

This file contains the following documents:

- 1. Summary of application (in plain language)
 - English
 - Alternative Language (Spanish)
- 2. First notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
 - English
 - Alternative Language (Spanish)
- 3. Second notice (NAPD-Notice of Preliminary Decision)
 - English
 - Alternative Language (Spanish)
- 4. Application materials
- 5. Draft permit
- 6. Technical summary or fact sheet

Este archivo contiene los siguientes documentos:

- 1. Resumen de la solicitud (en lenguaje sencillo)
 - Inglés
 - Idioma alternativo (español)
- 2. Primer aviso (NORI, Aviso de Recepción de Solicitud e Intención de Obtener un Permiso)
 - Inglés
 - Idioma alternativo (español)
- 3. Segundo aviso (NAPD, Aviso de Decisión Preliminar)
 - Inglés
 - Idioma alternativo (español)
- 4. Materiales de la solicitud
- 5. Proyecto de permiso
- 6. Resumen técnico u hoja de datos

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS

Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary of your facility and application as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. You may modify the template as necessary to accurately describe your facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how you will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements. After filling in the information for your facility delete these instructions.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS Enter 'INDUSTRIAL' or 'DOMESTIC' here WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

City of Roma (CN600626204) operates Roma Wastewater Treatment Plant (RN101613560), a municipal wastewater treatment facility. The facility is located at 604 East 6th Street, in Roma, Starr County, Texas 78584. The City of Roma has applied for a renewal of the existing permit number WQ0011212002 (EPA I.D. No. TX0117544) that authorizes the discharge of treated wastewater at a volume not to exceed an annual average flow of 2,000,000 gallons per day.

Discharges from the facility are expected to contain Carbonaceous Biological Oxygen Demand 5-day, Total Suspended Solids, Ammonia Nitrogen, Total Aluminum, and E. Coli. Municipal wastewaters are treated by an activated sludge process plant operated with extended aeration mode. Treatment units include a bar screen, a grit and grease chamber, two aeration basins, two final clarifiers, a sludge holding tank, a belt filter press, and two ultraviolet (UV) light disinfection channels.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES DOMESTICÁS /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

City of Roma (CN600626204) opera Roma Water Treatment Plant RN101613560, una instalación de tratamiento de agua potable. La instalación está ubicada en 604 East 6th Street, en Roma, Condado de Starr, Texas 78584. City of Roma ha solicitado la renovación del permiso existente número WQ0011212002 (EPA I.D. TX0117544) que autoriza la descarga de aguas residuals tratadas en un volume que no exceda un caudal medio annual de 2,000,000 galones por día.

Se espera que las descargas de la instalación contengan demanda biológica de oxígeno carbonoso de 5 días, sólidos suspendidos totales, nitrógeno amoniacal, aluminio total y E. coli. Aguas residuales municipales. están tratado por una planta de lodos activados que opera con aireación prolongada. Las unidades de tratamiento incluyen un tamiz de barras, una cámara de arena y grasa, does tanques de aireación, does clarificadores finales, un tanque de retención de lodos, un filtro prensa de banda y dos canales de desinfeccion con luz ultravioleta (UV).

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL.

PERMIT NO. WQ0011212002

APPLICATION. City of Roma, P.O. Box 947, Roma, Texas 78584, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0011212002 (EPA I.D. No. TX0117544) to authorize the discharge of treated wastewater at a volume not to exceed an annual average flow of 2,000,000 gallons per day. The domestic wastewater treatment facility is located at 604 East 6th Street, in the city of Roma, in Starr County, Texas 78584. The discharge route is from the plant site directly to Rio Grande Below Falcon Reservoir. TCEQ received this application on May 8, 2025. The permit application will be available for viewing and copying at Roma City Hall, Reception Area, 201 West Convent Boulevard, Roma, in Starr County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage:

https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-99.0031,26.399&level=18

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public

interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Roma at the address stated above or by calling Mr. Alejandro Barrera, City Manager, at 956-849-1411.

Issuance Date: May 22, 2025

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ0011212002

SOLICITUD. City of Roma, P.O. Box 947, Roma, Texas 78584, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0011212002 (EPA I.D. No. TX0117544) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio anual de 2,000,000 galones por día. La planta está ubicada 604 East 6th Street en Roma en el Condado de Starr, Texas 78581. La ruta de descarga es del sitio de la planta a Río Grande debako del embalse Falcon. La TCEQ recibió esta solicitud el 8 de mayo de 2025. La solicitud para el permiso estará disponible para leerla y copiarla en Ayuntamiento de Roma, Area de recepción, 201 West Convent Boulevard, Roma, Condado de Starr antes de la fecha de publicación de este aviso en el periódico. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-99.0031,26.399&level=18

AVISO DE IDIOMA ALTERNATIVO. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ

realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión.

La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo,

la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Además, puede pedir que la TCEQ ponga su nombre en una o más de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos del solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envía por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

INFORMACIÓN DISPONIBLE EN LÍNEA. Para detalles sobre el estado de la solicitud, favor de visitar la Base de Datos Integrada de los Comisionados en www.tceq.texas.gov/goto/cid. Para buscar en la base de datos, utilizar el número de permiso para esta solicitud que aparece en la parte superior de este aviso.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía http://www14.tceq.texas.gov/epic/eComment/o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional del City of Roma a la dirección indicada arriba o llamando a Sr. Alejandro Barrera, Administrador Municipal, al 956-849-1411.

Fecha de emisión: 22 de mayo de 2025

Texas Commission on Environmental Quality

NOTICE OF APPLICATION AND PRELIMINARY DECISION FOR TPDES PERMIT FOR MUNICIPAL WASTEWATER

RENEWAL

PERMIT NO. WQ0011212002

APPLICATION AND PRELIMINARY DECISION. City of Roma, P.O. Box 947, Roma, Texas 78584, has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0011212002, which authorizes the discharge of treated domestic wastewater at an annual average flow not to exceed 2,000,000 gallons per day. TCEQ received this application on May 8, 2025.

The facility is located at 604 East 6th Street, in the City of Roma, Starr County, Texas 78584. The treated effluent is discharged directly to Rio Grande Below Falcon Reservoir in Segment No. 2302 of the Rio Grande Basin. The designated uses for Segment No. 2302 are primary contact recreation, public water supply, and high aquatic life use. This link to an electronic map of the site or facility's general location is provided as a public courtesy and is not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-99.0031,26.399&level=18

The TCEQ Executive Director has completed the technical review of the application and prepared a draft permit. The draft permit, if approved, would establish the conditions under which the facility must operate. The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The permit application, Executive Director's preliminary decision, and draft permit are available for viewing and copying at Roma City Hall, Reception Area, 201 West Convent Boulevard, Roma, in Starr County, Texas. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceg.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at https://www.tceq.texas.gov/permitting/wastewater/plain-language-summaries-and-public-notices. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/plain-language-summaries-and-public-notices.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting about this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ holds a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting a contested case hearing or reconsideration of the Executive Director's decision. A contested case hearing is a legal proceeding similar to a civil trial in a state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period; and the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period. TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

EXECUTIVE DIRECTOR ACTION. The Executive Director may issue final approval of the application unless a timely contested case hearing request or request for reconsideration is filed. If a timely hearing request or request for reconsideration is filed, the Executive Director will not issue final approval of the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

All written public comments and public meeting requests must be submitted to the Office of the Chief Clerk, MC 105, Texas Commission on Environmental Quality, P.O. Box 13087, Austin, TX 78711-3087 or electronically at www.tceq.texas.gov/goto/comment within 30 days from the date of newspaper publication of this notice.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. Public comments and requests must be submitted either electronically at www.tceq.texas.gov/goto/comment, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC 105, P.O. Box 13087, Austin, Texas 78711-3087. Any personal information you submit to the TCEQ will become part of the agency's record; this includes email addresses. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from City of Roma at the address stated above or by calling Mr. Alejandro Barrera, City Manager, at 956-849-1411.

Issuance Date: November 6, 2025

Comisión De Calidad Ambiental Del Estado De Texas

AVISO DE LA SOLICITUD Y DECISIÓN PRELIMINAR PARA EL PERMISO DEL SISTEMA DE ELIMINACION DE DESCARGAS DE CONTAMINANTES DE TEXAS (TPDES) PARA AGUAS RESIDUALES MUNICIPALES

RENOVACIÓN

PERMISO NO. WQ0011212002

SOLICITUD Y DECISIÓN PRELIMINAR. City of Roma, P.O. Box 947, Roma, Texas 78584, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para la renovación del Permiso del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) No. WQ0011212002, que autoriza la descarga de aguas residuales domesticas tratadas con un caudal promedio anual que no exceda los 2,000,000 de galones por día. La TCEQ recibió esta solicitud el 8 de mayo de 2025.

La planta está ubicada en 604 East 6th Street, en la ciudad de Roma, en el Condado de Starr, Texas 78584. El efluente tratado es descargado directamente al Río Grande debajo del embalse Falcon en el segmento No. 2302 de la Cuenca del Río Grande. Los usos designados para el Segmento No. 2302 son recreación de contacto primario, suministro público de agua y uso intensivo de vida acuática. Este enlace a un mapa electrónico de la ubicación general del sitio o instalación se proporciona como cortesía pública y no forma parte de la solicitud ni del aviso. Para conocer la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-99.0031,26.399&level=18

El Director Ejecutivo de la TCEQ ha completado la revisión técnica de la solicitud y ha preparado un borrador del permiso. El borrador del permiso, si es aprobado, establecería las condiciones bajo las cuales la instalación debe operar. El Director Ejecutivo ha tomado una decisión preliminar que si este permiso es emitido, cumple con todos los requisitos normativos y legales. La solicitud del permiso, la decisión preliminar del Director Ejecutivo y el borrador del permiso están disponibles para leer y copiar en el Ayuntamiento de Roma, Área de Recepción, 201 West Convent Boulevard, Roma, Condado de Starr, Texas. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

AVISO DE IDIOMA ALTERNATIVO. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/plain-language-summaries-and-public-notices.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos adicionales o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO.

Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono: el nombre del solicitante y número del permiso: la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso para descargar aguas residuales sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

ACCIÓN DEL DIRECTOR EJECUTIVO. El Director Ejecutivo puede emitir una aprobación final de la solicitud a menos que exista un pedido antes del plazo de vencimiento de una audiencia administrativa de lo contencioso o se ha presentado un pedido de reconsideración. Si un pedido ha llegado antes del plazo de vencimiento de la audiencia o el pedido de reconsideración ha sido presentado, el Director Ejecutivo no emitirá una aprobación final sobre el permiso y enviará la solicitud y el pedido a los Comisionados de la TECQ para consideración en una reunión programada de la Comisión.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Ademas, puede pedir que la TCEQ ponga su nombre en una or mas de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos de el solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envia por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

Todos los comentarios escritos del público y los pedidos una reunión deben ser presentados durante los 30 días después de la publicación del aviso a la Oficina del Secretario Principal, MC 105, TCEQ, P.O. Box 13087, Austin, TX 78711-3087 or por el internet a www.tceq.texas.gov/about/comments.html. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia.

CONTACTOS E INFORMACIÓN DE LA AGENCIA. Los comentarios y solicitudes públicas deben enviarse electrónicamente a https://www14.tceq.texas.gov/epic/eComment/, o por escrito a Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Cualquier información personal que envíe a al TCEQ pasará a formar parte del registro de la agencia; esto incluye las direcciones de correo electrónico. Para obtener más información sobre esta solicitud de permiso o el proceso de permisos, llame al Programa de Educación Pública de la TCEQ, sin cargo, al 1-800-687-4040 o visite su sitio web en www.tceq.texas.gov/goto/pep. Si desea información en español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional del City of Roma a la dirección indicada arriba o llamando a Sr. Alejandro Barrera, Administrador Municipal, al 956-849-1411.

Fecha de emisión 6 de noviembre de 2025

May 8, 2025

Via TCEQ FTP Server Upload (Share to WQDeCopy@tceq.texas.gov) and with Hard Copies to Follow

Executive Director
Applications Review and Processing Team (MC148)
Texas Commission on Environmental Quality
12100 Park 35 Circle
Austin, Texas 78753

Re: TPDES Permit Renewal Application

Applicant: City of Roma (CN600626204)

Permit No.: WQ0011212002 (EPA I.D. No. TX0117544)

Site Name: Roma Wastewater Treatment Plant (RN101613560)

Dear Sir / Madam:

Enclosed with this letter are one original and two copies of the TCEQ Municipal Wastewater Permit Renewal Application and applicable attachments. Per the new rule requirements under Title 30 Texas Administrative Code (TAC) Chapter 39 relating to public notices, the Plain Language Summary (PLS) Form TCEQ-20972 in Word format in English and Spanish are attached as a separate file in the FTPS upload; the PLS hard copies are found in Attachment DAR 1.0-8.F. If there are any questions, please let me know at luci.dunn@e-ht.com or at (817) 694-8382.

Sincerely,

Enprotec / Hibbs & Todd, Inc.

Luci Dunn

Luci Dunn, P.E.

Senior Project Manager

LD/jd

c: Mr. Alejandro Barrera, City Manager, via email to abarrera@cityofroma.net

Mr. Alfonso Ramirez Jr, Assistant City Manager, via email to aramirez@cityofroma.net

Ms. Lily Sandoval, City Secretary, via email to lsandoval@cityofroma.net

Mr. Juan Peña, WWTP, via email to jpena@cityofroma.net

Mr. Roy Garcia Public Works, via email to rgarcia@cityofroma.net

Ms. Fabiola Rodriguez via email to frodriguez@cityofroma.net

Project File 8235.2.2.2 P:Projects\TPDES Permit Applications\Roma WWTP\8235 2025 Roma WWTP Permit Renewal/1. Correspondence\Draft WWTP App Transmittal Ltr to City.docx

TPDES PERMIT RENEWAL APPLICATION

CITY OF ROMA WASTEWATER TREATMENT PLANT

Permit No. WQ0011212002

MAY 2025

Abilene I Lubbock I Granbury

PE Firm Registration No. 1151 PG Firm Registration No. 50103 RPLS Firm Registration No. 10011900

Corporate Headquarters

402 Cedar Street Abilene, Texas 79601 T: (325) 698-5560

F: (325) 690-3240

City of Roma Wastewater Treatment Plant WQ0011212002 TPDES Permit Renewal Application Table of Contents

Domestic Administrative Report (DAR) 1.0

SPIF

Domestic Technical Report (DTR) 1.0

DTR Worksheet 2.0 DTR Worksheet 4.0 DTR Worksheet 5.0 DTR Worksheet 6.0

Attachments

DAR 1.0-1	Fee Payment
DAR 1.0-3.C	Core Data Form

DAR 1.0-8.F Plain Language Summary Form TCEQ-20972

DAR 1.0-13 USGS Topographic Map

SPIF Supplemental Permit Information Form TCEQ-20971

SPIF 5 USGS Topographic Map

DTR 1.0-2.C Flow Diagram
DTR 1.0-3 Site Drawing

DTR 1.0-7 & Wksht 4.0 Pollutant Analyses Analytical Results

THE TONMENTAL OUR

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST

Complete and submit this checklist with the application.

APPLICANT NAME:	City of Roma
-----------------	--------------

PERMIT NUMBER (If new, leave blank): WQ00<u>11212002</u>

Indicate if each of the following items is included in your application.

	ĭ	IN		Y	N
Administrative Report 1.0	\boxtimes		Original USGS Map	\boxtimes	
Administrative Report 1.1		\boxtimes	Affected Landowners Map		\boxtimes
SPIF	\boxtimes		Landowner Disk or Labels		\boxtimes
Core Data Form	\boxtimes		Buffer Zone Map		\boxtimes
Summary of Application (PLS)	\boxtimes		Flow Diagram	\boxtimes	
Public Involvement Plan Form		\boxtimes	Site Drawing	\boxtimes	
Technical Report 1.0	\boxtimes		Original Photographs		\boxtimes
Technical Report 1.1		\boxtimes	Design Calculations		\boxtimes
Worksheet 2.0	\boxtimes		Solids Management Plan		\boxtimes
Worksheet 2.1		\boxtimes	Water Balance		\boxtimes
Worksheet 3.0		\boxtimes			
Worksheet 3.1		\boxtimes			
Worksheet 3.2		\boxtimes			
Worksheet 3.3		\boxtimes			
Worksheet 4.0	\boxtimes				
Worksheet 5.0	\boxtimes				
Worksheet 6.0	\boxtimes				
Worksheet 7.0		\boxtimes			
For TCEQ Use Only					
			County		
			Region		
Permit Number					

THE TONMENTAL OUNTER

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION ADMINISTRATIVE REPORT 1.0

For any questions about this form, please contact the Applications Review and Processing Team at 512-239-4671.

Section 1. Application Fees (Instructions Page 26)

Indicate the amount submitted for the application fee (check only one).

Flow	New/Major Amendment	Renewal
<0.05 MGD	\$350.00 □	\$315.00 □
≥0.05 but <0.10 MGD	\$550.00 □	\$515.00 □
≥0.10 but <0.25 MGD	\$850.00 □	\$815.00 □
≥0.25 but <0.50 MGD	\$1,250.00 □	\$1,215.00
≥0.50 but <1.0 MGD	\$1,650.00 □	\$1,615.00
≥1.0 MGD	\$2,050.00 □	\$2,015.00

Minor Amendment (for any flow) \$150.00 □

Payment Information:

Mailed Check/Money Order Number: N/A
Check/Money Order Amount: N/A
Name Printed on Check: N/A

Variables Number: 705177 8, 705177

EPAY Voucher Number: <u>765177 & 765178</u>

Copy of Payment Voucher enclosed? Yes \boxtimes

Section 2. Type of Application (Instructions Page 26)

a.	Che	ck the box next to the appropriate authorization type
	\boxtimes	Publicly Owned Domestic Wastewater
		Privately-Owned Domestic Wastewater
		Conventional Water Treatment
b.	Che	ck the box next to the appropriate facility status.
	\boxtimes	Active Inactive

c.	Check the box next to the appropriate permit type.
	□ TPDES Permit
	□ TLAP
	□ TPDES Permit with TLAP component
	□ Subsurface Area Drip Dispersal System (SADDS)
d.	Check the box next to the appropriate application type
	□ New
	\square Major Amendment <u>with</u> Renewal \square Minor Amendment <u>with</u> Renewal
	☐ Major Amendment <u>without</u> Renewal ☐ Minor Amendment <u>without</u> Renewal
	$oxed{\boxtimes}$ Renewal without changes $oxed{\Box}$ Minor Modification of permit
e.	For amendments or modifications, describe the proposed changes: $\underline{N/A}$
f.	For existing permits:
	Permit Number: WQ00 <u>11212002</u>
	EPA I.D. (TPDES only): TX <u>0117544</u>
	Expiration Date: <u>11/5/2025</u>
Se	ection 3. Facility Owner (Applicant) and Co-Applicant Information (Instructions Page 26)
A.	The owner of the facility must apply for the permit.
	What is the Legal Name of the entity (applicant) applying for this permit?
	<u>City of Roma</u>
	(The legal name must be spelled exactly as filed with the Texas Secretary of State, County, or the legal documents forming the entity.)
	If the applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at http://www15.tceq.texas.gov/crpub/
	CN: 600626204

CN: <u>600626204</u>

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in 30 TAC § 305.44.

Prefix: Mr. Last Name, First Name: Escobar Jr., Jaime

Credential: N/A Title: Mayor

B. Co-applicant information. Complete this section only if another person or entity is required to apply as a co-permittee.

What is the Legal Name of the co-applicant applying for this permit?

N/A

(The legal name must be spelled exactly as filed with the TX SOS, with the County, or in the *legal documents forming the entity.)*

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at: http://www15.tceq.texas.gov/crpub/

CN: N/A

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix: N/A Last Name, First Name: N/A

Title: <u>N/A</u> Credential: <u>N/A</u>

Provide a brief description of the need for a co-permittee: N/A

C. Core Data Form

Complete the Core Data Form for each customer and include as an attachment. If the customer type selected on the Core Data Form is **Individual**, complete **Attachment 1** of Administrative Report 1.0. See Attachment DAR 1.0-3.C.

Section 4. Application Contact Information (Instructions Page 27)

This is the person(s) TCEQ will contact if additional information is needed about this application. Provide a contact for administrative questions and technical questions.

A. Prefix: Ms. Last Name, First Name: <u>Dunn, Luci</u>

Title: Senior Project Manager Credential: PE

Organization Name: Enprotec / Hibbs & Todd, Inc. (eHT)

Mailing Address: PO Box 3097 City, State, Zip Code: Abilene, TX 79604

Phone No.: <u>325-698-5560</u> E-mail Address: <u>luci.dunn@e-ht.com</u>

Check one or both:

Administrative Contact

Technical Contact

B. Prefix: Mr. Last Name, First Name: Barrera, Alejandro

Title: City Manager Credential: N/A

Organization Name: <u>City of Roma</u>

Mailing Address: PO Box 947 City, State, Zip Code: Roma, TX 78584

Phone No.: <u>956-849-1411</u> E-mail Address: <u>abarrera@cityofroma.net</u>

Check one or both: Administrative Contact

Technical Contact

Section 5. Permit Contact Information (Instructions Page 27)

Provide the names and contact information for two individuals that can be contacted throughout the permit term.

A. Prefix: Mr. Last Name, First Name: Barrera, Alejandro

Title: City Manager Credential: N/A

Organization Name: City of Roma

Mailing Address: PO Box 974 City, State, Zip Code: Roma, TX 78584

Phone No.: 956-849-1411 E-mail Address: abarrera@cityofroma.net

B. Prefix: Mr. Last Name, First Name: Pena, Juan

Title: Wastewater Treatment Plant Operator Credential: N/A

Organization Name: City of Roma

Mailing Address: PO Box 947 City, State, Zip Code: Roma, TX 78584

Phone No.: <u>956-849-1411</u> E-mail Address: <u>jpena@cityofroma.net</u>

Section 6. Billing Contact Information (Instructions Page 27)

The permittee is responsible for paying the annual fee. The annual fee will be assessed to permits *in effect on September 1 of each year*. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (using form TCEQ-20029).

Prefix: Ms. Last Name, First Name: Reyna, Iliana

Title: <u>Accounts Payable</u> Credential: <u>N/A</u>

Organization Name: City of Roma

Mailing Address: PO Box 974 City, State, Zip Code: Roma, TX 78584

Phone No.: <u>956-849-1411</u> E-mail Address: <u>ireyna@cityofroma.net</u>

Section 7. DMR/MER Contact Information (Instructions Page 27)

Provide the name and complete mailing address of the person delegated to receive and submit Discharge Monitoring Reports (DMR) (EPA 3320-1) or maintain Monthly Effluent Reports (MER).

Prefix: Mr. Last Name, First Name: Pena, Juan

Title: <u>Wastewater Plant Operator</u> Credential: <u>N/A</u>

Organization Name: City of Roma

Mailing Address: PO Box 947 City, State, Zip Code: Roma, TX 78584

Phone No.: <u>956-849-1411</u> E-mail Address: <u>ipena@cityofroma.net</u>

Section 8. Public Notice Information (Instructions Page 27)

A. Individual Publishing the Notices

Prefix: Ms. Last Name, First Name: Sandoval, Liliana

Title: <u>City Secretary</u> Credential: <u>N/A</u>

Organization Name: City of Roma

Mailing Address: PO Box 947 City, State, Zip Code: Roma, TX 78584

Phone No.: <u>956-849-1411</u> E-mail Address: <u>lsandoval@cityofroma.net</u>

В.		thod for Receiving Notice of kage	Receipt and Intent to Obtain a Water Quality Permit
	Ind	icate by a check mark the pre	ferred method for receiving the first notice and instructions:
	\boxtimes	E-mail Address	
		Fax	
		Regular Mail	
C.	Co	ntact permit to be listed in th	ne Notices
	Pre	fix: <u>Mr.</u>	Last Name, First Name: <u>Barrera</u> , <u>Alejandro</u>
	Tit	le: <u>City Manager</u>	Credential: <u>N/A</u>
	Org	ganization Name: <u>City of Roma</u>	
	Ma	iling Address: <u>PO Box 947</u>	City, State, Zip Code: Roma, TX 78584
	Pho	one No.: <u>956-849-1411</u>	E-mail Address: abarrera@cityofroma.net
D.	Pul	olic Viewing Information	•
		he facility or outfall is located inty must be provided.	in more than one county, a public viewing place for each
	Pul	olic building name: <u>Roma City l</u>	<u>Hall</u>
	Loc	cation within the building: Rec	eption Area
	Phy	sical Address of Building: <u>201</u>	West Convent Boulevard
	Cit	y: <u>Roma</u>	County: Starr
	Coı	ntact (Last Name, First Name):	Barrera, Alejandro
	Pho	one No.: <u>956-849-1411</u> Ext.: <u>N/A</u>	<u>.</u>
E.	Bili	ingual Notice Requirements	
		s information is required for dification, and renewal appli	new, major amendment, minor amendment or minor cations.
	be		only used to determine if alternative language notices will s on publishing the alternative language notices will be in
	obt		dinator at the nearest elementary and middle schools and to determine whether an alternative language notices are
	1.		am required by the Texas Education Code at the elementary he facility or proposed facility?
		⊠ Yes □ No	
		If no , publication of an altern below.	ative language notice is not required; skip to Section 9
	2.	Are the students who attend a bilingual education program	either the elementary school or the middle school enrolled in a tthat school?

No

 \boxtimes

Yes

	3.	Do the		it these	e schools att	ena	a bilingual	l educa	tion prog	gram a	t another
			Yes	\boxtimes	No						
	4.				uired to pro					gram l	out the school has
			Yes	\boxtimes	No						
	5.		-	_	q uestion 1, 2 ge is required						tive language are
F.	Su	mmary	of Applica	ition ir	n Plain Lang	uage	e Template	2			
	als	o know		ain lan	of Application guage summ		,	_	-) Form 20972), ment.
G.	Pu	blic Inv	volvement	Plan F	orm						
					ement Plan F Idment to a						plication for a t.
	At	tachme	ent: <u>N/A</u>								
Se	cti	on 9.			Entity and	l Pe	ermitted	Site	Inform	ation	(Instructions
			Page 2								
Α.			is currently RN <u>10161356</u>	_	ated by TCE	Q, p	rovide the	Regula	ted Entit	y Num	ber (RN) issued to
					Registry at <u>h</u> ed by TCEQ.	<u>ttp:/</u>	<u>//www15.t</u>	<u>ceq.tex</u>	as.gov/c	rpub/	to determine if
B.	Na	me of p	project or s	ite (the	name know	n by	the comn	nunity	where lo	cated):	
	<u>Cit</u>	y of Ror	<u>na Wastewat</u>	ter Trea	<u>itment Plant (</u>	(WW	<u>TP)</u>				
C.	Ov	vner of	treatment f	facility	: City of Roma	<u>a</u>					
	Ov	vnershi	p of Facility	7: 🗵	Public		Private		Both		Federal
D.	Ov	vner of	land where	treatn	nent facility	is oı	will be:				
	Pre	efix: <u>N/</u>	<u>A</u>		Last N	lame	e, First Nar	ne: <u>N/A</u>	<u> </u>		
	Tit	le: <u>N/A</u>			Crede	ntia	l: <u>N/A</u>				
	Or	ganizat	tion Name: <u>(</u>	City of	Roma						
	Ma	iling A	ddress: <u>PO</u>	Box 94'	<u>7</u>		City, State	, Zip C	ode: <u>Rom</u>	a, TX 7	<u>8584</u>
	Ph	one No	.: <u>956-849-1</u>	<u>411</u>	E-ma	il Ac	ldress: <u>aba</u>	rrera@	<u>cityofrom</u>	<u>a.net</u>	
					same persor d easement.		•		or co-ap	plican	t, attach a lease
		Attack	ment: <u>N/A</u>								

	Prefix: <u>N/A</u>	Last Name, First Name: <u>N/A</u>
	Title: <u>N/A</u>	Credential: <u>N/A</u>
	Organization Name: <u>N/A</u>	
	Mailing Address: <u>N/A</u>	City, State, Zip Code: <u>N/A</u>
	Phone No.: <u>N/A</u>	E-mail Address: <u>N/A</u>
	If the landowner is not the same agreement or deed recorded east	person as the facility owner or co-applicant, attach a lease ement. See instructions.
	Attachment: <u>N/A</u>	
F.	Owner sewage sludge disposal significant property owned or controlled by	ite (if authorization is requested for sludge disposal on the applicant)::
	Prefix: <u>N/A</u>	Last Name, First Name: <u>N/A</u>
	Title: <u>N/A</u>	Credential: <u>N/A</u>
	Organization Name: <u>N/A</u>	
	Mailing Address: <u>N/A</u>	City, State, Zip Code: <u>N/A</u>
	Phone No.: <u>N/A</u>	E-mail Address: <u>N/A</u>
	If the landowner is not the same agreement or deed recorded eas	person as the facility owner or co-applicant, attach a lease ement. See instructions.
	Attachment: N/A	
Se	ction 10. TPDES Dischar	ge Information (Instructions Page 31)
		ge Information (Instructions Page 31) lity location in the existing permit accurate?
		<u> </u>
	Is the wastewater treatment faci ✓ Yes ✓ No	<u> </u>
	Is the wastewater treatment faci ✓ Yes ✓ No	lity location in the existing permit accurate?
A.	Is the wastewater treatment facility ✓ Yes □ No If no, or a new permit application in the point (s) of discharge and the	lity location in the existing permit accurate?
A.	Is the wastewater treatment facility ✓ Yes □ No If no, or a new permit application in the point (s) of discharge and waste or the point (s). Yes □ No	lity location in the existing permit accurate? on, please give an accurate description: I the discharge route(s) in the existing permit correct?
A.	Is the wastewater treatment facility Yes □ No If no, or a new permit application in the point (s) of discharge and in the point of discharge and the discharge are discharged and the discharge and the discharge are discharged and the discharged are discharged a	lity location in the existing permit accurate? on, please give an accurate description:
A.	Is the wastewater treatment facility Yes No If no, or a new permit application N/A Are the point(s) of discharge and Yes No If no, or a new or amendment proport of discharge and the discha	lity location in the existing permit accurate? on, please give an accurate description: If the discharge route(s) in the existing permit correct? Dermit application, provide an accurate description of the arge route to the nearest classified segment as defined in 30
A.	Is the wastewater treatment facility Yes □ No If no, or a new permit application in the point (s) of discharge and in the point of discharge and the discharge are discharged and the discharge and the discharge are discharged and the discharged are discharged a	lity location in the existing permit accurate? on, please give an accurate description: If the discharge route(s) in the existing permit correct? Dermit application, provide an accurate description of the arge route to the nearest classified segment as defined in 30
A.	Is the wastewater treatment faciliated. No If no, or a new permit application. N/A Are the point(s) of discharge and waste of discharge and the discharge waste of the point of discharge and the discharge and the discharge waste of the point of discharge and the discharge waste of the point of discharge and the discharge waste of the point of discharge and the discharge waste of the point of discharge and the discharge waste of the point of discharge and the discharge waste of the point of discharge and the discharge waste of the point of discharge and the discharge waste of the point of discharge and the discharge waste of the point of discharge and the discharge waste of the point of discharge and the discharge waste of the point of discharge and the discharge waste of the point of discharge and the discharge waste of the point of discharge and the discharge waste of the point of discharge and the discharge waste of the point of discharge and the discharge waste of the point of the point of discharge waste of the point	lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the arge route to the nearest classified segment as defined in 30
A. B.	Is the wastewater treatment facilia ✓ Yes ☐ No If no, or a new permit application N/A Are the point(s) of discharge and ✓ Yes ☐ No If no, or a new or amendment proport of discharge and the discharge and the discharge TAC Chapter 307: N/A City nearest the outfall(s): Roma County in which the outfalls(s) is	lity location in the existing permit accurate? on, please give an accurate description: If the discharge route(s) in the existing permit correct? Dermit application, provide an accurate description of the arge route to the nearest classified segment as defined in 30 as/are located: Starr discharge to a city, county, or state highway right-of-way, or
A. B.	Is the wastewater treatment facilia. Yes No If no, or a new permit application. N/A Are the point(s) of discharge and wastewater. Yes No If no, or a new or amendment proport of discharge and the discharge	lity location in the existing permit accurate? on, please give an accurate description: If the discharge route(s) in the existing permit correct? Dermit application, provide an accurate description of the arge route to the nearest classified segment as defined in 30 as/are located: Starr discharge to a city, county, or state highway right-of-way, or
A. B.	Is the wastewater treatment facilia ✓ Yes ☐ No If no, or a new permit application N/A Are the point(s) of discharge and ✓ Yes ☐ No If no, or a new or amendment property of discharge and the discharge N/A City nearest the outfall(s): Roma County in which the outfalls(s) is Is or will the treated wastewater a flood control district drainage	lity location in the existing permit accurate? on, please give an accurate description: d the discharge route(s) in the existing permit correct? permit application, provide an accurate description of the arge route to the nearest classified segment as defined in 30 s/are located: Starr discharge to a city, county, or state highway right-of-way, or ditch?

E. Owner of effluent disposal site:

For **new and amendment** applications, provide copies of letters that show proof of contact and the approval letter upon receipt.

Attachment: N/A

D. For all applications involving an average daily discharge of 5 MGD or more, provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge: N/A

A.	For TLAPs, is the location of the effluent disposal site in the existing permit accurate?
	□ Yes □ No
	If no, or a new or amendment permit application , provide an accurate description of the disposal site location:
	N/A
B.	City nearest the disposal site: <u>N/A</u>
C.	County in which the disposal site is located: N/A
D.	For TLAPs , describe the routing of effluent from the treatment facility to the disposal site:
	N/A
E.	For TLAPs , please identify the nearest watercourse to the disposal site to which rainfall runoff might flow if not contained: $\underline{N/A}$
Se	ection 12. Miscellaneous Information (Instructions Page 32)
A.	Is the facility located on or does the treated effluent cross American Indian Land?
	□ Yes ⊠ No
В.	If the existing permit contains an onsite sludge disposal authorization, is the location of the sewage sludge disposal site in the existing permit accurate?
	□ Yes □ No ⊠ Not Applicable
	If No, or if a new onsite sludge disposal authorization is being requested in this permit application, provide an accurate location description of the sewage sludge disposal site.
	N/A
C.	Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?
	□ Yes ⊠ No
	If yes, list each person formerly employed by the TCEQ who represented your company and was paid for service regarding the application: $\underline{\rm N/A}$
D.	Do you owe any fees to the TCEQ?
	□ Yes ⊠ No

If **yes**, provide the following information:

Account number: <u>N/A</u>
Amount past due: <u>N/A</u>

E. Do you owe any penalties to the TCEQ?

□ Yes ⊠ No

If **yes**, please provide the following information:

Enforcement order number: N/A

Amount past due: N/A

Section 13. Attachments (Instructions Page 33)

Indicate which attachments are included with the Administrative Report. Check all that apply:

- Lease agreement or deed recorded easement, if the land where the treatment facility is located or the effluent disposal site are not owned by the applicant or co-applicant.
- ☑ Original full-size USGS Topographic Map with the following information:
 - Applicant's property boundary
 - Treatment facility boundary
 - Labeled point of discharge for each discharge point (TPDES only)
 - Highlighted discharge route for each discharge point (TPDES only)
 - Onsite sewage sludge disposal site (if applicable)
 - Effluent disposal site boundaries (TLAP only)
 - New and future construction (if applicable)
 - 1 mile radius information
 - 3 miles downstream information (TPDES only)
 - All ponds.
- \square Attachment 1 for Individuals as co-applicants
- ☑ Other Attachments. Please specify: See Table of Contents

Section 14. Signature Page (Instructions Page 34)

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: WQ0011212002

Applicant: City of Roma

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory name (typed or print	ed): <u>Jaime Escobar, Jr.</u>
Signatory title: Mayor	
Signature: (Use blue ink)	Date: 5-1-25
Subscribed and Sworn to befor on this St	re me by the said <u>Jaime Escobar, Jr.</u> day of
My commission expires on the	4th day of August, 20 27.
Liliana bandaral Ngtary Public	LILIANA SANDOVAL Notary Public, State of Texas Comm. Expires 08-04-2027 Notary ID 128695811

DOMESTIC WASTEWATER PERMIT APPLICATION SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

This form applies to TPDES permit applications only. Complete and attach the Supplemental Permit information Form (SPIF) (TCEQ Form 20971).

Attachment: **SPIF**

THE TONMENTAL OUR

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671.

The following information is required for all renewal, new, and amendment applications.

Section 1. Permitted or Proposed Flows (Instructions Page 42)

A. Existing/Interim I Phase

Design Flow (MGD): <u>2.0</u> 2-Hr Peak Flow (MGD): 7.5

Estimated construction start date: <u>N/A</u>
Estimated waste disposal start date: <u>N/A</u>

B. Interim II Phase

Design Flow (MGD): N/A 2-Hr Peak Flow (MGD): N/A

Estimated construction start date: <u>N/A</u>
Estimated waste disposal start date: <u>N/A</u>

C. Final Phase

Design Flow (MGD): N/A 2-Hr Peak Flow (MGD): N/A

Estimated construction start date: <u>N/A</u>
Estimated waste disposal start date: <u>N/A</u>

D. Current Operating Phase

Provide the startup date of the facility: June 2004

Section 2. Treatment Process (Instructions Page 42)

A. Current Operating Phase

Provide a detailed description of the treatment process. **Include the type of treatment plant, mode of operation, and all treatment units.** Start with the plant's head works and

finish with the point of discharge. Include all sludge processing and drying units. **If more than one phase exists or is proposed, a description of** *each phase* **must be provided**.

The City of Roma WWTP is an activated sludge process plant operated with extended aeration mode. Treatment units include a bar screen, a grit and grease chamber, two aeration basins, two final clarifiers, a sludge holding tank, a belt filter press, and two ultraviolet (UV) light disinfection channels.

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) of each treatment unit, accounting for *all* phases of operation.

Table 1.0(1) - Treatment Units

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
Bar Screen	1	36' wide x 2' x 10" SWD
Grit Chamber	1	36' x 6.5" x 11' 4" SWD
Grease Chamber	1	42' x 4' 7" x 9' 8" SWD
Aeration Basin	2	135' x 95' & 100', 12' SWD
Clarifier	2	64' Diameter, 12' SWD
Sludge Holding Tank	1	88' x 41' Footprint, 9' SWD 0.2 MG volume
Belt Filter Press	1	1.0 m belt width
UV Disinfection Channels	2	24' x 20.5" x 5' SWD Bank of 4 modules each

C. Process Flow Diagram

Provide flow diagrams for the existing facilities and **each** proposed phase of construction.

Attachment: <u>DTR 1.0-2.C</u>

Section 3. Site Information and Drawing (Instructions Page 43)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

• Latitude: <u>26.394334</u>

• Longitude: -99.001781

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

Latitude: N/ALongitude: N/A

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility:
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and

 If sludge disposal is a disposal site. 	authorized in the p	ermit, the boundaries of	f the land application or
Attachment: <u>DTR 1.0-3</u> Provide the name and a des	cription of the area	served by the treatmen	it facility.
City of Roma and extraterr	itorial jurisdiction		
Collection System Informatic each uniquely owned collection systems. examples .	ction system, existing Please see the inst	ng and new, served by tl	his facility, including
Collection System Informatio Collection System Name	n Owner Name	Owner Type	Population Served
City of Roma	City of Roma	Publicly Owned	23971
City of Rollin	City of Rollia	Tublicly Owned	23371
Section 4. Unbuilt F	hases (Instruc	tions Page 44)	
If yes, does the existing per years of being authorized by Yes No If yes, provide a detailed di Failure to provide sufficient recommending denial of the N/A	y the TCEQ? scussion regarding nt justification may	the continued need for v result in the Executive	the unbuilt phase.
Section 5. Closure I	Plans (Instructi	ons Page 44)	
Have any treatment units be out of service in the next five		rvice permanently, or wi	ll any units be taken
□ Yes ⊠ No			
If yes, was a closure plan su	ubmitted to the TCI	EQ?	
□ Yes □ No			
If yes, provide a brief descr	iption of the closur	e and the date of plan a	pproval.
N/A			

Section 6. Permit Specific Requirements (Instructions Page 44)

For applicants with an existing permit, check the Other Requirements or Special Provisions of the permit.

A. Summary transmittal

Have plans and specifications been approved for the existing facilities and each proposed phase?

⊠ Yes □ No

If yes, provide the date(s) of approval for each phase: 5/12/2003

Provide information, including dates, on any actions taken to meet a *requirement or provision* pertaining to the submission of a summary transmittal letter. **Provide a copy of** an approval letter from the TCEQ, if applicable.

N/A

B. Buffer zones

N/A

Have the buffer zone requirements been met?

⊠ Yes □ No

Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the buffer zones.

C. Other actions required by the current permit

Does the *Other Requirements* or *Special Provisions* section in the existing permit require submission of any other information or other required actions? Examples include Notification of Completion, progress reports, soil monitoring data, etc.

□ Yes ⊠ No

If yes, provide information below on the status of any actions taken to meet the conditions of an *Other Requirement* or *Special Provision*.

N/A

D. Grit and grease treatment

1. Acceptance of grit and grease waste

Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?

□ Yes ⊠ No

If No, stop here and continue with Subsection E. Stormwater Management.

2. Grit and grease processing

Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility.

Click to enter text.

3. Grit disposal

Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal?

□ Yes □ No

If No, contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.

Describe the method of grit disposal.

Click to enter text.

4. Grease and decanted liquid disposal

Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335.

Describe how the decant and grease are treated and disposed of after grit separation.

Click to enter text.

E. Stormwater management

1. Applicability

Does the facility have a design flow of 1.0 MGD or greater in any phase?

⊠ Yes □ No

Does the facility have an approved pretreatment program, under 40 CFR Part 403?

□ Yes ⊠ No

If no to both of the above, then skip to Subsection F, Other Wastes Received.

2. MSGP coverage

Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?

⊠ Yes □ No

If yes, please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:

TXR05 DP96 or TXRNE N/A

	If no, do you intend to seek coverage under TXR050000?			
	□ Yes □ No			
3.	Conditional exclusion			
	Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?			
	□ Yes ⊠ No			
	If yes, please explain below then proceed to Subsection F, Other Wastes Received:			
	N/A			
4.	Existing coverage in individual permit			
	Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?			
	□ Yes ⊠ No			
	If yes , provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.			
	N/A			
5. Zero stormwater discharge				
	Do you intend to have no discharge of stormwater via use of evaporation or other means?			
	□ Yes ⊠ No			
If yes, explain below then skip to Subsection F. Other Wastes Received.				
	N/A			
	Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.			
6.	Request for coverage in individual permit			
	Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?			
	□ Yes ⊠ No			
	If yes , provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or			

discharge it via a separate dedicated stormwater outfall. Please also indicate if you

intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state.

N/A

Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.

F. Discharges to the Lake Houston Watershed

□ Yes ⊠ No

If yes, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions. N/A

G. Other wastes received including sludge from other WWTPs and septic waste

1. Acceptance of sludge from other WWTPs

Does or will the facility accept sludge from other treatment plants at the facility site?

□ Yes ⊠ No

If yes, attach sewage sludge solids management plan. See Example 5 of instructions.

In addition, provide the date the plant started or is anticipated to start accepting sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an estimate of the BOD_5 concentration of the sludge, and the design BOD_5 concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

N/A

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

2. Acceptance of septic waste

Is the facility accepting or will it accept septic waste?

□ Yes ⊠ No

If yes, does the facility have a Type V processing unit?

□ Yes □ No

If yes, does the unit have a Municipal Solid Waste permit?

□ Yes □ No

If yes to any of the above, provide the date the plant started or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD_5 concentration of the septic waste, and the

design BOD_5 concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

N/A

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

3. Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)

Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above?

□ Yes ⊠ No

If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.

N/A

Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 49)

Is the facility in operation?

⊠ Yes □ No

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). *Water treatment facilities* discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. **These tables are not applicable for a minor amendment without renewal.** See the instructions for guidance.

Note: The sample date must be within 1 year of application submission.

Table 1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities

Pollutant	Averag e Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l	<2.00	<2.00	1	Composite	4.3.2025/1200
Total Suspended Solids, mg/l	3.00	3.00	1	Composite	4.3.2025/1200
Ammonia Nitrogen, mg/l	10.3	10.3	1	Composite	4.3.2025/1200
Nitrate Nitrogen, mg/l	<0.1	<0.1	1	Composite	4.3.2025/1200
Total Kjeldahl Nitrogen, mg/l	11.8	11.8	1	Composite	4.3.2025/1200
Sulfate, mg/l	277	277	1	Composite	4.3.2025/1200
Chloride, mg/l	177	177	1	Composite	4.3.2025/1200
Total Phosphorus, mg/l	<0.05	< 0.05	1	Composite	4.3.2025/1200
pH, standard units	7.76	7.76	1	Grab	4.3.2025/1200

Dissolved Oxygen*, mg/l	6.8	6.8	8	Grab	March DMR
Chlorine Residual, mg/l	< 0.01	<0.01	1	Grab	4.3.2025/0835
<i>E.coli</i> (CFU/100ml) freshwater	<1	1	31	Grab	March DMR
Entercocci (CFU/100ml) saltwater	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	790	790	1	Composite	4.3.2025/1200
Electrical Conductivity, µmohs/cm, †	N/A	N/A	N/A	N/A	N/A
Oil & Grease, mg/l	<4.75	<4.75	1	Composite	4.3.2025/1200
Alkalinity (CaCO ₃)*, mg/l	149	149	1	Composite	4.3.2025/1200

^{*}TPDES permits only

Table 1.0(3) - Pollutant Analysis for Water Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Suspended Solids, mg/l	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	N/A	N/A	N/A	N/A	N/A
pH, standard units	N/A	N/A	N/A	N/A	N/A
Fluoride, mg/l	N/A	N/A	N/A	N/A	N/A
Aluminum, mg/l	N/A	N/A	N/A	N/A	N/A
Alkalinity (CaCO ₃), mg/l	N/A	N/A	N/A	N/A	N/A

Section 8. Facility Operator (Instructions Page 49)

Facility Operator Name: Juan Jesus Pena

Facility Operator's License Classification and Level: Wastewater Treatment Operator B

Facility Operator's License Number: WW0059066

Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 50)

A. WWTP's Sewage Sludge or Biosolids Management Facility Type

Check all that apply. See instructions for guidance

- \boxtimes Design flow>= 1 MGD
- \boxtimes Serves >= 10,000 people
- ☐ Class I Sludge Management Facility (per 40 CFR § 503.9)
- ☐ Biosolids generator
- ☐ Biosolids end user land application (onsite)
- ☐ Biosolids end user surface disposal (onsite)
- ☐ Biosolids end user incinerator (onsite)

[†]TLAP permits only

Check all that apply. See instructions for guidance. Aerobic Digestion Air Drying (or sludge drying beds) **Lower Temperature Composting** Lime Stabilization **Higher Temperature Composting Heat Drying** Thermophilic Aerobic Digestion Beta Ray Irradiation Gamma Ray Irradiation **Pasteurization** Preliminary Operation (e.g. grinding, de-gritting, blending) \boxtimes Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter) Sludge Lagoon Temporary Storage (< 2 years) Long Term Storage (>= 2 years) Methane or Biogas Recovery Other Treatment Process: Click to enter text.

B. WWTP's Sewage Sludge or Biosolids Treatment Process

C. Sewage Sludge or Biosolids Management

Provide information on the *intended* sewage sludge or biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize all sewage sludge or biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

Biosolids Management

Management Practice	Handler or Preparer Type	Bulk or Bag Container	Amount (dry metric tons)	Pathogen Reduction Options	Vector Attraction Reduction Option
Disposal in Landfill	On-Site Owner or Operator	Bulk	32.68	N/A for Landfil	1

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): N/A

D. Disposal site

Disposal site name: City of Roma Landfill

TCEQ permit or registration number: MSW 954A

E.	Transportation	method					
	Method of trans	sportation (truck, tra	in, pipe, other): ː	<u> Truc</u>	<u>:k</u>		
	Name of the ha	uler: <u>City of Roma</u>					
	Hauler registrat	ion number: <u>21815</u>					
	Sludge is transp	oorted as a:					
	Liquid □	semi-liquid \square	semi-solid ⊠		solid		
Se	ction 10. Pe	rmit Authorizat	ion for Sewa	age	Sludg	ge D	Disposal
	(Ir	structions Page	52)				
A.	Beneficial use a	authorization					
	Does the existing beneficial use?	ng permit include aut	horization for la	and	applica	tion	of biosolids for
	□ Yes ⊠	No					
	If yes, are your beneficial use?	requesting to continu	e this authoriza	tion	ı to land	d app	oly biosolids for
	□ Yes □	No					
		mpleted Application o. 10451) attached to					Use of Sewage Sludge instructions for
	□ Yes □	No					
В.	Sludge process	ing authorization					
	Does the existing storage or disposed		horization for a	ny c	of the fo	ollow	ing sludge processing,
	Sludge Com	posting		Y	Zes .	\boxtimes	No
	Marketing a	nd Distribution of Bio	osolids \Box	Y	Zes .	\boxtimes	No
	Sludge Surfa	ice Disposal or Sludg	e Monofill □	Y	⁄es	\boxtimes	No
	Temporary s	storage in sludge lage	oons	Y	Zes .	\boxtimes	No
	authorization, i	0 1	iestic Wastewat	er F	Permit A	Appl	sting to continue this ication: Sewage Sludge application?
	□ Yes □	No					
Se	ction 11. Se	wage Sludge La	goons (Instr	uct	ions P	age	2 53)
Do	es this facility in	iclude sewage sludge	lagoons?				
	□ Yes ⊠ N	No					
т£.	ves, complete the	e remainder of this s	ection. If no, pro	cee	d to Sec	tion	12.

County where disposal site is located: <u>Starr</u>

A. Location information

The following maps are required to be submitted as part of the application. For each map, provide the Attachment Number.

• Original General Highway (County) Map:

Attachment: Click to enter text.

• USDA Natural Resources Conservation Service Soil Map:

Attachment: Click to enter text.

• Federal Emergency Management Map:

Attachment: Click to enter text.

• Site map:

Attachment: Click to enter text.

Discuss in a description if any of the following exist within the lagoon area. Check all that apply.

- Overlap a designated 100-year frequency flood plain
- □ Soils with flooding classification
- □ Overlap an unstable area
- □ Wetlands
- □ Located less than 60 meters from a fault
- \square None of the above

Attachment: Click to enter text.

If a portion of the lagoon(s) is located within the 100-year frequency flood plain, provide the protective measures to be utilized including type and size of protective structures:

Click to enter text.

B. Temporary storage information

Provide the results for the pollutant screening of sludge lagoons. These results are in addition to pollutant results in *Section 7 of Technical Report 1.0.*

Nitrate Nitrogen, mg/kg: Click to enter text.

Total Kjeldahl Nitrogen, mg/kg: Click to enter text.

Total Nitrogen (=nitrate nitrogen + TKN), mg/kg: Click to enter text.

Phosphorus, mg/kg: Click to enter text.

Potassium, mg/kg: Click to enter text.

pH, standard units: Click to enter text.

Ammonia Nitrogen mg/kg: Click to enter text.

Arsenic: Click to enter text.

Cadmium: Click to enter text.

Chromium: Click to enter text.

Copper: Click to enter text.

Lead: Click to enter text.

Mercury: Click to enter text.

Molybdenum: Click to enter text.

Nickel: Click to enter text.

Selenium: Click to enter text.

Zinc: Click to enter text.

Total PCBs: <u>Click to enter text.</u> Provide the following information:

Volume and frequency of sludge to the lagoon(s): <u>Click to enter text.</u>

Total dry tons stored in the lagoons(s) per 365-day period: Click to enter text.

Total dry tons stored in the lagoons(s) over the life of the unit: Click to enter text.

C. Liner information

Does the active/proposed sludge lagoon(s) have a liner with a maximum hydraulic conductivity of $1x10^{-7}$ cm/sec?

□ Yes □ No

If yes, describe the liner below. Please note that a liner is required.

	Click to enter text.			
ı				

D. Site development plan

Provide a detailed description of the methods used to deposit sludge in the lagoon(s):

Click to enter text.

Attach the following documents to the application.

• Plan view and cross-section of the sludge lagoon(s)

Attachment: Click to enter text.

Copy of the closure plan

Attachment: Click to enter text.

• Copy of deed recordation for the site

Attachment: Click to enter text.

• Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons

Attachment: Click to enter text.

 Description of the method of controlling infiltration of groundwater and surface water from entering the site

Attachment: Click to enter text.

• Procedures to prevent the occurrence of nuisance conditions

E.	Groundwater monitoring
	Is groundwater monitoring currently conducted at this site, or are any wells available for groundwater monitoring, or are groundwater monitoring data otherwise available for the sludge lagoon(s)?
	□ Yes □ No
	If groundwater monitoring data are available, provide a copy. Provide a profile of soil types encountered down to the groundwater table and the depth to the shallowest groundwater as a separate attachment.
	Attachment: Click to enter text.
Se	ection 12. Authorizations/Compliance/Enforcement (Instructions Page 54)
A.	Additional authorizations
	Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc?
	□ Yes ⊠ No
	If yes, provide the TCEQ authorization number and description of the authorization:
N	1/A
B.	Permittee enforcement status
	Is the permittee currently under enforcement for this facility?
	□ Yes ⊠ No
	Is the permittee required to meet an implementation schedule for compliance or enforcement?
	□ Yes ⊠ No
	If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:
N	T/A
Se	ection 13. RCRA/CERCLA Wastes (Instructions Page 55)
A.	RCRA hazardous wastes
	Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste?
	□ Yes ⊠ No

Attachment: Click to enter text.

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

□ Yes ⊠ No

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment: N/A

Section 14. Laboratory Accreditation (Instructions Page 55)

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25*, *Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the Signature Page section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Jaime Escobar, Jr.

Title: Mayor

Signature:

Date: ___

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

Section 1. Domestic Drinking Water Supply (Instructions Page 63)
Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge?
□ Yes ⊠ No
If no , proceed it Section 2. If yes , provide the following:
Owner of the drinking water supply: $\underline{N/A}$
Distance and direction to the intake: N/A
Attach a USGS map that identifies the location of the intake.
Attachment: N/A
Section 2. Discharge into Tidally Affected Waters (Instructions Page 63)
Does the facility discharge into tidally affected waters?
□ Yes ⊠ No
If no , proceed to Section 3. If yes , complete the remainder of this section. If no, proceed to Section 3.
A. Receiving water outfall
Width of the receiving water at the outfall, in feet: Click to enter text.
B. Oyster waters
Are there oyster waters in the vicinity of the discharge?
□ Yes □ No
If yes, provide the distance and direction from outfall(s).
Click to enter text.
C. Sea grasses
Are there any sea grasses within the vicinity of the point of discharge?
□ Yes □ No
If yes, provide the distance and direction from the outfall(s).
Click to enter text.

Section 3. **Classified Segments (Instructions Page 63)** Is the discharge directly into (or within 300 feet of) a classified segment? Yes □ No **If yes**, this Worksheet is complete. **If no**, complete Sections 4 and 5 of this Worksheet. Section 4. **Description of Immediate Receiving Waters (Instructions Page 63)** Name of the immediate receiving waters: Click to enter text. A. Receiving water type Identify the appropriate description of the receiving waters. Stream Freshwater Swamp or Marsh Lake or Pond Surface area, in acres: Click to enter text. Average depth of the entire water body, in feet: Click to enter text. Average depth of water body within a 500-foot radius of discharge point, in feet: Click to enter text. Man-made Channel or Ditch Open Bay Tidal Stream, Bayou, or Marsh Other, specify: Click to enter text. **B.** Flow characteristics If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area *upstream* of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one). Intermittent - dry for at least one week during most years Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses Perennial - normally flowing Check the method used to characterize the area upstream (or downstream for new dischargers). USGS flow records Historical observation by adjacent landowners Personal observation Other, specify: Click to enter text.

		e names of all perennial streams tha tream of the discharge point.	at joii	n the receiving water within three miles					
	Click	to enter text.							
D.	Downs	stream characteristics							
		receiving water characteristics charge (e.g., natural or man-made dams		rithin three miles downstream of the ids, reservoirs, etc.)?					
		Yes □ No							
	If yes, discuss how. Click to enter text.								
	Click	to enter text.							
Е.	Norma	l dry weather characteristics							
	Provid	e general observations of the water	body	during normal dry weather conditions.					
	Click	to enter text.							
	Date a	nd time of observation: <u>Click to ent</u>	er tex	tt.					
	Was the water body influenced by stormwater runoff during observations?								
		Yes □ No							
Se	ection	5. General Characteristic	s of	the Waterbody (Instructions					
		Page 65)							
A.	Upstre	am influences							
		mmediate receiving water upstrean iced by any of the following? Check		ne discharge or proposed discharge site nat apply.					
		Oil field activities		Urban runoff					
		Upstream discharges		Agricultural runoff					
		Septic tanks		Other(s), specify: <u>Click to enter text.</u>					
В.	Waterl	oody uses							
	Observ	red or evidences of the following us	es. Cl	neck all that apply.					
		Livestock watering		Contact recreation					
		Irrigation withdrawal		Non-contact recreation					
		Fishing		Navigation					
		Domestic water supply		Industrial water supply					
		Park activities		Other(s) specify Click to enter text					

C. Downstream perennial confluences

C. Waterbody aesthetics

one of the following that best describes the aesthetics of the receiving water and crounding area.
Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional
Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored
Common Setting: not offensive; developed but uncluttered; water may be colored or turbid
Offensive: stream does not enhance aesthetics; cluttered; highly developed; dumping areas; water discolored

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Toxic Pollutants (Instructions Page 76)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab □ Composite ⊠

Date and time sample(s) collected: 4.3.2025 @ 1200

Table 4.0(1) - Toxics Analysis

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrylonitrile	<50	<50	1	50
Aldrin	<0.01	<0.01	1	0.01
Aluminum	45	45	1	2.5
Anthracene	<10	<10	1	10
Antimony	<5	<5	1	5
Arsenic	<0.5	<0.5	1	0.5
Barium	110	110	1	3
Benzene	<10	<10	1	10
Benzidine	<50	<50	1	50
Benzo(a)anthracene	<5	<5	1	5
Benzo(a)pyrene	<5	<5	1	5
Bis(2-chloroethyl)ether	<10	<10	1	10
Bis(2-ethylhexyl)phthalate	<10	<10	1	10
Bromodichloromethane	<10	<10	1	10
Bromoform	<10	<10	1	10
Cadmium	<1	<1	1	1
Carbon Tetrachloride	<2	<2	1	2
Carbaryl	<5	<5	1	5
Chlordane*	<0.2	<0.2	1	0.2
Chlorobenzene	<10	<10	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Chlorodibromomethane	45.1	45.1	1	10
Chloroform	<10	<10	1	10
Chlorpyrifos	<0.05	<0.05	1	0.05
Chromium (Total)	<3	<3	1	3
Chromium (Tri) (*1)	<5	<5	1	N/A
Chromium (Hex)	<3	<3		3
Copper	<2	<2	1	2
Chrysene	<5	<5	1	5
p-Chloro-m-Cresol	<10	<10	1	10
4,6-Dinitro-o-Cresol	<50	<50	1	50
p-Cresol	<10	<10	1	10
Cyanide (*2)	<10	<10	1	10
4,4'- DDD	<0.1	<0.1	1	0.1
4,4'- DDE	<0.1	<0.1	1	0.1
4,4'- DDT	<0.02	<0.02	1	0.02
2,4-D				0.7
Demeton (O and S)	<0.2	<0.2	1	0.20
Diazinon	<0.1	<0.1	1	0.5/0.1
1,2-Dibromoethane	<10	<10		10
m-Dichlorobenzene	<10	<10	1	10
o-Dichlorobenzene	<10	<10	1	10
p-Dichlorobenzene	<10	<10	1	10
3,3'-Dichlorobenzidine	<5	<5	1	5
1,2-Dichloroethane	<10	<10	1	10
1,1-Dichloroethylene	<10	<10	1	10
Dichloromethane	<20	<20	1	20
1,2-Dichloropropane	<10	<10	1	10
1,3-Dichloropropene	<10	<10	1	10
Dicofol	<1	<1	1	1
Dieldrin	<0.02	<0.02	1	0.02
2,4-Dimethylphenol	<10	<10	1	10
Di-n-Butyl Phthalate	<10	<10	1	10
Diuron	<0.09	<0.09	1	0.09

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Endosulfan I (alpha)	<0.01	<0.01	1	0.01
Endosulfan II (beta)	<0.02	<0.02	1	0.02
Endosulfan Sulfate	<0.1	<0.1	1	0.1
Endrin	<0.02	<0.02	1	0.02
Epichlorohydrin	<20	<20	1	
Ethylbenzene	<10	<10	1	10
Ethylene Glycol	<50	<50	1	
Fluoride	<500	<500	1	500
Guthion	<0.1	<0.1	1	0.1
Heptachlor	<0.01	<0.01	1	0.01
Heptachlor Epoxide	<0.01	<0.01	1	0.01
Hexachlorobenzene	<5	<5	1	5
Hexachlorobutadiene	<10	<10	1	10
Hexachlorocyclohexane (alpha)	<0.05	<0.05	1	0.05
Hexachlorocyclohexane (beta)	<0.05	<0.05	1	0.05
gamma-Hexachlorocyclohexane	<0.05	<0.05	1	0.05
(Lindane)				
Hexachlorocyclopentadiene	<10	<10	1	10
Hexachloroethane	<20	<20	1	20
Hexachlorophene	<10	<10	1	10
4,4'-Isopropylidenediphenol				1
Lead	<0.5	<0.5	1	0.5
Malathion	<0.1	<0.1	1	0.1
Mercury	< 0.005	<0.005	1	0.005
Methoxychlor	<2	<2	1	2
Methyl Ethyl Ketone	<50	<50	1	50
Methyl tert-butyl ether	<5	<5	1	
Mirex	<0.02	<0.02	1	0.02
Nickel	3	3	1	2
Nitrate-Nitrogen	<100	<100	1	100
Nitrobenzene	<10	<10	1	10
N-Nitrosodiethylamine	<20	<20	1	20
N-Nitroso-di-n-Butylamine	<20	<20	1	20

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Nonylphenol	<333	<333	1	333
Parathion (ethyl)	<0.1	<0.1	1	0.1
Pentachlorobenzene	<20	<20	1	20
Pentachlorophenol	<5	<5	1	5
Phenanthrene	<10	<10	1	10
Polychlorinated Biphenyls (PCB's) (*3)	<0.2	<0.2	1	0.2
Pyridine	<20	<20	1	20
Selenium	<5	<5	1	5
Silver	<0.5	<0.5	1	0.5
1,2,4,5-Tetrachlorobenzene	<20	<20	1	20
1,1,2,2-Tetrachloroethane	<10	<10	1	10
Tetrachloroethylene	<10	<10	1	10
Thallium	<0.5	<0.5	1	0.5
Toluene	<10	<10	1	10
Toxaphene	<0.3	<0.3	1	0.3
2,4,5-TP (Silvex)				0.3
Tributyltin (see instructions for explanation)	N/A	N/A	N/A	0.01
1,1,1-Trichloroethane	<10	<10	1	10
1,1,2-Trichloroethane	<10	<10	1	10
Trichloroethylene	<10	<10	1	10
2,4,5-Trichlorophenol	<50	<50	1	50
TTHM (Total Trihalomethanes)	<10	<10	1	10
Vinyl Chloride	<10	<10	1	10
Zinc	317	317	1	5

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

^(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab □ Composite ⊠

Date and time sample(s) collected: 4.3.2025 @1200

Table 4.0(2)A - Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Antimony	<5	<5	1	5
Arsenic	<0.5	<0.5	1	0.5
Beryllium	<0.5	<0.5	1	0.5
Cadmium	<1	<1	1	1
Chromium (Total)	<3	<3	1	3
Chromium (Hex)	<3	<3	1	3
Chromium (Tri) (*1)	<5	<5	1	N/A
Copper	3.14	3.14	1	2
Lead	<0.5	<0.5	1	0.5
Mercury	<0.005	< 0.005	1	0.005
Nickel	3	3	1	2
Selenium	<5	<5	1	5
Silver	<0.5	<0.5	1	0.5
Thallium	<0.5	<0.5	1	0.5
Zinc	317	317	1	5
Cyanide (*2)	<10	<10	1	10
Phenols, Total	169	169	1	10

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)B – Volatile Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrolein	<50	<50	1	50
Acrylonitrile	<50	<50	1	50
Benzene	<10	<10	1	10
Bromoform	<10	<10	1	10
Carbon Tetrachloride	<2	<2	1	2
Chlorobenzene	<10	<10	1	10
Chlorodibromomethane	<10	<10	1	10
Chloroethane	<50	<50	1	50
2-Chloroethylvinyl Ether	<10	<10	1	10
Chloroform	<10	<10	1	10
Dichlorobromomethane [Bromodichloromethane]	<10	<10	1	10
1,1-Dichloroethane	<10	<10	1	10
1,2-Dichloroethane	<10	<10	1	10
1,1-Dichloroethylene	<10	<10	1	10
1,2-Dichloropropane	<10	<10	1	10
1,3-Dichloropropylene	<10	<10	1	10
[1,3-Dichloropropene]				
1,2-Trans-Dichloroethylene	<10	<10	1	10
Ethylbenzene	<10	<10	1	10
Methyl Bromide	<50	<50	1	50
Methyl Chloride	<50	<50	1	50
Methylene Chloride	<20	<20	1	20
1,1,2,2-Tetrachloroethane	<10	<10	1	10
Tetrachloroethylene	<10	<10	1	10
Toluene	<10	<10	1	10
1,1,1-Trichloroethane	<10	<10	1	10
1,1,2-Trichloroethane	<10	<10	1	10
Trichloroethylene	<10	<10	1	10
Vinyl Chloride	<10	<10	1	10

Table 4.0(2)C – Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
2-Chlorophenol	<10	<10	1	10
2,4-Dichlorophenol	<10	<10	1	10
2,4-Dimethylphenol	<10	<10	1	10
4,6-Dinitro-o-Cresol	<50	<50	1	50
2,4-Dinitrophenol	<50	<50	1	50
2-Nitrophenol	<20	<20	1	20
4-Nitrophenol	<50	<50	1	50
P-Chloro-m-Cresol	<10	<10	1	10
Pentalchlorophenol	<5	<5	1	5
Phenol	<10	<10	1	10
2,4,6-Trichlorophenol	<10	<10	1	10

Table 4.0(2)D - Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acenaphthene	<10	<10	1	10
Acenaphthylene	<10	<10	1	10
Anthracene	<10	<10	1	10
Benzidine	<50	<50	1	50
Benzo(a)Anthracene	<5	<5	1	5
Benzo(a)Pyrene	<5	<5	1	5
3,4-Benzofluoranthene	<10	<10	1	10
Benzo(ghi)Perylene	<20	<20	1	20
Benzo(k)Fluoranthene	<5	<5	1	5 10
Bis(2-Chloroethoxy)Methane	<10	<10	1	
Bis(2-Chloroethyl)Ether	<10	<10	1	10
Bis(2-Chloroisopropyl)Ether	<10	<10	1	10
Bis(2-Ethylhexyl)Phthalate	<10	<10	1	10
4-Bromophenyl Phenyl Ether	<10	<10	1	10
Butyl benzyl Phthalate	<10	<10 <10	1 1	10 10
2-Chloronaphthalene	<10			
4-Chlorophenyl phenyl ether	<10	<10	1	10
Chrysene	<5	<5	1	5
Dibenzo(a,h)Anthracene	<5	<5	1	5
1,2-(o)Dichlorobenzene	<10	<10	1	10
1,3-(m)Dichlorobenzene	<10	<10	1	10
1,4-(p)Dichlorobenzene	<10	<10	1	10
3,3-Dichlorobenzidine	<5	<5	1	5
Diethyl Phthalate	<10	<10	1	10
Dimethyl Phthalate	<10	<10	1	10
Di-n-Butyl Phthalate	<10	<10	1	10
2,4-Dinitrotoluene	<10	<10	1	10
2,6-Dinitrotoluene	<10	<10	1	10
Di-n-Octyl Phthalate	<10	<10	1	10
1,2-Diphenylhydrazine (as Azobenzene)	<20	<20	1	20
Fluoranthene	<10	<10	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Fluorene	<10	<10	1	10
Hexachlorobenzene	<5	<5	1	5
Hexachlorobutadiene	<10	<10	1	10
Hexachlorocyclo-pentadiene	<10	<10	1	10
Hexachloroethane	<20	<20	1	20
Indeno(1,2,3-cd)pyrene	<5	<5	1	5
Isophorone	<10	<10	1	10
Naphthalene	<10	<10	1	10
Nitrobenzene	<10	<10	1	10
N-Nitrosodimethylamine	<50	<50	1	50
N-Nitrosodi-n-Propylamine	<20	<20	1	20
N-Nitrosodiphenylamine	<20	<20	1	20
Phenanthrene	<10	<10	1	10
Pyrene	<10	<10	1	10
1,2,4-Trichlorobenzene	<10	<10	1	10

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Aldrin	<0.01	<0.01	1	0.01
alpha-BHC (Hexachlorocyclohexane)	<0.05	< 0.05	1	0.05
beta-BHC (Hexachlorocyclohexane)	<0.05	<0.05	1	0.05
gamma-BHC (Hexachlorocyclohexane)	<0.05	<0.05	1	0.05
delta-BHC (Hexachlorocyclohexane)	<0.05	<0.05	1	0.05
Chlordane	<0.2	<0.2	1	0.2
4,4-DDT	<0.02	<0.02	1	0.02
4,4-DDE	<0.1	<0.1	1	0.1
4,4,-DDD	<0.1	<0.1	1	0.1
Dieldrin	<0.02	<0.02	1	0.02
Endosulfan I (alpha)	<0.01	<0.01	1	0.01
Endosulfan II (beta)	<0.02	<0.02	1	0.02
Endosulfan Sulfate	<0.1	<0.1	1	0.1
Endrin	<0.02	<0.02	1	0.02
Endrin Aldehyde	<0.1	<0.1	1	0.1
Heptachlor	<0.01	<0.01	1	0.01
Heptachlor Epoxide	<0.01	< 0.01	1	0.01
PCB-1242	<0.2	<0.2	1	0.2
PCB-1254	<0.2	<0.2	1	0.2
PCB-1221	<0.2	<0.2	1	0.2
PCB-1232	<0.2	<0.2	1	0.2
PCB-1248	<0.2	<0.2	1	0.2
PCB-1260	<0.2	<0.2	1	0.2
PCB-1016	<0.2	<0.2	1	0.2
Toxaphene	<0.3	<0.3	1	0.3

^{*} For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Section 3. **Dioxin/Furan Compounds** A. Indicate which of the following compounds from may be present in the influent from a contributing industrial user or significant industrial user. Check all that apply. 2,4,5-trichlorophenoxy acetic acid Common Name 2,4,5-T, CASRN 93-76-5 2-(2,4,5-trichlorophenoxy) propanoic acid Common Name Silvex or 2,4,5-TP, CASRN 93-72-1 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate Common Name Erbon, CASRN 136-25-4 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate Common Name Ronnel, CASRN 299-84-3 2,4,5-trichlorophenol Common Name TCP, CASRN 95-95-4 hexachlorophene Common Name HCP, CASRN 70-30-4 For each compound identified, provide a brief description of the conditions of its/their presence at the facility. Click to enter text.

B.	Do you know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin
	(TCDD) or any congeners of TCDD may be present in your effluent?

□ Yes □ No

If **yes**, provide a brief description of the conditions for its presence.

Click to enter text.

C.	If any of the compounds in Subsection A ${f or}$ B are present, complete Table 4.0(2)F.
	For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab □ Composite □

Date and time sample(s) collected: Click to enter text.

Table 4.0(2)F - Dioxin/Furan Compounds

Compound	Toxic Equivalenc y Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1					10
1,2,3,7,8 PeCDD	0.5					50
2,3,7,8 HxCDDs	0.1					50
1,2,3,4,6,7,8 HpCDD	0.01					50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05					50
2,3,4,7,8 PeCDF	0.5					50
2,3,7,8 HxCDFs	0.1					50
2,3,4,7,8 HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					0.5
PCB 81	0.0003					0.5
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total						

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: TOXICITY TESTING REQUIREMENTS

The following **is required** for facilities with a current operating design flow of **1.0 MGD** or **greater**, with an EPA-approved **pretreatment** program (or those required to have one under 40 CFR Part 403), or are required to perform Whole Effluent Toxicity testing. See Page 86 of the instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Required Tests

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic: <u>N/A for 7-day Chronic</u> 48-hour Acute: <u>Once per Quarter (18 tests)</u>

Section 2. Toxicity Reduction Evaluations (TREs)

Has this facility completed a TRE in the past four and a half years? Or is the facility cur performing a TRE?	rently
□ Yes ⊠ No	
If yes, describe the progress to date, if applicable, in identifying and confirming the tox	icant.
N/A	

Section 3. Summary of WET Tests

If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed.

Table 5.0(1) Summary of WET Tests

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal					
WET Tests have been submitted via both DMRs and permit tables.								

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works.

Section 1. All POTWs (Instructions Page 87)

A. Industrial users (IUs)

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

If there are no users, enter 0 (zero).

Categorical IUs:

Number of IUs: 0

Average Daily Flows, in MGD: 0

Significant IUs - non-categorical:

Number of IUs: 0

Average Daily Flows, in MGD: 0

Other IUs:

Number of IUs: 0

Average Daily Flows, in MGD: 0

B. Treatment plant interference

In the past three years, has your POTW experienced treatment plant interference (see instructions)?

□ Yes ⊠ No

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

N/A

C. Treatment plant pass through

In the past three years, has your POTW experienced pass through (see instructions)?

□ Yes ⊠ No

If yes, identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.

N/A		

. Pretreatment program							
Does your POTW have an approved pretreatment program?							
□ Yes ⊠ No							
If yes, complete Section 2 only of this Worksheet.							
Is your POTW required to develop an approved pretreatment program?							
□ Yes ⊠ No							
If yes, complete Section 2.c. and 2.d. only, and skip Section 3.							
If no to either question above , skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.							
ction 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 87)							
Substantial modifications							
Have there been any substantial modifications to the approved pretreatment program that have not been submitted to the TCEQ for approval according to 40 CFR §403.18?							
□ Yes □ No							
If yes , identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.							
Click to enter text.							
Non-substantial modifications							
Have there been any non-substantial modifications to the approved pretreatment program that have not been submitted to TCEQ for review and acceptance?							
□ Yes □ No							
\square Yes \square No If yes, identify all non-substantial modifications that have not been submitted to TCEQ, including the purpose of the modification.							
If yes, identify all non-substantial modifications that have not been submitted to TCEQ,							
If yes, identify all non-substantial modifications that have not been submitted to TCEQ, including the purpose of the modification.							
If yes, identify all non-substantial modifications that have not been submitted to TCEQ, including the purpose of the modification. Click to enter text.							
If yes, identify all non-substantial modifications that have not been submitted to TCEQ, including the purpose of the modification. Click to enter text. Effluent parameters above the MAL In Table 6.0(1), list all parameters measured above the MAL in the POTW's effluent							
If yes, identify all non-substantial modifications that have not been submitted to TCEQ, including the purpose of the modification. Click to enter text. Effluent parameters above the MAL In Table 6.0(1), list all parameters measured above the MAL in the POTW's effluent monitoring during the last three years. Submit an attachment if necessary.							
If yes, identify all non-substantial modifications that have not been submitted to TCEQ, including the purpose of the modification. Click to enter text. Effluent parameters above the MAL In Table 6.0(1), list all parameters measured above the MAL in the POTW's effluent monitoring during the last three years. Submit an attachment if necessary. Ile 6.0(1) – Parameters Above the MAL							
If yes, identify all non-substantial modifications that have not been submitted to TCEQ, including the purpose of the modification. Click to enter text. Effluent parameters above the MAL In Table 6.0(1), list all parameters measured above the MAL in the POTW's effluent monitoring during the last three years. Submit an attachment if necessary. Ile 6.0(1) – Parameters Above the MAL							

Pollutant	Concentration	MAL	Units	Date
. Industrial user in	terruptions			
	or other IU caused (ass throughs) at yo			
□ Yes □	No			
	e industry, describe and probable pollut	_	e, including dates,	duration, description
Click to enter tex	ct.			
	ificant Industr			
Cate	gorical Indust	rial User (CIU) (Instructi	ons Page 88)
. General informat	ion			
Company Name: <u>N</u>	<u>J/A</u>			
SIC Code: N/A				
Contact name: N/A	<u>4</u>			
Address: <u>N/A</u>				
City, State, and Zi	p Code: <u>N/A</u>			
Telephone numbe	r: <u>N/A</u>			
Email address: <u>N/</u>	<u>A</u>			
3. Process informati	ion			
	strial processes or o			ntribute to the SIU(s)
N/A				
C. Product and serv	ice information			
Provide a descript	ion of the principal	product(s)	r services perform	ed.
N/A				

D. Flow rate information

See the Instructions for definitions of "process" and "non-process wastewater."

Process Wastewater:

Discharge, in gallons/day: N/A

	Discharge Type: □ Continuous □ Batch □ Intermittent
	Non-Process Wastewater:
	Discharge, in gallons/day: <u>N/A</u>
	Discharge Type: □ Continuous □ Batch □ Intermittent
Ε.	Pretreatment standards
	Is the SIU or CIU subject to technically based local limits as defined in the <i>i</i> nstructions?
	□ Yes □ No
	Is the SIU or CIU subject to categorical pretreatment standards found in $40\ CFR\ Parts\ 405-471?$
	□ Yes □ No
	If subject to categorical pretreatment standards , indicate the applicable category and subcategory for each categorical process.
	Category: Subcategories: Click to enter text.
	Click or tap here to enter text. Click to enter text.
	Category: Click to enter text.
	Subcategories: Click to enter text.
	Category: Click to enter text.
	Subcategories: <u>Click to enter text.</u>
	Category: Click to enter text.
	Subcategories: Click to enter text.
	Category: Click to enter text.
	Subcategories: Click to enter text.
F.	Industrial user interruptions
	Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years?
	□ Yes □ No
	If yes , identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants.
	N/A

Attachment DAR 1.0-1 Fee Payment

Your transaction is complete. Thank you for using TCEQ ePay.

Note: It may take up to 3 working days for this electronic payment to be processed and be reflected in the TCEQ ePay system. Print this receipt and the vouchers for your records. An email receipt has also been sent.

Transaction Information

Trace Number: 582EA000666564

Date: 05/05/2025 11:10 AM

Payment Method: ACH - Authorization 0000000000

ePay Actor: ILIANA REYNA

Actor Email: ireyna@cityofroma.net

IP: 173.173.162.53

TCEQ Amount: \$2,015.00 **Texas.gov Price:** \$2,015.00*

* This service is provided by Texas.gov, the official website of Texas. The price of this service includes funds that support the ongoing operations and enhancements of Texas.gov, which is provided by a third party in partnership with the State.

Payment Contact Information

Name: ILIANA REYNA
Company: CITY OF ROMA

Address: PO BOX 947, ROMA, TX 78584

Phone: 956-849-1411

Cart Items

Click on the voucher number to see the voucher details.

Voucher	Fee Description	AR Number	Amount
765177	WW PERMIT - FACILITY WITH FLOW >= 1.0 MGD - RENEWAL		\$2,000.00
765178	30 TAC 305.53B WQ RENEWAL NOTIFICATION FEE		\$15.00
	т	CEQ Amount:	\$2,015.00

Note: It may take up to 3 working days for this electronic payment to be processed and be reflected in the TCEQ ePay system. Print this receipt for your records.

Site Help | Disclaimer | Web Policies | Accessibility | Our Compact with Texans | TCEQ Homeland Security | Contact Us Statewide Links: Texas.gov | Texas Homeland Security | TRAIL Statewide Archive | Texas Veterans Portal

Attachment DAR 1.0-3.C Core Data Form

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)

☐ New Pern	nit, Registration or Authorization	n (Core Data Form	should be s	ubmitted	with the prog	gram application.)			
Renewal (Core Data Form should be submitted with the renewal form)					Other				
2. Customer Reference Number (if issued) Follow this link to s for CN or RN numb									
CN 6 006262	204		Central Re	egistry**	RN	1 01613560			
ECTIO	N II: Customer	Inform	<u>ation</u>	i					
4. General Cu	ustomer Information	5. Effective D	ate for Cu	stomer	Information	Updates (mm/dd/	[/] уууу)		
New Custon	mer 🗵	Update to Custom	er Informati	ion	Cha	nge in Regulated En	tity Own	ership	
Change in Lo	egal Name (Verifiable with the T	exas Secretary of S	State or Texa	as Compt	roller of Publi	c Accounts)			
	r Name submitted here may s Comptroller of Public Acco	-	tomatically	y based	on what is o	current and active	with th	ne Texas Seci	retary of State
6. Customer	Legal Name (If an individual, p	rint last name first	:: eg: Doe, Jo	ohn)		<u>If new Customer,</u>	enter pre	evious Custom	er below:
City of Roma									
7. TX SOS/CP	A Filing Number	8. TX State Ta	ax ID (11 dig	gits)		9. Federal Tax I (9 digits)	D	10. DUNS applicable)	Number (if
11. Type of C	customer: Corpor	ation			☐ Indivi	dual	Partne	ership: 🔲 Ger	neral 🗌 Limited
Government: [☐ County ☐ Federal ☐	Local State [Other		☐ Sole F	Proprietorship	Ot	her:	
12. Number	of Employees					13. Independe	ntly Ow	ned and Ope	erated?
□ 0-20 ⊠ 2	21-100 🗌 101-250 🔲 251	L-500 🔲 501 aı	nd higher			☐ Yes	⊠ No		
14. Customer	r Role (Proposed or Actual) – as	it relates to the R	egulated En	tity listea	on this form.	Please check one o	f the follo	owing	
Owner Occupation	Operator al Licensee Responsible P		er & Operat CP/BSA Appl			Other:			
City of Roma 15. Mailing									
Address:	PO Box 947								
	City Roma		State	TX	ZIP	78584		ZIP + 4	
16. Country I	Mailing Information (if outside	e USA)			17. E-Mail A	ddress (if applicabl	le)		
abarrera@cit					abarrera@city	@cityofroma.net			

TCEQ-10400 (11/22) Page 1 of 3

18. Telephone Number			19. Extension or	Code		20. Fax 1	Number (if app	olicable)	
(956) 849-1411						() -			
SECTION III: Regulated Entity Information									
21. General Regulated En	tity Infor	mation (If 'New Reg	gulated Entity" is selec	cted, a new p	ermit applica	ition is also	required.)		
☐ New Regulated Entity ☐ Update to Regulated Entity Name ☐ Update to Regulated Entity Information									
The Regulated Entity Name submitted may be updated, in order to meet TCEQ Core Data Standards (removal of organizational endings such as Inc, LP, or LLC).									
22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)									
City of Roma Wastewater Tre	atment Pla	nt							
23. Street Address of	604 East	6th Street							
the Regulated Entity:									
(No PO Boxes)	City	Roma	State	TX	ZIP	78584	Z	ZIP + 4	
24. County	Starr			<u> </u>	<u>. I</u>	_ I	I		
If no Street Address is provided, fields 25-28 are required.									
25. Description to	N/A								
Physical Location:	N/A								
26. Nearest City State Nearest ZIP Code									
Roma TX 78584									
Latitude/Longitude are re used to supply coordinate	-	-	-		Data Stando	ards. (Geo	coding of the	Physical	Address may be
27. Latitude (N) In Decima	al:	26.39900		28. L	ongitude (\	V) In Decir	mal:	99.00310	0
Degrees	Minutes		Seconds	Degre	ees	N	linutes		Seconds
26		23	56.4		99		0		11.16
29. Primary SIC Code	3	0. Secondary SIC	Code		ry NAICS Co	ode	32. Second	lary NAI	CS Code
(4 digits)	(4	l digits)		(5 or 6 digi	ts)		(5 or 6 digits	5)	
4952				221320					
33. What is the Primary B	usiness o	f this entity? (Do	o not repeat the SIC o	r NAICS desci	ription.)		-1		
Municipal wastewater treatm	ient								
	City of R	oma							
34. Mailing	PO Box	947							
Address:	City	Roma	State	TX	ZIP	7 8584		ZIP + 4	
35. E-Mail Address:	а	L barrera@cityofroma	a.net			1			

TCEQ-10400 (11/22) Page 2 of 3

38. Fax Number (if applicable)

() -

37. Extension or Code

36. Telephone Number

(956 **) 8**49**-1**411

D. Name: Luci Dunn, PE, with Enprotec / Hibbs & Todd, Inc. (eHT) 41. Title: Senior Project Manager 2. Telephone Number 43. Ext./Code 44. Fax Number 45. E-Mail Address B17) 694-8382 () -	☐ Dam Safety		Districts	Edwards Aquife	r [Emissions I	nventory Air	☐ Industrial Hazardous Wast	
Voluntary Cleanup	☐ Municipal Soli	d Waste		OSSF] Petroleum	Storage Tank	□PWS	
ECTION IV: Preparer Information O. Name: Luci Dunn, PE, with Enprotec / Hibbs & Todd, Inc. (eHT) 41. Title: Senior Project Manager 22. Telephone Number 43. Ext./Code 44. Fax Number 45. E-Mail Address 817) 694-8382 () - luci.dunn@e-ht.com ECTION V: Authorized Signature By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authorisubmit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39. Company: City of Roma Job Title: Mayor Name (In Print): Jaime Escobar, Jr. Phone: (956) 849-1411	Sludge		Storm Water	☐ Title V Air		Tires		Used Oil	
ECTION IV: Preparer Information 10. Name: Luci Dunn, PE, with Enprotec / Hibbs & Todd, Inc. (eHT) 12. Telephone Number 13. Ext./Code 14. Fax Number 15. E-Mail Address 16. 1 - luci.dunn@e-ht.com 17. ECTION V: Authorized Signature 18. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authorises ubmit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39. 18. Company: City of Roma Job Title: Mayor Phone: (956) 849-1411	☐ Voluntary Clea	nup	⊠ Wastewater	☐ Wastewater Ag	riculture [Water Righ	nts	Other:	
A2. Telephone Number 43. Ext./Code 44. Fax Number 45. E-Mail Address B17) 694-8382 () -			WQ0011212002						
Submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39. Company: City of Roma Job Title: Mayor Name (In Print): Jaime Escobar, Jr. Phone: (956) 849-1411	ECTION			<u>ignature</u>					
Company: City of Roma Job Title: Mayor Name (In Print): Jaime Escobar, Jr. Phone: (956) 849-1411	. By my signature	below, I certif	fy, to the best of my kno	wledge, that the inform					
Name (In Print): Jaime Escobar, Jr. Phone: (956) 849-1411		1		cuon ii, rieid o anuyor a		1	le io numbers io	entined in field 33.	
Date: 5-1-25	Name (In Print):				1000		Phone:	(956) 849- 1411	
	iignature:	/	- a. 2	25			Date:	5-1-25	

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this

Attachment DAR 1.0-8.F Plain Language Summary form TCEQ-20972

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS

Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary of your facility and application as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. You may modify the template as necessary to accurately describe your facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how you will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements. After filling in the information for your facility delete these instructions.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

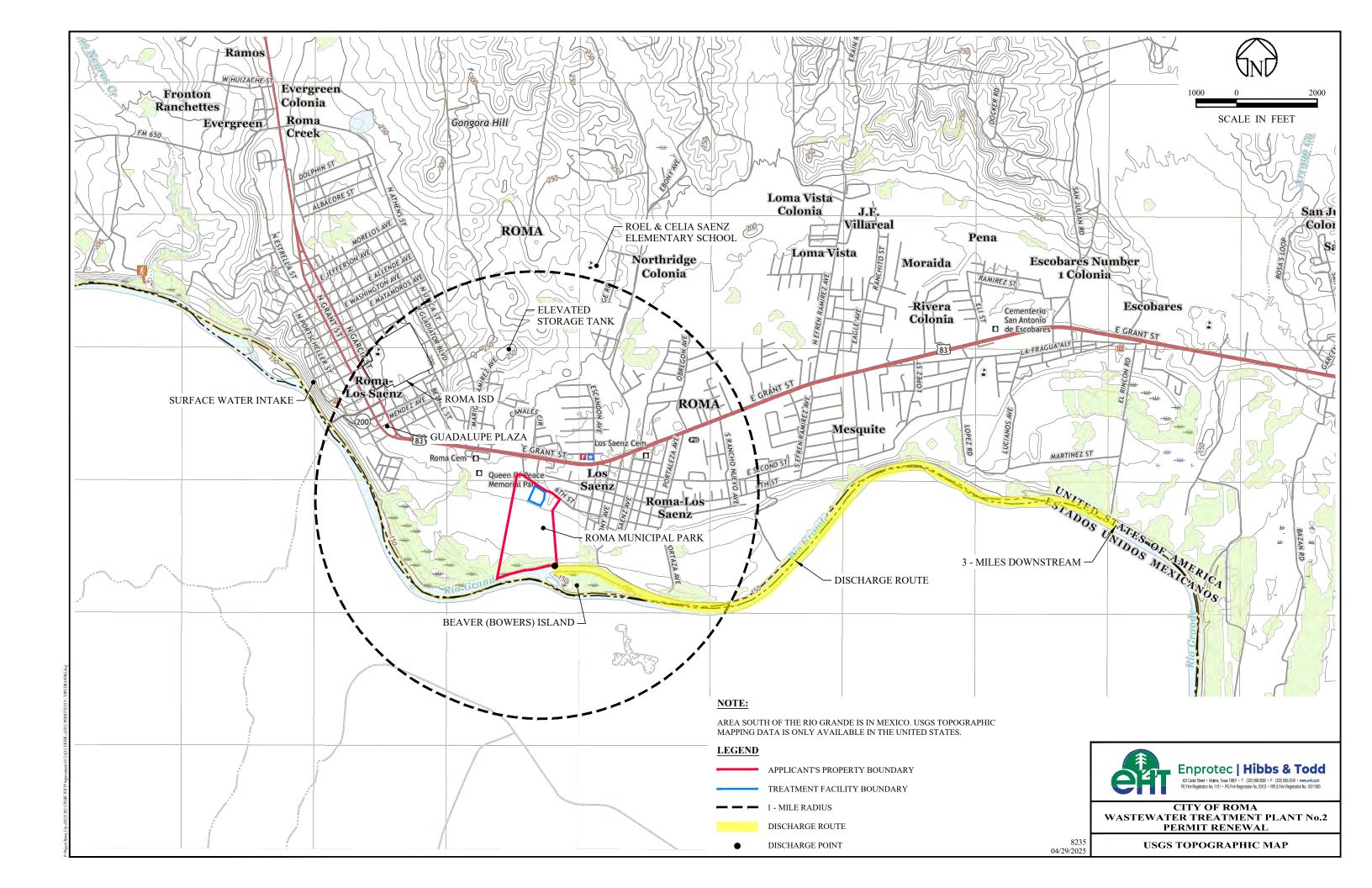
ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS Enter 'INDUSTRIAL' or 'DOMESTIC' here WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

City of Roma (CN600626204) operates Roma Wastewater Treatment Plant (RN101613560), a municipal wastewater treatment facility. The facility is located at 604 East 6th Street, in Roma, Starr County, Texas 78584. The City of Roma has applied for a renewal of the existing permit number WQ0011212002 (EPA I.D. No. TX0117544) that authorizes the discharge of treated wastewater at a volume not to exceed an annual average flow of 2,000,000 gallons per day.

Discharges from the facility are expected to contain Carbonaceous Biological Oxygen Demand 5-day, Total Suspended Solids, Ammonia Nitrogen, Total Aluminum, and E. Coli. Municipal wastewaters are treated by an activated sludge process plant operated with extended aeration mode. Treatment units include a bar screen, a grit and grease chamber, two aeration basins, two final clarifiers, a sludge holding tank, a belt filter press, and two ultraviolet (UV) light disinfection channels.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP


AGUAS RESIDUALES DOMESTICÁS /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

City of Roma (CN600626204) opera Roma Water Treatment Plant RN101613560, una instalación de tratamiento de agua potable. La instalación está ubicada en 604 East 6th Street, en Roma, Condado de Starr, Texas 78584. City of Roma ha solicitado la renovación del permiso existente número WQ0011212002 (EPA I.D. TX0117544) que autoriza la descarga de aguas residuals tratadas en un volume que no exceda un caudal medio annual de 2,000,000 galones por día.

Se espera que las descargas de la instalación contengan demanda biológica de oxígeno carbonoso de 5 días, sólidos suspendidos totales, nitrógeno amoniacal, aluminio total y E. coli. Aguas residuales municipales. están tratado por una planta de lodos activados que opera con aireación prolongada. Las unidades de tratamiento incluyen un tamiz de barras, una cámara de arena y grasa, does tanques de aireación, does clarificadores finales, un tanque de retención de lodos, un filtro prensa de banda y dos canales de desinfeccion con luz ultravioleta (UV).

Attachment DAR 1.0-13 USGS Topographic Map

Attachment SPIF Supplemental Permit Information Form TCEQ-20971

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

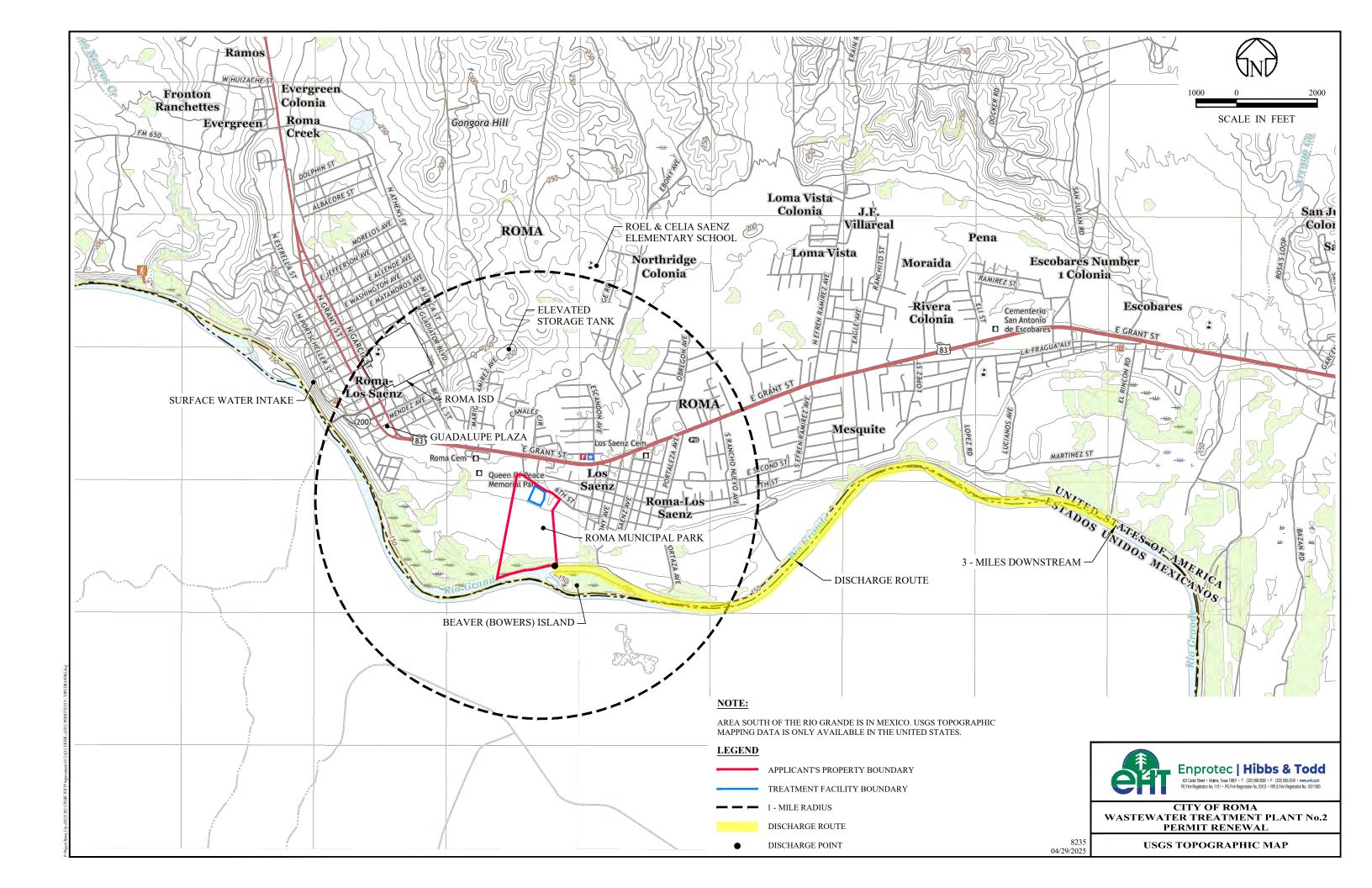
FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

TCEQ USE ONLY:
Application type:RenewalMajor AmendmentMinor AmendmentNew
County: Segment Number:
Admin Complete Date:
Agency Receiving SPIF:
Texas Historical Commission U.S. Fish and Wildlife
Texas Parks and Wildlife Department U.S. Army Corps of Engineers
This form applies to TPDES permit applications only. (Instructions, Page 53)
Complete this form as a separate document. TCEQ will mail a copy to each agency as required by our agreement with EPA. If any of the items are not completely addressed or further information is needed, we will contact you to provide the information before issuing the permit. Address each item completely. Do not refer to your response to any item in the permit application form. Provide each attachment for this form separately from the Administrative Report of the application. The
application will not be declared administratively complete without this SPIF form being completed in its entirety including all attachments. Questions or comments concerning this form may be directed to the Water Quality Division's Application Review and Processing Team by email at

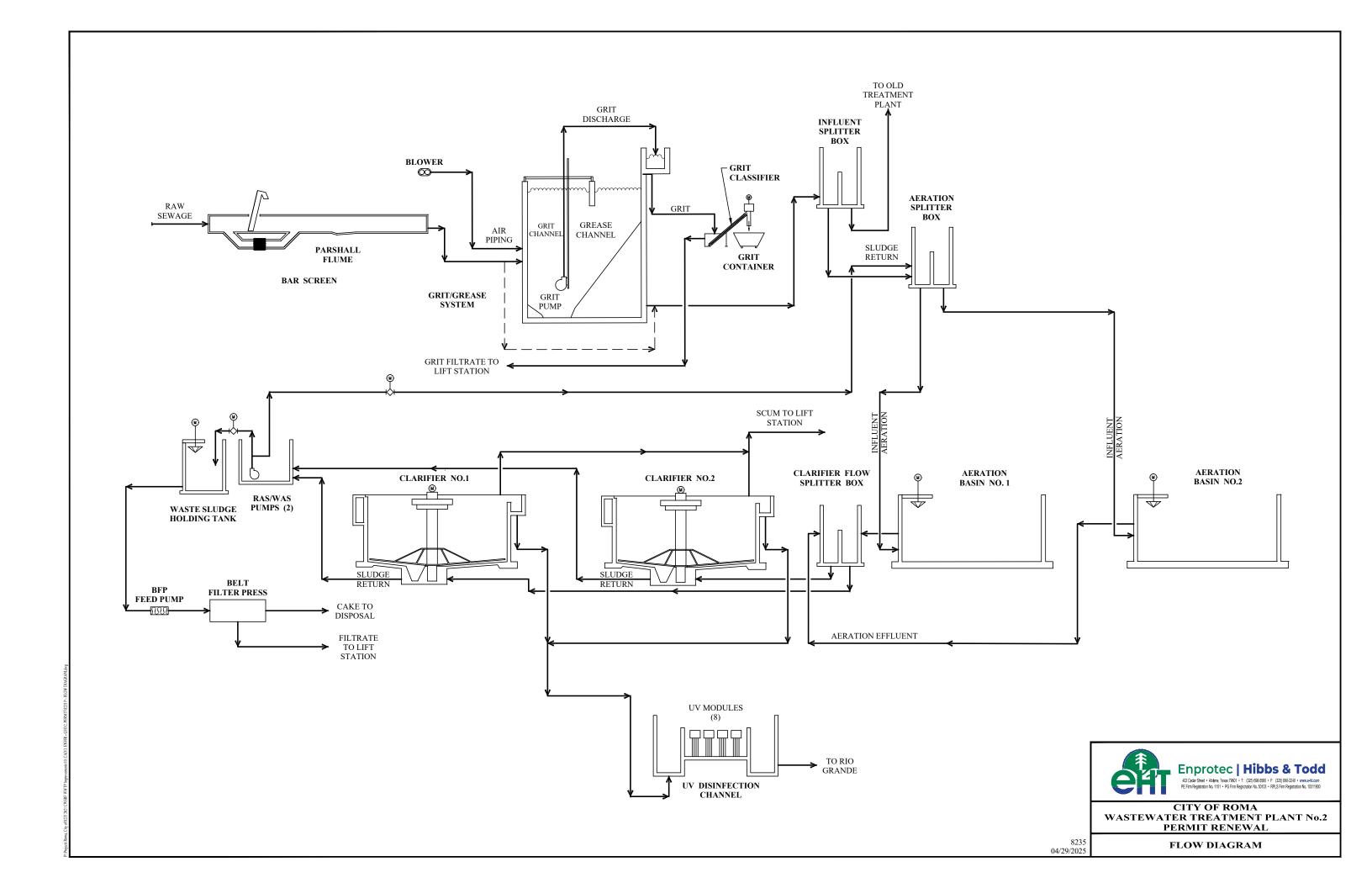
	e the name, address, phone and fax number of an individual that can be contacted to r specific questions about the property.
Prefix	(Mr., Ms., Miss): <u>Mr.</u>
First a	nd Last Name: <u>Alejandro Barrera</u>
Crede	ntial (P.E, P.G., Ph.D., etc.): <u>N/A</u>
Title:	<u>City Manager</u>
Mailin	g Address: <u>PO Box 947</u>
City, S	tate, Zip Code: <u>Roma, TX 78584</u>
Phone	No.: <u>956-849-1411</u> Ext.: <u>N/A</u> Fax No.: <u>N/A</u>
E-mail	Address: abarrera@cityofroma.net
List th	e county in which the facility is located: Starr
If the	property is publicly owned and the owner is different than the permittee/applicant, list the owner of the property.
N/A	
of effludischa	le a description of the effluent discharge route. The discharge route must follow the flow uent from the point of discharge to the nearest major watercourse (from the point of rge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify issified segment number.
	thy to the Die Crende Diver below Felson December in Cogment No. 2202 of the Die
	tly to the Rio Grande River below Falcon Reservoir in Segment No. 2302 of the Rio de Basin
plotte route	
plotte route requir	provide a separate 7.5-minute USGS quadrangle map with the project boundaries d and a general location map showing the project area. Please highlight the discharge from the point of discharge for a distance of one mile downstream. (This map is
plotte route requir Provid	provide a separate 7.5-minute USGS quadrangle map with the project boundaries d and a general location map showing the project area. Please highlight the discharge from the point of discharge for a distance of one mile downstream. (This map is ed in addition to the map in the administrative report).
plotte route requir Provid	provide a separate 7.5-minute USGS quadrangle map with the project boundaries d and a general location map showing the project area. Please highlight the discharge from the point of discharge for a distance of one mile downstream. (This map is ed in addition to the map in the administrative report). The original photographs of any structures 50 years or older on the property.
plotte route requir Provid Does y	provide a separate 7.5-minute USGS quadrangle map with the project boundaries d and a general location map showing the project area. Please highlight the discharge from the point of discharge for a distance of one mile downstream. (This map is ed in addition to the map in the administrative report). The original photographs of any structures 50 years or older on the property. The original photographs of the following? Check all that apply.
plotte route requir Provid Does y	provide a separate 7.5-minute USGS quadrangle map with the project boundaries d and a general location map showing the project area. Please highlight the discharge from the point of discharge for a distance of one mile downstream. (This map is ed in addition to the map in the administrative report). The original photographs of any structures 50 years or older on the property. For project involve any of the following? Check all that apply. Proposed access roads, utility lines, construction easements

Disturbance of vegetation or wetlands

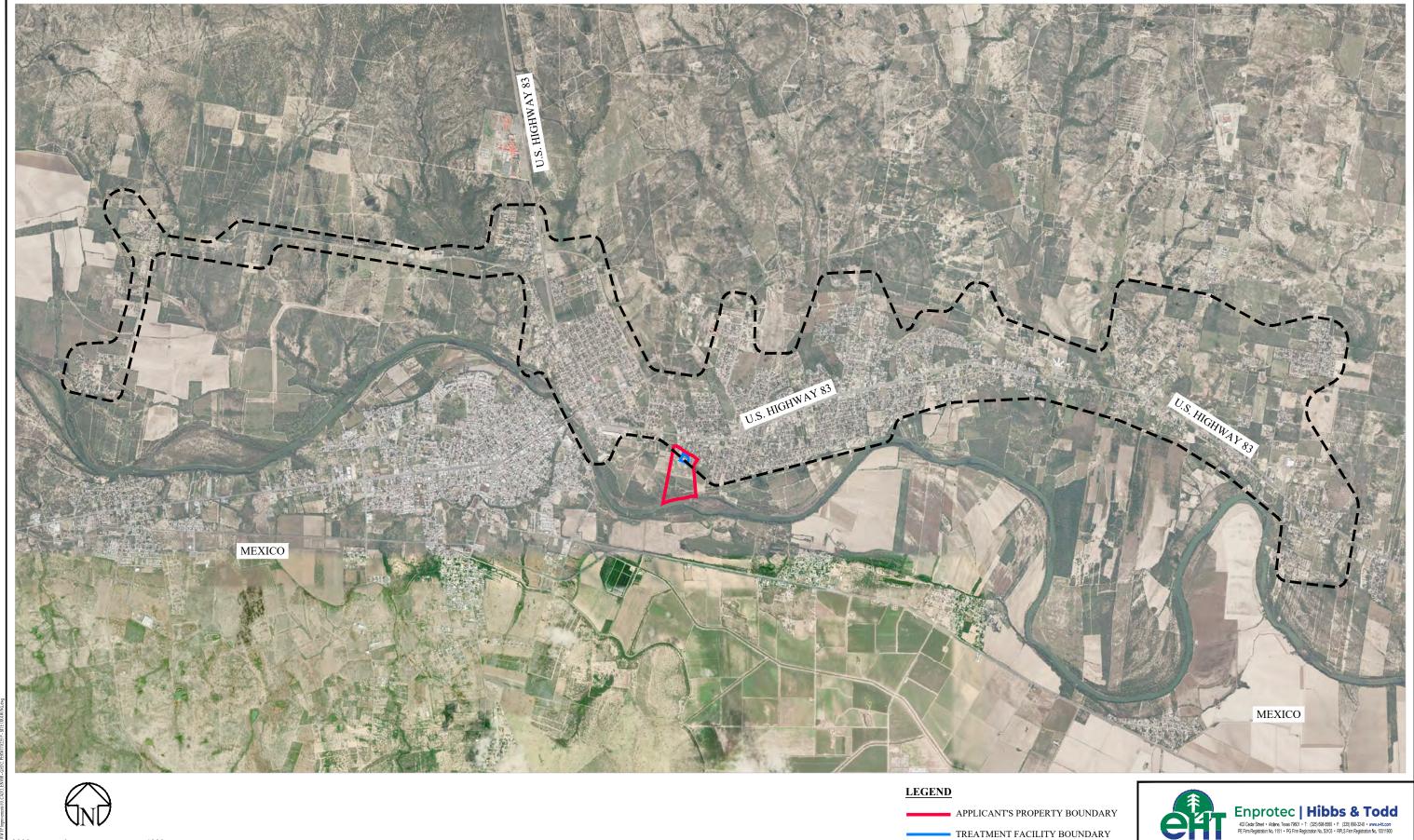
Sealing caves, fractures, sinkholes, other karst features


2.3.

4.


5.

1.	List proposed construction impact (surface acres to be impacted, depth of excavation, sealing of caves, or other karst features):
	N/A
2.	Describe existing disturbances, vegetation, and land use:
	Existing Wastewater Treatment Plant
	E FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR MENDMENTS TO TPDES PERMITS
3.	List construction dates of all buildings and structures on the property:
	N/A
4.	Provide a brief history of the property, and name of the architect/builder, if known.
	$\frac{N/A}{}$


Attachment SPIF 5
USGS Topographic Map

Attachment DTR 1.0-2.C Flow Diagram

Attachment DTR 1.0-3
Site Drawing

SCALE IN FEET

8235 04/29/2025

— — SERVICE AREA

Enprotec | Hibbs & Todd

402 Cadar Street - Ahlere, Tausa 79501 · T. (225) 688-5560 · F. (235) 690-2240 · www.e-ht.com
PET min Registation No. 1151 · PoT min Registation No. 10101 · PD S min Regista

CITY OF ROMA WASTEWATER TREATMENT PLANT No.2 PERMIT RENEWAL

SITE DRAWING

Attachment DTR 1.0-7 & Wksht 4.0 Pollutant Analyses Analytical Results

Attachment DTR 1.0-7 & Wksht 4.0 Pollutant Analysis Roma WWTP WQ0011212002

There are 3 missing constituents on Worksheet 4.0 (2,4-D, 2,4,5-TP (Silvex), and 4,4'-Isopropylidenediphenol). Another effluent sample is being collected, and the results will be submitted to TCEQ upon receipt along with updated, replacement Worksheet 4.0 pages.

Juan Pena City of Roma 604 E 6th Street Roma, Texas 78584 Report Date: 04/16/2025 Report #: 1250877 Project ID: Permit Renewal

Dear Juan Pena,

Integrity Testing received samples from the above referenced project on 04/04/2025 for the analyses presented in the following report.

The analytical data relates directly to the samples received by Integrity Testing and for only the analytes requested. Samples were intact and properly preserved unless otherwise noted in the Case Narrative. Results are reported as received unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. This laboratory report may only be reproduced in full.

If you need any assistance with this report, please let me know.

Sincerely,

Chris Ewert

Laboratory Manager

TCEQ Laboratory ID: T104704525

Juan Pena City of Roma 604 E 6th Street Roma, Texas 78584 Report Date: 04/16/2025 Report #: I250877 Project ID: Permit Renewal

CASE NARRATIVE

Integrity Testing certifies that this report meets the project requirements for analytical data produced for the samples as received at Integrity Testing and as stated on the COC. Integrity Testing certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the Integrity Testing Quality Manual and the requirements of NELAC (TNI) except as noted in this Case Narrative. For more information, please refer to the analytical results, QC summary pages, and the Sample Receipt Checklist.

QC21356: No comments necessary.

QC21372: No comments necessary.

QC21378: The Total Suspended Solids duplicate was prepared on an unrelated sample.

QC21382: The CBOD5 duplicate was prepared on an unrelated sample.

QC21385: The Ammonia MS/MSD was prepared on an unrelated sample.

QC21395: The Total Metals MS/MSD was prepared on an unrelated sample.

Juan Pena City of Roma 604 E 6th Street Roma, Texas 78584 Report Date: 04/16/2025 Report #: 1250877 Project ID: Permit Renewal

SAMPLE SUMMARY

Lab Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
I250877-1	Grab Sample	Water	04/03/2025 12:00	04/04/2025
I250877-2	24-Hr Composite Sample	Water	04/03/2025 12:00	04/04/2025

Juan Pena City of Roma 604 E 6th Street Roma, Texas 78584 **Report Date:** 04/16/2025 **Report #:** I250877 **Project ID:** Permit Renewal

ANALYTICAL DATA REPORT

Client Sample ID: Grab Sample

Lab Sample ID: I250877-1 **Date Collected:** 04/03/2025 Matrix: Water

Date Received: 04/04/2025

<u>pH</u> **Method:** SM 4500-H+ B QC Batch ID: QC21356

CAS#	Analyte	Result	<u>SDL</u>	<u>MQL</u>	<u>Units</u>	Q	<u>DF</u>	Prep Date	Date Analyzed	<u>Analyst</u>
12408-02-5	pH	7.76	2.00	2.00	pH units	Н	1		04/04/2025 12:55	AG
	pH-Temp	19.4	0	100	°C	Н	1		04/04/2025 12:55	AG

Juan Pena City of Roma 604 E 6th Street Roma, Texas 78584 Report Date: 04/16/2025 Report #: 1250877 Project ID: Permit Renewal

ANALYTICAL DATA REPORT

Client Sample ID: 24-Hr Composite Sample

Lab Sample ID: 1250877-2

Matrix: Water

Date Collected: 04/03/2025 **Date Received:** 04/04/2025

Total Dis	ssolved Solids	Method:	SM25400	C	Prep	Method	: SM2540	C	QC Batch ID: (QC21372	
CAS#	<u>Analyte</u>	Result	SDL	MQL	<u>Units</u>	Q	<u>DF</u>	Prep Date	Date Analyzed	Analyst	
	Total Dissolved Solids(TDS)	790	10.0	10.0	mg/L		1		04/07/2025	JF	
Total Co.	amandad Calida	Modho de	CN 425 401		D	Ma4ha J	- CM2540	D	OC Dotah ID. ()C21279	
10tal Sus	spended Solids	Method:	SW125401	J	Prep	Method	: SM2540	י ע	QC Batch ID: (2C21378	
CAS#	<u>Analyte</u>	Result	SDL	MQL	<u>Units</u>	Q	<u>DF</u>	Prep Date	Date Analyzed	Analyst	
	TSS	3.00	2.00	2.00	mg/L		1		04/04/2025	JF	
CBOD5		Method:	SM 5210	В	Prep	Method	: SM 5210)B	QC Batch ID: QC21382		
					_						
CAS#	<u>Analyte</u>	<u>Result</u>	SDL	<u>MQL</u>	<u>Units</u>	Q	<u>DF</u>	Prep Date	Date Analyzed	<u>Analyst</u>	
	CBOD5	<2.00	2.00	2.00	mg/L		1		04/04/2025 12:34	JF	
<u>Ammoni</u>	<u>a</u>	Method:	SM4500-	NH3 D	Prep	Method	: SM4500	-NH3 D	QC Batch ID: (QC21385	
CAS#	<u>Analyte</u>	Result	<u>SDL</u>	MQL	<u>Units</u>	Q	<u>DF</u>	Prep Date	Date Analyzed	<u>Analyst</u>	
7664-41-7	Ammonia	10.3	0.0822	0.0822	mg/L		1		04/09/2025	JF	
Total Me	<u>etals</u>	Method:	EPA 200	.7	Prep Method: EPA 200.7).7	QC Batch ID: QC21395			
CAS#	<u>Analyte</u>	Result	SDL	MQL	<u>Units</u>	Q	<u>DF</u>	Prep Date	Date Analyzed	Analyst	
7440-36-0	Antimony	< 0.00500	0.00500	0.0200	mg/L		1	04/10/2025	04/11/2025	CE	
7440-39-3	Barium	0.110	0.00100	0.0150	mg/L		1	04/10/2025	04/11/2025	CE	
7440-43-9	Cadmium	< 0.00100	0.00100	0.0150	mg/L		1	04/10/2025	04/11/2025	CE	
7440-47-3	Chromium	< 0.00100	0.00100	0.0150	mg/L		1	04/10/2025	04/11/2025	CE	
7440-66-6	Zinc	0.0317	0.00500	0.0200	mg/L		1	04/10/2025	04/11/2025	CE	

Juan Pena City of Roma 604 E 6th Street Roma, Texas 78584 Report Date: 04/16/2025 Report #: 1250877 Project ID: Permit Renewal

QC REPORT

QC Batch ID: QC21356 Matrix: Water

Analyte	<u>Sample</u>	<u>DUP</u>	<u>RPD</u>	Limit
pH	7.76	7.76	0	2.8
pH-Temp	19.4	19.4	0	0

Juan Pena City of Roma 604 E 6th Street Roma, Texas 78584 Report Date: 04/16/2025 Report #: 1250877 Project ID: Permit Renewal

QC REPORT

QC Batch ID: QC21385 Matrix: Water

<u>Analyte</u>	Blank	MS%	MSD%	Limits	<u>RPD</u>	Limit	LCS%	Limits
Ammonia	< 0.082	104	108	80-120	3.8	20	108	90-110

Juan Pena City of Roma 604 E 6th Street Roma, Texas 78584 Report Date: 04/16/2025 Report #: 1250877 Project ID: Permit Renewal

QC REPORT

QC Batch ID: QC21382 Matrix: Water

Analyte	Blank	<u>Sample</u>	DUP	<u>RPD</u>	Limit	LCS%	Limits
CBOD5	<2	155	154	0.65	20	97	74-109

Juan Pena City of Roma 604 E 6th Street Roma, Texas 78584 Report Date: 04/16/2025 Report #: 1250877 Project ID: Permit Renewal

QC REPORT

QC Batch ID: QC21372 Matrix: Water

Analyte	Blank	<u>Sample</u>	<u>DUP</u>	<u>RPD</u>	Limit	LCS%	Limits
Total Dissolved Solids(TDS)	<10	790	812	2.7	5	98	90-110

Juan Pena City of Roma 604 E 6th Street Roma, Texas 78584 Report Date: 04/16/2025 Report #: 1250877 Project ID: Permit Renewal

QC REPORT

QC Batch ID: QC21378

Matrix: Water

Analyte	Blank	Sample	<u>DUP</u>	RPD	Limit	LCS%	Limits
TSS	<2	4400	4440	0.9	20	90	80-120

Juan Pena City of Roma 604 E 6th Street Roma, Texas 78584 Report Date: 04/16/2025 Report #: 1250877 Project ID: Permit Renewal

QC REPORT

QC Batch ID: QC21395 Matrix: Water

Analyte	Blank	<u>MS%</u>	MSD%	<u>Limits</u>	<u>RPD</u>	Limit	LCS%	LCSD%	Limits	<u>RPD</u>	Limit
Antimony	< 0.005	105	104	70-130	0.96	20	100	103	85-115	3	20
Barium	< 0.001	102	103	70-130	0.98	20	102	97	85-115	5	20
Cadmium	< 0.001	98	98	70-130	0	20	101	104	85-115	2.9	20
Chromium	< 0.001	95	95	70-130	0	20	96	98	85-115	2.1	20
Zinc	< 0.005	100	102	70-130	2	20	98	101	85-115	3	20

COC Number I 250877

Name	Juan Pena					_	- 1	. '	4	1	1	1	-	•	-	1	-	-	-	-	-			CO	C Nu	mbe	r	2501	5+
Company	City of Roma				I Les									5	1				- {	2								_	
Address	604 E. 6th St.				Turnaround Time Requested:								Reporting Requirements:																
City/State/Zip	Roma, TX 7858	4			Standard 5-Day					☐ 3-Day						Standard TRRP													
Phone	(956) 849-2970	1 = 1				2-D)ay					Nex	t-De	y			S	ame	Day	y		I	PST			15.			
FAX	(956) 847-2793				Ty	pe/#	of	San	ple	Con	ntain	ers	_	_	_	A	na	lysis	Re	que	sted	_	_	_	_	_	_	1	
e-mail	jpena@cityofroma.net				ic		3																	-					
Project	Permit Renewal					Plast	8	33																					
Reference/PO					dun	lon	H2S	H								ıia		huy		un	inm		-1						
Collected By					120mLunp	1/2 Gallon Plastic	120mL H2SO4	250mL HNO3						CBOD	S	Ammonia	S	Antimony	Barium	Cadmium	Chromium	oc							
Sample Descri	ption	Date	Time	Matrix	12	17	12	25			\perp	4	bН	Ü	ISS	An	Ħ	Α'n	Ba	Ca	Ü	Zinc	\dashv	4	+	+	\perp	Lab #	-
Grab Sample		4.3.25	12:00 20	water	1	L			L		1	4	X									4		_	+	+	\perp	1 2	-
24-Hr Composit	te Sample	4-3-25	12:0000	water	L	1	1	1	L		Ц	4		Х	X	X	X	X	Х	X	X	X		_	+	-	+	-	4
					L	\perp						4					Ц							4	4	1	1		4
					L			L	L		Н	_							Ш					-	+	+	+	-	4
					L				L									Ц						-	4	+	+	Ι—	4
					L				L		Ц	4						Ц						_	4	1	+	-	4
					L							_												-	1	+	+		4
					L							\perp												1	1	4	+		_
					L				L			_													1	1	1	-	4
												\perp													4	1			4
																									4	1	1		\perp
					L																				1	1	\perp	1	\perp
																									1	1	_		
							-		-		-		_		C	_		-	_	-									7
Relinquished By	4-3-25	Time		Receiv	2	1	/	6	J-	3-	25	Time	2:	0	100	mm	lent	5.											1
Relinguished By	Date 01-3	Time 7	300	Receiv	ed By				Dat	te		Time																	
Relinquished By	Date	Time		-										1	tual									orese Gun		Y)/ N		

SAMPLE RECEIPT CHECKLIST

Checklist

Checklist

Cabolatory Number Onceaner co	mpiorod	م <u>ب</u> د ر-	
Custody			
Custody seals present?	Yes	No	
Custody seals intact?	(Yés)	No	NA
Chain-of-Custody included?	(Yes)	<u>No</u>	
Chain-of-Custody signed and dated by client?	<u>(Yés)</u>	No	
Samples collected and delivered the same day?	Yes	No	
Samples received within holding time?	Yes	No	
Thermal Preservation >0°C to 6°C	_		
Thermal Preservation Applicable	Yes	No	
Samples received on ice?	(Yes)	No	
Uncorrected Temperature 2.3 °C Corrected Temperature 2.36	_°C		
IR Gun# <u>1</u>			
Sample Numbers Unacceptable		·	
Samples			
Samples properly labeled?	(Yes)	No	
Sample containers intact?	Yes	No	
Chain-of-Custody information matches samples?	(Ves)	<u>No</u>	
Sample volume sufficient for requested analyses?	(Yes)	No	
Were samples received in hermetically sealed containers?	Yes	No	(NA)
Volatile vials received with no headspace?	Yes	No	_NA
BOD/CBOD samples contain residual chlorine?	Yes	No	<u>NA</u>
Chlorine residual strip lot# 3251A			
Sample Numbers Unacceptable			
Chemical Preservation - pH			
Chemical Preservation Applicable	Yes) No	
pH acceptable upon receipt?	Yes	No	<u>NA</u>
pH paper lot #			<u> </u>
Were unacceptable preservations adjusted upon receipt?	Yes	No	(NA
Date and Time of preservation			$\overline{}$
Adjusted by:			
Chemical Name Lot#			
Subcontracting			
Sample Numbers Subcontracted:	,		
Samples subcontracted to:			
Analyses Subcontracted:			
Shipped Via:			
Date Shipped:			
Comments:			

Sample Receiving Checklist 2-6-25

Dagawintian

8127 Mesa Dr. #C-305 * Austin, TX. 78759 (512) 891-7777 * www.integritytestingaustin.com

Juan Pena City of Roma 604 E 6th Street Roma, Texas 78584

O--- 1:4: ---

DCS

Report Date: 04/16/2025 Report #: 1250877 Project ID: Permit Renewal

QUALIFIERS AND ACRONYMS

<u>Qualifier</u>	<u>Description</u>
В	Analyte detected in the associated method blank above the detection limit
E	Concentration exceeds the calibration range of the instrument
Н	Analyzed outside holding time
J	Indicates an estimated value
*	Value outside QC limits
D	Diluted analyte
N	This identification is based on a mass spectral library search, indicates presumptive evidence of a compound
NC	Integrity Testing does not hold TCEQ NELAC drinking water certification for this analyte.
C	Integrity Testing does not hold TCEQ NELAC certification for this analyte.
NR	Accreditation not available for this method
M	Modified Method
FB	Analyte detected in the associated field blank above the detection limit
TB	Analyte detected in the associated Trip/Field blank above the detection limit

Acronym Description

	-
DUP	Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
Blank	Method Blank
MDL	Method Detection Limit

Detection Check Study

MDL Method Detection Limit

MQL Method Quantitation Limit

MS Motrix Spike

MS Matrix Spike

MSD Matrix Spike Duplicate
PQL Practical Quantitation Limit
SDL Sample Detection Limit
SUB Subcontracted Parameter
TRRP Texas Risk Reduction Program

DF Dilution Factor

Q Qualifiers

3540C-M TCEQ Accepted, Integrity Testing validated modified continuous extraction tumbling method

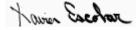
END OF REPORT

May 08, 2025

Chris Ewert

Integrity Testing 8127 Mesa Dr #C-305 Austin, TX 78759

SATL Report No.: 2504100


RE: City of Roma Permit Renewal

Dear Chris Ewert

SATL received 3 Sample(s) on 04/04/2025 for analyses identified on the chain of custody. The analyses were performed using methods indicated on the laboratory report. Any deviations observed at sample receiving are notated on the Sample Receipt Checklist and/or Chain of Custody documents attached as part of this analytical report.

Sincerely,

For San Antonio Testing Laboratory, Inc.

Xavier Escobar Business Unit Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LABORATORY REPORT

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 13:39 **Received:**

04/04/25 08:50

Report No. 2504100

Additional Notes:

This supersedes the last report (2504100 1-SATL1 FINAL 05 07 25 0853) issued. Reason: Needed to fix reporting limits, 05/08/25.

SAMPLE SUMMARY

Total Samples received in this work order: 3

The following samples were requested for analysis as per the CoC. Any re-runs or re-analyses requested are identified as such.

Sample ID	<u>Laboratory ID</u>	<u>Matrix</u>	Sampling Method	Date Sampled	Date Received
24-HR Composite Sample	2504100-01	Liquid	Composite	04/03/25 12:00	04/04/25 08:50

Notes

All quality control samples and checks are within acceptance limits unless otherwise indicated.

Test results pertain only to those items tested.

All samples were in good condition when received by the laboratory unless otherwise noted.

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 13:39 **Received:** 04/04/25 08:50

Report No. 2504100

Additional Notes:

This supersedes the last report (2504100 1-SATL1 FINAL 05 07 25 0853 $\,$) issued. Reason: Needed to fix reporting limits, 05/08/25.

Sample ID #: 24-HR Composite Sample

Sampling Method: Composite Lab Sample ID #: 2504100-01

Sample Matrix: Liquid				Date/Time Collected: 04	4/03/25 12:	00		
Analyte	Result	Units	PQL	RMCCL Prep Method	Batch	Analyzed	Method	Analyst Notes
General Chemistry								
Total Alkalinity *	149	mg/L as CaCO3	20.0	SM2320B	B515172	04/07/25 10:24	SM2320B	DD
Total Kjeldahl Nitrogen *	11.8	mg/L	1.00	EPA 351.3	B516190	04/11/25 17:04	EPA 351.3	DD
Hexavalent Chromium *	<3	ug/L	3	I-1230-85	B515322	04/04/25 17:00	I-1230-85	JA
Total Phosphorous *	< 0.05	mg/L	0.05	EPA 365.3	B515177	04/08/25 14:30	EPA 365.3	JA
Anions by Ion Chromatography								
Fluoride *	0.249	mg/L	0.020	EPA 300.0	B515317	04/04/25 19:59	EPA 300.0	JA
Chloride *	177	mg/L	2.50	EPA 300.0	B515317	04/04/25 19:06	EPA 300.0	JA
Nitrate as N *	< 0.100	mg/L	0.100	EPA 300.0	B515317	04/04/25 19:59	EPA 300.0	JA
Sulfate *	277	mg/L	2.50	EPA 300.0	B515317	04/04/25 19:06	EPA 300.0	JA
Total Mercury by EPA 245.7								
Mercury *	< 5.00	ng/L	5.00	EPA 245.7	B515284	04/10/25 18:01	EPA 245.7	ME
Total Metals By ICP-MS								
Aluminum *	0.045	mg/L	0.010	EPA 200.8	B515256	04/10/25 12:51	EPA 200.8	SJ
Arsenic *	< 0.5	ug/L	0.5	EPA 200.8	B515256	04/10/25 12:51	EPA 200.8	SJ
Beryllium *	< 0.5	ug/L	0.5	EPA 200.8	B515256	04/10/25 12:51	EPA 200.8	SJ
Chromium *	< 0.005	mg/L	0.005	EPA 200.8	B515256	04/10/25 12:51	EPA 200.8	SJ
Copper *	3.14	mg/L	0.001	EPA 200.8	B515256	04/10/25 12:51	EPA 200.8	SJ
Lead *	< 0.5	ug/L	0.5	EPA 200.8	B515256	04/10/25 12:51	EPA 200.8	SJ
Nickel *	0.003	mg/L	0.001	EPA 200.8	B515256	04/10/25 12:51	EPA 200.8	SJ
Selenium *	0.002	mg/L	0.001	EPA 200.8	B515256	04/10/25 12:51	EPA 200.8	SJ
Silver *	< 0.5	ug/L	0.5	EPA 200.8	B515256	04/10/25 12:51	EPA 200.8	SJ
Thallium *	< 0.5	ug/L	0.5	EPA 200.8	B515256	04/10/25 12:51	EPA 200.8	SJ

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 13:39 **Received:** 04/04/25 08:50

Report No. 2504100

Additional Notes:

This supersedes the last report (2504100 1-SATL1 FINAL 05 07 25 0853 $\,$) issued. Reason: Needed to fix reporting limits, 05/08/25.

Sample ID #: 24-HR Composite Sample

Sampling Method: Composite Lab Sample ID #: 2504100-01

Sample Matrix: Liquid				Date/Tii	ne Collect	ed: 04/03/25 12	2:00		
Analyte	Result	Unit	s PQL	RMCC	Prep Mo	ethod Batch	Analyzed	Method	Analyst Note
Trivalent Chromium (Calculated)							·		•
Trivalent Chromium	<5.00	ug/L	5.00		[CALC]	[CALC]	04/10/25 12:51	CALC	JA
Semivolatile Organic Compounds by					. ,				
Nonylphenol	< 0.050	mg/L	0.050		ASTM D70	65-11 B516302	04/14/25 17:38	ASTM D706	5 MF
Surrogate: 2,4,6-Tribromophenol		48 %	5-89.9	ASTM	D7065-11	B516302	04/14/25 17:38	ASTM D7065	MF
Surrogate: 2-Fluorobiphenyl		30 %	27-111		D7065-11	B516302	04/14/25 17:38	ASTM D7065	MF
Surrogate: Phenol-d5		26 %	5-64.3		D7065-11	B516302	04/14/25 17:38	ASTM D7065	MF
Surrogate: 2-Fluorophenol		26 %	5-64.3		D7065-11	B516302	04/14/25 17:38	ASTM D7065	MF
Surrogate: Terphenyl-d14		67 %	5-114	ASTM	D7065-11	B516302	04/14/25 17:38	ASTM D7065	MF
Surrogate: Nitrobenzene-d5		25 %	22-117	ASTM	D7065-11	B516302	04/14/25 17:38	ASTM D7065	MF
Polychlorinated Biphenyls [PCB]									
PCB 1016	< 0.2	ug/L	0.2		EPA 608.3	B515206	04/14/25 15:38	EPA 608.3	MF
PCB 1221	< 0.2	ug/L	0.2		EPA 608.3	B515206	04/14/25 15:38	EPA 608.3	MF
PCB 1232	< 0.2	ug/L	0.2		EPA 608.3	B515206	04/14/25 15:38	EPA 608.3	MF
PCB 1242	< 0.2	ug/L	0.2		EPA 608.3	B515206	04/14/25 15:38	EPA 608.3	MF
PCB 1248	< 0.2	ug/L	0.2		EPA 608.3	B515206	04/14/25 15:38	EPA 608.3	MF
PCB 1254	< 0.2	ug/L	0.2		EPA 608.3	B515206	04/14/25 15:38	EPA 608.3	MF
PCB 1260	< 0.2	ug/L	0.2		EPA 608.3	B515206	04/14/25 15:38	EPA 608.3	MF
Total PCBs	< 0.2	ug/L	0.2		EPA 608.3	B515206	04/14/25 15:38	EPA 608.3	MF
Surrogate: Decachlorobiphenyl		74 %	15.3-112	EPA	608.3	B515206	04/14/25 15:38	EPA 608.3	MF
Surrogate: Tetrachloro-meta-xylene		43 %	10.2-92.4	EPA	608.3	B515206	04/14/25 15:38	EPA 608.3	MF
Chlorinated Pesticides by GC/ECD									
alpha-BHC	< 0.05	ug/L	0.05		EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
gamma-BHC (Lindane)	< 0.05	ug/L	0.05	8000	EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
beta-BHC	< 0.05	ug/L	0.05		EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
delta-BHC	< 0.05	ug/L	0.05		EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
Heptachlor	< 0.01	ug/L	0.01	160	EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
Aldrin	< 0.01	ug/L	0.01		EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
Heptachlor Epoxide	< 0.01	ug/L	0.01	160	EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
gamma-Chlordane	< 0.1	ug/L	0.1		EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
alpha-Chlordane	< 0.1	ug/L	0.1		EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
Endosulfan I	< 0.01	ug/L	0.01		EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
4,4'-DDE	< 0.1	ug/L	0.1		EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
Dieldrin	< 0.02	ug/L	0.02		EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
Endrin	< 0.02	ug/L	0.02	400	EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
4,4′-DDD	< 0.1	ug/L	0.1	. •	EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
Endosulfan II	< 0.02	ug/L	0.02		EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
4,4'-DDT	< 0.02	ug/L	0.02		EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
Endrin Aldehyde	<0.1	ug/L	0.1		EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 13:39 **Received:** 04/04/25 08:50

Report No. 2504100

Additional Notes:

This supersedes the last report (2504100 1-SATL1 FINAL 05 07 25 0853) issued. Reason: Needed to fix reporting limits, 05/08/25.

Sample ID #: 24-HR Composite Sample

Sampling Method: Composite Lab Sample ID #: 2504100-01

Sample Matrix: Liquid				Date/Tir	ne Collecte	ed: 04/03/25 12	2:00		
Analyte	Result	Uni	ts PQL	RMCCI	Prep Me	thod Batch	Analyzed	Method	Analyst Notes
Chlorinated Pesticides by GC/ECD									
Endosulfan Sulfate	< 0.1	ug/L	0.1		EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
Methoxychlor	< 0.1	ug/L	0.1	200000	EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
Toxaphene	< 0.3	ug/L	0.3	10000	EPA 608.3	B516236	04/16/25 15:13	EPA 608.3	MF
Endrin Ketone	< 0.1	ug/L	0.1		EPA 608.3	B515205	04/16/25 00:08	EPA 608.3	MF
Chlordane	< 0.1	ug/L	0.1	30	EPA 608.3	B516235	04/16/25 13:03	EPA 608.3	MF
Surrogate: Decachlorobiphenyl		78 %	25-143	EPA	608.3	B516235	04/16/25 13:03	EPA 608.3	MF
Surrogate: Decachlorobiphenyl		74 %	34-133	EPA	608.3	B516236	04/16/25 15:13	EPA 608.3	MF
Surrogate: Decachlorobiphenyl		67 %	17.2-134	EPA	608.3	B515205	04/16/25 00:08	EPA 608.3	MF
Surrogate: Tetrachloro-meta-xylene		57 %	10.7-112	EPA	608.3	B515205	04/16/25 00:08	EPA 608.3	MF
Surrogate: Tetrachloro-meta-xylene		55 %	10.7-112	EPA	608.3	B516235	04/16/25 13:03	EPA 608.3	MF
Surrogate: Tetrachloro-meta-xylene		62 %	10.7-112	EPA	608.3	B516236	04/16/25 15:13	EPA 608.3	MF

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 13:39 **Received:** 04/04/25 08:50

Report No. 2504100

Additional Notes:

This supersedes the last report (2504100 1-SATL1 FINAL 05 07 25 0853 $\,$) issued. Reason: Needed to fix reporting limits, 05/08/25.

General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B515172 - SM2320B										
Blank (B515172-BLK1)				Prepared: (04/07/25 10:	00 Analyz	zed: 04/07/2	5 10:07		
Total Alkalinity	<20.0	20.0	mg/L as CaCO3							
LCS (B515172-BS1)				Prepared: (04/07/25 10:	15 Analyz	zed: 04/07/2	5 10:51		
Total Alkalinity	104	20.0	mg/L as CaCO3	100		104	80-120			
LCS Dup (B515172-BSD1)				Prepared: (04/07/25 10:	15 Analyz	zed: 04/07/2	5 10:54		
Total Alkalinity	113	20.0	mg/L as CaCO3	100		113	80-120	8	20	
Duplicate (B515172-DUP1)		Source: 2504	100-01	Prepared: (04/07/25 10:	15 Analyz	zed: 04/07/2	5 10:28		
Total Alkalinity	159	20.0	mg/L as CaCO3		149			7	20	
Batch B515177 - EPA 365.3										
Blank (B515177-BLK1)				Prepared: (04/07/25 11:	00 Analyz	ed: 04/07/2	5 14:30		
Total Phosphorous	< 0.05	0.05	mg/L							
LCS (B515177-BS1)				Prepared: (04/07/25 11:	00 Analyz	ed: 04/07/2	5 14:30		
Total Phosphorous	0.476	0.05	mg/L	0.500		95	80-120			
LCS Dup (B515177-BSD1)				Prepared: (04/07/25 11:	00 Analyz	ed: 04/07/2	5 14:30		
Total Phosphorous	0.459	0.05	mg/L	0.500		92	80-120	4	20	
Duplicate (B515177-DUP1)		Source: 2503	3546-01	Prepared: (04/07/25 11:	00 Analyz	ed: 04/07/2	5 14:30		
Total Phosphorous	< 0.05	0.05	mg/L		< 0.05				20	
Matrix Spike (B515177-MS1)		Source: 2503	3546-01	Prepared: (04/07/25 11:	00 Analyz	ed: 04/07/2	5 14:30		
Total Phosphorous	0.378	0.05	mg/L	0.500	< 0.05	76	80-120			M
Matrix Spike Dup (B515177-MSD1)		Source: 2503	3546-01	Prepared: (04/07/25 11:	00 Analyz	ed: 04/07/2	5 14:30		
Total Phosphorous	0.372	0.05	mg/L	0.500	< 0.05	74	80-120	2	20	M
Batch B515322 - I-1230-85										
Blank (B515322-BLK1)				Prepared: (04/04/25 17:	00 Analyz	zed: 04/04/2	5 17:30		
Hexavalent Chromium	<10	10	ug/L							
LCS (B515322-BS1)				Prepared: (04/04/25 17:	00 Analyz	zed: 04/04/2	5 17:30		
Hexavalent Chromium	431	10	ug/L	400		108	90-110			
LCS Dup (B515322-BSD1)				Prepared: (04/04/25 17:	00 Analyz	zed: 04/04/2	5 17:30		

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 13:39 **Received:** 04/04/25 08:50

Report No. 2504100

Additional Notes:

This supersedes the last report ($2504100\ 1$ -SATL1 FINAL $05\ 07\ 25\ 0853\$) issued. Reason: Needed to fix reporting limits, 05/08/25.

General Chemistry - Quality Control

		Reporting		Spike	Source		%REC		RPD
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch B515322 - I-1230-85									
LCS Dup (B515322-BSD1)				Prepared: (04/04/25 17:	:00 Analyz	zed: 04/04/2	5 17:30	
Hexavalent Chromium	438	10	ug/L	400		110	90-110	2	20
Duplicate (B515322-DUP1)		Source: 2504100	0-01	Prepared: (04/04/25 17:	:00 Analyz	zed: 04/04/2	5 17:30	
Hexavalent Chromium	<10	10	ug/L		<10				20
Matrix Spike (B515322-MS1)		Source: 2504100	0-01	Prepared: (04/04/25 17:	:00 Analyz	zed: 04/04/2	5 17:30	
Hexavalent Chromium	421	10	ug/L	400	<10	105	80-120		
Matrix Spike Dup (B515322-MSD1)		Source: 2504100	0-01	Prepared: (04/04/25 17:	:00 Analyz	zed: 04/04/2	5 17:30	
Hexavalent Chromium	429	10	ug/L	400	<10	107	80-120	2	20
Batch B516190 - EPA 351.3									
Blank (B516190-BLK1)				Prepared: 0	04/11/25 08:	30 Analyz	zed: 04/11/2:	5 17:00	
Total Kjeldahl Nitrogen	<1.00	1.00	mg/L						
LCS (B516190-BS1)				Prepared: (04/11/25 08:	30 Analyz	zed: 04/11/2:	5 17:01	
Total Kjeldahl Nitrogen	20.2	1.00	mg/L	20.0		101	80-120		
LCS Dup (B516190-BSD1)				Prepared: (04/11/25 08:	30 Analyz	zed: 04/11/2:	5 17:02	
Total Kjeldahl Nitrogen	21.3	1.00	mg/L	20.0		106	80-120	5	20
Duplicate (B516190-DUP1)		Source: 2504100	0-01	Prepared: (04/11/25 08:	30 Analyz	zed: 04/11/2:	5 17:05	
Total Kjeldahl Nitrogen	12.3	1.00	mg/L		11.8			5	20
Matrix Spike (B516190-MS1)		Source: 250410	0-01	Prepared: (04/11/25 08:	30 Analyz	zed: 04/11/2:	5 17:06	
Total Kjeldahl Nitrogen	33.1	1.00	mg/L	20.0	11.8	106	80-120	·	

Anions by Ion Chromatography - Quality Control

< 0.100

Nitrate as N

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B515317 - EPA 300.0										
Blank (B515317-BLK1)				Prepared: 0	4/04/25 16:	00 Analyz	ed: 04/04/25	5 16:43		
Fluoride	<0.020	0.020	mg/L							

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

mg/L

0.100

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 13:39 Received:

04/04/25 08:50

Additional Notes:

This supersedes the last report ($2504100\ 1$ -SATL1 FINAL $05\ 07\ 25\ 0853\$) issued. Reason: Needed to fix reporting limits, 05/08/25.

Report No. 2504100

Anions by Ion Chromatography - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B515317 - EPA 300.0										
Blank (B515317-BLK1)				Prepared:	04/04/25 16:	:00 Analy	zed: 04/04/2	5 16:43		
Sulfate	< 0.10	0.10	mg/L							
LCS (B515317-BS1)				Prepared:	04/04/25 16:	:00 Analy	zed: 04/04/2	5 17:01		
Fluoride	0.986	0.020	mg/L	1.00		99	90-110			
Chloride	5.06	0.100	mg/L	5.00		101	90-110			
Nitrate as N	4.89	0.100	mg/L	5.00		98	90-110			
Sulfate	4.92	0.10	mg/L	5.00		98	90-110			
LCS Dup (B515317-BSD1)				Prepared:	04/04/25 16:	:00 Analy	zed: 04/04/2	5 17:18		
Fluoride	0.983	0.020	mg/L	1.00		98	90-110	0.3	20	
Chloride	5.09	0.100	mg/L	5.00		102	90-110	0.6	20	
Nitrate as N	4.90	0.100	mg/L	5.00		98	90-110	0.08	20	
Sulfate	4.96	0.10	mg/L	5.00		99	90-110	0.9	20	
Duplicate (B515317-DUP1)		Source: 250410	0-01	Prepared:	04/04/25 16:	:00 Analy	zed: 04/04/2	5 20:17		
Fluoride	0.242	0.020	mg/L		0.249			3	20	
Chloride	170	2.50	mg/L		177			4	20	
Nitrate as N	0.0775	0.100	mg/L		0.0784			1	20	
Sulfate	266	2.50	mg/L		277			4	20	
Matrix Spike (B515317-MS1)		Source: 250410	0-01	Prepared:	04/04/25 16:	:00 Analy	zed: 04/04/2	5 20:35		
Fluoride	1.23	0.020	mg/L	1.00	0.249	98	80-120			
Chloride	139	0.100	mg/L	5.00	177	NR	80-120			M
Nitrate as N	4.92	0.100	mg/L	5.00	0.0784	97	80-120			
Sulfate	371	0.10	mg/L	5.00	277	NR	80-120			M
Matrix Spike Dup (B515317-MSD1)		Source: 250410	0-01	Prepared:	04/04/25 16:	:00 Analy	zed: 04/04/2	5 20:53		
Fluoride	1.22	0.020	mg/L	1.00	0.249	97	80-120	0.1	20	
Chloride	140	0.100	mg/L	5.00	177	NR	80-120	0.1	20	M
Nitrate as N	4.92	0.100	mg/L	5.00	0.0784	97	80-120	0.008	20	
Sulfate	372	0.10	mg/L	5.00	277	NR	80-120	0.04	20	M

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 13:39 **Received:** 04/04/25 08:50

Report No. 2504100

Additional Notes:

This supersedes the last report (2504100 1-SATL1 FINAL 05 07 25 0853 $\,$) issued. Reason: Needed to fix reporting limits, 05/08/25.

Total Mercury by EPA 245.7 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B515284 - EPA 245.7										
Blank (B515284-BLK1)				Prepared: (04/10/25 12:	30 Analyz	ed: 04/10/2	5 17:47		
Mercury	<5.00	5.00	ng/L							
LCS (B515284-BS1)				Prepared: (04/10/25 12:	30 Analyz	ed: 04/10/2	5 17:50		
Mercury	25.2	5.00	ng/L	25.0		101	75-125			
LCS Dup (B515284-BSD1)				Prepared: (04/10/25 12:	30 Analyz	ed: 04/10/2	5 17:53		
Mercury	22.9	5.00	ng/L	25.0		92	75-125	9	25	
Duplicate (B515284-DUP1)		Source: 250410	0-01	Prepared: (04/10/25 12:	30 Analyz	ed: 04/10/2	5 18:04		
Mercury	< 5.00	5.00	ng/L		< 5.00				25	
Matrix Spike (B515284-MS1)		Source: 250410	0-01	Prepared: (04/10/25 12:	30 Analyz	ed: 04/10/2	5 18:07		
Mercury	22.2	5.00	ng/L	25.0	< 5.00	89	63-111			
Matrix Spike Dup (B515284-MSD1)		Source: 250410	0-01	Prepared: (04/10/25 12:	30 Analyz	ed: 04/10/2	5 18:10		
Mercury	23.7	5.00	ng/L	25.0	< 5.00	95	63-111	7	18	

Total Metals By ICP-MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

Batch B515256 - EPA 200.8

Datcii D313230 - E1A 200.8				
Blank (B515256-BLK1)				Prepared: 04/10/25 08:45 Analyzed: 04/10/25 12:22
Aluminum	< 0.010	0.010	mg/L	
Arsenic	<1	1	ug/L	
Beryllium	<1	1	ug/L	
Chromium	< 0.005	0.005	mg/L	
Copper	< 0.001	0.001	mg/L	
Lead	<1	1	ug/L	
Nickel	< 0.001	0.001	mg/L	
Selenium	< 0.001	0.001	mg/L	
Silver	<1	1	ug/L	
Thallium	<2	2	ug/L	
LCS (B515256-BS1)				Prepared: 04/10/25 08:45 Analyzed: 04/10/25 12:29
Aluminum	1.01	0.010	mg/L	1.00 101 85-115

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Spike

Source

Project Number: [none]

Reported: 05/08/25 13:39 **Received:** 04/04/25 08:50

Report No. 2504100

RPD

%REC

Additional Notes:

This supersedes the last report (2504100 1-SATL1 FINAL 05 07 25 0853) issued. Reason: Needed to fix reporting limits, 05/08/25.

Reporting

Total Metals By ICP-MS - Quality Control

		Reporting		Spike	Bource		/OKEC		KI D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B515256 - EPA 200.8										
LCS (B515256-BS1)				Prepared: (04/10/25 08	:45 Analyz	zed: 04/10/2	5 12:29		
Arsenic	99.6	1	ug/L	100		100	85-115			
Beryllium	101	1	ug/L	100		101	85-115			
Chromium	0.101	0.005	mg/L	0.100		101	85-115			
Copper	0.0990	0.001	mg/L	0.100		99	85-115			
Lead	99.3	1	ug/L	100		99	85-115			
Nickel	0.102	0.001	mg/L	0.100		102	85-115			
Selenium	0.0992	0.001	mg/L	0.100		99	85-115			
Silver	99.1	1	ug/L	100		99	85-115			
Thallium	97.4	2	ug/L	100		97	85-115			
LCS Dup (B515256-BSD1)				Prepared: (04/10/25 08	:45 Analyz	zed: 04/10/2	5 12:33		
Aluminum	1.00	0.010	mg/L	1.00		100	85-115	0.5	20	
Arsenic	99.2	1	ug/L	100		99	85-115	0.4	20	
Beryllium	99.5	1	ug/L	100		100	85-115	2	20	
Chromium	0.100	0.005	mg/L	0.100		100	85-115	0.8	20	
Copper	0.0996	0.001	mg/L	0.100		100	85-115	0.6	20	
Lead	97.7	1	ug/L	100		98	85-115	2	20	
Nickel	0.101	0.001	mg/L	0.100		101	85-115	0.6	20	
Selenium	0.0993	0.001	mg/L	0.100		99	85-115	0.1	20	
Silver	95.9	1	ug/L	100		96	85-115	3	20	
Thallium	96.0	2	ug/L	100		96	85-115	1	20	
Duplicate (B515256-DUP1)		Source: 250351	14-01	Prepared: (04/10/25 08	:45 Analyz	zed: 04/10/2	5 12:40		
Aluminum	0.0179	0.010	mg/L		0.0205			14	20	
Arsenic	<1	1	ug/L		<1				20	
Beryllium	0.0113	1	ug/L		0.0158			33	20	S
Chromium	0.00176	0.005	mg/L		0.00209			17	20	
Copper	0.00316	0.001	mg/L		0.00354			11	20	
Lead	0.130	1	ug/L		0.135			4	20	
Nickel	0.00247	0.001	mg/L		0.00257			4	20	
Selenium	0.00128	0.001	mg/L		0.00159			21	20	S
Silver	0.0662	1	ug/L		0.131			66	20	S
Thallium	<2	2	ug/L		<2				20	
Matrix Spike (B515256-MS1)		Source: 250351	14-01	Prepared: (04/10/25 08	:45 Analyz	zed: 04/10/2	5 12:43		
Aluminum	0.928	0.010	mg/L	1.00	0.0205	91	75-125			
	0.720	0.010	g. 2	1.00			, 5 125			

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 13:39 Received: 04/04/25 08:50

Report No. 2504100

Additional Notes:

This supersedes the last report (2504100 1-SATL1 FINAL 05 07 25 0853) issued. Reason: Needed to fix reporting limits, 05/08/25.

Total Metals By ICP-MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

Batch	B515256	- EPA 200.8
-------	---------	-------------

Matrix Spike (B515256-MS1)		Source: 25035	14-01	Prepared:	: 04/10/25 08	:45 Analy	zed: 04/10/2	5 12:43		
Arsenic	101	1	ug/L	100	<1	101	75-125			
Beryllium	101	1	ug/L	100	0.0158	101	75-125			
Chromium	0.0925	0.005	mg/L	0.100	0.00209	90	75-125			
Copper	0.0878	0.001	mg/L	0.100	0.00354	84	75-125			
Lead	103	1	ug/L	100	0.135	103	75-125			
Nickel	0.0897	0.001	mg/L	0.100	0.00257	87	75-125			
Selenium	0.111	0.001	mg/L	0.100	0.00159	110	75-125			
Silver	95.3	1	ug/L	100	0.131	95	75-125			
Thallium	98.0	2	ug/L	100	<2	98	75-125			
Matrix Spike Dup (B515256-MSD1)		Source: 25035	14-01	Prepared:	: 04/10/25 08	:45 Analy	zed: 04/10/2	5 12:47		
Aluminum	0.932	0.010	mg/L	1.00	0.0205	91	75-125	0.5	20	
Arsenic	98.8	1	ug/L	100	<1	99	75-125	2	20	
Beryllium	102	1	ug/L	100	0.0158	102	75-125	1	20	
Chromium	0.0925	0.005	mg/L	0.100	0.00209	90	75-125	0.03	20	
Copper	0.0879	0.001	mg/L	0.100	0.00354	84	75-125	0.08	20	
Lead	103	1	ug/L	100	0.135	102	75-125	0.5	20	
Nickel	0.0893	0.001	mg/L	0.100	0.00257	87	75-125	0.5	20	
Selenium	0.113	0.001	mg/L	0.100	0.00159	112	75-125	2	20	
Silver	94.5	1	ug/L	100	0.131	94	75-125	0.8	20	

Semivolatile Organic Compounds by GC/MS (Nonylphenol) - Quality Control

98.0

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

100

75-125

0.08

ug/L

Batch B516302 - ASTM D7065-11

Thallium

Blank (B516302-BLK1)				Prepared: 04/14/2	25 10:30 Analyz	zed: 04/14/25 14:46
Nonylphenol	< 0.050	0.050	mg/L			
Surrogate: 2,4,6-Tribromophenol	0.119		mg/L	0.200	60	5-89.9
Surrogate: Phenol-d5	0.0902		mg/L	0.200	45	5-64.3
Surrogate: 2-Fluorobiphenyl	0.0476		mg/L	0.100	48	27-111
Surrogate: Terphenyl-d14	0.0737		mg/L	0.100	74	5-114
Surrogate: 2-Fluorophenol	0.0934		mg/L	0.200	47	5-64.3

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 13:39 Received: 04/04/25 08:50

Report No. 2504100

Additional Notes:

This supersedes the last report ($2504100\ 1$ -SATL1 FINAL $05\ 07\ 25\ 0853\$) issued. Reason: Needed to fix reporting limits, 05/08/25.

Semivolatile Organic Compounds by GC/MS (Nonylphenol) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

Ratch	B516302 -	ASTM D	7065-11

Batch B516302 - ASTM D7065-	11								
Blank (B516302-BLK1)				Prepared: 04/14/2	25 10:30 Analy	zed: 04/14/25	5 14:46		
Surrogate: Nitrobenzene-d5	0.0532		mg/L	0.100	53	22-117			
LCS (B516302-BS1)				Prepared: 04/14/2	25 10:30 Analy	zed: 04/14/25	5 15:07		
Nonylphenol	0.338	0.050	mg/L	0.500	68	32.3-103			
Surrogate: 2,4,6-Tribromophenol	0.136		mg/L	0.200	68	5-89.9			
Surrogate: Phenol-d5	0.0764		mg/L	0.200	38	5-64.3			
Surrogate: 2-Fluorobiphenyl	0.0503		mg/L	0.100	50	27-111			
Surrogate: Terphenyl-d14	0.0729		mg/L	0.100	73	5-114			
Surrogate: 2-Fluorophenol	0.0773		mg/L	0.200	39	5-64.3			
Surrogate: Nitrobenzene-d5	0.0494		mg/L	0.100	49	22-117			
LCS Dup (B516302-BSD1)				Prepared: 04/14/2	25 10:30 Analy	zed: 04/14/25	5 15:29		
Nonylphenol	0.340	0.050	mg/L	0.500	68	32.3-103	0.8	21.4	
Surrogate: 2,4,6-Tribromophenol	0.142		mg/L	0.200	71	5-89.9			
Surrogate: Phenol-d5	0.0817		mg/L	0.200	41	5-64.3			
Surrogate: 2-Fluorobiphenyl	0.0527		mg/L	0.100	53	27-111			
Surrogate: Terphenyl-d14	0.0746		mg/L	0.100	75	5-114			
Surrogate: 2-Fluorophenol	0.0856		mg/L	0.200	43	5-64.3			
Surrogate: Nitrobenzene-d5	0.0527		mg/L	0.100	53	22-117			

Polychlorinated Biphenyls [PCB] - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

Batch B515206 - EPA 608.3

Blank (B515206-BLK1)				Prepared: 04/08/25 13:06 Analyzed: 04/14/25 14:10
PCB 1016	< 0.5	0.5	ug/L	
PCB 1221	< 0.5	0.5	ug/L	
PCB 1232	< 0.5	0.5	ug/L	
PCB 1242	< 0.5	0.5	ug/L	
PCB 1248	< 0.5	0.5	ug/L	
PCB 1254	<0.5	0.5	ug/L	
PCB 1260	<0.5	0.5	ug/L	
Surrogate: Decachlorobiphenyl	0.357		ug/L	0.500 71 15.3-112

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 13:39 **Received:** 04/04/25 08:50

Report No. 2504100

RPD

Limit

%REC

Limits

RPD

Additional Notes:

Analyte

PCB 1016

PCB 1260

This supersedes the last report ($2504100\ 1$ -SATL1 FINAL $05\ 07\ 25\ 0853\$) issued. Reason: Needed to fix reporting limits, 05/08/25.

Reporting

Limit

0.5

0.5

Polychlorinated Biphenyls [PCB] - Quality Control

Result

3.03

2.97

0.377

0.261

Blank (B515206-BLK1)				Prepared: 04/08/2	25 13:06 Analy	zed: 04/14/25	5 14:10		
Surrogate: Tetrachloro-meta-xylene	0.223		ug/L	0.500	45	10.2-92.4			
LCS (B515206-BS1)				Prepared: 04/08/2	25 13:06 Analy	zed: 04/14/25	5 14:29		
PCB 1016	1.72	0.5	ug/L	2.50	69	13.9-125			
PCB 1260	1.63	0.5	ug/L	2.50	65	29.3-140			
Surrogate: Decachlorobiphenyl	0.206		ug/L	0.250	83	15.3-112			
Surrogate: Tetrachloro-meta-xylene	0.136		ug/L	0.250	55	10.2-92.4			
LCS Dup (B515206-BSD1)				Prepared: 04/08/2	25 13:06 Analy	zed: 04/14/25	5 14:40		
PCB 1016	1.71	0.5	ug/L	2.50	68	13.9-125	0.5	29.5	
PCB 1260	1.56	0.5	ug/L	2.50	62	29.3-140	5	23.1	
Surrogate: Decachlorobiphenyl	0.204		ug/L	0.250	82	15.3-112			
Surrogate: Tetrachloro-meta-xylene	0.127		ug/L	0.250	51	10.2-92.4			
Matrix Spike (B515206-MS1)	Source: 250410	00-01	Prepared: 04/08/2	25 13:06 Analy	zed: 04/14/25	5 16:06			

Units

Spike

Level

5.00

5.00

0.500

0.500

< 0.5

< 0.5

Source

Result

%REC

61

59

75

52

23.5-116

13.3-134

15.3-112

10.2-92.4

Chlorinated Pesticides by GC/ECD - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

ug/L

ug/L

ug/L

ug/L

Batch B515205 - EPA 608.3

Surrogate: Decachlorobiphenyl

Surrogate: Tetrachloro-meta-xylene

Matrix Spike (B515205-MS1)		Source: 250410	0-01	Prepared:	04/08/25 1	0:00 Analy	vzed: 04/16/25 00:19
alpha-BHC	1.30	0.1	ug/L	2.00	< 0.1	65	40.6-95.7
gamma-BHC (Lindane)	1.38	0.1	ug/L	2.00	< 0.1	69	41-99.6
beta-BHC	1.47	0.1	ug/L	2.00	< 0.1	73	45.4-106
delta-BHC	1.41	0.1	ug/L	2.00	< 0.1	71	46.1-107
Heptachlor	1.41	0.1	ug/L	2.00	< 0.1	70	33.1-104
Aldrin	1.35	0.1	ug/L	2.00	< 0.1	68	40.3-87.4
Heptachlor Epoxide	1.52	0.1	ug/L	2.00	< 0.1	76	42.7-104
gamma-Chlordane	1.55	0.1	ug/L	2.00	< 0.1	78	27.5-107

%REC

Limits

RPD

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Units

Spike

Level

Source

Result

%REC

Project Number: [none]

Reported: 05/08/25 13:39 **Received:** 04/04/25 08:50

Report No. 2504100

RPD

Limit

Additional Notes:

Analyte

This supersedes the last report (2504100 1-SATL1 FINAL 05 07 25 0853 $\,$) issued. Reason: Needed to fix reporting limits, 05/08/25.

Reporting

Limit

Chlorinated Pesticides by GC/ECD - Quality Control

Result

Batch B515205 - EPA 608.3										
Matrix Spike (B515205-MS1)		Source: 2504100-	-01	Prepared:	04/08/25 1	0:00 Analy	zed: 04/16/25	00:19		
alpha-Chlordane	1.49	0.1	ug/L	2.00	< 0.1	75	39.5-103			
Endosulfan I	1.55	0.1	ug/L	2.00	< 0.1	78	42.9-105			
4,4′-DDE	1.59	0.1	ug/L	2.00	< 0.1	80	38.9-106			
Dieldrin	1.60	0.1	ug/L	2.00	< 0.1	80	40.5-111			
Endrin	1.88	0.1	ug/L	2.00	< 0.1	94	29.3-144			
4,4′-DDD	1.62	0.1	ug/L	2.00	< 0.1	81	45.3-112			
Endosulfan II	1.58	0.1	ug/L	2.00	< 0.1	79	41-114			
4,4′-DDT	1.41	0.1	ug/L	2.00	< 0.1	70	43.1-111			
Endrin Aldehyde	1.46	0.1	ug/L	2.00	< 0.1	73	43-101			
Endosulfan Sulfate	1.58	0.1	ug/L	2.00	< 0.1	79	39-126			
Methoxychlor	1.69	0.1	ug/L	2.00	< 0.1	84	30.2-150			
Endrin Ketone	1.49	0.1	ug/L	2.00	< 0.1	74	50.3-104			
Surrogate: Decachlorobiphenyl	0.749		ug/L	1.00		75	17.2-134			
Surrogate: Tetrachloro-meta-xylene	0.637		ug/L	1.00		64	10.7-112			
Batch B516235 - EPA 608.3										
Blank (B516235-BLK1)				Prepared:	04/11/25 1	0:00 Analy	zed: 04/16/25	12:25		
Blank (B516235-BLK1) Chlordane	<0.1	0.1	ug/L	Prepared:	04/11/25 1	0:00 Analy	zed: 04/16/25	12:25		
,	<0.1 0.660	0.1	ug/L	Prepared:	04/11/25 1	0:00 Analy	zed: 04/16/25	5 12:25		
Chlordane		0.1			04/11/25 1			5 12:25		
Chlordane Surrogate: Decachlorobiphenyl	0.660	0.1	ug/L	1.00 1.00		66 42	25-143			
Chlordane Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-meta-xylene	0.660	0.1	ug/L	1.00 1.00		66 42	25-143 10.7-112			
Chlordane Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-meta-xylene LCS (B516235-BS1)	0.660 0.416		ug/L ug/L	1.00 1.00 Prepared:		66 42 0:00 Analy	25-143 10.7-112 zed: 04/16/25			
Chlordane Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-meta-xylene LCS (B516235-BS1) Chlordane	0.660 0.416 4.27		ug/L ug/L ug/L	1.00 1.00 Prepared: 5.00		66 42 0:00 Analy 85	25-143 10.7-112 zed: 04/16/25 45-140			
Chlordane Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-meta-xylene LCS (B516235-BS1) Chlordane Surrogate: Decachlorobiphenyl	0.660 0.416 4.27 0.648		ug/L ug/L ug/L	1.00 1.00 Prepared: 5.00 1.00	04/11/25 1	66 42 0:00 Analy 85 65 53	25-143 10.7-112 zed: 04/16/25 45-140 25-143	5 12:37		
Chlordane Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-meta-xylene LCS (B516235-BS1) Chlordane Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-meta-xylene	0.660 0.416 4.27 0.648		ug/L ug/L ug/L	1.00 1.00 Prepared: 5.00 1.00	04/11/25 1	66 42 0:00 Analy 85 65 53	25-143 10.7-112 zed: 04/16/25 45-140 25-143 10.7-112	5 12:37	30	
Chlordane Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-meta-xylene LCS (B516235-BS1) Chlordane Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-meta-xylene LCS Dup (B516235-BSD1)	0.660 0.416 4.27 0.648 0.532	0.1	ug/L ug/L ug/L ug/L	1.00 1.00 Prepared: 5.00 1.00 1.00 Prepared:	04/11/25 1	66 42 0:00 Analy 85 65 53 0:00 Analy	25-143 10.7-112 zed: 04/16/25 45-140 25-143 10.7-112 zed: 04/16/25	i 12:37	30	
Chlordane Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-meta-xylene LCS (B516235-BS1) Chlordane Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-meta-xylene LCS Dup (B516235-BSD1) Chlordane	0.660 0.416 4.27 0.648 0.532 5.09	0.1	ug/L ug/L ug/L ug/L ug/L ug/L	1.00 1.00 Prepared: 5.00 1.00 1.00 Prepared: 5.00	04/11/25 1	66 42 0:00 Analy 85 65 53 0:00 Analy	25-143 10.7-112 zed: 04/16/25 45-140 25-143 10.7-112 zed: 04/16/25	i 12:37	30	
Chlordane Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-meta-xylene LCS (B516235-BS1) Chlordane Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-meta-xylene LCS Dup (B516235-BSD1) Chlordane Surrogate: Decachlorobiphenyl	0.660 0.416 4.27 0.648 0.532 5.09	0.1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.00 1.00 Prepared: 5.00 1.00 Prepared: 5.00 1.00	04/11/25 1 04/11/25 1	66 42 0:00 Analy 85 65 53 0:00 Analy 102 62 34	25-143 10.7-112 zed: 04/16/25 45-140 25-143 10.7-112 zed: 04/16/25 45-140 25-143	5 12:37 5 12:48 18	30	
Chlordane Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-meta-xylene LCS (B516235-BS1) Chlordane Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-meta-xylene LCS Dup (B516235-BSD1) Chlordane Surrogate: Decachlorobiphenyl Surrogate: Decachlorobiphenyl Surrogate: Decachlorobiphenyl	0.660 0.416 4.27 0.648 0.532 5.09	0.1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.00 1.00 Prepared: 5.00 1.00 Prepared: 5.00 1.00	04/11/25 1 04/11/25 1	66 42 0:00 Analy 85 65 53 0:00 Analy 102 62 34	25-143 10.7-112 zed: 04/16/25 45-140 25-143 10.7-112 zed: 04/16/25 45-140 25-143 10.7-112	5 12:37 5 12:48 18	30	
Chlordane Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-meta-xylene LCS (B516235-BS1) Chlordane Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-meta-xylene LCS Dup (B516235-BSD1) Chlordane Surrogate: Decachlorobiphenyl Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-meta-xylene Matrix Spike (B516235-MS1)	0.660 0.416 4.27 0.648 0.532 5.09 0.621 0.342	0.1 0.1 Source: 2504100-	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.00 1.00 Prepared: 5.00 1.00 Prepared: 5.00 1.00 1.00 Prepared:	04/11/25 1 04/11/25 1	66 42 0:00 Analy 85 65 53 0:00 Analy 102 62 34 0:00 Analy	25-143 10.7-112 zed: 04/16/25 45-140 25-143 10.7-112 zed: 04/16/25 45-140 25-143 10.7-112 zed: 04/16/25	5 12:37 5 12:48 18	30	

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 13:39 Received: 04/04/25 08:50

Report No. 2504100

Additional Notes:

This supersedes the last report ($2504100\ 1$ -SATL1 FINAL $05\ 07\ 25\ 0853\$) issued. Reason: Needed to fix reporting limits, 05/08/25.

Chlorinated Pesticides by GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B516236 - EPA 608.3										
Blank (B516236-BLK1)				Prepared: 0	4/11/25 10:	00 Analyz	ed: 04/16/25	5 12:25		
Toxaphene	<1	1	ug/L							
Surrogate: Decachlorobiphenyl	0.279		ug/L	0.500		56	34-133			
Surrogate: Tetrachloro-meta-xylene	0.172		ug/L	0.500		34	10.7-112			
LCS (B516236-BS1)				Prepared: 0	4/11/25 10:	00 Analyz	ed: 04/16/25	5 14:46		
Toxaphene	4.58	1	ug/L	5.00		92	56-130			
Surrogate: Decachlorobiphenyl	0.313		ug/L	0.500		63	34-133			
Surrogate: Tetrachloro-meta-xylene	0.162		ug/L	0.500		32	10.7-112			
LCS Dup (B516236-BSD1)				Prepared: 0	4/11/25 10:	00 Analyz	ed: 04/16/25	5 15:02		
Toxaphene	4.66	1	ug/L	5.00		93	56-130	2	30	
Surrogate: Decachlorobiphenyl	0.319		ug/L	0.500		64	34-133			
Surrogate: Tetrachloro-meta-xylene	0.112		ug/L	0.500		22	10.7-112			
Matrix Spike (B516236-MS1)		Source: 2504100	-01	Prepared: 0	4/11/25 10:	00 Analyz	ed: 04/16/25	5 15:36		
Toxaphene	5.99	1	ug/L	5.00	<1	120	56-130			
Surrogate: Decachlorobiphenyl	0.332		ug/L	0.500		66	34-133			
Surrogate: Tetrachloro-meta-xylene	0.258		ug/L	0.500		52	10.7-112			

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 13:39 **Received:** 04/04/25 08:50

Report No. 2504100

Additional Notes:

This supersedes the last report (2504100 1-SATL1 FINAL 05 07 25 0853) issued. Reason: Needed to fix reporting limits, 05/08/25.

DEFINITIONS

* TNI / NELAC accredited analyte

PQL Practical Quantitation Limit

MCL Maximum Contaminant Level

mg/Kg Milligrams per Kilogram (Parts per Million)

mg/L Milligrams per Liter (Parts per Million)

PPM Parts per Million

L LCS recovery is outside QC acceptance limits, the results may have a slight bias.

M MS recovery is outside QC limits, the results may have a slight bias due to possible matrix interferences.

NR Not Recovered due to source sample concentration exceeds spiked concentration.

RMCCL Recommended Maximum Concentration of Contaminants Level

Surr L Surrogate recovery is low outside QC limits.

Surr H Surrogate recovery is high outside QC limits.

HT Sample received past holdtime

IC Improper Container for this analyte(s)
IP Improper preservation for this analyte(s)

IT Improper Temperature
 V Inssuficient Volume
 B Sample collected in Bulk
 S RPD is outside QC limits.
 AB VOA Vial contained air bubbles.

OP ortho-Phosphate was not filtered in the field within 15minutes of collection.

CCV Continuing Calibration Verification Standard.
ICV Initial Calibration Verification Standard.

Test Methods followed by the laboratory are referenced in the following approved methodology, unless otherwise specified.

Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017

 $Methods \ for \ Chemical \ Analysis \ of \ Water \ and \ Wastes, EPA \ 600/4-79-020, \ Rev. \ March \ 1983$

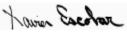
EPA SW Test Methods for the Examination of Solid Waste, SW-846, 1996

Subcontracted Analyses

Subcontractor Lab	Lab Number	Analysis
SPL, Inc Kilgore (Lab)	2504100-01	Sub _Integrity_SPL
SPL, Inc Kilgore (Lab)	2504100-01	SVOC_APPDX_IX

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]


Reported: 05/08/25 13:39 **Received:** 04/04/25 08:50

Report No. 2504100

Additional Notes:

This supersedes the last report (2504100 1-SATL1 FINAL 05 07 25 0853 $\,$) issued. Reason: Needed to fix reporting limits, 05/08/25.

Marissa Esquivel, Lab Manager For

Xavier Escobar, Business Unit Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SAN ANTONIO TESTING	REPORT	то:	INVOICE TO:	P.O.	**
LABORATORY, LLC	COMPANY Integrity Testing		COMPANY	1	REPORT NUMBER
	ADDRESS 8127 Mesa Dr. #C-305		ADDRESS	0	メンジン185
1610 S. Laredo Street, San Antonio, Texas 78207 Phone (210) 229-9920	CITY STATE Austin, TX 78759	ZIP	CITY STATE	ZIP E-MAIL	II.
Fax (210) 229-9921 www.satestinglab.com	ATTN: Chris Ewert 512-891-7777	PHONE #	ATTN: PHONE #		
	UND TIME	X7-10 Days D 5 Days	1 4 Days D 3 DAYS D 2 DAYS +50% +75% +100%	□ Next Day □ SAME	SAME DAY WHEN POSSIBLE
CITY OF LONA YERMIT LEVELY	THE TURNAROUND TIME FOR SAMPLES R	ECEIVED AFTER 3:00 PM SHA	S DAY	SPECIAL REQ.:	20076
	DATA TO TCEQ 🗆 RRC 🗆 Other (S	Other (Specify)	Field: pH:; Temp:	C; LCS/D:	: Dup:
PHOJECT NO.	TURE WITHIN	COMPLIANCE (> 0°C ≤ 6°C) 10 YES	25	PLP/OTHER):	10
SAMPLETEN MACON	OBSERVED TEMP. CORRECTED TEMP.	GUN# SAMPLEICED	FA	PST	TSDI
COLLECTED			ANALYSIS	REQUEST	ED
Ø (1	11/1/	PRESERVED
0 J -		00 w 00 20 20	Total of Total	I I I I I I I I I I I I I I I I I I I	
	SAMPLE	ZHO	SOURCE SOURCE	Total Marie	
E DATE TIME WIGLES S	IDENTIFICATION	- Z - Z - Z	100 100 100 100 100 100 100 100 100 100		CAN
3 0 0 1		0 T B E 0	Demis Salves	K/ / / /	
m «		· · · · · · · · · · · · · · · · · · ·	1000/1000/1000/1000/1000/1000/1000/100		
122 M. W. X	74-HO CON BETTE	S STORY	Male Nate		REMARKS
2	2.41.97	9-	1	4	2
Ch-15 1.00	COLO SIALIN	- 12CE	~	7	
		JACAN I	TOWN TO	2	
			3		
	2.2	* Sister	7		
			TO TO THE TANK OF THE PARTY OF		
		37.7	からです。		
		nic CE			
			8.0		
4-3-3	RECEIVED BY	S 1 PATENTIME RELING	RELINGUISHED BY (STANKINE) - 7-15 DATE (THE	RECEIVED BY (SUGALING)	APR ATAT
		DATÉ/TIME RELING	RELINGUISHED BY (PRINTNAME) DATE / TIME	RECEIVED BY CPRINT NA	MEY THAT DATEST
RELINQUISHED BY (SIGNATURE) DATE / TIME	RECEIVED BY (SIGNATURE)	DATE/TIME METHO	METHOD OF SHIPMENT	SUBCONTRACTED	ON D SAN
RELINQUISHED BY (PRINT NAME) DATE / TIME	RECEIVED BY (PRINT NAME)	DATE/TIME BULK	BULK (initial) 503642 NIA 92	CUSTODY SEAL IN PLACE & INTACT	SA INTACT CONTES D NO

POLLUTANT ANALYSIS OF TREATED EFFLUENT [>1 MGD WWTP for Roma WWTP]

Provide an analysis of the effluent for all the constituents listed below, including those constituents that are not required to be monitored in the existing permit. Include the maximum sample analysis if more than one sample is taken. Provide the number of samples analyzed, the type of sample, whether grab or composite, and the date and time the sample(s) were collected. Collect the type of sample (grab or composite) as required in the permit, if specified*. Analytical data provided in the application must be sampled no later than one year prior to the date the application is submitted to the TCEQ.

All sampling and laboratory testing methods should be performed according to 30 TAC Chapter 319, General Regulations Incorporated into Permits and 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification. All testing must conform to EPA approved methodologies for sample collection, preservation, analysis, and detection levels. In addition, this data must comply with the QA/QC requirements of 40 CFR Part 136 and other appropriate QA/QC requirements for standard and suggested methods for analytes not addressed by 40 CFR Part 136.

Collect DO in the early morning, before 9:00 a.m. Sample Chlorine Residual at the same time as *E coli*. If the sample for the other parameters is not obtained at the same time as the DO sample, provide the additional time of sampling. For pH, provide minimum and maximum values. Provide copies of the laboratory results sheet(s), QA/QC sheet(s), and chain-of-custody.

POLLUTANT	CONCENTRATION AVG. MAX.	NUMBER OF SAMPLES	TYPE OF SAMPLE*	SAMPLE DATE/ TIME
(1) CBOD5 mg/l				
(2) Total Suspended Solids, mg/l			Composite*	
-(3) Ammonia-Nitrogen, mg/l				
(4) Nitrate-Nitrogen, mg/l				
(5) Total Kjeldahl Nitrogen, mg/l				
(6) Sulfate, mg/l				
(7) Chloride, mg/l				
(8) Total Phosphorus, mg/l				
(9) pH, standard units			Grab*	
(10) Dissolved Oxygen, mg/l			Grab*	
(41) Chlorine Residual, mg/l				
(12) E. coli (colonies/100ml)			Grab*	
(13) Total Dissolved Solids, mg/l				
(14) Oil & Grease, mg/L				
(15) Alkalinity, mg/L				

Sample Type denoted in current permit

Report an average and/or a maximum value, indicating the number of samples analyzed if more than one analytical result is available. Grab samples must be used for pH, temperature, cyanide, total phenols, residual chlorine, oil and grease, fecal coliform, volatile organic compounds (VOC), *E. coli*, and Enterceccei. For all other pollutants, 24-hour composite samples must be used. Include the date and time the sample(s) was collected. Indicate units if different from micrograms per liter (µg/1). Note that it is quite common for laboratories to report metal results in milligrams per liter. Provide a definition for any abbreviation or acronyms used in completing the analytical tables.

Table 4.0(1) - Toxics Analysis

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrylonitrile				50
Aldrin				0.01
Aluminum				2.5
Anthracene				10
Antimony				5
Arsenic				0.5
Barium				3
Benzene				10
Benzidine				50
Benzo(a)anthracene				5
Benzo(a)pyrene				5
Bis(2-chloroethyl)ether				10
Bis(2-ethylhexyl)phthalate				10
Bromodichloromethane				10
Bromoform				10
Cadmium				1
Carbon Tetrachloride				2
Carbaryl				5
Chlordane*				0.2
Chlorobenzene				10
Chlorodibromomethane				10
Chloroform				10
Chlorpyrifos				0.05
Chromium (Total)				3

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Chromium (Tri) (*1)				N/A
Chromium (Hex)				3
Copper				2
Chrysene				5
p-Chloro-m-Cresol				10
4,6-Dinitro-o-Cresol				50
p-Cresol				10
Cyanide (*2)_	······································			10
4,4'- DDD				0.1
4,4'- DDE				0.1
4,4'- DDT				0.02
2,4-D				0.7
Demeton (O and S)				0.20
Diazinon				0.5/0.1
1,2-Dibromoethane				10
m-Dichlorobenzene				10
o-Dichlorobenzene				10
p-Dichlorobenzene				10
3,3'-Dichlorobenzidine				5
1,2-Dichloroethane				10
1,1-Dichloroethylene				10
Dichloromethane			·	20
1,2-Dichloropropane				10
1,3-Dichloropropene				10
Dicofol				1
Dieldrin				0.02
2,4-Dimethylphenol				10
Di-n-Butyl Phthalate				10
Diuron				0.09
Endosulfan I (alpha)				0.01

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Endosulfan II (beta)				0.02
Endosulfan Sulfate				0.1
Endrin				0.02
Epichlorohydrin				
Ethylbenzene				10
Ethylene Glycol				
Fluoride				500
Guthion				0.1
Heptachlor				0.01
Heptachlor Epoxide				0.01
Hexachlorobenzene				5
Hexachlorobutadiene				10
Hexachlorocyclohexane (alpha)				0.05
Hexachlorocyclohexane (beta)				0.05
gamma-Hexachlorocyclohexane (Lindane)				0.05
Hexachlorocyclopentadiene				10
Hexachloroethane				20
Hexachlorophene				10
4,4'-Isopropylidenediphenol				1
Lead				0.5
Malathion				0.1
Mercury				0.005
Methoxychlor				2
Methyl Ethyl Ketone				50
Methyl tert-butyl ether				
Mirex			<u> </u>	0.02
Nickel				2
Nitrate-Nitrogen			<u> </u>	100
Nitrobenzene				10
N-Nitrosodiethylamine				20

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
N-Nitroso-di-n-Butylamine				20
Nonylphenol				333
Parathion (ethyl)				0.1
Pentachlorobenzene				20
Pentachlorophenol				5
Phenanthrene				10
Polychlorinated Biphenyls (PCB's) (*3)				0.2
Pyridine				20
Selenium				5
Silver				0.5
1,2,4,5-Tetrachlorobenzene				20
1,1,2,2-Tetrachloroethane				10
Tetrachloroethylene				10
Thallium				0.5
Toluene				10
Toxaphene				0.3
2,4,5-TP (Silvex)				0.3
Tributylthi (see instructions for explanation)				0.01
1,1,1-Trichloroethane				10
1,1,2-Trichloroethane				10
Trichloroethylene				10
2,4,5-Trichlorophenol				50
TTHM (Total Trihalomethanes)	, , , , , , , , , , , , , , , , , , ,			10
Vinyl Chloride				10
-Zine -				5

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

^(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Table 4.0(2)A - Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Antimony				5
Arsenic				0.5
Beryllium				0.5
Cadmium				1
Chromium (Total)				3
Chromium (Hex)				3
Chromium (Tri) (*1)				N/A
Copper				2
Lead				0.5
Mercury				0.005
Nickel				2
Selenium				5
Silver				0.5
Thallium				0.5
Zinc				5
Cyanide (*2)				10
Phenols, Total				10

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)B - Volatile Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acrolein				50
Acrylonitrile				50
Benzene				10
Bromoform				10
Carbon Tetrachloride				2
Chlorobenzene				10
Chlorodibromomethane				10
Chloroethane				50
2-Chloroethylvinyl Ether				10
Chloroform				10
Dichlorobromomethane [Bromodichloromethane]				10
1,1-Dichloroethane				10
1,2-Dichloroethane				10
1,1-Dichloroethylene				10
1,2-Dichloropropane				10
1,3-Dichloropropylene [1,3-Dichloropropene]				10
1,2-Trans-Dichloroethylene				10
Ethylbenzene				10
Methyl Bromide				50
Methyl Chloride	***************************************			50
Methylene Chloride				20
1,1,2,2-Tetrachloroethane				10
Tetrachloroethylene				10
Toluene				10
1,1,1-Trichloroethane			. ,	10
1,1,2-Trichloroethane				10
Trichloroethylene				10
Vinyl Chloride				10

Table 4.0(2)C - Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
2-Chlorophenol				10
2,4-Dichlorophenol				10
2,4-Dimethylphenol				10
4,6-Dinitro-o-Cresol				50
2,4-Dinitrophenol				50
2-Nitrophenol				20
4-Nitrophenol				50
P-Chloro-m-Cresol				10
Pentalchlorophenol				5
Phenol				10
2,4,6-Trichlorophenol				10

Table 4.0(2)D - Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acenaphthene				10
Acenaphthylene				10
Anthracene				10
Benzidine				50
Benzo(a)Anthracene				5
Benzo(a)Pyrene				5
3,4-Benzofluoranthene				10
Benzo(ghi)Perylene				20
Benzo(k)Fluoranthene				5
Bis(2-Chloroethoxy)Methane				10
Bis(2-Chloroethyl)Ether				10
Bis(2-Chloroisopropyl)Ether				10
Bis(2-Ethylhexyl)Phthalate				10
4-Bromophenyl Phenyl Ether				10
Butyl benzyl Phthalate				10
2-Chloronaphthalene				10
4-Chlorophenyl phenyl ether				10
Chrysene				5
Dibenzo(a,h)Anthracene				5
1,2-(o)Dichlorobenzene				10
1,3-(m)Dichlorobenzene				10
1,4-(p)Dichlorobenzene				10
3,3-Dichlorobenzidine				5
Diethyl Phthalate				10
Dimethyl Phthalate				10
Di-n-Butyl Phthalate				10
2,4-Dinitrotoluene				10
2,6-Dinitrotoluene				10
Di-n-Octyl Phthalate				10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
1,2-Diphenylhydrazine (as Azobenzene)				20
Fluoranthene				10
Fluorene				10
Hexachlorobenzene				5
Hexachlorobutadiene				10
Hexachlorocyclo-pentadiene				10
Hexachloroethane				20
Indeno(1,2,3-cd)pyrene				5
Isophorone				10
Naphthalene				10
Nitrobenzene				10
N-Nitrosodimethylamine				50
N-Nitrosodi-n-Propylamine				20
N-Nitrosodiphenylamine				20
Phenanthrene				10
Pyrene				10
1,2,4-Trichlorobenzene				10

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Aldrin				0.01
alpha-BHC (Hexachlorocyclohexane)				0.05
beta-BHC (Hexachlorocyclohexane)				0.05
gamma-BHC (Hexachlorocyclohexane)				0.05
delta-BHC (Hexachlorocyclohexane)				0.05
Chlordane				0.2
4,4-DDT				0.02
4,4-DDE	, , , , , , , , , , , , , , , , , , , ,			0.1
4,4,-DDD				0.1
Dieldrin				0.02
Endosulfan I (alpha)				0.01
Endosulfan II (beta)				0.02
Endosulfan Sulfate				0.1
Endrin				0.02
Endrin Aldehyde				0.1
Heptachlor				0.01
Heptachlor Epoxide				0.01
PCB-1242				0.2
PCB-1254				0.2
PCB-1221				0.2
PCB-1232				0.2
PCB-1248				0.2
PCB-1260				0.2
PCB-1016		,, , <u> </u>		0.2
Toxaphene				0.3

^{*} For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Sample No. ———————————————————————————————————	Sample No. Time Collected
CUSTODY SEAL	CUSTODY SEAL
ENVIRONMENTAL EXPRESS Person Collecting Sample Date Collected	ENVIRONMENTAL EXPRESS Person Collecting Sample

Client: Integrity Tes	sting	Project Manager: Marissa Esquivel
Project: City of Roma		Project Number: [none]
Report To:		
Chris Ewert		SATL Report Number: 2504100
Work Order Due by:	04/15/25 17:00 (7 day TAT)	
Received By:	Hannah Thigpen	Date Received: 04/04/25 08:50
Logged In By:	Hannah Thigpen	Date Logged In: 04/04/25 09:33
Sample(s) Received on	ICE/evidence of Ice (cooler v	vith melted ice,etc):
Sample temperature at	receipt *:	$I^{\circ}C$
Custody Seals Present:		Yes
All containers intact:		Yes
Sample labels/COC ag	ree:	Yes
Samples Received with	in Holding time :	Yes
Samples appropriately		Yes
	oken/damaged/leaking:	No
	VOA vials for VOC/TPH anal	yses, if applicable: Not Applicable
FRRP 13 Reporting red	quested?	No
	lled to volume (100mL mark),	if applicable: Not Applicable
	led to volume (1 Liter mark), i	if applicable: Not Applicable
Subcontracting require		HYTTAL Yes
RUSH turnaround time	requested:	No
Requested Turnaround		No
Samples delivered via :		Hand Delivered
Air bill included if San		No
	eeting SATL sample acceptance	ce criteria notated on CoC: None
but are acceptable, if the	ne laboratory on the same day tha y arrive on ice. ed, notate client authorization on	If they are collected may not meet thermal preservation criteria (>0°C but $<$ 6°C) \sim CoC to proceed with analysis.
Checked By:	Hannah Thìgpen	Date: 04/04/25 08:50 SATL#F000 Revised 09/15/202:

SATESTING

From:

Chris Ewert < cewert@austin.rr.com>

Sent:

Wednesday, April 9, 2025 10:40 AM

To:

SATESTING

Cc:

Marissa Esquivel

Subject:

Re: City of Alamo Permit Renewal - City of Alamo

Correct. Tributyltin is not needed.

Thanks,

Chris Ewert
Integrity Testing
8127 Mesa Dr. #C-305
Austin, TX 78759
(512) 891-7777
cewert@austin.rr.com
www.integritytestingaustin.com

This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error, please notify the system manager. This message contains confidential information and is intended only for the individual named. If you are not the named addressee, you should not disseminate, distribute or copy this email. Please notify the sender immediately by email if you have received this email by mistake and delete this email from your system. If you are not the intended recipient, you are notified that disclosing, copying, distributing or taking any action in reliance on the contents of this information is strictly prohibited.

On Apr 9, 2025, at 10:32 AM, SATESTING <satesting@satestinglab.com> wrote:

I just wanted to confirm that per our phone discussion since you did not bid for Tributyltin, we don't need the sub lab to run it on the ROMA samples or the resample for City of Alamo.

Aimee Landon
Project Manager
Eurofins Environment Testing South Central San Antonio
San Antonio Testing Laboratory
1610 S. Laredo St.
San Antonio, TX 78207
210-229-9920

From: Chris Ewert < cewert@austin.rr.com > Sent: Wednesday, April 9, 2025 10:10 AM
To: SATESTING < satesting@satestinglab.com >

SAMPLE CROSS REFERENCE

Printed

4/30/2025

Page 1 of 1

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

Sample	Sample ID	Taken	Time	Received
2397436	2504100-001	04/03/2025	12:00:00	04/09/2025

Bottle 01 Client Supplied Amber Glass

Bottle 02 Client Supplied Amber Glass

Bottle 03 Client Supplied Amber Glass

Bottle 04 Client Supplied Amber Glass

Bottle 05 Client Supplied Amber Glass

Bottle 06 Client supplied amber glass 40 mL vial

Bottle 07 Client supplied amber glass 40 mL vial

Bottle 08 Client supplied amber glass 40 mL vial

Bottle 09 Client supplied amber glass 40 mL vial

Bottle 10 Prepared Bottle: 2 mL Autosampler Vial (Batch 1169428) Volume: 1.00000 mL <== Derived from 01 (1009 ml)

Bottle 11 Prepared Bottle: 632L/632S 2 mL Autosampler Vial (Batch 1169756) Volume: 1.00000 mL <== Derived from 03 (963 ml)

Bottle 12 Prepared Bottle: GCXL\GCXS 2 mL Autosampler Vial (Batch 1169764) Volume: 1.00000 mL <== Derived from 03 (963 ml)

Bottle 13 Prepared Bottle: OPXL/OPXS 2 mL Autosampler Vial (Batch 1169774) Volume: 1.00000 mL <== Derived from 03 (963 ml)

Bottle 14 Prepared Bottle: 2 mL Autosampler Vial (Batch 1169947) Volume: 5.00000 mL <== Derived from 02 (931 ml)

Bottle	PrepSet	Preparation	QcGroup	Analytical
11	1169756	04/10/2025	1171109	04/15/2025
09	1169959	04/10/2025	1169959	04/10/2025
14	1169947	04/10/2025	1172574	04/29/2025
12	1169764	04/10/2025	1172075	04/22/2025
10	1169428	04/09/2025	1172254	04/15/2025
13	1169774	04/10/2025	1171868	04/15/2025
08	1170950	04/16/2025	1170950	04/16/2025
10	1169428	04/09/2025	1172284	04/15/2025
13	1169774	04/10/2025	1171677	04/15/2025
	11 09 14 12 10 13 08 10	11 1169756 09 1169959 14 1169947 12 1169764 10 1169428 13 1169774 08 1170950 10 1169428	11 1169756 04/10/2025 09 1169959 04/10/2025 14 1169947 04/10/2025 12 1169764 04/10/2025 10 1169428 04/09/2025 13 1169774 04/10/2025 08 1170950 04/16/2025 10 1169428 04/09/2025	11 1169756 04/10/2025 1171109 09 1169959 04/10/2025 1169959 14 1169947 04/10/2025 1172574 12 1169764 04/10/2025 1172075 10 1169428 04/09/2025 1172254 13 1169774 04/10/2025 1171868 08 1170950 04/16/2025 1170950 10 1169428 04/09/2025 1172284

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 1 of 24

24 Waterway Avenue, Suite 375 The Woodlands, TX 77380

Office: 903-984-0551 * Fax: 903-984-5914

Project 1142995

Page 1 of 7

Printed: 04/30/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

RESULTS

				Sample R	esults						
	2397436	2504100-001							Received:	04/09	9/2025
N	on-Potable Wate	er	Collected by: Client	San Anton	io Testing			PO:			
			Taken: 04/03/2025		:00:00						
	FPA 604.1		Prepared:	1169947 (04/10/2025	13:00:00	Analyzed	1172574	04/29/2025	18:59:00	BRU
			Results	Unit	s RL		Flags		CAS		Bottle
Z	Hexachloroph	nene	<0.00269	mg/I		9			70-30-4		14
Е	PA 608.3		Prepared:	1169764 (04/10/2025	14:35:00	Analyzed	1172075	04/22/2025	22:06:00	KAP
	Parameter		Results	Unit	s RL		Flags		CAS		Bottle
Z	Kelthane (Dic	cofol)	<0.000104	mg/I	0.0001	04			115-32-2		12
z 	Mirex	·	<0.0000156	mg/I	0.0000	156			2385-85-5		12
Е	TPA 614		Prepared:	1169774 (04/10/2025	14:35:00	Analyzed	1171868	04/15/2025	19:44:00	KAP
	Parameter		Results	Unit	s RL		Flags		CAS		Bottle
NELAC	Azinphos-me	thyl (Guthion)	<0.0000519	mg/I	0.0000	519			86-50-0		13
NELAC	Demeton		<0.0000519	mg/I	0.0000	519			8065-48-3		13
NELAC	Diazinon		<0.0000519	mg/I					333-41-5		13
NELAC	Malathion		<0.0000519	mg/I					121-75-5		13
NELAC	Parathion, eth	•	<0.0000519	mg/I					56-38-2		13
NELAC 	Parathion, me	thyl	<0.00005	mg/I	0.0000	5			298-00-0		13
Е	PA 622		Prepared:	1169774	04/10/2025	14:35:00	Analyzed	1171677	04/15/2025	19:44:00	KAP
	Parameter		Results	Unit	s RL		Flags		CAS		Bottle
NELAC	Chlorpyrifos		<0.00005	mg/I	0.0000	5			2921-88-2		13
Е	PA 624.1		Prepared:	1170950	04/16/2025	12:12:00	Analyzed	1170950	04/16/2025	12:12:00	MR1
	Parameter		Results	Unit	s RL		Flags		CAS		Bottle
NELAC	Epichlorohyd	rin	<0.0200	mg/I	0.0200				106-89-8		08

Report Page 2 of 24

Office: 903-984-0551 * Fax: 903-984-5914

Page 2 of 7

Project 1142995

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

Printed: 04/30/2025

2397436 2504100-001 Received: 04/09/2025

Non-Potable Water Collected by: Client San Antonio Testing PO:

Taken: 04/03/2025 12:00:00

J1 1	A 625.1	Prepared: 1	169428 04/1	10/2025 07:30:0	0 Analyzed 1172254	04/15/2025	20:47:00 DW
	Parameter	Results	Units	RL	Flags	CAS	Bottle
	1,2,4,5-Tetrachlorobenzene	<0.00102	mg/L	0.00102		95-94-3	10
	1,2,4-Trichlorobenzene	<0.000991	mg/L	0.000991	S	120-82-1	10
	1,2-Dichlorobenzene	<0.00496	mg/L	0.00496		95-50-1	10
	1,2-DPH (as azobenzene)	<0.000991	mg/L	0.000991		122-66-7	10
	1,3-Dichlorobenzene	<0.00496	mg/L	0.00496		541-73-1	10
	1,4-Dichlorobenzene	<0.00496	mg/L	0.00496		106-46-7	10
	2,4,5-Trichlorophenol	<0.00496	mg/L	0.00496		95-95-4	10
	2,4,6-Trichlorophenol	<0.00198	mg/L	0.00198		88-06-2	10
	2,4-Dichlorophenol	<0.000991	mg/L	0.000991		120-83-2	10
	2,4-Dimethylphenol	<0.000991	mg/L	0.000991	S	105-67-9	10
	2,4-Dinitrophenol	<0.00198	mg/L	0.00198		51-28-5	10
	2,4-Dinitrotoluene	<0.00198	mg/L	0.00198		121-14-2	10
	2,6-Dinitrotoluene	<0.00198	mg/L	0.00198		606-20-2	10
	2-Chloronaphthalene	<0.000991	mg/L	0.000991	S	91-58-7	10
	2-Chlorophenol	<0.000991	mg/L	0.000991		95-57-8	10
	2-Methylphenol (o-Cresol)	<0.00991	mg/L	0.00991		95-48-7	10
	2-Nitrophenol	<0.000991	mg/L	0.000991		88-75-5	10
	3&4-Methylphenol (m&p-Cresol)	<0.00793	mg/L	0.00793		MEPH34	10
	3,3'-Dichlorobenzidine	<0.00198	mg/L	0.00198		91-94-1	10
	4,6-Dinitro-2-methylphenol	<0.00198	mg/L	0.00198		534-52-1	10
	4-Bromophenyl phenyl ether	<0.000991	mg/L	0.000991		101-55-3	10
	4-Chlorophenyl phenyl ethe	<0.000991	mg/L	0.000991		7005-72-3	10
	4-Nitrophenol	<0.000991	mg/L	0.000991		100-02-7	10
	Acenaphthene	<0.000991	mg/L	0.000991		83-32-9	10
	Acenaphthylene	<0.000991	mg/L	0.000991		208-96-8	10
	Anthracene	<0.000991	mg/L	0.000991		120-12-7	10
	Benzidine	<0.00149	mg/L	0.00149	SD	92-87-5	10
	Benzo(a)anthracene	<0.000991	mg/L	0.000991		56-55-3	10
	Benzo(a)pyrene	<0.000991	mg/L	0.000991		50-32-8	10
	Benzo(b)fluoranthene	<0.000991	mg/L	0.000991		205-99-2	10
	Benzo(ghi)perylene	<0.000991	mg/L	0.000991		191-24-2	10
	Benzo(k)fluoranthene	<0.000991	mg/L	0.000991		207-08-9	10
	Benzyl Butyl phthalate	<0.00743	mg/L	0.00743		85-68-7	10
	Bis(2-chloroethoxy)methane	< 0.000991	mg/L	0.000991		111-91-1	10
	Bis(2-chloroethyl)ether	<0.000991	mg/L	0.000991		111-44-4	10
	Bis(2-chloroisopropyl)ether	<0.000991	mg/L	0.000991		108-60-1	10

Report Page 3 of 24

Office: 903-984-0551 * Fax: 903-984-5914

Page 3 of 7

Project 1142995

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

Printed: 04/30/2025

2397436 2504100-001 *Received:* 04/09/2025

Non-Potable Water Collected by: Client San Antonio Testing PO:

Taken: 04/03/2025 12:00:00

EP	PA 625.1	Prepared:	1169428 04/	(10/2025 0)	7:30:00 Analyzed 1172254	04/15/2025	20:47:00	DV
-	Parameter	Results	Units	RL	Flags	CAS		Bottl
С	Bis(2-ethylhexyl)phthalate	< 0.00743	mg/L	0.00743		117-81-7		10
	Bisphenol A	< 0.00991	mg/L	0.00991		80-05-7		1
C	Chrysene (Benzo(a)phenanthrene)	< 0.000991	mg/L	0.000991		218-01-9		1
С	Dibenz(a,h)anthracene	<0.000991	mg/L	0.000991		53-70-3		10
С	Diethyl phthalate	<0.00565	mg/L	0.00565		84-66-2		1
С	Dimethyl phthalate	< 0.00476	mg/L	0.00476		131-11-3		1
С	Di-n-butylphthalate	< 0.00743	mg/L	0.00743		84-74-2		1
С	Di-n-octylphthalate	<0.00198	mg/L	0.00198		117-84-0		10
С	Fluoranthene(Benzo(j,k)fluorene)	<0.000991	mg/L	0.000991		206-44-0		1
С	Fluorene	<0.000991	mg/L	0.000991		86-73-7		1
С	Hexachlorobenzene	<0.000991	mg/L	0.000991		118-74-1		1
С	Hexachlorobutadiene	<0.00102	mg/L	0.00102		87-68-3		1
С	Hexachlorocyclopentadiene	<0.000991	mg/L	0.000991		77-47-4		1
С	Hexachloroethane	<0.00198	mg/L	0.00198	S	67-72-1		1
С	Indeno(1,2,3-cd)pyrene	< 0.000991	mg/L	0.000991		193-39-5		1
С	Isophorone	< 0.000991	mg/L	0.000991		78-59-1		1
2	Naphthalene	< 0.000991	mg/L	0.000991		91-20-3		1
C	Nitrobenzene	< 0.000991	mg/L	0.000991		98-95-3		1
С	n-Nitrosodiethylamine	< 0.000991	mg/L	0.000991		55-18-5		1
С	N-Nitrosodimethylamine	< 0.000991	mg/L	0.000991		62-75-9		1
С	n-Nitroso-di-n-butylamine	< 0.000991	mg/L	0.000991		924-16-3		1
С	N-Nitrosodi-n-propylamine	< 0.000991	mg/L	0.000991		621-64-7		1
С	N-Nitrosodiphenylamine (as DPA	< 0.000991	mg/L	0.000991		86-30-6		1
С	p-Chloro-m-Cresol (4-Chloro-3-me	< 0.000991	mg/L	0.000991		59-50-7		1
С	Pentachlorobenzene	<0.000991	mg/L	0.000991		608-93-5		1
c	Pentachlorophenol	< 0.00496	mg/L	0.00496		87-86-5		1
C	Phenanthrene	<0.000991	mg/L	0.000991		85-01-8		1
c	Phenol	< 0.000991	mg/L	0.000991		108-95-2		1
C	Pyrene	<0.000991	mg/L	0.000991		129-00-0		1
C	Pyridine	<0.00134	mg/L	0.00134		110-86-1		1
EP	PA 625.1	Prepared:	1169428 04/	(10/2025 0)	7:30:00 Calculated 1172254	04/29/2025	06:18:15	C
-	Parameter	Results	Units	RL	Flags	CAS		Bott
С	Cresols Total	< 0.00793	mg/L	0.00793		1319-77-3, 6	etc.	1

Report Page 4 of 24

24 Waterway Avenue, Suite 375 The Woodlands, TX 77380

Office: 903-984-0551 * Fax: 903-984-5914

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

Printed: 04/30/2025

 2397436
 2504100-001
 Received: 04/09/2025

 Non-Potable Water
 Collected by: Client San Antonio Testing Taken: 04/03/2025
 PO:

E	FPA 632	Prepared:	1169756 0	04/10/2025	14:35:00	Analyzed 1171109	04/15/2025	19:05:00	BRU
	Parameter	Results	Units	s RL		Flags	CAS		Bottle
NELAC	Carbaryl (Sevin)	<0.0026	mg/L	0.0026			63-25-2		11
z	Diuron	<0.0000467	mg/L	0.00004	67		330-54-1		11
E	FPA 8015C	Prepared:	1169959 0	04/10/2025	23:01:00	Analyzed 1169959	04/10/2025	23:01:00	KAP
	Parameter	Results	Units	s RL		Flags	CAS		Bottle
NELAC	Ethylene Glycol	<50.0	mg/L	50.0			107-21-1		09

Sample Preparation

2397436 2504100-001 Received: 04/09/2025

04/03/2025

	Hexachlorophene Expansion	Entered				70-30-4		14
	EPA 604.1	Prepared:	1169947 04/10/2025	13:00:00	Analyzed 1172574	04/29/2025	18:59:00	BRU
	Hexachlorophene Extraction	5/931	ml					02
	EPA 604.1	Prepared:	1169947 04/10/2025	13:00:00	Analyzed 1169947	04/10/2025	13:00:00	МСС
z 	Check Limits	Completed						
		Prepared:	04/30/2025	06:36:00	Analyzed	04/30/2025	06:36:00	WJP
z z	DW Volatiles Dechlorination Vial Enviro Fee (per Sampling Group)	Verified Verified						
		Prepared:	04/09/2025	09:17:39	Calculated	04/09/2025	09:17:39	CAL

Report Page 5 of 24

24 Waterway Avenue, Suite 375 The Woodlands, TX 77380

Office: 903-984-0551 * Fax: 903-984-5914

Page 5 of 7

Project 1142995

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

Printed: 04/30/2025

2397436 2504100-001 Received: 04/09/2025

04/03/2025

z z	Bisphenol A Expansion Table 2 & 7 Semivolatiles	Entered Entered						80-05-7		10 10
E	PA 625.1	Prepared:	1169428	04/10/2025	07:30:00	Analyzed	1172284	04/15/2025	20:47:00	DWL
	Liquid-Liquid Extraction, BNA	1/1009	ml							01
E	PA 625.1	Prepared:	1169428	04/10/2025	07:30:00	Analyzed	1169428	04/10/2025	07:30:00	MCC
NELAC	Epichlorohydrin Exp.	Entered								08
E	PA 624.1	Prepared:	1170950	04/16/2025	12:12:00	Analyzed	1170950	04/16/2025	12:12:00	MR1
NELAC	For use with EXP 1CPP only	Entered								13
E	PA 622	Prepared:	1169774	04/10/2025	14:35:00	Analyzed	1171677	04/15/2025	19:44:00	KAP
Z	Permit Organophos. Pesticides	Entered								13
E	PA 614	Prepared:	1169774	04/10/2025	14:35:00	Analyzed	1171868	04/15/2025	19:44:00	KAP
	Solvent Extraction	1/963	m	l						03
	PA 608.3	Prepared:	1169774	04/10/2025	14:35:00	Analyzed	1169774	04/10/2025	14:35:00	МСС
z	Dicofol and Mirex Exp	Entered								12
E	Liquid-Liquid Extr. W/Hex Ex	1/963 Prepared:	m	04/10/2025	14:35:00	Analyzed	1172075	04/22/2025	22:06:00	03 <i>KAP</i>
L.					14.55.00	7 mary 2cd	1105704	04/10/2023	14.55.00	
	PA 608.3	Prangrad	1169764	04/10/2025	14:35:00	Analyzed	1160761	04/10/2025	14:35:00	 MCC

Report Page 6 of 24

Office: 903-984-0551 * Fax: 903-984-5914

Printed:

Page 6 of 7

Project 11**42995**

04/30/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

2397436 2504100-001 Received: 04/09/2025

04/03/2025

	EPA 632	Prepared:	1169756	04/10/2025	14:35:00	14:35:00 Analyzed 1169756 04/10/2025 1-					
i	Liquid-Liquid Extr. W/Hex Ex	1/963 <i>Prepared:</i>	ml	04/10/2025	14:35:00	Analyzed	1171109	04/15/2025	19:05:00	03 BRU	
NELAC	Carbaryl/Diuron EXP	Entered								11	
	EPA METHOD 8015C	Prepared:	1169959	04/10/2025	23:01:00	Analyzed	1169959	04/10/2025	23:01:00	KAP	
NELAC	Ethylene Glycol Expansion	Entered						107-21-1		09	

Qualifiers:

D - Duplicate RPD was higher than expected

 ${\sf S}$ - ${\sf Standard}$ reads lower than desired

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation

z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

Report Page 7 of 24

SATL-A

San Antonio Testing Laboratory

Page 7 of 7

Project 1142995

04/30/2025

Printed:

Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

Bill Peery, MS, VP Technical Services

Report Page 8 of 24

Page 1 of 13

Project 11**42995**

Printed 04/30/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

								Finted	04/30/202	43	
Analytical Set	1169959								EPA I	METHO	D 8015C
				В	Blank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Ethylene Glycol	1169959	ND	25.0	50.0	mg/L			127498490			
				(ccv						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Ethylene Glycol		469	500	mg/L	93.9	70.0 - 130		127498487			
Ethylene Glycol		437	500	mg/L	87.4	70.0 - 130		127498491			
Ethylene Glycol		542	500	mg/L	108	70.0 - 130		127498499			
Ethylene Glycol		381	500	mg/L	76.2	70.0 - 130		127498503			
Ethylene Glycol		455	500	mg/L	91.0	70.0 - 130		127498508			
Ethylene Glycol		515	500	mg/L	103	70.0 - 130		127498510			
				LC	S Dup						
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Ethylene Glycol	1169959	564	508		500	46.1 - 157	113	102	mg/L	10.2	30.0
				r	MSD						
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Ethylene Glycol	2394241	575	446	ND	500	3.50 - 183	115	89.2	mg/L	25.3	30.0
A 1 .: 10 .	1170173									101	PA 625.1
Analytical Set	11/01/3				MSD					E	FA 025.1
<u>Parameter</u>	Sample	MS	MSD -	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
2-Chlorophenol	2397115	14.4	17.1	ND	24.9	8.98 - 122	57.8	68.7	ug/L	17.1	30.0
2-Methylphenol (o-Cresol) 3&4-Methylphenol (m&p-Cresol)	2397115 2397115	15.3 15.1	17.2 17.4	ND ND	24.9 24.9	0.100 - 107 0.100 - 108	61.4 60.6	69.1 69.9	ug/L ug/L	11.7 14.2	30.0 30.0
Acenaphthene	2397115	12.8	11.5	ND	24.9	5.27 - 137	51.4	46.2	ug/L ug/L	10.7	30.0
Acenaphthylene	2397115	13.0	11.9	ND	24.9	16.2 - 123	52.2	47.8	ug/L	8.84	30.0
Anthracene	2397115	16.9	17.9	ND	24.9	17.1 - 130	67.9	71.9	ug/L	5.75	30.0
Benzo(a)anthracene	2397115	19.2	18.4	ND	24.9	32.8 - 118	77.1	73.9	ug/L	4.26	30.0
Benzo(a)pyrene	2397115	18.2	18.1	1.04	24.9	37.3 - 116	68.9	68.5	ug/L	0.584	30.0
Benzo(b)fluoranthene	2397115	18.4	18.1	ND	24.9	18.3 - 143	73.9	72.7	ug/L	1.64	30.0
Benzo(ghi)perylene	2397115	21.2	19.0	ND	24.9	11.6 - 151	85.1	76.3	ug/L	10.9	30.0
Benzo(k)fluoranthene	2397115	20.3	18.3	ND	24.9	22.2 - 139	81.5	73.5	ug/L	10.4	30.0
Benzyl Butyl phthalate	2397115	17.1	16.8	0.809	24.9	7.60 - 140	65.4	64.2	ug/L	1.86	30.0
Bis(2-ethylhexyl)phthalate Chrysene (Benzo(a)phenanthrene)	2397115 2397115	17.2 18.3	16.0 17.7	ND ND	24.9 24.9	0.100 - 190 28.2 - 122	69.1 73.5	64.3 71.1	ug/L ug/L	7.23 3.33	30.0 30.0
Dibenz(a,h)anthracene	2397115	21.2	19.3	ND	24.9	14.7 - 140	85.1	77.5	ug/L ug/L	9.38	30.0
Diethyl phthalate	2397115	19.2	18.8	ND	24.9	0.565 - 140	77.1	77.5 75.5	ug/L ug/L	2.11	30.0
Di-n-butylphthalate	2397115	20.6	19.5	ND	24.9	0.100 - 156		78.3	ug/L	5.49	30.0
Fluoranthene(Benzo(j,k)fluorene)	2397115	21.5	21.1	ND	24.9	13.3 - 135	86.3	84.7	ug/L	1.88	30.0
Fluorene	2397115	15.9	15.3	ND	24.9	32.7 - 120	63.9	61.4	ug/L	3.85	30.0
Indeno(1,2,3-cd)pyrene	2397115	20.3	19.3	ND	24.9	14.4 - 139	81.5	77.5	ug/L	5.05	30.0
Naphthalene	2397115	6.73	8.39	ND	24.9	6.27 - 127	27.0	33.7	ug/L	22.0	30.0
Phenanthrene	2397115	20.2	19.7	ND	24.9	26.9 - 125	81.1	79.1	ug/L	2.51	30.0

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 9 of 24

Page 2 of 13

Project 1142995

Printed 04/30/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

MSD UNK MSD% Parameter Sample MS **MSD** Known Limits MS% Units **RPD** Limit% Phenol 2397115 7.37 8.22 ND 24.9 0.100 - 122 29.6 33.0 10.9 30.0 ug/L 2397115 17.2 ND 24.9 0.100 - 173 65.9 69.1 30.0 Pyrene 16.4 ug/L 4.76 1170177 EPA 625.1 **Analytical Set** LCS PrepSet Reading Known Units Recover% Limits File Parameter 1 4 1 Benzidine 1169428 1.22 25.0 ug/L 4.88 0.100 - 36.9 127503934 **Analytical Set** 1170950 EPA 624.1 BFB % Limits% Parameter Sample RefMass Reading File BFB Mass 173 1170950 174 164 0.7 0 - 2.00 127519182 50.0 - 100 BFB Mass 174 1170950 95.0 23374 51.5 127519182 5.00 - 9.00 BFB Mass 175 1170950 174 1844 7.9 127519182 BFB Mass 176 1170950 174 22505 96.3 95.0 - 101 127519182 5.00 - 9.00 127519182 BFB Mass 177 1170950 176 1558 6.9 1170950 19.0 15.0 - 40.0 127519182 BFB Mass 50 95.0 8616 24064 1170950 30.0 - 60.0 127519182 BFB Mass 75 95.0 53.0 BFB Mass 95 1170950 95.0 45413 100.0 100 - 100 127519182 BFB Mass 96 1170950 95.0 2905 6.4 5.00 - 9.00 127519182 Blank PrepSet Reading MDL **MOL** Units File Parameter Epichlorohydrin 1170950 ND 6.85 20.0 ug/L 127519186 CCV Recover% Limits% File Parameter 1 4 1 Reading Known Units ug/L Epichlorohydrin 383 400 95.6 70.0 - 130 127519183 IS Areas CCVISM Low PrepSet Parameter Sample **Type** Reading High File 1170950 CCV 138300 138300 69170 207500 127519183 1170950 1.4-DichlorobenzeneD4 (ISTD) 69170 1170950 1,4-DichlorobenzeneD4 (ISTD) 1170950 LCS 136000 138300 207500 127519184 1,4-DichlorobenzeneD4 (ISTD) 1170950 LCS Dup 136000 138300 69170 207500 127519185 1170950 1,4-DichlorobenzeneD4 (ISTD) 1170950 Blank 126800 138300 69170 207500 127519186 1170950 ChlorobenzeneD5 (ISTD) 1170950 CCV 334800 334800 167400 502200 127519183 1170950 334800 ChlorobenzeneD5 (ISTD) 1170950 LCS 318800 167400 502200 127519184 1170950 ChlorobenzeneD5 (ISTD) LCS Dup 323100 334800 167400 502200 127519185 1170950 1170950 ChlorobenzeneD5 (ISTD) 1170950 Blank 305400 334800 167400 502200 127519186 1170950 133300 138300 69170 1,4-DichlorobenzeneD4 (ISTD) 2397436 Unknown 207500 127519187 1170950 ChlorobenzeneD5 (ISTD) 2397436 Unknown 326800 334800 167400 502200 127519187 1170950 IS RetTime Reading CCVISM File PrepSet Parameter Sample Type Low High 1,4-DichlorobenzeneD4 (ISTD) 1170950 LCS 11.07 11.07 11.01 11.13 127519184 1170950 1,4-DichlorobenzeneD4 (ISTD) 1170950 11.07 11,01 11.13 127519185 1170950 LCS Dup 11.07

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 10 of 24

Page 3 of 13

Project 1142995

Printed 04/30/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

								Pillited	04/30/202	43			
				IS Re	etTime								
Parameter	Sample	Type	Reading	CCVISM	Low	High		File	PrepSei	t			
1,4-DichlorobenzeneD4 (ISTD)	1170950	Blank	11.07	11.07	11.01	11.13		127519186	117095	0			
ChlorobenzeneD5 (ISTD)	1170950	LCS	8.714	8.714	8.654	8.774		127519184	117095	0			
ChlorobenzeneD5 (ISTD)	1170950	LCS Dup	8.714	8.714	8.654	8.774		127519185	117095	0			
ChlorobenzeneD5 (ISTD)	1170950	Blank	8.714	8.714	8.654	8.774		127519186	117095	0			
1,4-DichlorobenzeneD4 (ISTD)	2397436	Unknown	11.07	11.07	11.01	11.13		127519187	117095	0			
ChlorobenzeneD5 (ISTD)	2397436	Unknown	8.714	8.714	8.654	8.774		127519187	117095	0			
				LCS	5 Dup								
Parameter PrepSet LCS LCSD Known Limits% LCS% LCSD% Units RPD Limit% Enjohlersburdein 1170050 266 267 400 275 190 015 019 pg/l 0.227 20.0													
Epichlorohydrin	1170950	366	367		400	27.5 - 189	91.5	91.8	ug/L	0.327	30.0		
				Surr	ogate								
Parameter	Sample	Type	Reading	Known	Units	Recover%	Limits%	File					
1,2-DCA-d4 (SURR)	1170950	CCV	22.7	20.0	ug/L	114 *	72.3 - 106	127519183					
1,2-DCA-d4 (SURR)	1170950	LCS	22.4	20.0	ug/L	112 *	72.3 - 106	127519184					
1,2-DCA-d4 (SURR)	1170950	LCS Dup	23.2	20.0	ug/L	116 *	72.3 - 106	127519185					
1,2-DCA-d4 (SURR)	1170950	Blank	23.4	20.0	ug/L	117 *	72.3 - 106	127519186					
Bromofluorobenzene (SURR)	1170950	CCV	23.5	20.0	ug/L	118	87.2 - 122	127519183					
Bromofluorobenzene (SURR)	1170950	LCS	22.8	20.0	ug/L	114	87.2 - 122	127519184					
Bromofluorobenzene (SURR)	1170950	LCS Dup	23.0	20.0	ug/L	115	87.2 - 122	127519185					
Bromofluorobenzene (SURR)	1170950	Blank	22.8	20.0	ug/L	114	87.2 - 122	127519186					
Dibromofluoromethane (SURR)	1170950	CCV	19.9	20.0	ug/L	99.5	46.7 - 114	127519183					
Dibromofluoromethane (SURR)	1170950	LCS	19.7	20.0	ug/L	98.5	46.7 - 114	127519184					
Dibromofluoromethane (SURR)	1170950	LCS Dup	20.1	20.0	ug/L	100	46.7 - 114	127519185					
Dibromofluoromethane (SURR)	1170950	Blank	20.2	20.0	ug/L	101	46.7 - 114	127519186					
TolueneD8 (SURR)	1170950	CCV	24.2	20.0	ug/L	121 *	57.4 - 112	127519183					
TolueneD8 (SURR)	1170950	LCS	24.4	20.0	ug/L	122 *	57.4 - 112	127519184					
TolueneD8 (SURR)	1170950	LCS Dup	24.1	20.0	ug/L	120 *	57.4 - 112	127519185					
TolueneD8 (SURR)	1170950	Blank	23.7	20.0	ug/L	118 *	57.4 - 112	127519186					
1,2-DCA-d4 (SURR)	2397436	Unknown	23.2	20.0	ug/L	116 *	72.3 - 106	127519187					
Bromofluorobenzene (SURR)	2397436	Unknown	23.7	20.0	ug/L	118	87.2 - 122	127519187					
Dibromofluoromethane (SURR)	2397436	Unknown	19.7	20.0	ug/L	98.5	46.7 - 114	127519187					
TolueneD8 (SURR)	2397436	Unknown	23.8	20.0	ug/L	119 *	57.4 - 112	127519187					
Analytical Set	1171109										EPA 632		
,													

	Blank										
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units		File				
Carbaryl (Sevin)	1169756	ND	66.1	2500	ug/L		127521652				
Diuron	1169756	ND	44.4	45.0	ug/L		127521652				
					CCV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%	File				
Carbaryl (Sevin)		920	1000	ug/L	92.0	70.0 - 130	127521651				
Carbaryl (Sevin)		901	1000	ug/L	90.1	70.0 - 130	127521655				
Carbaryl (Sevin)		829	1000	ug/L	82.9	70.0 - 130	127521658				
Carbaryl (Sevin)		941	1000	ug/L	94.1	70.0 - 130	127521662				

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 11 of 24

Page 4 of 13

Project 11**4299**5

Printed 04/30/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

ccv											
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Carbaryl (Sevin)		973	1000	ug/L	97.3	70.0 - 130		127521666			
Diuron		897	1000	ug/L	89.7	70.0 - 130		127521651			
Diuron		886	1000	ug/L	88.6	70.0 - 130		127521655			
Diuron		868	1000	ug/L	86.8	70.0 - 130		127521658			
Diuron		895	1000	ug/L	89.5	70.0 - 130		127521662			
Diuron		950	1000	ug/L	95.0	70.0 - 130		127521666			
				LC	S Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Carbaryl (Sevin)	1169756	863	812		1000	17.1 - 131	86.3	81.2	ug/L	6.09	30.0
Diuron	1169756	1480	1180		1000	0.100 - 138	148 *	118	ug/L	22.6	30.0
				ı	MSD						
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Carbaryl (Sevin)	2397965	1.20	0.854	ND	996	0.100 - 215	0.120	0.0855 *	ug/L	33.7 *	30.0
Diuron	2397965	5.77	4.76	ND	996	0.100 - 148	0.578	0.476	ug/L	19.2	50.0
Analytical Set	1171677										EPA 622

	Analytical Set	1171677										EPA 622
					В	lank						
<u>Parameter</u>		PrepSet	Reading	MDL	MQL	Units			File			
Chlorpyrifos		1169774	ND	0.0000904	0.050	ug/L			127531987			
					(CCV						
<u>Parameter</u>			Reading	Known	Units	Recover%	Limits%		File			
Chlorpyrifos			1050	1000	ug/L	105	48.0 - 150		127531986			
Chlorpyrifos			1310	1000	ug/L	131	48.0 - 150		127531995			
Chlorpyrifos			1230	1000	ug/L	123	48.0 - 150		127531998			
					LCS	S Dup						
<u>Parameter</u>		PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Chlorpyrifos		1169774	0.637	0.655		1.00	0.100 - 128	63.7	65.5	ug/L	2.79	30.0
					M	ISD						
<u>Parameter</u>		Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Chlorpyrifos		2397964	0.293	0.321	ND	0.958	70.0 - 130	30.3 *	33.2 *	ug/L	9.12	30.0
					Sur	rogate						
<u>Parameter</u>		Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
Tributylphosph	ate		CCV	1040	1000	ug/L	104	0.100 - 115	127531986			
Tributylphosph	ate		CCV	1150	1000	ug/L	115	0.100 - 115	127531995			
Tributylphosph	ate		CCV	259	1000	ug/L	25.9	0.100 - 115	127531998			
Triphenylphosp	hate		CCV	973	1000	ug/L	97.3	0.100 - 115	127531986			
Triphenylphosp	hate		CCV	1150	1000	ug/L	115	0.100 - 115	127531995			
Triphenylphosp	hate		CCV	1130	1000	ug/L	113	0.100 - 115	127531998			
Tributylphosph	ate	1169774	Blank	669	1000	ug/L	66.9	0.100 - 115	127531987			
Tributylphosph	ate	1169774	LCS	608	1000	ug/L	60.8	0.100 - 115	127531988			
Tributylphosph	ate	1169774	LCS Dup	614	1000	ug/L	61.4	0.100 - 115	127531989			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 12 of 24

Page 5 of 13

Project 1142995

Printed 04/30/2025

SATL-A

Parameter

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

Sample

Type

Reading

0.100 - 115 1169774 Blank 618 1000 ug/L 61.8 127531987 Triphenylphosphate ug/L 1169774 LCS 525 1000 52.5 0.100 - 115127531988 Triphenylphosphate Triphenylphosphate 1169774 LCS Dup 532 1000 ug/L 53.2 0.100 - 115 127531989 Tributylphosphate 2397964 MS 0.548 0.967 ug/L 56.7 0.100 - 115 127531992 Tributylphosphate 2397964 MSD 0.499 0.958 ug/L 52.1 0.100 - 115127531993 0.415 42.9 0.100 - 115 Triphenylphosphate 2397964 MS 0.967 ug/L 127531992 Triphenylphosphate 2397964 MSD 0.423 0.958 ug/L 44.2 0.100 - 115 127531993 1171868 **EPA 614 Analytical Set Blank** PrepSet Reading MDL**MQL** Units File Azinphos-methyl (Guthion) 1169774 ND 41.4 50.0 ug/L 127535680 Demeton 1169774 ND 31.9 50.0 ug/L 127535680 Diazinon 1169774 ND 19.7 50.0 ug/L 127535680 Malathion 1169774 ND 24.8 50.0 ug/L 127535680 Parathion, ethyl 1169774 ND 23.9 50.0 ug/L 127535680 Parathion, methyl 1169774 ND 27.4 50.0 ug/L 127535680 CCV Parameter 1 4 1 Reading Known Units Recover% Limits% File Azinphos-methyl (Guthion) 902 1000 ug/L 90.2 37.5 - 164 127535679 ug/L Azinphos-methyl (Guthion) 2200 1000 220 37.5 - 164 127535688 196 37.5 - 164 Azinphos-methyl (Guthion) 1960 1000 ug/L 127535691 99.9 Demeton 999 1000 ug/L 58.6 - 150 127535679 Demeton 1210 1000 ug/L 121 58.6 - 150 127535688 ug/L Demeton 1190 1000 119 58.6 - 150 127535691 998 1000 ug/L 99.8 65.4 - 138 127535679 Diazinon Diazinon 1170 1000 ug/L 117 65.4 - 138 127535688 Diazinon 1220 1000 ug/L 122 65.4 - 138 127535691 Malathion 1000 1000 ug/L 100 49.5 - 160 127535679 Malathion 1370 1000 ug/L 137 49.5 - 160 127535688 Malathion 1260 1000 ug/L 126 49.5 - 160 127535691 Parathion, ethyl 988 1000 ug/L 98.8 56.0 - 142 127535679 Parathion, ethyl 1360 1000 ug/L 136 56.0 - 142 127535688 Parathion, ethyl 1260 1000 ug/L 126 56.0 - 142 127535691 Parathion, methyl 1030 1000 ug/L 103 12.6 - 194 127535679 Parathion, methyl 1720 1000 ug/L 172 12.6 - 194 127535688 12.6 - 194 1530 1000 153 127535691 Parathion, methyl ug/L LCS Dup RPD PrepSet LCS LCSDKnown Limits% LCS% LCSD% Units Limit% Azinphos-methyl (Guthion) 1169774 1000 976 1000 0.100 - 155 100 97.6 ug/L 2.43 30.0 Demeton 1169774 451 448 1000 0.100 - 109 45.1 44.8 ug/L 0.667 30.0 Diazinon 1169774 618 632 1000 0.100 - 125 61.8 63.2 ug/L 2.24 30.0

Surrogate

Units

Known

Recover%

Limits%

File

Email: Kilgore.ProjectManagement@spllabs.com

1169774

554

563

1000

0.100 - 130

55.4

56.3

Report Page 13 of 24

1.61

ug/L

30.0

Malathion

Page 6 of 13

Project 11**42995**

Printed 04/30/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

LCS Dup											
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Parathion, ethyl	1169774	624	667		1000	0.100 - 122	62.4	66.7	ug/L	6.66	30.0
Parathion, methyl	1169774	764	796		1000	0.100 - 131	76.4	79.6	ug/L	4.10	30.0
				M	1SD						
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Azinphos-methyl (Guthion)	2397964	2.36	2.12	ND	996	30.0 - 150	0.237 *	0.213 *	ug/L	10.7	30.0
Demeton	2397964	0.336	0.309	ND	996	0.100 - 124	0.0337 *	0.031 *	ug/L	8.37	30.0
Diazinon	2397964	0.427	0.397	ND	996	0.100 - 212	0.0429 *	0.0399 *	ug/L	7.28	30.0
Malathion	2397964	0.433	0.381	ND	996	0.100 - 183	0.0435 *	0.0383 *	ug/L	12.8	30.0
Parathion, ethyl	2397964	0.589	0.579	ND	996	0.100 - 195	0.0591 *	0.0581 *	ug/L	1.71	30.0
Parathion, methyl	2397964	0.976	0.852	ND	996	0.100 - 195	0.098 *	0.0855 *	ug/L	13.6	30.0
				Suri	rogate						
Parameter	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
Tributylphosphate		CCV	1040	2000	ug/L	52.0	0.100 - 106	127535679			
Tributylphosphate		CCV	1150	2000	ug/L	57.5	0.100 - 106	127535688			
Tributylphosphate		CCV	259	2000	ug/L	13.0	0.100 - 106	127535691			
Triphenylphosphate		CCV	973	2000	ug/L	48.6	0.100 - 172	127535679			
Triphenylphosphate		CCV	1150	2000	ug/L	57.5	0.100 - 172	127535688			
Triphenylphosphate		CCV	1130	2000	ug/L	56.5	0.100 - 172	127535691			
Tributylphosphate	1169774	Blank	669	2000	ug/L	33.4	0.100 - 106	127535680			
Tributylphosphate	1169774	LCS	608	2000	ug/L	30.4	0.100 - 106	127535681			
Tributylphosphate	1169774	LCS Dup	614	2000	ug/L	30.7	0.100 - 106	127535682			
Triphenylphosphate	1169774	Blank	618	2000	ug/L	30.9	0.100 - 172	127535680			
Triphenylphosphate	1169774	LCS	525	2000	ug/L	26.2	0.100 - 172	127535681			
Triphenylphosphate	1169774	LCS Dup	532	2000	ug/L	26.6	0.100 - 172	127535682			
Tributylphosphate	2397436	Unknown	0.567	2.08	ug/L	27.3	0.100 - 106	127535683			
Triphenylphosphate	2397436	Unknown	0.489	2.08	ug/L	23.5	0.100 - 172	127535683			
Tributylphosphate	2397964	MS	0.548	1.93	ug/L	28.4	0.100 - 106	127535685			
Tributylphosphate	2397964	MSD	0.499	1.92	ug/L	26.0	0.100 - 106	127535686			
Triphenylphosphate	2397964	MS	0.415	1.93	ug/L	21.5	0.100 - 172	127535685			
Triphenylphosphate	2397964	MSD	0.423	1.92	ug/L	22.0	0.100 - 172	127535686			
Analytical Set	1172075									E	PA 608.3
				В	lank						
Baramatar	Dran Cat	Dooding	MDI	MOI	Linita			Eilo			

<u>Parameter</u> Kelthane (Dicofol) Mirex	PrepSet 1169764 1169764	Reading ND ND	MDL 0.0208 0.00889	MQL 0.100 0.015	Units ug/L ug/L CCV		File 127540488 127540488
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%	File
Kelthane (Dicofol)		105	100	ug/L	105	70.0 - 130	127540487
Kelthane (Dicofol)		79.4	100	ug/L	79.4	70.0 - 130	127540497
Mirex		50.7	50.0	ug/L	101	70.0 - 130	127540487
Mirex		56.9	50.0	ug/L	114	70.0 - 130	127540497

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 14 of 24

Page 7 of 13

Project 1142995

Printed 04/30/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

LCS Dup LCS% LCSD% Parameter PrepSet LCSLCSDKnown Limits% Units **RPD** Limit% 1169764 2.01 1.00 50.0 - 231 201 187 30.0 Kelthane (Dicofol) 1.87 ug/L 7.22 1169764 0.723 1.00 50.0 - 130 72.3 65.3 Mirex 10.2 30.0 0.653 ug/L Surrogate Sample Reading Known Units Recover% Limits% File Parameter 1 4 1 Type Decachlorobiphenyl CCV 50.6 100 ug/L 50.6 10.0 - 150 127540487 Decachlorobiphenyl CCV 44.8 100 ug/L 44.8 10.0 - 150 127540497 Tetrachloro-m-Xylene (Surr) CCV 50.4 100 ug/L 50.4 10.0 - 150 127540487 Tetrachloro-m-Xylene (Surr) **CCV** 52.0 100 ug/L 52.0 10.0 - 150 127540497 Decachlorobiphenyl 1169764 Blank 67.2 100 ug/L 67.2 10.0 - 150 127540488 Decachlorobiphenyl 1169764 LCS 59.5 100 ug/L 59.5 10.0 - 150 127540489 Decachlorobiphenyl 1169764 LCS Dup 60.8 100 60.8 10.0 - 150 127540490 ug/L 59.2 59.2 Tetrachloro-m-Xylene (Surr) 1169764 Blank 100 ug/L 10.0 - 150 127540488 Tetrachloro-m-Xylene (Surr) 1169764 46.4 100 ug/L 46.4 10.0 - 150 127540489 Tetrachloro-m-Xylene (Surr) 1169764 LCS Dup 47.1 100 47.1 10.0 - 150 127540490 ug/L Decachlorobiphenyl ug/L 127540491 2397436 Unknown 0.358 34.4 10.0 - 150 1.04 Tetrachloro-m-Xylene (Surr) 2397436 Unknown 0.543 1.04 ug/L 52.2 10.0 - 150 127540491

Analytical Set 1172254 EPA 625.1

Blank

<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units	File
1,2,4,5-Tetrachlorobenzene	1169428	ND	1.03	1.03	ug/L	127544422
1,2,4-Trichlorobenzene	1169428	ND	0.941	1.00	ug/L	127544422
1,2-Dichlorobenzene	1169428	ND	1.04	5.00	ug/L	127544422
1,2-DPH (as azobenzene)	1169428	ND	0.238	1.00	ug/L	127544422
1,3-Dichlorobenzene	1169428	ND	0.954	5.00	ug/L	127544422
1,4-Dichlorobenzene	1169428	ND	1.01	5.00	ug/L	127544422
2,4,5-Trichlorophenol	1169428	ND	0.961	5.00	ug/L	127544422
2,4,6-Trichlorophenol	1169428	ND	1.24	2.00	ug/L	127544422
2,4-Dichlorophenol	1169428	ND	0.222	1.00	ug/L	127544422
2,4-Dimethylphenol	1169428	ND	0.536	1.00	ug/L	127544422
2,4-Dinitrophenol	1169428	ND	1.34	2.00	ug/L	127544422
2,4-Dinitrotoluene	1169428	ND	1.35	2.00	ug/L	127544422
2,6-Dinitrotoluene	1169428	ND	1.29	2.00	ug/L	127544422
2-Chloronaphthalene	1169428	ND	0.150	1.00	ug/L	127544422
2-Chlorophenol	1169428	ND	0.275	1.00	ug/L	127544422
2-Methylphenol (o-Cresol)	1169428	ND	8.48	10.0	ug/L	127544422
2-Nitrophenol	1169428	ND	0.554	1.00	ug/L	127544422
3&4-Methylphenol (m&p-Cresol)	1169428	ND	7.78	8.00	ug/L	127544422
3,3'-Dichlorobenzidine	1169428	ND	1.39	2.00	ug/L	127544422
4,6-Dinitro-2-methylphenol	1169428	ND	1.15	2.00	ug/L	127544422
4-Bromophenyl phenyl ether	1169428	ND	0.772	1.00	ug/L	127544422
4-Chlorophenyl phenyl ethe	1169428	ND	0.202	1.00	ug/L	127544422
4-Nitrophenol	1169428	ND	0.789	1.00	ug/L	127544422
Acenaphthene	1169428	ND	0.177	1.00	ug/L	127544422

Email: Kilgore. Project Management@spllabs.com

Report Page 15 of 24

Page 8 of 13

Project 1142995

Printed 04/30/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

				Е	Blank		
Parameter	PrepSet	Reading	MDL	MQL	Units		File
Acenaphthylene	1169428	ND	0.240	1.00	ug/L		127544422
Anthracene	1169428	ND	0.241	1.00	ug/L		127544422
Benzidine	1169428	ND	1.40	1.50	ug/L		127544422
Benzo(a)anthracene	1169428	ND	0.225	1.00	ug/L		127544422
Benzo(a)pyrene	1169428	ND	0.900	1.00	ug/L		127544422
Benzo(b)fluoranthene	1169428	ND	0.547	1.00	ug/L		127544422
Benzo(ghi)perylene	1169428	ND	0.881	1.00	ug/L		127544422
Benzo(k)fluoranthene	1169428	ND	0.252	1.00	ug/L		127544422
Benzyl Butyl phthalate	1169428	0.240	0.204	7.50	ug/L		127544422
Bis(2-chloroethoxy)methane	1169428	ND	0.277	1.00	ug/L		127544422
Bis(2-chloroethyl)ether	1169428	ND	0.348	1.00	ug/L		127544422
Bis(2-chloroisopropyl)ether	1169428	ND	0.738	1.00	ug/L		127544422
Bis(2-ethylhexyl)phthalate	1169428	ND	1.12	7.50	ug/L		127544422
Chrysene (Benzo(a)phenanthrene)	1169428	ND	0.289	1.00	ug/L		127544422
Dibenz(a,h)anthracene	1169428	ND	0.689	1.00	ug/L		127544422
Diethyl phthalate	1169428	0.300	0.253	5.70	ug/L		127544422
Dimethyl phthalate	1169428	ND	0.540	4.80	ug/L		127544422
Di-n-butylphthalate	1169428	ND	0.978	7.50	ug/L		127544422
Di-n-octylphthalate	1169428	ND	1.92	2.00	ug/L		127544422
Fluoranthene(Benzo(j,k)fluorene)	1169428	ND	0.318	1.00	ug/L		127544422
Fluorene	1169428	ND	0.275	1.00	ug/L		127544422
Hexachlorobenzene	1169428	ND	0.871	1.00	ug/L		127544422
Hexachlorobutadiene	1169428	ND	1.03	1.03	ug/L		127544422
Hexachlorocyclopentadiene	1169428	ND	0.536	1.00	ug/L		127544422
Hexachloroethane	1169428	ND	1.05	2.00	ug/L		127544422
Indeno(1,2,3-cd)pyrene	1169428	ND	0.596	1.00	ug/L		127544422
Isophorone	1169428	ND	0.429	1.00	ug/L		127544422
Naphthalene	1169428	ND	0.225	1.00	ug/L		127544422
Nitrobenzene	1169428	ND	0.271	1.00	ug/L		127544422
n-Nitrosodiethylamine	1169428	ND	0.747	1.00	ug/L		127544422
N-Nitrosodimethylamine	1169428	ND	0.542	1.00	ug/L		127544422
n-Nitroso-di-n-butylamine	1169428	ND	0.210	1.00	ug/L		127544422
N-Nitrosodi-n-propylamine	1169428	ND	0.425	1.00	ug/L		127544422
N-Nitrosodiphenylamine (as DPA	1169428	ND	0.404	1.00	ug/L		127544422
p-Chloro-m-Cresol (4-Chloro-3-me	1169428	ND	0.588	1.00	ug/L		127544422
Pentachlorobenzene	1169428	ND	0.977	1.00	ug/L		127544422
Pentachlorophenol	1169428	ND	0.960	5.00	ug/L		127544422
Phenanthrene	1169428	ND	0.269	1.00	ug/L		127544422
Phenol	1169428	ND	0.332	1.00	ug/L		127544422
Pyrene	1169428	ND	0.291	1.00	ug/L		127544422
Pyridine	1169428	ND	1.35	1.35	ug/L		127544422
					CCV		
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%	File
1,2,4,5-Tetrachlorobenzene		49200	50000	ug/L	98.4	60.0 - 140	127544421

 $Email: Kilgore. Project {\color{blue}Management@spllabs.com}$

Report Page 16 of 24

Page 9 of 13

Project 11**42995**

Printed 04/30/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

CCV

Parameter	Reading	Known	Units	Recover%	Limits%	File
1,2,4-Trichlorobenzene	56900	50000	ug/L	114	61.0 - 130	127544421
1,2-Dichlorobenzene	53600	50000	ug/L	107	60.0 - 140	127544421
1,2-DPH (as azobenzene)	59900	50000	ug/L	120	60.0 - 140	127544421
1,3-Dichlorobenzene	51700	50000	ug/L	103	60.0 - 140	127544421
1,4-Dichlorobenzene	49400	50000	ug/L	98.8	60.0 - 140	127544421
2,4,5-Trichlorophenol	49400	50000	ug/L	98.8	69.0 - 130	127544421
2,4,6-Trichlorophenol	48900	50000	ug/L	97.8	69.0 - 130	127544421
2,4-Dichlorophenol	52000	50000	ug/L	104	64.0 - 130	127544421
2,4-Dimethylphenol	48000	50000	ug/L	96.0	58.0 - 130	127544421
2,4-Dinitrophenol	52900	50000	ug/L	106	39.0 - 173	127544421
2,4-Dinitrotoluene	52000	50000	ug/L	104	53.0 - 130	127544421
2,6-Dinitrotoluene	54900	50000	ug/L	110	68.0 - 137	127544421
2-Chloronaphthalene	50200	50000	ug/L	100	70.0 - 130	127544421
2-Chlorophenol	49400	50000	ug/L	98.8	55.0 - 130	127544421
2-Methylphenol (o-Cresol)	45100	50000	ug/L	90.2	60.0 - 140	127544421
2-Nitrophenol	55000	50000	ug/L	110	61.0 - 163	127544421
3&4-Methylphenol (m&p-Cresol)	44700	50000	ug/L	89.4	60.0 - 140	127544421
3,3'-Dichlorobenzidine	60400	50000	ug/L	121	18.0 - 213	127544421
4,6-Dinitro-2-methylphenol	55300	50000	ug/L	111	56.0 - 130	127544421
4-Bromophenyl phenyl ether	52400	50000	ug/L	105	70.0 - 130	127544421
4-Chlorophenyl phenyl ethe	50500	50000	ug/L	101	57.0 - 145	127544421
4-Nitrophenol	56900	50000	ug/L	114	35.0 - 135	127544421
Acenaphthene	47600	50000	ug/L	95.2	70.0 - 130	127544421
Acenaphthylene	51200	50000	ug/L	102	60.0 - 130	127544421
Anthracene	53100	50000	ug/L	106	58.0 - 130	127544421
Benzidine	24300	50000	ug/L	48.6	20.0 - 180	127544421
Benzo(a)anthracene	56800	50000	ug/L	114	42.0 - 133	127544421
Benzo(a)pyrene	57000	50000	ug/L	114	32.0 - 148	127544421
Benzo(b)fluoranthene	56700	50000	ug/L	113	42.0 - 140	127544421
Benzo(ghi)perylene	62900	50000	ug/L	126	13.0 - 195	127544421
Benzo(k)fluoranthene	54400	50000	ug/L	109	25.0 - 146	127544421
Benzyl Butyl phthalate	57500	50000	ug/L	115	43.0 - 140	127544421
Bis(2-chloroethoxy)methane	52500	50000	ug/L	105	52.0 - 164	1275 444 21
Bis(2-chloroethyl)ether	46000	50000	ug/L	92.0	52.0 - 130	1275 444 21
Bis(2-chloroisopropyl)ether	41400	50000	ug/L	82.8	63.0 - 139	127544421
Bis(2-ethylhexyl)phthalate	53500	50000	ug/L	107	43.0 - 137	127544421
Chrysene (Benzo(a)phenanthrene)	49300	50000	ug/L	98.6	44.0 - 140	127544421
Dibenz(a,h)anthracene	54300	50000	ug/L	109	13.0 - 200	127544421
Diethyl phthalate	50200	50000	ug/L	100	47.0 - 130	127544421
Dimethyl phthalate	50700	50000	ug/L	101	50.0 - 130	127544421
Di-n-butylphthalate	47100	50000	ug/L	94.2	52.0 - 130	127544421
Di-n-octylphthalate	49600	50000	ug/L	99.2	21.0 - 132	127544421
Fluoranthene(Benzo(j,k)fluorene)	50000	50000	ug/L	100	47.0 - 130	127544421
Fluorene	51500	50000	ug/L	103	70.0 - 130	127544421
Hexachlorobenzene	53700	50000	ug/L	107	38.0 - 142	127544421

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 17 of 24

Page 10 of 13

Project 1142995

Printed 04/30/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

ccv												
Parameter	Reading	Known	Units	Recover%	Limits%		File					
Hexachlorobutadiene	57000	50000	ug/L	114	68.0 - 130		127544421					
Hexachlorocyclopentadiene	41200	50000	ug/L	82.4	60.0 - 140		127544421					
Hexachloroethane	48400	50000	ug/L	96.8	55.0 - 130		127544421					
Indeno(1,2,3-cd)pyrene	55900	50000	ug/L	112	13.0 - 151		127544421					
Isophorone	63800	50000	ug/L	128	52.0 - 180		127544421					
Naphthalene	55400	50000	ug/L	111	70.0 - 130		127544421					
Nitrobenzene	60200	50000	ug/L	120	54.0 - 158		127544421					
n-Nitrosodiethylamine	49800	50000	ug/L	99.6	60.0 - 140		127544421					
N-Nitrosodimethylamine	56900	50000	ug/L	114	60.0 - 140		127544421					
n-Nitroso-di-n-butylamine	57300	50000	ug/L	115	60.0 - 140		127544421					
N-Nitrosodi-n-propylamine	50000	50000	ug/L	100	59.0 - 170		127544421					
N-Nitrosodiphenylamine (as DPA	46700	50000	ug/L	93.4	60.0 - 140		127544421					
p-Chloro-m-Cresol (4-Chloro-3-me	55400	50000	ug/L	111	68.0 - 130		127544421					
Pentachlorobenzene	47400	50000	ug/L	94.8	60.0 - 140		127544421					
Pentachlorophenol	53000	50000	ug/L	106	42.0 - 152		127544421					
Phenanthrene	55800	50000	ug/L	112	67.0 - 130		127544421					
Phenol	45100	50000	ug/L	90.2	48.0 - 130		127544421					
Pyrene	52000	50000	ug/L	104	70.0 - 130		127544421					
Pyridine	54700	50000	ug/L	109	60.0 - 140		1275 444 21					
			DI	FTPP								
<u>Parameter</u>	RefMass	Reading	%	Limits%			File					
DFTPP Mass 127 6308 :	3 198	38986	56.6	40.0 - 60.0			127544419					
DFTPP Mass 197 6308 :	3 198	51	0.1	0 - 1.00			127544419					
DFTPP Mass 198 6308 :	3 198	68870	100.0	100 - 100			127544419					
DFTPP Mass 199 6308 :	3 198	4640	6.7	5.00 - 9.00			127544419					
DFTPP Mass 275 6308 :	3 198	15304	22.2	10.0 - 30.0			127544419					
DFTPP Mass 365 6308 :	3 198	2266	3.3	1.00 - 100			127544419					
DFTPP Mass 441 6308 :	3 443	7451	76.0	0 - 100			127544419					
DFTPP Mass 442 6308 :	3 198	49827	72.3	40.0 - 100			127544419					
DFTPP Mass 443 6308 3	3 442	9806	19.7	17.0 - 23.0			127544419					
DFTPP Mass 51 6308 3	3 198	21880	31.8	30.0 - 60.0			127544419					
DFTPP Mass 68 6308 :	3 69.0	20	0.1	0 - 2.00			127544419					
DFTPP Mass 69 6308 :	3 198	26267	38.1	0 - 100			127544419					
DFTPP Mass 70 6308	3 69.0	120	0.5	0 - 2.00			127544419					
			LC	S Dup								
<u>Parameter</u> PrepS	et LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%		
1,2,4,5-Tetrachlorobenzene 11694	28 13.5	13.4		25.0	27.5 - 85.5	54.0	53.6	ug/L	0.743	50.0		
1,2,4-Trichlorobenzene 11694	28 10.6	10.6		25.0	44.0 - 142	42.4 *	42.4 *	ug/L	0	50.0		
1,2-Dichlorobenzene 11694	28 11.1	11.4		25.0	23.0 - 81.8	44.4	45.6	ug/L	2.67	50.0		
1,2-DPH (as azobenzene) 11694	28 21.6	21.5		25.0	12.6 - 110	86.4	86.0	ug/L	0.464	50.0		
1,3-Dichlorobenzene 11694	28 8.73	8.76		25.0	21.1 - 80.5	34.9	35.0	ug/L	0.286	50.0		
1,4-Dichlorobenzene 11694	28 9.92	9.96		25.0	21.4 - 76.9	39.7	39.8	ug/L	0.252	50.0		
2,4,5-Trichlorophenol	28 22.1	21.7		25.0	51.3 - 109	88.4	86.8	ug/L	1.83	50.0		

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 18 of 24

Page 11 of 13

Project 1142995

Printed 04/30/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

LCS Dup

			LCS	э Бор						
<u>Parameter</u>	PrepSet	LCS	LCSD	Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
2,4,6-Trichlorophenol	1169428	20.9	20.7	25.0	37.0 - 144	83.6	82.8	ug/L	0.962	58.0
2,4-Dichlorophenol	1169428	20.8	19.4	25.0	39.0 - 135	83.2	77.6	ug/L	6.97	50.0
2,4-Dimethylphenol	1169428	3.93	6.13	25.0	23.0 - 120	15.7 *	24.5	ug/L	43.8	68.0
2,4-Dinitrophenol	1169428	13.6	12.5	25.0	0.100 - 191	54.4	50.0	ug/L	8.43	132
2,4-Dinitrotoluene	1169428	22.2	21.7	25.0	39.0 - 139	88.8	86.8	ug/L	2.28	42.0
2,6-Dinitrotoluene	1169428	20.8	20.2	25.0	50.0 - 158	83.2	80.8	ug/L	2.93	48.0
2-Chloronaphthalene	1169428	15.3	12.7	25.0	60.0 - 120	61.2	50.8 *	ug/L	18.6	24.0
2-Chlorophenol	1169428	17.2	17.0	25.0	23.0 - 134	68.8	68.0	ug/L	1.17	61.0
2-Methylphenol (o-Cresol)	1169428	14.3	14.9	25.0	38.9 - 76.1	57.2	59.6	ug/L	4.11	50.0
2-Nitrophenol	1169428	18.7	18.2	25.0	29.0 - 182	74.8	72.8	ug/L	2.71	55.0
3&4-Methylphenol (m&p-Cresol)	1169428	12.4	13.1	25.0	33.0 - 70.4	49.6	52.4	ug/L	5.49	50.0
3,3'-Dichlorobenzidine	1169428	17.9	17.7	25.0	0.100 - 262	71.6	70.8	ug/L	1.12	108
4,6-Dinitro-2-methylphenol	1169428	18.8	18.3	25.0	0.100 - 181	75.2	73.2	ug/L	2.70	203
4-Bromophenyl phenyl ether	1169428	21.0	20.1	25.0	53.0 - 127	84.0	80.4	ug/L	4.38	43.0
4-Chlorophenyl phenyl ethe	1169428	19.5	18.7	25.0	25.0 - 158	78.0	74.8	ug/L	4.19	61.0
4-Nitrophenol	1169428	7.77	7.78	25.0	0.100 - 132	31.1	31.1	ug/L	0	131
Acenaphthene	1169428	17.7	16.6	25.0	47.0 - 145	70.8	66.4	ug/L	6.41	48.0
Acenaphthylene	1169428	18.3	17.4	25.0	33.0 - 145	73.2	69.6	ug/L	5.04	74.0
Anthracene	1169428	22.2	21.4	25.0	27.0 - 133	88.8	85.6	ug/L	3.67	66.0
Benzidine	1169428	0	0.760	25.0	70.0 - 130		3.04 *	ug/L	200 *	30.0
Benzo(a)anthracene	1169428	21.6	21.6	25.0	33.0 - 143	86.4	86.4	ug/L	0	53.0
Benzo(a)pyrene	1169428	22.9	21.9	25.0	17.0 - 163	91.6	87.6	ug/L	4.46	72.0
Benzo(b)fluoranthene	1169428	22.2	21.4	25.0	24.0 - 159	88.8	85.6	ug/L	3.67	71.0
Benzo(ghi)perylene	1169428	23.5	22.6	25.0	0.100 - 219	94.0	90.4	ug/L	3.90	97.0
Benzo(k)fluoranthene	1169428	25.6	25.4	25.0	11.0 - 162	102	102	ug/L	0	63.0
Benzyl Butyl phthalate	1169428	24.5	24.3	25.0	0.100 - 152	98.0	97.2	ug/L	0.820	60.0
Bis(2-chloroethoxy)methane	1169428	19.8	18.7	25.0	33.0 - 184	79.2	74.8	ug/L	5.71	54.0
Bis(2-chloroethyl)ether	1169428	17.7	17.2	25.0	12.0 - 158	70.8	68.8	ug/L	2.87	108
Bis(2-chloroisopropyl)ether	1169428	18.1	17.2	25.0	36.0 - 166	72.4	68.8	ug/L	5.10	76.0
Bis(2-ethylhexyl)phthalate	1169428	22.3	21.7	25.0	8.00 - 158	89.2	86.8	ug/L	2.73	82.0
Chrysene (Benzo(a)phenanthrene)	1169428	24.0	22.2	25.0	17.0 - 168	96.0	88.8	ug/L	7.79	87.0
Dibenz(a,h)anthracene	1169428	21.1	21.0	25.0	0.100 - 227	84.4	84.0	ug/L	0.475	126
Diethyl phthalate	1169428	23.6	22.5	25.0	0.100 - 120	94.4	90.0	ug/L	4.77	100
Dimethyl phthalate	1169428	21.9	21.2	25.0	0.100 - 120	87.6	84.8	ug/L	3.25	183
Di-n-butylphthalate	1169428	24.7	23.8	25.0	1.00 - 120	98.8	95.2	ug/L	3.71	47.0
Di-n-octylphthalate	1169428	20.6	19.8	25.0	4.00 - 146	82.4	79.2	ug/L	3.96	69.0
Fluoranthene(Benzo(j,k)fluorene)	1169428	22.2	21.5	25.0	26.0 - 137	88.8	86.0	ug/L	3.20	66.0
Fluorene	1169428	19.7	19.2	25.0	59.0 - 121	78.8	76.8	ug/L	2.57	38.0
Hexachlorobenzene	1169428	22.5	21.7	25.0	0.100 - 152	90.0	86.8	ug/L	3.62	55.0
Hexachlorobutadiene	1169428	8.80	8.30	25.0	24.0 - 120	35.2	33.2	ug/L	5.85	62.0
Hexachlorocyclopentadiene	1169428	5.87	5.11	25.0	3.97 - 68.7	23.5	20.4	ug/L	14.1	50.0
Hexachloroethane	1169428	7.95	7.98	25.0	40.0 - 120	31.8 *	31.9 *	ug/L	0.314	52.0
Indeno(1,2,3-cd)pyrene	1169428	21.2	20.0	25.0	0.100 - 171	84.8	80.0	ug/L	5.83	99.0
Isophorone	1169428	19.5	18.6	25.0	21.0 - 196	78.0	74.4	ug/L	4.72	93.0
Naphthalene	1169428	14.5	14.2	25.0	21.0 - 133	58.0	56.8	ug/L	2.09	65.0

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 19 of 24

Page 12 of 13

Project 1142995

Printed 04/30/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

LCS Dup LCSD% PrepSet LCS LCSD Known Limits% LCS% Units **RPD** Limit% Parameter 1169428 18.5 17.3 25.0 35.0 - 180 74.0 69.2 ug/L 6.70 62.0 Nitrobenzene 1169428 8.09 7.85 25.0 18.0 - 100 32.4 31.4 50.0 n-Nitrosodiethylamine ug/L 3.13 N-Nitrosodimethylamine 1169428 13.8 13.6 25.0 30.2 - 74.9 55.2 54.4 ug/L 1.46 50.0 n-Nitroso-di-n-butylamine 1169428 19.8 18.4 25.0 48.4 - 98.5 79.2 73.6 ug/L 7.33 50.0 N-Nitrosodi-n-propylamine 1169428 20.4 19.5 25.0 0.100 - 23081.6 78.0 ug/L 4.51 87.0 22.0 25.0 92.0 88.0 4.44 N-Nitrosodiphenylamine (as DPA 1169428 23.0 49.3 - 94.2 50.0 ug/L p-Chloro-m-Cresol (4-Chloro-3-me 1169428 20.2 19.3 25.0 22.0 - 147 80.8 77.2 ug/L 4.56 70.0 Pentachlorobenzene 1169428 18.3 17.7 25.0 39.3 - 93.7 73.2 70.8 ug/L 3.33 50.0 14.0 - 176 Pentachlorophenol 1169428 19.9 18.8 25.0 79.6 75.2 ug/L 5 68 86.0 1169428 54.0 - 120 102 Phenanthrene 26.3 25.6 25.0 105 ug/L 2.90 39.0 Phenol 1169428 7.83 8.20 25.0 5.00 - 120 31.3 32.8 ug/L 64.0 4.68 Pyrene 1169428 22.4 22.0 25.0 52.0 - 120 89.6 88.0 ug/L 1.80 49.0 ug/L 1169428 6.74 9.21 25.0 11.2 - 50.6 27.0 36.8 30.7 50.0 Pyridine Surrogate Known Recover% Units Limits% File Parameter Sample Type Reading 2,4,6-Tribromophenol 630534 CCV 61200 100000 ug/L 61.2 10.0 - 150 127544421 2-Fluorophenol-SURR 630534 CCV 54700 100000 ug/L 54.7 10.0 - 150 127544421 CCV 50000 30.0 - 150 127544421 4-Terphenyl-d14-SURR 630534 46400 ug/L 92.8 Nitrobenzene-d5-SURR 630534 CCV 48300 50000 ug/L 96.6 30.0 - 150 127544421 CCV 57300 100000 57.3 10.0 - 150 127544421 Phenol-d6-SURR 630534 ug/L 1169428 Blank 35.6 100 35.6 10.0 - 150 127544422 2,4,6-Tribromophenol ug/L 1169428 LCS 39.7 100 39.7 127544423 2,4,6-Tribromophenol ug/L 10.0 - 1502,4,6-Tribromophenol 1169428 LCS Dup 37.4 100 ug/L 37.4 10.0 - 150 127544424 2-Fluorophenol-SURR 1169428 Blank 23500 100000 ug/L 23.5 10.0 - 150 127544422 22300 22.3 2-Fluorophenol-SURR 1169428 LCS 100000 ug/L 10.0 - 150 127544423 LCS Dup 23800 100000 23.8 127544424 2-Fluorophenol-SURR 1169428 ug/L 10.0 - 150 4-Terphenyl-d14-SURR 1169428 Blank 45100 50000 90.2 30.0 - 150 127544422 ug/L 4-Terphenyl-d14-SURR 1169428 LCS 40300 50000 80.6 30.0 - 150 127544423 ug/L 4-Terphenyl-d14-SURR 50000 80.8 30.0 - 150 127544424 1169428 LCS Dup 40400 ug/L Nitrobenzene-d5-SURR 1169428 Blank 33200 50000 ug/L 66.4 30.0 - 150 127544422 Nitrobenzene-d5-SURR LCS 50000 69.6 30.0 - 150 127544423 1169428 34800 ug/L LCS Dup 32900 50000 65.8 30.0 - 150 127544424 Nitrobenzene-d5-SURR 1169428 ug/L 127544422 Blank 17700 100000 17.7 10.0 - 150 Phenol-d6-SURR 1169428 ug/L 1169428 LCS 16400 100000 16.4 10.0 - 150 127544423 Phenol-d6-SURR ug/L Phenol-d6-SURR 1169428 LCS Dup 16400 100000 ug/L 16.4 10.0 - 150 127544424 2,4,6-Tribromophenol 2397436 Unknown 39.0 99.1 ug/L 39.4 10.0 - 150 127544425 2-Fluorophenol-SURR 2397436 Unknown 23.0 99.1 ug/L 23.2 10.0 - 150 127544425 4-Terphenyl-d14-SURR 2397436 Unknown 40.4 49.6 ug/L 81.5 30.0 - 150 127544425 Nitrobenzene-d5-SURR 2397436 Unknown 31.6 49.6 ug/L 63.7 30.0 - 150 127544425 Phenol-d6-SURR 2397436 16.2 10.0 - 150 127544425 Unknown 16.1 99.1 ug/L

Analytical Set 1172284 EPA 625.1

Blank

Parameter PrepSet Reading MDL MQL Units File

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 20 of 24

Page 13 of 13

Project 11**4299**5

Printed 04/30/2025

SATL-A

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

				В	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Bisphenol A	1169428	ND	1.86	10.0	ug/L			127544919			
				(CCV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Bisphenol A		25600	25000	ug/L	103	70.0 - 130		127544918			
Analytical Set	1172574									E	PA 604.1
				В	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Hexachlorophene	1169947	ND	0.890	2.50	ug/L			127548597			
				(CCV						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Hexachlorophene		5430	5000	ug/L	109	70.0 - 130		127548596			
Hexachlorophene		5690	5000	ug/L	114	70.0 - 130		127548603			
Hexachlorophene		5470	5000	ug/L	109	70.0 - 130		127548606			
Hexachlorophene		5220	5000	ug/L	104	70.0 - 130		127548609			
				LC	S Dup						
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Hexachlorophene	1169947	63.7	52.2		50.0	25.5 - 145	127	104	ug/L	19.9	50.0

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); CCV - Continuing Calibration Verification (same standard used to prepare the curve; typically a mid-range concentration; verifies the continued validity of the calibration curve); MSD - Matrix Spike Duplicate (replicate of the

matrix spike; same solution and amount of target analyte added to the MS is added to a third aliquot of sample; quantifies matrix bias and precision.); LCS Dup Laboratory Control Sample Duplicate (replicate LCS; analyzed when there is insufficient sample for duplicate or MSD; quantifies accuracy and precision.); LCS - Laboratory
Control Sample (reagent water or other blank matrices that is spiked with a known quantity of target analyte(s) and carried through preparation and analytical procedures
exactly like a sample; typically a mid-range concentration; verifies that bias and precision of the analytical process are within control limits; determines usability of the
data.); BFB - Bromofluorobenzene, GC/MS Tuning Compound (mass intensity used as tuning acceptance criteria.); Surrogate - Surrogate

interest but is unlikely to be found in environmental samples; added to analytical samples for QC purposes. **ANSI/ASQC E4 1994 Ref #4 TRADE QA Resources Guide.); IS
Areas - Internal Standard Area (The area of the internal stadard relative to a check standard. Internal Standard is a known concentration of an analyte(s) that is not a
sample component or standard that is added to the sample and standard and is used to measure the relative responses of other analytes in the same sample or standard.);
IS RetTime - Internal Standard Retention Time (the time the internal standard comes off the column. Internal Standard is a known concentration of an analyte(s) that is not
a sample component or standard that is added to the sample and standard and is used to measure the relative responses of other analytes in the same sample or
standard.); DFTPP - GC/MS Tuning Compound

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 21 of 24

2600 Dudley Rd. Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914 **CHAIN OF CUSTODY** Page I of 2 04/03/2 (25 SATL-A San Antonio Testing Laboratory 21(1/229-9920 Phone 215 1610 S. Laredo St. San Antonio, TX 78207 PO Number Table 4.0(1) Condensed List √ Hand Delivered by Cheat to Region or LAB Matrix: Non-Potable Water Sampler Printed Name Sampler Affiliation Samples Contains Dioxin? Samples Biological Hazard? SPL Kilgore # Sample ID Bottles Date Time Note: (Lab Only) 1200 Amber Glass Qt w/Teflon lined lid Hexachlorophene Expansion EPA 604.1 CAS: -30-4 (7.00 days) IMKE EPA 608.3 (7.00 c.ys) Dicofol and Mirex Exp †CPP Permit Organophos. Pesticides EPA 614 (7.00 da 3) **NELAC** 402E For use with EXP SCPP only EPA 622 (7.00 da 3) BPAE EPA 625.1 CAS:5 --05-7 (7.00 days) Bisphenol A Expansion NELAC TYLC Carbaryl Diuron EXP EPA 632 (7.00 d. -s) TBTE Butyltin Expansion TX 1001 (14 0 dt s) Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid

Corporate - Kils : 2600 Dudley Road Kilgore TX 75662 Report Page 22 of 24

Forn: Acoeproj2SPL Created 02/21/2024 v1.0

EPA METHOD - 15C CAS:107-21-1 (30.0 days)

EPA 624.1 (14.0 sys)

NELAC

NELAC

\$EP1

tege

Epichlorohydrin Exp.

Ethylene Glycol Expansion

1142995 CoC Print Group 001 of 001

2600 Dudley Rd. Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914

04/03/2025

CHAIN OF CUSTODY

San Antonio Testing Laboratory Aimee Landon 1610 S. Laredo St. San Antonio, TX 78207

SATL-A 215

Phone

210/229-9920

Page 2 of 2

Table 4.0(1) Condensed List

0 Z -- No bottle required CKLM Check Limits

Date Time	Relingu		Date Time		Received
1/3/35 ^{/74}	Prince land	lin 547_		Printed Name	A∯lation
	Signature			Signature	Fedex
19/201	Printed Name	dEX Affibation	49/25	Printed Name	Kler/sten-Rossum SPL, Inc.
1270	Signature		በይታሀ	Signature	KAIAIXYY
	Printed Name	Affibation		Printed Name	Afflication
	Signature			Signature	
· · · · · ·	Printed Name	Affibation		Printed Name	Affliation
	Signature			Signature	


Sample Recieved on Ice
Cooler/Sample Secure?

- 10	res
<i>~</i> .	_
100	Vec [

No If Shipped: Tracking Number & Temp - See Attached

The accredited column designates accreditation by A - A21.A, N - NELAC, or z - not listed under scope of accreditation. Unless otherwise specified, SPL Kilgore shall provide these ordered services pursuant to our Standard Terms & Conditions Agreement (available for download from the welcome page at http://www.ana-lab.com) Ana-Lab personnel collect samples as specified by SPL Kilgore SOP #000323.

Comments

Therm#: 7736 Corr Fact: -0.2 C

After printing this tabel: CONSIGNEE COPY - PLEASE PLACE IN FRONT OF POUCH 1. Fold the printed page along the horizontal line 2. Place label in shipping pouch and affix it to your shipment.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, dainage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, c_i cument your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, co. s, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the nuthorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$1,:00, e.g. jewelry, precious metals, negotiable instruments and other items listed in our Service Guide. Written claims must de filed within strict time limits, see current FedEx Service Guide.

Report Page 24 of 24

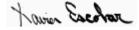
1

May 08, 2025

Chris Ewert

Integrity Testing 8127 Mesa Dr #C-305 Austin, TX 78759

SATL Report No.: 2504101


RE: City of Roma Permit Renewal

Dear Chris Ewert

SATL received 1 Sample(s) on 04/04/2025 for analyses identified on the chain of custody. The analyses were performed using methods indicated on the laboratory report. Any deviations observed at sample receiving are notated on the Sample Receipt Checklist and/or Chain of Custody documents attached as part of this analytical report.

Sincerely,

For San Antonio Testing Laboratory, Inc.

Xavier Escobar Business Unit Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 12:28 **Received:**

04/04/25 08:50

Report No. 2504101

Additional Notes:

This supersedes the last report (2504101_1 1-SATL1 04 21 25 1711) issued. Reason: Needed to fix reporting limits, 05/08/25.

SAMPLE SUMMARY

Total Samples received in this work order:

The following samples were requested for analysis as per the CoC. Any re-runs or re-analyses requested are identified as such.

Sample ID	Laboratory ID	<u>Matrix</u>	Sampling Method	Date Sampled	Date Received
Grab Sample	2504101-01	Liquid	Grab	04/03/25 12:00	04/04/25 08:50

Notes

All quality control samples and checks are within acceptance limits unless otherwise indicated.

Test results pertain only to those items tested.

All samples were in good condition when received by the laboratory unless otherwise noted.

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 12:28 **Received:** 04/04/25 08:50

Report No. 2504101

Additional Notes:

This supersedes the last report (2504101_1 1-SATL1 04 21 25 1711) issued. Reason: Needed to fix reporting limits, 05/08/25.

Sample ID #: Grab Sample Lab Sample ID #: 2504101-01

Sample Matrix: Liquid			1	Pate/Time Conected: 04	1/03/25 12:	UU			
Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
General Chemistry									
Cyanide, Total *	<10	ug/L	10	SM4500-CNC	B515250	04/10/25 11:30	SM4500CN_E	JA	
Dissolved Oxygen *	12.8	mg/L	2.00	EPA 360.1	B514359	04/04/25 10:55	SM4500-O G	DD	Н
Oil & Grease (HEM) *	<4.75	mg/L	4.75	EPA 1664A	B516209	04/11/25 17:06	EPA 1664A	DD	Q, Q1
Total Recoverable Phenols *	0.169	mg/L	0.050	EPA 420.1	B515216	04/08/25 16:45	EPA 420.1	SG	
Residual Chlorine *	< 0.01	mg/L	0.01	SM4500ClG	B515305	04/04/25 11:50	SM4500ClG	JA	
Volatile Organic Compounds by G	SC/MS								
1,1,1-Trichloroethane *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
1,1,2,2-Tetrachloroethane *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
1,1,2-Trichloroethane *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
1,1-Dichloroethane *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
1,1-Dichloroethene *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
1,2-Dibromoethane *	<10	ug/L	10	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
1,2-Dichlorobenzene *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
1,2-Dichloroethane *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
1,2-Dichloropropane *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
1,3-Dichlorobenzene *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
1,4-Dichlorobenzene *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
2-Chloroethyl Vinyl Ether *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	CL
Acrolein *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
Acrylonitrile *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
Benzene *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
Bromodichloromethane *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
Bromoform *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
Bromomethane *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
Carbon Tetrachloride *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
Chlorobenzene *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
Chloroethane *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	CL
Chloroform *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
Chloromethane *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
cis-1,2-Dichloroethylene *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
cis-1,3-Dichloropropylene *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
Chlorodibromomethane *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
Ethylbenzene *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
m,p-Xylenes *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
Methyl Ethyl Ketone (2-Butanone) *	< 50	ug/L	50	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
Methylene Chloride *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
Methyl-tert-Butyl Ether *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
Naphthalene *	<5	ug/L	5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

www.satestinglab.com

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 12:28 **Received:** 04/04/25 08:50

Report No. 2504101

Additional Notes:

This supersedes the last report (2504101_1 1-SATL1 04 21 25 1711) issued. Reason: Needed to fix reporting limits, 05/08/25.

Sample ID #: Grab Sample

Sampling Method: Grab Lab Sample ID #: 2504101-01

Analyte	Result	Unit	s P	QL	Prep Meth	od Batch	Analyzed	Method	Analyst	Notes
Volatile Organic Compounds by C	GC/MS									
o-Xylene *	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
Tetrachloroethene *	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	,
Toluene *	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	,
trans-1,2-Dichloroethylene *	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	į
trans-1,3-Dichloropropylene *	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	į
Trichloroethene *	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	,
Trichlorofluoromethane *	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	CL
Vinyl chloride [Chloroethene] *	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	į
Total Trihalomethanes *	<10	ug/L		10	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	į
Isopropylbenzene (Cumene)	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	į
Methacrylonitrile	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	į
Methyl Butyl Ketone (2-Hexanone)	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	į
Methyl Iodide [Iodomethane]	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	į
Methyl Isobutyl Ketone [MIBK]	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	į
Methyl Methacrylate	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	į
Propylbenzene	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	į
sec-Butylbenzene	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	į
Styrene	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	į
tert-Butylbenzene	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	į
trans-1,4-Dichloro-2-butene	<5	ug/L		5	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	į
Vinyl acetate	<2	ug/L		2	EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	,
Surrogate: 4-Bromofluorobenzene	·	93 %	80-106		EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
Surrogate: Dibromofluoromethane		90 %	83-118		EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	
Surrogate: Toluene-d8		95 %	91-109		EPA 5030B	B516290	04/16/25 14:07	EPA 624.1	ME	

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 12:28 **Received:** 04/04/25 08:50

Report No. 2504101

Additional Notes:

This supersedes the last report ($2504101_1 - 1-SATL1 = 2517111 = 2517111 = 251711 = 251711 = 251711 = 251711 = 251711 = 251711 = 2517111 = 251711 = 2517111 = 2517111 = 251711 = 251711 = 251711 = 251$

General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Analyte	Result	Liiiit	Ollits	Level	Kesuit	/0KEC	Lillits	KFD	Lillit	
Batch B514359 - EPA 360.1										
Duplicate (B514359-DUP1)		Source: 250410	1-01	Prepared:	04/04/25 10:	50 Analyz	zed: 04/04/2	5 11:00		
Dissolved Oxygen	12.8	2.00	mg/L		12.8			0.09	20	Н
Batch B515216 - EPA 420.1										
Blank (B515216-BLK1)				Prepared:	04/08/25 15:	00 Analyz	zed: 04/08/2	5 16:45		
Total Recoverable Phenols	< 0.050	0.050	mg/L							
LCS (B515216-BS1)				Prepared:	04/08/25 15:	00 Analyz	zed: 04/08/2	5 16:45		
Total Recoverable Phenols	0.493	0.050	mg/L	0.500		99	80-120			
LCS Dup (B515216-BSD1)				Prepared:	04/08/25 15:	00 Analyz	zed: 04/08/2	5 16:45		
Total Recoverable Phenols	0.496	0.050	mg/L	0.500		99	80-120	0.6	20	
Duplicate (B515216-DUP1)		Source: 250351	3-01	Prepared:	04/08/25 15:	00 Analyz	zed: 04/08/2	5 16:45		
Total Recoverable Phenols	0.118	0.050	mg/L		0.121			3	20	
Matrix Spike (B515216-MS1)		Source: 250351	3-01	Prepared:	04/08/25 15:	00 Analyz	zed: 04/08/2	5 16:45		
Total Recoverable Phenols	0.629	0.050	mg/L	0.500	0.121	102	80-120			
Batch B515250 - SM4500-CNC										
Blank (B515250-BLK1)				Prepared:	04/09/25 12:	00 Analyz	zed: 04/09/2	5 16:00		
Cyanide, Total	<20	20	ug/L							
LCS (B515250-BS1)				Prepared: (04/09/25 12:	00 Analyz	zed: 04/09/2	5 16:00		
Cyanide, Total	105	20	ug/L	100		105	80-120			
LCS Dup (B515250-BSD1)				Prepared:	04/09/25 12:	00 Analyz	zed: 04/09/2	5 16:00		
Cyanide, Total	108	20	ug/L	100		108	80-120	3	20	
Duplicate (B515250-DUP1)		Source: 250415	1-05	Prepared:	04/09/25 12:	00 Analyz	zed: 04/09/2	5 16:00		
Cyanide, Total	<20	20	ug/L		<20				20	
Duplicate (B515250-DUP2)		Source: 250404	4-07	Prepared:	04/09/25 12:	00 Analyz	zed: 04/10/2	5 11:30		
Cyanide, Total	<20	20	ug/L		<20				20	
Matrix Spike (B515250-MS1)		Source: 250404	4-07	Prepared:	04/09/25 12:	00 Analyz	zed: 04/09/2	5 16:00		
Cyanide, Total	87.0	20	ug/L	100	<20	87	80-120			
Matrix Spike (B515250-MS2)		Source: 250404	4-07	Prepared:	04/09/25 12:	00 Analyz	zed: 04/10/2	5 11:30		

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 12:28 **Received:** 04/04/25 08:50

Report No. 2504101

Additional Notes:

This supersedes the last report ($2504101_1 - 1-SATL1 = 2517111 = 2517111 = 251711 = 251711 = 251711 = 251711 = 251711 = 251711 = 2517111 = 2517111 = 2517111 = 251711 = 251711 = 251711 = 251$

General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
	Result	Limit	Cinto	Level	resuit	, with the	Limits	1410	Limit	
Batch B515250 - SM4500-CNC										
Matrix Spike (B515250-MS2)		Source: 2504044		•	04/09/25 12:0			5 11:30		
Cyanide, Total	81.0	20	ug/L	100	<20	81	80-120			
Matrix Spike Dup (B515250-MSD1)		Source: 2504044	-07	Prepared:	04/09/25 12:0	00 Analyz	ed: 04/09/2	5 16:00		
Cyanide, Total	85.0	20	ug/L	100	<20	85	80-120	2	20	
Matrix Spike Dup (B515250-MSD2)		Source: 2504044	-07	Prepared:	04/09/25 12:0	00 Analyz	ed: 04/10/2	5 11:30		
Cyanide, Total	82.0	20	ug/L	100	<20	82	80-120	1	20	
Batch B515305 - SM4500ClG										
Blank (B515305-BLK1)				Prepared:	04/04/25 11:4	45 Analyz	ed: 04/04/2:	5 11:50		
Residual Chlorine	< 0.01	0.01	mg/L							
LCS (B515305-BS1)				Prepared:	04/04/25 11:4	45 Analyz	ed: 04/04/2:	5 11:50		
Residual Chlorine	0.246	0.01	mg/L	0.250		98	80-120			
LCS Dup (B515305-BSD1)				Prepared:	04/04/25 11:4	45 Analyz	ed: 04/04/2:	5 11:50		
Residual Chlorine	0.251	0.01	mg/L	0.250		100	80-120	2	20	
Duplicate (B515305-DUP1)		Source: 2504101	-01	Prepared:	04/04/25 11:4	45 Analyz	ed: 04/04/2	5 11:50		
Residual Chlorine	< 0.01	0.01	mg/L		< 0.01				20	
Matrix Spike (B515305-MS1)		Source: 2504101	-01	Prepared:	04/04/25 11:4	45 Analyz	ed: 04/04/2	5 11:50		
Residual Chlorine	0.216	0.01	mg/L	0.250	< 0.01	86	80-120			
Matrix Spike Dup (B515305-MSD1)		Source: 2504101	-01	Prepared:	04/04/25 11:4	45 Analyz	ed: 04/04/2:	5 11:50		
Residual Chlorine	0.222	0.01	mg/L	0.250	<0.01	89	80-120	3	20	
Batch B516209 - EPA 1664A										
Blank (B516209-BLK1)				Prepared:	04/11/25 15:0	00 Analyz	ed: 04/11/2:	5 17:00		
Oil & Grease (HEM)	<4.75	4.75	mg/L							
LCS (B516209-BS1)				Prepared:	04/11/25 15:0	00 Analyz	ed: 04/11/2:	5 17:01		
Oil & Grease (HEM)	39.6	4.75	mg/L	40.0		99	78-114			
LCS Dup (B516209-BSD1)				Prepared:	04/11/25 15:0	00 Analyz	ed: 04/11/2:	5 17:02		
Oil & Grease (HEM)	40.7	4.75	mg/L	40.0		102	78-114	3	18	
Matrix Spike (B516209-MS1)		Source: 2504195	-04	Prepared:	04/11/25 15:0	00 Analyz	ed: 04/11/2:	5 17:14		

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 12:28 **Received:** 04/04/25 08:50

Report No. 2504101

Additional Notes:

This supersedes the last report ($2504101_1 - 1-SATL1 = 2517111 = 2517111 = 251711 = 251711 = 251711 = 251711 = 251711 = 251711 = 2517111 = 251711 = 2517111 = 2517111 = 251711 = 251711 = 251711 = 251$

General Chemistry - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

Batch B516209 - EPA 1664A

Matrix Spike (B516209-MS1)		Source: 2504195-04	Prepared: 04/11/25 15:00 Analyzed: 04/11/25 17:14
Oil & Grease (HEM)	40.5	4.80 mg/L	40.4 4.65 89 78-114

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

Batch B516290 - EPA 5030B

Blank (B516290-BLK1)				Prepared: 04/15/25 10:30 Analyzed: 04/15/25 14:56	
1,1,1-Trichloroethane	<5	5	ug/L		
1,1,2,2-Tetrachloroethane	<5	5	ug/L		
1,1,2-Trichloroethane	<5	5	ug/L		
1,1-Dichloroethane	<5	5	ug/L		
1,1-Dichloroethene	<5	5	ug/L		
1,2-Dichlorobenzene	<5	5	ug/L		
1,2-Dichloroethane	<5	5	ug/L		
1,2-Dichloropropane	<5	5	ug/L		
1,3-Dichlorobenzene	<5	5	ug/L		
1,4-Dichlorobenzene	<5	5	ug/L		
2-Chloroethyl Vinyl Ether	<5	5	ug/L		
Acrolein	<5	5	ug/L		
Acrylonitrile	<5	5	ug/L		
Benzene	<5	5	ug/L		
Bromodichloromethane	<5	5	ug/L		
Bromoform	<5	5	ug/L		
Bromomethane	<5	5	ug/L		CL
Carbon Tetrachloride	<5	5	ug/L		CL
Chlorobenzene	<5	5	ug/L		
Chloroethane	<5	5	ug/L		
Chloroform	<5	5	ug/L		
Chloromethane	<5	5	ug/L		
cis-1,2-Dichloroethylene	<5	5	ug/L		
cis-1,3-Dichloropropylene	<5	5	ug/L		
Chlorodibromomethane	<5	5	ug/L		

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 12:28 **Received:** 04/04/25 08:50

Report No. 2504101

Additional Notes:

This supersedes the last report ($2504101_1 - 1-SATL1 = 2517111 = 2517111 = 251711 = 251711 = 251711 = 251711 = 251711 = 251711 = 2517111 = 251711 = 2517111 = 2517111 = 251711 = 251711 = 251711 = 251$

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B516290 - EPA 5030B										
Plank (P516200 PLV1)				Prepared: (04/15/25 10	·30 Analyz	red: 04/15/2	5 14.56		

Blank (B516290-BLK1)				Prepared: 04/15/25 10:30 Analyzed: 04/15/25 14:56	
Ethylbenzene	<5	5	ug/L		
m,p-Xylenes	<5	5	ug/L		
Methylene Chloride	<5	5	ug/L		
Methyl-tert-Butyl Ether	<5	5	ug/L		
Naphthalene	<5	5	ug/L		
o-Xylene	<5	5	ug/L		
Tetrachloroethene	<5	5	ug/L		
Toluene	<5	5	ug/L		
trans-1,2-Dichloroethylene	<5	5	ug/L		
trans-1,3-Dichloropropylene	<5	5	ug/L		
Trichloroethene	<5	5	ug/L		
Trichlorofluoromethane	<5	5	ug/L		
Vinyl chloride [Chloroethene]	<5	5	ug/L		
Total Trihalomethanes	<40	40	ug/L		
Isopropylbenzene (Cumene)	<5	5	ug/L		
Methacrylonitrile	<5	5	ug/L		
Methyl Butyl Ketone (2-Hexanone)	<5	5	ug/L		CL
Methyl Iodide [Iodomethane]	<5	5	ug/L		
Methyl Isobutyl Ketone [MIBK]	<5	5	ug/L		
Methyl Methacrylate	<5	5	ug/L		
Propylbenzene	<5	5	ug/L		
sec-Butylbenzene	<5	5	ug/L		
Styrene	<5	5	ug/L		
tert-Butylbenzene	<5	5	ug/L		
trans-1,4-Dichloro-2-butene	<5	5	ug/L		
Vinyl acetate	<2	2	ug/L		
Surrogate: 4-Bromofluorobenzene	47.9		ug/L	50.0 96 80-106	
Surrogate: Dibromofluoromethane	45.3		ug/L	50.0 91 83-118	
Surrogate: Toluene-d8	48.2		ug/L	50.0 96 91-109	
LCS (B516290-BS1)				Prepared: 04/15/25 10:30 Analyzed: 04/15/25 13:30	
1,1,1-Trichloroethane	47.6	5	ug/L	50.0 95 70-130	
1,1,2,2-Tetrachloroethane	40.1	5	ug/L	50.0 80 60-140	
1,1,2-Trichloroethane	46.4	5	ug/L	50.0 93 70-130	
1,1-Dichloroethane	42.2	5	ug/L	50.0 84 70-130	
1,1-Dichloroethene	43.9	5	ug/L	50.0 88 50-150	

1610 S. Laredo Street, San Antonio, Texas 78207-7029 (210) 229-9920 Fax (210) 229-9921

www.satestinglab.com

Page 8 of 18

%REC

Limits

RPD

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Units

Spike

Level

Source

Result

%REC

Project Number: [none]

Reported: 05/08/25 12:28 **Received:** 04/04/25 08:50

Report No. 2504101

RPD

Limit

Additional Notes:

Analyte

This supersedes the last report (2504101_1 1-SATL1 04 21 25 1711) issued. Reason: Needed to fix reporting limits, 05/08/25.

Reporting

Limit

Volatile Organic Compounds by GC/MS - Quality Control

Result

Analyte	Result	LIIIII	Units	Level	Resuit	70KEC	Limits	KPD	LIIIII	
Batch B516290 - EPA 5030B										
LCS (B516290-BS1)				Prepared: (04/15/25 10:3	30 Analy	zed: 04/15/2	5 13:30		
1,2-Dichlorobenzene	47.8	5	ug/L	50.0		96	65-135			
1,2-Dichloroethane	44.2	5	ug/L	50.0		88	70-130			
1,2-Dichloropropane	46.4	5	ug/L	50.0		93	35-165			
1,3-Dichlorobenzene	48.6	5	ug/L	50.0		97	70-130			
1,4-Dichlorobenzene	52.2	5	ug/L	50.0		104	65-135			
2-Chloroethyl Vinyl Ether	32.8	5	ug/L	50.0		66	1-225			
Acrolein	32.2	5	ug/L	50.0		64	60-140			
Acrylonitrile	39.1	5	ug/L	50.0		78	60-140			
Benzene	44.1	5	ug/L	50.0		88	65-135			
Bromodichloromethane	46.2	5	ug/L	50.0		92	65-135			
Bromoform	40.7	5	ug/L	50.0		81	70-130			
Bromomethane	24.8	5	ug/L	50.0		50	15-185			CL
Carbon Tetrachloride	33.6	5	ug/L	50.0		67	70-130			CL 1
Chlorobenzene	50.4	5	ug/L	50.0		101	65-135			
Chloroethane	39.5	5	ug/L	50.0		79	40-160			
Chloroform	45.9	5	ug/L	50.0		92	70-135			
Chloromethane	44.2	5	ug/L	50.0		88	1-205			
cis-1,2-Dichloroethylene	47.4	5	ug/L	50.0		95	63.1-136			
cis-1,3-Dichloropropylene	46.2	5	ug/L	50.0		92	25-175			
Chlorodibromomethane	45.1	5	ug/L	50.0		90	70-135			
Ethylbenzene	52.9	5	ug/L	50.0		106	60-140			
m,p-Xylenes	97.9	5	ug/L	100		98	27.4-146			
Methylene Chloride	44.0	5	ug/L	50.0		88	60-140			
Methyl-tert-Butyl Ether	42.3	5	ug/L	50.0		85	16.3-183			
Naphthalene	46.9	5	ug/L	50.0		94	5.3-152			
o-Xylene	47.5	5	ug/L	50.0		95	64.9-129			
Tetrachloroethene	37.6	5	ug/L	50.0		75	70-130			
Toluene	51.3	5	ug/L	50.0		103	70-130			
rans-1,2-Dichloroethylene	45.8	5	ug/L	50.0		92	70-130			
rans-1,3-Dichloropropylene	44.7	5	ug/L	50.0		89	50-150			
Trichloroethene	63.4	5	ug/L	50.0		127	65-135			
Trichlorofluoromethane	45.6	5	ug/L	50.0		91	50-150			
Vinyl chloride [Chloroethene]	36.8	5	ug/L	50.0		74	5-195			
Isopropylbenzene (Cumene)	43.5	5	ug/L	50.0		87	89.1-134			
Methacrylonitrile	38.0	5	ug/L	50.0		76	54.3-133			

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759

Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 12:28 Received: 04/04/25 08:50

Report No. 2504101

Additional Notes:

This supersedes the last report (2504101_1 1-SATL1 04 21 25 1711) issued. Reason: Needed to fix reporting limits, 05/08/25.

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B516290 - EPA 5030B										
LCS (B516290-BS1)				Prepared: (04/15/25 10:	:30 Analyz	zed: 04/15/2	5 13:30		
Methyl Butyl Ketone (2-Hexanone)	36.2	5	ug/L	50.0		72	52.8-142			CL
Methyl Iodide [Iodomethane]	41.2	5	ug/L	50.0		82	61.4-149			
Methyl Isobutyl Ketone [MIBK]	41.2	5	ug/L	50.0		82	63.1-137			
Methyl Methacrylate	39.8	5	ug/L	50.0		80	65.4-135			
Propylbenzene	48.3	5	ug/L	50.0		97	81.3-135			
sec-Butylbenzene	48.8	5	ug/L	50.0		98	85.9-132			
Styrene	45.9	5	ug/L	50.0		92	89.9-132			
tert-Butylbenzene	49.1	5	ug/L	50.0		98	83.2-135			
trans-1,4-Dichloro-2-butene	32.7	5	ug/L	50.0		65	59.9-141			
Vinyl acetate	53.8	2	ug/L	50.0		108	25.6-169			
Surrogate: 4-Bromofluorobenzene	49.3		ug/L	50.0		99	80-106			
Surrogate: Dibromofluoromethane	45.7		ug/L	50.0		91	83-118			
Surrogate: Toluene-d8	49.6		ug/L	50.0		99	91-109			
LCS Dup (B516290-BSD1)				Prepared: (04/15/25 10:	30 Analyz	zed: 04/15/2	5 13:58		
1,1,1-Trichloroethane	48.7	5	ug/L	50.0		97	70-130	2	36	
1,1,2,2-Tetrachloroethane	40.5	5	ug/L	50.0		81	60-140	1	61	
1,1,2-Trichloroethane	46.5	5	ug/L	50.0		93	70-130	0.3	45	
1,1-Dichloroethane	43.4	5	ug/L	50.0		87	70-130	3	40	
1,1-Dichloroethene	45.1	5	ug/L	50.0		90	50-150	3	32	
1,2-Dichlorobenzene	49.4	5	ug/L	50.0		99	65-135	3	57	
1,2-Dichloroethane	45.0	5	ug/L	50.0		90	70-130	2	49	
1,2-Dichloropropane	46.4	5	ug/L	50.0		93	35-165	0.06	55	
1,3-Dichlorobenzene	49.4	5	ug/L	50.0		99	70-130	2	43	
1,4-Dichlorobenzene	53.7	5	ug/L	50.0		107	65-135	3	57	
2-Chloroethyl Vinyl Ether	33.4	5	ug/L	50.0		67	1-225	2	71	
Acrolein	33.3	5	ug/L	50.0		67	60-140	3	60	
Acrylonitrile	39.5	5	ug/L	50.0		79	60-140	1	60	
Benzene	44.9	5	ug/L	50.0		90	65-135	2	61	
Bromodichloromethane	46.8	5	ug/L	50.0		94	65-135	1	56	
Bromoform	41.9	5	ug/L	50.0		84	70-130	3	42	
Bromomethane	25.3	5	ug/L	50.0		51	15-185	2	61	CL
Carbon Tetrachloride	34.8	5	ug/L	50.0		70	70-130	4	41	CL L
Chlorobenzene	52.0	5	ug/L	50.0		104	65-135	3	53	
Chloroethane	39.7	5	ug/L	50.0		79	40-160	0.4	78	
Chloroform	46.5	5	ug/L	50.0		93	70-135	1	54	

1610 S. Laredo Street, San Antonio, Texas 78207-7029

(210) 229-9920

Fax (210) 229-9921

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 12:28 **Received:** 04/04/25 08:50

Report No. 2504101

Additional Notes:

This supersedes the last report ($2504101_1 - 1-SATL1 = 2517111 = 2517111 = 251711 = 251711 = 251711 = 251711 = 251711 = 251711 = 2517111 = 251711 = 2517111 = 2517111 = 251711 = 251711 = 251711 = 251$

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B516290 - EPA 5030B										
LCS Dup (B516290-BSD1)				Prepared: (04/15/25 10	:30 Analy	zed: 04/15/25	5 13:58		
Chloromethane	44.6	5	ug/L	50.0		89	1-205	0.9	60	
cis-1,2-Dichloroethylene	48.3	5	ug/L	50.0		97	63.1-136	2	23.5	
cis-1,3-Dichloropropylene	47.1	5	ug/L	50.0		94	25-175	2	58	
Chlorodibromomethane	45.5	5	ug/L	50.0		91	70-135	0.9	50	
Ethylbenzene	54.6	5	ug/L	50.0		109	60-140	3	63	
m,p-Xylenes	102	5	ug/L	100		102	27.4-146	4	24.5	
Methylene Chloride	64.3	5	ug/L	50.0		129	60-140	37	28	S
Methyl-tert-Butyl Ether	43.2	5	ug/L	50.0		86	16.3-183	2	25.8	
Naphthalene	47.5	5	ug/L	50.0		95	5.3-152	1	30	
o-Xylene	49.8	5	ug/L	50.0		100	64.9-129	5	24.5	
Tetrachloroethene	37.0	5	ug/L	50.0		74	70-130	2	39	
Toluene	51.9	5	ug/L	50.0		104	70-130	1	41	
trans-1,2-Dichloroethylene	46.4	5	ug/L	50.0		93	70-130	1	45	
trans-1,3-Dichloropropylene	45.7	5	ug/L	50.0		91	50-150	2	86	
Trichloroethene	62.3	5	ug/L	50.0		125	65-135	2	48	
Trichlorofluoromethane	45.8	5	ug/L	50.0		92	50-150	0.5	84	
Vinyl chloride [Chloroethene]	37.6	5	ug/L	50.0		75	5-195	2	66	
Isopropylbenzene (Cumene)	45.3	5	ug/L	50.0		91	89.1-134	4	15.5	
Methacrylonitrile	38.2	5	ug/L	50.0		76	54.3-133	0.6	16.1	
Methyl Butyl Ketone (2-Hexanone)	36.5	5	ug/L	50.0		73	52.8-142	0.7	18.5	CL
Methyl Iodide [Iodomethane]	42.1	5	ug/L	50.0		84	61.4-149	2	15.7	
Methyl Isobutyl Ketone [MIBK]	40.3	5	ug/L	50.0		81	63.1-137	2	16.9	
Methyl Methacrylate	40.2	5	ug/L	50.0		80	65.4-135	1	16.6	
Propylbenzene	49.7	5	ug/L	50.0		99	81.3-135	3	17.4	
sec-Butylbenzene	50.3	5	ug/L	50.0		101	85.9-132	3	17.2	
Styrene	47.2	5	ug/L	50.0		94	89.9-132	3	14.6	
tert-Butylbenzene	50.0	5	ug/L	50.0		100	83.2-135	2	16.3	
trans-1,4-Dichloro-2-butene	33.4	5	ug/L	50.0		67	59.9-141	2	26	
Vinyl acetate	55.2	2	ug/L	50.0		110	25.6-169	2	18	
Surrogate: 4-Bromofluorobenzene	49.3		ug/L	50.0		99	80-106			
Surrogate: Dibromofluoromethane	45.4		ug/L	50.0		91	83-118			
Surrogate: Toluene-d8	49.5		ug/L	50.0		99	91-109			
Matrix Spike (B516290-MS1)		Source: 250410	1-01	Prepared: (04/15/25 10	:30 Analy	zed: 04/15/25	5 17:19		
1,1,1-Trichloroethane	48.4	5	ug/L	50.0	<5	97	52-162			
1,1,2,2-Tetrachloroethane	40.9	5	ug/L	50.0	<5	82	46-157			

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 12:28 **Received:** 04/04/25 08:50

Report No. 2504101

Additional Notes:

This supersedes the last report ($2504101_1 - 1-SATL1 = 2517111 = 2517111 = 251711 = 251711 = 251711 = 251711 = 251711 = 251711 = 2517111 = 2517111 = 2517111 = 251711 = 251711 = 251711 = 251$

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

Batch B516290 -	- EPA	5030B
-----------------	-------	-------

Matrix Spike (B516290-MS1)		Source: 250410	1-01	Prepared:	04/15/2	5 10:30 Analyz	zed: 04/15/25 17:19	
1,1,2-Trichloroethane	46.7	5	ug/L	50.0	<5	93	52-150	
1,1-Dichloroethane	43.0	5	ug/L	50.0	<5	86	59-155	
1,1-Dichloroethene	43.7	5	ug/L	50.0	<5	87	1-234	
1,2-Dichlorobenzene	49.0	5	ug/L	50.0	<5	98	18-190	
1,2-Dichloroethane	44.8	5	ug/L	50.0	<5	90	49-155	
1,2-Dichloropropane	46.7	5	ug/L	50.0	<5	93	1-210	
1,3-Dichlorobenzene	48.8	5	ug/L	50.0	<5	98	59-156	
1,4-Dichlorobenzene	53.0	5	ug/L	50.0	<5	106	18-190	
2-Chloroethyl Vinyl Ether	3.20	5	ug/L	50.0	<5	6	1-305	
Acrolein	32.4	5	ug/L	50.0	<5	65	40-160	
Acrylonitrile	38.0	5	ug/L	50.0	<5	76	40-160	
Benzene	44.2	5	ug/L	50.0	<5	88	37-151	
Bromodichloromethane	47.2	5	ug/L	50.0	<5	94	35-155	
Bromoform	42.0	5	ug/L	50.0	<5	84	45-169	
Bromomethane	25.8	5	ug/L	50.0	<5	52	1-242	CL
Carbon Tetrachloride	38.7	5	ug/L	50.0	<5	77	70-140	CL
Chlorobenzene	51.5	5	ug/L	50.0	<5	103	37-160	
Chloroethane	39.1	5	ug/L	50.0	<5	78	14-230	
Chloroform	46.8	5	ug/L	50.0	<5	94	51-138	
Chloromethane	43.3	5	ug/L	50.0	<5	87	1-273	
cis-1,2-Dichloroethylene	47.8	5	ug/L	50.0	<5	96	67.1-141	
cis-1,3-Dichloropropylene	46.2	5	ug/L	50.0	<5	92	1-227	
Chlorodibromomethane	46.5	5	ug/L	50.0	<5	93	53-149	
Ethylbenzene	53.6	5	ug/L	50.0	<5	107	37-162	
m,p-Xylenes	99.7	5	ug/L	100	<5	100	85.3-124	
Methylene Chloride	38.5	5	ug/L	50.0	<5	77	1-221	
Methyl-tert-Butyl Ether	42.8	5	ug/L	50.0	<5	86	73.7-111	
Naphthalene	48.3	5	ug/L	50.0	<5	97	51.9-173	
o-Xylene	48.0	5	ug/L	50.0	<5	96	78.6-123	
Tetrachloroethene	35.3	5	ug/L	50.0	<5	71	64-148	
Toluene	51.5	5	ug/L	50.0	<5	103	47-150	
trans-1,2-Dichloroethylene	45.5	5	ug/L	50.0	<5	91	54-156	
trans-1,3-Dichloropropylene	45.7	5	ug/L	50.0	<5	91	17-183	
Trichloroethene	61.5	5	ug/L	50.0	<5	123	70-157	
Trichlorofluoromethane	45.2	5	ug/L	50.0	<5	90	17-181	

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 12:28 **Received:** 04/04/25 08:50

Report No. 2504101

Additional Notes:

This supersedes the last report ($2504101_1 - 1-SATL1 = 2517111 = 2517111 = 251711 = 251711 = 251711 = 251711 = 251711 = 251711 = 2517111 = 251711 = 2517111 = 2517111 = 251711 = 251711 = 251711 = 251$

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	

Batch B516290 -	EPA 5030B
-----------------	-----------

Matrix Spike (B516290-MS1)		Source: 250410	1-01	Prepared	04/15/25	10:30 Analy	zed: 04/15/25 17:19	
Vinyl chloride [Chloroethene]	36.6	5	ug/L	50.0	<5	73	1-251	
Isopropylbenzene (Cumene)	44.3	5	ug/L	50.0	<5	89	78.8-147	
Methacrylonitrile	39.3	5	ug/L	50.0	<5	79	51.9-148	
Methyl Butyl Ketone (2-Hexanone)	36.8	5	ug/L	50.0	<5	74	48.7-153	CL
Methyl Iodide [Iodomethane]	40.8	5	ug/L	50.0	<5	82	41.4-157	
Methyl Isobutyl Ketone [MIBK]	40.3	5	ug/L	50.0	<5	81	51.5-157	
Methyl Methacrylate	40.0	5	ug/L	50.0	<5	80	53.4-144	
Propylbenzene	48.5	5	ug/L	50.0	<5	97	69.2-148	
sec-Butylbenzene	49.3	5	ug/L	50.0	<5	99	63.6-154	
Styrene	46.2	5	ug/L	50.0	<5	92	65.6-152	
tert-Butylbenzene	49.9	5	ug/L	50.0	<5	100	67.2-155	
trans-1,4-Dichloro-2-butene	34.6	5	ug/L	50.0	<5	69	35.9-162	
Vinyl acetate	52.1	2	ug/L	50.0	<2	104	32.2-161	
Surrogate: 4-Bromofluorobenzene	49.1		ug/L	50.0		98	80-106	
Surrogate: Dibromofluoromethane	45.6		ug/L	50.0		91	83-118	
Surrogate: Toluene-d8	50.0		ug/L	50.0		100	91-109	

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]

Reported: 05/08/25 12:28 **Received:**

04/04/25 08:50

Report No. 2504101

Additional Notes:

This supersedes the last report (2504101_1 1-SATL1 04 21 25 1711) issued. Reason: Needed to fix reporting limits, 05/08/25.

SAMPLE QUALIFIERS

Q1 MS sample analyzed in this batch is NOT from this specific sampling site.

Q Additional Sample volumes were NOT provided to the laboratory for the analysis of an MS sample as required by EPA Method 1664.

H This parameter should be analyzed within 15 minutes of sample collection. Due to transportation, hold time has been exceeded.

CL CCV recovery is outside QC limits, the results may have a slight low bias.

DEFINITIONS

* TNI / NELAC accredited analyte
PQL Practical Quantitation Limit
MCL Maximum Contaminant Level

mg/Kg Milligrams per Kilogram (Parts per Million)
mg/L Milligrams per Liter (Parts per Million)

PPM Parts per Million

L LCS recovery is outside QC acceptance limits, the results may have a slight bias.

M MS recovery is outside QC limits, the results may have a slight bias due to possible matrix interferences.

NR Not Recovered due to source sample concentration exceeds spiked concentration.

RMCCL Recommended Maximum Concentration of Contaminants Level

Surr L Surrogate recovery is low outside QC limits.
Surr H Surrogate recovery is high outside QC limits.

HT Sample received past holdtime IC Improper Container for this analyte(s)

IP Improper container for this analyte(s)

IT Improper Temperature
 V Inssuficient Volume
 B Sample collected in Bulk
 S RPD is outside QC limits.
 AB VOA Vial contained air bubbles.

OP ortho-Phosphate was not filtered in the field within 15minutes of collection.

CCV Continuing Calibration Verification Standard.
ICV Initial Calibration Verification Standard.

Test Methods followed by the laboratory are referenced in the following approved methodology, unless otherwise specified.

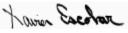
Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017

 $Methods \ for \ Chemical \ Analysis \ of \ Water \ and \ Wastes, EPA \ 600/4-79-020, \ Rev. \ March \ 1983$

EPA SW Test Methods for the Examination of Solid Waste, SW-846, 1996

Integrity Testing 8127 Mesa Dr #C-305 Austin TX, 78759 Project Manager: Chris Ewert Project: City of Roma Permit Renewal

Project Number: [none]


Reported: 05/08/25 12:28 **Received:** 04/04/25 08:50

Report No. 2504101

Additional Notes:

This supersedes the last report (2504101_1 1-SATL1 04 21 25 1711) issued. Reason: Needed to fix reporting limits, 05/08/25.

Marissa Esquivel, Lab Manager For

Xavier Escobar, Business Unit Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SATI PROJECT NAME/OCATIONS/TE	COMPANY	2				
1610 S. Laredo Street, San Antonio, Texas 78207 Phone (210) 229-9921 www.satestinglab.com		5 8	COMPANY		REPORT NUMBER	or
1610 S. Laredo Street, San Antonio, Texas 78207 Phore (210) 229-9920 Fax (210) 229-9921 www.satestinglab.com	ADDRESS 8127 Mesa Dr. #C-305	A S	ADDRESS		一次空戸	
Fax (210) 229-9821 www.satestinglab.com	CITY STATE Austin, TX 78759	ZIP CI	CITY STATE	ZIP	E-MAIL cowert@austin.rr.com	
Dendon	ATTN: PHONE #		ATTN: PHO	PHONE #		
Deno.	REQUESTED TURNAROUND TIME NOTICE DAYS REG REG	lays	☐ 4 Days ☐ 3 DAYS ☐ 2 DAYS +50% +75% +100%	□ Next Day +150%	☐ SAME DAY WHEN POSSIBLE +300%	
TY DOWN	THE TURNAROUND TIME FOR SAMPLES RECEIVED AFTER 3:00 PM SHALL BEGIN AT 8:00 AM THE FOLLOWING BUSINESS DAY	AFTER 3:00 PM SHALL B	EGIN AT 8:00 AM THE FOLLOWING BUSINESS	SP		
	DATA TO TCEQ		Fleld: pH:; Temp:_	C; LCS/D:	J ; Dup:	
,	OMPL	O VES O	NO INSUFFICIENT SAMPLE AMOUNT FOR (TCLP/SPLP/OTHER): NO IF NO, INITIAL HERE TO AUTHORIZE ANALYSIS	TCLP/SPLP/OTHER): ALYSIS	AUTHORIZ	AUTHORIZE TO PROCEED
SAMPLED BY SHIDDEL	OBSERVED TEMP. / COPPECTED TEMP. I TEM	SAMPLE ICED	TRRP 13 C LPST PCLS APPENDIX A C LOW LEVEL		TSDI PERI	00
				SIS	STED	
DHER SALES OF THE CONTRACT ON THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT ON THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT ON THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT ON THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT ON THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT ON THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT ON THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT ON THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT ON THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT ON THE CONTRACT OF THE CONTRACT OF THE CONTRACT ON THE CONTRACT ON THE CONTRACT OF THE CONTRACT ON	SAMPLE	20214-29E 00214-29E 042021 042014 0-29E	100 / 100 /	THE STATE OF THE S		
4-3-5 K:30 X	GRAB SAMPLE	io 25 Day	24 48 00 W	O X	N N	HEMAHKS
		Sobul	smoet H250			
		120ml	غري			
		13x J	A do to			
		3x 40	A			
		× ×	- Ambes H2504			
2.3	(19. 00. 01				
4.3	ECENTED BY ASIGNATURE) 4/3/2	· Jo	4/3/2	DATE/TIME RECEIVED BY (SIGNATURE)	スモウ	PATENBAE
4/3/2 DATE (TIME)	SKLINGT (VAINE)	DATE / TIME RELINQUIS	101	DATE / TIME RECEIVED BY (PRINT NAME)		DATE / TIME
DATETTINE	Ser Con		INFORMAL	SUBCONTRACTED	6	
	RECEIVED BY (PRINT NAME)	DATE TIME BULK (Initial)		CUSTODY SEA	CUSTODY SEAL IN PLACE & INTACT "SENES	ON

- Sample No. -Time Collected __ CUSTODY SEAL ENVIRONMENTAL EXPRESS Person Collecting Sample Date Collected Person Collecting Sample

ENVIRONMENTAL EXPRESS

Date Collected

Sample Receipt Checklist

	<u>Sam</u>	ne Receipt Checkist
Client: Integrity Tes	sting	Project Manager: Marissa Esquivel
Project: City of Roma	a Permit Renewal	Project Number: [none]
Report To:		
Chris Ewert		SATL Report Number: 2504101
Work Order Due by:	04/15/25 17:00 (7 day TAT)	
Received By:	Aimee Landon	Date Received: 04/04/25 08:50
Logged In By:	Hannah Thigpen	Date Logged In: 04/04/25 09:39
Sample(s) Received on	ICE/evidence of Ice (cooler w	ith melted ice,etc):
Sample temperature at		0.9°C
Custody Seals Present:		Yes
All containers intact:		Yes
Sample labels/COC agi	ree:	Yes
Samples Received with	Yes	
Samples appropriately		Yes
	oken/damaged/leaking:	No
	VOA vials for VOC/TPH analy	yses, if applicable: Not Applicable
TRRP 13 Reporting red		No
	lled to volume (100mL mark),	if applicable: Not Applicable
· · · · · · · · · · · · · · · · · · ·	led to volume (1 Liter mark), is	
Subcontracting require		No
RUSH turnaround time		No
Requested Turnaround	No	
Samples delivered via :		Hand Delivered
Air bill included if San		No
_	eeting SATL sample acceptanc	e criteria notated on CoC: None
but are acceptable, if the	ne laboratory on the same day that y arrive on ice. ed, notate client authorization on (they are collected may not meet thermal preservation criteria (>0°C but <6°C). CoC to proceed with analysis.
Checked By:	Hannah Thi g pen	Date: 04/04/25 08:50 SATL#F000 Revised 09/15/202

User:JPENA@CITYOFROMA.NET, Permittee User

✓ View Certification |
☐ Download COR

DMR Copy of Submission

Form Approved OMB No. 2040-0004 expires on 07/31/2026

Expand Notices

Permit

TX0117544 Permit ID:

Permittee: ROMA, CITY OF

CITY OF ROMA 2 WWTP Facility:

Permitted Feature: 001 - External Outfall

Report Dates & Status

Monitoring Period: From 03/01/25 to 03/31/25

NetDMR Validated Status:

Considerations for Form Completion

Principal Executive Officer

First Name: Juan

Title: Supervisor

No Data Indicator (NODI)

Form NODI:

Major: **~**

PO BOX 947 ROMA , TX78584 Permittee Address:

Facility Location:

604 E 6TH ST ROMA-LOS SAENZ , TX78584

001-A - DOMESTIC FACILITY - 001 Discharge:

DMR Due Date: 04/20/25

Last Name: Pena

956-844-0509 Telephone:

	Parameter	NODI	Quantity or Loading			Quality or Concentration				# of	Freq. of	Smpl. Type
Code	Name		Value 1	Value 2	Units	Value 1	Value 2	Value 3	Units	Ex.	Analysis	
00300	Oxygen, dissolved [DO]	Smpl.				=6.8			19 - mg/L		02/07 - Twice	GR - Grab
1 - Effluent Gross		Silipi.				0.0			139, 2		Every Week	OK GIUD
Season:	0	Req.				>=4.0 MO MIN			19 - mg/L		02/07 - Twice Every Week	GR - Grab
NODI: -		NODI										
00310	BOD, 5-day, 20 deg. C	Smpl.	=30.93		26 - lb/d		=4.29	=8.51	19 - mg/L		02/07 - Twice	CP -
1 - Efflue	ent Gross	Jilipi.	-30.33		20 - 1b/u		-4.23	-0.51	19 - IIIg/L		Every Week	Composite
Season:	0	Req.	<=334.0 DAILY AV		26 - lb/d		<=20.0 DAILY AV	<=45.0 DAILY MX	19 - mg/L		02/07 - Twice Every Week	CP - Composite
NODI: -		NODI										
00400	pН	Smpl.				=7.0		=7.7	12 - SU		01/07 - Weekly	GR - Grab
1 - Efflue	ent Gross	op.i				7.0					01,07 1100.01	OK GIUD
Season:	0	Req.				>=6.0 MINIMUM		<=9.0 MAXIMUM	12 - SU		01/07 - Weekly	GR - Grab
NODI: -		NODI										
	Solids, total suspended	Smpl.	=46.62		26 - lb/d		=6.48	=8.6	19 - mg/L		02/07 - Twice Every Week	CP - Composite
1 - Efflue	ent Gross											
Season:	0	Req.	<=334.0 DAILY AV		26 - lb/d		<=20.0 DAILY AV	<=45.0 DAILY MX	19 - mg/L		02/07 - Twice Every Week	CP - Composite
NODI: -		NODI										
50050	Flow, in conduit or thru treatment plant	Smpl.	=0.707	=2.091	03 - MGD						99/99 - Continuous	TM - Totalizer
1 - Efflue	ent Gross											
Season:	0	Req.	Req Mon DAILY AV	Req Mon DAILY MX	03 - MGD						99/99 - Continuous	TM - Totalizer
NODI: -		NODI										
	Flow, in conduit or thru treatment plant	Smpl.		=1452.0	78 - gal/min						99/99 - Continuous	TM - Totalizer
P - See (Comments											
Season:	0	Req.		<=5208.0 2HR PEAK	78 - gal/min						99/99 - Continuous	TM - Totalizer
NODI: -		NODI										
	Flow, in conduit or thru treatment plant	61	Smpl. =0.796	03 - MG							99/99 - Continuous	TM - Totalizer
Y - Efflue (Suppler	ent Gross nentary)	əmpi.			U3 - MGD							
Season:	0	Req.	<=2.0 ANNL AVG		03 - MGD						99/99 - Continuous	TM - Totalizer
NODI: -		NODI										
51040	E. coli	C1					0.0	1.0	3Z -		01/01 P-"	CD C
1 - Efflue	ent Gross	Smpl.					=0.0	=1.0	CFU/100mL		01/01 - Daily	GR - Grab
Season:	0	Req.					<=126.0 DAILY AV	<=399.0 DAILY MX	3Z - CFU/100mL		01/01 - Daily	GR - Grab
NODI: -		NODI										

Submission Note

If a parameter row does not contain any values for the Sample nor Effluent Trading, then none of the following fields will be submitted for that row: Units, Number of Excursions, Frequency of Analysis, and Sample Type.

Edit Check Errors

No errors.

Comments

Attachments

No attachments.

Report Last Saved By

ROMA, CITY OF

User: JPENA@CITYOFROMA.NET

Name: Juan Pena

E-Mail: jpena@cityofroma.net

Date/Time: 2025-04-18 08:50 (Time Zone:-05:00)

Report Last Signed By

User: JPENA@CITYOFROMA.NET

Name: Juan Pena

E-Mail: jpena@cityofroma.net

Date/Time: 2025-04-18 08:50 (Time Zone:-05:00)

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS

Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary of your facility and application as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. You may modify the template as necessary to accurately describe your facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how you will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements. After filling in the information for your facility delete these instructions.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS Enter 'INDUSTRIAL' or 'DOMESTIC' here WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

City of Roma (CN600626204) operates Roma Wastewater Treatment Plant (RN101613560), a municipal wastewater treatment facility. The facility is located at 604 East 6th Street, in Roma, Starr County, Texas 78584. The City of Roma has applied for a renewal of the existing permit number WQ0011212002 (EPA I.D. No. TX0117544) that authorizes the discharge of treated wastewater at a volume not to exceed an annual average flow of 2,000,000 gallons per day.

Discharges from the facility are expected to contain Carbonaceous Biological Oxygen Demand 5-day, Total Suspended Solids, Ammonia Nitrogen, Total Aluminum, and E. Coli. Municipal wastewaters are treated by an activated sludge process plant operated with extended aeration mode. Treatment units include a bar screen, a grit and grease chamber, two aeration basins, two final clarifiers, a sludge holding tank, a belt filter press, and two ultraviolet (UV) light disinfection channels.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES DOMESTICÁS /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

City of Roma (CN600626204) opera Roma Water Treatment Plant RN101613560, una instalación de tratamiento de agua potable. La instalación está ubicada en 604 East 6th Street, en Roma, Condado de Starr, Texas 78584. City of Roma ha solicitado la renovación del permiso existente número WQ0011212002 (EPA I.D. TX0117544) que autoriza la descarga de aguas residuals tratadas en un volume que no exceda un caudal medio annual de 2,000,000 galones por día.

Se espera que las descargas de la instalación contengan demanda biológica de oxígeno carbonoso de 5 días, sólidos suspendidos totales, nitrógeno amoniacal, aluminio total y E. coli. Aguas residuales municipales. están tratado por una planta de lodos activados que opera con aireación prolongada. Las unidades de tratamiento incluyen un tamiz de barras, una cámara de arena y grasa, does tanques de aireación, does clarificadores finales, un tanque de retención de lodos, un filtro prensa de banda y dos canales de desinfeccion con luz ultravioleta (UV).

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WOOO

SOLICITUD. City of Roma, P.O. Box 947, Roma, Texas 78584, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0011212002 (EPA I.D. No. TX0117544) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio anual de 2,000,000 galones por día. La planta está ubicada 604 East 6th Street en Roma en el Condado de Starr, Texas 78581. La ruta de descarga es del sitio de la planta a Río Grande debako del embalse Falcon. La TCEQ recibió esta solicitud el 8 de mayo de 2025. La solicitud para el permiso estará disponible para leerla y copiarla en Ayuntamiento de Roma, Area de recepción, 201 West Convent Boulevard, Roma, Condado de Starr antes de la fecha de publicación de este aviso en el periódico. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación

Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-99.0031,26.399&level=18

AVISO DE IDIOMA ALTERNATIVO. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ

realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión.

La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo,

la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Además, puede pedir que la TCEQ ponga su nombre en una o más de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos del solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envía por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

INFORMACIÓN DISPONIBLE EN LÍNEA. Para detalles sobre el estado de la solicitud, favor de visitar la Base de Datos Integrada de los Comisionados en www.tceq.texas.gov/goto/cid. Para buscar en la base de datos, utilizar el número de permiso para esta solicitud que aparece en la parte superior de este aviso.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía http://www14.tceq.texas.gov/epic/eComment/o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEO, gratis, al 1-800-687-4040. Si desea información

También se puede obtener información adicional del City of Roma a la dirección indicada arriba o llamando a Sr. Alejandro Barrera, Administrator Municipal, al 956-849-1411.

Fecha de emisión: [Date notice issued]

en Español, puede llamar al 1-800-687-4040.

May 19, 2025

Via Email to Brandon.Maldonado@tceq.texas.gov

Texas Commission on Environmental Quality Water Quality Division Applications Review and Processing Team (MC148) P.O. Box 13087

Austin, Texas 78711-3087 Attn: Mr. Brandon Maldonado

Re: Application to Renew Permit No.: WQ0011212002 (EPA I.D. No. TX0117544)

Applicant Name: City of Roma (CN600626204)
Site Name: City of Roma WWTP 2 (RN101613560)
Type of Application: Renewal without changes

Dear Mr. Maldonado:

The TCEQ emailed letter, dated May 16,2025, indicates that additional information is required before the application can be declared administratively complete. A copy of the referenced TCEQ correspondence is attached for reference. The responses to each item listed in the referenced TCEQ correspondence are as follows:

1. The following is a portion of the NORI which contains information relevant to your application. Please read it carefully and indicate if it contains any errors or omissions. The complete notice will be sent to you once the application is declared administratively complete.

APPLICATION. City of Roma, P.O. Box 947, Roma, Texas 78584, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0011212002 (EPA I.D. No. TX0117544) to authorize the discharge of treated wastewater at a volume not to exceed an annual average flow of 2,000,000 gallons per day. The domestic wastewater treatment facility is located at 604 East 6th Street, in near the city of Roma, in Starr County, Texas 78584. The discharge route is from the plant site to Rio Grande Below Falcon Reservoir. TCEQ received this application on May 8, 2025. The permit application will be available for viewing and copying at Roma City Hall, Reception Area, 201 West Convent Boulevard 77 East Convent Avenue, Roma, in Starr County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdesapplications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-99.0031,26.399&level=18

Further information may also be obtained from City of Roma at the address stated above or by calling Mr. Alejandro Barrera, City Manager, at 956-849-1411.

The following corrections are needed:

- Revise the location of the wastewater treatment facility as noted above in redline / strikeout;
 the facility is located within the city limits (not near the city).
- Revise the address for Roma City Hall as noted above in redline / strikeout. The new 9-1-1
 address is 201 West Convent Boulevard. The new City Hall address is posted on the City's
 website and has been confirmed by the City Secretary. Submitted application Administrative
 Report 1.0, Section 8, Item D (page 6 of 17) correctly lists the City Hall address.
- 2. The application indicates that public notices in Spanish are required. After confirming the portion of the NORI above does not contain any errors or omissions, please use the attached template to translate the NORI into Spanish. Only the first and last paragraphs are unique to this application and require translation. Please provide the translated Spanish NORI in a Microsoft Word document.

The translated Spanish NORI in pdf and Word format is attached. The translation includes the edits as listed above.

The response is provided as requested by the TCEQ original response deadline of May 30, 2025. Please feel free to call me at 817-694-8382, contact me in writing in the Abilene office, or email me at luci.dunn@e-ht.com with any questions or comments.

Sincerely,

Enprotec / Hibbs & Todd, Inc.

ici Dunn

Luci Dunn, P.E.

Senior Project Manager

LD/jd

Attachments TCEQ Administrative Email and Letter, dated 5/16/2025

Spanish-translated DRAFT NORI (pdf and Word)

c: Mr. Alejandro Barrera, City Manager, via email to abarrera@cityofroma.net

Mr. Alfonso Ramirez Jr, Assistant City Manager, via email to aramirez@cityofroma.net

Ms. Lily Sandoval, via email to Isandoval@cityofroma.net

Mr. Roy Garcia Public Works, via email to rgarcia@cityofroma.net

Mr. Rafael Saenz Jr., WTP via email to rsaenz@cityofroma.net

Mr. Jose Vela, WTP, via email to jvela@cityofroma.net

Ms. Fabiola Rodriguez via email to frodriguez@citvofroma.net

Project File 8235.2.2 P:Projects|TPDES Permit Applications|Roma WWTP|8235 2025 Roma WWTP Permit Renewal|20250516 Admin NOD|Response to Roma WWTP Admin NOD WQ0011212002.docx

Luci Dunn

From: Brandon Maldonado <Brandon.Maldonado@tceq.texas.gov>

Sent: Friday, May 16, 2025 3:46 PM **To:** abarrera@cityofroma.net

Cc: Luci Dunn

Subject: Application to Renew Permit No. WQ0011212002 - Notice of Deficiency Letter WQ0011212002-nod1.pdf; Municipal Discharge Renewal Spanish NORI.docx

You don't often get email from brandon.maldonado@tceq.texas.gov. Learn why this is important

Caution: This is an external email that originated outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Mr. Alejandro Barrera

The attached Notice of Deficiency (NOD) letter sent on <u>May 16, 2025</u>, requests additional information needed to declare the application administratively complete. Please send complete response to my attention by <u>May 30, 2025</u>.

Please let me know if you have any questions.

Regards,

Brandon Maldonado

Texas Commission on Environmental Quality Water Quality Division 512-239-4331 Brandon.Maldonado@tceq.texas.gov

How is our customer service? Fill out our online customer satisfaction survey at www.tceq.texas.gov/customersurvey

Brooke T. Paup, *Chairwoman*Bobby Janecka, *Commissioner*Catarina R. Gonzales, *Commissioner*Kelly Keel, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

May 16, 2025

Mr. Alejandro Barrera City Manager City of Roma P.O. Box 947 Roma, Texas 78584

RE: Application to Renew Permit No.: WQ0011212002 (EPA I.D. No. TX0117544)

Applicant Name: City of Roma (CN600626204) Site Name: City of Roma WWTP 2 (RN101613560) Type of Application: Renewal without changes

VIA EMAII.

Dear Mr. Barrera:

We have received the application for the above referenced permit, and it is currently under review. Your attention to the following item(s) are requested before we can declare the application administratively complete. Please submit responses to the following items via email

1. The following is a portion of the NORI which contains information relevant to your application. Please read it carefully and indicate if it contains any errors or omissions. The complete notice will be sent to you once the application is declared administratively complete.

APPLICATION. City of Roma, P.O. Box 947, Roma, Texas 78584, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0011212002 (EPA I.D. No. TX0117544) to authorize the discharge of treated wastewater at a volume not to exceed an annual average flow of 2,000,000 gallons per day. The domestic wastewater treatment facility is located at 604 East 6th Street, near the city of Roma, in Starr County, Texas 78584. The discharge route is from the plant site to Rio Grande Below Falcon Reservoir. TCEQ received this application on May 8, 2025. The permit application will be available for viewing and copying at Roma City Hall, Reception Area, 77 East Convent Avenue, Roma, in Starr County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage:

https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdesapplications. This link to an electronic map of the site or facility's general location is

Mr. Alejandro Barrera Page 2 May 16, 2025 Permit No. WQ0011212002

provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-99.0031,26.399&level=18 Further information may also be obtained from City of Roma at the address stated above or by calling Mr. Alejandro Barrera, City Manager, at 956-849-1411.

2. The application indicates that public notices in Spanish are required. After confirming the portion of the NORI above does not contain any errors or omissions, please use the attached template to translate the NORI into Spanish. Only the first and last paragraphs are unique to this application and require translation. Please provide the translated Spanish NORI in a Microsoft Word document.

Please submit the complete response, addressed to my attention by May 30, 2025. If you should have any questions, please do not hesitate to contact me by phone at (512) 239-4331 or by email at Brandon.Maldonado@tceq.texas.gov

Sincerely,

Brandon Maldonado Applications Review and Processing Team (MC148) Water Quality Division Texas Commission of Environmental Quality

BM

Enclosure(s)

cc: Ms. Luci Dunn, P.E., Senior Projec Manager, Enprotec, P.O. Box 3097, Abilene, Texas 79604

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ00 11212002

SOLICITUD. City of Roma, P.O. Box 947, Roma, Texas 78584, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0011212002 (EPA I.D. No. TX0117544) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio anual de 2,000,000 galones por día. La planta está ubicada 604 East 6th Street en Roma en el Condado de Starr, Texas 78581. La ruta de descarga es del sitio de la planta a Río Grande debako del embalse Falcon. La TCEQ recibió esta solicitud el 8 de mayo de 2025. La solicitud para el permiso estará disponible para leerla y copiarla en Ayuntamiento de Roma, Area de recepción, 201 West Convent Boulevard, Roma, Condado de Starr antes de la fecha de publicación de este aviso en el periódico. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-99.0031,26.399&level=18

AVISO DE IDIOMA ALTERNATIVO. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ

realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión.

La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo,

la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Además, puede pedir que la TCEQ ponga su nombre en una o más de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos del solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envía por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

INFORMACIÓN DISPONIBLE EN LÍNEA. Para detalles sobre el estado de la solicitud, favor de visitar la Base de Datos Integrada de los Comisionados en www.tceq.texas.gov/goto/cid. Para buscar en la base de datos, utilizar el número de permiso para esta solicitud que aparece en la parte superior de este aviso.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía http://www14.tceq.texas.gov/epic/eComment/o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame

al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información

También se puede obtener información adicional del City of Roma a la dirección indicada arriba o llamando a Sr. Alejandro Barrera, Administrator Municipal, al 956-849-1411.

Fecha de emisión: [Date notice issued]

en Español, puede llamar al 1-800-687-4040.

Brandon Maldonado

From: Brandon Maldonado

Sent: Tuesday, May 20, 2025 4:08 PM

To: Luci Dunn

Subject: RE: Response: Renew Permit No. WQ0011212002 Roma WWTP

Good afternoon,

Your response to all items of the NOD are sufficient. I will now work to admin complete your application.

Please let me know if you have any questions.

Regards,

Brandon Maldonado

Texas Commission on Environmental Quality Water Quality Division 512-239-4331 Brandon.Maldonado@tceq.texas.gov

How is our customer service? Fill out our online customer satisfaction survey at

www.tceq.texas.gov/customersurvey

From: Luci Dunn < luci.dunn@e-ht.com> Sent: Monday, May 19, 2025 11:11 AM

To: Brandon Maldonado <Brandon.Maldonado@tceq.texas.gov> **Subject:** Response: Renew Permit No. WQ0011212002 Roma WWTP

Good Day Brandon,

Please see the attached Notice of Deficiency (NOD) response for the Please see the attached Notice of Deficiency (NOD) response for the City of Roma (CN600626204) WWTP (RN101613560) WQ0011212002 (EPA I.D. No. TX0117544). The NORI translated into Spanish is attached as a Word file; the suggested corrections are included in the translated NORI. Please let me know if anything else is needed.

Sincerely, Luci Dunn, PE Senior Project Manager Enprotec / Hibbs & Todd, Inc.

From: Brandon Maldonado <Brandon.Maldonado@tceg.texas.gov>

Sent: Friday, May 16, 2025 3:46 PM

To: abarrera@cityofroma.net

Cc: Luci Dunn < luci.dunn@e-ht.com>

Subject: Application to Renew Permit No. WQ0011212002 - Notice of Deficiency Letter

You don't often get email from <u>brandon.maldonado@tceq.texas.gov</u>. <u>Learn why this is important</u>

Caution: This is an external email that originated outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Mr. Alejandro Barrera

The attached Notice of Deficiency (NOD) letter sent on <u>May 16, 2025</u>, requests additional information needed to declare the application administratively complete. Please send complete response to my attention by <u>May 30, 2025</u>.

Please let me know if you have any questions.

Regards,

Brandon Maldonado

Texas Commission on Environmental Quality Water Quality Division 512-239-4331 Brandon.Maldonado@tceq.texas.gov

How is our customer service? Fill out our online customer satisfaction survey at www.tceq.texas.gov/customersurvey

Brandon Maldonado

From: Brandon Maldonado

Sent: Tuesday, May 20, 2025 4:08 PM

To: Luci Dunn

Subject: RE: Response: Renew Permit No. WQ0011212002 Roma WWTP

Good afternoon,

Your response to all items of the NOD are sufficient. I will now work to admin complete your application.

Please let me know if you have any questions.

Regards,

Brandon Maldonado

Texas Commission on Environmental Quality Water Quality Division 512-239-4331 Brandon.Maldonado@tceq.texas.gov

How is our customer service? Fill out our online customer satisfaction survey at

www.tceq.texas.gov/customersurvey

From: Luci Dunn < luci.dunn@e-ht.com> Sent: Monday, May 19, 2025 11:11 AM

To: Brandon Maldonado <Brandon.Maldonado@tceq.texas.gov> **Subject:** Response: Renew Permit No. WQ0011212002 Roma WWTP

Good Day Brandon,

Please see the attached Notice of Deficiency (NOD) response for the Please see the attached Notice of Deficiency (NOD) response for the City of Roma (CN600626204) WWTP (RN101613560) WQ0011212002 (EPA I.D. No. TX0117544). The NORI translated into Spanish is attached as a Word file; the suggested corrections are included in the translated NORI. Please let me know if anything else is needed.

Sincerely, Luci Dunn, PE Senior Project Manager Enprotec / Hibbs & Todd, Inc.

From: Brandon Maldonado <Brandon.Maldonado@tceg.texas.gov>

Sent: Friday, May 16, 2025 3:46 PM

To: abarrera@cityofroma.net

Cc: Luci Dunn < luci.dunn@e-ht.com>

Subject: Application to Renew Permit No. WQ0011212002 - Notice of Deficiency Letter

You don't often get email from <u>brandon.maldonado@tceq.texas.gov</u>. <u>Learn why this is important</u>

Caution: This is an external email that originated outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Mr. Alejandro Barrera

The attached Notice of Deficiency (NOD) letter sent on <u>May 16, 2025</u>, requests additional information needed to declare the application administratively complete. Please send complete response to my attention by <u>May 30, 2025</u>.

Please let me know if you have any questions.

Regards,

Brandon Maldonado

Texas Commission on Environmental Quality Water Quality Division 512-239-4331 Brandon.Maldonado@tceq.texas.gov

How is our customer service? Fill out our online customer satisfaction survey at www.tceq.texas.gov/customersurvey

TPDES PERMIT NO. WQ0011212002 [For TCEQ office use only - EPA I.D. No. TX0117544]

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY P.O. Box 13087 Austin, Texas 78711-3087

This is a renewal that replaces TPDES Permit No. WQ0011212002 issued on November 5, 2020.

PERMIT TO DISCHARGE WASTES

under provisions of Section 402 of the Clean Water Act and Chapter 26 of the Texas Water Code

City of Roma

whose mailing address is

P.O. Box 947 Roma, Texas 78584

is authorized to treat and discharge wastes from the City of Roma Wastewater Treatment Plant No. 2, SIC Code 4952

located at 604 East 6th Street, in the City of Roma, Starr County, Texas 78584

directly to Rio Grande Below Falcon Reservoir in Segment No. 2302 of the Rio Grande Basin

only according to effluent limitations, monitoring requirements, and other conditions set forth in this permit, as well as the rules of the Texas Commission on Environmental Quality (TCEQ), the laws of the State of Texas, and other orders of the TCEQ. The issuance of this permit does not grant to the permittee the right to use private or public property for conveyance of wastewater along the discharge route described in this permit. This includes, but is not limited to, property belonging to any individual, partnership, corporation, or other entity. Neither does this permit authorize any invasion of personal rights nor any violation of federal, state, or local laws or regulations. It is the responsibility of the permittee to acquire property rights as may be necessary to use the discharge route.

This permit shall expire at midnight, five years from	the date of issuance.
ISSUED DATE:	
	For the Commission

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

Outfall Number 001

1. During the period beginning upon the date of issuance and lasting through the date of expiration, the permittee is authorized to discharge subject to the following effluent limitations:

The annual average flow of effluent shall not exceed 2.0 million gallons per day (MGD), nor shall the average discharge during any two-hour period (2-hour peak) exceed 5,208 gallons per minute.

Effluent Characteristic	Discharge L	imitations		Min. Self-Monitoring Requirements			
	Daily Avg	7-day Avg	Daily Max	Single Grab	Report Daily Avg. & Daily Max.		
	mg/l (lbs/day)	mg/l	mg/l	mg/l	Measurement Frequency	Sample Type	
Flow, MGD	Report	N/A	Report	N/A	Continuous	Totalizing Meter	
Biochemical Oxygen Demand (5-day)	20 (334)	30	45	65	Two/week	Composite	
Total Suspended Solids	20 (334)	30	45	65	Two/week	Composite	
E. coli, colony-forming units or most probable number per 100 ml	126	N/A	399	N/A	Daily	Grab	

- 2. The permittee shall utilize an Ultraviolet Light (UV) system for disinfection purposes. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.
- 3. The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample.
- 4. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.
- 5. Effluent monitoring samples shall be taken at the following location(s): Following the final treatment unit.
- 6. The effluent shall contain a minimum dissolved oxygen of 4.0 mg/l and shall be monitored twice per week by grab sample.
- 7. The annual average flow and maximum 2-hour peak flow shall be reported monthly.

DEFINITIONS AND STANDARD PERMIT CONDITIONS

As required by Title 30 Texas Administrative Code (TAC) Chapter 305, certain regulations appear as standard conditions in waste discharge permits. 30 TAC § 305.121 - 305.129 (relating to Permit Characteristics and Conditions) as promulgated under the Texas Water Code (TWC) §§ 5.103 and 5.105, and the Texas Health and Safety Code (THSC) §§ 361.017 and 361.024(a), establish the characteristics and standards for waste discharge permits, including sewage sludge, and those sections of 40 Code of Federal Regulations (CFR) Part 122 adopted by reference by the Commission. The following text includes these conditions and incorporates them into this permit. All definitions in TWC § 26.001 and 30 TAC Chapter 305 shall apply to this permit and are incorporated by reference. Some specific definitions of words or phrases used in this permit are as follows:

1. Flow Measurements

- a. Annual average flow the arithmetic average of all daily flow determinations taken within the preceding 12 consecutive calendar months. The annual average flow determination shall consist of daily flow volume determinations made by a totalizing meter, charted on a chart recorder and limited to major domestic wastewater discharge facilities with one million gallons per day or greater permitted flow.
- b. Daily average flow the arithmetic average of all determinations of the daily flow within a period of one calendar month. The daily average flow determination shall consist of determinations made on at least four separate days. If instantaneous measurements are used to determine the daily flow, the determination shall be the arithmetic average of all instantaneous measurements taken during that month. Daily average flow determination for intermittent discharges shall consist of a minimum of three flow determinations on days of discharge.
- c. Daily maximum flow the highest total flow for any 24-hour period in a calendar month.
- d. Instantaneous flow the measured flow during the minimum time required to interpret the flow measuring device.
- e. 2-hour peak flow (domestic wastewater treatment plants) the maximum flow sustained for a two-hour period during the period of daily discharge. The average of multiple measurements of instantaneous maximum flow within a two-hour period may be used to calculate the 2-hour peak flow.
- f. Maximum 2-hour peak flow (domestic wastewater treatment plants) the highest 2-hour peak flow for any 24-hour period in a calendar month.

2. Concentration Measurements

- a. Daily average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar month, consisting of at least four separate representative measurements.
 - i. For domestic wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values in the previous four consecutive month period consisting of at least four measurements shall be utilized as the daily average concentration.

- ii. For all other wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values taken during the month shall be utilized as the daily average concentration.
- b. 7-day average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar week, Sunday through Saturday.
- c. Daily maximum concentration the maximum concentration measured on a single day, by the sample type specified in the permit, within a period of one calendar month.
- d. Daily discharge the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in terms of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the sampling day. For pollutants with limitations expressed in other units of measurement, the daily discharge is calculated as the average measurement of the pollutant over the sampling day.

The daily discharge determination of concentration made using a composite sample shall be the concentration of the composite sample. When grab samples are used, the daily discharge determination of concentration shall be the arithmetic average (weighted by flow value) of all samples collected during that day.

- e. Bacteria concentration (*E. coli* or Enterococci) Colony Forming Units (CFU) or Most Probable Number (MPN) of bacteria per 100 milliliters effluent. The daily average bacteria concentration is a geometric mean of the values for the effluent samples collected in a calendar month. The geometric mean shall be determined by calculating the nth root of the product of all measurements made in a calendar month, where n equals the number of measurements made; or, computed as the antilogarithm of the arithmetic mean of the logarithms of all measurements made in a calendar month. For any measurement of bacteria equaling zero, a substituted value of one shall be made for input into either computation method. If specified, the 7-day average for bacteria is the geometric mean of the values for all effluent samples collected during a calendar week.
- f. Daily average loading (lbs/day) the arithmetic average of all daily discharge loading calculations during a period of one calendar month. These calculations must be made for each day of the month that a parameter is analyzed. The daily discharge, in terms of mass (lbs/day), is calculated as (Flow, MGD x Concentration, mg/l x 8.34).
- g. Daily maximum loading (lbs/day) the highest daily discharge, in terms of mass (lbs/day), within a period of one calendar month.

3. Sample Type

a. Composite sample - For domestic wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (a). For industrial wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (b).

- b. Grab sample an individual sample collected in less than 15 minutes.
- 4. Treatment Facility (facility) wastewater facilities used in the conveyance, storage, treatment, recycling, reclamation and/or disposal of domestic sewage, industrial wastes, agricultural wastes, recreational wastes, or other wastes including sludge handling or disposal facilities under the jurisdiction of the Commission.
- 5. The term "sewage sludge" is defined as solid, semi-solid, or liquid residue generated during the treatment of domestic sewage in 30 TAC Chapter 312. This includes the solids that have not been classified as hazardous waste separated from wastewater by unit processes.
- 6. The term "biosolids" is defined as sewage sludge that has been tested or processed to meet Class A, Class AB, or Class B pathogen standards in 30 TAC Chapter 312 for beneficial use.
- 7. Bypass the intentional diversion of a waste stream from any portion of a treatment facility.

MONITORING AND REPORTING REQUIREMENTS

1. Self-Reporting

Monitoring results shall be provided at the intervals specified in the permit. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall conduct effluent sampling and reporting in accordance with 30 TAC §§ 319.4 - 319.12. Unless otherwise specified, effluent monitoring data shall be submitted each month, to the Enforcement Division (MC 224), by the 20th day of the following month for each discharge which is described by this permit whether or not a discharge is made for that month. Monitoring results must be submitted online using the NetDMR reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. Monitoring results must be signed and certified as required by Monitoring and Reporting Requirements No. 10.

As provided by state law, the permittee is subject to administrative, civil and criminal penalties, as applicable, for negligently or knowingly violating the Clean Water Act (CWA); TWC §§ 26, 27, and 28; and THSC § 361, including but not limited to knowingly making any false statement, representation, or certification on any report, record, or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or noncompliance, or falsifying, tampering with or knowingly rendering inaccurate any monitoring device or method required by this permit or violating any other requirement imposed by state or federal regulations.

2. Test Procedures

- a. Unless otherwise specified in this permit, test procedures for the analysis of pollutants shall comply with procedures specified in 30 TAC §§ 319.11 319.12. Measurements, tests, and calculations shall be accurately accomplished in a representative manner.
- b. All laboratory tests submitted to demonstrate compliance with this permit must meet the requirements of 30 TAC § 25, Environmental Testing Laboratory Accreditation and Certification.

3. Records of Results

a. Monitoring samples and measurements shall be taken at times and in a manner so as to be representative of the monitored activity.

- b. Except for records of monitoring information required by this permit related to the permittee's sewage sludge or biosolids use and disposal activities, which shall be retained for a period of at least five years (or longer as required by 40 CFR Part 503), monitoring and reporting records, including strip charts and records of calibration and maintenance, copies of all records required by this permit, records of all data used to complete the application for this permit, and the certification required by 40 CFR § 264.73(b)(9) shall be retained at the facility site, or shall be readily available for review by a TCEQ representative for a period of three years from the date of the record or sample, measurement, report, application or certification. This period shall be extended at the request of the Executive Director.
- c. Records of monitoring activities shall include the following:
 - i. date, time and place of sample or measurement;
 - ii. identity of individual who collected the sample or made the measurement.
 - iii. date and time of analysis;
 - iv. identity of the individual and laboratory who performed the analysis;
 - v. the technique or method of analysis; and
 - vi. the results of the analysis or measurement and quality assurance/quality control records.

The period during which records are required to be kept shall be automatically extended to the date of the final disposition of any administrative or judicial enforcement action that may be instituted against the permittee.

4. Additional Monitoring by Permittee

If the permittee monitors any pollutant at the location(s) designated herein more frequently than required by this permit using approved analytical methods as specified above, all results of such monitoring shall be included in the calculation and reporting of the values submitted on the approved self-report form. Increased frequency of sampling shall be indicated on the self-report form.

5. Calibration of Instruments

All automatic flow measuring or recording devices and all totalizing meters for measuring flows shall be accurately calibrated by a trained person at plant start-up and as often thereafter as necessary to ensure accuracy, but not less often than annually unless authorized by the Executive Director for a longer period. Such person shall verify in writing that the device is operating properly and giving accurate results. Copies of the verification shall be retained at the facility site and/or shall be readily available for review by a TCEQ representative for a period of three years.

6. Compliance Schedule Reports

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of the permit shall be submitted no later than 14 days following each schedule date to the Regional Office and the Enforcement

Division (MC 224).

7. Noncompliance Notification

- a. In accordance with 30 TAC § 305.125(9) any noncompliance which may endanger human health or safety, or the environment shall be reported by the permittee to the TCEQ. Except as allowed by 30 TAC § 305.132, report of such information shall be provided orally or by facsimile transmission (FAX) to the Regional Office within 24 hours of becoming aware of the noncompliance. A written submission of such information shall also be provided by the permittee to the Regional Office and the Enforcement Division (MC 224) within five working days of becoming aware of the noncompliance. For Publicly Owned Treatment Works (POTWs), effective December 21, 2025, the permittee must submit the written report for unauthorized discharges and unanticipated bypasses that exceed any effluent limit in the permit using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. The written submission shall contain a description of the noncompliance and its cause; the potential danger to human health or safety, or the environment; the period of noncompliance, including exact dates and times; if the noncompliance has not been corrected, the time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance, and to mitigate its adverse effects.
- b. The following violations shall be reported under Monitoring and Reporting Requirement 7.a.:
 - i. Unauthorized discharges as defined in Permit Condition 2(g).
 - ii. Any unanticipated bypass that exceeds any effluent limitation in the permit.
 - iii. Violation of a permitted maximum daily discharge limitation for pollutants listed specifically in the Other Requirements section of an Industrial TPDES permit.
- c. In addition to the above, any effluent violation which deviates from the permitted effluent limitation by more than 40% shall be reported by the permittee in writing to the Regional Office and the Enforcement Division (MC 224) within 5 working days of becoming aware of the noncompliance.
- d. Any noncompliance other than that specified in this section, or any required information not submitted or submitted incorrectly, shall be reported to the Enforcement Division (MC 224) as promptly as possible. For effluent limitation violations, noncompliances shall be reported on the approved self-report form.
- 8. In accordance with the procedures described in 30 TAC §§ 35.301 35.303 (relating to Water Quality Emergency and Temporary Orders) if the permittee knows in advance of the need for a bypass, it shall submit prior notice by applying for such authorization.
- 9. Changes in Discharges of Toxic Substances
 - All existing manufacturing, commercial, mining, and silvicultural permittees shall notify the Regional Office, orally or by facsimile transmission within 24 hours, and both the Regional Office and the Enforcement Division (MC 224) in writing within five (5) working days, after becoming aware of or having reason to believe:

- a. That any activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic pollutant listed at 40 CFR Part 122, Appendix D, Tables II and III (excluding Total Phenols) which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. One hundred micrograms per liter (100 μ g/L);
 - ii. Two hundred micrograms per liter (200 μ g/L) for acrolein and acrylonitrile; five hundred micrograms per liter (500 μ g/L) for 2,4-dinitrophenol and for 2-methyl-4,6-dinitrophenol; and one milligram per liter (1 mg/L) for antimony;
 - iii. Five (5) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.
- b. That any activity has occurred or will occur which would result in any discharge, on a nonroutine or infrequent basis, of a toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. Five hundred micrograms per liter (500 μ g/L);
 - ii. One milligram per liter (1 mg/L) for antimony;
 - iii. Ten (10) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.

10. Signatories to Reports

All reports and other information requested by the Executive Director shall be signed by the person and in the manner required by 30 TAC § 305.128 (relating to Signatories to Reports).

- 11. All POTWs must provide adequate notice to the Executive Director of the following:
 - a. Any new introduction of pollutants into the POTW from an indirect discharger which would be subject to CWA § 301 or § 306 if it were directly discharging those pollutants;
 - b. Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of issuance of the permit; and
 - c. For the purpose of this paragraph, adequate notice shall include information on:
 - i. The quality and quantity of effluent introduced into the POTW; and
 - ii. Any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW.

PERMIT CONDITIONS

1. General

- a. When the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in an application or in any report to the Executive Director, it shall promptly submit such facts or information.
- b. This permit is granted on the basis of the information supplied and representations made by the permittee during action on an application, and relying upon the accuracy and completeness of that information and those representations. After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked, in whole or in part, in accordance with 30 TAC Chapter 305, Subchapter D, during its term for good cause including, but not limited to, the following:
 - i. Violation of any terms or conditions of this permit;
 - ii. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts; or
 - iii. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.
- c. The permittee shall furnish to the Executive Director, upon request and within a reasonable time, any information to determine whether cause exists for amending, revoking, suspending or terminating the permit. The permittee shall also furnish to the Executive Director, upon request, copies of records required to be kept by the permit.

2. Compliance

- a. Acceptance of the permit by the person to whom it is issued constitutes acknowledgment and agreement that such person will comply with all the terms and conditions embodied in the permit, and the rules and other orders of the Commission.
- b. The permittee has a duty to comply with all conditions of the permit. Failure to comply with any permit condition constitutes a violation of the permit and the Texas Water Code or the Texas Health and Safety Code, and is grounds for enforcement action, for permit amendment, revocation, or suspension, or for denial of a permit renewal application or an application for a permit for another facility.
- c. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of the permit.
- d. The permittee shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal or other permit violation that has a reasonable likelihood of adversely affecting human health or the environment.
- e. Authorization from the Commission is required before beginning any change in the permitted facility or activity that may result in noncompliance with any permit requirements.
- f. A permit may be amended, suspended and reissued, or revoked for cause in accordance

with 30 TAC §§ 305.62 and 305.66 and TWC§ 7.302. The filing of a request by the permittee for a permit amendment, suspension and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.

- g. There shall be no unauthorized discharge of wastewater or any other waste. For the purpose of this permit, an unauthorized discharge is considered to be any discharge of wastewater into or adjacent to water in the state at any location not permitted as an outfall or otherwise defined in the Other Requirements section of this permit.
- h. In accordance with 30 TAC § 305.535(a), the permittee may allow any bypass to occur from a TPDES permitted facility which does not cause permitted effluent limitations to be exceeded or an unauthorized discharge to occur, but only if the bypass is also for essential maintenance to assure efficient operation.
- i. The permittee is subject to administrative, civil, and criminal penalties, as applicable, under TWC §§ 7.051 7.075 (relating to Administrative Penalties), 7.101 7.111 (relating to Civil Penalties), and 7.141 7.202 (relating to Criminal Offenses and Penalties) for violations including, but not limited to, negligently or knowingly violating the federal CWA §§ 301, 302, 306, 307, 308, 318, or 405, or any condition or limitation implementing any sections in a permit issued under the CWA § 402, or any requirement imposed in a pretreatment program approved under the CWA §§ 402 (a)(3) or 402 (b)(8).

3. Inspections and Entry

- a. Inspection and entry shall be allowed as prescribed in the TWC Chapters 26, 27, and 28, and THSC § 361.
- b. The members of the Commission and employees and agents of the Commission are entitled to enter any public or private property at any reasonable time for the purpose of inspecting and investigating conditions relating to the quality of water in the state or the compliance with any rule, regulation, permit or other order of the Commission. Members, employees, or agents of the Commission and Commission contractors are entitled to enter public or private property at any reasonable time to investigate or monitor or, if the responsible party is not responsive or there is an immediate danger to public health or the environment, to remove or remediate a condition related to the quality of water in the state. Members, employees, Commission contractors, or agents acting under this authority who enter private property shall observe the establishment's rules and regulations concerning safety, internal security, and fire protection, and if the property has management in residence, shall notify management or the person then in charge of his presence and shall exhibit proper credentials. If any member, employee, Commission contractor, or agent is refused the right to enter in or on public or private property under this authority, the Executive Director may invoke the remedies authorized in TWC § 7.002. The statement above, that Commission entry shall occur in accordance with an establishment's rules and regulations concerning safety, internal security, and fire protection, is not grounds for denial or restriction of entry to any part of the facility, but merely describes the Commission's duty to observe appropriate rules and regulations during an inspection.

4. Permit Amendment and/or Renewal

- a. The permittee shall give notice to the Executive Director as soon as possible of any planned physical alterations or additions to the permitted facility if such alterations or additions would require a permit amendment or result in a violation of permit requirements. Notice shall also be required under this paragraph when:
 - i. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in accordance with 30 TAC § 305.534 (relating to New Sources and New Dischargers); or
 - ii. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants that are subject neither to effluent limitations in the permit, nor to notification requirements in Monitoring and Reporting Requirements No. 9; or
 - iii. The alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan.
- b. Prior to any facility modifications, additions, or expansions that will increase the plant capacity beyond the permitted flow, the permittee must apply for and obtain proper authorization from the Commission before commencing construction.
- c. The permittee must apply for an amendment or renewal at least 180 days prior to expiration of the existing permit in order to continue a permitted activity after the expiration date of the permit. If an application is submitted prior to the expiration date of the permit, the existing permit shall remain in effect until the application is approved, denied, or returned. If the application is returned or denied, authorization to continue such activity shall terminate upon the effective date of the action. If an application is not submitted prior to the expiration date of the permit, the permit shall expire and authorization to continue such activity shall terminate.
- d. Prior to accepting or generating wastes which are not described in the permit application or which would result in a significant change in the quantity or quality of the existing discharge, the permittee must report the proposed changes to the Commission. The permittee must apply for a permit amendment reflecting any necessary changes in permit conditions, including effluent limitations for pollutants not identified and limited by this permit.
- e. In accordance with the TWC § 26.029(b), after a public hearing, notice of which shall be given to the permittee, the Commission may require the permittee, from time to time, for good cause, in accordance with applicable laws, to conform to new or additional conditions.
- f. If any toxic effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is promulgated under CWA § 307(a) for a toxic pollutant which is present in the discharge and that standard or prohibition is more stringent than any limitation on the pollutant in this permit, this permit shall be modified or revoked and reissued to conform to the toxic effluent standard or

prohibition. The permittee shall comply with effluent standards or prohibitions established under CWA § 307(a) for toxic pollutants within the time provided in the regulations that established those standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.

5. Permit Transfer

- a. Prior to any transfer of this permit, Commission approval must be obtained. The Commission shall be notified in writing of any change in control or ownership of facilities authorized by this permit. Such notification should be sent to the Applications Review and Processing Team (MC 148) of the Water Quality Division.
- b. A permit may be transferred only according to the provisions of 30 TAC § 305.64 (relating to Transfer of Permits) and 30 TAC § 50.133 (relating to Executive Director Action on Application or WQMP update).

6. Relationship to Hazardous Waste Activities

This permit does not authorize any activity of hazardous waste storage, processing, or disposal that requires a permit or other authorization pursuant to the Texas Health and Safety Code.

7. Relationship to Water Rights

Disposal of treated effluent by any means other than discharge directly to water in the state must be specifically authorized in this permit and may require a permit pursuant to TWC Chapter 11.

8. Property Rights

A permit does not convey any property rights of any sort, or any exclusive privilege.

9. Permit Enforceability

The conditions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstances, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

10. Relationship to Permit Application

The application pursuant to which the permit has been issued is incorporated herein; provided, however, that in the event of a conflict between the provisions of this permit and the application, the provisions of the permit shall control.

11. Notice of Bankruptcy

- a. Each permittee shall notify the Executive Director, in writing, immediately following the filing of a voluntary or involuntary petition for bankruptcy under any chapter of Title 11 (Bankruptcy) of the United States Code (11 USC) by or against:
 - i. the permittee;
 - ii. an entity (as that term is defined in 11 USC, § 101(14)) controlling the permittee or listing the permit or permittee as property of the estate; or

- iii. an affiliate (as that term is defined in 11 USC, § 101(2)) of the permittee.
- b. This notification must indicate:
 - i. the name of the permittee;
 - ii. the permit number(s);
 - iii. the bankruptcy court in which the petition for bankruptcy was filed; and
 - iv. the date of filing of the petition.

OPERATIONAL REQUIREMENTS

- 1. The permittee shall at all times ensure that the facility and all of its systems of collection, treatment, and disposal are properly operated and maintained. This includes, but is not limited to, the regular, periodic examination of wastewater solids within the treatment plant by the operator in order to maintain an appropriate quantity and quality of solids inventory as described in the various operator training manuals and according to accepted industry standards for process control. Process control, maintenance, and operations records shall be retained at the facility site, or shall be readily available for review by a TCEQ representative, for a period of three years.
- 2. Upon request by the Executive Director, the permittee shall take appropriate samples and provide proper analysis in order to demonstrate compliance with Commission rules. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall comply with all applicable provisions of 30 TAC Chapter 312 concerning sewage sludge or biosolids use and disposal and 30 TAC §§ 319.21 319.29 concerning the discharge of certain hazardous metals.
- 3. Domestic wastewater treatment facilities shall comply with the following provisions:
 - a. The permittee shall notify the Domestic Permits Team, Domestic Wastewater Section (MC 148) of the Water Quality Division, in writing, of any facility expansion at least 90 days prior to conducting such activity.
 - b. The permittee shall submit a closure plan for review and approval to the Domestic Permits Team, Domestic Wastewater Section (MC 148) of the Water Quality Division, for any closure activity at least 90 days prior to conducting such activity. Closure is the act of permanently taking a waste management unit or treatment facility out of service and includes the permanent removal from service of any pit, tank, pond, lagoon, surface impoundment and/or other treatment unit regulated by this permit.
- 4. The permittee is responsible for installing prior to plant start-up, and subsequently maintaining, adequate safeguards to prevent the discharge of untreated or inadequately treated wastes during electrical power failures by means of alternate power sources, standby generators, and/or retention of inadequately treated wastewater.
- 5. Unless otherwise specified, the permittee shall provide a readily accessible sampling point and, where applicable, an effluent flow measuring device or other acceptable means by which effluent flow may be determined.

6. The permittee shall remit an annual water quality fee to the Commission as required by 30 TAC Chapter 21. Failure to pay the fee may result in revocation of this permit under TWC § 7.302(b)(6).

7. Documentation

For all written notifications to the Commission required of the permittee by this permit, the permittee shall keep and make available a copy of each such notification under the same conditions as self-monitoring data are required to be kept and made available. Except for information required for TPDES permit applications, effluent data, including effluent data in permits, draft permits and permit applications, and other information specified as not confidential in 30 TAC §§ 1.5(d), any information submitted pursuant to this permit may be claimed as confidential by the submitter. Any such claim must be asserted in the manner prescribed in the application form or by stamping the words confidential business information on each page containing such information. If no claim is made at the time of submission, information may be made available to the public without further notice. If the Commission or Executive Director agrees with the designation of confidentiality, the TCEQ will not provide the information for public inspection unless required by the Texas Attorney General or a court pursuant to an open records request. If the Executive Director does not agree with the designation of confidentiality, the person submitting the information will be notified.

- 8. Facilities that generate domestic wastewater shall comply with the following provisions; domestic wastewater treatment facilities at permitted industrial sites are excluded.
 - a. Whenever flow measurements for any domestic sewage treatment facility reach 75% of the permitted daily average or annual average flow for three consecutive months, the permittee must initiate engineering and financial planning for expansion and/or upgrading of the domestic wastewater treatment and/or collection facilities. Whenever the flow reaches 90% of the permitted daily average or annual average flow for three consecutive months, the permittee shall obtain necessary authorization from the Commission to commence construction of the necessary additional treatment and/or collection facilities. In the case of a domestic wastewater treatment facility which reaches 75% of the permitted daily average or annual average flow for three consecutive months, and the planned population to be served or the quantity of waste produced is not expected to exceed the design limitations of the treatment facility, the permittee shall submit an engineering report supporting this claim to the Executive Director of the Commission.

If in the judgment of the Executive Director the population to be served will not cause permit noncompliance, then the requirement of this section may be waived. To be effective, any waiver must be in writing and signed by the Director of the Enforcement Division (MC 219) of the Commission, and such waiver of these requirements will be reviewed upon expiration of the existing permit; however, any such waiver shall not be interpreted as condoning or excusing any violation of any permit parameter.

b. The plans and specifications for domestic sewage collection and treatment works associated with any domestic permit must be approved by the Commission and failure to secure approval before commencing construction of such works or making a discharge is a violation of this permit and each day is an additional violation until approval has been

secured.

- c. Permits for domestic wastewater treatment plants are granted subject to the policy of the Commission to encourage the development of area-wide waste collection, treatment, and disposal systems. The Commission reserves the right to amend any domestic wastewater permit in accordance with applicable procedural requirements to require the system covered by this permit to be integrated into an area-wide system, should such be developed; to require the delivery of the wastes authorized to be collected in, treated by or discharged from said system, to such area-wide system; or to amend this permit in any other particular to effectuate the Commission's policy. Such amendments may be made when the changes required are advisable for water quality control purposes and are feasible on the basis of waste treatment technology, engineering, financial, and related considerations existing at the time the changes are required, exclusive of the loss of investment in or revenues from any then existing or proposed waste collection, treatment or disposal system.
- Domestic wastewater treatment plants shall be operated and maintained by sewage plant operators holding a valid certificate of competency at the required level as defined in 30 TAC Chapter 30.
- 10. For Publicly Owned Treatment Works (POTWs), the 30-day average (or monthly average) percent removal for BOD and TSS shall not be less than 85%, unless otherwise authorized by this permit.
- 11. Facilities that generate industrial solid waste as defined in 30 TAC § 335.1 shall comply with these provisions:
 - a. Any solid waste, as defined in 30 TAC § 335.1 (including but not limited to such wastes as garbage, refuse, sludge from a waste treatment, water supply treatment plant or air pollution control facility, discarded materials, discarded materials to be recycled, whether the waste is solid, liquid, or semisolid), generated by the permittee during the management and treatment of wastewater, must be managed in accordance with all applicable provisions of 30 TAC Chapter 335, relating to Industrial Solid Waste Management.
 - b. Industrial wastewater that is being collected, accumulated, stored, or processed before discharge through any final discharge outfall, specified by this permit, is considered to be industrial solid waste until the wastewater passes through the actual point source discharge and must be managed in accordance with all applicable provisions of 30 TAC Chapter 335.
 - c. The permittee shall provide written notification, pursuant to the requirements of 30 TAC § 335.8(b)(1), to the Corrective Action Section (MC 127) of the Remediation Division informing the Commission of any closure activity involving an Industrial Solid Waste Management Unit, at least 90 days prior to conducting such an activity.
 - d. Construction of any industrial solid waste management unit requires the prior written notification of the proposed activity to the Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division. No person shall dispose of industrial solid waste, including sludge or other solids from wastewater treatment processes, prior to fulfilling the deed recordation requirements of 30 TAC § 335.5.

- e. The term "industrial solid waste management unit" means a landfill, surface impoundment, waste-pile, industrial furnace, incinerator, cement kiln, injection well, container, drum, salt dome waste containment cavern, or any other structure vessel, appurtenance, or other improvement on land used to manage industrial solid waste.
- f. The permittee shall keep management records for all sludge (or other waste) removed from any wastewater treatment process. These records shall fulfill all applicable requirements of 30 TAC § 335 and must include the following, as it pertains to wastewater treatment and discharge:
 - i. Volume of waste and date(s) generated from treatment process;
 - ii. Volume of waste disposed of on-site or shipped off-site;
 - iii. Date(s) of disposal;
 - iv. Identity of hauler or transporter;
 - v. Location of disposal site; and
 - vi. Method of final disposal.

The above records shall be maintained on a monthly basis. The records shall be retained at the facility site, or shall be readily available for review by authorized representatives of the TCEQ for at least five years.

12. For industrial facilities to which the requirements of 30 TAC § 335 do not apply, sludge and solid wastes, including tank cleaning and contaminated solids for disposal, shall be disposed of in accordance with THSC § 361.

TCEQ Revision 06/2020

SLUDGE PROVISIONS

The permittee is authorized to dispose of sludge only at a Texas Commission on Environmental Quality (TCEQ) authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge. The disposal of sludge or biosolids by land application on property owned, leased or under the direct control of the permittee is a violation of the permit unless the site is authorized with the TCEQ. This provision does not authorize Distribution and Marketing of Class A or Class AB Biosolids. This provision does not authorize the permittee to land apply biosolids on property owned, leased or under the direct control of the permittee.

SECTION I. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE OR BIOSOLIDS LAND APPLICATION

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC § 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge or biosolids.
- 2. In all cases, if the person (permit holder) who prepares the sewage sludge supplies the sewage sludge to another person for land application use or to the owner or lease holder of the land, the permit holder shall provide necessary information to the parties who receive the sludge to assure compliance with these regulations.
- 3. The land application of processed or unprocessed chemical toilet waste, grease trap waste, grit trap waste, milk solids, or similar non-hazardous municipal or industrial solid wastes, or any of the wastes listed in this provision combined with biosolids, WTP residuals or domestic septage is prohibited unless the grease trap waste is added at a fats, oil and grease (FOG) receiving facility as part of an anaerobic digestion process.

B. Testing Requirements

1. Sewage sludge or biosolids shall be tested annually in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I [Toxicity Characteristic Leaching Procedure (TCLP)] or other method that receives the prior approval of the TCEQ for the contaminants listed in 40 CFR Part 261.24, Table 1. Sewage sludge or biosolids failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal. Following failure of any TCLP test, the management or disposal of sewage sludge or biosolids at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge or biosolids no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division and the Regional Director (MC Region 15) within seven (7) days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped, and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Permitting and Registration Support Division (MC 129), Texas Commission on Environmental Quality, P.O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. The permittee shall submit the following information in an annual report to the TCEQ by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through TCEQ's website. If the permittee requests and obtains an electronic reporting waiver, the annual report can be submitted in hard copy to the TCEQ Regional Office (MC Region 15) and the Enforcement Division (MC 224).

2. Biosolids shall not be applied to the land if the concentration of the pollutants exceeds the pollutant concentration criteria in Table 1. The frequency of testing for pollutants in Table 1 is found in Section I.C. of this permit.

TABLE 1

<u>Pollutant</u>	<u>Ceiling Concentration</u> (<u>Milligrams per kilogram</u>)*
Arsenic	75
Cadmium	85
Chromium	3000
Copper	4300
Lead	840
Mercury	57
Molybdenum	75
Nickel	420
PCBs	49
Selenium	100
Zinc	7500

^{*} Dry weight basis

3. Pathogen Control

All sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site must be treated by one of the following methods to ensure that the sludge meets either the Class A, Class AB or Class B biosolids pathogen requirements.

a. For sewage sludge to be classified as Class A biosolids with respect to pathogens, the density of fecal coliform in the sewage sludge must be less than 1,000 most probable number (MPN) per gram of total solids (dry weight basis), or the density of Salmonella sp. bacteria in the sewage sludge must be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met:

<u>Alternative 1</u> - The temperature of the sewage sludge that is used or disposed shall be maintained at or above a specific value for a period of time. See 30 TAC § 312.82(a)(3)(A) for specific information;

Alternative 5 (PFRP) - Sewage sludge that is used or disposed of must be treated in one of the Processes to Further Reduce Pathogens (PFRP) described in 40 CFR Part 503, Appendix B. PFRP include composting, heat drying, heat treatment, and thermophilic aerobic digestion; or

Alternative 6 (PFRP Equivalent) - Sewage sludge that is used or disposed of must be treated in a process that has been approved by the U. S. Environmental Protection Agency as being equivalent to those in Alternative 5.

b. For sewage sludge to be classified as Class AB biosolids with respect to pathogens, the density of fecal coliform in the sewage sludge must be less than 1,000 MPN per gram of total solids (dry weight basis), or the density of *Salmonella* sp. bacteria in the sewage sludge be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met:

<u>Alternative 2</u> - The pH of the sewage sludge that is used or disposed shall be raised to above 12 std. units and shall remain above 12 std. units for 72 hours.

The temperature of the sewage sludge shall be above 52° Celsius for 12 hours or longer during the period that the pH of the sewage sludge is above 12 std. units.

At the end of the 72-hour period during which the pH of the sewage sludge is above 12 std. units, the sewage sludge shall be air dried to achieve a percent solids in the sewage sludge greater than 50%; or

Alternative 3 - The sewage sludge shall be analyzed for enteric viruses prior to pathogen treatment. The limit for enteric viruses is less than one Plaque-forming Unit per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC § 312.82(a)(2)(C)(i-iii) for specific information. The sewage sludge shall be analyzed for viable helminth ova prior to pathogen treatment. The limit for viable helminth ova is less than one per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC § 312.82(a)(2)(C)(iv-vi) for specific information; or

<u>Alternative 4</u> - The density of enteric viruses in the sewage sludge shall be less than one Plaque-forming Unit per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. The density of viable helminth ova in the sewage sludge shall be less than one per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed.

- c. Sewage sludge that meets the requirements of Class AB biosolids may be classified a Class A biosolids if a variance request is submitted in writing that is supported by substantial documentation demonstrating equivalent methods for reducing odors and written approval is granted by the executive director. The executive director may deny the variance request or revoke that approved variance if it is determined that the variance may potentially endanger human health or the environment, or create nuisance odor conditions.
- d. Three alternatives are available to demonstrate compliance with Class B biosolids criteria.

Alternative 1

- i. A minimum of seven random samples of the sewage sludge shall be collected within 48 hours of the time the sewage sludge is used or disposed of during each monitoring episode for the sewage sludge.
- ii. The geometric mean of the density of fecal coliform in the samples collected shall be less than either 2,000,000 MPN per gram of total solids (dry weight basis) or 2,000,000 Colony Forming Units per gram of total solids (dry weight basis).

<u>Alternative 2</u> - Sewage sludge that is used or disposed of shall be treated in one of the Processes to Significantly Reduce Pathogens (PSRP) described in 40 CFR Part 503, Appendix B, so long as all of the following requirements are met by the generator of the sewage sludge.

- i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;
- ii. An independent Texas Licensed Professional Engineer must make a certification to the generator of a sewage sludge that the wastewater treatment facility generating the sewage sludge is designed to achieve one of the PSRP at the permitted design loading of the facility. The certification need only be repeated if the design loading of the facility is increased. The certification shall include a statement indicating the design meets all the applicable standards specified in Appendix B of 40 CFR Part 503;
- iii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iv. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review; and
- v. If the sewage sludge is generated from a mixture of sources, resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the PSRP, and shall meet the certification, operation, and record keeping requirements of this paragraph.

<u>Alternative 3</u> - Sewage sludge shall be treated in an equivalent process that has been approved by the U.S. Environmental Protection Agency, so long as all of the following requirements are met by the generator of the sewage sludge.

i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;

- ii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iii. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review;
- iv. The Executive Director will accept from the U.S. Environmental Protection Agency a finding of equivalency to the defined PSRP; and
- v. If the sewage sludge is generated from a mixture of sources resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the Processes to Significantly Reduce Pathogens, and shall meet the certification, operation, and record keeping requirements of this paragraph.

In addition to the Alternatives 1 - 3, the following site restrictions must be met if Class B biosolids are land applied:

- i. Food crops with harvested parts that touch the biosolids/soil mixture and are totally above the land surface shall not be harvested for 14 months after application of biosolids.
- ii. Food crops with harvested parts below the surface of the land shall not be harvested for 20 months after application of biosolids when the biosolids remain on the land surface for 4 months or longer prior to incorporation into the soil.
- iii. Food crops with harvested parts below the surface of the land shall not be harvested for 38 months after application of biosolids when the biosolids remain on the land surface for less than 4 months prior to incorporation into the soil.
- iv. Food crops, feed crops, and fiber crops shall not be harvested for 30 days after application of biosolids.
- v. Domestic livestock shall not be allowed to graze on the land for 30 days after application of biosolids.
- vi. Turf grown on land where biosolids are applied shall not be harvested for 1 year after application of the biosolids when the harvested turf is placed on either land with a high potential for public exposure or a lawn.
- vii. Public access to land with a high potential for public exposure shall be restricted for 1 year after application of biosolids.

- viii. Public access to land with a low potential for public exposure shall be restricted for 30 days after application of biosolids.
- ix. Land application of biosolids shall be in accordance with the buffer zone requirements found in 30 TAC § 312.44.

4. Vector Attraction Reduction Requirements

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site shall be treated by one of the following Alternatives 1 through 10 for vector attraction reduction.

- <u>Alternative 1</u> The mass of volatile solids in the sewage sludge shall be reduced by a minimum of 38%.
- Alternative 2 If Alternative 1 cannot be met for an anaerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge anaerobically in the laboratory in a bench-scale unit for 40 additional days at a temperature between 30° and 37° Celsius. Volatile solids must be reduced by less than 17% to demonstrate compliance.
- Alternative 3 If Alternative 1 cannot be met for an aerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge with percent solids of two percent or less aerobically in the laboratory in a bench-scale unit for 30 additional days at 20° Celsius. Volatile solids must be reduced by less than 15% to demonstrate compliance.
- Alternative 4 The specific oxygen uptake rate (SOUR) for sewage sludge treated in an aerobic process shall be equal to or less than 1.5 milligrams of oxygen per hour per gram of total solids (dry weight basis) at a temperature of 20° Celsius.
- Alternative 5 Sewage sludge shall be treated in an aerobic process for 14 days or longer. During that time, the temperature of the sewage sludge shall be higher than 40° Celsius and the average temperature of the sewage sludge shall be higher than 45° Celsius.
- Alternative 6 The pH of sewage sludge shall be raised to 12 or higher by alkali addition and, without the addition of more alkali shall remain at 12 or higher for two hours and then remain at a pH of 11.5 or higher for an additional 22 hours at the time the sewage sludge is prepared for sale or given away in a bag or other container.
- Alternative 7 The percent solids of sewage sludge that does not contain unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 75% based on the moisture content and total solids prior to mixing with other materials. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

Alternative 8 -

The percent solids of sewage sludge that contains unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 90% based on the moisture content and total solids prior to mixing with other materials at the time the sludge is used. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

Alternative 9 -

- i. Biosolids shall be injected below the surface of the land.
- ii. No significant amount of the biosolids shall be present on the land surface within one hour after the biosolids are injected.
- iii. When sewage sludge that is injected below the surface of the land is Class A or Class AB with respect to pathogens, the biosolids shall be injected below the land surface within eight hours after being discharged from the pathogen treatment process.

Alternative 10-

- i. Biosolids applied to the land surface or placed on a surface disposal site shall be incorporated into the soil within six hours after application to or placement on the land.
- ii. When biosolids that are incorporated into the soil is Class A or Class AB with respect to pathogens, the biosolids shall be applied to or placed on the land within eight hours after being discharged from the pathogen treatment process.

C. Monitoring Requirements

Toxicity Characteristic Leaching Procedure - annually (TCLP) Test
PCBs - annually

All metal constituents and fecal coliform or *Salmonella* sp. bacteria shall be monitored at the appropriate frequency shown below, pursuant to 30 TAC § 312.46(a)(1):

Amount of biosolids (*)

metric tons per 365-day period Monitoring Frequency

o to less than 290 Once/Year

290 to less than 1,500 Once/Quarter

1,500 to less than 15,000 Once/Two Months

15,000 or greater Once/Month

(*) The amount of bulk biosolids applied to the land (dry wt. basis).

Representative samples of sewage sludge shall be collected and analyzed in accordance with the methods referenced in 30 TAC § 312.7

Identify each of the analytic methods used by the facility to analyze enteric viruses, fecal coliforms, helminth ova, *Salmonella* sp., and other regulated parameters.

Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.

Identify the nature of material generated by the facility (such as a biosolid for beneficial use or land-farming, or sewage sludge or biosolids for disposal at a monofill) and whether the material is ultimately conveyed off-site in bulk or in bags.

SECTION II. REQUIREMENTS SPECIFIC TO BULK SEWAGE SLUDGE OR BIOSOLIDS FOR APPLICATION TO THE LAND MEETING CLASS A, CLASS AB or B PATHOGEN REDUCTION AND THE CUMULATIVE LOADING RATES IN TABLE 2, OR CLASS B PATHOGEN REDUCTION AND THE POLLUTANT CONCENTRATIONS IN TABLE 3

For those permittees meeting Class A, Class AB or B pathogen reduction requirements and that meet the cumulative loading rates in Table 2 below, or the Class B pathogen reduction requirements and contain concentrations of pollutants below listed in Table 3, the following conditions apply:

A. Pollutant Limits

Table 2

	Cumulative Pollutant Loading Rate
<u>Pollutant</u>	(pounds per acre)*
Arsenic	36
Cadmium	35
Chromium	2677
Copper	1339
Lead	268
Mercury	15
Molybdenum	Report Only
Nickel	375
Selenium	89
Zinc	2500

Table 3

Monthly Average		
Concentration		
(milligrams per kilogram)*		
41		
39		
1200		
1500		
300		
17		
Report Only		
420		
36		
2800		

^{*}Dry weight basis

B. Pathogen Control

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, a reclamation site, shall be treated by either Class A, Class AB or Class B biosolids pathogen reduction requirements as defined above in Section I.B.3.

C. Management Practices

- 1. Bulk biosolids shall not be applied to agricultural land, forest, a public contact site, or a reclamation site that is flooded, frozen, or snow-covered so that the bulk sewage sludge enters a wetland or other waters in the State.
- 2. Bulk biosolids not meeting Class A requirements shall be land applied in a manner which complies with Applicability in accordance with 30 TAC §312.41 and the Management Requirements in accordance with 30 TAC § 312.44.
- 3. Bulk biosolids shall be applied at or below the agronomic rate of the cover crop.
- 4. An information sheet shall be provided to the person who receives bulk Class A or AB biosolids sold or given away. The information sheet shall contain the following information:
 - a. The name and address of the person who prepared the Class A or AB biosolids that are sold or given away in a bag or other container for application to the land.
 - b. A statement that application of the biosolids to the land is prohibited except in accordance with the instruction on the label or information sheet.
 - c. The annual whole sludge application rate for the biosolids application rate for the biosolids that does not cause any of the cumulative pollutant loading rates in Table 2 above to be exceeded, unless the pollutant concentrations in Table 3 found in Section II above are met.

D. Notification Requirements

- 1. If bulk biosolids are applied to land in a State other than Texas, written notice shall be provided prior to the initial land application to the permitting authority for the State in which the bulk biosolids are proposed to be applied. The notice shall include:
 - a. The location, by street address, and specific latitude and longitude, of each land application site.
 - b. The approximate time period bulk biosolids will be applied to the site.
 - c. The name, address, telephone number, and National Pollutant Discharge Elimination System permit number (if appropriate) for the person who will apply the bulk biosolids.

E. Record Keeping Requirements

The documents will be retained at the facility site and/or shall be readily available for review by a TCEQ representative. The person who prepares bulk sewage sludge or a biosolids material shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative for a period of <u>five years</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply.

- 1. The concentration (mg/kg) in the sludge of each pollutant listed in Table 3 above and the applicable pollutant concentration criteria (mg/kg), or the applicable cumulative pollutant loading rate and the applicable cumulative pollutant loading rate limit (lbs/ac) listed in Table 2 above.
- 2. A description of how the pathogen reduction requirements are met (including site restrictions for Class AB and Class B biosolids, if applicable).
- 3. A description of how the vector attraction reduction requirements are met.
- 4. A description of how the management practices listed above in Section II.C are being met.
- 5. The following certification statement:
 - "I certify, under penalty of law, that the applicable pathogen requirements in 30 TAC § 312.82(a) or (b) and the vector attraction reduction requirements in 30 TAC § 312.83(b) have been met for each site on which bulk biosolids are applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices have been met. I am aware that there are significant penalties for false certification including fine and imprisonment."
- 6. The recommended agronomic loading rate from the references listed in Section II.C.3. above, as well as the actual agronomic loading rate shall be retained. The person who applies bulk biosolids shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative <u>indefinitely</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply:
 - a. A certification statement that all applicable requirements (specifically listed) have been met, and that the permittee understands that there are significant penalties for false certification including fine and imprisonment. See 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii), as applicable, and to the permittee's specific sludge treatment activities.
 - b. The location, by street address, and specific latitude and longitude, of each site on which biosolids are applied.
 - c. The number of acres in each site on which bulk biosolids are applied.
 - d. The date and time biosolids are applied to each site.
 - e. The cumulative amount of each pollutant in pounds/acre listed in Table 2 applied to each site.
 - f. The total amount of biosolids applied to each site in dry tons.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

F. Reporting Requirements

The permittee shall submit the following information in an annual report to the TCEQ by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through TCEQ's website. If the permittee requests and obtains an electronic reporting waiver, the annual report can be submitted in hard copy to the TCEQ Regional Office (MC Region 15) and the Enforcement Division (MC 224).

- Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. Identify the nature of material generated by the facility (such as a biosolid for beneficial use or land-farming, or sewage sludge for disposal at a monofill) and whether the material is ultimately conveyed off-site in bulk or in bags.
- 3. Results of tests performed for pollutants found in either Table 2 or 3 as appropriate for the permittee's land application practices.
- 4. The frequency of monitoring listed in Section I.C. that applies to the permittee.
- 5. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 6. PCB concentration in sludge or biosolids in mg/kg.
- 7. Identity of hauler(s) and TCEQ transporter number.
- 8. Date(s) of transport.
- 9. Texas Commission on Environmental Quality registration number, if applicable.
- 10. Amount of sludge or biosolids disposal dry weight (lbs/acre) at each disposal site.
- 11. The concentration (mg/kg) in the sludge of each pollutant listed in Table 1 (defined as a monthly average) as well as the applicable pollutant concentration criteria (mg/kg) listed in Table 3 above, or the applicable pollutant loading rate limit (lbs/acre) listed in Table 2 above if it exceeds 90% of the limit.
- 12. Level of pathogen reduction achieved (Class A, Class AB or Class B).
- 13. Alternative used as listed in Section I.B.3.(a. or b.). Alternatives describe how the pathogen reduction requirements are met. If Class B biosolids, include information on how site restrictions were met.
- 14. Identify each of the analytic methods used by the facility to analyze enteric viruses, fecal coliforms, helminth ova, *Salmonella* sp., and other regulated parameters.
- 15. Vector attraction reduction alternative used as listed in Section I.B.4.
- 16. Amount of sludge or biosolids transported in dry tons/year.

- 17. The certification statement listed in either 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii) as applicable to the permittee's sludge or biosolids treatment activities, shall be attached to the annual report.
- 18. When the amount of any pollutant applied to the land exceeds 90% of the cumulative pollutant loading rate for that pollutant, as described in Table 2, the permittee shall report the following information as an attachment to the annual report.
 - a. The location, by street address, and specific latitude and longitude.
 - b. The number of acres in each site on which bulk biosolids are applied.
 - c. The date and time bulk biosolids are applied to each site.
 - d. The cumulative amount of each pollutant (i.e., pounds/acre) listed in Table 2 in the bulk biosolids applied to each site.
 - e. The amount of biosolids (i.e., dry tons) applied to each site.

The above records shall be maintained on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION III. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE OR BIOSOLIDS DISPOSED IN A MUNICIPAL SOLID WASTE LANDFILL

- A. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC § 330 and all other applicable state and federal regulations to protect public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present. The permittee shall ensure that the sewage sludge meets the requirements in 30 TAC § 330 concerning the quality of the sludge or biosolids disposed in a municipal solid waste landfill.
- B. If the permittee generates sewage sludge and supplies that sewage sludge or biosolids to the owner or operator of a municipal solid waste landfill (MSWLF) for disposal, the permittee shall provide to the owner or operator of the MSWLF appropriate information needed to be in compliance with the provisions of this permit.
- C. Sewage sludge or biosolids shall be tested annually in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I (Toxicity Characteristic Leaching Procedure) or other method, which receives the prior approval of the TCEQ for contaminants listed in Table 1 of 40 CFR § 261.24. Sewage sludge or biosolids failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal.

Following failure of any TCLP test, the management or disposal of sewage sludge or biosolids at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge or biosolids no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division and the Regional Director (MC Region 15) of the appropriate TCEQ field office within 7 days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped, and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Permitting and Registration Support Division (MC 129), Texas Commission on Environmental Quality, P. O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. This annual report shall be submitted to the TCEQ Regional Office (MC Region 15) and the Enforcement Division (MC 224), by September 30 of each year.

- D. Sewage sludge or biosolids shall be tested as needed, in accordance with the requirements of 30 TAC Chapter 330.
- E. Record Keeping Requirements

The permittee shall develop the following information and shall retain the information for five years.

- 1. The description (including procedures followed and the results) of all liquid Paint Filter Tests performed.
- 2. The description (including procedures followed and results) of all TCLP tests performed.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

F. Reporting Requirements

The permittee shall submit the following information in an annual report to the TCEQ by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through TCEQ's website. If the permittee requests and obtains an electronic reporting waiver, the annual report can be submitted in hard copy to the TCEQ Regional Office (MC Region 15) and the Enforcement Division (MC 224).

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 3. Annual sludge or biosolids production in dry tons/year.
- 4. Amount of sludge or biosolids disposed in a municipal solid waste landfill in dry tons/year.
- 5. Amount of sludge or biosolids transported interstate in dry tons/year.
- 6. A certification that the sewage sludge or biosolids meets the requirements of 30 TAC § 330 concerning the quality of the sludge disposed in a municipal solid waste landfill.
- 7. Identity of hauler(s) and transporter registration number.
- 8. Owner of disposal site(s).
- 9. Location of disposal site(s).
- 10. Date(s) of disposal.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION IV. REQUIREMENTS APPLYING TO SLUDGE OR BIOSOLIDS TRANSPORTED TO ANOTHER FACILITY FOR FURTHER PROCESSING

These provisions apply to sludge or biosolids that is transported to another wastewater treatment facility or facility that further processes sludge or biosolids. These provisions are intended to allow transport of sludge or biosolids to facilities that have been authorized to accept sludge or biosolids. These provisions do not limit the ability of the receiving facility to determine whether to accept the sludge or biosolids, nor do they limit the ability of the receiving facility to request additional testing or documentation.

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC Chapter 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge.
- 2. Sludge or biosolids may only be transported using a registered transporter or using an approved pipeline.

B. Record Keeping Requirements

- 1. For sludge transported by an approved pipeline, the permittee must maintain records of the following:
 - a. the amount of sludge or biosolids transported;
 - b. the date of transport;
 - c. the name and TCEQ permit number of the receiving facility or facilities;
 - d. the location of the receiving facility or facilities;
 - e. the name and TCEQ permit number of the facility that generated the waste; and
 - f. copy of the written agreement between the permittee and the receiving facility to accept sludge or biosolids.
- 2. For sludge or biosolids transported by a registered transporter, the permittee must maintain records of the completed trip tickets in accordance with 30 TAC § 312.145(a)(1)-(7) and amount of sludge or biosolids transported.
- The above records shall be maintained on-site on a monthly basis and shall be made available to the TCEQ upon request. These records shall be retained for at least five years.

C. Reporting Requirements

The permittee shall submit the following information in an annual report to the TCEQ by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through TCEQ's website. If the permittee requests and obtains an electronic reporting waiver, the annual report can be submitted in hard copy to the TCEQ Regional Office (MC Region 15) and the Enforcement Division (MC 224).

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. the annual sludge or biosolids production;
- 3. the amount of sludge or biosolids transported;
- 4. the owner of each receiving facility;
- 5. the location of each receiving facility; and
- 6. the date(s) of disposal at each receiving facility.

TCEQ Revision 06/2020

OTHER REQUIREMENTS

- 1. The permittee shall employ or contract with one or more licensed wastewater treatment facility operators or wastewater system operations companies holding a valid license or registration according to the requirements of 30 TAC Chapter 30, Occupational Licenses and Registrations, and in particular 30 TAC Chapter 30, Subchapter J, Wastewater Operators and Operations Companies.
 - This Category B facility must be operated by a chief operator or an operator holding a Class B license or higher. The facility must be operated a minimum of five days per week by the licensed chief operator or an operator holding the required level of license or higher. The licensed chief operator or operator holding the required level of license or higher must be available by telephone or pager seven days per week. Where shift operation of the wastewater treatment facility is necessary, each shift that does not have the on-site supervision of the licensed chief operator must be supervised by an operator in charge who is licensed not less than one level below the category for the facility.
- 2. The facility is not located in the Coastal Management Program boundary.
- 3. Chronic toxic criteria apply at the edge of the mixing zone. The mixing zone is defined as 300 feet downstream and 100 feet upstream from the point of discharge.
- 4. The permittee shall comply with the requirements of 30 TAC § 309.13(a) through (d). In addition, by ownership of the required buffer zone area, the permittee shall comply with the requirements of 30 TAC § 309.13(e).
- 5. The permittee shall provide facilities for the protection of its wastewater treatment facility from a 100-year flood.
- 6. In accordance with 30 TAC § 319.9, a permittee that has at least twelve months of uninterrupted compliance with its bacteria limit may notify the commission in writing of its compliance and request a less frequent measurement schedule. To request a less frequent schedule, the permittee shall submit a written request to the TCEQ Domestic Wastewater Section (MC 148) for each phase that includes a different monitoring frequency. The request must contain all of the reported bacteria values (Daily Avg. and Daily Max/Single Grab) for the twelve consecutive months immediately prior to the request. If the Executive Director finds that a less frequent measurement schedule is protective of human health and the environment, the permittee may be given a less frequent measurement schedule. For this permit, daily may be reduced to five/week. A violation of any bacteria limit by a facility that has been granted a less frequent measurement schedule will require the permittee to return to the standard frequency schedule and submit written notice to the TCEO Domestic Wastewater Section (MC 148). The permittee may not apply for another reduction in measurement frequency for at least 24 months from the date of the last violation. The Executive Director may establish a more frequent measurement schedule if necessary to protect human health or the environment.

CONTRIBUTING INDUSTRIES AND PRETREATMENT REQUIREMENTS

- 1. The following pollutants may not be introduced into the treatment facility:
 - a. Pollutants which create a fire or explosion hazard in the publicly owned treatment works (POTW), including, but not limited to, waste streams with a closed-cup flash point of less than 140° Fahrenheit (60° Celsius) using the test methods specified in 40 CFR § 261.21;
 - b. Pollutants which will cause corrosive structural damage to the POTW, but in no case shall there be discharges with a pH lower than 5.0 standard units, unless the works are specifically designed to accommodate such discharges;
 - c. Solid or viscous pollutants in amounts which will cause obstruction to the flow in the POTW, resulting in Interference;
 - d. Any pollutant, including oxygen-demanding pollutants (e.g., biochemical oxygen demand), released in a discharge at a flow rate and/or pollutant concentration which will cause Interference with the POTW;
 - e. Heat in amounts which will inhibit biological activity in the POTW, resulting in Interference, but in no case shall there be heat in such quantities that the temperature at the POTW treatment plant exceeds 104° Fahrenheit (40° Celsius) unless the Executive Director, upon request of the POTW, approves alternate temperature limits;
 - f. Petroleum oil, nonbiodegradable cutting oil, or products of mineral oil origin in amounts that will cause Interference or Pass Through;
 - g. Pollutants which result in the presence of toxic gases, vapors, or fumes within the POTW in a quantity that may cause acute worker health and safety problems; and
 - h. Any trucked or hauled pollutants except at discharge points designated by the POTW.
- 2. The permittee shall require any indirect discharger to the treatment works to comply with the reporting requirements of Sections 204(b), 307, and 308 of the Clean Water Act, including any requirements established under 40 CFR Part 403 [rev. Federal Register/ Vol. 70/ No. 198/ Friday, October 14, 2005/ Rules and Regulations, pages 60134-60798].
- 3. The permittee shall provide adequate notification to the Executive Director, care of the Domestic Wastewater Section (MC 148) of the Water Quality Division, within 30 days subsequent to the permittee's knowledge of either of the following:
 - a. Any new introduction of pollutants into the treatment works from an indirect discharger which would be subject to Sections 301 and 306 of the Clean Water Act if it were directly discharging those pollutants; and
 - b. Any substantial change in the volume or character of pollutants being introduced into the treatment works by a source introducing pollutants into the treatment works at the time of issuance of the permit.

Any notice shall include information on the quality and quantity of effluent to be introduced into the treatment works and any anticipated impact of the change on the quality or quantity of effluent to be discharged from the POTW.

Revised July 2007

BIOMONITORING REQUIREMENTS

48-HOUR ACUTE BIOMONITORING REQUIREMENTS: FRESHWATER

The provisions of this section apply to Outfall 001 for whole effluent toxicity (WET) testing

- 1. <u>Scope, Frequency, and Methodology</u>
 - a. The permittee shall test the effluent for toxicity in accordance with the provisions below. Such testing will determine if an appropriately dilute effluent sample adversely affects the survival of the test organisms.
 - b. The permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified in this part of this permit and in accordance with "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms," fifth edition (EPA-821-R-02-012) or its most recent update
 - 1) Acute static renewal 48-hour definitive toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*). A minimum of five replicates with eight organisms per replicate shall be used in the control and in each dilution. This test shall be conducted once per quarter.
 - 2) Acute static renewal 48-hour definitive toxicity test using the fathead minnow (*Pimephales promelas*). A minimum of five replicates with eight organisms per replicate shall be used in the control and in each dilution. This test shall be conducted once per quarter.

The permittee must perform and submit a valid test for each test species during the required reporting period for that species. A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution. A repeat test shall include the control and all effluent dilutions and use the appropriate number of organisms and replicates, as specified above. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. The permittee shall use five effluent dilution concentrations and a control in each toxicity test. These effluent dilution concentrations are 4%, 5%, 6%, 8%, and 11% effluent. The critical dilution, defined as 8% effluent, is the effluent concentration representative of the proportion of effluent in the receiving water during critical low flow or critical mixing conditions.
- d. This permit may be amended to require a WET limit, a chemical-specific limit, a best management practice, or other appropriate actions to address toxicity. The permittee may be required to conduct a toxicity reduction evaluation (TRE) after multiple toxic events.
- e. Testing Frequency Reduction
 - 1) If none of the first four consecutive quarterly tests demonstrates

- significant lethal effects, the permittee may submit this information in writing and, upon approval, reduce the testing frequency to once per six months for the invertebrate test species and once per year for the vertebrate test species.
- 2) If one or more of the first four consecutive quarterly tests demonstrates significant lethal effects, the permittee shall continue quarterly testing for that species until this permit is reissued. If a testing frequency reduction had been previously granted and a subsequent test demonstrates significant lethal effects, the permittee shall resume a quarterly testing frequency for that species until this permit is reissued.

2. Required Toxicity Testing Conditions

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control and all effluent dilutions, which fails to meet any of the following criteria:
 - 1) a control mean survival of 90% or greater; and
 - a coefficient of variation percent (CV%) of 40 or less for both the control and critical dilution. However, if significant lethality is demonstrated, a CV% greater than 40 shall not invalidate the test. The CV% requirement does not apply when significant lethality occurs.

b. Statistical Interpretation

- 1) For the water flea and fathead minnow tests, the statistical analyses used to determine if there is a significant difference between the control and an effluent dilution shall be in accordance with the manual referenced in Part 1.b.
- The permittee is responsible for reviewing test concentration-response relationships to ensure that calculated test-results are interpreted and reported correctly. The document entitled "Method Guidance and Recommendation for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136)" (EPA 821-B-00-004) provides guidance on determining the validity of test results.
- 3) If significant lethality is demonstrated (that is, there is a statistically significant difference in survival at the critical dilution when compared to the survival in the control), the conditions of test acceptability are met, and the survival of the test organisms are equal to or greater than 90% in the critical dilution and all dilutions below that, then the permittee shall report a survival No Observed Effect Concentration (NOEC) of not less than the critical dilution for the reporting requirements.
- 4) The NOEC is defined as the greatest effluent dilution at which no significant lethality is demonstrated. The Lowest Observed Effect Concentration (LOEC) is defined as the lowest effluent dilution at which significant lethality is demonstrated. Significant lethality is defined as a statistically significant difference between the survival of the test

- organism in a specified effluent dilution when compared to the survival of the test organism in the control.
- 5) The use of NOECs and LOECs assumes either a monotonic (continuous) concentration-response relationship or a threshold model of the concentration-response relationship. For any test result that demonstrates a non-monotonic (non-continuous) response, the NOEC should be determined based on the guidance manual referenced in Item 2.
- Pursuant to the responsibility assigned to the permittee in Part 2.b.2), test results that demonstrate a non-monotonic (non-continuous) concentration-response relationship may be submitted, prior to the due date, for technical review. The guidance manual referenced in Item 2 will be used when making a determination of test acceptability.
- 7) TCEQ staff will review test results for consistency with rules, procedures, and permit requirements.

c. Dilution Water

- Dilution water used in the toxicity tests must be the receiving water collected at a point upstream of the discharge point as close as possible to the discharge point but unaffected by the discharge. Where the toxicity tests are conducted on effluent discharges to receiving waters that are classified as intermittent streams, or where the toxicity tests are conducted on effluent discharges where no receiving water is available due to zero flow conditions, the permittee shall:
 - a) substitute a synthetic dilution water that has a pH, hardness, and alkalinity similar to that of the closest downstream perennial water unaffected by the discharge; or
 - b) use the closest downstream perennial water unaffected by the discharge.
- 2) Where the receiving water proves unsatisfactory as a result of preexisting instream toxicity (i.e. fails to fulfill the test acceptance criteria of Part 2.a.), the permittee may substitute synthetic dilution water for the receiving water in all subsequent tests provided the unacceptable receiving water test met the following stipulations:
 - a) a synthetic lab water control was performed (in addition to the receiving water control) which fulfilled the test acceptance requirements of Part 2.a;
 - b) the test indicating receiving water toxicity was carried out to completion; and
 - c) the permittee submitted all test results indicating receiving water toxicity with the reports and information required in Part 3.

3) The synthetic dilution water shall consist of standard, moderately hard, reconstituted water. Upon approval, the permittee may substitute other appropriate dilution water with chemical and physical characteristics similar to that of the receiving water.

d. Samples and Composites

- 1) The permittee shall collect a minimum of two composite samples from Outfall 001. The second composite sample will be used for the renewal of the dilution concentrations for each toxicity test.
- 2) The permittee shall collect the composite samples such that the samples are representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged on an intermittent basis.
- 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the first composite sample. The holding time for the subsequent composite sample shall not exceed 72 hours. Samples shall be maintained at a temperature of 0-6 degrees Centigrade during collection, shipping, and storage.
- 4) If Outfall 001 ceases discharging during the collection of effluent samples, the requirements for the minimum number of effluent samples, the minimum number of effluent portions, and the sample holding time are waived during that sampling period. However, the permittee must have collected an effluent composite sample volume sufficient to complete the required toxicity tests with renewal of the effluent. When possible, the effluent samples used for the toxicity tests shall be collected on separate days if the discharge occurs over multiple days. The effluent composite sample collection duration and the static renewal protocol associated with the abbreviated sample collection must be documented in the full report.
- 5) The effluent samples shall not be dechlorinated after sample collection.

3. Reporting

All reports, tables, plans, summaries, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated whether carried to completion or not.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 1 forms provided with this permit.
 - 1) Annual biomonitoring test results are due on or before January 20th for biomonitoring conducted during the previous 12-month period.

- 2) Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.
- 3) Quarterly biomonitoring test results are due on or before April 20th, July 20th, October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.
- 4) Monthly biomonitoring test results are due on or before the 20th day of the month following sampling.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the water flea, Parameter TEM3D, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) For the water flea, Parameter TOM3D, report the NOEC for survival.
 - 3) For the water flea, Parameter TXM3D, report the LOEC for survival.
 - 4) For the fathead minnow, Parameter TEM6C, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0.
 - 5) For the fathead minnow, Parameter TOM6C, report the NOEC for survival.
 - 6) For the fathead minnow, Parameter TXM6C, report the LOEC for survival.
- d. Enter the following codes for retests only:
 - 1) For retest number 1, Parameter 22415, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) For retest number 2, Parameter 22416, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."

4. Persistent Toxicity

The requirements of this part apply only when a toxicity test demonstrates significant lethality. Significant lethality was defined in Part 2.b.

- a. The permittee shall conduct a total of 2 additional tests (retests) for any species that demonstrates significant lethality. The two retests shall be conducted monthly during the next two consecutive months. The permittee shall not substitute either of the two retests in lieu of routine toxicity testing. All reports shall be submitted within 20 days of test completion. Test completion is defined as the last day of the test.
- b. If one or both of the two retests specified in Part 4.a. demonstrates significant

- lethality, the permittee shall initiate the TRE requirements as specified in Part 5.
- c. The provisions of Part 4.a. are suspended upon completion of the two retests and submittal of the TRE action plan and schedule defined in Part 5.

5. <u>Toxicity Reduction Evaluation</u>

- a. Within 45 days of the retest that demonstrates significant lethality, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, the permittee shall submit a TRE action plan and schedule for conducting a TRE. The plan shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analyses to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall describe an approach for the reduction or elimination of lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:
 - 1) Specific Activities - The TRE action plan shall specify the approach the permittee intends to utilize in conducting the TRE, including toxicity characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures" (EPA/600/6-91/003) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aguatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity" Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;
 - 2) Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects a specific pollutant and source of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;

- 3) Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
- 4) Project Organization The TRE action plan should describe the project staff, project manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:
 - 1) results and interpretation of any chemical specific analyses for the identified and suspected pollutant performed during the quarter;
 - 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;
 - any data and substantiating documentation which identifies the pollutant(s) and source of effluent toxicity;
 - 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
 - 5) any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to meet no significant lethality at the critical dilution; and
 - 6) any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.
- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality. i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive months with at least monthly testing. At the end of the 12 months, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply

as a result of corrective actions taken by the permittee. Corrective actions are herein defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

- g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 28 months from the last test day of the retest that confirmed significant lethal effects at the critical dilution. The permittee may petition the Executive Director (in writing) for an extension of the 28-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond their control stalled the toxicity identification evaluation/TRE. The report shall provide information pertaining to the specific control mechanism selected that will, when implemented, result in the reduction of effluent toxicity to no significant lethality at the critical dilution. The report shall also provide a specific corrective action schedule for implementing the selected control mechanism.
- h. Based on the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements, where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and specify a chemical-specific limit.
- i. Copies of any and all required TRE plans and reports shall also be submitted to the U.S. EPA Region 6 office, 6WQ-PO.

TABLE 1 (SHEET 1 OF 2)

WATER FLEA SURVIVAL

Dates and T	`imes	No. 1 FRO	M:	Date Time				
Composites								
Di	ilution wate	r used:	am/pm rused: Receiving water			Synthetic Dilution water		
			PERCEN	T SURVIVAL	ı			
Time	Rep	Percent effluent (%)						
Time		0%	4%	5%	6%	8%	11%	
	A							
24h	В							
	С							
	D							
	E							
	A							
	В							
48h	С							
	D							
	Е							
Mean at	test end							
CV%*								
*Co	efficient of	Variation – S	tandard D	eviation x 100	n/mean			
					•	• .		
Dur	inett's Proc	edure or Stee	l's Many-C	One Rank Tes	t as appropr	nate:		
Is th	ne mean sur	vival at 48 h	ours signif	icantly less th	an the conti	rol survival?		
CRITICAL DILUTION (8%):			8%):	YES _	NO	O		
Ent	er percent e	ffluent corre	sponding t	o the NOEC b	pelow:			
	1) NOEC	c survival = _		_% effluent				
	a) I OFC	survival –		% effluent				

TABLE 1 (SHEET 2 OF 2)

FATHEAD MINNOW SURVIVAL

Dates and T		No. 1 FROM		Date Time		Date Ti			
Composites Collected		No. 2 FROI	M:		_ TO:				
Test initiate	ed:			am/pm			dat		
Di	ilution wat	er used:	Recei	iving water	Sy	nthetic Dilu	tion water		
			PERCENT	SURVIVAL					
Time	Rep		Percent effluent (%)						
		0%	4%	5%	6%	8%	11%		
24h	A								
	В								
	С								
	D								
	Е								
48h	A								
	В								
	С								
	D								
	Е								
Mean at	test end								
CV	7%*								
* Co	efficient o	f Variation = st	tandard de	viation x 100	/mean				
Dunnett's P	rocedure o	r Steel's Many	-One Rank	Test as appre	opriate:				

Is the mean survival at 48 hours significantly less than the control survival?

CRITICAL DILUTION (8%): _____YES _____NO

Enter percent effluent corresponding to the NOEC below:

- NOEC survival = _____% effluent 1)
- LOEC survival = _____% effluent 2)

24-HOUR ACUTE BIOMONITORING REQUIREMENTS: FRESHWATER

The provisions of this section apply to Outfall 001 for whole effluent toxicity (WET) testing.

1. Scope, Frequency, and Methodology

- a. The permittee shall test the effluent for lethality in accordance with the provisions in this section. Such testing will determine compliance with Texas Surface Water Quality Standard 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival of the appropriate test organisms in 100% effluent for a 24-hour period.
- b. The toxicity tests specified shall be conducted once per six months. The permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified in this section of the permit and in accordance with "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms," fifth edition (EPA-821-R-02-012) or its most recent update:
 - 1) Acute 24-hour static toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.
 - 2) Acute 24-hour static toxicity test using the fathead minnow (*Pimephales promelas*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.

The permittee must perform and report a valid test for each test species during the prescribed reporting period. An invalid test must be repeated during the same reporting period. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. In addition to an appropriate control, a 100% effluent concentration shall be used in the toxicity tests. The control and dilution water shall consist of standard, synthetic, moderately hard, reconstituted water.
- d. This permit may be amended to require a WET limit, a best management practice, a chemical-specific limit, or other appropriate actions to address toxicity. The permittee may be required to conduct a toxicity reduction evaluation (TRE) after multiple toxic events.

2. Required Toxicity Testing Conditions

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control, if the control fails to meet a mean survival equal to or greater than 90%.
- b. Dilution Water In accordance with Part 1.c., the control and dilution water shall consist of standard, synthetic, moderately hard, reconstituted water.
- c. Samples and Composites

- 1) The permittee shall collect one composite sample from Outfall 001.
- 2) The permittee shall collect the composite samples such that the sample is representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged.
- 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the composite sample. The samples shall be maintained at a temperature of o-6 degrees Centigrade during collection, shipping, and storage.
- 4) If Outfall 001 ceases discharging during the collection of the effluent composite sample, the requirements for the minimum number of effluent portions are waived. However, the permittee must have collected a composite sample volume sufficient for completion of the required test. The abbreviated sample collection, duration, and methodology must be documented in the full report.
- 5) The effluent sample shall not be dechlorinated after sample collection.

3. Reporting

All reports, tables, plans, summaries, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted pursuant to this permit in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 2 forms provided with this permit.
 - 1) Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.
 - 2) Quarterly biomonitoring test results are due on or before April 20th, July 20th, October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the water flea, Parameter TIE3D, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter "1."
 - 2) For the fathead minnow, Parameter TIE6C, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter "1."

- d. Enter the following codes for retests only:
 - 1) For retest number 1, Parameter 22415, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter "1."
 - 2) For retest number 2, Parameter 22416, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter "1."

4. <u>Persistent Mortality</u>

The requirements of this part apply when a toxicity test demonstrates significant lethality, which is defined as a mean mortality of 50% or greater of organisms exposed to the 100% effluent concentration for 24 hours.

- a. The permittee shall conduct 2 additional tests (retests) for each species that demonstrates significant lethality. The two retests shall be conducted once per week for 2 weeks. Five effluent dilution concentrations in addition to an appropriate control shall be used in the retests. These effluent concentrations are 6%, 13%, 25%, 50% and 100% effluent. The first retest shall be conducted within 15 days of the laboratory determination of significant lethality. All test results shall be submitted within 20 days of test completion of the second retest. Test completion is defined as the 24th hour.
- b. If one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall initiate the TRE requirements as specified in Part 5.

5. Toxicity Reduction Evaluation

- a. Within 45 days of the retest that demonstrates significant lethality, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, the permittee shall submit a TRE action plan and schedule for conducting a TRE. The plan shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analysis to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall lead to the successful elimination of significant lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:
 - 1) Specific Activities The TRE action plan shall specify the approach the permittee intends to utilize in conducting the TRE, including toxicity characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting

characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures" (EPA/600/6-91/003) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;

- 2) Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures, and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects a specific pollutant and source of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;
- 3) Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
- 4) Project Organization The TRE action plan should describe the project staff, manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly TRE activities reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:
 - 1) results and interpretation of any chemical-specific analyses for the identified and suspected pollutant performed during the quarter;
 - 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;
 - any data and substantiating documentation that identifies the pollutant and source of effluent toxicity;

- 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
- 5) any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to eliminate significant lethality; and
- 6) any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.
- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive weeks with at least weekly testing. At the end of the 12 weeks, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply as a result of corrective actions taken by the permittee. Corrective actions are defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

- g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 18 months from the last test day of the retest that demonstrates significant lethality. The permittee may petition the Executive Director (in writing) for an extension of the 18-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE. The report shall specify the control mechanism that will, when implemented, reduce effluent toxicity as specified in item 5.h. The report will also specify a corrective action schedule for implementing the selected control mechanism.
- h. Within 3 years of the last day of the test confirming toxicity, the permittee shall comply with 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival

of the test organism in 100% effluent at the end of 24-hours. The permittee may petition the Executive Director (in writing) for an extension of the 3-year limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE.

The permittee may be exempted from complying with 30 TAC § 307.6(e)(2)(B) upon proving that toxicity is caused by an excess, imbalance, or deficiency of dissolved salts. This exemption excludes instances where individually toxic components (e.g., metals) form a salt compound. Following the exemption, this permit may be amended to include an ion-adjustment protocol, alternate species testing, or single species testing.

- i. Based upon the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and specify a chemical-specific limit.
- j. Copies of any and all required TRE plans and reports shall also be submitted to the U.S. EPA Region 6 office, 6WQ-PO.

TABLE 2 (SHEET 1 OF 2)

WATER FLEA SURVIVAL

GENERAL INFORMATION

	Time	Date
Composite Sample Collected		
Test Initiated		

PERCENT SURVIVAL

				Percent	t effluent		
Time Rep	0%	6%	13%	25%	50%	100%	
	A						
	В						
	C						
24h	D						
- 4	E						
	MEAN*						

Enter percent effluent	corresponding to	the LC50 below:
------------------------	------------------	-----------------

24 hour LC50 = _____% effluent

TABLE 2 (SHEET 2 OF 2)

FATHEAD MINNOW SURVIVAL

GENERAL INFORMATION

	Time	Date
Composite Sample Collected		
Test Initiated		

PERCENT SURVIVAL

Time	Don			Percent	effluent		
Time Rep	0%	6%	13%	25%	50%	100%	
	A						
	В						
o 4h	С						
24h	D						
	E						
	MEAN						

Enter percent effluent corresponding to the LC50 below			
	I CEO bolowe	enonding to the I	Enter percent offluent

24 hour LC50 = _____% effluent

FACT SHEET AND EXECUTIVE DIRECTOR'S PRELIMINARY DECISION

For draft Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0011212002, EPA I.D. No. TX0117544, to discharge to water in the state.

Issuing Office: Texas Commission on Environmental Quality

P.O. Box 13087

Austin, Texas 78711-3087

Applicant: City of Roma

P.O. Box 947

Roma, Texas 78584

Prepared By: Sujata Sinha

Domestic Permits Team

Domestic Wastewater Section (MC 148)

Water Quality Division

(512) 239-1963

Date: October 24, 2025

Permit Action: Renewal

1. EXECUTIVE DIRECTOR RECOMMENDATION

The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The draft permit includes an expiration date of **five years from the date of issuance**.

2. APPLICANT ACTIVITY

The applicant has applied to the Texas Commission on Environmental Quality (TCEQ) for a renewal of the existing permit that authorizes the discharge of treated domestic wastewater at an annual average flow not to exceed 2.0 million gallons per day (MGD). The existing wastewater treatment facility will serve the City of Roma and extraterritorial jurisdiction.

3. FACILITY AND DISCHARGE LOCATION

The plant site is located at 604 East 6th Street, in the City of Roma, Starr County, Texas 78584.

Outfall Location:

Outfall Number	Latitude	Longitude	
001	26.394334 N	99.001781 W	

The treated effluent is discharged directly to Rio Grande Below Falcon Reservoir in Segment No. 2302 of the Rio Grande Basin. The designated uses for Segment No. 2302 are primary contact recreation, public water supply, and high aquatic life use.

4. TREATMENT PROCESS DESCRIPTION AND SEWAGE SLUDGE DISPOSAL

The City of Roma Wastewater Treatment Facility No. 2 is an activated sludge process plant operated in the extended aeration mode. Treatment units include a bar screen, a grit and grease chamber, two aeration basins, two final clarifiers, a sludge holding tank, a belt filter press, and two ultraviolet light (UV) disinfection channels. The facility is in operation.

Sludge generated from the treatment facility is hauled by a registered transporter and disposed of at a TCEQ-permitted landfill, City of Roma Landfill, MSW Permit No. 954A, in Starr County. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

5. INDUSTRIAL WASTE CONTRIBUTION

The draft permit includes pretreatment requirements that are appropriate for a facility of this size and complexity. The City of Roma WWTP 2 does not appear to receive significant industrial wastewater contributions. Based on the information provided by the permittee in the most recent TPDES permit application, the TCEQ determined that there are no significant industrial wastewater contributions currently being discharged to the permittee's POTW.

6. SUMMARY OF SELF-REPORTED EFFLUENT ANALYSES

The following is a summary of the applicant's effluent monitoring data for the period September 2023 through September 2025. The average of Daily Average value is computed by the averaging of all 30-day average values for the reporting period for each parameter: flow, five-day biochemical oxygen demand (BOD $_5$) and total suspended solids (TSS). The average of Daily Average value for *Escherichia coli* (*E. coli*) in colony-forming units (CFU) or most probable number (MPN) per 100 ml is calculated via geometric mean.

<u>Parameter</u>	Average of Daily Avg
Flow, MGD	0.91
BOD ₅ , mg/l	2.8
TSS, mg/l	6.7
E. coli, CFU or MPN per 100 ml	1.0

7. DRAFT PERMIT CONDITIONS AND MONITORING REQUIREMENTS

The effluent limitations and monitoring requirements for those parameters that are limited in the draft permit are as follows:

A. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

The annual average flow of effluent shall not exceed 2.0 MGD, nor shall the average discharge during any two-hour period (2-hour peak) exceed 5,208 gallons per minute (gpm).

<u>Parameter</u>	30-Day Average		<u>7-Day</u>	<u>Daily</u>
			<u>Average</u>	<u>Maximum</u>
	<u>mg/l</u>	<u>lbs/day</u>	<u>mg/l</u>	<u>mg/l</u>
BOD_5	20	334	30	45
TSS	20	334	30	45
DO (minimum)	4.0	N/A	N/A	N/A
E. coli, CFU or MPN	126	N/A	N/A	399
per 100 ml		•	•	

The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.

The permittee shall utilize an UV system for disinfection purposes. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.

<u>Parameter</u>	Monitoring Requirement
Flow, MGD	Continuous
BOD_5	Two/week
TSS	Two/week
DO	Two/week
E. coli	Daily

B. SEWAGE SLUDGE REQUIREMENTS

The draft permit includes Sludge Provisions according to the requirements of 30 TAC Chapter 312, Sludge Use, Disposal, and Transportation. Sludge generated from the treatment facility is hauled by a registered transporter and disposed of at a TCEQ-permitted landfill, City of Roma Landfill, MSW Permit No. 954A, in Starr County. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

C. PRETREATMENT REQUIREMENTS

Permit requirements for pretreatment are based on TPDES regulations contained in 30 TAC Chapter 305, which references 40 Code of Federal Regulations (CFR) Part 403, "General Pretreatment Regulations for Existing and New Sources of Pollution" [rev. Federal Register/ Vol. 70/No. 198/ Friday, October 14, 2005/ Rules and Regulations, pages 60134-60798]. The permit includes specific requirements that establish responsibilities of local government, industry, and the public to implement the standards to control pollutants which pass through or interfere with treatment processes in publicly owned treatment works or which may contaminate the sewage sludge. This permit has appropriate pretreatment language for a facility of this size and complexity.

D. WHOLE EFFLUENT TOXICITY (BIOMONITORING) REQUIREMENTS

(1) The draft permit includes 48-hour acute freshwater biomonitoring

requirements as follows. The permit requires five dilutions in addition to the control (0% effluent) to be used in the toxicity tests. These additional effluent concentrations shall be 4%, 5%, 6%, 8%, and 11%. The low-flow effluent concentration (critical dilution) is defined as 8% effluent. The critical dilution is in accordance with the "Aquatic Life Criteria" section of the "Water Quality Based Effluent Limitations/Conditions" section.

- (a) Acute static renewal 48-hour definitive toxicity tests using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*). The frequency of the testing is once per quarter for at least the first year of testing, after which the permittee may apply for a testing frequency reduction.
- (b) Acute static renewal 48-hour definitive toxicity test using the fathead minnow (*Pimephales promelas*). The frequency of the testing is once per quarter for at least the first year of testing, after which the permittee may apply for a testing frequency reduction.
- (2) The draft permit includes the following minimum 24-hour acute freshwater biomonitoring requirements at a frequency of once per six months:
 - (a) Acute 24-hour static toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*).
 - (b) Acute 24-hour static toxicity test using the fathead minnow (*Pimephales promelas*).

E. BUFFER ZONE REQUIREMENTS

The permittee shall comply with the requirements of 30 TAC § 309.13(a) through (d). In addition, by ownership of the required buffer zone area, the permittee shall comply with the requirements of 30 TAC § 309.13(e).

F. SUMMARY OF CHANGES FROM APPLICATION

None.

G. SUMMARY OF CHANGES FROM EXISTING PERMIT

The Standard Permit Conditions, Sludge Provisions, Other Requirements, and Biomonitoring sections of the draft permit have been updated. Pretreatment requirements have been added to the draft permit.

For Publicly Owned Treatment Works (POTWs), effective December 21, 2025, the permittee must submit the written report for unauthorized discharges and unanticipated bypasses that exceed any effluent limit in the permit using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

The draft permit includes all updates based on the 30 TAC § 312 rule change effective April 23, 2020.

8. DRAFT PERMIT RATIONALE

A. TECHNOLOGY-BASED EFFLUENT LIMITATIONS/CONDITIONS

Regulations promulgated in Title 40 of the CFR require that technology-based limitations be placed in wastewater discharge permits based on effluent limitations guidelines, where applicable, or on best professional judgment (BPJ) in the absence of guidelines.

Effluent limitations for maximum and minimum pH are in accordance with 40 CFR § 133.102(c) and 30 TAC § 309.1(b).

A mixing zone evaluation for pH is included within Attachment A of this Fact Sheet. The evaluation has demonstrated that the technology-based pH limitations of 6.0 to 9.0 standard units will ensure compliance with the Texas Surface Water Quality Standards (TSWQS) pH criterion for Segment No. 2302 at the edge of the chronic mixing zone.

B. WATER QUALITY SUMMARY AND COASTAL MANAGEMENT PLAN

(1) WATER QUALITY SUMMARY

The treated effluent is discharged directly to Rio Grande Below Falcon Reservoir in Segment No. 2302 of the Rio Grande Basin. The designated uses for Segment No. 2302 are primary contact recreation, public water supply, and high aquatic life use. The effluent limitations in the draft permit will maintain and protect the existing instream uses. All determinations are preliminary and subject to additional review and/or revisions.

The discharge from this permit action is not expected to have an effect on any federal endangered or threatened aquatic or aquatic dependent species or proposed species or their critical habitat. This determination is based on the United States Fish and Wildlife Service's (USFWS) biological opinion on the State of Texas authorization of the Texas Pollutant Discharge Elimination System (TPDES; September 14, 1998; October 21, 1998 update). To make this determination for TPDES permits, TCEQ and EPA only considered aquatic or aquatic dependent species occurring in watersheds of critical concern or high priority as listed in Appendix A of the USFWS biological opinion. The determination is subject to reevaluation due to subsequent updates or amendments to the biological opinion. The permit does not require EPA review with respect to the presence of endangered or threatened species.

Segment No. 2302 is currently listed on the state's inventory of impaired and threatened waters (the 2024 CWA § 303(d) list). The listing is for elevated bacteria levels in the reach extending from the Progresso

International Bridge (FM 1015) upstream to the McAllen International Bridge (US Hwy 281) (Assessment Unit 2302_03). This facility is designed to provide adequate disinfection and, when operated properly, should not add to the bacterial impairment of the segment. In addition, in order to ensure that the proposed discharge meets the stream bacterial standard, an effluent limitation of 126 colony-forming units (CFU) or most probable number (MPN) of Escherichia coli per 100 ml has been added to the draft permit.

The pollutant analysis of treated effluent provided by the permittee in the application indicated 790 mg/l total dissolved solids (TDS), 277 mg/l sulfate, and 177 mg/l chloride present in the effluent. The segment criteria for Segment No. 2302 are 766 mg/l for TDS, 248 mg/l for sulfate, and 150 mg/l for chlorides. Based on dissolved solids screening, no additional limits or monitoring requirements are needed for total dissolved solids, chloride, or sulfate. See Attachment B of this Fact Sheet.

The effluent limitations and conditions in the draft permit comply with EPA-approved portions of the 2018 Texas Surface Water Quality Standards (TSWQS), 30 TAC §§ 307.1 - 307.10, effective March 1, 2018; 2014 TSWQS, effective March 6, 2014; 2010 TSWQS, effective July 22, 2010; and 2000 TSWQS, effective July 26, 2000.

(2) CONVENTIONAL PARAMETERS

Effluent limitations for the conventional effluent parameters (i.e., Five-Day Biochemical Oxygen Demand or Five-Day Carbonaceous Biochemical Oxygen Demand, Ammonia Nitrogen, etc.) are based on stream standards and waste load allocations for water quality-limited streams as established in the TSWQS and the State of Texas Water Quality Management Plan (WQMP).

The effluent limitations in the draft permit have been reviewed for consistency with the WQMP. The existing effluent limitations are consistent with the approved WQMP.

The effluent limitations in the draft permit meet the requirements for secondary treatment and the requirements for disinfection according to 30 TAC Chapter 309, Subchapter A: Effluent Limitations.

(3) COASTAL MANAGEMENT PLAN

The facility is not located in the Coastal Management Program boundary.

C. WATER QUALITY-BASED EFFLUENT LIMITATIONS/CONDITIONS

(1) GENERAL COMMENTS

The Texas Surface Water Quality Standards (30 TAC Chapter 307) state that surface waters will not be toxic to man, or to terrestrial or aquatic life. The methodology outlined in the "*Procedures to Implement the Texas*"

Surface Water Quality Standards" is designed to ensure compliance with 30 TAC Chapter 307. Specifically, the methodology is designed to ensure that no source will be allowed to discharge any wastewater that: (1) results in instream aquatic toxicity; (2) causes a violation of an applicable narrative or numerical state water quality standard; (3) results in the endangerment of a drinking water supply; or (4) results in aquatic bioaccumulation that threatens human health.

(2) AQUATIC LIFE CRITERIA

(a) SCREENING

Water quality-based effluent limitations are calculated from freshwater aquatic life criteria found in Table 1 of the Texas Surface Water Quality Standards (30 TAC Chapter 307).

Acute freshwater criteria are applied at the edge of the zone of initial dilution (ZID), and chronic freshwater criteria are applied at the edge of the aquatic life mixing zone. The ZID for this discharge is defined as 20 feet upstream and 60 feet downstream from the point where the discharge enters Rio Grande Below Falcon Reservoir. The aquatic life mixing zone for this discharge is defined as 100 feet upstream and 300 feet downstream from the point where the discharge enters Rio Grande Below Falcon Reservoir.

TCEQ uses the mass balance equation to estimate dilutions at the edges of the ZID and aquatic life mixing zone during critical conditions. The estimated dilution at the edge of the aquatic life mixing zone is calculated using the permitted flow of 2.0 MGD and the 7-day, 2-year (7Q2) flow of 404 cfs for Rio Grande Below Falcon Reservoir. The estimated dilution at the edge of the ZID is calculated using the permitted flow of 2.0 MGD and 25% of the 7Q2 flow. The following critical effluent percentages are being used:

Acute Effluent %: 2.97% Chronic Effluent %: 0.76%

Waste load allocations (WLAs) are calculated using the above estimated effluent percentages, criteria outlined in the Texas Surface Water Quality Standards, and partitioning coefficients for metals (when appropriate and designated in the implementation procedures). The WLA is the end-of-pipe effluent concentration that can be discharged when, after mixing in the receiving stream, instream numerical criteria will not be exceeded. From the WLA, a long-term average (LTA) is calculated using a log normal probability distribution, a given coefficient of variation (o.6), and a 90th percentile confidence level. The LTA is the long-term average effluent concentration for which the WLA will never be exceeded using a selected percentile confidence level. The lower of the two LTAs (acute and chronic) is used to calculate a daily average and daily maximum effluent limitation for the protection of aquatic life using the same statistical considerations with the 99th percentile confidence level and a standard number of monthly effluent samples collected (12). Assumptions used in

deriving the effluent limitations include segment values for hardness, chlorides, pH, and total suspended solids (TSS) according to the segment-specific values contained in the TCEQ guidance document "*Procedures to Implement the Texas Surface Water Quality Standards.*" The segment values are 233 mg/l for hardness (as calcium carbonate), 150 mg/l chlorides, 7.6 standard units for pH, and 9.0 mg/l for TSS. For additional details on the calculation of water quality-based effluent limitations, refer to the TCEQ guidance document.

TCEQ practice for determining significant potential is to compare the reported analytical data against percentages of the calculated daily average water quality-based effluent limitation. Permit limitations are required when analytical data reported in the application exceeds 85% of the calculated daily average water quality-based effluent limitation. Monitoring and reporting is required when analytical data reported in the application exceeds 70% of the calculated daily average water quality-based effluent limitation. See Attachment C of this Fact Sheet.

(b) PERMIT ACTION

Analytical data reported in the application was screened against calculated water quality-based effluent limitations for the protection of aquatic life. Reported analytical data does not exceed 70% of the calculated daily average water quality-based effluent limitations for aquatic life protection.

(3) AQUATIC ORGANISM BIOACCUMULATION CRITERIA

(a) SCREENING

Water quality-based effluent limitations for the protection of human health are calculated using criteria for the consumption of freshwater fish tissue and drinking water found in Table 2 of the Texas Surface Water Quality Standards (30 TAC Chapter 307). Freshwater fish tissue bioaccumulation and drinking water criteria are applied at the edge of the human health mixing zone. The human health mixing zone for this discharge is identical to the aquatic life mixing zone. TCEQ uses the mass balance equation to estimate dilution at the edge of the human health mixing zone during average flow conditions. The estimated dilution at the edge of the human health mixing zone is calculated using the permitted flow of 2.0 MGD and the harmonic mean flow of 1,252 cfs for Rio Grande Below Falcon Reservoir. The following critical effluent percentage is being used:

Human Health Effluent %: 0.25%

Water quality-based effluent limitations for human health protection against the consumption of fish tissue are calculated using the same procedure as outlined for calculation of water quality-based effluent limitations for aquatic life protection. A 99th percentile confidence level in the long-term average calculation is used with only one long-term average

City of Roma TPDES Permit No. WQ0011212002 Fact Sheet and Executive Director's Preliminary Decision

value being calculated.

Significant potential is again determined by comparing reported analytical data against 70% and 85% of the calculated daily average water quality-based effluent limitation. See Attachment C of this Fact Sheet.

(b) PERMIT ACTION

Reported analytical data does not exceed 70% of the calculated daily average water quality-based effluent limitation for human health protection.

(4) DRINKING WATER SUPPLY PROTECTION

(a) SCREENING

Water Quality Segment No. 2302, which receives the discharge from this facility, is designated as a public water supply. The screening procedure used to calculate water quality-based effluent limitations and determine the need for effluent limitations or monitoring requirements is identical to the procedure outlined in the aquatic organism bioaccumulation section of this fact sheet. Criteria used in the calculation of water quality-based effluent limitations for the protection of a drinking water supply are outlined in Table 2 (Water and Fish) of the Texas Surface Water Quality Standards (30 TAC Chapter 307). These criteria are developed from either drinking water maximum contaminant level (MCL) criteria outlined in 30 TAC Chapter 290 or from the combined human health effects of exposure to consumption of fish tissue and ingestion of drinking water.

(b) PERMIT ACTION

Criteria in the "Water and Fish" section of Table 2 do not distinguish if the criteria is based on a drinking water standard or the combined effects of ingestion of drinking water and fish tissue. Effluent limitations or monitoring requirements to protect the drinking water supply (and other human health effects) were previously calculated and outlined in the aquatic organism bioaccumulation criteria section of this fact sheet.

(5) WHOLE EFFLUENT TOXICITY (BIOMONITORING) CRITERIA

(a) SCREENING

TCEQ has determined that there may be pollutants present in the effluent that may have the potential to cause toxic conditions in the receiving stream. Whole effluent biomonitoring is the most direct measure of potential toxicity that incorporates the effects of synergism of effluent components and receiving stream water quality characteristics. Biomonitoring of the effluent is, therefore, required as a condition of this permit to assess potential toxicity.

The existing permit includes 48-hour acute freshwater biomonitoring

requirements. A summary of the biomonitoring testing for the facility indicates that in the past three years, the permittee has performed eighteen 48-hour acute tests, with zero demonstrations of significant toxicity (i.e., zero failures).

A reasonable potential determination was performed in accordance with 40 CFR §122.44(d)(1)(ii) to determine whether the discharge will reasonably be expected to cause or contribute to an exceedance of a state water quality standard or criterion within that standard. Each test species is evaluated separately. The RP determination is based on representative data from the previous three years of chronic WET testing. This determination was performed in accordance with the methodology outlined in the TCEQ letter to the EPA dated December 28, 2015, and approved by the EPA in a letter dated December 28, 2015.

With zero failures, a determination of no RP was made. WET limits are not required, and both test species may be eligible for the testing frequency reduction after one year of quarterly testing.

(b) PERMIT ACTION

The test species are appropriate to measure the toxicity of the effluent consistent with the requirements of the State water quality standards. The biomonitoring frequency has been established to reflect the likelihood of ambient toxicity and to provide data representative of the toxic potential of the facility's discharge. This permit may be reopened to require effluent limits, additional testing, and/or other appropriate actions to address toxicity if biomonitoring data show actual or potential ambient toxicity to be the result of the permittee's discharge to the receiving stream or water body.

(6) WHOLE EFFLUENT TOXICITY CRITERIA (24-HOUR ACUTE)

(a) SCREENING

The existing permit includes 24-hour acute freshwater biomonitoring language. A summary of the biomonitoring testing for the facility indicates that in the past three years, the permittee has performed ten 24-hour acute tests, with zero demonstrations of significant lethality (i.e., zero failures).

(b) PERMIT ACTION

The draft permit includes 24-hour 100% acute biomonitoring tests for the life of the permit.

9. WATER QUALITY VARIANCE REQUESTS

No variance requests have been received.

10. PROCEDURES FOR FINAL DECISION

When an application is declared administratively complete, the Chief Clerk sends a letter to the applicant advising the applicant to publish the Notice of Receipt of Application and Intent to Obtain Permit in the newspaper. In addition, the Chief Clerk instructs the applicant to place a copy of the application in a public place for review and copying in the county where the facility is or will be located. This application will be in a public place throughout the comment period. The Chief Clerk also mails this notice to any interested persons and, if required, to landowners identified in the permit application. This notice informs the public about the application and provides that an interested person may file comments on the application or request a contested case hearing or a public meeting.

Once a draft permit is completed, it is sent, along with the Executive Director's preliminary decision, as contained in the technical summary or fact sheet, to the Chief Clerk. At that time, the Notice of Application and Preliminary Decision will be mailed to the same people and published in the same newspaper as the prior notice. This notice sets a deadline for making public comments. The applicant must place a copy of the Executive Director's preliminary decision and draft permit in the public place with the application.

Any interested person may request a public meeting on the application until the deadline for filing public comments. A public meeting is intended for the taking of public comment and is not a contested case proceeding.

After the public comment deadline, the Executive Director prepares a response to all significant public comments on the application or the draft permit raised during the public comment period. The Chief Clerk then mails the Executive Director's response to comments and final decision to people who have filed comments, requested a contested case hearing, or requested to be on the mailing list. This notice provides that if a person is not satisfied with the Executive Director's response and decision, they can request a contested case hearing or file a request to reconsider the Executive Director's decision within 30 days after the notice is mailed.

The Executive Director will issue the permit unless a written hearing request or request for reconsideration is filed within 30 days after the Executive Director's response to comments and final decision is mailed. If a hearing request or request for reconsideration is filed, the Executive Director will not issue the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting. If a contested case hearing is held, it will be a legal proceeding similar to a civil trial in state district court.

If the Executive Director calls a public meeting or the Commission grants a contested case hearing as described above, the Commission will give notice of the date, time, and place of the meeting or hearing. If a hearing request or request for reconsideration is made, the Commission will consider all public comments in making its decision and shall either adopt the Executive Director's response to public comments or prepare its own response.

For additional information about this application, contact Sujata Sinha at (512) 239-1963.

11. ADMINISTRATIVE RECORD

The following items were considered in developing the draft permit:

A. PERMIT(S)

TPDES Permit No. WQ0011212002 issued on November 5, 2020.

B. APPLICATION

Application received on May 8, 2025.

C. MEMORANDA

Interoffice Memoranda from the Water Quality Assessment Section of the TCEQ Water Quality Division. Interoffice Memorandum from the Pretreatment Team of the TCEQ Water Quality Division.

D. MISCELLANEOUS

Federal Clean Water Act § 402; Texas Water Code § 26.027; 30 TAC Chapters 30, 305, 309, 312, and 319; Commission policies; and U.S. Environmental Protection Agency guidelines.

Texas Surface Water Quality Standards, 30 TAC §§ 307.1 - 307.10.

Procedures to Implement the Texas Surface Water Quality Standards (IP), Texas Commission on Environmental Quality, June 2010, as approved by the U.S. Environmental Protection Agency, and the IP, January 2003, for portions of the 2010 IP not approved by the U.S. Environmental Protection Agency.

Texas 2024 Clean Water Act Section 303(d) List, Texas Commission on Environmental Quality, June 26, 2024; approved by the U.S. Environmental Protection Agency on November 13, 2024.

Texas Natural Resource Conservation Commission, Guidance Document for Establishing Monitoring Frequencies for Domestic and Industrial Wastewater Discharge Permits, Document No. 98-001.000-OWR-WQ, May 1998.