

#### This file contains the following documents:

- 1. Summary of application (in plain language)
  - English
  - Alternative Language (Spanish)
- 2. First Notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
  - English
  - Alternative Language (Spanish)
- 3. Application materials



#### Este archivo contiene los siguientes documentos:

- 1. Resumen en lenguaje sencillo (PLS, por sus siglas en inglés) de la actividad propuesta
  - Inglés
  - Idioma alternativo (español)
- 2. Primer aviso (NORI, por sus siglas en inglés)
  - Inglés
  - Idioma alternativo (español)
- 3. Solicitud original



#### TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

#### SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS

## Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

#### DOMESTIC WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application. The City of Buda (CN600739866) owns and GBRA (CN601180565) Operates The City of Buda Wastewater Treatment Plant (RN101703288), an activated sludge process plant operated in the complete mix mode. The facility is located at 575 Garison Road, in Buda, Hays County, Texas 78610. This application is for a renewal of the facility's existing permit to treat a capacity of up to 3.5 million gallons per day of annual average flow.

Discharges from the facility are expected to contain Chloride, Total Dissolved Solids, Sulfate, and Alkalinity (CaCO<sub>3</sub>), as well as permitted levels of biochemical oxygen demand, total suspended solids, ammonia, and phosphorus. Additional potential pollutants are listed in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a bar screen, a grit chamber, aeration basins, final clarifiers, effluent filters, chlorine contact chambers and dechlorination. Biosolids residuals are aerated, thickened in a gravity thickener, dewatered using a belt filter press, and transported to other offsite permitted sludge processing facilities for further treatment.

## PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

#### AGUAS RESIDUALES DOMÉSTICAS' /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

La Ciudad de Buda (CN601720741 o CN600739866) es propietaria y la GBRA (CN601180565) opera La Planta de Tratamiento de Aguas Residuales de la Ciudad de Buda (RN101703288), una planta de proceso de lodos activados que opera en modo de mezcla completa. La instalación está ubicada en 575 Garison Road, en Buda, Condado de Hays, Texas 78610. Esta aplicación es para una renovación de la autorización existente para tratar una capacidad de 3.5 millones de galones por día de flujo promedio anual.

Se espera que las descargas de la instalación contengan cloruro, sólidos totales disueltos, sulfato y alcalinidad (CaCO3), así como los niveles permitidos de demanda bioquimica de oxigeno, sólidos suspendidos totales, amoniaco, y fósforo. Otros contaminantes potenciales se incluyen en el Informe Técnico Doméstico 1.0, Sección 7. Análisis de contaminantes del efluente tratado y hoja de trabajo doméstica 4.0 en el paquete de solicitud de permiso. Aguas residuales domésticas. está tratado por una planta de proceso de lodo activado y las unidades de tratamiento incluyen una rejilla, una cámara de desarenado, estanques de aireación, clarificadores finales, filtros, cámaras de contacto con cloro y descloración. Los residuales sólidos biologicos se tratan por por aeración, espesador de gravidad, y filtro prensa de bandas, y transportado a otras instalaciones externas autorizadas de procesamiento de lodos para tratamiento adicional.

#### **TEXAS COMMISSION ON ENVIRONMENTAL QUALITY**



## NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL

#### PERMIT NO. WQ0011060001

**APPLICATION.** City of Buda and Guadalupe-Blanco River Authority, 405 East Loop Street, Building 100, Buda, Texas 78610, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WO0011060001 (EPA I.D. No. TX0057436) to authorize the discharge of treated wastewater at a volume not to exceed an annual average flow of 3,500,000 gallons per day. The domestic wastewater treatment facility is located at 575 Garison Road, in the city of Buda, in Hays County, Texas 78610. The discharge route is from the plant site to Outfall 001 to an unnamed tributary, thence to Andrews Branch, thence to Porter Creek, thence to Soil Conservation Service (SCS) 6 Reservoir, thence to Porter Creek; and via Outfall 002 to an unnamed tributary, thence to an unnamed lake, thence to an unnamed tributary, thence to SCS 11 Reservoir, thence to an unnamed tributary, thence to SCS Reservoir 12, thence to Brushy Creek, thence to Plum Creek. TCEQ received this application on November 20, 2025. The permit application will be available for viewing and copying at Buda Public Library, Circulation Desk, 405 East Loop Street, Building 100, Buda, in Hays County, Texas prior to the date this notice is published in the newspaper. The application and associated notices are available electronically at the following webpage:

https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application. <a href="https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.84144,30.08932&level=18">https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.84144,30.08932&level=18</a>

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at: <a href="https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications">https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications</a>. El aviso de idioma alternativo en español está disponible en <a href="https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications">https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications</a>.

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

**PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application.** The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

**MAILING LIST.** If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county.

If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

**INFORMATION AVAILABLE ONLINE.** For details about the status of the application, visit the Commissioners' Integrated Database at <a href="www.tceq.texas.gov/goto/cid">www.tceq.texas.gov/goto/cid</a>. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at <a href="https://www14.tceq.texas.gov/epic/eComment/">https://www14.tceq.texas.gov/epic/eComment/</a>, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at <a href="www.tceq.texas.gov/goto/pep">www.tceq.texas.gov/goto/pep</a>. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Buda and Guadalupe-Blanco River Authority at the address stated above or by calling Ms. Mary Newman, Guadalupe-Blanco River Authority, at 830-379-5822.

Issuance Date: December 9, 2025

#### Comisión de Calidad Ambiental del Estado de Texas



#### AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

#### PERMISO NO. WQ0011060001

**SOLICITUD.** La Ciudad de Buda y la Guadalupe Blanco River Authority, 405 East Loop Street, Building 100, Buda, Texas 78610, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0011060001 (EPA I.D. No. TX 0057436) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio anual de 3,500,000 galones por día. La planta está ubicada en 575 Garison Road, en Buda, Condado de Hays, Texas 78610. La ruta de descarga es del sitio de la planta por Punto de Descarga 001 a un afluente sin nombre, de alli a Andrews Branch, de alli a Porter Creek, de alli a Soil Conservation Service (SCS) 6 Reservoir, de alli a Porter Creek; y por Punto de Descarga 002 a un afluente sin nombre, de alli a un lago sin nombre, de alli a un afluente sin nombre, de alli a SCS 11 Reservoir, de alli a un afluente sin nombre, de alli a SCS Reservoir 12, de alli a Brushy Creek, de alli Plum Creek. La TCEO recibió esta solicitud el 20 de noviembre de 2025. La solicitud para el permiso estará disponible para leerla y copiarla en Buda Public Library, Circulation Desk, 405 East Loop Street, Building 100, Buda, en el Condado Hays, Texas antes de la fecha de publicación de este aviso en el periódico. La solicitud está disponible para su visualización y copia en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.84144.30.08932&level=18

**AVISO DE IDIOMA ALTERNATIVO.** El aviso de idioma alternativo en español está disponible en <a href="https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications">https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications</a>.

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos

o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión.

La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

**LISTA DE CORREO.** Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Además, puede pedir que la TCEQ ponga su nombre en una o más de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos del solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envía por correo su pedido a la Oficina del Secretario Principal de la TCEO.

**INFORMACIÓN DISPONIBLE EN LÍNEA.** Para detalles sobre el estado de la solicitud, favor de visitar la Base de Datos Integrada de los Comisionados en <a href="www.tceq.texas.gov/goto/cid">www.tceq.texas.gov/goto/cid</a>. Para buscar en la base de datos, utilizar el número de permiso para esta solicitud que aparece en la parte superior de este aviso.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía

http://www14.tceq.texas.gov/epic/eComment/o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional de la Ciudad de Buda y la Guadalupe Blanco River Authority a la dirección indicada arriba o llamando a Ms. Mary Newman, Guadalupe-Blanco River Authority al 830-379-5822.

Fecha de emisión: el 9 de diciembre de 2025

# THE TOWN ISSORT

#### TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

## DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST

Complete and submit this checklist with the application.

|--|

PERMIT NUMBER (If new, leave blank): WQ00<u>11060001</u>

Indicate if each of the following items is included in your application.

N

Y

| Administrative Report 1.0                          | $\boxtimes$ |             | Original USGS Map        | $\boxtimes$ |             |
|----------------------------------------------------|-------------|-------------|--------------------------|-------------|-------------|
| Administrative Report 1.1                          | $\boxtimes$ |             | Affected Landowners Map  |             | $\boxtimes$ |
| SPIF                                               | $\boxtimes$ |             | Landowner Disk or Labels |             | $\boxtimes$ |
| Core Data Form                                     | $\boxtimes$ |             | Buffer Zone Map          |             | $\boxtimes$ |
| Summary of Application (PLS)                       | $\boxtimes$ |             | Flow Diagram             | $\boxtimes$ |             |
| Public Involvement Plan Form                       |             | $\boxtimes$ | Site Drawing             | $\boxtimes$ |             |
| Technical Report 1.0                               | $\boxtimes$ |             | Original Photographs     |             | $\boxtimes$ |
| Technical Report 1.1                               | $\boxtimes$ |             | Design Calculations      |             | $\boxtimes$ |
| Worksheet 2.0                                      | $\boxtimes$ |             | Solids Management Plan   |             | $\boxtimes$ |
| Worksheet 2.1                                      | $\boxtimes$ |             | Water Balance            |             | $\boxtimes$ |
| Worksheet 3.0                                      | $\boxtimes$ |             |                          |             |             |
| Worksheet 3.1                                      | $\boxtimes$ |             |                          |             |             |
| Worksheet 3.2                                      | $\boxtimes$ |             |                          |             |             |
| Worksheet 3.3                                      | $\boxtimes$ |             |                          |             |             |
| Worksheet 4.0                                      | $\boxtimes$ |             |                          |             |             |
| Worksheet 5.0                                      | $\boxtimes$ |             |                          |             |             |
| Worksheet 6.0                                      | $\boxtimes$ |             |                          |             |             |
| Worksheet 7.0                                      | $\boxtimes$ |             |                          |             |             |
|                                                    |             |             |                          |             |             |
|                                                    |             |             |                          |             |             |
| For TCEQ Use Only                                  |             |             |                          |             |             |
| Segment Number<br>Expiration Date<br>Permit Number |             |             | County<br>Region         |             | <br>        |

N

# THE TONMENTAL OURS

#### TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

## DOMESTIC WASTEWATER PERMIT APPLICATION ADMINISTRATIVE REPORT 1.0

For any questions about this form, please contact the Applications Review and Processing Team at 512-239-4671.

#### **Section 1.** Application Fees (Instructions Page 26)

Indicate the amount submitted for the application fee (check only one).

| Flow                     | New/Major Amendment   | Renewal    |
|--------------------------|-----------------------|------------|
| < 0.05 MGD               | \$350.00 □            | \$315.00 □ |
| ≥0.05 but <0.10 MGD      | \$550.00 □            | \$515.00 □ |
| ≥0.10 but <0.25 MGD      | \$850.00 □            | \$815.00 □ |
| ≥0.25 but <0.50 MGD      | \$1 <b>,</b> 250.00 □ | \$1,215.00 |
| $\geq$ 0.50 but <1.0 MGD | \$1 <b>,</b> 650.00 □ | \$1,615.00 |
| ≥1.0 MGD                 | \$2,050.00 □          | \$2,015.00 |

Minor Amendment (for any flow) \$150.00 □

#### **Payment Information:**

Active

Mailed Check/Money Order Number: 77352
Check/Money Order Amount: 2,015.00
Name Printed on Check: TCEQ
EPAY Voucher Number: Click to enter text.
Copy of Payment Voucher enclosed? Yes □

#### Section 2. Type of Application (Instructions Page 26)

| a. | Check the box next to the appropriate authorization type |                                                     |  |  |  |  |
|----|----------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
|    | $\boxtimes$                                              | Publicly Owned Domestic Wastewater                  |  |  |  |  |
|    |                                                          | Privately-Owned Domestic Wastewater                 |  |  |  |  |
|    |                                                          | Conventional Water Treatment                        |  |  |  |  |
| b. | Che                                                      | ck the box next to the appropriate facility status. |  |  |  |  |

Inactive

| c.                                                                                                                                                                                                                              | Che         | ck the box next to the appropria                                         | te permit type.   |                |                                                    |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------|-------------------|----------------|----------------------------------------------------|--|--|--|
|                                                                                                                                                                                                                                 | $\boxtimes$ | TPDES Permit                                                             |                   |                |                                                    |  |  |  |
|                                                                                                                                                                                                                                 |             | TLAP                                                                     |                   |                |                                                    |  |  |  |
|                                                                                                                                                                                                                                 |             | TPDES Permit with TLAP compo                                             | onent             |                |                                                    |  |  |  |
|                                                                                                                                                                                                                                 |             | Subsurface Area Drip Dispersal                                           | System (SADDS     | S)             |                                                    |  |  |  |
| d.                                                                                                                                                                                                                              | Che         | ck the box next to the appropria                                         | te application ty | yp             | e                                                  |  |  |  |
|                                                                                                                                                                                                                                 |             | New                                                                      |                   |                |                                                    |  |  |  |
|                                                                                                                                                                                                                                 |             | Major Amendment with Renewa                                              | 1 🗆               | ]              | Minor Amendment with Renewal                       |  |  |  |
|                                                                                                                                                                                                                                 |             | Major Amendment without Rene                                             | ewal              | ]              | Minor Amendment without Renewal                    |  |  |  |
|                                                                                                                                                                                                                                 | $\boxtimes$ | Renewal without changes                                                  |                   | ]              | Minor Modification of permit                       |  |  |  |
| e.                                                                                                                                                                                                                              | For         | amendments or modifications, d                                           | lescribe the pro  | po             | sed changes: Click to enter text.                  |  |  |  |
| f.                                                                                                                                                                                                                              | For         | existing permits:                                                        |                   |                |                                                    |  |  |  |
|                                                                                                                                                                                                                                 | Pern        | nit Number: WQ00 <u>11060001</u>                                         |                   |                |                                                    |  |  |  |
|                                                                                                                                                                                                                                 | EPA         | I.D. (TPDES only): TX <u>0057436</u>                                     |                   |                |                                                    |  |  |  |
|                                                                                                                                                                                                                                 | Expi        | iration Date: <u>December 21, 2025</u>                                   |                   |                |                                                    |  |  |  |
| Co                                                                                                                                                                                                                              | arti a      |                                                                          | li-sat) a         | 7              |                                                    |  |  |  |
| <b>5</b> e                                                                                                                                                                                                                      | CHO         | on 3. Facility Owner (A)<br>(Instructions Page                           |                   | u '            | Co-Applicant Information                           |  |  |  |
| Δ                                                                                                                                                                                                                               | The         | owner of the facility must app                                           |                   | it             |                                                    |  |  |  |
| <i>1</i> <b>1.</b>                                                                                                                                                                                                              |             | at is the Legal Name of the entity                                       |                   |                |                                                    |  |  |  |
|                                                                                                                                                                                                                                 |             | of Buda                                                                  | (applically app   | · <b>-</b> y · | ing for this permit.                               |  |  |  |
|                                                                                                                                                                                                                                 | (The        |                                                                          |                   | t ł            | ne Texas Secretary of State, County, or in         |  |  |  |
| If the applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at <a href="http://www15.tceq.texas.gov/crpub/">http://www15.tceq.texas.gov/crpub/</a> |             |                                                                          |                   |                |                                                    |  |  |  |
|                                                                                                                                                                                                                                 | (           | CN: <u>CN600739866</u>                                                   |                   |                |                                                    |  |  |  |
|                                                                                                                                                                                                                                 |             | at is the name and title of the per<br>cutive official meeting signatory |                   |                | pplication? The person must be an 00 TAC § 305.44. |  |  |  |
|                                                                                                                                                                                                                                 | I           | Prefix: <u>Mr.</u>                                                       | Last Name, Firs   | st             | Name: <u>Grau, Micah</u>                           |  |  |  |
|                                                                                                                                                                                                                                 | ]           | Гitle: <u>City Manager</u>                                               | Credential: Clic  | ck             | to enter text.                                     |  |  |  |
| В.                                                                                                                                                                                                                              |             | <b>applicant information.</b> Complete pply as a co-permittee.           | e this section on | lly            | if another person or entity is required            |  |  |  |
|                                                                                                                                                                                                                                 | Wha         | at is the Legal Name of the co-ap                                        | plicant applying  | g fo           | or this permit?                                    |  |  |  |

(The legal name must be spelled exactly as filed with the TX SOS, with the County, or in the legal documents forming the entity.)

**Guadalupe-Blanco River Authority** 

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at: <a href="http://www15.tceq.texas.gov/crpub/">http://www15.tceq.texas.gov/crpub/</a>

CN: 601180565

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix: Mr. Last Name, First Name: Nichols, Darrell

Title: General Manager/CEO Credential: Click to enter text.

Provide a brief description of the need for a co-permittee: <u>City of Buda owns the facility; GBRA is</u> the operator of the facility.

#### C. Core Data Form

Complete the Core Data Form for each customer and include as an attachment. If the customer type selected on the Core Data Form is **Individual**, complete **Attachment 1** of Administrative Report 1.0. <u>Form 10400</u>

#### **Section 4.** Application Contact Information (Instructions Page 27)

This is the person(s) TCEQ will contact if additional information is needed about this application. Provide a contact for administrative questions and technical questions.

A. Prefix: Mr. Last Name, First Name: Mann, Jesi

Title: Assistant Division Manager Credential: Click to enter text.

Organization Name: Guadalupe-Blanco River Authority

Mailing Address: 1431 Satterwhite Rd. City, State, Zip Code: Buda, Texas, 78610 Phone No.:

(512)757-6524 E-mail Address: jmann@gbra.org

Check one or both:  $\square$  Administrative Contact  $\square$  Technical Contact

B. Prefix: Mr. Last Name, First Name: Rumbaugh, Martin

Title: Senior Project Manager Credential: P.E.

Organization Name: AECOM

Mailing Address: 13640 Briarwick Dr Suite 200 City, State, Zip Code: Austin, Texas, 78729

Phone No.: (512)4577728 E-mail Address: martin.rumbaugh@aecom.com

Check one or both: ☐ Administrative Contact ☒ Technical Contact

#### Section 5. Permit Contact Information (Instructions Page 27)

Provide the names and contact information for two individuals that can be contacted throughout the permit term.

A. Prefix: Mr. Last Name, First Name: Mann, Jesi

Title: Assistant Division Manager Credential: Click to enter text.

Organization Name: Guadalupe-Blanco River Authority

Mailing Address: 1431 Satterwhite Rd. City, State, Zip Code: Buda, Texas, 78610

Phone No.: (512)757-6524 E-mail Address: jmann@gbra.org

B. Prefix: Mr. Last Name, First Name: Montaña, Eduardo

Title: Division Manager Credential: Click to enter text.

Organization Name: Guadalupe-Blanco River Authority

Mailing Address: 1431 Satterwhite Rd. City, State, Zip Code: Buda, Texas, 78610

Phone No.: (830) 379-5822 E-mail Address: emontana@gbra.org

#### Section 6. Billing Contact Information (Instructions Page 27)

The permittee is responsible for paying the annual fee. The annual fee will be assessed to permits *in effect on September 1 of each year*. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (using form TCEQ-20029).

Prefix: Ms. Last Name, First Name: <u>Davidson, Kristin</u>

Title: Accounting Specialist III Credential: Click to enter text.

Organization Name: Guadalupe-Blanco River Authority

Mailing Address: 2225 E. Common Street City, State, Zip Code: New Braunfels, Texas, 78130

Phone No.: (830) 379-5822 E-mail Address: Kdavidson@gbra.org

#### Section 7. DMR/MER Contact Information (Instructions Page 27)

Provide the name and complete mailing address of the person delegated to receive and submit Discharge Monitoring Reports (DMR) (EPA 3320-1) or maintain Monthly Effluent Reports (MER).

Prefix: Ms. Last Name, First Name: Ramirez, Tricia

Title: Executive Assistant Credential: Click to enter text.

Organization Name: Guadalupe-Blanco River Authority

Mailing Address: <u>2225 E. Common Street</u> City, State, Zip Code: <u>New Braunfels, Texas 78130</u>

Phone No.: (830) 379-5822 E-mail Address: <u>Tramirez@gbra.org</u>

#### **Section 8. Public Notice Information (Instructions Page 27)**

#### A. Individual Publishing the Notices

Prefix: Ms. Last Name, First Name: Newman, Mary

Title: Executive Assistant Credential: Click to enter text.

Organization Name: Guadalupe-Blanco River Authority

Mailing Address: 2225 E. Common Street City, State, Zip Code: New Braunfels, Texas 78130

Phone No.: (830) 379-5822 E-mail Address: Mnewman@gbra.org

| В.                                                   | Method for Receiving Notice of Receipt and Intent to Obtain a Water Quality Permit<br>Package                                                                                                                         |  |  |  |  |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                      | Indicate by a check mark the preferred method for receiving the first notice and instructions                                                                                                                         |  |  |  |  |  |
|                                                      |                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                      | □ Fax                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                      | ⊠ Regular Mail                                                                                                                                                                                                        |  |  |  |  |  |
| C.                                                   | Contact permit to be listed in the Notices                                                                                                                                                                            |  |  |  |  |  |
|                                                      | Prefix: Ms. Last Name, First Name: Newman, Mary                                                                                                                                                                       |  |  |  |  |  |
|                                                      | Title: Executive Assistant Credential: Click to enter text.                                                                                                                                                           |  |  |  |  |  |
|                                                      | Organization Name: <u>Guadalupe-Blanco River Authority</u>                                                                                                                                                            |  |  |  |  |  |
|                                                      | Mailing Address: 2225 E. Common Street City, State, Zip Code: New Braunfels, Texas 78130                                                                                                                              |  |  |  |  |  |
|                                                      | Phone No.: (830) 379-5822 E-mail Address: Mnewman@gbra.org                                                                                                                                                            |  |  |  |  |  |
| D.                                                   | Public Viewing Information                                                                                                                                                                                            |  |  |  |  |  |
|                                                      | If the facility or outfall is located in more than one county, a public viewing place for each county must be provided.                                                                                               |  |  |  |  |  |
|                                                      | Public building name: <u>Buda Public Library</u>                                                                                                                                                                      |  |  |  |  |  |
|                                                      | Location within the building: <u>Circulation Desk</u>                                                                                                                                                                 |  |  |  |  |  |
| Physical Address of Building: <u>405 E. Loop</u> St. |                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                      | City: <u>Buda</u> County: <u>Hays</u>                                                                                                                                                                                 |  |  |  |  |  |
|                                                      | Contact (Last Name, First Name): <u>Hodges, Melinda</u>                                                                                                                                                               |  |  |  |  |  |
|                                                      | Phone No.: <u>(512) 295-5899</u> Ext.: Click to enter text.                                                                                                                                                           |  |  |  |  |  |
| E.                                                   | Bilingual Notice Requirements                                                                                                                                                                                         |  |  |  |  |  |
|                                                      | This information is required for new, major amendment, minor amendment or minor modification, and renewal applications.                                                                                               |  |  |  |  |  |
|                                                      | This section of the application is only used to determine if alternative language notices will be needed. Complete instructions on publishing the alternative language notices will be in your public notice package. |  |  |  |  |  |
|                                                      | Please call the bilingual/ESL coordinator at the nearest elementary and middle schools and obtain the following information to determine whether an alternative language notices are required.                        |  |  |  |  |  |
|                                                      | 1. Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility?                                                             |  |  |  |  |  |
|                                                      | ⊠ Yes □ No                                                                                                                                                                                                            |  |  |  |  |  |
|                                                      | If <b>no</b> , publication of an alternative language notice is not required; <b>skip to</b> Section 9                                                                                                                |  |  |  |  |  |

2. Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school?

⊠ Yes □ No

|    | 3.         | Do the locatio  |                                     | s at these s              | schools atten                          | ıd a bilingual      | educa           | tion prog        | ram a          | t another               |
|----|------------|-----------------|-------------------------------------|---------------------------|----------------------------------------|---------------------|-----------------|------------------|----------------|-------------------------|
|    |            |                 | Yes                                 |                           | No                                     |                     |                 |                  |                |                         |
|    | 4.         |                 |                                     |                           | ired to provi<br>ement under           |                     |                 |                  | gram l         | out the school has      |
|    |            |                 | Yes                                 |                           | No                                     |                     |                 |                  |                |                         |
|    | 5.         |                 |                                     |                           | estion 1, 2, 3<br>is required b        |                     |                 |                  |                | tive language are       |
| F. | Su         | mmary           | of Appl                             | ication in                | Plain Langua                           | ige Template        | 9               |                  |                |                         |
|    |            | _               |                                     | •                         | f Application<br>uage summa            |                     |                 | _                |                | ) Form 20972),<br>ment. |
|    | At         | tachme          | <b>nt:</b> <u>Attac</u>             | <u>hment D - T</u>        | CEQ FORM 2                             | 0972                |                 |                  |                |                         |
| G. | Pu         | blic Inv        | olveme                              | nt Plan Foi               | r <b>m</b>                             |                     |                 |                  |                |                         |
|    |            | -               |                                     |                           | nent Plan For<br><b>lment to a p</b> e | ,                   |                 | ,                | _              | plication for a<br>t.   |
|    | At         | tachme          | nt: <u>N/A</u>                      |                           |                                        |                     |                 |                  |                |                         |
|    |            |                 |                                     |                           |                                        |                     |                 | - 0              |                |                         |
| Se | cti        | on 9.           |                                     | ulated Ei<br>29)          | ntity and l                            | Permitted           | Site            | Inform           | ation          | (Instructions           |
| Α. |            |                 | is currei<br><b>RN</b> <u>10170</u> | , .                       | ted by TCEQ,                           | provide the         | Regula          | ited Entity      | y Num          | ber (RN) issued to      |
|    |            |                 | -                                   | Central Re<br>y regulated |                                        | p://www15.to        | <u>ceq.tex</u>  | as.gov/cr        | <u>pub/</u>    | to determine if         |
| B. | Na         | me of p         | roject o                            | r site (the r             | name known                             | by the comm         | nunity          | where loc        | ated):         |                         |
|    | <u>Cit</u> | <u>y of Bud</u> | a Wastev                            | <u>vater Treatn</u>       | <u>nent Plant</u>                      |                     |                 |                  |                |                         |
| C. | Ov         | vner of         | treatmei                            | nt facility: <u>(</u>     | City of Buda                           |                     |                 |                  |                |                         |
|    | Ov         | vnership        | of Faci                             | lity: 🗵 l                 | Public [                               | Private             |                 | Both             |                | Federal                 |
| D. | Ov         | vner of l       | land wh                             | ere treatme               | ent facility is                        | or will be:         |                 |                  |                |                         |
|    | Pre        | efix: Cli       | ck to ent                           | er text.                  | Last Na                                | me, First Nan       | ne: <u>City</u> | of Buda          |                |                         |
|    | Tit        | le: Click       | k to ente                           | r text.                   | Credent                                | rial: Click to e    | enter te        | ext.             |                |                         |
|    | Or         | ganizat         | ion Nam                             | e: Click to               | enter text.                            |                     |                 |                  |                |                         |
|    | Ma         | iling Ac        | ddress: <u>C</u>                    | City of Buda,             | , 405 E. Loop S                        | St. City, State     | , Zip C         | ode: <u>Buda</u> | <u>, Texas</u> | <u>s, 78610</u>         |
|    | Ph         | one No.         | : <u>(512)31</u>                    | 20084                     | E-mail                                 | Address: <u>mic</u> | ah.grau         | ı@budatx.        | gov            |                         |
|    |            |                 |                                     |                           | ame person a<br>easement. Se           |                     |                 | or co-ap         | plican         | t, attach a lease       |
|    |            | Attach          | ment: C                             | lick to ente              | er text.                               |                     |                 |                  |                |                         |

|          | Prefix: Click to enter text.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Last Name, First Name: <u>Not Applicable</u>                                                                                                                                                                                                                                                                                                                                     |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Title: Click to enter text.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Credential: Click to enter text.                                                                                                                                                                                                                                                                                                                                                 |
|          | Organization Name: Click to ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | er text.                                                                                                                                                                                                                                                                                                                                                                         |
|          | Mailing Address: Click to enter t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ext. City, State, Zip Code: Click to enter text.                                                                                                                                                                                                                                                                                                                                 |
|          | Phone No.: Click to enter text.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E-mail Address: Click to enter text.                                                                                                                                                                                                                                                                                                                                             |
|          | If the landowner is not the same agreement or deed recorded eas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | person as the facility owner or co-applicant, attach a lease                                                                                                                                                                                                                                                                                                                     |
|          | Attachment: Click to enter to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                  |
| F.       | Owner sewage sludge disposal suproperty owned or controlled by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ite (if authorization is requested for sludge disposal on the applicant)::                                                                                                                                                                                                                                                                                                       |
|          | Prefix: Click to enter text.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Last Name, First Name: <u>Not Applicable</u>                                                                                                                                                                                                                                                                                                                                     |
|          | Title: Click to enter text.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Credential: Click to enter text.                                                                                                                                                                                                                                                                                                                                                 |
|          | Organization Name: Click to ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | er text.                                                                                                                                                                                                                                                                                                                                                                         |
|          | Mailing Address: Click to enter t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ext. City, State, Zip Code: Click to enter text.                                                                                                                                                                                                                                                                                                                                 |
|          | Phone No.: Click to enter text.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E-mail Address: Click to enter text.                                                                                                                                                                                                                                                                                                                                             |
|          | If the landowner is not the same agreement or deed recorded eas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e person as the facility owner or co-applicant, attach a lease ement. See instructions.                                                                                                                                                                                                                                                                                          |
|          | Attachment: Click to enter to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ext.                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                  |
| Se       | ection 10. TPDES Dischar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ge Information (Instructions Page 31)                                                                                                                                                                                                                                                                                                                                            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ge Information (Instructions Page 31) lity location in the existing permit accurate?                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                  |
|          | Is the wastewater treatment faci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                  |
|          | Is the wastewater treatment faci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lity location in the existing permit accurate?                                                                                                                                                                                                                                                                                                                                   |
|          | Is the wastewater treatment faci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lity location in the existing permit accurate?                                                                                                                                                                                                                                                                                                                                   |
| A.       | Is the wastewater treatment facions in the wastewater treatment facions in the second | lity location in the existing permit accurate?                                                                                                                                                                                                                                                                                                                                   |
| A.       | Is the wastewater treatment facing.  Yes No  If no, or a new permit application.  Click to enter text.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lity location in the existing permit accurate?  on, please give an accurate description:                                                                                                                                                                                                                                                                                         |
| A.       | Is the wastewater treatment facility  Yes □ No  If no, or a new permit application of the content text.  Are the point(s) of discharge and the discharge an | lity location in the existing permit accurate?  on, please give an accurate description:                                                                                                                                                                                                                                                                                         |
| A.       | Is the wastewater treatment facility  Yes □ No  If no, or a new permit application Click to enter text.  Are the point(s) of discharge and  Yes □ No  If no, or a new or amendment permit application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lity location in the existing permit accurate?  on, please give an accurate description:  d the discharge route(s) in the existing permit correct?  permit application, provide an accurate description of the                                                                                                                                                                   |
| A.       | Is the wastewater treatment facility  Yes □ No  If no, or a new permit application of the content text.  Are the point(s) of discharge and waste of the content text.  Yes □ No  If no, or a new or amendment proport of discharge and the discharge  | lity location in the existing permit accurate?  on, please give an accurate description:  d the discharge route(s) in the existing permit correct?  permit application, provide an accurate description of the                                                                                                                                                                   |
| A.       | Is the wastewater treatment facility  Yes □ No  If no, or a new permit application of the content text.  Are the point(s) of discharge and waste of the content text.  Yes □ No  If no, or a new or amendment proport of discharge and the discharge  | lity location in the existing permit accurate?  on, please give an accurate description:  d the discharge route(s) in the existing permit correct?  permit application, provide an accurate description of the large route to the nearest classified segment as defined in 30                                                                                                    |
| A.       | Is the wastewater treatment facing  Yes □ No  If no, or a new permit application Click to enter text.  Are the point(s) of discharge and  Yes □ No  If no, or a new or amendment property of discharge and the disched TAC Chapter 307: Click to enter text.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on, please give an accurate description:  d the discharge route(s) in the existing permit correct?  permit application, provide an accurate description of the large route to the nearest classified segment as defined in 30.  Texas                                                                                                                                            |
| A.<br>B. | Is the wastewater treatment facility Yes □ No  If no, or a new permit application Click to enter text.  Are the point(s) of discharge and □ Yes □ No  If no, or a new or amendment property point of discharge and the discharge an | lity location in the existing permit accurate?  on, please give an accurate description:  d the discharge route(s) in the existing permit correct?  permit application, provide an accurate description of the targe route to the nearest classified segment as defined in 30  Texas  s/are located: Hays County  discharge to a city, county, or state highway right-of-way, or |

**E.** Owner of effluent disposal site:

|                | If <b>yes</b> , indicate by a check mark if:                                                                                                                                                           |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | $\square$ Authorization granted $\square$ Authorization pending                                                                                                                                        |
|                | For <b>new and amendment</b> applications, provide copies of letters that show proof of contact and the approval letter upon receipt. <u>Not Applicable</u>                                            |
|                | Attachment: Click to enter text.                                                                                                                                                                       |
| D.             | For all applications involving an average daily discharge of 5 MGD or more, provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge: Not Applicable |
| S <sub>0</sub> | ection 11 TI AD Dienocal Information (Instructions Dago 22)                                                                                                                                            |
| 36             | ection 11. TLAP Disposal Information (Instructions Page 32)                                                                                                                                            |
| A.             | For TLAPs, is the location of the effluent disposal site in the existing permit accurate?                                                                                                              |
|                | □ Yes □ No                                                                                                                                                                                             |
|                | If <b>no, or a new or amendment permit application</b> , provide an accurate description of the disposal site location:                                                                                |
|                | Not Applicable                                                                                                                                                                                         |
|                |                                                                                                                                                                                                        |
| B.             | City nearest the disposal site: <u>Not Applicable</u>                                                                                                                                                  |
| C.             | County in which the disposal site is located: <u>Not Applicable</u>                                                                                                                                    |
| D.             | For <b>TLAPs</b> , describe the routing of effluent from the treatment facility to the disposal site:                                                                                                  |
|                | Not Applicable                                                                                                                                                                                         |
|                |                                                                                                                                                                                                        |
| E.             | For <b>TLAPs</b> , please identify the nearest watercourse to the disposal site to which rainfall runoff might flow if not contained: <u>Not Applicable</u>                                            |
|                |                                                                                                                                                                                                        |
| Se             | ection 12. Miscellaneous Information (Instructions Page 32)                                                                                                                                            |
| A.             | Is the facility located on or does the treated effluent cross American Indian Land?                                                                                                                    |
|                | □ Yes ⊠ No                                                                                                                                                                                             |
| B.             | If the existing permit contains an onsite sludge disposal authorization, is the location of the sewage sludge disposal site in the existing permit accurate?                                           |
|                | □ Yes □ No ⊠ Not Applicable                                                                                                                                                                            |
|                | If No, or if a new onsite sludge disposal authorization is being requested in this permit application, provide an accurate location description of the sewage sludge disposal site.                    |
|                | Click to enter text.                                                                                                                                                                                   |

| C. | Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?                                                                                                                                                                                                                                         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | □ Yes ⊠ No                                                                                                                                                                                                                                                                                                                                                       |
|    | If yes, list each person formerly employed by the TCEQ who represented your company and was paid for service regarding the application: <u>Martin Rumbaugh</u> , <u>P.E.</u> , of <u>AECOM</u> , was employed by <u>TCEQ</u> 's predecessor agencies, <u>Texas Water Commission and Texas Natural Resource Conservation Commission</u> , <u>during 1993-1994</u> |
| D. | Do you owe any fees to the TCEQ?                                                                                                                                                                                                                                                                                                                                 |
|    | □ Yes ⊠ No                                                                                                                                                                                                                                                                                                                                                       |
|    | If <b>yes</b> , provide the following information:                                                                                                                                                                                                                                                                                                               |
|    | Account number: Click to enter text.                                                                                                                                                                                                                                                                                                                             |
|    | Amount past due: Click to enter text.                                                                                                                                                                                                                                                                                                                            |
| E. | Do you owe any penalties to the TCEQ?                                                                                                                                                                                                                                                                                                                            |
|    | □ Yes ⊠ No                                                                                                                                                                                                                                                                                                                                                       |
|    | If <b>ves</b> , please provide the following information:                                                                                                                                                                                                                                                                                                        |

#### Section 13. Attachments (Instructions Page 33)

Enforcement order number: Click to enter text.

Amount past due: Click to enter text.

Indicate which attachments are included with the Administrative Report. Check all that apply:

- Lease agreement or deed recorded easement, if the land where the treatment facility is located or the effluent disposal site are not owned by the applicant or co-applicant.
- ☑ Original full-size USGS Topographic Map with the following information:
  - Applicant's property boundary
  - Treatment facility boundary
  - Labeled point of discharge for each discharge point (TPDES only)
  - Highlighted discharge route for each discharge point (TPDES only)
  - Onsite sewage sludge disposal site (if applicable)
  - Effluent disposal site boundaries (TLAP only)
  - New and future construction (if applicable)
  - 1 mile radius information
  - 3 miles downstream information (TPDES only)
  - All ponds.
- ☐ Attachment 1 for Individuals as co-applicants
- ☑ Other Attachments. Please specify:
  - Attachment A Core Data Forms (TCEQ-10400)
  - Attachment B USGS Map (TCEQ 10053 Domestic Administrative Report 1.0, Section 13)
  - Attachment C Supplemental Permit Information Form (TCEQ-20971)
    - o Attachment C.1 USGS Map (SPIF Item 5)
    - o Attachment C.2 General Location Map (SPIF Item 5)
  - Attachment D Plain Language Summary (TCEQ-20972)

#### Section 14. Signature Page (Instructions Page 34)

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: WQ00<u>11060001</u>

Applicant: City of Buda

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

| Signatory name (typed or printe Signatory title: <u>City Manager</u> | d): <u>Micah Gr</u> a | <u>au</u>    |                                                                                                                |
|----------------------------------------------------------------------|-----------------------|--------------|----------------------------------------------------------------------------------------------------------------|
| Signature: Mil Mar<br>(Use blue ink)                                 | 2                     | Da           | te: June 17, 2025                                                                                              |
| Subscribed and Sworn to before                                       | me by the s           | aid Mill h   | Grau                                                                                                           |
| on this 17 th                                                        | day of                | June         | , 20_ <b>25</b>                                                                                                |
| My commission expires on the_                                        | 27th                  | day of Febru | 20 <u>28</u> .                                                                                                 |
| Notary Public                                                        |                       |              | [SEAL]                                                                                                         |
| H445<br>County, Texas                                                |                       | *            | CHRISTINA MICHELLE AGUILAR<br>Notary Public, State of Texas<br>Comm. Expires 02-27-2028<br>Notary ID 134783714 |

## Section 14. Signature Page (Instructions Page 34)

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: WQ00<u>1106000</u>1

Applicant: Guadalupe-Blanco River Authority

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

| Signatory name | (typed | or | printed): | <u>Darrell</u> | <u>Nichols</u> |
|----------------|--------|----|-----------|----------------|----------------|
|----------------|--------|----|-----------|----------------|----------------|

Signatory title: General Manager/CEO

| Signature: Danell Medical (Use blue ink)                                         | Date:11/17/25        |
|----------------------------------------------------------------------------------|----------------------|
| Subscribed and Sworn to before me by the said on thislay of day of day of day of | /ember, 20 <u>25</u> |
| My commission expires on the 19th day of                                         | 1                    |

County, Texas

ISEALl

#### **NOT APPLICABLE**

#### DOMESTIC WASTEWATER PERMIT APPLICATION **ADMINISTRATIVE REPORT 1.0**

The following information is required for new and amendment applications. N/A - Renewal

#### Section 1. Affected Landowner Information (Instructions Page 36)

this application?

| Α. |                                                                                                                               | cate by a check mark that the landowners map or drawing, with scale, includes the owing information, as applicable:                                                                                                                                              |  |  |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|    |                                                                                                                               | The applicant's property boundaries                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|    |                                                                                                                               | The facility site boundaries within the applicant's property boundaries                                                                                                                                                                                          |  |  |  |  |  |  |  |
|    |                                                                                                                               | The distance the buffer zone falls into adjacent properties and the property boundaries of the landowners located within the buffer zone                                                                                                                         |  |  |  |  |  |  |  |
|    |                                                                                                                               | The property boundaries of all landowners surrounding the applicant's property (Note: if the application is a major amendment for a lignite mine, the map must include the property boundaries of all landowners adjacent to the new facility (ponds).)          |  |  |  |  |  |  |  |
|    |                                                                                                                               | The point(s) of discharge and highlighted discharge route(s) clearly shown for one mile downstream                                                                                                                                                               |  |  |  |  |  |  |  |
|    |                                                                                                                               | The property boundaries of the landowners located on both sides of the discharge route for one full stream mile downstream of the point of discharge                                                                                                             |  |  |  |  |  |  |  |
|    |                                                                                                                               | The property boundaries of the landowners along the watercourse for a one-half mile radius from the point of discharge if the point of discharge is into a lake, bay, estuary, or affected by tides                                                              |  |  |  |  |  |  |  |
|    |                                                                                                                               | The boundaries of the effluent disposal site (for example, irrigation area or subsurface drainfield site) and all evaporation/holding ponds within the applicant's property                                                                                      |  |  |  |  |  |  |  |
|    |                                                                                                                               | The property boundaries of all landowners surrounding the effluent disposal site                                                                                                                                                                                 |  |  |  |  |  |  |  |
|    |                                                                                                                               | The boundaries of the sludge land application site (for land application of sewage sludge for beneficial use) and the property boundaries of landowners surrounding the applicant's property boundaries where the sewage sludge land application site is located |  |  |  |  |  |  |  |
|    |                                                                                                                               | The property boundaries of landowners within one-half mile in all directions from the applicant's property boundaries where the sewage sludge disposal site (for example, sludge surface disposal site or sludge monofill) is located                            |  |  |  |  |  |  |  |
| В. | add:                                                                                                                          | Indicate by a check mark that a separate list with the landowners' names and mailing resses cross-referenced to the landowner's map has been provided.                                                                                                           |  |  |  |  |  |  |  |
| C. | Indicate by a check mark that the landowners list has also been provided as mailing labels in electronic format (Avery 5160). |                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| D. | Prov                                                                                                                          | vide the source of the landowners' names and mailing addresses: Click to enter text.                                                                                                                                                                             |  |  |  |  |  |  |  |
| E. | As required by <i>Texas Water Code § 5.115</i> , is any permanent school fund land affected by                                |                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |

|    |                      | Yes   No                                                                                                                                                                                                                                                                                                                                                                                                |
|----|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | If <b>yes</b> land(s | , provide the location and foreseeable impacts and effects this application has on the                                                                                                                                                                                                                                                                                                                  |
|    | Click                | to enter text.                                                                                                                                                                                                                                                                                                                                                                                          |
| Se | ection               | 2. Original Photographs (Instructions Page 38)                                                                                                                                                                                                                                                                                                                                                          |
|    |                      | riginal ground level photographs. Indicate with checkmarks that the following on is provided.                                                                                                                                                                                                                                                                                                           |
|    |                      | t least one original photograph of the new or expanded treatment unit location                                                                                                                                                                                                                                                                                                                          |
|    | a<br>e               | It least two photographs of the existing/proposed point of discharge and as much area downstream (photo 1) and upstream (photo 2) as can be captured. If the discharge is to open water body (e.g., lake, bay), the point of discharge should be in the right or left edge of each photograph showing the open water and with as much area on each respective side of the discharge as can be captured. |
|    | □ A                  | t least one photograph of the existing/proposed effluent disposal site                                                                                                                                                                                                                                                                                                                                  |
|    | □ A                  | plot plan or map showing the location and direction of each photograph                                                                                                                                                                                                                                                                                                                                  |
| Se | ection               | 3. Buffer Zone Map (Instructions Page 38)                                                                                                                                                                                                                                                                                                                                                               |
|    | Buffer<br>inforn     | zone map. Provide a buffer zone map on $8.5 \times 11$ -inch paper with all of the following nation. The applicant's property line and the buffer zone line may be distinguished by dashes or symbols and appropriate labels.                                                                                                                                                                           |
|    | •                    | The applicant's property boundary; The required buffer zone; and Each treatment unit; and The distance from each treatment unit to the property boundaries.                                                                                                                                                                                                                                             |
| В. |                      | zone compliance method. Indicate how the buffer zone requirements will be met.                                                                                                                                                                                                                                                                                                                          |
|    |                      | Ownership                                                                                                                                                                                                                                                                                                                                                                                               |
|    |                      | Restrictive easement                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                      | Nuisance odor control                                                                                                                                                                                                                                                                                                                                                                                   |
|    |                      | Variance                                                                                                                                                                                                                                                                                                                                                                                                |
| C. |                      | table site characteristics. Does the facility comply with the requirements regarding table site characteristic found in 30 TAC § 309.13(a) through (d)?                                                                                                                                                                                                                                                 |
|    |                      | Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                |

## DOMESTIC WASTEWATER PERMIT APPLICATION SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

This form applies to TPDES permit applications only. Complete and attach the Supplemental Permit information Form (SPIF) (TCEQ Form 20971).

**Attachment:** Attachment C – Supplemental Permit Information Form (TCEQ-20971)

- o Attachment C.1 USGS Map (SPIF Item 3)
- o Attachment C.2 General Location Map (SPIF Item 5)

#### ATTACHMENT 1

#### INDIVIDUAL INFORMATION Not Applicable

#### Section 1. Individual Information (Instructions Page 41)

Complete this attachment if the facility applicant or co-applicant is an individual. Make additional copies of this attachment if both are individuals.

Prefix (Mr., Ms., Miss): Click to enter text.

Full legal name (Last Name, First Name, Middle Initial): Click to enter text.

Driver's License or State Identification Number: Click to enter text.

Date of Birth: Click to enter text.

Mailing Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Phone Number: Click to enter text. Fax Number: Click to enter text.

E-mail Address: Click to enter text.

CN: Click to enter text.

#### For Commission Use Only:

**Customer Number:** 

Regulated Entity Number:

Permit Number:

## DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST OF COMMON DEFICIENCIES

Below is a list of common deficiencies found during the administrative review of domestic wastewater permit applications. To ensure the timely processing of this application, please review the items below and indicate by checking Yes that each item is complete and in accordance applicable rules at 30 TAC Chapters 21, 281, and 305. If an item is not required this application, indicate by checking N/A where appropriate. Please do not submit the application until the items below have been addressed.

| application                            | n until the items below have been addressed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Core Data<br>(Required  <br>Note: Form |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                     |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
|                                        | d Current Industrial Wastewater Permit Application Forms<br>on Nos. 10053 and 10054. Version dated 6/25/2018 or late                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         |                                                        | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes                                                         |
| -                                      | lity Permit Payment Submittal Form (Page 19)<br>payment sent to TCEQ Revenue Section. See instructions for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · mai                                                   | iling ad                                               | ⊠<br>dress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes<br>.)                                                   |
| (Full-size n                           | USGS Quadrangle Topographic Map Attached<br>nap if seeking "New" permit.<br>cceptable for Renewals and Amendments)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                                                         |
| Current/N                              | on-Expired, Executed Lease Agreement or Easement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         | N/A                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                                                         |
| Landowne<br>(See instru                | rs Map<br>ctions for landowner requirements)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         | N/A                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                                                         |
|                                        | All the items shown on the map must be labeled. The applicant's complete property boundaries must be decoundaries of contiguous property owned by the applican The applicant cannot be its own adjacent landowner. You andowners immediately adjacent to their property, regard from the actual facility. If the applicant's property is adjacent to a road, creek, or so the opposite side must be identified. Although the propaplicant's property boundary, they are considered potent of the adjacent road is a divided highway as identified on the applicant does not have to identify the landowner the highway. | t.<br>mus<br>dless<br>strea<br>perti<br>tially<br>the U | t identi<br>of hov<br>am, the<br>es are a<br>affectors | fy the standard fande | e<br>they are<br>owners<br>djacent to<br>ndowners.<br>aphic |

Landowners Labels and Cross Reference List
(See instructions for landowner requirements)

Electronic Application Submittal
(See application submittal requirements on page 23 of the instructions.)

Original signature per 30 TAC § 305.44 − Blue Ink Preferred
(If signature page is not signed by an elected official or principle executive officer, a copy of signature authority/delegation letter must be attached)

Summary of Application (in Plain Language)

✓ Yes

| TCEQ | Hea | Only  |
|------|-----|-------|
| ILEU | use | Unity |



### **TCEQ Core Data Form**

Administrative Report 1.0 Attachment A: TCEQ-10400 (City of Buda)

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175,

#### **SECTION I: General Information**

1. Reason for Submission (If other is checked please describe in space provided.)

| ☐ New Perm    | nit, Registra | ation or Authorization    | Core Data Form      | should be si       | ubmitte    | d with   | the progr               | ram application.)    |           |               |                |  |
|---------------|---------------|---------------------------|---------------------|--------------------|------------|----------|-------------------------|----------------------|-----------|---------------|----------------|--|
| Renewal (     | Core Data     | Form should be submit     | ted with the rene   | wal form)          |            |          | Other                   |                      |           |               |                |  |
| 2. Customer F | Reference     | Number (if issued)        | _                   | ollow this lin     |            |          |                         |                      |           |               |                |  |
| CN 6007398    | 66            |                           | _                   | Central Re         |            | 100      | RN 1                    | 01703288             |           |               |                |  |
| SECTION       | VII:          | Customer                  | Informa             | ation              |            |          |                         |                      |           |               |                |  |
| 4. General Cu | stomer Ir     | nformation                | 5. Effective D      | ate for Cu         | stome      | r Infor  | mation                  | Updates (mm/dd/      | /ууу)     |               |                |  |
| ☐ New Custon  |               |                           | pdate to Custome    |                    |            |          | _                       | ge in Regulated Ent  | ty Owne   | ership        | -              |  |
| ☐Change in Le | gal Name      | (Verifiable with the Te   | kas Secretary of S  | tate or Texa       | as Comp    | ptroller | of Public               | Accounts)            |           |               |                |  |
| The Customer  | · Name su     | ıbmitted here may l       | be updated aut      | omatically         | y base     | d on w   | hat is cu               | urrent and active    | with th   | e Texas Secr  | etary of State |  |
|               |               | oller of Public Accou     |                     |                    |            |          |                         |                      |           |               |                |  |
| 6. Customer L | egal Nam      | ne (If an individual, pri | nt last name first. | eg: Doe, Jo        | ohn)       |          |                         | If new Customer, e   | enter pre | vious Custome | er below:      |  |
| City of Buda  |               |                           |                     |                    |            |          |                         |                      |           |               |                |  |
| 7. TX SOS/CP/ | A Filing N    | umber                     | 8. TX State Ta      | <b>x ID</b> (11 di | gits)      |          |                         | 9. Federal Tax II    | )         | 10. DUNS N    | Number (if     |  |
| 0800018304    |               |                           | 17417072208         |                    |            |          | (9 digits)              |                      |           |               |                |  |
|               |               |                           |                     |                    |            |          | 741707220               |                      |           |               |                |  |
|               |               | T .                       |                     |                    |            | _        |                         |                      |           |               |                |  |
| 11. Type of C | ustomer:      | ☐ Corpora                 | tion                |                    |            | [        | Individual Partnership: |                      |           |               | eral 🗌 Limited |  |
| Government:   | City 🔲        | County 🗌 Federal 🗍        | Local  State        | Other              |            | ] [      | Sole P                  | roprietorship        | Ot        |               |                |  |
| 12. Number o  | f Employ      | ees                       |                     |                    |            |          |                         | 13. Independer       | tly Ow    | ned and Ope   | erated?        |  |
| 0-20 🗆 2      | 21-100        | ☑ 101-250   ☐ 251-        | 500 🗌 501 ar        | nd higher          |            |          |                         | ⊠ Yes [              | □ No      |               |                |  |
| 14. Customer  | Role (Pro     | posed or Actual) – as i   | t relates to the Re | egulated En        | itity list | ed on t  | his form.               | Please check one of  | the follo | wing          |                |  |
| Owner         |               | Operator                  | Own                 | er & Opera         | tor        |          |                         | Other:               |           |               |                |  |
| Occupationa   | ıl Licensee   | Responsible Pa            | rty 🗌 VC            | P/BSA App          | licant     |          |                         | 0                    |           |               |                |  |
| 15. Mailing   | City of B     | uda, 405 E Loop Street    | , Building 100      |                    |            |          |                         |                      |           |               |                |  |
| _             |               |                           |                     |                    |            |          |                         |                      |           |               |                |  |
| Address:      | City          | Buda                      |                     | State              | TX         |          | ZIP                     | 78610                |           | ZIP + 4       |                |  |
| 16. Country N | /lailing In   | formation (if outside     | USA)                |                    | l          | 17. [    | -Mail A                 | ddress (if applicabl | e)        |               |                |  |
|               |               |                           |                     |                    |            |          |                         | oudatx.gov           |           |               |                |  |

| 18. Telephone Number                                |                      |                       | 19. Extension or      | Code                          |               | 20. Fax      | Number (if   | applicable) |                |
|-----------------------------------------------------|----------------------|-----------------------|-----------------------|-------------------------------|---------------|--------------|--------------|-------------|----------------|
| 512 ) 312-0084                                      |                      |                       |                       |                               |               | ( )          | -            |             |                |
| ECTION III:                                         | Regula               | ted Entit             | ty Inform             | ation                         |               | -            |              |             |                |
| 21. General Regulated E                             |                      |                       |                       |                               | ermit applica | ition is als | o required.) |             |                |
| New Regulated Entity                                | Update to            | Regulated Entity Na   | ame 🛭 Update to       | Regulated I                   | intity Inform | nation       |              |             |                |
| The Regulated Entity Na<br>as Inc, LP, or LLC).     | me submitte          | d may be update       | d, in order to mee    | t TCEQ Cor                    | e Data Sta    | ndards (ı    | emoval of o  | rganization | al endings suc |
| 22. Regulated Entity Nar                            | <b>ne</b> (Enter nam | e of the site where t | the regulated action  | is taking pla                 | ce.)          |              |              |             |                |
| City of Buda Wastewater Tre                         | eatment Plant        |                       |                       |                               |               |              |              |             |                |
| 23. Street Address of the Regulated Entity:         | 575 County           | Road 236 (Garison     | Road)                 |                               |               |              |              |             |                |
| (No PO Boxes)                                       | City                 | Buda                  | State                 | ТХ                            | ZIP           | 78610        |              | ZIP + 4     |                |
| 24. County                                          | Hays                 |                       |                       |                               | li            |              |              |             |                |
|                                                     |                      | If no Street          | Address is provid     | ed, fields 2                  | 5-28 are re   | quired.      |              |             |                |
| 25. Description to                                  |                      |                       |                       |                               |               |              |              | €           |                |
| Physical Location:                                  |                      |                       |                       |                               |               |              |              |             |                |
| 26. Nearest City                                    |                      |                       |                       |                               |               | State        |              | Nea         | rest ZIP Code  |
|                                                     |                      |                       |                       |                               |               |              |              |             |                |
| Latitude/Longitude are a<br>used to supply coordina |                      |                       |                       |                               | ata Stand     | ards. (Ge    | ocoding of t | he Physical | Address may b  |
| 27. Latitude (N) In Decin                           | nal:                 | 30.087736             |                       | 28. L                         | ongitude (    | W) In De     | imal:        | 97.84071    | 8              |
| Degrees                                             | Minutes              | Si                    | econds                | Degre                         | es            |              | Minutes      |             | Seconds        |
| 29. Primary SIC Code                                |                      | Secondary SIC Co      | ode                   | <b>31. Prima</b> (5 or 6 digi |               | ode          |              | ondary NAIC | CS Code        |
| (4 digits)<br><br>4952                              | (4 d                 | gits)                 |                       | 221320                        |               |              | (5 or 6 di   | gits)       |                |
| 33. What is the Primary                             | Business of t        | his entity? (Day      | not reneat the SIC or |                               | intion.)      |              |              |             |                |
| Municipal wastewater treat                          |                      | 2                     |                       |                               | ,,            |              |              |             |                |

ΤX

ZIP

**7**8610

( ) =

38. Fax Number (if applicable)

ZIP+4

State

37. Extension or Code

City of Buda, 405 E Loop St, Building 100

Buda

Micah.Grau@budatx.gov

City

34. Mailing
Address:

35. E-Mail Address:

(512)312-0084

36. Telephone Number

| ☐ Dam Safety      | Dam Safety Districts Edwards Aquifer |               |                                                       |                          | Emissions Inv | entory Air                        | Industrial Hazardous Wast                                     |  |  |  |
|-------------------|--------------------------------------|---------------|-------------------------------------------------------|--------------------------|---------------|-----------------------------------|---------------------------------------------------------------|--|--|--|
| Municipal Solid   | Waste                                | ☐ New Source  | OSSF                                                  | ☐ Petroleum Storage Tank |               |                                   | PWS                                                           |  |  |  |
|                   |                                      | Review Air    |                                                       |                          |               |                                   |                                                               |  |  |  |
| Sludge            |                                      | Storm Water   | Title V Air                                           |                          | Tires         |                                   | Used Oil                                                      |  |  |  |
| ☐ Voluntary Clean | ир                                   | ☑ Wastewater  | ☐ Wastewater Agriculture ☐ Water Rig                  |                          |               |                                   | ☑ Other:                                                      |  |  |  |
|                   |                                      |               |                                                       |                          |               |                                   | Air Quality HK0127V                                           |  |  |  |
| ECTION 1          | V: Pr                                | eparer Inf    | ormation                                              | ·                        |               |                                   |                                                               |  |  |  |
| IO. Name: Ma      | . Name: Martin Rumbaugh, P.E., BCEE  |               |                                                       |                          |               | 41. Title: Senior Project Manager |                                                               |  |  |  |
| I2. Telephone Nun | nber                                 | 43. Ext./Code | 44. Fax Number                                        | 45. E-Mail               | Address       |                                   |                                                               |  |  |  |
| 512 ) 457-7728    |                                      |               | <b>( )</b>                                            | martin.rumb              | augh@aecom    | i.com                             |                                                               |  |  |  |
| ECTION \          | /: Au                                | thorized S    | <u>ignature</u>                                       |                          |               |                                   |                                                               |  |  |  |
|                   |                                      |               | wledge, that the information II, Field 6 and/or as re |                          |               |                                   | e, and that I have signature authori<br>entified in field 39. |  |  |  |
| Company:          | City of Bu                           | da            |                                                       | Job Title:               | City Mana     | ger                               |                                                               |  |  |  |
| Name (In Print):  | Micah Gra                            | au            |                                                       |                          |               | Phone:                            | (512)312-0084                                                 |  |  |  |
| Signature:        | nature: mil 6                        |               |                                                       |                          |               | Date:                             | June 17, 2025                                                 |  |  |  |
| Signature:        | m                                    | il h          |                                                       |                          |               | Date:                             | June 17, 2025                                                 |  |  |  |

TCEQ-10400 (11/22) Page 3 of 3



### **TCEQ Core Data Form**

Administrative Report 1.0 Attachment A: TCEQ-10400 (GBRA)

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

#### **SECTION I: General Information**

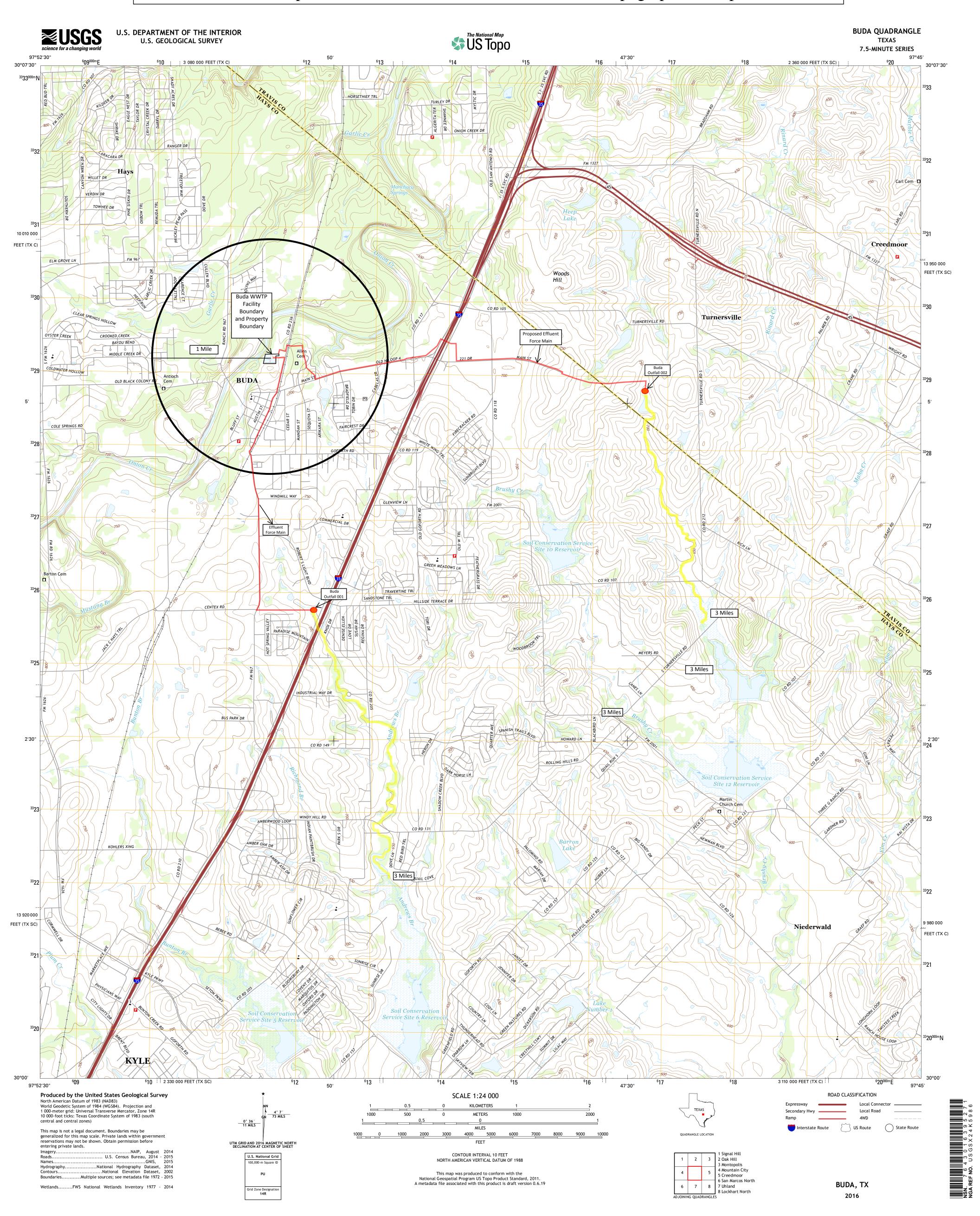
| Control Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Renewal (Core Data Form should be submitted with the renewal form) |                  |                     |                   |                  |                |                                                  | Other               |                              |              |         |          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------|---------------------|-------------------|------------------|----------------|--------------------------------------------------|---------------------|------------------------------|--------------|---------|----------|--|--|
| CECTION II: Customer Information  S. Effective Date for Customer Information Updates (mm/dd/yyyy)  New Customer  Update to Customer Information Change in Regulated Entity Ownership  Change in Legal Name (Verifiable with the Texas Secretary of State or Texas Comptroller of Public Accounts)  The Customer Name submitted here may be updated automatically based on what is current and active with the Texas Secretary of State SOS) or Texas Comptroller of Public Accounts (CPA).  Customer Legal Name (If on individual, print lost name first: eg: Doe, John)  If new Customer, enter previous Customer below:  Update to Customer legal Name (If on individual, print lost name first: eg: Doe, John)  If new Customer, enter previous Customer below:  Usuadalupe-Blanco River Authority  TX SOS/CPA Filing Number  None  8. TX State Tax ID (11 digits)  None  9. Federal Tax ID  10. DUNS Number (If applicable)  11. Type of Customer:  Opplicable)  12. Number of Employees  13. Independently Owned and Operated?  24. Customer Role (Proposed or Actual)—as it relates to the Regulated Entity listed on this form. Please check one of the following  Owner  Occupational Licensee  RN 101703288  RN 101703288  RN 101703288  RN 101703288  RN 101703288  RN 101703288  Perderal Tax ID  10. DUNS Number (If applicable)  11. Individual  Partnership: General Limit covernment: Unity County Federal Local State Other  Sole Proprietorship Other:  25. Number of Employees  16. Turner Role (Proposed or Actual)—as it relates to the Regulated Entity listed on this form. Please check one of the following  Owner  Owner Role (Proposed or Actual)—as it relates to the Regulated Entity listed on this form. Please check one of the following  Owner  Occupational Licensee  City New Braunfels TX  State TX  ZIP 78130  ZIP + 4                                                                                                                                                                                                                                                                    |                                                                    |                  |                     |                   |                  |                | 3. Regulated Entity Reference Number (if issued) |                     |                              |              |         |          |  |  |
| New Customer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>CN 6</b> 011805                                                 | 65               |                     |                   |                  |                | a                                                | 101703288           |                              |              |         |          |  |  |
| New Customer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ECTIO                                                              | VII: Cu          | stomer              | Inforn            | nation           | Į.             |                                                  |                     |                              |              |         |          |  |  |
| Change in Legal Name (Verifiable with the Texas Secretary of State or Texas Comptroller of Public Accounts)  The Customer Name submitted here may be updated automatically based on what is current and active with the Texas Secretary of State SOS) or Texas Comptroller of Public Accounts (CPA).  S. Customer Legal Name (If an individual, print last name first: eg: Doe, John)  If new Customer, enter previous Customer below:  Suadalupe-Blanco River Authority  T. TX SOS/CPA Filing Number  None  8. TX State Tax ID (11 digits)  None  9. Federal Tax ID  10. DUNS Number (if applicable)  13. Type of Customer:    Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l. General Cu                                                      | stomer Inform    | nation              | 5. Effective      | Date for Cu      | istomer Inf    | ormation                                         | Updates (mm/dd      | /уууу)                       |              |         |          |  |  |
| The Customer Name submitted here may be updated automatically based on what is current and active with the Texas Secretary of State (SOS) or Texas Comptroller of Public Accounts (CPA).  5. Customer Legal Name (If an individual, print last name first: eg: Doe, John)  15. Customer Legal Name (If an individual, print last name first: eg: Doe, John)  16. Customer Legal Name (If an individual, print last name first: eg: Doe, John)  17. TX SOS/CPA Filing Number  18. TX State Tax ID (11 digits)  19. Federal Tax ID  10. DUNS Number (If applicable)  11. Type of Customer:  11. Type of Customer:  12. Customer Customer:  13. Independently Owned and Operated?  14. Customer Role (Proposed or Actual) — as it relates to the Regulated Entity listed on this form. Please check one of the following  15. Mailling  16. Customer Name submitted here may be updated automatically based on what is current and active with the Texas Secretary of State (SOS).  17. Type of Customer, enter previous Customer below:  18. TX State Tax ID (11 digits)  19. Federal Tax ID  10. DUNS Number (If applicable)  10. DUNS Number (If applicable)  11. Type of Customer:  12. Number of Employees  13. Independently Owned and Operated?  14. Customer Role (Proposed or Actual) — as it relates to the Regulated Entity listed on this form. Please check one of the following  16. Customer Role (Proposed or Actual) — as it relates to the Regulated Entity listed on this form. Please check one of the following  17. TX Type of Customer:  18. TX State Tax ID (11 digits)  19. Federal Tax ID  10. DUNS Number (If applicable)  10. DUNS Number (If applicable)  11. Type of Customer:  12. Name of Employees  13. Independently Owned and Operated?  14. Customer Role (Proposed or Actual) — as it relates to the Regulated Entity listed on this form. Please check one of the following  16. Customer Role (Proposed or Actual) — as it relates to the Regulated Entity listed on this form. Please check one of the following  17. TX Type of Customer:  18. TX Type of Customer:  19. Federal Tax ID  | New Custon                                                         | ner              | ×υ                  | pdate to Custo    | mer Informat     | tion           | Char                                             | nge in Regulated Er | itity Owne                   | rship        |         |          |  |  |
| South   Sout   | Change in L                                                        | egal Name (Verif | able with the Te    | kas Secretary of  | State or Tex     | as Comptrol    | ler of Public                                    | : Accounts)         |                              |              |         |          |  |  |
| 5. Customer Legal Name (If an individual, print last name first: eg: Doe, John)    If new Customer, enter previous Customer below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The Custome                                                        | r Name submit    | tted here may i     | be updated a      | utomaticall      | y based or     | what is c                                        | urrent and activ    | e with th                    | e Texas Seci | etary   | of State |  |  |
| Suadalupe-Blanco River Authority  7. TX SOS/CPA Filing Number  None    Sovernment:   City   County   Federal   Local   State   Mother   County   Sole Proprietorship   Other:    11. Type of Customer:   County   Federal   Local   State   Mother   Sole Proprietorship   Other:    12. Number of Employees   13. Independently Owned and Operated?   O-20   21-100   101-250   251-500   Sol and higher   Mother   Sole Proprietorship   Other:    14. Customer Role (Proposed or Actual) - as it relates to the Regulated Entity listed on this form. Please check one of the following   Owner   Operator   Owner & Operator   Other:   Owner   Responsible Party   VCP/BSA Applicant   Other:   15. Mailing   Address:   City   New Braunfels TX   State   TX   ZIP   78130   ZIP + 4   ZIP   78130   ZIP + 4   City   New Braunfels TX   ZIP   78130   ZIP + 4   City   New Braunfels TX   ZIP   78130   ZIP + 4   City   New Braunfels TX   ZIP   78130   ZIP + 4   City   New Braunfels TX   ZIP   78130   ZIP + 4   City   New Braunfels TX   ZIP   ZIP   78130   ZIP + 4   City   New Braunfels TX   ZIP   ZIP   78130   ZIP + 4   City   New Braunfels TX   ZIP   Z | SOS) or Texa                                                       | s Comptroller    | of Public Accou     | ints (CPA).       |                  |                |                                                  |                     |                              |              |         |          |  |  |
| Suadalupe-Blanco River Authority  7. TX SOS/CPA Filing Number  None    Sovernment:   City   County   Federal   Local   State   Mother   County   Sole Proprietorship   Other:    11. Type of Customer:   County   Federal   Local   State   Mother   Sole Proprietorship   Other:    12. Number of Employees   13. Independently Owned and Operated?   O-20   21-100   101-250   251-500   Sol and higher   Mother   Sole Proprietorship   Other:    14. Customer Role (Proposed or Actual) - as it relates to the Regulated Entity listed on this form. Please check one of the following   Owner   Operator   Owner & Operator   Other:   Owner   Responsible Party   VCP/BSA Applicant   Other:   15. Mailing   Address:   City   New Braunfels TX   State   TX   ZIP   78130   ZIP + 4   ZIP   78130   ZIP + 4   City   New Braunfels TX   ZIP   78130   ZIP + 4   City   New Braunfels TX   ZIP   78130   ZIP + 4   City   New Braunfels TX   ZIP   78130   ZIP + 4   City   New Braunfels TX   ZIP   78130   ZIP + 4   City   New Braunfels TX   ZIP   ZIP   78130   ZIP + 4   City   New Braunfels TX   ZIP   ZIP   78130   ZIP + 4   City   New Braunfels TX   ZIP   Z | 6. Customer                                                        | Legal Name (If   | an individual pri   | nt last name fir  | st: ea: Doe -li  | ohol           |                                                  | If new Customer     | enter ora                    | vious Custom | er heln | w:       |  |  |
| S. TX SOS/CPA Filing Number   S. TX State Tax ID (11 digits)   S. Federal Tax ID (9 digits)   Partnership:   General   Limit Government:   City   County   Federal   Local   State   Other   Sole Proprietorship   Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    | segui marrie (i) | on marriada, pri    | ne rose marrie ju | st. eg. 150c, s. | J,             |                                                  | in the w costonici  | , cinci pre                  | vious Custom | E7 DEIO | ***      |  |  |
| None    None   None   (9 digits)   applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Guadalupe-Bla                                                      | nco River Author | rity                |                   |                  |                |                                                  |                     |                              |              |         |          |  |  |
| None   None   None   (9 digits)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. TX SOS/CP                                                       | A Filing Numb    | er                  | 8. TX State       | Tax ID (11 di    | igits)         |                                                  | 9. Federal Tax      | ID                           | 10. DUNS     | Numb    | er (if   |  |  |
| 11. Type of Customer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None                                                               |                  |                     | None              |                  |                |                                                  | (9 digits)          |                              | applicable)  |         |          |  |  |
| 11. Type of Customer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |                  |                     |                   |                  |                |                                                  |                     |                              |              |         |          |  |  |
| Sole Proprietorship   Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |                  |                     |                   |                  |                |                                                  | /3-1628865          |                              |              |         |          |  |  |
| 12. Number of Employees    0-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11. Type of C                                                      | ustomer:         | Corpora             | tion              |                  |                | Individ                                          | dual                | Partnership: General Limited |              |         |          |  |  |
| 0-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Government: [                                                      | City Count       | y 🔲 Federal 🔲       | Local 🔲 State     | Other            |                | Sole Proprietorship Other:                       |                     |                              |              |         |          |  |  |
| 14. Customer Role (Proposed or Actual) – as it relates to the Regulated Entity listed on this form. Please check one of the following    Owner   Operator   Owner & Operator   Other:   Occupational Licensee   Responsible Party   VCP/BSA Applicant     2225 E. Common St.     City   New Braunfels TX   State   TX   ZIP   78130   ZIP + 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12. Number                                                         | of Employees     |                     |                   |                  |                |                                                  | 13. Independe       | ntly Ow                      | ned and Op   | erated  | ?        |  |  |
| 14. Customer Role (Proposed or Actual) – as it relates to the Regulated Entity listed on this form. Please check one of the following    Owner   Operator   Owner & Operator   Other:   Occupational Licensee   Responsible Party   VCP/BSA Applicant     2225 E. Common St.     City   New Braunfels TX   State   TX   ZIP   78130   ZIP + 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | □ 0-20 □                                                           | 21-100 🕅 10      | 1-250 🗆 251.        | 500 🗆 501         | and higher       |                |                                                  | ⊠ Yes               | □ No                         |              |         |          |  |  |
| Owner ☑ Operator ☐ Owner & Operator   ☐ Occupational Licensee ☐ Responsible Party ☐ VCP/BSA Applicant      Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                  |                     |                   |                  |                |                                                  |                     |                              |              |         |          |  |  |
| Occupational Licensee Responsible Party VCP/BSA Applicant  2225 E. Common St.  Address:  City New Braunfels TX State TX ZIP 78130 ZIP + 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14. Custome                                                        | r Role (Proposed | d or Actual) – as i | t relates to the  | Regulated Er     | ntity listed o | n this form.                                     | Please check one o  | of the follo                 | wing         |         |          |  |  |
| 15. Mailing  Address:  City New Braunfels TX State TX ZIP 78130 ZIP 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                                                  | _                | •                   |                   |                  |                |                                                  | ☐ Other             | ··                           |              | -       |          |  |  |
| Address:  City New Braunfels TX State TX ZIP 78130 ZIP + 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Occupation                                                         | al Licensee      | Responsible Pa      | rty 🔲             | VCP/BSA App      | licant         |                                                  |                     |                              |              |         |          |  |  |
| Address:  City New Braunfels TX State TX ZIP 78130 ZIP + 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    | 2225 E. Comm     | ion St.             |                   |                  |                |                                                  |                     |                              |              |         |          |  |  |
| City New Braunfels TX State TX ZIP 78130 ZIP + 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15. Mailing                                                        |                  | <u></u>             |                   |                  |                |                                                  |                     |                              |              |         |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Address:                                                           | Site.            | Banana Erita 1997   |                   | 64-4-            | T TV           | 1 210                                            | 70420               |                              | 710 : 4      |         |          |  |  |
| 16. Country Mailing Information (if outside USA)  17. E-Mail Address (if applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    | City Ne          | w Brauntels IX      |                   | State            | IX             | ZIP                                              | /8130               |                              | ZIP+4        |         |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                  |                     |                   |                  |                | _                                                |                     |                              |              |         |          |  |  |
| dnichols@gbra.org                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16. Country I                                                      | Mailing Inform   | ation (if outside   | USA)              |                  | 17             | . E-Mail A                                       | ddress (if applical | ble)                         |              |         |          |  |  |

TCEQ-10400 (11/22) Page 1 of 3

| 18. Telephone Number | 19. Extension or Code | 20. Fax Number (if applicable) |
|----------------------|-----------------------|--------------------------------|
| ( 830 ) 379-5822     | 314                   | ( ) ===                        |

#### **SECTION III: Regulated Entity Information**

21. General Regulated Entity Information (If 'New Regulated Entity" is selected, a new permit application is also required.)


| ☐ New Regulated Entity                            | Update to     | Regulated Entity   | Name 🛭 Update          | to Regi   | ulated Enti  | ity Inform   | ation     |                  |             |                 |
|---------------------------------------------------|---------------|--------------------|------------------------|-----------|--------------|--------------|-----------|------------------|-------------|-----------------|
| The Regulated Entity Nar<br>as Inc, LP, or LLC).  | me submitte   | d may be upda      | ted, in order to me    | eet TCE   | Q Core D     | Data Star    | ndards (r | emoval of or     | ganization  | al endings such |
| 22. Regulated Entity Nam                          | ne (Enter nam | e of the site wher | e the regulated action | on is tak | ing place.   | )            |           |                  |             |                 |
| City of Buda Wastewater Tre                       | atment Plant  |                    |                        | ·         |              |              |           | -                |             |                 |
| 23. Street Address of the Regulated Entity:       | 575 County    | Road 236 (Gariso   | en Rd)                 |           |              |              |           |                  |             |                 |
| (No PO Boxes)                                     | City          | Buda               | State                  | TX        | 2            | ZIP          | 78610     |                  | ZIP + 4     |                 |
| 24. County                                        | Hays          |                    |                        | •         |              |              |           |                  |             |                 |
|                                                   |               | If no Stree        | et Address is provi    | ided, fi  | ields 25-2   | 28 are re    | quired.   |                  | ,           |                 |
| 25. Description to                                |               |                    |                        |           |              |              |           |                  |             |                 |
| Physical Location:                                |               |                    |                        |           |              |              |           |                  |             |                 |
| 26. Nearest City                                  |               |                    |                        |           |              |              | State     |                  | Nea         | rest ZIP Code   |
| Buda                                              |               |                    |                        | ·         |              |              | TX        |                  | 7861        | .0              |
| Latitude/Longitude are rused to supply coordinate |               |                    |                        |           |              | a Standa     | ırds. (Ge | ocoding of th    | ne Physical | Address may be  |
| 27. Latitude (N) In Decim                         |               | 30.087736          |                        |           |              | gitude (V    | V) in Dec | imal:            | 97.84071    | 8               |
| Degrees                                           | Minutes       |                    | Seconds                |           | Degrees      |              |           | Minutes          |             | Seconds         |
|                                                   |               |                    |                        |           |              | <del> </del> |           |                  |             |                 |
| 29. Primary SIC Code                              |               | Secondary SIC      | Code                   |           | Primary !    | NAICS Co     | ode       |                  | ndary NAK   | CS Code         |
| (4 digits)<br>4952                                | (4 0          | ligits)            |                        | 2213      |              |              |           | (5 or 6 di       |             |                 |
| 33. What is the Primary I                         | Rusiness of   | this antitud /o    | n not report the CIC   |           |              | ion l        |           |                  |             |                 |
| Municipal wastewater treatr                       |               | uns enuty? (D      | о ностереастле SIC     | UI IVAIC  | .s aescripti | ion.)        |           |                  |             |                 |
| Withinipal wastewater (reat)                      |               |                    |                        |           |              |              |           |                  |             |                 |
| 34. Mailing                                       | City of Bu    | da, P.O. Box 1380  |                        |           |              |              |           |                  |             |                 |
| Address:                                          | City          | Buda               | State                  | тх        |              | ZIP          | 78610     |                  | ZIP+4       |                 |
| 35. E-Mail Address:                               |               |                    |                        | İ         |              |              |           |                  |             | ŀ               |
| 36. Telephone Number                              |               |                    | 37. Extension o        | r Code    |              | 38. F        | ax Num    | ber (if applicat | ble)        |                 |
| (830) 379-5822                                    |               |                    |                        |           |              | (            | ) -       |                  |             |                 |
|                                                   |               |                    |                        |           |              |              |           |                  |             |                 |

TCEQ-10400 (11/22) Page 2 of 3

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance. Industrial Hazardous Waste Emissions Inventory Air Districts Edwards Aquifer Dam Safety New Source □ PWS Petroleum Storage Tank OSSF Municipal Solid Waste Review Air Used Oil Tires Storm Water ☐ Title V Air Sludge Wastewater Agriculture ■ Water Rights Other: ■ Voluntary Cleanup Air Quality HK0127V **SECTION IV: Preparer Information** Senior Project Manager 40. Name: Martin Rumbaugh, P.E., BCEE 41. Title: 45. E-Mail Address 44. Fax Number 42. Telephone Number 43. Ext./Code martin.rumbaugh@aecom.com ) -(512) 457-7728 **SECTION V: Authorized Signature** 46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39. Job Title: General Manager/CEO Company: Guadalupe-Blanco River Authority Phone: (830) 379-5822 **Darrell Nichols** Name (in Print): Dand Hulu Date: Signature: 11/17/25

TCEQ-10400 (11/22) Page 3 of 3

## Administrative Report 1.0, Section 13 - Attachment B: USGS Topographical Map -



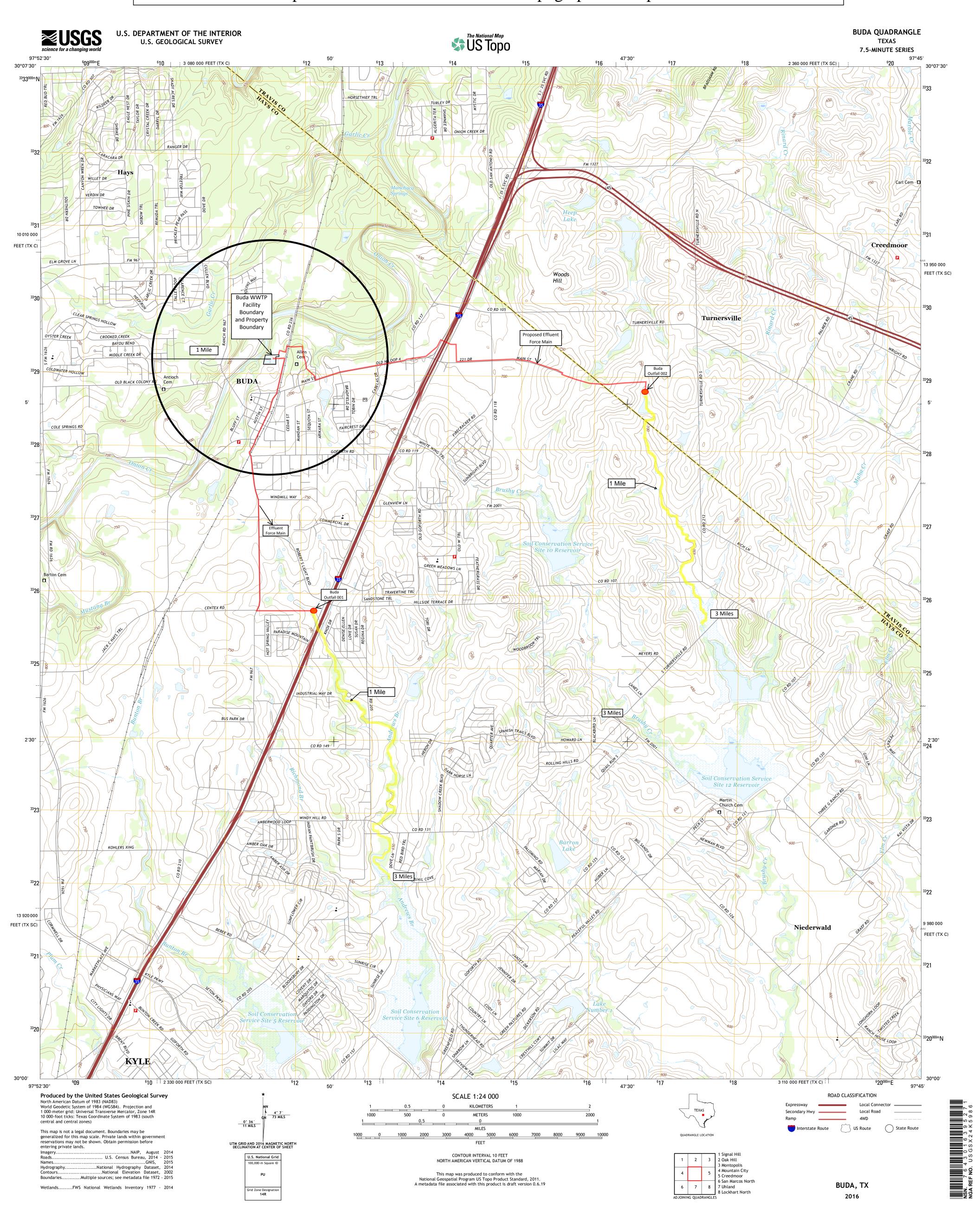
Administrative Report 1.0 Attachment C: TCEQ-20971

## TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

## FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

| TCEQ USE ONLY:                                           |                                                                                                                                                    |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Application type:RenewalMajor A                          | mendment Minor Amendment New                                                                                                                       |
| County:                                                  |                                                                                                                                                    |
| Admin Complete Date:                                     |                                                                                                                                                    |
| Agency Receiving SPIF:                                   |                                                                                                                                                    |
| Texas Historical Commission                              | U.S. Fish and Wildlife                                                                                                                             |
| Texas Parks and Wildlife Department                      | U.S. Army Corps of Engineers                                                                                                                       |
|                                                          |                                                                                                                                                    |
| This form applies to TPDES permit application            | ons only. (Instructions, Page 53)                                                                                                                  |
|                                                          | CEQ will mail a copy to each agency as required by e not completely addressed or further information nformation before issuing the permit. Address |
| may be directed to the Water Quality Division's email at |                                                                                                                                                    |

| Provide the name, address, phone and fax number of an individual that can be contacted to answer specific questions about the property.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prefix (Mr., Ms., Miss):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| First and Last Name: <u>Jesi Mann</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Credential (P.E, P.G., Ph.D., etc.):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Title: Guadalupe-Blanco River Authority                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mailing Address: P.O. Box 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| City, State, Zip Code: <u>Buda, Texas, 78610</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Phone No.: <u>512-312-0526</u> Ext.: Fax No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| E-mail Address: jmann@gbra.org                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| List the county in which the facility is located: <u>Hays</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| If the property is publicly owned and the owner is different than the permittee/applicant,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| please list the owner of the property.  Not Applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TOUT IN PROCESSION OF THE PROC |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Provide a description of the effluent discharge route. The discharge route must follow the flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| of effluent from the point of discharge to the nearest major watercourse (from the point of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify the classified segment number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Outfall 001 to an unnamed tributary; thence to Andrews Branch; thence to Porter Creek in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Segment No. 1810 of the Guadalupe River. Outfall 002 - Outfall 002: to an unnamed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| tributary to SCS Site 11 Reservoir; thence to the SCS Site 12 Reservoir; thence to Brushy Creek; thence to Plum Creek in segment No. 1810 of the Guadalupe River Basin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ozena chemica de con managemente a con chemica de con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| route from the point of discharge for a distance of one mile downstream. (This map is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| required in addition to the map in the administrative report). See Attachment C.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Provide original photographs of any structures 50 years or older on the property. $N/A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Does your project involve any of the following? Check all that apply.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ☐ Proposed access roads, utility lines, construction easements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ☐ Visual effects that could damage or detract from a historic property's integrity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| □ Vibration effects during construction or as a result of project design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ☐ Additional phases of development that are planned for the future                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ☐ Sealing caves, fractures, sinkholes, other karst features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - Jeaning cures, mactares, sinkholes, said reactives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |


2. 3.

4.

5.

|    | ☐ Disturbance of vegetation or wetlands                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | List proposed construction impact (surface acres to be impacted, depth of excavation, sealin of caves, or other karst features):                                                                                                                                                                                                                                                                                                                                                          |
|    | Construction of treatment facility improvements for all permit phases located within the WWTP site were completed as of October 7, 2022. Construction of the proposed off-site 24" effluent force main to Outfall 002 (required for operation under the Final Phase of the TPDES Permit) will impact approximately 12.90 acres. Excavation depths will be approximately 5 ft to 35 ft. No sealing of caves or other karst features is anticipated.                                        |
| 2. | Describe existing disturbances, vegetation, and land use:                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | All areas within the WWTP site are previously disturbed and developed as municipal industrial (WWTP) land use. The alignment of the proposed 24" effluent force main to Outfall 002 includes City park land; railroad ROW crossing; public street and highway rights of way; closed municipal landfill; and private subdivision development land uses and vegetation. Impacts have been permitted coordinated with applicable authorities including TCEQ; USFWS; USACE; THC; UPRR; TXDOT. |
|    | E FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR ENDMENTS TO TPDES PERMITS                                                                                                                                                                                                                                                                                                                                                                                    |
| 3. | List construction dates of all buildings and structures on the property:                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | Not Applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4. | Provide a brief history of the property, and name of the architect/builder, if known.                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | Not Applicable Not Applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# Administrative Report 1.0 Attachment C.1: USGS Topographical Map - SPIF Item 3





#### TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

# SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS

Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

#### DOMESTIC WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

The City of Buda (CN600739866) owns and GBRA (CN601180565) Operates The City of Buda Wastewater Treatment Plant (RN101703288), an activated sludge process plant operated in the complete mix mode. The facility is located at 575 Garison Road, in Buda, Hays County, Texas 78610. This application is for a renewal of the facility's existing permit to treat a capacity of up to 3.5 million gallons per day of annual average flow.

Discharges from the facility are expected to contain Chloride, Total Dissolved Solids, Sulfate, and Alkalinity (CaCO<sub>3</sub>), as well as permitted levels of biochemical oxygen demand, total suspended solids, ammonia, and phosphorus. Additional potential pollutants are listed in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a bar screen, a grit chamber, aeration basins, final clarifiers, effluent filters, chlorine contact chambers and dechlorination. Biosolids residuals are aerated, thickened in a gravity thickener, dewatered using a belt filter press, and transported to other offsite permitted sludge processing facilities for further treatment.

# PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

#### AGUAS RESIDUALES DOMÉSTICAS' /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

La Ciudad de Buda (CN601720741 o CN600739866) opera La Planta de Tratamiento de Aguas Residuales de la Ciudad de Buda (RN101703288), una planta de proceso de lodos activados que opera en modo de mezcla completa. La instalación está ubicada en 575 Garison Road, en Buda, Condado de Hays, Texas 78610. Esta aplicación es para una renovación de la autorización existente para tratar una capacidad de 3.5 millones de galones por día de flujo promedio anual.

Se espera que las descargas de la instalación contengan cloruro, sólidos totales disueltos, sulfato y alcalinidad (CaCO3), asi como los niveles permitidos de demanda bioquimica de oxigeno, sólidos suspendidos totales, amoniaco, y fósforo. Otros contaminantes potenciales se incluyen en el Informe Técnico Doméstico 1.0, Sección 7. Análisis de contaminantes del efluente tratado y hoja de trabajo doméstica 4.0 en el paquete de solicitud de permiso. Aguas residuales domésticas. está tratado por una planta de proceso de lodo activado y las unidades de tratamiento incluyen una rejilla, una cámara de desarenado, estanques de aireación, clarificadores finales, filtros, cámaras de contacto con cloro y descloración. Los residuales sólidos biologicos se tratan por por aeración, espesador de gravidad, y filtro prensa de bandas, y transportado a otras instalaciones externas autorizadas de procesamiento de lodos para tratamiento adicional.

#### INSTRUCTIONS

- 1. Enter the name of applicant in this section. The applicant name should match the name associated with the customer number.
- 2. Enter the Customer Number in this section. Each Individual or Organization is issued a unique 11-digit identification number called a CN (e.g. CN123456789).
- 3. Choose "operates" in this section for existing facility applications or choose "proposes to operate" for new facility applications.
- 4. Enter the name of the facility in this section. The facility name should match the name associated with the regulated entity number.
- 5. Enter the Regulated Entity number in this section. Each site location is issued a unique 11-digit identification number called an RN (e.g. RN123456789).
- 6. Choose the appropriate article (a or an) to complete the sentence.
- 7. Enter a description of the facility in this section. For example: steam electric generating facility, nitrogenous fertilizer manufacturing facility, etc.
- 8. Choose "is" for an existing facility or "will be" for a new facility.
- 9. Enter the location of the facility in this section.
- 10. Enter the City nearest the facility in this section.
- 11. Enter the County nearest the facility in this section.
- 12. Enter the zip code for the facility address in this section.
- 13. Enter a summary of the application request in this section. For example: renewal to discharge 25,000 gallons per day of treated domestic wastewater, new application to discharge process wastewater and stormwater on an intermittent and flow-variable basis, or major amendment to reduce monitoring frequency for pH, etc. If more than one outfall is included in the application, provide applicable information for each individual outfall.
- 14. List all pollutants expected in the discharge from this facility in this section. If applicable, refer to the pollutants from any federal numeric effluent limitations that apply to your facility.
- 15. Enter the discharge types from your facility in this section (e.g., stormwater, process wastewater, once through cooling water, etc.)
- 16. Choose the appropriate verb tense to complete the sentence.
- 17. Enter a description of the wastewater treatment used at your facility. Include a description of each process, starting with initial treatment and finishing with the outfall/point of disposal. Use additional lines for individual discharge types if necessary.

Questions or comments concerning this form may be directed to the Water Quality Division's Application Review and Processing Team by email at <a href="https://www.wevenue.com/worden/worden/concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-this form may be directed to the Water Quality Division's Application Review and Processing Team by email at <a href="https://www.wevenue.com/worden/worden/worden/concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-concerning-to-state-new-con

# THE TONMENTAL OUR LEVEL OF THE PROPERTY OF THE

### TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

# DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671.

The following information is required for all renewal, new, and amendment applications.

# Section 1. Permitted or Proposed Flows (Instructions Page 42)

#### A. Interim I Phase

Design Flow (MGD): <u>1.5</u> 2-Hr Peak Flow (MGD): 6.0

Estimated construction start date: <u>N/A - superse</u>ded Estimated waste disposal start date: N/A - superseded

#### **B.** Interim II Phase

Design Flow (MGD): <u>1.5</u> 2-Hr Peak Flow (MGD): 6.0

Estimated construction start date: <u>N/A - superse</u>ded Estimated waste disposal start date: N/A - superseded

#### C. Interim III Phase

Design Flow (MGD): <u>1.75</u> 2-Hr Peak Flow (MGD): 7.0

Estimated construction start date: <u>Started June 26, 2019, completed October 2022.</u>
Estimated waste disposal start date: Began operation as Interim III Phase October 7, 2022.

#### D. Final Phase

Design Flow (MGD): 3.5 (Total Discharge Limit - Each outfall is also limited to < 2.0 MGD AAF)
2-Hr Peak Flow (MGD): 14.0 (Total Discharge Limit - Each outfall is also limited to < 5,556 gpm 2-Hr Peak)
Estimated construction start date: Final Phase Treatment Facilities construction started on June
26, 2019 and was completed in October 2022. Effluent force main construction to Outfall 002
(required for operation under Final Phase) is anticipated to start in December 2025
Estimated waste disposal start date: Effluent Force Main start date + 180 days

#### E. Current Operating Phase

Provide the startup date of the facility: Interim III Phase, October 7, 2022.

# Section 2. Treatment Process (Instructions Page 42)

#### A. Current Operating Phase

Provide a detailed description of the treatment process. **Include the type of treatment plant, mode of operation, and all treatment units.** Start with the plant's head works and

finish with the point of discharge. Include all sludge processing and drying units. **If more than one phase exists or is proposed, a description of** *each phase* **must be provided**.

Exhibit A. Port or pipe diameter at the discharge point: (existing) 20 inches at outfall 001 in all phases, + (future/proposed) 24 inches at outfall 002 in Final phase).

| phases, + (future/proposed) 24 inches at outfall 002 in Final phase). |  |  |  |  |  |  |
|-----------------------------------------------------------------------|--|--|--|--|--|--|
|                                                                       |  |  |  |  |  |  |
|                                                                       |  |  |  |  |  |  |
|                                                                       |  |  |  |  |  |  |

#### **B.** Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) of each treatment unit, accounting for *all* phases of operation.

#### Table 1.0(1) - Treatment Units

| Treatment Unit Type | Number of Units | Dimensions (L x W x D) |
|---------------------|-----------------|------------------------|
| Exhibit B           |                 |                        |
|                     |                 |                        |
|                     |                 |                        |
|                     |                 |                        |
|                     |                 |                        |
|                     |                 |                        |

#### C. Process Flow Diagram

Provide flow diagrams for the existing facilities and **each** proposed phase of construction.

Attachment: Exhibit C

# Section 3. Site Information and Drawing (Instructions Page 43)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

Latitude: N/ALongitude: N/A

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

Latitude: <u>N/A</u>Longitude: <u>N/A</u>

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and
- If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Attachment: Exhibit D and Exhibit E

Provide the name **and** a description of the area served by the treatment facility.

The Buda WWTP serves the City of Buda's City Limits and Extraterritorial Jurisdiction, with the exceptions of 1) Sunfield MUD and 2) properties with existing on-site sewage facilities (OSSFs). The overall WWTP service area and major sewersheds are shown in Exhibit E, reproduced from the "2017 City of Buda Water and Wastewater Impact Fee Report" by Freese & Nichols, Inc.

Collection System Information **for wastewater TPDES permits only**: Provide information for each **uniquely owned** collection system, existing and new, served by this facility, including satellite collection systems. **Please see the instructions for a detailed explanation and examples.** 

#### **Collection System Information**

| Collection System Name | Owner Name | Owner Type      | Population Served |
|------------------------|------------|-----------------|-------------------|
|                        |            | Choose an item. |                   |

# Section 4. Unbuilt Phases (Instructions Page 44)

| The second of th |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ⊠ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| If yes, does the existing permit contain a phase that has not been constructed within five                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>years</b> of being authorized by the TCEQ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Is the application for a renewal of a permit that contains an unbuilt phase or phases?

⊠ Yes □ No

If yes, provide a detailed discussion regarding the continued need for the unbuilt phase. Failure to provide sufficient justification may result in the Executive Director recommending denial of the unbuilt phase or phases.

Construction of all Final Phase Treatment Facilities including effluent pumping facilities for conveyance of effluent to Outfall 002 was completed as of October 7, 2022. However, construction of the 24" effluent force main to Outfall 002 (which is required for operation under the permit Final Phase) was delayed by easement acquisition, and is pending construction start in late 2025. The second outfall and the Final Phase permitted flow capacity continue to be required to meet the City's ongoing rapid growth and development, and to provide redundancy to manage effluent disposal in the event of a failure of the existing 20" force main to Outfall 001.

# Section 5. Closure Plans (Instructions Page 44)

Have any treatment units been taken out of service permanently, or will any units be taken out of service in the next five years?

□ Yes ⊠ No

If yes, was a closure plan submitted to the TCEQ?

|      | □ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| If : | yes, provide a brief description of the closure and the date of plan approval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | ection 6. Permit Specific Requirements (Instructions Page 44) r applicants with an existing permit, check the Other Requirements or Special                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pr   | ovisions of the permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A.   | Summary transmittal  Have plans and specifications been approved for the existing facilities and each proposed phase?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | ⊠ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | <b>If yes</b> , provide the date(s) of approval for each phase: <u>September 7, 2010</u> , <u>Existing/Interim I;</u> <u>July 13, 2018 Interim II and Final Phases</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | Provide information, including dates, on any actions taken to meet a <i>requirement or provision</i> pertaining to the submission of a summary transmittal letter. <b>Provide a copy of an approval letter from the TCEQ, if applicable</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | The existing permit requires the permittee to submit a summary transmittal letter prior to the construction of the treatment facilities for the 1.75 MGD and 3.50 MGD phases. The following exhibits document compliance with this requirement: Exhibit F provides a copy of the TCEQ approval letter dated September 7, 2010 for construction of the now superseded Interim I/II Phase treatment facilities (1.5 MGD). Exhibit G provides the TCEQ approval letter for construction of the existing Interim III (1.75 MGD) and Final Phase (3.5 MGD) WWTP treatment facilities. Exhibit H provides a copy of the TCEQ approval letter for construction of the proposed effluent force main to proposed Outfall 002, which is required for operation under the permit Final Phase. |
| B.   | Buffer zones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | Have the buffer zone requirements been met?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the buffer zones.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| No        | ot Applicable                                                                                                                                                                                                                                                                                                                              |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                                                                                                                                                            |
| Otl       | now actions we grained by the gramont normalt                                                                                                                                                                                                                                                                                              |
|           | ner actions required by the current permit                                                                                                                                                                                                                                                                                                 |
| sub       | es the <i>Other Requirements</i> or <i>Special Provisions</i> section in the existing permit require omission of any other information or other required actions? Examples include iffication of Completion, progress reports, soil monitoring data, etc.                                                                                  |
|           | ⊠ Yes □ No                                                                                                                                                                                                                                                                                                                                 |
| -         | <b>es</b> , provide information below on the status of any actions taken to meet the ditions of an <i>Other Requirement</i> or <i>Special Provision</i> .                                                                                                                                                                                  |
| pr<br>Int | ans and Specifications approval was obtained from TCEQ for the construction of the oposed Interim III and Final Phase improvements on July 13, 2018. Construction of the terim III and Final Phase facilities commenced on June 26, 2019 and was completed of October 2022. Construction of the offsite effluent force main to Outfall 002 |
|           | equired for operation under the permit Final Phase) was delayed by easement                                                                                                                                                                                                                                                                |
|           | quisition and is anticipated to begin in December, 2025.                                                                                                                                                                                                                                                                                   |
|           |                                                                                                                                                                                                                                                                                                                                            |
| C         | t and means treatment                                                                                                                                                                                                                                                                                                                      |
|           | t and grease treatment  Acceptance of grit and grease waste                                                                                                                                                                                                                                                                                |
|           |                                                                                                                                                                                                                                                                                                                                            |
|           | Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?                                                                                                |
|           | □ Yes ⊠ No                                                                                                                                                                                                                                                                                                                                 |
|           | If No, stop here and continue with Subsection E. Stormwater Management.                                                                                                                                                                                                                                                                    |
| 2.        | Grit and grease processing                                                                                                                                                                                                                                                                                                                 |
|           | Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility.                                        |
|           | Not Applicable                                                                                                                                                                                                                                                                                                                             |
|           |                                                                                                                                                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                                                                                                                                                            |

# 3. Grit disposal

C.

D.

Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal?

|            |     | □ Yes ⊠ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |     | <b>If No</b> , contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.                                                                                                                                                                                                                                  |
|            |     | Describe the method of grit disposal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |     | Not Applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | 4.  | Grease and decanted liquid disposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            |     | Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335.                                                                                                                                                                                                                                                                                                                              |
|            |     | Describe how the decant and grease are treated and disposed of after grit separation.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |     | Not Applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>E</b> . | Sto | ormwater management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Е.         |     | ormwater management  Applicability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Е.         |     | Applicability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Е.         |     | Applicability  Does the facility have a design flow of 1.0 MGD or greater in any phase?                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Е.         |     | Applicability  Does the facility have a design flow of 1.0 MGD or greater in any phase?                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| E.         |     | Applicability  Does the facility have a design flow of 1.0 MGD or greater in any phase?                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| E.         |     | Applicability  Does the facility have a design flow of 1.0 MGD or greater in any phase?                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| E.         | 1.  | Applicability  Does the facility have a design flow of 1.0 MGD or greater in any phase?                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| E.         | 1.  | Applicability  Does the facility have a design flow of 1.0 MGD or greater in any phase?                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| E.         | 1.  | Applicability  Does the facility have a design flow of 1.0 MGD or greater in any phase?                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| E.         | 1.  | Applicability  Does the facility have a design flow of 1.0 MGD or greater in any phase?                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| E.         | 1.  | Applicability  Does the facility have a design flow of 1.0 MGD or greater in any phase?                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| E.         | 1.  | Does the facility have a design flow of 1.0 MGD or greater in any phase?     Yes   No     No     Yes   No     No     Yes   No     No     If no to both of the above, then skip to Subsection F, Other Wastes Received.    MSGP coverage     Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?    Yes   No     No     Yes   No     No     If yes, please provide MSGP Authorization Number and skip to Subsection F, Other |
| E.         | 1.  | Applicability  Does the facility have a design flow of 1.0 MGD or greater in any phase?                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# 3. Conditional exclusion Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)? $\boxtimes$ Yes No **If yes**, please explain below then proceed to Subsection F. Other Wastes Received: Not Applicable 4. Existing coverage in individual permit Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit? Yes $\boxtimes$ No If ves, provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.

### 5. Zero stormwater discharge

Not Applicable

Do you intend to have no discharge of stormwater via use of evaporation or other means?

□ Yes ⊠ No

If yes, explain below then skip to Subsection F. Other Wastes Received.

Stormwater runoff originating from rainfall outside the WWTP's flood protection berm is routed around the WWTP site and discharged to Onion Creek in accordance with the TPDES MSGP TXR050000, MSGP Authorization Number TXR05 AU97. Stormwater runoff originating from rainfall inside the WWTP's flood protection berm is routed to a stormwater retention pond inside the WWTP site and held for evaporation. The on-site stormwater retention pond capacity is designed to retain stormwater runoff through the peak runoff intensity of a 100-year design storm event. In the event of runoff exceeding the 100-year design storm, or a series of rainfall events cumulatively exceeding the holding capacity of the retention pond, provisions are included in the WWTP design to allow excess stormwater runoff to be treated through the WWTP treatment process and discharged with the treated WWTP effluent.

Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of

above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.

6. Request for coverage in individual permit

Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?

□ Yes ⋈ No

If yes, provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state.

Not Applicable

Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.

#### F. Discharges to the Lake Houston Watershed

Does the facility discharge in the Lake Houston watershed?

□ Yes ⊠ No

If yes, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions. Click to enter text.

### G. Other wastes received including sludge from other WWTPs and septic waste

#### 1. Acceptance of sludge from other WWTPs

Does or will the facility accept sludge from other treatment plants at the facility site?

□ Yes ⊠ No

If yes, attach sewage sludge solids management plan. See Example 5 of instructions.

In addition, provide the date the plant started or is anticipated to start accepting sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an estimate of the  $BOD_5$  concentration of the sludge, and the design  $BOD_5$  concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

| Not Applicable |  |  |  |
|----------------|--|--|--|
|                |  |  |  |
|                |  |  |  |

| pated to start callons or vaste, and the so note if this |
|----------------------------------------------------------|
|                                                          |
|                                                          |
|                                                          |
|                                                          |
|                                                          |
|                                                          |
| may be                                                   |
| CERCLA or                                                |
| ing the                                                  |
|                                                          |
| mate how<br>), a<br>nemical or<br>ns or has not          |
|                                                          |
|                                                          |
|                                                          |
|                                                          |
|                                                          |
|                                                          |
| <i>CE</i> ing mat                                        |

Note: Permits that accept sludge from other wastewater treatment plants may be

required to have influent flow and organic loading monitoring.

Section 7. Pollutant Analysis of Treated Effluent (Instructions Page

Is the facility in operation?

⊠ Yes □ No

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). *Water treatment facilities* discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. **These tables are not applicable for a minor amendment without renewal.** See the instructions for guidance.

Note: The sample date must be within 1 year of application submission.

Table1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities

| Pollutant                               | Average<br>Conc. | Max<br>Conc. | No. of<br>Samples | Sample<br>Type | Sample<br>Date/Time     |
|-----------------------------------------|------------------|--------------|-------------------|----------------|-------------------------|
| CBOD <sub>5</sub> , mg/l                |                  | 1            | 1                 | Grab           | 06/26/2025;<br>04:33 PM |
| Total Suspended Solids, mg/l            |                  | 0.60         | 1                 | Grab           | 06/27/2025;<br>04:51 PM |
| Ammonia Nitrogen, mg/l                  |                  | <0.10        | 1                 | Grab           | 06/27/2025;<br>12:13 PM |
| Nitrate Nitrogen, mg/l                  |                  | 15.7         | 1                 | Grab           | 06/26/2025;<br>03:48 PM |
| Total Kjeldahl Nitrogen, mg/l           |                  | <0.20        | 1                 | Grab           | 07/2/2025;<br>03:57 PM  |
| Sulfate, mg/l                           |                  | 144          | 1                 | Grab           | 06/26/2025;<br>02:25 PM |
| Chloride, mg/l                          |                  | 275          | 1                 | Grab           | 06/26/2025;<br>02:25 PM |
| Total Phosphorus, mg/l                  |                  | 0.240        | 1                 | Grab           | 06/30/2025;<br>04:27 PM |
| pH, standard units                      |                  | 7.3          | 1                 | Grab           | 06/26/2025;<br>03:46 PM |
| Dissolved Oxygen*, mg/l                 |                  | 7.5          | 1                 | Grab           | 06/26/2025;<br>09:55 AM |
| Chlorine Residual, mg/l                 |                  | 0.260        | 1                 | Grab           | 06/26/2025;<br>09:55 AM |
| E.coli (CFU/100ml) freshwater           |                  | <1           | 1                 | Grab           | 06/26/2025;<br>04:33 PM |
| Entercocci (CFU/100ml)<br>saltwater     | N/A              |              |                   |                |                         |
| Total Dissolved Solids, mg/l            |                  | 744          | 1                 | Grab           | 06/27/2025;<br>02:52 PM |
| Electrical Conductivity,<br>µmohs/cm, † | N/A              |              |                   |                |                         |
| Oil & Grease, mg/l                      |                  | <4.49        | 1                 | Grab           | 07/2/2025;<br>07:24 AM  |

| Alkalinity (CaCO <sub>3</sub> )*, mg/l |  | 76.6 | 1 | Grab | 06/30/2025;<br>02:46 PM |
|----------------------------------------|--|------|---|------|-------------------------|
|----------------------------------------|--|------|---|------|-------------------------|

<sup>\*</sup>TPDES permits only †TLAP permits only

#### Table 1.0(3) - Pollutant Analysis for Water Treatment Facilities

| Pollutant                             | Average<br>Conc. | Max<br>Conc. | No. of<br>Samples | Sample<br>Type | Sample<br>Date/Time |
|---------------------------------------|------------------|--------------|-------------------|----------------|---------------------|
| Total Suspended Solids, mg/l          | N/A              | N/A          | N/A               | N/A            | N/A                 |
| Total Dissolved Solids, mg/l          | N/A              | N/A          | N/A               | N/A            | N/A                 |
| pH, standard units                    | N/A              | N/A          | N/A               | N/A            | N/A                 |
| Fluoride, mg/l                        | N/A              | N/A          | N/A               | N/A            | N/A                 |
| Aluminum, mg/l                        | N/A              | N/A          | N/A               | N/A            | N/A                 |
| Alkalinity (CaCO <sub>3</sub> ), mg/l | N/A              | N/A          | N/A               | N/A            | N/A                 |

# Section 8. Facility Operator (Instructions Page 49)

Facility Operator Name: Exhibit I

Facility Operator's License Classification and Level: Exhibit I

Facility Operator's License Number: Exhibit I

# Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 50)

#### A. WWTP's Sewage Sludge or Biosolids Management Facility Type

| Che         | ck all that apply. See instructions for guidance        |
|-------------|---------------------------------------------------------|
| $\boxtimes$ | Design flow>= 1 MGD                                     |
|             | Serves >= 10,000 people                                 |
|             | Class I Sludge Management Facility (per 40 CFR § 503.9) |
| $\boxtimes$ | Biosolids generator                                     |
|             |                                                         |

- ☐ Biosolids end user land application (onsite)
- ☐ Biosolids end user surface disposal (onsite)
- ☐ Biosolids end user incinerator (onsite)

### B. WWTP's Sewage Sludge or Biosolids Treatment Process

Check all that apply. See instructions for guidance.

- ☐ Aerobic Digestion
- ☐ Lower Temperature Composting
- □ Lime Stabilization
- ☐ Higher Temperature Composting

|             | Heat Drying                                                                       |
|-------------|-----------------------------------------------------------------------------------|
|             | Thermophilic Aerobic Digestion                                                    |
|             | Beta Ray Irradiation                                                              |
|             | Gamma Ray Irradiation                                                             |
|             | Pasteurization                                                                    |
| $\boxtimes$ | Preliminary Operation (e.g. grinding, de-gritting, blending)                      |
| $\boxtimes$ | Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter) |
|             | Sludge Lagoon                                                                     |
|             | Temporary Storage (< 2 years)                                                     |
|             | Long Term Storage (>= 2 years)                                                    |
|             | Methane or Biogas Recovery                                                        |
|             | Other Treatment Process: Click to enter text.                                     |

#### C. Sewage Sludge or Biosolids Management

Provide information on the *intended* sewage sludge or biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize all sewage sludge or biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

#### **Biosolids Management**

| Management<br>Practice | Handler or<br>Preparer<br>Type                    | Bulk or Bag<br>Container | Amount (dry<br>metric tons) | Pathogen<br>Reduction<br>Options                                           | Vector<br>Attraction<br>Reduction<br>Option                                |
|------------------------|---------------------------------------------------|--------------------------|-----------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Other                  | Off-site<br>Third-Party<br>Handler or<br>Preparer | Bulk                     |                             | N/A:<br>Transported<br>to another<br>facility for<br>further<br>processing | N/A:<br>Transported to<br>another<br>facility for<br>further<br>processing |
| Choose an item.        | Choose an item.                                   | Choose an item.          |                             | Choose an item.                                                            | Choose an item.                                                            |
| Choose an item.        | Choose an item.                                   | Choose an item.          |                             | Choose an item.                                                            | Choose an item.                                                            |

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): <u>Transport to another permitted WWTP or sludge processing facility. Please see Exhibit J for sludge acceptance agreements.</u>

| D. | Disposal site                                                                                                                                                                                                                                  |                |                   |                 |                   |   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|-----------------|-------------------|---|
|    | Disposal site name: 1) Austin Wastewater Processing Facility (Wastewater Residuals Management, LLC); 2) JV Dirt and Loam 5RC Compost Facility (TCEQ Permit No. 2310)  TCEQ permit or registration number: 1) MSW-2384; 2) TCEQ Permit No. 2310 |                |                   |                 |                   |   |
|    |                                                                                                                                                                                                                                                |                |                   |                 |                   |   |
|    | County where disposal site is located: 1) Travis (                                                                                                                                                                                             | County         | ; 2) Tra          | vis Cou         | nty               |   |
| E. | Transportation method                                                                                                                                                                                                                          |                |                   |                 |                   |   |
|    | Method of transportation (truck, train, pipe, otl                                                                                                                                                                                              | ner): <u>T</u> | ruck (al          | locatio         | ns)               |   |
|    | Name of the hauler: 1) Sheridan Environmental; 2                                                                                                                                                                                               | ) Wast         | ewater 7          | <u> Transpo</u> | rt Services, Inc. |   |
|    | Hauler registration number: 1) Permit #24220; 2                                                                                                                                                                                                | ) Permi        | it #24 <u>3</u> 4 | 13              |                   |   |
|    | Sludge is transported as a:                                                                                                                                                                                                                    |                |                   |                 |                   |   |
|    | Liquid ☐ semi-liquid ☐ semi-solid                                                                                                                                                                                                              | $\boxtimes$    | so                | lid □           |                   |   |
| Se | ection 10. Permit Authorization for S<br>(Instructions Page 52)                                                                                                                                                                                | ewaş           | ge Slu            | dge I           | Disposal          |   |
| Α. | Beneficial use authorization                                                                                                                                                                                                                   |                |                   |                 |                   |   |
|    | Does the existing permit include authorization beneficial use?                                                                                                                                                                                 | for lar        | nd appl           | ication         | of biosolids for  | r |
|    | □ Yes ⊠ No                                                                                                                                                                                                                                     |                |                   |                 |                   |   |
|    | <b>If yes</b> , are you requesting to continue this auth beneficial use?                                                                                                                                                                       | orizat         | ion to l          | and ap          | oly biosolids fo  | r |
|    | □ Yes ⊠ No                                                                                                                                                                                                                                     |                |                   |                 |                   |   |
|    | If yes, is the completed <b>Application for Permit for Beneficial Land Use of Sewage Sludg</b> (TCEQ Form No. 10451) attached to this permit application (see the instructions for details)?                                                   |                |                   |                 | _                 |   |
|    | □ Yes ⊠ No                                                                                                                                                                                                                                     |                |                   |                 |                   |   |
| B. | Sludge processing authorization                                                                                                                                                                                                                |                |                   |                 |                   |   |
|    | Does the existing permit include authorization for any of the following sludge processing storage or disposal options?                                                                                                                         |                |                   | cessing,        |                   |   |
|    | Sludge Composting                                                                                                                                                                                                                              |                | Yes               |                 | No                |   |
|    | Marketing and Distribution of Biosolids                                                                                                                                                                                                        |                | Yes               |                 | No                |   |
|    | Sludge Surface Disposal or Sludge Monofill                                                                                                                                                                                                     |                | Yes               |                 | No                |   |
|    | Temporary storage in sludge lagoons                                                                                                                                                                                                            |                | Yes               | $\boxtimes$     | No                |   |
|    | If yes to any of the above sludge options and the authorization, is the completed <b>Domestic Wast Technical Report (TCEQ Form No. 10056)</b> atta                                                                                             | ewate          | r Perm            | it Appl         | ication: Sewage   |   |
|    | □ Yes □ No                                                                                                                                                                                                                                     |                |                   |                 |                   |   |

| Section 11. Sewage Sludge Lagoons (Instructions Page 53)                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Does this facility include sewage sludge lagoons?                                                                                                                                                            |
| □ Yes ⊠ No                                                                                                                                                                                                   |
| If yes, complete the remainder of this section. If no, proceed to Section 12.                                                                                                                                |
| A. Location information                                                                                                                                                                                      |
| The following maps are required to be submitted as part of the application. For each map, provide the Attachment Number.                                                                                     |
| Original General Highway (County) Map:                                                                                                                                                                       |
| Attachment: <u>N/A</u>                                                                                                                                                                                       |
| • USDA Natural Resources Conservation Service Soil Map:                                                                                                                                                      |
| Attachment: <u>N/A</u>                                                                                                                                                                                       |
| Federal Emergency Management Map:                                                                                                                                                                            |
| Attachment: <u>N/A</u>                                                                                                                                                                                       |
| • Site map:                                                                                                                                                                                                  |
| Attachment: <u>N/A</u>                                                                                                                                                                                       |
| Discuss in a description if any of the following exist within the lagoon area. Check all that apply.                                                                                                         |
| □ Overlap a designated 100-year frequency flood plain                                                                                                                                                        |
| □ Soils with flooding classification                                                                                                                                                                         |
| □ Overlap an unstable area                                                                                                                                                                                   |
| □ Wetlands                                                                                                                                                                                                   |
| ☐ Located less than 60 meters from a fault                                                                                                                                                                   |
| □ None of the above                                                                                                                                                                                          |
| Attachment: N/A                                                                                                                                                                                              |
| If a portion of the lagoon(s) is located within the 100-year frequency flood plain, provide the protective measures to be utilized including type and size of protective structures:                         |
| N/A                                                                                                                                                                                                          |
| P. Tomporary storage information                                                                                                                                                                             |
| <b>B.</b> Temporary storage information  Provide the results for the pollutant screening of sludge lagoons. These results are in addition to pollutant results in <i>Section 7 of Technical Report 1.0</i> . |
| Nitrate Nitrogen, mg/kg: Click to enter text.                                                                                                                                                                |
| Total Kieldahl Nitrogen, mg/kg: Click to enter text.                                                                                                                                                         |

Total Nitrogen (=nitrate nitrogen + TKN), mg/kg: Click to enter text.

| Phosphorus, mg/kg: Click to enter text.  Potassium, mg/kg: Click to enter text.  pH, standard units: Click to enter text.  Ammonia Nitrogen mg/kg: Click to enter text.  Arsenic: Click to enter text.  Cadmium: Click to enter text.  Chromium: Click to enter text. |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| pH, standard units: Click to enter text.  Ammonia Nitrogen mg/kg: Click to enter text.  Arsenic: Click to enter text.  Cadmium: Click to enter text.                                                                                                                  |              |
| Ammonia Nitrogen mg/kg: <u>Click to enter text.</u> Arsenic: <u>Click to enter text.</u> Cadmium: <u>Click to enter text.</u>                                                                                                                                         |              |
| Arsenic: Click to enter text.  Cadmium: Click to enter text.                                                                                                                                                                                                          |              |
| Cadmium: Click to enter text.                                                                                                                                                                                                                                         |              |
|                                                                                                                                                                                                                                                                       |              |
| Chromium: <u>Click to enter text.</u>                                                                                                                                                                                                                                 |              |
|                                                                                                                                                                                                                                                                       |              |
| Copper: <u>Click to enter text.</u>                                                                                                                                                                                                                                   |              |
| Lead: <u>Click to enter text.</u>                                                                                                                                                                                                                                     |              |
| Mercury: <u>Click to enter text.</u>                                                                                                                                                                                                                                  |              |
| Molybdenum: Click to enter text.                                                                                                                                                                                                                                      |              |
| Nickel: Click to enter text.                                                                                                                                                                                                                                          |              |
| Selenium: Click to enter text.                                                                                                                                                                                                                                        |              |
| Zinc: Click to enter text.                                                                                                                                                                                                                                            |              |
| Total PCBs: Click to enter text.                                                                                                                                                                                                                                      |              |
| Provide the following information:                                                                                                                                                                                                                                    |              |
| Volume and frequency of sludge to the lagoon(s): Click to enter text.                                                                                                                                                                                                 |              |
| Total dry tons stored in the lagoons(s) per 365-day period: Click to enter                                                                                                                                                                                            | er text.     |
| Total dry tons stored in the lagoons(s) over the life of the unit: Click to e                                                                                                                                                                                         | enter text.  |
| C. Liner information                                                                                                                                                                                                                                                  |              |
| Does the active/proposed sludge lagoon(s) have a liner with a maximum hy conductivity of $1x10^{-7}$ cm/sec?                                                                                                                                                          | ydraulic     |
| □ Yes □ No                                                                                                                                                                                                                                                            |              |
|                                                                                                                                                                                                                                                                       |              |
| If yes, describe the liner below. Please note that a liner is required.                                                                                                                                                                                               |              |
| If yes, describe the liner below. Please note that a liner is required.  Click to enter text.                                                                                                                                                                         |              |
|                                                                                                                                                                                                                                                                       |              |
|                                                                                                                                                                                                                                                                       |              |
|                                                                                                                                                                                                                                                                       |              |
|                                                                                                                                                                                                                                                                       |              |
|                                                                                                                                                                                                                                                                       |              |
|                                                                                                                                                                                                                                                                       |              |
| Click to enter text.                                                                                                                                                                                                                                                  | e lagoon(s): |
| Click to enter text.  D. Site development plan                                                                                                                                                                                                                        | e lagoon(s): |
| Click to enter text.  D. Site development plan Provide a detailed description of the methods used to deposit sludge in the                                                                                                                                            | e lagoon(s): |
| Click to enter text.  D. Site development plan Provide a detailed description of the methods used to deposit sludge in the                                                                                                                                            | e lagoon(s): |

Attach the following documents to the application. • Plan view and cross-section of the sludge lagoon(s) **Attachment**: Click to enter text. • Copy of the closure plan Attachment: Click to enter text. Copy of deed recordation for the site Attachment: Click to enter text. Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons **Attachment**: Click to enter text. Description of the method of controlling infiltration of groundwater and surface water from entering the site Attachment: Click to enter text. Procedures to prevent the occurrence of nuisance conditions Attachment: Click to enter text. E. Groundwater monitoring Is groundwater monitoring currently conducted at this site, or are any wells available for groundwater monitoring, or are groundwater monitoring data otherwise available for the sludge lagoon(s)? Yes □ No If groundwater monitoring data are available, provide a copy. Provide a profile of soil types encountered down to the groundwater table and the depth to the shallowest groundwater as a separate attachment. Attachment: Click to enter text. Section 12. Authorizations/Compliance/Enforcement (Instructions Page 54) A. Additional authorizations Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc? Yes 🗖 No **If yes**, provide the TCEO authorization number and description of the authorization: 30 TAC 210 effluent reuse authorization (Exhibit K)

| B. Permittee enforcement status                                                                                                                                                                                                                                                                                                                                                                                |                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Is the permittee currently under enforcement for this facility?                                                                                                                                                                                                                                                                                                                                                |                        |
| □ Yes ⊠ No                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| Is the permittee required to meet an implementation schedule for compliance or enforcement?                                                                                                                                                                                                                                                                                                                    |                        |
| □ Yes ⊠ No                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| <b>If yes</b> to either question, provide a brief summary of the enforcement, the impless schedule, and the current status:                                                                                                                                                                                                                                                                                    | nentation              |
| Click to enter text.                                                                                                                                                                                                                                                                                                                                                                                           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| Section 12 DCDA/CEDCLA Wastes (Instructions Dage 55)                                                                                                                                                                                                                                                                                                                                                           |                        |
| Section 13. RCRA/CERCLA Wastes (Instructions Page 55)                                                                                                                                                                                                                                                                                                                                                          |                        |
| A. RCRA hazardous wastes                                                                                                                                                                                                                                                                                                                                                                                       |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                | t receive              |
| A. RCRA hazardous wastes  Has the facility received in the past three years, does it currently receive, or will i                                                                                                                                                                                                                                                                                              | t receive              |
| A. RCRA hazardous wastes  Has the facility received in the past three years, does it currently receive, or will in RCRA hazardous waste?                                                                                                                                                                                                                                                                       | t receive              |
| A. RCRA hazardous wastes  Has the facility received in the past three years, does it currently receive, or will in RCRA hazardous waste?  □ Yes ☑ No                                                                                                                                                                                                                                                           | t receive              |
| <ul> <li>A. RCRA hazardous wastes Has the facility received in the past three years, does it currently receive, or will in RCRA hazardous waste? □ Yes ⋈ No </li> <li>B. Remediation activity wastewater Has the facility received in the past three years, does it currently receive, or will in CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation. </li> </ul>           | t receive              |
| <ul> <li>A. RCRA hazardous wastes Has the facility received in the past three years, does it currently receive, or will it RCRA hazardous waste? □ Yes ⋈ No </li> <li>B. Remediation activity wastewater Has the facility received in the past three years, does it currently receive, or will it CERCLA wastewater, RCRA remediation/corrective action wastewater or other reactivity wastewater? </li> </ul> | t receive              |
| A. RCRA hazardous wastes  Has the facility received in the past three years, does it currently receive, or will in RCRA hazardous waste?  □ Yes ☑ No  B. Remediation activity wastewater  Has the facility received in the past three years, does it currently receive, or will in CERCLA wastewater, RCRA remediation/corrective action wastewater or other remactivity wastewater?  □ Yes ☑ No               | t receive<br>nediation |

# Section 14. Laboratory Accreditation (Instructions Page 55)

All laboratory tests performed must meet the requirements of 30 TAC Chapter 25, Environmental Testina Laboratory Accreditation and Certification, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
  - periodically inspected by the TCEQ; or
  - located in another state and is accredited or inspected by that state; or
  - performing work for another company with a unit located in the same site; or
  - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEO does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the Signature Page section in the Instructions, for a list of designated representatives who may sign the certification.

#### CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testina Laboratory Accreditation and Certification.

Printed Name: Kylie Gudgell

Title: Lab Administrator

Signature: Kylw Dudgell
Date: 11/17/2025

# DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.1

The following information is required for new and amendment major applications. Not Applicable

# **Section 1. Justification for Permit (Instructions Page 56)**

| Α.   | <b>Justification</b> | of  | permit | need  |
|------|----------------------|-----|--------|-------|
| 4 M. | Justification        | OI. | PCITIL | IICCU |

| Provide a detailed discussion regarding the need for any phase(s) not currently permitted |
|-------------------------------------------------------------------------------------------|
| Failure to provide sufficient justification may result in the Executive Director          |
| recommending denial of the proposed phase(s) or permit.                                   |

|    |    | deministration of the broken branch of bermin                                                                                                                                                                                                                   |
|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (  | Click to enter text.                                                                                                                                                                                                                                            |
|    |    |                                                                                                                                                                                                                                                                 |
|    |    |                                                                                                                                                                                                                                                                 |
|    |    |                                                                                                                                                                                                                                                                 |
|    |    |                                                                                                                                                                                                                                                                 |
| B. | Re | egionalization of facilities                                                                                                                                                                                                                                    |
|    |    | or additional guidance, please review <u>TCEO's Regionalization Policy for Wastewater</u> reatment <sup>1</sup> .                                                                                                                                               |
|    |    | ovide the following information concerning the potential for regionalization of domestinate astewater treatment facilities:                                                                                                                                     |
|    | 1. | Municipally incorporated areas                                                                                                                                                                                                                                  |
|    |    | If the applicant is a city, then Item 1 is not applicable. Proceed to Item 2 Utility CCN areas.                                                                                                                                                                 |
|    |    | Is any portion of the proposed service area located in an incorporated city?                                                                                                                                                                                    |
|    |    | □ Yes □ No □ Not Applicable                                                                                                                                                                                                                                     |
|    |    | If yes, within the city limits of: Click to enter text.                                                                                                                                                                                                         |
|    |    | If yes, attach correspondence from the city.                                                                                                                                                                                                                    |
|    |    | Attachment: Click to enter text.                                                                                                                                                                                                                                |
|    |    | If consent to provide service is available from the city, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the city versus the cost of the proposed facility or expansion attached. |
|    |    | Attachment: Click to enter text.                                                                                                                                                                                                                                |
|    | 2. | Utility CCN areas                                                                                                                                                                                                                                               |
|    |    | Is any portion of the proposed service area located inside another utility's CCN area?                                                                                                                                                                          |
|    |    | □ Yes □ No                                                                                                                                                                                                                                                      |

<sup>&</sup>lt;sup>1</sup> https://www.tceq.texas.gov/permitting/wastewater/tceq-regionalization-for-wastewater

| <b>If yes</b> , attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the CCN facilities versus the cost of the proposed facility or expansion.                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Attachment: Click to enter text.                                                                                                                                                                                                                                                      |
| 3. Nearby WWTPs or collection systems                                                                                                                                                                                                                                                 |
| Are there any domestic permitted wastewater treatment facilities or collection systems located within a three-mile radius of the proposed facility?                                                                                                                                   |
| □ Yes □ No                                                                                                                                                                                                                                                                            |
| If yes, attach a list of these facilities and collection systems that includes each permittee's name and permit number, and an area map showing the location of these facilities and collection systems.                                                                              |
| Attachment: Click to enter text.                                                                                                                                                                                                                                                      |
| If yes, attach proof of mailing a request for service to each facility and collection system, the letters requesting service, and correspondence from each facility and collection system.                                                                                            |
| Attachment: Click to enter text.                                                                                                                                                                                                                                                      |
| If the facility or collection system agrees to provide service, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the facility or collection system versus the cost of the proposed facility or expansion. |
| Attachment: Click to enter text.                                                                                                                                                                                                                                                      |
| Section 2. Proposed Organic Loading (Instructions Page 58)                                                                                                                                                                                                                            |
| Is this facility in operation?                                                                                                                                                                                                                                                        |
| □ Yes □ No                                                                                                                                                                                                                                                                            |
| If no, proceed to Item B, Proposed Organic Loading.                                                                                                                                                                                                                                   |
| If yes, provide organic loading information in Item A, Current Organic Loading                                                                                                                                                                                                        |
| A. Current organic loading                                                                                                                                                                                                                                                            |
| Facility Design Flow (flow being requested in application): Click to enter text.                                                                                                                                                                                                      |
| Average Influent Organic Strength or BOD <sub>5</sub> Concentration in mg/l: Click to enter text.                                                                                                                                                                                     |
| Average Influent Loading (lbs/day = total average flow X average BOD <sub>5</sub> conc. X 8.34): $\underline{\text{Click}}$ to enter text.                                                                                                                                            |
| Provide the source of the average organic strength or $BOD_5$ concentration.                                                                                                                                                                                                          |
| Click to enter text.                                                                                                                                                                                                                                                                  |

#### B. Proposed organic loading

This table must be completed if this application is for a facility that is not in operation or if this application is to request an increased flow that will impact organic loading.

Table 1.1(1) - Design Organic Loading

| Source                                    | Total Average Flow (MGD) | Influent BOD5<br>Concentration (mg/l) |
|-------------------------------------------|--------------------------|---------------------------------------|
| Municipality                              |                          |                                       |
| Subdivision                               |                          |                                       |
| Trailer park - transient                  |                          |                                       |
| Mobile home park                          |                          |                                       |
| School with cafeteria and showers         |                          |                                       |
| School with cafeteria, no showers         |                          |                                       |
| Recreational park,<br>overnight use       |                          |                                       |
| Recreational park, day use                |                          |                                       |
| Office building or factory                |                          |                                       |
| Motel                                     |                          |                                       |
| Restaurant                                |                          |                                       |
| Hospital                                  |                          |                                       |
| Nursing home                              |                          |                                       |
| Other                                     |                          |                                       |
| TOTAL FLOW from all sources               |                          |                                       |
| AVERAGE BOD <sub>5</sub> from all sources |                          |                                       |

# Section 3. Proposed Effluent Quality and Disinfection (Instructions Page 58)

### A. Existing/Interim I Phase Design Effluent Quality

Biochemical Oxygen Demand (5-day), mg/l: Click to enter text.

Total Suspended Solids, mg/l: Click to enter text.

Ammonia Nitrogen, mg/l: <u>Click to enter text.</u>
Total Phosphorus, mg/l: <u>Click to enter text.</u>
Dissolved Oxygen, mg/l: <u>Click to enter text.</u>

Other: Click to enter text.

| B.                                           | . Interim II Phase Design Effluent Quality                                                                                                                     |  |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                              | Biochemical Oxygen Demand (5-day), mg/l: Click to enter text.                                                                                                  |  |  |
|                                              | Total Suspended Solids, mg/l: Click to enter text.                                                                                                             |  |  |
|                                              | Ammonia Nitrogen, mg/l: Click to enter text.                                                                                                                   |  |  |
|                                              | Total Phosphorus, mg/l: <u>Click to enter text.</u>                                                                                                            |  |  |
|                                              | Dissolved Oxygen, mg/l: Click to enter text.                                                                                                                   |  |  |
|                                              | Other: Click to enter text.                                                                                                                                    |  |  |
| C.                                           | Final Phase Design Effluent Quality                                                                                                                            |  |  |
|                                              | Biochemical Oxygen Demand (5-day), mg/l: Click to enter text.                                                                                                  |  |  |
|                                              | Total Suspended Solids, mg/l: Click to enter text.                                                                                                             |  |  |
|                                              | Ammonia Nitrogen, mg/l: Click to enter text.                                                                                                                   |  |  |
| Total Phosphorus, mg/l: Click to enter text. |                                                                                                                                                                |  |  |
|                                              | Dissolved Oxygen, mg/l: Click to enter text.                                                                                                                   |  |  |
|                                              | Other: Click to enter text.                                                                                                                                    |  |  |
| D.                                           | Disinfection Method                                                                                                                                            |  |  |
|                                              | Identify the proposed method of disinfection.                                                                                                                  |  |  |
|                                              | Chlorine: Click to enter text. mg/l after Click to enter text. minutes detention time at peak flow                                                             |  |  |
|                                              | Dechlorination process: <u>Click to enter text.</u>                                                                                                            |  |  |
|                                              | Ultraviolet Light: Click to enter text. seconds contact time at peak flow                                                                                      |  |  |
|                                              | □ Other: Click to enter text.                                                                                                                                  |  |  |
|                                              |                                                                                                                                                                |  |  |
| Se                                           | ection 4. Design Calculations (Instructions Page 58)                                                                                                           |  |  |
|                                              | tach design calculations and plant features for each proposed phase. Example 4 of the structions includes sample design calculations and plant features.       |  |  |
|                                              | Attachment: Click to enter text.                                                                                                                               |  |  |
| Se                                           | ection 5. Facility Site (Instructions Page 59)                                                                                                                 |  |  |
| Δ                                            | 100-year floodplain                                                                                                                                            |  |  |
| Λ.                                           | Will the proposed facilities be located <u>above</u> the 100-year frequency flood level?                                                                       |  |  |
|                                              | ☐ Yes ☐ No                                                                                                                                                     |  |  |
|                                              | If <b>no</b> , describe measures used to protect the facility during a flood event. Include a site                                                             |  |  |
|                                              | map showing the location of the treatment plant within the 100-year frequency flood level. If applicable, provide the size and types of protective structures. |  |  |
|                                              | Click to enter text.                                                                                                                                           |  |  |
|                                              |                                                                                                                                                                |  |  |
|                                              |                                                                                                                                                                |  |  |

| Provide the source(s) used to determine 100-year frequency flood plain. |                                                                                                                                                                                                  |  |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                         | Click to enter text.                                                                                                                                                                             |  |  |
|                                                                         |                                                                                                                                                                                                  |  |  |
|                                                                         | For a new or expansion of a facility, will a wetland or part of a wetland be filled?                                                                                                             |  |  |
|                                                                         | □ Yes □ No                                                                                                                                                                                       |  |  |
|                                                                         | <b>If yes</b> , has the applicant applied for a US Corps of Engineers 404 Dredge and Fill Permit?                                                                                                |  |  |
|                                                                         | □ Yes □ No                                                                                                                                                                                       |  |  |
|                                                                         | If yes, provide the permit number: <u>Click to enter text.</u>                                                                                                                                   |  |  |
|                                                                         | <b>If no,</b> provide the approximate date you anticipate submitting your application to the Corps: Click to enter text.                                                                         |  |  |
| B.                                                                      | Wind rose                                                                                                                                                                                        |  |  |
|                                                                         | Attach a wind rose: <u>Click to enter text.</u>                                                                                                                                                  |  |  |
| Se                                                                      | ection 6. Permit Authorization for Sewage Sludge Disposal (Instructions Page 59)                                                                                                                 |  |  |
|                                                                         |                                                                                                                                                                                                  |  |  |
| Α.                                                                      | Beneficial use authorization                                                                                                                                                                     |  |  |
|                                                                         | Are you requesting to include authorization to land apply sewage sludge for beneficial use on property located adjacent to the wastewater treatment facility under the wastewater permit?        |  |  |
|                                                                         | □ Yes □ No                                                                                                                                                                                       |  |  |
|                                                                         | If yes, attach the completed <b>Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451)</b> : Click to enter text.                                                 |  |  |
| B.                                                                      | Sludge processing authorization                                                                                                                                                                  |  |  |
|                                                                         | Identify the sludge processing, storage or disposal options that will be conducted at the wastewater treatment facility:                                                                         |  |  |
|                                                                         | □ Sludge Composting                                                                                                                                                                              |  |  |
|                                                                         | □ Marketing and Distribution of sludge                                                                                                                                                           |  |  |
|                                                                         | □ Sludge Surface Disposal or Sludge Monofill                                                                                                                                                     |  |  |
|                                                                         | If any of the above, sludge options are selected, attach the completed <b>Domestic</b> Wastewater Permit Application: Sewage Sludge Technical Report (TCEQ Form No. 10056): Click to enter text. |  |  |
| Se                                                                      | ection 7. Sewage Sludge Solids Management Plan (Instructions Page 60)                                                                                                                            |  |  |

Attach a solids management plan to the application.

Attachment: Click to enter text.

The sewage sludge solids management plan must contain the following information:

Treatment units and processes dimensions and capacities

- Solids generated at 100, 75, 50, and 25 percent of design flow
- Mixed liquor suspended solids operating range at design and projected actual flow
- Quantity of solids to be removed and a schedule for solids removal
- Identification and ownership of the ultimate sludge disposal site
- For facultative lagoons, design life calculations, monitoring well locations and depths, and the ultimate disposal method for the sludge from the facultative lagoon

An example of a sewage sludge solids management plan has been included as Example 5 of the instructions.

# DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

| Section 1. Domestic Drinking Water Supply (Instructions Page 63)                                                                                    |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge? |  |  |  |  |
| □ Yes ⊠ No                                                                                                                                          |  |  |  |  |
| If <b>no</b> , proceed it Section 2. <b>If yes</b> , provide the following:                                                                         |  |  |  |  |
| Owner of the drinking water supply: <u>Click to enter text.</u>                                                                                     |  |  |  |  |
| Distance and direction to the intake: <u>Click to enter text.</u>                                                                                   |  |  |  |  |
| Attach a USGS map that identifies the location of the intake.                                                                                       |  |  |  |  |
| Attachment: Click to enter text.                                                                                                                    |  |  |  |  |
| Section 2. Discharge into Tidally Affected Waters (Instructions Page 63)                                                                            |  |  |  |  |
| Does the facility discharge into tidally affected waters?                                                                                           |  |  |  |  |
| □ Yes ⊠ No                                                                                                                                          |  |  |  |  |
| If <b>no</b> , proceed to Section 3. <b>If yes</b> , complete the remainder of this section. If no, proceed to Section 3.                           |  |  |  |  |
| A. Receiving water outfall                                                                                                                          |  |  |  |  |
| Width of the receiving water at the outfall, in feet: Click to enter text.                                                                          |  |  |  |  |
| B. Oyster waters                                                                                                                                    |  |  |  |  |
| Are there oyster waters in the vicinity of the discharge?                                                                                           |  |  |  |  |
| □ Yes □ No                                                                                                                                          |  |  |  |  |
| If yes, provide the distance and direction from outfall(s).                                                                                         |  |  |  |  |
| Click to enter text.                                                                                                                                |  |  |  |  |
| C. Sea grasses                                                                                                                                      |  |  |  |  |
| Are there any sea grasses within the vicinity of the point of discharge?                                                                            |  |  |  |  |
| □ Yes □ No                                                                                                                                          |  |  |  |  |
| If yes, provide the distance and direction from the outfall(s).                                                                                     |  |  |  |  |
| Click to enter text.                                                                                                                                |  |  |  |  |
|                                                                                                                                                     |  |  |  |  |

### Is the discharge directly into (or within 300 feet of) a classified segment? Yes ⊠ No If yes, this Worksheet is complete. **If no**, complete Sections 4 and 5 of this Worksheet. Section 4. **Description of Immediate Receiving Waters (Instructions Page 63)** Name of the immediate receiving waters: Exhibit L and Exhibit M A. Receiving water type Identify the appropriate description of the receiving waters. $\boxtimes$ Stream Freshwater Swamp or Marsh Lake or Pond Surface area, in acres: Click to enter text. Average depth of the entire water body, in feet: Click to enter text. Average depth of water body within a 500-foot radius of discharge point, in feet: Click to enter text. Man-made Channel or Ditch Open Bay Tidal Stream, Bayou, or Marsh Other, specify: Click to enter text. **B.** Flow characteristics If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area *upstream* of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one). Intermittent - dry for at least one week during most years Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses Perennial - normally flowing Check the method used to characterize the area upstream (or downstream for new dischargers). USGS flow records Historical observation by adjacent landowners $\boxtimes$ Personal observation Other, specify: Click to enter text.

**Classified Segments (Instructions Page 63)** 

Section 3.

|                                                                                                                                                      | List the names of all perennial streams that join the receiving water within three miles downstream of the discharge point. |                                                                           |               |                                                              |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------|--------------------------------------------------------------|--|--|
|                                                                                                                                                      | Exhib                                                                                                                       | t L and Exhibit M                                                         |               |                                                              |  |  |
| D.                                                                                                                                                   | Downs                                                                                                                       | stream characteristics                                                    |               |                                                              |  |  |
|                                                                                                                                                      |                                                                                                                             | receiving water characterist<br>rge (e.g., natural or man-mad<br>Yes D No | _             | vithin three miles downstream of the nds, reservoirs, etc.)? |  |  |
| If yes, discuss how.                                                                                                                                 |                                                                                                                             |                                                                           |               |                                                              |  |  |
|                                                                                                                                                      |                                                                                                                             | t L and Exhibit M                                                         |               |                                                              |  |  |
| E. Normal dry weather characteristics  Provide general observations of the water body during normal dry weather conditions.  Exhibit L and Exhibit M |                                                                                                                             |                                                                           |               |                                                              |  |  |
|                                                                                                                                                      | Date a                                                                                                                      | nd time of observation: <u>Exhil</u>                                      | oit L and Exh | ibit M                                                       |  |  |
|                                                                                                                                                      | Was th                                                                                                                      | e water body influenced by s                                              | stormwater    | runoff during observations?                                  |  |  |
|                                                                                                                                                      |                                                                                                                             | Yes ⊠ No                                                                  |               |                                                              |  |  |
| Se                                                                                                                                                   | ection                                                                                                                      | 5. General Characte<br>Page 65)                                           | ristics of    | the Waterbody (Instructions                                  |  |  |
| A.                                                                                                                                                   | Upstre                                                                                                                      | am influences                                                             |               |                                                              |  |  |
|                                                                                                                                                      |                                                                                                                             | mmediate receiving water up<br>iced by any of the following?              |               | he discharge or proposed discharge site nat apply.           |  |  |
|                                                                                                                                                      |                                                                                                                             | Oil field activities                                                      | $\boxtimes$   | Urban runoff                                                 |  |  |
|                                                                                                                                                      |                                                                                                                             | Upstream discharges                                                       | $\boxtimes$   | Agricultural runoff                                          |  |  |
|                                                                                                                                                      |                                                                                                                             | Septic tanks                                                              |               | Other(s), specify: Click to enter text.                      |  |  |

C. Downstream perennial confluences

### B. Waterbody uses

|             |                       | 0           | /                       |
|-------------|-----------------------|-------------|-------------------------|
| $\boxtimes$ | Livestock watering    |             | Contact recreation      |
|             | Irrigation withdrawal | $\boxtimes$ | Non-contact recreation  |
| $\boxtimes$ | Fishing               |             | Navigation              |
| П           | Domestic water supply | П           | Industrial water supply |

Observed or evidences of the following uses. Check all that apply.

#### C. Waterbody aesthetics

Park activities

Check one of the following that best describes the aesthetics of the receiving water and the surrounding area.

| Wilderness: outstanding natural beauty; usually wooded or unpastured area; water |
|----------------------------------------------------------------------------------|
| clarity exceptional                                                              |

□ Other(s), specify: <u>Click to enter text.</u>

- Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored
- Common Setting: not offensive; developed but uncluttered; water may be colored or turbid
- Offensive: stream does not enhance aesthetics; cluttered; highly developed; dumping areas; water discolored

# DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.1: STREAM PHYSICAL CHARACTERISTICS

Required for new applications, major facilities, and applications adding an outfall.

Worksheet 2.1 is not required for discharges to intermittent streams or discharges directly to (or within 300 feet of) a classified segment.

| Section 1. General Information (Instructions Page 65)                                                                |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Date of study: Exhibit N and Exhibit O Time of study: Click to enter text.                                           |  |  |  |  |
| Stream name: Click to enter text.                                                                                    |  |  |  |  |
| Location: Click to enter text.                                                                                       |  |  |  |  |
| Type of stream upstream of existing discharge or downstream of proposed discharge (check one).                       |  |  |  |  |
| □ Perennial □ Intermittent with perennial pools                                                                      |  |  |  |  |
| Section 2. Data Collection (Instructions Page 65)                                                                    |  |  |  |  |
| Number of stream bends that are well defined: Exhibit N and Exhibit O                                                |  |  |  |  |
| Number of stream bends that are moderately defined: Click to enter text.                                             |  |  |  |  |
| Number of stream bends that are poorly defined: Click to enter text.                                                 |  |  |  |  |
| Number of riffles: Click to enter text.                                                                              |  |  |  |  |
| Evidence of flow fluctuations (check one):                                                                           |  |  |  |  |
| □ Minor □ moderate □ severe                                                                                          |  |  |  |  |
| Indicate the observed stream uses and if there is evidence of flow fluctuations or channel obstruction/modification. |  |  |  |  |
| Click to enter text.                                                                                                 |  |  |  |  |

#### Stream transects

In the table below, provide the following information for each transect downstream of the existing or proposed discharges. Use a separate row for each transect.

Table 2.1(1) - Stream Transect Records

| Stream type at transect                                                    | Transect location       | Water<br>surface | Stream depths (ft) at 4 to 10 points along each                                            |
|----------------------------------------------------------------------------|-------------------------|------------------|--------------------------------------------------------------------------------------------|
| Select riffle, run, glide, or pool. See Instructions, Definitions section. |                         | width (ft)       | transect from the channel bed to the water surface. Separate the measurements with commas. |
| Choose an item.                                                            | Exhibit N and Exhibit O |                  |                                                                                            |
| Choose an item.                                                            |                         |                  |                                                                                            |

# Section 3. Summarize Measurements (Instructions Page 65)

Streambed slope of entire reach, from USGS map in feet/feet: Exhibit N and Exhibit O

Approximate drainage area above the most downstream transect (from USGS map or county highway map, in square miles): <u>Click to enter text.</u>

Length of stream evaluated, in feet: Click to enter text.

Number of lateral transects made: Click to enter text.

Average stream width, in feet: Click to enter text.

Average stream depth, in feet: Click to enter text.

Average stream velocity, in feet/second: Click to enter text.

Instantaneous stream flow, in cubic feet/second: Click to enter text.

Indicate flow measurement method (type of meter, floating chip timed over a fixed distance, etc.): <u>Click to enter text.</u>

Size of pools (large, small, moderate, none): Click to enter text.

Maximum pool depth, in feet: Click to enter text.

# DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 3.0: LAND DISPOSAL OF EFFLUENT Not Applicable

The following is required for renewal, new, and amendment permit applications.

#### Type of Disposal System (Instructions Page 67) Section 1. Identify the method of land disposal: Surface application Subsurface application Irrigation Subsurface soils absorption Subsurface area drip dispersal system Drip irrigation system Evaporation Evapotranspiration beds Other (describe in detail): Click to enter text. NOTE: All applicants without authorization or proposing new/amended subsurface disposal

MUST complete and submit Worksheet 7.0.

For existing authorizations, provide Registration Number: Click to enter text.

#### Section 2. Land Application Site(s) (Instructions Page 67)

In table 3.0(1), provide the requested information for the land application sites. Include the agricultural or cover crop type (wheat, cotton, alfalfa, bermuda grass, native grasses, etc.), land use (golf course, hayland, pastureland, park, row crop, etc.), irrigation area, amount of effluent applied, and whether or not the public has access to the area. Specify the amount of land area and the amount of effluent that will be allotted to each agricultural or cover crop, if more than one crop will be used.

Table 3.0(1) - Land Application Site Crops

| Crop Type & Land Use | Irrigation<br>Area (acres) | Effluent<br>Application<br>(GPD) | Public<br>Access?<br>Y/N |
|----------------------|----------------------------|----------------------------------|--------------------------|
|                      |                            |                                  |                          |
|                      |                            |                                  |                          |
|                      |                            |                                  |                          |
|                      |                            |                                  |                          |
|                      |                            |                                  |                          |
|                      |                            |                                  |                          |

# Section 3. Storage and Evaporation Lagoons/Ponds (Instructions Page 67)

#### Table 3.0(2) – Storage and Evaporation Ponds

| Pond<br>Number | Surface Area<br>(acres) | Storage Volume<br>(acre-feet) | Dimensions | Liner Type |
|----------------|-------------------------|-------------------------------|------------|------------|
|                |                         |                               |            |            |
|                |                         |                               |            |            |
|                |                         |                               |            |            |
|                |                         |                               |            |            |
|                |                         |                               |            |            |
|                |                         |                               |            |            |

| Attach a copy of a liner certification that was prepared, signed, and sealed by a Texas licensed professional engineer for each pond. |
|---------------------------------------------------------------------------------------------------------------------------------------|
| Attachment: Click to enter text.                                                                                                      |
| Section 4. Flood and Runoff Protection (Instructions Page 67)                                                                         |
| Is the land application site <u>within</u> the 100-year frequency flood level?                                                        |
| □ Yes ⊠ No                                                                                                                            |
| If yes, describe how the site will be protected from inundation.                                                                      |
| Click to enter text.                                                                                                                  |
| Provide the source used to determine the 100-year frequency flood level:                                                              |
| Click to enter text.                                                                                                                  |
| Provide a description of tailwater controls and rainfall run-on controls used for the land application site.                          |
| Click to enter text.                                                                                                                  |

# Section 5. Annual Cropping Plan (Instructions Page 67)

Attach an Annual Cropping Plan which includes a discussion of each of the following items. If not applicable, provide a detailed explanation indicating why. **Attachment**: Click to enter text.

- Soils map with crops
- Cool and warm season plant species
- Crop yield goals
- Crop growing season
- Crop nutrient requirements
- Additional fertilizer requirements
- Minimum/maximum harvest height (for grass crops)
- Supplemental watering requirements
- Crop salt tolerances
- Harvesting method/number of harvests
- Justification for not removing existing vegetation to be irrigated

# Section 6. Well and Map Information (Instructions Page 68)

Attach a USGS map with the following information shown and labeled. If not applicable, provide a detailed explanation indicating why. **Attachment**: Click to enter text.

- The boundaries of the land application site(s)
- Waste disposal or treatment facility site(s)
- On-site buildings
- Buffer zones
- Effluent storage and tailwater control facilities
- All water wells within 1-mile radius of the disposal site or property boundaries
- All springs and seeps onsite and within 500 feet of the property boundaries
- All surface waters in the state onsite and within 500 feet of the property boundaries
- All faults and sinkholes onsite and within 500 feet of the property

List and cross reference all water wells located within a half-mile radius of the disposal site or property boundaries shown on the USGS map in the following table. Attach additional pages as necessary to include all of the wells.

Table 3.0(3) - Water Well Data

| Well ID | Well Use | Producing?<br>Y/N | Open, cased, capped, or plugged? | Proposed Best Management<br>Practice |
|---------|----------|-------------------|----------------------------------|--------------------------------------|
|         |          |                   | Choose an item.                  |                                      |
|         |          |                   | Choose an item.                  |                                      |
|         |          |                   | Choose an item.                  |                                      |
|         |          |                   | Choose an item.                  |                                      |
|         |          |                   | Choose an item.                  |                                      |

If water quality data or well log information is available please include the information in an attachment listed by Well ID.

Attachment: Click to enter text.

#### Section 7. Groundwater Quality (Instructions Page 68)

Attach a Groundwater Quality Technical Report which assesses the impact of the wastewater disposal system on groundwater. This report shall include an evaluation of the water wells (including the information in the well table provided in Item 6. above), the wastewater application rate, and pond liners. Indicate by a check mark that this report is provided.

| Attachment: Click to enter text.                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------|
| Are groundwater monitoring wells available onsite? $\square$ Yes $\square$ No                                             |
| Do you plan to install ground water monitoring wells or lysimeters around the land application site? $\Box$ Yes $\Box$ No |
| If yes, provide the proposed location of the monitoring wells or lysimeters on a site map.                                |
| Attachment: Click to enter text.                                                                                          |

# Section 8. Soil Map and Soil Analyses (Instructions Page 69)

#### A. Soil map

Attach a USDA Soil Survey map that shows the area to be used for effluent disposal.

Attachment: Click to enter text.

#### B. Soil analyses

Attach the laboratory results sheets from the soil analyses. **Note**: for renewal applications, the current annual soil analyses required by the permit are acceptable as long as the test date is less than one year prior to the submission of the application.

**Attachment**: Click to enter text.

List all USDA designated soil series on the proposed land application site. Attach additional pages as necessary.

#### Table 3.0(4) - Soil Data

| Soil Series | Depth<br>from<br>Surface | Permeability | Available<br>Water<br>Capacity | Curve<br>Number |
|-------------|--------------------------|--------------|--------------------------------|-----------------|
|             |                          |              |                                |                 |
|             |                          |              |                                |                 |
|             |                          |              |                                |                 |
|             |                          |              |                                |                 |
|             |                          |              |                                |                 |
|             |                          |              |                                |                 |
|             |                          |              |                                |                 |

# **Section 9.** Effluent Monitoring Data (Instructions Page 70) Is the facility in operation? Yes □ No **If no**, this section is not applicable and the worksheet is complete. If yes, provide the effluent monitoring data for the parameters regulated in the existing permit. If a parameter is not regulated in the existing permit, enter N/A. Table 3.0(5) – Effluent Monitoring Data Chlorine **Date** 30 Day Avg BOD<sub>5</sub> **TSS** рН Acres Flow MGD Residual mg/l mg/l mg/l irrigated

|  | ick to enter text. |  |  |
|--|--------------------|--|--|
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |
|  |                    |  |  |

# DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 3.1: SURFACE LAND DISPOSAL OF EFFLUENT

Not Applicable

The following is required for new and major amendment permit applications. Renewal and minor amendment permit applications may be asked for this worksheet on a case by case basis.

#### Section 1. Surface Disposal (Instructions Page 71)

Complete the item that applies for the method of disposal being used.

#### A. Irrigation

Area under irrigation, in acres: Click to enter text.

Design application frequency:

hours/day <u>Click to enter text.</u> And days/week <u>Click to enter text.</u>

Land grade (slope):

average percent (%): Click to enter text.

maximum percent (%): Click to enter text.

Design application rate in acre-feet/acre/year: Click to enter text.

Design total nitrogen loading rate, in lbs N/acre/year: Click to enter text.

Soil conductivity (mmhos/cm): Click to enter text.

Method of application: Click to enter text.

Attach a separate engineering report with the water balance and storage volume calculations, method of application, irrigation efficiency, and nitrogen balance.

Attachment: Click to enter text.

#### B. Evaporation ponds

Daily average effluent flow into ponds, in gallons per day: Click to enter text.

Attach a separate engineering report with the water balance and storage volume calculations.

**Attachment:** Click to enter text.

#### C. Evapotranspiration beds

Number of beds: Click to enter text.

Area of bed(s), in acres: <u>Click to enter text.</u>

Depth of bed(s), in feet: Click to enter text.

Void ratio of soil in the beds: <u>Click to enter text.</u>

Storage volume within the beds, in acre-feet: Click to enter text.

Attach a separate engineering report with the water balance and storage volume calculations, and a description of the lining.

Attachment: Click to enter text.

# D. Overland flow Area used for application, in acres: Click to enter text. Slopes for application area, percent (%): Click to enter text. Design application rate, in gpm/foot of slope width: Click to enter text. Slope length, in feet: Click to enter text. Design BOD<sub>5</sub> loading rate, in lbs BOD<sub>5</sub>/acre/day: Click to enter text. Design application frequency: hours/day: Click to enter text. **And** days/week: Click to enter text. Attach a separate engineering report with the method of application and design requirements according to 30 TAC Chapter 217. **Attachment:** Click to enter text. **Edwards Aquifer (Instructions Page 72)** Section 2. Is the facility subject to 30 TAC Chapter 213, Edwards Aquifer Rules?

Yes □ No

If **yes**, is the facility located on the Edwards Aquifer Recharge Zone?

Yes □ No 

If yes, attach a geological report addressing potential recharge features.

Attachment: Click to enter text.

# DOMESTIC WASTEWATER PERMIT APPLICATION **WORKSHEET 3.2: SURFACE LAND DISPOSAL OF EFFLUENT**

Not Applicable

The following is required for new and major amendment permit applications. Renewal and minor amendments applicants may be asked for the worksheet on a case by case basis.

NOTE: All applicants proposing new/amended subsurface disposal MUST complete and submit Worksheet 7.0. This worksheet applies to any subsurface disposal system that **does not meet** the definition of a subsurface area drip dispersal system as defined in 30 TAC Chapter 222, Subsurface Area Drip Dispersal System.

| Section 1. Subsurface Application (instructions Page 73)                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Identify the type of system:                                                                                                                                                                                                                                                              |
| □ Conventional Gravity Drainfield, Beds, or Trenches (new systems must be less than 5,000 GPD)                                                                                                                                                                                            |
| □ Low Pressure Dosing                                                                                                                                                                                                                                                                     |
| □ Other, specify: <u>Click to enter text.</u>                                                                                                                                                                                                                                             |
| Application area, in acres: Click to enter text.                                                                                                                                                                                                                                          |
| Area of drainfield, in square feet: Click to enter text.                                                                                                                                                                                                                                  |
| Application rate, in gal/square foot/day: Click to enter text.                                                                                                                                                                                                                            |
| Depth to groundwater, in feet: Click to enter text.                                                                                                                                                                                                                                       |
| Area of trench, in square feet: Click to enter text.                                                                                                                                                                                                                                      |
| Dosing duration per area, in hours: <u>Click to enter text.</u>                                                                                                                                                                                                                           |
| Number of beds: Click to enter text.                                                                                                                                                                                                                                                      |
| Dosing amount per area, in inches/day: Click to enter text.                                                                                                                                                                                                                               |
| Infiltration rate, in inches/hour: Click to enter text.                                                                                                                                                                                                                                   |
| Storage volume, in gallons: <u>Click to enter text.</u>                                                                                                                                                                                                                                   |
| Area of bed(s), in square feet: Click to enter text.                                                                                                                                                                                                                                      |
| Soil Classification: <u>Click to enter text.</u>                                                                                                                                                                                                                                          |
| Attach a separate engineering report with the information required in $30\ TAC\ \S\ 309.20$ , excluding the requirements of $\S\ 309.20\ b(3)(A)$ and (B) design analysis which may be asked for on a case by case basis. Include a description of the schedule of dosing basin rotation. |
| Attachment: Click to enter text.                                                                                                                                                                                                                                                          |
| Section 2. Edwards Aquifer (Instructions Page 73)                                                                                                                                                                                                                                         |
| Is the subsurface system over the Edwards Aquifer Recharge Zone as mapped by TCEQ?                                                                                                                                                                                                        |
| □ Yes □ No                                                                                                                                                                                                                                                                                |
| Is the subsurface system over the Edwards Aquifer Transition Zone as mapped by TCEQ?                                                                                                                                                                                                      |
| □ Yes □ No                                                                                                                                                                                                                                                                                |
| <b>If yes to either question</b> , the subsurface system may be prohibited by <i>30 TAC §213.8</i> . Please call the Municipal Permits Team, at 512-239-4671, to schedule a pre-application meeting.                                                                                      |

# DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 3.3: SUBSURFACE AREA DRIP DISPERSAL (SADDS) LAND DISPOSAL OF EFFLUENT

Not Applicable

The following **is required** for **new and major amendment** subsurface area drip dispersal system permit applications. Renewal and minor amendments applicants may be asked for the worksheet on a case by case basis.

NOTE: All applicants proposing new/amended subsurface disposal MUST complete and submit Worksheet 7.0. This worksheet applies to any subsurface disposal system that **meets** the definition of a subsurface area drip dispersal system as defined in *30 TAC Chapter 222*, *Subsurface Area Drip Dispersal System*.

| Se | ction 1. Administrative Information (Instructions Page 74)                                                                                                                                                                                                          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Α. | Provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the owner of the treatment facility:                                                                                                          |
| В. | <u>Click to enter text.</u> Is the owner of the land where the treatment facility is located the same as the owner of the treatment facility?                                                                                                                       |
|    | □ Yes □ No                                                                                                                                                                                                                                                          |
|    | If <b>no</b> , provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the owner of the land where the treatment facility is located.                                                                 |
|    | Click to enter text.                                                                                                                                                                                                                                                |
| C. | Owner of the subsurface area drip dispersal system: <u>Click to enter text.</u>                                                                                                                                                                                     |
| D. | Is the owner of the subsurface area drip dispersal system the same as the owner of the wastewater treatment facility or the site where the wastewater treatment facility is located?                                                                                |
|    | □ Yes □ No                                                                                                                                                                                                                                                          |
|    | If <b>no</b> , identify the names of all corporations or other business entities managed, owned, or otherwise closely related to the entity identified in Item 1.C.                                                                                                 |
|    | Click to enter text.                                                                                                                                                                                                                                                |
| Е. | Owner of the land where the subsurface area drip dispersal system is located: <u>Click to enter text.</u>                                                                                                                                                           |
| F. | Is the owner of the land where the subsurface area drip dispersal system is located the same as owner of the wastewater treatment facility, the site where the wastewater treatment facility is located, or the owner of the subsurface area drip dispersal system? |
|    | □ Yes □ No                                                                                                                                                                                                                                                          |
|    | If <b>no</b> , identify the name of all corporations or other business entities managed, owned, or otherwise closely related to the entity identified in item 1.E.                                                                                                  |
|    | Click to enter text.                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                     |

# Section 2. Subsurface Area Drip Dispersal System (Instructions Page

| A. | Type of system                                                                                                                                                                                                                    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | □ Subsurface Drip Irrigation                                                                                                                                                                                                      |
|    | □ Surface Drip Irrigation                                                                                                                                                                                                         |
|    | □ Other, specify: <u>Click to enter text.</u>                                                                                                                                                                                     |
| B. | Irrigation operations                                                                                                                                                                                                             |
|    | Application area, in acres: Click to enter text.                                                                                                                                                                                  |
|    | Infiltration Rate, in inches/hour: Click to enter text.                                                                                                                                                                           |
|    | Average slope of the application area, percent (%): Click to enter text.                                                                                                                                                          |
|    | Maximum slope of the application area, percent (%): Click to enter text.                                                                                                                                                          |
|    | Storage volume, in gallons: <u>Click to enter text.</u>                                                                                                                                                                           |
|    | Major soil series: <u>Click to enter text.</u>                                                                                                                                                                                    |
|    | Depth to groundwater, in feet: <u>Click to enter text.</u>                                                                                                                                                                        |
| C. | Application rate                                                                                                                                                                                                                  |
|    | Is the facility located <b>west</b> of the boundary shown in <i>30 TAC § 222.83</i> <b>and</b> also using a vegetative cover of non-native grasses over seeded with cool season grasses during the winter months (October-March)? |
|    | □ Yes □ No                                                                                                                                                                                                                        |
|    | If yes, then the facility may propose a hydraulic application rate not to exceed 0.1 gal/square foot/day.                                                                                                                         |
|    | Is the facility located <b>east</b> of the boundary shown in <i>30 TAC § 222.83</i> <b>or</b> in any part of the state when the vegetative cover is any crop other than non-native grasses?                                       |
|    | □ Yes □ No                                                                                                                                                                                                                        |
|    | If <b>yes</b> , the facility must use the formula in <i>30 TAC §222.83</i> to calculate the maximum hydraulic application rate.                                                                                                   |
|    | Do you plan to submit an alternative method to calculate the hydraulic application rate for approval by the executive director?                                                                                                   |
|    | □ Yes □ No                                                                                                                                                                                                                        |
|    | Hydraulic application rate, in gal/square foot/day: Click to enter text.                                                                                                                                                          |
|    | Nitrogen application rate, in lbs/gal/day: Click to enter text.                                                                                                                                                                   |
| D. | Dosing information                                                                                                                                                                                                                |
|    | Number of doses per day: Click to enter text.                                                                                                                                                                                     |
|    | Dosing duration per area, in hours: <u>Click to enter text.</u>                                                                                                                                                                   |

Rest period between doses, in hours: Click to enter text. Dosing amount per area, in inches/day: Click to enter text.

|    | Number of zones: Click to enter text.                                                                                                                                       |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Does the proposed subsurface drip irrigation system use tree vegetative cover as a crop?                                                                                    |
|    | □ Yes □ No                                                                                                                                                                  |
|    | If <b>yes</b> , provide a vegetation survey by a certified arborist. Please call the Water Quality Assessment Team at (512) 239-4671 to schedule a pre-application meeting. |
|    | Attachment: Click to enter text.                                                                                                                                            |
| Se | ction 3. Required Plans (Instructions Page 74)                                                                                                                              |
| A. | Recharge feature plan                                                                                                                                                       |
|    | Attach a Recharge Feature Plan with all information required in 30 TAC §222.79.                                                                                             |
|    | Attachment: Click to enter text.                                                                                                                                            |
| B. | Soil evaluation                                                                                                                                                             |
|    | Attach a Soil Evaluation with all information required in 30 TAC §222.73.                                                                                                   |
|    | Attachment: Click to enter text.                                                                                                                                            |
| C. | Site preparation plan                                                                                                                                                       |
|    | Attach a Site Preparation Plan with all information required in 30 TAC §222.75.                                                                                             |
|    | Attachment: Click to enter text.                                                                                                                                            |
| D. | Soil sampling/testing                                                                                                                                                       |
|    | Attach soil sampling and testing that includes all information required in 30 TAC §222.157.                                                                                 |
|    | Attachment: Click to enter text.                                                                                                                                            |
| Se | ction 4. Floodway Designation (Instructions Page 75)                                                                                                                        |
| A. | Site location                                                                                                                                                               |
|    | Is the existing/proposed land application site within a designated floodway?                                                                                                |
|    | □ Yes □ No                                                                                                                                                                  |
| В. | Flood map                                                                                                                                                                   |
|    | Attach either the FEMA flood map or alternate information used to determine the                                                                                             |
|    | floodway.                                                                                                                                                                   |
|    | Attachment: Click to enter text.                                                                                                                                            |
| Se | ction 5. Surface Waters in the State (Instructions Page 75)                                                                                                                 |

# S

#### A. Buffer Map

Attach a map showing appropriate buffers on surface waters in the state, water wells, and springs/seeps.

Attachment: Click to enter text.

| Do you plan to request a buffer variance from water wells or waters in the state?                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| □ Yes □ No                                                                                                                                                                                  |
| If yes, then attach the additional information required in 30 TAC § 222.81(c).                                                                                                              |
| Attachment: Click to enter text.                                                                                                                                                            |
| Section 6. Edwards Aquifer (Instructions Page 75)                                                                                                                                           |
| A. Is the SADDS located over the Edwards Aquifer Recharge Zone as mapped by TCEQ?  ☐ Yes ☐ No                                                                                               |
| <b>B.</b> Is the SADDS located over the Edwards Aquifer Transition Zone as mapped by TCEQ?                                                                                                  |
| □ Yes □ No                                                                                                                                                                                  |
| <b>If yes to either question</b> , then the SADDS may be prohibited by <i>30 TAC §213.8</i> . Please call the Municipal Permits Team at 512-239-4671 to schedule a pre-application meeting. |

**B.** Buffer variance request

# DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

# Section 1. Toxic Pollutants (Instructions Page 76)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab ⊠ Composite □

Date and time sample(s) collected: <u>o6/26/2025</u>; <u>o9:55 AM</u> SEE EXHIBIT P FOR FULL LAB RESULTS

#### Table 4.0(1) - Toxics Analysis

| Pollutant                  | AVG<br>Effluent<br>Conc. (µg/l) | MAX<br>Effluent<br>Conc. (µg/l) | Number of<br>Samples | MAL<br>(μg/l) |
|----------------------------|---------------------------------|---------------------------------|----------------------|---------------|
| Acrylonitrile              |                                 | <1.00                           | 1                    | 50            |
| Aldrin                     |                                 | < 0.00001                       | 1                    | 0.01          |
| Aluminum                   |                                 | 118                             | 1                    | 2.5           |
| Anthracene                 |                                 | <1.08                           | 1                    | 10            |
| Antimony                   |                                 | 0.400                           | 1                    | 5             |
| Arsenic                    |                                 | <0.902                          | 1                    | 0.5           |
| Barium                     |                                 | 29.1                            | 1                    | 3             |
| Benzene                    |                                 | <1.01                           | 1                    | 10            |
| Benzidine                  |                                 | <1.62                           | 1                    | 50            |
| Benzo(a)anthracene         |                                 | <1.08                           | 1                    | 5             |
| Benzo(a)pyrene             |                                 | <1.08                           | 1                    | 5             |
| Bis(2-chloroethyl)ether    |                                 | <1.08                           | 1                    | 10            |
| Bis(2-ethylhexyl)phthalate |                                 | <2.7                            | 1                    | 10            |
| Bromodichloromethane       |                                 | 8.32                            | 1                    | 10            |
| Bromoform                  |                                 | <1.0                            | 1                    | 10            |
| Cadmium                    |                                 | <1.0                            | 1                    | 1             |
| Carbon Tetrachloride       |                                 | <1.0                            | 1                    | 2             |
| Carbaryl                   |                                 | <2.69                           | 1                    | 5             |
| Chlordane*                 |                                 | <0.108                          | 1                    | 0.2           |
| Chlorobenzene              |                                 | <1.0                            | 1                    | 10            |

| Pollutant              | AVG<br>Effluent<br>Conc. (µg/l) | MAX<br>Effluent<br>Conc. (µg/l) | Number of<br>Samples | MAL<br>(μg/l) |
|------------------------|---------------------------------|---------------------------------|----------------------|---------------|
| Chlorodibromomethane   |                                 | 1.34                            | 1                    | 10            |
| Chloroform             |                                 | 38.7                            | 1                    | 10            |
| Chlorpyrifos           |                                 | < 0.0431                        | 1                    | 0.05          |
| Chromium (Total)       |                                 | <1.41                           | 1                    | 3             |
| Chromium (Tri) (*1)    |                                 | <3.00                           | 1                    | N/A           |
| Chromium (Hex)         |                                 | <3.00                           | 1                    | 3             |
| Copper                 |                                 | 4.36                            | 1                    | 2             |
| Chrysene               |                                 | <1.08                           | 1                    | 5             |
| p-Chloro-m-Cresol      |                                 | <1.08                           | 1                    | 10            |
| 4,6-Dinitro-o-Cresol   |                                 | <2.16                           | 1                    | 50            |
| p-Cresol               |                                 | <1.08                           | 1                    | 10            |
| Cyanide (*2)           |                                 | <5                              | 1                    | 10            |
| 4,4'- DDD              |                                 | < 0.0108                        | 1                    | 0.1           |
| 4,4'- DDE              |                                 | < 0.0108                        | 1                    | 0.1           |
| 4,4'- DDT              |                                 | <0.0108                         | 1                    | 0.02          |
| 2,4-D                  |                                 | <0.524                          | 1                    | 0.7           |
| Demeton (O and S)      |                                 | < 0.0539                        | 1                    | 0.20          |
| Diazinon               |                                 | < 0.0539                        | 1                    | 0.5/0.1       |
| 1,2-Dibromoethane      |                                 | <1.0                            | 1                    | 10            |
| m-Dichlorobenzene      |                                 | <1.0                            | 1                    | 10            |
| o-Dichlorobenzene      |                                 | <1.0                            | 1                    | 10            |
| p-Dichlorobenzene      |                                 | <1.0                            | 1                    | 10            |
| 3,3'-Dichlorobenzidine |                                 | <1.08                           | 1                    | 5             |
| 1,2-Dichloroethane     |                                 | <1.0                            | 1                    | 10            |
| 1,1-Dichloroethylene   |                                 | <1.0                            | 1                    | 10            |
| Dichloromethane        |                                 | <1.0                            | 1                    | 20            |
| 1,2-Dichloropropane    |                                 | <1.0                            | 1                    | 10            |
| 1,3-Dichloropropene    |                                 | <1.0                            | 1                    | 10            |
| Dicofol                |                                 | <0.108                          | 1                    | 1             |
| Dieldrin               |                                 | <0.0108                         | 1                    | 0.02          |
| 2,4-Dimethylphenol     |                                 | <7.57                           | 1                    | 10            |
| Di-n-Butyl Phthalate   |                                 | <1.08                           | 1                    | 10            |
| Diuron                 |                                 | < 0.0485                        | 1                    | 0.09          |

| Pollutant                     | AVG<br>Effluent<br>Conc. (µg/l) | MAX<br>Effluent<br>Conc. (μg/l) | Number of<br>Samples | MAL<br>(μg/l) |
|-------------------------------|---------------------------------|---------------------------------|----------------------|---------------|
| Endosulfan I (alpha)          |                                 | <0.000001                       | 1                    | 0.01          |
| Endosulfan II (beta)          |                                 | <0.0108                         | 1                    | 0.02          |
| Endosulfan Sulfate            |                                 | <0.0108                         | 1                    | 0.1           |
| Endrin                        |                                 | < 0.0108                        | 1                    | 0.02          |
| Epichlorohydrin               |                                 | <20                             |                      |               |
| Ethylbenzene                  |                                 | <1.0                            | 1                    | 10            |
| Ethylene Glycol               |                                 | NA                              |                      |               |
| Fluoride                      |                                 | <500                            | 1                    | 500           |
| Guthion                       |                                 | < 0.0539                        | 1                    | 0.1           |
| Heptachlor                    |                                 | < 0.00001                       | 1                    | 0.01          |
| Heptachlor Epoxide            |                                 | < 0.00001                       | 1                    | 0.01          |
| Hexachlorobenzene             |                                 | <1.08                           | 1                    | 5             |
| Hexachlorobutadiene           |                                 | <1.08                           | 1                    | 10            |
| Hexachlorocyclohexane (alpha) |                                 | <0.0108                         | 1                    | 0.05          |
| Hexachlorocyclohexane (beta)  |                                 | <0.0108                         | 1                    | 0.05          |
| gamma-Hexachlorocyclohexane   |                                 | <0.0108                         | 1                    | 0.05          |
| (Lindane)                     |                                 |                                 |                      |               |
| Hexachlorocyclopentadiene     |                                 | <1.08                           | 1                    | 10            |
| Hexachloroethane              |                                 | <1.08                           | 1                    | 20            |
| Hexachlorophene               |                                 | <2.75                           | 1                    | 10            |
| 4,4'-Isopropylidenediphenol   |                                 | <10.8                           |                      | 1             |
| Lead                          |                                 | <0.5                            | 1                    | 0.5           |
| Malathion                     |                                 | < 0.0539                        | 1                    | 0.1           |
| Mercury                       |                                 | < 0.00426                       | 1                    | 0.005         |
| Methoxychlor                  |                                 | <0.0108                         | 1                    | 2             |
| Methyl Ethyl Ketone           |                                 | <1.0                            | 1                    | 50            |
| Methyl tert-butyl ether       |                                 | <1.0                            |                      |               |
| Mirex                         |                                 | <0.0108                         | 1                    | 0.02          |
| Nickel                        |                                 | 2                               | 1                    | 2             |
| Nitrate-Nitrogen              |                                 | 17.3 (mg/L)                     | 1                    | 100           |
| Nitrobenzene                  |                                 | <1.08                           | 1                    | 10            |
| N-Nitrosodiethylamine         |                                 | <2.7                            | 1                    | 20            |
| N-Nitroso-di-n-Butylamine     |                                 | <1.03                           | 1                    | 20            |

|                                                | AVG<br>Effluent<br>Conc. (µg/l) | MAX Effluent Conc. (µg/l)              | Number of<br>Samples | MAL<br>(μg/l) |
|------------------------------------------------|---------------------------------|----------------------------------------|----------------------|---------------|
| Nonylphenol                                    |                                 | <35.6                                  | 1                    | 333           |
| Parathion (ethyl)                              |                                 | < 0.0539                               | 1                    | 0.1           |
| Pentachlorobenzene                             |                                 | <1.08                                  | 1                    | 20            |
| Pentachlorophenol                              |                                 | <1.08                                  | 1                    | 5             |
| Phenanthrene                                   |                                 | <1.08                                  | 1                    | 10            |
| Polychlorinated Biphenyls (PCB's) (*3)         |                                 | <0.2 for all<br>seven PCB<br>congeners | 1                    | 0.2           |
| Pyridine                                       |                                 | <1.08                                  | 1                    | 20            |
| Selenium                                       |                                 | <5                                     | 1                    | 5             |
| Silver                                         |                                 | <0.5                                   | 1                    | 0.5           |
| 1,2,4,5-Tetrachlorobenzene                     |                                 | <1.08                                  | 1                    | 20            |
| 1,1,2,2-Tetrachloroethane                      |                                 | <1.0                                   | 1                    | 10            |
| Tetrachloroethylene                            |                                 | <1.0                                   | 1                    | 10            |
| Thallium                                       |                                 | < 0.966                                | 1                    | 0.5           |
| Toluene                                        |                                 | <1.0                                   | 1                    | 10            |
| Toxaphene                                      |                                 | <0.108                                 | 1                    | 0.3           |
| 2,4,5-TP (Silvex)                              |                                 | <0.3                                   | 1                    | 0.3           |
| Tributyltin (see instructions for explanation) |                                 | <0.00787                               |                      | 0.01          |
| 1,1,1-Trichloroethane                          |                                 | <1.0                                   | 1                    | 10            |
| 1,1,2-Trichloroethane                          |                                 | <1.0                                   | 1                    | 10            |
| Trichloroethylene                              |                                 | <1.0                                   | 1                    | 10            |
| 2,4,5-Trichlorophenol                          |                                 | <1.08                                  | 1                    | 50            |
| TTHM (Total Trihalomethanes)                   |                                 | 48.36                                  | 1                    | 10            |
| Vinyl Chloride                                 |                                 | <1.0                                   | 1                    | 10            |
| Zinc                                           |                                 | 25.6                                   | 1                    | 5             |

<sup>(\*1)</sup> Determined by subtracting hexavalent Cr from total Cr.

<sup>(\*2)</sup> Cyanide, amenable to chlorination or weak-acid dissociable.

<sup>(\*3)</sup> The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

# **Section 2. Priority Pollutants**

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab ⊠ Composite □

Date and time sample(s) collected: <u>o6/26/2025</u>; <u>o9:55 AM</u>

#### Table 4.0(2)A - Metals, Cyanide, and Phenols

| Pollutant           | AVG<br>Effluent<br>Conc. (µg/l) | MAX<br>Effluent<br>Conc. (µg/l) | Number of<br>Samples | MAL<br>(μg/l) |
|---------------------|---------------------------------|---------------------------------|----------------------|---------------|
| Antimony            |                                 | <3                              | 1                    | 5             |
| Arsenic             |                                 | < 0.902                         | 1                    | 0.5           |
| Beryllium           |                                 | <0.162                          | 1                    | 0.5           |
| Cadmium             |                                 | <1.0                            | 1                    | 1             |
| Chromium (Total)    |                                 | 1.41                            | 1                    | 3             |
| Chromium (Hex)      |                                 | <3.00                           | 1                    | 3             |
| Chromium (Tri) (*1) |                                 | N/A                             | 1                    | N/A           |
| Copper              |                                 | 4.36                            | 1                    | 2             |
| Lead                |                                 | <0.5                            | 1                    | 0.5           |
| Mercury             |                                 | < 0.00426                       | 1                    | 0.005         |
| Nickel              |                                 | 2                               | 1                    | 2             |
| Selenium            |                                 | <5                              | 1                    | 5             |
| Silver              |                                 | <0.5                            | 1                    | 0.5           |
| Thallium            |                                 | < 0.966                         | 1                    | 0.5           |
| Zinc                |                                 | 25.6                            | 1                    | 5             |
| Cyanide (*2)        |                                 | <5                              | 1                    | 10            |
| Phenols, Total      |                                 | 15                              | 1                    | 10            |

<sup>(\*1)</sup> Determined by subtracting hexavalent Cr from total Cr.

<sup>(\*2)</sup> Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)B - Volatile Compounds

| Pollutant                                      | AVG<br>Effluent<br>Conc. (µg/l) | MAX<br>Effluent<br>Conc. (µg/l) | Number of<br>Samples | MAL<br>(μg/l) |
|------------------------------------------------|---------------------------------|---------------------------------|----------------------|---------------|
| Acrolein                                       |                                 | <2.0                            | 1                    | 50            |
| Acrylonitrile                                  |                                 | <1.0                            | 1                    | 50            |
| Benzene                                        |                                 | <1.0                            | 1                    | 10            |
| Bromoform                                      |                                 | <1.0                            | 1                    | 10            |
| Carbon Tetrachloride                           |                                 | <1.0                            | 1                    | 2             |
| Chlorobenzene                                  |                                 | <1.0                            | 1                    | 10            |
| Chlorodibromomethane                           |                                 | 1.34                            |                      | 10            |
| Chloroethane                                   |                                 | <1.0                            | 1                    | 50            |
| 2-Chloroethylvinyl Ether                       |                                 | <1.0                            | 1                    | 10            |
| Chloroform                                     |                                 | 38.7                            | 1                    | 10            |
| Dichlorobromomethane<br>[Bromodichloromethane] |                                 | 8.32                            | 1                    | 10            |
| 1,1-Dichloroethane                             |                                 | <1.0                            | 1                    | 10            |
| 1,2-Dichloroethane                             |                                 | <1.0                            | 1                    | 10            |
| 1,1-Dichloroethylene                           |                                 | <1.0                            | 1                    | 10            |
| 1,2-Dichloropropane                            |                                 | <1.0                            | 1                    | 10            |
| 1,3-Dichloropropylene                          |                                 | <1.0                            | 1                    | 10            |
| [1,3-Dichloropropene]                          |                                 |                                 |                      |               |
| 1,2-Trans-Dichloroethylene                     |                                 | <1.0                            | 1                    | 10            |
| Ethylbenzene                                   |                                 | <1.0                            | 1                    | 10            |
| Methyl Bromide                                 |                                 | <1.0                            | 1                    | 50            |
| Methyl Chloride                                |                                 | <1.0                            | 1                    | 50            |
| Methylene Chloride                             |                                 | <1.0                            | 1                    | 20            |
| 1,1,2,2-Tetrachloroethane                      |                                 | <1.0                            | 1                    | 10            |
| Tetrachloroethylene                            |                                 | <1.0                            | 1                    | 10            |
| Toluene                                        |                                 | <1.0                            | 1                    | 10            |
| 1,1,1-Trichloroethane                          |                                 | <1.0                            | 1                    | 10            |
| 1,1,2-Trichloroethane                          |                                 | <1.0                            | 1                    | 10            |
| Trichloroethylene                              |                                 | <1.0                            | 1                    | 10            |
| Vinyl Chloride                                 |                                 | <1.0                            | 1                    | 10            |

Table 4.0(2)C - Acid Compounds

| Pollutant             | AVG<br>Effluent<br>Conc. (µg/l) | MAX<br>Effluent<br>Conc. (µg/l) | Number of<br>Samples | MAL<br>(μg/l) |
|-----------------------|---------------------------------|---------------------------------|----------------------|---------------|
| 2-Chlorophenol        |                                 | <1.08                           | 1                    | 10            |
| 2,4-Dichlorophenol    |                                 | <1.08                           | 1                    | 10            |
| 2,4-Dimethylphenol    |                                 | <7.57                           | 1                    | 10            |
| 4,6-Dinitro-o-Cresol  |                                 | <2.16                           | 1                    | 50            |
| 2,4-Dinitrophenol     |                                 | <2.16                           | 1                    | 50            |
| 2-Nitrophenol         |                                 | <1.08                           | 1                    | 20            |
| 4-Nitrophenol         |                                 | <1.08                           | 1                    | 50            |
| P-Chloro-m-Cresol     |                                 | <1.08                           | 1                    | 10            |
| Pentalchlorophenol    |                                 | <1.08                           | 1                    | 5             |
| Phenol                |                                 | 15                              | 1                    | 10            |
| 2,4,6-Trichlorophenol |                                 | <1.08                           | 1                    | 10            |

Table 4.0(2)D - Base/Neutral Compounds

| Pollutant                             | AVG<br>Effluent<br>Conc. (µg/l) | MAX<br>Effluent<br>Conc. (µg/l) | Number of<br>Samples | MAL<br>(μg/l) |
|---------------------------------------|---------------------------------|---------------------------------|----------------------|---------------|
| Acenaphthene                          |                                 | <1.08                           | 1                    | 10            |
| Acenaphthylene                        |                                 | <1.08                           | 1                    | 10            |
| Anthracene                            |                                 | <1.08                           | 1                    | 10            |
| Benzidine                             |                                 | <1.62                           | 1                    | 50            |
| Benzo(a)Anthracene                    |                                 | <1.08                           | 1                    | 5             |
| Benzo(a)Pyrene                        |                                 | <1.08                           | 1                    | 5             |
| 3,4-Benzofluoranthene                 |                                 | <1.08                           | 1                    | 10            |
| Benzo(ghi)Perylene                    |                                 | <2.16                           | 1                    | 20            |
| Benzo(k)Fluoranthene                  |                                 | <1.08                           | 1                    | 5             |
| Bis(2-Chloroethoxy)Methane            |                                 | <1.08                           | 1                    | 10            |
| Bis(2-Chloroethyl)Ether               |                                 | <1.08                           | 1                    | 10            |
| Bis(2-Chloroisopropyl)Ether           |                                 | <1.08                           | 1                    | 10            |
| Bis(2-Ethylhexyl)Phthalate            |                                 | <2.7                            | 1                    | 10            |
| 4-Bromophenyl Phenyl Ether            |                                 | <1.08                           | 1                    | 10            |
| Butyl benzyl Phthalate                |                                 | <1.08                           | 1                    | 10            |
| 2-Chloronaphthalene                   |                                 | <1.08                           | 1                    | 10            |
| 4-Chlorophenyl phenyl ether           |                                 | <1.08                           | 1                    | 10            |
| Chrysene                              |                                 | <1.08                           | 1                    | 5             |
| Dibenzo(a,h)Anthracene                |                                 | <1.08                           | 1                    | 5             |
| 1,2-(o)Dichlorobenzene                |                                 | <3.78                           | 1                    | 10            |
| 1,3-(m)Dichlorobenzene                |                                 | <1.08                           | 1                    | 10            |
| 1,4-(p)Dichlorobenzene                |                                 | <1.08                           | 1                    | 10            |
| 3,3-Dichlorobenzidine                 |                                 | <1.08                           | 1                    | 5             |
| Diethyl Phthalate                     |                                 | <1.08                           | 1                    | 10            |
| Dimethyl Phthalate                    |                                 | <1.08                           | 1                    | 10            |
| Di-n-Butyl Phthalate                  |                                 | <1.08                           | 1                    | 10            |
| 2,4-Dinitrotoluene                    |                                 | <1.08                           | 1                    | 10            |
| 2,6-Dinitrotoluene                    |                                 | <1.08                           | 1                    | 10            |
| Di-n-Octyl Phthalate                  |                                 | <2.7                            | 1                    | 10            |
| 1,2-Diphenylhydrazine (as Azobenzene) |                                 | <1.08                           | 1                    | 20            |
| Fluoranthene                          |                                 | <1.08                           | 1                    | 10            |

| Pollutant                  | AVG<br>Effluent<br>Conc. (µg/l) | MAX<br>Effluent<br>Conc. (µg/l) | Number of<br>Samples | MAL (µg/l) |
|----------------------------|---------------------------------|---------------------------------|----------------------|------------|
| Fluorene                   |                                 | <1.08                           | 1                    | 10         |
| Hexachlorobenzene          |                                 | <1.08                           | 1                    | 5          |
| Hexachlorobutadiene        |                                 | <1.08                           | 1                    | 10         |
| Hexachlorocyclo-pentadiene |                                 | <10.0                           | 1                    | 10         |
| Hexachloroethane           |                                 | <1.08                           | 1                    | 20         |
| Indeno(1,2,3-cd)pyrene     |                                 | <2.16                           | 1                    | 5          |
| Isophorone                 |                                 | <1.08                           | 1                    | 10         |
| Naphthalene                |                                 | <1.08                           | 1                    | 10         |
| Nitrobenzene               |                                 | <1.08                           | 1                    | 10         |
| N-Nitrosodimethylamine     |                                 | <1.08                           | 1                    | 50         |
| N-Nitrosodi-n-Propylamine  |                                 | <1.03                           | 1                    | 20         |
| N-Nitrosodiphenylamine     |                                 | <1.08                           | 1                    | 20         |
| Phenanthrene               |                                 | <1.08                           | 1                    | 10         |
| Pyrene                     |                                 | <1.08                           | 1                    | 10         |
| 1,2,4-Trichlorobenzene     |                                 | <1.08                           | 1                    | 10         |

Table 4.0(2)E - Pesticides

| Pollutant                            | AVG<br>Effluent<br>Conc. (µg/l) | MAX<br>Effluent<br>Conc. (µg/l) | Number of<br>Samples | MAL (μg/l) |
|--------------------------------------|---------------------------------|---------------------------------|----------------------|------------|
| Aldrin                               |                                 | < 0.00001                       | 1                    | 0.01       |
| alpha-BHC (Hexachlorocyclohexane)    |                                 | < 0.0108                        | 1                    | 0.05       |
| beta-BHC (Hexachlorocyclohexane)     |                                 | < 0.0108                        | 1                    | 0.05       |
| gamma-BHC<br>(Hexachlorocyclohexane) |                                 | <0.0108                         | 1                    | 0.05       |
| delta-BHC (Hexachlorocyclohexane)    |                                 | < 0.0108                        | 1                    | 0.05       |
| Chlordane                            |                                 | <0.108                          | 1                    | 0.2        |
| 4,4-DDT                              |                                 | <0.0108                         | 1                    | 0.02       |
| 4,4-DDE                              |                                 | < 0.0108                        | 1                    | 0.1        |
| 4,4,-DDD                             |                                 | < 0.0108                        | 1                    | 0.1        |
| Dieldrin                             |                                 | < 0.0108                        | 1                    | 0.02       |
| Endosulfan I (alpha)                 |                                 | < 0.00001                       | 1                    | 0.01       |
| Endosulfan II (beta)                 |                                 | < 0.0108                        | 1                    | 0.02       |
| Endosulfan Sulfate                   |                                 | <0.0108                         | 1                    | 0.1        |
| Endrin                               |                                 | < 0.0108                        | 1                    | 0.02       |
| Endrin Aldehyde                      |                                 | < 0.0108                        | 1                    | 0.1        |
| Heptachlor                           |                                 | < 0.00001                       | 1                    | 0.01       |
| Heptachlor Epoxide                   |                                 | < 0.00001                       | 1                    | 0.01       |
| PCB-1242                             |                                 | <0.20                           | 1                    | 0.2        |
| PCB-1254                             |                                 | <0.20                           | 1                    | 0.2        |
| PCB-1221                             |                                 | <0.20                           | 1                    | 0.2        |
| PCB-1232                             |                                 | <0.20                           | 1                    | 0.2        |
| PCB-1248                             |                                 | <0.20                           | 1                    | 0.2        |
| PCB-1260                             |                                 | <0.20                           | 1                    | 0.2        |
| PCB-1016                             |                                 | <0.20                           | 1                    | 0.2        |
| Toxaphene                            |                                 | <0.108                          | 1                    | 0.3        |

<sup>\*</sup> For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

# Section 3. **Dioxin/Furan Compounds** A. Indicate which of the following compounds from may be present in the influent from a contributing industrial user or significant industrial user. Check all that apply. 2,4,5-trichlorophenoxy acetic acid Common Name 2,4,5-T, CASRN 93-76-5 2-(2,4,5-trichlorophenoxy) propanoic acid Common Name Silvex or 2,4,5-TP, CASRN 93-72-1 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate Common Name Erbon, CASRN 136-25-4 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate Common Name Ronnel, CASRN 299-84-3 2,4,5-trichlorophenol Common Name TCP, CASRN 95-95-4 hexachlorophene Common Name HCP, CASRN 70-30-4 For each compound identified, provide a brief description of the conditions of its/their presence at the facility. N/A, Not applicable

**B.** Do you know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin (TCDD) or any congeners of TCDD may be present in your effluent?

□ Yes ⊠ No

If **yes**, provide a brief description of the conditions for its presence.

Click to enter text.

| C. | If any of the compounds in Subsection A ${f or}$ B are present, complete Table 4.0(2)F. |
|----|-----------------------------------------------------------------------------------------|
|    | For pollutants identified in Table 4.0(2)F, indicate the type of sample.                |

Grab □ Composite □

Date and time sample(s) collected: Click to enter text.

# Table 4.0(2)F - Dioxin/Furan Compounds

| Compound               | Toxic<br>Equivalenc<br>y Factors | Wastewater<br>Concentration<br>(ppq) | Wastewater<br>Equivalents<br>(ppq) | Sludge<br>Concentration<br>(ppt) | Sludge<br>Equivalents<br>(ppt) | MAL<br>(ppq) |
|------------------------|----------------------------------|--------------------------------------|------------------------------------|----------------------------------|--------------------------------|--------------|
| 2,3,7,8 TCDD           | 1                                |                                      |                                    |                                  |                                | 10           |
| 1,2,3,7,8 PeCDD        | 0.5                              |                                      |                                    |                                  |                                | 50           |
| 2,3,7,8 HxCDDs         | 0.1                              |                                      |                                    |                                  |                                | 50           |
| 1,2,3,4,6,7,8<br>HpCDD | 0.01                             |                                      |                                    |                                  |                                | 50           |
| 2,3,7,8 TCDF           | 0.1                              |                                      |                                    |                                  |                                | 10           |
| 1,2,3,7,8 PeCDF        | 0.05                             |                                      |                                    |                                  |                                | 50           |
| 2,3,4,7,8 PeCDF        | 0.5                              |                                      |                                    |                                  |                                | 50           |
| 2,3,7,8 HxCDFs         | 0.1                              |                                      |                                    |                                  |                                | 50           |
| 2,3,4,7,8<br>HpCDFs    | 0.01                             |                                      |                                    |                                  |                                | 50           |
| OCDD                   | 0.0003                           |                                      |                                    |                                  |                                | 100          |
| OCDF                   | 0.0003                           |                                      |                                    |                                  |                                | 100          |
| PCB 77                 | 0.0001                           |                                      |                                    |                                  |                                | 0.5          |
| PCB 81                 | 0.0003                           |                                      |                                    |                                  |                                | 0.5          |
| PCB 126                | 0.1                              |                                      |                                    |                                  |                                | 0.5          |
| PCB 169                | 0.03                             |                                      |                                    |                                  |                                | 0.5          |
| Total                  |                                  |                                      |                                    |                                  |                                |              |

# DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: TOXICITY TESTING REQUIREMENTS

The following **is required** for facilities with a current operating design flow of **1.0 MGD** or **greater**, with an EPA-approved **pretreatment** program (or those required to have one under 40 CFR Part 403), or are required to perform Whole Effluent Toxicity testing. See Page 86 of the instructions for further details.

This worksheet is not required minor amendments without renewal.

### Section 1. Required Tests

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic: <u>Biomonitoring requirements in the permit have been conducted at the frequency required in the permit.</u> All results of biomonitoring tests are reported to TCEQ.

48-hour Acute: <u>Biomonitoring requirements in the permit have been conducted at the frequency required in the permit.</u> All results of biomonitoring tests are reported to TCEQ.

#### Section 2. Toxicity Reduction Evaluations (TREs)

| Has this facility completed a TRE in the past four and a half years? Or is the facility currently performing a TRE? |
|---------------------------------------------------------------------------------------------------------------------|
| □ Yes ⊠ No                                                                                                          |
| If yes, describe the progress to date, if applicable, in identifying and confirming the toxicant.                   |

| Click to enter text. |  |  |
|----------------------|--|--|
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |

# **Section 3. Summary of WET Tests**

If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed.

Table 5.0(1) Summary of WET Tests

| Test Date | Test Species | NOEC Survival | NOEC Sub-lethal |
|-----------|--------------|---------------|-----------------|
|           |              |               |                 |
|           |              |               |                 |
|           |              |               |                 |
|           |              |               |                 |
|           |              |               |                 |
|           |              |               |                 |
|           |              |               |                 |
|           |              |               |                 |
|           |              |               |                 |
|           |              |               |                 |
|           |              |               |                 |
|           |              |               |                 |
|           |              |               |                 |
|           |              |               |                 |
|           |              |               |                 |

# DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works.

# Section 1. All POTWs (Instructions Page 87)

#### A. Industrial users (IUs)

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

#### If there are no users, enter 0 (zero).

Categorical IUs:

Number of IUs: <u>o</u>

Average Daily Flows, in MGD: <u>o</u>

Significant IUs – non-categorical:

Number of IUs: <u>o</u>

Average Daily Flows, in MGD: <u>o</u>

Other IUs:

Number of IUs: <u>o</u>

Average Daily Flows, in MGD: <u>o</u>

#### B. Treatment plant interference

In the past three years, has your POTW experienced treatment plant interference (see instructions)?

□ Yes ⊠ No

**If yes**, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

| Click to enter text. |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |

|    | In the past three years, has your POTW experienced pass through (see instructions)?                                                                                                                                                                         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | □ Yes ⊠ No                                                                                                                                                                                                                                                  |
|    | <b>If yes</b> , identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through. |
|    | Click to enter text.                                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                                                             |
|    |                                                                                                                                                                                                                                                             |
|    |                                                                                                                                                                                                                                                             |
|    |                                                                                                                                                                                                                                                             |
|    |                                                                                                                                                                                                                                                             |
| D. | Pretreatment program                                                                                                                                                                                                                                        |
| L. | Does your POTW have an approved pretreatment program?                                                                                                                                                                                                       |
|    | ✓ Yes □ No                                                                                                                                                                                                                                                  |
|    | If yes, complete Section 2 only of this Worksheet.                                                                                                                                                                                                          |
|    | Is your POTW required to develop an approved pretreatment program?                                                                                                                                                                                          |
|    | □ Yes □ No                                                                                                                                                                                                                                                  |
|    | If yes, complete Section 2.c. and 2.d. only, and skip Section 3.                                                                                                                                                                                            |
|    | <b>If no to either question above</b> , skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.                                                                                                         |
| Se | ection 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 87)                                                                                                                                                        |
| Α. | Substantial modifications                                                                                                                                                                                                                                   |
|    | Have there been any <b>substantial modifications</b> to the approved pretreatment program that have not been submitted to the TCEQ for approval according to 40 CFR §403.18?                                                                                |
|    | □ Yes ⊠ No                                                                                                                                                                                                                                                  |
|    | <b>If yes</b> , identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.                                                                                                                                 |
|    | Click to enter text.                                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                                                             |
|    |                                                                                                                                                                                                                                                             |
|    |                                                                                                                                                                                                                                                             |
|    |                                                                                                                                                                                                                                                             |
|    |                                                                                                                                                                                                                                                             |

C. Treatment plant pass through

|                                                                                                                                        | een any <b>non-substantial</b><br>c have not been submitte                        |     |                     |                    |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----|---------------------|--------------------|--|--|
| □ Yes                                                                                                                                  | ⊠ No                                                                              |     |                     |                    |  |  |
|                                                                                                                                        | y all non-substantial mo<br>purpose of the modific                                |     | hat have not been s | submitted to TCEQ, |  |  |
| Click to ente                                                                                                                          | er text.                                                                          |     |                     |                    |  |  |
| C. Effluent para                                                                                                                       | nmeters above the MAL                                                             |     |                     |                    |  |  |
| monitoring d                                                                                                                           | l), list all parameters me<br>uring the last three year<br>rameters Above the MAL |     |                     |                    |  |  |
| Pollutant                                                                                                                              | Concentration                                                                     | MAL | Units               | Date               |  |  |
| N/A                                                                                                                                    |                                                                                   |     |                     |                    |  |  |
| N/A                                                                                                                                    |                                                                                   |     |                     |                    |  |  |
| N/A                                                                                                                                    |                                                                                   |     |                     |                    |  |  |
| N/A                                                                                                                                    |                                                                                   |     |                     |                    |  |  |
| N/A                                                                                                                                    |                                                                                   |     |                     |                    |  |  |
| N/A                                                                                                                                    |                                                                                   |     |                     |                    |  |  |
| D. Industrial us                                                                                                                       | er interruptions                                                                  |     |                     |                    |  |  |
|                                                                                                                                        | CIU, or other IU caused or pass throughs) at yo                                   |     |                     |                    |  |  |
| □ Yes                                                                                                                                  | ⊠ No                                                                              |     |                     |                    |  |  |
| If yes, identify the industry, describe each episode, including dates, duration, description of the problems, and probable pollutants. |                                                                                   |     |                     |                    |  |  |
| Click to ente                                                                                                                          | Click to enter text.                                                              |     |                     |                    |  |  |
|                                                                                                                                        |                                                                                   |     |                     |                    |  |  |
|                                                                                                                                        |                                                                                   |     |                     |                    |  |  |
|                                                                                                                                        |                                                                                   |     |                     |                    |  |  |
|                                                                                                                                        |                                                                                   |     |                     |                    |  |  |
|                                                                                                                                        |                                                                                   |     |                     |                    |  |  |

**B.** Non-substantial modifications

# Section 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 88)

| A. | General information                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|    | Company Name: <u>N/A</u>                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
|    | SIC Code: Click to enter text.                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|    | Contact name: Click to enter text.                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|    | Address: Click to enter text.                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|    | City, State, and Zip Code: Click to enter text.                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|    | Telephone number: <u>Click to enter text.</u>                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|    | Email address: Click to enter text.                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| B. | Process information                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|    | Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).                                                                                                                                                                          |  |  |  |  |  |  |  |
|    | Click to enter text.                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| C. | Product and service information                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| C. | Product and service information Provide a description of the principal product(s) or services performed.                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| C. |                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| C. | Provide a description of the principal product(s) or services performed.                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| C. | Provide a description of the principal product(s) or services performed.                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| C. | Provide a description of the principal product(s) or services performed.                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| C. | Provide a description of the principal product(s) or services performed.                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| C. | Provide a description of the principal product(s) or services performed.                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
|    | Provide a description of the principal product(s) or services performed.                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
|    | Provide a description of the principal product(s) or services performed.  Click to enter text.                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|    | Provide a description of the principal product(s) or services performed.  Click to enter text.  Flow rate information                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|    | Provide a description of the principal product(s) or services performed.  Click to enter text.  Flow rate information  See the Instructions for definitions of "process" and "non-process wastewater."                                                                                                                                 |  |  |  |  |  |  |  |
|    | Provide a description of the principal product(s) or services performed.  Click to enter text.  Flow rate information  See the Instructions for definitions of "process" and "non-process wastewater."  Process Wastewater:                                                                                                            |  |  |  |  |  |  |  |
|    | Provide a description of the principal product(s) or services performed.  Click to enter text.  Flow rate information  See the Instructions for definitions of "process" and "non-process wastewater."  Process Wastewater:  Discharge, in gallons/day: N/A                                                                            |  |  |  |  |  |  |  |
|    | Provide a description of the principal product(s) or services performed.  Click to enter text.  Flow rate information  See the Instructions for definitions of "process" and "non-process wastewater."  Process Wastewater:  Discharge, in gallons/day: N/A  Discharge Type:  Continuous  Batch  Intermittent                          |  |  |  |  |  |  |  |
|    | Provide a description of the principal product(s) or services performed.  Click to enter text.  Flow rate information  See the Instructions for definitions of "process" and "non-process wastewater."  Process Wastewater:  Discharge, in gallons/day: N/A  Discharge Type:  Continuous  Batch  Intermittent  Non-Process Wastewater: |  |  |  |  |  |  |  |

| E. | Pretreatment standards                                                                                                                                          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Is the SIU or CIU subject to technically based local limits as defined in the <i>i</i> nstructions?                                                             |
|    | □ Yes □ No                                                                                                                                                      |
|    | Is the SIU or CIU subject to categorical pretreatment standards found in $40\ CFR\ Parts\ 405-471?$                                                             |
|    | □ Yes □ No                                                                                                                                                      |
|    | <b>If subject to categorical pretreatment standards</b> , indicate the applicable category and subcategory for each categorical process.                        |
|    | Category: Subcategories: Click to enter text.                                                                                                                   |
|    | Click or tap here to enter text. Click to enter text.                                                                                                           |
|    | Category: Click to enter text.                                                                                                                                  |
|    | Subcategories: <u>Click to enter text.</u>                                                                                                                      |
|    | Category: Click to enter text.                                                                                                                                  |
|    | Subcategories: <u>Click to enter text.</u>                                                                                                                      |
|    | Category: Click to enter text.                                                                                                                                  |
|    | Subcategories: <u>Click to enter text.</u>                                                                                                                      |
|    | Category: Click to enter text.                                                                                                                                  |
|    | Subcategories: <u>Click to enter text.</u>                                                                                                                      |
| F. | Industrial user interruptions                                                                                                                                   |
|    | Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years? |
|    | □ Yes ⊠ No                                                                                                                                                      |
|    | <b>If yes</b> , identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants.                           |
|    | Click to enter text.                                                                                                                                            |
|    |                                                                                                                                                                 |
|    |                                                                                                                                                                 |
|    |                                                                                                                                                                 |
|    |                                                                                                                                                                 |
|    |                                                                                                                                                                 |

# WORKSHEET 7.0

Not Applicable

#### TEXAS COMMISSION ON ENVIRONMENTAL OUALITY

#### CLASS V INJECTION WELL INVENTORY/AUTHORIZATION FORM

Submit the completed form to:

TCEQ IUC Permits Team Radioactive Materials Division MC-233 PO Box 13087 Austin, Texas 78711-3087 512-239-6466

| For TCEQ Use Only |
|-------------------|
| Reg. No           |
| Date Received     |
| Date Authorized   |

### Section 1. General Information (Instructions Page 90)

| 1. | TCEQ Program Area |  |
|----|-------------------|--|
|----|-------------------|--|

Program Area (PST, VCP, IHW, etc.): Click to enter text.

Program ID: Click to enter text.

Contact Name: Click to enter text.

Phone Number: Click to enter text.

#### 2. Agent/Consultant Contact Information

Contact Name: Click to enter text.

Address: Click to enter text.

City, State, and Zip Code: <u>Click to enter text.</u>

Phone Number: Click to enter text.

### 3. Owner/Operator Contact Information

□ Owner □ Operator

Owner/Operator Name: Click to enter text.

Contact Name: <u>Click to enter text.</u>

Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Phone Number: Click to enter text.

#### 4. Facility Contact Information

Facility Name: Click to enter text.

Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Location description (if no address is available): Click to enter text.

Facility Contact Person: <u>Click to enter text.</u>

Phone Number: <u>Click to enter text.</u>

| 5.     | Latitude and Longitude, in degrees-minutes-seconds                                        |
|--------|-------------------------------------------------------------------------------------------|
|        | Latitude: Click to enter text.                                                            |
|        | Longitude: Click to enter text.                                                           |
|        | Method of determination (GPS, TOPO, etc.): Click to enter text.                           |
|        | Attach topographic quadrangle map as attachment A.                                        |
| 6.     | Well Information                                                                          |
|        | Type of Well Construction, select one:                                                    |
|        | □ Vertical Injection                                                                      |
|        | □ Subsurface Fluid Distribution System                                                    |
|        | □ Infiltration Gallery                                                                    |
|        | □ Temporary Injection Points                                                              |
|        | □ Other, Specify: <u>Click to enter text.</u>                                             |
|        | Number of Injection Wells: <u>Click to enter text.</u>                                    |
| 7.     | Purpose                                                                                   |
|        | Detailed Description regarding purpose of Injection System:                               |
|        | Click to enter text.                                                                      |
|        |                                                                                           |
|        |                                                                                           |
|        |                                                                                           |
|        | Attach a Site Map as Attachment B (Attach the Approved Remediation Plan, if appropriate.) |
| 8.     | Water Well Driller/Installer                                                              |
|        | Water Well Driller/Installer Name: Click to enter text.                                   |
|        | City, State, and Zip Code: <u>Click to enter text.</u>                                    |
|        | Phone Number: <u>Click to enter text.</u>                                                 |
|        | License Number: <u>Click to enter text.</u>                                               |
| ection | 1 2. Proposed Down Hole Design                                                            |
|        | diagram signed and sealed by a licensed engineer as Attachment C.                         |
|        |                                                                                           |
|        | (1) - Down Hole Design Table  Size Setting Sacks Coment/Crout - Hole Weight               |
|        |                                                                                           |

#### Ta

| Name of<br>String | Size | Setting<br>Depth | Sacks Cement/Grout -<br>Slurry Volume - Top of<br>Cement | Hole<br>Size | Weight (lbs/ft) PVC/Steel |
|-------------------|------|------------------|----------------------------------------------------------|--------------|---------------------------|
| Casing            |      |                  |                                                          |              |                           |
| Tubing            |      |                  |                                                          |              |                           |
| Screen            |      |                  |                                                          |              |                           |

# Section 3. Proposed Trench System, Subsurface Fluid Distribution System, or Infiltration Gallery

Attach a diagram signed and sealed by a licensed engineer as Attachment D.

System(s) Dimensions: <u>Click to enter text.</u> System(s) Construction: Click to enter text.

| Section 4. | Site Hydrogeo | ological and In | jection Zone Data |
|------------|---------------|-----------------|-------------------|
|            | <u> </u>      | , ea a          |                   |

- 1. Name of Contaminated Aguifer: Click to enter text.
- 2. Receiving Formation Name of Injection Zone: Click to enter text.
- 3. Well/Trench Total Depth: Click to enter text.
- **4.** Surface Elevation: <u>Click to enter text.</u>
- **5.** Depth to Ground Water: <u>Click to enter text.</u>
- **6.** Injection Zone Depth: <u>Click to enter text.</u>
- 7. Injection Zone vertically isolated geologically? ☐ Yes ☐ No Impervious Strata between Injection Zone and nearest Underground Source of Drinking Water:

Name: Click to enter text.

Thickness: Click to enter text.

- **8.** Provide a list of contaminants and the levels (ppm) in contaminated aquifer Attach as Attachment E.
- **9.** Horizontal and Vertical extent of contamination and injection plume Attach as Attachment F.
- **10.** Formation (Injection Zone) Water Chemistry (Background levels) TDS, etc. Attach as Attachment G.
- **11.** Injection Fluid Chemistry in PPM at point of injection Attach as Attachment H.
- 12. Lowest Known Depth of Ground Water with < 10,000 PPM TDS: Click to enter text.
- 13. Maximum injection Rate/Volume/Pressure: Click to enter text.
- **14.** Water wells within 1/4 mile radius (attach map as Attachment I): <u>Click to enter text.</u>
- 15. Injection wells within 1/4 mile radius (attach map as Attachment J): <u>Click to enter text.</u>
- 16. Monitor wells within 1/4 mile radius (attach drillers logs and map as Attachment K): Click to enter text.
- 17. Sampling frequency: Click to enter text.
- **18.** Known hazardous components in injection fluid: Click to enter text.

### Section 5. Site History

- **1.** Type of Facility: Click to enter text.
- **2.** Contamination Dates: Click to enter text.
- 3. Original Contamination (VOCs, TPH, BTEX, etc.) and Concentrations (attach as Attachment L): <u>Click to enter text.</u>
- **4.** Previous Remediation (attach results of any previous remediation as attachment M): Click to enter text.

NOTE: Authorization Form should be completed in detail and authorization given by the TCEQ before construction, operation, and/or conversion can begin. Attach additional pages as necessary.

#### Class V Injection Well Designations

- 5A07 Heat Pump/AC return (IW used for groundwater to heat and/or cool buildings)
- 5A19 Industrial Cooling Water Return Flow (IW used to cool industrial process equipment)
- 5B22 Salt Water Intrusion Barrier (IW used to inject fluids to prevent the intrusion of salt water into an aquifer)
- 5D02 Storm Water Drainage (IW designed for the disposal of rain water)
- 5D04 Industrial Stormwater Drainage Wells (IW designed for the disposal of rain water associated with industrial facilities)
- 5F01 Agricultural Drainage (IW that receive agricultural runoff)
- 5R21 Aquifer Recharge (IW used to inject fluids to recharge an aquifer)
- 5S23 Subsidence Control Wells (IW used to control land subsidence caused by ground water withdrawal)
- 5W09 Untreated Sewage
- 5W10 Large Capacity Cesspools (Cesspools that are designed for 5,000 gpd or greater)
- 5W11 Large Capacity Septic systems (Septic systems designed for 5,000 gpd or greater)
- 5W12 WTTP disposal
- 5W20 Industrial Process Waste Disposal Wells
- 5W31 Septic System (Well Disposal method)
- 5W32 Septic System Drainfield Disposal
- 5X13 Mine Backfill (IW used to control subsidence, dispose of mining byproducts, and/or fill sections of a mine)
- 5X25 Experimental Wells (Pilot Test) (IW used to test new technologies or tracer dye studies)
- 5X26 Aguifer Remediation (IW used to clean up, treat, or prevent contamination of a USDW)
- 5X27 Other Wells
- 5X28 Motor Vehicle Waste Disposal Wells (IW used to dispose of waste from a motor vehicle site These are currently banned)
- 5X29 Abandoned Drinking Water Wells (waste disposal)

#### Technical Report 1.0 Exhibit A – Treatment Process Description

#### Interim I / Interim II Phases (1.5 MGD, 2-Hour Peak Flow 6.0 MGD, Outfall 001 Only)

(Note - superseded. Construction of all treatment units required for operation at the Final Permit Phase was completed as of October 7, 2022. The Buda WWTP has operated under the Interim III Permit Phase since October 7, 2022, pending completion of the proposed 24" effluent force main to Outfall 002).

The Buda WWTP uses the activated sludge treatment process, designed for single-sludge nitrification, with fine bubble aeration. The activated sludge process is operated in complete-mix mode. The treatment process also includes alum addition for phosphorus removal, chlorine disinfection, effluent filtration, and dechlorination using sodium bisulfite solution. Effluent is pumped through a 20-inch force main to Outfall 001.

Interim I / Interim II Phases (1.5 MGD) treatment process units in order of flow through the WWTP include:

- Headworks with two mechanical screens and one manual screen;
- Influent flow measurement (Parshall flume with ultrasonic open-channel flow meter);
- One vortex grit basin with grit pump and grit washer/classifier;
- Headworks biofilters odor control system;
- Influent lift station:
- Influent flow splitter;
- Three aeration basins with fine-bubble diffusers;
- Four process aeration blowers;
- Alum storage facility and feed system;
- Clarifier flow splitter;
- Two secondary clarifiers
- Return activated sludge (RAS) pump station;
- Intermediate flow measurement for chemical dosing (Parshall flume with ultrasonic flow meter);
- Three chlorine contact basins with fine-bubble diffusers for post-aeration;
- Chlorine storage building and chlorine feed system with an emergency scrubber;
- Three automatic-backwashing sand-media effluent filters:
- Effluent and NPW/Reuse pump station;
- · Sodium bisulfite storage and feed system; and,
- Effluent flow measurement (closed-pipe ultrasonic flow meter).

Sludge processing units and ancillary facilities include:

- Waste activated sludge (WAS) pump station;
- Gravity thickener;
- Four aerated sludge holding basins;
- Four sludge aeration / effluent re-aeration blowers
- Decanted sludge pumping station;
- Sludge dewatering facility with two-meter belt filter press and polymer feed system;
- Sludge drying beds with wedgewater-tile media;
- Operations building;
- Emergency influent holding pond;
- Plant drain lift station;
- Plant non-potable water system; and,
- Flood protection berms, stormwater holding pond, and storm drains.

### Interim III Phase (1.75 MGD, 2-Hour Peak Flow 7.0 MGD, Existing Outfall 001 Only)

The Interim III Phase has been in operation since October 7, 2022. Hydraulic capacity improvements have been made to the existing Buda WWTP treatment facilities in accordance with the *Capacity Assessment* and *Rerating Recommendations for the Buda WWTP* report dated March 20, 2015 and TCEQ's approval letter for the proposed capacity rerating dated July 3, 2015. The Interim III Phase facilities uses the activated sludge treatment process for single-sludge nitrification, with fine bubble aeration, operated in complete-mix mode. The Interim III Phase treatment process include alum addition for phosphorus removal, chlorine disinfection, effluent filtration, and dechlorination using sodium bisulfite solution. Effluent is pumped through an existing 20-inch force main to existing Outfall 001.

(Note - the description below is of the treatment process units designed and required for operation at the Interim III Permit Phase, however construction of all additional treatment units required for operation at the Final Permit Phase was completed as of October 7, 2022.)

Interim III Phase (1.75 MGD) treatment process units in order of flow through the WWTP include:

- Headworks with two mechanical screens and one manual screen;
- Influent flow measurement (Parshall flume with ultrasonic open-channel flow meter);
- One vortex grit basin with grit pump and grit washer/classifier;
- Headworks biofilters odor control system;
- Influent lift station (with expanded firm pump capacity to convey proposed 2-hour peak flow);
- Influent flow splitter;
- Three aeration basins with fine-bubble diffusers;
- Four process aeration blowers;
- Alum storage facility and feed system;
- Clarifier flow splitter;
- Two secondary clarifiers
- Return activated sludge (RAS) pump station;
- Intermediate flow measurement for chemical dosing (Parshall flume with ultrasonic flow meter);
- Three chlorine contact basins with fine-bubble diffusers for post-aeration (with weir elevations adjusted to provide 20 minutes contact time at proposed 2-hour peak flow 7.0 MGD);
- Chlorine storage building and chlorine feed system with an emergency scrubber;
- Three automatic-backwashing sand-media effluent filters;
- Effluent and NPW/Reuse pump station (with expanded firm pumping capacity to convey proposed 2-hour peak flow);
- Sodium bisulfite storage and feed system;
- Effluent flow measurement (closed-pipe ultrasonic flow meter); and,
- Piping improvements will be constructed to eliminate air binding at vertical 90 degree downward bends at the influent flow splitter, aeration basin effluent launders, and clarifier drop boxes, as recommended in the rerating study and approved by TCEQ.

The Buda WWTP Interim II Phase (1.75 MGD) sludge processing units and ancillary facilities include:

- Waste activated sludge (WAS) pump station;
- Gravity thickener;
- Four aerated sludge holding basins;
- Four sludge aeration / effluent re-aeration blowers
- Decanted sludge pumping station;
- Sludge dewatering facility with two-meter belt filter press and polymer feed system;
- Sludge drying beds with wedgewater-tile media;
- Operations building;
- Plant drain lift station;
- Plant non-potable water system; and,
- Flood protection berms, stormwater holding pond, and storm drains.

#### Final Phase (3.5 MGD, 2-Hour Peak Flow 14.0 MGD, Existing Outfall 001 plus Proposed Outfall 002)

The Buda WWTP Final Phase will use the activated sludge treatment process, designed for single-sludge nitrification, with fine bubble aeration, operated in complete-mix mode. The Final Phase treatment process also will include alum addition for phosphorus removal, chlorine disinfection, effluent filtration, and dechlorination using sodium bisulfite solution. Effluent will be pumped through an existing 20-inch force main to existing Outfall 001, and will also be pumped through a proposed 24-inch force main to proposed Outfall 002.

(Note: Construction of all treatment units described below was completed as of October 7, 2022. The Buda WWTP has operated under the Interim III permit phase since October, 2022, pending completion of the proposed offsite 24" effluent force main to Outfall 002 which is required for operation at the permit Final Phase.

Final Phase (3.5 MGD) treatment process units in order of flow through the WWTP include:

- Headworks with four mechanical screens and one manual screen;
- Influent flow measurement (two Parshall flumes with ultrasonic open-channel flow meters);
- Two vortex grit basins with two grit pumps and one grit washer/classifier;
- Two headworks biofilters odor control systems;
- Influent lift station (with expansion of firm pump capacity to convey proposed 2-hour peak flow);
- Influent flow splitter (expanded with capacity to convey proposed 2-hour peak flow and RAS);
- Six aeration basins with fine-bubble diffusers;
- Four process aeration blowers with structure and conduit for four future additional blowers;
- Alum storage facility and feed system;
- Two clarifier flow splitters;
- Four secondary clarifiers
- Two return activated sludge (RAS) pump stations;
- Two intermediate flow measurement points for chemical dosing (Parshall flumes with ultrasonic flow meters);
- Six chlorine contact basins with fine-bubble diffusers for post-aeration;
- Chlorine storage building and chlorine feed system with an emergency scrubber;
- Three automatic-backwashing sand-media effluent filters;
- Two automatic-backwashing cloth-media disk type effluent filters;
- Sodium bisulfite storage and feed system;
- Effluent flow measurement (Parshall flume and open-channel ultrasonic flow meter);
- Dechlorination dosing/contact basin; and,
- Effluent pump station (with firm capacity to convey proposed 2-hour peak flow).

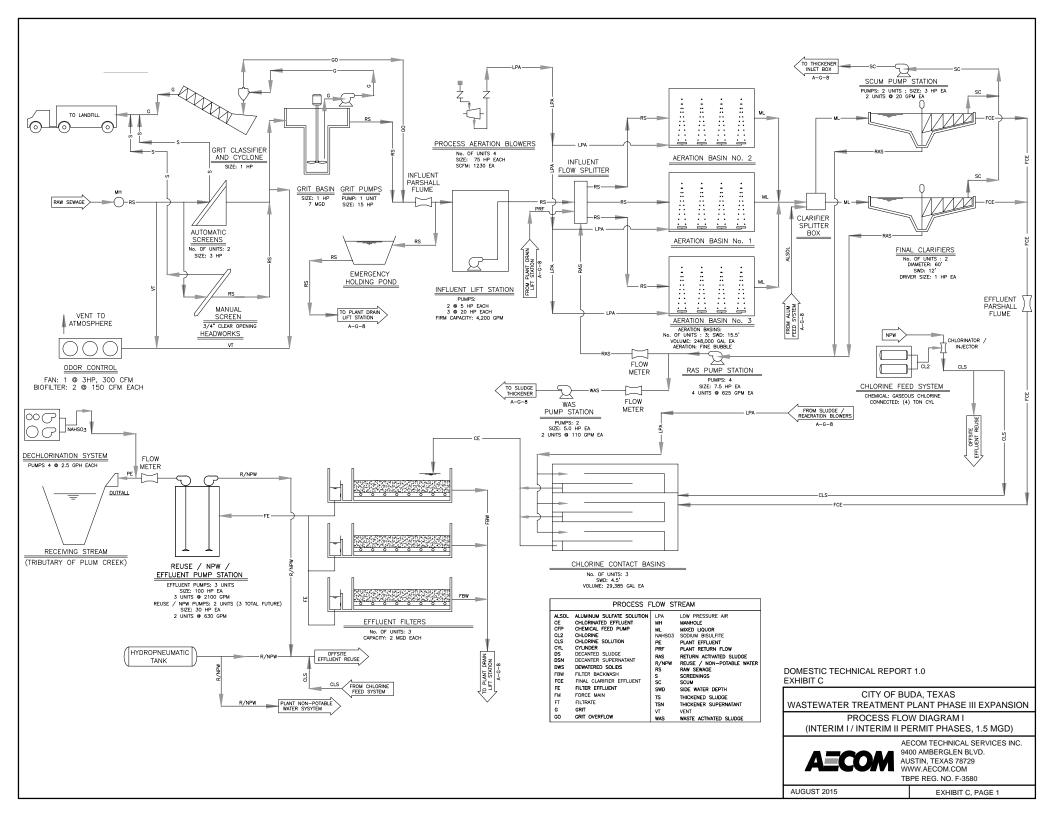
The Buda WWTP Final Phase (3.5 MGD) sludge processing units and ancillary facilities include:

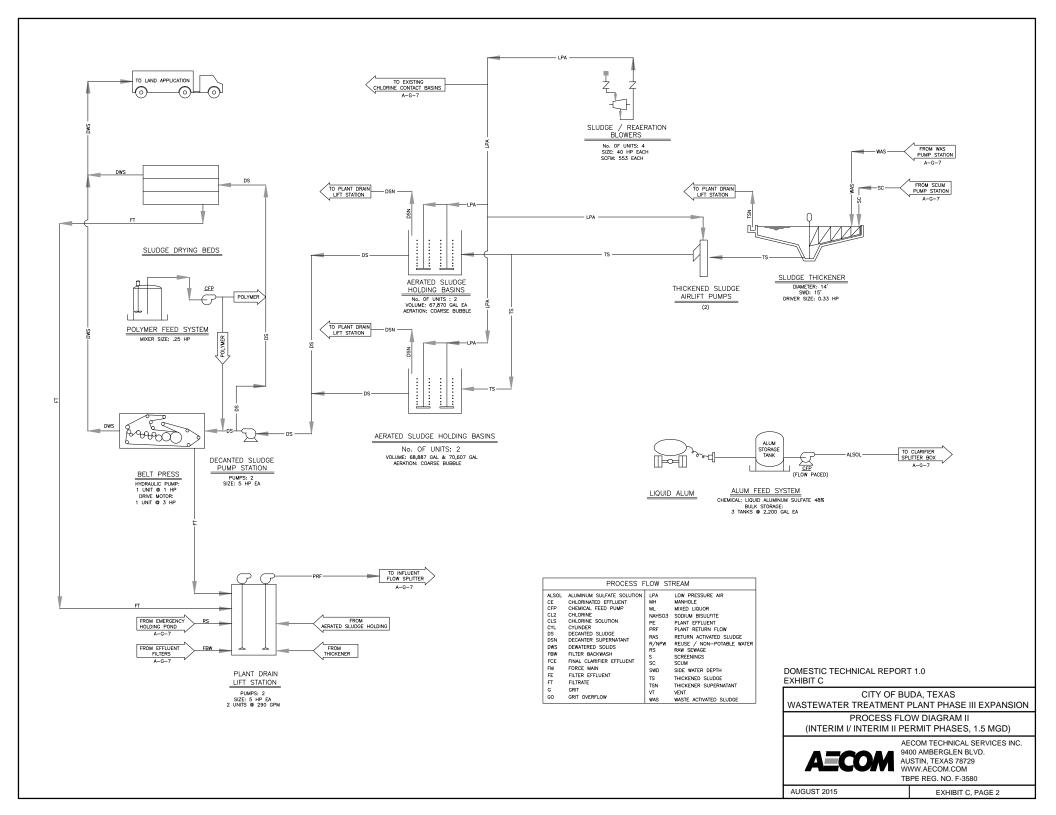
- Waste activated sludge (WAS) pump station;
- Gravity thickener;
- Four aerated sludge holding basins;
- Four sludge aeration / effluent re-aeration blowers
- Decanted sludge pumping station;
- Sludge dewatering facility with two-meter belt filter press and polymer feed system;
- Operations building;
- Plant drain lift station (expanded to accommodate additional treatment process return flows);
- NPW/Reuse pump station;
- Plant non-potable water system; and,
- Flood protection berms, stormwater holding pond, and storm drains.

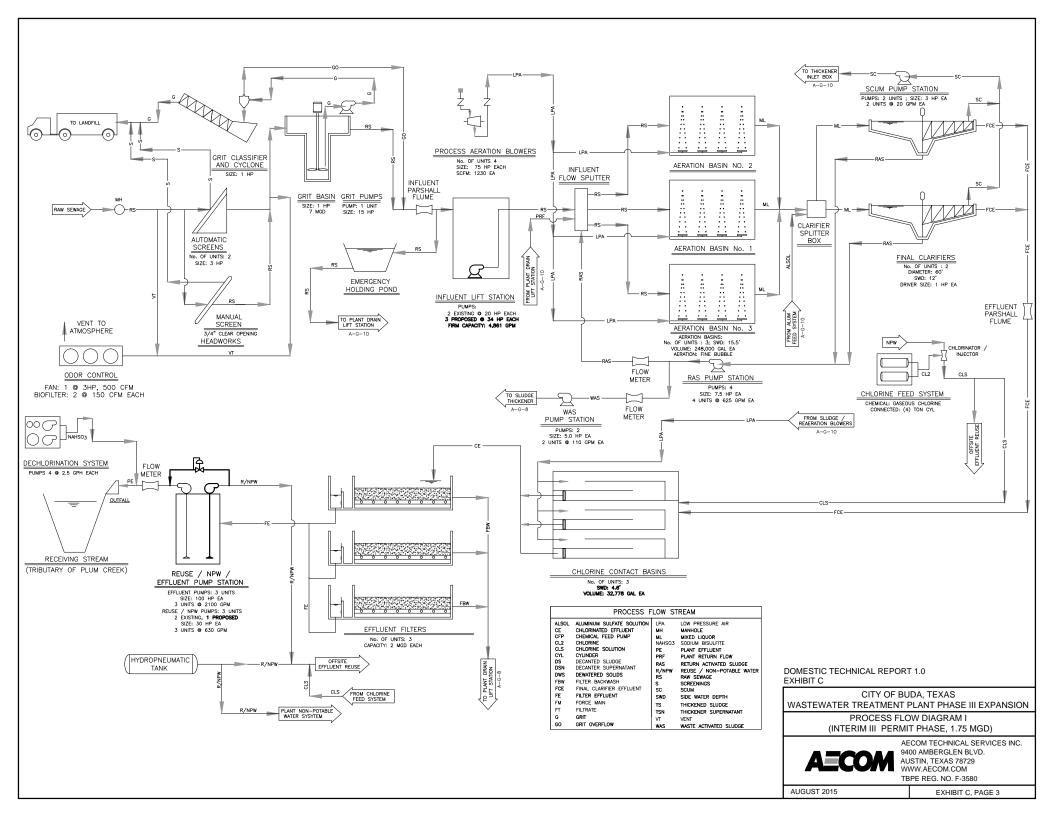
| Interim I Phase / Interim II Phase (1                                     |        | IGD 2-Hour Peak Flow, Existing Outfall 001)                     |  |
|---------------------------------------------------------------------------|--------|-----------------------------------------------------------------|--|
|                                                                           | No. of | Half Discounies + (Fool Heil)                                   |  |
| Type of Unit                                                              | Units  | Unit Dimensions* (Each Unit)                                    |  |
| Automatic Rotary Fine Screen                                              | 2      | 3 HP, 1/4" Openings                                             |  |
| Manual Bar Screen                                                         | 1      | 2 ft channel width, 3/4" Openings                               |  |
| Vortex Grit Basin                                                         | 1      | 10' Dia, 13' Depth                                              |  |
| Grit Pumps                                                                | 1      | 15 HP                                                           |  |
| Grit Classifier                                                           | 1      | 1 HP                                                            |  |
| Odor Control Fan                                                          | 1      | 3 HP, 500 CFM                                                   |  |
| Odor Control Biofilters                                                   | 3      | 167 CFM                                                         |  |
| Influent Parshall Flume                                                   | 1      | 1'-6" Throat                                                    |  |
| Influent Lift Station Pumps                                               | 2      | 5 HP                                                            |  |
| Influent Lift Station Pumps                                               | 3      | 20 HP                                                           |  |
| Emergency Generator                                                       | 1      | 500kW                                                           |  |
| Influent Flow Splitter                                                    | 1      | 5'x5'x12'3", w/ (3) 2' weir gates                               |  |
| Complete Mix/Nitrification Aeration                                       |        |                                                                 |  |
| Basins                                                                    | 3      | 75'x30'x15.5' SWD, w/ ceramic fine bubble aeration diffusers    |  |
| Process Aeration Blowers                                                  | 4      | 75 HP                                                           |  |
| Alum Storage Tanks                                                        | 3      | 2,000 Gal                                                       |  |
| Alum Feed Pumps                                                           | 4      | 25 gph                                                          |  |
| Clarifier Flow Splitter                                                   | 1      | 20'4"x6'x13'4", w/ (2) 6' fixed weirs and (2) 2'x2' slide gates |  |
| Secondary Clarifiers                                                      | 2      | 60' Dia., 12' SWD w/ 1 HP drive                                 |  |
| RAS Pumps                                                                 | 4      | 7.5 HP                                                          |  |
| Chlorine Feed System (Flow-Paced                                          |        |                                                                 |  |
| Automatic Gas Vacuum)                                                     | 1      | 200 ppd rotameter/ejector, up to 4 connected ton containers     |  |
| Emergency Scrubber (NaOH wet                                              | 4      | Citad for valous of 4 ton contains CIO                          |  |
| scrubber)                                                                 | 1      | Sized for release of 1 ton container Cl2                        |  |
| Chlorine Contact Basins                                                   | 3      | 195' (serpentine) x 4.5' x 4.5' SWD, w/ postaeration            |  |
| Flow Pacing Parshall Flume                                                | 1      | 1' Throat Width                                                 |  |
| Effluent Filters                                                          | 3      | Traveling Bridge Automatic Backwash, 17' x 50' x 3.25' SWD      |  |
| Effluent Pumps                                                            | 3      | 100 HP                                                          |  |
| Dechlorination System Pumps (Flow-<br>Paced Liquid Feed, Sodium Bisulfite |        |                                                                 |  |
| Solution)                                                                 | 4      | 2.5 gph                                                         |  |
| Effluent Flow Meter                                                       | 1      | Ultrasonic Closed Pipe, 20" Dia.                                |  |
| NPW/Reuse Pumps                                                           | 2      | 30 HP                                                           |  |
| NPW Flow Meter                                                            | 1      | Ultrasonic Closed Pipe, 14" Dia.                                |  |
| NPW/Reuse Hydropneumatic Tank                                             | 1      | 10,000 gallons                                                  |  |
| Plant Drain Lift Station Pumps                                            | 2      | 5 HP                                                            |  |
| WAS Pump Station Pumps                                                    | 2      | 5 HP                                                            |  |
| -                                                                         |        | 14' Dia. x 14.5' SWD                                            |  |
| Sludge Thickener                                                          | 2      |                                                                 |  |
| Aerated Sludge Holding Basin Aerated Sludge Holding Basin                 | 2      | 21.3' x 28.7' x 15.5' /w coarse bubble                          |  |
|                                                                           | 2      | 17'x36'x15.5' /w coarse bubble                                  |  |
| Sludge /Postaeration Blowers                                              | 4      | 40 HP                                                           |  |
| Sludge Dewatering Pumps                                                   | 2      | 5 HP                                                            |  |
| Polymer Feed System                                                       | 1      | 8 gph                                                           |  |
| Sludge Drying Beds - Wedge Wire                                           | 2      | 20' x 40'                                                       |  |
| Belt Filter Press                                                         | 1      | 2 meter belt                                                    |  |

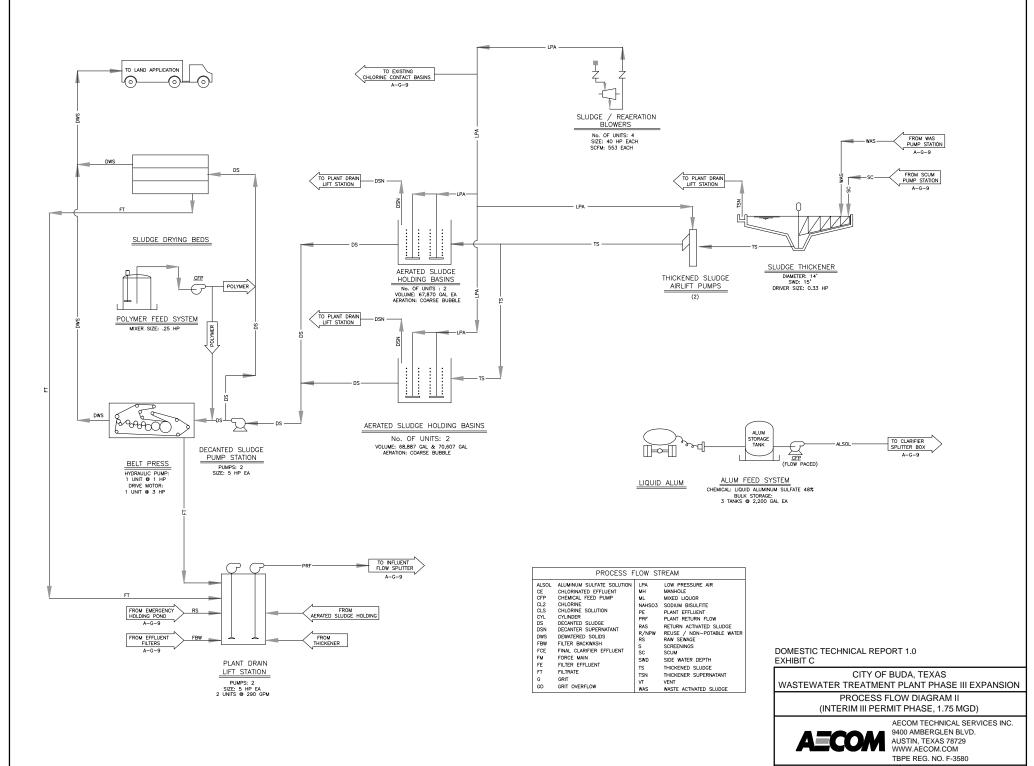
| Interim III Phase (1.75 MGD, 7.0 MC  | D 2-Hour Pea | k Flow, Existing Outfall 001)                                   |  |
|--------------------------------------|--------------|-----------------------------------------------------------------|--|
|                                      | No. of       |                                                                 |  |
| Type of Unit                         | Units        | Unit Dimensions* (Each Unit)                                    |  |
| Automatic Rotary Fine Screen         | 2            | 3 HP, 1/4" Openings                                             |  |
| Manual Bar Screen                    | 1            | 2 ft channel width, 3/4" Openings                               |  |
| Vortex Grit Basin                    | 1            | 10' Dia, 13' Depth                                              |  |
| Grit Pumps                           | 1            | 15 HP                                                           |  |
| Grit Classifier                      | 1            | 1 HP                                                            |  |
| Odor Control Fan                     | 1            | 3 HP, 500 CFM                                                   |  |
| Odor Control Biofilters              | 3            | 167 CFM                                                         |  |
| Influent Parshall Flume              | 1            | 1'-6" Throat                                                    |  |
| Influent Lift Station Pumps          | 3            | 35 HP                                                           |  |
| Influent Lift Station Pumps          | 2            | 20 HP                                                           |  |
| Emergency Generator <sup>1</sup>     | 1            | 500kW                                                           |  |
| Influent Flow Splitter <sup>2</sup>  | 1            | 5'x5'x12'3", w/ (3) 2' weir gates                               |  |
| Complete Mix/Nitrification Aeration  |              |                                                                 |  |
| Basins <sup>2</sup>                  | 3            | 75'x30'x15.5' SWD, w/ ceramic fine bubble aeration diffusers    |  |
| Process Aeration Blowers             | 4            | 75 HP                                                           |  |
| Alum Storage Tanks                   | 3            | 2,000 Gal                                                       |  |
| Alum Feed Pumps                      | 4            | 25 gph                                                          |  |
| Clarifier Flow Splitter              | 1            | 20'4"x6'x13'4", w/ (2) 6' fixed weirs and (2) 2'x2' slide gates |  |
| Secondary Clarifiers <sup>2</sup>    | 2            | 60' Dia., 12' SWD w/ 1 HP drive                                 |  |
| RAS Pumps                            | 4            | 7.5 HP                                                          |  |
| Chlorine Feed System (Flow-Paced     |              |                                                                 |  |
| Automatic Gas Vacuum)                | 1            | 200 ppd rotameter/ejector, up to 4 connected ton containers     |  |
| Emergency Scrubber (NaOH wet         |              |                                                                 |  |
| scrubber)                            | 1            | Sized for release of 1 ton container Cl2                        |  |
| Chlorine Contact Basins <sup>3</sup> | 3            | 195' (serpentine) x 4.5' x 4.6' SWD, w/ postaeration            |  |
| Flow Pacing Parshall Flume           | 1            | 1' Throat Width                                                 |  |
| Effluent Filters                     | 3            | Traveling Bridge Automatic Backwash, 17' x 50' x 3.25' SWD      |  |
| Effluent Pumps 4                     | 3            | 100 HP (+ interconnection to use up to two 30-HP NPW pumps)     |  |
| Dechlorination System Pumps (Flow    |              |                                                                 |  |
| Paced Liquid Feed, Sodium Bisulfite  | 4            | 0.5 mg/h                                                        |  |
| Solution)                            | 4            | 2.5 gph                                                         |  |
| Effluent Flow Meter                  | 1            | Ultrasonic Closed Pipe, 20" Dia.                                |  |
| NPW/Reuse Pumps                      | 3            | 30 HP                                                           |  |
| NPW Flow Meter                       | 1            | Ultrasonic Closed Pipe, 14" Dia.                                |  |
| NPW/Reuse Hydropneumatic Tank        | 1            | 10,000 gallons                                                  |  |
| Plant Drain Lift Station Pumps       | 2            | 5 HP                                                            |  |
| WAS Pump Station Pumps               | 2            | 5 HP                                                            |  |
| Sludge Thickener                     | 2            | 14' Dia. x 14.5' SWD                                            |  |
| Aerated Sludge Holding Basin         | 2            | 21.3' x 28.7' x 15.5' /w coarse bubble                          |  |
| Aerated Sludge Holding Basin         | 2            | 17'x36'x15.5' /w coarse bubble                                  |  |
| Sludge /Postaeration Blowers         | 4            | 40 HP                                                           |  |
| Sludge Dewatering Pumps              | 2            | 5 HP                                                            |  |
| Polymer Feed System                  | 1            | 8 gph                                                           |  |
| Sludge Drying Beds - Wedge Wire      | 2            | 20' x 40'                                                       |  |
| Belt Filter Press                    | 1            | 2 meter belt                                                    |  |

<sup>&</sup>lt;sup>1</sup> An Influent Emergency Holding Pond was removed and replaced by emergency generator capacity / hydraulic capacity

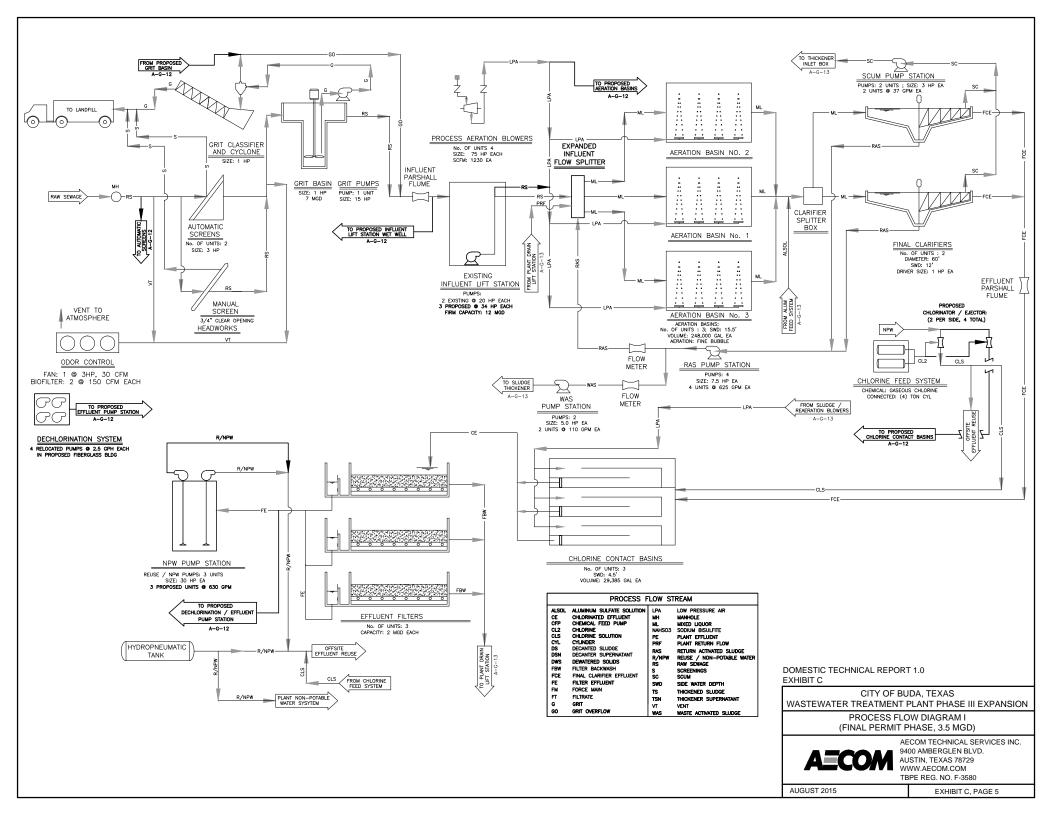

<sup>&</sup>lt;sup>1</sup> Existing Downturned 90 degree elbows was modified with provisions for air release

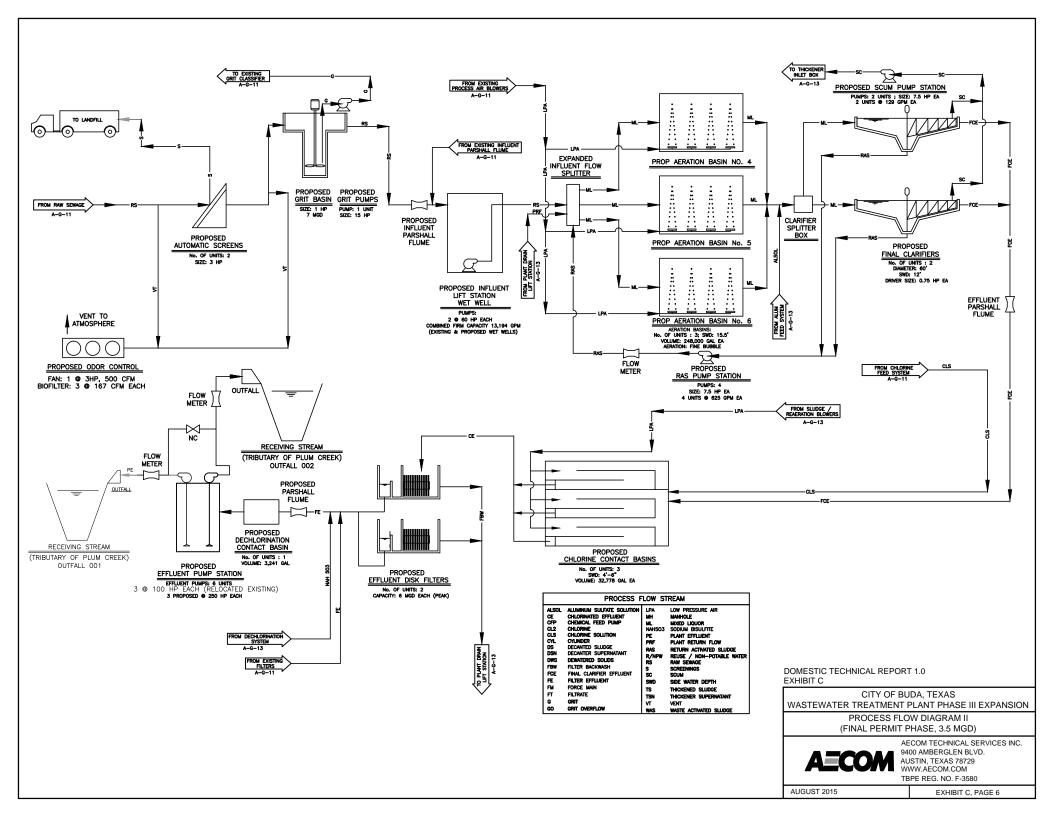

<sup>&</sup>lt;sup>2</sup> Chlorine Contact Basins effluent weir elevations have been adjusted to provide 20 minutes contact time at 7.0 MGD

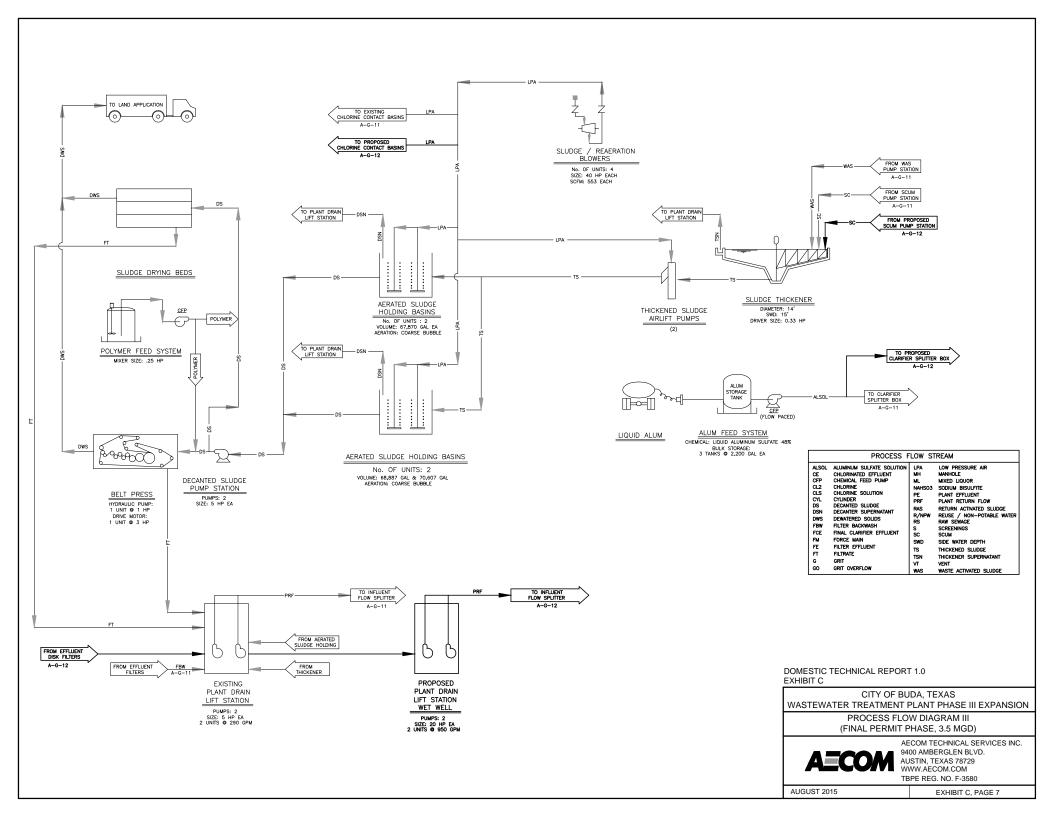

<sup>&</sup>lt;sup>3</sup> Connection between effluent pumps and NPW pumps discharge headers, with check valve and pressure sustaining valve

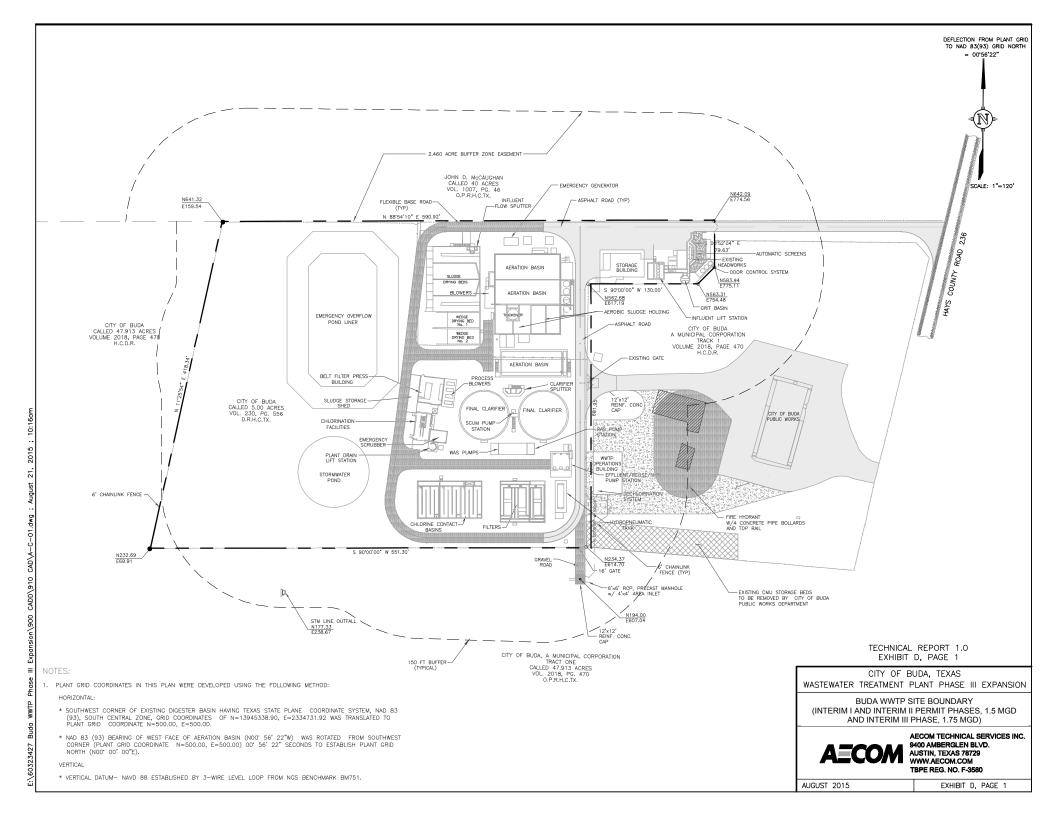

|                                                                 | No. of |                                                                            |
|-----------------------------------------------------------------|--------|----------------------------------------------------------------------------|
| Type of Unit                                                    | Units  | Unit Dimensions* (Each Unit)                                               |
| Automatic Rotary Fine Screen                                    | 4      | 3 HP, 1/4" Openings                                                        |
| Manual Bar Screen                                               | 1      | 2 ft channel width, 3/4" Openings                                          |
| Vortex Grit Basin                                               | 2      | 10' Dia, 13' Depth                                                         |
| Grit Pumps                                                      | 2      | 15 HP                                                                      |
| Grit Classifier                                                 | 1      | 1 HP                                                                       |
| Odor Control Fan                                                | 2      | 3 HP, 500 CFM                                                              |
| Odor Control Biofilters                                         | 6      | 167 CFM                                                                    |
| Influent Parshall Flume                                         | 2      | 1'-6" Throat                                                               |
| Influent Lift Station Pumps                                     | 3      | 35 HP                                                                      |
| Influent Lift Station Pumps                                     | 2      | 20 HP                                                                      |
| Influent Lift Station Pumps                                     | 2      | 60 HP                                                                      |
| Emergency Generator                                             | 2      | 500kW                                                                      |
| Influent Flow Splitter 1                                        |        |                                                                            |
| Complete Mix/Nitrification Aeration                             | 1      | 5'x10'x12'3", w/ (6) 2' weir gates                                         |
| Complete Mix/Nitrification Aeration  Basins                     | 3      | 75'x30'x15.5' SWD, w/ ceramic fine bubble aeration diffusers               |
| Process Aeration Blowers                                        | 4      | 75 HP                                                                      |
| Alum Storage Tanks                                              | 3      | 2,000 Gal                                                                  |
| Alum Feed Pumps                                                 | 4      | 25 gph                                                                     |
| Clarifier Flow Splitter                                         | 2      | 20'4"x6'x13'4", w/ (2) 6' fixed weirs and (2) 2'x2' slide gates            |
| Secondary Clarifiers                                            | 4      | 60' Dia., 12' SWD w/ 1 HP drive                                            |
|                                                                 |        | 7.5 HP                                                                     |
| RAS Pumps                                                       | 8      | 7.5 HP                                                                     |
| Chlorine Feed System (Flow-Paced<br>Automatic Gas Vacuum)       | 2      | 200 ppd rotameter/ejector, up to 4 connected ton containers                |
| Emergency Scrubber (NaOH wet scrubber)                          | 1      | Sized for release of 1 ton container Cl2                                   |
| Chlorine Contact Basins                                         | 6      | 195' (serpentine) x 4.5' x 4.6' SWD, w/ postaeration                       |
| Flow Pacing Parshall Flume                                      | 2      | 1' Throat Width                                                            |
| Effluent Filters                                                | 3      | Sand Media, Traveling Bridge Automatic Backwash, 17' x 50' x 3.25' SWD     |
| Lilident i illers                                               | 3      | Sand Media, Travelling Bridge Automatic Backwash, 17 x 30 x 3.23 300       |
| Effluent Filters                                                | 2      | Cloth Media, Disk Type Automatic Backwash, (12) 6.8 ft dia. disks per unit |
| Effluent Pumps                                                  | 3      | 100 HP                                                                     |
| Effluent Pumps                                                  | 3      | 250 HP                                                                     |
| Dechlorination Pumps (Flow-Paced,<br>Sodium Bisulfite Solution) | 4      | 2.5 gph                                                                    |
| Effluent Parshall Flume                                         | 1      | 2' Throat Width, with Ultrasonic Meter                                     |
| NPW/Reuse Pumps                                                 | 3      | 30 HP                                                                      |
| NPW Flow Meter                                                  | 1      | Ultrasonic Closed Pipe, 14" Dia.                                           |
| NPW/Reuse Hydropneumatic Tank                                   | 1      | 10,000 gallons                                                             |
| Plant Drain Lift Station Pumps                                  | 2      | 5 HP                                                                       |
| Plant Drain Lift Station Pumps                                  | 2      | 15 HP                                                                      |
| WAS Pump Station Pumps                                          | 2      | 5 HP                                                                       |
| Sludge Thickener                                                | 2      | 14' Dia. x 14.5' SWD                                                       |
| Aerated Sludge Holding Basin                                    | 2      | 21.3' x 28.7' x 15.5' /w coarse bubble                                     |
| 0 0                                                             |        |                                                                            |
| Aerated Sludge Holding Basin                                    | 2      | 17'x36'x15.5' /w coarse bubble                                             |
| Sludge /Postaeration Blowers                                    | 4      | 40 HP                                                                      |
| Sludge Dewatering Pumps                                         | 2      | 5 HP                                                                       |
| Polymer Feed System                                             | 1      | 8 gph                                                                      |
| Sludge Drying Beds - Wedge Wire                                 | 2      | 20' x 40'                                                                  |
| Belt Filter Press                                               | 1      | 2 meter belt                                                               |

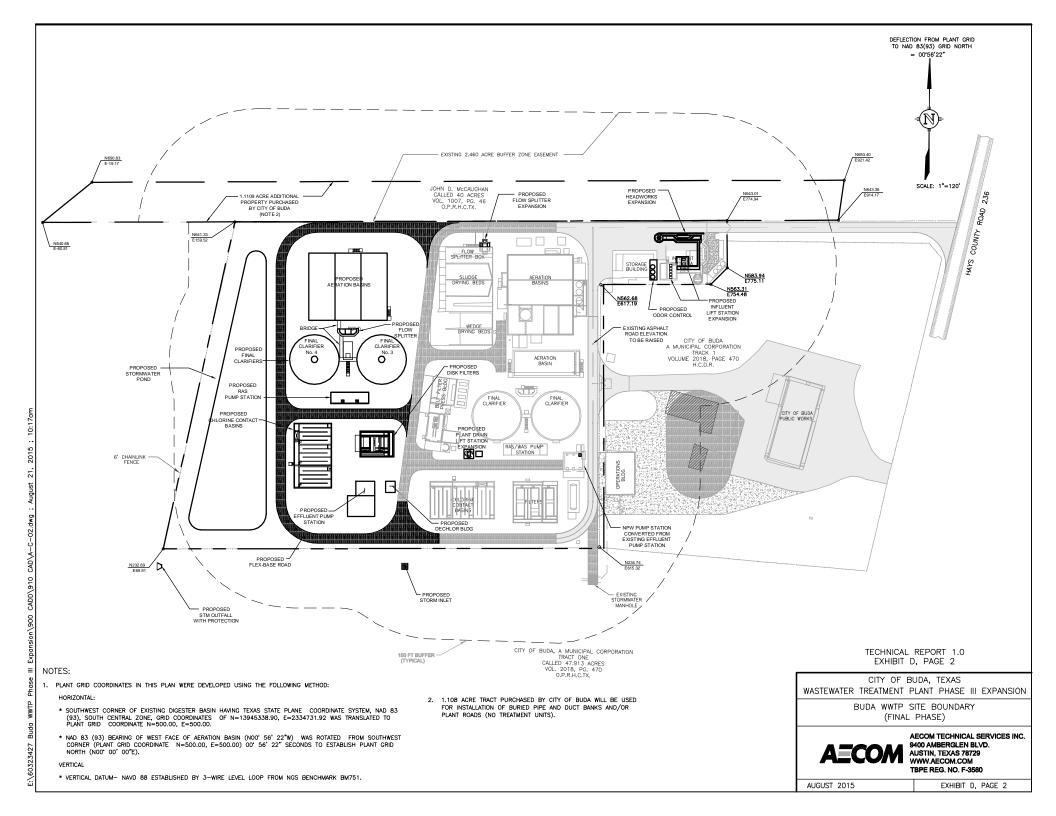
Existing Influent Flow Splitter to be expanded to spit flow to existing and proposed aeration basins

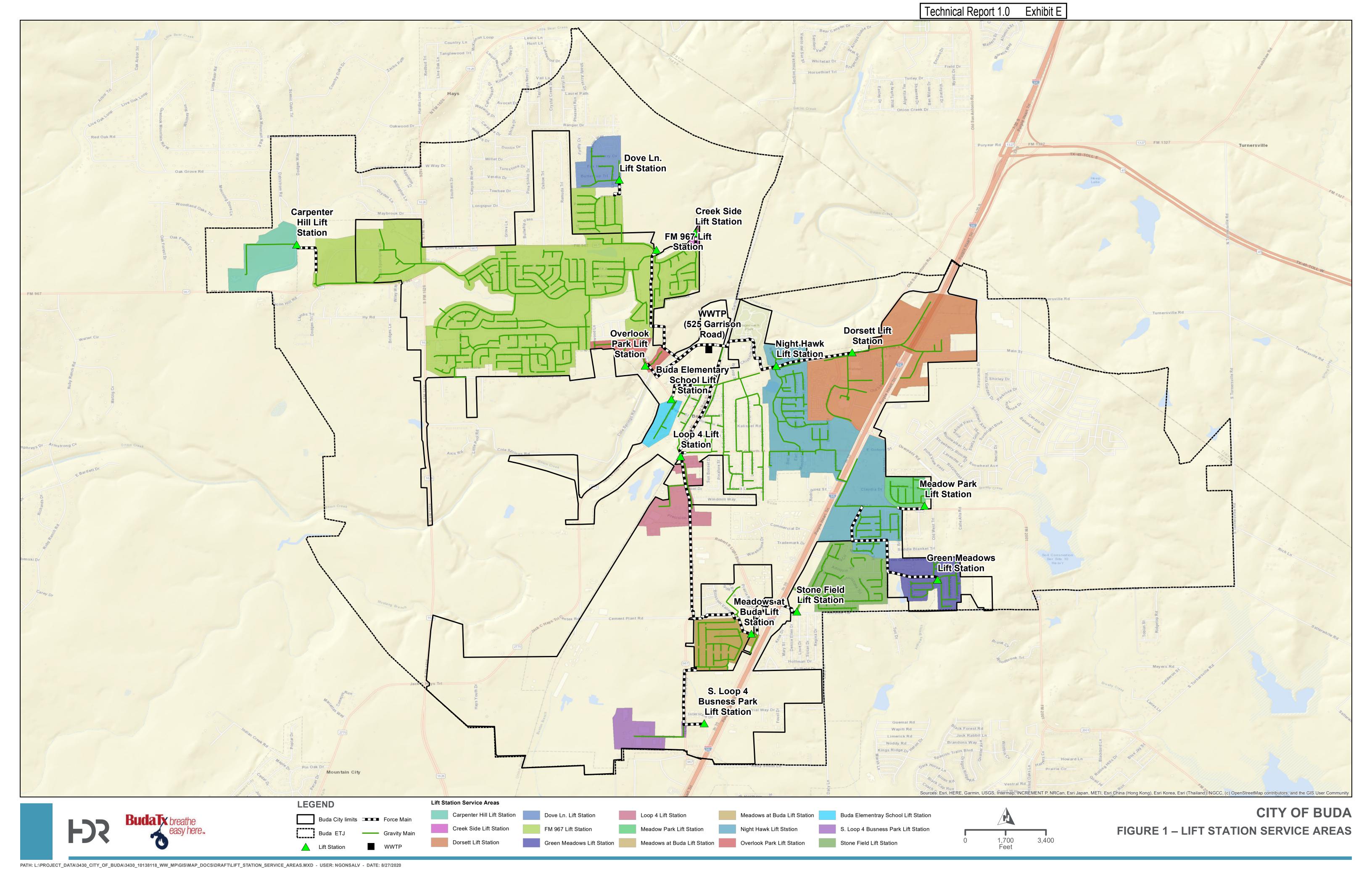




AUGUST 2015 EXHIBIT C, PAGE 4














Bryan W. Shaw, Ph.D., Chairman
Buddy Garcia, Commissioner
Carlos Rubinstein, Commissioner
Mark R. Vickery, P.G., Executive Director



Technical Report 1.0 Exhibit F TCEQ Approval Letter (Interim I / Interim II Phases)

# Texas Commission on Environmental Quality

Protecting Texas by Reducing and Preventing Pollution
September 7, 2010

MR MARTIN G RUMBAUGH PE AECOM 400 W 15TH ST STE 500 AUSTIN TX 78701

Re:

CITY OF BUDA

WWTP PHASE II EXPANSION

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY PERMIT NO 11060-001

WWPR LOG NO 0810/059 CN600334510 RN101703288

HAYS COUNTY

Dear Mr. Rumbaugh:

We have received the project summary transmittal letter dated August 24, 2010.

The rules which regulate the design, installation and testing of domestic wastewater projects are found in 30 TAC, Chapter 217, of the Texas Commission on Environmental Quality (TCEQ) rules titled, <u>Design Criteria</u> for Sewerage Systems.

Section 217.6(d), relating to case-by-case reviews, states in part that upon submittal of a summary transmittal letter, the executive director may approve of the project without reviewing a complete set of plans and specifications.

Under the authority of §217.6(e) a technical review of complete plans and specifications is not required. However, the project proposed in the summary transmittal letter is approved for construction. Please note, that this conditional approval does not relieve the applicant of any responsibilities to obtain all other necessary permits or authorizations, such as wastewater treatment permit or other authorization as required by Chapter 26 of the Texas Water Code. Below are provisions of the Chapter 217 regulations, which must be met as a condition of approval. These items are provided as a reminder. If you have already met these requirements, please disregard this additional notice.

1. You must keep certain materials on file for the life of the project and provide them to TCEQ upon request. These materials include an engineering report, test results, a summary transmittal letter, and the final version of the project plans and specifications. These materials shall be prepared and sealed by a Professional Engineer licensed in the State of Texas and must show substantial compliance with Chapter 217. All plans and specifications must conform to any waste discharge requirements authorized in a permit by the TCEQ. Certain specific items which shall be addressed in the engineering report are discussed in §217.6(c). Additionally, the engineering report must include all constants, graphs, equations, and calculations needed to show substantial compliance with Chapter 217. The items which shall be included in the summary transmittal letter are addressed in §217.6(c)(1)-(10).

Mr. Martin G. Rumbaugh, P.E. Page 2 September 7, 2010

- 2. Any deviations from Chapter 217 shall be disclosed in the summary transmittal letter and the technical justifications for those deviations shall be provided in the engineering report. Any deviations from Chapter 217 shall be based on the best professional judgement of the licensed professional engineer sealing the materials and the engineer's judgement that the design would not result in a threat to public health or the environment.
- 3. Any variance from a Chapter 217 requirement disclosed in your summary transmittal letter is approved. If in the future, additional variances from the Chapter 217 requirements are desired for the project, each variance must be requested in writing by the design engineer. Then, the TCEQ will consider granting a written approval to the variance from the rules for the specific project and the specific circumstances.
- 4. Within 60 days of the completion of construction, an appointed engineer shall notify both the Wastewater Permits Section of the TCEQ and the appropriate Region Office of the date of completion. The engineer shall also provide written certification that all construction, materials, and equipment were substantially in accordance with the approved project, the rules of the TCEQ, and any change orders filed with the TCEQ. All notifications, certifications, and change orders must include the signed and dated seal of a Professional Engineer licensed in the State of Texas.

This approval does not mean that future projects will be approved without a complete plans and specifications review. The TCEQ will provide a notification of intent to review whenever a project is to undergo a complete plans and specifications review. Please be reminded of §217.5 of the rules which states, "Approval given by the executive director...shall not relieve the sewerage system owner or the design engineer of any liabilities or responsibilities with respect to the proper design, construction, or authorized operation of the project in accordance with applicable commission rules."

If you have any questions or if we can be of any further assistance, please call me at (512) 239-4552.

Sincerely,

Louis C. Herrin, III, P.E.

Wastewater Permits Section (MC 148)

Water Quality Division

Texas Commission on Environmental Quality

LCH/ms

cc:

TCEQ, Region 11 Office



Technical Report 1.0 Exhibit G
TCEQ Approval Letter
(Interim III / Final Phases)

# TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

July 13, 2018

Mr. Martin G. Rumbaugh, P.E., BCEE AECOM 9400 Amberglen Blvd Austin, Texas 78729

Re:

City of Buda

City of Buda WWTP Phase III Expansion

Permit No. WQ0011060-001 WWPR Log No. 0518/083 CN601180565, RN101703288 Hays County

Dear Mr. Rumbaugh:

We received the project summary transmittal letter dated May 23, 2018, and your subsequent submittal of the plans, specifications, and final engineering report.

The rules which regulate the design, installation and testing of domestic wastewater projects are found in 30 TAC, Chapter 217, of the Texas Commission on Environmental Quality (TCEQ) rules titled, <u>Design Criteria for Wastewater Systems</u>.

The project consists of the expansion of the Buda WWTP from an existing treatment capacity of 1.5 MGD to a proposed capacity of 3.5 MGD annual average flow, including milestone improvements to Interim III Permit Phase of operation at 1.75 MGD.

The City of Buda WWTP is regulated by Permit No. WQ0011060001, which allows an Interim I Phase annual average flow of 1.5 MGD (2-hr peak flow of 4,167 gpm), an Interim II Phase annual average flow of 1.5 MGD (2-hr peak flow of 4, 167 gpm), an Interim Phase III annual average flow of 1.75 MGD (2-hr peak flow of 4,861 gpm), and a Final Phase annual average flow not to exceed 3.5 MGD. The permitted final effluent limitations are 5 mg/L of CBOD5, 5 mg/L of TSS, 1.1 mg/L of Ammonia Nitrogen, and 0.5 mg/L of Total Phosphorus. The proposed project improvements to Interim III Phase of 1.75 MGD and Final Phase of 3.5 MGD include:

### Interim III Permit Phase (1.75 MGD) Milestone Improvements

- Replacement of the existing influent lift station pumps with two new 20-HP submersible non-clog sewage pumps and three 25-HP submersible non-clog sewage pumps, to provide a firm capacity of 7.0 MGD.
- Installation of a new 30-HP non-potable water (NPW) pump in the existing effluent/reuse pump station wet well.

Mr. Martin G. Rumbaugh, P.E., BCEE Page 2 July 13, 2018

- Weir crest elevations of the effluent weirs in the existing chlorine contact basins will be increased to provide 20 minutes chlorine contact time in the existing chlorine contact basins at a peak 2-hr flow rate of 7.0 MGD.
- Replacement of existing 90-degree bends at various outlet structures with vertical tees and vent standpipes, to reduce air-entrainment.

### Final Permit Phase (3.5 MGD) Improvements

- Construction of a new influent channel with two proposed stainless-steel rotary fine screens and screenings dewatering conveyors, providing a peak flow (existing plus proposed) fine screening capacity of 14 MGD.
- Construction of a proposed vortex-type grit chamber with stainless steel mechanical components, with a top-mounted grit pump, and a proposed hydrocyclone grit concentrator, providing a peak flow (existing plus proposed) grit removal capacity of 14 MGD.
- Construction of a new odor control system at the WWTP headworks, consisting of a preengineered modular organic media biofilter system with three HDPE medial vessels, FRP fan, and humidification system.
- Construction of a new 10-ft x 14.5-ft x 16-ft influent lift station wet well with two proposed 60-HP submersible non-clog submersible sewage pumps, to provide a peak flow (existing plus proposed) influent pumping firm capacity of at least 14 MGD.
- Expansion of the existing influent splitter structure, to combine raw influent with RAS and plant return flows from the existing and proposed treatment facilities, to feed three existing aerations basins and three proposed new aeration basins.
- Construction of three 75-ft long x 30-ft wide x 15.5-ft side water depth new aeration basins with fine-bubble aeration systems. The total aeration volume (existing plus proposed aeration basins) will be 204,090 cubic feet. Each proposed aeration basin will include a total of 528 ceramic disk fine bubble diffusers in two grids.
- Modifications of the existing process blower facilities to include mechanical piping and electrical power provisions to facilitate future installation of up to three additional blowers, each 75-HP and capable of operation at up to 1,200 SCFM, to provide a total (existing plus future) process aeration blower firm capacity of 7,200 SCFM.
- Construction of a proposed clarifier flow splitter structure to divide flow between the three proposed aeration basins between two proposed final clarifiers.
- Construction of two new 60-ft diameter x 12-ft SWD circular final clarifiers with scraper type sludge collector mechanisms.
- Construction of a new 4-ft x 4-ft x 9-ft scum pump station with two submersible grinder type sewage pumps.
- Construction of a new RAS pump station with four proposed 7.5-HP VFD self-priming non-clog sewage pumps, each with a nominal rated capacity of 625 gpm at 24-ft TDH.
- Installation of two proposed flow-paced automatic gas-vacuum chlorinators in the
  existing chlorinator building, and replacement of an existing ejector and gas rotameter in
  the existing chlorine gas vacuum feed system, to provide two independent duplex gasvacuum chlorinators systems, each with a firm chlorine feed system capacity of 500
  lbs/day.
- Construction of three new chlorine contact basins, each 34.67-ft long x 24.17-ft wide x 5-ft SWD, to provide chlorine contact time of 20 minutes at WWTP peak flow rate.

Mr. Martin G. Rumbaugh, P.E., BCEE Page 3 July 13, 2018

- Construction of two new automatic backwashing cloth-disk media effluent filters in reinforced concrete basins. The proposed filters are each fourteen disk units, each providing a nominal peak flow capacity of 7.0 MGD. The addition of the proposed filters to the existing sand-media filters will provide a firm capacity of 20 MGD.
- Construction of a proposed dechlorination contact basin and sodium bisulfite feed system for dechlorination. The contact basin is sized to provide 20 seconds of contact time at a peak flow rate of 14 MGD.
- Construction of a proposed effluent pump station with wet well dimensions of 24-ft x 22-ft x 22.8-ft with three proposed 300-HP effluent pumps plus three existing 100-HP pumps to be relocated from the existing effluent/reuse pump station.
- Construction of a proposed plant drain lift station with an 8-ft diameter x 19-ft deep wet well, with two proposed 15-HP submersible sewage pumps.
- Installation of three new 1000 kW diesel engine driven generator sets with automatic
  transfer switches, sized to be capable of automatically transferring power and operating
  all existing and proposed WWTP equipment and facilities at firm capacity in the event of
  power failure.
- Modifications to the existing alum feed system including residual phosphorus analyzers at each (existing plus proposed) chlorine contact basin influent channel.
- A proposed stormwater pond sized to retain on-site stormwater runoff during a 1% probability of recurrence storm event.
- Miscellaneous improvements including electrical power systems, SCADA, and installation of FRP effluent launder covers in existing final clarifiers.

The following variances, which were approved by TCEQ on July 3, 2015 relating to re-rating Buda WWTP, are also requested in the design of this project for operation under the permit Final Phase annual average flow of 3.5 MGD.

- Aeration basins
  - o A proposed design aeration basin organic loading of 46 lbs of BOD5/1000 ft<sup>3</sup> from 35 lbs of BOD5/1000 ft<sup>3</sup> organic loading required by Section 217.154(b)(2).
- Process aeration blowers
  - o A proposed design firm aeration blower capacity of 2,985 SCFM from 3,124 SCFM aeration requirements established by Section 217.155(b)(2).
- Final clarifiers
  - A proposed design surface loading at 2-hr peak flow of 1,238 GPD/ft2 from 1,200 GPD/ft2 surface loading required by Section 217.154(c)(1).
  - A proposed design detention time at 2-hr peak flow of 1.76 from 1.8-hr detention time requested by Section 217.154(c)(1).

Mr. Martin G. Rumbaugh, P.E., BCEE Page 4 July 13, 2018

Our review indicated that the documents provided are in general compliance with the applicable minimum standards as set forth in Chapter 217, *Design Criteria for Domestic Wastewater Systems*. On that basis, this project and the requested variances are conditionally approved for construction. The condition is that if the plant does not meet the permitted effluent limits with the approved variances, you will have to increase the plant treatment capacity accordingly.

You must keep certain materials on file for the life of the project and provide them to TCEQ upon request. These materials include an engineering report, test results, a summary transmittal letter, and the final version of the project plans and specifications. These materials shall be prepared and sealed by a Professional Engineer licensed in the State of Texas and must show substantial compliance with Chapter 217. All plans and specifications must conform to any waste discharge requirements authorized in a permit by the TCEQ. Certain specific items which shall be addressed in the engineering report are discussed in §217.6(c). Additionally, the engineering report must include all constants, graphs, equations, and calculations needed to show substantial compliance with Chapter 217. The items which shall be included in the summary transmittal letter are addressed in §217.6(d)(1) -(9).

Within 60 days of the completion of construction, an appointed engineer shall notify both the Wastewater Permits Section of the TCEQ and the appropriate Region Office of the date of completion. The engineer shall also provide written certification that all construction, materials, and equipment were substantially in accordance with the approved project, the rules of the TCEQ, and any change orders filed with the TCEQ. All notifications, certifications, and change orders must include the signed and dated seal of a Professional Engineer licensed in the State of Texas.

Please be reminded of 30 TAC §217.7(a) of the rules which states, "Approval given by the executive director or other authorized review authority does not relieve an owner of any liability or responsibility with respect to designing, constructing, or operating a collection system or treatment facility in accordance with applicable commission rules and the associated wastewater permit".

If you have any questions, or if we can be of any further assistance, please call me at (512) 239-4924.

Sincerely,

(Nella) Negar Ghasempour, M.E.

Wastewater Permits Section (MC 148)

Water Quality Division

Texas Commission on Environmental Quality

Baltaze Lucero-Ramirez, P.E.

Was ewater Permits Section (MC 148)

Water Quality Division

Texas Commission on Environmental Quality

BLR/NG

cc: TCEQ, Region 11 Office

Jon Niermann, *Chairman*Emily Lindley, *Commissioner*Bobby Janecka, *Commissioner*Kelly Keel, *Interim Executive Director* 



Technical Report 1.0 Exhibit H
TCEQ Approval Letter
(Offsite Effluent Force Main to Outfall 002)

## TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

September 13, 2023

Martin G. Rumbaugh, P.E., BCEE AECOM 13640 Briarwick Drive, Suite 200 Austin, Texas 78729

Re:

City of Buda

Buda Wastewater Treatment Plant 24 inch Effluent Force Main

Permit No. WQ0011060-001 WWPR Log No. 0923/018 CN600739866, RN101703288

**Hays County** 

Dear Mr. Rumbaugh:

TCEQ received the project summary transmittal letter dated September 7, 2023.

The rules which regulate the design, installation and testing of domestic wastewater projects are found in 30 TAC, Chapter 217, of the Texas Commission on Environmental Quality (TCEQ) rules titled, <u>Design Criteria for Wastewater Systems</u>.

Section 217.6(e), relating to case-by-case reviews, states in part that upon submittal of a summary transmittal letter, the executive director may approve of the project without reviewing a complete set of plans and specifications.

Under the authority of §217.6(e) a technical review of complete plans and specifications is not required. However, the project proposed in the summary transmittal letter is approved for construction. Please note, that this conditional approval does not relieve the applicant of any responsibilities to obtain all other necessary permits or authorizations, such as wastewater treatment permit or other authorization as required by Chapter 26 of the Texas Water Code. Below are provisions of the Chapter 217 regulations, which must be met as a condition of approval. These items are provided as a reminder. If you have already met these requirements, please disregard this additional notice.

• You must keep certain materials on file for the life of the project and provide them to TCEQ upon request. These materials include an engineering report, test results, a summary transmittal letter, and the final version of the project plans and specifications. These materials shall be prepared and sealed by a Professional Engineer licensed in the State of Texas and must show substantial compliance with Chapter 217. All plans and specifications must conform to any waste discharge requirements authorized in a permit by the TCEQ. Certain specific items which shall be addressed in the engineering report are discussed in §217.10. Additionally, the engineering report must include all constants, graphs, equations, and calculations needed to show substantial compliance with Chapter 217.

Martin G. Rumbaugh, P.E., BCEE Page 2 September 13, 2023

- Any variance from a Chapter 217 requirement disclosed in your summary transmittal letter
  is approved. If in the future, additional variances from the Chapter 217 requirements are
  desired for the project, each variance must be requested in writing by the design engineer.
  Then, the TCEQ will consider granting a written approval to the variance from the rules for
  the specific project and the specific circumstances.
- Within 60 days of the completion of construction, an appointed engineer shall notify both the Wastewater Permits Section of the TCEQ and the appropriate Region Office of the date of completion. The engineer shall also provide written certification that all construction, materials, and equipment were substantially in accordance with the approved project, the rules of the TCEQ, and any change orders filed with the TCEQ. All notifications, certifications, and change orders must include the signed and dated seal of a Professional Engineer licensed in the State of Texas.

This approval does not mean that future projects will be approved without a complete plans and specifications review. The TCEQ will provide a notification of intent to review whenever a project is to undergo a complete plans and specifications review. Please be reminded of 30 TAC §217.7(a) of the rules which states, "Approval given by the executive director or other authorized review authority does not relieve an owner of any liability or responsibility with respect to designing, constructing, or operating a collection system or treatment facility in accordance with applicable commission rules and the associated wastewater permit".

If you have any questions, or if we can be of any further assistance, please call me at (512) 239-1372.

Paul A. Brochi, P.E.

Wastewater Permits Section (MC 148)

Water Quality Division

Texas Commission on Environmental Quality

Scork

PAB/tc

| Name        | Position       | License      | License   | Expires  | Years Licensed |
|-------------|----------------|--------------|-----------|----------|----------------|
|             |                |              | Number    |          |                |
| Jesi Mann   | Assistant      | A Wastewater | WW0065000 | 10/20/26 | 11             |
|             | Division       |              |           |          |                |
|             | Manager        |              |           |          |                |
| Jesus Loera | Chief Operator | A Wastewater | WW0066830 | 08/19/27 | 10             |
| Hugo Galvan | Lead Operator  | B Wastewater | WW0062568 | 04/17/28 | 11             |



March 20, 2019

**GBRA** 

Via E-mail: EMontana@GBRA.org

Attn.: Eduardo Montana, Division Mgr., Hays & Caldwell Counties

Re: Acceptance of Waste Disposal

Please allow this letter to confirm that Walker Aero Environmental dba J-V Dirt + Loam ("Walker Aero") will allow GBRA Wastewater Treatment Plants ("GBRA") to dispose of biosolids generated by the following locations as applicable:

| Location              | Plant Name                                                     | Permittee(s)                                                                               | TPDES        | Permitted<br>discharge(MGD) | Discharge Limits(CBOD,<br>TSS, NH3-N, Total P, E.<br>coli) |
|-----------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------|-----------------------------|------------------------------------------------------------|
| Lockhart<br>Larremore | Lockhart Wastewater<br>Treatment Facility No. 1                | City of Lockhart and<br>Guadalupe-Blanco River<br>Authority                                | WQ0010210001 | 1.1                         | 10/15/3/*/126                                              |
| Lockhart FM<br>20     | Lockhart Wastewater<br>Treatment Facility No.2                 | Guadalupe-Blanco River<br>Authority                                                        | WQ0010210002 | 1.5                         | 10/15/3/*/126                                              |
| Buda                  | City of Buda Wastewater<br>Treatment Facility                  | City of Buda and Guadalupe-<br>Blanco River Authority                                      | WQ0011060001 | 1.5                         | 5/12/2/0.8/*                                               |
| Shadow<br>Creek       | Castletop Capital Hays<br>ABC Wastewater<br>Treatment Facility | Hays Shadow Creek Development, Inc. and North Hays County Municipal Utility District No. 1 | WQ0014431001 | 0.610                       | 5/5/2/1/*                                                  |
| Sunfield<br>MUD       | A&M Heep Wastewater<br>Treatment Facility                      | Guadalupe-Blanco River Authority and Sunfield Municipal Utility District No. 4             | WQ0014377001 | 0.500                       | 5/5/2/1/126                                                |

Any materials, specifically including, but not limited to, hazardous wastes listed by the Environmental Protection Agency (*see* 40 CFR §261.31; 40 CFR §261.32; 40 CFR §261.33) and Class I industrial solid waste, are prohibited.

If you have any questions or concerns, feel free to contact us at (512) 927-1977.

Sincerely,

Walker Aero Environmental dba J-V Dirt + Loam

By. Multiple

Printed Name: Phillip McCammon V

Title: Vice President



# Waste Stream Acceptance

Wastewater Residuals Management, LLC, an affiliate of Wastewater Transport Services, LLC, owns and operates the Austin Wastewater Processing Facility. This facility has been permitted by the TCEQ and assigned permit number MSW 2384. The disposal facility is expected to be open for at least the next 5 years.

The facility has been permitted as a Centralized Waste Treatment Facility able to revice to receive the following categorical and non-categorical waste streams:

- Wastewater Treatment Plant Sludge
- Water Treatment Plant Sludge
- Leachate
- Septic
- Sanitary Sewer
- Storm Water
- Food Service Grease
- Car Wash Grit Trap
- Other Class II Non-Hazardous Liquid Waste

\*\*\*Please note that analytical may be required before the waste stream will be accepted.

Wastewater Residuals Management, LLC agrees to accept any of the above waste streams from the below listed generator.

Generator: Buda WWTP

Identifying Info:

Corv R luby

**Environmental Compliance** 

Wastewater Residuals Management reserves the right to discontinue acceptance of the below mentioned waste at any time.

Bryan W. Shaw, Ph.D., Chairman Carlos Rubinstein, Commissioner Toby Baker, Commissioner Zak Covar, Executive Director



# TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

June 8, 2012

Mr. Graham Moore, P.E. LAN, Inc. 400 West Hopkins, Suite 203 San Marcos, Texas 78666

Re: City of Buda and Guadalupe-Blanco River Authority Reuse Authorization No. R11060-001, Hays County

CN600739866, CN601180565, RN101703288

Dear Mr. Moore:

The Texas Commission on Environmental Quality (TCEQ) has completed its review of the application for the above referenced authorization. The authorization allows of the reuse of Type I and Type II wastewater effluent from the City of Buda Wastewater Treatment Facility and expansion of the service area as requested.

Thank you for your cooperation during this review process. If you have any questions, please contact Julian D. Centeno, Jr. of my staff at Julian.Centeno@tceq.texas.gov or (512) 239-4608.

Sincerely

Chris Linendoll, Manager, E.I.T. Wastewater Permitting Section

Water Quality Division

cc:

TCEQ Region 11

# AUTHORIZATION FOR RECLAIMED WATER



Authorization No. R11060-001 This authorization supersedes and replaces Authorization No. R11060-001 approved June 8, 2004

Producer:

City of Buda and Guadalupe-Blanco River Authority

P.O. Box 1218 Buda, Texas 78610

Provider:

City of Buda P.O. Box 1218

Buda, Texas 78610

User:

City of Buda P.O. Box 1218 Buda, Texas 78610

Any user within the service area authorized by the provider.

Location:

The wastewater treatment facility is located at 575 County Road 236, Buda in

Hays County, Texas 78610.

Authorization: Type I and Type II reclaimed water from the City of Buda Wastewater Treatment Facility (TPDES Permit No. WQ0011060001). The use of treated effluent for Type I: The irrigation of residential, commercial, public parks, school yards, or athletic fields and maintenance of impoundments or natural water bodies; and Type II: the irrigation of golf courses, cemeteries, landscaped areas surrounding commercial or industrial complexes, and land restricted from public access, soil compaction and dust control, and cooling tower makeup water. The service area consists of the following counties: Caldwell, Hays and Travis.

This authorization contains the conditions that apply for the use of reclaimed water. The approval of reclaimed water use under Chapter 210 does not affect any existing water rights. If applicable, a reclaimed water use authorization in no way affects the need of a producer, provider, or user to obtain a separate water right authorization from the commission. This authorization does not allow irrigation of any area authorized for irrigation under a Texas Land Application Permit.

Issue Date: June 8, 2012

Zak Covar, Executive Director

## I. General Requirements

- A. No producer or provider may transfer reclaimed water to a user without first notifying the commission.
- B. Reuse of untreated wastewater is prohibited.
- C. Food crops that may be consumed raw by humans must not be spray irrigated. Food crops including orchard crops that will be substantially processed prior to human consumption may be spray irrigated. Other types of irrigation that avoid contact of reclaimed water with edible portions of food crops are acceptable.
- D. There must be no nuisance conditions resulting from the distribution, the use, or storage of reclaimed water.
- E. Reclaimed water must not be used in a way that degrades groundwater quality to a degree adversely affecting its actual or potential uses.
- F. Reclaimed water stored in ponds must be prevented from discharging into waters in the state, except for discharges directly resulting from rainfall events or in accordance with a permit issued by the commission. All other discharges are unauthorized.
- G. If an overflow of a holding pond occurs causing discharge into or adjacent to water in the state, the user or provider, as appropriate, shall report the noncompliance. A written submission of pertinent information must be provided to the TCEQ Region 11 office in Austin and to the TCEQ Enforcement Division (MC-224) in Austin, within five (5) working days after becoming aware of the overflow. The submission must contain:
  - 1. a description of the noncompliance and its cause;
  - 2. the potential danger to human health or safety, or the environment;
  - 3. the period of noncompliance, including exact dates and times;
  - 4. if the noncompliance has not been corrected, the anticipated time it is expected to continue; and
  - 5. steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance, and to mitigate its adverse effects.
- H. Unless otherwise provided in this authorization, there must be no off-site discharge, either airborne or surface runoff of reclaimed water from the user's property except to a wastewater treatment collection system or wastewater treatment facility unless the reclaimed water user applies for and obtains a permit from the commission that authorizes discharge of the water.
- I. All reclaimed water piping must be separated from potable water piping when trenched by a distance of at least nine feet for Type II effluent and four feet For Type I. All buried pipe must be manufactured in purple, painted purple, taped with purple metallic tape or bagged in purple. All exposed piping, hose bibs and faucets must be painted purple, designed to prevent connection to a standard water hose, and stenciled with a warning reading "NON-POTABLE WATER."
- J. The design of any new distribution system that will convey reclaimed water to a user requires the approval of the executive director. Materials must be submitted to the executive director in accordance with the Texas Engineering Practice Act (Texas Occupation Code, Chapter 1001). The plans and specifications for any new distribution

system constructed pursuant to this authorization must be approved by the executive director. Failure to secure approval before commencing construction or making a transfer of reclaimed water is a violation of this authorization. Each day of a transfer is a separate violation until approval has been secured.

- K. Nothing in this authorization modifies any requirements in 30 TAC Chapter 290, Public Drinking Water.
- L. A major change from a prior notification for use of reclaimed water must be approved by the executive director before it can be implemented. A major change includes:
  - a change in the boundary of the approved service area, not including the conversion of individual lots within a subdivision to reclaimed water use;
  - 2. the addition of a new provider;
  - 3. a major change in the intended use, such as conversion from irrigation of a golf course to residential irrigation; or
  - 4. a change from either Type I or Type II use to the other.
- M. The reclaimed water producer, provider, and user shall maintain current operation and maintenance plans on the sites over which they have operational control. The operation and maintenance plan must contain the following, as a minimum:
  - 1. a copy of the signed contract between the user and provider and a copy of the signed contract between the provider and the producer, as applicable;
  - 2. a labeling and separation plan for the prevention of cross connections between reclaimed water distribution lines and potable water lines;
  - the measures that will be implemented to prevent unauthorized access to reclaimed water facilities (e.g., secured valves);
  - 4. procedures for monitoring reclaimed water;
  - 5. a plan for how reclaimed water use will be scheduled to minimize the risk of inadvertent human exposure;
  - 6. schedules for routine maintenance;
  - 7. a plan for worker training and safety; and
  - 8. contingency plan for system failure or upsets.
- N. One of the following requirements must be met by the user or provider, for any area where reclaimed water is stored or where there are hose bibs or faucets:
  - Signs having a minimum size of eight inches by eight inches must be posted at all storage areas and on all hose bibs and faucets reading, in both English and Spanish, "Reclaimed Water, Do Not Drink" or similar warning.
  - 2. The area must be secured to prevent access by the public.
- O. Where a reclaimed water line parallels a sewer line, the reclaimed water line must be constructed in accordance with subsection (p) or (q) of this section. The horizontal separation distance must be three feet (outside to outside) with the reclaimed water line at the level of or above the sewer line. Reclaimed water lines that parallel sewer lines may be placed in the same benched trench. Where a reclaimed water line crosses a sewer line,

the requirement of 30 TAC §290.44(e)(4)(B), Water Line Installation—crossing lines, must be followed with the reclaimed water line substituted for the water line.

- P. Reclaimed water pipes must meet the following requirements:
  - 1. lines that transport reclaimed water under pressure must be sized according to acceptable engineering practices for the needs of the reclaimed water users.
  - 2. reclaimed water force mains must have an expected life of at least as long as that of the associated lift station and must be suitable for the reclaimed water being pumped and operating pressure to which it will be subjected.
  - 3. must be identified in the technical specifications with appropriate American Society for Testing and Materials, American National Standard Institute, or American Water Works Association standard numbers for both quality control (dimensions, tolerance, and installation such as bedding or backfill).
  - 4. pipes and fittings must have a minimum working pressure rating of 150 pounds per square inch.
  - 5. Final plans and specifications must describe required pressure testing for all installed reclaimed water force mains.
  - 6. Minimum test pressure must be 1.5 times the maximum design pressure. Allowable leakage rates must be determined as described in 30 TAC §217.97, Pressure Sewer Systems.
  - 7. Gravity flow reclaimed water lines must meet the requirements of 30 TAC Chapter 217, Subchapter C, Conventional Collection Systems. The provider shall prevent high velocity scouring and maintain adequate fluid velocity to prevent the deposition of solids in the lines.
- Q. All exposed piping and piping within a building must be either purple pipe or painted purple. All exposed piping should be stenciled in white with a warning reading "NON-POTABLE WATER. All exposed or buried reclaimed water piping constructed at a wastewater treatment facility is exempt from the color-coding requirement of this section.
- R. When applicable, in accordance with 30 TAC Chapter 217, Design Criteria for Domestic Wastewater Systems, the design of the distribution systems that will convey reclaimed water to a user must be submitted to the executive director and must receive an approval before the distribution system may be constructed. The design of the distribution systems must meet the criteria of 30 TAC Chapter 217, Design Criteria for Domestic Wastewater Systems. When a municipality is the plan review authority for certain sewer systems that transport primarily domestic waste, in lieu of the commission, design submittal will not be subject to submittal to the commission and instead must be approved by the municipality.
- S. All ground level and elevated storage tanks must be designed, installed, and constructed in accordance with current AWWA standards with reference to materials to be used and construction practices to be followed, except for health-based standards strictly related to potable water storage and contact practices, where appropriately less restrictive standards may be applied.

### II. Storage Requirements for Reclaimed Water

- A. Storage facilities for retaining reclaimed water prior to use must not be located within a floodway.
- B. Storage ponds must be hydraulically separated from waters in the state.
- C. Any holding pond designed to contain Type I effluent or Type II effluent that is located within a DRASTIC Pollution Potential Index Zone of less than 110, shall conform to the following requirements:
  - 1. Ponds with an earthen liner must meet the following requirements
    - a. A permeability of less than 1 x 10<sup>-4</sup> cm/sec;
    - b. The ponds must be designed and constructed to prevent groundwater contamination;
    - c. Soils used for pond lining must be free from foreign material such as paper, brush, trees, and large rocks; and
    - d. All soil liners must be of compacted material, at least 24 inches thick, compacted in lifts no greater than 6 inches thick and compacted to 95% of Standard Proctor Density;
    - e. Soil liners must meet the following particle size gradation and Atterberg limits:
      - i. 30% or more passing a number 200 mesh sieve; and
      - ii. a liquid limit of 30% or greater; and
      - iii. a plasticity index of 15 or greater;
    - f. In situ liners at least 24 inches thick meeting a permeability less than or equal to 1 X 10<sup>-4</sup> cm/sec are acceptable alternatives; In-situ clay soils meeting the soils liner requirements must be excavated and re-compacted a minimum of 6 inches below planned grade to assure a uniformly compacted finished surface.
- D. Any holding pond containing reclaimed water located within the recharge zone of the Edward Aquifer or designed to contain Type II effluent and is located within a DRASTIC Pollution Potential Index Zone of 110 or greater, shall conform to the following requirements:
  - 1. Ponds with an earthen liner must meet the following requirements
    - a. A permeability of less than 1 x 10<sup>-7</sup> cm/sec;
    - b. The ponds must be designed and constructed to prevent groundwater contamination;
    - c. Soils used for pond lining must be free from foreign material such as paper, brush, trees, and large rocks; and
    - d. All soil liners must be of compacted material, at least 24 inches thick, compacted in lifts no greater than 6 inches thick and compacted to 95% of Standard Proctor Density;
    - e. Soil liners must meet the following particle size gradation and Atterberg limits:
      - i. 30% or more passing a number 200 mesh sieve; and
      - ii. a liquid limit of 30% or greater; and
      - iii. a plasticity index of 15 or greater;

- f. In situ liners at least 24 inches thick meeting a permeability less than or equal to 1 X 10<sup>-7</sup> cm/sec are acceptable alternatives; In-situ clay soils meeting the soils liner requirements must be excavated and re-compacted a minimum of 6 inches below planned grade to assure a uniformly compacted finished surface.
- E. Synthetic membrane linings must have a minimum thickness of 40 mils and have a leak detection system;
- F. Certification by a Texas licensed professional engineer must be furnished stating that the pond liner meets the appropriate criteria prior to use of the facilities;
- G. Soil embankment walls must have a top width of at least five feet. The interior and exterior slopes of soil embankment walls must be no steeper than one foot vertical to three feet horizontal unless alternate methods of slope stabilization are used. All soil embankment walls must be protected by a vegetative cover or other stabilizing material to prevent erosion. Erosion stops and water seals must be installed on all pipe penetrating the embankments; and
- H. An alternative method of pond lining that provides equivalent or better water quality protection than provided under this section may be utilized with the prior approval of the executive director; and
- I. Reclaimed water may be stored in leak-proof, fabricated tanks;
- J. Subsequent holding ponds utilized for the receipt and storage of reclaimed water of a quality that could cause or causes a violation of a surface water quality standard or impairment of groundwater for its actual or intended use will be also subject to the storage requirements of this section.

### III. Specific Uses and Quality Standards for Reclaimed Water

- A. Numerical parameter limits pertaining to specific reclaimed water use categories are contained in this section. These limits apply to reclaimed water before discharge to initial holding ponds or a reclaimed water distribution system.
- B. The reclaimed water producer shall establish that the reclaimed water meets the quality limits at the sample point for the intended use in accordance with the monitoring requirements identified in Section IV, Sampling and Analysis.
- C. Types and quality standards for reclaimed water.
  - 1. Type I Reclaimed Water Use. The use of Type I reclaimed water is for situations where the public may come in contact with the reclaimed water. The uses allowed by this authorization are:
    - a. Irrigation: residential, commercial, public parks, schoolyards, athletic fields, and maintenance of impoundments or natural water bodies.
  - 2. The following conditions apply to Type I use of reclaimed water. At a minimum, the reclaimed water producer shall transfer only reclaimed water of the following quality as described for Type I reclaimed water use. Type I reclaimed water on a 30-day average must have a quality of no more than:

| Parameter         | ·   Limit | Limit Type                              |
|-------------------|-----------|-----------------------------------------|
| Turbidity         | 3 NTUs    | 30-day average                          |
| CBOD <sub>5</sub> | 5 mg/l    | 30-day average                          |
| E. coli           | 20/100 ml | 30-day geometric mean (MPN or CFU)      |
| <u>E. coli</u>    | 75/100 ml | maximum single grab sample (MPN or CFU) |

- 3. Type II Reclaimed Water Use. The use of Type II reclaimed water is for situations where the public will not be exposed to the reclaimed water. The uses allowed by this authorization are:
  - a. Irrigation of area where the public is not present during the times when irrigation operations are in progress, such as golf courses, cemeteries, and landscaped areas surrounding commercial or industrial complexes.
  - b. Land restricted from public access.
  - c. Soil compaction or dust control in construction areas where application procedures minimize aerosol drift to public areas.
  - d. Cooling tower makeup water. Use for cooling towers that produce significant aerosols adjacent to public access areas may have special requirements.
- 4. The following conditions apply to Type II use of reclaimed water. At a minimum, the reclaimed water producer shall transfer only reclaimed water of the following quality. Type II reclaimed water on a 30-day average must have a quality of no more than:

Table 2. Type II Quality RequirementsParameterLimitLimit Type $CBOD_5$ 15 mg/l30-day averageE. coli200/100 ml30-day geometric mean (MPN or CFU)E. coli800/100 mlmaximum single grab sample (MPN or CFU)

### D. Test Procedures

- 1. Test procedures for the analysis of pollutants must comply with procedures specified in 30 TAC §§319.11 319.12. Measurements, tests, and calculations must accurately represent the reclaimed water.
- 2. All laboratory tests submitted to demonstrate compliance with this authorization must meet the requirements of 30 TAC Chapter 25, *Environmental Testing Laboratory Accreditation and Certification*.

# IV. Sampling and Analysis

- A. The reclaimed water producer shall sample the reclaimed water prior to distribution to the entity that first received the reclaimed water after it leaves the wastewater treatment facility (provider or user) to assure that the water quality meets the standard for the contracted use.
- B. Analytical methods must be in compliance with 30 TAC Chapter 319, Monitoring and Reporting.
- C. The minimum sampling and analysis frequency for Type I reclaimed water is twice per week when reclaimed water is being produced and shall be reported as outfall 800.
- D. The minimum sampling and analysis frequency for Type II reclaimed water is once per

week when reclaimed water is being produced and shall be reported as outfall 900.

- E. The monitoring must be done after the final treatment unit.
- F. The records of the monitoring must be kept on a monthly basis and be available at the facility site for inspection by representatives of the Commission for at least five years.

### V. Record Keeping and Reporting

- A. The reclaimed water provider and user shall maintain records on site for a period of at least five years.
- B. The producer shall maintain the following records:
  - 1. copies of notifications made to the commission concerning reclaimed water projects;
  - 2. as applicable, copies of contracts with each reclaimed water user (this requirement does not include reclaimed water users at residences that have separate distribution lines for potable water);
  - 3. records of the volume of water delivered to each reclaimed water user per delivery (this requirement does not apply to reclaimed water users at residences that have separate distribution lines for potable water); and
  - 4. reclaimed water quality analyses.
- C. The reclaimed water provider or producer shall report to the commission on a monthly basis the following information on forms furnished by the executive director. The reports are due by the 20th day of the month following the reporting period.
  - 1. volume of reclaimed water delivered to each user; and
  - 2. quality of reclaimed water delivered to a user or provider reported as a monthly average for each quality criteria, except those listed as "not to exceed" that must be reported as individual analyses.

#### VI. Transfer of Reclaimed Water

- A. Reclaimed water must transferred from a provider to a user on a demand only basis. A reclaimed water user may refuse delivery of reclaimed water at any time.
- B. All reclaimed water transferred to a user must be of at least the quality specified in Section IV, Sampling and Analysis.
- C. Transfer must be by pipes or tank trucks.
- D. The transfer of reclaimed water must be terminated immediately if a provider becomes aware of the misuse of the reclaimed water by the user, regardless of contract provisions.

#### VII. Restrictions

- A. This authorization does not convey any property right and does not grant any exclusive privilege.
- B. This authorization does not allow the use of reclaimed water on land that is authorized as a disposal site under either a Texas Pollutant Discharge Elimination System (TPDES) permit or a Texas Land Application Permit (TLAP).

#### VIII. Responsibilities and Contracts

- A. The producer of reclaimed water is not liable for misapplication of reclaimed water by users, except as provided in this section. Both the reclaimed water provider and user have at least but are not limited to the following responsibilities:
  - 1. The reclaimed water producer shall: transfer reclaimed water of at least the minimum quality required by this chapter at the point of delivery to the user;
    - a. sample and analyze the reclaimed water and report the analyses in accordance with Section IV, Sampling and Analysis, and Section V, Recordkeeping and Reporting; and
    - b. notify the executive director in writing within five (5) days after obtaining knowledge of reclaimed water use not authorized by the executive director.
  - 2. The reclaimed water provider shall:
    - a. ensure construction of reclaimed water distribution systems in accordance with 30 TAC Chapter 217, Design of Domestic Wastewater Systems, and in accordance with approved plans and specifications;
    - b. transfer reclaimed water of at least the minimum quality required by this authorization at the point of delivery to the user;
    - c. notify the executive director in writing within five (5) days after obtaining knowledge of reclaimed water use not authorized by the executive director; and
    - d. not be found in violation of this chapter for the misuse of the reclaimed water by the user if transfer of such water is shut off promptly upon knowledge of misuse regardless of contract provisions.
  - 3. The reclaimed water user shall:
    - a. use the reclaimed water in accordance with this authorization; and
    - b. maintain and provide records as required by Section V, Record Keeping and Reporting.

#### IX. Enforcement

If the producer, provider, or user fail to comply with the terms of this authorization, the executive director may take enforcement action provided by the Texas Water Code §26.019 and §26.136.

#### X. Standard Provisions

- A. This authorization is granted in accordance with the rules and orders of the commission and the laws of the state of Texas.
- B. Acceptance of this authorization constitutes an acknowledgment and agreement that the producer, provider and user will comply with all the terms, provisions, conditions, limitations and restrictions embodied in this authorization and with the rules and other orders of the commission and the laws of the state of Texas. Agreement is a condition precedent to the granting of this authorization.

## Section 3. Classified Segments (Instructions Page 63)

Is the discharge directly into (or within 300 feet of) a classified segment?

□ Yes ⊠ No

If yes, this Worksheet is complete.

If no, complete Sections 4 and 5 of this Worksheet.

# Section 4. Description of Immediate Receiving Waters (Instructions Page 63)

Name of the immediate receiving waters: Unnamed tributary to Brushy Creek

#### A. Receiving water type

Identify the appropriate description of the receiving waters.

☐ Freshwater Swamp or Marsh

□ Lake or Pond

Surface area, in acres: Click to enter text.

Average depth of the entire water body, in feet: Click to enter text.

Average depth of water body within a 500-foot radius of discharge point, in feet: Click to enter text.

☐ Man-made Channel or Ditch

□ Open Bay

□ Tidal Stream, Bayou, or Marsh

□ Other, specify: <u>Click to enter text.</u>

#### **B.** Flow characteristics

If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area *upstream* of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one).

☐ Intermittent - dry for at least one week during most years

☑ Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses

 $\square$  Perennial - normally flowing

Check the method used to characterize the area upstream (or downstream for new dischargers).

□ USGS flow records

☐ Historical observation by adjacent landowners

□ Personal observation

□ Other, specify: <u>Click to enter text.</u>

| C. | <b>Downstream</b> | perennial | confluences |
|----|-------------------|-----------|-------------|
|    |                   |           |             |

|             | List the names of all perennial streams that join the receiving water within three miles downstream of the discharge point. |                                                                                  |             |                                                                          |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------|--|--|--|--|
|             | Andre                                                                                                                       | w's Branch; Porter Creek                                                         |             |                                                                          |  |  |  |  |
|             |                                                                                                                             |                                                                                  |             |                                                                          |  |  |  |  |
| D.          | Downs                                                                                                                       | tream characteristics                                                            |             |                                                                          |  |  |  |  |
|             |                                                                                                                             | receiving water characteristics charge (e.g., natural or man-made day<br>Yes  No | _           | ithin three miles downstream of the ds, reservoirs, etc.)?               |  |  |  |  |
|             |                                                                                                                             | discuss how.                                                                     |             |                                                                          |  |  |  |  |
|             |                                                                                                                             |                                                                                  |             | to an unreal tributeur of Andrew's                                       |  |  |  |  |
|             |                                                                                                                             | n, thence to a private lake; thence to                                           |             | to an unnamed tributary of Andrew's reek; thence to SCS Reservoir No. 6. |  |  |  |  |
|             |                                                                                                                             |                                                                                  |             |                                                                          |  |  |  |  |
| г           | Name                                                                                                                        | l den versether skowe staristics                                                 |             |                                                                          |  |  |  |  |
| E.          |                                                                                                                             | l dry weather characteristics<br>e general observations of the wate              | er body     | during normal dry weather conditions.                                    |  |  |  |  |
|             |                                                                                                                             | nittent streams with perennial pools.                                            |             | ,                                                                        |  |  |  |  |
|             |                                                                                                                             |                                                                                  |             |                                                                          |  |  |  |  |
|             |                                                                                                                             |                                                                                  |             |                                                                          |  |  |  |  |
|             |                                                                                                                             |                                                                                  |             |                                                                          |  |  |  |  |
|             | Date a                                                                                                                      | nd time of observation:5/5/2014                                                  | 4, 1:00 p   | <u>.m.</u>                                                               |  |  |  |  |
|             | Was th                                                                                                                      | e water body influenced by storm                                                 | ıwater r    | unoff during observations?                                               |  |  |  |  |
|             |                                                                                                                             | Yes 🗵 No                                                                         |             |                                                                          |  |  |  |  |
| Se          | ction                                                                                                                       | 5. General Characterist                                                          | ics of      | the Waterbody (Instructions                                              |  |  |  |  |
|             |                                                                                                                             | Page 65)                                                                         |             |                                                                          |  |  |  |  |
| Δ           | Unstre                                                                                                                      | am influences                                                                    |             |                                                                          |  |  |  |  |
| 1 <b>1.</b> | -                                                                                                                           |                                                                                  | am of th    | ne discharge or proposed discharge site                                  |  |  |  |  |
|             |                                                                                                                             | ced by any of the following? Che                                                 |             |                                                                          |  |  |  |  |
|             |                                                                                                                             | Oil field activities                                                             | $\boxtimes$ | Urban runoff                                                             |  |  |  |  |
|             |                                                                                                                             | Upstream discharges                                                              | $\boxtimes$ | Agricultural runoff                                                      |  |  |  |  |
|             |                                                                                                                             | Septic tanks                                                                     |             | Other(s), specify: Click to enter text.                                  |  |  |  |  |

#### C. Waterbody aesthetics

Domestic water supply

Park activities

Check one of the following that best describes the aesthetics of the receiving water and the surrounding area.

☐ Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional

Industrial water supply

Other(s), specify: Click to enter text.

- Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored
- Common Setting: not offensive; developed but uncluttered; water may be colored or turbid
- Offensive: stream does not enhance aesthetics; cluttered; highly developed; dumping areas; water discolored

## Section 3. Classified Segments (Instructions Page 63)

Is the discharge directly into (or within 300 feet of) a classified segment? Yes 🗵 No If yes, this Worksheet is complete. **If no**, complete Sections 4 and 5 of this Worksheet. Section 4. **Description of Immediate Receiving Waters (Instructions Page 63)** Name of the immediate receiving waters: Unnamed tributary to Brushy Creek A. Receiving water type Identify the appropriate description of the receiving waters.  $\boxtimes$ Stream Freshwater Swamp or Marsh Lake or Pond Surface area, in acres: Click to enter text. Average depth of the entire water body, in feet: Click to enter text. Average depth of water body within a 500-foot radius of discharge point, in feet: Click to enter text. Man-made Channel or Ditch Open Bay Tidal Stream, Bayou, or Marsh Other, specify: Click to enter text. **B.** Flow characteristics If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area *upstream* of the discharge. For new discharges, characterize the area downstream of the discharge (check one). Intermittent - dry for at least one week during most years Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses Perennial - normally flowing Check the method used to characterize the area upstream (or downstream for new dischargers). USGS flow records Historical observation by adjacent landowners  $\boxtimes$ Personal observation Other, specify: Click to enter text.

# Exhibit M: Proposed Outfall 002 (Final Permit Phase) C. Downstream perennial confluences List the names of all perennial streams that join the receiving water within three miles downstream of the discharge point. **Brushy Creek** D. Downstream characteristics Do the receiving water characteristics change within three miles downstream of the discharge (e.g., natural or man-made dams, ponds, reservoirs, etc.)? Yes □ If ves, discuss how. An unnamed approximately 6-acre, man-made impoundment (agricultural pond) exists within <0.5 miles downstream of the proposed outfall. SCS Pond Site II, an approximately 48 acre man-made impoundment, exists within +/- 3 miles downstream of the proposed outfall. E. Normal dry weather characteristics Provide general observations of the water body during normal dry weather conditions. Perennial pools with no stream flow. Date and time of observation: 7/8/2015, 2:30 p.m. Was the water body influenced by stormwater runoff during observations? $\boxtimes$ Yes No General Characteristics of the Waterbody (Instructions Section 5. **Page 65)** A. Upstream influences Is the immediate receiving water upstream of the discharge or proposed discharge site influenced by any of the following? Check all that apply.

| Oil field activities | Urban runoff        |
|----------------------|---------------------|
| Upstream discharges  | Agricultural runoff |

 $\square$  Septic tanks  $\square$  Other(s), specify: <u>Click to enter text.</u>

## Exhibit N: Proposed Outfall 002 (Final Permit Phase)

#### **B.** Waterbody uses

| $\boxtimes$        | Livestock watering                                                                     |  | Contact recreation                             |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------------|--|------------------------------------------------|--|--|--|--|
|                    | Irrigation withdrawal                                                                  |  | Non-contact recreation                         |  |  |  |  |
|                    | Fishing                                                                                |  | Navigation                                     |  |  |  |  |
|                    | Domestic water supply                                                                  |  | Industrial water supply                        |  |  |  |  |
|                    | Park activities                                                                        |  | Other(s), specify: <u>Click to enter text.</u> |  |  |  |  |
| terbody aesthetics |                                                                                        |  |                                                |  |  |  |  |
| eck                | eck one of the following that best describes the aesthetics of the receiving water and |  |                                                |  |  |  |  |

Observed or evidences of the following uses. Check all that apply.

#### C. Wa

Che the surrounding area.

- Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional
- $\boxtimes$ Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored
- Common Setting: not offensive; developed but uncluttered; water may be colored or turbid
- Offensive: stream does not enhance aesthetics; cluttered; highly developed; dumping areas; water discolored

Domestic Worksheet 2.1

### **DOMESTIC WORKSHEET 2.1**

#### STREAM PHYSICAL CHARACTERISTICS AND WORKSHEET

Required for new applications, major facilities, and applications adding an outfall

| Worksheet 2.1 is not required for discharges to intermittent streams or discharges directly to (or within 300 feet of) a classified segment. |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Date of study: 5/5/2015Time of study: 1:00 p.m.                                                                                              |  |  |  |  |  |  |  |  |  |
| Stream name: Unnamed tributary of Andrews Branch                                                                                             |  |  |  |  |  |  |  |  |  |
| Location: Buda, Texas                                                                                                                        |  |  |  |  |  |  |  |  |  |
| Type of stream upstream of existing discharge or downstream of proposed discharge (check one).                                               |  |  |  |  |  |  |  |  |  |
| Perennial Intermittent with perennial pools                                                                                                  |  |  |  |  |  |  |  |  |  |
| 1. Data Collection                                                                                                                           |  |  |  |  |  |  |  |  |  |
| (Instructions, Page 73)                                                                                                                      |  |  |  |  |  |  |  |  |  |
| No. of stream bends:                                                                                                                         |  |  |  |  |  |  |  |  |  |
| well defined, 26 moderately defined, 53 poorly defined                                                                                       |  |  |  |  |  |  |  |  |  |
| No. of riffles: 26                                                                                                                           |  |  |  |  |  |  |  |  |  |
| Evidence of Flow fluctuations (check one): minor moderate severe                                                                             |  |  |  |  |  |  |  |  |  |
| Indicate the observed stream uses and if there is evidence of flow fluctuations or channel obstruction/modification.                         |  |  |  |  |  |  |  |  |  |
| Stream flow appears to primarily consist of effluent discharge from Buda WWTP and periodic stormwater conveyance.                            |  |  |  |  |  |  |  |  |  |
|                                                                                                                                              |  |  |  |  |  |  |  |  |  |

#### Stream transects

Complete the transects downstream of the existing or proposed discharges.

Table 2.1(1) - Stream Transect Records

| Stream type at transect* | Transect location | Water surface width (ft) | Stream depths (ft)**   |
|--------------------------|-------------------|--------------------------|------------------------|
| Riffle                   | A                 | 6.75                     | 0.15, 0.22, 0.52, 0.30 |
| Glide                    | В                 | 5.5                      | 0.10, 0.38, 0.55, 0.53 |
| Riffle                   | С                 | 9.25                     | 0.30, 0.42, 0.50, 0.33 |
| Glide                    | D                 | 6.75                     | 1.10, 0.95, 0.71, 0.48 |
| Pool                     | E                 | 7.75                     | 0.38, 0.48, 0.77, 0.69 |
| Riffle                   | F                 | 7.5                      | 0.19, 0.23, 0.13, 0.14 |
|                          |                   |                          |                        |
|                          |                   |                          |                        |
|                          |                   |                          |                        |
|                          |                   |                          |                        |
|                          |                   |                          |                        |

<sup>\*</sup>Enter one of the following (riffle, run, glide, or pool) to indicate the stream type for each transect location. See Instructions, Definitions section. Use a separate row for each entry.

<sup>\*\*</sup>Enter the stream depths, measured in feet from the channel bed to the water surface, at 4 to 10 points along each transect. Separate the 4 to 10 measurements with commas. Use a separate row for each transect.

| 2. Summarize Measurements                                                                                       |
|-----------------------------------------------------------------------------------------------------------------|
| (Instructions, Page 73)                                                                                         |
| Streambed slope of entire reach (from USGS map in ft./ft.): 1/660                                               |
| Approximate drainage area above the most downstream transect (from USGS map or county highway map in mi²): 0.29 |
| Length of stream evaluated (in feet): 2,640                                                                     |
| Number of lateral transects made: 6                                                                             |
| Average stream width (in feet): 7.25                                                                            |
| Average stream depth (in feet): 0.44                                                                            |
| Average stream velocity (in ft/second): 0.32                                                                    |
| Instantaneous stream flow (in ft <sup>3</sup> /sec): 1.02                                                       |
| Indicate flow measurement method*: electromagnetic handheld                                                     |
| *(VERY IMPORTANT -type of meter, floating chip timed over a fixed distance, etc.)                               |
| Flow fluctuations (minor, moderate, severe): minor                                                              |
| Size of pools (large, small, moderate, none): small                                                             |
| Maximum pool depth (in feet): 2                                                                                 |
| Total number of stream bends: 92                                                                                |
| Number well defined: 13                                                                                         |
| Number moderately defined: 26                                                                                   |
| Number poorly defined: 53                                                                                       |
| Total number of riffles: 26                                                                                     |

# **DOMESTIC WORKSHEET 2.1**

#### STREAM PHYSICAL CHARACTERISTICS AND WORKSHEET

Required for new applications, major facilities, and applications adding an outfall

| directly to (or within 300 feet of) a classified segment.                                                                                                                                        |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Date of study: 7/8/2015Time of study: 2:30 p.m.                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| Stream name: Unnamed tributary of Brushy Creek                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
| Location: Buda, Texas                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| Type of stream upstream of existing discharge or downstream of proposed discharge (check one).                                                                                                   |  |  |  |  |  |  |  |  |  |
| Perennial Intermittent with perennial pools                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| 1. Data Collection                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| (Instructions, Page 73)                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
| No. of stream bends:                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| 11well defined, _16moderately defined, _20poorly defined                                                                                                                                         |  |  |  |  |  |  |  |  |  |
| No. of riffles: 0                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| Evidence of Flow fluctuations (check one):  minor moderate severe                                                                                                                                |  |  |  |  |  |  |  |  |  |
| Indicate the observed stream uses and if there is evidence of flow fluctuations or channel obstruction/modification.                                                                             |  |  |  |  |  |  |  |  |  |
| Stream appears to convey only stormwater, with perennial pool/small pond detentions. An earthen embankment is located > 1/2 mile downstream of the proposed outfall to impound a livestock pond. |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |

Domestic Worksheet 2.1, Pages 33-35 of 76

#### Stream transects

Complete the transects downstream of the existing or proposed discharges.

Table 2.1(1) - Stream Transect Records

| Stream type at transect* | Transect location | Water surface width (ft) | Stream depths (ft)**     |
|--------------------------|-------------------|--------------------------|--------------------------|
| N/A                      | Α                 | N/A                      | N/A                      |
| N/A                      | В                 | N/A                      | N/A                      |
| N/A                      | С                 | N/A                      | N/A                      |
| Pool                     | D                 | 6.08                     | 0.83, 1.25, 1.1          |
| Pool                     | E                 | 9.75                     | 0.96, 1.04, 0.625, 0.167 |
|                          |                   |                          |                          |
|                          |                   |                          |                          |
|                          |                   |                          |                          |
|                          |                   |                          |                          |
|                          |                   |                          |                          |
|                          |                   |                          |                          |
| *** 6.                   | 1 6 11 .          | ( 100 111                |                          |

<sup>\*</sup>Enter one of the following (riffle, run, glide, or pool) to indicate the stream type for each transect location. See Instructions, Definitions section. Use a separate row for each entry.

<sup>\*\*</sup>Enter the stream depths, measured in feet from the channel bed to the water surface, at 4 to 10 points along each transect. Separate the 4 to 10 measurements with commas. Use a separate row for each transect.

| 2. Summarize Measurements                                                                                       |
|-----------------------------------------------------------------------------------------------------------------|
| (Instructions, Page 73)                                                                                         |
| Streambed slope of entire reach (from USGS map in ft./ft.): 1/69.5                                              |
| Approximate drainage area above the most downstream transect (from USGS map or county highway map in mi²): 0.21 |
| Length of stream evaluated (in feet): 2,640                                                                     |
| Number of lateral transects made: 5                                                                             |
| Average stream width (in feet): 7.92                                                                            |
| Average stream depth (in feet): 0.86                                                                            |
| Average stream velocity (in ft/second): N/A                                                                     |
| Instantaneous stream flow (in ft³/sec): N/A                                                                     |
| Indicate flow measurement method*: electromagnetic handheld                                                     |
| *(VERY IMPORTANT -type of meter, floating chip timed over a fixed distance, etc.)                               |
| Flow fluctuations (minor, moderate, severe): minor                                                              |
| Size of pools (large, small, moderate, none): small                                                             |
| Maximum pool depth (in feet): 2                                                                                 |
| Total number of stream bends: 47                                                                                |
| Number well defined: 11                                                                                         |
| Number moderately defined: 16                                                                                   |
| Number poorly defined: 20                                                                                       |
| Total number of riffles: 0                                                                                      |

Report No: 250626.01\_2509101448

Amended Report This report replaces all previous versions of this Work Order: 250626.01



# **Report of Analysis**

For: 422884 - GBRA-Buda

933 E Court St

Seguin, TX 78155

TNI LABORATORI

Publish Date/Time: 9/10/2025 2:48 PM

Released By: Kylie Gudgell

Title: Lead Technical Manager

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and If applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the report, and that no information or data have been knowingly withheld that would affect the quality of the data.

Kylw Sudgell

This Laboratory is NELAP accredited. Scope: Non-potable water, potable water.

Publish Date/Time: 9/10/2025 2:48 PM Report No: 250626.01\_2509101448

Amended Report This report replaces all previous versions of this Work Order: 250626.01

Lab Sample ID: 250626.01-01 **Collection Date/Time:** 6/26/2025 09:55 AM Sample Matrix: Waste Water

Site: Buda TPDES Permit **Receive Date/Time:** 6/26/2025 12:54 PM Sample Type: Grab

|   | <u>Analyte</u>                                   | <u>Method</u>               | Samp  | <u>le Result</u>    | <u>DF</u> | RPL | Qualifier | <u>Test Date/Time</u> | <u>Analyst</u> | Read Date/Time                                 | <u>Analyst</u> |
|---|--------------------------------------------------|-----------------------------|-------|---------------------|-----------|-----|-----------|-----------------------|----------------|------------------------------------------------|----------------|
|   | Anions - Chloride                                | EPA 300.0 Rev. 2.1          | 275   | mg/L                | 4         | 4   |           | 6/26/2025 02:25 PM    | MLH            |                                                |                |
|   | Anions - Nitrate                                 | EPA 300.0 Rev. 2.1          | 15.7  | mg/L                | 20        | 1   |           | 6/26/2025 03:48 PM    | MLH            |                                                |                |
|   | Anions - Sulfate                                 | EPA 300.0 Rev. 2.1          | 144   | mg/L                | 4         | 4   |           | 6/26/2025 02:25 PM    | MLH            |                                                |                |
| 1 | Chlorine Residual (field)                        | Hach 8167/ SM 4500-<br>CI G | 0.260 | mg/L                | 1         |     |           | 6/26/2025 09:55 AM    | JM             |                                                |                |
|   | Total Alkalinity                                 | SM 2320 B                   | 76.6  | mg CaCO3/L          | 1         | 20  |           | 6/30/2025 02:46 PM    | CS             |                                                |                |
| 1 | pH (T.Alkalinity)                                | SM 2320 B                   | 4.5   | SU                  | 1         | 1   |           | 6/30/2025 02:46 PM    | CS             |                                                |                |
|   | Conductivity (Lab)                               | SM 2510 B                   | 1390  | µmhos/cm at<br>25°C | 1         | 70  |           | 6/30/2025 01:35 PM    | MT             |                                                |                |
|   | Total Dissolved Solids                           | SM 2540 C                   | 744   | mg/L                | 2         | 20  |           | 6/27/2025 02:52 PM    | MD             |                                                |                |
|   | Total Suspended Solids                           | SM 2540 D                   | 0.60  | mg/L                | 1         | 0.5 |           | 6/27/2025 04:51 PM    | MD             |                                                |                |
| 1 | pH (Field)                                       | SM 4500 H+B                 | 6.9   | SU                  | 1         |     |           | 6/26/2025 09:55 AM    | JM             |                                                |                |
| 1 | pH (Lab)                                         | SM 4500 H+B                 | 7.3   | SU                  | 1         | 1   | Q         | 6/26/2025 03:46 PM    | MT             |                                                |                |
|   | Carbonaceous Biochemical<br>Oxygen Demand (CBOD) | SM 5210 B                   | 1     | mg/L                | 1         | 1   |           | 6/26/2025 04:33 PM    | MT             | 7/1/2025 12:03 PM                              | MT             |
| 1 | Dissolved Oxygen (Field)                         | SWQM Procedures<br>Volume 1 | 7.5   | mg/L                | 1         |     |           | 6/26/2025 09:55 AM    | JM             |                                                |                |
| 1 | Temperature (Field)                              | SWQM Procedures<br>Volume 1 | 29.0  | °C                  | 1         |     |           | 6/26/2025 09:55 AM    | JM             |                                                |                |
| 1 | NA = not analyzed                                |                             |       |                     |           |     |           |                       |                | NELAP accreditation of the TCEQ Drinking Water |                |

<sup>&</sup>lt;sup>2</sup> Parameter is approved under TCEQ Drinking Water Program

Amended Report This report replaces all previous versions of this Work Order: 250626.01

Lab Sample ID: 250626.01-02 Collection Date/Time: 6/26/2025 09:55 AM Sample Matrix: Waste Water

Site: Buda TPDES Permit Receive Date/Time: 6/26/2025 12:54 PM Sample Type: Grab

| <u>Analyte</u>                | <u>Method</u>    | Sample Result | <u>DF</u> | <u>RPL</u> | Qualifier | <u>Test Date/Time</u> | <u>Analyst</u> | Read Date/Time | <u>Analyst</u> |
|-------------------------------|------------------|---------------|-----------|------------|-----------|-----------------------|----------------|----------------|----------------|
| Ammonia as N                  | EPA 350.1 Rev. 2 | < 0.10 mg/L   | 1         | 0.1        |           | 6/27/2025 12:13 PM    | MW             |                |                |
| Total Kjeldahl Nitrogen (TKN) | EPA 351.2 Rev. 2 | < 0.20 mg/L   | 1         | 0.2        |           | 7/2/2025 03:57 PM     | MW             |                |                |
| Total Phosphorus              | EPA 365.3        | 0.240 mg/L    | 1         | 0.02       |           | 6/30/2025 04:27 PM    | MW             |                |                |

Lab Sample ID: 250626.01-03 Collection Date/Time: 6/26/2025 09:55 AM Sample Matrix: Waste Water

Site: Buda TPDES Permit Receive Date/Time: 6/26/2025 12:54 PM Sample Type: Grab

| <u>Analyte</u> | <u>Method</u> | Sample Result        | <u>DF</u> | RPL Qualifier | <u>Test Date/Time</u> | <u>Analyst</u> | Read Date/Time | <u>Analyst</u> |
|----------------|---------------|----------------------|-----------|---------------|-----------------------|----------------|----------------|----------------|
| Oil and Grease | Subcontract   | See mg/L<br>Attached | 1         |               | 7/2/2025 07:24 AM     |                |                |                |
|                |               | Report               |           |               |                       |                |                |                |

Subcontract methods are tested by an external laboratory. See subcontracted report for further details.

Lab Sample ID: 250626.01-04 Collection Date/Time: 6/26/2025 09:55 AM Sample Matrix: Waste Water

Site: Buda TPDES Permit Receive Date/Time: 6/26/2025 12:54 PM Sample Type: Grab

| <u>Analyte</u>         | <u>Method</u>        | Sample Result | <u>DF</u> | <u>RPL</u> | Qualifier | <u>Test Date/Time</u> | <u>Analyst</u> | Read Date/Time     | <u>Analyst</u> |
|------------------------|----------------------|---------------|-----------|------------|-----------|-----------------------|----------------|--------------------|----------------|
| E. coli by Quanti-Tray | IDEXX Colilert 18 hr | <1 MPN/100mL  | 1         | 1          |           | 6/26/2025 04:33 PM    | CS             | 6/27/2025 11:59 AM | CS             |

NA = not analyzed

 $<sup>{\</sup>tt 1}$  Parameter not available for NELAP accreditation at the GBRA

<sup>&</sup>lt;sup>2</sup> Parameter is approved under TCEQ Drinking Water Program

Amended Report This report replaces all previous versions of this Work Order: 250626.01

Lab Sample ID: 250626.01-05 Collection Date/Time: 6/26/2025 09:55 AM Sample Matrix: Waste Water

Site: Buda TPDES Permit Receive Date/Time: 6/26/2025 12:54 PM Sample Type: Grab

|   | <u>Analyte</u>               | <u>Method</u> | <u>Sample Result</u>      | <u>DF</u> | <u>RPL</u> | Qualifier | <u>Test Date/Time</u> | <u>Analyst</u> | Read Date/Time | <u>Analyst</u> |
|---|------------------------------|---------------|---------------------------|-----------|------------|-----------|-----------------------|----------------|----------------|----------------|
| 1 | Table 4.0 Domestic Worksheet | Subcontract   | See<br>Attached<br>Report | 1         |            |           | 6/27/2025 03:48 PM    |                |                |                |

Table 4 Domestic Worksheet includes metals. VOCs. Phenols, etc

NA = not analyzed

<sup>&</sup>lt;sup>1</sup> Parameter not available for NELAP accreditation at the GBRA

<sup>&</sup>lt;sup>2</sup> Parameter is approved under TCEQ Drinking Water Program

Amended Report This report replaces all previous versions of this Work Order: 250626.01

#### LABORATORY TERM AND QUALIFIER DEFINITION REPORT

| General Term Definition |                                     |      |                        |  |  |  |
|-------------------------|-------------------------------------|------|------------------------|--|--|--|
| %REC                    | Percent Recovery                    | LOQ  | Limit of Quantitation  |  |  |  |
| %RPD                    | Relative Percent Difference         | LR   | Low Range              |  |  |  |
| ССВ                     | Continuing Calibration Verification | MBLK | Method Blank           |  |  |  |
| CCV                     | Continuing Calibration Verification | MDL  | Method Detection Limit |  |  |  |
| D.F.                    | Dilution Factor                     | MS   | Matrix Spike           |  |  |  |
| HR                      | High Range                          | MSD  | Matrix Spike Duplicate |  |  |  |
| ICB                     | Initial Calibration Blank           | ND   | Not Detected           |  |  |  |
| ICV                     | Initial Calibration Verification    | QC   | Quality Control        |  |  |  |
| LCS                     | Laboratory Control Spike            | RPL  | Reporting Limit        |  |  |  |
| LCSD                    | Laboratory Control Spike Duplicate  |      |                        |  |  |  |

#### **Qualifier Definition**

Q Sample held beyond the accepted holding time

#### **Order Comments**

250626.01

Dioxins and Furans were recollected 8/4/25 due to subcontracted lab error JM 8/19/2025

#### **QC** Results

| QCBatch ID   | QC ID                     | <u>Parameter</u>       | % Recovery / RPD | Control Limits |
|--------------|---------------------------|------------------------|------------------|----------------|
| QC250626.005 | 250626.01-01: Duplicate 1 | Total Dissolved Solids | 1.08             | 0 - 10         |
|              | LCS 1                     | Total Dissolved Solids | 95.76            | 75 - 125       |
|              | MBLK 1                    | Total Dissolved Solids | 0.0              | 0 - 10         |

NA = not analyzed

933 East Court Street Seguin, TX 78155 (830)379-5822 ext 256

This report cannot be reproduced, except in full, without prior written permission of the GBRA Laboratory. Results shown relate only to the items tested. Samples are assumed to be in acceptable condition unless otherwise noted.

**Work Order:** 250626.01

Page 5 of 10

 $<sup>^{\</sup>mbox{\scriptsize 1}}$  Parameter not available for NELAP accreditation at the GBRA

<sup>&</sup>lt;sup>2</sup> Parameter is approved under TCEQ Drinking Water Program

| Amended Repor | † This report rep | places all previous versions of t | this Work Order: 250626.01 |      |       |
|---------------|-------------------|-----------------------------------|----------------------------|------|-------|
|               | QC250626.008      | 250625.03-02: Duplicate 3         | Total Suspended Solids     | 9.63 | 0 - 1 |

| QC250626.008 | 250625.03-02: Duplicate 3 | Total Suspended Solids | 9.63   | 0 - 15   |
|--------------|---------------------------|------------------------|--------|----------|
|              | 250625.05-02: Duplicate 5 | Total Suspended Solids | 3.61   | 0 - 15   |
|              | 250626.04-03: Duplicate 2 | Total Suspended Solids | 0.8    | 0 - 15   |
|              | 250626.06-02: Duplicate 4 | Total Suspended Solids | 8.18   | 0 - 15   |
|              | 250626.08-04: Duplicate 1 | Total Suspended Solids | 0.47   | 0 - 15   |
|              | LCS 1                     | Total Suspended Solids | 102.0  | 75 - 125 |
|              | LCS 2                     | Total Suspended Solids | 97.2   | 75 - 125 |
|              | LCS 3                     | Total Suspended Solids | 96.4   | 75 - 125 |
|              | LCS 4                     | Total Suspended Solids | 92.4   | 75 - 125 |
|              | LCS 5                     | Total Suspended Solids | 96.8   | 75 - 125 |
|              | MBLK 1                    | Total Suspended Solids | 0.0    | 0 - 0.5  |
|              | MBLK 2                    | Total Suspended Solids | 0.0    | 0 - 0.5  |
|              | MBLK 3                    | Total Suspended Solids | 0.0    | 0 - 0.5  |
|              | MBLK 4                    | Total Suspended Solids | 0.0    | 0 - 0.5  |
|              | MBLK 5                    | Total Suspended Solids | 0.0    | 0 - 0.5  |
| QC250627.002 | 250626.05-01: Duplicate 1 | pH (Lab)               | 0.15   | 0 - 15   |
|              | 250626.07-01: Duplicate 2 | pH (Lab)               | 0.76   | 0 - 15   |
|              | 250626.10-02: Duplicate 3 | pH (Lab)               | 0.29   | 0 - 15   |
|              | CCV 1                     | pH (Lab)               | 101.0  | 75 - 125 |
|              | ICV 1                     | pH (Lab)               | 100.29 | 75 - 125 |
| QC250627.004 | 250618.28-01: MS 1        | Anions - Chloride      | 110.37 | 80 - 120 |
|              | 250618.28-01: MS 1        | Anions - Sulfate       | 106.33 | 80 - 120 |
|              | 250618.28-01: MSD 1       | Anions - Chloride      | 0.14   | 0 - 20   |
|              | 250618.28-01: MSD 1       | Anions - Sulfate       | 0.25   | 0 - 20   |
|              | LCS 1                     | Anions - Chloride      | 100.59 | 90 - 110 |
|              | LCS 1                     | Anions - Sulfate       | 108.49 | 90 - 110 |
|              | LCSD 1                    | Anions - Chloride      | 0.14   | 0 - 20   |
|              | LCSD 1                    | Anions - Sulfate       | 0.01   | 0 - 20   |
|              | LOQ 1                     | Anions - Chloride      | 108.85 | 70 - 130 |
|              | LOQ 1                     | Anions - Sulfate       | 106.94 | 70 - 130 |
|              | MBLK 1                    | Anions - Chloride      | 0.0    | 0 - 1    |
|              | MBLK 1                    | Anions - Sulfate       | 0.0    |          |
| QC250627.009 | 250618.21-01: MS 2        | Anions - Nitrate       | 100.77 | 80 - 120 |
|              | 250618.21-01: MSD 2       | Anions - Nitrate       | 0.0    | 0 - 20   |
|              |                           |                        |        |          |

NA = not analyzed

 $<sup>^{\</sup>mbox{\scriptsize 1}}$  Parameter not available for NELAP accreditation at the GBRA

<sup>&</sup>lt;sup>2</sup> Parameter is approved under TCEQ Drinking Water Program

#### Amended Report This report replaces all previous versions of this Work Order: 250626.01

|              | 250618.28-01: MS 1        | Anions - Nitrate       | 101.69 | 80 - 120 |
|--------------|---------------------------|------------------------|--------|----------|
|              | 250618.28-01: MSD 1       | Anions - Nitrate       | 0.08   | 0 - 20   |
|              | LCS 1                     | Anions - Nitrate       | 101.86 | 90 - 110 |
|              | LCS 2                     | Anions - Nitrate       | 103.33 | 90 - 110 |
|              | LCSD 1                    | Anions - Nitrate       | 2.31   | 0 - 20   |
|              | LCSD 2                    | Anions - Nitrate       | 0.52   | 0 - 20   |
|              | LOQ 1                     | Anions - Nitrate       | 107.2  | 70 - 130 |
|              | LOQ 2                     | Anions - Nitrate       | 95.8   | 70 - 130 |
|              | MBLK 1                    | Anions - Nitrate       | 0.0    |          |
|              | MBLK 2                    | Anions - Nitrate       | 0.0    |          |
| QC250627.010 | 250618.22-05: Duplicate 1 | E. coli by Quanti-Tray | 0.09   |          |
|              | 250618.28-01: Duplicate 2 | E. coli by Quanti-Tray | 0.21   |          |
|              | MBLK 1                    | E. coli by Quanti-Tray | 0.0    |          |
| QC250630.006 | 250626.01-01: Duplicate 1 | Conductivity (Lab)     | 0.14   |          |
|              | LCS 1                     | Conductivity (Lab)     | 100.0  |          |
| QC250630.007 | 250618.17-01: MS 1        | Ammonia as N           | 107.96 | 90 - 110 |
|              | 250618.17-01: MSD 1       | Ammonia as N           | 3.22   | 0 - 15   |
|              | 250624.04-01: MS 2        | Ammonia as N           | 107.76 | 90 - 110 |
|              | 250624.04-01: MSD 2       | Ammonia as N           | 7.15   | 0 - 15   |
|              | 250624.12-01: MS 3        | Ammonia as N           | 105.83 | 90 - 110 |
|              | 250624.12-01: MSD 3       | Ammonia as N           | 2.26   | 0 - 15   |
|              | 250626.04-01: MS 4        | Ammonia as N           | 102.39 | 90 - 110 |
|              | 250626.04-01: MSD 4       | Ammonia as N           | 2.14   | 0 - 15   |
|              | 250626.09-01: MS 5        | Ammonia as N           | 102.41 | 90 - 110 |
|              | 250626.09-01: MSD 5       | Ammonia as N           | 0.31   | 0 - 15   |
|              | LCS 1                     | Ammonia as N           | 102.36 | 90 - 110 |
|              | LCS 2                     | Ammonia as N           | 106.42 | 90 - 110 |
|              | LCS 3                     | Ammonia as N           | 103.86 | 90 - 110 |
|              | LCS 4                     | Ammonia as N           | 105.26 | 90 - 110 |
|              | LCS 5                     | Ammonia as N           | 95.72  | 90 - 110 |
|              | LCSD 1                    | Ammonia as N           | 6.78   | 0 - 15   |
|              | LCSD 2                    | Ammonia as N           | 1.07   | 0 - 15   |
|              | LCSD 3                    | Ammonia as N           | 3.33   | 0 - 15   |
|              | LCSD 4                    | Ammonia as N           | 0.8    | 0 - 15   |

NA = not analyzed

 $<sup>{\</sup>ensuremath{^{1}}}$  Parameter not available for NELAP accreditation at the GBRA

<sup>&</sup>lt;sup>2</sup> Parameter is approved under TCEQ Drinking Water Program

Amended Report This report replaces all previous versions of this Work Order: 250626.01

|              | LCSD 5                    | Ammonia as N                                     | 10.37               | 0 - 15               |
|--------------|---------------------------|--------------------------------------------------|---------------------|----------------------|
|              | LOQ 1                     | Ammonia as N                                     | 74.15               | 70 - 130             |
|              | MBLK 1                    | Ammonia as N                                     | -0.03               |                      |
|              | MBLK 2                    | Ammonia as N                                     | -0.04               |                      |
|              | MBLK 3                    | Ammonia as N                                     | -0.02               |                      |
|              | MBLK 4                    | Ammonia as N                                     | -0.02               |                      |
|              | MBLK 5                    | Ammonia as N                                     | -0.03               |                      |
| QC250701.005 | 250626.06-02: Duplicate 1 | Carbonaceous Biochemical Oxygen Demand (CBOD)    | 6.95                | 0 - 15               |
|              | 250626.07-02: Duplicate 2 | Carbonaceous Biochemical<br>Oxygen Demand (CBOD) | 1.3                 | 0 - 15               |
|              | CBOD GGA 1                | Carbonaceous Biochemical<br>Oxygen Demand (CBOD) | 99.49               | 84.6 - 115.4         |
|              | Dilution Blank 1          | Carbonaceous Biochemical<br>Oxygen Demand (CBOD) | 0.0                 |                      |
| QC250702.004 | 250618.17-01: MS 1        | Total Phosphorus                                 | 106.91              | 80 - 120             |
|              | 250618.17-01: MSD 1       | Total Phosphorus                                 | 1.01                | 0 - 15               |
|              | 250624.04-01: MS 3        | Total Phosphorus                                 | 102.47              | 80 - 120             |
|              | 250624.04-01: MSD 3       | Total Phosphorus                                 | 1.83                | 0 - 15               |
|              | 250624.10-01: MS 4        | Total Phosphorus                                 | 106.07              | 80 - 120             |
|              | 250624.10-01: MSD 4       | Total Phosphorus                                 | 0.87                | 0 - 15               |
|              | 250625.12-01: MS 2        | Total Phosphorus                                 | 104.08              | 80 - 120             |
|              | 250625.12-01: MSD 2       | Total Phosphorus                                 | 0.04                | 0 - 15               |
|              | 250626.04-01: MS 5        | Total Phosphorus                                 | 105.63              | 80 - 120             |
|              | 250626.04-01: MSD 5       | Total Phosphorus                                 | 2.3                 | 0 - 15               |
|              | LCS 1                     | Total Phosphorus                                 | 101.56              | 75 - 125             |
|              | LCS 2                     | Total Phosphorus                                 | 102.31              | 75 - 125             |
|              | LCS 3                     | Total Phosphorus                                 | 103.17              | 75 - 125             |
|              | LCS 4                     | Total Phosphorus                                 | 103.35              | 75 - 125             |
|              | LCS 5                     | Total Phosphorus                                 | 107.04              | 75 - 125             |
|              | LCSD 1                    | Total Phosphorus                                 | 1.54                | 0 - 15               |
|              | LCSD 2                    | Total Phosphorus                                 | 1.03                | 0 - 15               |
|              | LCSD 3                    | Total Phosphorus                                 | 2.64                | 0 - 15               |
|              | LCSD 4                    | Total Phosphorus                                 | 2.23                | 0 - 15               |
|              | LCSD 5                    | Total Phosphorus                                 | 1.74                | 0 - 15               |
|              |                           |                                                  | <sup>1</sup> Parame | ter not available fo |

NA = not analyzed

<sup>1</sup> Parameter not available for NELAP accreditation at the GBRA
2 Parameter is approved under ICEQ Dripking Water Program

<sup>&</sup>lt;sup>2</sup> Parameter is approved under TCEQ Drinking Water Program

| Amended Report T | his report replaces all | previous versions of th | is Work Order: 250626.01 |
|------------------|-------------------------|-------------------------|--------------------------|
|------------------|-------------------------|-------------------------|--------------------------|

|              | LOQ 1               | Total Phosphorus              | 95.0   | 75 - 125 |
|--------------|---------------------|-------------------------------|--------|----------|
|              | LOQ 2               | Total Phosphorus              | 98.9   | 75 - 125 |
|              | LOQ 3               | Total Phosphorus              | 98.2   | 75 - 125 |
|              | MBLK 1              | Total Phosphorus              | 0.0    |          |
|              | MBLK 2              | Total Phosphorus              | 0.0    |          |
|              | MBLK 3              | Total Phosphorus              | 0.0    |          |
|              | MBLK 4              | Total Phosphorus              | 0.0    |          |
|              | MBLK 5              | Total Phosphorus              | 0.0    |          |
| QC250702.006 | 250625.01-01: MS 1  | Total Alkalinity              | 93.61  | 75 - 125 |
|              | 250625.01-01: MSD 1 | Total Alkalinity              | 0.67   | 0 - 15.4 |
|              | LCS 1               | Total Alkalinity              | 103.5  | 80 - 120 |
|              | LCSD 1              | Total Alkalinity              | 0.51   | 0 - 15.4 |
|              | LOQ 1               | Total Alkalinity              | 113.97 | 75 - 125 |
|              | MBLK 1              | pH (T.Alkalinity)             | 4.5    |          |
|              | MBLK 1              | Phenolphthalein Alkalinity    | 0.0    |          |
|              | MBLK 1              | Total Alkalinity              | 3.56   | 0 - 20   |
| QC250703.001 | 250617.22-01: MS 1  | Total Kjeldahl Nitrogen (TKN) | 86.17  | 90 - 110 |
|              | 250617.22-01: MSD 1 | Total Kjeldahl Nitrogen (TKN) | 5.48   | 0 - 15   |
|              | 250617.22-05: MS 2  | Total Kjeldahl Nitrogen (TKN) | 93.95  | 90 - 110 |
|              | 250617.22-05: MSD 2 | Total Kjeldahl Nitrogen (TKN) | 2.98   | 0 - 15   |
|              | 250618.23-01: MS 3  | Total Kjeldahl Nitrogen (TKN) | 106.11 | 90 - 110 |
|              | 250618.23-01: MSD 3 | Total Kjeldahl Nitrogen (TKN) | 5.03   | 0 - 15   |
|              | LCS 1               | Total Kjeldahl Nitrogen (TKN) | 101.35 | 90 - 110 |
|              | LCS 2               | Total Kjeldahl Nitrogen (TKN) | 95.85  | 90 - 110 |
|              | LCS 3               | Total Kjeldahl Nitrogen (TKN) | 93.51  | 90 - 110 |
|              | LCSD 1              | Total Kjeldahl Nitrogen (TKN) | 4.3    | 0 - 15   |
|              | LCSD 2              | Total Kjeldahl Nitrogen (TKN) | 1.73   | 0 - 15   |
|              | LCSD 3              | Total Kjeldahl Nitrogen (TKN) | 1.18   | 0 - 15   |
|              | LOQ 1               | Total Kjeldahl Nitrogen (TKN) | 102.91 | 70 - 130 |
|              | LOQ 2               | Total Kjeldahl Nitrogen (TKN) | 73.31  | 70 - 130 |
|              | LOQ 3               | Total Kjeldahl Nitrogen (TKN) | 98.12  | 70 - 130 |
|              | MBLK 1              | Total Kjeldahl Nitrogen (TKN) | -0.03  |          |
|              | MBLK 2              | Total Kjeldahl Nitrogen (TKN) | -0.09  |          |
|              | MBLK 3              | Total Kjeldahl Nitrogen (TKN) | -0.07  |          |
|              |                     |                               |        |          |

NA = not analyzed

 $<sup>^{\</sup>mbox{\scriptsize 1}}$  Parameter not available for NELAP accreditation at the GBRA

<sup>&</sup>lt;sup>2</sup> Parameter is approved under TCEQ Drinking Water Program

Amended Report This report replaces all previous versions of this Work Order: 250626.01

NA = not analyzed

<sup>&</sup>lt;sup>1</sup> Parameter not available for NELAP accreditation at the GBRA

<sup>&</sup>lt;sup>2</sup> Parameter is approved under TCEQ Drinking Water Program





# **Chain-Of-Custody Record**



| Report To                        | )                |          |                                 | Customer Acct.#:                                                                   | 422884                         | Invoice      | To (if applicable)                                   |                                                          |              |                          |        |  |
|----------------------------------|------------------|----------|---------------------------------|------------------------------------------------------------------------------------|--------------------------------|--------------|------------------------------------------------------|----------------------------------------------------------|--------------|--------------------------|--------|--|
| Name: GBRA                       | \-Buda           |          |                                 |                                                                                    |                                | Name:        |                                                      |                                                          |              |                          |        |  |
| Address: PO                      | BOX 216, B       | UDA, TX  | 78610                           |                                                                                    |                                | Address:     |                                                      |                                                          |              |                          |        |  |
| Phone #: 512                     | -312-0526        |          |                                 |                                                                                    |                                | Phone #:     |                                                      |                                                          |              |                          |        |  |
| Email: jmann                     | @gbra.org;       | emontai  | na@gbra.or                      | g                                                                                  |                                | Email:       |                                                      |                                                          |              |                          |        |  |
| Thermomete                       | r#: 28           |          | Qbserved /                      | Corrected Temp(°C):                                                                | 1/8                            | Chlorine     | Check Reagent ID:                                    |                                                          | Chlorine     | : Absent/ Pre            | sent   |  |
| Sample Iced                      | (Circle One      | ): Yes   | ) / No                          | CoC Page:                                                                          | / of /                         | pH Paper     | Reagent ID: 092024- (                                | )9                                                       |              |                          |        |  |
| No. of Conta                     |                  | 3        |                                 | Intact (Circle One): Yes)/ No                                                      | )                              | Residual     | Chlorine (Total/Free) Results:                       |                                                          |              |                          |        |  |
|                                  | JM Ó ZOC<br>Time |          | Sx Vol.<br>P=Plastic<br>G=Glass |                                                                                    | Preservation ID (PID#)/        | Grab /       |                                                      | 250626.01                                                |              |                          | Sub    |  |
| Date Collected                   | Collected        | Matrix   | A=Amber                         | Sample Name/Description                                                            | TCEQ ID Number                 | Comp.        | Analysis Requested                                   | GBRA Sample ID                                           | pH           | Preservative             | Out    |  |
| \$ (0)210/23                     | 0955             | ww       | 1G-P                            | Buda TPDES Permit                                                                  |                                | G            | CBOD, TSS, Nitrate, Sulfate, Chloride,<br>TDS, Alk   | -01                                                      |              |                          |        |  |
|                                  | 1                | ww       | 1L-P                            | Buda TPDES Permit                                                                  | 0201025 - 63                   | G            | Ammonia, TKN, Total Phos                             | -02                                                      | 12           | H2504                    |        |  |
|                                  |                  | ww       | 1L-G                            | Buda TPDES Permit                                                                  |                                | G            | Oil and Grease                                       | -03                                                      | +            | H2SO4                    | Y      |  |
| +                                |                  | ww       | 100mL-P                         | Buda TPDES Permit                                                                  |                                | G            | E. coli                                              | -04                                                      |              | Na 2520 3                |        |  |
| 197                              |                  |          |                                 |                                                                                    |                                | -            | TCEQ Major Permit Renewal See Attached Documentation |                                                          |              |                          |        |  |
| 6/26/25                          | 0955             | ww       | Λ*                              | Buda TPDES Permit                                                                  |                                | G            | Full TTO, Metals                                     |                                                          | +            | Various<br>Preservations | Y      |  |
|                                  |                  | ww       | ۸*                              | Buda TPDES Permit                                                                  |                                | G            | PhenoIs                                              |                                                          | +            | Various<br>Preservations | Υ      |  |
| -                                | 4                | ww       | ۸*                              | Buda TPDES Permit                                                                  |                                | G            | Cyanide                                              |                                                          | +            | NaOH                     | Y      |  |
| CO 20125                         | 0955             | ww       |                                 |                                                                                    |                                | G            | pH: <b>U</b> . 93 Temp: 28,99                        |                                                          |              |                          |        |  |
|                                  |                  | ww       |                                 |                                                                                    |                                | G            | Dissolved Oxygen: 7.5                                | Chlorine<br>Residual: 0.70                               |              |                          |        |  |
|                                  | Matrices         | : WW=Was | tewater, DW=I                   | Orinking Water, SW=Surface Water, S=SI                                             | udge/Soil                      | Samples      | marked above as "Sub Out" will be sub-<br>requiren   | contracted to a laboratory the<br>nents of these samples | at meets the | regulatory or en         | d-user |  |
|                                  |                  |          | Expedite Sa                     | mples: 24hr/Holiday (4x Fee)                                                       | 48hr/Weekend (3x Fee)          | 3-5 days     | (2x Fee) Due Date:                                   |                                                          |              |                          |        |  |
| Sampler Name                     |                  | engo     | a N                             | ack                                                                                | *                              | Sampler Sig  |                                                      |                                                          | In           |                          | *      |  |
| Relinquished B                   |                  | 111      | 2/                              |                                                                                    | Date/Time: 1254                | Transferred  | (MU) /                                               |                                                          | Date/Time    | :<br>25 /2:54            |        |  |
| Relinquished B                   | y:               |          |                                 |                                                                                    | Date/Time:                     | Received By  | y:                                                   |                                                          | Ďáte/Time    | :                        |        |  |
| Relinquished B                   | y:               |          |                                 |                                                                                    | Date/Time:                     | Received By  | <i>y</i> :                                           |                                                          | Date/Time    | :                        |        |  |
| Relinquished B                   |                  |          |                                 |                                                                                    | Date/Time:                     | Received By  |                                                      |                                                          | Date/Time    | :                        |        |  |
| NOTES / COMM<br>+pH tested at si |                  |          |                                 | *Containers for outsourced tests provid<br>*SPL sampler collected outsourced tests | - '                            |              |                                                      | traceability nurnoses only                               |              |                          |        |  |
|                                  |                  |          |                                 | o bumpler concetted outsourced test                                                | c. Cos of E COO for testing de | tuno. Jutobu | Total totaling included on ODICA COC 101             | a desability purposes offly                              |              |                          |        |  |



# **Chain-Of-Custody Record**

|   | <u></u> ه | , 200 | ing <sub>o</sub> |          |
|---|-----------|-------|------------------|----------|
|   |           | 4     |                  | 2        |
| 1 |           |       | 76               | 1        |
|   |           |       |                  | <b>1</b> |

| Report To                         |                   |         |                                            | Customer Acct.#:                       | 422884                                    | Invoice                                               | To (if applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                          |                  |            |  |  |
|-----------------------------------|-------------------|---------|--------------------------------------------|----------------------------------------|-------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------|------------------|------------|--|--|
| Name: GBRA                        | -Buda             |         |                                            |                                        |                                           | Name:                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                          |                  |            |  |  |
| Address: PO                       | BOX 216, B        | UDA, TX | 78610                                      |                                        |                                           | Address:                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                          |                  |            |  |  |
| Phone #: 512                      | -312-0526         |         |                                            |                                        |                                           | Phone #:                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                          |                  |            |  |  |
| Email: jmann                      | @gbra.org;        | dwalker | @gbra.org                                  |                                        |                                           | Email:                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                          |                  |            |  |  |
| Thermometer                       | #: 28             |         | Qbserved /                                 | Corrected Temp(°C): 18. 10             | 1 18.3                                    | Chlorine Check Reagent ID: Chlorine : Absent/ Present |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                          |                  |            |  |  |
| Sample Iced                       | (Circle One)      | : Yes   | ) No                                       | CoC Page:                              | / of /                                    |                                                       | Reagent ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | 10                       |                  | Joint      |  |  |
| No. of Contai                     | ners: 3           |         |                                            | Intact (Circle One) Yes / No           |                                           |                                                       | Chlorine (Total/Free) Results:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                              | -                        |                  |            |  |  |
| Date Collected                    | Time<br>Collected | Matrix  | Sx Vol.<br>P=Plastic<br>G=Glass<br>A=Amber | Sample Name/Description                | Preservation ID (PID#)/<br>TCEQ ID Number | Grab /<br>Comp.                                       | Analysis Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 250004 .01<br>GBRA Sample ID   | рН                       | Preservative     | Sub<br>Out |  |  |
| 8/4/2025                          | 0843              | ww      | (3) 1L-A                                   | Buda TPDES Permit                      |                                           | G                                                     | Dioxins and Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -01                            |                          |                  | Y          |  |  |
|                                   |                   |         |                                            |                                        |                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                          |                  | ·          |  |  |
|                                   |                   |         |                                            |                                        |                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                          |                  |            |  |  |
|                                   |                   |         |                                            |                                        |                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                          |                  |            |  |  |
|                                   |                   |         |                                            |                                        |                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                          |                  |            |  |  |
|                                   |                   |         |                                            |                                        |                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                          |                  |            |  |  |
|                                   |                   |         |                                            |                                        |                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                          |                  |            |  |  |
|                                   |                   |         |                                            |                                        |                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                          |                  |            |  |  |
|                                   |                   |         |                                            |                                        |                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                          |                  |            |  |  |
|                                   |                   |         |                                            |                                        |                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                          |                  |            |  |  |
|                                   |                   |         |                                            |                                        |                                           |                                                       | PARALLE STATE OF THE STATE OF T |                                |                          |                  |            |  |  |
|                                   |                   |         |                                            |                                        |                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                          |                  |            |  |  |
|                                   | Matrices:         | WW=Wast | ewater, DW=D                               | rinking Water, SW=Surface Water, S=Slu | dge/Soil                                  | Samples                                               | marked above as "Sub Out" will be sub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | contracted to a laboratory tha | t meets the              | regulatory or en | d-user     |  |  |
|                                   |                   | E       | xpedite Sar                                | mples: 24hr/Holiday (4x Fee) 4         | 8hr/Weekend (3x Fee)                      | 3-5 days                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nento or these samples         |                          |                  |            |  |  |
| ampler Name (P<br>elinquished By: | rint):            | nna     | Mac                                        |                                        | Date/Times                                | Sampler Sign                                          | nature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                          | agramment for    |            |  |  |
| elinquished By:                   | \                 | J/\}    |                                            |                                        | Date/Time: 0957<br>Date/Time:             | Received By                                           | There I HIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eljell                         | Date/Time:<br>Date/Time: | 125 099          | 57         |  |  |
| elinquished By:                   |                   |         |                                            |                                        | Date/Time:                                | Received By                                           | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | Date/Time:               |                  |            |  |  |
| elinquished By:                   |                   |         |                                            |                                        | Date/Time:                                | Received By: Date/Time:                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                          |                  |            |  |  |
| OTES / COMME                      | NTS / SHIP TO     | ):      |                                            |                                        |                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                          |                  |            |  |  |
|                                   |                   |         |                                            |                                        |                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                          |                  |            |  |  |



Page 1 of 1



Printed

07/03/2025 9:15

#### **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

# **TABLE OF CONTENTS**

#### This report consists of this Table of Contents and the following pages:

| Report Name                   | <u>Description</u>                                                                            | <u>Pages</u> |
|-------------------------------|-----------------------------------------------------------------------------------------------|--------------|
| 1152762_r02_01_ProjectSamples | SPL Kilgore Project P:1152762 C:GBRL Project Sample<br>Cross Reference t:304                  | 1            |
| 1152762_r03_03_ProjectResults | SPL Kilgore Project P:1152762 C:GBRL Project Results t:304 PO: acc dept= LabInvoices@gbra.org | 2            |
| 1152762_r10_05_ProjectQC      | SPL Kilgore Project P:1152762 C:GBRL Project Quality<br>Control Groups                        | 1            |
| 1152762_r99_09_CoC1_of_1      | SPL Kilgore CoC GBRL 1152762_1_of_1                                                           | 2            |
|                               | Total Pages:                                                                                  | 6            |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 1 of 7



# **SAMPLE CROSS REFERENCE**



Printed

7/3/2025

Page 1 of 1

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

| Sample         | Sample ID                              | Taken        | Time                                                             | Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------|----------------------------------------|--------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2422707        | BUDA TPDES PERMIT                      | 06/26/2025   | 09:55:00                                                         | 06/27/2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bottle 01 H2SO | 4 to pH <2 Glass Qt w/Teflon lined lid |              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Method<br>EPA 1664B (HEM)              | Bottle<br>01 | PrepSet         Preparation           1183387         07/02/2025 | Contract of the Contract of th |

Email: Kilgore.ProjectManagement@spllabs.com



#### **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819 Page 1 of 2

Project

1152762

Printed: 07/03/2025

#### **RESULTS**

|      |                                 |                   |                                       | Sample Ro     | esults    |                      |                              |                    |                      |              |  |
|------|---------------------------------|-------------------|---------------------------------------|---------------|-----------|----------------------|------------------------------|--------------------|----------------------|--------------|--|
|      | 2422707                         | BUDA TPDES PERM   | ИIT                                   |               |           |                      |                              | Received:          | 06/27/               | 2025         |  |
| N    |                                 |                   | ollected by: Client<br>en: 06/26/2025 |               |           |                      | PO:                          | dept= LabInvoices@ |                      | gbra.org     |  |
| E    | PA 1664B (HEM                   | )                 | Prepared                              | : 1183387 O   | 7/02/2025 | 07:24:00             | Analyzed 1183387             | 07/02/2025         | 07:24:00             | MA           |  |
| ELAC | Parameter Oil and Grease        | (HEM)             | <i>Results</i> <b>&lt;4.49</b>        | Units<br>mg/L |           |                      | Flags                        | CAS                |                      | Bottle<br>01 |  |
|      |                                 |                   |                                       | Sample Prep   | paration  |                      |                              |                    |                      |              |  |
|      | 2422707                         | BUDA TPDES PERM   | ИІТ                                   |               |           |                      |                              | Received:          | 06/27/               | 2025         |  |
|      |                                 |                   | 06/26/2025                            |               |           |                      |                              | dept= Lab          | oInvoices@gbi        | ra.org       |  |
|      |                                 |                   |                                       |               |           |                      |                              |                    |                      |              |  |
|      |                                 |                   | Prepared                              | : O           | 6/27/2025 | 14:01:20             | Calculated                   | 06/27/2025         | 14:01:20             |              |  |
| _    | Enviro Fee (pe                  | r Sampling Group) | Prepared<br>Verified                  | : 0           | 6/27/2025 | 14:01:20             | Calculated                   | 06/27/2025         | 14:01:20             |              |  |
|      | Enviro Fee (pe<br>PA 1664B (HEM |                   | Verified                              |               | 7/02/2025 | 14:01:20<br>07:24:00 | Calculated  Analyzed 1183201 | 06/27/2025         | 14:01:20<br>07:24:00 | CAL<br>MAX   |  |



Report Page 3 of 7

Page 2 of 2

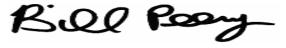
Project 1152762

Printed: 07/03/2025

#### **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

Qualifiers:


We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.



Bill Peery, MS, VP Technical Services



# **QUALITY CONTROL**



Page 1 of 1

Project 1152762

Printed 07/03/2025

#### **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

| Analytical Set       | 1183387 |         |       |       |       |            |            |           | EF    | PA 1664I | B (HEM) |
|----------------------|---------|---------|-------|-------|-------|------------|------------|-----------|-------|----------|---------|
|                      |         |         |       | В     | lank  |            |            |           |       |          |         |
| <u>Parameter</u>     | PrepSet | Reading | MDL   | MQL   | Units |            |            | File      |       |          |         |
| Oil and Grease (HEM) | 1183387 | 1.20    | 0.804 | 4.00  | mg/L  |            |            | 127787182 |       |          |         |
| ControlBIk           |         |         |       |       |       |            |            |           |       |          |         |
| <u>Parameter</u>     | PrepSet | Reading | MDL   | MQL   | Units |            |            | File      |       |          |         |
| Oil and Grease (HEM) | 1183387 | 0.0001  |       |       | grams |            |            | 127787181 |       |          |         |
| Oil and Grease (HEM) | 1183387 | 0.0002  |       |       | grams |            |            | 127787206 |       |          |         |
|                      |         |         |       | L     | _CS   |            |            |           |       |          |         |
| <u>Parameter</u>     | PrepSet | Reading |       | Known | Units | Recover%   | Limits     | File      |       |          |         |
| Oil and Grease (HEM) | 1183387 | 33.3    |       | 40.0  | mg/L  | 83.2       | 78.0 - 114 | 127787183 |       |          |         |
|                      |         |         |       | 1     | MS    |            |            |           |       |          |         |
| <u>Parameter</u>     | Sample  | MS      | MSD   | UNK   | Known | Limits     | MS%        | MSD%      | Units | RPD      | Limit%  |
| Oil and Grease (HEM) | 2423177 | 38.5    | 0     | 1.76  | 40.0  | 78.0 - 114 | 96.2       |           | mg/L  |          | 20.0    |

\* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) \* 100%

Recover% is Recovery Percent: result / known \* 100%

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); LCS - Laboratory Control Sample (reagent water or other  $blank\ matrices\ that\ is\ spiked\ with\ a\ known\ quantity\ of\ target\ analyte(s)\ and\ carried\ through\ preparation\ and\ analytical\ procedures\ exactly\ like\ a\ sample;\ typically\ a\ preparation\ and\ analytical\ procedures\ exactly\ like\ a\ sample;\ typically\ a\ preparation\ and\ analytical\ procedures\ exactly\ like\ a\ sample;\ typically\ a\ preparation\ and\ analytical\ procedures\ exactly\ like\ a\ sample;\ typically\ a\ preparation\ and\ analytical\ procedures\ exactly\ like\ a\ preparation\ a\ preparation\ analytical\ procedures\ exactly\ like\ a\ preparation\ a\ prepa$ mid-range concentration; verifies that bias and precision of the analytical process are within control limits; determines usability of the data.); MS - Matrix Spike (same solution and amount of target analyte added to the LCS is added to a second aliquot of sample; quantifies matrix bias.)

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 5 of 7

2 3

| 1152762 | CoC | Print | Group | 001 | of 001 |  |
|---------|-----|-------|-------|-----|--------|--|
|         |     |       |       |     |        |  |

| GBRA Laboratory GBRA COC Form   |                   |           |                                 |                                       |                                           | Quartrax (D: 17908          |                                |                                                                |                 |                  |            |
|---------------------------------|-------------------|-----------|---------------------------------|---------------------------------------|-------------------------------------------|-----------------------------|--------------------------------|----------------------------------------------------------------|-----------------|------------------|------------|
| GE                              | BR/               | herity    |                                 | -                                     | Chain-O <del>f-</del> C                   | Susto                       | dy Record                      |                                                                |                 | CO. A. MACONDA   |            |
| Report To                       |                   |           |                                 | Customer Acct.#:                      |                                           | Invoice                     | To (if applicable)             |                                                                |                 |                  |            |
| Name: GBRA                      | Kylie Gudg        | ell       |                                 |                                       |                                           | Name:                       |                                |                                                                |                 |                  |            |
| Address: 933                    | East Court        | St Seguir | 1                               |                                       | · · · · · · · · · · · · · · · · · · ·     | Address:                    |                                | ·                                                              |                 |                  |            |
| Phone #: 830                    | -379-5822         |           |                                 |                                       | · · · · · · · · · · · · · · · · · · ·     | Phone #:                    |                                |                                                                |                 |                  |            |
| Email: labrep                   | orts@gbra.e       | rg        | ·                               |                                       |                                           | Email: labs                 | subinvoices@gbra.org           |                                                                |                 |                  |            |
| Thermometer                     | r#:               |           | Observed /                      | Corrected Temp(°C):                   | Chlorine Check Reagent ID:                |                             |                                | Chiorin                                                        | e : Absent/ Pre | sent             |            |
| Sample Iced                     | (Circle One)      | : Yes     | /                               | CoC Page:                             | of                                        | 1                           | Reagent ID:                    |                                                                |                 |                  |            |
| No. of Conta                    | ners:             |           | Containers<br>Sx Vol.           | Intact (Circle One): Yes / No         | <u> </u>                                  | Residual C                  | Chlorine (Total/Free) Results: |                                                                |                 |                  |            |
| Date Collected                  | Time<br>Collected | Matrix    | P=Plastic<br>G=Glass<br>A=Amber | Sample Name/Description               | Preservation ID (PID#)/<br>TCEQ ID Number | Grab /<br>Comp.             | Analysis Requested             | GBRA Sample ID                                                 | рH              | Preservative     | Sub<br>Out |
| 10/210/25                       | 0955              | ww        | 1L-G                            | Buda TPDES Permit                     |                                           | G                           | Oil and Grease                 | 1422707                                                        |                 | H2SO4            |            |
|                                 |                   |           |                                 |                                       |                                           |                             |                                |                                                                |                 |                  |            |
|                                 | -                 |           |                                 |                                       |                                           |                             |                                |                                                                |                 |                  |            |
|                                 |                   |           |                                 |                                       |                                           |                             |                                |                                                                |                 |                  |            |
|                                 |                   |           |                                 |                                       |                                           |                             |                                |                                                                |                 |                  | _          |
|                                 |                   |           |                                 |                                       |                                           |                             |                                |                                                                |                 |                  |            |
|                                 | Matrices          |           |                                 | Orinking Water, SW=Surface Water, S=S |                                           |                             |                                | L<br>bcontracted to a laboratory the<br>ments of these samples | at meets the    | regulatory or en | id-user    |
|                                 |                   | +         | Expedite Sa                     | mples: 24hr/Holiday (4x Fee)          | 48hr/Weekend (3x Fee)                     | 3-5 days                    | (2x Fee) Due Date:             | 1/1 //                                                         |                 |                  |            |
| Sampler Name<br>Relinquished E  | ly:               | Jenr<br>L |                                 |                                       | Path Time: 1623                           | Sampler Sign<br>Transferred | 10: Par lung                   |                                                                | Date/Time       |                  | ,23        |
| Relinquished E                  |                   | , •       | 11/1                            |                                       | Date/Time:                                | Received By                 | WYY Kleriste                   | n Rossum - SPL, Inc.                                           | Date/Time       | G 1040           |            |
| Relinquished E                  | By:               |           |                                 |                                       | Date/Time:                                | Received By                 | :                              |                                                                | Date/Time       | :                |            |
| NOTES / COMM<br>+pH tested at s |                   |           |                                 |                                       |                                           |                             |                                |                                                                | 1               |                  |            |

Qualtrax ID: 17988 Status: Published

|                     |                  | and the second s |                  |            |     |
|---------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|-----|
|                     |                  | क्षा । (1787)<br>विकास                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | <b>S</b> F | E 1 |
|                     | COOLER           | CHECKI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N                |            |     |
|                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |     |
| Date / 7<br>Cooler: | •                | ('U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1CX<br>/ 1<br>of | 40         |     |
|                     | Label:           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 /~             |            |     |
|                     | Date<br>Temp: () | (Fed) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |            |     |



Page 1 of 1



Printed

07/30/2025 6:40

#### **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

# **TABLE OF CONTENTS**

#### This report consists of this Table of Contents and the following pages:

| Report Name                   | <u>Description</u>                                                                            | <u>Pages</u> |
|-------------------------------|-----------------------------------------------------------------------------------------------|--------------|
| 1152756_r02_01_ProjectSamples | SPL Kilgore Project P:1152756 C:GBRL Project Sample<br>Cross Reference t:304                  | 3            |
| 1152756_r03_03_ProjectResults | SPL Kilgore Project P:1152756 C:GBRL Project Results t:304 PO: acc dept= LabInvoices@gbra.org | 14           |
| 1152756_r10_05_ProjectQC      | SPL Kilgore Project P:1152756 C:GBRL Project Quality<br>Control Groups                        | 30           |
| 1152756_r99_09_CoC1_of_1      | SPL Kilgore CoC GBRL 1152756_1_of_1                                                           | 7            |
|                               | Total Pages:                                                                                  | 54           |

Email: Kilgore.ProjectManagement@spllabs.com





#### SAMPLE CROSS REFERENCE



Printed

7/30/2025

Page 1 of 3

GBRA/Seguin Miliana Hernandez **Regional Laboratory** 933 E. Court St

Seguin, TX 78155-5819

| Sample  | Sample ID              | Taken      | Time     | Received   |
|---------|------------------------|------------|----------|------------|
| 2422662 | Domestic Worksheet 4.0 | 06/26/2025 | 09:55:00 | 06/27/2025 |

Bottle 01 Polyethylene 1/2 gal (White), Q

Bottle 02 Polyethylene Quart, Q

Bottle 03 Glass Qt w/Teflon lined lid, Q

Bottle 04 H2SO4 to pH <2 Glass Qt w/Teflon lined lid, Q

Bottle 05 Glass Qt w/Teflon lined lid, Q

Bottle 06 Amber 32 Oz, Q

Bottle 07 Amber 32 Oz, Q

Bottle 08 Amber 32 Oz, Q

Bottle 09 Amber 32 Oz, Q

Bottle 10 Amber 32 Oz, Q

Bottle 11 Amber 32 Oz, Q

Bottle 12 Amber 32 Oz, Q

Bottle 13 Amber 32 Oz, Q

Bottle 14 Amber 32 Oz, Q

Bottle 15 Amber 32 Oz, Q

Bottle 16 Amber 32 Oz, Q

Bottle 17 Amber 32 Oz, Q

Bottle 19 16 oz HNO3 Metals Plastic, Q

Bottle 20 H2SO4 to pH <2 Amber Glass 250 mL w/Teflon lined lid(4), Q

Bottle 21 NaOH to pH >12 Polyethylene 250 mL/amber, Q

Bottle 22 NaOH to pH >12 Polyethylene 250 mL/amber, Q

Bottle 23 Cr+6 Preserved 250 Polyethylene

Bottle 24 Ascorbic Acid - 60ml vial (Zero Headspace), Q

Bottle 25 Ascorbic Acid - 60ml vial (Zero Headspace), Q

Bottle 26 Ascorbic Acid - 60ml vial (Zero Headspace), Q

Bottle 27 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid, Q

Bottle 28 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid, Q

Bottle 29 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid, Q

Bottle 30 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid, Q

Bottle 31 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid, Q

Bottle 32 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid, Q

Bottle 33 Na2S2O3 (0.008%) Glass 40 mL vial w/Teflon lined lid (zero headspace), Q

Bottle 34 Na2S2O3 (0.008%) Glass 40 mL vial w/Teflon lined lid (zero headspace), Q

Bottle 35 Na2S2O3 (0.008%) Glass 40 mL vial w/Teflon lined lid (zero headspace), Q

Bottle 36 Glass /clean metals w/HCl, Q

Bottle 37 Prepared Bottle: Special Preparation

Bottle 38 Prepared Bottle: CN TRAACS Autosampler Vial (Batch 1182714) Volume: 10.00000 mL <== Derived from 21 (5 ml)

Bottle 39 Prepared Bottle: ICP Preparation for Metals (Batch 1182727) Volume: 50.00000 mL <= Derived from 19 (50 ml)

Bottle 40 Prepared Bottle: ICP Preparation for Metals (Batch 1182727) Volume: 50.00000 mL <== Derived from 19 ( 50 ml )

Bottle 41 Prepared Bottle: ICP Preparation for Metals (Batch 1182727) Volume: 50.00000 mL <== Derived from 19 ( 50 ml )

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 2 of 55

# The Science of Sure

#### SAMPLE CROSS REFERENCE



Printed

7/30/2025

Page 2 of 3

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St

Seguin, TX 78155-5819

Bottle 42 Prepared Bottle: CN TRAACS Autosampler Vial (Batch 1182780) Volume: 10.00000 mL <== Derived from 37 ( 5 ml )

Bottle 43 Prepared Bottle: Phenol TRAACS Autosampler Vial (Batch 1182783) Volume: 6.00000 mL <== Derived from 20 ( 6 ml )

Bottle 44 Prepared Bottle: 632L\632S 2 mL Autosampler Vial (Batch 1182867) Volume: 1.00000 mL <== Derived from 11 (928 ml)

Bottle 45 Prepared Bottle: GCXL\GCXS 2 mL Autosampler Vial (Batch 1182868) Volume: 1.00000 mL <== Derived from 11 ( 928 ml )

Bottle 46 Prepared Bottle: OPXL/OPXS 2 mL Autosampler Vial (Batch 1182869) Volume: 1.00000 mL <= Derived from 11 (928 ml)

Bottle 47 Prepared Bottle:PCBL 2 mL Autosampler Vial (Batch 1182870) Volume: 1.00000 mL <== Derived from 11 (928 ml)

Bottle 48 Prepared Bottle: 2 mL Autosampler Vial (Batch 1182875) Volume: 1.00000 mL <== Derived from 09 (925 ml)

Bottle 49 Prepared Bottle: 2 mL Autosampler Vial (Batch 1183076) Volume: 5.00000 mL <== Derived from 08 (908 ml)

Bottle 50 Prepared Bottle: 2 mL Autosampler Vial (Batch 1183082) Volume: 10.00000 mL <== Derived from 14 (954 ml)

Bottle 51 Prepared Bottle: Mercury Preparation for Metals (Batch 1183417) Volume: 50.00000 mL <== Derived from 36 (47 ml)

Bottle 52 Prepared Bottle: 2 mL Autosampler Vial (Batch 1184059) Volume: 1.00000 mL <== Derived from 06 (890 ml) Bottle 53 Prepared Bottle: 2 mL Autosampler Vial (Batch 1184167) Volume: 1.00000 mL <== Derived from 04 (842 ml)

| Method            | Bottle | PrepSet | Preparation | QcGroup | Analytical |
|-------------------|--------|---------|-------------|---------|------------|
| EPA 608.3         | 45     | 1182868 | 06/30/2025  | 1183353 | 07/01/2025 |
| EPA 608.3         | 45     | 1182868 | 06/30/2025  | 1183358 | 07/01/2025 |
| EPA 615           | 50     | 1183082 | 07/01/2025  | 1183915 | 07/08/2025 |
| EPA 632           | 44     | 1182867 | 06/30/2025  | 1187766 | 07/17/2025 |
| 1613              |        |         | 07/29/2025  |         | 07/29/2025 |
| EPA 8015C         | 01     | 1184165 | 07/08/2025  | 1184165 | 07/08/2025 |
| EPA 300.0 2.1     | 01     | 1183336 | 06/27/2025  | 1183336 | 06/27/2025 |
| EPA 604.1         | 49     | 1183076 | 07/01/2025  | 1185463 | 07/02/2025 |
| EPA 617           | 45     | 1182868 | 06/30/2025  | 1183351 | 07/01/2025 |
| EPA 625.1         | 48     | 1182875 | 06/30/2025  | 1183932 | 07/03/2025 |
| EPA 624.1         | 27     | 1182898 | 06/27/2025  | 1182898 | 06/27/2025 |
| EPA 624.1         | 33     | 1182899 | 06/27/2025  | 1182899 | 06/27/2025 |
| EPA 614           | 46     | 1182869 | 06/30/2025  | 1184709 | 07/01/2025 |
| EPA 624.1         | 30     | 1183938 | 07/07/2025  | 1183938 | 07/07/2025 |
| ASTM D7065-17     | 53     | 1184167 | 07/08/2025  | 1184715 | 07/10/2025 |
| TX 1001           | 52     | 1184059 | 07/08/2025  | 1185733 | 07/16/2025 |
| EPA 200.8 5.4     | 39     | 1182727 | 06/28/2025  | 1183192 | 07/01/2025 |
| EPA 200.8 5.4     | 39     | 1182727 | 06/28/2025  | 1182985 | 06/30/2025 |
| EPA 245.7 2       | 51     | 1183417 | 07/03/2025  | 1183515 | 07/03/2025 |
| EPA 625.1         | 48     | 1182875 | 06/30/2025  | 1184406 | 07/08/2025 |
| SM 4500-CN G-2016 |        |         | 07/01/2025  |         | 07/01/2025 |
| SM 4500-CN G-2016 | 42     | 1182780 | 06/30/2025  | 1182859 | 06/30/2025 |
| SM 4500-CN E-2016 | 38     | 1182714 | 06/28/2025  | 1182858 | 06/30/2025 |
| Calculation       |        |         | 07/02/2025  |         | 07/02/2025 |
| SM 3500-Cr B-2011 | 23     | 1182938 | 06/30/2025  | 1182938 | 06/30/2025 |
| SM 3500-Cr B-2011 |        | 1182669 | 06/26/2025  | 1182669 | 06/26/2025 |
| EPA 420.4 1       | 43     | 1182783 | 06/30/2025  | 1183042 | 07/01/2025 |
|                   |        |         |             |         |            |

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 3 of 55



# **SAMPLE CROSS REFERENCE**



Page 3 of 3

7/30/2025

GBRA/Seguin Printed
Miliana Hernandez

Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

EPA 622 46 1182869 06/30/2025 1184708 07/01/2025

Email: Kilgore.ProjectManagement@spllabs.com



GBRA/Seguin Miliana Hernandez **Regional Laboratory** 933 E. Court St Seguin, TX 78155-5819



Printed: 07/30/2025

#### **RESULTS**

|      |                          |                   |                         |                       | Sample  | Res           | sults   |          |                  |             |           |        |
|------|--------------------------|-------------------|-------------------------|-----------------------|---------|---------------|---------|----------|------------------|-------------|-----------|--------|
|      | 2422662                  | Domestic Works    | sheet 4.0               |                       |         |               |         |          |                  | Received:   | 06/27     | 7/202: |
| N    | Jon-Potable Water        | r                 | Collected l<br>Taken: ( | by: DEL<br>06/26/2025 | SPL Kil | gore<br>09:55 | :00     |          | PO:              | dept= LabIn | nvoices@g | bra.or |
|      |                          |                   |                         | Prepared:             |         | 06/2          | 27/2025 | 13:30:39 | Calculated       | 06/27/2025  | 13:30:39  | CA     |
|      | Parameter SUB Shipped    |                   |                         | Results Verified      | Ui      | nits          | RL      |          | Flags            | CAS         |           | Botti  |
|      |                          |                   |                         | Prepared:             | 1182668 | 06/           | 26/2025 | 10:26:00 | Analyzed 1182668 | 06/26/2025  | 10:26:00  | DE     |
|      | Parameter Field Cl2 Chec | k for CNa         |                         | Results<br>NEG        | Ui      | nits          | RL      |          | Flags            | CAS         |           | Bottl  |
|      |                          |                   |                         | Prepared:             | 1182670 | 06/           | 26/2025 | 10:10:00 | Analyzed 1182670 | 06/26/2025  | 10:10:00  | DE     |
|      | Parameter                |                   |                         | Results               | Ui      | nits          | RL      |          | Flags            | CAS         |           | Bottl  |
|      | Field Sulfide C          | heck for CNa      |                         | NEG                   | mį      | g/L           |         |          |                  |             |           |        |
| 1    | 1613                     |                   |                         | Prepared:             |         | 07/           | 29/2025 | 16:00:00 | Analyzed         | 07/29/2025  | 16:00:00  | CC     |
|      | Parameter Dioxins and Fu | urans Subcontract |                         | Results  Lab Error    | Ui      | nits          | RL      |          | Flags            | CAS<br>ION1 |           | Bottl  |
| A    | ASTM D7065-17            |                   |                         | Prepared:             | 1184167 | 07/           | 08/2025 | 14:45:00 | Analyzed 1184715 | 07/10/2025  | 19:47:00  | PM     |
|      | Parameter                |                   |                         | Results               | Ui      | nits          | RL      |          | Flags            | CAS         |           | Bottle |
|      | Nonylphenol              |                   |                         | <0.0356               | mį      | z/L           | 0.0356  |          |                  | 25154-52-3  |           | 53     |
| C    | Calculation              |                   |                         | Prepared:             |         | 07/           | 02/2025 | 12:30:57 | Calculated       | 07/02/2025  | 12:30:57  | CA     |
|      | Parameter                |                   |                         | Results               | Ui      | nits          | RL      |          | Flags            | CAS         |           | Bottle |
| ELAC | Trivalent Chro           | mium              |                         | < 0.003               | mį      | z/L           | 0.003   |          |                  | 16065-83-1  |           |        |



Report Page 5 of 55



GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819



Printed: 07/30/2025

**2422662 Domestic Worksheet 4.0** *Received:* 06/27/2025

Non-Potable Water Collected by: DEL SPL Kilgore PO: dept= LabInvoices@gbra.org Taken: 06/26/2025 09:55:00

EPA 200.8 5.4 13:00:00 Prepared: 1182727 06/28/2025 Analyzed 1182985 06/30/2025 15:06:00 ESG Parameter Results Units RLFlags CAS**Bottle** NELAC Aluminum, Total 0.118 mg/L 0.005 7429-90-5 39 Arsenic, Total < 0.000902 mg/L 0.000902 7440-38-2 39 NELAC Barium, Total 0.003 0.0291 mg/L 7440-39-3 39 NFI AC Beryllium, Total < 0.000162 mg/L 0.000162 7440-41-7 39 NELAC Cadmium, Total 0.001 7440-43-9 NELAC < 0.001 mg/L 39 Copper, Total 0.00436 mg/L 0.001 7440-50-8 39 NELAC NELAC Lead, Total < 0.0005 mg/L 0.0005 7439-92-1 39 Nickel, Total 0.002 0.001 7440-02-0 mg/L 39 NFI AC Selenium, Total < 0.005 mg/L 0.005 7782-49-2 39 NFI AC Thallium, Total 7440-28-0 < 0.000966 mg/L 0.000966 39 NELAC NELAC Zinc, Total 0.0256 mg/L 0.001 7440-66-6 39 EPA 200.8 5.4 Prepared: 1182727 06/28/2025 13:00:00 Analyzed 1183192 07/01/2025 17:21:00 ESG Parameter Results Units RLFlags CAS**Bottle** 7440-36-0 Antimony, Total < 0.003 0.003 39 NELAC mg/L 7440-47-3 Chromium, Total 0.00141 NELAC mg/L 0.001 39 Silver, Total < 0.0005 mg/L 0.0005 7440-22-4 39 NELAC EPA 245.72 Prepared: 1183417 07/03/2025 09:30:00 Analyzed 1183515 07/03/2025 12:10:00 MP1 Parameter Results Units RLCAS Bottle Flags Mercury, Total (low level) < 0.00000426 mg/L 0.0000042 7439-97-6 51 NELAC 6 EPA 300.0 2.1 Prepared: 1183336 06/27/2025 15:48:00 Analyzed 1183336 06/27/2025 15:48:00 KRA Parameter Results RLBottle Units Flags CAS<0.5 Fluoride mg/L 0.5 01 NELAC 17.3 14797-55-8 Nitrate-Nitrogen Total mg/L 0.100 01 NELAC EPA 420.4 1 Prepared: 1182783 06/30/2025 08:53:33 Analyzed 1183042 07/01/2025 08:40:00 MEGParameter Results Units RLBottle Flags CAS Phenolics, Total Recoverable 0.015 mg/L 43 0.005 NELAC



Report Page 6 of 55



GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819



06/27/2025

Printed: 07/30/2025

Received:

2422662 Domestic Worksheet 4.0

Non-Potable Water Collected by: DEL SPL Kilgore PO: dept= LabInvoices@gbra.org

*Taken:* 06/26/2025 09:55:00

|       | EPA 604.1  Parameter              | Prepared: 118 | 23076 07/0 |           |          |                  |            |          |        |
|-------|-----------------------------------|---------------|------------|-----------|----------|------------------|------------|----------|--------|
|       | Parameter                         |               | 15070 0770 | 01/2025   | 13:30:00 | Analyzed 1185463 | 07/02/2025 | 19:14:00 | BRU    |
|       | 1 urumeter                        | Results       | Units      | RL        |          | Flags            | CAS        |          | Bottle |
| Z     | Hexachlorophene                   | <0.00275      | mg/L       | 0.00275   |          |                  | 70-30-4    |          | 49     |
| _     | EPA 608.3                         | Prepared: 118 | 32868 06/3 | 30/2025   | 14:15:00 | Analyzed 1183353 | 07/01/2025 | 21:42:00 | KAP    |
|       | Parameter                         | Results       | Units      | RL        |          | Flags            | CAS        |          | Bottle |
| NELAC | 4,4-DDD                           | <0.0000108    | mg/L       | 0.0000103 | 8        |                  | 72-54-8    |          | 45     |
| NELAC | 4,4-DDE                           | <0.0000108    | mg/L       | 0.0000108 | 8        |                  | 72-55-9    |          | 45     |
| NELAC | 4,4-DDT                           | <0.0000108    | mg/L       | 0.0000103 | 8        |                  | 50-29-3    |          | 45     |
| NELAC | Aldrin                            | <0.0000001    | mg/L       | 0.0000000 | 0        |                  | 309-00-2   |          | 45     |
| NELAC | Alpha-BHC(hexachlorocyclohexane   | <0.0000108    | mg/L       | 0.000010  | 8        |                  | 319-84-6   |          | 45     |
| NELAC | ) Beta-BHC(hexachlorocyclohexane) | <0.0000108    | mg/L       | 0.000010  | 8        |                  | 319-85-7   |          | 45     |
| NELAC | Chlordane                         | <0.000108     | mg/L       | 0.000108  |          |                  | 57-74-9    |          | 45     |
| NELAC | Delta-BHC(hexachlorocyclohexane)  | <0.000108     | mg/L       | 0.0000108 | 8        |                  | 319-86-8   |          | 45     |
| NELAC | Dieldrin                          | <0.0000108    | mg/L       | 0.0000103 | 8        |                  | 60-57-1    |          | 45     |
| NELAC | Endosulfan I (alpha)              | <0.0000001    | mg/L       | 0.0000000 | 0        |                  | 959-98-8   |          | 45     |
|       |                                   |               | _          | 1         |          |                  |            |          |        |
| NELAC | Endosulfan II (beta)              | <0.000108     | mg/L       | 0.0000103 |          |                  | 33213-65-9 |          | 45     |
| NELAC | Endosulfan sulfate                | <0.0000108    | mg/L       | 0.0000103 |          |                  | 1031-07-8  |          | 45     |
| NELAC | Endrin                            | <0.0000108    | mg/L       | 0.0000103 |          |                  | 72-20-8    |          | 45     |
| NELAC | Endrin aldehyde                   | <0.000108     | mg/L       | 0.000010  |          |                  | 7421-93-4  |          | 45     |
| NELAC | Gamma-BHC(Lindane)                | <0.000108     | mg/L       | 0.0000103 |          |                  | 58-89-9    |          | 45     |
| NELAC | Heptachlor                        | <0.00000001   | mg/L       | 0.0000000 | 0        |                  | 76-44-8    |          | 45     |
| NELAC | Heptachlor epoxide                | <0.0000001    | mg/L       | 0.0000000 | 0        |                  | 1024-57-3  |          | 45     |
| NELAC | PCB-1016                          | <0.0002       | mg/L       | 0.0002    |          |                  | 12674-11-2 |          | 45     |
| NELAC | PCB-1221                          | <0.0002       | mg/L       | 0.0002    |          |                  | 11104-28-2 |          | 45     |
| NELAC | PCB-1232                          | <0.0002       | mg/L       | 0.0002    |          |                  | 11141-16-5 |          | 45     |
| NELAC | PCB-1242                          | <0.0002       | mg/L       | 0.0002    |          |                  | 53469-21-9 |          | 45     |
| NELAC | PCB-1248                          | <0.0002       | mg/L       | 0.0002    |          |                  | 12672-29-6 |          | 45     |
| NELAC | PCB-1254                          | <0.0002       | mg/L       | 0.0002    |          |                  | 11097-69-1 |          | 45     |
| NELAC | PCB-1260                          | <0.0002       | mg/L       | 0.0002    |          | X                | 11096-82-5 |          | 45     |
| NELAC | Toxaphene                         | <0.000108     | mg/L       | 0.000108  |          |                  | 8001-35-2  |          | 45     |



Report Page 7 of 55

Office: 903-984-0551 \* Fax: 903-984-5914



#### **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819



Printed: 07/30/2025

**2422662 Domestic Worksheet 4.0** *Received:* 06/27/2025

Non-Potable Water Collected by: DEL SPL Kilgore PO: dept= LabInvoices@gbra.org

Taken: 06/26/2025 09:55:00

|            | Parameter (MTBE) tert-Butylmethylether | <i>Results</i> <0.0010 | Ui<br>mį | nits   | <i>RL</i> 0.0010 |          | Flags    | T .            | CAS<br>1634-04-4 |          | Bottl 33 |
|------------|----------------------------------------|------------------------|----------|--------|------------------|----------|----------|----------------|------------------|----------|----------|
| EF         | PA 624.1                               | Prepared:              |          | 06/27/ |                  | 18:36:00 | Analyzed |                | 06/27/2025       | 18:36:00 | DV       |
| .AC        | Acrylonitrile                          | <0.0010                | mį       | g/L    | 0.0010           |          |          |                | 107-13-1         |          | 27       |
| LAC        | Acrolein                               | <0.0020                | mį       | g/L    | 0.0020           |          | S        |                | 107-02-8         |          | 2        |
| -          | Parameter                              | Results                | Uı       | nits   | RL               |          | Flags    | 7              | CAS              |          | Bott     |
| EF         | PA 624.1                               | Prepared:              | 1182898  | 06/27/ | 2025             | 18:14:00 | Analyzed | 1182898        | 06/27/2025       | 18:14:00 | D        |
| LAC        | Chlorpyrifos                           | <0.0000431             | mį       | g/L    | 0.000043         | 31       |          |                | 2921-88-2        |          | 4        |
|            | Parameter                              | Results                | Uı       | nits   | RL               |          | Flags    | 7              | CAS              |          | Bot      |
| EF         | PA 622                                 | Prepared:              | 1182869  | 06/30/ | 2025             | 14:15:00 | Analyzed | 1184708        | 07/01/2025       | 22:27:00 | K        |
|            | Mirex                                  | <0.0000108             | mį       | g/L    | 0.000010         | )8       |          |                | 2385-85-5        |          | 4        |
|            | Methoxychlor                           | <0.0000108             | mį       | g/L    | 0.000010         | )8       |          |                | 72-43-5          |          | 2        |
|            | Kelthane (Dicofol)                     | <0.000108              |          | g/L    | 0.000108         | 08       | T lag.   | <del>,</del> - | 115-32-2         |          | 4        |
| -          | Parameter                              | Results                | Uı       | nits   | RL               |          | Flags    | 7              | CAS              |          | Bot      |
| EF         | PA 617                                 | Prepared:              | 1182868  | 06/30/ | 2025             | 14:15:00 | Analyzed | 1183351        | 07/01/2025       | 21:42:00 | K        |
| AC         | 2,4,5-TP (Silvex)                      | <0.0003                | mį       | g/L    | 0.0003           |          |          |                | 93-72-1          |          | 5        |
| AC         | 2,4 Dichlorophenoxyacetic acid         | <0.000524              | mg       | g/L    | 0.000524         | 1        |          |                | 94-75-7          |          | :        |
|            | Parameter                              | Results                | Uı       | nits   | RL               |          | Flags    | 7              | CAS              |          | Bo       |
| EF         | PA 615                                 | Prepared:              | 1183082  | 07/01/ | 2025             | 14:15:00 | Analyzed | 1183915        | 07/08/2025       | 00:41:00 | K        |
| AC         | Parathion, methyl                      | <0.0000431             | mį       | g/L    | 0.000043         | 31       |          |                | 298-00-0         |          | 4        |
| AC         | Parathion, ethyl                       | < 0.0000539            | mį       | g/L    | 0.000053         | 39       |          |                | 56-38-2          |          | 46       |
| 4 <i>C</i> | Malathion                              | < 0.0000539            | mg       | g/L    | 0.000053         | 39       |          |                | 121-75-5         |          | 4        |
| 4 <i>C</i> | Diazinon                               | < 0.0000539            |          | g/L    | 0.000053         |          |          |                | 333-41-5         |          | 4        |
| AC         | Demeton                                | < 0.0000539            | 7        | g/L    | 0.000053         |          |          |                | 8065-48-3        |          | 2        |
| AC         | Azinphos-methyl (Guthion)              | <0.0000539             |          | g/L    | 0.000053         | 39       | X        |                | 86-50-0          |          | 200      |
| -          | Parameter                              | Results                | I /ı     | nits   | RL               |          | Flags    | 7              | CAS              |          | Bot      |
|            | PA 614                                 | Prepared:              | 1182869  | 06/30/ | 2025             | 14:15:00 | Analyzed | 1184709        | 07/01/2025       | 22:27:00 | K        |



Report Page 8 of 55



GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819



Printed: 07/30/2025

Received:

2422662 Domestic Worksheet 4.0

Non-Potable Water Collected by: DEL

SPL Kilgore 09:55:00

Taken: 06/26/2025

PO: dept= LabInvoices@gbra.org

06/27/2025

| SPA 624.1                       | Prepared: | 1182899 0 | 6/27/2025 | 18:36:00 | Analyzed 1182899 | 06/27/2025 | 18:36:00 | DWI    |
|---------------------------------|-----------|-----------|-----------|----------|------------------|------------|----------|--------|
| Parameter                       | Results   | Units     | RL        |          | Flags            | CAS        |          | Bottle |
| 1,1,1-Trichloroethane           | <0.0010   | mg/L      | 0.0010    |          |                  | 71-55-6    |          | 33     |
| 1,1,2,2-Tetrachloroethane       | <0.0010   | mg/L      | 0.0010    |          |                  | 79-34-5    |          | 33     |
| 1,1,2-Trichloroethane           | <0.0010   | mg/L      | 0.0010    |          |                  | 79-00-5    |          | 33     |
| 1,1-Dichloroethane              | <0.0010   | mg/L      | 0.0010    |          |                  | 75-34-3    |          | 33     |
| 1,1-Dichloroethylene            | <0.0010   | mg/L      | 0.0010    |          |                  | 75-35-4    |          | 33     |
| 1,2-Dibromoethane (EDB)         | <0.0010   | mg/L      | 0.0010    |          |                  | 106-93-4   |          | 33     |
| 1,2-Dichloroethane              | <0.0010   | mg/L      | 0.0010    |          |                  | 107-06-2   |          | 33     |
| 1,2-Dichloropropane             | <0.0010   | mg/L      | 0.0010    |          |                  | 78-87-5    |          | 33     |
| 2-Chloroethylvinyl ether        | <0.0010   | mg/L      | 0.0010    |          |                  | 110-75-8   |          | 33     |
| Benzene                         | <0.0010   | mg/L      | 0.0010    |          |                  | 71-43-2    |          | 33     |
| Bromodichloromethane            | 0.00832   | mg/L      | 0.0010    |          |                  | 75-27-4    |          | 33     |
| Bromoform                       | <0.0010   | mg/L      | 0.0010    |          |                  | 75-25-2    |          | 33     |
| Bromomethane (Methyl Bromi      | <0.0010   | mg/L      | 0.0010    |          |                  | 74-83-9    |          | 33     |
| Carbon Tetrachloride            | <0.0010   | mg/L      | 0.0010    |          |                  | 56-23-5    |          | 33     |
| Chlorobenzene                   | <0.0010   | mg/L      | 0.0010    |          |                  | 108-90-7   |          | 33     |
| Chloroethane                    | <0.0010   | mg/L      | 0.0010    |          |                  | 75-00-3    |          | 33     |
| Chloroform                      | 0.0387    | mg/L      | 0.0010    |          |                  | 67-66-3    |          | 33     |
| Chloromethane (Methyl Chloride) | <0.0010   | mg/L      | 0.0010    |          |                  | 74-87-3    |          | 33     |
| cis-1,3-Dichloropropene         | <0.0010   | mg/L      | 0.0010    |          |                  | 10061-01-5 |          | 33     |
| Dibromochloromethane            | 0.00134   | mg/L      | 0.0010    |          |                  | 124-48- 1  |          | 33     |
| Dichloromethane                 | <0.0010   | mg/L      | 0.0010    |          |                  | 75-09-2    |          | 33     |
| Ethylbenzene                    | <0.0010   | mg/L      | 0.0010    |          |                  | 100-41-4   |          | 33     |
| m-Dichlorobenzene (1,3-DCB)     | <0.0010   | mg/L      | 0.0010    |          |                  | 541-73-1   |          | 33     |
| Methyl ethyl ketone (Butanone)  | <0.0010   | mg/L      | 0.0010    |          |                  | 78-93-3    |          | 33     |
| o-Dichlorobenzene (1,2-DCB)     | <0.0010   | mg/L      | 0.0010    |          |                  | 95-50-1    |          | 33     |
| p-Dichlorobenzene (1,4-DCB)     | <0.0010   | mg/L      | 0.0010    |          |                  | 106-46-7   |          | 33     |
| Tetrachloroethylene             | <0.0010   | mg/L      | 0.0010    |          |                  | 127-18-4   |          | 33     |
| Toluene                         | <0.0010   | mg/L      | 0.0010    |          |                  | 108-88-3   |          | 33     |
| trans-1,2-Dichloroethylene      | <0.0010   | mg/L      |           |          |                  | 156-60-5   |          | 33     |
| trans-1,3-Dichloropropene       | <0.0010   | mg/L      |           |          |                  | 10061-02-6 |          | 33     |
| Trichloroethylene               | <0.0010   | mg/L      |           |          |                  | 79-01-6    |          | 33     |
| Vinyl chloride                  | <0.0010   | mg/L      |           |          |                  | 75-01-4    |          | 33     |



Report Page 9 of 55



GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819



06/27/2025

dept= LabInvoices@gbra.org

Printed: 07/30/2025

Received:

PO:

2422662 Domestic Worksheet 4.0

Non-Potable Water

Collected by: DEL

SPL Kilgore

Taken: 06/26/2025

09:55:00

|       |                               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |         |                   |          |            |           |            |          |        |
|-------|-------------------------------|-----------------------------------------|---------|-------------------|----------|------------|-----------|------------|----------|--------|
| E     | PA 624.1                      | Prepared:                               | 1182899 | 06/30/2025        | 18:19:02 | Calculated | 1 1182899 | 06/30/2025 | 18:19:02 | CAL    |
|       | Parameter                     | Results                                 | U       | inits RL          |          | Flag       | S         | CAS        |          | Bottle |
| NELAC | Trihalomethanes               | 0.04836                                 | m       | <b>g/L</b> 0.001  |          |            |           |            |          | 33     |
| E     | PA 624.1                      | Prepared:                               | 1183938 | 07/07/2025        | 17:56:00 | Analyzed   | 1183938   | 07/07/2025 | 17:56:00 | DWL    |
|       | Parameter                     | Results                                 | Ui      | nits RL           |          | Flag       | S         | CAS        |          | Bottle |
| NELAC | Epichlorohydrin               | <0.0200                                 | m       | <b>g/L</b> 0.0200 |          |            |           | 106-89-8   |          | 30     |
| E     | PA 625.1                      | Prepared:                               | 1182875 | 06/30/2025        | 14:35:00 | Analyzed   | 1183932   | 07/03/2025 | 18:28:00 | PM1    |
|       | Parameter                     | Results                                 | Ui      | inits RL          |          | Flag       | S         | CAS        |          | Bottle |
| NELAC | 1,2,4,5-Tetrachlorobenzene    | < 0.00108                               | m       | <b>g/L</b> 0.0010 | 8        |            |           | 95-94-3    |          | 48     |
| NELAC | 1,2,4-Trichlorobenzene        | <0.00108                                |         | <b>g/L</b> 0.0010 | 8        |            |           | 120-82-1   |          | 48     |
| NELAC | 1,2-Dichlorobenzene           | < 0.00378                               | m       | <b>g/L</b> 0.0037 | 8        |            |           | 95-50-1    |          | 48     |
| NELAC | 1,2-DPH (as azobenzene)       | <0.00108                                | m       | <b>g/L</b> 0.0010 | 8        |            |           | 122-66-7   |          | 48     |
| NELAC | 1,3-Dichlorobenzene           | < 0.00108                               | m       | <b>g/L</b> 0.0010 | 8        |            |           | 541-73-1   |          | 48     |
| NELAC | 1,4-Dichlorobenzene           | < 0.00108                               | m       | <b>g/L</b> 0.0010 | 8        |            |           | 106-46-7   |          | 48     |
| NELAC | 2,4,5-Trichlorophenol         | < 0.00108                               | m       | <b>g/L</b> 0.0010 | 8        |            |           | 95-95-4    |          | 48     |
| NELAC | 2,4,6-Trichlorophenol         | < 0.00108                               | m       | <b>g/L</b> 0.0010 | 8        |            |           | 88-06-2    |          | 48     |
| NELAC | 2,4-Dichlorophenol            | < 0.00108                               | m       | <b>g/L</b> 0.0010 | 8        |            |           | 120-83-2   |          | 48     |
| NELAC | 2,4-Dimethylphenol            | < 0.00757                               | m       | <b>g/L</b> 0.0075 | 7        | S          |           | 105-67-9   |          | 48     |
| NELAC | 2,4-Dinitrophenol             | < 0.00216                               | m       | <b>g/L</b> 0.0021 | 6        |            |           | 51-28-5    |          | 48     |
| NELAC | 2,4-Dinitrotoluene            | <0.00108                                | m       | <b>g/L</b> 0.0010 | 8        |            |           | 121-14-2   |          | 48     |
| NELAC | 2,6-Dinitrotoluene            | <0.00108                                | m       | <b>g/L</b> 0.0010 | 8        |            |           | 606-20-2   |          | 48     |
| NELAC | 2-Chloronaphthalene           | <0.00108                                | m       | <b>g/L</b> 0.0010 | 8        |            |           | 91-58-7    |          | 48     |
| NELAC | 2-Chlorophenol                | <0.00108                                | m       | <b>g/L</b> 0.0010 | 8        |            |           | 95-57-8    |          | 48     |
| NELAC | 2-Methylphenol (o-Cresol)     | <0.00108                                | m       | <b>g/L</b> 0.0010 | 8        |            |           | 95-48-7    |          | 48     |
| NELAC | 2-Nitrophenol                 | <0.00108                                | m       | <b>g/L</b> 0.0010 | 8        |            |           | 88-75-5    |          | 48     |
| NELAC | 3&4-Methylphenol (m&p-Cresol) | < 0.00108                               | m       | <b>g/L</b> 0.0010 | 8        |            |           | MEPH34     |          | 48     |
| NELAC | 3,3'-Dichlorobenzidine        | < 0.00108                               | m       | <b>g/L</b> 0.0010 | 8        |            |           | 91-94-1    |          | 48     |
| NELAC | 4,6-Dinitro-2-methylphenol    | < 0.00216                               | m       | <b>g/L</b> 0.0021 | 6        |            |           | 534-52-1   |          | 48     |
| NELAC | 4-Bromophenyl phenyl ether    | < 0.00108                               |         | <b>g/L</b> 0.0010 | 8        |            |           | 101-55-3   |          | 48     |
| NELAC | 4-Chlorophenyl phenyl ethe    | <0.00108                                | m       | <b>g/L</b> 0.0010 | 8        |            |           | 7005-72-3  |          | 48     |
| NELAC | 4-Nitrophenol                 | < 0.00108                               | m       | <b>g/L</b> 0.0010 | 8        |            |           | 100-02-7   |          | 48     |
| NELAC | Acenaphthene                  | <0.00108                                | m       | <b>g/L</b> 0.0010 | 8        |            |           | 83-32-9    |          | 48     |
| NELAC | Acenaphthylene                | <0.00108                                | m       | <b>g/L</b> 0.0010 | 8        |            |           | 208-96-8   |          | 48     |
|       |                               |                                         |         |                   |          |            |           |            |          |        |



Report Page 10 of 55



GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819



06/27/2025

dept= LabInvoices@gbra.org

Printed: 07/30/2025

Received.

PO:

2422662 Domestic Worksheet 4.0

Non-Potable Water

SPL Kilgore

Collected by: DEL Taken: 09:55:00 06/26/2025

EPA 625.1 Prepared: 1182875 06/30/2025 14:35:00 Analyzed 1183932 07/03/2025 18:28:00 PM1 Parameter Results Units RLFlags CASBottle Aniline < 0.00757 mg/L 0.00757 S 62-53-3 48 Anthracene < 0.00108 0.00108 120-12-7 48 NELAC mg/L mg/L Benzidine < 0.00162 0.00162 92-87-5 48 NFI AC < 0.00108 mg/L 0.00108 48 Benzo(a)anthracene 56-55-3 NELAC 0.00108 48 NELAC Benzo(a)pyrene < 0.00108 mg/L 50-32-8 Benzo(b)fluoranthene < 0.00108 mg/L 0.00108 205-99-2 48 NELAC NELAC Benzo(ghi)perylene < 0.00216 mg/L 0.00216 191-24-2 48 <0.00108 0.00108 207-08-9 Benzo(k)fluoranthene mg/L 48 NFI AC mg/L Benzyl Butyl phthalate < 0.00108 0.00108 85-68-7 48 NELAC Bis(2-chloroethoxy)methane < 0.00108 mg/L 0.00108 111-91-1 48 NELAC Bis(2-chloroethyl)ether < 0.00108 mg/L 0.00108 111-44-4 48 NELAC Bis(2-chloroisopropyl)ether <0.00108 mg/L 0.00108 108-60-1 48 NELAC Bis(2-ethylhexyl)phthalate < 0.0027 mg/L 0.0027 117-81-7 48 NELAC Chrysene (Benzo(a)phenanthrene) < 0.00108 mg/L 0.00108 218-01-9 48 NELAC Dibenz(a,h)anthracene < 0.00108 mg/L 0.00108 53-70-3 48 NELAC NELAC Diethyl phthalate < 0.00108 mg/L 0.00108 84-66-2 48 NELAC Dimethyl phthalate < 0.00108 mg/L 0.00108 131-11-3 48 Di-n-butylphthalate <0.00108 0.00108 84-74-2 48 NELAC mg/L Di-n-octylphthalate < 0.0027 mg/L 0.0027 117-84-0 48 NFI AC Fluoranthene(Benzo(j,k)fluorene) <0.00108 mg/L 0.00108 206-44-0 48 NELAC 48 < 0.00108 0.00108 86-73-7 NELAC Fluorene mg/L Hexachlorobenzene < 0.00108 mg/L 0.00108 118-74-1 48 NELAC Hexachlorobutadiene <0.00108 mg/L 0.00108 87-68-3 48 NELAC 0.00108 77-47-4 48 Hexachlorocyclopentadiene <0.00108 mg/L NELAC Hexachloroethane <0.00108 0.00108 67-72-1 48 mg/L **NELAC** Indeno(1,2,3-cd)pyrene <0.00216 0.00216 193-39-5 48 mg/L NELAC < 0.00108 0.00108 Isophorone mg/L 78-59-1 48 NELAC Naphthalene < 0.00108 mg/L 0.00108 91-20-3 48 NELAC Nitrobenzene <0.00108 0.00108 98-95-3 48 mg/L NELAC n-Nitrosodiethylamine < 0.0027 mg/L 0.0027 X 55-18-5 48 NFI AC N-Nitrosodimethylamine <0.00108 mg/L 0.00108 62-75-9 48 NELAC n-Nitroso-di-n-butylamine < 0.00108 0.00108 924-16-3 48 NELAC mg/L N-Nitrosodi-n-propylamine < 0.00108 mg/L 0.00108 621-64-7 48 NELAC NELAC N-Nitrosodiphenylamine (as DPA <0.00108 mg/L 0.00108 86-30-6 48 <0.00108 0.00108 p-Chloro-m-Cresol (4-Chloro-3-me mg/L 59-50-7 48 NELAC



Report Page 11 of 55



GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819



06/27/2025

dept= LabInvoices@gbra.org

Printed: 07/30/2025

Received:

PO:

2422662 Domestic Worksheet 4.0

Non-Potable Water Collected by: DEL

SPL Kilgore 09:55:00

Taken: 06/26/2025

| EF  | PA 625.1                   | Prepared:  | 1182875 | 06/30/202.      | 5 14:35:00 | Analyzed 11   | 183932 | 07/03/2025 | 18:28:00 | PM     |
|-----|----------------------------|------------|---------|-----------------|------------|---------------|--------|------------|----------|--------|
| -   | Parameter                  | Results    | Uı      | nits RI         | L          | Flags         |        | CAS        |          | Bottle |
| LAC | Pentachlorobenzene         | <0.00108   | mg      | <b>z/L</b> 0.0  | 00108      |               |        | 608-93-5   |          | 48     |
| LAC | Pentachlorophenol          | <0.00108   | mį      | z/ <b>L</b> 0.0 | 00108      |               |        | 87-86-5    |          | 48     |
| LAC | Phenanthrene               | <0.00108   | mį      | <b>z/L</b> 0.0  | 00108      |               |        | 85-01-8    |          | 48     |
| LAC | Phenol                     | <0.00108   | mą      | <b>z/L</b> 0.0  | 00108      |               |        | 108-95-2   |          | 48     |
| LAC | Pyrene                     | <0.00108   | mą      | ,               | 00108      |               |        | 129-00-0   |          | 48     |
| LAC | Pyridine                   | <0.00108   | mį      | <b>g/L</b> 0.0  | 00108      |               |        | 110-86-1   |          | 48     |
| EF  | PA 625.1                   | Prepared:  | 1182875 | 06/30/202.      | 5 14:35:00 | Analyzed 11   | 184406 | 07/08/2025 | 17:51:00 | PM     |
|     | Parameter                  | Results    | Uı      | nits RI         | C          | Flags         |        | CAS        |          | Bottle |
|     | Bisphenol A                | <0.0108    | mį      | <b>z/L</b> 0.0  | 0108       |               |        | 80-05-7    |          | 48     |
| EF  | PA 625.1                   | Prepared:  | 1182875 | 06/30/202.      | 5 14:35:00 | Calculated 11 | 183932 | 07/09/2025 | 06:54:59 | CA     |
|     | Parameter                  | Results    | Uı      | nits RI         | L          | Flags         |        | CAS        |          | Bottle |
| LAC | Cresols Total              | <0.00108   | mį      | <b>z/L</b> 0.0  | 00108      |               |        | 1319-77-3, | etc.     | 48     |
| EF  | PA 632                     | Prepared:  | 1182867 | 06/30/202.      | 5 14:15:00 | Analyzed 11   | 187766 | 07/17/2025 | 01:20:00 | BR     |
|     | Parameter                  | Results    | Uı      | nits RI         |            | Flags         |        | CAS        |          | Bottle |
| LAC | Carbaryl (Sevin)           | < 0.00269  | mį      | <b>g/L</b> 0.0  | 00269      |               |        | 63-25-2    |          | 44     |
|     | Diuron                     | <0.0000485 | mį      | <b>z/L</b> 0.0  | 0000485    |               |        | 330-54-1   |          | 44     |
| EF  | PA 8015C                   | Prepared:  | 1184165 | 07/08/202.      | 5 19:52:00 | Analyzed 11   | 184165 | 07/08/2025 | 19:52:00 | KA     |
| -   | Parameter                  | Results    | Uı      | nits RI         |            | Flags         |        | CAS        |          | Bottle |
| LAC | Ethylene Glycol            | <50.0      | mį      | <b>z/L</b> 50   | .0         |               |        | 107-21-1   |          | 01     |
| SA  | 1 3500-Cr B-2011           | Prepared:  | 1182669 | 06/26/202.      | 5 10:28:00 | Analyzed 11   | 182669 | 06/26/2025 | 10:28:00 | DE.    |
| -   | Parameter                  | Results    | Uı      | nits RI         |            | Flags         |        | CAS        |          | Bottle |
| LAC | Hex Cr, Field Preservation | <0.0030    | mį      | <b>z/L</b> 0.0  | 0030       |               |        | 18540-29-9 |          |        |
|     | A 3500-Cr B-2011           | Prenared·  | 1182938 | 06/30/202.      | 5 07:30:00 | Analyzed 11   | 182938 | 06/30/2025 | 07:30:00 | AL     |
| SA  | 4 5500-C1 B-2011           | repared.   | 1102550 | 00/00/2020      | 07.20.00   | 1 mary zea 11 | .02,00 | 00/30/2023 | 07.50.00 | 2112.  |



Report Page 12 of 55



The Science of Sure

#### **GBRL-C**

**GBRA/Seguin** Miliana Hernandez **Regional Laboratory** 933 E. Court St Seguin, TX 78155-5819



Printed: 07/30/2025

| 2422662 Domestic Worksheet 4.0 | <i>Received:</i> 06/27/2025 |
|--------------------------------|-----------------------------|
|--------------------------------|-----------------------------|

Non-Potable Water Collected by: DEL SPL Kilgore PO: dept= LabInvoices@gbra.org

Taken: 09:55:00 06/26/2025

| Z     | Parameter Tributyltin hydride | Results <0.00000787 | <i>Un</i><br><b>mg</b> |        | <i>RL</i> 0.000007 | 78       | Flags            | <i>CAS</i> 688-73-3 |          | Bottle 52 |
|-------|-------------------------------|---------------------|------------------------|--------|--------------------|----------|------------------|---------------------|----------|-----------|
| T     | X 1001                        |                     | 1184059                | 07/08/ |                    | 14:00:00 | Analyzed 1185733 | 07/16/2025          | 21:07:00 | DWI       |
| NELAC | Cyanide After Chlorination    | <0.005              | mg                     | /L     | 0.005              |          |                  |                     |          | 42        |
|       | Parameter                     | Results             | Un                     | its    | RL                 |          | Flags            | CAS                 |          | Bottle    |
| S     | M 4500-CN G-2016              | Prepared:           | 1182780                | 06/30/ | /2025              | 08:26:32 | Analyzed 1182859 | 06/30/2025          | 09:43:00 | MEG       |
| NELAC | Cyanide - Available/Amenable  | 0.0028              | mg                     | /L     | 0.005              |          | J                |                     |          |           |
|       | Parameter                     | Results             | Un                     | its    | RL                 |          | Flags            | CAS                 |          | Bottle    |
| S     | M 4500-CN G-2016              | Prepared:           |                        | 07/01/ | /2025              | 10:26:00 | Calculated       | 07/01/2025          | 10:26:00 | CAL       |
| NELAC | Cyanide, total                | 0.0078              | mg                     | /L     | 0.005              |          |                  |                     |          | 38        |
|       | Parameter                     | Results             | Un                     | nits   | RL                 |          | Flags            | CAS                 |          | Bottle    |
| S     | M 4500-CN <sup>-</sup> E-2016 | Prepared:           | 1182714                | 06/28/ | /2025              | 09:12:09 | Analyzed 1182858 | 06/30/2025          | 09:43:00 | MEC       |
| NELAC | Hexavalent Chromium           | <0.0030             | mg                     | /L     | 0.0030             |          |                  | 18540-29-9          |          | 23        |
|       | Parameter                     | Results             | Un                     | its    | RL                 |          | Flags            | CAS                 |          | Bottle    |
|       | M 3500-Cr B-2011              | Prepared:           | 1182938                | 06/30/ | 2023               | 07:30:00 | Analyzed 1182938 | 06/30/2025          | 07:30:00 | ALB       |

#### **Sample Preparation**

2422662 Domestic Worksheet 4.0 06/27/2025 Received:

dept= LabInvoices@gbra.org

06/26/2025

Prepared: 06/27/2025 13:30:39 Calculated 06/27/2025 13:30:39 CAL



Report Page 13 of 55

The Science of Sure

#### **GBRL-C**

24 Waterway Avenue, Suite 375 The Woodlands, TX 77380

GBRA/Seguin Miliana Hernandez **Regional Laboratory** 933 E. Court St Seguin, TX 78155-5819



Printed: 07/30/2025

2422662 Domestic Worksheet 4.0

2600 Dudley Rd. Kilgore, Texas 75662

Office: 903-984-0551 \* Fax: 903-984-5914

Received: 06/27/2025

dept= LabInvoices@gbra.org

| 0  | 1   | 10 | -   | 10 | 0 | 1  | -  |
|----|-----|----|-----|----|---|----|----|
| -U | IO. | 12 | t). | /2 | U | 12 | כו |

|        |                                                       | Prepared:            |         | 06/27/2025 | 13:30:39 | Calculated |         | 06/27/2025 | 13:30:39 | CAL |
|--------|-------------------------------------------------------|----------------------|---------|------------|----------|------------|---------|------------|----------|-----|
| z<br>z | DW Volatiles Dechlorination Vial LL Mercury Test Prep | Verified<br>Verified |         |            |          |            |         |            |          |     |
|        |                                                       | Prepared:            |         | 06/27/2025 | 14:01:20 | Calculated |         | 06/27/2025 | 14:01:20 | CAL |
| z      | Enviro Fee (per Sampling Group)                       | Verified             |         |            |          |            |         |            |          |     |
|        |                                                       | Prepared:            |         | 07/30/2025 | 06:36:00 | Analyzed   |         | 07/30/2025 | 06:36:00 | WJP |
| z      | Check Limits                                          | Completed            |         |            |          |            |         |            |          |     |
| A      | STM D7065-17                                          | Prepared:            | 1184167 | 07/08/2025 | 14:45:00 | Analyzed . | 1184715 | 07/10/2025 | 19:47:00 | PM1 |
| Z      | Nonyl Phenol Expansion                                | Entered              |         |            |          |            |         |            |          | 53  |
| E      | PA 200.2 2.8                                          | Prepared:            | 1182727 | 06/28/2025 | 13:00:00 | Analyzed . | 1182727 | 06/28/2025 | 13:00:00 | TES |
| z      | Liquid Metals Digestion                               | 50/50                | ml      |            |          |            |         |            |          | 19  |
| E      | PA 245.7 2                                            | Prepared:            | 1183417 | 07/03/2025 | 09:30:00 | Analyzed . | 1183417 | 07/03/2025 | 09:30:00 | MP1 |
| NELAC  | Low Level Mercury Liquid Metals                       | 50/47                | ml      |            |          |            |         |            |          | 36  |
| E      | PA 420.4 I                                            | Prepared:            | 1182783 | 06/30/2025 | 08:53:33 | Analyzed . | 1182783 | 06/30/2025 | 08:53:33 | MEG |
| NELAC  | Phenol Distillation                                   | 6/6                  | ml      |            |          |            |         |            |          | 20  |



Report Page 14 of 55

The Science of Sure

2

Office: 903-984-0551 \* Fax: 903-984-5914

2600 Dudley Rd. Kilgore, Texas 75662

# **GBRL-C**

24 Waterway Avenue, Suite 375 The Woodlands, TX 77380

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819



Printed: 07/30/2025

**2422662 Domestic Worksheet 4.0** *Received:* 06/27/2025

dept= LabInvoices@gbra.org 06/26/2025

| E              | FPA 604.1                                | Prepared:          | 1183076 | 07/01/2025 | 13:30:00 | Analyzed | 1183076 | 07/01/2025 | 13:30:00 | CRS      |
|----------------|------------------------------------------|--------------------|---------|------------|----------|----------|---------|------------|----------|----------|
|                | Hexachlorophene Extraction               | 5/908              | ml      |            |          |          |         |            |          | 08       |
| Е              | PA 604.1                                 | Prepared:          | 1183076 | 07/01/2025 | 13:30:00 | Analyzed | 1185463 | 07/02/2025 | 19:14:00 | BRU      |
|                | Hexachlorophene Expansion                | Entered            |         |            |          |          |         | 70-30-4    |          | 49       |
| Ε              | EPA 608.3                                | Prepared:          | 1182868 | 06/30/2025 | 14:15:00 | Analyzed | 1182868 | 06/30/2025 | 14:15:00 | CRS      |
|                | Liquid-Liquid Extr. W/Hex Ex             | 1/928              | ml      |            |          |          |         |            |          | 11       |
| E              | PA 608.3                                 | Prepared:          | 1182868 | 06/30/2025 | 14:15:00 | Analyzed | 1183358 | 07/01/2025 | 21:42:00 | KAF      |
| NELAC<br>NELAC | Polychlorinated Biphenyls TTO Pesticides | Entered<br>Entered |         |            |          |          |         |            |          | 45<br>45 |
| Е              | SPA 608.3                                | Prepared:          | 1182869 | 06/30/2025 | 14:15:00 | Analyzed | 1182869 | 06/30/2025 | 14:15:00 | CRS      |
|                | Solvent Extraction                       | 1/928              | ml      |            |          |          |         |            |          | 11       |
| Е              | EPA 608.3                                | Prepared:          | 1182870 | 06/30/2025 | 14:16:55 | Analyzed | 1182870 | 06/30/2025 | 14:16:55 | CRS      |
|                | PCB Liq-Liq Extr. W/Hex Exch.            | 1/928              | ml      |            |          |          |         |            |          | 11       |
| Ε              | EPA 614                                  | Prepared:          | 1182869 | 06/30/2025 | 14:15:00 | Analyzed | 1184709 | 07/01/2025 | 22:27:00 | KAF      |
| <u></u>        | Permit Organophos. Pesticides            | Entered            |         |            |          |          |         |            |          | 46       |
| E              | EPA 615                                  | Prepared:          | 1183082 | 07/01/2025 | 14:15:00 | Analyzed | 1183082 | 07/01/2025 | 14:15:00 | CRS      |
| NELAC          | Esterification of Sample                 | 10/954             | ml      |            |          |          |         |            |          | 14       |



Report Page 15 of 55



GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819



06/27/2025

dept= LabInvoices@gbra.org

Printed: 07/30/2025

2422662 Domestic Worksheet 4.0 Received:

06/26/2025

| EPA 615                           | Prepared: | 1183082 | 07/01/2025 | 14:15:00 | Analyzed | 1183915 | 07/08/2025 | 00:41:00 | KAP |
|-----------------------------------|-----------|---------|------------|----------|----------|---------|------------|----------|-----|
| NELAC Herbicides by GC            | Entered   |         |            |          |          |         |            |          | 50  |
| EPA 617                           | Prepared: | 1182868 | 06/30/2025 | 14:15:00 | Analyzed | 1183351 | 07/01/2025 | 21:42:00 | KAF |
| For use with !PPR only            | Entered   |         |            |          |          |         |            |          | 45  |
| EPA 622                           | Prepared: | 1182869 | 06/30/2025 | 14:15:00 | Analyzed | 1184708 | 07/01/2025 | 22:27:00 | KAP |
| NELAC For use with EXP !CPP only  | Entered   |         |            |          |          |         |            |          | 46  |
| EPA 624.1                         | Prepared: | 1182898 | 06/27/2025 | 18:14:00 | Analyzed | 1182898 | 06/27/2025 | 18:14:00 | DWI |
| NELAC Acrolein/Acrylonitrile Exp. | Entered   |         |            |          |          |         |            |          | 27  |
| EPA 624.1                         | Prepared: | 1182899 | 06/27/2025 | 18:36:00 | Analyzed | 1182899 | 06/27/2025 | 18:36:00 | DWI |
| Table D-1/D-2 w/MTBE              | Entered   |         |            |          |          |         |            |          | 33  |
| EPA 624.1                         | Prepared: | 1183938 | 07/07/2025 | 17:56:00 | Analyzed | 1183938 | 07/07/2025 | 17:56:00 | DWI |
| NELAC DW Epichlorohydrin Exp.     | Entered   |         |            |          |          |         |            |          | 30  |
| EPA 625.1                         | Prepared: | 1182875 | 06/30/2025 | 14:35:00 | Analyzed | 1182875 | 06/30/2025 | 14:35:00 | CRS |
| Liquid-Liquid Extraction, BNA     | 1/925     | m       | 1          |          |          |         |            |          | 09  |
| EPA 625.1                         | Prepared: | 1182875 | 06/30/2025 | 14:35:00 | Analyzed | 1183932 | 07/03/2025 | 18:28:00 | PM1 |
|                                   |           |         |            |          |          |         |            |          |     |



Report Page 16 of 55

48

Table D-1/D-2 Semivolatiles Exp

Entered

2600 Dudley Rd. Kilgore, Texas 75662 24 Waterway Avenue, Suite 375 The Woodlands, TX 77380 Office: 903-984-0551 \* Fax: 903-984-5914



#### **GBRL-C**

GBRA/Seguin Miliana Hernandez **Regional Laboratory** 933 E. Court St Seguin, TX 78155-5819



Printed: 07/30/2025

2422662 Domestic Worksheet 4.0 Received:

06/27/2025

dept= LabInvoices@gbra.org

06/26/2025

| EPA 625.1                      | Prepared: | 1182875 | 06/30/2025 | 14:35:00 | Analyzed | 1184406 | 07/08/2025 | 17:51:00 | PN |
|--------------------------------|-----------|---------|------------|----------|----------|---------|------------|----------|----|
| Bisphenol A Expansion          | Entered   |         |            |          |          |         | 80-05-7    |          | 48 |
| EPA 625.1                      | Prepared: | 1184167 | 07/08/2025 | 14:45:00 | Analyzed | 1184167 | 07/08/2025 | 14:45:00 | SA |
| Nonylphenol Liq-Liq Extract    | 1/842     | ml      |            |          |          |         |            |          | 04 |
| EPA 632                        | Prepared: | 1182867 | 06/30/2025 | 14:15:00 | Analyzed | 1182867 | 06/30/2025 | 14:15:00 | CI |
| Liquid-Liquid Extr. W/Hex Ex   | 1/928     | ml      |            |          |          |         |            |          | 1  |
| EPA 632                        | Prepared: | 1182867 | 06/30/2025 | 14:15:00 | Analyzed | 1187766 | 07/17/2025 | 01:20:00 | Bi |
| LAC Carbaryl/Diuron EXP        | Entered   |         |            |          |          |         |            |          | 4  |
| EPA METHOD 8015C               | Prepared: | 1184165 | 07/08/2025 | 19:52:00 | Analyzed | 1184165 | 07/08/2025 | 19:52:00 | K  |
| LAC Ethylene Glycol Expansion  | Entered   |         |            |          |          |         | 107-21-1   |          | 0  |
| SM 4500-CN <sup>-</sup> C-2016 | Prepared: | 1182714 | 06/28/2025 | 09:12:09 | Analyzed | 1182714 | 06/28/2025 | 09:12:09 | JI |
| LAC Cyanide Distillation       | 10/5      | ml      |            |          |          |         |            |          | 2  |
| SM 4500-CN <sup>-</sup> C-2016 | Prepared: | 1182780 | 06/30/2025 | 08:26:32 | Analyzed | 1182780 | 06/30/2025 | 08:26:32 | M  |
| LAC CN Dist After Chlorination | 10/5      | ml      |            |          |          |         |            |          | 3  |
| TX 1001                        | Prepared: | 1184059 | 07/08/2025 | 14:00:00 | Analyzed | 1184059 | 07/08/2025 | 14:00:00 | S  |
| Butyltins Extraction           | 1/890     | ml      |            |          |          |         |            |          | 0  |



Report Page 17 of 55



GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819



Printed: 07/30/2025

2422662 Domestic Worksheet 4.0

Received: 06/27/2025 dept= LabInvoices@gbra.org

06/26/2025

TX 1001 Prepared: 1184059 07/08/2025 14:00:00 Analyzed 1185733 07/16/2025 21:07:00 DWL

Butyltin Expansion Entered 52

Qualifiers:

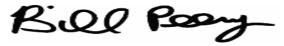
J - Analyte detected below quantitation limit

X - Standard reads higher than desired.

S - Standard reads lower than desired

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.


(N)ELAC - Covered in our NELAC scope of accreditation

 $\boldsymbol{z}$  -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. PL is our Perporting Limit or Minimum Quantitation Level. The PL takes into account the Instrument.

Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.



Bill Peery, MS, VP Technical Services



Report Page 18 of 55



Page 1 of 30

*Project* 1152756

Printed 07/30/2025

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

|                                  | Analytical Set  | 1182858      |                |                |              |            |                          |            |                        | SM 4  | 500-CN | E-2016 |
|----------------------------------|-----------------|--------------|----------------|----------------|--------------|------------|--------------------------|------------|------------------------|-------|--------|--------|
|                                  | •               |              |                |                | В            | lank       |                          |            |                        |       |        |        |
| Parameter                        |                 | PrepSet      | Reading        | MDL            | MQL          | Units      |                          |            | File                   |       |        |        |
| Cyanide, total                   |                 | 1182714      | 0.0024         | 0.00238        | 0.005        | mg/L       |                          |            | 127778554              |       |        |        |
|                                  |                 |              |                |                | (            | ССВ        |                          |            |                        |       |        |        |
| <u>Parameter</u>                 |                 | PrepSet      | Reading        | MDL            | MQL          | Units      |                          |            | File                   |       |        |        |
| Cyanide, total                   |                 | 1182714      | ND             | 0.00238        | 0.005        | mg/L       |                          |            | 127778563              |       |        |        |
| Cyanide, total                   |                 | 1182858      | ND             | 0.00238        | 0.005        | mg/L       |                          |            | 127778575              |       |        |        |
| Cyanide, total                   |                 | 1182858      | ND             | 0.00238        | 0.005        | mg/L       |                          |            | 127778577              |       |        |        |
|                                  |                 |              |                |                | (            | CCV        |                          |            |                        |       |        |        |
| <u>Parameter</u>                 |                 |              | Reading        | Known          | Units        | Recover%   | Limits%                  |            | File                   |       |        |        |
| Cyanide, total                   |                 |              | 0.527          | 0.500          | mg/L         | 105        | 90.0 - 110               |            | 127778540              |       |        |        |
| Cyanide, total                   |                 |              | 0.531          | 0.500          | mg/L         | 106        | 90.0 - 110               |            | 127778550              |       |        |        |
| Cyanide, total                   |                 |              | 0.526          | 0.500          | mg/L         | 105        | 90.0 - 110               |            | 127778559              |       |        |        |
| Cyanide, total                   |                 |              | 0.527          | 0.500          | mg/L         | 105        | 90.0 - 110<br>90.0 - 110 |            | 127778570<br>127778576 |       |        |        |
| Cyanide, total<br>Cyanide, total |                 |              | 0.527<br>0.533 | 0.500<br>0.500 | mg/L<br>mg/L | 105<br>107 | 90.0 - 110<br>90.0 - 110 |            | 127778578              |       |        |        |
| Cyanide, total                   |                 |              | 0.532          | 0.500          | mg/L         | 106        | 90.0 - 110               |            | 127778579              |       |        |        |
| Cyamac, total                    |                 |              | 0.552          | 0.500          | -            | plicate    | J0.0 - 110               |            | 12///03//              |       |        |        |
| Parameter                        |                 | Sample       |                | Result         | Unknow       |            |                          | Unit       |                        | RPD   |        | Limit% |
| Cyanide, total                   |                 | 2422440      |                | ND             | ND           | u .        |                          | mg/L       |                        | KI D  |        | 20.0   |
| Cyanide, total                   |                 | 2422513      |                | 0.0032         | ND           |            |                          | mg/L       |                        | 200   | *      | 20.0   |
| •                                |                 |              |                |                |              | ICV        |                          |            |                        |       |        |        |
| Parameter                        |                 |              | Reading        | Known          | Units        | Recover%   | Limits%                  |            | File                   |       |        |        |
| Cyanide, total                   |                 |              | 0.186          | 0.200          | mg/L         | 93.0       | 90.0 - 110               |            | 127778539              |       |        |        |
|                                  |                 |              |                |                | LC           | S Dup      |                          |            |                        |       |        |        |
| <u>Parameter</u>                 |                 | PrepSet      | LCS            | LCSD           |              | Known      | Limits%                  | LCS%       | LCSD%                  | Units | RPD    | Limit% |
| Cyanide, total                   |                 | 1182714      | 0.382          | 0.381          |              | 0.400      | 90.0 - 110               | 95.5       | 95.2                   | mg/L  | 0.262  | 20.0   |
|                                  |                 |              |                |                | Mat          | . Spike    |                          |            |                        |       |        |        |
| <u>Parameter</u>                 |                 | Sample       | Spike          | Unknown        | Known        | Units      | Recovery %               | Limits %   | File                   |       |        |        |
| Cyanide, total                   |                 | 2422440      | 0.366          | ND             | 0.400        | mg/L       | 91.5                     | 90.0 - 110 | 127778560              |       |        |        |
| Cyanide, total                   |                 | 2422513      | 0.384          | ND             | 0.400        | mg/L       | 96.0                     | 90.0 - 110 | 127778564              |       |        |        |
|                                  | Analytical Set  | 1182859      |                |                |              |            |                          |            |                        | SM 4  | 500-CN | G-2016 |
|                                  | ,               |              |                |                | В            | lank       |                          |            |                        |       |        |        |
| <u>Parameter</u>                 |                 | PrepSet      | Reading        | MDL            | MQL          | Units      |                          |            | File                   |       |        |        |
| Cyanide After (                  | Chlorination    | 1182780      | ND             | 0.00119        | 0.0025       | mg/L       |                          |            | 127778590              |       |        |        |
|                                  |                 |              |                |                | (            | ССВ        |                          |            |                        |       |        |        |
| <u>Parameter</u>                 |                 | PrepSet      | Reading        | MDL            | MQL          | Units      |                          |            | File                   |       |        |        |
| Cyanide After (                  | Chlorination    | 1182780      | ND             | 0.00119        | 0.0025       | mg/L       |                          |            | 127778582              |       |        |        |
| Cyanide After (                  |                 | 1182780      | 0.0017         | 0.00119        | 0.0025       | mg/L       |                          |            | 127778584              |       |        |        |
| Cyanide After (                  | Chlorination    | 1182780      | ND             | 0.00119        | 0.0025       | mg/L       |                          |            | 127778586              |       |        |        |
| Emoil, V                         | ilgara ProjectM | ana com ant@ | anlloha :      |                |              | S accrecy. |                          |            |                        |       |        |        |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 19 of 55



# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819 Page 2 of 30

*Project* 1152756

Printed 07/30/2025

|                              |         |         |                           | C            | СВ       |            |            |           |       |      |           |
|------------------------------|---------|---------|---------------------------|--------------|----------|------------|------------|-----------|-------|------|-----------|
| Parameter                    | PrepSet | Reading | MDL                       | MQL          | Units    |            |            | File      |       |      |           |
| Cyanide After Chlorination   | 1182780 | ND      | 0.00119                   | 0.0025       | mg/L     |            |            | 127778588 |       |      |           |
| Cyanide After Chlorination   | 1182780 | ND      | 0.00119                   | 0.0025       | mg/L     |            |            | 127778594 |       |      |           |
|                              |         |         |                           | C            | :CV      |            |            |           |       |      |           |
| <u>Parameter</u>             |         | Reading | Known                     | Units        | Recover% | Limits%    |            | File      |       |      |           |
| Cyanide After Chlorination   |         | 0.527   | 0.500                     | mg/L         | 105      | 90.0 - 110 |            | 127778581 |       |      |           |
| Cyanide After Chlorination   |         | 0.531   | 0.500                     | mg/L         | 106      | 90.0 - 110 |            | 127778583 |       |      |           |
| Cyanide After Chlorination   |         | 0.526   | 0.500                     | mg/L         | 105      | 90.0 - 110 |            | 127778585 |       |      |           |
| Cyanide After Chlorination   |         | 0.527   | 0.500                     | mg/L         | 105      | 90.0 - 110 |            | 127778587 |       |      |           |
| Cyanide After Chlorination   |         | 0.527   | 0.500                     | mg/L         | 105      | 90.0 - 110 |            | 127778589 |       |      |           |
| Cyanide After Chlorination   |         | 0.533   | 0.500                     | mg/L         | 107      | 90.0 - 110 |            | 127778599 |       |      |           |
| Cyanide After Chlorination   |         | 0.532   | 0.500                     | mg/L         | 106      | 90.0 - 110 |            | 127778603 |       |      |           |
|                              |         |         |                           | Dup          | licate   |            |            |           |       |      |           |
| <u>Parameter</u>             | Sample  |         | Result                    | Unknown      | 1        |            | Unit       |           | RPD   |      | Limit%    |
| Cyanide After Chlorination   | 2421172 |         | 0.0076                    | ND           |          |            | mg/L       |           | 200   | *    | 20.0      |
|                              |         |         |                           | I            | CV       |            |            |           |       |      |           |
| Parameter                    |         | Reading | Known                     | Units        | Recover% | Limits%    |            | File      |       |      |           |
| Cyanide After Chlorination   |         | 0.186   | 0.200                     | mg/L         | 93.0     | 90.0 - 110 |            | 127778580 |       |      |           |
|                              |         |         |                           | LCS          | 5 Dup    |            |            |           |       |      |           |
| <u>Parameter</u>             | PrepSet | LCS     | LCSD                      |              | Known    | Limits%    | LCS%       | LCSD%     | Units | RPD  | Limit%    |
| Cyanide After Chlorination   | 1182780 | 0.188   | 0.186                     |              | 0.200    | 90.0 - 110 | 94.0       | 93.0      | mg/L  | 1.07 | 20.0      |
|                              |         |         |                           | Mat          | . Spike  |            |            |           |       |      |           |
| Parameter                    | Sample  | Spike   | Unknown                   | Known        | Units    | Recovery % | Limits %   | File      |       |      |           |
| Cyanide After Chlorination   | 2421172 | 0.354   | ND                        | 0.400        | mg/L     | 88.5       | 90.0 - 110 | 127778596 |       | *    |           |
| Analytical Set               | 1183042 |         |                           |              |          |            |            |           |       | EP   | A 420.4 1 |
| , many clear Dec             |         |         |                           | ВІ           | ank      |            |            |           |       |      |           |
| Parameter                    | PrepSet | Reading | MDL                       | MQL          | Units    |            |            | File      |       |      |           |
| Phenolics, Total Recoverable | 1182783 | ND      | 0.003                     | 0.005        | mg/L     |            |            | 127781237 |       |      |           |
|                              |         |         |                           | c            | СВ       |            |            |           |       |      |           |
| Parameter                    | PrepSet | Reading | MDL                       | MQL          | Units    |            |            | File      |       |      |           |
| Phenolics, Total Recoverable | 1182783 | ND      | 0.003                     | 0.005        | mg/L     |            |            | 127781236 |       |      |           |
| Phenolics, Total Recoverable | 1182783 | ND      | 0.003                     | 0.005        | mg/L     |            |            | 127781248 |       |      |           |
| ,                            |         |         |                           |              | :cv      |            |            |           |       |      |           |
| Parameter                    |         | Reading | Known                     | Units        | Recover% | Limits%    |            | File      |       |      |           |
| Phenolics, Total Recoverable |         | 0.196   | <i>Known</i> <b>0.200</b> | mg/L         | 98.0     | 90.0 - 110 |            | 127781235 |       |      |           |
| Phenolics, Total Recoverable |         | 0.190   | 0.200                     | mg/L         | 104      | 90.0 - 110 |            | 127781235 |       |      |           |
| Phenolics, Total Recoverable |         | 0.184   | 0.200                     | mg/L<br>mg/L | 92.0     | 90.0 - 110 |            | 127781243 |       |      |           |
| Phenolics, Total Recoverable |         | 0.209   | 0.200                     | mg/L<br>mg/L | 104      | 90.0 - 110 |            | 127781265 |       |      |           |
|                              |         | 0.207   | JJ                        | _            | licate   | 2000 110   |            | 121200    |       |      |           |
| Parameter                    | Sample  |         | Result                    | Unknown      |          |            | Unit       |           | RPD   |      | Limit%    |
| <del></del>                  | *       |         |                           |              |          |            |            |           |       |      |           |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 20 of 55

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

Page 3 of 30 Project 1152756

Printed 07/30/2025

|                                                                                                                                                   |                                                         |                                                                         |                                                                                      | Dup                                                   | licate                                                               |                                     |                                           |                                                                                                         |                             |                 |                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|--------------------------------|
| Parameter Phenolics, Total Recoverable Phenolics, Total Recoverable Phenolics, Total Recoverable                                                  | Sample<br>2421131<br>2422310<br>2422407                 |                                                                         | Result<br>0.029<br>0.014<br>0.035                                                    | Unknown<br>0.034<br>0.018<br>0.036                    |                                                                      |                                     | Unit<br>mg/L<br>mg/L<br>mg/L              |                                                                                                         | RPD<br>15.9<br>25.0<br>2.82 | *               | Limit%<br>20.0<br>20.0<br>20.0 |
| <u>Parameter</u><br>Phenolics, Total Recoverable                                                                                                  |                                                         | Reading<br>0.207                                                        | Known<br>0.200                                                                       | Units<br>mg/L                                         | CV  Recover%  104                                                    | <i>Limits%</i> 90.0 - 110           |                                           | <i>File</i> 127781234                                                                                   |                             |                 |                                |
|                                                                                                                                                   |                                                         |                                                                         |                                                                                      | LCS                                                   | 5 Dup                                                                |                                     |                                           |                                                                                                         |                             |                 |                                |
| <u>Parameter</u><br>Phenolics, Total Recoverable                                                                                                  | <i>PrepSet</i> 1182783                                  | <i>LCS</i> 0.191                                                        | LCSD<br>0.186                                                                        |                                                       | <i>Known</i> <b>0.200</b>                                            | <i>Limits%</i> 90.0 - 110           | <i>LCS%</i> 95.5                          | <i>LCSD%</i> 93.0                                                                                       | <i>Units</i> mg/L           | <i>RPD</i> 2.65 | <i>Limit%</i> 20.0             |
|                                                                                                                                                   |                                                         |                                                                         |                                                                                      | Mat.                                                  | . Spike                                                              |                                     |                                           |                                                                                                         |                             |                 |                                |
| Parameter Phenolics, Total Recoverable Phenolics, Total Recoverable Phenolics, Total Recoverable                                                  | Sample<br>2421131<br>2422310<br>2422407                 | Spike<br>0.218<br>0.195<br>0.212                                        | Unknown<br>0.034<br>0.018<br>0.036                                                   | Known<br>0.200<br>0.200<br>0.200                      | <i>Units</i><br>mg/L<br>mg/L<br>mg/L                                 | Recovery %<br>92.0<br>88.5<br>88.0  | Limits % 90.0 - 110 90.0 - 110 90.0 - 110 | File<br>127781264<br>127781242<br>127781246                                                             |                             | *               |                                |
| Analytical Set                                                                                                                                    | 1182668                                                 |                                                                         |                                                                                      |                                                       |                                                                      |                                     |                                           |                                                                                                         |                             |                 |                                |
|                                                                                                                                                   |                                                         |                                                                         |                                                                                      | Dup                                                   | licate                                                               |                                     |                                           |                                                                                                         |                             |                 |                                |
| <u>Parameter</u><br>Field Cl2 Check for CNa                                                                                                       | <i>Sample</i> <b>2422662</b>                            |                                                                         | Result<br>NEG                                                                        | <i>Unknown</i> <b>NEG</b>                             | 1                                                                    |                                     | Unit                                      |                                                                                                         | RPD                         |                 | Limit%<br>20                   |
|                                                                                                                                                   |                                                         |                                                                         |                                                                                      |                                                       |                                                                      |                                     |                                           |                                                                                                         |                             |                 |                                |
| Analytical Set                                                                                                                                    | 1183336                                                 |                                                                         |                                                                                      |                                                       |                                                                      |                                     |                                           |                                                                                                         |                             | EPA             | 300.0 2.1                      |
| Analytical Set                                                                                                                                    | 1183336                                                 |                                                                         |                                                                                      | AWRL                                                  | _/LOQ C                                                              |                                     |                                           |                                                                                                         |                             | EPA             | 300.0 2.1                      |
| Analytical Set  Parameter Fluoride Nitrate-Nitrogen Total                                                                                         | 1183336                                                 | Reading<br>0.0802<br>0.0228                                             | Known<br>0.100<br>0.0226                                                             | Units<br>mg/L<br>mg/L                                 | Recover%<br>80.2<br>101                                              | Limits%<br>70.0 - 130<br>70.0 - 130 |                                           | File<br>127786152<br>127786152                                                                          |                             | EPA             | 300.0 2.1                      |
| <u>Parameter</u><br>Fluoride<br>Nitrate-Nitrogen Total                                                                                            |                                                         | 0.0802<br>0.0228                                                        | 0.100<br>0.0226                                                                      | Units<br>mg/L<br>mg/L<br>Bl                           | Recover%<br>80.2<br>101<br>ank                                       | 70.0 - 130                          |                                           | 127786152<br>127786152                                                                                  |                             | EPA             | 300.0 2.1                      |
| <u>Parameter</u><br>Fluoride                                                                                                                      | PrepSet 1183336 1183336                                 | 0.0802                                                                  | 0.100                                                                                | Units<br>mg/L<br>mg/L                                 | Recover%<br>80.2<br>101                                              | 70.0 - 130                          |                                           | 127786152                                                                                               |                             | EPA             | 300.0 2.1                      |
| Parameter Fluoride Nitrate-Nitrogen Total  Parameter Fluoride                                                                                     | <i>PrepSet</i><br>1183336                               | 0.0802<br>0.0228<br>Reading<br>ND                                       | 0.100<br>0.0226<br><i>MDL</i><br>0.00509                                             | Units<br>mg/L<br>mg/L<br>Bl<br>MQL<br>0.100<br>0.0226 | Recover% 80.2 101 ank Units mg/L                                     | 70.0 - 130                          |                                           | 127786152<br>127786152<br>File<br>127786153                                                             |                             | EPA             | 300.0 2.1                      |
| Parameter Fluoride Nitrate-Nitrogen Total  Parameter Fluoride                                                                                     | <i>PrepSet</i><br>1183336                               | 0.0802<br>0.0228<br>Reading<br>ND<br>ND<br>ND                           | 0.100<br>0.0226<br><i>MDL</i><br>0.00509                                             | Units<br>mg/L<br>mg/L<br>Bl<br>MQL<br>0.100<br>0.0226 | Recover% 80.2 101 lank Units mg/L mg/L                               | 70.0 - 130                          |                                           | 127786152<br>127786152<br>File<br>127786153                                                             |                             | EPA             | 300.0 2.1                      |
| Parameter Fluoride Nitrate-Nitrogen Total  Parameter Fluoride Nitrate-Nitrogen Total  Parameter Fluoride Fluoride Fluoride Nitrate-Nitrogen Total | PrepSet 1183336 1183336 PrepSet 1183336 1183336 1183336 | 0.0802<br>0.0228<br>Reading<br>ND<br>ND<br>Reading<br>0<br>0<br>0.00357 | 0.100<br>0.0226<br>MDL<br>0.00509<br>0.00464<br>MDL<br>0.00509<br>0.00509<br>0.00464 | MQL 0.100 0.0226  MQL 0.100 0.0226 0.0226             | Recover% 80.2 101 lank Units mg/L mg/L CCB Units mg/L mg/L mg/L mg/L | 70.0 - 130                          |                                           | 127786152<br>127786152<br>File<br>127786153<br>127786153<br>File<br>127786149<br>127786160<br>127786149 |                             | EPA             | 300.0 2.1                      |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 21 of 55

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

Page 4 of 30

Project 1152756

Printed 07/30/2025

| 3 , , 33 3 3                                                                                                                                                                                              |                                                                                                                                             |                                          |                                                                                                                                                  | LC                                                                                                              | S Dup                                         |            |       |                                                                                                                                                                                    |       |        |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-----------|
| Parameter Parameter                                                                                                                                                                                       | PrepSet                                                                                                                                     | LCS                                      | LCSD                                                                                                                                             |                                                                                                                 | Known                                         | Limits%    | LCS%  | LCSD%                                                                                                                                                                              | Units | RPD    | Limit%    |
| Fluoride                                                                                                                                                                                                  | 1183336                                                                                                                                     | 5.70                                     | 5.69                                                                                                                                             |                                                                                                                 | 5.00                                          | 88.0 - 118 | 114   | 114                                                                                                                                                                                | mg/L  | 0.176  | 20.0      |
| Nitrate-Nitrogen Total                                                                                                                                                                                    | 1183336                                                                                                                                     | 1.26                                     | 1.26                                                                                                                                             |                                                                                                                 | 1.13                                          | 86.3 - 117 | 112   | 112                                                                                                                                                                                | mg/L  | 0      | 20.0      |
|                                                                                                                                                                                                           |                                                                                                                                             |                                          |                                                                                                                                                  | N                                                                                                               | <b>ISD</b>                                    |            |       |                                                                                                                                                                                    |       |        |           |
| <u>Parameter</u>                                                                                                                                                                                          | Sample                                                                                                                                      | MS                                       | MSD                                                                                                                                              | UNK                                                                                                             | Known                                         | Limits     | MS%   | MSD%                                                                                                                                                                               | Units | RPD    | Limit%    |
| Fluoride                                                                                                                                                                                                  | 2421465                                                                                                                                     | 96.8                                     | 98.0                                                                                                                                             | ND                                                                                                              | 100                                           | 80.0 - 120 | 96.8  | 98.0                                                                                                                                                                               | mg/L  | 1.23   | 20.0      |
| Nitrate-Nitrogen Total                                                                                                                                                                                    | 2421465                                                                                                                                     | 45.7                                     | 45.2                                                                                                                                             | 1.75                                                                                                            | 22.6                                          | 80.0 - 120 | 194 * | 192 *                                                                                                                                                                              | mg/L  | 1.14   | 20.0      |
| Analytical Set                                                                                                                                                                                            | 1182938                                                                                                                                     |                                          |                                                                                                                                                  |                                                                                                                 |                                               |            |       |                                                                                                                                                                                    | SM    | 3500-C | r B-2011  |
|                                                                                                                                                                                                           |                                                                                                                                             |                                          |                                                                                                                                                  | В                                                                                                               | lank                                          |            |       |                                                                                                                                                                                    |       |        |           |
| <u>Parameter</u>                                                                                                                                                                                          | PrepSet                                                                                                                                     | Reading                                  | MDL                                                                                                                                              | MQL                                                                                                             | Units                                         |            |       | File                                                                                                                                                                               |       |        |           |
| Hexavalent Chromium                                                                                                                                                                                       | 1182938                                                                                                                                     | 0.672                                    | 0.550                                                                                                                                            | 3.00                                                                                                            | ug/L                                          |            |       | 127779493                                                                                                                                                                          |       |        |           |
| Hexavalent Chromium                                                                                                                                                                                       | 1182938                                                                                                                                     | ND                                       | 0.550                                                                                                                                            | 3.00                                                                                                            | ug/L                                          |            |       | 127779501                                                                                                                                                                          |       |        |           |
|                                                                                                                                                                                                           |                                                                                                                                             |                                          |                                                                                                                                                  | (                                                                                                               | CCV                                           |            |       |                                                                                                                                                                                    |       |        |           |
| <u>Parameter</u>                                                                                                                                                                                          |                                                                                                                                             | Reading                                  | Known                                                                                                                                            | Units                                                                                                           | Recover%                                      | Limits%    |       | File                                                                                                                                                                               |       |        |           |
| Hexavalent Chromium                                                                                                                                                                                       |                                                                                                                                             | 80.6                                     | 80.0                                                                                                                                             | ug/L                                                                                                            | 101                                           | 90.0 - 110 |       | 127779494                                                                                                                                                                          |       |        |           |
| Hexavalent Chromium                                                                                                                                                                                       |                                                                                                                                             | 82.0                                     | 80.0                                                                                                                                             | ug/L                                                                                                            | 102                                           | 90.0 - 110 |       | 127779502                                                                                                                                                                          |       |        |           |
|                                                                                                                                                                                                           |                                                                                                                                             |                                          |                                                                                                                                                  | LC                                                                                                              | S Dup                                         |            |       |                                                                                                                                                                                    |       |        |           |
| <u>Parameter</u>                                                                                                                                                                                          | PrepSet                                                                                                                                     | LCS                                      | LCSD                                                                                                                                             |                                                                                                                 | Known                                         | Limits%    | LCS%  | LCSD%                                                                                                                                                                              | Units | RPD    | Limit%    |
| Hexavalent Chromium                                                                                                                                                                                       | 1182938                                                                                                                                     | 81.3                                     | 82.7                                                                                                                                             |                                                                                                                 | 80.0                                          | 85.0 - 115 | 102   | 103                                                                                                                                                                                | ug/L  | 1.71   | 15.0      |
|                                                                                                                                                                                                           |                                                                                                                                             |                                          |                                                                                                                                                  | N                                                                                                               | <b>ISD</b>                                    |            |       |                                                                                                                                                                                    |       |        |           |
| <u>Parameter</u>                                                                                                                                                                                          | Sample                                                                                                                                      | MS                                       | MSD                                                                                                                                              | UNK                                                                                                             | Known                                         | Limits     | MS%   | MSD%                                                                                                                                                                               | Units | RPD    | Limit%    |
| Hexavalent Chromium                                                                                                                                                                                       | 2422662                                                                                                                                     | 56.0                                     | 57.2                                                                                                                                             | ND                                                                                                              | 80.0                                          | 70.0 - 130 | 70.0  | 71.5                                                                                                                                                                               | ug/L  | 2.12   | 20.0      |
| Analytical Set                                                                                                                                                                                            | 1182985                                                                                                                                     |                                          |                                                                                                                                                  |                                                                                                                 |                                               |            |       |                                                                                                                                                                                    |       | EPA:   | 200.8 5.4 |
| ,                                                                                                                                                                                                         |                                                                                                                                             |                                          |                                                                                                                                                  |                                                                                                                 |                                               |            |       |                                                                                                                                                                                    |       |        |           |
| Parameter_                                                                                                                                                                                                |                                                                                                                                             |                                          |                                                                                                                                                  | В                                                                                                               | lank                                          |            |       |                                                                                                                                                                                    |       |        |           |
|                                                                                                                                                                                                           | PrepSet                                                                                                                                     | Reading                                  | MDL                                                                                                                                              | MQL                                                                                                             | lank<br><i>Units</i>                          |            |       | File                                                                                                                                                                               |       |        |           |
| Aluminum, Total                                                                                                                                                                                           | <i>PrepSet</i> 1182727                                                                                                                      | Reading<br>ND                            | <i>MDL</i> 0.0039                                                                                                                                |                                                                                                                 |                                               |            |       | <i>File</i> 127780385                                                                                                                                                              |       |        |           |
| Aluminum, Total<br>Aluminum, Total                                                                                                                                                                        |                                                                                                                                             | _                                        |                                                                                                                                                  | MQL                                                                                                             | Units                                         |            |       |                                                                                                                                                                                    |       |        |           |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                     | 1182727                                                                                                                                     | ND                                       | 0.0039                                                                                                                                           | <i>MQL</i> 0.005                                                                                                | Units<br>mg/L                                 |            |       | 127780385                                                                                                                                                                          |       |        |           |
| Aluminum, Total                                                                                                                                                                                           | 1182727<br>1182727                                                                                                                          | ND<br>ND                                 | 0.0039<br>0.0039                                                                                                                                 | MQL<br>0.005<br>0.005                                                                                           | Units<br>mg/L<br>mg/L                         |            |       | 127780385<br>127780402                                                                                                                                                             |       |        |           |
| Aluminum, Total<br>Arsenic, Total                                                                                                                                                                         | 1182727<br>1182727<br>1182727                                                                                                               | ND<br>ND<br>ND                           | 0.0039<br>0.0039<br>0.000902                                                                                                                     | MQL<br>0.005<br>0.005<br>0.001                                                                                  | Units<br>mg/L<br>mg/L<br>mg/L                 |            |       | 127780385<br>127780402<br>127780385                                                                                                                                                |       |        |           |
| Aluminum, Total<br>Arsenic, Total<br>Arsenic, Total                                                                                                                                                       | 1182727<br>1182727<br>1182727<br>1182727                                                                                                    | ND<br>ND<br>ND<br>ND                     | 0.0039<br>0.0039<br>0.000902<br>0.000902                                                                                                         | MQL<br>0.005<br>0.005<br>0.001<br>0.001                                                                         | Units mg/L mg/L mg/L mg/L                     |            |       | 127780385<br>127780402<br>127780385<br>127780402                                                                                                                                   |       |        |           |
| Aluminum, Total<br>Arsenic, Total<br>Arsenic, Total<br>Barium, Total                                                                                                                                      | 1182727<br>1182727<br>1182727<br>1182727<br>1182727                                                                                         | ND<br>ND<br>ND<br>ND<br>ND               | 0.0039<br>0.0039<br>0.000902<br>0.000902<br>0.00207<br>0.00207<br>0.000162                                                                       | MQL<br>0.005<br>0.005<br>0.001<br>0.001<br>0.005                                                                | Units mg/L mg/L mg/L mg/L mg/L                |            |       | 127780385<br>127780402<br>127780385<br>127780402<br>127780385                                                                                                                      |       |        |           |
| Aluminum, Total<br>Arsenic, Total<br>Arsenic, Total<br>Barium, Total<br>Barium, Total                                                                                                                     | 1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727                                                                              | ND ND ND ND ND ND ND                     | 0.0039<br>0.0039<br>0.000902<br>0.000902<br>0.00207<br>0.00207                                                                                   | MQL<br>0.005<br>0.005<br>0.001<br>0.001<br>0.005<br>0.005                                                       | Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L      |            |       | 127780385<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402                                                                                                         |       |        |           |
| Aluminum, Total Arsenic, Total Arsenic, Total Barium, Total Barium, Total Beryllium, Total Beryllium, Total Cadmium, Total                                                                                | 1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727                                             | ND N | 0.0039<br>0.0039<br>0.000902<br>0.000902<br>0.00207<br>0.00207<br>0.000162<br>0.000162                                                           | MQL<br>0.005<br>0.005<br>0.001<br>0.001<br>0.005<br>0.005<br>0.001<br>0.001                                     | Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L |            |       | 127780385<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402<br>127780385                                                                  |       |        |           |
| Aluminum, Total Arsenic, Total Arsenic, Total Barium, Total Barium, Total Beryllium, Total Beryllium, Total Cadmium, Total Cadmium, Total                                                                 | 1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727                                  | ND N | 0.0039<br>0.0039<br>0.000902<br>0.000902<br>0.00207<br>0.00207<br>0.000162<br>0.00012<br>0.00012                                                 | MQL<br>0.005<br>0.005<br>0.001<br>0.001<br>0.005<br>0.005<br>0.001<br>0.001<br>0.001                            | Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L |            |       | 127780385<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402                                                     |       |        |           |
| Aluminum, Total Arsenic, Total Arsenic, Total Barium, Total Barium, Total Beryllium, Total Beryllium, Total Cadmium, Total Cadmium, Total Chromium, Total                                                 | 1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727                       | ND N | 0.0039<br>0.0039<br>0.000902<br>0.000902<br>0.00207<br>0.00207<br>0.000162<br>0.00012<br>0.00012<br>0.000392                                     | MQL<br>0.005<br>0.005<br>0.001<br>0.001<br>0.005<br>0.005<br>0.001<br>0.001<br>0.001                            | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L       |            |       | 127780385<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402<br>127780385                                        |       |        |           |
| Aluminum, Total Arsenic, Total Arsenic, Total Barium, Total Barium, Total Beryllium, Total Beryllium, Total Cadmium, Total Cadmium, Total Chromium, Total Chromium, Total                                 | 1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727            | ND N | 0.0039<br>0.0039<br>0.000902<br>0.000902<br>0.00207<br>0.00207<br>0.000162<br>0.00012<br>0.00012<br>0.000392<br>0.000392                         | MQL<br>0.005<br>0.005<br>0.001<br>0.001<br>0.005<br>0.005<br>0.001<br>0.001<br>0.001<br>0.001                   | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L       |            | *     | 127780385<br>127780402<br>127780402<br>127780402<br>127780402<br>127780402<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402                                        |       |        |           |
| Aluminum, Total Arsenic, Total Arsenic, Total Barium, Total Barium, Total Beryllium, Total Beryllium, Total Cadmium, Total Cadmium, Total Chromium, Total Chromium, Total Chromium, Total Chromium, Total | 1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727            | ND N | 0.0039<br>0.0039<br>0.000902<br>0.000902<br>0.00207<br>0.00207<br>0.000162<br>0.00012<br>0.00012<br>0.000392<br>0.000392<br>0.000325             | MQL<br>0.005<br>0.005<br>0.001<br>0.001<br>0.005<br>0.005<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001          | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L       |            | *     | 127780385<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402<br>127780402<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402<br>127780385              |       |        |           |
| Aluminum, Total Arsenic, Total Arsenic, Total Barium, Total Barium, Total Beryllium, Total Beryllium, Total Cadmium, Total Cadmium, Total Chromium, Total Chromium, Total Copper, Total Copper, Total     | 1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727 | ND N | 0.0039<br>0.0039<br>0.000902<br>0.000902<br>0.00207<br>0.00207<br>0.000162<br>0.00012<br>0.00012<br>0.000392<br>0.000392<br>0.000325<br>0.000325 | MQL<br>0.005<br>0.005<br>0.001<br>0.001<br>0.005<br>0.005<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001 | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L       |            | *     | 127780385<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402 |       |        |           |
| Aluminum, Total Arsenic, Total Arsenic, Total Barium, Total Barium, Total Beryllium, Total Beryllium, Total Cadmium, Total Cadmium, Total Chromium, Total Chromium, Total Chromium, Total Chromium, Total | 1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727<br>1182727            | ND N | 0.0039<br>0.0039<br>0.000902<br>0.000902<br>0.00207<br>0.00207<br>0.000162<br>0.00012<br>0.00012<br>0.000392<br>0.000392<br>0.000325             | MQL<br>0.005<br>0.005<br>0.001<br>0.001<br>0.005<br>0.005<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001          | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L       |            | •     | 127780385<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402<br>127780402<br>127780402<br>127780385<br>127780402<br>127780385<br>127780402<br>127780385              |       |        |           |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 22 of 55



Page 5 of 30

Project 1152756

Printed 07/30/2025

#### **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

| Parameter        | PrepSet | Reading  | MDL      | MQL   | Units    |            | File      |
|------------------|---------|----------|----------|-------|----------|------------|-----------|
| Nickel, Total    | 1182727 | ND       | 0.000154 | 0.001 | mg/L     |            | 127780385 |
| Nickel, Total    | 1182727 | ND       | 0.000154 | 0.001 | mg/L     |            | 127780402 |
| Selenium, Total  | 1182727 | ND       | 0.00294  | 0.005 | mg/L     |            | 127780385 |
| Selenium, Total  | 1182727 | ND       | 0.00294  | 0.005 | mg/L     |            | 127780402 |
| Thallium, Total  | 1182727 | ND       | 0.000966 | 0.001 | mg/L     |            | 127780385 |
| Thallium, Total  | 1182727 | ND       | 0.000966 | 0.001 | mg/L     |            | 127780402 |
| Zinc, Total      | 1182727 | ND       | 0.000844 | 0.001 | mg/L     |            | 127780385 |
| Zinc, Total      | 1182727 | 0.000969 | 0.000844 | 0.001 | mg/L     |            | 127780402 |
|                  |         |          |          | c     | :CV      |            |           |
| Parameter        |         | Reading  | Known    | Units | Recover% | Limits%    | File      |
| Aluminum, Total  |         | 0.0521   | 0.05     | mg/L  | 104      | 90.0 - 110 | 127780401 |
| Aluminum, Total  |         | 0.052    | 0.05     | mg/L  | 104      | 90.0 - 110 | 127780412 |
| Aluminum, Total  |         | 0.0538   | 0.05     | mg/L  | 108      | 90.0 - 110 | 127780421 |
| Arsenic, Total   |         | 0.0527   | 0.05     | mg/L  | 105      | 90.0 - 110 | 127780401 |
| Arsenic, Total   |         | 0.0497   | 0.05     | mg/L  | 99.4     | 90.0 - 110 | 127780412 |
| Arsenic, Total   |         | 0.051    | 0.05     | mg/L  | 102      | 90.0 - 110 | 127780421 |
| Barium, Total    |         | 0.0528   | 0.05     | mg/L  | 106      | 90.0 - 110 | 127780401 |
| Barium, Total    |         | 0.0516   | 0.05     | mg/L  | 103      | 90.0 - 110 | 127780412 |
| Barium, Total    |         | 0.0532   | 0.05     | mg/L  | 106      | 90.0 - 110 | 127780421 |
| Beryllium, Total |         | 0.0484   | 0.05     | mg/L  | 96.8     | 90.0 - 110 | 127780401 |
| Beryllium, Total |         | 0.0514   | 0.05     | mg/L  | 103      | 90.0 - 110 | 127780412 |
| Beryllium, Total |         | 0.051    | 0.05     | mg/L  | 102      | 90.0 - 110 | 127780421 |
| Cadmium, Total   |         | 0.0497   | 0.05     | mg/L  | 99.4     | 90.0 - 110 | 127780401 |
| Cadmium, Total   |         | 0.0502   | 0.05     | mg/L  | 100      | 90.0 - 110 | 127780412 |
| Cadmium, Total   |         | 0.0495   | 0.05     | mg/L  | 99.0     | 90.0 - 110 | 127780421 |
| Copper, Total    |         | 0.0505   | 0.05     | mg/L  | 101      | 90.0 - 110 | 127780401 |
| Copper, Total    |         | 0.0506   | 0.05     | mg/L  | 101      | 90.0 - 110 | 127780412 |
| Copper, Total    |         | 0.0499   | 0.05     | mg/L  | 99.8     | 90.0 - 110 | 127780421 |
| Copper, Total    |         | 0.0502   | 0.05     | mg/L  | 100      | 90.0 - 110 | 127780429 |
| Copper, Total    |         | 0.0499   | 0.05     | mg/L  | 99.8     | 90.0 - 110 | 127780435 |
| Lead, Total      |         | 0.0503   | 0.05     | mg/L  | 101      | 90.0 - 110 | 127780401 |
| Lead, Total      |         | 0.0515   | 0.05     | mg/L  | 103      | 90.0 - 110 | 127780412 |
| Lead, Total      |         | 0.050    | 0.05     | mg/L  | 100      | 90.0 - 110 | 127780421 |
| Nickel, Total    |         | 0.0498   | 0.05     | mg/L  | 99.6     | 90.0 - 110 | 127780401 |
| Nickel, Total    |         | 0.0506   | 0.05     | mg/L  | 101      | 90.0 - 110 | 127780412 |
| Nickel, Total    |         | 0.050    | 0.05     | mg/L  | 100      | 90.0 - 110 | 127780421 |
| Selenium, Total  |         | 0.050    | 0.05     | mg/L  | 100      | 90.0 - 110 | 127780401 |
| Selenium, Total  |         | 0.049    | 0.05     | mg/L  | 98.0     | 90.0 - 110 | 127780412 |
| Selenium, Total  |         | 0.047    | 0.05     | mg/L  | 94.0     | 90.0 - 110 | 127780421 |
| Thallium, Total  |         | 0.0497   | 0.05     | mg/L  | 99.4     | 90.0 - 110 | 127780401 |
| Thallium, Total  |         | 0.0515   | 0.05     | mg/L  | 103      | 90.0 - 110 | 127780412 |
| Thallium, Total  |         | 0.0496   | 0.05     | mg/L  | 99.2     | 90.0 - 110 | 127780421 |

Blank

Email: Kilgore.ProjectManagement@spllabs.com

0.0506

0.0524

0.05

0.05



101

105

90.0 - 110

90.0 - 110

127780401

127780412

Report Page 23 of 55

Zinc, Total

Zinc, Total

mg/L

mg/L



Page 6 of 30

*Project* 1152756

Printed 07/30/2025

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |       | C     | CV       |            |      |           |       |       |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-------|-------|----------|------------|------|-----------|-------|-------|--------|
| <u>Parameter</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Reading | Known | Units | Recover% | Limits%    |      | File      |       |       |        |
| Zinc, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | 0.0521  | 0.05  | mg/L  | 104      | 90.0 - 110 |      | 127780421 |       |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |       | 10    | cv       |            |      |           |       |       |        |
| <u>Parameter</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Reading | Known | Units | Recover% | Limits%    |      | File      |       |       |        |
| Aluminum, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 0.0504  | 0.05  | mg/L  | 101      | 90.0 - 110 |      | 127780396 |       |       |        |
| Arsenic, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 0.0508  | 0.05  | mg/L  | 102      | 90.0 - 110 |      | 127780396 |       |       |        |
| Barium, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 0.0495  | 0.05  | mg/L  | 99.0     | 90.0 - 110 |      | 127780396 |       |       |        |
| Beryllium, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0.050   | 0.05  | mg/L  | 100      | 90.0 - 110 |      | 127780396 |       |       |        |
| Cadmium, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 0.0491  | 0.05  | mg/L  | 98.2     | 90.0 - 110 |      | 127780396 |       |       |        |
| Copper, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 0.0517  | 0.05  | mg/L  | 103      | 90.0 - 110 |      | 127780396 |       |       |        |
| Lead, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | 0.0511  | 0.05  | mg/L  | 102      | 90.0 - 110 |      | 127780396 |       |       |        |
| Nickel, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 0.0501  | 0.05  | mg/L  | 100      | 90.0 - 110 |      | 127780396 |       |       |        |
| Selenium, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 0.049   | 0.05  | mg/L  | 98.0     | 90.0 - 110 |      | 127780396 |       |       |        |
| Thallium, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 0.0502  | 0.05  | mg/L  | 100      | 90.0 - 110 |      | 127780396 |       |       |        |
| Zinc, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | 0.0524  | 0.05  | mg/L  | 105      | 90.0 - 110 |      | 127780396 |       |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |       | LCS   | Dup      |            |      |           |       |       |        |
| Parameter Parame | PrepSet | LCS     | LCSD  |       | Known    | Limits%    | LCS% | LCSD%     | Units | RPD   | Limit% |
| Aluminum, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1182727 | 0.537   | 0.532 |       | 0.500    | 85.0 - 115 | 107  | 106       | mg/L  | 0.935 | 20.0   |
| Arsenic, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1182727 | 0.518   | 0.517 |       | 0.500    | 85.0 - 115 | 104  | 103       | mg/L  | 0.193 | 20.0   |
| Barium, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1182727 | 0.520   | 0.516 |       | 0.500    | 85.0 - 115 | 104  | 103       | mg/L  | 0.772 | 20.0   |
| Beryllium, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1182727 | 0.211   | 0.211 |       | 0.200    | 85.0 - 115 | 106  | 106       | mg/L  | 0     | 20.0   |
| Cadmium, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1182727 | 0.256   | 0.253 |       | 0.250    | 85.0 - 115 | 102  | 101       | mg/L  | 1.18  | 20.0   |
| Chromium, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1182727 | 0.482   | 0.492 |       | 0.500    | 85.0 - 115 | 96.4 | 98.4      | mg/L  | 2.05  | 20.0   |
| Copper, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1182727 | 0.521   | 0.516 |       | 0.500    | 85.0 - 115 | 104  | 103       | mg/L  | 0.964 | 20.0   |
| Lead, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1182727 | 0.512   | 0.506 |       | 0.500    | 85.0 - 115 | 102  | 101       | mg/L  | 1.18  | 20.0   |
| Nickel, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1182727 | 0.517   | 0.509 |       | 0.500    | 85.0 - 115 | 103  | 102       | mg/L  | 1.56  | 20.0   |
| Selenium, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1182727 | 0.496   | 0.496 |       | 0.500    | 85.0 - 115 | 99.2 | 99.2      | mg/L  | 0     | 20.0   |
| Thallium, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1182727 | 0.517   | 0.512 |       | 0.500    | 85.0 - 115 | 103  | 102       | mg/L  | 0.972 | 20.0   |
| Zinc, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1182727 | 0.543   | 0.539 |       | 0.500    | 85.0 - 115 | 109  | 108       | mg/L  | 0.739 | 20.0   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |       | L     | DR       |            |      |           |       |       |        |
| <u>Parameter</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Reading | Known | Units | Recover% | Limits%    |      | File      |       |       |        |
| Aluminum, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 9.73    | 10    | mg/L  | 97.3     | 90.0 - 110 |      | 127780398 |       |       |        |
| Arsenic, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 9.63    | 10    | mg/L  | 96.3     | 90.0 - 110 |      | 127780398 |       |       |        |
| Barium, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 9.84    | 10    | mg/L  | 98.4     | 90.0 - 110 |      | 127780398 |       |       |        |
| Beryllium, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 9.89    | 10    | mg/L  | 98.9     | 90.0 - 110 |      | 127780398 |       |       |        |
| Cadmium, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 9.71    | 10    | mg/L  | 97.1     | 90.0 - 110 |      | 127780398 |       |       |        |
| Chromium, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 0.953   | 1     | mg/L  | 95.3     | 90.0 - 110 |      | 127780400 |       |       |        |
| Copper, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 4.58    | 5     | mg/L  | 91.6     | 90.0 - 110 |      | 127780399 |       |       |        |
| Lead, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | 9.39    | 10    | mg/L  | 93.9     | 90.0 - 110 |      | 127780398 |       |       |        |
| Nickel, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 4.53    | 5     | mg/L  | 90.6     | 90.0 - 110 |      | 127780399 |       |       |        |
| Selenium, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 9.82    | 10    | mg/L  | 98.2     | 90.0 - 110 |      | 127780398 |       |       |        |
| Thallium, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 0.916   | 1     | mg/L  | 91.6     | 90.0 - 110 |      | 127780400 |       |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |       |       |          |            |      |           |       |       |        |

CCV

Email: Kilgore.ProjectManagement@spllabs.com

9.27

10



92.7

90.0 - 110

Report Page 24 of 55

127780398

Zinc, Total

mg/L



Page 7 of 30

*Project* 1152756

Printed 07/30/2025

#### **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

MRL Check

| Parameters.      |         | D #      | <i>V</i> | rr. b.   | D        | T in trade |      | PH.       |       |       |           |
|------------------|---------|----------|----------|----------|----------|------------|------|-----------|-------|-------|-----------|
| <u>Parameter</u> |         | Reading  | Known    | Units    | Recover% | Limits%    |      | File      |       |       |           |
| Copper, Total    |         | 0.0008   | 0.001    | mg/L     | 80.0     | 25.0 - 175 |      | 127780397 |       |       |           |
| Lead, Total      |         | 0.000945 | 0.001    | mg/L     | 94.5     | 85.0 - 115 |      | 127780397 |       |       |           |
|                  |         |          |          | М        | SD       |            |      |           |       |       |           |
| <u>Parameter</u> | Sample  | MS       | MSD      | UNK      | Known    | Limits     | MS%  | MSD%      | Units | RPD   | Limit%    |
| Aluminum, Total  | 2422341 | 0.558    | 0.570    | 0.0292   | 0.500    | 70.0 - 130 | 106  | 108       | mg/L  | 2.24  | 20.0      |
| Arsenic, Total   | 2422341 | 0.516    | 0.520    | 0.00211  | 0.500    | 70.0 - 130 | 103  | 104       | mg/L  | 0.775 | 20.0      |
| Barium, Total    | 2422341 | 0.523    | 0.520    | ND       | 0.500    | 70.0 - 130 | 105  | 104       | mg/L  | 0.575 | 20.0      |
| Beryllium, Total | 2422341 | 0.216    | 0.216    | ND       | 0.200    | 70.0 - 130 | 108  | 108       | mg/L  | 0     | 20.0      |
| Cadmium, Total   | 2422341 | 0.257    | 0.256    | 0.000131 | 0.250    | 70.0 - 130 | 103  | 102       | mg/L  | 0.390 | 20.0      |
| Chromium, Total  | 2422341 | 0.480    | 0.481    | 0.00162  | 0.500    | 70.0 - 130 | 95.7 | 95.9      | mg/L  | 0.209 | 20.0      |
| Copper, Total    | 2422341 | 0.549    | 0.550    | 0.0328   | 0.500    | 70.0 - 130 | 103  | 103       | mg/L  | 0.194 | 20.0      |
| Lead, Total      | 2422341 | 0.516    | 0.518    | ND       | 0.500    | 70.0 - 130 | 103  | 104       | mg/L  | 0.387 | 20.0      |
| Nickel, Total    | 2422341 | 0.509    | 0.508    | 0.000508 | 0.500    | 70.0 - 130 | 102  | 101       | mg/L  | 0.197 | 20.0      |
| Selenium, Total  | 2422341 | 0.498    | 0.505    | ND       | 0.500    | 70.0 - 130 | 99.6 | 101       | mg/L  | 1.40  | 20.0      |
| Thallium, Total  | 2422341 | 0.519    | 0.523    | ND       | 0.500    | 70.0 - 130 | 104  | 105       | mg/L  | 0.768 | 20.0      |
| Zinc, Total      | 2422341 | 0.550    | 0.554    | 0.00874  | 0.500    | 70.0 - 130 | 108  | 109       | mg/L  | 0.736 | 20.0      |
| Aluminum, Total  | 2422662 | 0.627    | 0.631    | 0.118    | 0.500    | 70.0 - 130 | 102  | 103       | mg/L  | 0.783 | 20.0      |
| Arsenic, Total   | 2422662 | 0.526    | 0.531    | ND       | 0.500    | 70.0 - 130 | 105  | 106       | mg/L  | 0.946 | 20.0      |
| Barium, Total    | 2422662 | 0.567    | 0.565    | 0.0291   | 0.500    | 70.0 - 130 | 108  | 107       | mg/L  | 0.373 | 20.0      |
| Beryllium, Total | 2422662 | 0.213    | 0.214    | ND       | 0.200    | 70.0 - 130 | 106  | 107       | mg/L  | 0.468 | 20.0      |
| Cadmium, Total   | 2422662 | 0.257    | 0.257    | ND       | 0.250    | 70.0 - 130 | 103  | 103       | mg/L  | 0     | 20.0      |
| Copper, Total    | 2422662 | 0.495    | 0.505    | 0.00436  | 0.500    | 70.0 - 130 | 98.1 | 100       | mg/L  | 2.02  | 20.0      |
| Lead, Total      | 2422662 | 0.478    | 0.481    | ND       | 0.500    | 70.0 - 130 | 95.6 | 96.2      | mg/L  | 0.626 | 20.0      |
| Nickel, Total    | 2422662 | 0.489    | 0.497    | 0.002    | 0.500    | 70.0 - 130 | 97.4 | 99.0      | mg/L  | 1.63  | 20.0      |
| Selenium, Total  | 2422662 | 0.492    | 0.501    | ND       | 0.500    | 70.0 - 130 | 98.4 | 100       | mg/L  | 1.81  | 20.0      |
| Thallium, Total  | 2422662 | 0.486    | 0.490    | ND       | 0.500    | 70.0 - 130 | 97.2 | 98.0      | mg/L  | 0.820 | 20.0      |
| Zinc, Total      | 2422662 | 0.535    | 0.545    | 0.0256   | 0.500    | 70.0 - 130 | 102  | 104       | mg/L  | 1.94  | 20.0      |
|                  | 1100100 |          |          |          |          |            |      |           |       | ED.   | 200 0 5 4 |

Analytical Set 1183192 EPA 200.8 5.4

|                  |         |         |          |       | Blank    |            |           |
|------------------|---------|---------|----------|-------|----------|------------|-----------|
| <u>Parameter</u> | PrepSet | Reading | MDL      | MQL   | Units    |            | File      |
| Antimony, Total  | 1182727 | ND      | 0.000847 | 0.003 | mg/L     |            | 127783869 |
| Chromium, Total  | 1182727 | ND      | 0.000392 | 0.001 | mg/L     |            | 127783869 |
| Silver, Total    | 1182727 | ND      | 0.000276 | 0.001 | mg/L     |            | 127783869 |
|                  |         |         |          |       | CCV      |            |           |
| <u>Parameter</u> |         | Reading | Known    | Units | Recover% | Limits%    | File      |
| Antimony, Total  |         | 0.0492  | 0.05     | mg/L  | 98.4     | 90.0 - 110 | 127783829 |
| Antimony, Total  |         | 0.0504  | 0.05     | mg/L  | 101      | 90.0 - 110 | 127783866 |
| Antimony, Total  |         | 0.0499  | 0.05     | mg/L  | 99.8     | 90.0 - 110 | 127783876 |
| Antimony, Total  |         | 0.0549  | 0.05     | mg/L  | 110      | 90.0 - 110 | 127783885 |
| Chromium, Total  |         | 0.0497  | 0.05     | mg/L  | 99.4     | 90.0 - 110 | 127783829 |
| Chromium, Total  |         | 0.0512  | 0.05     | mg/L  | 102      | 90.0 - 110 | 127783861 |
| Chromium, Total  |         | 0.0509  | 0.05     | mg/L  | 102      | 90.0 - 110 | 127783866 |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 25 of 55

Page 8 of 30

*Project* 1152756

Printed 07/30/2025

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

|                  |         |         |        | C       | CV       |            |      |           |       |       |           |
|------------------|---------|---------|--------|---------|----------|------------|------|-----------|-------|-------|-----------|
| Parameter        |         | Reading | Known  | Units   | Recover% | Limits%    |      | File      |       |       |           |
| Chromium, Total  |         | 0.0505  | 0.05   | mg/L    | 101      | 90.0 - 110 |      | 127783876 |       |       |           |
| Chromium, Total  |         | 0.0505  | 0.05   | mg/L    | 101      | 90.0 - 110 |      | 127783885 |       |       |           |
| Silver, Total    |         | 0.0504  | 0.05   | mg/L    | 101      | 90.0 - 110 |      | 127783829 |       |       |           |
| Silver, Total    |         | 0.0506  | 0.05   | mg/L    | 101      | 90.0 - 110 |      | 127783861 |       |       |           |
| Silver, Total    |         | 0.0506  | 0.05   | mg/L    | 101      | 90.0 - 110 |      | 127783866 |       |       |           |
| Silver, Total    |         | 0.051   | 0.05   | mg/L    | 102      | 90.0 - 110 |      | 127783876 |       |       |           |
| Silver, Total    |         | 0.050   | 0.05   | mg/L    | 100      | 90.0 - 110 |      | 127783885 |       |       |           |
|                  |         |         |        | 10      | CV       |            |      |           |       |       |           |
| <u>Parameter</u> |         | Reading | Known  | Units   | Recover% | Limits%    |      | File      |       |       |           |
| Antimony, Total  |         | 0.0541  | 0.05   | mg/L    | 108      | 90.0 - 110 |      | 127783824 |       |       |           |
| Chromium, Total  |         | 0.0506  | 0.05   | mg/L    | 101      | 90.0 - 110 |      | 127783824 |       |       |           |
| Silver, Total    |         | 0.0499  | 0.05   | mg/L    | 99.8     | 90.0 - 110 |      | 127783824 |       |       |           |
|                  |         |         |        | LCS     | 5 Dup    |            |      |           |       |       |           |
| Parameter        | PrepSet | LCS     | LCSD   |         | Known    | Limits%    | LCS% | LCSD%     | Units | RPD   | Limit%    |
| Antimony, Total  | 1182727 | 0.547   | 0.548  |         | 0.500    | 85.0 - 115 | 109  | 110       | mg/L  | 0.183 | 20.0      |
| Chromium, Total  | 1182727 | 0.481   | 0.481  |         | 0.500    | 85.0 - 115 | 96.2 | 96.2      | mg/L  | 0     | 20.0      |
| Silver, Total    | 1182727 | 0.0897  | 0.0855 |         | 0.100    | 85.0 - 115 | 89.7 | 85.5      | mg/L  | 4.79  | 20.0      |
|                  |         |         |        | M       | ISD      |            |      |           |       |       |           |
| Parameter        | Sample  | MS      | MSD    | UNK     | Known    | Limits     | MS%  | MSD%      | Units | RPD   | Limit%    |
| Antimony, Total  | 2422662 | 0.540   | 0.542  | 0.00286 | 0.500    | 70.0 - 130 | 107  | 108       | mg/L  | 0.372 | 20.0      |
| Chromium, Total  | 2422662 | 0.458   | 0.461  | 0.00141 | 0.500    | 70.0 - 130 | 91.3 | 91.9      | mg/L  | 0.655 | 20.0      |
| Silver, Total    | 2422662 | 0.0848  | 0.0836 | ND      | 0.100    | 70.0 - 130 | 84.8 | 83.6      | mg/L  | 1.43  | 20.0      |
| Analytical Set   | 1183515 |         |        |         |          |            |      | <u> </u>  |       | EPA   | A 245.7 2 |
| ,                |         |         |        | AWRL    | _/LOQ C  |            |      |           |       |       |           |
| <u>Parameter</u> |         | Reading | Known  | Units   | Recover% | Limits%    |      | File      |       |       |           |

| <u>Parameter</u>           |         | Reading | Known | Units | Recover% | Limits%    | File      |
|----------------------------|---------|---------|-------|-------|----------|------------|-----------|
| Mercury, Total (low level) |         | 4.42    | 5.00  | ng/L  | 88.4     | 70.0 - 130 | 127790722 |
|                            |         |         |       | Е     | Blank    |            |           |
| Parameter Parameter        | PrepSet | Reading | MDL   | MQL   | Units    |            | File      |
| Mercury, Total (low level) | 1183417 | ND      | 1.20  | 4.00  | ng/L     |            | 127790725 |
|                            |         |         |       |       | CCV      |            |           |
| <u>Parameter</u>           |         | Reading | Known | Units | Recover% | Limits%    | File      |
| Mercury, Total (low level) |         | 23.6    | 25.0  | ng/L  | 94.4     | 87.0 - 113 | 127790723 |
| Mercury, Total (low level) |         | 25.4    | 25.0  | ng/L  | 102      | 87.0 - 113 | 127790734 |
| Mercury, Total (low level) |         | 26.7    | 25.0  | ng/L  | 107      | 87.0 - 113 | 127790745 |
| Mercury, Total (low level) |         | 26.5    | 25.0  | ng/L  | 106      | 87.0 - 113 | 127790752 |
|                            |         |         |       |       | ICL      |            |           |
| <u>Parameter</u>           |         | Reading | Known | Units | Recover% | Limits%    | File      |
| Mercury, Total (low level) |         | 45.4    | 50.0  | ng/L  | 90.8     | 90.0 - 110 | 127790720 |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 26 of 55

Page 9 of 30

*Project* 1152756

Printed 07/30/2025

#### **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

ICV Units Recover% Limits% File Parameter Reading Known Mercury, Total (low level) 24.4 25.0 ng/L 97.6 90.0 - 110 127790721 LCS Dup LCS% Parameter Parameter PrepSet LCS LCSD Known Limits% LCSD% Units RPD Limit% 1183417 21.8 22.1 25.0 76.0 - 113 87.2 Mercury, Total (low level) 88.4 ng/L 1.37 18.0 MSD MS% MSD% Parameter 1 4 1 Sample MS MSD UNKKnown Limits Units RPDLimit% Mercury, Total (low level) 2421155 24.5 25.1 2.31 26.6 63.0 - 111 83.4 85.7 ng/L 2.67 18.0 Mercury, Total (low level) 2422566 19.6 19.5 2.81 26.6 63.0 - 111 63.1 62.7 \* 0.597 18.0 ng/L

|                  | Analytical Set | 1182898 |         |         |        |             |        |           |         | EPA 624.1 |
|------------------|----------------|---------|---------|---------|--------|-------------|--------|-----------|---------|-----------|
|                  |                |         |         |         | ВІ     | FB          |        |           |         |           |
| Parameter        |                | Sample  | RefMass | Reading | %      | Limits%     |        | File      |         |           |
| BFB Mass 173     |                | 1182898 | 174     | 331     | 1.1    | 0 - 2.00    |        | 127779034 |         |           |
| BFB Mass 174     |                | 1182898 | 95.0    | 31069   | 79.7   | 50.0 - 100  |        | 127779034 |         |           |
| BFB Mass 175     |                | 1182898 | 174     | 2315    | 7.5    | 5.00 - 9.00 |        | 127779034 |         |           |
| BFB Mass 176     |                | 1182898 | 174     | 30211   | 97.2   | 95.0 - 101  |        | 127779034 |         |           |
| BFB Mass 177     |                | 1182898 | 176     | 2004    | 6.6    | 5.00 - 9.00 |        | 127779034 |         |           |
| BFB Mass 50      |                | 1182898 | 95.0    | 6013    | 15.4   | 15.0 - 40.0 |        | 127779034 |         |           |
| BFB Mass 75      |                | 1182898 | 95.0    | 17668   | 45.3   | 30.0 - 60.0 |        | 127779034 |         |           |
| BFB Mass 95      |                | 1182898 | 95.0    | 38971   | 100.0  | 100 - 100   |        | 127779034 |         |           |
| BFB Mass 96      |                | 1182898 | 95.0    | 2605    | 6.7    | 5.00 - 9.00 |        | 127779034 |         |           |
|                  |                |         |         |         | Bla    | nk          |        |           |         |           |
| Parameter        |                | PrepSet | Reading | MDL     | MQL    | Units       |        | File      |         |           |
| Acrolein         |                | 1182898 | ND      | 1.93    | 2.00   | ug/L        |        | 127779038 |         |           |
| Acrylonitrile    |                | 1182898 | ND      | 0.504   | 1.00   | ug/L        |        | 127779038 |         |           |
|                  |                |         |         |         | IS A   | reas        |        |           |         |           |
| Parameter        |                | Sample  | Туре    | Reading | CCVISM | Low         | High   | File      | PrepSet |           |
| 1,4-Dichlorobenz | eneD4 (ISTD)   | 1182898 | LCS     | 268200  | 286100 | 143000      | 429100 | 127779036 | 1182898 |           |
| 1,4-Dichlorobenz | eneD4 (ISTD)   | 1182898 | LCS Dup | 273400  | 286100 | 143000      | 429100 | 127779037 | 1182898 |           |
| 1,4-Dichlorobenz | eneD4 (ISTD)   | 1182898 | Blank   | 269400  | 286100 | 143000      | 429100 | 127779038 | 1182898 |           |
| ChlorobenzeneD   | 5 (ISTD)       | 1182898 | LCS     | 502800  | 523400 | 261700      | 785200 | 127779036 | 1182898 |           |
| ChlorobenzeneD   | 5 (ISTD)       | 1182898 | LCS Dup | 506400  | 523400 | 261700      | 785200 | 127779037 | 1182898 |           |
| ChlorobenzeneD   | 5 (ISTD)       | 1182898 | Blank   | 531600  | 523400 | 261700      | 785200 | 127779038 | 1182898 |           |
| 1,4-Dichlorobenz | eneD4 (ISTD)   | 2422364 | MS      | 260900  | 286100 | 143000      | 429100 | 127779045 | 1182898 |           |
| 1,4-Dichlorobenz | eneD4 (ISTD)   | 2422364 | MSD     | 263600  | 286100 | 143000      | 429100 | 127779046 | 1182898 |           |
| ChlorobenzeneD:  | 5 (ISTD)       | 2422364 | MS      | 481500  | 523400 | 261700      | 785200 | 127779045 | 1182898 |           |
| ChlorobenzeneD   | 5 (ISTD)       | 2422364 | MSD     | 501600  | 523400 | 261700      | 785200 | 127779046 | 1182898 |           |
| 1,4-Dichlorobenz | eneD4 (ISTD)   | 2422662 | Unknown | 246000  | 286100 | 143000      | 429100 | 127779047 | 1182898 |           |
| ChlorobenzeneD   | 5 (ISTD)       | 2422662 | Unknown | 493600  | 523400 | 261700      | 785200 | 127779047 | 1182898 |           |
|                  |                |         |         |         | IS Ret | tTime       |        |           |         |           |
| <u>Parameter</u> |                | Sample  | Туре    | Reading | CCVISM | Low         | High   | File      | PrepSet |           |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 27 of 55



Page 10 of 30

*Project* 1152756

Printed 07/30/2025

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

|                                       |                               |                |         | IS Ret               | Time                 |                   |                                        |                        |         |        |        |
|---------------------------------------|-------------------------------|----------------|---------|----------------------|----------------------|-------------------|----------------------------------------|------------------------|---------|--------|--------|
| Parameter                             | Sample                        | Туре           | Reading | CCVISM               | Low                  | High              |                                        | File                   | PrepSet |        |        |
| 1,4-DichlorobenzeneD4 (ISTD)          | 1182898                       | LCS            | 11.90   | 11.90                | 11.84                | 11.96             |                                        | 127779036              | 118289  | 8      |        |
| 1,4-DichlorobenzeneD4 (ISTD)          | 1182898                       | LCS Dup        | 11.90   | 11.90                | 11.84                | 11.96             |                                        | 127779037              | 118289  | 8      |        |
| 1,4-DichlorobenzeneD4 (ISTD)          | 1182898                       | Blank          | 11.90   | 11.90                | 11.84                | 11.96             |                                        | 127779038              | 118289  | 8      |        |
| ChlorobenzeneD5 (ISTD)                | 1182898                       | LCS            | 9.530   | 9.530                | 9.470                | 9.590             |                                        | 127779036              | 118289  | 8      |        |
| ChlorobenzeneD5 (ISTD)                | 1182898                       | LCS Dup        | 9.530   | 9.530                | 9.470                | 9.590             |                                        | 127779037              | 118289  | 8      |        |
| ChlorobenzeneD5 (ISTD)                | 1182898                       | Blank          | 9.530   | 9.530                | 9.470                | 9.590             |                                        | 127779038              | 118289  | 8      |        |
| 1,4-DichlorobenzeneD4 (ISTD)          | 2422364                       | MS             | 11.90   | 11.90                | 11.84                | 11.96             |                                        | 127779045              | 118289  | 8      |        |
| 1,4-DichlorobenzeneD4 (ISTD)          | 2422364                       | MSD            | 11.90   | 11.90                | 11.84                | 11.96             |                                        | 127779046              | 118289  | 8      |        |
| ChlorobenzeneD5 (ISTD)                | 2422364                       | MS             | 9.530   | 9.530                | 9.470                | 9.590             |                                        | 127779045              | 118289  | 8      |        |
| ChlorobenzeneD5 (ISTD)                | 2422364                       | MSD            | 9.524   | 9.530                | 9.470                | 9.590             |                                        | 127779046              | 118289  | 8      |        |
| 1,4-DichlorobenzeneD4 (ISTD)          | 2422662                       | Unknown        | 11.90   | 11.90                | 11.84                | 11.96             |                                        | 127779047              | 118289  | 8      |        |
| ChlorobenzeneD5 (ISTD)                | 2422662                       | Unknown        | 9.530   | 9.530                | 9.470                | 9.590             |                                        | 127779047              | 118289  | 8      |        |
|                                       |                               |                |         | LCS                  | Dup                  |                   |                                        |                        |         |        |        |
| Parameter_                            | PrepSet                       | LCS            | LCSD    |                      | Known                | Limits%           | LCS%                                   | LCSD%                  | Units   | RPD    | Limit% |
| Acrolein                              | 1182898                       | 21.4           | 20.1    |                      | 40.0                 | 60.0 - 140        | 53.5 *                                 | 50.2 *                 | ug/L    | 6.36   | 30.0   |
| Acrylonitrile                         | 1182898                       | 42.0           | 41.7    |                      | 40.0                 | 60.0 - 140        | 105                                    | 104                    | ug/L    | 0.957  | 30.0   |
|                                       |                               |                |         | MS                   | SD.                  |                   |                                        |                        |         |        |        |
| Parameter Parameter                   | Sample                        | MS             | MSD     | UNK                  | Known                | Limits            | MS%                                    | MSD%                   | Units   | RPD    | Limit% |
| Acrolein                              | 2422364                       | 21.5           | 10.8    | ND                   | 200                  | 40.0 - 160        | 10.8 *                                 | 5.40 *                 | ug/L    | 66.3 * | 60.0   |
| Acrylonitrile                         | 2422364                       | 214            | 202     | ND                   | 200                  | 40.0 - 160        | 107                                    | 101                    | ug/L    | 5.77   | 60.0   |
| Surrogate                             |                               |                |         |                      |                      |                   |                                        |                        |         |        |        |
| Parameter                             | Sample                        | Туре           | Reading | Known                | Units                | Recover%          | Limits%                                | File                   |         |        |        |
| 1,2-DCA-d4 (SURR)                     | 1182898                       | LCS            | 20.7    | 20.0                 | ug/L                 | 104               | 70.0 - 130                             | 127779036              |         |        |        |
| 1,2-DCA-d4 (SURR)                     | 1182898                       | LCS Dup        | 20.4    | 20.0                 | ug/L                 | 102               | 70.0 - 130                             | 127779037              |         |        |        |
| 1,2-DCA-d4 (SURR)                     | 1182898                       | Blank          | 20.1    | 20.0                 | ug/L                 | 100               | 70.0 - 130                             | 127779038              |         |        |        |
| Bromofluorobenzene (SURR)             | 1182898                       | LCS            | 20.0    | 20.0                 | ug/L                 | 100               | 70.0 - 130                             | 127779036              |         |        |        |
| Bromofluorobenzene (SURR)             | 1182898                       | LCS Dup        | 20.1    | 20.0                 | ug/L                 | 100               | 70.0 - 130                             | 127779037              |         |        |        |
| Bromofluorobenzene (SURR)             | 1182898                       | Blank          | 20.2    | 20.0                 | ug/L                 | 101               | 70.0 - 130                             | 127779038              |         |        |        |
| Dibromofluoromethane (SURR)           | 1182898                       | LCS            | 20.5    | 20.0                 | ug/L                 | 102               | 70.0 - 130                             | 127779036              |         |        |        |
| Dibromofluoromethane (SURR)           | 1182898                       | LCS Dup        | 21.0    | 20.0                 | ug/L                 | 105               | 70.0 - 130                             | 127779037              |         |        |        |
| Dibromofluoromethane (SURR)           | 1182898                       | Blank          | 19.7    | 20.0                 | ug/L                 | 98.5              | 70.0 - 130                             | 127779038              |         |        |        |
| TolueneD8 (SURR)                      | 1182898                       | LCS            | 20.3    | 20.0                 | ug/L                 | 102               | 70.0 - 130                             | 127779036              |         |        |        |
| TolueneD8 (SURR)                      | 1182898                       | LCS Dup        | 20.2    | 20.0                 | ug/L                 | 101               | 70.0 - 130                             | 127779037              |         |        |        |
| TolueneD8 (SURR)                      | 1182898                       | Blank          | 19.3    | 20.0                 | ug/L                 | 96.5              | 70.0 - 130                             | 127779038              |         |        |        |
| 1,2-DCA-d4 (SURR)                     | 2422364                       | MS             | 20.2    | 20.0                 | ug/L                 | 101               | 70.0 - 130                             | 127779045              |         |        |        |
| 1,2-DCA-d4 (SURR)                     | 2422364                       | MSD            | 20.6    | 20.0                 | ug/L                 | 103               | 70.0 - 130                             | 127779046              |         |        |        |
| Bromofluorobenzene (SURR)             | 2422364                       | MS             | 20.2    | 20.0                 | ug/L                 | 101               | 70.0 - 130                             | 127779045              |         |        |        |
| Bromofluorobenzene (SURR)             | 2422364                       | MSD            | 20.4    | 20.0                 | ug/L                 | 102               | 70.0 - 130                             | 127779046              |         |        |        |
| Dibromofluoromethane (SURR)           | 2422364                       | MS             | 20.5    | 20.0                 | ug/L                 | 102               | 70.0 - 130                             | 127779045              |         |        |        |
| Dibromofluoromethane (SURR)           | 2422364                       | MSD            | 20.8    | 20.0                 | ug/L                 | 104               | 70.0 - 130                             | 127779046              |         |        |        |
| TolueneD8 (SURR)                      | 2422264                       | MC             | 20.1    | 20.0                 | ug/L                 | 100               | 70.0 - 130                             | 127779045              |         |        |        |
|                                       | 2422364                       | MS             | 20.1    |                      | -                    | 100               |                                        |                        |         |        |        |
| TolueneD8 (SURR)<br>1,2-DCA-d4 (SURR) | 2422364<br>2422364<br>2422662 | MSD<br>Unknown | 20.1    | 20.0<br>20.0<br>20.0 | ug/L<br>ug/L<br>ug/L | 100<br>100<br>103 | 70.0 - 130<br>70.0 - 130<br>70.0 - 130 | 127779046<br>127779047 |         |        |        |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 28 of 55



# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

Page 11 of 30 Project 1152756

Printed 07/30/2025

#### Surrogate

| <u>Parameter</u>            | Sample  | Type    | Reading | Known | Units | Recover% | Limits%    | File      |
|-----------------------------|---------|---------|---------|-------|-------|----------|------------|-----------|
| Bromofluorobenzene (SURR)   | 2422662 | Unknown | 20.4    | 20.0  | ug/L  | 102      | 70.0 - 130 | 127779047 |
| Dibromofluoromethane (SURR) | 2422662 | Unknown | 20.6    | 20.0  | ug/L  | 103      | 70.0 - 130 | 127779047 |
| TolueneD8 (SURR)            | 2422662 | Unknown | 19.8    | 20.0  | ug/L  | 99.0     | 70.0 - 130 | 127779047 |

| ` /                             |         |         |         |       |             |           |           |
|---------------------------------|---------|---------|---------|-------|-------------|-----------|-----------|
| Analytical Set                  | 1182899 |         |         |       |             |           | EPA 624.1 |
| ,                               |         |         |         |       | BFB         |           |           |
| Parameter_                      | Sample  | RefMass | Reading | %     | Limits%     | File      |           |
| BFB Mass 173                    | 1182899 | 174     | 331     | 1.1   | 0 - 2.00    | 127779048 |           |
| BFB Mass 174                    | 1182899 | 95.0    | 31069   | 79.7  | 50.0 - 100  | 127779048 |           |
| BFB Mass 175                    | 1182899 | 174     | 2315    | 7.5   | 5.00 - 9.00 | 127779048 |           |
| BFB Mass 176                    | 1182899 | 174     | 30211   | 97.2  | 95.0 - 101  | 127779048 |           |
| BFB Mass 177                    | 1182899 | 176     | 2004    | 6.6   | 5.00 - 9.00 | 127779048 |           |
| BFB Mass 50                     | 1182899 | 95.0    | 6013    | 15.4  | 15.0 - 40.0 | 127779048 |           |
| BFB Mass 75                     | 1182899 | 95.0    | 17668   | 45.3  | 30.0 - 60.0 | 127779048 |           |
| BFB Mass 95                     | 1182899 | 95.0    | 38971   | 100.0 | 100 - 100   | 127779048 |           |
| BFB Mass 96                     | 1182899 | 95.0    | 2605    | 6.7   | 5.00 - 9.00 | 127779048 |           |
|                                 |         |         |         | E     | Blank       |           |           |
| <u>Parameter</u>                | PrepSet | Reading | MDL     | MQL   | Units       | File      |           |
| (MTBE) tert-Butylmethylether    | 1182899 | ND      | 0.145   | 1.00  | ug/L        | 127779052 |           |
| 1,1,1-Trichloroethane           | 1182899 | ND      | 0.227   | 1.00  | ug/L        | 127779052 |           |
| 1,1,2-Trichloroethane           | 1182899 | ND      | 0.245   | 1.00  | ug/L        | 127779052 |           |
| 1,1-Dichloroethane              | 1182899 | ND      | 0.206   | 1.00  | ug/L        | 127779052 |           |
| 1,1-Dichloroethylene            | 1182899 | ND      | 0.163   | 1.00  | ug/L        | 127779052 |           |
| 1,2-Dibromoethane (EDB)         | 1182899 | ND      | 0.133   | 1.00  | ug/L        | 127779052 |           |
| 1,2-Dichloroethane              | 1182899 | ND      | 0.174   | 1.00  | ug/L        | 127779052 |           |
| 1,2-Dichloropropane             | 1182899 | ND      | 0.0922  | 1.00  | ug/L        | 127779052 |           |
| Benzene                         | 1182899 | ND      | 0.158   | 1.00  | ug/L        | 127779052 |           |
| Bromodichloromethane            | 1182899 | ND      | 0.174   | 1.00  | ug/L        | 127779052 |           |
| Bromoform                       | 1182899 | ND      | 0.288   | 1.00  | ug/L        | 127779052 |           |
| Carbon Tetrachloride            | 1182899 | ND      | 0.137   | 1.00  | ug/L        | 127779052 |           |
| Chlorobenzene                   | 1182899 | ND      | 0.146   | 1.00  | ug/L        | 127779052 |           |
| Chloroethane                    | 1182899 | ND      | 0.595   | 1.00  | ug/L        | 127779052 |           |
| Chloroform                      | 1182899 | ND      | 0.162   | 1.00  | ug/L        | 127779052 |           |
| Chloromethane (Methyl Chloride) | 1182899 | ND      | 0.215   | 1.00  | ug/L        | 127779052 |           |
| cis-1,3-Dichloropropene         | 1182899 | ND      | 0.123   | 1.00  | ug/L        | 127779052 |           |
| Dibromochloromethane            | 1182899 | ND      | 0.143   | 1.00  | ug/L        | 127779052 |           |
| Dichloromethane                 | 1182899 | ND      | 0.319   | 1.00  | ug/L        | 127779052 |           |
| Ethylbenzene                    | 1182899 | ND      | 0.147   | 1.00  | ug/L        | 127779052 |           |
| m-Dichlorobenzene (1,3-DCB)     | 1182899 | ND      | 0.173   | 1.00  | ug/L        | 127779052 |           |
| Methyl ethyl ketone (Butanone)  | 1182899 | ND      | 0.466   | 1.00  | ug/L        | 127779052 |           |
| o-Dichlorobenzene (1,2-DCB)     | 1182899 | ND      | 0.190   | 1.00  | ug/L        | 127779052 |           |
| p-Dichlorobenzene (1,4-DCB)     | 1182899 | ND      | 0.158   | 1.00  | ug/L        | 127779052 |           |
| Tetrachloroethylene             | 1182899 | ND      | 0.239   | 1.00  | ug/L        | 127779052 |           |
| Toluene                         | 1182899 | ND      | 0.181   | 1.00  | ug/L        | 127779052 |           |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 29 of 55



Page 12 of 30

*Project* 1152756

Printed 07/30/2025

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

|                              |         |         |         | Bla    | ank    |            |      |           |         |       |        |
|------------------------------|---------|---------|---------|--------|--------|------------|------|-----------|---------|-------|--------|
| <u>Parameter</u>             | PrepSet | Reading | MDL     | MQL    | Units  |            |      | File      |         |       |        |
| trans-1,2-Dichloroethylene   | 1182899 | ND      | 0.231   | 1.00   | ug/L   |            |      | 127779052 |         |       |        |
| trans-1,3-Dichloropropene    | 1182899 | ND      | 0.121   | 1.00   | ug/L   |            |      | 127779052 |         |       |        |
| Trichloroethylene            | 1182899 | ND      | 0.153   | 1.00   | ug/L   |            |      | 127779052 |         |       |        |
| Vinyl chloride               | 1182899 | ND      | 0.222   | 1.00   | ug/L   |            |      | 127779052 |         |       |        |
|                              |         |         |         | IS A   | reas   |            |      |           |         |       |        |
| Parameter                    | Sample  | Type    | Reading | CCVISM | Low    | High       |      | File      | PrepSet | f     |        |
| 1,4-DichlorobenzeneD4 (ISTD) | 1182899 | LCS     | 268200  | 286100 | 143000 | 429100     |      | 127779050 | 118289  | 9     |        |
| 1,4-DichlorobenzeneD4 (ISTD) | 1182899 | LCS Dup | 273400  | 286100 | 143000 | 429100     |      | 127779051 | 118289  | 9     |        |
| 1,4-DichlorobenzeneD4 (ISTD) | 1182899 | Blank   | 269400  | 286100 | 143000 | 429100     |      | 127779052 | 118289  | 9     |        |
| ChlorobenzeneD5 (ISTD)       | 1182899 | LCS     | 502800  | 523400 | 261700 | 785200     |      | 127779050 | 118289  | 9     |        |
| ChlorobenzeneD5 (ISTD)       | 1182899 | LCS Dup | 506400  | 523400 | 261700 | 785200     |      | 127779051 | 118289  | 9     |        |
| ChlorobenzeneD5 (ISTD)       | 1182899 | Blank   | 531600  | 523400 | 261700 | 785200     |      | 127779052 | 118289  | 9     |        |
| 1,4-DichlorobenzeneD4 (ISTD) | 2422364 | MS      | 260900  | 286100 | 143000 | 429100     |      | 127779058 | 118289  | 9     |        |
| 1,4-DichlorobenzeneD4 (ISTD) | 2422364 | MSD     | 263600  | 286100 | 143000 | 429100     |      | 127779059 | 118289  | 9     |        |
| ChlorobenzeneD5 (ISTD)       | 2422364 | MS      | 481500  | 523400 | 261700 | 785200     |      | 127779058 | 118289  | 9     |        |
| ChlorobenzeneD5 (ISTD)       | 2422364 | MSD     | 501600  | 523400 | 261700 | 785200     |      | 127779059 | 118289  | 9     |        |
| 1,4-DichlorobenzeneD4 (ISTD) | 2422662 | Unknown | 248500  | 286100 | 143000 | 429100     |      | 127779060 | 118289  | 9     |        |
| ChlorobenzeneD5 (ISTD)       | 2422662 | Unknown | 484300  | 523400 | 261700 | 785200     |      | 127779060 | 118289  | 9     |        |
| IS RetTime                   |         |         |         |        |        |            |      |           |         |       |        |
| Parameter                    | Sample  | Type    | Reading | CCVISM | Low    | High       |      | File      | PrepSet | +     |        |
| 1,4-DichlorobenzeneD4 (ISTD) | 1182899 | LCS     | 11.90   | 11.90  | 11.84  | 11.96      |      | 127779050 | 118289  |       |        |
| 1,4-DichlorobenzeneD4 (ISTD) | 1182899 | LCS Dup | 11.90   | 11.90  | 11.84  | 11.96      |      | 127779051 | 118289  |       |        |
| 1,4-DichlorobenzeneD4 (ISTD) | 1182899 | Blank   | 11.90   | 11.90  | 11.84  | 11.96      |      | 127779052 | 118289  |       |        |
| ChlorobenzeneD5 (ISTD)       | 1182899 | LCS     | 9.530   | 9.530  | 9.470  | 9.590      |      | 127779050 | 118289  |       |        |
| ChlorobenzeneD5 (ISTD)       | 1182899 | LCS Dup | 9.530   | 9.530  | 9.470  | 9.590      |      | 127779051 | 118289  |       |        |
| ChlorobenzeneD5 (ISTD)       | 1182899 | Blank   | 9.530   | 9.530  | 9.470  | 9.590      |      | 127779052 | 118289  |       |        |
| 1,4-DichlorobenzeneD4 (ISTD) | 2422364 | MS      | 11.90   | 11.90  | 11.84  | 11.96      |      | 127779058 | 118289  |       |        |
| 1,4-DichlorobenzeneD4 (ISTD) | 2422364 | MSD     | 11.90   | 11.90  | 11.84  | 11.96      |      | 127779059 | 118289  |       |        |
| ChlorobenzeneD5 (ISTD)       | 2422364 | MS      | 9.530   | 9.530  | 9.470  | 9.590      |      | 127779058 | 118289  |       |        |
| ChlorobenzeneD5 (ISTD)       | 2422364 | MSD     | 9.524   | 9.530  | 9.470  | 9.590      |      | 127779059 | 118289  |       |        |
| 1,4-DichlorobenzeneD4 (ISTD) | 2422662 | Unknown |         | 11.90  | 11.84  | 11.96      |      | 127779060 | 118289  |       |        |
| ChlorobenzeneD5 (ISTD)       | 2422662 | Unknown |         | 9.530  | 9.470  | 9.590      |      | 127779060 | 118289  |       |        |
|                              |         |         |         |        | Dup    |            |      |           |         |       |        |
| <u>Parameter</u>             | PrepSet | LCS     | LCSD    |        | Known  | Limits%    | LCS% | LCSD%     | Units   | RPD   | Limit% |
| (MTBE) tert-Butylmethylether | 1182899 | 20.7    | 20.5    |        | 20.0   | 70.8 - 125 | 104  | 102       | ug/L    | 1.94  | 30.0   |
| 1,1,1-Trichloroethane        | 1182899 | 20.5    | 20.4    |        | 20.0   | 70.0 - 130 | 102  | 102       | ug/L    | 0     | 21.0   |
| 1,1,2,2-Tetrachloroethane    | 1182899 | 20.3    | 19.6    |        | 20.0   | 60.0 - 140 | 102  | 98.0      | ug/L    | 4.00  | 36.0   |
| 1,1,2-Trichloroethane        | 1182899 | 20.5    | 19.6    |        | 20.0   | 70.0 - 130 | 102  | 98.0      | ug/L    | 4.00  | 27.0   |
| 1,1-Dichloroethane           | 1182899 | 21.8    | 21.5    |        | 20.0   | 70.0 - 130 | 109  | 108       | ug/L    | 0.922 | 24.0   |
| 1,1-Dichloroethylene         | 1182899 | 20.9    | 20.3    |        | 20.0   | 50.0 - 150 | 104  | 102       | ug/L    | 1.94  | 40.0   |
| 1,2-Dibromoethane (EDB)      | 1182899 | 19.6    | 19.0    |        | 20.0   | 78.4 - 122 | 98.0 | 95.0      | ug/L    | 3.11  | 30.0   |
| 1,2-Dichloroethane           | 1182899 | 20.0    | 19.8    |        | 20.0   | 70.0 - 130 | 100  | 99.0      | ug/L    | 1.01  | 29.0   |
| 1,2-Dichloropropane          | 1182899 | 21.2    | 20.8    |        | 20.0   | 35.0 - 165 | 106  | 104       | ug/L    | 1.90  | 69.0   |
|                              |         |         |         |        |        |            |      |           | 2       |       |        |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 30 of 55



Page 13 of 30

*Project* 1152756

Printed 07/30/2025

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

| <b>y</b>                        |         |       |       | LC  | S Dup      |             |      |       |       |       |        |
|---------------------------------|---------|-------|-------|-----|------------|-------------|------|-------|-------|-------|--------|
| <u>Parameter</u>                | PrepSet | LCS   | LCSD  |     | Known      | Limits%     | LCS% | LCSD% | Units | RPD   | Limit% |
| 2-Chloroethylvinyl ether        | 1182899 | 0.710 | 0.690 |     | 20.0       | 0.100 - 225 | 3.55 | 3.45  | ug/L  | 2.86  | 130    |
| Benzene                         | 1182899 | 20.6  | 20.3  |     | 20.0       | 65.0 - 135  | 103  | 102   | ug/L  | 0.976 | 33.0   |
| Bromodichloromethane            | 1182899 | 20.5  | 20.0  |     | 20.0       | 65.0 - 135  | 102  | 100   | ug/L  | 1.98  | 34.0   |
| Bromoform                       | 1182899 | 20.7  | 20.1  |     | 20.0       | 70.0 - 130  | 104  | 100   | ug/L  | 3.92  | 25.0   |
| Bromomethane (Methyl Bromi      | 1182899 | 22.0  | 22.6  |     | 20.0       | 15.0 - 185  | 110  | 113   | ug/L  | 2.69  | 90.0   |
| Carbon Tetrachloride            | 1182899 | 21.0  | 20.7  |     | 20.0       | 70.0 - 130  | 105  | 104   | ug/L  | 0.957 | 26.0   |
| Chlorobenzene                   | 1182899 | 19.9  | 19.5  |     | 20.0       | 65.0 - 135  | 99.5 | 97.5  | ug/L  | 2.03  | 29.0   |
| Chloroethane                    | 1182899 | 23.4  | 23.0  |     | 20.0       | 40.0 - 160  | 117  | 115   | ug/L  | 1.72  | 47.0   |
| Chloroform                      | 1182899 | 21.1  | 20.8  |     | 20.0       | 70.0 - 135  | 106  | 104   | ug/L  | 1.90  | 32.0   |
| Chloromethane (Methyl Chloride) | 1182899 | 21.0  | 20.6  |     | 20.0       | 0.100 - 205 | 105  | 103   | ug/L  | 1.92  | 472    |
| cis-1,3-Dichloropropene         | 1182899 | 19.7  | 19.2  |     | 20.0       | 25.0 - 175  | 98.5 | 96.0  | ug/L  | 2.57  | 79.0   |
| Dibromochloromethane            | 1182899 | 18.6  | 18.0  |     | 20.0       | 70.0 - 135  | 93.0 | 90.0  | ug/L  | 3.28  | 30.0   |
| Dichloromethane                 | 1182899 | 20.1  | 19.9  |     | 20.0       | 60.0 - 140  | 100  | 99.5  | ug/L  | 0.501 | 192    |
| Ethylbenzene                    | 1182899 | 20.0  | 19.7  |     | 20.0       | 60.0 - 140  | 100  | 98.5  | ug/L  | 1.51  | 34.0   |
| m-Dichlorobenzene (1,3-DCB)     | 1182899 | 19.3  | 18.8  |     | 20.0       | 70.0 - 130  | 96.5 | 94.0  | ug/L  | 2.62  | 24.0   |
| Methyl ethyl ketone (Butanone)  | 1182899 | 21.7  | 21.1  |     | 20.0       | 62.3 - 136  | 108  | 106   | ug/L  | 1.87  | 30.0   |
| o-Dichlorobenzene (1,2-DCB)     | 1182899 | 19.1  | 18.5  |     | 20.0       | 65.0 - 135  | 95.5 | 92.5  | ug/L  | 3.19  | 31.0   |
| p-Dichlorobenzene (1,4-DCB)     | 1182899 | 19.2  | 19.0  |     | 20.0       | 65.0 - 135  | 96.0 | 95.0  | ug/L  | 1.05  | 31.0   |
| Tetrachloroethylene             | 1182899 | 19.3  | 18.7  |     | 20.0       | 70.0 - 130  | 96.5 | 93.5  | ug/L  | 3.16  | 23.0   |
| Toluene                         | 1182899 | 20.4  | 20.0  |     | 20.0       | 70.0 - 130  | 102  | 100   | ug/L  | 1.98  | 22.0   |
| trans-1,2-Dichloroethylene      | 1182899 | 20.2  | 20.0  |     | 20.0       | 70.0 - 130  | 101  | 100   | ug/L  | 0.995 | 27.0   |
| trans-1,3-Dichloropropene       | 1182899 | 20.6  | 20.0  |     | 20.0       | 50.0 - 150  | 103  | 100   | ug/L  | 2.96  | 52.0   |
| Trichloroethylene               | 1182899 | 20.8  | 20.6  |     | 20.0       | 65.0 - 135  | 104  | 103   | ug/L  | 0.966 | 29.0   |
| Vinyl chloride                  | 1182899 | 24.3  | 23.4  |     | 20.0       | 5.00 - 195  | 122  | 117   | ug/L  | 4.18  | 100    |
|                                 |         |       |       | N   | <b>ISD</b> |             |      |       |       |       |        |
| <u>Parameter</u>                | Sample  | MS    | MSD   | UNK | Known      | Limits      | MS%  | MSD%  | Units | RPD   | Limit% |
| (MTBE) tert-Butylmethylether    | 2422364 | 95.6  | 91.6  | ND  | 100        | 28.8 - 124  | 95.6 | 91.6  | ug/L  | 4.27  | 30.0   |
| 1,1,1-Trichloroethane           | 2422364 | 93.5  | 90.1  | ND  | 100        | 52.0 - 162  | 93.5 | 90.1  | ug/L  | 3.70  | 36.0   |
| 1,1,2,2-Tetrachloroethane       | 2422364 | 91.8  | 91.8  | ND  | 100        | 46.0 - 157  | 91.8 | 91.8  | ug/L  | 0     | 61.0   |
| 1,1,2-Trichloroethane           | 2422364 | 94.8  | 91.6  | ND  | 100        | 52.0 - 150  | 94.8 | 91.6  | ug/L  | 3.43  | 45.0   |
| 1,1-Dichloroethane              | 2422364 | 100   | 96.6  | ND  | 100        | 59.0 - 155  | 100  | 96.6  | ug/L  | 3.46  | 40.0   |
| 1,1-Dichloroethylene            | 2422364 | 95.2  | 90.1  | ND  | 100        | 0.100 - 234 | 95.2 | 90.1  | ug/L  | 5.50  | 32.0   |
| 1,2-Dibromoethane (EDB)         | 2422364 | 89.4  | 86.3  | ND  | 100        | 49.3 - 120  | 89.4 | 86.3  | ug/L  | 3.53  | 30.0   |
| 1,2-Dichloroethane              | 2422364 | 90.6  | 88.2  | ND  | 100        | 49.0 - 155  | 90.6 | 88.2  | ug/L  | 2.68  | 49.0   |
| 1,2-Dichloropropane             | 2422364 | 96.5  | 93.2  | ND  | 100        | 0.100 - 210 | 96.5 | 93.2  | ug/L  | 3.48  | 55.0   |
| 2-Chloroethylvinyl ether        | 2422364 | 3.80  | 2.65  | ND  | 100        | 0.100 - 305 | 3.80 | 2.65  | ug/L  | 35.7  | 71.0   |
| Benzene                         | 2422364 | 92.7  | 90.4  | ND  | 100        | 37.0 - 151  | 92.7 | 90.4  | ug/L  | 2.51  | 61.0   |
| Bromodichloromethane            | 2422364 | 94.7  | 90.2  | ND  | 100        | 35.0 - 155  | 94.7 | 90.2  | ug/L  | 4.87  | 56.0   |
| Bromoform                       | 2422364 | 96.3  | 95.9  | ND  | 100        | 45.0 - 169  | 96.3 | 95.9  | ug/L  | 0.416 | 42.0   |
| Bromomethane (Methyl Bromi      | 2422364 | 100   | 97.2  | ND  | 100        | 0.100 - 242 | 100  | 97.2  | ug/L  | 2.84  | 61.0   |
| Carbon Tetrachloride            | 2422364 | 96.5  | 92.5  | ND  | 100        | 70.0 - 140  | 96.5 | 92.5  | ug/L  | 4.23  | 41.0   |
| Chlorobenzene                   | 2422364 | 92.1  | 87.7  | ND  | 100        | 37.0 - 160  | 92.1 | 87.7  | ug/L  | 4.89  | 53.0   |
| Chloroethane                    | 2422364 | 106   | 100   | ND  | 100        | 14.0 - 230  | 106  | 100   | ug/L  | 5.83  | 78.0   |
| Chloroform                      | 2422364 | 96.4  | 92.8  | ND  | 100        | 51.0 - 138  | 96.4 | 92.8  | ug/L  | 3.81  | 54.0   |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 31 of 55



Page 14 of 30

*Project* 1152756

Printed 07/30/2025

#### **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

UNK MSD% Sample MS **MSD** Known Limits MS% Units **RPD** Limit% 0.100 - 273 ug/L Chloromethane (Methyl Chloride) 2422364 96.2 89.8 ND 100 96.2 89.8 6.88 60.0 2422364 89.8 86.0 ND 100 0.100 - 22789.8 86.0 cis-1,3-Dichloropropene ug/L 4.32 58.0 Dibromochloromethane 2422364 85.6 80.8 ND 100 53.0 - 149 85.6 80.8 ug/L 5.77 50.0 Dichloromethane 2422364 92.8 89.2 1.25 100 0.100 - 221 91.6 88.0 ug/L 4.01 28.0 37.0 - 162 Ethylbenzene 2422364 90.5 87.4 ND 100 90.5 87.4 ug/L 3.49 63.0 2422364 82 6 ND 100 m-Dichlorobenzene (1,3-DCB) 83.0 59.0 - 156 83.0 82.6 0.483 43.0 ug/L Methyl ethyl ketone (Butanone) 2422364 111 106 ND 100 0.100 - 211 111 106 ug/L 4.61 30.0 o-Dichlorobenzene (1,2-DCB) 2422364 83.9 84.0 ND 100 18.0 - 190 83.9 84.0 ug/L 0.119 57.0 18.0 - 190 p-Dichlorobenzene (1,4-DCB) 2422364 82.0 83.9 ND 100 82.0 83.9 ug/L 2.29 57.0 88.0 64.0 - 148 Tetrachloroethylene 2422364 82.8 ND 100 88.0 82.8 ug/L 6.09 39.0 2422364 94.5 89.4 ND 100 47.0 - 150 94.5 89.4 ug/L 5.55 41.0 Toluene ug/L trans-1,2-Dichloroethylene 2422364 91.9 86.6 ND 100 54.0 - 156 91.9 86.6 5.94 45.0 trans-1,3-Dichloropropene 2422364 94.8 90.8 ND 100 17.0 - 183 90.8 4.31 86.0 94.8 ug/L ND Trichloroethylene 2422364 95.7 91.7 100 70.0 - 157 95.7 91.7 ug/L 4.27 48.0 Vinyl chloride 2422364 105 99.2 ND 0.100 - 251 105 100 99.2 ug/L 5.68 66.0 Surrogate Sample Type Reading Known Units Recover% Limits% File Parameter 1182899 LCS 20.7 20.0 ug/L 104 70.0 - 130127779050 1,2-DCA-d4 (SURR) 1,2-DCA-d4 (SURR) 1182899 LCS Dup 20.4 20.0 ug/L 102 70.0 - 130 127779051 Blank 20.1 100 70.0 - 130 127779052 1,2-DCA-d4 (SURR) 1182899 20.0 ug/L LCS 20.0 20.0 100 70.0 - 130 127779050 Bromofluorobenzene (SURR) 1182899 ug/L 20.1 20.0 100 70.0 - 130 Bromofluorobenzene (SURR) 1182899 LCS Dup ug/L 127779051 Bromofluorobenzene (SURR) 1182899 Blank 20.2 20.0 ug/L 101 70.0 - 130 127779052 Dibromofluoromethane (SURR) 1182899 LCS 20.5 20.0 ug/L 102 70.0 - 130 127779050 LCS Dup 21.0 ug/L 105 Dibromofluoromethane (SURR) 1182899 20.0 70.0 - 130127779051 19.7 98.5 Dibromofluoromethane (SURR) 1182899 Blank 20.0 ug/L 70.0 - 130 127779052 TolueneD8 (SURR) 1182899 20.3 102 70.0 - 130 127779050 20.0 ug/L TolueneD8 (SURR) 1182899 LCS Dup 20.2 20.0 101 70.0 - 130 127779051 ug/L TolueneD8 (SURR) 19.3 96.5 70.0 - 130 1182899 Blank 20.0 127779052 ug/L 1,2-DCA-d4 (SURR) 2422364 MS 20.2 20.0 ug/L 101 70.0 - 130 127779058 1,2-DCA-d4 (SURR) 70.0 - 130 2422364 MSD 20.6 20.0 ug/L 103 127779059 MS 20.2 20.0 101 70.0 - 130 127779058 2422364 ug/L Bromofluorobenzene (SURR) MSD 20.4 20.0 102 70.0 - 130 127779059 Bromofluorobenzene (SURR) 2422364 ug/L 2422364 MS 20.5 20.0 102 70.0 - 130 127779058 Dibromofluoromethane (SURR) ug/L Dibromofluoromethane (SURR) 2422364 MSD 20.8 20.0 ug/L 104 70.0 - 130 127779059 TolueneD8 (SURR) 2422364 MS 20.1 20.0 100 70.0 - 130127779058 ug/L TolueneD8 (SURR) 2422364 MSD 20.1 20.0 ug/L 100 70.0 - 130 127779059 1,2-DCA-d4 (SURR) 2422662 Unknown 20.6 20.0 ug/L 103 70.0 - 130 127779060 Bromofluorobenzene (SURR) 2422662 19.6 20.0 98.0 70.0 - 130 Unknown ug/L 127779060 Dibromofluoromethane (SURR) 2422662 20.1 20.0 100 70.0 - 130 127779060 Unknown ug/L

MSD

Analytical Set 1183351 EPA 617

98.5

70.0 - 130

127779060

ug/L

Email: Kilgore.ProjectManagement@spllabs.com

2422662

Unknown

19.7



Report Page 32 of 55

TolueneD8 (SURR)

20.0

Page 15 of 30

*Project* 1152756

Printed 07/30/2025

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

|                             |         |         |         | ВІ    | ank      |             |            |           |       |       |          |
|-----------------------------|---------|---------|---------|-------|----------|-------------|------------|-----------|-------|-------|----------|
| Parameter                   | PrepSet | Reading | MDL     | MQL   | Units    |             |            | File      |       |       |          |
| Kelthane (Dicofol)          | 1182868 | ND      | 7.98    | 10.0  | ug/L     |             |            | 127786471 |       |       |          |
| Methoxychlor                | 1182868 | ND      | 0.846   | 1.00  | ug/L     |             |            | 127786471 |       |       |          |
| Mirex                       | 1182868 | ND      | 0.607   | 1.00  | ug/L     |             |            | 127786471 |       |       |          |
|                             |         |         |         | C     | :cv      |             |            |           |       |       |          |
| Parameter                   |         | Reading | Known   | Units | Recover% | Limits%     |            | File      |       |       |          |
| Kelthane (Dicofol)          |         | 105     | 100     | ug/L  | 105      | 60.0 - 130  |            | 127786470 |       |       |          |
| Kelthane (Dicofol)          |         | 90.2    | 100     | ug/L  | 90.2     | 60.0 - 130  |            | 127786475 |       |       |          |
| Methoxychlor                |         | 51.6    | 50.0    | ug/L  | 103      | 70.0 - 130  |            | 127786470 |       |       |          |
| Methoxychlor                |         | 52.3    | 50.0    | ug/L  | 105      | 70.0 - 130  |            | 127786475 |       |       |          |
| Mirex                       |         | 48.3    | 50.0    | ug/L  | 96.7     | 70.0 - 130  |            | 127786470 |       |       |          |
| Mirex                       |         | 52.6    | 50.0    | ug/L  | 105      | 70.0 - 130  |            | 127786475 |       |       |          |
|                             |         |         |         | LCS   | 5 Dup    |             |            |           |       |       |          |
| Parameter                   | PrepSet | LCS     | LCSD    |       | Known    | Limits%     | LCS%       | LCSD%     | Units | RPD   | Limit%   |
| Kelthane (Dicofol)          | 1182868 | 124     | 128     |       | 100      | 0.100 - 137 | 124        | 128       | ug/L  | 3.17  | 30.0     |
| Methoxychlor                | 1182868 | 72.3    | 72.2    |       | 100      | 21.5 - 151  | 72.3       | 72.2      | ug/L  | 0.138 | 30.0     |
| Mirex                       | 1182868 | 51.0    | 46.5    |       | 100      | 11.6 - 140  | 51.0       | 46.5      | ug/L  | 9.23  | 30.0     |
|                             |         |         |         | Surr  | ogate    |             |            |           |       |       |          |
| Parameter                   | Sample  | Туре    | Reading | Known | Units    | Recover%    | Limits%    | File      |       |       |          |
| Decachlorobiphenyl          |         | CCV     | 49.1    | 100   | ug/L     | 49.1        | 10.0 - 150 | 127786470 |       |       |          |
| Decachlorobiphenyl          |         | CCV     | 50.4    | 100   | ug/L     | 50.4        | 10.0 - 150 | 127786475 |       |       |          |
| Tetrachloro-m-Xylene (Surr) |         | CCV     | 46.8    | 100   | ug/L     | 46.8        | 10.0 - 150 | 127786470 |       |       |          |
| Tetrachloro-m-Xylene (Surr) |         | CCV     | 45.4    | 100   | ug/L     | 45.4        | 10.0 - 150 | 127786475 |       |       |          |
| Decachlorobiphenyl          | 1182868 | Blank   | 41.6    | 100   | ug/L     | 41.6        | 10.0 - 150 | 127786471 |       |       |          |
| Decachlorobiphenyl          | 1182868 | LCS     | 49.5    | 100   | ug/L     | 49.5        | 10.0 - 150 | 127786472 |       |       |          |
| Decachlorobiphenyl          | 1182868 | LCS Dup | 43.5    | 100   | ug/L     | 43.5        | 10.0 - 150 | 127786473 |       |       |          |
| Tetrachloro-m-Xylene (Surr) | 1182868 | Blank   | 38.0    | 100   | ug/L     | 38.0        | 10.0 - 150 | 127786471 |       |       |          |
| Tetrachloro-m-Xylene (Surr) | 1182868 | LCS     | 44.0    | 100   | ug/L     | 44.0        | 10.0 - 150 | 127786472 |       |       |          |
| Tetrachloro-m-Xylene (Surr) | 1182868 | LCS Dup | 43.9    | 100   | ug/L     | 43.9        | 10.0 - 150 | 127786473 |       |       |          |
| Decachlorobiphenyl          | 2422662 | Unknown | 0.0517  | 0.108 | ug/L     | 47.9        | 10.0 - 150 | 127786474 |       |       |          |
| Tetrachloro-m-Xylene (Surr) | 2422662 | Unknown | 0.0473  | 0.108 | ug/L     | 43.8        | 10.0 - 150 | 127786474 |       |       |          |
| Analytical Set              | 1183353 |         |         |       |          |             |            |           |       | El    | PA 608.3 |

Analytical Set 1183353 EPA 608.3

|                                  | Biank   |         |       |      |       |           |  |  |  |  |
|----------------------------------|---------|---------|-------|------|-------|-----------|--|--|--|--|
| <u>Parameter</u>                 | PrepSet | Reading | MDL   | MQL  | Units | File      |  |  |  |  |
| 4,4-DDD                          | 1182868 | ND      | 0.528 | 1.00 | ug/L  | 127786485 |  |  |  |  |
| 4,4-DDE                          | 1182868 | ND      | 0.370 | 1.00 | ug/L  | 127786485 |  |  |  |  |
| 4,4-DDT                          | 1182868 | ND      | 0.696 | 1.00 | ug/L  | 127786485 |  |  |  |  |
| Aldrin                           | 1182868 | ND      | 0.157 | 1.00 | ug/L  | 127786485 |  |  |  |  |
| Alpha-BHC(hexachlorocyclohexane) | 1182868 | ND      | 0.266 | 1.00 | ug/L  | 127786485 |  |  |  |  |
| Beta-BHC(hexachlorocyclohexane)  | 1182868 | 0.866   | 0.228 | 1.00 | ug/L  | 127786485 |  |  |  |  |
| Delta-BHC(hexachlorocyclohexane) | 1182868 | ND      | 0.601 | 1.00 | ug/L  | 127786485 |  |  |  |  |
| Dieldrin                         | 1182868 | ND      | 0.196 | 1.00 | ug/L  | 127786485 |  |  |  |  |
| Endosulfan I (alpha)             | 1182868 | ND      | 0.257 | 1.00 | ug/L  | 127786485 |  |  |  |  |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 33 of 55



Page 16 of 30

3

*Project* 1152756

Printed 07/30/2025

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

|                                  |         |         |       | ы     | alik     |              |           |
|----------------------------------|---------|---------|-------|-------|----------|--------------|-----------|
| <u>Parameter</u>                 | PrepSet | Reading | MDL   | MQL   | Units    |              | File      |
| Endosulfan II (beta)             | 1182868 | ND      | 0.287 | 1.00  | ug/L     |              | 127786485 |
| Endosulfan sulfate               | 1182868 | ND      | 0.371 | 1.00  | ug/L     |              | 127786485 |
| Endrin                           | 1182868 | ND      | 0.294 | 1.00  | ug/L     |              | 127786485 |
| Endrin aldehyde                  | 1182868 | ND      | 0.452 | 1.00  | ug/L     |              | 127786485 |
| Gamma-BHC(Lindane)               | 1182868 | ND      | 0.398 | 1.00  | ug/L     |              | 127786485 |
| Heptachlor                       | 1182868 | ND      | 0.292 | 1.00  | ug/L     |              | 127786485 |
| Heptachlor epoxide               | 1182868 | ND      | 0.287 | 1.00  | ug/L     |              | 127786485 |
| Toxaphene                        | 1182868 | ND      | 7.39  | 10.0  | ug/L     |              | 127786485 |
|                                  |         |         |       | C     | CV       |              |           |
| <u>Parameter</u>                 |         | Reading | Known | Units | Recover% | Limits%      | File      |
| 4,4-DDD                          |         | 53.5    | 50.0  | ug/L  | 107      | 75.0 - 125   | 127786484 |
| 4,4-DDD                          |         | 66.9    | 50.0  | ug/L  | 134      | 75.0 - 125 * | 127786489 |
| 4,4-DDE                          |         | 50.8    | 50.0  | ug/L  | 102      | 75.0 - 125   | 127786484 |
| 4,4-DDE                          |         | 56.5    | 50.0  | ug/L  | 113      | 75.0 - 125   | 127786489 |
| 4,4-DDT                          |         | 58.1    | 50.0  | ug/L  | 116      | 75.0 - 125   | 127786484 |
| 4,4-DDT                          |         | 47.5    | 50.0  | ug/L  | 95.0     | 75.0 - 125   | 127786489 |
| Aldrin                           |         | 50.3    | 50.0  | ug/L  | 101      | 75.0 - 125   | 127786484 |
| Aldrin                           |         | 58.3    | 50.0  | ug/L  | 117      | 75.0 - 125   | 127786489 |
| Alpha-BHC(hexachlorocyclohexane) |         | 50.1    | 50.0  | ug/L  | 100      | 75.0 - 125   | 127786484 |
| Alpha-BHC(hexachlorocyclohexane) |         | 60.7    | 50.0  | ug/L  | 121      | 75.0 - 125   | 127786489 |
| Beta-BHC(hexachlorocyclohexane)  |         | 48.1    | 50.0  | ug/L  | 96.2     | 75.0 - 125   | 127786484 |
| Beta-BHC(hexachlorocyclohexane)  |         | 56.0    | 50.0  | ug/L  | 112      | 75.0 - 125   | 127786489 |
| Delta-BHC(hexachlorocyclohexane) |         | 50.6    | 50.0  | ug/L  | 101      | 75.0 - 125   | 127786484 |
| Delta-BHC(hexachlorocyclohexane) |         | 59.8    | 50.0  | ug/L  | 120      | 75.0 - 125   | 127786489 |
| Dieldrin                         |         | 51.0    | 50.0  | ug/L  | 102      | 75.0 - 125   | 127786484 |
| Dieldrin                         |         | 59.3    | 50.0  | ug/L  | 119      | 75.0 - 125   | 127786489 |
| Endosulfan I (alpha)             |         | 52.1    | 50.0  | ug/L  | 104      | 75.0 - 125   | 127786484 |
| Endosulfan I (alpha)             |         | 59.9    | 50.0  | ug/L  | 120      | 75.0 - 125   | 127786489 |
| Endosulfan II (beta)             |         | 50.9    | 50.0  | ug/L  | 102      | 75.0 - 125   | 127786484 |
| Endosulfan II (beta)             |         | 58.9    | 50.0  | ug/L  | 118      | 75.0 - 125   | 127786489 |
| Endosulfan sulfate               |         | 49.4    | 50.0  | ug/L  | 98.8     | 75.0 - 125   | 127786484 |
| Endosulfan sulfate               |         | 58.8    | 50.0  | ug/L  | 118      | 75.0 - 125   | 127786489 |
| Endrin                           |         | 51.3    | 50.0  | ug/L  | 103      | 75.0 - 125   | 127786484 |
| Endrin                           |         | 61.5    | 50.0  | ug/L  | 123      | 75.0 - 125   | 127786489 |
| Endrin aldehyde                  |         | 50.6    | 50.0  | ug/L  | 101      | 75.0 - 125   | 127786484 |
| Endrin aldehyde                  |         | 49.0    | 50.0  | ug/L  | 98.0     | 75.0 - 125   | 127786489 |
| Gamma-BHC(Lindane)               |         | 49.4    | 50.0  | ug/L  | 98.8     | 75.0 - 125   | 127786484 |
| Gamma-BHC(Lindane)               |         | 54.0    | 50.0  | ug/L  | 108      | 75.0 - 125   | 127786489 |
| Heptachlor                       |         | 48.3    | 50.0  | ug/L  | 96.6     | 75.0 - 125   | 127786484 |
| Heptachlor                       |         | 50.4    | 50.0  | ug/L  | 101      | 75.0 - 125   | 127786489 |
| Heptachlor epoxide               |         | 48.9    | 50.0  | ug/L  | 97.8     | 75.0 - 125   | 127786484 |
|                                  |         |         |       | _     |          |              |           |

Blank

Email: Kilgore.ProjectManagement@spllabs.com

58.1

50.0



116

75.0 - 125

127786489

Report Page 34 of 55

Heptachlor epoxide

ug/L



Page 17 of 30

3

*Project* 1152756

Printed 07/30/2025

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

| 3egom, 17, 70133 3019            |         |         |         | LCS   | 5 Dup    |             |             |           |       |      |          |
|----------------------------------|---------|---------|---------|-------|----------|-------------|-------------|-----------|-------|------|----------|
| Parameter                        | PrepSet | LCS     | LCSD    |       | Known    | Limits%     | LCS%        | LCSD%     | Units | RPD  | Limit%   |
| 4,4-DDD                          | 1182868 | 62.6    | 58.5    |       | 100      | 31.0 - 141  | 62.6        | 58.5      | ug/L  | 6.77 | 39.0     |
| 4,4-DDE                          | 1182868 | 54.6    | 52.2    |       | 100      | 30.0 - 145  | 54.6        | 52.2      | ug/L  | 4.49 | 35.0     |
| 4,4-DDT                          | 1182868 | 74.0    | 72.0    |       | 100      | 25.0 - 160  | 74.0        | 72.0      | ug/L  | 2.74 | 42.0     |
| Aldrin                           | 1182868 | 49.3    | 48.3    |       | 100      | 42.0 - 140  | 49.3        | 48.3      | ug/L  | 2.05 | 35.0     |
| Alpha-BHC(hexachlorocyclohexane) | 1182868 | 53.2    | 50.8    |       | 100      | 37.0 - 140  | 53.2        | 50.8      | ug/L  | 4.62 | 36.0     |
| Beta-BHC(hexachlorocyclohexane)  | 1182868 | 53.6    | 49.4    |       | 100      | 17.0 - 147  | 53.6        | 49.4      | ug/L  | 8.16 | 44.0     |
| Delta-BHC(hexachlorocyclohexane) | 1182868 | 58.2    | 53.2    |       | 100      | 19.0 - 140  | 58.2        | 53.2      | ug/L  | 8.98 | 52.0     |
| Dieldrin                         | 1182868 | 56.7    | 52.2    |       | 100      | 36.0 - 146  | 56.7        | 52.2      | ug/L  | 8.26 | 49.0     |
| Endosulfan I (alpha)             | 1182868 | 57.5    | 52.6    |       | 100      | 45.0 - 153  | 57.5        | 52.6      | ug/L  | 8.90 | 28.0     |
| Endosulfan II (beta)             | 1182868 | 57.6    | 52.4    |       | 100      | 0.100 - 202 | 57.6        | 52.4      | ug/L  | 9.45 | 53.0     |
| Endosulfan sulfate               | 1182868 | 57.3    | 52.2    |       | 100      | 26.0 - 144  | 57.3        | 52.2      | ug/L  | 9.32 | 38.0     |
| Endrin                           | 1182868 | 63.4    | 59.3    |       | 100      | 30.0 - 147  | 63.4        | 59.3      | ug/L  | 6.68 | 48.0     |
| Endrin aldehyde                  | 1182868 | 61.5    | 56.1    |       | 100      | 37.6 - 158  | 61.5        | 56.1      | ug/L  | 9.18 | 30.0     |
| Gamma-BHC(Lindane)               | 1182868 | 51.6    | 48.3    |       | 100      | 32.0 - 140  | 51.6        | 48.3      | ug/L  | 6.61 | 39.0     |
| Heptachlor                       | 1182868 | 50.0    | 48.3    |       | 100      | 34.0 - 140  | 50.0        | 48.3      | ug/L  | 3.46 | 43.0     |
| Heptachlor epoxide               | 1182868 | 53.8    | 49.6    |       | 100      | 37.0 - 142  | 53.8        | 49.6      | ug/L  | 8.12 | 26.0     |
|                                  |         |         |         | Surr  | ogate    |             |             |           |       |      |          |
| Parameter                        | Sample  | Type    | Reading | Known | Units    | Recover%    | Limits%     | File      |       |      |          |
| Decachlorobiphenyl               | -       | CCV     | 49.1    | 100   | ug/L     | 49.1        | 0.100 - 144 | 127786484 |       |      |          |
| Decachlorobiphenyl               |         | CCV     | 50.4    | 100   | ug/L     | 50.4        | 0.100 - 144 | 127786489 |       |      |          |
| Tetrachloro-m-Xylene (Surr)      |         | CCV     | 46.8    | 100   | ug/L     | 46.8        | 0.100 - 107 | 127786484 |       |      |          |
| Tetrachloro-m-Xylene (Surr)      |         | CCV     | 45.4    | 100   | ug/L     | 45.4        | 0.100 - 107 | 127786489 |       |      |          |
| Decachlorobiphenyl               | 1182868 | Blank   | 41.6    | 100   | ug/L     | 41.6        | 0.100 - 144 | 127786485 |       |      |          |
| Decachlorobiphenyl               | 1182868 | LCS     | 49.5    | 100   | ug/L     | 49.5        | 0.100 - 144 | 127786486 |       |      |          |
| Decachlorobiphenyl               | 1182868 | LCS Dup | 43.5    | 100   | ug/L     | 43.5        | 0.100 - 144 | 127786487 |       |      |          |
| Tetrachloro-m-Xylene (Surr)      | 1182868 | Blank   | 38.0    | 100   | ug/L     | 38.0        | 0.100 - 107 | 127786485 |       |      |          |
| Tetrachloro-m-Xylene (Surr)      | 1182868 | LCS     | 44.0    | 100   | ug/L     | 44.0        | 0.100 - 107 | 127786486 |       |      |          |
| Tetrachloro-m-Xylene (Surr)      | 1182868 | LCS Dup | 43.9    | 100   | ug/L     | 43.9        | 0.100 - 107 | 127786487 |       |      |          |
| Decachlorobiphenyl               | 2422662 | Unknown | 0.0517  | 0.108 | ug/L     | 47.9        | 0.100 - 144 | 127786488 |       |      |          |
| Tetrachloro-m-Xylene (Surr)      | 2422662 | Unknown | 0.0473  | 0.108 | ug/L     | 43.8        | 0.100 - 107 | 127786488 |       |      |          |
| Analytical Set                   | 1183358 |         |         |       |          |             |             |           |       | E    | PA 608.3 |
| ,                                |         |         |         | c     | CV       |             |             |           |       |      |          |
| <u>Parameter</u>                 |         | Reading | Known   | Units | Recover% | Limits%     |             | File      |       |      |          |
| PCB-1016                         |         | 1120    | 1000    | ug/L  | 112      | 80.0 - 115  |             | 127786532 |       |      |          |
| PCB-1016                         |         | 1090    | 1000    | ug/L  | 109      | 80.0 - 115  |             | 127786537 |       |      |          |
| PCB-1260                         |         | 1110    | 1000    | ug/L  | 111      | 80.0 - 115  |             | 127786532 |       |      |          |
| PCB-1260                         |         | 1210    | 1000    | ug/L  | 121      | 80.0 - 115  | *           | 127786537 |       |      |          |
|                                  |         |         |         | Surr  | ogate    |             |             |           |       |      |          |
| Parameter                        | Sample  | Туре    | Reading | Known | Units    | Recover%    | Limits%     | File      |       |      |          |
| Decachlorobiphenyl               | 2422662 | Unknown | 0.0517  | 0.108 | ug/L     | 47.9        | 10.0 - 200  | 127786536 |       |      |          |
| Tetrachloro-m-Xylene (Surr)      | 2422662 | Unknown | 0.0473  | 0.108 | ug/L     | 43.8        | 10.0 - 200  | 127786536 |       |      |          |

Analytical Set 1183915

EPA 615

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 35 of 55

Page 18 of 30

*Project* 1152756

Printed 07/30/2025

#### **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

| Blank                          |         |         |         |       |          |             |             |           |       |      |        |
|--------------------------------|---------|---------|---------|-------|----------|-------------|-------------|-----------|-------|------|--------|
| <u>Parameter</u>               | PrepSet | Reading | MDL     | MQL   | Units    |             |             | File      |       |      |        |
| 2,4 Dichlorophenoxyacetic acid | 1183082 | ND      | 14.8    | 50.0  | ug/L     |             |             | 127801294 |       |      |        |
| 2,4,5-TP (Silvex)              | 1183082 | ND      | 16.5    | 50.0  | ug/L     |             |             | 127801294 |       |      |        |
|                                |         |         |         | C     | CV       |             |             |           |       |      |        |
| <u>Parameter</u>               |         | Reading | Known   | Units | Recover% | Limits%     |             | File      |       |      |        |
| 2,4 Dichlorophenoxyacetic acid |         | 155     | 150     | ug/L  | 103      | 80.0 - 115  |             | 127801293 |       |      |        |
| 2,4 Dichlorophenoxyacetic acid |         | 168     | 150     | ug/L  | 112      | 80.0 - 115  |             | 127801306 |       |      |        |
| 2,4,5-TP (Silvex)              |         | 153     | 150     | ug/L  | 102      | 80.0 - 115  |             | 127801293 |       |      |        |
| 2,4,5-TP (Silvex)              |         | 155     | 150     | ug/L  | 103      | 80.0 - 115  |             | 127801306 |       |      |        |
| LCS Dup                        |         |         |         |       |          |             |             |           |       |      |        |
| <u>Parameter</u>               | PrepSet | LCS     | LCSD    |       | Known    | Limits%     | LCS%        | LCSD%     | Units | RPD  | Limit% |
| 2,4 Dichlorophenoxyacetic acid | 1183082 | 228     | 200     |       | 100      | 0.100 - 319 | 228         | 200       | ug/L  | 13.1 | 30.0   |
| 2,4,5-TP (Silvex)              | 1183082 | 90.1    | 81.1    |       | 100      | 0.100 - 244 | 90.1        | 81.1      | ug/L  | 10.5 | 30.0   |
|                                |         |         |         | Surr  | ogate    |             |             |           |       |      |        |
| <u>Parameter</u>               | Sample  | Туре    | Reading | Known | Units    | Recover%    | Limits%     | File      |       |      |        |
| 2,4-Dichlorophenylacetic Acid  |         | CCV     | 147     | 200   | ug/L     | 73.5        | 0.100 - 313 | 127801293 |       |      |        |
| 2,4-Dichlorophenylacetic Acid  |         | CCV     | 150     | 200   | ug/L     | 75.0        | 0.100 - 313 | 127801306 |       |      |        |
| 2,4-Dichlorophenylacetic Acid  | 1183082 | Blank   | 99.8    | 200   | ug/L     | 49.9        | 0.100 - 313 | 127801294 |       |      |        |
| 2,4-Dichlorophenylacetic Acid  | 1183082 | LCS     | 118     | 200   | ug/L     | 59.0        | 0.100 - 313 | 127801295 |       |      |        |
| 2,4-Dichlorophenylacetic Acid  | 1183082 | LCS Dup | 112     | 200   | ug/L     | 56.0        | 0.100 - 313 | 127801296 |       |      |        |
| 2,4-Dichlorophenylacetic Acid  | 2422662 | Unknown | 1.73    | 2.10  | ug/L     | 82.4        | 0.100 - 313 | 127801298 |       |      |        |

1183932 EPA 625.1 **Analytical Set** Blank MDL MQL Units File Parameter PrepSet Reading 1,2,4,5-Tetrachlorobenzene 1182875 ND 0.806 1.00 ug/L 127801408 127801408 1,2,4-Trichlorobenzene 1182875 ND 0.800 1.00 ug/L 1,2-Dichlorobenzene 1182875 ND 3.24 3.50 ug/L 127801408 0.619 127801408 1,2-DPH (as azobenzene) 1182875 ND 1.00 ug/L 1,3-Dichlorobenzene ND 0.761 1.00 ug/L 127801408 1182875 1,4-Dichlorobenzene 1182875 ND 0.773 1.00 ug/L 127801408 2,4,5-Trichlorophenol 1182875 ND 0.538 1.00 ug/L 127801408 2,4,6-Trichlorophenol 1182875 ND 0.652 1.00 ug/L 127801408 2,4-Dichlorophenol 1182875 ND 0.661 1.00 ug/L 127801408 2,4-Dimethylphenol 1182875 ND 6.97 7.00 ug/L 127801408 1182875 1.59 127801408 2,4-Dinitrophenol ND 2.00 ug/L 0.497 127801408 2,4-Dinitrotoluene 1182875 ND 1.00 ug/L ND 0.588 1.00 127801408 2,6-Dinitrotoluene 1182875 ug/L 2-Chloronaphthalene 1182875 ND 0.824 1.00 ug/L 127801408 2-Chlorophenol 1182875 ND 0.946 1.00 ug/L 127801408 2-Methylphenol (o-Cresol) 1182875 ND 0.692 1.00 ug/L 127801408 2-Nitrophenol 1182875 ND 0.662 1.00 ug/L 127801408 3&4-Methylphenol (m&p-Cresol) 1182875 ND 0.632 1.00 ug/L 127801408 3,3'-Dichlorobenzidine 1182875 ND 0.537 1.00 127801408 ug/L

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 36 of 55

# The Science of Sure

Page 19 of 30

*Project* 1152756

Printed 07/30/2025

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

| PrepSet   Reading   MOL   MOL   Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |         |         |       | В    | lank  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------|---------|-------|------|-------|
| ### Bromophenyl phenyl ether   1182875 ND   0.819   1.00   ug/L   4-Chiorophenyl phenyl ethe   1182875 ND   0.755   1.00   ug/L   4-Nitrophenol   1182875 ND   0.243   1.00   ug/L   4-Nitrophenol   1182875 ND   0.634   1.00   ug/L   Acenaphthene   1182875 ND   0.654   1.00   ug/L   Acenaphthylene   1182875 ND   0.654   1.00   ug/L   Aniline   1182875 ND   0.630   1.00   ug/L   Aniline   1182875 ND   0.630   1.00   ug/L   Benzidine   1182875 ND   0.630   1.00   ug/L   Benzo(a)amtracene   1182875 ND   0.552   1.00   ug/L   Benzo(a)mthracene   1182875 ND   0.556   1.00   ug/L   Benzo(a)pyrene   1182875 ND   0.556   1.00   ug/L   Benzo(b)fluoranthene   1182875 ND   0.761   1.00   ug/L   Benzo(g)filperylene   1182875 ND   0.761   1.00   ug/L   Benzo(g)fluoranthene   1182875 ND   0.896   1.00   ug/L   Benzo(g)fluoranthene   1182875 ND   0.896   1.00   ug/L   Benzo(b)fluoranthene   1182875 ND   0.896   1.00   ug/L   Bis(2-chloroethoxy)methane   1182875 ND   0.896   1.00   ug/L   Bis(2-chloroethyl)ether   1182875 ND   0.882   1.00   ug/L   Bis(2-chloroethyl)ether   1182875 ND   0.882   1.00   ug/L   Bis(2-chloroethyl)ether   1182875 ND   0.830   1.00   ug/L   Bis(2-chloroethyl)ether   1182875 ND   0.553   1.00   ug/L   Dienz(a,h)anthracene   1182875 ND   0.553   1.00   ug/L   Dien-butyl phthalate   1182875 ND   0.553   1.00   ug/L   Dien-butyl phthalate   1182875 ND   0.553   1.00   ug/L   Dien-cytlphthalate   1182875 ND   0.553   1.00   ug/L   Dien-butylphthalate   1182875 ND   0.553   1.00   ug/L   Dien-butylphthalate   1182875 ND   0.553   1.00   ug/L   Dien-cytlphthalate   1182875 ND   0.564   1.00   ug/L   Dien-cytlphthalate   1182875 ND   0.569   1.00   ug/L   Dien-cytlphthalate   118 | <u>Parameter</u>                 | PrepSet | Reading | MDL   | MQL  | Units |
| 4-Chlorophenyl phenyl ethe   1182875 ND   0.755   1.00   ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4,6-Dinitro-2-methylphenol       | 1182875 | ND      | 1.03  | 2.00 | ug/L  |
| A-Nitrophenol   1182875 ND   0.243   1.00   ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4-Bromophenyl phenyl ether       | 1182875 | ND      | 0.819 | 1.00 | ug/L  |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4-Chlorophenyl phenyl ethe       | 1182875 | ND      | 0.755 | 1.00 | ug/L  |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-Nitrophenol                    | 1182875 | ND      | 0.243 | 1.00 | ug/L  |
| Aniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Acenaphthene                     | 1182875 | ND      | 0.704 | 1.00 | ug/L  |
| Anthracene         1182875         ND         0.630         1.00         ug/L           Benzidine         1182875         ND         1.40         1.50         ug/L           Benzo(a)anthracene         1182875         ND         0.552         1.00         ug/L           Benzo(a)pyrene         1182875         ND         0.761         1.00         ug/L           Benzo(b)fluoranthene         1182875         ND         0.761         1.00         ug/L           Benzo(k)fluoranthene         1182875         ND         0.844         1.00         ug/L           Benzyl Butyl phthalate         1182875         ND         0.896         1.00         ug/L           Bis(2-chloroethoxy)methane         1182875         ND         0.876         1.00         ug/L           Bis(2-chloroethoxy)phthalate         1182875         ND         0.876         1.00         ug/L           Bis(2-chlorostopropyl)ether         1182875         ND         0.830         1.00         ug/L           Bis(2-chlorostopropylether         1182875         ND         0.831         1.00         ug/L           Chrysene (Benzo(a)phenanthrene)         1182875         ND         0.553         1.00         ug/L <t< td=""><td>Acenaphthylene</td><td>1182875</td><td>ND</td><td>0.654</td><td>1.00</td><td>ug/L</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acenaphthylene                   | 1182875 | ND      | 0.654 | 1.00 | ug/L  |
| Benzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aniline                          | 1182875 | ND      | 6.47  | 7.00 | ug/L  |
| Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Anthracene                       | 1182875 | ND      | 0.630 | 1.00 | ug/L  |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Benzidine                        | 1182875 | ND      | 1.40  | 1.50 | ug/L  |
| Benzo(b)fluoranthene         1182875         ND         0.761         1.00         ug/L           Benzo(ghi)perylene         1182875         ND         1.14         2.00         ug/L           Benzo(k)fluoranthene         1182875         ND         0.844         1.00         ug/L           Benzyl Butyl phthalate         1182875         ND         0.896         1.00         ug/L           Bis(2-chloroethoxy)methane         1182875         ND         0.876         1.00         ug/L           Bis(2-chlorosthyl)ether         1182875         ND         0.882         1.00         ug/L           Bis(2-chlorosthyl)ether         1182875         ND         0.830         1.00         ug/L           Bis(2-chlorosthyl)ether         1182875         ND         0.830         1.00         ug/L           Chrysene (Benzo(a)phenanthrene)         1182875         ND         0.533         1.00         ug/L           Chrysene (Benzo(a)phenanthrene         1182875         ND         0.975         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.975         1.00         ug/L           Diethyl phthalate         1182875         ND         0.737         1.00         ug/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzo(a)anthracene               | 1182875 | ND      | 0.552 | 1.00 | ug/L  |
| Benzo(ghi)perylene         1182875         ND         1.14         2.00         ug/L           Benzo(k)fluoranthene         1182875         ND         0.844         1.00         ug/L           Benzyl Butyl phthalate         1182875         ND         0.896         1.00         ug/L           Bis(2-chloroethoxy)methane         1182875         ND         0.876         1.00         ug/L           Bis(2-chloroethyl)ether         1182875         ND         0.830         1.00         ug/L           Bis(2-chloroisopropyl)ether         1182875         ND         0.830         1.00         ug/L           Bis(2-chloroisopropyl)ether         1182875         ND         0.830         1.00         ug/L           Bis(2-chloroisopropyl)ether         1182875         ND         0.553         1.00         ug/L           Di-potalitylethelate         1182875         ND         0.553         1.00 <td>Benzo(a)pyrene</td> <td>1182875</td> <td>ND</td> <td>0.586</td> <td>1.00</td> <td>ug/L</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Benzo(a)pyrene                   | 1182875 | ND      | 0.586 | 1.00 | ug/L  |
| Benzo(k)fluoranthene         1182875         ND         0.844         1.00         ug/L           Benzyl Butyl phthalate         1182875         ND         0.896         1.00         ug/L           Bis(2-chloroethoxy)methane         1182875         ND         0.876         1.00         ug/L           Bis(2-chloroethyl)ether         1182875         ND         0.830         1.00         ug/L           Bis(2-chloroisopropyl)ether         1182875         ND         0.830         1.00         ug/L           Bis(2-ethylhexyl)phthalate         1182875         ND         0.533         1.00         ug/L           Chrysene (Benzo(a)phenanthrene)         1182875         ND         0.553         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.975         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.975         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.975         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.973         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.737         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Benzo(b)fluoranthene             | 1182875 | ND      | 0.761 | 1.00 | ug/L  |
| Benzyl Butyl phthalate         1182875         ND         0.896         1.00         ug/L           Bis(2-chloroethoxy)methane         1182875         ND         0.876         1.00         ug/L           Bis(2-chloroethyl)ether         1182875         ND         0.882         1.00         ug/L           Bis(2-chloroisopropyl)ether         1182875         ND         0.830         1.00         ug/L           Bis(2-ethylhexyl)phthalate         1182875         ND         0.553         1.00         ug/L           Chrysene (Benzo(a)phenanthrene)         1182875         ND         0.553         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.975         1.00         ug/L           Diethyl phthalate         1182875         ND         0.975         1.00         ug/L           Dimethyl phthalate         1182875         ND         0.664         1.00         ug/L           Di-n-octylphthalate         1182875         ND         0.725         1.00         ug/L           Fluoranthene(Benzo(j,k)fluorene)         1182875         ND         0.692         1.00         ug/L           Hexachlorobenzene         1182875         ND         0.673         1.00         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Benzo(ghi)perylene               | 1182875 | ND      | 1.14  | 2.00 | ug/L  |
| Bis(2-chloroethoxy)methane         1182875         ND         0.876         1.00         ug/L           Bis(2-chloroethyl)ether         1182875         ND         0.882         1.00         ug/L           Bis(2-chloroisopropyl)ether         1182875         ND         0.830         1.00         ug/L           Bis(2-ethylhexyl)phthalate         1182875         ND         0.553         1.00         ug/L           Chrysene (Benzo(a)phenanthrene)         1182875         ND         0.553         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.975         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.664         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.732         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Benzo(k)fluoranthene             | 1182875 | ND      | 0.844 | 1.00 | ug/L  |
| Bis(2-chloroethyl)ether         1182875         ND         0.882         1.00         ug/L           Bis(2-chloroisopropyl)ether         1182875         ND         0.830         1.00         ug/L           Bis(2-ethylhexyl)phthalate         1182875         ND         2.11         2.50         ug/L           Chrysene (Benzo(a)phenanthrene)         1182875         ND         0.553         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.975         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.975         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.975         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.737         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.664         1.00         ug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzyl Butyl phthalate           | 1182875 | ND      | 0.896 | 1.00 | ug/L  |
| Bis(2-chloroisopropyl)ether         1182875         ND         0.830         1.00         ug/L           Bis(2-ethylhexyl)phthalate         1182875         ND         2.11         2.50         ug/L           Chrysene (Benzo(a)phenanthrene)         1182875         ND         0.553         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.975         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.975         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.737         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.664         1.00         ug/L           Dibenzene         1182875         ND         0.664         1.00         ug/L           Dibenzene         1182875         ND         0.725         1.00         ug/L           Dibenzene         1182875         ND         0.692         1.00         ug/L           Pexachlorobuladiate         1182875         ND         0.673         1.00         ug/L           Hexachlorobuladiene         1182875         ND         0.569         1.00         ug/L           Hex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bis(2-chloroethoxy)methane       | 1182875 | ND      | 0.876 | 1.00 | ug/L  |
| Bis(2-ethylhexyl)phthalate         1182875         ND         2.11         2.50         ug/L           Chrysene (Benzo(a)phenanthrene)         1182875         ND         0.553         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.975         1.00         ug/L           Diethyl phthalate         1182875         ND         0.664         1.00         ug/L           Dimethyl phthalate         1182875         ND         0.664         1.00         ug/L           Di-n-butylphthalate         1182875         ND         0.725         1.00         ug/L           Di-n-octylphthalate         1182875         ND         0.692         1.00         ug/L           Fluoranthene(Benzo(j,k)fluorene)         1182875         ND         0.692         1.00         ug/L           Fluorene         1182875         ND         0.692         1.00         ug/L           Hexachlorobutadiene         1182875         ND         0.673         1.00         ug/L           Hexachlorobutadiene         1182875         ND         0.569         1.00         ug/L           Hexachlorobutadiene         1182875         ND         0.569         1.00         ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bis(2-chloroethyl)ether          | 1182875 | ND      | 0.882 | 1.00 | ug/L  |
| Chrysene (Benzo(a)phenanthrene)         1182875         ND         0.553         1.00         ug/L           Dibenz(a,h)anthracene         1182875         ND         0.975         1.00         ug/L           Diethyl phthalate         1182875         ND         0.737         1.00         ug/L           Dimethyl phthalate         1182875         ND         0.664         1.00         ug/L           Di-n-octylphthalate         1182875         ND         0.725         1.00         ug/L           Fluoranthene(Benzo(j,k)fluorene)         1182875         ND         0.692         1.00         ug/L           Fluorene         1182875         ND         0.692         1.00         ug/L           Hexachlorobenzene         1182875         ND         0.753         1.00         ug/L           Hexachlorobutadiene         1182875         ND         0.673         1.00         ug/L           Hexachlorocyclopentadiene         1182875         ND         0.569         1.00         ug/L           Hexachlorocyclopentadiene         1182875         ND         0.511         1.00         ug/L           Hexachlorocyclopentadiene         1182875         ND         0.711         1.00         ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bis(2-chloroisopropyl)ether      | 1182875 | ND      | 0.830 | 1.00 | ug/L  |
| Dibenz(a,h)anthracene         1182875         ND         0.975         1.00         ug/L           Diethyl phthalate         1182875         ND         0.737         1.00         ug/L           Dimethyl phthalate         1182875         ND         0.664         1.00         ug/L           Di-n-butylphthalate         1182875         ND         0.725         1.00         ug/L           Di-n-octylphthalate         1182875         ND         0.692         1.00         ug/L           Fluoranthene(Benzo(j,k)fluorene)         1182875         ND         0.692         1.00         ug/L           Fluorene         1182875         ND         0.753         1.00         ug/L           Hexachlorobenzene         1182875         ND         0.673         1.00         ug/L           Hexachlorobutadiene         1182875         ND         0.711         1.00         ug/L           Hexachlorocyclopentadiene         1182875         ND         0.569         1.00         ug/L           Hexachlorocyclopentadiene         1182875         ND         0.711         1.00         ug/L           Hexachlorocyclopentadiene         1182875         ND         0.711         1.00         ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bis(2-ethylhexyl)phthalate       | 1182875 | ND      | 2.11  | 2.50 | ug/L  |
| Diethyl phthalate         1182875         ND         0.737         1.00         ug/L           Dimethyl phthalate         1182875         ND         0.664         1.00         ug/L           Di-n-butylphthalate         1182875         ND         0.725         1.00         ug/L           Di-n-octylphthalate         1182875         ND         2.05         2.50         ug/L           Fluoranthene(Benzo(j,k)fluorene)         1182875         ND         0.692         1.00         ug/L           Fluorene         1182875         ND         0.692         1.00         ug/L           Hexachlorobenzene         1182875         ND         0.673         1.00         ug/L           Hexachlorobutadiene         1182875         ND         0.569         1.00         ug/L           Hexachlorocyclopentadiene         1182875         ND         0.569         1.00         ug/L           Hexachlorochtane         1182875         ND         0.711         1.00         ug/L           Indeno(1,2,3-cd)pyrene         1182875         ND         0.711         1.00         ug/L           Insphrhalene         1182875         ND         0.698         1.00         ug/L           N-Nitrosodie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chrysene (Benzo(a)phenanthrene)  | 1182875 | ND      | 0.553 | 1.00 | ug/L  |
| Dimethyl phthalate         1182875         ND         0.664         1.00         ug/L           Di-n-butylphthalate         1182875         ND         0.725         1.00         ug/L           Di-n-octylphthalate         1182875         ND         2.05         2.50         ug/L           Fluoranthene(Benzo(j,k)fluorene)         1182875         ND         0.692         1.00         ug/L           Fluorene         1182875         ND         0.753         1.00         ug/L           Hexachlorobenzene         1182875         ND         0.673         1.00         ug/L           Hexachlorobutadiene         1182875         ND         0.711         1.00         ug/L           Hexachlorocyclopentadiene         1182875         ND         0.569         1.00         ug/L           Hexachlorocethane         1182875         ND         0.711         1.00         ug/L           Indeno(1,2,3-cd)pyrene         1182875         ND         0.711         1.00         ug/L           Isophorone         1182875         ND         0.698         1.00         ug/L           Naphthalene         1182875         ND         0.771         1.00         ug/L           N-Nitrosodiethylami                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dibenz(a,h)anthracene            | 1182875 | ND      | 0.975 | 1.00 | ug/L  |
| Di-n-butylphthalate         1182875         ND         0.725         1.00         ug/L           Di-n-octylphthalate         1182875         ND         2.05         2.50         ug/L           Fluoranthene(Benzo(j,k)fluorene)         1182875         ND         0.692         1.00         ug/L           Fluorene         1182875         ND         0.753         1.00         ug/L           Hexachlorobenzene         1182875         ND         0.673         1.00         ug/L           Hexachlorobutadiene         1182875         ND         0.711         1.00         ug/L           Hexachlorocyclopentadiene         1182875         ND         0.569         1.00         ug/L           Hexachlorocethane         1182875         ND         0.711         1.00         ug/L           Indeno(1,2,3-cd)pyrene         1182875         ND         0.711         1.00         ug/L           Isophorone         1182875         ND         0.698         1.00         ug/L           Naphthalene         1182875         ND         0.771         1.00         ug/L           Nitrobenzene         1182875         ND         0.732         1.00         ug/L           N-Nitrosodiethylamine <td>Diethyl phthalate</td> <td>1182875</td> <td>ND</td> <td>0.737</td> <td>1.00</td> <td>ug/L</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Diethyl phthalate                | 1182875 | ND      | 0.737 | 1.00 | ug/L  |
| Di-n-octylphthalate         1182875         ND         2.05         2.50         ug/L           Fluoranthene(Benzo(j,k)fluorene)         1182875         ND         0.692         1.00         ug/L           Fluorene         1182875         ND         0.753         1.00         ug/L           Hexachlorobenzene         1182875         ND         0.673         1.00         ug/L           Hexachlorobutadiene         1182875         ND         0.711         1.00         ug/L           Hexachlorocyclopentadiene         1182875         ND         0.569         1.00         ug/L           Hexachloroethane         1182875         ND         0.711         1.00         ug/L           Indeno(1,2,3-cd)pyrene         1182875         ND         0.711         1.00         ug/L           Isophorone         1182875         ND         0.698         1.00         ug/L           Naphthalene         1182875         ND         0.771         1.00         ug/L           Nitrobenzene         1182875         ND         0.732         1.00         ug/L           n-Nitrosodiethylamine         1182875         ND         0.793         1.00         ug/L           N-Nitrosodi-n-butylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dimethyl phthalate               | 1182875 | ND      | 0.664 | 1.00 | ug/L  |
| Fluoranthene(Benzo(j,k)fluorene)         1182875         ND         0.692         1.00         ug/L           Fluorene         1182875         ND         0.753         1.00         ug/L           Hexachlorobenzene         1182875         ND         0.673         1.00         ug/L           Hexachlorobutadiene         1182875         ND         0.711         1.00         ug/L           Hexachlorocyclopentadiene         1182875         ND         0.569         1.00         ug/L           Hexachloroethane         1182875         ND         0.711         1.00         ug/L           Indeno(1,2,3-cd)pyrene         1182875         ND         0.711         1.00         ug/L           Isophorone         1182875         ND         0.698         1.00         ug/L           Naphthalene         1182875         ND         0.771         1.00         ug/L           Nitrobenzene         1182875         ND         0.732         1.00         ug/L           n-Nitrosodiethylamine         1182875         ND         0.793         1.00         ug/L           N-Nitrosodi-n-butylamine         1182875         ND         0.550         1.00         ug/L           N-Nitrosodi-n-prop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Di-n-butylphthalate              | 1182875 | ND      | 0.725 | 1.00 | ug/L  |
| Fluorene         1182875         ND         0.753         1.00         ug/L           Hexachlorobenzene         1182875         ND         0.673         1.00         ug/L           Hexachlorobutadiene         1182875         ND         0.711         1.00         ug/L           Hexachlorocyclopentadiene         1182875         ND         0.569         1.00         ug/L           Hexachloroethane         1182875         ND         0.711         1.00         ug/L           Indeno(1,2,3-cd)pyrene         1182875         ND         0.711         1.00         ug/L           Isophorone         1182875         ND         0.698         1.00         ug/L           Naphthalene         1182875         ND         0.771         1.00         ug/L           Nitrobenzene         1182875         ND         0.732         1.00         ug/L           n-Nitrosodiethylamine         1182875         ND         0.793         1.00         ug/L           N-Nitrosodi-n-butylamine         1182875         ND         0.550         1.00         ug/L           N-Nitrosodi-n-propylamine         1182875         ND         0.579         1.00         ug/L           N-Nitrosodi-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Di-n-octylphthalate              | 1182875 | ND      | 2.05  | 2.50 | ug/L  |
| Hexachlorobenzene         1182875         ND         0.673         1.00         ug/L           Hexachlorobutadiene         1182875         ND         0.711         1.00         ug/L           Hexachlorocyclopentadiene         1182875         ND         0.569         1.00         ug/L           Hexachloroethane         1182875         ND         0.711         1.00         ug/L           Indeno(1,2,3-cd)pyrene         1182875         ND         1.16         2.00         ug/L           Isophorone         1182875         ND         0.698         1.00         ug/L           Naphthalene         1182875         ND         0.771         1.00         ug/L           Nitrobenzene         1182875         ND         0.732         1.00         ug/L           n-Nitrosodiethylamine         1182875         ND         0.793         1.00         ug/L           N-Nitrosodi-n-butylamine         1182875         ND         0.550         1.00         ug/L           N-Nitrosodi-n-propylamine         1182875         ND         0.579         1.00         ug/L           N-Nitrosodi-n-propylamine (as DPA         1182875         ND         0.715         1.00         ug/L           N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fluoranthene(Benzo(j,k)fluorene) | 1182875 | ND      | 0.692 | 1.00 | ug/L  |
| Hexachlorobutadiene         1182875         ND         0.711         1.00         ug/L           Hexachlorocyclopentadiene         1182875         ND         0.569         1.00         ug/L           Hexachloroethane         1182875         ND         0.711         1.00         ug/L           Indeno(1,2,3-cd)pyrene         1182875         ND         1.16         2.00         ug/L           Isophorone         1182875         ND         0.698         1.00         ug/L           Naphthalene         1182875         ND         0.771         1.00         ug/L           Nitrobenzene         1182875         ND         0.732         1.00         ug/L           n-Nitrosodiethylamine         1182875         ND         0.793         1.00         ug/L           n-Nitrosodi-n-butylamine         1182875         ND         0.550         1.00         ug/L           N-Nitrosodiphenylamine (as DPA         1182875         ND         0.579         1.00         ug/L           N-Nitrosodiphenylamine (as DPA         1182875         ND         0.715         1.00         ug/L           P-Chloro-m-Cresol (4-Chloro-3-me         1182875         ND         0.630         1.00         ug/L      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fluorene                         | 1182875 | ND      | 0.753 | 1.00 | ug/L  |
| Hexachlorocyclopentadiene         1182875         ND         0.569         1.00         ug/L           Hexachloroethane         1182875         ND         0.711         1.00         ug/L           Indeno(1,2,3-cd)pyrene         1182875         ND         1.16         2.00         ug/L           Isophorone         1182875         ND         0.698         1.00         ug/L           Naphthalene         1182875         ND         0.771         1.00         ug/L           Nitrobenzene         1182875         ND         0.732         1.00         ug/L           n-Nitrosodiethylamine         1182875         ND         0.793         1.00         ug/L           n-Nitrosodien-butylamine         1182875         ND         0.593         1.00         ug/L           N-Nitrosodi-n-propylamine         1182875         ND         0.579         1.00         ug/L           N-Nitrosodiphenylamine (as DPA         1182875         ND         0.715         1.00         ug/L           N-Chloro-m-Cresol (4-Chloro-3-me         1182875         ND         0.630         1.00         ug/L           Pentachlorobenzene         1182875         ND         0.519         1.00         ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hexachlorobenzene                | 1182875 | ND      | 0.673 | 1.00 | ug/L  |
| Hexachloroethane         1182875         ND         0.711         1.00         ug/L           Indeno(1,2,3-cd)pyrene         1182875         ND         1.16         2.00         ug/L           Isophorone         1182875         ND         0.698         1.00         ug/L           Naphthalene         1182875         ND         0.771         1.00         ug/L           Nitrobenzene         1182875         ND         0.732         1.00         ug/L           n-Nitrosodiethylamine         1182875         ND         0.793         1.00         ug/L           n-Nitrosodien-butylamine         1182875         ND         0.593         1.00         ug/L           N-Nitrosodi-n-propylamine         1182875         ND         0.579         1.00         ug/L           N-Nitrosodiphenylamine (as DPA         1182875         ND         0.715         1.00         ug/L           N-Nitrosodiphenylamine (as DPA         1182875         ND         0.630         1.00         ug/L           P-Chloro-m-Cresol (4-Chloro-3-me         1182875         ND         0.630         1.00         ug/L           Pentachlorobenzene         1182875         ND         0.519         1.00         ug/L <td>Hexachlorobutadiene</td> <td>1182875</td> <td>ND</td> <td>0.711</td> <td>1.00</td> <td>ug/L</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hexachlorobutadiene              | 1182875 | ND      | 0.711 | 1.00 | ug/L  |
| Indeno(1,2,3-cd)pyrene         1182875         ND         1.16         2.00         ug/L           Isophorone         1182875         ND         0.698         1.00         ug/L           Naphthalene         1182875         ND         0.771         1.00         ug/L           Nitrobenzene         1182875         ND         0.732         1.00         ug/L           n-Nitrosodiethylamine         1182875         ND         2.28         2.50         ug/L           n-Nitrosodien-butylamine         1182875         ND         0.793         1.00         ug/L           N-Nitrosodi-n-propylamine         1182875         ND         0.550         1.00         ug/L           N-Nitrosodiphenylamine (as DPA         1182875         ND         0.715         1.00         ug/L           N-Nitrosodiphenylamine (as DPA         1182875         ND         0.630         1.00         ug/L           P-Chloro-m-Cresol (4-Chloro-3-me         1182875         ND         0.630         1.00         ug/L           Pentachlorobenzene         1182875         ND         0.519         1.00         ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hexachlorocyclopentadiene        | 1182875 | ND      | 0.569 | 1.00 | ug/L  |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hexachloroethane                 | 1182875 | ND      | 0.711 | 1.00 | ug/L  |
| Naphthalene         1182875         ND         0.771         1.00         ug/L           Nitrobenzene         1182875         ND         0.732         1.00         ug/L           n-Nitrosodiethylamine         1182875         ND         2.28         2.50         ug/L           N-Nitrosodimethylamine         1182875         ND         0.793         1.00         ug/L           n-Nitrosodi-n-butylamine         1182875         ND         0.550         1.00         ug/L           N-Nitrosodi-n-propylamine         1182875         ND         0.579         1.00         ug/L           N-Nitrosodiphenylamine (as DPA         1182875         ND         0.715         1.00         ug/L           P-Chloro-m-Cresol (4-Chloro-3-me         1182875         ND         0.630         1.00         ug/L           Pentachlorobenzene         1182875         ND         0.882         1.00         ug/L           Pentachlorophenol         1182875         ND         0.519         1.00         ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Indeno(1,2,3-cd)pyrene           | 1182875 | ND      | 1.16  | 2.00 | ug/L  |
| Nitrobenzene         1182875         ND         0.732         1.00         ug/L           n-Nitrosodiethylamine         1182875         ND         2.28         2.50         ug/L           N-Nitrosodimethylamine         1182875         ND         0.793         1.00         ug/L           n-Nitrosodi-n-butylamine         1182875         ND         0.550         1.00         ug/L           N-Nitrosodi-n-propylamine         1182875         ND         0.579         1.00         ug/L           N-Nitrosodiphenylamine (as DPA         1182875         ND         0.715         1.00         ug/L           p-Chloro-m-Cresol (4-Chloro-3-me         1182875         ND         0.630         1.00         ug/L           Pentachlorobenzene         1182875         ND         0.882         1.00         ug/L           Pentachlorophenol         1182875         ND         0.519         1.00         ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Isophorone                       | 1182875 | ND      | 0.698 | 1.00 | ug/L  |
| n-Nitrosodiethylamine         1182875         ND         2.28         2.50         ug/L           N-Nitrosodimethylamine         1182875         ND         0.793         1.00         ug/L           n-Nitroso-di-n-butylamine         1182875         ND         0.550         1.00         ug/L           N-Nitrosodi-n-propylamine         1182875         ND         0.579         1.00         ug/L           N-Nitrosodiphenylamine (as DPA         1182875         ND         0.715         1.00         ug/L           p-Chloro-m-Cresol (4-Chloro-3-me         1182875         ND         0.630         1.00         ug/L           Pentachlorobenzene         1182875         ND         0.882         1.00         ug/L           Pentachlorophenol         1182875         ND         0.519         1.00         ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Naphthalene                      | 1182875 | ND      | 0.771 | 1.00 | ug/L  |
| N-Nitrosodimethylamine         1182875         ND         0.793         1.00         ug/L           n-Nitrosodi-n-butylamine         1182875         ND         0.550         1.00         ug/L           N-Nitrosodi-n-propylamine         1182875         ND         0.579         1.00         ug/L           N-Nitrosodiphenylamine (as DPA         1182875         ND         0.715         1.00         ug/L           p-Chloro-m-Cresol (4-Chloro-3-me         1182875         ND         0.630         1.00         ug/L           Pentachlorobenzene         1182875         ND         0.882         1.00         ug/L           Pentachlorophenol         1182875         ND         0.519         1.00         ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nitrobenzene                     | 1182875 | ND      | 0.732 | 1.00 | ug/L  |
| n-Nitroso-di-n-butylamine         1182875         ND         0.550         1.00         ug/L           N-Nitrosodi-n-propylamine         1182875         ND         0.579         1.00         ug/L           N-Nitrosodi-n-propylamine (as DPA         1182875         ND         0.715         1.00         ug/L           p-Chloro-m-Cresol (4-Chloro-3-me         1182875         ND         0.630         1.00         ug/L           Pentachlorobenzene         1182875         ND         0.882         1.00         ug/L           Pentachlorophenol         1182875         ND         0.519         1.00         ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n-Nitrosodiethylamine            | 1182875 | ND      | 2.28  | 2.50 | ug/L  |
| N-Nitrosodi-n-propylamine         1182875         ND         0.579         1.00         ug/L           N-Nitrosodiphenylamine (as DPA         1182875         ND         0.715         1.00         ug/L           p-Chloro-m-Cresol (4-Chloro-3-me         1182875         ND         0.630         1.00         ug/L           Pentachlorobenzene         1182875         ND         0.882         1.00         ug/L           Pentachlorophenol         1182875         ND         0.519         1.00         ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                | 1182875 | ND      |       |      | _     |
| N-Nitrosodiphenylamine (as DPA         1182875         ND         0.715         1.00         ug/L           p-Chloro-m-Cresol (4-Chloro-3-me         1182875         ND         0.630         1.00         ug/L           Pentachlorobenzene         1182875         ND         0.882         1.00         ug/L           Pentachlorophenol         1182875         ND         0.519         1.00         ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n-Nitroso-di-n-butylamine        | 1182875 | ND      | 0.550 | 1.00 | ug/L  |
| p-Chloro-m-Cresol (4-Chloro-3-me)         1182875         ND         0.630         1.00         ug/L           Pentachlorobenzene         1182875         ND         0.882         1.00         ug/L           Pentachlorophenol         1182875         ND         0.519         1.00         ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | * **                             |         |         |       |      | _     |
| Pentachlorobenzene         1182875         ND         0.882         1.00         ug/L           Pentachlorophenol         1182875         ND         0.519         1.00         ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | * *                              |         |         |       |      |       |
| Pentachlorophenol 1182875 ND 0.519 1.00 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | p-Chloro-m-Cresol (4-Chloro-3-me | 1182875 | ND      | 0.630 | 1.00 |       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | 1182875 |         | 0.882 |      |       |
| Phenanthrene 1182875 ND 0.657 1.00 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pentachlorophenol                | 1182875 | ND      | 0.519 |      | _     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phenanthrene                     | 1182875 | ND      | 0.657 | 1.00 | ug/L  |

1182875 ND



| File      |
|-----------|
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 127801408 |
| 12/601408 |

Report Page 37 of 55

Phenol

1.00

0.404



Page 20 of 30

*Project* 1152756

Printed 07/30/2025

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

|                                 |         |         |       | Didik        |          |            |           |  |  |
|---------------------------------|---------|---------|-------|--------------|----------|------------|-----------|--|--|
| <u>Parameter</u>                | PrepSet | Reading | MDL   | MQL          | Units    |            | File      |  |  |
| Pyrene                          | 1182875 | ND      | 0.522 | 1.00         | ug/L     |            | 127801408 |  |  |
| Pyridine                        | 1182875 | ND      | 0.580 | 1.00         | ug/L     |            | 127801408 |  |  |
|                                 |         |         |       |              | CCV      |            |           |  |  |
| Parameter                       |         | Reading | Known | Units        | Recover% | Limits%    | File      |  |  |
| 1,2,4,5-Tetrachlorobenzene      |         | 48200   | 50000 | ug/L         | 96.4     | 60.0 - 140 | 127801407 |  |  |
| 1,2,4-Trichlorobenzene          |         | 59700   | 50000 | ug/L         | 119      | 61.0 - 130 | 127801407 |  |  |
| 1,2-Dichlorobenzene             |         | 60000   | 50000 | ug/L         | 120      | 60.0 - 140 | 127801407 |  |  |
| 1,2-DPH (as azobenzene)         |         | 41700   | 50000 | ug/L         | 83.4     | 60.0 - 140 | 127801407 |  |  |
| 1,3-Dichlorobenzene             |         | 49500   | 50000 | ug/L         | 99.0     | 60.0 - 140 | 127801407 |  |  |
| 1,4-Dichlorobenzene             |         | 49000   | 50000 | ug/L         | 98.0     | 60.0 - 140 | 127801407 |  |  |
| 2,4,5-Trichlorophenol           |         | 52900   | 50000 | ug/L         | 106      | 69.0 - 130 | 127801407 |  |  |
| 2,4,6-Trichlorophenol           |         | 51300   | 50000 | ug/L         | 103      | 69.0 - 130 | 127801407 |  |  |
| 2,4-Dichlorophenol              |         | 57800   | 50000 | ug/L         | 116      | 64.0 - 130 | 127801407 |  |  |
| 2,4-Dimethylphenol              |         | 48100   | 50000 | ug/L         | 96.2     | 58.0 - 130 | 127801407 |  |  |
| 2,4-Dinitrophenol               |         | 63300   | 50000 | ug/L         | 127      | 39.0 - 173 | 127801407 |  |  |
| 2,4-Dinitrotoluene              |         | 57800   | 50000 | ug/L         | 116      | 53.0 - 130 | 127801407 |  |  |
| 2,6-Dinitrotoluene              |         | 57700   | 50000 | ug/L         | 115      | 68.0 - 137 | 127801407 |  |  |
| 2-Chloronaphthalene             |         | 48500   | 50000 | ug/L         | 97.0     | 70.0 - 130 | 127801407 |  |  |
| 2-Chlorophenol                  |         | 47500   | 50000 | ug/L         | 95.0     | 55.0 - 130 | 127801407 |  |  |
| 2-Methylphenol (o-Cresol)       |         | 47600   | 50000 | ug/L         | 95.2     | 60.0 - 140 | 127801407 |  |  |
| 2-Nitrophenol                   |         | 65100   | 50000 | ug/L<br>ug/L | 130      | 61.0 - 163 | 127801407 |  |  |
| 3&4-Methylphenol (m&p-Cresol)   |         | 42600   | 50000 | ug/L<br>ug/L | 85.2     | 60.0 - 140 | 127801407 |  |  |
| 3,3'-Dichlorobenzidine          |         | 65400   | 50000 | ug/L<br>ug/L | 131      | 18.0 - 213 | 127801407 |  |  |
| 4,6-Dinitro-2-methylphenol      |         | 54200   | 50000 | ug/L<br>ug/L | 108      | 56.0 - 130 | 127801407 |  |  |
| 4-Bromophenyl phenyl ether      |         | 54200   | 50000 | ug/L<br>ug/L | 108      | 70.0 - 130 | 127801407 |  |  |
|                                 |         | 50900   | 50000 | -            | 108      | 57.0 - 145 | 127801407 |  |  |
| 4-Chlorophenyl phenyl ethe      |         |         |       | ug/L         |          |            |           |  |  |
| 4-Nitrophenol                   |         | 43000   | 50000 | ug/L         | 86.0     | 35.0 - 135 | 127801407 |  |  |
| Acenaphthene                    |         | 48800   | 50000 | ug/L         | 97.6     | 70.0 - 130 | 127801407 |  |  |
| Acenaphthylene                  |         | 50400   | 50000 | ug/L         | 101      | 60.0 - 130 | 127801407 |  |  |
| Aniline                         |         | 38400   | 50000 | ug/L         | 76.8     | 60.0 - 140 | 127801407 |  |  |
| Anthracene                      |         | 50000   | 50000 | ug/L         | 100      | 58.0 - 130 | 127801407 |  |  |
| Benzidine                       |         | 28000   | 50000 | ug/L         | 56.0     | 20.0 - 180 | 127801407 |  |  |
| Benzo(a)anthracene              |         | 60400   | 50000 | ug/L         | 121      | 42.0 - 133 | 127801407 |  |  |
| Benzo(a)pyrene                  |         | 63500   | 50000 | ug/L         | 127      | 32.0 - 148 | 127801407 |  |  |
| Benzo(b)fluoranthene            |         | 62000   | 50000 | ug/L         | 124      | 42.0 - 140 | 127801407 |  |  |
| Benzo(ghi)perylene              |         | 63700   | 50000 | ug/L         | 127      | 13.0 - 195 | 127801407 |  |  |
| Benzo(k)fluoranthene            |         | 62600   | 50000 | ug/L         | 125      | 25.0 - 146 | 127801407 |  |  |
| Benzyl Butyl phthalate          |         | 63800   | 50000 | ug/L         | 128      | 43.0 - 140 | 127801407 |  |  |
| Bis(2-chloroethoxy)methane      |         | 55900   | 50000 | ug/L         | 112      | 52.0 - 164 | 127801407 |  |  |
| Bis(2-chloroethyl)ether         |         | 41600   | 50000 | ug/L         | 83.2     | 52.0 - 130 | 127801407 |  |  |
| Bis(2-chloroisopropyl)ether     |         | 51000   | 50000 | ug/L         | 102      | 63.0 - 139 | 127801407 |  |  |
| Bis(2-ethylhexyl)phthalate      |         | 56200   | 50000 | ug/L         | 112      | 43.0 - 137 | 127801407 |  |  |
| Chrysene (Benzo(a)phenanthrene) |         | 57700   | 50000 | ug/L         | 115      | 44.0 - 140 | 127801407 |  |  |
| Dibenz(a,h)anthracene           |         | 61900   | 50000 | ug/L         | 124      | 13.0 - 200 | 127801407 |  |  |
|                                 |         |         |       |              |          |            |           |  |  |

Blank

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 38 of 55



Page 21 of 30

*Project* 1152756

Printed 07/30/2025

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

| CCV                              |         |         |         |       |             |            |      |           |       |     |        |
|----------------------------------|---------|---------|---------|-------|-------------|------------|------|-----------|-------|-----|--------|
| Parameter                        |         | Reading | Known   | Units | Recover%    | Limits%    |      | File      |       |     |        |
| Diethyl phthalate                |         | 51400   | 50000   | ug/L  | 103         | 47.0 - 130 |      | 127801407 |       |     |        |
| Dimethyl phthalate               |         | 52000   | 50000   | ug/L  | 104         | 50.0 - 130 |      | 127801407 |       |     |        |
| Di-n-butylphthalate              |         | 47400   | 50000   | ug/L  | 94.8        | 52.0 - 130 |      | 127801407 |       |     |        |
| Di-n-octylphthalate              |         | 48700   | 50000   | ug/L  | 97.4        | 21.0 - 132 |      | 127801407 |       |     |        |
| Fluoranthene(Benzo(j,k)fluorene) |         | 54000   | 50000   | ug/L  | 108         | 47.0 - 130 |      | 127801407 |       |     |        |
| Fluorene                         |         | 50500   | 50000   | ug/L  | 101         | 70.0 - 130 |      | 127801407 |       |     |        |
| Hexachlorobenzene                |         | 56900   | 50000   | ug/L  | 114         | 38.0 - 142 |      | 127801407 |       |     |        |
| Hexachlorobutadiene              |         | 61200   | 50000   | ug/L  | 122         | 68.0 - 130 |      | 127801407 |       |     |        |
| Hexachlorocyclopentadiene        |         | 45400   | 50000   | ug/L  | 90.8        | 60.0 - 140 |      | 127801407 |       |     |        |
| Hexachloroethane                 |         | 53700   | 50000   | ug/L  | 107         | 55.0 - 130 |      | 127801407 |       |     |        |
| Indeno(1,2,3-cd)pyrene           |         | 60500   | 50000   | ug/L  | 121         | 13.0 - 151 |      | 127801407 |       |     |        |
| Isophorone                       |         | 60500   | 50000   | ug/L  | 121         | 52.0 - 180 |      | 127801407 |       |     |        |
| Naphthalene                      |         | 52300   | 50000   | ug/L  | 105         | 70.0 - 130 |      | 127801407 |       |     |        |
| Nitrobenzene                     |         | 51800   | 50000   | ug/L  | 104         | 54.0 - 158 |      | 127801407 |       |     |        |
| n-Nitrosodiethylamine            |         | 57000   | 50000   | ug/L  | 114         | 60.0 - 140 |      | 127801407 |       |     |        |
| N-Nitrosodimethylamine           |         | 44400   | 50000   | ug/L  | 88.8        | 60.0 - 140 |      | 127801407 |       |     |        |
| n-Nitroso-di-n-butylamine        |         | 53800   | 50000   | ug/L  | 108         | 60.0 - 140 |      | 127801407 |       |     |        |
| N-Nitrosodi-n-propylamine        |         | 40300   | 50000   | ug/L  | 80.6        | 59.0 - 170 |      | 127801407 |       |     |        |
| N-Nitrosodiphenylamine (as DPA   |         | 47100   | 50000   | ug/L  | 94.2        | 60.0 - 140 |      | 127801407 |       |     |        |
| p-Chloro-m-Cresol (4-Chloro-3-me |         | 53400   | 50000   | ug/L  | 107         | 68.0 - 130 |      | 127801407 |       |     |        |
| Pentachlorobenzene               |         | 53800   | 50000   | ug/L  | 108         | 60.0 - 140 |      | 127801407 |       |     |        |
| Pentachlorophenol                |         | 29500   | 50000   | ug/L  | 59.0        | 42.0 - 152 |      | 127801407 |       |     |        |
| Phenanthrene                     |         | 47800   | 50000   | ug/L  | 95.6        | 67.0 - 130 |      | 127801407 |       |     |        |
| Phenol                           |         | 41100   | 50000   | ug/L  | 82.2        | 48.0 - 130 |      | 127801407 |       |     |        |
| Pyrene                           |         | 62700   | 50000   | ug/L  | 125         | 70.0 - 130 |      | 127801407 |       |     |        |
| Pyridine                         |         | 36800   | 50000   | ug/L  | 73.6        | 60.0 - 140 |      | 127801407 |       |     |        |
|                                  |         |         |         | DI    | FTPP        |            |      |           |       |     |        |
| Parameter                        |         | RefMass | Reading | %     | Limits%     |            |      | File      |       |     |        |
| DFTPP Mass 127                   | 632253  | 198     | 66384   | 49.3  | 40.0 - 60.0 |            |      | 127801406 |       |     |        |
| DFTPP Mass 197                   | 632253  | 198     | 205     | 0.2   | 0 - 1.00    |            |      | 127801406 |       |     |        |
| DFTPP Mass 198                   | 632253  | 198     | 134773  | 100.0 | 100 - 100   |            |      | 127801406 |       |     |        |
| DFTPP Mass 199                   | 632253  | 198     | 9067    | 6.7   | 5.00 - 9.00 |            |      | 127801406 |       |     |        |
| DFTPP Mass 275                   | 632253  | 198     | 31526   | 23.4  | 10.0 - 30.0 |            |      | 127801406 |       |     |        |
| DFTPP Mass 365                   | 632253  | 198     | 4770    | 3.5   | 1.00 - 100  |            |      | 127801406 |       |     |        |
| DFTPP Mass 441                   | 632253  | 443     | 16479   | 76.1  | 0 - 100     |            |      | 127801406 |       |     |        |
| DFTPP Mass 442                   | 632253  | 198     | 109944  | 81.6  | 40.0 - 100  |            |      | 127801406 |       |     |        |
| DFTPP Mass 443                   | 632253  | 442     | 21666   | 19.7  | 17.0 - 23.0 |            |      | 127801406 |       |     |        |
| DFTPP Mass 51                    | 632253  | 198     | 45451   | 33.7  | 30.0 - 60.0 |            |      | 127801406 |       |     |        |
| DFTPP Mass 68                    | 632253  | 69.0    | 387     | 0.7   | 0 - 2.00    |            |      | 127801406 |       |     |        |
| DFTPP Mass 69                    | 632253  | 198     | 57747   | 42.8  | 0 - 100     |            |      | 127801406 |       |     |        |
| DFTPP Mass 70                    | 632253  | 69.0    | 291     | 0.5   | 0 - 2.00    |            |      | 127801406 |       |     |        |
|                                  |         |         |         | LC    | S Dup       |            |      |           |       |     |        |
| <u>Parameter</u>                 | PrepSet | LCS     | LCSD    |       | Known       | Limits%    | LCS% | LCSD%     | Units | RPD | Limit% |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 39 of 55



Page 22 of 30

*Project* 1152756

Printed 07/30/2025

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

LCS Dup

|                                  |         |      | LC   | э рор |              |        |        |       |       |        |
|----------------------------------|---------|------|------|-------|--------------|--------|--------|-------|-------|--------|
| <u>Parameter</u>                 | PrepSet | LCS  | LCSD | Known | Limits%      | LCS%   | LCSD%  | Units | RPD   | Limit% |
| 1,2,4,5-Tetrachlorobenzene       | 1182875 | 16.8 | 16.1 | 25.0  | 27.5 - 85.5  | 67.2   | 64.4   | ug/L  | 4.26  | 50.0   |
| 1,2,4-Trichlorobenzene           | 1182875 | 14.8 | 14.3 | 25.0  | 44.0 - 142   | 59.2   | 57.2   | ug/L  | 3.44  | 50.0   |
| 1,2-Dichlorobenzene              | 1182875 | 17.9 | 16.1 | 25.0  | 23.0 - 81.8  | 71.6   | 64.4   | ug/L  | 10.6  | 50.0   |
| 1,2-DPH (as azobenzene)          | 1182875 | 18.7 | 18.3 | 25.0  | 12.6 - 110   | 74.8   | 73.2   | ug/L  | 2.16  | 50.0   |
| 1,3-Dichlorobenzene              | 1182875 | 13.1 | 12.2 | 25.0  | 21.1 - 80.5  | 52.4   | 48.8   | ug/L  | 7.11  | 50.0   |
| 1,4-Dichlorobenzene              | 1182875 | 14.2 | 13.0 | 25.0  | 21.4 - 76.9  | 56.8   | 52.0   | ug/L  | 8.82  | 50.0   |
| 2,4,5-Trichlorophenol            | 1182875 | 20.6 | 21.2 | 25.0  | 51.3 - 109   | 82.4   | 84.8   | ug/L  | 2.87  | 50.0   |
| 2,4,6-Trichlorophenol            | 1182875 | 19.4 | 20.0 | 25.0  | 37.0 - 144   | 77.6   | 80.0   | ug/L  | 3.05  | 58.0   |
| 2,4-Dichlorophenol               | 1182875 | 19.9 | 19.1 | 25.0  | 39.0 - 135   | 79.6   | 76.4   | ug/L  | 4.10  | 50.0   |
| 2,4-Dimethylphenol               | 1182875 | 8.18 | 7.38 | 25.0  | 32.0 - 120   | 32.7   | 29.5 * | ug/L  | 10.3  | 68.0   |
| 2,4-Dinitrophenol                | 1182875 | 18.6 | 19.9 | 25.0  | 0.100 - 191  | 74.4   | 79.6   | ug/L  | 6.75  | 132    |
| 2,4-Dinitrotoluene               | 1182875 | 24.8 | 24.2 | 25.0  | 39.0 - 139   | 99.2   | 96.8   | ug/L  | 2.45  | 42.0   |
| 2,6-Dinitrotoluene               | 1182875 | 23.7 | 24.0 | 25.0  | 50.0 - 158   | 94.8   | 96.0   | ug/L  | 1.26  | 48.0   |
| 2-Chloronaphthalene              | 1182875 | 19.1 | 16.9 | 25.0  | 60.0 - 120   | 76.4   | 67.6   | ug/L  | 12.2  | 24.0   |
| 2-Chlorophenol                   | 1182875 | 17.6 | 16.4 | 25.0  | 23.0 - 134   | 70.4   | 65.6   | ug/L  | 7.06  | 61.0   |
| 2-Methylphenol (o-Cresol)        | 1182875 | 16.2 | 15.3 | 25.0  | 38.9 - 76.1  | 64.8   | 61.2   | ug/L  | 5.71  | 50.0   |
| 2-Nitrophenol                    | 1182875 | 20.8 | 20.1 | 25.0  | 29.0 - 182   | 83.2   | 80.4   | ug/L  | 3.42  | 55.0   |
| 3&4-Methylphenol (m&p-Cresol)    | 1182875 | 15.4 | 14.2 | 25.0  | 33.0 - 70.4  | 61.6   | 56.8   | ug/L  | 8.11  | 50.0   |
| 3,3'-Dichlorobenzidine           | 1182875 | 21.7 | 18.2 | 25.0  | 0.100 - 262  | 86.8   | 72.8   | ug/L  | 17.5  | 108    |
| 4,6-Dinitro-2-methylphenol       | 1182875 | 20.5 | 21.7 | 25.0  | 0.100 - 181  | 82.0   | 86.8   | ug/L  | 5.69  | 203    |
| 4-Bromophenyl phenyl ether       | 1182875 | 22.1 | 21.8 | 25.0  | 53.0 - 127   | 88.4   | 87.2   | ug/L  | 1.37  | 43.0   |
| 4-Chlorophenyl phenyl ethe       | 1182875 | 20.5 | 19.7 | 25.0  | 25.0 - 158   | 82.0   | 78.8   | ug/L  | 3.98  | 61.0   |
| 4-Nitrophenol                    | 1182875 | 7.48 | 7.33 | 25.0  | 0.100 - 132  | 29.9   | 29.3   | ug/L  | 2.03  | 131    |
| Acenaphthene                     | 1182875 | 20.2 | 19.6 | 25.0  | 47.0 - 145   | 80.8   | 78.4   | ug/L  | 3.02  | 48.0   |
| Acenaphthylene                   | 1182875 | 20.2 | 19.0 | 25.0  | 33.0 - 145   | 80.8   | 76.0   | ug/L  | 6.12  | 74.0   |
| Aniline                          | 1182875 | 15.0 | 14.1 | 25.0  | 70.0 - 130   | 60.0 * | 56.4 * | ug/L  | 6.19  | 50.0   |
| Anthracene                       | 1182875 | 22.7 | 22.3 | 25.0  | 27.0 - 133   | 90.8   | 89.2   | ug/L  | 1.78  | 66.0   |
| Benzidine                        | 1182875 | 2.92 | 2.59 | 25.0  | 0.100 - 36.9 | 11.7   | 10.4   | ug/L  | 11.8  | 90.0   |
| Benzo(a)anthracene               | 1182875 | 22.4 | 22.3 | 25.0  | 33.0 - 143   | 89.6   | 89.2   | ug/L  | 0.447 | 53.0   |
| Benzo(a)pyrene                   | 1182875 | 22.8 | 22.7 | 25.0  | 17.0 - 163   | 91.2   | 90.8   | ug/L  | 0.440 | 72.0   |
| Benzo(b)fluoranthene             | 1182875 | 23.9 | 23.0 | 25.0  | 24.0 - 159   | 95.6   | 92.0   | ug/L  | 3.84  | 71.0   |
| Benzo(ghi)perylene               | 1182875 | 22.0 | 23.0 | 25.0  | 0.100 - 219  | 88.0   | 92.0   | ug/L  | 4.44  | 97.0   |
| Benzo(k)fluoranthene             | 1182875 | 24.4 | 24.2 | 25.0  | 11.0 - 162   | 97.6   | 96.8   | ug/L  | 0.823 | 63.0   |
| Benzyl Butyl phthalate           | 1182875 | 23.9 | 24.2 | 25.0  | 0.100 - 152  | 95.6   | 96.8   | ug/L  | 1.25  | 60.0   |
| Bis(2-chloroethoxy)methane       | 1182875 | 22.3 | 21.2 | 25.0  | 33.0 - 184   | 89.2   | 84.8   | ug/L  | 5.06  | 54.0   |
| Bis(2-chloroethyl)ether          | 1182875 | 16.0 | 14.9 | 25.0  | 12.0 - 158   | 64.0   | 59.6   | ug/L  | 7.12  | 108    |
| Bis(2-chloroisopropyl)ether      | 1182875 | 18.3 | 16.9 | 25.0  | 36.0 - 166   | 73.2   | 67.6   | ug/L  | 7.95  | 76.0   |
| Bis(2-ethylhexyl)phthalate       | 1182875 | 21.8 | 21.9 | 25.0  | 8.00 - 158   | 87.2   | 87.6   | ug/L  | 0.458 | 82.0   |
| Chrysene (Benzo(a)phenanthrene)  | 1182875 | 23.2 | 22.7 | 25.0  | 17.0 - 168   | 92.8   | 90.8   | ug/L  | 2.18  | 87.0   |
| Dibenz(a,h)anthracene            | 1182875 | 22.8 | 23.2 | 25.0  | 0.100 - 227  | 91.2   | 92.8   | ug/L  | 1.74  | 126    |
| Diethyl phthalate                | 1182875 | 22.7 | 22.0 | 25.0  | 0.100 - 120  | 90.8   | 88.0   | ug/L  | 3.13  | 100    |
| Dimethyl phthalate               | 1182875 | 21.5 | 21.3 | 25.0  | 0.100 - 120  | 86.0   | 85.2   | ug/L  | 0.935 | 183    |
| Di-n-butylphthalate              | 1182875 | 24.4 | 20.6 | 25.0  | 1.00 - 120   | 97.6   | 82.4   | ug/L  | 16.9  | 47.0   |
| Di-n-octylphthalate              | 1182875 | 18.6 | 19.0 | 25.0  | 4.00 - 146   | 74.4   | 76.0   | ug/L  | 2.13  | 69.0   |
| Fluoranthene(Benzo(j,k)fluorene) | 1182875 | 23.2 | 19.7 | 25.0  | 26.0 - 137   | 92.8   | 78.8   | ug/L  | 16.3  | 66.0   |
|                                  |         |      |      |       |              |        |        |       |       |        |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 40 of 55

# **QUALITY CONTROL**



Page 23 of 30

*Project* 1152756

Printed 07/30/2025

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

|                                  |         |         |         | LCS    | Dup   |             |            |           |       |       |        |
|----------------------------------|---------|---------|---------|--------|-------|-------------|------------|-----------|-------|-------|--------|
| <u>Parameter</u>                 | PrepSet | LCS     | LCSD    |        | Known | Limits%     | LCS%       | LCSD%     | Units | RPD   | Limit% |
| Fluorene                         | 1182875 | 21.6    | 20.4    |        | 25.0  | 59.0 - 121  | 86.4       | 81.6      | ug/L  | 5.71  | 38.0   |
| Hexachlorobenzene                | 1182875 | 21.6    | 21.5    |        | 25.0  | 0.100 - 152 | 86.4       | 86.0      | ug/L  | 0.464 | 55.0   |
| Hexachlorobutadiene              | 1182875 | 12.3    | 11.7    |        | 25.0  | 24.0 - 120  | 49.2       | 46.8      | ug/L  | 5.00  | 62.0   |
| Hexachlorocyclopentadiene        | 1182875 | 11.8    | 11.1    |        | 25.0  | 3.97 - 68.7 | 47.2       | 44.4      | ug/L  | 6.11  | 50.0   |
| Hexachloroethane                 | 1182875 | 12.5    | 11.2    |        | 25.0  | 40.0 - 120  | 50.0       | 44.8      | ug/L  | 11.0  | 52.0   |
| Indeno(1,2,3-cd)pyrene           | 1182875 | 20.4    | 21.3    |        | 25.0  | 0.100 - 171 | 81.6       | 85.2      | ug/L  | 4.32  | 99.0   |
| Isophorone                       | 1182875 | 17.5    | 17.4    |        | 25.0  | 21.0 - 196  | 70.0       | 69.6      | ug/L  | 0.573 | 93.0   |
| Naphthalene                      | 1182875 | 17.0    | 16.3    |        | 25.0  | 21.0 - 133  | 68.0       | 65.2      | ug/L  | 4.20  | 65.0   |
| Nitrobenzene                     | 1182875 | 17.1    | 16.8    |        | 25.0  | 35.0 - 180  | 68.4       | 67.2      | ug/L  | 1.77  | 62.0   |
| n-Nitrosodiethylamine            | 1182875 | 36.2    | 33.5    |        | 25.0  | 18.0 - 100  | 145 *      | 134 *     | ug/L  | 7.89  | 50.0   |
| N-Nitrosodimethylamine           | 1182875 | 11.1    | 10.0    |        | 25.0  | 30.2 - 74.9 | 44.4       | 40.0      | ug/L  | 10.4  | 50.0   |
| n-Nitroso-di-n-butylamine        | 1182875 | 19.2    | 18.6    |        | 25.0  | 48.4 - 98.5 | 76.8       | 74.4      | ug/L  | 3.17  | 50.0   |
| N-Nitrosodi-n-propylamine        | 1182875 | 20.2    | 18.6    |        | 25.0  | 0.100 - 230 | 80.8       | 74.4      | ug/L  | 8.25  | 87.0   |
| N-Nitrosodiphenylamine (as DPA   | 1182875 | 22.1    | 21.9    |        | 25.0  | 49.3 - 94.2 | 88.4       | 87.6      | ug/L  | 0.909 | 50.0   |
| p-Chloro-m-Cresol (4-Chloro-3-me | 1182875 | 18.5    | 17.8    |        | 25.0  | 22.0 - 147  | 74.0       | 71.2      | ug/L  | 3.86  | 70.0   |
| Pentachlorobenzene               | 1182875 | 20.1    | 19.2    |        | 25.0  | 39.3 - 93.7 | 80.4       | 76.8      | ug/L  | 4.58  | 50.0   |
| Pentachlorophenol                | 1182875 | 18.1    | 19.4    |        | 25.0  | 14.0 - 176  | 72.4       | 77.6      | ug/L  | 6.93  | 86.0   |
| Phenanthrene                     | 1182875 | 22.4    | 22.0    |        | 25.0  | 54.0 - 120  | 89.6       | 88.0      | ug/L  | 1.80  | 39.0   |
| Phenol                           | 1182875 | 6.55    | 6.12    |        | 25.0  | 5.00 - 120  | 26.2       | 24.5      | ug/L  | 6.71  | 64.0   |
| Pyrene                           | 1182875 | 22.0    | 21.9    |        | 25.0  | 52.0 - 120  | 88.0       | 87.6      | ug/L  | 0.456 | 49.0   |
| Pyridine                         | 1182875 | 8.94    | 8.90    |        | 25.0  | 11.2 - 50.6 | 35.8       | 35.6      | ug/L  | 0.560 | 50.0   |
|                                  |         |         |         | Surr   | ogate |             |            |           |       |       |        |
| Parameter_                       | Sample  | Туре    | Reading | Known  | Units | Recover%    | Limits%    | File      |       |       |        |
| 2,4,6-Tribromophenol             | 632190  | CCV     | 59500   | 100000 | ug/L  | 59.5        | 10.0 - 150 | 127801407 |       |       |        |
| 2-Fluorophenol-SURR              | 632190  | CCV     | 49100   | 100000 | ug/L  | 49.1        | 10.0 - 150 | 127801407 |       |       |        |
| 4-Terphenyl-d14-SURR             | 632190  | CCV     | 53900   | 50000  | ug/L  | 108         | 30.0 - 150 | 127801407 |       |       |        |
| Nitrobenzene-d5-SURR             | 632190  | CCV     | 55000   | 50000  | ug/L  | 110         | 30.0 - 150 | 127801407 |       |       |        |
| Phenol-d6-SURR                   | 632190  | CCV     | 46200   | 100000 | ug/L  | 46.2        | 10.0 - 150 | 127801407 |       |       |        |
| 2,4,6-Tribromophenol             | 1182875 | Blank   | 57.5    | 100    | ug/L  | 57.5        | 10.0 - 150 | 127801408 |       |       |        |
| 2,4,6-Tribromophenol             | 1182875 | LCS     | 71.3    | 100    | ug/L  | 71.3        | 10.0 - 150 | 127801409 |       |       |        |
| 2,4,6-Tribromophenol             | 1182875 | LCS Dup | 73.3    | 100    | ug/L  | 73.3        | 10.0 - 150 | 127801410 |       |       |        |
| 2-Fluorophenol-SURR              | 1182875 | Blank   | 31100   | 100000 | ug/L  | 31.1        | 10.0 - 150 | 127801408 |       |       |        |
| 2-Fluorophenol-SURR              | 1182875 | LCS     | 35200   | 100000 | ug/L  | 35.2        | 10.0 - 150 | 127801409 |       |       |        |
| 2-Fluorophenol-SURR              | 1182875 | LCS Dup | 32500   | 100000 | ug/L  | 32.5        | 10.0 - 150 | 127801410 |       |       |        |
| 4-Terphenyl-d14-SURR             | 1182875 | Blank   | 44300   | 50000  | ug/L  | 88.6        | 30.0 - 150 | 127801408 |       |       |        |
| 4-Terphenyl-d14-SURR             | 1182875 | LCS     | 46000   | 50000  | ug/L  | 92.0        | 30.0 - 150 | 127801409 |       |       |        |
| 4-Terphenyl-d14-SURR             | 1182875 | LCS Dup | 45300   | 50000  | ug/L  | 90.6        | 30.0 - 150 | 127801410 |       |       |        |
| Nitrobenzene-d5-SURR             | 1182875 | Blank   | 42500   | 50000  | ug/L  | 85.0        | 30.0 - 150 | 127801408 |       |       |        |
| Nitrobenzene-d5-SURR             | 1182875 | LCS     | 40700   | 50000  | ug/L  | 81.4        | 30.0 - 150 | 127801409 |       |       |        |
| Nitrobenzene-d5-SURR             | 1182875 | LCS Dup | 40300   | 50000  | ug/L  | 80.6        | 30.0 - 150 | 127801410 |       |       |        |
| Phenol-d6-SURR                   | 1182875 | Blank   | 21700   | 100000 | ug/L  | 21.7        | 10.0 - 150 | 127801408 |       |       |        |
| Phenol-d6-SURR                   | 1182875 | LCS     | 25800   | 100000 | ug/L  | 25.8        | 10.0 - 150 | 127801409 |       |       |        |
| Phenol-d6-SURR                   | 1182875 | LCS Dup | 24100   | 100000 | ug/L  | 24.1        | 10.0 - 150 | 127801410 |       |       |        |
| 2,4,6-Tribromophenol             | 2422662 | Unknown | 80.4    | 108    | ug/L  | 74.4        | 10.0 - 150 | 127801414 |       |       |        |
|                                  |         |         |         |        |       |             |            |           |       |       |        |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 41 of 55

Page 24 of 30

*Project* 1152756

Printed 07/30/2025

#### **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

Surrogate

| <u>Parameter</u>     | Sample  | Туре    | Reading | Known | Units | Recover% | Limits%    | File      |
|----------------------|---------|---------|---------|-------|-------|----------|------------|-----------|
| 2-Fluorophenol-SURR  | 2422662 | Unknown | 34.6    | 108   | ug/L  | 32.0     | 10.0 - 150 | 127801414 |
| 4-Terphenyl-d14-SURR | 2422662 | Unknown | 38.9    | 54.1  | ug/L  | 71.9     | 30.0 - 150 | 127801414 |
| Nitrobenzene-d5-SURR | 2422662 | Unknown | 43.1    | 54.1  | ug/L  | 79.7     | 30.0 - 150 | 127801414 |
| Phenol-d6-SURR       | 2422662 | Unknown | 26.1    | 108   | ug/L  | 24.2     | 10.0 - 150 | 127801414 |

Analytical Set 1183938 EPA 624.1 **BFB** Parameter Sample RefMass Reading % Limits% File BFB Mass 173 1183938 174 322 1.0 0 - 2.00 127801501 BFB Mass 174 1183938 95.0 31928 61.6 50.0 - 100 127801501 BFB Mass 175 1183938 174 2331 7.3 5.00 - 9.00127801501 BFB Mass 176 1183938 174 30685 96.1 95.0 - 101 127801501 5.00 - 9.00 BFB Mass 177 1183938 176 2137 7.0 127801501 BFB Mass 50 1183938 95.0 7874 15.2 15.0 - 40.0 127801501 BFB Mass 75 1183938 95.0 24773 47.8 30.0 - 60.0 127801501 BFB Mass 95 1183938 95.0 51813 100.0 100 - 100 127801501 BFB Mass 96 1183938 95.0 3463 6.7 5.00 - 9.00 127801501 Blank Parameter 1 4 1 PrepSet Reading **MDL MQL** Units File Epichlorohydrin 1183938 ND 6.85 20.0 ug/L 127801505 CCV Recover% Limits% File Parameter Reading Known Units Epichlorohydrin 355 400 ug/L 88.7 70.0 - 130 127801502 IS Areas CCVISM Low File Type Reading High PrepSet Parameter Sample CCV 127801502 1,4-DichlorobenzeneD4 (ISTD) 200200 200200 100100 300300 1183938 1183938 1,4-DichlorobenzeneD4 (ISTD) 1183938 LCS 205000 200200 100100 300300 127801503 1183938 100100 1,4-DichlorobenzeneD4 (ISTD) 1183938 LCS Dup 191200 200200 300300 127801504 1183938 1,4-DichlorobenzeneD4 (ISTD) Blank 185700 200200 100100 300300 127801505 1183938 1183938 ChlorobenzeneD5 (ISTD) 1183938 CCV 427200 427200 213600 640800 127801502 1183938 ChlorobenzeneD5 (ISTD) LCS 426900 427200 213600 640800 127801503 1183938 1183938 ChlorobenzeneD5 (ISTD) 1183938 LCS Dup 406100 427200 213600 640800 127801504 1183938 ChlorobenzeneD5 (ISTD) 390300 427200 213600 640800 1183938 Blank 127801505 1183938 1,4-DichlorobenzeneD4 (ISTD) 2422662 Unknown 184300 200200 100100 300300 127801507 1183938 392900 ChlorobenzeneD5 (ISTD) 2422662 Unknown 427200 213600 640800 127801507 1183938 IS RetTime CCVISM Low File Sample Type Reading High PrepSet Parameter LCS 127801503 1183938 1183938 11.12 11.12 11.06 11.18 1,4-DichlorobenzeneD4 (ISTD) 1,4-DichlorobenzeneD4 (ISTD) 1183938 LCS Dup 11.12 11.12 11.06 11.18 127801504 1183938 1,4-DichlorobenzeneD4 (ISTD) 11.12 11.06 11.18 127801505 1183938 1183938 Blank 11.12 ChlorobenzeneD5 (ISTD) 8.751 8.751 127801503 1183938 1183938 LCS 8.691 8.811 ChlorobenzeneD5 (ISTD) 8.751 8.751 127801504 1183938 1183938 LCS Dup 8.691 8.811

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 42 of 55

# Page 25 of 30

*Project* 1152756

Printed 07/30/2025

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

|                              |         |         |         | IS Re  | tTime |            |            |           |        |       |         |
|------------------------------|---------|---------|---------|--------|-------|------------|------------|-----------|--------|-------|---------|
| <u>Parameter</u>             | Sample  | Туре    | Reading | CCVISM | Low   | High       |            | File      | PrepSe | t     |         |
| ChlorobenzeneD5 (ISTD)       | 1183938 | Blank   | 8.751   | 8.751  | 8.691 | 8.811      |            | 127801505 | 118393 | 8     |         |
| 1,4-DichlorobenzeneD4 (ISTD) | 2422662 | Unknown | 11.12   | 11.12  | 11.06 | 11.18      |            | 127801507 | 118393 | 8     |         |
| ChlorobenzeneD5 (ISTD)       | 2422662 | Unknown | 8.751   | 8.751  | 8.691 | 8.811      |            | 127801507 | 118393 | 8     |         |
|                              |         |         |         | LCS    | Dup   |            |            |           |        |       |         |
| <u>Parameter</u>             | PrepSet | LCS     | LCSD    |        | Known | Limits%    | LCS%       | LCSD%     | Units  | RPD   | Limit%  |
| Epichlorohydrin              | 1183938 | 425     | 463     |        | 400   | 27.5 - 189 | 106        | 116       | ug/L   | 9.01  | 30.0    |
|                              |         |         |         | Surre  | ogate |            |            |           |        |       |         |
| <u>Parameter</u>             | Sample  | Туре    | Reading | Known  | Units | Recover%   | Limits%    | File      |        |       |         |
| 1,2-DCA-d4 (SURR)            | 1183938 | CCV     | 15.4    | 20.0   | ug/L  | 77.0       | 72.3 - 106 | 127801502 |        |       |         |
| 1,2-DCA-d4 (SURR)            | 1183938 | LCS     | 15.5    | 20.0   | ug/L  | 77.5       | 72.3 - 106 | 127801503 |        |       |         |
| 1,2-DCA-d4 (SURR)            | 1183938 | LCS Dup | 15.4    | 20.0   | ug/L  | 77.0       | 72.3 - 106 | 127801504 |        |       |         |
| 1,2-DCA-d4 (SURR)            | 1183938 | Blank   | 15.9    | 20.0   | ug/L  | 79.5       | 72.3 - 106 | 127801505 |        |       |         |
| Bromofluorobenzene (SURR)    | 1183938 | CCV     | 19.4    | 20.0   | ug/L  | 97.0       | 87.2 - 122 | 127801502 |        |       |         |
| Bromofluorobenzene (SURR)    | 1183938 | LCS     | 18.9    | 20.0   | ug/L  | 94.5       | 87.2 - 122 | 127801503 |        |       |         |
| Bromofluorobenzene (SURR)    | 1183938 | LCS Dup | 19.2    | 20.0   | ug/L  | 96.0       | 87.2 - 122 | 127801504 |        |       |         |
| Bromofluorobenzene (SURR)    | 1183938 | Blank   | 19.0    | 20.0   | ug/L  | 95.0       | 87.2 - 122 | 127801505 |        |       |         |
| Dibromofluoromethane (SURR)  | 1183938 | CCV     | 17.8    | 20.0   | ug/L  | 89.0       | 46.7 - 114 | 127801502 |        |       |         |
| Dibromofluoromethane (SURR)  | 1183938 | LCS     | 17.9    | 20.0   | ug/L  | 89.5       | 46.7 - 114 | 127801503 |        |       |         |
| Dibromofluoromethane (SURR)  | 1183938 | LCS Dup | 17.7    | 20.0   | ug/L  | 88.5       | 46.7 - 114 | 127801504 |        |       |         |
| Dibromofluoromethane (SURR)  | 1183938 | Blank   | 17.8    | 20.0   | ug/L  | 89.0       | 46.7 - 114 | 127801505 |        |       |         |
| TolueneD8 (SURR)             | 1183938 | CCV     | 16.1    | 20.0   | ug/L  | 80.5       | 57.4 - 112 | 127801502 |        |       |         |
| TolueneD8 (SURR)             | 1183938 | LCS     | 16.2    | 20.0   | ug/L  | 81.0       | 57.4 - 112 | 127801503 |        |       |         |
| TolueneD8 (SURR)             | 1183938 | LCS Dup | 16.1    | 20.0   | ug/L  | 80.5       | 57.4 - 112 | 127801504 |        |       |         |
| TolueneD8 (SURR)             | 1183938 | Blank   | 15.6    | 20.0   | ug/L  | 78.0       | 57.4 - 112 | 127801505 |        |       |         |
| 1,2-DCA-d4 (SURR)            | 2422662 | Unknown | 15.9    | 20.0   | ug/L  | 79.5       | 72.3 - 106 | 127801507 |        |       |         |
| Bromofluorobenzene (SURR)    | 2422662 | Unknown | 18.8    | 20.0   | ug/L  | 94.0       | 87.2 - 122 | 127801507 |        |       |         |
| Dibromofluoromethane (SURR)  | 2422662 | Unknown | 18.4    | 20.0   | ug/L  | 92.0       | 46.7 - 114 | 127801507 |        |       |         |
| TolueneD8 (SURR)             | 2422662 | Unknown | 15.4    | 20.0   | ug/L  | 77.0       | 57.4 - 112 | 127801507 |        |       |         |
| Analytical Set               | 1184165 |         |         |        |       |            |            |           | EPA 1  | METHO | D 8015C |

Analytical Set 1184165 EPA METHOD 80150

Blank

Parameter PrepSet Reading MDL MQL Units File

| Ethylene Glycol  | 1184165 | ND      | 20.0  | 50.0  | mg/L     |            |      | 127806255 |       |      |
|------------------|---------|---------|-------|-------|----------|------------|------|-----------|-------|------|
|                  |         |         |       | C     | CCV      |            |      |           |       |      |
| <u>Parameter</u> |         | Reading | Known | Units | Recover% | Limits%    |      | File      |       |      |
| Ethylene Glycol  |         | 578     | 500   | mg/L  | 116      | 70.0 - 130 |      | 127806252 |       |      |
| Ethylene Glycol  |         | 584     | 500   | mg/L  | 117      | 70.0 - 130 |      | 127806258 |       |      |
| Ethylene Glycol  |         | 564     | 500   | mg/L  | 113      | 70.0 - 130 |      | 127806262 |       |      |
| Ethylene Glycol  |         | 401     | 500   | mg/L  | 80.2     | 70.0 - 130 |      | 127806263 |       |      |
|                  |         |         |       | LCS   | 5 Dup    |            |      |           |       |      |
| <u>Parameter</u> | PrepSet | LCS     | LCSD  |       | Known    | Limits%    | LCS% | LCSD%     | Units | RPD  |
| Ethylene Glycol  | 1184165 | 534     | 570   |       | 500      | 46.1 - 157 | 107  | 114       | mg/L  | 6.33 |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 43 of 55

*Limit%* 30.0

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

Page 26 of 30 Project 1152756

Printed 07/30/2025

| Parameter   Para |                                       |         |         |        | ا     | MS       |             |             |           |      |        |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------|---------|--------|-------|----------|-------------|-------------|-----------|------|--------|----------|
| Parameter   Sample   MS   MSO   ONK   Known   Limits   MSN   MSDN   Ont   MSDN   MSD | <u>Parameter</u><br>Ethylene Glycol   | •       |         |        | ND    | 500      |             |             | MSD%      |      | RPD    |          |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>Parameter</u><br>Ethylene Glycol   | •       |         |        | UNK   | Known    |             |             |           |      |        |          |
| Preplicy   Preplicy   Reading   MPL   MQL   Units   File   127810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   182810590   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   18281050   1 | Analytical Set                        | 1184406 |         |        |       |          |             |             |           |      | E      | PA 625.1 |
| Bisphenol A   1182875   ND   1.86   10.0   ug/L     127810590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |         |         |        | В     | lank     |             |             |           |      |        |          |
| Reading   Known   Units   Recover%   Limits%   File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>Parameter</u>                      | -       | _       |        |       |          |             |             |           |      |        |          |
| Parameter   Reading   Rown   Units   Recover®   Limits%   File   File   Report   Reading   Rown   Units   Recover®   Limits%   File   Reading   Rown   Recover®   Reading   Rown   Units   Recover®   Limits%   File   Rown   Ro | Bisphenol A                           | 1182875 | ND      | 1.86   |       |          |             |             | 127810590 |      |        |          |
| Bisphenol A   184708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |         |         |        | (     | CCV      |             |             |           |      |        |          |
| Blank   Blan | <u>Parameter</u>                      |         |         |        |       |          |             |             |           |      |        |          |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bisphenol A                           |         | 27900   | 25000  | ug/L  | 112      | 70.0 - 130  |             | 12/810589 |      |        |          |
| Preplicy   Preplicy   Reading   MOL   MOL   Units   File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analytical Set                        | 1184708 |         |        |       |          |             |             |           |      |        | EPA 622  |
| Chlorpyrifos   1182869   ND   0.0672   40.0   ug/L     127818088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |         |         |        | В     | lank     |             |             |           |      |        |          |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>Parameter</u>                      | •       |         |        |       |          |             |             |           |      |        |          |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chlorpyrifos                          | 1182869 | ND      | 0.0672 |       |          |             |             | 127818088 |      |        |          |
| Chlorpyrifos   1060   1000   ug/L   106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |         |         |        | (     | CCV      |             |             |           |      |        |          |
| Chlorpyrifos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>Parameter</u>                      |         | Reading |        | Units | Recover% |             |             | File      |      |        |          |
| Chlorpyrifos   Chlo |                                       |         |         |        | -     |          |             |             |           |      |        |          |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 1                                   |         |         |        |       |          |             |             |           |      |        |          |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chiorpyrnos                           |         | 049     | 300    |       |          | 46.0 - 150  |             | 12/010104 |      |        |          |
| Chlorpyrifos   1182869   508   467   1000   0.100 - 128   50.8   46.7   ug/L   8.41   30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | D 0     |         | T 000  | LC.   | •        | T. 1. 0.    | T 000/      | T CCDA/   |      | n.n.n. | T. 1.07  |
| Parameter   Sample   Type   Reading   Known   Units   Recover%   Limits%   File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · · | *       |         |        |       |          |             |             |           |      |        |          |
| Parameter   Sample   Type   Reading   Known   Units   Recover%   Limits%   File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cinorpyrnos                           | 1102009 | 200     | 407    | Sur   |          | 0.100 - 126 | 50.6        | 40.7      | ug/L | 0.41   | 30.0     |
| Tributylphosphate         CCV         1050         1000         ug/L         105         0.100 - 115         127818087           Tributylphosphate         CCV         531         1000         ug/L         53.1         0.100 - 115         127818094           Tributylphosphate         CCV         517         1000         ug/L         51.7         0.100 - 115         12781804           Triphenylphosphate         CCV         1050         1000         ug/L         105         0.100 - 115         127818087           Triphenylphosphate         CCV         623         1000         ug/L         62.3         0.100 - 115         127818087           Triphenylphosphate         CCV         660         1000         ug/L         62.3         0.100 - 115         127818087           Tributylphosphate         1182869         Blank         451         1000         ug/L         45.1         0.100 - 115         127818098           Tributylphosphate         1182869         LCS         506         1000         ug/L         46.1         0.100 - 115         127818089           Triphenylphosphate         1182869         LCS         537         1000         ug/L         49.5         0.100 - 115         127818089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |         | -       | D #    |       | _        | D 0/        | T: : 0/     |           |      |        |          |
| Tributylphosphate         CCV         531         1000         ug/L         53.1         0.100 - 115         127818094           Tributylphosphate         CCV         517         1000         ug/L         51.7         0.100 - 115         127818104           Triphenylphosphate         CCV         1050         1000         ug/L         62.3         0.100 - 115         127818087           Triphenylphosphate         CCV         623         1000         ug/L         62.3         0.100 - 115         127818094           Triphenylphosphate         CCV         660         1000         ug/L         66.0         0.100 - 115         127818094           Tributylphosphate         1182869         Blank         451         1000         ug/L         45.1         0.100 - 115         127818088           Tributylphosphate         1182869         LCS         506         1000         ug/L         46.1         0.100 - 115         127818089           Triphenylphosphate         1182869         LCS         506         1000         ug/L         46.1         0.100 - 115         127818088           Triphenylphosphate         1182869         LCS         537         1000         ug/L         49.5         0.100 - 115 <td< td=""><td></td><td>Sample</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | Sample  |         |        |       |          |             |             |           |      |        |          |
| Tributylphosphate         CCV         517         1000         ug/L         51.7         0.100 - 115         127818104           Triphenylphosphate         CCV         1050         1000         ug/L         105         0.100 - 115         127818087           Triphenylphosphate         CCV         623         1000         ug/L         62.3         0.100 - 115         127818094           Triphenylphosphate         CCV         660         1000         ug/L         66.0         0.100 - 115         127818094           Tributylphosphate         1182869         Blank         451         1000         ug/L         45.1         0.100 - 115         127818088           Tributylphosphate         1182869         LCS         506         1000         ug/L         45.1         0.100 - 115         127818089           Triphenylphosphate         1182869         LCS Dup         461         1000         ug/L         46.1         0.100 - 115         127818089           Triphenylphosphate         1182869         LCS Dup         469         1000         ug/L         49.5         0.100 - 115         127818089           Triphenylphosphate         1182869         LCS Dup         469         1000         ug/L         46.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | * * *                                 |         |         |        |       | -        |             |             |           |      |        |          |
| Triphenylphosphate         CCV         623         1000         ug/L         62.3         0.100 - 115         127818094           Triphenylphosphate         CCV         660         1000         ug/L         66.0         0.100 - 115         127818104           Tributylphosphate         1182869         Blank         451         1000         ug/L         45.1         0.100 - 115         127818088           Tributylphosphate         1182869         LCS         506         1000         ug/L         50.6         0.100 - 115         127818089           Triphenylphosphate         1182869         LCS Dup         461         1000         ug/L         49.5         0.100 - 115         127818089           Triphenylphosphate         1182869         LCS         537         1000         ug/L         49.5         0.100 - 115         127818088           Triphenylphosphate         1182869         LCS Dup         469         1000         ug/L         53.7         0.100 - 115         127818089           Triphenylphosphate         1182869         LCS Dup         469         1000         ug/L         46.9         0.100 - 115         127818090           Tributylphosphate         2422662         Unknown         0.464         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tributylphosphate                     |         |         | 517    |       | -        |             |             |           |      |        |          |
| Triphenylphosphate         CCV         660         1000         ug/L         66.0         0.100 - 115         127818104           Tributylphosphate         1182869         Blank         451         1000         ug/L         45.1         0.100 - 115         127818088           Tributylphosphate         1182869         LCS         506         1000         ug/L         50.6         0.100 - 115         127818089           Tributylphosphate         1182869         LCS Dup         461         1000         ug/L         49.5         0.100 - 115         127818088           Triphenylphosphate         1182869         LCS         537         1000         ug/L         49.5         0.100 - 115         127818089           Triphenylphosphate         1182869         LCS Dup         469         1000         ug/L         46.9         0.100 - 115         127818090           Tributylphosphate         2422662         Unknown         0.464         1.08         ug/L         43.0         0.100 - 115         127818091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Triphenylphosphate                    |         | CCV     | 1050   | 1000  | ug/L     | 105         | 0.100 - 115 | 127818087 |      |        |          |
| Tributylphosphate         1182869         Blank         451         1000         ug/L         45.1         0.100 - 115         127818088           Tributylphosphate         1182869         LCS         506         1000         ug/L         50.6         0.100 - 115         127818089           Tributylphosphate         1182869         LCS Dup         461         1000         ug/L         46.1         0.100 - 115         127818090           Triphenylphosphate         1182869         LCS         537         1000         ug/L         49.5         0.100 - 115         127818088           Triphenylphosphate         1182869         LCS Dup         469         1000         ug/L         53.7         0.100 - 115         127818090           Tributylphosphate         1182869         LCS Dup         469         1000         ug/L         46.9         0.100 - 115         127818090           Tributylphosphate         2422662         Unknown         0.464         1.08         ug/L         43.0         0.100 - 115         127818091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Triphenylphosphate                    |         |         |        |       | -        |             |             |           |      |        |          |
| Tributylphosphate         1182869         LCS         506         1000         ug/L         50.6         0.100 - 115         127818089           Tributylphosphate         1182869         LCS Dup         461         1000         ug/L         46.1         0.100 - 115         127818090           Triphenylphosphate         1182869         Blank         495         1000         ug/L         49.5         0.100 - 115         127818088           Triphenylphosphate         1182869         LCS Dup         469         1000         ug/L         46.9         0.100 - 115         127818090           Tributylphosphate         2422662         Unknown         0.464         1.08         ug/L         43.0         0.100 - 115         127818091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | 440000  |         |        |       |          |             |             |           |      |        |          |
| Tributylphosphate         1182869         LCS Dup         461         1000         ug/L         46.1         0.100 - 115         127818090           Triphenylphosphate         1182869         Blank         495         1000         ug/L         49.5         0.100 - 115         127818088           Triphenylphosphate         1182869         LCS         537         1000         ug/L         53.7         0.100 - 115         127818089           Triphenylphosphate         1182869         LCS Dup         469         1000         ug/L         46.9         0.100 - 115         127818090           Tributylphosphate         2422662         Unknown         0.464         1.08         ug/L         43.0         0.100 - 115         127818091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |         |         |        |       |          |             |             |           |      |        |          |
| Triphenylphosphate         1182869         Blank         495         1000         ug/L         49.5         0.100 - 115         127818088           Triphenylphosphate         1182869         LCS         537         1000         ug/L         53.7         0.100 - 115         127818089           Triphenylphosphate         1182869         LCS Dup         469         1000         ug/L         46.9         0.100 - 115         127818090           Tributylphosphate         2422662         Unknown         0.464         1.08         ug/L         43.0         0.100 - 115         127818091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |         |         |        |       |          |             |             |           |      |        |          |
| Triphenylphosphate         1182869         LCS         537         1000         ug/L         53.7         0.100 - 115         127818089           Triphenylphosphate         1182869         LCS Dup         469         1000         ug/L         46.9         0.100 - 115         127818090           Tributylphosphate         2422662         Unknown         0.464         1.08         ug/L         43.0         0.100 - 115         127818091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Triphenylphosphate                    |         | _       |        |       |          |             |             |           |      |        |          |
| Triphenylphosphate         1182869         LCS Dup         469         1000         ug/L         46.9         0.100 - 115         127818090           Tributylphosphate         2422662         Unknown         0.464         1.08         ug/L         43.0         0.100 - 115         127818091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Triphenylphosphate                    |         |         |        |       |          |             |             |           |      |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Triphenylphosphate                    | 1182869 |         | 469    | 1000  |          | 46.9        | 0.100 - 115 | 127818090 |      |        |          |
| Triphenylphosphate 2422662 Unknown 0.513 1.08 ug/L 47.5 0.100 - 115 127818091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tributylphosphate                     |         |         |        |       |          |             |             |           |      |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Triphenylphosphate                    | 2422662 | Unknown | 0.513  | 1.08  | ug/L     | 47.5        | 0.100 - 115 | 127818091 |      |        |          |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 44 of 55

# **QUALITY CONTROL**



Page 27 of 30

2

3

*Project* 1152756

Printed 07/30/2025

#### **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

**EPA 614** 1184709 **Analytical Set** Blank PrepSet Reading MDL **MQL** Units File Azinphos-methyl (Guthion) 1182869 ND 38.0 50.0 ug/L 127818113 Demeton 1182869 ND 24.1 50.0 ug/L 127818113 1182869 ND 9.64 50.0 ug/L 127818113 Diazinon Malathion 1182869 ND 18.9 50.0 ug/L 127818113 Parathion, ethyl 1182869 ND 15.8 50.0 ug/L 127818113 Parathion, methyl 1182869 ND 18.5 40.0 ug/L 127818113 CCV Recover% Reading Known Units Limits% File Parameter Azinphos-methyl (Guthion) 1080 1000 ug/L 108 37.5 - 164 127818112 Azinphos-methyl (Guthion) 1130 500 ug/L 227 37.5 - 164 127818118 Azinphos-methyl (Guthion) 1070 500 ug/L 214 37.5 - 164 127818119 Demeton 1050 1000 ug/L 105 58.6 - 150 127818112 Demeton 527 500 ug/L 105 58.6 - 150 127818118 Demeton 512 500 ug/L 102 58.6 - 150 127818119 1040 1000 ug/L 104 65.4 - 138 127818112 Diazinon Diazinon 576 500 ug/L 115 65.4 - 138 127818118 Diazinon 533 500 ug/L 107 65.4 - 138 127818119 Malathion 1060 1000 ug/L 106 49.5 - 160 127818112 Malathion 731 500 ug/L 146 49.5 - 160 127818118 Malathion 635 500 ug/L 127 49.5 - 160 127818119 Parathion, ethyl 1070 1000 ug/L 107 56.0 - 142 127818112 Parathion, ethyl 618 500 ug/L 124 56.0 - 142 127818118 500 105 56.0 - 142 127818119 Parathion, ethyl 526 ug/L Parathion, methyl 1050 1000 ug/L 105 12.6 - 194 127818112 Parathion, methyl 556 500 ug/L 111 12.6 - 194 127818118 Parathion, methyl 486 500 ug/L 97.2 12.6 - 194 127818119 LCS Dup Parameter PrepSet LCS LCSD Known Limits% LCS% LCSD% Units RPD Limit% Azinphos-methyl (Guthion) 1182869 514 575 1000 0.100 - 155 51.4 57.5 ug/L 11.2 30.0 Demeton 1182869 426 417 1000 0.100 - 109 42.6 41.7 ug/L 2.14 30.0 Diazinon 1182869 513 474 1000 0.100 - 125 51.3 47.4 7.90 30.0 ug/L Malathion 1182869 525 481 1000 0.100 - 130 52.5 48.1 ug/L 8.75 30.0 Parathion, ethyl 1182869 590 503 1000 0.100 - 122 59.0 50.3 ug/L 15.9 30.0 Parathion, methyl 1182869 524 482 1000 0.100 - 131 52.4 48.2 ug/L 8.35 30.0 Surrogate Sample Reading Known Units Recover% Limits% File <u>Parameter</u> Type Tributylphosphate CCV 1050 2000 ug/L 52.5 0.100 - 106127818112 Tributylphosphate CCV 531 2000 ug/L 26.6 0.100 - 106127818118 Tributylphosphate CCV 517 2000 ug/L 25.8 0.100 - 106127818119 0.100 - 172 Triphenylphosphate CCV 1050 2000 ug/L 52.5 127818112 Triphenylphosphate CCV 623 2000 ug/L 31.2 0.100 - 172127818118

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 45 of 55

Page 28 of 30

3

*Project* 11**52756** 

Printed 07/30/2025

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

Surrogate

|                    |         |         |         |       | •     |          |             |           |
|--------------------|---------|---------|---------|-------|-------|----------|-------------|-----------|
| <u>Parameter</u>   | Sample  | Туре    | Reading | Known | Units | Recover% | Limits%     | File      |
| Triphenylphosphate |         | CCV     | 660     | 2000  | ug/L  | 33.0     | 0.100 - 172 | 127818119 |
| Tributylphosphate  | 1182869 | Blank   | 451     | 2000  | ug/L  | 22.6     | 0.100 - 106 | 127818113 |
| Tributylphosphate  | 1182869 | LCS     | 506     | 2000  | ug/L  | 25.3     | 0.100 - 106 | 127818114 |
| Tributylphosphate  | 1182869 | LCS Dup | 461     | 2000  | ug/L  | 23.0     | 0.100 - 106 | 127818115 |
| Triphenylphosphate | 1182869 | Blank   | 495     | 2000  | ug/L  | 24.8     | 0.100 - 172 | 127818113 |
| Triphenylphosphate | 1182869 | LCS     | 537     | 2000  | ug/L  | 26.8     | 0.100 - 172 | 127818114 |
| Triphenylphosphate | 1182869 | LCS Dup | 469     | 2000  | ug/L  | 23.4     | 0.100 - 172 | 127818115 |
| Tributylphosphate  | 2422662 | Unknown | 0.464   | 2.16  | ug/L  | 21.5     | 0.100 - 106 | 127818199 |
| Triphenylphosphate | 2422662 | Unknown | 0.513   | 2.16  | ug/L  | 23.8     | 0.100 - 172 | 127818199 |
|                    |         |         |         |       |       |          |             |           |

Analytical Set 1184715 ASTM D7065-17

| Analytical Set        | 1101/10 |         |         |         |          |            |           | 1101111 |
|-----------------------|---------|---------|---------|---------|----------|------------|-----------|---------|
|                       |         |         |         | Bla     | ank      |            |           |         |
| Parameter Parameter   | PrepSet | Reading | MDL     | MQL     | Units    |            | File      |         |
| Nonylphenol           | 1184167 | ND      | 5.00    | 30.0    | ug/L     |            | 127818267 |         |
|                       |         |         |         | C       | cv       |            |           |         |
| <u>Parameter</u>      |         | Reading | Known   | Units   | Recover% | Limits%    | File      |         |
| Nonylphenol           |         | 156000  | 150000  | ug/L    | 104      | 70.0 - 130 | 127818266 |         |
| Nonylphenol           |         | 157000  | 150000  | ug/L    | 104      | 70.0 - 130 | 127818273 |         |
|                       |         |         |         | IS A    | reas     |            |           |         |
| <u>Parameter</u>      | Sample  | Туре    | Reading | CCVISM  | Low      | High       | File      | PrepSet |
| Acenaphthene-d10-ISTD | 631656  | CCV     | 679300  | 679300  | 339600   | 1019000    | 127818266 | 631656  |
| Acenaphthene-d10-ISTD | 631656  | CCV     | 543800  | 679300  | 339600   | 1019000    | 127818273 | 631656  |
| Phenanthrene-d10-ISTD | 631656  | CCV     | 1093000 | 1093000 | 546400   | 1639000    | 127818266 | 631656  |
| Phenanthrene-d10-ISTD | 631656  | CCV     | 907200  | 1093000 | 546400   | 1639000    | 127818273 | 631656  |
| Acenaphthene-d10-ISTD | 1184167 | Blank   | 502000  | 679300  | 339600   | 1019000    | 127818267 | 1184167 |
| Acenaphthene-d10-ISTD | 1184167 | LCS     | 414500  | 679300  | 339600   | 1019000    | 127818268 | 1184167 |
| Acenaphthene-d10-ISTD | 1184167 | LCS Dup | 463100  | 679300  | 339600   | 1019000    | 127818269 | 1184167 |
| Phenanthrene-d10-ISTD | 1184167 | Blank   | 849500  | 1093000 | 546400   | 1639000    | 127818267 | 1184167 |
| Phenanthrene-d10-ISTD | 1184167 | LCS     | 702500  | 1093000 | 546400   | 1639000    | 127818268 | 1184167 |
| Phenanthrene-d10-ISTD | 1184167 | LCS Dup | 764700  | 1093000 | 546400   | 1639000    | 127818269 | 1184167 |
| Acenaphthene-d10-ISTD | 2422662 | Unknown | 495800  | 679300  | 339600   | 1019000    | 127818272 | 1184167 |
| Phenanthrene-d10-ISTD | 2422662 | Unknown | 832500  | 1093000 | 546400   | 1639000    | 127818272 | 1184167 |
|                       |         |         |         | IS Re   | tTime    |            |           |         |
| <u>Parameter</u>      | Sample  | Туре    | Reading | CCVISM  | Low      | High       | File      | PrepSet |
| Acenaphthene-d10-ISTD | 631656  | CCV     | 7.600   | 7.600   | 7.540    | 7.660      | 127818266 | 631656  |
| Acenaphthene-d10-ISTD | 631656  | CCV     | 7.594   | 7.600   | 7.540    | 7.660      | 127818273 | 631656  |
| Phenanthrene-d10-ISTD | 631656  | CCV     | 8.850   | 8.850   | 8.790    | 8.910      | 127818266 | 631656  |
| Phenanthrene-d10-ISTD | 631656  | CCV     | 8.850   | 8.850   | 8.790    | 8.910      | 127818273 | 631656  |
| Acenaphthene-d10-ISTD | 1184167 | Blank   | 7.594   | 7.600   | 7.540    | 7.660      | 127818267 | 1184167 |
| Acenaphthene-d10-ISTD | 1184167 | LCS     | 7.594   | 7.600   | 7.540    | 7.660      | 127818268 | 1184167 |
| Acenaphthene-d10-ISTD | 1184167 | LCS Dup | 7.594   | 7.600   | 7.540    | 7.660      | 127818269 | 1184167 |
| Phenanthrene-d10-ISTD | 1184167 | Blank   | 8.850   | 8.850   | 8.790    | 8.910      | 127818267 | 1184167 |
| Phenanthrene-d10-ISTD | 1184167 | LCS     | 8.850   | 8.850   | 8.790    | 8.910      | 127818268 | 1184167 |
|                       |         |         |         |         |          |            |           |         |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 46 of 55

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

Page 29 of 30

3

Project 1152756

Printed 07/30/2025

|                       |         |         |         | IS Re  | tTime    |             |            |           |        |       |          |
|-----------------------|---------|---------|---------|--------|----------|-------------|------------|-----------|--------|-------|----------|
| <u>Parameter</u>      | Sample  | Туре    | Reading | CCVISM | Low      | High        |            | File      | PrepSe | t     |          |
| Phenanthrene-d10-ISTD | 1184167 | LCS Dup | 8.850   | 8.850  | 8.790    | 8.910       |            | 127818269 | 118416 | 7     |          |
| Acenaphthene-d10-ISTD | 2422662 | Unknown | 7.594   | 7.600  | 7.540    | 7.660       |            | 127818272 | 118416 | 7     |          |
| Phenanthrene-d10-ISTD | 2422662 | Unknown | 8.850   | 8.850  | 8.790    | 8.910       |            | 127818272 | 118416 | 7     |          |
|                       |         |         |         | LCS    | Dup      |             |            |           |        |       |          |
| <u>Parameter</u>      | PrepSet | LCS     | LCSD    |        | Known    | Limits%     | LCS%       | LCSD%     | Units  | RPD   | Limit%   |
| Nonylphenol           | 1184167 | 118     | 110     |        | 150      | 56.0 - 112  | 78.7       | 73.3      | ug/L   | 7.11  | 30.0     |
|                       |         |         |         | Surre  | ogate    |             |            |           |        |       |          |
| <u>Parameter</u>      | Sample  | Туре    | Reading | Known  | Units    | Recover%    | Limits%    | File      |        |       |          |
| 4-Nonylphenol-SURR    | 631656  | CCV     | 26500   | 25000  | ug/L     | 106         | 50.0 - 130 | 127818266 |        |       |          |
| 4-Nonylphenol-SURR    | 631656  | CCV     | 26800   | 25000  | ug/L     | 107         | 50.0 - 130 | 127818273 |        |       |          |
| 4-Nonylphenol-SURR    | 1184167 | Blank   | 18600   | 25000  | ug/L     | 74.4        | 50.0 - 130 | 127818267 |        |       |          |
| 4-Nonylphenol-SURR    | 1184167 | LCS     | 20000   | 25000  | ug/L     | 80.0        | 50.0 - 130 | 127818268 |        |       |          |
| 4-Nonylphenol-SURR    | 1184167 | LCS Dup | 18800   | 25000  | ug/L     | 75.2        | 50.0 - 130 | 127818269 |        |       |          |
| 4-Nonylphenol-SURR    | 2422662 | Unknown |         | 29.7   | ug/L     | 83.5        | 50.0 - 130 | 127818272 |        |       |          |
| Available I Cat       | 1185463 |         |         |        | _        |             |            |           |        |       | PA 604.1 |
| Analytical Set        | 1165405 |         |         | RI:    | ank      |             |            |           |        | -     | FA 004.1 |
| D                     | D G (   | D #     | 1.007   |        |          |             |            | F.7       |        |       |          |
| <u>Parameter</u>      | PrepSet | Reading | MDL     | MQL    | Units    |             |            | File      |        |       |          |
| Hexachlorophene       | 1183076 | 2.26    | 0.890   | 2.50   | ug/L     |             |            | 127836704 |        |       |          |
|                       |         |         |         | C      | CV       |             |            |           |        |       |          |
| <u>Parameter</u>      |         | Reading | Known   | Units  | Recover% | Limits%     |            | File      |        |       |          |
| Hexachlorophene       |         | 5500    | 5000    | ug/L   | 110      | 70.0 - 130  |            | 127836703 |        |       |          |
| Hexachlorophene       |         | 6260    | 5000    | ug/L   | 125      | 70.0 - 130  |            | 127836713 |        |       |          |
| Hexachlorophene       |         | 5450    | 5000    | ug/L   | 109      | 70.0 - 130  |            | 127836716 |        |       |          |
| Hexachlorophene       |         | 5840    | 5000    | ug/L   | 117      | 70.0 - 130  |            | 127836719 |        |       |          |
|                       |         |         |         | LCS    | Dup      |             |            |           |        |       |          |
| <u>Parameter</u>      | PrepSet | LCS     | LCSD    |        | Known    | Limits%     | LCS%       | LCSD%     | Units  | RPD   | Limit%   |
| Hexachlorophene       | 1183076 | 38.0    | 28.4    |        | 50.0     | 25.5 - 145  | 76.0       | 56.8      | ug/L   | 28.9  | 50.0     |
| Analytical Set        | 1185733 |         |         |        |          |             |            |           |        |       | TX 1001  |
| ,                     |         |         |         | Bla    | ank      |             |            |           |        |       |          |
| <u>Parameter</u>      | PrepSet | Reading | MDL     | MQL    | Units    |             |            | File      |        |       |          |
| Tributyltin hydride   | 1184059 | ND      | 0.005   | 0.007  | ug/L     |             |            | 127843201 |        |       |          |
|                       |         |         |         | C      | cv       |             |            |           |        |       |          |
| <u>Parameter</u>      |         | Reading | Known   | Units  | Recover% | Limits%     |            | File      |        |       |          |
| Tributyltin hydride   |         | 44700   | 50000   | ug/L   | 89.3     | 70.0 - 130  |            | 127843200 |        |       |          |
|                       |         |         |         | LCS    | Dup      |             |            |           |        |       |          |
| <u>Parameter</u>      | PrepSet | LCS     | LCSD    |        | Known    | Limits%     | LCS%       | LCSD%     | Units  | RPD   | Limit%   |
| Tributyltin hydride   | 1184059 | 153     | 152     |        | 500      | 0.100 - 211 | 30.6       | 30.4      | ug/L   | 0.656 | 30.0     |

Email: Kilgore.ProjectManagement@spllabs.com

**Analytical Set** 

1187766



Report Page 47 of 55

EPA 632

# **QUALITY CONTROL**



Page 30 of 30

*Project* 1152756

Printed 07/30/2025

## **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

|                  |         |         |       | Bla   | ank      |             |      |           |       |      |        |
|------------------|---------|---------|-------|-------|----------|-------------|------|-----------|-------|------|--------|
| <u>Parameter</u> | PrepSet | Reading | MDL   | MQL   | Units    |             |      | File      |       |      |        |
| Carbaryl (Sevin) | 1182867 | ND      | 66.1  | 2500  | ug/L     |             |      | 127893012 |       |      |        |
| Diuron           | 1182867 | ND      | 44.4  | 45.0  | ug/L     |             |      | 127893012 |       |      |        |
|                  |         |         |       | C     | CV       |             |      |           |       |      |        |
| <u>Parameter</u> |         | Reading | Known | Units | Recover% | Limits%     |      | File      |       |      |        |
| Carbaryl (Sevin) |         | 1080    | 1000  | ug/L  | 108      | 70.0 - 130  |      | 127893011 |       |      |        |
| Carbaryl (Sevin) |         | 1130    | 1000  | ug/L  | 113      | 70.0 - 130  |      | 127893015 |       |      |        |
| Carbaryl (Sevin) |         | 1130    | 1000  | ug/L  | 113      | 70.0 - 130  |      | 127893018 |       |      |        |
| Carbaryl (Sevin) |         | 1140    | 1000  | ug/L  | 114      | 70.0 - 130  |      | 127893021 |       |      |        |
| Diuron           |         | 1020    | 1000  | ug/L  | 102      | 70.0 - 130  |      | 127893011 |       |      |        |
| Diuron           |         | 1050    | 1000  | ug/L  | 105      | 70.0 - 130  |      | 127893015 |       |      |        |
| Diuron           |         | 1050    | 1000  | ug/L  | 105      | 70.0 - 130  |      | 127893018 |       |      |        |
| Diuron           |         | 1070    | 1000  | ug/L  | 107      | 70.0 - 130  |      | 127893021 |       |      |        |
|                  |         |         |       | LCS   | Dup      |             |      |           |       |      |        |
| Parameter        | PrepSet | LCS     | LCSD  |       | Known    | Limits%     | LCS% | LCSD%     | Units | RPD  | Limit% |
| Carbaryl (Sevin) | 1182867 | 720     | 862   |       | 1000     | 17.1 - 131  | 72.0 | 86.2      | ug/L  | 18.0 | 30.0   |
| Diuron           | 1182867 | 746     | 980   |       | 1000     | 0.100 - 138 | 74.6 | 98.0      | ug/L  | 27.1 | 30.0   |

<sup>\*</sup> Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) \* 100%

Recover% is Recovery Percent: result / known \* 100%

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); CCB - Continuing Calibration Blank; CCV - Continuing (same standard used to prepare the curve; typically a mid-range concentration; verifies the continued validity of the calibration curve); ICV -Calibration Verification Initial Calibration Verification; LCS Dup - Laboratory Control Sample Duplicate (replicate LCS; analyzed when there is insufficient sample for duplicate or MSD; quantifies accuracy and precision.); MSD - Matrix Spike Duplicate (replicate of the matrix spike; same solution and amount of target analyte added to the MS is added to a third aliquot of sample; quantifies matrix bias and precision.); BFB - Bromofluorobenzene, GC/MS Tuning Compound (mass intensity used as tuning acceptance criteria.); (mimics the analyte of interest but is unlikely to be found in environmental samples; added to analytical samples for QC purposes. \*\*ANSI/ASQC E4 1994 Ref #4 TRADE QA Resources Guide.); IS Areas - Internal Standard Area (The area of the internal stadard relative to a check standard. Internal Standard is a known concentration of an analyte(s) that is not a sample component or standard that is added to the sample and standard and is used to measure the relative responses of other analytes in the same sample or standard.); IS RetTime - Internal Standard Retention Time (the time the internal standard comes off the column. Internal Stardard is a known concentration of an analyte(s) that is not a sample component or standard that is added to the sample and standard and is used to measure the relative responses of other analytes in the same sample or standard.); LDR - Linear Dynamic Range Standard; MRL Check - Minimum Reporting Limit Check Std; AWRL/LOQ C - Ambient Water Reporting Limit/LOQ Check Std; DFTPP - GC/MS Tuning Compound; MS - Matrix Spike (same solution and amount of target analyte added to the LCS is added to a second aliquot of sample; quantifies matrix bias.)

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 48 of 55



|                                                                                                                                                       |                              |                                     | ne Science of Sure         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|----------------------------|
| CHAIN OF CUSTODY                                                                                                                                      |                              | Printed 06/                         | Page 1 of 5                |
| GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819                                                               | GBRL-C-4<br>448              | PO Number Phone                     | dept= LabInvoices@gbra.org |
| Domestic Worksheet  Matrix: Non-Potable Water                                                                                                         | <b>4.0</b> Hand Do           | elivered by Client to Region or LAB |                            |
| Sample Collection Start  Date: 6/26/25 Time: 0955  Sampler Printed Name: David Liston - SPL, Ir  Sampler Affiliation: SPL  Sampler Signature: Dw Luth | n <b>c.</b><br>              |                                     |                            |
| Samples Radioactive?                                                                                                                                  | Samples Contains Dioxin?     | Samples Biolog                      | tal Hazard?                |
| Field Cl2 Check for CNa                                                                                                                               | Field Cl2 Check for CNa      | 10.10 10.21                         | +                          |
| Results 1 EG Units Temp                                                                                                                               | •                            | ,                                   |                            |
| NELAC Short Hold CroF  Hex Cr, Field Preservation                                                                                                     | Hex Cr, Field Preservation   | SM 3500-Cr B-2011 CAS:18540-        | 9-9 (1.00 days)            |
| Collected By DEL Date 6/24 S Time                                                                                                                     | NOZ 7 Analyzed By NEL Date 6 | /342(Time 1028                      |                            |
| <b>S2Ck</b>                                                                                                                                           | Field Sulfide Check for CNa  |                                     |                            |

Central TX Region: 8101 Comeron Rd - Sto 305 April TX 78754
Report Page 49 of 55
Form place2SPL Created 03/21/2024 1/.0

|                                                                                             |                       |                                  | i e Scie                                 | nce of Sur                             |
|---------------------------------------------------------------------------------------------|-----------------------|----------------------------------|------------------------------------------|----------------------------------------|
| AIN OF CUST                                                                                 | ODY                   | ·                                | Printed 06/13/2025                       | Page 2 of                              |
| BRA/Seguin<br>iliana Hernandez<br>gional Laboratory<br>3 E. Court St<br>guin, TX 78155-5819 |                       | GBRL-C-4<br>448                  | c∵ dept= Lab<br>Phone                    | Invoices@gbra.o<br>830/379-582         |
| Sulfide Check for CNa                                                                       |                       |                                  |                                          |                                        |
| Collected By DEL Date 6                                                                     | /26/25 <sub>Tim</sub> | e                                | Time                                     |                                        |
|                                                                                             |                       | ppC DuplicateU                   |                                          |                                        |
|                                                                                             |                       | up C Duplicate U QC R1 QC R2     |                                          |                                        |
|                                                                                             |                       |                                  |                                          |                                        |
| <b>,</b>                                                                                    |                       |                                  |                                          |                                        |
| √ 9 Aı                                                                                      | mber Glas             | s Qt w/Teflon lined lid          |                                          | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
| -                                                                                           | !CPP                  | Permit Organophos. Pesticides    | EPA 614 (7.00 days)                      |                                        |
| ELAC                                                                                        | 1D2S                  | Table D-1/ D-2 Semivolatiles Exp | EPA 625.1 (7.00 days)                    |                                        |
| ELAC                                                                                        | IHER                  | Herbicides by GC                 | EPA 615 (7.00 days)                      | į                                      |
| ELAC                                                                                        | !PCB                  | Polychlorinated Biphenyls        | EPA 608.3 (7.00 days)                    |                                        |
| ELAC                                                                                        | IPPR                  | TTO Pesticides                   | EPA 608.3 (7.00 days)                    | !!'                                    |
|                                                                                             | #MDR                  | For use with !PPR only           | EPA 617 (7.00 days)                      | ĺ                                      |
| ELAC                                                                                        | 402B                  | For use with EXP !CPP only       | EPA 622 (7.00 days)                      |                                        |
|                                                                                             | BPAE                  | Bisphenol A Expansion            | EPA 625.1 CAS:80-05-7 (7.00 day 4)       |                                        |
|                                                                                             | HXPE                  | Hexachlorophene Expansion        | EPA 604.1 CAS:70-30-4 (7.00 day 4)       | hi:                                    |
|                                                                                             | TBTE                  | Butyltin Expansion               | TX 1001 (14.0 days)                      |                                        |
| ELAC                                                                                        | TYLC                  | Carbaryl/Diuron EXP              | EPA 632 (7.00 days)                      | 1                                      |
| 6 GI                                                                                        | ass Vial 4            | 0 mL (Zero Headspace) w/Teflon   | lined lid                                |                                        |
| ELAC                                                                                        | IEGE                  | Ethylene Glycol Expansion        | EPA METHOD 8015C CAS:107-2 -1 (30.0 days |                                        |
| ELAC Short Hold                                                                             | \$AAE                 | Acrolein/Acrylonitrile Exp.      | EPA 624.1 (3.00 days)                    |                                        |
| ELAC                                                                                        | \$EPE                 | Epichlorohydrin Exp.             | EPA 624.1 (14.0 days)                    | •                                      |
|                                                                                             |                       |                                  |                                          |                                        |
| 2 H2                                                                                        | SO4 to p              | H <2 GlQt w/Tef-lined lid        |                                          | lli i                                  |

TX 78754 Report Page 51 of 55

Form :ptcoc2SPL Created 02/21/2024

| AIN OF CUST                                                          | ODY               |                                  | Printed 06/13/2025                         | nce of Sul<br>Page 4       |
|----------------------------------------------------------------------|-------------------|----------------------------------|--------------------------------------------|----------------------------|
| BRA/Seguin<br>Iliana Hernandez<br>gional Laboratory<br>3 E. Court St |                   | GBRL-C-4<br>448                  | ⇔ dept= Lab                                | Invoices@gbra<br>830/379-5 |
| guin, TX 78155-5819<br>IELAC                                         | *TIM              | Thallium, Total                  | EPA 200.8 5.4 CAS:7440-28-0 (1⊰0 days)     |                            |
| <i>IELAC</i>                                                         | *ZnM              | Zinc, Total                      | EPA 200.8 5.4 CAS:7440-66-6 (180 days)     |                            |
|                                                                      | 301L              | Liquid Metals Digestion          | EPA 200.2 2.8 (180 days)                   |                            |
| X 3 N                                                                | a2S2O3 ((         | 0.008%) Glass 40 mL vial w/Te    | flon lined lid (zero headspace)            |                            |
| Short Hold                                                           | \$VOP             | Table D-1/D-2 w/MTBE             | EPA 624.1 (3.00 days)                      |                            |
| √ 1 G                                                                | lass /clean       | metals w/HCl                     |                                            |                            |
| ELAC                                                                 | *Hgl              | Mercury, Total (low level)       | EPA 245.7 2 CAS:7439-97-6 (90.0 days)      |                            |
| ELAC                                                                 | 2451              | Low Level Mercury Liquid Metals  | EPA 245.7 2 (90.0 days)                    |                            |
| 3 An                             | scorbic Ac        | DW Volatiles Dechlorination Vial | ce)                                        |                            |
|                                                                      | <b>/34/3</b> Time |                                  | 6/34/X Time 1037                           |                            |
|                                                                      | OU to su          | >12 Polyethylene 250 mL/am       | har                                        |                            |
| ELAC Z N                                                             | CN <sub>a</sub>   | Cyanide, total                   | SM 4500-CN E-2016 (14.0 days:              |                            |
|                                                                      | CN-A              | Cyanide - Available/Amenable     | SM 4500-CN G-2016 (14.0 days)              |                            |
|                                                                      | CNCI              | Cyanide After Chlorination       | SM 4500-CN <sup>-</sup> G-2016 (14.0 days) | To Address                 |
| ELAC                                                                 |                   |                                  |                                            |                            |
| ELAC                                                                 | lyethylene        | · Quart                          |                                            | 1 1                        |
| ELAC                                                                 |                   | <b>Quart</b> Fluoride            | EPA 300.0 2.1 (28.0 days)                  |                            |

# he Science of Sure

06/13/2025

# **CHAIN OF CUSTODY**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819 GBRL-C-4 448

ce dept= LabInvoides@gbra.org

Printed

830/379-\$822

Page 5 of 5

NELAC Short Hold

Cr+6 Hexavalent Chromium SM 3500-Cr B-2011 CAS:18540-29-9 (1.00 days)

Ambient Conditions/Comments

| Date Time | Relinquished                           | Date Time        | Received      |               |
|-----------|----------------------------------------|------------------|---------------|---------------|
| 6/26/25   | Printed Name. David Liston - SPL, Inc. | UZUZS Printed ?  | Name × 0 /    | Affiliation   |
| 1700      | Signature Du Yusto                     | 1700 Signature   |               |               |
| 1/21/2    | Printed Name Affiliation               | VIZIZS Printed N | Kieristen R s | sum - SPUjand |
| 1040      | Signature TPX                          | Signature        |               |               |
|           | Printed Name Affiliation               | Printed N        | lame          | Affiliation   |
|           | Signature                              | Signature        | •             |               |
|           | Printed Name Affiliation               | Printed N        | lame          | Affiliation   |
|           | Signature                              | Signature        |               |               |

|                         | - |
|-------------------------|---|
| Sample Received on Ice? |   |
| Cooler/Sample Secure?   |   |



If Shipped: Tracking Number & Temp - See Attached

The accredited column designates accreditation by A - A2LA, N - NELAC, or z - not listed under scope of accreditation. Unless otherwise specified, A VA-LAB shall provide these ordered services pursuant to our Standard Terms & Conditions Agreement (available for download from the welcome page at <a href="http://www.v.ana-lab.com">http://www.v.ana-lab.com</a>). Ana-Lab personnel collect samples as specified by Ana-Lab SOP #000323.

#### Comments

Central TX Region: 8101 Cameron Rd - Ste 305 Austin TX 78754

Report Page 53 of 55

| 1152736 COC Film Group                                      |               |                 |    |    |
|-------------------------------------------------------------|---------------|-----------------|----|----|
|                                                             | ्यां-<br>13   |                 |    |    |
| COOLER                                                      | CHECK         | IN              | -  | ·  |
| Region/Driver/Client Date / Time: Cooler: Shipping Company: | (1)           | 1tcx<br>/<br>of | 10 | 40 |
| Temp Label:  Un 1040  Date () Tol                           | K/R<br>Tegh c | •               |    |    |
| Therm#: 7736 Corr F                                         |               |                 |    |    |

| 2600 Dudley Rd. Kilgore, Texas | e, Texas 75662 |
|--------------------------------|----------------|
|--------------------------------|----------------|

24 Waterway Avenue, Suite 375 The Woodlands, TX 77380 Office: 903-984-9551 \* Fav: 902-984-5014



| Office: 903-984-0551 * Fax: 903-984-5914                                                                                                                                                                                             |          |                 |            |             |                  |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|------------|-------------|------------------|---------------------|
| SUBCONTRACT CHAIN OF                                                                                                                                                                                                                 | di       | ISTODY          | 7          |             | The              | Science of Sure     |
| Subcontract to:                                                                                                                                                                                                                      | 9        | 031001          |            | Printed     | 07/29/2025       | Page 1 of 1         |
| ALS Laboratory Group/Houston                                                                                                                                                                                                         |          |                 |            | Sample      |                  | 2422662             |
| 10450 Stancliff Rd<br>Houston TX 77099                                                                                                                                                                                               |          |                 |            | Taken:      | 06/26/2025       | 09:55:00            |
| / -                                                                                                                                                                                                                                  |          |                 |            |             | GRAB             | 07.33.00            |
|                                                                                                                                                                                                                                      |          |                 |            | Normal      | roll             | temp                |
| Domest                                                                                                                                                                                                                               | ic       | Vorksheet 4     | 4.0        |             | <u>con</u>       | <u>temp</u>         |
| $\underline{1}$ Amber Glass Liter w/Teflon I                                                                                                                                                                                         | lined    | lid, Q          |            |             |                  |                     |
| Requeste                                                                                                                                                                                                                             | d Test   | (s)             |            |             |                  |                     |
| !DIX Dioxins and Furans Subcont                                                                                                                                                                                                      | ract     | 1613            |            |             |                  |                     |
| Previous Results:                                                                                                                                                                                                                    |          |                 |            | Shipping '  | Temp 4C          |                     |
|                                                                                                                                                                                                                                      | -        |                 |            |             |                  |                     |
| Date Time Relinquished                                                                                                                                                                                                               | Date Tin | me R            | Received   |             |                  |                     |
| 07/29/2025 07:49                                                                                                                                                                                                                     | 07/29    | 9/2025 07:49    |            |             |                  |                     |
| Affiliation SPL Kilgore                                                                                                                                                                                                              |          |                 |            | Affiliation | SPL Kilgor       | e l                 |
| Printed Name Andy Owens                                                                                                                                                                                                              | Printe   |                 | hael D.    |             |                  |                     |
| Signature                                                                                                                                                                                                                            | Signat   | ture 7          | Vic        | hores       | II               | eel                 |
| Printed Affiliation SPL Kilgore Name Michael D. Gribble                                                                                                                                                                              |          | Printed<br>Name |            |             | Affiliation      |                     |
| Signature Michael Inbble                                                                                                                                                                                                             |          | Signature       |            |             |                  |                     |
| Printed Affiliation Name                                                                                                                                                                                                             |          | Printed<br>Name |            |             | Affiliation      |                     |
| Signature                                                                                                                                                                                                                            |          | Signature       |            |             |                  |                     |
| Printed Affiliation Name                                                                                                                                                                                                             |          | Printed<br>Name |            |             | Affiliation      |                     |
| Signature                                                                                                                                                                                                                            |          | Signature       |            |             |                  |                     |
| Sample Received on Ice? Yes No Method of Shipm                                                                                                                                                                                       |          |                 | _          | X Lone      | _                | livered Other       |
| The accredited column designates accreditation by A - A2LA, N - NELAC, or,<br>provide these ordered services pursuant to our Standard Terms & Conditions A<br>Ana-Lab personnel collect samples as specified by Ana-Lab SOP #000323. |          |                 |            |             |                  |                     |
| Comments                                                                                                                                                                                                                             |          |                 |            |             |                  |                     |
|                                                                                                                                                                                                                                      |          |                 |            |             |                  |                     |
|                                                                                                                                                                                                                                      |          |                 |            |             |                  |                     |
|                                                                                                                                                                                                                                      |          |                 |            |             |                  |                     |
| <u>Project</u> 1152756                                                                                                                                                                                                               |          | Cer             | ntral TX F | Region: 810 | Cameron Rd - Ste | 305 Austin TX 78754 |

Kilgore.ProjectManagement@spllabs.com

Report Page 55 of 55



Page 1 of 1



Printed

09/05/2025 15:53

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

# **TABLE OF CONTENTS**

Add 4PCB

This report consists of this Table of Contents and the following pages:

| Report Name                   | <u>Description</u>                                                                            | <u>Pages</u> |
|-------------------------------|-----------------------------------------------------------------------------------------------|--------------|
| 1160873_r02_01_ProjectSamples | SPL Kilgore Project P:1160873 C:GBRL Project Sample<br>Cross Reference t:304                  | 1            |
| 1160873_r03_03_ProjectResults | SPL Kilgore Project P:1160873 C:GBRL Project Results t:304 PO: acc dept= LabInvoices@gbra.org | 2            |
| 1160873_r99_09_CoC1_of_1      | SPL Kilgore CoC GBRL 1160873_1_of_1                                                           | 4            |
|                               | Total Pages:                                                                                  | 7            |

Email: Kilgore.ProjectManagement@spllabs.com

Survey: How are we doing?





# **SAMPLE CROSS REFERENCE**

Sample ID

Sample



Printed

9/5/2025

Received

Page 1 of 1

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

| 2443580                                               | 257804.01-01          | 08/04/2025 | 08:43:00 |                        | 08/05/2025 |                       |
|-------------------------------------------------------|-----------------------|------------|----------|------------------------|------------|-----------------------|
| Bottle 01 Amber<br>Bottle 02 Amber<br>Bottle 03 Amber | er 32 Oz, Q           |            |          |                        |            |                       |
|                                                       | Method<br>1613        | Bottle     | PrepSet  | Preparation 08/15/2025 | QcGroup    | Analytical 08/15/2025 |
|                                                       | EPA 1668A Subcontract |            |          | 08/28/2025             |            | 08/28/2025            |

Time

Taken

Email: Kilgore.ProjectManagement@spllabs.com



# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819



Printed: 09/05/2025

Add 4PCB

# **RESULTS**

|                            |                    |      |                      | Sample Re           | SUITS    |          |            |     |             |             |         |
|----------------------------|--------------------|------|----------------------|---------------------|----------|----------|------------|-----|-------------|-------------|---------|
| 2443580                    | 257804.01-01       |      |                      |                     |          |          |            |     | Received:   | 08/05       | 5/2025  |
| Non-Potable Water          | Supplement to Test |      | Client<br>)4/2025    | GBRA/Segui<br>08:43 |          |          |            | PO: | dept= Lab   | Invoices@gt | ora.org |
|                            |                    |      | Prepared:            | 08/                 | 05/2025  | 11:31:10 | Calculated |     | 08/05/2025  | 11:31:10    | CA      |
| Parameter SUB Shipped      |                    |      | Results Verified     | Units               | RL       |          | Flags      |     | CAS         |             | Bottle  |
| 1613                       |                    |      | Prepared:            | 08/                 | 15/2025  | 22:32:00 | Analyzed   |     | 08/15/2025  | 22:32:00    | SUI     |
| Parameter Dioxins and Fu   | urans Subcontract  |      | Results See Attached | Units               | RL       |          | Flags      |     | CAS<br>ION1 |             | Bottle  |
| EPA 1668A Subco            | ontract            |      | Prepared:            | 08/                 | 28/2025  | 00:00:00 | Analyzed   |     | 08/28/2025  | 00:00:00    | SUI     |
| Parameter PCB Congener (SU | rs (77/81/126/169) |      | Results See Attached | Units               | RL       |          | Flags      |     | CAS<br>ION1 |             | Bottle  |
|                            |                    |      | Sa                   | mple Prepa          | aration  |          |            |     |             |             |         |
| 2443580                    | 257804.01-01       |      |                      |                     |          |          |            |     | Received:   | 08/05       | 5/2025  |
|                            |                    | 08/0 | 04/2025              |                     |          |          |            |     | dept= Lab   | Invoices@gt | ora.org |
|                            |                    |      | Prepared:            | 08/                 | (19/2025 | 16:31:00 | Analyzed   |     | 08/19/2025  | 16:31:00    | WJI     |
| Level IV Data              | Review             |      | Completed            |                     |          |          |            |     |             |             |         |



Report Page 3 of 8



Page 2 of 2

Project 1160873

Printed: 09/05/2025

# **GBRL-C**

GBRA/Seguin Miliana Hernandez Regional Laboratory 933 E. Court St Seguin, TX 78155-5819

Qualifiers:

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.



Bill Peery, MS, VP Technical Services



# Page 1 of 2 Printed 07/31/2025

# **CHAIN OF CUSTODY**

| Lab Number | 2434014                        |
|------------|--------------------------------|
| PO Number  | acc dept= LabInvoices@gbra.org |
| Phone      | 830/379-582                    |

|         | A/Seguin<br>na Hernande             | z                       |                 | GBRL-C-4<br>449          | PO Numb             | PO Numberacc dept= LabInvoic |                     |  |  |
|---------|-------------------------------------|-------------------------|-----------------|--------------------------|---------------------|------------------------------|---------------------|--|--|
|         | onal Laborate                       | pry                     |                 | 449                      | Phone               |                              | 830/379-5822        |  |  |
|         | . Court St<br>in, TX 78155          | -5819                   |                 |                          |                     |                              |                     |  |  |
|         |                                     |                         | Diox            | ins & Furans (R          | ecollect)           |                              |                     |  |  |
|         |                                     |                         | 25              | 0804.01-01               |                     | Hand Delivered by Clie.      | nt to Region or LAB |  |  |
|         |                                     |                         | nen sampus      | are shipped/received     | d by subuntro       | ncted 1ab.<br>Jm 8/4125      | RUSH 7 Day          |  |  |
|         |                                     | Potable Water           |                 |                          |                     |                              |                     |  |  |
|         | aple Collection<br>e: <u>03/04/</u> | 122 3                   | 0/12            |                          |                     |                              |                     |  |  |
|         | ' '                                 | ZS Time: C              | lack            |                          |                     |                              |                     |  |  |
|         | apler Printed N                     | COND                    | uuc             |                          |                     |                              |                     |  |  |
|         | npler Affiliatio                    |                         | M               |                          |                     |                              |                     |  |  |
| San     | npler Signature                     | 9,000                   |                 |                          |                     |                              |                     |  |  |
| _       |                                     | Samples Rac             |                 | Samples Contains Dioxin? | Samples             | s Biological Hazard?         | Ц                   |  |  |
|         |                                     | 3 Amber                 | Glass Liter w/  | Teflon lined lid, Q      |                     |                              |                     |  |  |
| _       | S                                   | ubcontract ID           | Dioxins and     | Furans Subcontract       | 1613 CAS:ION        | l (30.0 days)                |                     |  |  |
|         |                                     | 0 Z No                  | bottle required | I                        |                     |                              |                     |  |  |
|         | S                                   | ubcontract 10           | SUB Shipped     | d                        |                     |                              |                     |  |  |
|         |                                     | SI                      | KL Sub Hold: P? | M Attn                   |                     |                              |                     |  |  |
| Ambient | Conditions/                         | Comments                |                 |                          |                     |                              |                     |  |  |
| Date    | Time                                |                         | Relinquished    |                          |                     | Received                     |                     |  |  |
| Blaulac | 10~1                                | Printed Name<br>LINNA W | lack            | Affiliation<br>ABRA      | Printed Name        | udaell.                      | CBRA                |  |  |
| RIPHA   | 1095+                               | Signature               | m               |                          | Signature Kul       | lus M                        | rdgell              |  |  |
| adulz   | 14.00                               | Printed Name            | dsell           | Affiliation CIBRA        | Printed Name        |                              | Offiliation         |  |  |
| 08/04/5 | 1005                                | Signature KK            | is Yu           | dgell                    | Signature Com       | un Cam                       | cr                  |  |  |
| 815125  |                                     | Printed Name            |                 | Affiliation              | Printed Name N      | Cabe Wheeler -               | SPL, Inc.           |  |  |
|         | 1025                                | Signature               | 163             |                          | Signature $ \sim ($ | 5                            |                     |  |  |
|         |                                     | Printed Name            |                 | Affiliation              | Printed Name        |                              | Affiliation         |  |  |
|         |                                     | Signature               |                 |                          | Signature           |                              |                     |  |  |
|         |                                     |                         |                 |                          |                     |                              |                     |  |  |

|--|--|--|

Central TX Region: 8101 Cameron Rd - Ste 305 Austin TX 78754

**C.** If any of the compounds in Subsection A **or** B are present, complete Table 4.0(2)F. For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab □ Composite □

Date and time sample(s) collected: N/A

Table 4.0(2)F - Dioxin/Furan Compounds

| Compound               | Toxic<br>Equivalenc<br>y Factors | Wastewater<br>Concentration<br>(ppq) | Wastewater<br>Equivalents<br>(ppq) | Sludge<br>Concentration<br>(ppt) | Sludge<br>Equivalents<br>(ppt) | MAL<br>(ppq) |
|------------------------|----------------------------------|--------------------------------------|------------------------------------|----------------------------------|--------------------------------|--------------|
| 2,3,7,8 TCDD           | 1                                |                                      |                                    |                                  |                                | 10           |
| 1,2,3,7,8 PeCDD        | 0.5                              |                                      |                                    |                                  |                                | 50           |
| 2,3,7,8 HxCDDs         | 0.1                              |                                      |                                    |                                  |                                | 50           |
| 1,2,3,4,6,7,8<br>HpCDD | 0.01                             |                                      |                                    |                                  |                                | 50           |
| 2,3,7,8 TCDF           | 0.1                              |                                      |                                    |                                  |                                | 10           |
| 1,2,3,7,8 PeCDF        | 0.05                             |                                      |                                    |                                  |                                | 50           |
| 2,3,4,7,8 PeCDF        | 0.5                              |                                      | N/A                                |                                  |                                | 50           |
| 2,3,7,8 HxCDFs         | 0.1                              |                                      |                                    |                                  |                                | 50           |
| 2,3,4,7,8<br>HpCDFs    | 0.01                             |                                      |                                    |                                  |                                | 50           |
| OCDD                   | 0.0003                           |                                      |                                    |                                  |                                | 100          |
| OCDF                   | 0.0003                           |                                      |                                    |                                  |                                | 100          |
| PCB 77                 | 0.0001                           |                                      |                                    |                                  |                                | 0.5          |
| PCB 81                 | 0.0003                           |                                      |                                    |                                  |                                | 0.5          |
| PCB 126                | 0.1                              |                                      |                                    |                                  |                                | 0.5          |
| PCB 169                | 0.03                             |                                      |                                    |                                  |                                | 0.5          |
| Total                  |                                  |                                      |                                    |                                  |                                |              |

Page 1 of 1

# SUBCONTRACT CHAIN OF CUSTODY

ALS Laboratory Group/Houstor 10450 Stancliff Rd 77099 Houston TX

Sample 2434014 Taken: 08/04/2025 08:43:00 GRAB Normal

257804.01-01

Amber Glass Liter w/Teflon lined lid, Q

Requested Test(s)

!DIX

Dioxins and Furans Subcontract

08/05/2025

Shipping Temp

Printed

4C

Previous Results:

| Date Time       | Relinquished             | Date Time                        | Received                |
|-----------------|--------------------------|----------------------------------|-------------------------|
| 08/05/2025 11:2 | 8 Affiliation SPL Kilgor | 08/05/2025 11:28                 | Affiliation SPL Kilgore |
| Printed Name N  | IcCabe Wheeler           | Printed Name D                   | Doug Swaim              |
| Signature       |                          | Signature                        | Dayler -                |
|                 | oug Swaim                | . Kilgore Printed Name Signature | Affiliation             |
| Printed<br>Name | Affiliation              | Printed<br>Name                  | Affiliation             |
| Signature       |                          | Signature                        |                         |
| Printed<br>Name | Affiliation              | Printed<br>Name                  | Affiliation             |
| Signature       |                          | Signature                        |                         |

Yes No

II DES Ш

Hand Delivered to Region [ ]

The accredited column designates accreditation by A - A2LA, N - NELAC, or z - not listed under scope of accreditation. Unless otherwise specified, ANA-LAB shall provide these ordered services pursuant to our Standard Terms & Conditions Agreement (available for download from the welcome page at <a href="http://www.ana-lab.com">http://www.ana-lab.com</a>).

Ana-Lab personnel collect samples as specified by Ana-Lab SOP #000323.

If Shipped: Tracking Number & Temp - See Attached

Comments

Project 1157049 Central TX Region: 8101 Cameron Rd - Ste 305 Austin TX 78754

Kilgore.ProjectManagement@spllabs.com

Report Page 7 of 8

Form rptSampleSUBNSPL Created 11/16/2020 v1.6





Service Request No:E2500695

SPL, Inc.-Ana-lab 101 lbex Lane Broussard, LA 70518

Laboratory Results for: 257804.01-01

Dear Project Manager,

Enclosed are the results of the sample(s) submitted to our laboratory August 06, 2025 For your reference, these analyses have been assigned our service request number **E2500695**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current TNI standards, where applicable, and except as noted in the laboratory case narrative provided. All results are intended to be considered in their entirety and ALS Environmental is not responsible for use of less than the complete final report. Results apply only to the items submitted to the laboratory, as received for analysis. In accordance with the current TNI Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 2190. You may also contact me via email at hussam.kelany@alsglobal.com.

Respectfully submitted,

MRelany

ALS Group USA, Corp. dba ALS Environmental

Hussam Kelany Project Manager



# **Certificate of Analysis**

ALS Environmental - Houston Specialties Laboratory 10450 Stancliff Rd., Suite 210, Houston TX 77099 Phone (281)530-5656 Fax (281)530-5887 www.alsglobal.com



 Client:
 SPL, Inc.-Ana-lab
 Service Request No.:
 E2500695

 Project:
 257804.01-01
 Date Received:
 08/06/25

Sample Matrix: Water

#### CASE NARRATIVE

All analyses were performed in adherence to the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II. When appropriate to the method, method blank results have been reported with each analytical test.

#### Sample Receipt

One sample was received for analysis at ALS Environmental in Houston on 08/06/25.

The sample was received in good condition and is consistent with the accompanying chain of custody form. The sample was stored in a refrigerator at 4°C upon receipt at the laboratory.

#### **Data Validation Notes and Discussion**

#### **Precision and Accuracy:**

EQ2500358: Laboratory Control Spike / **Duplicate Laboratory Control Spike (LCS/DLCS)** samples were analyzed and reported in lieu of a MS/MSD for this extraction batch.

#### B flags - Method Blanks

The Method Blank EQ2500358-01 contained low levels of target compounds below the Method Reporting Limit (MRL). The associated compounds in the samples are flagged with 'B' flags where the sample result is less than ten times the level detected in the method blank.

One compound, OCDD, was above the MRL (CRQL). ALS/Houston follows the *EPA National Functional Guidelines for CDDs and CDFs*, *September 2005*, which states on page 31, "The concentration of OCDD/OCDF in the method blank must be <3x the CRQL (MRL.):"

#### K flags

EMPC - When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.

#### **Detection Limits**

Detection limits are calculated for each analyte in each sample by measuring the height of the noise level for each quantitation ion for the associated labeled standard. The concentration equivalent to 2.5 times the height of the noise is then calculated using the appropriate response factor and the weight of the sample. The calculated concentration equals the detection limit.

#### The TEQ Summary results for each sample have been calculated by ALS/Houston to include:

- WHO-2005 TEFs, The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds (M. Van den Berg et al., Toxicological Sciences 93(2):223-241, 2006)
- Non-detected compounds are not included in the 'Total'
- The 1:1 and associated dilution have been combined into one TEQ Summary report
- EPA-89 TEFs, "Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-Dioxins and Dibenzofurans (CDDs and CDFs)", 1989 EPA Update (EPA/625/3-89/016, March 1989)

WHO-1998 TEFs, for PCBs, PCDDs, 21 PCDFs for humans and wildlife. (M. Van den Berg, et al., Environ Health Perspect 106: 775-792, 1998)

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS group USA Corp dba ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.



# **SAMPLE DETECTION SUMMARY**

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

| CLIENT ID: 2434014  | Lab ID: E2500695-001 |      |        |      |       |        |
|---------------------|----------------------|------|--------|------|-------|--------|
| Analyte             | Results              | Flag | MDL    | MRL  | Units | Method |
| 1,2,3,4,6,7,8-HpCDD | 0.947                | BJK  | 0.0703 | 25.1 | pg/L  | 1613B  |
| 1,2,3,4,6,7,8-HpCDF | 83.6                 |      | 1.04   | 25.1 | pg/L  | 1613B  |
| 1,2,3,4,7,8,9-HpCDF | 4.24                 | BJK  | 1.11   | 25.1 | pg/L  | 1613B  |
| 1,2,3,4,7,8-HxCDD   | 0.572                | BJK  | 0.0754 | 25.1 | pg/L  | 1613B  |
| 1,2,3,4,7,8-HxCDF   | 9.63                 | J    | 0.939  | 25.1 | pg/L  | 1613B  |
| 1,2,3,6,7,8-HxCDF   | 2.17                 | JK   | 0.986  | 25.1 | pg/L  | 1613B  |
| 1,2,3,7,8,9-HxCDD   | 1.03                 | J    | 0.0693 | 25.1 | pg/L  | 1613B  |
| 1,2,3,7,8-PeCDD     | 0.793                | J    | 0.672  | 25.1 | pg/L  | 1613B  |
| 1,2,3,7,8-PeCDF     | 0.617                | JK   | 0.105  | 25.1 | pg/L  | 1613B  |
| 2,3,4,7,8-PeCDF     | 0.485                | JK   | 0.104  | 25.1 | pg/L  | 1613B  |
| OCDD                | 4.71                 | BJ   | 0.126  | 50.2 | pg/L  | 1613B  |
| OCDF                | 342                  |      | 3.69   | 50.2 | pg/L  | 1613B  |
| Total Hepta-Dioxins | 1.64                 | J    | 0.0703 | 25.1 | pg/L  | 1613B  |
| Total Hepta-Furans  | 84.3                 |      | 1.08   | 25.1 | pg/L  | 1613B  |
| Total Hexa-Dioxins  | 1.03                 | J    | 0.0713 | 25.1 | pg/L  | 1613B  |
| Total Hexa-Furans   | 15.2                 | J    | 1.02   | 25.1 | pg/L  | 1613B  |
| Total Penta-Dioxins | 1.64                 | J    | 0.672  | 25.1 | pg/L  | 1613B  |
| Total Penta-Furans  | 0.728                | J    | 0.104  | 25.1 | pg/L  | 1613B  |
| Total TEQ           | 3.29                 |      |        |      | pg/L  | 1613B  |
| Total Tetra-Furans  | 4.68                 | J    | 1.59   | 5.02 | pg/L  | 1613B  |

Client: SPL, Inc.-Ana-lab Service Request:E2500695

**Project:** 257804.01-01

# **SAMPLE CROSS-REFERENCE**

<u>SAMPLE # CLIENT SAMPLE ID</u> <u>DATE</u> <u>TIME</u> E2500695-001 2434014 8/4/2025 0843

# **Service Request Summary**

Folder #: E2500695

Client Name: SPL, Inc.-Ana-lab

257804.01-01 Project Name:

Project Number:

Report To:

SPL, Inc.-Ana-lab 101 Ibex Lane

Broussard, LA 70518

USA

Phone Number: 903-984-0551

Cell Number:

Fax Number: 903-984-5914

kilgore.projectmanagement@spllabs.com E-mail:

Project Chemist: Hussam Kelany

Originating Lab: HOUSTON

Logged By: **EZHEKU** 

Date Received: 08/06/25

Internal Due Date: 8/20/2025

QAP: LAB QAP

Qualifier Set: HRMS Qualifier Set

> Lab Standard Formset:

Merged?: Y

Report to MDL?: Y

P.O. Number:

Semivo

EDD: No EDD Specified

**EHRMS-WIC 8A** Location:

1000 ml-Glass Bottle NM AMBER Teflon Liner Unpreserved

Pressure Gas:

RUSH **NPDESRushNPDES** 

|              |                |        |               | GCMS                 |
|--------------|----------------|--------|---------------|----------------------|
| Lab Samp No. | Client Samp No | Matrix | Collected     | Dioxins Furans/1613B |
| E3500605 004 |                | Motor  | 00/04/05 0040 | - 11                 |
| E2500695-001 | 2434014        | Water  | 08/04/25 0843 | II                   |

# **Service Request Summary**

Folder #: E2500695

Client Name: SPL, Inc.-Ana-lab

Project Name: 257804.01-01

Project Number:

Report To:

SPL, Inc.-Ana-lab 101 lbex Lane

Broussard, LA 70518

USA

Phone Number: 903-984-0551

Cell Number:

Fax Number: 903-984-5914

E-mail: kilgore.projectmanagement@spllabs.com

Project Chemist: Hussam Kelany

Originating Lab: HOUSTON

Logged By: EZHEKU

Date Received: 08/06/25

Internal Due Date: 8/20/2025

QAP: LAB QAP

Qualifier Set: HRMS Qualifier Set

Formset: Lab Standard

Merged?: Y

Report to MDL?: Y

P.O. Number:

EDD: No EDD Specified

3 1000 ml-Glass Bottle NM AMBER Teflon Liner Unpreserved

Location: EHRMS-WIC 8A

Pressure Gas:

RUSH NPDESRushNPDES

# **Data Qualifiers**

# **HRMS Qualifier Set**

- \* Indicates the samples were extracted outside of the recommended holding time.
- B Indicates the associated analyte was found in the method blank at >1/10th the reported value.
- E Estimated value. The reported concentration is above the calibration range of the instrument.
- J Estimated value. The reported concentration is below the MRL.
- K The ion abundance ratio between the primary and secondary ions were outside of theoretical acceptance limits. The concentration of this analyte should be considered as an estimate.
- P Chlorodiphenyl ether interference was present at the retention time of the target analyte. Reported result should be considered an estimate.
- Q Monitored lock-mass indicates matrix-interference. Reported result is estimated.
- S Signal saturated detector. Result reported from dilution.
- U Compound was analyzed for, but was not detected (ND).
- X See Case Narrative.
- Y Isotopically Labeled Standard recovery outside of acceptance limits. In all cases, the signal-to-nois ratios are greater than 10:1, making the recoveries acceptable.
- i The MDL/MRL have been elevated due to a matrix interference.

# **ALS Laboratory Group**

### Acronyms

Cal Calibration
Conc CONCentration

Dioxin(s) Polychlorinated dibenzo-p-dioxin(s)

EDL Estimated Detection Limit

EMPC Estimated Maximum Possible Concentration

Flags Data qualifiers

Furan(s) Polychlorinated dibenzofuran(s)

g Grams

ICAL Initial CALibration

ID IDentifier

Ions Masses monitored for the analyte during data acquisition

L Liter (s)

LCS Laboratory Control Sample

DLCS Duplicate Laboratory Control Sample

MB Method Blank

MCL Method Calibration Limit
MDL Method Detection Limit

mL Milliliters

MS Matrix Spiked sample

DMS Duplicate Matrix Spiked sample

NO Number of peaks meeting all identification criteria

PCDD(s) Polychlorinated dibenzo-p-dioxin(s) PCDF(s) Polychlorinated dibenzofuran(s)

ppb Parts per billion
ppm Parts per million
ppq Parts per quadrillion
ppt Parts per trillion
QA Quality Assurance
QC Quality Control

Ratio Ratio of areas from monitored ions for an analyte

% Rec. Percent recovery

RPD Relative Percent Difference RRF Relative Response Factor

RT Retention Time

SDG Sample Delivery Group S/N Signal-to-noise ratio

TEF Toxicity Equivalence Factor
TEQ Toxicity Equivalence Quotient



# State Certifications, Accreditations, and Licenses

| Agency                                                          | Number             | Expire Date |
|-----------------------------------------------------------------|--------------------|-------------|
| Arizona Department of Health Services                           | AZ0793-2025        | 5/27/2026   |
| Arkansas Department of Environmental Quality                    | 88-00356 - 2025    | 3/17/2026   |
| California State Environmental Laboratory Accreditation Program | 2919-2025          | 4/30/2026   |
| Department of Defense                                           | L24-240            | 4/30/2026   |
| Florida Department of Health                                    | E87611-2025/26     | 6/30/2026   |
| Florida Department of Health                                    | E87611-2025/26     | 6/30/2026   |
| Louisiana Department of Environmental Quality                   | 03087-2025/26      | 6/30/2026   |
| Louisiana Department of Health and Hospitals                    | LA028-2025         | 12/31/2025  |
| Maine Department of Health and Human Services                   | 2024017            | 6/23/2026   |
| Michigan Depratment of Environmental Quality                    | 9971-2025/26       | 4/30/2026   |
| Minnesota Department of Health                                  | 2856348            | 12/31/2025  |
| Nebraska Department of Health and Human Services                | NE-OS-25-13 - 2025 | 4/30/2026   |
| New Hampshire Environmental Laboratory Accreditation Program    | 209425             | 4/24/2026   |
| New Jersey Department of Environmental Protection               | TX008-2025/26      | 6/30/2026   |
| New York Department of Health                                   | 11707-2025         | 4/1/2026    |
| Oklahoma Department of Environmental Quality                    | 2024-099           | 8/31/2025   |
| Oregon Environmental Laboratory Accreditation Program           | TX200002-2025      | 5/15/2026   |
| Pennsylvania Department of Environmental Protection             | 68-03441-019       | 7/1/2026    |
| Perry Johnson Laboratory Accreditation                          | 116454 (ISO/IEC)   | 4/30/2026   |
| Tennessee Department of Environment and Conservation            | 04016-2025         | 4/30/2026   |
| Texas Commision on Environmental Quality                        | TX-C25-00104       | 4/30/2026   |
| Washington Department of Ecology                                | C819-23            | 11/14/2025  |

# ALS ENVIRONMENTAL – Houston Data Processing/Form Production and Peer Review Signatures

First Level - Data Processing - to be filled by person generating the forms

Date: Analyst: Samples:

Second Level - Data Review - to be filled by person doing peer review

Date: Analyst: Samples:

Samples: Samples: Samples:

HS-HRMSREVIEW R1.0



# **Chain of Custody**

ALS Environmental - Houston Specialties Laboratory 10450 Stancliff Rd., Suite 210, Houston TX 77099 Phone (281)530-5656 Fax (281)530-5887 www.alsglobal.com

# The Science of Surè

# SUBCONTRACT CHAIN OF CUSTODY

Subcontract to:

ALS Laboratory Group/Houstor 10450 Stancliff Rd

Houston / -

TX

77099

E2500695

SPL, Inc.-Ana-lab 257804.01-01

*257804.01-01* 

5

Amber Glass Liter w/Teflon lined lid, Q

Requested Test(s)

!DIX

Dioxins and Furans Subcontract

1613

Printed 08/05/2025 Page 1 of 1

Sample

2434014

Taken:

08/04/2025

08:43:00

**GRAB** 

Normal

coll temp

Shipping Temp

4C

Previous Results:

| Date    | Time Relinquished                                                                       | Date Time Received                        |
|---------|-----------------------------------------------------------------------------------------|-------------------------------------------|
|         | 5/2025 11:28  Affiliation SPL Kilgore  Affiliation SPL Kilgore  Affiliation SPL Kilgore | 08/05/2025 11:28  Affiliation SPL Kilgore |
| Sign    | yre                                                                                     | Printed Name Doug Swaim  Signature        |
| ري<br>م | Printed Affiliation SPL Kilgore Name Doug Swaim Signature                               | Printed Affiliation Name Signature        |
|         |                                                                                         | Printed Affihation Name Signature         |
|         | Printed Affiliation<br>Name                                                             | Printed Affiliation<br>Name               |
|         | Signature                                                                               | Signature                                 |

Sample Received on Ice? Cooler/Sample Secure?

Method of Shipment:

FedEx | Lone Star

Hand Delivered

If Shipped: Tracking Number & Temp - See Attached

Hand Delivered to Region []

The accredited column designates accreditation by A - A2LA, N - NELAC, or z - not listed under scope of accreditation. Unless otherwise specified, ANA-LAB shall provide these ordered services pursuant to our Standard Terms & Conditions Agreement (available for download from the welcome page at <a href="http://www.ana-lab.com">http://www.ana-lab.com</a>). Ana-Lab personnel collect samples as specified by Ana-Lab SOP #000323.

Comments

1157049 Project

Central TX Region: 8101 Cameron Rd - Ste 305 Austin TX 78754

Kilgore.ProjectManagement@spllabs.com



# E2500695 5 SPL, Inc.-Ana-lab 257804.01-01

10450 Stancliff Road, Suite 210

Houston, TX 77099 T: +1 281 530 5656 F: +1 281 530 5887 www.alsglobal.com

| Client:   | SYL                 | Date: <u>08/06/29</u> | S WO#:             |       |
|-----------|---------------------|-----------------------|--------------------|-------|
| Time Rece | ived: <u>/0!40</u>  | Received by:          | <i>P.</i> 6- E     | 3O#:  |
| Matrices: | Solid/Sludge /Water | · Oil Wipes           | Hydrocarbon Liquid | Other |

| Kit ID/Cooler ID | Trip Blank ID | Cooler Temp (C) Observed/Corrected | IR# |   | BLK<br>ent? |
|------------------|---------------|------------------------------------|-----|---|-------------|
| Foam             | _             | 2.21 7.2                           | 34  | Υ | N           |
| •                |               | 1                                  |     | Υ | N           |
|                  |               | 1                                  |     | Υ | N           |
|                  |               | 1                                  |     | Υ | N           |
|                  |               | . /                                |     | Υ | N           |

| Delivery Method:      | FedEx                                   | (UPS        | Greyhour       | nd Al   | _S   | Client                                 | Other_      |             |              |
|-----------------------|-----------------------------------------|-------------|----------------|---------|------|----------------------------------------|-------------|-------------|--------------|
| Date/Time of Unpa     | acking: _ <i>_[</i>                     | 8/06/2      | 5 14:32        | Unp     | ack  | ed by: _                               | 6           | 0.7         |              |
| Shipping container/c  | ooler in go                             | od condit   | ion?           |         | (Ye  | s No                                   | Not P       | resent      |              |
| Custody seals intact  | on shipping                             | g containe  | er/cooler?     |         | Ye   | s No                                   | Not P       | resent      |              |
| Custody seals intact  | Custody seals intact on sample bottles? |             |                |         |      |                                        | Not Present |             |              |
| Chain of Custody pre  | esent?                                  |             |                |         | Ye   | s No                                   |             |             |              |
| Chain of Custody sig  | ned when r                              | elinquish   | ed and receive | ed?     | Ye   | s No                                   |             |             |              |
| Chain of Custody - S  | ampler's na                             | ame prese   | nt?            |         | Yes  | s No                                   |             |             |              |
| Chain of Custody agı  | rees with sa                            | ımple labe  | els?           |         | Ye   | s No                                   |             |             |              |
| Samples in proper co  | ntainer/bo                              | ttle?       |                |         | Ye   | s No                                   |             |             |              |
| VOA/TX1005/1006 So    | olids in hern                           | netically S | ealed Vials:   |         | Ye   | s No                                   | No VC       | A/TX1005    | 5/1006 Solid |
| Sample containers in  | tact?                                   |             |                |         | Ϋ́e  | s No                                   |             |             |              |
| Sufficient sample vol | ume for inc                             | dicated te  | st?            |         | (Ye  | s No                                   |             |             |              |
| Sufficient volume for | MS/MSD fo                               | or ALL tes  | ts?            |         | Ye   | s No                                   | (N/A        | Unsure      | Comments     |
| All samples received  | within hold                             | ling time?  |                |         | /Ŷe  | s No                                   |             |             |              |
| Container/Temp Blar   | nk temperat                             | ture in co  | mpliance?      |         | (Ye  | s No                                   |             |             |              |
| Water - VOA vials hav | ve zero hea                             | dspace?     |                |         | Ye   | s No                                   | /N/A        | No VOA      | submitted    |
| Non-VOA waters pres   | served with                             | HCI, H2S    | O4, HNO3 are   | pH <2?  | Ye   | s No                                   | N/A         |             |              |
| Waters preserved wit  | :h NaOH/As                              | corbic aci  | d are pH>12?   |         | Ye   | s No                                   | N/A         |             |              |
| pH adjusted?          |                                         |             | Yes            | *       | No   | N/A                                    | *See I      | Preservatio | n Logbook    |
| pH adjusted by:       |                                         |             | рН             | Paper L | .ot: | ······································ |             |             |              |
|                       |                                         |             |                |         |      |                                        |             |             |              |



10450 Stancliff Rd., Suite 210 Houston, TX 77099 T: +1 281 530 5656 F: +1 281 530 5887

www.alsglobal.com

#### SAMPLE ACCEPTANCE POLICY

This policy outlines the criteria samples must meet to be accepted by ALS Environmental - Houston HRMS.

#### Cooler Custody Seals (desirable, mandatory if specified in SAP):

✓ Intact on outside of cooler, signed and dated

#### Chain-of-Custody (COC) documentation (mandatory):

The following is required on each COC:

- ✓ Sample ID, the location, date and time of collection, collector's name, preservation type, sample type, and any other special remarks concerning the sampleThe COC must be completed in ink.
- ✓ Signature and date of relinquishing party.

In the absence of a COC at sample receipt, the COC will be requested from the client.

#### Sample Integrity (mandatory):

Samples are inspected upon arrival to ensure that sample integrity was not compromised during transfer to the laboratory.

- ✓ Sample containers must arrive in good condition (not broken or leaking).
- ✓ Samples must be labeled appropriately, including Sample IDs, and requested test using durable labels and indelible ink.
- ✓ The correct type of sample bottle must be used for the method requested.
- ✓ An appropriate sample volume, or weight, must be received.
- ✓ Sample IDs and number of containers must reconcile with the COC.
- ✓ Samples must be received within the method defined holding time.

#### Temperature Requirement (varies by sample matrix):

- ✓ Aqueous and Non-aqueous samples must be shipped and stored cold, at 0 to 6°C.
- ✓ Tissue samples must be shipped and stored frozen, at -20 to -10°C.
- ✓ Air samples are shipped and stored cold, at 0 to 6°C
- ✓ The sample temperature must be recorded on the COC

All cooler inspections are documented on the Cooler Receipt Form (CRF). A separate CRF is completed for each service request. Any samples not meeting the above criteria are noted on the CRF and the Project Manager notified. The Project Manager must resolve any sample integrity issues with the client prior to proceeding with the analysis. Such resolutions are documented in writing and filed with the project folder. Data associated with samples received outside of this acceptance policy will be qualified on the case narrative of the final report



# **Preparation Information Benchsheets**

ALS Environmental - Houston Specialties Laboratory 10450 Stancliff Rd., Suite 210, Houston TX 77099 Phone (281)530-5656 Fax (281)530-5887 www.alsglobal.com

# Preparation Information Benchsheet

Prep Run#:

Team:

462185

Semivoa GCMS/MDESAI

Prep WorkFlow: OrgExtAq(365)

Prep Method:

Status: Draft

Prep Date/Time: 8/11/25 11:51 AM

| # | Lab Code     | Client ID                  | В#  | √ Method /Test                          | Matrix       | Amt. Ext. | pН | Cl | I | M  | C | Sample Description       |
|---|--------------|----------------------------|-----|-----------------------------------------|--------------|-----------|----|----|---|----|---|--------------------------|
|   | E2500665-004 | Day 2 MDL #4 - 5 pg/L (P6) | .01 | 1613B / Dioxins Furans                  | Water        | 1000      | 5  | X  | W | M  |   | LODIMPL SOLL             |
| 2 | E2500665-005 | Day 2 MDL #5 - 5 pg/L (P6) | .01 | 1613B / Dioxins Furans                  | Water        | 1000      |    | 1  | 1 | M  |   |                          |
| 3 | E2500665-006 | Day 3 MDL #6 - 5 pg/L (P6) | .01 | 1613B / Dioxins Furans                  | Water        | 1000      | 4  | V  |   | W  | - | 1                        |
| 1 | E2500695-001 | 2434014                    | .01 | 1613B / Dioxins Furans                  | Water        | 196       | 6  | X  |   |    |   | 1437,6 Clear 4416        |
| ; | E2500698-001 | VT-680                     | .01 | 1613B / Dioxin Furans<br>Unadjusted MRL | Ground Water | 981       | 9  | X  |   |    |   | 1462.9 V. 115ht/8/100345 |
|   | E2500698-002 | EDC Process                | .01 | 1613B / Dioxin Furans<br>Unadjusted MRL | Ground Water | 1013      | 9  | X  |   |    |   | 1496.1 V. 11ght bown 43  |
|   | E2500698-003 | TZT-07                     | .01 | 1613B / Dioxin Furans<br>Unadjusted MRL | Ground Water | 1003      | 7  | X  |   |    |   | 1486.1 V.118Hoscen 48    |
|   | E2500698-004 | Biological @Sump Probe     | .01 | 1613B / Dioxin Furans<br>Unadjusted MRL | Ground Water | 998       | 7  | X  |   |    |   | 1477.5 L G79             |
|   | E2500698-005 | Physical @Sump PH Probe    | .01 | 1613B / Dioxin Furans<br>Unadjusted MRL | Ground Water | 1015      | 5  | X  |   |    |   | 1498.7 Vilight green 4   |
| 0 | E2500700-001 | Robinson Creek Effluent    | .01 | 1613B / Dioxins Furans                  | Water        | 996       | 5  | X  |   |    |   | 14796 V. 118 Wyellow 483 |
| 1 | E2500701-001 | ND Davidson Influent       | .01 | 1613B / Dioxins Furans                  | Water        | 931       | 6  | X  |   |    |   | 1465.5 Cloudy 484.       |
| 2 | E2500702-001 | ND Davidson Effluent       | .01 | 1613B / Dioxins Furans                  | Water        | 973       | 5  | X  |   |    |   | 1456.5 clary 686.        |
| 3 | E2500703-001 | AJ Brown Influent          | .01 | 1613B / Dioxins Furans                  | Water        | 986       | 6  | X  |   |    |   | 1470 Clouds 4840         |
| 4 | E2500707-001 | 2434951                    | .01 | 1613B / Dioxins Furans                  | Water        | 961       | 5  | ×  |   |    |   | 1304.5 Cleux 442.5       |
| 5 | E2500708-001 | MTF-PP                     | .01 | 1613B / Dioxins Furans                  | Water        | 1052      | 5  | X  |   |    | 1 | 1557 Clear 505.          |
| 6 | E2500709-001 | AJ Brown Effluent          | .01 | 1613B / Dioxins Furans                  | Water        | 963       | 5  | X  |   |    |   | 1468.2 Clay 4841         |
| 7 | E2500710-001 | Robinson Creek Influent    | .01 | 1613B / Dioxins Furans                  | Water        | 923       | 6  | ×  |   |    |   | 14618 boven 984:         |
| 8 | EQ2500358-01 | MB                         |     | 1613B / Dioxins Furans                  | Liquid       | 0001      | 5  | X  | 1 |    |   |                          |
| 9 | EQ2500358-02 | LCS                        |     | 1613B / Dioxins Furans                  | Liquid       | 1000      | Í  | 1  |   | IN |   |                          |
| 0 | EQ2500358-03 | DLCS                       |     | 1613B / Dioxins Furans                  | Liquid       | 1000      | 1  |    | 1 | IM |   |                          |

1: Ws: 243206 @ 1000el 2-4ng/me/mDL/LOG: 2427726:50 el

M: MUS: 2429670 10000 2-2009/00 C: Cas. 2426640 10010 80000.

Page 18 of 43

|                                                                                                                                                             | Supplem                                                             | entery Analytic                                                                                                                                              | al Record                                   |                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sanani Information<br>Batch Number;<br>Prop. Run Humber;<br>Mathad;<br>Matcha<br>Apparatus Usad;                                                            | 358  11,21,25  16,015  Works  19,50xhlata Small Saxhlata            | Holf-Gallen Jans                                                                                                                                             | 2E0 ml. fars                                | Abbreviation Keyr  Bench Sheetr  Ben Lilys bettle number  V: Chloring Chack  (X o Faisa)  I: Internal Standard Witness                                                                                                                |
| Extraction Hexane Lot in Dichlaramethone Lot in Toluene Lot in Thidecane Lot in Mathemal Lot in Com Oil Lot in Belence Serial Numbers Rotoveper Rotovep 3.1 | 241863<br>239815<br>249840<br>240896<br>MRAS-0)<br>Idragovap21      | Chlorine Strips Lot #: pH Strips tot #: Sodium Sulfate Lot #: Add Lot#: Sodium Thiosulfate Lot#: Resin Lot #: Ottowa Sand (D:   Anglyes                      | 241871.<br>040083<br>238888                 | (Initials)  - Chi Majrik Witness  - Cheonup Standard Witness  (Initials)  - STO Trackings  - It Internal Spike  (UMS ID; Nome; Cone; Initials)  Mi Matrix Spike  (Lins iD; Name; Cone; Initials)                                      |
| Acid cigan <u>-Vp</u><br>Svijung Acid Lotis<br>Sodium Chlonide Lotis                                                                                        | NA.                                                                 |                                                                                                                                                              |                                             | C: Claenup Spites (UMS ID; Name; Cene; Initials)  Where additional standards are edded to the sample, distinctions are made using unique symbols to indicate which standards are edded to which standards are edded to which samples. |
| Column Clean-th<br>Hexona Lot ii:<br>Dichloromathuna Latii:<br>Yoluano Lot ii:<br>Bihyi Acatato Lot ii:<br>Gloss Wool Lot ii:<br>Balance Serial Numbers     | 241863<br>259815<br>252940<br>228820<br>228820<br>229665<br>4608-01 | NeOH Silles Gel 10:<br>H2504 Silles Gel 10:<br>Silles Gel Let Si<br>Corbon Let Si<br>Sodium Hydroxide Let Hi<br>Sylfute Acid Let H:<br>Sodium Sulfele Let Si | 276.27648<br>276.27648<br>276.863<br>24.076 | 29523404<br>3296203403                                                                                                                                                                                                                |
| Additional Notess  Stay-Time Processina Extractions                                                                                                         |                                                                     | Sonhilati                                                                                                                                                    |                                             |                                                                                                                                                                                                                                       |
| Extractions Spike Yime 2 < 5/6 Acid Clean-Upt Column Clean-Upt Finel Volumes                                                                                | m Start Timeshul254106/1                                            | Date/Time Downt                                                                                                                                              | ~                                           |                                                                                                                                                                                                                                       |



# **Analytical Results**

ALS Environmental - Houston Specialties Laboratory 10450 Stancliff Rd., Suite 210, Houston TX 77099 Phone (281)530-5656 Fax (281)530-5887 www.alsglobal.com

Analytical Report

**Client:** SPL, Inc.-Ana-lab **Service Request:** E2500695 **Date Collected:** 08/04/25 08:43 **Project:** 257804.01-01 **Date Received:** 08/06/25 10:40 **Sample Matrix:** Water

**Sample Name:** 2434014 Units: pg/L Lab Code: E2500695-001 Basis: NA

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analysis Method:** 1613B **Date Analyzed:** 08/15/25 22:32

**Prep Method:** Method Sep Funnel/Jar **Date Extracted:** 8/11/25 **Sample Amount:** 996mL **Instrument Name:** E-HRMS-07

> GC Column: DB-5MSUI Blank File Name: P643135

**Data File Name:** P553942 **ICAL Date:** 11/04/24 Cal Ver. File Name: P553939

| Analyte Name        | Result Q         | EDL    | MRL  | Ion<br>Ratio | RRT   | Dilution<br>Factor |
|---------------------|------------------|--------|------|--------------|-------|--------------------|
| 2,3,7,8-TCDD        | ND U             | 3.28   | 5.02 |              |       | 1                  |
| 1,2,3,7,8-PeCDD     | 0.793 <b>J</b>   | 0.672  | 25.1 | 1.47         | 1.000 | 1                  |
| 1,2,3,4,7,8-HxCDD   | 0.572 <b>BJK</b> | 0.0754 | 25.1 | 1.03         | 1.000 | 1                  |
| 1,2,3,6,7,8-HxCDD   | ND U             | 0.0683 | 25.1 |              |       | 1                  |
| 1,2,3,7,8,9-HxCDD   | 1.03 <b>J</b>    | 0.0693 | 25.1 | 1.35         | 1.007 | 1                  |
| 1,2,3,4,6,7,8-HpCDD | 0.947 <b>BJK</b> | 0.0703 | 25.1 | 0.73         | 1.000 | 1                  |
| OCDD                | 4.71 <b>BJ</b>   | 0.126  | 50.2 | 0.84         | 0.999 | 1                  |
|                     |                  |        |      |              |       |                    |
| 2,3,7,8-TCDF        | ND U             | 1.59   | 5.02 |              |       | 1                  |
| 1,2,3,7,8-PeCDF     | 0.617 <b>JK</b>  | 0.105  | 25.1 | 0.48         | 1.001 | 1                  |
| 2,3,4,7,8-PeCDF     | 0.485 <b>JK</b>  | 0.104  | 25.1 | 0.34         | 1.001 | 1                  |
| 1,2,3,4,7,8-HxCDF   | 9.63 <b>J</b>    | 0.939  | 25.1 | 1.10         | 1.000 | 1                  |
| 1,2,3,6,7,8-HxCDF   | 2.17 <b>JK</b>   | 0.986  | 25.1 | 0.70         | 1.000 | 1                  |
| 1,2,3,7,8,9-HxCDF   | ND U             | 1.10   | 25.1 |              |       | 1                  |
| 2,3,4,6,7,8-HxCDF   | ND U             | 1.04   | 25.1 |              |       | 1                  |
| 1,2,3,4,6,7,8-HpCDF | 83.6             | 1.04   | 25.1 | 0.91         | 1.000 | 1                  |
| 1,2,3,4,7,8,9-HpCDF | 4.24 <b>BJK</b>  | 1.11   | 25.1 | 1.65         | 1.000 | 1                  |
| OCDF                | 342              | 3.69   | 50.2 | 0.83         | 1.005 | 1                  |

Analytical Report

 Client:
 SPL, Inc.-Ana-lab
 Service Request:
 E2500695

 Project:
 257804.01-01
 Date Collected:
 08/04/25 08:43

 Sample Matrix:
 Water
 Date Received:
 08/06/25 10:40

 Sample Name:
 2434014
 Units: pg/L

 Lab Code:
 E2500695-001
 Basis: NA

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analysis Method: 1613B Date Analyzed: 08/15/25 22:32

Prep Method:Method Sep Funnel/JarDate Extracted:8/11/25Sample Amount:996mLInstrument Name:E-HRMS-07

Sample Amount: 996mL Instrument Name: E-HRMS-07

GC Column: DB-5MSUI

 Data File Name:
 P553942
 Blank File Name:
 P643135

 ICAL Date:
 11/04/24
 Cal Ver. File Name:
 P553939

|                     |                |   |        |      | Ion   |     | Dilution |
|---------------------|----------------|---|--------|------|-------|-----|----------|
| Analyte Name        | Result         | Q | EDL    | MRL  | Ratio | RRT | Factor   |
| Total Tetra-Dioxins | ND             | U | 3.28   | 5.02 |       |     | 1        |
| Total Penta-Dioxins | 1.64 <b>J</b>  |   | 0.672  | 25.1 | 1.47  |     | 1        |
| Total Hexa-Dioxins  | 1.03 <b>J</b>  |   | 0.0713 | 25.1 | 1.35  |     | 1        |
| Total Hepta-Dioxins | 1.64 <b>J</b>  |   | 0.0703 | 25.1 | 1.00  |     | 1        |
| Total Tetra-Furans  | 4.68 <b>J</b>  |   | 1.59   | 5.02 | 0.78  |     | 1        |
| Total Penta-Furans  | 0.728 <b>J</b> |   | 0.104  | 25.1 | 1.58  |     | 1        |
| Total Hexa-Furans   | 15.2 <b>J</b>  |   | 1.02   | 25.1 | 1.14  |     | 1        |
| Total Hepta-Furans  | 84.3           |   | 1.08   | 25.1 | 0.91  |     | 1        |

Analytical Report

 Client:
 SPL, Inc.-Ana-lab
 Service Request:
 E2500695

 Project:
 257804.01-01
 Date Collected:
 08/04/25 08:43

 Sample Matrix:
 Water
 Date Received:
 08/06/25 10:40

 Sample Name:
 2434014
 Units: Percent

 Lab Code:
 E2500695-001
 Basis: NA

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analysis Method: 1613B Date Analyzed: 08/15/25 22:32

 Prep Method:
 Method Sep Funnel/Jar
 Date Extracted:
 8/11/25

 Sample Amount:
 996mL
 Instrument Name:
 E-HRMS-07

 GC Column:
 DB-5MSUI

 Data File Name:
 P553942
 Blank File Name:
 P643135

 ICAL Date:
 11/04/24
 Cal Ver. File Name:
 P553939

#### **Labeled Standard Results**

| Label Comments          | Spike     | Conc.      | 0/ D  | 0 | Control | Ion   | DDT   |
|-------------------------|-----------|------------|-------|---|---------|-------|-------|
| Labeled Compounds       | Conc.(pg) | Found (pg) | % Rec | Q | Limits  | Ratio | RRT   |
| 13C-2,3,7,8-TCDD        | 2000      | 1327.024   | 66    |   | 25-164  | 0.77  | 1.023 |
| 13C-1,2,3,7,8-PeCDD     | 2000      | 1622.159   | 81    |   | 25-181  | 1.62  | 1.197 |
| 13C-1,2,3,4,7,8-HxCDD   | 2000      | 1457.738   | 73    |   | 32-141  | 1.25  | 0.991 |
| 13C-1,2,3,6,7,8-HxCDD   | 2000      | 1494.044   | 75    |   | 28-130  | 1.22  | 0.994 |
| 13C-1,2,3,4,6,7,8-HpCDD | 2000      | 1575.143   | 79    |   | 23-140  | 1.10  | 1.067 |
| 13C-OCDD                | 4000      | 3224.418   | 81    |   | 17-157  | 0.90  | 1.140 |
| 13C-2,3,7,8-TCDF        | 2000      | 1025.097   | 51    |   | 24-169  | 0.79  | 0.992 |
| 13C-1,2,3,7,8-PeCDF     | 2000      | 1333.711   | 67    |   | 24-185  | 1.61  | 1.153 |
| 13C-2,3,4,7,8-PeCDF     | 2000      | 1341.926   | 67    |   | 21-178  | 1.60  | 1.187 |
| 13C-1,2,3,4,7,8-HxCDF   | 2000      | 1298.334   | 65    |   | 26-152  | 0.50  | 0.970 |
| 13C-1,2,3,6,7,8-HxCDF   | 2000      | 1164.315   | 58    |   | 26-123  | 0.51  | 0.973 |
| 13C-1,2,3,7,8,9-HxCDF   | 2000      | 1400.729   | 70    |   | 29-147  | 0.51  | 1.008 |
| 13C-2,3,4,6,7,8-HxCDF   | 2000      | 1214.162   | 61    |   | 28-136  | 0.50  | 0.988 |
| 13C-1,2,3,4,6,7,8-HpCDF | 2000      | 1297.620   | 65    |   | 28-143  | 0.44  | 1.043 |
| 13C-1,2,3,4,7,8,9-HpCDF | 2000      | 1545.757   | 77    |   | 26-138  | 0.44  | 1.080 |
| 37Cl-2,3,7,8-TCDD       | 800       | 470.436    | 59    |   | 35-197  | NA    | 1.024 |

Analytical Report

 Client:
 SPL, Inc.-Ana-lab
 Service Request:
 E2500695

 Project:
 257804.01-01
 Date Collected:
 08/04/25 08:43

 Sample Matrix:
 Water
 Date Received:
 08/06/25 10:40

 Sample Name:
 2434014
 Units: pg/L

 Lab Code:
 E2500695-001
 Basis: NA

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analysis Method:** 1613B

**Prep Method:** Method Sep Funnel/Jar

#### **Toxicity Equivalency Quotient**

|                     |        |        |      | Dilution |        | TEF - Adjusted |
|---------------------|--------|--------|------|----------|--------|----------------|
| Analyte Name        | Result | DL     | MRL  | Factor   | TEF    | Concentration  |
| 2,3,7,8-TCDD        | ND     | 3.28   | 5.02 | 1        | 1      |                |
| 1,2,3,7,8-PeCDD     | 0.793  | 0.672  | 25.1 | 1        | 1      | 0.793          |
| 1,2,3,4,7,8-HxCDD   | 0.572  | 0.0754 | 25.1 | 1        | 0.1    | 0.0572         |
| 1,2,3,6,7,8-HxCDD   | ND     | 0.0683 | 25.1 | 1        | 0.1    |                |
| 1,2,3,7,8,9-HxCDD   | 1.03   | 0.0693 | 25.1 | 1        | 0.1    | 0.103          |
| 1,2,3,4,6,7,8-HpCDD | 0.947  | 0.0703 | 25.1 | 1        | 0.01   | 0.00947        |
| OCDD                | 4.71   | 0.126  | 50.2 | 1        | 0.0003 | 0.00141        |
| 2,3,7,8-TCDF        | ND     | 1.59   | 5.02 | 1        | 0.1    |                |
| 1,2,3,7,8-PeCDF     | 0.617  | 0.105  | 25.1 | 1        | 0.03   | 0.0185         |
| 2,3,4,7,8-PeCDF     | 0.485  | 0.104  | 25.1 | 1        | 0.3    | 0.146          |
| 1,2,3,4,7,8-HxCDF   | 9.63   | 0.939  | 25.1 | 1        | 0.1    | 0.963          |
| 1,2,3,6,7,8-HxCDF   | 2.17   | 0.986  | 25.1 | 1        | 0.1    | 0.217          |
| 1,2,3,7,8,9-HxCDF   | ND     | 1.10   | 25.1 | 1        | 0.1    |                |
| 2,3,4,6,7,8-HxCDF   | ND     | 1.04   | 25.1 | 1        | 0.1    |                |
| 1,2,3,4,6,7,8-HpCDF | 83.6   | 1.04   | 25.1 | 1        | 0.01   | 0.836          |
| 1,2,3,4,7,8,9-HpCDF | 4.24   | 1.11   | 25.1 | 1        | 0.01   | 0.0424         |
| OCDF                | 342    | 3.69   | 50.2 | 1        | 0.0003 | 0.103          |

Total TEQ

2005 WHO TEFs, ND = 0

3.29

Analytical Report

Client: SPL, Inc.-Ana-lab Service Request: E2500695

Project:257804.01-01Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits:pg/LLab Code:EQ2500358-01Basis:NA

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analysis Method:** 1613B **Date Analyzed:** 08/14/25 15:26

Prep Method:Method Sep Funnel/JarDate Extracted:8/11/25Sample Amount:1000.0mLInstrument Name:E-HRMS-08

GC Column: DB-5MSUI Blank File Name: P643135

 Data File Name:
 P643135

 ICAL Date:
 07/23/25

 Blank File Name:
 P643135

 Cal Ver. File Name:
 P643132

|                 |                                                                            |                                                                                                       |                                                                                                                                                                                                                                                        | Ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dilution                                                                                                                                                                                                                                          |
|-----------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result          | Q                                                                          | $\mathbf{EDL}$                                                                                        | MRL                                                                                                                                                                                                                                                    | Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Factor                                                                                                                                                                                                                                            |
| ND              | U                                                                          | 1.61                                                                                                  | 5.00                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                 |
| ND              | U                                                                          | 0.545                                                                                                 | 25.0                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                 |
| 0.557 <b>J</b>  |                                                                            | 0.363                                                                                                 | 25.0                                                                                                                                                                                                                                                   | 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                 |
| ND              | U                                                                          | 0.318                                                                                                 | 25.0                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                 |
| ND              | U                                                                          | 0.328                                                                                                 | 25.0                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                 |
| 1.32 <b>JK</b>  |                                                                            | 0.471                                                                                                 | 25.0                                                                                                                                                                                                                                                   | 1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                 |
| 9.18 <b>J</b>   |                                                                            | 1.36                                                                                                  | 50.0                                                                                                                                                                                                                                                   | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                 |
|                 |                                                                            |                                                                                                       |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |
| ND              | U                                                                          | 1.89                                                                                                  | 5.00                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                 |
| ND              | U                                                                          | 0.720                                                                                                 | 25.0                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                 |
| ND              | U                                                                          | 0.686                                                                                                 | 25.0                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                 |
| ND              | U                                                                          | 0.320                                                                                                 | 25.0                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                 |
| ND              | U                                                                          | 0.334                                                                                                 | 25.0                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                 |
| 1.18 <b>JK</b>  |                                                                            | 0.449                                                                                                 | 25.0                                                                                                                                                                                                                                                   | 1.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                 |
| ND              | U                                                                          | 0.361                                                                                                 | 25.0                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                 |
| 0.678 <b>JK</b> |                                                                            | 0.250                                                                                                 | 25.0                                                                                                                                                                                                                                                   | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                 |
| 0.895 <b>JK</b> |                                                                            | 0.278                                                                                                 | 25.0                                                                                                                                                                                                                                                   | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                 |
| 3.80 <b>J</b>   |                                                                            | 1.91                                                                                                  | 50.0                                                                                                                                                                                                                                                   | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                 |
|                 | ND ND 0.557J ND ND 1.32JK 9.18J ND ND ND ND ND ND ND ND ND 0.678JK 0.895JK | ND U ND U 0.557 <b>J</b> ND U ND U 1.32 <b>JK</b> 9.18 <b>J</b> ND U ND | ND U 0.545 0.557 <b>J</b> 0.363 ND U 0.318 ND U 0.318 ND U 0.328 1.32 <b>JK</b> 0.471 9.18 <b>J</b> 1.36  ND U 1.89 ND U 0.720 ND U 0.686 ND U 0.686 ND U 0.320 ND U 0.334 1.18 <b>JK</b> 0.449 ND U 0.361 0.678 <b>JK</b> 0.250 0.895 <b>JK</b> 0.278 | ND       U       1.61       5.00         ND       U       0.545       25.0         0.557J       0.363       25.0         ND       U       0.318       25.0         ND       U       0.328       25.0         1.32JK       0.471       25.0         9.18J       1.36       50.0         ND       U       0.720       25.0         ND       U       0.720       25.0         ND       U       0.686       25.0         ND       U       0.320       25.0         ND       U       0.334       25.0         1.18JK       0.449       25.0         ND       U       0.361       25.0         0.678JK       0.250       25.0         0.895JK       0.278       25.0 | Result         Q         EDL         MRL         Ratio           ND         U         1.61         5.00           ND         U         0.545         25.0           0.557J         0.363         25.0         1.18           ND         U         0.318         25.0           ND         U         0.328         25.0           ND         U         0.328         25.0           1.32JK         0.471         25.0         1.48           9.18J         1.36         50.0         0.86           ND         U         0.720         25.0           ND         U         0.686         25.0           ND         U         0.320         25.0           ND         U         0.334         25.0           1.18JK         0.449         25.0         1.92           ND         U         0.361         25.0           0.678JK         0.250         25.0         0.57           0.895JK         0.278         25.0         0.72 | Result         Q         EDL         MRL         Ratio         RRT           ND         U         1.61         5.00             ND         U         0.545         25.0              0.557J         0.363         25.0         1.18         1.001 |

Analytical Report

Client: SPL, Inc.-Ana-lab Service Request: E2500695

Project: 257804.01-01 Date Collected: NA
Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units:
 pg/L

 Lab Code:
 EQ2500358-01
 Basis:
 NA

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analysis Method:** 1613B **Date Analyzed:** 08/14/25 15:26

Prep Method:Method Sep Funnel/JarDate Extracted:8/11/25Sample Amount:1000.0mLInstrument Name:E-HRMS-08

GC Column: DB-5MSUI

 Data File Name:
 P643135

 ICAL Date:
 07/23/25

 Blank File Name:
 P643132

 Cal Ver. File Name:
 P643132

|                     |                |   |                |      | Ion   |     | Dilution |
|---------------------|----------------|---|----------------|------|-------|-----|----------|
| Analyte Name        | Result         | Q | $\mathbf{EDL}$ | MRL  | Ratio | RRT | Factor   |
| Total Tetra-Dioxins | ND             | U | 1.61           | 5.00 |       |     | 1        |
|                     |                |   |                |      |       |     |          |
| Total Penta-Dioxins | ND             | U | 0.545          | 25.0 |       |     | 1        |
| Total Hexa-Dioxins  | 0.557 <b>J</b> |   | 0.336          | 25.0 | 1.18  |     | 1        |
| Total Hepta-Dioxins | 1.87 <b>J</b>  |   | 0.471          | 25.0 | 1.18  |     | 1        |
|                     |                |   |                |      |       |     |          |
| Total Tetra-Furans  | ND             | U | 1.89           | 5.00 |       |     | 1        |
| Total Penta-Furans  | ND             | U | 0.703          | 25.0 |       |     | 1        |
| Total Hexa-Furans   | ND             | U | 0.360          | 25.0 |       |     | 1        |
| Total Hepta-Furans  | ND             | U | 0.264          | 25.0 |       |     | 1        |

Analytical Report

Client: SPL, Inc.-Ana-lab Service Request: E2500695

Project:257804.01-01Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits:PercentLab Code:EQ2500358-01Basis:NA

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analysis Method: 1613B Date Analyzed: 08/14/25 15:26

Prep Method:Method Sep Funnel/JarDate Extracted:8/11/25Sample Amount:1000.0mLInstrument Name:E-HRMS-08GC Column:DB-5MSUI

 Data File Name:
 P643135

 ICAL Date:
 07/23/25

 Blank File Name:
 P643132

 Cal Ver. File Name:
 P643132

#### **Labeled Standard Results**

|                         | Spike     | Conc.      |       |   | Control | Ion   |       |
|-------------------------|-----------|------------|-------|---|---------|-------|-------|
| Labeled Compounds       | Conc.(pg) | Found (pg) | % Rec | Q | Limits  | Ratio | RRT   |
| 13C-2,3,7,8-TCDD        | 2000      | 975.768    | 49    |   | 25-164  | 0.77  | 1.028 |
| 13C-1,2,3,7,8-PeCDD     | 2000      | 1083.205   | 54    |   | 25-181  | 1.57  | 1.236 |
| 13C-1,2,3,4,7,8-HxCDD   | 2000      | 1190.676   | 60    |   | 32-141  | 1.28  | 0.991 |
| 13C-1,2,3,6,7,8-HxCDD   | 2000      | 1344.421   | 67    |   | 28-130  | 1.29  | 0.993 |
| 13C-1,2,3,4,6,7,8-HpCDD | 2000      | 977.427    | 49    |   | 23-140  | 1.03  | 1.071 |
| 13C-OCDD                | 4000      | 1207.964   | 30    |   | 17-157  | 0.94  | 1.141 |
| 13C-2,3,7,8-TCDF        | 2000      | 839.312    | 42    |   | 24-169  | 0.79  | 0.990 |
| 13C-1,2,3,7,8-PeCDF     | 2000      | 1095.961   | 55    |   | 24-185  | 1.59  | 1.184 |
| 13C-2,3,4,7,8-PeCDF     | 2000      | 1107.877   | 55    |   | 21-178  | 1.59  | 1.224 |
| 13C-1,2,3,4,7,8-HxCDF   | 2000      | 1403.259   | 70    |   | 26-152  | 0.50  | 0.968 |
| 13C-1,2,3,6,7,8-HxCDF   | 2000      | 1329.385   | 66    |   | 26-123  | 0.52  | 0.971 |
| 13C-1,2,3,7,8,9-HxCDF   | 2000      | 1187.509   | 59    |   | 29-147  | 0.50  | 1.008 |
| 13C-2,3,4,6,7,8-HxCDF   | 2000      | 1258.028   | 63    |   | 28-136  | 0.49  | 0.987 |
| 13C-1,2,3,4,6,7,8-HpCDF | 2000      | 973.894    | 49    |   | 28-143  | 0.43  | 1.045 |
| 13C-1,2,3,4,7,8,9-HpCDF | 2000      | 1008.083   | 50    |   | 26-138  | 0.45  | 1.083 |
| 37Cl-2,3,7,8-TCDD       | 800       | 407.837    | 51    |   | 35-197  | NA    | 1.029 |



# **Accuracy & Precision**

ALS Environmental - Houston Specialties Laboratory 10450 Stancliff Rd., Suite 210, Houston TX 77099 Phone (281)530-5656 Fax (281)530-5887 www.alsglobal.com

QA/QC Report

Client:SPL, Inc.-Ana-labService Request:E2500695Project:257804.01-01Date Analyzed:08/14/25Sample Matrix:WaterDate Extracted:08/11/25

#### **Duplicate Lab Control Sample Summary**

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analysis Method:1613BUnits:pg/LPrep Method:Method Sep Funnel/JarBasis:NA

**Analysis Lot:** 890015

Lab Control Sample EQ2500358-02

Duplicate Lab Control Sample EQ2500358-03

|                     |        |              |       |        |              |       | % Rec  |     |           |
|---------------------|--------|--------------|-------|--------|--------------|-------|--------|-----|-----------|
| Analyte Name        | Result | Spike Amount | % Rec | Result | Spike Amount | % Rec | Limits | RPD | RPD Limit |
| 1,2,3,4,6,7,8-HpCDD | 988    | 1000         | 99    | 1020   | 1000         | 102   | 70-140 | 3   | 50        |
| 1,2,3,4,7,8-HxCDD   | 1010   | 1000         | 101   | 1040   | 1000         | 104   | 70-164 | 3   | 50        |
| 1,2,3,6,7,8-HxCDD   | 875    | 1000         | 88    | 897    | 1000         | 90    | 76-134 | 2   | 50        |
| 1,2,3,7,8,9-HxCDD   | 974    | 1000         | 97    | 969    | 1000         | 97    | 64-162 | <1  | 50        |
| 1,2,3,7,8-PeCDD     | 928    | 1000         | 93    | 940    | 1000         | 94    | 70-142 | 1   | 50        |
| 2,3,7,8-TCDD        | 188    | 200          | 94    | 194    | 200          | 97    | 67-158 | 3   | 50        |
| OCDD                | 1780   | 2000         | 89    | 1900   | 2000         | 95    | 78-144 | 7   | 50        |
|                     |        |              |       |        |              |       |        |     |           |
| 1,2,3,4,6,7,8-HpCDF | 981    | 1000         | 98    | 984    | 1000         | 98    | 82-122 | <1  | 50        |
| 1,2,3,4,7,8,9-HpCDF | 903    | 1000         | 90    | 943    | 1000         | 94    | 78-138 | 4   | 50        |
| 1,2,3,4,7,8-HxCDF   | 822    | 1000         | 82    | 827    | 1000         | 83    | 72-134 | <1  | 50        |
| 1,2,3,6,7,8-HxCDF   | 888    | 1000         | 89    | 902    | 1000         | 90    | 84-130 | 2   | 50        |
| 1,2,3,7,8,9-HxCDF   | 890    | 1000         | 89    | 918    | 1000         | 92    | 78-130 | 3   | 50        |
| 1,2,3,7,8-PeCDF     | 912    | 1000         | 91    | 943    | 1000         | 94    | 80-134 | 3   | 50        |
| 2,3,4,6,7,8-HxCDF   | 905    | 1000         | 91    | 903    | 1000         | 90    | 70-156 | <1  | 50        |
| 2,3,4,7,8-PeCDF     | 944    | 1000         | 94    | 962    | 1000         | 96    | 68-160 | 2   | 50        |
| 2,3,7,8-TCDF        | 208    | 200          | 104   | 219    | 200          | 110   | 75-158 | 5   | 50        |
| OCDF                | 2050   | 2000         | 102   | 1990   | 2000         | 99    | 63-170 | 3   | 50        |

Analytical Report

Client: SPL, Inc.-Ana-lab Service Request: E2500695

Project: 257804.01-01 Date Collected: NA
Sample Matrix: Water Date Received: NA

Sample Name:Lab Control SampleUnits:pg/LLab Code:EQ2500358-02Basis:NA

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analysis Method:** 1613B **Date Analyzed:** 08/14/25 22:50

Prep Method:Method Sep Funnel/JarDate Extracted:8/11/25Sample Amount:1000.0mLInstrument Name:E-HRMS-08

**GC Column:** DB-5MSUI **Blank File Name:** P643135

 Data File Name:
 P643144
 Blank File Name:
 P643135

 ICAL Date:
 07/23/25
 Cal Ver. File Name:
 P643132

| Analyte Name        | Result | Q | EDL   | MRL  | Ion<br>Ratio | RRT   | Dilution<br>Factor |
|---------------------|--------|---|-------|------|--------------|-------|--------------------|
| 2,3,7,8-TCDD        | 188    |   | 1.43  | 5.00 | 0.78         | 1.001 | 1                  |
| 1,2,3,7,8-PeCDD     | 928    |   | 0.905 | 25.0 | 1.59         | 1.001 | 1                  |
| 1,2,3,4,7,8-HxCDD   | 1010   |   | 0.410 | 25.0 | 1.31         | 1.000 | 1                  |
| 1,2,3,6,7,8-HxCDD   | 875    |   | 0.364 | 25.0 | 1.28         | 1.000 | 1                  |
| 1,2,3,7,8,9-HxCDD   | 974    |   | 0.373 | 25.0 | 1.29         | 1.007 | 1                  |
| 1,2,3,4,6,7,8-HpCDD | 988    |   | 0.563 | 25.0 | 1.02         | 1.000 | 1                  |
| OCDD                | 1780   |   | 4.29  | 50.0 | 0.93         | 1.000 | 1                  |
|                     |        |   |       |      |              |       |                    |
| 2,3,7,8-TCDF        | 208    |   | 1.14  | 5.00 | 0.74         | 1.001 | 1                  |
| 1,2,3,7,8-PeCDF     | 912    |   | 0.870 | 25.0 | 1.53         | 1.001 | 1                  |
| 2,3,4,7,8-PeCDF     | 944    |   | 0.852 | 25.0 | 1.53         | 1.001 | 1                  |
| 1,2,3,4,7,8-HxCDF   | 822    |   | 0.353 | 25.0 | 1.22         | 1.000 | 1                  |
| 1,2,3,6,7,8-HxCDF   | 888    |   | 0.382 | 25.0 | 1.23         | 1.000 | 1                  |
| 1,2,3,7,8,9-HxCDF   | 890    |   | 0.487 | 25.0 | 1.25         | 1.000 | 1                  |
| 2,3,4,6,7,8-HxCDF   | 905    |   | 0.400 | 25.0 | 1.20         | 1.000 | 1                  |
| 1,2,3,4,6,7,8-HpCDF | 981    |   | 2.01  | 25.0 | 1.04         | 1.000 | 1                  |
| 1,2,3,4,7,8,9-HpCDF | 903    |   | 2.52  | 25.0 | 1.03         | 1.000 | 1                  |
| OCDF                | 2050   |   | 4.16  | 50.0 | 0.92         | 1.005 | 1                  |

Analytical Report

**Client:** SPL, Inc.-Ana-lab **Service Request:** E2500695

Date Collected: NA **Project:** 257804.01-01 **Sample Matrix:** Water Date Received: NA

**Sample Name:** Lab Control Sample Units: pg/L Lab Code: EQ2500358-02 Basis: NA

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analysis Method:** 1613B **Date Analyzed:** 08/14/25 22:50

**Prep Method:** Method Sep Funnel/Jar **Date Extracted:** 8/11/25 **Sample Amount:** 1000.0 mL**Instrument Name:** E-HRMS-08

GC Column: DB-5MSUI

Blank File Name: P643135 **Data File Name:** P643144

Cal Ver. File Name: P643132 **ICAL Date:** 07/23/25

|                     |        |   |       |      | Ion   |     | Dilution |
|---------------------|--------|---|-------|------|-------|-----|----------|
| Analyte Name        | Result | Q | EDL   | MRL  | Ratio | RRT | Factor   |
| Total Tetra-Dioxins | 188    |   | 1.43  | 5.00 | 0.78  |     | 1        |
|                     |        |   |       |      |       |     |          |
| Total Penta-Dioxins | 928    |   | 0.905 | 25.0 | 1.59  |     | 1        |
| Total Hexa-Dioxins  | 2860   |   | 0.381 | 25.0 | 1.31  |     | 1        |
| Total Hepta-Dioxins | 988    |   | 0.563 | 25.0 | 1.02  |     | 1        |
| Total Tetra-Furans  | 208    |   | 1.14  | 5.00 | 0.80  |     | 1        |
| Total Penta-Furans  | 1860   |   | 0.861 | 25.0 | 1.53  |     | 1        |
| Total Hexa-Furans   | 3510   |   | 0.401 | 25.0 | 1.22  |     | 1        |
| Total Hepta-Furans  | 1880   |   | 2.24  | 25.0 | 1.04  |     | 1        |

Analytical Report

Client: SPL, Inc.-Ana-lab Service Request: E2500695

Project: 257804.01-01 Date Collected: NA
Sample Matrix: Water Date Received: NA

Sample Name:Lab Control SampleUnits: PercentLab Code:EQ2500358-02Basis: NA

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analysis Method:** 1613B **Date Analyzed:** 08/14/25 22:50

Prep Method:Method Sep Funnel/JarDate Extracted:8/11/25Sample Amount:1000.0mLInstrument Name:E-HRMS-08GC Column:DB-5MSUI

 Data File Name:
 P643144
 Blank File Name:
 P643135

 ICAL Date:
 07/23/25
 Cal Ver. File Name:
 P643132

#### **Labeled Standard Results**

|                         | Spike     | Conc.      |       |   | Control | Ion   |       |
|-------------------------|-----------|------------|-------|---|---------|-------|-------|
| Labeled Compounds       | Conc.(pg) | Found (pg) | % Rec | Q | Limits  | Ratio | RRT   |
| 13C-2,3,7,8-TCDD        | 2000      | 1268.775   | 63    |   | 25-164  | 0.78  | 1.028 |
| 13C-1,2,3,7,8-PeCDD     | 2000      | 1278.279   | 64    |   | 25-181  | 1.58  | 1.236 |
| 13C-1,2,3,4,7,8-HxCDD   | 2000      | 1351.804   | 68    |   | 32-141  | 1.27  | 0.991 |
| 13C-1,2,3,6,7,8-HxCDD   | 2000      | 1609.333   | 80    |   | 28-130  | 1.27  | 0.993 |
| 13C-1,2,3,4,6,7,8-HpCDD | 2000      | 1047.883   | 52    |   | 23-140  | 1.03  | 1.071 |
| 13C-OCDD                | 4000      | 1208.294   | 30    |   | 17-157  | 0.92  | 1.142 |
| 13C-2,3,7,8-TCDF        | 2000      | 1134.458   | 57    |   | 24-169  | 0.80  | 0.990 |
| 13C-1,2,3,7,8-PeCDF     | 2000      | 1335.271   | 67    |   | 24-185  | 1.58  | 1.185 |
| 13C-2,3,4,7,8-PeCDF     | 2000      | 1330.449   | 67    |   | 21-178  | 1.56  | 1.225 |
| 13C-1,2,3,4,7,8-HxCDF   | 2000      | 1737.299   | 87    |   | 26-152  | 0.51  | 0.968 |
| 13C-1,2,3,6,7,8-HxCDF   | 2000      | 1623.338   | 81    |   | 26-123  | 0.51  | 0.971 |
| 13C-1,2,3,7,8,9-HxCDF   | 2000      | 1570.608   | 79    |   | 29-147  | 0.51  | 1.008 |
| 13C-2,3,4,6,7,8-HxCDF   | 2000      | 1584.851   | 79    |   | 28-136  | 0.52  | 0.987 |
| 13C-1,2,3,4,6,7,8-HpCDF | 2000      | 1151.880   | 58    |   | 28-143  | 0.44  | 1.046 |
| 13C-1,2,3,4,7,8,9-HpCDF | 2000      | 1027.719   | 51    |   | 26-138  | 0.43  | 1.083 |
| 37Cl-2,3,7,8-TCDD       | 800       | 496.860    | 62    |   | 35-197  | NA    | 1.030 |

Analytical Report

Client: SPL, Inc.-Ana-lab Service Request: E2500695

Project:257804.01-01Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Duplicate Lab Control SampleUnits:pg/LLab Code:EQ2500358-03Basis:NA

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analysis Method: 1613B Date Analyzed: 08/14/25 23:39

Prep Method:Method Sep Funnel/JarDate Extracted:8/11/25Sample Amount:1000.0mLInstrument Name:E-HRMS-08

GC Column: DB-5MSUI Blank File Name: P643135

 Data File Name:
 P643145
 Blank File Name:
 P643135

 ICAL Date:
 07/23/25
 Cal Ver. File Name:
 P643132

| Analyte Name        | Result | Q | EDL   | MRL  | Ion<br>Ratio | RRT   | Dilution<br>Factor |
|---------------------|--------|---|-------|------|--------------|-------|--------------------|
| 2,3,7,8-TCDD        | 194    | _ | 1.63  | 5.00 | 0.78         | 1.001 | 1                  |
| 1,2,3,7,8-PeCDD     | 940    |   | 0.912 | 25.0 | 1.56         | 1.001 | 1                  |
| 1,2,3,4,7,8-HxCDD   | 1040   |   | 0.615 | 25.0 | 1.28         | 1.000 | 1                  |
| 1,2,3,6,7,8-HxCDD   | 897    |   | 0.533 | 25.0 | 1.32         | 1.000 | 1                  |
| 1,2,3,7,8,9-HxCDD   | 969    |   | 0.552 | 25.0 | 1.29         | 1.007 | 1                  |
| 1,2,3,4,6,7,8-HpCDD | 1020   |   | 0.595 | 25.0 | 1.03         | 1.000 | 1                  |
| OCDD                | 1900   |   | 4.71  | 50.0 | 0.95         | 1.000 | 1                  |
|                     |        |   |       |      |              |       |                    |
| 2,3,7,8-TCDF        | 219    |   | 1.33  | 5.00 | 0.71         | 1.000 | 1                  |
| 1,2,3,7,8-PeCDF     | 943    |   | 1.47  | 25.0 | 1.52         | 1.000 | 1                  |
| 2,3,4,7,8-PeCDF     | 962    |   | 1.40  | 25.0 | 1.55         | 1.001 | 1                  |
| 1,2,3,4,7,8-HxCDF   | 827    |   | 0.546 | 25.0 | 1.25         | 1.000 | 1                  |
| 1,2,3,6,7,8-HxCDF   | 902    |   | 0.606 | 25.0 | 1.25         | 1.000 | 1                  |
| 1,2,3,7,8,9-HxCDF   | 918    |   | 0.812 | 25.0 | 1.26         | 1.000 | 1                  |
| 2,3,4,6,7,8-HxCDF   | 903    |   | 0.632 | 25.0 | 1.23         | 1.000 | 1                  |
| 1,2,3,4,6,7,8-HpCDF | 984    |   | 1.20  | 25.0 | 1.04         | 1.000 | 1                  |
| 1,2,3,4,7,8,9-HpCDF | 943    |   | 1.62  | 25.0 | 1.03         | 1.000 | 1                  |
| OCDF                | 1990   |   | 2.39  | 50.0 | 0.91         | 1.005 | 1                  |

Analytical Report

**Client:** SPL, Inc.-Ana-lab **Service Request:** E2500695

Date Collected: NA **Project:** 257804.01-01 **Sample Matrix:** Water Date Received: NA

**Sample Name: Duplicate Lab Control Sample** Units: pg/L Lab Code: EQ2500358-03 Basis: NA

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

**Analysis Method:** 1613B **Date Analyzed:** 08/14/25 23:39

**Prep Method:** Method Sep Funnel/Jar **Date Extracted:** 8/11/25 **Sample Amount:** 1000.0mL **Instrument Name:** E-HRMS-08

GC Column: DB-5MSUI

**Data File Name:** P643145 Blank File Name: P643135

Cal Ver. File Name: P643132 **ICAL Date:** 07/23/25

|                     |        |   |       |      | Ion   |     | Dilution |
|---------------------|--------|---|-------|------|-------|-----|----------|
| Analyte Name        | Result | Q | EDL   | MRL  | Ratio | RRT | Factor   |
| Total Tetra-Dioxins | 194    |   | 1.63  | 5.00 | 0.78  |     | 1        |
|                     |        |   |       |      |       |     |          |
| Total Penta-Dioxins | 940    |   | 0.912 | 25.0 | 1.56  |     | 1        |
| Total Hexa-Dioxins  | 2910   |   | 0.564 | 25.0 | 1.28  |     | 1        |
| Total Hepta-Dioxins | 1020   |   | 0.595 | 25.0 | 1.03  |     | 1        |
| Total Tetra-Furans  | 221    |   | 1.33  | 5.00 | 0.71  |     | 1        |
| Total Penta-Furans  | 1900   |   | 1.44  | 25.0 | 1.52  |     | 1        |
| Total Hexa-Furans   | 3560   |   | 0.638 | 25.0 | 1.25  |     | 1        |
| Total Hepta-Furans  | 1930   |   | 1.38  | 25.0 | 1.04  |     | 1        |

Analytical Report

Client: SPL, Inc.-Ana-lab Service Request: E2500695

Project: 257804.01-01 Date Collected: NA
Sample Matrix: Water Date Received: NA

Sample Name:Duplicate Lab Control SampleUnits: PercentLab Code:EQ2500358-03Basis: NA

#### Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by HRGC/HRMS

Analysis Method: 1613B Date Analyzed: 08/14/25 23:39

Prep Method:Method Sep Funnel/JarDate Extracted:8/11/25Sample Amount:1000.0mLInstrument Name:E-HRMS-08GC Column:DB-5MSUI

 Data File Name:
 P643145

 ICAL Date:
 07/23/25

 Blank File Name:
 P643135

 Cal Ver. File Name:
 P643132

#### **Labeled Standard Results**

|                         | Spike     | Conc.      |       |   | Control | Ion   |       |
|-------------------------|-----------|------------|-------|---|---------|-------|-------|
| Labeled Compounds       | Conc.(pg) | Found (pg) | % Rec | Q | Limits  | Ratio | RRT   |
| 13C-2,3,7,8-TCDD        | 2000      | 1040.530   | 52    |   | 25-164  | 0.78  | 1.028 |
| 13C-1,2,3,7,8-PeCDD     | 2000      | 1113.773   | 56    |   | 25-181  | 1.56  | 1.236 |
| 13C-1,2,3,4,7,8-HxCDD   | 2000      | 1233.848   | 62    |   | 32-141  | 1.28  | 0.991 |
| 13C-1,2,3,6,7,8-HxCDD   | 2000      | 1461.281   | 73    |   | 28-130  | 1.29  | 0.993 |
| 13C-1,2,3,4,6,7,8-HpCDD | 2000      | 942.963    | 47    |   | 23-140  | 1.03  | 1.071 |
| 13C-OCDD                | 4000      | 1103.605   | 28    |   | 17-157  | 0.95  | 1.142 |
| 13C-2,3,7,8-TCDF        | 2000      | 917.315    | 46    |   | 24-169  | 0.79  | 0.990 |
| 13C-1,2,3,7,8-PeCDF     | 2000      | 1138.892   | 57    |   | 24-185  | 1.57  | 1.185 |
| 13C-2,3,4,7,8-PeCDF     | 2000      | 1155.381   | 58    |   | 21-178  | 1.59  | 1.224 |
| 13C-1,2,3,4,7,8-HxCDF   | 2000      | 1606.958   | 80    |   | 26-152  | 0.51  | 0.968 |
| 13C-1,2,3,6,7,8-HxCDF   | 2000      | 1499.430   | 75    |   | 26-123  | 0.51  | 0.971 |
| 13C-1,2,3,7,8,9-HxCDF   | 2000      | 1350.379   | 68    |   | 29-147  | 0.51  | 1.008 |
| 13C-2,3,4,6,7,8-HxCDF   | 2000      | 1448.532   | 72    |   | 28-136  | 0.51  | 0.986 |
| 13C-1,2,3,4,6,7,8-HpCDF | 2000      | 1052.631   | 53    |   | 28-143  | 0.44  | 1.045 |
| 13C-1,2,3,4,7,8,9-HpCDF | 2000      | 906.917    | 45    |   | 26-138  | 0.44  | 1.083 |
| 37Cl-2,3,7,8-TCDD       | 800       | 429.699    | 54    |   | 35-197  | NA    | 1.029 |



1435 Norjohn Court, Unit 1, Burlington, ON, Canada L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567

## **Certificate of Analysis**

ALS Project Contact: Claire Kocharakkal

ALS Project ID: ALSG150

**ALS WO#**: BU2502345

Date of Report 5-Sep-25

Date of Sample Receipt 26-Aug-25

Client Name: ALS Group USA, Corp.
Client Address: 10450 Stancliff Road

Suite 210, Houston TX 77099

USA

Client Contact: Hussam Kelany
Client Project ID: E2500746

COMMENTS: PCB Congeners by EPA 1668C

PCB Congener Group Totals and Total PCB are a sum of detected values, including EMPC values,

consistent with USEPA CLP SOW CBC1.2

Certified by:

Sabrina Jin

**Technical Specialist** 

|                      | AL            | S Life Sciences         |
|----------------------|---------------|-------------------------|
|                      | Sample        | Analysis Summary Report |
| Sample Name          | 2434014       |                         |
| ALS Sample ID        | BU2502345-001 |                         |
| Sample Size          | 1.01          |                         |
| Sample size units    | L             |                         |
| Percent Moisture     | n/a           |                         |
| Sample Matrix        | Water         |                         |
| Sampling Date        | 4-Aug-25      |                         |
| Extraction Date      | 28-Aug-25     |                         |
| Target Analytes      | pg/L          |                         |
| PCB-081              | < 0.46        |                         |
| PCB-077              | <1.8          |                         |
| PCB-126              | <0.34         |                         |
| PCB-169              | <0.36         |                         |
| Extraction Standards | % Rec         |                         |
| 13C12-PCB-081        | 67            |                         |
| 13C12-PCB-077        | 63            |                         |
| 13C12-PCB-126        | 61            |                         |
| 13C12-PCB-169        | 59            |                         |
| Cleanup Standards    |               |                         |
| 13C12-PCB-028        | 92            |                         |
| 13C12-PCB-111        | 86            |                         |
| 13C12-PCB-178        | 103           |                         |

|                      | ALS Life Sciences              |  |
|----------------------|--------------------------------|--|
|                      | Quality Control Summary Report |  |
| Sample Name          | Method Blank                   |  |
| ALS Sample ID        | QC-2187459-001                 |  |
| Sample Size          | 1.00                           |  |
| Sample size units    | L                              |  |
| Percent Moisture     | n/a                            |  |
| Sample Matrix        | QC                             |  |
| Sampling Date        | n/a                            |  |
| Extraction Date      | 28-Aug-25                      |  |
| Target Analytes      | pg/L                           |  |
| PCB-081              | <0.42                          |  |
| PCB-077              | <0.48                          |  |
| PCB-126              | <0.41                          |  |
| PCB-169              | <0.41                          |  |
| Extraction Standards | % Rec                          |  |
| 13C12-PCB-081        | 79                             |  |
| 13C12-PCB-077        | 74                             |  |
| 13C12-PCB-126        | 74                             |  |
| 13C12-PCB-169        | 73                             |  |
| Cleanup Standards    |                                |  |
| 13C12-PCB-028        | 96                             |  |
| 13C12-PCB-111        | 92                             |  |
| 13C12-PCB-178        | 106                            |  |

|                      | ,                            | ALS Life Sciences            |
|----------------------|------------------------------|------------------------------|
|                      | Sar                          | nple Analysis Summary Report |
| Sample Name          | Laboratory Control<br>Sample |                              |
| ALS Sample ID        | QC-2187459-002               |                              |
| Sample Size          | 1                            |                              |
| Sample size units    | n/a                          |                              |
| Percent Moisture     | n/a                          |                              |
| Sample Matrix        | QC                           |                              |
| Sampling Date        | n/a                          |                              |
| Extraction Date      | 28-Aug-25                    |                              |
| Target Analytes      | % Rec                        |                              |
| PCB-081              | 92                           |                              |
| PCB-077              | 92                           |                              |
| PCB-126              | 91                           |                              |
| PCB-169              | 87                           |                              |
| Extraction Standards | % Rec                        |                              |
| 13C12-PCB-081        | 46                           |                              |
| 13C12-PCB-077        | 44                           |                              |
| 13C12-PCB-126        | 43                           |                              |
| 13C12-PCB-169        | 43                           |                              |
| Cleanup Standards    |                              |                              |
| 13C12-PCB-028        | 59                           |                              |
| 13C12-PCB-111        | 56                           |                              |
| 13C12-PCB-178        | 68                           |                              |
|                      |                              |                              |

#### **ALS Life Sciences**

#### Sample Analysis Report

 Sample Name
 2434014

 ALS Sample ID
 BU2502345-001

 Analysis Method
 EPA 1668C

 Analysis Type
 Sample

 Sample Matrix
 Water

Approved: Henna Saeed --e-signature--04-Sep-2025

 Run Information
 Run 1

 Filename
 5-250830806

 Run Date
 31-Aug-25 05:47

 Final Volume
 25 ul

 Dilution Factor
 1

 Analysis Units
 pg/L

 Analysis Units
 pg/L

 Instrument - Column
 HRMS-5
 SPBOCTYL291720-01

|                      | TEF       | Ret.      | Conc.      | EDL       |            | EMPC        |              |                                                                       |
|----------------------|-----------|-----------|------------|-----------|------------|-------------|--------------|-----------------------------------------------------------------------|
| Target Analytes      | (WHO 2005 | Time      | pg/L       | pg/L      | Flags      | pg/L        | LQL          |                                                                       |
| PCB-081              | 0.0003    | NotFnd    | <0.46      | 0.46      | U          |             | 5.0          |                                                                       |
| PCB-077              | 0.0001    | 22.10     | <1.8       | 0.51      | M,J,R      | 1.8         | 5.0          |                                                                       |
| PCB-126              | 0.1       | NotFnd    | < 0.34     | 0.34      | U          |             | 5.0          |                                                                       |
| PCB-169              | 0.03      | 28.63     | <0.36      | 0.36      | U          | 0.36        | 5.0          |                                                                       |
| Extraction Standards | pg        | Time      | % Rec      | Limits    |            |             |              |                                                                       |
| 13C12-PCB-081        | 2000      | 21.78     | 67         | 10-145    |            |             |              |                                                                       |
| 13C12-PCB-077        | 2000      | 22.08     | 63         | 10-145    |            |             |              |                                                                       |
| 13C12-PCB-126        | 2000      | 25.46     | 61         | 10-145    |            |             |              |                                                                       |
| 13C12-PCB-169        | 2000      | 28.62     | 59         | 10-145    |            |             |              |                                                                       |
| Cleanup Standards    |           |           |            |           |            |             |              |                                                                       |
| 13C12-PCB-028        | 2000      | 15.99     | 92         | 5-145     |            |             |              |                                                                       |
| 13C12-PCB-111        | 2000      | 21.99     | 86         | 10-145    |            |             |              |                                                                       |
| 13C12-PCB-178        | 2000      | 25.03     | 103        | 10-145    |            |             |              |                                                                       |
| EDL                  |           | Indiantas | the Estima | tod Data  | ation Line | it based    | on the mea   | ured background noise for this target in this sample.                 |
| TEF                  |           |           | the Toxic  |           |            |             | on the mea   | TEQ Indicates the Toxic Equivalency                                   |
| LQL                  |           |           |            |           | ,          |             | calibration  | evel corrected for sample size, splits and dilutions.                 |
| M                    |           |           | that a pea |           |            |             |              | ever corrected for sumple size, spines and anadoris.                  |
| U                    |           |           |            |           |            |             | above the E  | DL.                                                                   |
| j                    |           | Indicates | that the a | nalvte wa | s positiv  | elv identil | ed. The ass  | ciated numerical result is an estimate.                               |
| R                    |           |           |            |           |            |             |              | ot meet the control limit. The reported value represents an estimated |
|                      |           |           |            |           |            |             |              |                                                                       |
| EMPC                 |           | Estimated | Maximum    | Possible  | Concent    | ration – e  | levated dete | ction limit due to interference or positive id criterion failure      |

#### **ALS Life Sciences**

#### Laboratory Method Blank Analysis Report

Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix Method Blank QC-2187459-001 EPA 1668C Blank QC Sampling Date Extraction Date Sample Size Percent Moisture Split Ratio

n/a 28-Aug-25 1.00 n/a 1

Approved: Henna Saeed --e-signature--04-Sep-2025

Run Information Run 1 5-250830B05 31-Aug-25 05:04 25 ul 1 Filename Run Date Final Volume Dilution Factor Analysis Units pg/L HRMS-5 SPBOCTYL291720-01

Instrument - Column

|                      | TEF       | Ret.      | Conc.       | EDL       |            | EMPC        |             |                                                                                      |
|----------------------|-----------|-----------|-------------|-----------|------------|-------------|-------------|--------------------------------------------------------------------------------------|
| t Analytes           | (WHO 2005 | Time      | pg/L        | pg/L      | Flags      | pg/L        | LQL         |                                                                                      |
| PCB-081              | 0.0003    | 21.78     | < 0.42      | 0.42      | M,U        | 0.35        | 5.0         |                                                                                      |
| PCB-077              | 0.0001    | NotFnd    | <0.48       | 0.48      | U          |             | 5.0         |                                                                                      |
| PCB-126              | 0.1       | NotFnd    | < 0.41      | 0.41      | U          |             | 5.0         |                                                                                      |
| PCB-169              | 0.03      | 28.63     | < 0.41      | 0.34      | M,J,R      | 0.41        | 5.0         |                                                                                      |
| Extraction Standards | pg        | Time      | % Rec       | Limits    |            |             |             |                                                                                      |
| 13C12-PCB-081        | 2000      | 21.78     | 79          | 10-145    |            |             |             |                                                                                      |
| 13C12-PCB-077        | 2000      | 22.08     | 74          | 10-145    |            |             |             |                                                                                      |
| 13C12-PCB-126        | 2000      | 25.45     | 74          | 10-145    |            |             |             |                                                                                      |
| 13C12-PCB-169        | 2000      | 28.62     | 73          | 10-145    |            |             |             |                                                                                      |
| Cleanup Standards    |           |           |             |           |            |             |             |                                                                                      |
| 13C12-PCB-028        | 2000      | 15.99     | 96          | 5-145     |            |             |             |                                                                                      |
| 13C12-PCB-111        | 2000      | 21.98     | 92          | 10-145    |            |             |             |                                                                                      |
| 13C12-PCB-178        | 2000      | 25.02     | 106         | 10-145    |            |             |             |                                                                                      |
| EDL                  |           | Indicates | the Estima  | ated Dete | ction Lim  | it hased    | on the me   | asured background noise for this target in this sample.                              |
| TEF                  |           |           | the Toxic I |           |            |             | on the me   | TEQ Indicates the Toxic Equivalency                                                  |
| LQL                  |           |           |             |           |            |             | calibration | level corrected for sample size, splits and dilutions.                               |
| M                    |           |           | that a pea  |           |            |             |             |                                                                                      |
| U                    |           |           |             |           |            | , .         | above the   | EDL.                                                                                 |
| J                    |           | Indicates | that the a  | nalyte wa | s positive | ely identif | ed. The as  | sociated numerical result is an estimate.                                            |
| R                    |           | Indicates | that the io | n abunda  | nce ratio  | for this a  | nalyte did  | not meet the control limit. The reported value represents an estimated concentration |
| EMPC                 |           | Estimated | Maximum     | Possible  | Concont    | untion o    | launted dat | ection limit due to interference or positive id criterion failure                    |

### **ALS Life Sciences**

#### **Laboratory Control Sample Analysis Report**

Split Ratio

Sample Name ALS Sample ID Analysis Method Analysis Type Laboratory Control Sample QC-2187459-002 EPA 1668C LCS QC Sample Matrix

Sampling Date Extraction Date Sample Size Percent Moisture

28-Aug-25 1 n/a

n/a

Approved: Henna Saeed --e-signature--04-Sep-2025

Run Information Run 1

5-250830B03 31-Aug-25 03:38 Filename Run Date Final Volume 25 ul Dilution Factor 1 Analysis Units % Rec

HRMS-5 SPBOCTYL291720-01 Instrument - Column

|                      |      | Ret.  |       | Limits |       |
|----------------------|------|-------|-------|--------|-------|
| Target Analytes      | pg   | Time  | % Rec |        | Flags |
|                      | FS   | 7     |       |        |       |
| PCB-081              | 1000 | 21.79 | 92    | 60-135 |       |
| PCB-077              | 1000 | 22.10 | 92    | 60-135 |       |
| PCB-126              | 1000 | 25.47 | 91    | 60-135 |       |
| PCB-169              | 1000 | 28.63 | 87    | 60-135 |       |
| Extraction Standards |      | Time  | % Rec | Limits |       |
| 13C12-PCB-081        | 2000 | 21.78 | 46    | 40-145 |       |
| 13C12-PCB-077        | 2000 | 22.08 | 44    | 40-145 |       |
| 13C12-PCB-126        | 2000 | 25.46 | 43    | 40-145 |       |
| 13C12-PCB-169        | 2000 | 28.62 | 43    | 40-145 |       |
| Cleanup Standards    |      |       |       |        |       |
| 13C12-PCB-028        | 2000 | 16.00 | 59    | 15-145 |       |
| 13C12-PCB-111        | 2000 | 21.99 | 56    | 40-145 |       |
|                      |      |       |       |        |       |

## ALS Environmental Chain of Custody

10450 Stancliff Rd • Houston, TX 77099 • 281-530-5656 • FAX

ALS Contact: Hussam Kelany

Page I

Project Number:

E2500746

Project Manager:

Hussam Kelany

QAP:

LAB QAP

I Biphen Cong 1668A

| Lab Code     | Sample ID | # of Cont. | Matrix | Date   | Time | Lab ID         | O |
|--------------|-----------|------------|--------|--------|------|----------------|---|
| E2500746-001 | 2434014   |            | Water  | 8/4/25 | 0843 | Burlington ALS | х |

**Test Comments** 

Cl Biphen Cong - 1668A

E2500746-001

PCB 77, PCB 81, PCB 126, and PCB 169

Environmental Division Burlington
Work Order Reference
BU2502345



Telephone: +1 905 331 3111

| Special Instructions/Comments                            | Turnaround Requirements             | Report Requirements                         | Invoice Information |
|----------------------------------------------------------|-------------------------------------|---------------------------------------------|---------------------|
|                                                          | RUSH (Surcharges Apply)             | I. Results OnlyII. Results + QC Summaries   |                     |
|                                                          | PLEASE CIRCLE WORK DAYS 1 2 3 4 (5) | III. Results + QC and Calibration Summaries | PO#<br>55E2500746   |
| NPDES                                                    | STANDARD                            | IV. Data Validation Report with Raw Data    |                     |
|                                                          | Requested FAX Date:                 | PQL/MDL/J <u>Y</u><br>EDD <u>N</u>          | Bill to             |
| H - Test is On Hold P - Test is Authorized for Prep Only | Requested Report Date: 09/01/25     | אר חמם                                      |                     |
| Relinquished By:                                         | Received By: 9 Chm 26-A             | Ua ≥ 2025 Airbill Number:                   |                     |

#### **Rainee Trevino**

From: Rumbaugh, Martin < Martin.Rumbaugh@aecom.com>

Sent: Thursday, December 4, 2025 11:48 AM

**To:** Rainee Trevino; Jesi Mann

**Cc:** Blake Neffendorf

**Subject:** Resubmittal -Notice of Deficiency Letter - Application to Renew Permit No.

WQ0011060001

Attachments: wq0011060001-nod1.pdf; Spanish Plain Language Summary rev 120425.pdf; Municipal

Discharge Renewal Spanish NORI edited.docx

Rainee,

Responses below follow the order of the comments in the NOD1 Letter( attached).

- 1. Please find attached the revised Plain Language Summary (Spanish version) which has been revised to list the City of Buda as Owner and GBRA as Operator of the WWTP.
- 2. No errors or omissions were noted in our review of the NORI (English version) paragraphs. However, the following typos were noted:
  - "to to Outfall 001" needs a duplicate word removed to be "to Outfall 001"
  - "Porter Creek, thence" needs a space added to be "Porter Creek thence"
  - "thenceto Brushy Creek" needs a space added to be "thence to Brushy Creek"
- 3. Please find attached the filled-in Spanish translation of the NORI. Note that we did not fill in the date issued.

Thank you,

#### Martin Rumbaugh, P.E., BCEE

C 512.771.6344 martin.rumbaugh@aecom.com

#### **AECOM**

Building A 13640 Briarwick Drive Suite 200 Austin, Texas 78729 T 512.472.4519 F 512.472.7519 www.aecom.com

Built to deliver a better world

LinkedIn Twitter Facebook Instagram

From: Rainee Trevino < Rainee. Trevino@tceq.texas.gov>

Sent: Thursday, December 4, 2025 10:40 AM

**To:** Rumbaugh, Martin <Martin.Rumbaugh@aecom.com>; Jesi Mann <jmann@gbra.org> **Subject:** RE: Application to Renew Permit No. WQ0011060001-Notice of Deficiency Letter

#### Good morning,

Everything can be sent via email directly to me.

#### Rainee Trevino

Water Quality Division | ARP Team Texas Commission on Environmental Quality 512-239-4324



From: Rumbaugh, Martin < Martin.Rumbaugh@aecom.com>

Sent: Thursday, December 4, 2025 9:54 AM

**To:** Rainee Trevino < <u>Rainee.Trevino@tceq.texas.gov</u>>; Jesi Mann < <u>imann@gbra.org</u>> **Subject:** RE: Application to Renew Permit No. WQ0011060001-Notice of Deficiency Letter

Rainee,

Thank you for your email and the NOD letter and NORI translation template.

Can the response to address these comments be furnished via reply to your email, or does it need to be uploaded by FTP and delivered as a hard copy?

Thanks,

#### Martin Rumbaugh, P.E., BCEE

C 512.771.6344 martin.rumbaugh@aecom.com

#### **AECOM**

Building A 13640 Briarwick Drive Suite 200 Austin, Texas 78729 T 512.472.4519 F 512.472.7519 www.aecom.com

Built to deliver a better world

<u>LinkedIn Twitter Facebook Instagram</u>

From: Rainee Trevino <Rainee.Trevino@tceq.texas.gov>

Sent: Monday, December 1, 2025 1:17 PM

To: Jesi Mann < jmann@gbra.org>

Cc: Rumbaugh, Martin < <a href="martin.Rumbaugh@aecom.com">Martin.Rumbaugh@aecom.com</a>>

Subject: Application to Renew Permit No. WQ0011060001-Notice of Deficiency Letter

#### Good afternoon,

The attached Notice of Deficiency letter sent on December 1, 2025, requests additional information needed to declare the application administratively complete. Please send the complete response to my attention by December 15, 2025.

Thank you,

#### **Rainee Trevino**

Water Quality Division | ARP Team Texas Commission on Environmental Quality 512-239-4324



# PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

#### AGUAS RESIDUALES DOMÉSTICAS' /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

La Ciudad de Buda (CN601720741 o CN600739866) es propietaria y la GBRA (CN601180565) opera La Planta de Tratamiento de Aguas Residuales de la Ciudad de Buda (RN101703288), una planta de proceso de lodos activados que opera en modo de mezcla completa. La instalación está ubicada en 575 Garison Road, en Buda, Condado de Hays, Texas 78610. Esta aplicación es para una renovación de la autorización existente para tratar una capacidad de 3.5 millones de galones por día de flujo promedio anual.

Se espera que las descargas de la instalación contengan cloruro, sólidos totales disueltos, sulfato y alcalinidad (CaCO3), así como los niveles permitidos de demanda bioquimica de oxigeno, sólidos suspendidos totales, amoniaco, y fósforo. Otros contaminantes potenciales se incluyen en el Informe Técnico Doméstico 1.0, Sección 7. Análisis de contaminantes del efluente tratado y hoja de trabajo doméstica 4.0 en el paquete de solicitud de permiso. Aguas residuales domésticas. está tratado por una planta de proceso de lodo activado y las unidades de tratamiento incluyen una rejilla, una cámara de desarenado, estanques de aireación, clarificadores finales, filtros, cámaras de contacto con cloro y descloración. Los residuales sólidos biologicos se tratan por por aeración, espesador de gravidad, y filtro prensa de bandas, y transportado a otras instalaciones externas autorizadas de procesamiento de lodos para tratamiento adicional.

## Cover Sheet - Buda WWTP TPDES Permit WQ0011060001 Renewal Application

### Sequence of Forms and Attachments

| Order   | Doc. Type  | Number | Description                                                       |
|---------|------------|--------|-------------------------------------------------------------------|
| 1       | TCEQ Form  | 10053  | Domestic Administrative Report (1.0 and 1.1)                      |
| Att. A  | TCEQ Form  | 10040  | Administrative Report Attachment 1 – Core Data Form (Buda)        |
| Att. A  | TCEQ Form  | 10040  | Administrative Report Attachment 1 – Core Data Form (GBRA)        |
| Att. B  | Attachment |        | USGS Map – Domestic Administrative Report 1.0 Section 13          |
| Att. C  | TCEQ Form  | 20971  | Supplemental Permit Information Form (SPIF)                       |
| Att. C1 | Attachment |        | USGS Map (SPIF Item 3)                                            |
| Att. C2 | Attachment |        | General Location Map (SPIF Item 5)                                |
| Att. D  | TCEQ Form  | 20972  | Summary of Application in Plain Language                          |
| 2       | TCEQ Form  | 10054  | Domestic Technical Report and Worksheets                          |
| Exh. A  | Exhibit    | Α      | Detailed Description of Treatment Process – 10054 Section 2. A    |
| Exh. B  | Exhibit    | В      | Treatment Unit Type, Number, Dimensions – 10054 Section 2.B       |
| Exh. C  | Exhibit    | С      | Process Flow Diagrams – 10054 Section 2.C                         |
| Exh. D  | Exhibit    | D      | Site Information – 10054 Section 3                                |
| Exh. E  | Exhibit    | Е      | Service Area Drawing – 10054 Section 3                            |
| Exh. F  | Exhibit    | F      | TCEQ Approval Letter (Interim I / Interim II) – 10054 Section 6.A |
| Exh. G  | Exhibit    | G      | TCEQ Approval Letter (Interim III / Final) – 10054 Section 6.A    |
| Exh. H  | Exhibit    | Н      | TCEQ Approval Effluent FM to Outfall 002 – 10054 Section 6.A      |
| Exh. I  | Exhibit    | I      | Facility Operators and Licenses – 10054 Section 8                 |
| Exh. J  | Exhibit    | J      | Sludge Acceptance Agreements – 10054 Section 9.C                  |
| Exh. K  | Exhibit    | K      | 30 TAC 210 Effluent Reuse Authorization – 10054 Section 12.A      |
| Exh. L  | Exhibit    | L      | Description of Receiving Waters Outfall 001– 10054 Worksheet 2.0  |
| Exh. M  | Exhibit    | М      | Description of Receiving Waters Outfall 002– 10054 Worksheet 2.0  |
| Exh. N  | Exhibit    | N      | Stream Physical Characteristics Outfall 001– 10054 Worksheet 2.1  |
| Exh. O  | Exhibit    | 0      | Stream Physical Characteristics Outfall 002–10054 Worksheet 2.1   |
| Exh. P  | Exhibit    | Р      | Effluent Samples Laboratory Reports – 10054 Worksheet 4.0         |