Aldrin Aluminum Arsenic	(μg/L) 1.87 619 296 0.718	(μg/L) 2.27 751
Aluminum Arsenic	619 296	
Arsenic	296	751
	0.718	359
Cadmium		0.872
Carbaryl	1.24	1.51
Chlordane	0.00392	0.00476
Chlorpyrifos	0.0402	0.0488
Chromium (trivalent)	275	334
Chromium (hexavalent)	9.80	11.9
Copper	20.2	24.6
Cyanide (free)	10.5	12.7
4,4'-DDT	0.000981	0.00119
Demeton	0.0981	0.119
Diazinon	0.106	0.128
Dicofol [Kelthane]	19.4	23.5
Dieldrin	0.00196	0.00238
Diuron	68.6	83.4
Endosulfan I (alpha)	0.0549	0.0667
Endosulfan II (beta)	0.0549	0.0667
Endosulfan sulfate	0.0549	0.0667
Endrin	0.00196	0.00238
Guthion [Azinphos Methyl]	0.00981	0.0119
Heptachlor	0.00392	0.00476
Hexachlorocyclohexane (gamma) [Lindane]	0.0785	0.0953
Lead	10.0	12.1
Malathion	0.00981	0.0119
Mercury	1.27	1.54
Methoxychlor	0.0294	0.0357
Mirex	0.000981	0.00119
Nickel	99.8	121
Nonylphenol	6.47	7.86

Parathion (ethyl)	0.0127	0.0154
Pentachlorophenol	8.14	9.89
Phenanthrene	18.7	22.7
Polychlorinated Biphenyls [PCBs]	0.0137	0.0166
Selenium	4.90	5.95
Silver	16.0	19.5
Toxaphene	0.000196	0.000238
Tributyltin [TBT]	0.0235	0.0285
2,4,5 Trichlorophenol	62.8	76.2
Zinc	213	258

ZITC	213	230
	700/ - 1	050/ - 6
Human Health	70% of Daily Avg.	85% of Daily Avg.
Parameter	Dully Avg. (μg/L)	βαιιγ Avg. (μg/L)
Acrylonitrile	159	193
Actyloritatile	0.000015	0.000019
Aldrin	9	3
Anthracene	1827	2219
Antimony	1486	1804
Arsenic	N/A	N/A
Barium	N/A	N/A
Benzene	806	978
Benzidine	0.148	0.180
Benzo(a)anthracene	0.0346	0.0421
Benzo(a)pyrene	0.00346	0.00421
Bis(chloromethyl)ether	0.380	0.462
Bis(2-chloroethyl)ether	59.4	72.1
Bis(2-ethylhexyl) phthalate [Di(2-ethylhexyl)		
phthalate]	10.4	12.7
Bromodichloromethane [Dichlorobromomethane]	381	463
Bromoform [Tribromomethane]	1470	1786
Cadmium	N/A	N/A
Carbon Tetrachloride	63.8	77.5
Chlordane	0.00346	0.00421
Chlorobenzene	3798	4611
Chlorodibromomethane [Dibromochloromethane]	253	308
Chloroform [Trichloromethane]	10680	12969
Chromium (hexavalent)	696	845
Chrysene	3.49	4.24
Cresols [Methylphenols]	12906	15672
Cyanide (free)	N/A	N/A
4,4'-DDD	0.00277	0.00337
4,4'-DDE	0.000180	0.000219
4,4'-DDT	0.000555	0.000674
2,4'-D	N/A	N/A
Danitol [Fenpropathrin]	656	797
1,2-Dibromoethane [Ethylene Dibromide]	5.88	7.14
<i>m</i> -Dichlorobenzene [1,3-Dichlorobenzene]	825	1002
o-Dichlorobenzene [1,2-Dichlorobenzene]	4577	5558
p-Dichlorobenzene [1,4-Dichlorobenzene]	N/A	N/A
3,3'-Dichlorobenzidine	3.10	3.77
1,2-Dichloroethane	505	613
1,1-Dichloroethylene [1,1-Dichloroethene]	76479	92868
Dichloromethane [Methylene Chloride]	18501	22466
1,2-Dichloropropane	359	436
1,3-Dichloropropene [1,3-Dichloropropylene]	165	200
=,= =oroproperio [=,o Siemoropropyiene]	103	200

Dicofol [Kelthane]	0.416 0.000027	0.505
Dieldrin	0.000027	0.000033 7
2,4-Dimethylphenol	11706	14214
Di- <i>n</i> -Butyl Phthalate	128	155
Dioxins/Furans [TCDD Equivalents]	1.10E-07	1.34E-07
Endrin	0.0277	0.0337
Epichlorohydrin	2793	3391
Ethylbenzene	2590	3145
Ethylene Glycol	23312802	28308402
Fluoride	N/A	N/A
Heptachlor	0.000138	0.000168
Heptachlor Epoxide	0.000402	0.000488
Hexachlorobenzene	0.000943	0.00114
Hexachlorobutadiene	0.305	0.370
Hexachlorocyclohexane (alpha)	0.0116	0.0141
Hexachlorocyclohexane (beta)	0.360	0.438
Hexachlorocyclohexane (gamma) [Lindane]	0.473	0.574
Hexachlorocyclopentadiene	16.0	19.5
Hexachloroethane	3.23	3.92
Hexachlorophene	4.02	4.88
4,4'-Isopropylidenediphenol	22177	26930
Lead	31.3	38.1
Mercury	0.0169	0.0205
Methoxychlor	4.16	5.05
Methyl Ethyl Ketone	1376565	1671543
Methyl tert-butyl ether [MTBE]	14545	17662
Nickel	4134	5020
Nitrate-Nitrogen (as Total Nitrogen)	N/A	N/A
Nitrobenzene	2599	3156
N-Nitrosodiethylamine	2.91	3.53
N-Nitroso-di- <i>n</i> -Butylamine	5.82	7.07
Pentachlorobenzene	0.492	0.598
Pentachlorophenol	0.402	0.488
Polychlorinated Biphenyls [PCBs]	0.000888	0.00107
Pyridine	1314	1595
Selenium	N/A	N/A
1.2.4.5-Tetrachlorobenzene	0.333	0.404
1,1,2,2-Tetrachloroethane	36.5	44.4
Tetrachloroethylene [Tetrachloroethylene]	388	471
Thallium	0.319	0.387
Toluene	N/A	N/A
Toxaphene	0.0152	0.0185
2,4,5-TP [Silvex]	512	621
1,1,1-Trichloroethane	1088422	1321655
1,1,2-Trichloroethane	230	279
Trichloroethylene [Trichloroethene]	99.7	121
2,4,5-Trichlorophenol	2590	3145
TTHM [Sum of Total Trihalomethanes]	N/A	N/A
Vinyl Chloride	22.8	27.8
,. callottuc	22.0	27.0