

This file contains the following documents:

- 1. Summary of application (in plain language)
 - English
 - Alternative Language (Spanish)
- 2. First Notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
 - English
 - Alternative Language (Spanish)
- 3. Application materials

Este archivo contiene los siguientes documentos:

- 1. Resumen en lenguaje sencillo (PLS, por sus siglas en inglés) de la actividad propuesta
 - Inglés
 - Idioma alternativo (español)
- 2. Primer aviso (NORI, por sus siglas en inglés)
 - Inglés
 - Idioma alternativo (español)
- 3. Solicitud original

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS

Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

English:

Final phase

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

Olmito Water Supply Corporation (CN 600657548) operates Wastewater Treatment Plant (RN 103888004), an Wastewater Treatment Plant (WWTP). The facility is located at Latitude (N) 26.046122 Longitude(W) -97.506225 Degree 26, Minutes 2, Seconds 416.04, Degrees -97, Minutes 30, Seconds 22.41, in Olmito, Cameron County, Texas 78520.

This application is for renewal to discharge at an annual average flow of 1,250,000 gallons per day of treated domestic wastewater via Outfalls 002.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand 10 mg/l (CBODs), total suspended solids 15 mg/l (TSS), ammonia nitrogen 3 mg/l (NHs-N), and 126 mg/l *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a plant lift station, headworks, bar screen, grit chamber, aeration basins, final clarifiers, sludge drying beds, UV basin, and post aeration basin.

Spanish:

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

Olmito Water Supply Corporation ((CN 600657548) opera the City of Olmito Wastewater treatment plant (RN 103888004), una Planta de Tratamiento de Aguas Residuales. La instalación está ubicada en Latitud (N) 26.046122 Longitud (O) - 97.506225 Grados 26, Minutos 2, Segundos 416.04, Grados -97, Minutos 30, Segundos 22.41 en Olmito, Condado de Cameron, Texas 78520.

Esta solicitud es para la renovación de la descarga de un flujo promedio anual de 1,250,000 galones por día de aguas residuales domésticas tratadas a través de los emisores 001.

Se espera que los vertidos de la instalación contengan demanda bioquímica de oxígeno carbonáceo a 5 días (CBOD5) de 10 mg/l, sólidos suspendidos totales (TSS) de 15 mg/l, nitrógeno amoniacal (NH3-N) de 5 mg/l, y Escherichia coli a 126 mg/l. Se incluyen otros posibles contaminantes en el Informe Técnico Doméstico 1.0, Sección 7. Análisis de Contaminantes del Efluente Tratado y la Hoja de Trabajo Doméstica 4.0 en el paquete de solicitud del permiso. Las aguas residuales domésticas se tratan mediante un sistema de lagunas facultativas, y las unidades de tratamiento incluyen una criba, lagunas facultativas, lagunas aireadas, filtros de humedales y estructuras de efluentes.

Spanish:

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

Olmito Water Supply Corporation (CN 600657548) opera the City of Olmito Wastewater treatment plant (RN 103888004), una Planta de Tratamiento de Aguas Residuales. La instalación está ubicada en Latitud (N) 26.046122 Longitud (O) - 97.506225 Grados 26, Minutos 2, Segundos 416.04, Grados -97, Minutos 30, Segundos 22.41 en Olmito, Condado de Cameron, Texas 78520.

Esta solicitud es para la renovación de la descarga de un flujo promedio anual de 1,250,000 galones por día de aguas residuales domésticas tratadas a través de los emisores 001.

Se espera que los vertidos de la instalación contengan demanda bioquímica de oxígeno carbonáceo a 5 días (CBOD5) de 10 mg/l, sólidos suspendidos totales (TSS) de 15 mg/l, nitrógeno amoniacal (NH3-N) de 5 mg/l, y Escherichia coli a 126 mg/l. Se incluyen otros posibles contaminantes en el Informe Técnico Doméstico 1.0, Sección 7. Análisis de Contaminantes del Efluente Tratado y la Hoja de Trabajo Doméstica 4.0 en el paquete de solicitud del permiso. Las aguas residuales domésticas se tratan mediante un proceso de lodos activados, y las unidades de tratamiento incluyen una estación de bombeo de la planta, los trabajos preliminares, una criba, una cámara de desarenado, los estanques de aireación, los clarificadores finales, los lechos de secado de lodos, el estanque de UV, y el estanque de post-aireación.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL.

PERMIT NO. WQ0013817001

APPLICATION. Olmito Water Supply Corporation, 101 Clara Bennett Drive, Olmito, Texas 78575, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WO0013817001 (EPA I.D. No. TX0113875) to authorize the discharge of treated wastewater at a volume not to exceed an annual average flow of 1,250,000 gallons per day. The domestic wastewater treatment facility is located approximately 1.7 miles north of the intersection of Farm-to-Market Road 511 and Old Alice Road, near the city of Brownsville, in Cameron County, Texas 78566. The discharge route is from the plant site to Cameron County Drainage District No. 1 Ditch No. 2; thence to San Martin Lake; thence to Brownsville Ship Channel. TCEQ received this application on May 6, 2025. The permit application will be available for viewing and copying at Cameron County Community Development, 1100 East Monroe Street, Suite 105, Brownsville, in Cameron County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pendingpermits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.506111,26.046111&level=18

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a

public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from Olmito Water Supply Corporation at the address stated above or by calling Mr. Thomas Tamayo, General Manager, at 956-350-4099.

Issuance Date: June 4, 2025

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ0013817001

SOLICITUD. Olmito Water Supply Corporation, 101 Clara Bennett Drive, Olmito, Texas 78575, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0013817001 (EPA I.D. No. TX 0113875) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio diario de 1,250,000 galones por día. La planta está ubicada Ubicada aproximadamente 1.7 millas al norte del cruce entre la carretera FM 511 y Old Alice Road cerca de Condado de Cameron, Texas 78566. La ruta de descarga es del sitio de la planta a Distrito de Drenaje No. 1 del Condado de Cameron, Canal No. 2; de allí al Lago San Martín; de allí al Canal de Barcos de Brownsville. La TCEQ recibió esta solicitud el Mayo 6, 2025. La solicitud de permiso estará disponible para su consulta y copia en el Departamento de Desarrollo Comunitario del Condado de Cameron, 1100 East Monroe Street, Suite 105, Brownsville, en el Condado de Cameron, Texas. antes de la fecha de publicación de este aviso en el periódico. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-97.506111,26.046111&level=18

AVISO DE IDIOMA ALTERNATIVO. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos

o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión.

La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Además, puede pedir que la TCEQ ponga su nombre en una o más de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos del solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envía por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

INFORMACIÓN DISPONIBLE EN LÍNEA. Para detalles sobre el estado de la solicitud, favor de visitar la Base de Datos Integrada de los Comisionados en www.tceq.texas.gov/goto/cid. Para buscar en la base de datos, utilizar el número de permiso para esta solicitud que aparece en la parte superior de este aviso.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía http://www14.tceq.texas.gov/epic/eComment/o.por.escrito.dirigidos a la Comisión

http://www14.tceq.texas.gov/epic/eComment/o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional del Olmito Water Supply Corporation a la dirección indicada arriba o llamando Mr. Thomas Tamayo al 956-350-4099.

Fecha de emisión: 4 de junio de 2025

OLMITO WATER SUPPLY CORPORATION

TCEQ Domestic Wastewater Discharge Permit Application

For

Wastewater Treatment Plant

Prepared By

CRUZ-HOGAN

ENGINEERS | PLANNERS

McAllen | Harlingen | Weslaco

APRIL 2025

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST

Complete and submit this checklist with the application.

APPLICANT NAME: <u>Olmito Water Supply Corporation</u>
PERMIT NUMBER (If new, leave blank): WQ00<u>13817001</u>

Indicate if each of the following items is included in your application.

N

Y

Administrative Report 1.0	\boxtimes		Original USGS Map	\boxtimes	
Administrative Report 1.1		\boxtimes	Affected Landowners Map		\boxtimes
SPIF	\boxtimes		Landowner Disk or Labels		\boxtimes
Core Data Form	\boxtimes		Buffer Zone Map		\boxtimes
Summary of Application (PLS)	\boxtimes		Flow Diagram	\boxtimes	
Public Involvement Plan Form			Site Drawing	\boxtimes	
Technical Report 1.0	\boxtimes		Original Photographs		\boxtimes
Technical Report 1.1			Design Calculations	\boxtimes	
Worksheet 2.0	\boxtimes		Solids Management Plan	10	\boxtimes
Worksheet 2.1		\boxtimes	Water Balance		\boxtimes
Worksheet 3.0					
Worksheet 3.1					
Worksheet 3.2					
Worksheet 3.3					
Worksheet 4.0	\boxtimes	To the second			
Worksheet 5.0					
Worksheet 6.0		\boxtimes			
Worksheet 7.0		\boxtimes			
For TCEQ Use Only					
Segment Number Expiration Date Permit Number			County Region		

Y

N

THE TROUMENTAL OURS

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION ADMINISTRATIVE REPORT 1.0

For any questions about this form, please contact the Applications Review and Processing Team at 512-239-4671.

Section 1. Application Fees (Instructions Page 26)

Indicate the amount submitted for the application fee (check only one).

Flow	New/Major Amendment	Renewal
<0.05 MGD	\$350.00 □	\$315.00 □
≥0.05 but <0.10 MGD	\$550.00 □	\$515.00 □
≥0.10 but <0.25 MGD	\$850.00 □	\$815.00 □
≥0.25 but <0.50 MGD	\$1,250.00	\$1,215.00
≥0.50 but <1.0 MGD	\$1,650.00	\$1,615.00 □
≥1.0 MGD	\$2,050.00	\$2,015.00 ⊠

Minor Amendment (for any flow) \$150.00 □

Pay	ment	Informa	ation:
)		TITL OF THE	u ci Oii.

Mailed Check/Money Order Number: 066978

Check/Money Order Amount: \$2015.00

Name Printed on Check: Olmito Water Supply Corp.

EPAY Voucher Number: Click to enter text.

Copy of Payment Voucher enclosed? Yes ⊠

Section 2. Type of Application (Instructions Page 26)

a.	Che	heck the box next to the appropriate authorization type.					
		Publicly Owned Domestic Wastewater					
	\boxtimes	Privately-Owned Domestic Wastewater					
		Conventional Water Treatment					
b.	Che ⊠	ck the box next to the appropriate facility status. Active \Box Inactive					
c.	Che	ck the box next to the appropriate permit type.					
	\boxtimes	TPDES Permit					
		TLAP					
		TPDES Permit with TLAP component					

		Subsurface Area Drip Dispersal System (SAD	DDS)				
d.	Che	neck the box next to the appropriate application type					
		New					
		Major Amendment with Renewal		Minor Amendment with Renewal			
		Major Amendment <u>without</u> Renewal		Minor Amendment <u>without</u> Renewal			
	\boxtimes	Renewal without changes		Minor Modification of permit			
e.	For	amendments or modifications, describe the p	ropo	osed changes: Click to enter text.			
		existing permits:	_				
	Permit Number: WQ00 13817001						
	EPA I.D. (TPDES only): TX <u>0113875</u>						
	Expiration Date: <u>December 1, 2025</u>						
3.							
эe	cuc	on 3. Facility Owner (Applicant) a (Instructions Page 26)	md	Co-Applicant Information			
۸	The		•				
٦.	1 ne	owner of the facility must apply for the per	rmit.				
	Wha	at is the Legal Name of the entity (applicant) a	pply	ing for this permit?			
	<u>Olm</u>	ito Water Supply Corporation					

(The legal name must be spelled exactly as filed with the Texas Secretary of State, County, or in the legal documents forming the entity.)

If the applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at http://www15.tceq.texas.gov/crpub/

CN: 600657548

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in 30 TAC § 305.44.

Prefix: Mr.

Last Name, First Name: Tomas Tamavo

Title: General Manager

Credential: Click to enter text.

B. Co-applicant information. Complete this section only if another person or entity is required to apply as a co-permittee.

What is the Legal Name of the co-applicant applying for this permit?

Click to enter text.

(The legal name must be spelled exactly as filed with the TX SOS, with the County, or in the *legal documents forming the entity.)*

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at: http://www15.tceq.texas.gov/crpub/

CN: Click to enter text.

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in 30 TAC § 305.44.

Prefix: Click to enter text.

Last Name, First Name: Click to enter text.

Title: Click to enter text. Credential: Click to enter text.

Provide a brief description of the need for a co-permittee: Click to enter text.

C. Core Data Form

Complete the Core Data Form for each customer and include as an attachment. If the customer type selected on the Core Data Form is **Individual**, complete **Attachment 1** of Administrative Report 1.0. **Attachment: Attachment No. 1**

Section 4. Application Contact Information (Instructions Page 27)

This is the person(s) TCEQ will contact if additional information is needed about this application. Provide a contact for administrative questions and technical questions.

A. Prefix: Mr. Last Name, First Name: <u>Tomas Tamayo</u>

Title: General Manager Credential: Click to enter text.

Organization Name: Olmito Water Supply Corporation

Mailing Address: 101 Clara Bennet City, State, Zip Code: Olmito, Texas, 78575

Phone No.: 956-350-4099 E-mail Address: ttamayo@olmitowsc.com

Check one or both: 🗵 Administrative Contact 🗵 Technical Contact

B. Prefix: Last Name, First Name:

Title: Credential:

Organization Name:

Mailing Address: City, State, Zip Code:

Phone No.: E-mail Address:

Check one or both: \Box Administrative Contact \Box Technical Contact

Section 5. Permit Contact Information (Instructions Page 27)

Provide the names and contact information for two individuals that can be contacted throughout the permit term.

A. Prefix: Mr. Last Name, First Name: Cruz Marcus

Title: <u>Project Engineer</u> Credential: <u>P.E</u>

Organization Name: Cruz Hogan Consultants

Mailing Address: 2290 W. Pike Blvd Ste 102 City, State, Zip Code: Weslaco, Texas, 78596

Phone No.: <u>956-854-4227</u> E-mail Address: <u>Marcus@cruzhogan.net</u>

B. Prefix: Mr. Last Name, First Name: <u>Tomas Tamayo</u>

Title: <u>General Manager</u> Credential: <u>P.E.</u>
Organization Name: Olmito Water Supply Corporation

Mailing Address: 101 Clara Bennet City, State, Zip Code: Olmito, Texas, 78575

Phone No.: <u>956-350-4099</u> E-mail Address: <u>ttamayo@olmitowsc.com</u>

Section 6. Billing Contact Information (Instructions Page 27)

The permittee is responsible for paying the annual fee. The annual fee will be assessed to permits *in effect on September 1 of each year*. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (using form TCEQ-20029).

Prefix: Mr. Last Name, First Name: Robert Tamayo

Title: Accountant Credential: Click to enter text.

Organization Name: Olmito Water Supply Corporation

Mailing Address: 101 Clara Bennet City, State, Zip Code: Olmito, Texas, 78575

Phone No.: <u>956-350-4099</u> E-mail Address: <u>rtamayo@olmitowsc.com</u>

Section 7. DMR/MER Contact Information (Instructions Page 27)

Provide the name and complete mailing address of the person delegated to receive and submit Discharge Monitoring Reports (DMR) (EPA 3320-1) or maintain Monthly Effluent Reports (MER).

Prefix: Mr. Last Name, First Name: Carrillo, Antonio
Title: Wastewater Plant Operator Credential: Class C Wastewater License

Organization Name: Olmito Water Supply Corporation

Mailing Address: 101 Clara Bennet City, State, Zip Code: Olmito, Texas, 78575

Phone No.: 956-350-4099 E-mail Address: wplant@olmitowsc.com

Section 8. Public Notice Information (Instructions Page 27)

A. Individual Publishing the Notices

Prefix: Ms. Last Name, First Name: Ann Marie Pedraza

Title: Office Manager Credential: Click to enter text.

Organization Name: Olmito Water Supply Corporation

Mailing Address: 101 Clara Bennet City, State, Zip Code: Olmito, Texas, 78575

Phone No.: <u>956-350-4099</u> E-mail Address: <u>amartinez@olmitowsc.com</u>

B. Method for Receiving Notice of Receipt and Intent to Obtain a Water Quality Permit Package

Indicate by a check mark the preferred method for receiving the first notice and instructions:

☐ Fax

□ Regular Mail

C. Contact permit to be listed in the Notices

Prefix: Mr. Last Name, First Name: Tomas Tamayo

Title: General Manager Credential: Click to enter text.

Organization Name: Olmito Water Supply Corporation Mailing Address: 101 Clara Bennet Rd, Olmito, TX 78575 City, State, Zip Code: Olmito, Texas, 78575 E-mail Address: ttamavo@olmitowsc.com Phone No.: 956-350-4099 D. Public Viewing Information If the facility or outfall is located in more than one county, a public viewing place for each county must be provided. Public building name: Olmito Water Supply Corporation Location within the building: Main Lobby Physical Address of Building: 101 Clara Bennet Rd, Olmito, TX 78575 County: Cameron City: Olmito Contact (Last Name, First Name): : Tomas Tamayo Phone No.: 956-350-4099 Ext.: Click to enter text. E. Bilingual Notice Requirements This information is required for new, major amendment, minor amendment or minor modification, and renewal applications. This section of the application is only used to determine if alternative language notices will be needed. Complete instructions on publishing the alternative language notices will be in your public notice package. Please call the bilingual/ESL coordinator at the nearest elementary and middle schools and obtain the following information to determine whether an alternative language notices are required. 1. Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility? Yes No If **no**, publication of an alternative language notice is not required; **skip to** Section 9 below. 2. Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school? \boxtimes No Yes 3. Do the students at these schools attend a bilingual education program at another location? No Yes X 4. Would the school be required to provide a bilingual education program but the school has waived out of this requirement under 19 TAC §89.1205(g)? \square No Yes 5. If the answer is **yes** to **question 1, 2, 3, or 4,** public notices in an alternative language are required. Which language is required by the bilingual program? Spanish

F. Summary of Application in Plain Language Template

Complete the F. Summary of Application in Plain Language Template (TCEQ Form 20972), also known as the plain language summary or PLS, and include as an attachment.

Attachment: Attachment No. 2 Plain Language Summary

G. Public Involvement Plan Form

Complete the Public Involvement Plan Form (TCEQ Form 20960) for each application for a **new permit or major amendment to a permit** and include as an attachment.

Attachment: Click to enter text.

Section 9. Regulated Entity and Permitted Site Information (Instructions Page 29)

A. If the site is currently regulated by TCEQ, provide the Regulated Entity Number (RN) issued to this site. **RN** 103888004

Search the TCEQ's Central Registry at http://www15.tceq.texas.gov/crpub/ to determine if the site is currently regulated by TCEQ.

B.	Name of project or site (the name known by the community where located):
	Olmito WSC – Wastewater Treatment Plant

	Olmito WSC – Wastewater Treatment Plant						
C.	Owner of treatment facility: Olmito Water Supply Corporation						
	Ownership of Facility: ⊠ Public □ Private □ Both □ Federal						
D.	Owner of land where treatment facility is or will be:						
	Prefix: Click to enter text. Last Name, First Name: Click to enter text.						
	Title: Click to enter text. Credential: Click to enter text.						
	Organization Name: Olmito Water Supply Corporation						
	Mailing Address: <u>101 Clara Bennet Rd, Olmito, TX 78575</u> City, State, Zip Code: <u>Olmito, Texa 78575</u>						
	Phone No.: <u>9563504099</u> E-mail Address: <u>customerservice@olmitowsc.com</u>						
	If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.						
	Attachment: Click to enter text.						

E. Owner of effluent disposal site:

Prefix: Click to enter text. Last Name, First Name: Click to enter text.

Title: Click to enter text. Credential: Click to enter text.

Organization Name: Click to enter text.

Mailing Address: Click to enter text. City, State, Zip Code: Click to enter text.

Phone No.: Click to enter text. E-mail Address: Click to enter text.

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: Click to enter text.

F. Owner sewage sludge disposal site (if authorization is requested for sludge disposal on property owned or controlled by the applicant)::

Prefix: Click to enter text.

Last Name, First Name: Click to enter text.

Credential: Click to enter text.

Organization Name: Olmito Water Supply Corporation

Mailing Address: 101 Clara Bennet Rd, Olmito, TX 78575

City, State, Zip Code: Olmito, Texas, 78575

Phone No.: 956-350-4099

E-mail Address: customerservice@olmitowsc.com

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: Click to enter text.

Section 10. TPDES Discharge Information (Instructions Page 31)

	<u> </u>
A.	Is the wastewater treatment facility location in the existing permit accurate?
	⊠ Yes □ No
	If no, or a new permit application, please give an accurate description:
	Click to enter text.
В.	Are the point(s) of discharge and the discharge route(s) in the existing permit correct?
	⊠ Yes □ No
	If no , or a new or amendment permit application , provide an accurate description of the point of discharge and the discharge route to the nearest classified segment as defined in 30 TAC Chapter 307:
	Click to enter text.
	City nearest the outfall(s): <u>Brownsville, Texas</u>
	County in which the outfalls(s) is/are located:
C.	Is or will the treated wastewater discharge to a city, county, or state highway right-of-way, or a flood control district drainage ditch?
	⊠ Yes □ No
	If yes , indicate by a check mark if:
	oxtimes Authorization granted $oxtimes$ Authorization pending
	For new and amendment applications, provide copies of letters that show proof of contact and the approval letter upon receipt.
	Attachment: #4 Cameron Country Drainage Agreement
D.	For all applications involving an average daily discharge of 5 MGD or more, provide the

names of all counties located within 100 statute miles downstream of the point(s) of discharge: Click to enter text.

Se	ection 11. TLAP Disposal Information (Instructions Page 32)
A.	For TLAPs, is the location of the effluent disposal site in the existing permit accurate?
	☐ Yes ☐ No
	If no, or a new or amendment permit application, provide an accurate description of the disposal site location:
В.	City nearest the disposal site:
C.	County in which the disposal site is located:
	For TLAPs , describe the routing of effluent from the treatment facility to the disposal site:
E.	For TLAPs, please identify the nearest watercourse to the disposal site to which rainfall runoff might flow if not contained:
Se	ction 12. Miscellaneous Information (Instructions Page 32)
A.	Is the facility located on or does the treated effluent cross American Indian Land?
	□ Yes ⊠ No
В.	If the existing permit contains an onsite sludge disposal authorization, is the location of the sewage sludge disposal site in the existing permit accurate?
	□ Yes □ No ⊠ Not Applicable
	If No, or if a new onsite sludge disposal authorization is being requested in this permit application, provide an accurate location description of the sewage sludge disposal site.
	Click to enter text.
C.	Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?
	□ Yes ⊠ No
	If yes, list each person formerly employed by the TCEQ who represented your company and was paid for service regarding the application:
D.	Do you owe any fees to the TCEQ?
	□ Yes ⊠ No
	If yes , provide the following information:
	Account number:
	Amount past due:

E.	Do you owe any penalties to the TCEQ?
	□ Yes ⊠ No
	If yes , please provide the following information:
	Enforcement order number:
	Amount past due:
Se	ection 13. Attachments (Instructions Page 33)
Inc	dicate which attachments are included with the Administrative Report. Check all that apply
	Lease agreement or deed recorded easement, if the land where the treatment facility is located or the effluent disposal site are not owned by the applicant or co-applicant.
\boxtimes	Original full-size USGS Topographic Map with the following information:
	 Applicant's property boundary Treatment facility boundary Labeled point of discharge for each discharge point (TPDES only) Highlighted discharge route for each discharge point (TPDES only) Onsite sewage sludge disposal site (if applicable) Effluent disposal site boundaries (TLAP only) New and future construction (if applicable) 1 mile radius information 3 miles downstream information (TPDES only) All ponds.
	Attachment 1 for Individuals as co-applicants
	Other Attachments. Please specify: Attachment No. 3 USGS Map

Section 14. Signature Page (Instructions Page 34)

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: WQoo1387001

Applicant: Olmito Water Supply Corporation

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory name	(typed	or	printed):	Nora	G.	Ureste

Signatory title: <u>Board President</u>

Signature:	May Gite	
	(Use blue ink)	

Subscribed and Sv	worn to before	me by the	said_Nova (i Weste
on this	181	day of	May	,20 25.
My commission ex	xpires on the	and	day of July	. 20 28.

Notary Public

ANN MARIE PEDRAZA My Notary ID # 130318155 Expires July 2, 2028

SEAL]

County, Texas

WATER QUALITY PERMIT

PAYMENT SUBMITTAL FORM

Use this form to submit the Application Fee, if the mailing the payment.

- Complete items 1 through 5 below.
- Staple the check or money order in the space provided at the bottom of this document.
- Do Not mail this form with the application form.
- Do not mail this form to the same address as the application.
- Do not submit a copy of the application with this form as it could cause duplicate permit entries.

Mail this form and the check or money order to:

BY REGULAR U.S. MAIL

Texas Commission on Environmental Quality Financial Administration Division Cashier's Office, MC-214 P.O. Box 13088 Austin, Texas 78711-3088 BY OVERNIGHT/EXPRESS MAIL

Texas Commission on Environmental Quality Financial Administration Division Cashier's Office, MC-214 12100 Park 35 Circle Austin, Texas 78753

Fee Code: WQP Waste Permit No: WQ0013817001

1. Check or Money Order Number: <u>o66978</u>

2. Check or Money Order Amount: \$2015.00

3. Date of Check or Money Order: April 29, 2025

4. Name on Check or Money Order: Olmito Water Supply Corp

5. APPLICATION INFORMATION

Name of Project or Site: Olmito Water Supply Wastewater Treatment Plant

Physical Address of Project or Site: FM 511 and Approx. 1.7 Miles North of Old Alice Rd

If the check is for more than one application, attach a list which includes the name of each Project or Site (RE) and Physical Address, exactly as provided on the application.

Staple Check or Money Order in This Space

ATTACHMENT 1

INDIVIDUAL INFORMATION

Section 1. Individual Information (Instructions Page 41)

Complete this attachment if the facility applicant or co-applicant is an individual. Make additional copies of this attachment if both are individuals.

Prefix (Mr., Ms., Miss): Click to enter text.

Full legal name (Last Name, First Name, Middle Initial): Click to enter text.

Driver's License or State Identification Number: Click to enter text.

Date of Birth: Click to enter text.

Mailing Address: Click to enter text.

City, State, and Zip Code: Click to enter text.

Phone Number: Click to enter text. Fax Number: Click to enter text.

E-mail Address: Click to enter text.

CN: Click to enter text.

For Commission Use Only:

Customer Number:

Regulated Entity Number:

Permit Number:

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST OF COMMON DEFICIENCIES

Below is a list of common deficiencies found during the administrative review of domestic wastewater permit applications. To ensure the timely processing of this application, please review the items below and indicate by checking Yes that each item is complete and in accordance applicable rules at 30 TAC Chapters 21, 281, and 305. If an item is not required this application, indicate by checking N/A where appropriate. Please do not submit the application until the items below have been addressed.

application until the items below have been addressed.				
Core Data Form (TCEQ Form No. 10400) (Required for all application types. Must be completed in its entirety Note: Form may be signed by applicant representative.)	and s	signed.	×	Yes
Correct and Current Industrial Wastewater Permit Application Form (TCEQ Form Nos. 10053 and 10054. Version dated 6/25/2018 or lat			×	Yes
Water Quality Permit Payment Submittal Form (Page 19) (Original payment sent to TCEQ Revenue Section. See instructions for	r ma	iling ad	⊠ dress	Yes s.)
7.5 Minute USGS Quadrangle Topographic Map Attached (Full-size map if seeking "New" permit. 8 ½ x 11 acceptable for Renewals and Amendments)			\boxtimes	Yes
Current/Non-Expired, Executed Lease Agreement or Easement	\boxtimes	N/A		Yes
Landowners Map (See instructions for landowner requirements)	⊠	N/A		Yes
 Things to Know: All the items shown on the map must be labeled. The applicant's complete property boundaries must be d boundaries of contiguous property owned by the applica. The applicant cannot be its own adjacent landowner. You landowners immediately adjacent to their property, regardered to a cause from the actual facility. If the applicant's property is adjacent to a road, creek, or on the opposite side must be identified. Although the prapplicant's property boundary, they are considered potentif the adjacent road is a divided highway as identified on map, the applicant does not have to identify the landown the highway. 	nt. I mus I strea Opert Intially	st identi s of how am, the ies are: y affect USGS to	ify th v far land not a ed la pogr	they are owners djacent to ndowners. aphic
Landowners Labels and Cross Reference List (See instructions for landowner requirements)	\boxtimes	N/A		Yes
Electronic Application Submittal (See application submittal requirements on page 23 of the instruction)	ns.)			Yes
Original signature per 30 TAC § 305.44 – Blue Ink Preferred (If signature page is not signed by an elected official or principle exe a copy of signature authority/delegation letter must be attached)	ecutiv	e office	⊠ r,	Yes
Summary of Application (in Plain Language)			\boxtimes	Yes

STATE OF THE PROPERTY OF THE P

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671.

The following information is required for all renewal, new, and amendment applications.

Section 1. Permitted or Proposed Flows (Instructions Page 42)

A. Existing/Interim I Phase

Design Flow (MGD): .75

2-Hr Peak Flow (MGD): Click to enter text.

Estimated construction start date: <u>January 1, 1995</u>

Estimated waste disposal start date: February 1, 1995

B. Interim II Phase

Design Flow (MGD): Click to enter text.

2-Hr Peak Flow (MGD): Click to enter text.

Estimated construction start date: Click to enter text.

Estimated waste disposal start date: Click to enter text.

C. Final Phase

Design Flow (MGD): 1.25

2-Hr Peak Flow (MGD): 3.75

Estimated construction start date: 12/1/2022

Estimated waste disposal start date: 11/1/2025

D. Current Operating Phase

Provide the startup date of the facility: Existing – January 1, 1995

Section 2. Treatment Process (Instructions Page 42)

A. Current Operating Phase

Provide a detailed description of the treatment process. **Include the type of treatment plant, mode of operation, and all treatment units.** Start with the plant's head works and

finish with the point of discharge. Include all sludge processing and drying units. If more than one phase exists or is proposed, a description of *each phase* must be provided.

SEE ATTACHMENT #5 Treatment Pro	ocess Description & Process Units	
		Ì

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) of each treatment unit, accounting for *all* phases of operation.

Table 1.0(1) - Treatment Units

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
SEE ATTACHMENT #5 Treatment Process Description & Process Units		
-		

C. Process Flow Diagram

Provide flow diagrams for the existing facilities and each proposed phase of construction.

Attachment: #5 Process Flow Diagrams

Section 3. Site Information and Drawing (Instructions Page 43)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

- Latitude: <u>26 degrees</u>, <u>2 min</u>, <u>45.3444 sec</u>
- Longitude: 97 degrees, 30 min, 21.8016sec.

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

- Latitude: <u>N/A</u>
- Longitude: N/A

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and
- If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Olmito, Texas			
Collection System Informatieach uniquely owned collection systems. examples.	ction system, existi Please see the ins	ng and new, served by th	is facility, including
Collection System Informatio			
Collection System Name Olmito WSC	Owner Name	Owner Type	Population Served
Ominto wasc	Olmito WSC	Privately Owned	Estimated - 9,200
		Choose an item.	
		Choose an item.	
		Choose an item.	
☐ Yes ☒ No If yes, provide a detailed dis Failure to provide sufficient recommending denial of the	it justification may	result in the Executive	ne unbuilt phase. Director
Click to enter text.			
Section 5. Closure P	lans (Instructi	ons Page 44)	
Have any treatment units be out of service in the next fiv		vice permanently, or will	any units be taken
□ Yes ⊠ No	•		

If y	ves, was a closure plan submitted to the TCEQ?
	□ Yes □ No
If y	res, provide a brief description of the closure and the date of plan approval.
Se	ction 6. Permit Specific Requirements (Instructions Page 44) capplicants with an existing permit, check the Other Requirements or Special
	ovisions of the permit. Summary transmittal
А.	Have plans and specifications been approved for the existing facilities and each proposed phase?
	⊠ Yes □ No
	If yes, provide the date(s) of approval for each phase: 1994 Existing Phase, 2021 Final Phase
	Provide information, including dates, on any actions taken to meet a <i>requirement or provision</i> pertaining to the submission of a summary transmittal letter. Provide a copy of an approval letter from the TCEQ, if applicable .
	See attachment #4 TCEQ Approval Letter
В.	Buffer zones
	Have the buffer zone requirements been met?
	⊠ Yes □ No
	Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the buffer zones.
	All buffer zone requirements are still held within original permitting boundaries. All new construction infrastructures will be held within the original permitted boundary buffer zones.

	Sι	oes the <i>Other Requirements</i> or <i>Special Provisions</i> section in the existing permit require abmission of any other information or other required actions? Examples include otification of Completion, progress reports, soil monitoring data, etc.
		□ Yes ⊠ No
	If CC	yes , provide information below on the status of any actions taken to meet the onditions of an <i>Other Requirement</i> or <i>Special Provision</i> .
		lick to enter text.
D.	Gı	it and grease treatment
	1.	Acceptance of grit and grease waste
		Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?
		□ Yes ⊠ No
		If No, stop here and continue with Subsection E. Stormwater Management.
	2.	Grit and grease processing
		Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility.
		Click to enter text.
	3.	Grit disposal
		Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal?
		□ Yes ⊠ No
		If No, contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.

C. Other actions required by the current permit

Describe the method of grit disposal.

	Click to enter text.
4.	Grease and decanted liquid disposal
	Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335.
	Describe how the decant and grease are treated and disposed of after grit separation.
	Click to enter text.
Sto	ormwater management
	Applicability
	Does the facility have a design flow of 1.0 MGD or greater in any phase?
	✓ Yes □ No
	Does the facility have an approved pretreatment program, under 40 CFR Part 403?
	☐ Yes ☒ No If no to both of the above, then skip to Subsection F, Other Wastes Received.
2	
۷.	MSGP coverage Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal
	currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?
	□ Yes ⊠ No
	If yes , please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:
	TXR05 Click to enter text. or TXRNE Click to enter text.
	If no, do you intend to seek coverage under TXR050000?
	□ Yes ⊠ No
3.	Conditional exclusion
	Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?
	□ Yes ⊠ No
	If yes, please explain below then proceed to Subsection F, Other Wastes Received:

E.

	Click to enter text.
4.	Existing coverage in individual permit
	Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?
	□ Yes ⊠ No
	If yes, provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.
	Click to enter text.
5.	Zero stormwater discharge
	Do you intend to have no discharge of stormwater via use of evaporation or other means?
	□ Yes ⊠ No
	If yes, explain below then skip to Subsection F. Other Wastes Received.
	Click to enter text.
	Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.
6.	Request for coverage in individual permit
	Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?
	□ Yes ⊠ No
	If yes, provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you

6.

		it to water in the state.
		Click to enter text.
		Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.
F.	Dis	scharges to the Lake Houston Watershed
	Do	es the facility discharge in the Lake Houston watershed?
		□ Yes ⊠ No
	If y <u>Cli</u>	ves, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions. ck to enter text.
G.	Ot	her wastes received including sludge from other WWTPs and septic waste
	1.	Acceptance of sludge from other WWTPs
		Does or will the facility accept sludge from other treatment plants at the facility site?
		□ Yes ⊠ No
		If yes, attach sewage sludge solids management plan. See Example 5 of instructions.
		In addition, provide the date the plant started or is anticipated to start accepting sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an
		estimate of the BOD_5 concentration of the sludge, and the design BOD_5 concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.
		Click to enter text.
		Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.
	2.	Acceptance of septic waste
		Is the facility accepting or will it accept septic waste?
		□ Yes ⊠ No
		If yes, does the facility have a Type V processing unit?
		□ Yes □ No
		If yes, does the unit have a Municipal Solid Waste permit?

If yes to any of the above, provide the date the plant started or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD ₅ concentration of the septic waste, and the
design BOD_5 concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.
Click to enter text.
Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.
3. Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)
Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above?
□ Yes ⊠ No
If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.
Click to enter text.
Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 49)
Is the facility in operation?
⊠ Yes □ No
If no, this section is not applicable. Proceed to Section 8.
If yes, provide effluent analysis data for the listed pollutants. <i>Wastewater treatment facilities</i> complete Table 1.0(2). <i>Water treatment facilities</i> discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. These tables are not applicable for a minor amendment without renewal. See the instructions for guidance.
Note: The sample date must be within 1 year of application submission.

Table 1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l	7.8	7.8	1	Grab	2/20/25 12:01
Total Suspended Solids, mg/l	8.8	8.8	1	11	2/20/25 19:34
Ammonia Nitrogen, mg/l	26.1	2601	1	4	2/25/2025 13:58
Nitrate Nitrogen, mg/l	0.45	.45	1	4	2/20/2024 19:34
Total Kjeldahl Nitrogen, mg/l	34.6	34.6	1	4	2/26/2025 8:28
Sulfate, mg/l	645	645	1	4	3/8/2025 2:38
Chloride, mg/l	808	808	1	4	3/8/2025 2:38
Total Phosphorus, mg/l	3.70	3.70	1	4	2/26/2025 6:30
pH, standard units	7.21	7.21	1	4	2/19/2025 10:00
Dissolved Oxygen*, mg/l		8.61	1	4	
Chlorine Residual, mg/l		1.8	1	Grab	
<i>E.coli</i> (CFU/100ml) freshwater	1.0	1	1	Grab	3/11/25 14:59
Entercocci (CFU/100ml) saltwater					
Total Dissolved Solids, mg/l	2400	2400	1	Grab	2/26/2025 9:40
Electrical Conductivity, µmohs/cm, †	4200	4200	1	11	2/26/2025 13:56
Oil & Grease, mg/l	<4.30	4.30	1	11	3/5/2025 7:48
Alkalinity (CaCO ₃)*, mg/l	375	375	1	11	2/27/2025 15:17

^{*}TPDES permits only †TLAP permits only

Table 1.0(3) - Pollutant Analysis for Water Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Suspended Solids, mg/l					
Total Dissolved Solids, mg/l					
pH, standard units					
Fluoride, mg/l					
Aluminum, mg/l					

Pollutant	Average	Max	No. of	Sample	Sample
	Conc.	Conc.	Samples	Type	Date/Time
Alkalinity (CaCO ₃), mg/l					

Section 8. Facility Operator (Instructions Page 49)

Facility Operator Name: Carrillo, Antonio

Facility Operator's License Classification and Level: <u>Class C Wastewater</u>

Facility Operator's License Number: <u>WW0013599</u>

Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 50)

		(Instructions Page 50)					
A.	WWTP's Sewage Sludge or Biosolids Management Facility Type						
		ck all that apply. See instructions for guidance					
	\boxtimes	Design flow>= 1 MGD					
		Serves >= 10,000 people					
		Class I Sludge Management Facility (per 40 CFR § 503.9)					
		Biosolids generator					
		Biosolids end user – land application (onsite)					
		Biosolids end user – surface disposal (onsite)					
		Biosolids end user - incinerator (onsite)					
B.	ww	TP's Sewage Sludge or Biosolids Treatment Process					
	Che	ck all that apply. See instructions for guidance.					
		Aerobic Digestion					
	\boxtimes	Air Drying (or sludge drying beds)					
		Lower Temperature Composting					
		Lime Stabilization					
		Higher Temperature Composting					
		Heat Drying					
		Thermophilic Aerobic Digestion					
		Beta Ray Irradiation					
		Gamma Ray Irradiation					
i		Pasteurization					
		Preliminary Operation (e.g. grinding, de-gritting, blending)					
i		Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter)					
I		Sludge Lagoon					

	Temporary Storage (< 2 years)
	Long Term Storage (>= 2 years)
\Box	Methane or Biogas Recovery
	Other Treatment Process: Click to enter text

C. Sewage Sludge or Biosolids Management

Provide information on the *intended* sewage sludge or biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize all sewage sludge or biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

Biosolids Management

Management Practice	Handler or Preparer Type	Bulk or Bag Container	Amount (dry metric tons)	Pathogen Reduction Options	Vector Attraction Reduction Option
Disposal in Landfill	Off-site Third-Party Handler or Preparer	Bulk		N/A: Disposal in Landfill	N/A: Disposal in Landfill
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): <u>Click to enter text.</u>

D. Disposal site

Disposal site name: City of Edinburg; Garza #1

TCEQ permit or registration number: Permit No. 956-C, Permit No. 5226

County where disposal site is located: Hidalgo

E. Transportation method

Method of transportation (truck, train, pipe, other): <u>Truck</u>

Name of the hauler: <u>Denali Water Solutions</u>

Hauler registration number: No. 24979

Sludge is transported as a:

Liquid □ semi-liquid □ semi-solid ☒ solid ☒

Section 10. Permit Authorization for Sewage Sludge Disposal (Instructions Page 52)

A. Beneficial use authorization

Does the existing permit include authorization for land application of biosolids for beneficial use?

	D	X	Yes		No							
	If ye	es, a	are yo ial us	ou re e?	questing	to continue	e this autho	rizati	ion to l	and ap	ply biosolids	for
]	Yes		No							
	If ye (TCE deta	EQ :	Form	com No.	pleted Ar 10451) at	pplication to tached to	for Permit f this permit	or Be appli	e nefici cation	al Land (see th	d Use of Sewa e instruction	age Sludge s for
]	Yes		No							
B.	Slud	lge	proce	essin	g authori	ization						
	Does stora	s th age	ie exis or di	sting spos	permit ir al options	nclude auth s?	orization fo	or an	y of the	e follov	ving sludge p	processing,
	S	lud	lge Co	ompo	sting				Yes	\boxtimes	No	
	N.	[ar]	keting	g and	l Distribu	tion of Bios	solids		Yes	\boxtimes	No	
	S	lud	lge Su	rface	e Disposa	l or Sludge	Monofill		Yes	\boxtimes	No	
	T	`em	porar	y sto	orage in si	ludge lagoo	ons		Yes	\boxtimes	No	
	auth	ori:	zatior	1, is 1	the compl	leted Dom e	estic Waster	watei	r Perm	it Appl	esting to cont lication: Sewa application?	inue this age Sludge
		,										
		J	Yes		No							
Se						dge I ag	oone (Inc	trn.	rtions	e Dage	52)	
	ctio	n I	11.	Sew	age Slu	-	oons (Ins	truo	ctions	s Page	e 53)	
	ctio es thi	n I	11. Sacility	Sew incl	age Slu ude sewa	i dge Lag ge sludge l		truo	ctions	s Page	e 53)	
Do	ctiones thi	n I is fa Yes	ll. Sacility	Sew incl No	age Slu ude sewa	ge sludge l	agoons?		·			
Do If y	es thi	n is fa Yes	acility But Delete	Sew incl No the r	age Slu ude sewa emainder	ge sludge l			·			
Do If y	es thi	is fa Yes omj	acility	Sew incl No the r	age Sluude sewa emainder	ge sludge l	agoons?	proce	eed to	Section	. 12.	,
Do If y	es thi es, co Local	in I is fa Yes omj tio i foll- ide	acility continue continu	Sew v incl No the r orma g maj	age Sluude sewa emainder tion ps are reg	ge sludge l of this sec Juired to be Imber.	agoons? ction. If no,	proce	eed to	Section		each map,
Do If y	es thi es, co Local	is faistern following C	acility acility plete n info owing the A	Sew / incl No the r orma g maj attacl	age Sluude sewa emainder tion ps are reg hment Nu	ge sludge leading of this section is given by the section in the section is given by the section is gi	agoons? etion. If no, good e submitted nty) Map:	proce	eed to	Section	. 12.	each map,
Do If y	es thing the season of the sea	is faistern following C	acility acility plete n info owing the A	Sew / incl No the r orma g maj attacl	age Sluude sewa emainder tion ps are reg hment Nu	ge sludge l of this sec Juired to be Imber.	agoons? etion. If no, good e submitted nty) Map:	proce	eed to	Section	. 12.	each map,
Do If y	es thing the season of the sea	is faistern followed the second of the secon	acility acility plete n info owing the A Origina Attach	Sew Incl No the r orma Ittacl al Ge omen	age Slu ude sewa emainder tion ps are req hment Nu eneral Hig	ge sludge leading of this second to be imber. hway (Court of enter text rees Conse	agoons? etion. If no, get submitted nty) Map:	proce as p	eed to s	Section he app	. 12.	each map,
Do If y	es thing of the second of the	is faistern followed the second of the secon	acility acility plete n info owing the A Origina Attach	Sew Incl No the r orma Ittacl al Ge omen	age Slu ude sewa emainder tion ps are req hment Nu eneral Hig	ge sludge leading of this second to be a moder. In this second to be a moder. In this second to be a moder. In this second to be a moder to be a moder. In this second to be a moder to be a modern	agoons? etion. If no, get submitted nty) Map:	proce as p	eed to s	Section he app	. 12.	each map,
Do If y	es thing of the second of the	In I	acility acility plete n info owing the A Origina Attach	Sew Incl No the r orma Ittacl al Ge omen Natu	age Slu ude sewa emainder tion ps are req hment Nu eneral Hig at: Click to	ge sludge leading of this second to be imber. hway (Court of enter text rees Conse	agoons? etion. If no, jet submitted nty) Map:	proce as p	eed to s	Section he app	. 12.	each map,
Do If y	es thing sees, contact the force of the forc	in I is far Yes omportion tion C A C A February	acility acility plete plete owing the A Origina attach sttach edera	Sew Incl No the r orma Ittacl al Ge omen Natu omen I Em	age Sluude sewa emainder tion ps are req hment Nu eneral Hig et: Click to ral Resou et: Click to ergency N	ge sludge l of this sec luired to be mber. hway (Cour enter text rces Conse enter text	agoons? etion. If no, get submitted nty) Map: ervation Servation Servation	proce as p	eed to s	Section he app	. 12.	each map,
Do If y	es thing sees, contact the force of the forc	is far Yes omposition of A A A	acility acility plete plete owing the A Origina attach sttach edera	Sew incl No the r orma g map attacl al Ge men Natu men l Em	age Sluude sewa emainder tion ps are req hment Nu eneral Hig et: Click to ral Resou et: Click to ergency N	ge sludge leading of this second this second the second	agoons? etion. If no, get submitted nty) Map: ervation Servation Servation	proce as p	eed to s	Section he app	. 12.	each map,
Do If y	es thing the ses, control of the following the following the following the ses of the ses	is far Yes omposition CAA Signature AA Signa	acility cacility plete n info owing the A origina attach attach edera attach ite ma	Sew incl No the r orma g may attacl al Ge men Natu umen l Em ap:	age Sluude sewa emainder tion ps are reg hment Nu eneral Hig tral Resou tt: <u>Click to</u> ergency M	ge sludge leading of this second this second the second	agoons? etion. If no, justion. If no, justical new particles are also and in the no, justical new particles. If no, justical new particles are also and in the no, justical new particles. If no, justical new particles are also and in the no, justical new particles. If no, justical new particles are also and in the no, justical new particles. If no, justical new particles are also and in the no, justical new	proce as p	eed to s	Section he app	. 12.	each map,
Do If y A .	es thi es thi es, co Locat The f provi	is far Yes completion of the Completion of A A A A A A A A A A A A A A A A A A	acility plete n info owing the A Origina Attach edera Attach ite ma Attach	Sew Incl No the r orma I men I Em Incl Incl Incl Incl Incl Incl Incl Incl	age Slu ude sewa emainder tion ps are req hment Nu eneral Hig at: Click to ergency N at: Click to	ge sludge less of this section of this section is the section of t	agoons? etion. If no, getion. If no, getion. If no, getion with the submitted anty) Map: ervation Server in Map: et Map:	proce as pa	eed to s	Section he app p:	. 12.	

	Soils with flooding classification							
	□ Overlap an unstable area							
	Wetlands							
	Located less than 60 meters from a fault							
	None of the above							
Att	achment: Click to enter text.							
If a po	rtion of the lagoon(s) is located within the 100-year frequency flood plain, provide otective measures to be utilized including type and size of protective structures:							
Click	to enter text.							

B. Temporary storage information

Provide the results for the pollutant screening of sludge lagoons. These results are in addition to pollutant results in *Section 7 of Technical Report 1.0.*

Nitrate Nitrogen, mg/kg: Click to enter text.

Total Kjeldahl Nitrogen, mg/kg: Click to enter text.

Total Nitrogen (=nitrate nitrogen + TKN), mg/kg: Click to enter text.

Phosphorus, mg/kg: Click to enter text.

Potassium, mg/kg: Click to enter text.

pH, standard units: Click to enter text.

Ammonia Nitrogen mg/kg: <u>Click to enter text.</u>

Arsenic: <u>Click to enter text.</u> Cadmium: Click to enter text.

Chromium: Click to enter text.

Copper: Click to enter text.

Lead: Click to enter text.

Mercury: Click to enter text.

Molybdenum: Click to enter text.

Nickel: <u>Click to enter text.</u>

Selenium: Click to enter text.

Zinc: Click to enter text.

Total PCBs: <u>Click to enter text.</u> Provide the following information:

Volume and frequency of sludge to the lagoon(s): Click to enter text.

Total dry tons stored in the lagoons(s) per 365-day period: Click to enter text.

Total dry tons stored in the lagoons(s) over the life of the unit: Click to enter text.

	Does the active/proposed sludge lagoon(s) have a liner with a maximum hydraulic conductivity of 1×10^{-7} cm/sec?
	□ Yes □ No
	If yes, describe the liner below. Please note that a liner is required.
	Click to enter text.
Э.	. Site development plan
	Provide a detailed description of the methods used to deposit sludge in the lagoon(s):
	Click to enter text.
	Attach the following documents to the application.
	Plan view and cross-section of the sludge lagoon(s)
	Attachment: Click to enter text.
	Copy of the closure plan
	Attachment: Click to enter text.
	Copy of deed recordation for the site
	Attachment: Click to enter text.
	• Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons
	Attachment: Click to enter text.
	 Description of the method of controlling infiltration of groundwater and surface water from entering the site
	Attachment: Click to enter text.
	 Procedures to prevent the occurrence of nuisance conditions
	Attachment: Click to enter text.
	Groundwater monitoring
	Is groundwater monitoring currently conducted at this site, or are any wells available for groundwater monitoring, or are groundwater monitoring data otherwise available for the sludge lagoon(s)?
	□ Yes □ No

C. Liner information

If groundwater monitoring data are available, provide a copy. Provide a profile of soil types encountered down to the groundwater table and the depth to the shallowest groundwater as a separate attachment.

Attachment: Click to enter text.

Section 12. Authorizations/Compliance/Enforcement (Instructions Page 54)

A. Additional authorizations
Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc?
□ Yes ⊠ No
If yes, provide the TCEQ authorization number and description of the authorization:
Click to enter text.
B. Permittee enforcement status Is the permittee currently under enforcement for this facility?
□ Yes ⊠ No
Is the permittee required to meet an implementation schedule for compliance or enforcement?
□ Yes ⊠ No
If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:
Click to enter text.

A. RCRA hazardous wastes

Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste?

Section 13. RCRA/CERCLA Wastes (Instructions Page 55)

П	Yes	\boxtimes	No
ш	1 (3	Z 3	LIV

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

□ Yes ⊠ No

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment: Click to enter text.

Section 14. Laboratory Accreditation (Instructions Page 55)

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25*, *Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - o periodically inspected by the TCEQ; or
 - o located in another state and is accredited or inspected by that state; or
 - o performing work for another company with a unit located in the same site; or
 - o performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review 30 TAC Chapter 25 for specific requirements.

The following certification statement shall be signed and submitted with every application. See the Signature Page section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of 30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.

Printed Name: Tomas Tamayo

Title: General Manager

Signature: __

Date: _____5/1/25__

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

Section 1. Domestic Drinking Water Supply (Instructions Page 63)
Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge?
□ Yes ⊠ No
If no , proceed it Section 2. If yes , provide the following:
Owner of the drinking water supply: Click to enter text.
Distance and direction to the intake: Click to enter text.
Attach a USGS map that identifies the location of the intake.
Attachment: Click to enter text.
Section 2. Discharge into Tidally Affected Waters (Instructions Page 63)
Does the facility discharge into tidally affected waters?
□ Yes ⊠ No
If no , proceed to Section 3. If yes , complete the remainder of this section. If no, proceed to Section 3.
A. Receiving water outfall
Width of the receiving water at the outfall, in feet: Click to enter text.
B. Oyster waters
Are there oyster waters in the vicinity of the discharge?
□ Yes □ No
If yes, provide the distance and direction from outfall(s).
Click to enter text.
C. Sea grasses
Are there any sea grasses within the vicinity of the point of discharge?
□ Yes □ No
If yes, provide the distance and direction from the outfall(s).
Click to enter text.

Section 3. Classified Segments (Instructions Page 63) Is the discharge directly into (or within 300 feet of) a classified segment? Identified as "Partially Classified" \bowtie As Per: Appendix D (30.TAC 307.10) If yes, this Worksheet is complete. If no, complete Sections 4 and 5 of this Worksheet. **Description of Immediate Receiving Waters (Instructions** Section 4. Page 63) Name of the immediate receiving waters: Cameron County Drainage Ditch #1 A. Receiving water type Identify the appropriate description of the receiving waters. Stream Freshwater Swamp or Marsh Lake or Pond Surface area, in acres: Click to enter text. Average depth of the entire water body, in feet: Click to enter text. Average depth of water body within a 500-foot radius of discharge point, in feet: Click to enter text. Man-made Channel or Ditch \boxtimes Open Bay Tidal Stream, Bayou, or Marsh Other, specify: Click to enter text. **B.** Flow characteristics If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area upstream of the discharge. For new discharges, characterize the area downstream of the discharge (check one). Intermittent - dry for at least one week during most years Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses Perennial - normally flowing Check the method used to characterize the area upstream (or downstream for new dischargers). USGS flow records Historical observation by adjacent landowners Personal observation \boxtimes

Other, specify: Click to enter text.

	List tl down	ne names of all perennial str stream of the discharge poir	eams that jo	oin the receiving water within three miles
	None			
D.	Down	stream characteristics		
	Do th discha	e receiving water characteris arge (e.g., natural or man-ma	tics change de dams, po	within three miles downstream of the onds, reservoirs, etc.)?
		Yes ⊠ No		
	If yes	, discuss how.		
	Click	to enter text.		
E.	Norm	al dry weather characteristi	cs	
	Provid	le general observations of th	e water bod	y during normal dry weather conditions.
		ly flow with slight turbid cor		
	Date a	nd time of observation: <u>4/25</u>	<u>/25</u>	
	Was th	ne water body influenced by	stormwater	runoff during observations?
		Yes ⊠ No		
Se	ction		eristics of	the Waterbody (Instructions
		Page 65)		
A.	Upstre	eam influences		
	Is the influe	immediate receiving water united by any of the following?	pstream of the Check all t	he discharge or proposed discharge site hat apply.
		Oil field activities		Urban runoff
	\boxtimes	Upstream discharges		Agricultural runoff
		Septic tanks		Other(s), specify: <u>Click to enter text.</u>

C. Downstream perennial confluences

B.	Waterb	oody uses						
	Observed or evidences of the following uses. Check all that apply.							
		Livestock watering		Contact recreation				
	\boxtimes	Irrigation withdrawal		Non-contact recreation				
		Fishing		Navigation				
		Domestic water supply		Industrial water supply				
		Park activities		Other(s), specify: Click to enter text.				
c.	Waterb	oody aesthetics						
		one of the following that best descr rounding area.	ibes	the aesthetics of the receiving water and				
□ Wilderness: outstanding natural beauty; usually wooded or unpastured area; clarity exceptional								
		Natural Area: trees and/or native v fields, pastures, dwellings); water		ation; some development evident (from ty discolored				
		Common Setting: not offensive; de or turbid	velo	ped but uncluttered; water may be colored				
		Offensive: stream does not enhand dumping areas; water discolored	e aes	sthetics; cluttered; highly developed;				

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Toxic Pollutants (Instructions Page 76)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab ⊠

Composite □

Date and time sample(s) collected: 2/24/2025

Table 4.0(1) - Toxics Analysis

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Acrylonitrile	1.00	1.00	1	50
Aldrin	0.00953	0.00953	1	0.01
Aluminum	0.005	0.005	1	2.5
Anthracene	0.948	0.948	1	10
Antimony	0.003	0.003	1	5
Arsenic	0.001	0.001	1	0.5
Barium	0.001	0.001	1	3
Benzene	1.00	1.00	1	10
Benzidine	1.42	1.42	1	50
Benzo(a)anthracene	0.948	0.948	1	5
Benzo(a)pyrene	0.948	0.948	1	5
Bis(2-chloroethyl)ether	0.948	0.948	1	10
Bis(2-ethylhexyl)phthalate	7.11	7.11	1	10
Bromodichloromethane	1.00	1.00	1	10
Bromoform	1.00	1.00	1	10
Cadmium	0.001	0.001	1	1
Carbon Tetrachloride	1.00	1.00	1	2
Carbaryl	2.38	2.38	1	5
Chlordane*	0.191	0.191	1	0.2
Chlorobenzene	1.00	1.00	1	10
Chlorodibromomethane	1.00	1.00	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Chloroform	1.00	1.00	1	10
Chlorpyrifos	0.0477	0.0477	1	0.05
Chromium (Total)	0.001	0.001	1	3
Chromium (Tri) (*1)	0.003	0.003	1	N/A
Chromium (Hex)	3.00	3.00	1	3
Copper	0.00155	0.00155	1	2
Chrysene	0.948	0.948	1	5
p-Chloro-m-Cresol	0.948	0.948	1	10
4,6-Dinitro-o-Cresol	1.90	1.90	1	50
p-Cresol	7.58	7.58	1	10
Cyanide (*2)	0.005	0.005	1	10
4,4'- DDD	0.00953	0.00953	1	0.1
4,4'- DDE	0.00953	0.00953	1	0.1
4,4'- DDT	0.00953	0.00953	1	0.02
2,4-D	0.477	0.477	1	0.7
Demeton (O and S)	0.0477	0.0477	1	0.20
Diazinon	0.0477	0.0477	1	0.5/0.1
1,2-Dibromoethane	1.00	1.00	1	10
m-Dichlorobenzene	1.00	1.00	1	10
o-Dichlorobenzene	1.00	1.00	1	10
p-Dichlorobenzene	1.00	1.00	1	10
3,3'-Dichlorobenzidine	1.90	1.90	1	5
1,2-Dichloroethane	1.00	1.00	1	10
1,1-Dichloroethylene	1.00	1.00	1	10
Dichloromethane	1.02	1.02	1	20
1,2-Dichloropropane	1.00	1.00	1	10
1,3-Dichloropropene	1.00	1.00	1	10
Dicofol	0.0477	0.0477	1	1
Dieldrin	0.00953	0.00953	1	0.02
2,4-Dimethylphenol	0.948	0.948	1	10
Di-n-Butyl Phthalate	7.11	7.11	1	10
Diuron	0.0429	0.0429	1	0.09
Endosulfan I (alpha)	0.00953	0.00953	1	0.01
Endosulfan II (beta)	0.00953	0.00953	1	0.02

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Endosulfan Sulfate	0.00953	0.00953	1	0.1
Endrin	0.00953	0.00953	1	0.02
Epichlorohydrin	20.00	20.00	1	
Ethylbenzene	1.00	1.00	1	10
Ethylene Glycol	50.00	50.00	1	
Fluoride	0.05	0.05	1	500
Guthion	0.0477	0.0477	1	0.1
Heptachlor	0.00953	0.00953	1	0.01
Heptachlor Epoxide	0.00953	0.00953	1	0.01
Hexachlorobenzene	0.948	0.948	1	5
Hexachlorobutadiene	0.976	0.976	1	10
Hexachlorocyclohexane (alpha)	0.00953	0.00953	1	0.05
Hexachlorocyclohexane (beta)	0.00953	0.00953	1	0.05
gamma-Hexachlorocyclohexane (Lindane)	0.00953	0.00953	1	0.05
Hexachlorocyclopentadiene	0.948	0.948	1	10
Hexachloroethane	1.90	1.90	1	20
Hexachlorophene	2.38	2.38	1	10
4,4'-Isopropylidenediphenol	0.00953	0.00953	1	1
Lead	0.000244	0.000244	1	0.5
Malathion	0.0477	0.0477	1	0.1
Mercury	4.26	4.26	1	0.005
Methoxychlor	0.00953	0.00953	1	2
Methyl Ethyl Ketone	1.00	1.00	1	50
Methyl tert-butyl ether	1	1	1	
Mirex	0.00953	0.00953	1	0.02
Nickel	0.00112	0.00112	1	2
Nitrate-Nitrogen	0.727	0.727	1	100
Nitrobenzene	0.948	0.948	1	10
N-Nitrosodiethylamine	0.948	0.948	1	20
N-Nitroso-di-n-Butylamine	0.948	0.948	1	20
Nonylphenol	35.5	35.5	1	333
Parathion (ethyl)	0.0477	0.0477	1	0.1
Pentachlorobenzene	0.948	0.948	1	20

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Pentachlorophenol	4.74	4.74	1	5
Phenanthrene	0.948	0.948	1	10
Polychlorinated Biphenyls (PCB's) (*3)	0.191	0.191	1	0.2
Pyridine	0.948	0.948	1	20
Selenium	0.005	0.005	1	5
Silver	0.000226	0.000226	1	0.5
1,2,4,5-Tetrachlorobenzene	0.976	0.976	1	20
1,1,2,2-Tetrachloroethane	1.00	1.00	1	10
Tetrachloroethylene	1.00	1.00	1	10
Thallium	0.000106	0.000106	1	0.5
Toluene	1.00	1.00	1	10
Toxaphene	0.191	0.191	1	0.3
2,4,5-TP (Silvex)	0.286	0.286	1	0.3
Tributyltin (see instructions for explanation)	0.00667	0.00667	1	0.01
1,1,1-Trichloroethane	1.00	1.00	1	10
1,1,2-Trichloroethane	1.00	1.00 1		10
Trichloroethylene	1.00	1.00	1	10
2,4,5-Trichlorophenol	4.74	4.74	1	50
TTHM (Total Trihalomethanes)	0.001	0.001	1	10
Vinyl Chloride	1.00	1.00	1	10
Zinc	0.001	0.001	1	5

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

^(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab ⊠ Composite □

Date and time sample(s) collected: 2/24/2025

Table 4.0(2)A - Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Antimony	0.003	0.003	1	5
Arsenic	0.001	0.001	1	0.5
Beryllium	0.000139	0.000139	1	0.5
Cadmium	0.001	0.001	1	1
Chromium (Total)	0.001	0.001	1	3
Chromium (Hex)	3.00	3.00	1	3
Chromium (Tri) (*1)	0.003	0.003	1	N/A
Copper	0.00155	0.00155	1	2
Lead	0.000244	0.000244	Ī	0.5
Mercury	4.26	4.26	1	0.005
Nickel	0.00112	0.00112	1	2
Selenium	0.005	0.005	1	5
Silver	0.000226	0.000226	1	0.5
Thallium	0.00106	0.00106	1	0.5
Zinc	0.001	0.001	1	5
Cyanide (*2)	0.005	0.005	1	10
Phenols, Total	0.005	0.005	1	10

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)B - Volatile Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)	
Acrolein	4.00	4.00	1	50	
Acrylonitrile	1.00	1.00	1	50	
Benzene	1.00	1.00	1	10	
Bromoform	1.00	1.00	1	10	
Carbon Tetrachloride	1.00	1.00	1	2	
Chlorobenzene	1.00	1.00	1	10	
Chlorodibromomethane	1.00	1.00	1	10	
Chloroethane	1.12	1.12	1	50	
2-Chloroethylvinyl Ether	1.00	1.00	1	10	
Chloroform	1.00	1.00	1	10	
Dichlorobromomethane [Bromodichloromethane]	1.00	1.00	1	10	
1,1-Dichloroethane	1.00	1.00	1	10	
1,2-Dichloroethane	1.00	1.00	1	10	
1,1-Dichloroethylene	1.00	1.00	1	10	
1,2-Dichloropropane	1.00	1.00	1	10	
1,3-Dichloropropylene	1.00	1.00	1	10	
[1,3-Dichloropropene]				i	
1,2-Trans-Dichloroethylene	1.00	1.00	1	10	
Ethylbenzene	1.00	1.00	1	10	
Methyl Bromide	1.00	1.00	1	50	
Methyl Chloride	1.00	1.00	1	50	
Methylene Chloride	1.00	1.00	1	20	
1,1,2,2-Tetrachloroethane	1.00	1.00	1	10	
Tetrachloroethylene	1.00	1.00	1	10	
Toluene	1.00	1.00	1	10	
1,1,1-Trichloroethane	1.00	1.00	1	10	
1,1,2-Trichloroethane	1.00	1.00	1	10	
Trichloroethylene	1.00	1.00	1	10	
Vinyl Chloride	1.00	1.00	1	10	

Table 4.0(2)C - Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
2-Chlorophenol	0.948	0.948	1	10
2,4-Dichlorophenol	0.948	0.948	1	10
2,4-Dimethylphenol	0.948	0.948	1	10
4,6-Dinitro-o-Cresol	1.90	1.90	1	50
2,4-Dinitrophenol	1.90	1.90	1	50
2-Nitrophenol	0.948	0.948	1	20
4-Nitrophenol	0.948	0.948	1	50
P-Chloro-m-Cresol	0.948	0.948	1	10
Pentalchlorophenol	4.74	4.74	1	5
Phenol	0.948	0.948	1	10
2,4,6-Trichlorophenol	1.90	1.90	1	10

Table 4.0(2)D - Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acenaphthene	0.948	0.948	1	10
Acenaphthylene	0.948	0.948	1	10
Anthracene	0.948	0.948	1	10
Benzidine	1.42	1.42	1	50
Benzo(a)Anthracene	0.948	0.948	1	5
Benzo(a)Pyrene	0.948	0.948	1	5
3,4-Benzofluoranthene	0.948	0.948	1	10
Benzo(ghi)Perylene	0.948	0.948	1	20
Benzo(k)Fluoranthene	0.948	0.948	1	5
Bis(2-Chloroethoxy)Methane	0.948	0.948	1	10
Bis(2-Chloroethyl)Ether	0.948	0.948	1	10
Bis(2-Chloroisopropyl)Ether	0.948	0.948	1	10
Bis(2-Ethylhexyl)Phthalate	7.11	7.11	1	10
4-Bromophenyl Phenyl Ether	0.948	0.948	1	10
Butyl benzyl Phthalate	7.11	7.11	1	10
2-Chloronaphthalene	0.948	0.948	1	10
4-Chlorophenyl phenyl ether	0.948	0.948	1	10
Chrysene	0.948	0.948	1	5
Dibenzo(a,h)Anthracene	0.948	0.948	1	5
1,2-(o)Dichlorobenzene	1.00	1.00	1	10
1,3-(m)Dichlorobenzene	1.00	1.00	1	10
1,4-(p)Dichlorobenzene	1.00	1.00	1	10
3,3-Dichlorobenzidine	1.90	1.90	1	5
Diethyl Phthalate	5.40	5.40	1	10
Dimethyl Phthalate	4.55	4.55	1	10
Di-n-Butyl Phthalate	7.11	7.11	1	10
2,4-Dinitrotoluene	1.90	1.90	1	10
2,6-Dinitrotoluene	1.90	1.90	1	10
Di-n-Octyl Phthalate	1.90	1.90	1	10
1,2-Diphenylhydrazine (as Azobenzene)	0.948	0.948	1	20
Fluoranthene	0.948	0.948	1	10
Fluorene	0.948	0.948	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)	
Hexachlorobenzene	0.948	0.948	1	5	
Hexachlorobutadiene	0.976	0.976	1	10	
Hexachlorocyclo-pentadiene	0.948	0.948	1	10	
Hexachloroethane	1.90	1.90	1	20	
Indeno(1,2,3-cd)pyrene	0.948	0.948	1	5	
Isophorone	0.948	0.948	1	10	
Naphthalene	0.948	0.948	1	10	
Nitrobenzene	0.948	0.948	1	10	
N-Nitrosodimethylamine	0.948	0.948	1	50	
N-Nitrosodi-n-Propylamine	0.948	0.948	1	20	
N-Nitrosodiphenylamine	0.948	0.948	1	20	
Phenanthrene	0.948	0.948	1	10	
Pyrene	0.948	0.948	1	10	
1,2,4-Trichlorobenzene	0.948	0.948	1	10	

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)	
Aldrin	0.00953	0.00953	1	0.01	
alpha-BHC (Hexachlorocyclohexane)	0.00953	0.00953	1	0.05	
beta-BHC (Hexachlorocyclohexane)	0.00953	0.00953	1	0.05	
gamma-BHC (Hexachlorocyclohexane)	0.00953	0.00953	1	0.05	
delta-BHC (Hexachlorocyclohexane)	0.00953	0.00953	1	0.05	
Chlordane	0.191	0.191	1	0.2	
4,4-DDT	0.00953	0.00953	1	0.02	
4,4-DDE	0.00953	0.00953	1	0.1	
4,4,-DDD	0.00953	0.00953	1	0.1	
Dieldrin	0.00953	0.00953	1	0.02	
Endosulfan I (alpha)	0.00953	0.00953 1		0.01	
Endosulfan II (beta)	0.00953	0.00953	1	0.02	
Endosulfan Sulfate	0.00953	0.00953	1	0.1	
Endrin	0.00953	0.00953	1	0.02	
Endrin Aldehyde	0.00953	0.00953 1		0.1	
Heptachlor	0.00953	0.00953	1	0.01	
Heptachlor Epoxide	0.00953	0.00953	1	0.01	
PCB-1242	<0.191	<0.191	1	0.2	
PCB-1254	<0.191	<0.191	1	0.2	
PCB-1221	<0.191	<0.191	1	0.2	
PCB-1232	<0.191	<0.191	1	0.2	
PCB-1248	<0.191	<0.191	1	0.2	
PCB-1260	<0.191	<0.191	1	0.2	
PCB-1016	<0.193	<0.193	1	0.2	
Toxaphene	0.191	0.191	1	0.3	

^{*} For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

A. Indicate which of the following compounds from may be present in the influent from a contributing industrial user or significant industrial user. Check all that apply. 2,4,5-trichlorophenoxy acetic acid Common Name 2,4,5-T, CASRN 93-76-5 2-(2,4,5-trichlorophenoxy) propanoic acid Common Name Silvex or 2,4,5-TP, CASRN 93-72-1 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate Common Name Erbon, CASRN 136-25-4 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate Common Name Ronnel, CASRN 299-84-3 2,4,5-trichlorophenol Common Name TCP, CASRN 95-95-4 hexachlorophene Common Name HCP, CASRN 70-30-4 For each compound identified, provide a brief description of the conditions of its/their presence at the facility. Click to enter text. B. Do you know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin (TCDD) or any congeners of TCDD may be present in your effluent? Yes 🖾 No If yes, provide a brief description of the conditions for its presence. Click to enter text.

Dioxin/Furan Compounds

Section 3.

C. If any of the compounds in Subsection A **or** B are present, complete Table 4.0(2)F. For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab □ Composite □

Date and time sample(s) collected: Click to enter text.

Table 4.0(2)F - Dioxin/Furan Compounds

Compound	Toxic Equivalenc y Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1					10
1,2,3,7,8 PeCDD	0.5					50
2,3,7,8 HxCDDs	0.1					50
1,2,3,4,6,7,8 HpCDD	0.01					50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05					50
2,3,4,7,8 PeCDF	0.5					50
2,3,7,8 HxCDFs	0.1					50
2,3,4,7,8 HpCDFs	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					0.5
PCB 81	0.0003					0.5
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total						

ATTACHMENT NO. 1 Core Data Form (Domestic Administrative Report 1.0)

TCEQ	1100	0-1	
ICEU	USE	Oniv	,

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)

		ration or Authorizatio				tted wit	h the pro	gram application.)			
	l (Core Date	a Form should be subr	nitted with the re	newal form	1)		Other				
2. Customer	2. Customer Reference Number (if issued) Follow this I for CN or RN			and the second		3. Re	egulated Entity Re	eference	Number (i)	fissued)	
CN 600657	548			Central	Registr	y**	RN	103888004			
<u>SECTIO</u>	N II:	Custome	Inform	nation	<u>1</u>						
4. General C	ustomer I	nformation	5. Effective	Date for C	ustom	er Info	rmation	Updates (mm/dd,	[/] yyyy)		
☐ New Custo			Update to Custor				☐ Cha	nge in Regulated En	tity Own	ership	
Change in I	Legal Name	(Verifiable with the T	exas Secretary of	State or Te	xas Con	nptrolle	r of Publi	c Accounts)			
The Custome	er Name s	ubmitted here may	be updated au	ıtomatica	lly bas	ed on	what is	current and active	with th	ne Texas Sec	retary of State
(SOS) or Text	as Comptr	roller of Public Acco	unts (CPA).							re reads see	retury of State
6. Customer	Legal Nar	ne (If an individual, pi	int last name firs	t: eg: Doe,	John)			If new Customer,	enter pre	evious Custon	ner below:
Olmito Water		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)									
7. TX SOS/CF	PA Filing N	lumber	8. TX State T	ax ID (11 c	digits)			9. Federal Tax ID 10. DUNS Number (if			
0023246201			17415955453					(9 digits)		applicable)	
								74-1595545			
11. Type of C	ustomer:	⊠ Corpora	ition				Individ	dual	Partne	rship: 🔲 Gei	neral 🗌 Limited
Government:	⊠ City 🔲	County 🗌 Federal 🗌	Local State	Other			Sole P	roprietorship	Oth		
12. Number	of Employ	rees						13. Independer	tly Ow	ned and Op	erated?
□ 0-20 🖾	□ 0-20										
14. Custome	r Role (Pro	posed or Actual) – as	it relates to the R	egulated E	ntity list	ed on t	his form.	Please check one of	the follo	wing	
Owner Occupation	217/200			ner & Opera CP/BSA App				Other:			
15. Mailing	101 Clara	a Bennet									
Address:		T :			,						
	City	Olmito		State	TX		ZIP	78575		ZIP + 4	0036
16. Country N	.6. Country Mailing Information (if outside USA) 17. E-M					17. E	. E-Mail Address (if applicable)				

amartinez@olmitowsc.com

18. Telephone Number	19. Extension or Code	20. Fax Number (if applicable)			
(956) 350-4099		(956) 350-4480			

SECTION	III: Red	ıulated	Entity	<u>Information</u>

21. General Regulated Er	ntity Informa	tion (If 'New Reg	gulated Entity" is selec	ted, a new pern	nit applicatio	on is also required.)		
New Regulated Entity	Update to	Regulated Entity	Name 🔀 Update t	o Regulated Ent	tity Informat	ion		
The Regulated Entity Nat as Inc, LP, or LLC).	me submitte	d may be upda	ted, in order to mee	et TCEQ Core I	Data Stand	lards (removal of or	ganization	al endings such
22. Regulated Entity Nan	ne (Enter nam	e of the site wher	re the regulated action	is taking place.	.)			
Olmito WSC Wastewater Tre	atment Plant							
23. Street Address of the Regulated Entity:								
(No PO Boxes)	City		State	[ZIP		ZIP + 4	
24. County	Cameron							
	1	If no Stre	et Address is provid	led, fields 25-	28 are req	uired.		
25. Description to Physical Location:	Approximat	ely 1.7 miles nort	th of the intersection c	of FM 511 and C	Old Alice Roa	d		
26. Nearest City	<u> </u>					State	Near	rest ZIP Code
Brownsville					-	ГХ	7852	0
Latitude/Longitude are r used to supply coordinat					ta Standar	ds. (Geocoding of th	e Physical i	Address may be
27. Latitude (N) In Decim	nal:	26.046122		28. Lon	gitude (W	In Decimal:	-97.50622	.5
Degrees	Minutes		Seconds	Degrees		Minutes		Seconds
26		2	46.04		-97	30		22.41
29. Primary SIC Code (4 digits)		Secondary SIC	Code	31. Primary (5 or 6 digits)		32. Seco (5 or 6 di	ndary NAIC	CS Code
4952				221310				
33. What is the Primary	Business of	this entity? (E	o not repeat the SIC o	r NAICS descript	tion.)			
Collect and treat domestic v	vastewater.							
34. Mailing	101 Clara	Bennet						
34. Mailing Address:	101 Clara	Bennet						
34. Mailing Address:	101 Clara	Bennet Olmito	State	TX	ZIP	78575	ZIP + 4	36
_			State	тх	ZIP	78575	ZIP + 4	36
Address:			State 37. Extension or			78575 x Number (if applica		36

Dam Safe	ty	Districts	Edwards Aquifer		Emissions Inventory Air	☐ Industrial Hazardous Waste
					Termissions inventory An	Industrial Hazardous Wasti
Municipa	Solid Waste	New Source	OSSF		Petroleum Storage Tank	: □ PWS
Sludge		Storm Water	☐ Title V Air		Tires	Used Oil
21797	10000000	TXR055DF27	- Indic VAII		Tires	Osed Oil
☐ Voluntary	Cloanun	☐ Wastewater				
voluntary	Сіевпар	3	☐ Wastewater Agricu	iture	Water Rights	Other:
		WQ0013817001				
ECTIO	N IV: Pr	eparer Inf	<u>formation</u>			
10. Name:	Jose A. Rodrigu	ıez		41. Title:	Registered Sanitarian	
12. Telephone	Number	43. Ext./Code	44. Fax Number	45. E-Mail /	Address	
956) 330-912						
330 330-312	5		(956) 682-2895	xultex@yaho	o.com	
		thorized S		xultex@yaho	o.com	
ECTIO By my signate	N V: Au	thorized S ,, to the best of my kno	<u>Signature</u>	on provided in th	is form is true and comp	lete, and that I have signature authority identified in field 39.
ECTIO By my signate	N V: Au ure below, I certify m on behalf of the	, to the best of my kno	Signature owledge, that the information II, Field 6 and/or as re-	on provided in th	is form is true and comp	lete, and that I have signature authority identified in field 39.
ECTIO By my signate submit this for	N V: Au ure below, I certify m on behalf of the	y, to the best of my kno e entity specified in Sec ater Supply Corporatio	Signature owledge, that the information II, Field 6 and/or as re-	on provided in th quired for the up	is form is true and comp dates to the ID numbers	lete, and that I have signature authority identified in field 39.
ECTIO By my signate submit this for Company:	N V: Au ure below, I certify m on behalf of the	y, to the best of my kno e entity specified in Sec ater Supply Corporatio	Signature owledge, that the information II, Field 6 and/or as re-	on provided in th quired for the up	is form is true and comp dates to the ID numbers General Manager	identified in field 39.
ECTIO By my signation Submit this for Company: Name (In Print)	N V: Au ure below, I certify m on behalf of the	y, to the best of my kno e entity specified in Sec ater Supply Corporatio	Signature owledge, that the information II, Field 6 and/or as re-	on provided in th quired for the up	is form is true and comp dates to the ID numbers General Manager Phone:	
ECTIO By my signation Submit this for Company: Name (In Print)	N V: Au ure below, I certify m on behalf of the	y, to the best of my kno e entity specified in Sec ater Supply Corporatio	Signature owledge, that the information II, Field 6 and/or as re-	on provided in th quired for the up	is form is true and comp dates to the ID numbers General Manager Phone:	identified in field 39.
ECTIO By my signation Submit this for Company: Name (In Print)	N V: Au ure below, I certify m on behalf of the	y, to the best of my kno e entity specified in Sec ater Supply Corporatio	Signature owledge, that the information II, Field 6 and/or as re-	on provided in th quired for the up	is form is true and comp dates to the ID numbers General Manager Phone:	identified in field 39.
ECTIO By my signation Submit this for Company: Name (In Print)	N V: Au ure below, I certify m on behalf of the	y, to the best of my kno e entity specified in Sec ater Supply Corporatio	Signature owledge, that the information II, Field 6 and/or as re-	on provided in th quired for the up	is form is true and comp dates to the ID numbers General Manager Phone:	identified in field 39.

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this

ATTACHMENT NO. 2 Plain Language Summary (Domestic Administrative Report 1.0)

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS

Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

English:

Interim phase

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

Olmito Water Supply Corporation (CN 600657548) operates Wastewater Treatment Plant (RN 103888004), an Wastewater Treatment Plant (WWTP). The facility is located at Latitude (N) 26.046122 Longitude(W) -97.506225 Degree 26, Minutes 2, Seconds 416.04, Degrees -97, Minutes 30, Seconds 22.41, in Olmito, Cameron County, Texas 78520.

This application is for renewal to discharge at an annual average flow of 750,000 gallons per day of treated domestic wastewater via Outfalls 001.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand 10 mg/l (CBODs), total suspended solids 15 mg/l (TSS), ammonia nitrogen 5 mg/l (NHs-N), and 126 mg/l *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application package. Domestic wastewater is treated by a facultative lagoon system process and the treatment units include a bar screen, facultative lagoons, aerated lagoons, wetland filters, and effluent structures.

Spanish:

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

Olmito Water Supply Corporation ((CN 600657548) opera the City of Olmito Wastewater treatment plant (RN 103888004), una Planta de Tratamiento de Aguas Residuales. La instalación está ubicada en Latitud (N) 26.046122 Longitud (O) - 97.506225 Grados 26, Minutos 2, Segundos 416.04, Grados -97, Minutos 30, Segundos 22.41 en Olmito, Condado de Cameron, Texas 78520.

Esta solicitud es para la renovación de la descarga de un flujo promedio anual de 1,250,000 galones por día de aguas residuales domésticas tratadas a través de los emisores 001.

Se espera que los vertidos de la instalación contengan demanda bioquímica de oxígeno carbonáceo a 5 días (CBOD5) de 10 mg/l, sólidos suspendidos totales (TSS) de 15 mg/l, nitrógeno amoniacal (NH3-N) de 5 mg/l, y Escherichia coli a 126 mg/l. Se incluyen otros posibles contaminantes en el Informe Técnico Doméstico 1.0, Sección 7. Análisis de Contaminantes del Efluente Tratado y la Hoja de Trabajo Doméstica 4.0 en el paquete de solicitud del permiso. Las aguas residuales domésticas se tratan mediante un sistema de lagunas facultativas, y las unidades de tratamiento incluyen una criba, lagunas facultativas, lagunas aireadas, filtros de humedales y estructuras de efluentes.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS

Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

English:

Final phase

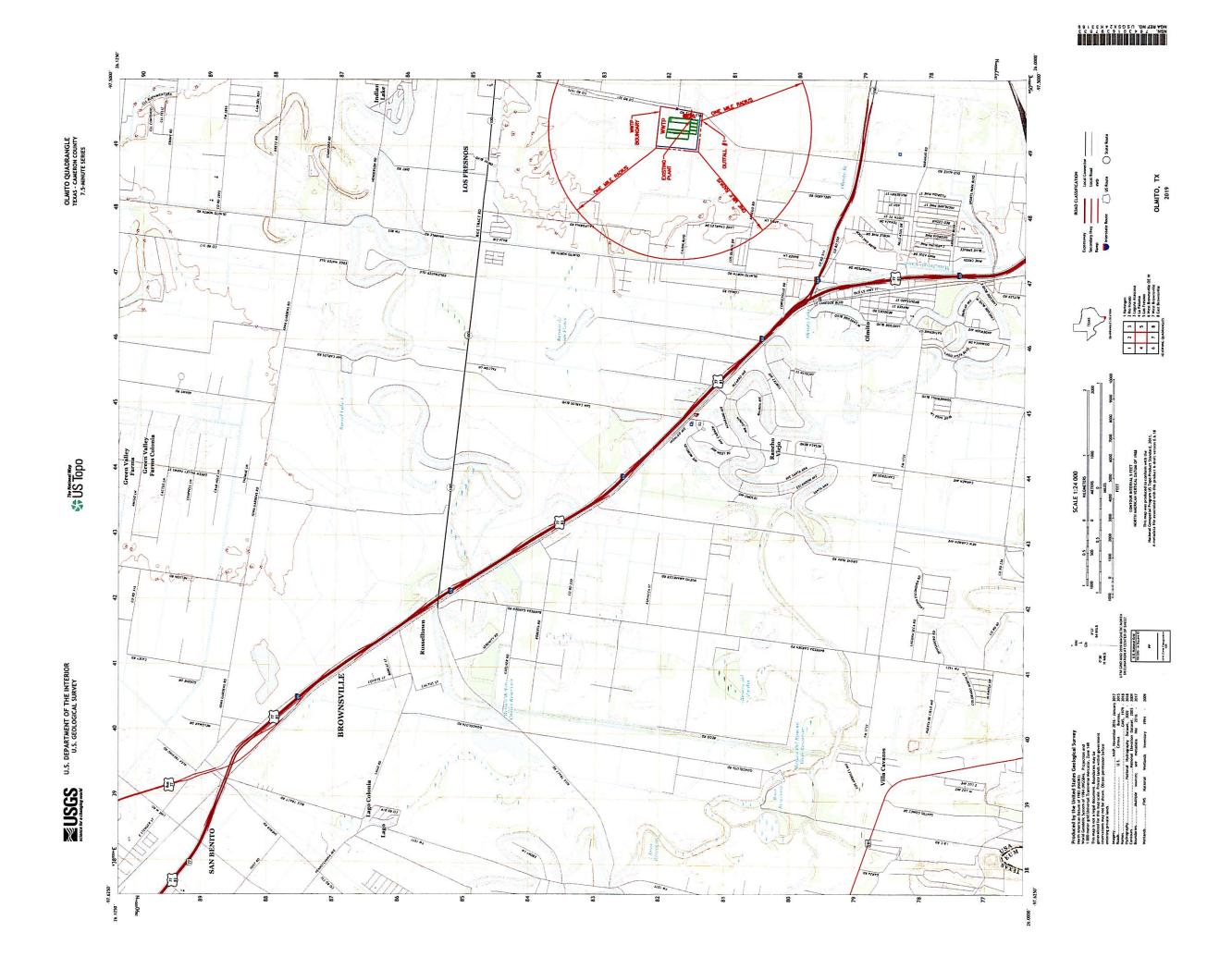
The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

Olmito Water Supply Corporation (CN 600657548) operates Wastewater Treatment Plant (RN 103888004), an Wastewater Treatment Plant (WWTP). The facility is located at Latitude (N) 26.046122 Longitude(W) -97.506225 Degree 26, Minutes 2, Seconds 416.04, Degrees -97, Minutes 30, Seconds 22.41, in Olmito, Cameron County, Texas 78520.

This application is for renewal to discharge at an annual average flow of 1,250,000 gallons per day of treated domestic wastewater via Outfalls 002.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand 10 mg/l (CBODs), total suspended solids 15 mg/l (TSS), ammonia nitrogen 3 mg/l (NHs-N), and 126 mg/l *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a plant lift station, headworks, bar screen, grit chamber, aeration basins, final clarifiers, sludge drying beds, UV basin, and post aeration basin.

Spanish:


El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

Olmito Water Supply Corporation (CN 600657548) opera the City of Olmito Wastewater treatment plant (RN 103888004), una Planta de Tratamiento de Aguas Residuales. La instalación está ubicada en Latitud (N) 26.046122 Longitud (O) - 97.506225 Grados 26, Minutos 2, Segundos 416.04, Grados -97, Minutos 30, Segundos 22.41 en Olmito, Condado de Cameron, Texas 78520.

Esta solicitud es para la renovación de la descarga de un flujo promedio anual de 1,250,000 galones por día de aguas residuales domésticas tratadas a través de los emisores 001.

Se espera que los vertidos de la instalación contengan demanda bioquímica de oxígeno carbonáceo a 5 días (CBOD5) de 10 mg/l, sólidos suspendidos totales (TSS) de 15 mg/l, nitrógeno amoniacal (NH3-N) de 5 mg/l, y Escherichia coli a 126 mg/l. Se incluyen otros posibles contaminantes en el Informe Técnico Doméstico 1.0, Sección 7. Análisis de Contaminantes del Efluente Tratado y la Hoja de Trabajo Doméstica 4.0 en el paquete de solicitud del permiso. Las aguas residuales domésticas se tratan mediante un proceso de lodos activados, y las unidades de tratamiento incluyen una estación de bombeo de la planta, los trabajos preliminares, una criba, una cámara de desarenado, los estanques de aireación, los clarificadores finales, los lechos de secado de lodos, el estanque de UV, y el estanque de post-aireación.

ATTACHMENT NO. 3 USGS Maps (Domestic Administrative Report 1.0)

ATTACHMENT NO. 4

Cameron Country Drainage
Agreement, Supplemental Permit
Information Form (SPIF) (TCEQ Form
20971),

TCEQ Approval Letter
(Domestic Administrative Report 1.0)

CAMERON COUNTY DRAINAGE DISTRICT No. 1

ERNESTO GAMEZ, JR., President ALBERT BARRED, Treasurer MERCEDES CANTU, Secretary

3510 Old Port Isabel Road Brownsville, Texas 78526 Phone: (956) 838-0162 Fax: (956) 831-7602 www.drainagedistrictone.org

DENNIS SANCHEZ, District Attorney SCOTT FRY, P.E., District Engineer ALBERT BARREDA, Chief of Operations General Manager

July 20, 2021

Tomas Tamayo General Manager Olmito Water Supply Corporation P. O. Box 36 Olmito, Texas 78575

RE: Olmito WSC New Wastewater Treatment Plant Wastewater Plant Treated Effluent Discharge Permission to Discharge into Drainage Ditch

Dear Mr. Tamayo:

In accordance with our recent discussions regarding the Olmito Water Supply Corporation proposing to expand and improve their wastewater treatment plant located adjacent to the current wastewater treatment plant located on Old Alice Road, we understand that Olmito WSC must secure authorization from Cameron County Drainage District No.1 to discharge treated wastewater into the adjacent drainage ditch currently controlled by the District.

Currently Olmito WSC currently has permission to discharge treated wastewater effluent from the existing plant at daily average flow rate of 750,000 gallons per day. The existing plant will be decommissioned with the construction of new wastewater plant. The wastewater plant will permitted to discharge 1,250,000 gallons per day.

Cameron County Drainage District No. 1 *has no objections* to Olmito WSC increasing their treated wastewater discharge flows from the new wastewater plant into our drainage ditch.

Olmito WSC would need to prepare and submit plan drawings for approval and pay all fees required for a permit application prior to the installation of discharge structures in Cameron County Drainage District No. 1 ditch and right of way.

Sincerely,

Albert Barreda Chief of Operations

General Manager

- My Buch

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

TOPO HOP ONLY				
TCEQ USE ONLY:	norval Major Ar	mandmant	Minor Amondment	Norw
Application type:Rer				
County: Admin Complete Date:			umber.	
Agency Receiving SPIF:				
Texas Historical Co	ammiccian	TIC	Fish and Wildlife	
Texas Parks and W				no
1 Exas raiks and w	ndine Department	0.3.	Army Corps of Enginee.	15
This form applies to TPDE	S permit applicatio	ns only. (Inst	ructions, Page 53)	
Complete this form as a sep our agreement with EPA. If is needed, we will contact y each item completely.	any of the items are	e not complet	ely addressed or furthe	r information
Do not refer to your responshing attachment for this form seapplication will not be declared in its entirety included by the Water may be directed to the Water email at WQ-ARPTeam@tced	parately from the A ared administrativel cluding all attachme er Quality Division's	Administrative ly complete we ents. Question Application	e Report of the application in the Report of the Application of the Report of the Report of the Review and Processing Teview Application Application and Processing Teview Application A	on. The eing ning this form
The following applies to all	applications:			
1. Permittee: <u>Olmito Water</u>	Supply Corporation	<u>1</u>		
Permit No. WQ00 <u>13817</u>	<u>001</u>	EPA ID	No. TX <u>0113878</u>	
Address of the project (and county):	_			
Approximately 1.7 mile	s north of the inter	section of FM	511 and Old Alice Road	d: Cameron

		e the name, address, phone and fax number of an individual that can be contacted to r specific questions about the property.
	Prefix	(Mr., Ms., Miss): <u>Mr</u>
	First a	nd Last Name: <u>Tomas Tamayo</u>
	Crede	ntial (P.E, P.G., Ph.D., etc.): Click here to enter text.
	Title: <u>(</u>	General Manager
	Mailin	g Address: <u>101 Clara Bennet Rd</u>
	City, S	tate, Zip Code: <u>Olmito, Tx, 78575</u>
	Phone	No.: (956) 350-4099 Ext.: Click here to enter text. Fax No.: Click here to enter text.
	E-mail	Address: ttamayo@olmitowsc.com
2.	List th	e county in which the facility is located: <u>Cameron</u>
3.	please	property is publicly owned and the owner is different than the permittee/applicant, list the owner of the property.
	Click	here to enter text.
4.	of efflu discha	e a description of the effluent discharge route. The discharge route must follow the flow tent from the point of discharge to the nearest major watercourse (from the point of rge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify ssified segment number.
	Disch	arges from WWTP to Cameron County Drainage Distric #1 - Ditch #2; thence to San
	Marti Estua	n Lake; Thence to the Brownsville Ship Channel in Segment #2494 of the Bays and ries
	=====================================	
5.	plotted route f	provide a separate 7.5-minute USGS quadrangle map with the project boundaries and a general location map showing the project area. Please highlight the discharge from the point of discharge for a distance of one mile downstream. (This map is ed in addition to the map in the administrative report).
	Provid	e original photographs of any structures 50 years or older on the property.
	Does y	our project involve any of the following? Check all that apply.
	\boxtimes	Proposed access roads, utility lines, construction easements
		Visual effects that could damage or detract from a historic property's integrity
		Vibration effects during construction or as a result of project design
		Additional phases of development that are planned for the future
		Sealing caves, fractures, sinkholes, other karst features
nc-		

	☐ Disturbance of vegetation or wetlands
1.	List proposed construction impact (surface acres to be impacted, depth of excavation, sealing of caves, or other karst features): Approximately one acre of the land will be impacted by the construction of the sludge dewatering facility. Disturbances of the existing vegetation is typical of a wastewater treatment plant construction
2.	Describe existing disturbances, vegetation, and land use: <u>Existing disturbances are those typically associated with the operation of Waste Water Treatment Plant</u>
TH AN	E FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR IENDMENTS TO TPDES PERMITS
3.	List construction dates of all buildings and structures on the property: Click here to enter text.
4.	Provide a brief history of the property, and name of the architect/builder, if known. Click here to enter text.

Jon Niermann, Chairman Emily Lindley, Commissioner Bobby Janecka, Commissioner Toby Baker, Executive Director

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

December 21, 2021

Orlando S. Cruz, P.E. Cruz-Hogan Consultants, Inc. 2290 W. Pike Blvd., Ste. 102 Weslaco, TX 78596

Re: O

Olmito WSC

WWTP Expansion and Improvements

Permit No. WQ0013817-001 WWPR Log No. 0921/009

CN600657548, RN103888004

Cameron County

Dear Mr. Cruz:

Texas Commission on Environmental Quality (TCEQ) received the project summary transmittal letter dated September 1, 2021, and the subsequent submittal of additional project information

The rules which regulate the design, installation and testing of domestic wastewater projects are found in 30 TAC, Chapter 217, of the Texas Commission on Environmental Quality (TCEQ) rules titled, <u>Design Criteria for Wastewater Systems</u>.

The project includes the construction of a new 1.25 MGD (3.75 MGD peak flow) activated sludge wastewater treatment plant (WWTP) to be constructed adjacent to Olmito WSC current lagoon type WWTP. The plant is being designed with influent organic constituent concentrations of 250 mg/L BOD5 and 250 mg/L of TSS. The expansion plant will be constructed within the property boundaries of the currently permitted plant. The existing plant will be decommissioned, and existing administration, laboratory, and control building will continue to be utilized. The plant is regulated by TPDES Permit No. WQ0013817001, which allows a final phase daily average flow of 0.75 MGD. The permitted effluent limitations are 10 mg/L of CBOD5, 15 mg/L of TSS, and 5 mg/L of Ammonia Nitrogen. The engineer indicated that a permit major amendment application is currently being reviewed by TCEQ.

The proposed treatment units include:

- 2,600 gpm plant lift pump station which includes 4 submersible type pumps with 20 HP motors each, (3 duty pumps and 1 spare pump), pump TDH is 36-ft and wet well volume of 1,676 cu ft.
- Influent metering
- Package skid mounted headworks system rated at 4.0 MGD, including fine screening and grit removal

Orlando S. Cruz, P.E. Page 2 December 21, 2021

- Parkson's Biolac process system biological nutrient removal system which includes a 2205' x 197' x 12' SWD lined earthen aeration basin and two (2) 105'x 23' EzClear clarifiers, with proposed loading of 250 mg/L of BOD5 and 250 mg/L of TSS. Parkson equipment also includes 3 each 100 HP blowers (2 duty and one spare)
- Ultraviolet disinfection system having a 38' long x 12" wide x 5'-2" deep channel for wastewater effluent disinfection, which includes two banks having 24 lamps each
- Post-aeration chamber: 34' long x 5'-4" wide x 10'-11" deep
- Parshall flume for effluent metering: 18" throat width
- 30" treated effluent discharge PVC pipeline and an effluent discharge headwall structure at adjacent drainage ditch
- Waste sludge pump station: 5' x 5' x 15' deep with pumps rated at 150 gpm each
- Polymer injection system for sludge conditioning
- Four sludge drying beds having a surface dimension of 45'-3" wide x 20'-3" wide, each.

The summary transmittal letter also contained the following variance requests. The engineer indicates the requested variances do not potentially endanger public health or the environment.

- 1. A variance request from Section 217.152(g)(2)(A) rules, which require a minimum side water depth (SWD) of 10' for a clarifier with a mechanical sludge collector. The engineer proposes a side water depth of 8-ft which is Parkson standard clarifier design. The engineer indicates the reason for a reduced SWD variance is that Parkson's standard design encompasses a mechanical sludge collector with V-shaped bottom with an 8-ft standard design SWD (depth to the top of the V-shape). TCEQ had previously reviewed the proposed Parkson's V-bottom clarifier for the Olmito WSC project and submitted a response letter on June 4, 2021. TCEQ is granting this variance.
- 2. A variance request from Section 217.155(b)(5)(C)(v) rules, which require that an aeration system may use non-metallic pipe only in the aeration basin, but the pipes must be a minimum of 4-ft below the average water surface elevation in the aeration basin. The engineer requests that non-metallic pipes (HDPE) suspended and floating air piping be allowed for use in the proposed aeration basin. TCEQ is granting this variance.

During a virtual meeting held on Friday, December 3, 2021 with the engineer and Parkson representatives, the engineer indicated the whole earthen aeration basin bottom will be covered with a synthetic membrane liner as protection against erosion only. The engineer also indicated soil conditions where the earthen aeration basin will be constructed appear to be adequate to meet the soil liner requirements established in Sections 217.203 (d)(e). In addition, the engineer indicated the suspended diffusers that are located on the longer basin side slopes are only for mixing purposes, not for aeration.

The TCEQ review of the submitted summary transmittal letter and additional project information, seems to indicate that the plant design documents provided along with the approved variances are in general compliance with the applicable minimum standards established in Chapter 217, Design Criteria for Domestic Wastewater Systems. On that basis, this project is conditionally approved for construction. The conditions are:

Orlando S. Cruz, P.E. Page 3 December 21, 2021

- The wastewater permit amendment application currently under process be issued to increase the currently permitted flow of 0.75 MGD to 1.25 MGD, which is the WWTP design flow approved under this submittal.
- The earthen aeration basin be constructed according to the requirements established in Section 309.13(d), and Section 217.203, specifically the liner permeability requirements.

You must keep certain materials on file for the life of the project and provide them to TCEQ upon request. These materials include an engineering report, test results, a summary transmittal letter, and the final version of the project plans and specifications. These materials shall be prepared and sealed by a Professional Engineer licensed in the State of Texas and must show substantial compliance with Chapter 217. All plans and specifications must conform to any waste discharge requirements authorized in a permit by the TCEQ. Certain specific items which shall be addressed in the engineering report are discussed in §217.6(d). Additionally, the engineering report must include all constants, graphs, equations, and calculations needed to show substantial compliance with Chapter 217. The items which shall be included in the summary transmittal letter are addressed in §217.6(d)(1)-(9).

Within 60 days of the completion of construction, an appointed engineer shall notify both the Wastewater Permits Section of the TCEQ and the appropriate Region Office of the date of completion. The engineer shall also provide written certification that all construction, materials, and equipment were substantially in accordance with the approved project, the rules of the TCEQ, and any change orders filed with the TCEQ. All notifications, certifications, and change orders must include the signed and dated seal of a Professional Engineer licensed in the State of Texas.

Please be reminded of 30 TAC §217.7(a) of the rules which states, "Approval given by the executive director or other authorized review authority does not relieve an owner of any liability or responsibility with respect to designing, constructing, or operating a collection system or treatment facility in accordance with applicable commission rules and the associated wastewater permit".

If you have any questions, or if we can be of any further assistance, please call me at (512) 239-4924.

Sincerely,

Baltaza Lucero-Ramirez, P.E.

Wastewater Permits Section (MC 148)

Water Quality Division

Texas Commission on Environmental Quality

cc: TCEQ, Region 15 Office

ATTACHMENT NO. 5 Treatment Process Description & Process Units (Domestic Technical Report 1.0)

Treatment Process Description

OWSC Wastewater Treatment Plant

EXISTING PHASE

Plant Headwork:

Consists of one manual bar screen and one; in case of maintenance the flow can be diverted to the bypass channel with the manual screen.

Facultative Lagoons:

The facultative lagoon in the pond sequence functions like the primary clarifier of a conventional sewage treatment system. Heavy solids will settle to the bottom of the lagoon, and lighter solids will float. Facultative lagoons stratify with an aerobic surface layer and an anaerobic layer below the surface.

Aerated Lagoons:

In aerated lagoons, oxygen is supplied mainly through mechanical or diffused aeration rather than by algal photosynthesis.

Wetland Filters:

Water is conveyed into the bottom of the wetland filter then the water is pushed through perforated piping in the trench at the very bottom of the wetland.

Effluent Structure:

Water is conveyed from four wetland filter where it collected and monitored by flow sensors before discharge.

Treatment Process Description

OWSC Wastewater Treatment Plant

FINAL PHASE

Wastewater will flow by gravity and force main to the on-site plant Lift Station. Then the LS Pumps to the headworks for screening and grit removal, and then is pumped and conveyed to the aeration basin. All influent is processed and dispersed among the basin. Mixed liquor from the aeration basins then flows to the final clarifiers for settling. Clarified effluent is sent to the UV channel for disinfection, followed by a post aerated channel. Settled sludge removed from the clarifiers is returned to the head of the aeration processes. The clarified effluent is then discharged to a drainage ditch. Wasted sludge is then pumped to drying beds to be dried and dewatered.

Plant Headwork:

Consists of one fine spiral screen and one mechanical bar screen; in case of maintenance the flow can be diverted to the bypass channel with the manual screen.

Grit removal system is composed of a grit chamber, grit pumps, and a concentrator. The grit chamber removes the grit, the pumps then transport the girt to the concentrator, and then the concentrator further separates the collected grit.

Aeration Basin:

One aeration basin is capable of treating 1.25 MGD each or 3.75 MGD peak total. An aeration basin is a holding and/or treatment pond provided with artificial aeration to promote the biochemical oxidation of wastewaters.

Clarifiers:

Mixed liquor from the aeration ditch is evenly split between equally sized clarifiers. The clarifiers separate suspended solids by settling. The settled effluent flows to the UV Basin.

RAS/WAS Pump Station:

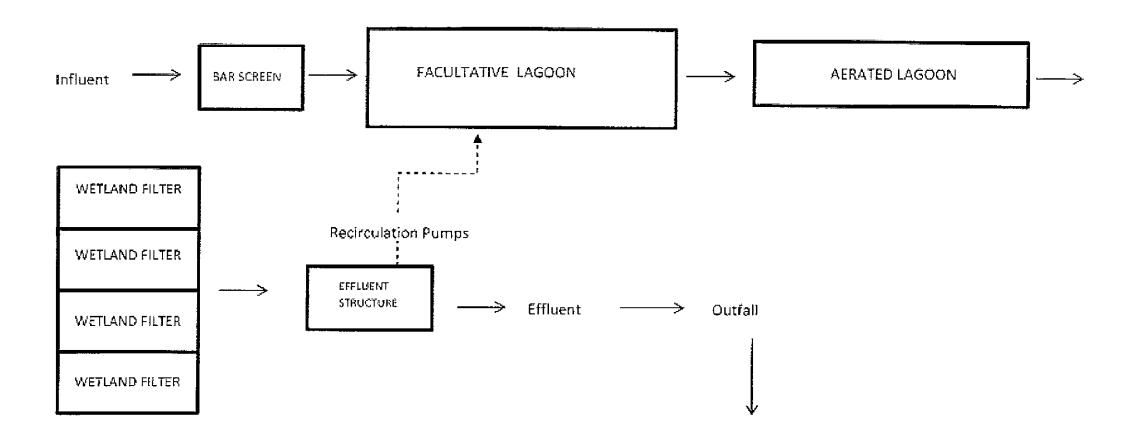
The station consists of three return activated sludge (RAS) pumps and two waste activated sludge (WAS) pumps. The RAS pumps transport return activated sludge back to the head of the oxidation ditches for further treatment, while the WAS pumps transport the sludge drying beds:

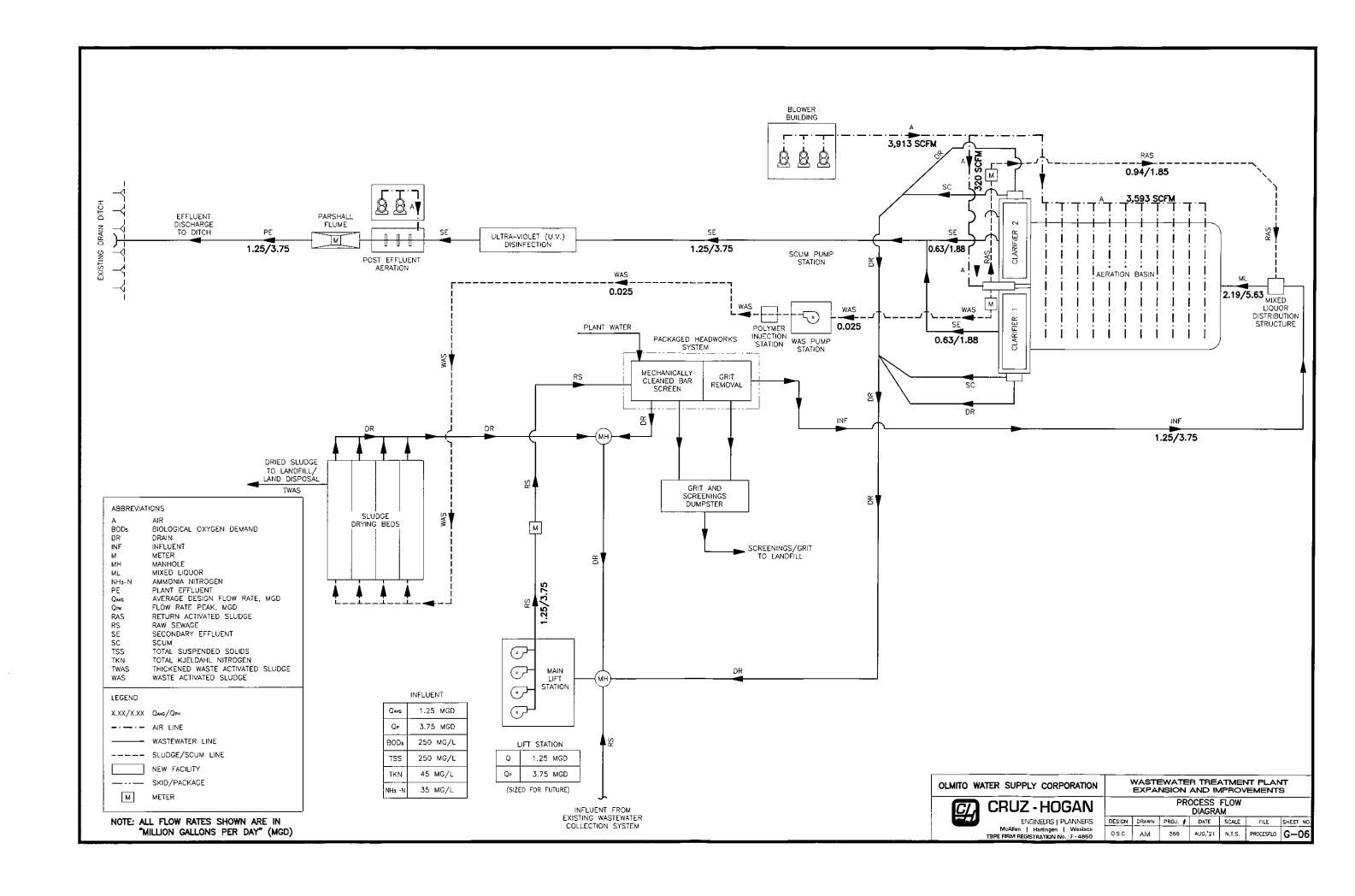
UV Contact Basin:

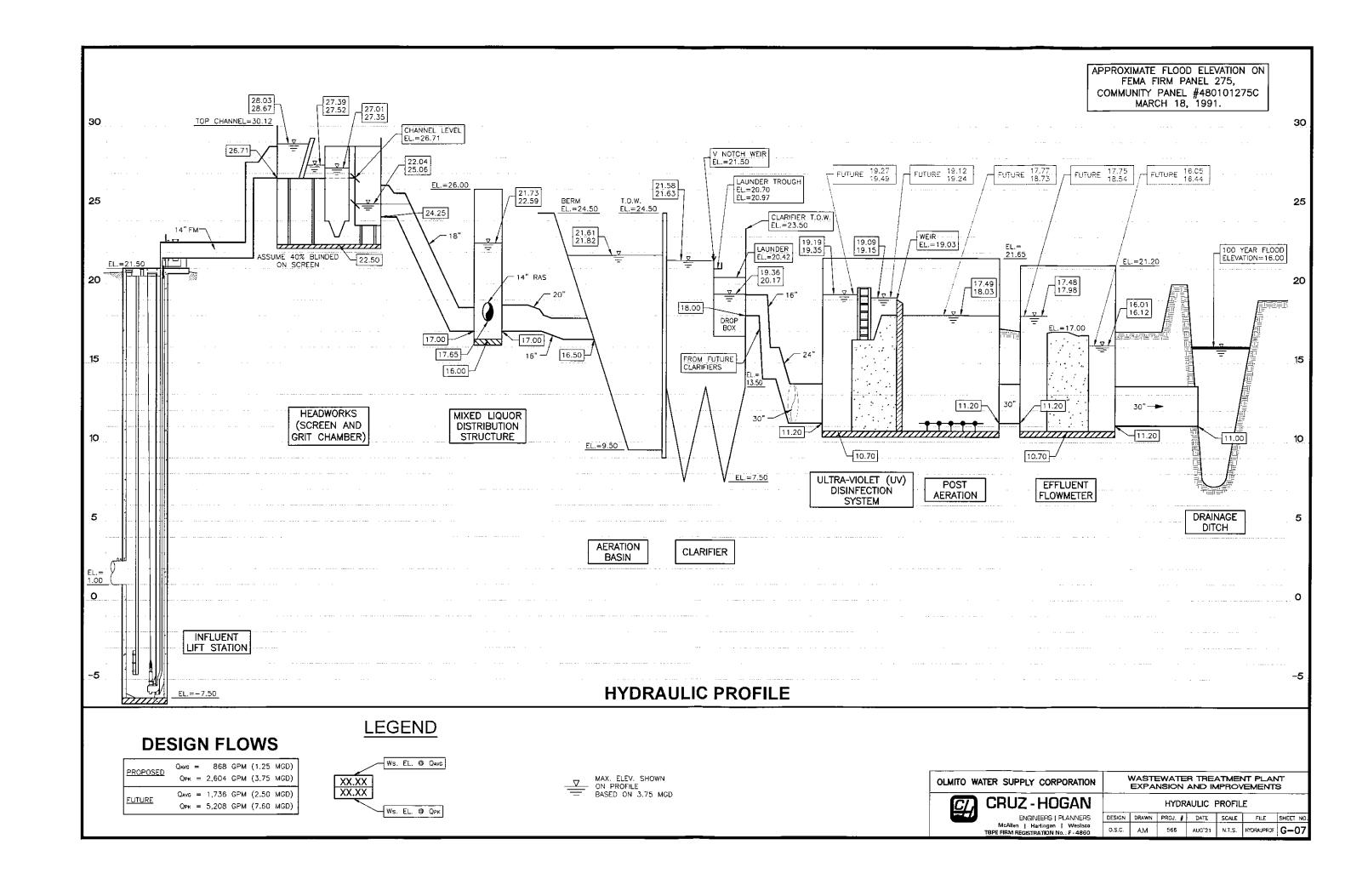
The basin trains will be converted into a UV contact basin with a UV disinfection that is a physical process that instantaneously neutralizes microorganisms as they pass by ultraviolet lamps submerged in the effluent. The process adds nothing to the water but UV light, and therefore, has no impact on the chemical composition or the dissolved oxygen content of the water.

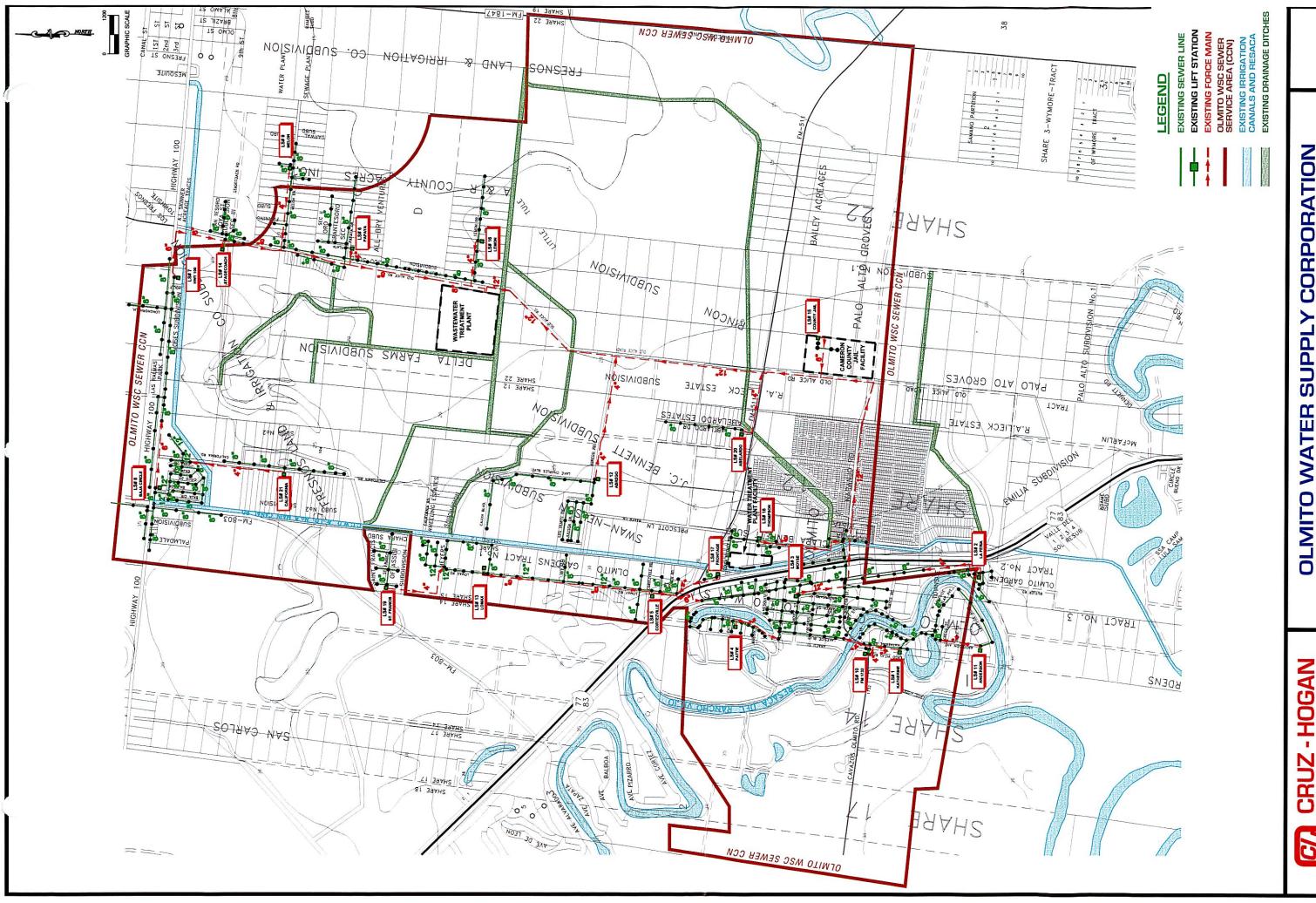
Par shall Flume:

Effluent water flows to the par shall flume or used as plant process water to record effluent discharge.


Drying Beds/Dewatering Containers:


There are a total of five drying beds, two of which are operated by applying the sludge after polymer preparation and two other beds are incorporated with portable sludge dewatering containers within the drying bed structure containment area for processing. The dewatering containers maximize the dewatering efficiency and makes disposal process since the treated sludge can easily be hauled out in the portable container. The filtrate/supernatant is collected at the recycling pump station.


Treatment Unit Type	Number of Units	Dimensions (L x W x D)
EXISTING		
Mechanical Bar Screen - Existing	1	12 'x 2' x 3'
Facultative Lagoon-Existing	1	1078' x 353' x 12'
Aerated Lagoon-Existing	1	1078' x 200' x 8.5'
Wetland Filters-Existing	4	333' x 152' x 1.53'
PROPOSED		
Lift Station	1	36' x 24 'x 21'
Mechanical Bar Screen/Grit Chamber Headwork's	1	12 'x 2' x 3'
Oxidation Basin	1	200' x 163' x 15'
Clarifiers	2	105' x 22.65' x 16'
UV Channel	1	45' x 7' x 11'
Post Aeration Channel	1	23' x 7' x 11'
Par shall Flume	1	34' x 15' x 6'
Sludge Drying Beds	4	20' x 45' x 3'


ATTACHMENT NO. 6 Process Flow Diagram, Hydraulic Profile, Service Area CCN (Domestic Technical Report 1.0)

OLMITO WSC WWTP FLOW DIAGRAM

OLMITO WATER SUPPLY CORPORATION EXISTING WASTEWATER SYSTEM MAP

CRUZ - HOGAN
ENGINEERS | PLANNERS
MCAllen | Harlingen | Weslaco
TRPE FIRM REGISTRATION No.: F - 4860

ATTACHMENT NO. 7 Design Calculations & Plant Features (Domestic Technical Report 1.0)

ATTACHMENT 7.0

OLIMTO WATER SUPPLY CORPORATION PLANT DESIGN FEATURES

A. EMERGENCY STANDBY POWER SYSTEM

Dual electrical feeds to the site will be implemented, if available, in conjunction with improvements required for Interim. Alternatively, an on-site generator will be provided with sufficient power to supply the firm capacity of lift station pumps, headworks bar screens and grit basin mixers, aeration blowers required for mixing of basins, final clarifier drives, Disinfection (UV) equipment, and critical security lighting and controls.

B. ALARM FEATURES

The proposed SCADA/control system will monitor the liquid level of pump station wet wells, holding tanks, and aeration basins, and will alarm for high level conditions. Additional monitoring/alarm points will include power loss, equipment failure (all rotating equipment), low dissolved oxygen in aeration basins, clarifier drives torque overload, and plant security. Auto dialers will be provided.

C. DESIGN FEATURES FOR OPERATING FLEXIBILITY

- 1. PACKAGE HEADWORKS/GRIT CHAMBER: The proposed headwork's will include multiple bar screen channels such that the peak flow can pass with one screen/channel out of service. A bypass channel will be provided in parallel with the grit basin to allow flow to pass if the grit chamber is out of service.
- AERATION BASINS: The active train will include one aeration basin capable
 of continuous operation due to multiple isolated air piping and diffusers, which can be
 individually isolated for draining, cleaning, or repairs. Each air train aeration source will
 include adequate blowers or aerators to provide firm capacity.

- 3. CLARIFIERS: Each active train will include two clarifiers each capable of continuous operation at its proportionate percentage of design flow, that can be individually isolated for draining, cleaning, or repairs.
- 4. UV DISINFECTION BASIN: Each active train will include multiple lamps that can be serviced without taking the system offline and isolated for draining, cleaning, or repairs. More lamps can be added for future design flow.

D. EQUIPMENT DUPLICITY

- 1. LIFT STATION: Three or more lift station pumps will be provided such that the facility can handle peak flow with the largest unit out of service. Level switches will automatically start lag pump(s) if the active pump(s) cannot keep up with incoming flow, or if a pump fails to come on line.
- 2. BLOWERS & AERATORS: Two or more aeration blowers or mechanical aerators will be provided for each aeration function in each train such that the design oxygen input and mixing can be provided with the largest unit out of service.

E. OVERFLOW PROTECTION

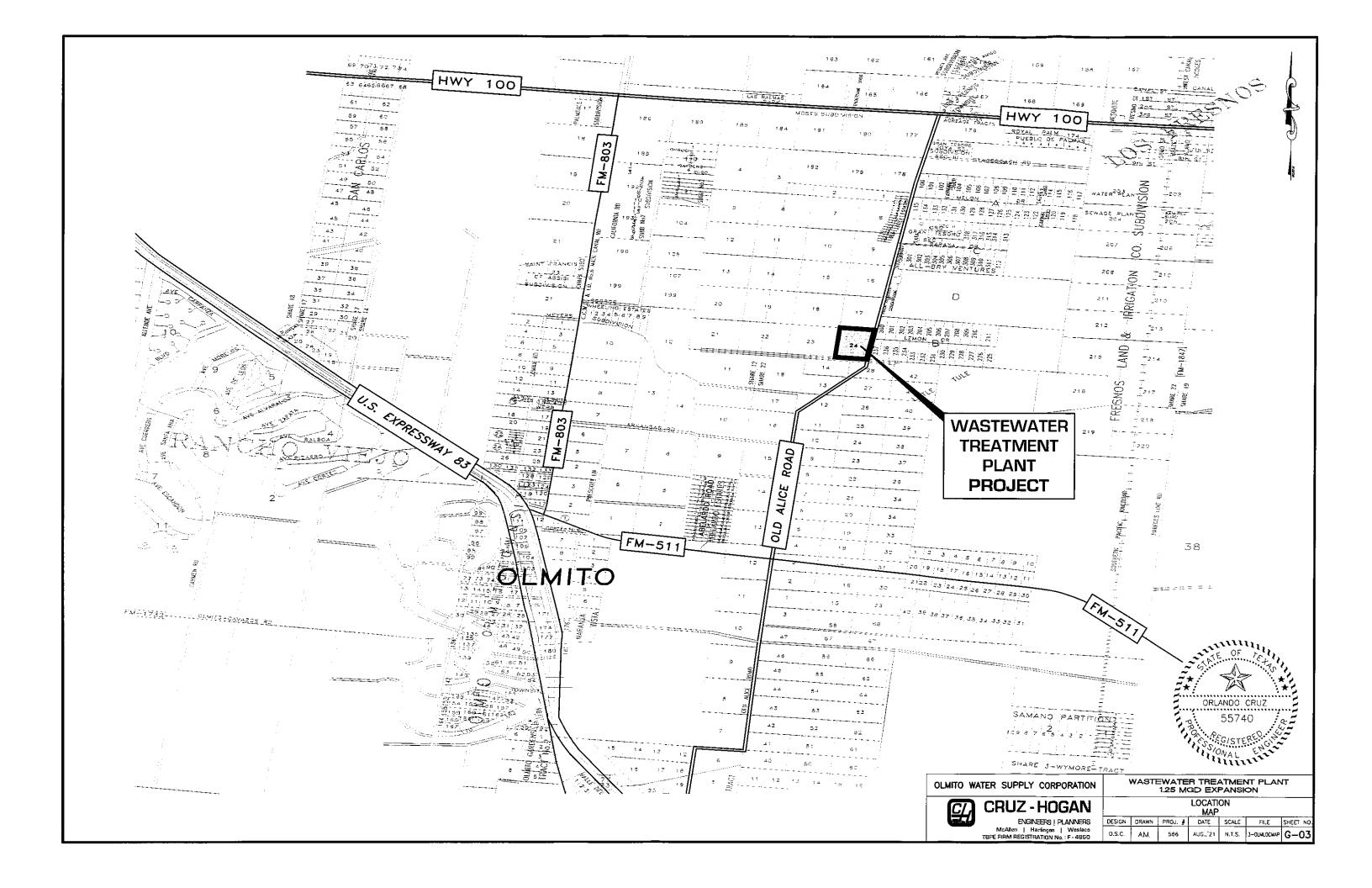
The plant lift station will be equipped with equipment redundancy to prevent overflow. Other new units will be designed with freeboard, which will allow time for eliminating any line blockage problem or diversion of flow to parallel basins.

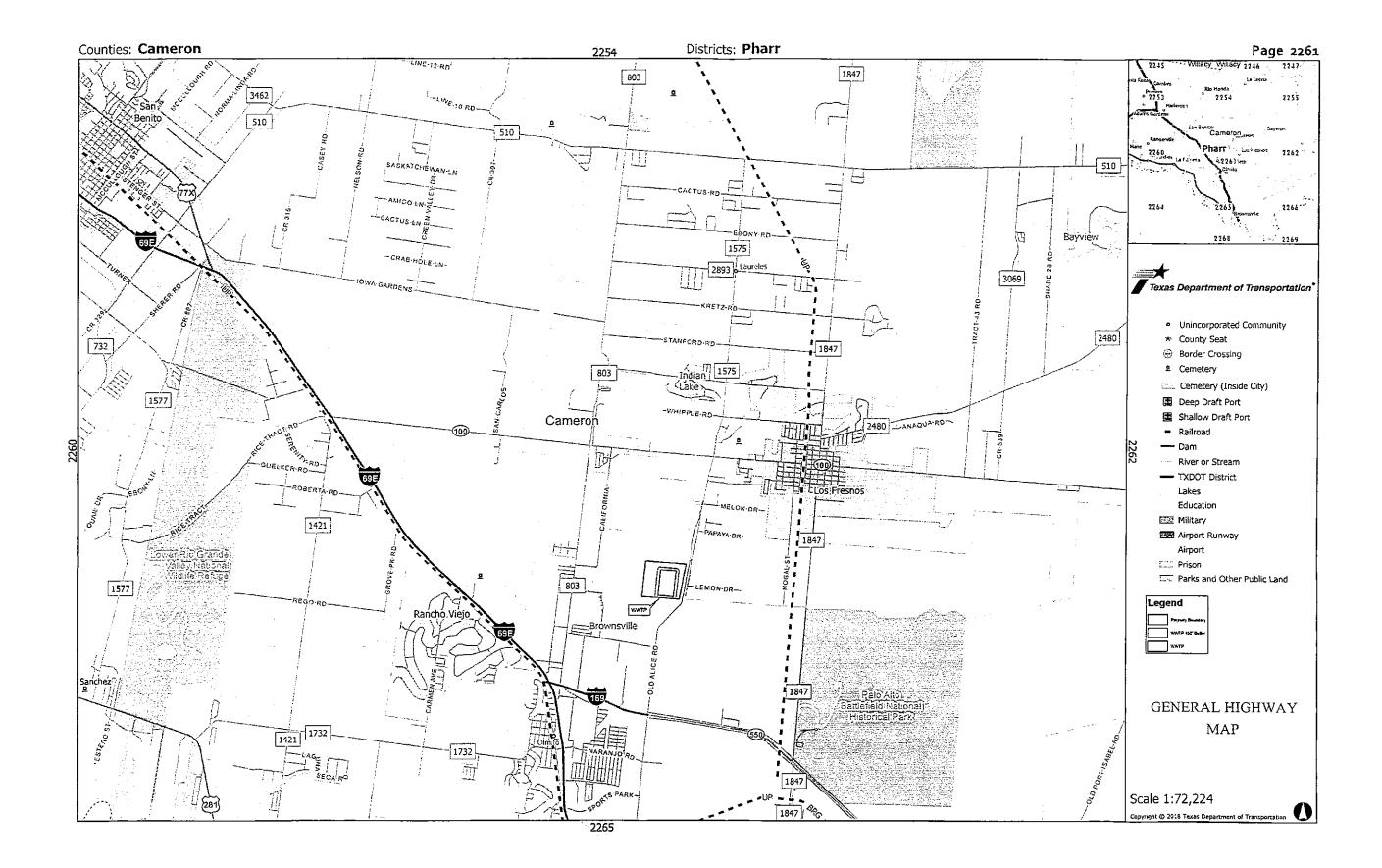
ATTAC,...,ENT 7.0 WWTP DESIGN CALCULATIONS

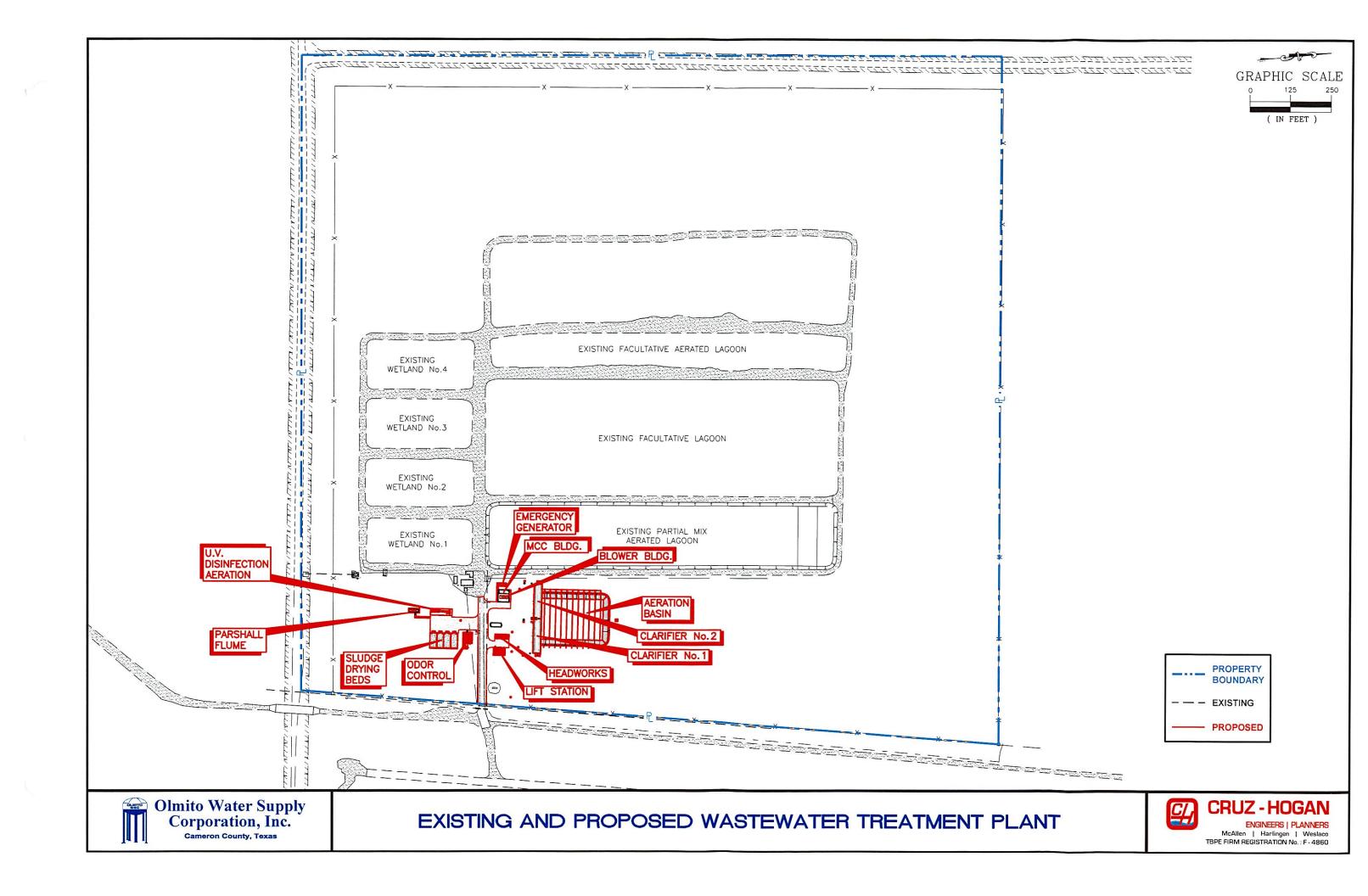
	Proposed Discharge	ge Permit Conditions	S Vileilly
Avg Daily Dry Flow	1,250,000 gpd	BOD	Guality 10 mg/l
diffo	1.25 mgd	TSS	15 mg/l
Peak 2-hr Flow	3,750,000 gpd	NH3-N	3 mg/l
Peak 2-hr Flow	2,604 gpm @ PF 3		•

Parameter	TCEQ Rule	Criteria	Required		Provided	
Influent Lift Station		Q pk 2-hr, firm	2,604 gpm	Feature	<u>Vni</u>	Capacity 2650 gpm
Activated Sludge/Single-Stage Nitrification	fication					
Aeration basin				No. Units	-	304,378 cu. ft.
Max Month Influent BOD		250 mg/l	2,607 lbs/d	Bott width	118 feet	2.28 Mgals
Min. basin freeboard	§217.153 (b)(1)	18 inches	18 inches	Bott length	177.33 feet	36 inches
Min. diffuser submergence	§217.155 (b)(5)(A)	10 feet		SWD	12.00 feet	11.0 feet
Basin volume	§217.154 (b)(2)	15 lb/day/kcf	173,800 cu. ft.	Side Slope:	1.5 :1	8.6 lb/day/kcf
Oxygen Reguired	§217.155 (a)(2)	2.20 lbs/lb BOD	5,735 lbs/d			•
Diffused air flow (method 2)	§217.155 (b)(2)	9% WOTE	3,354 scfm	CWOTE	20% 0.45	3,593 scfm
Mixing air flow	§217.155 (b)(3)	0.12 schn/sq.ft.	2,511 scfm	Depth Factor:	128%	3,593 sofm
Final Clarifier			•••	No. Units	2 width	22 635
Inlet well area	§217.152 (a)(4)	0.15 #/sec.	38.68 sq. ft.	Length	105 feet	4.753.35 sq. ft.
Side water depth	§217.152 (g)(3)		8.00 feet	•		8 feet
Hopper depth	§217.152 (g)(4)		4.00 feet	No. Hoppers	2	6 feet
Min. basin freeboard	§217.153 (b)(2)	12 inches	12 inches	Basin Length:	105	12 inches
Surface area @ Qpk	§217.154 (c)(1)	800 gal/day/sf	4,688 sq. ft.	Basin Width:	22.635 feet	4,754 sq.ft.
Det Volume @ Opk	§217.154 (c)(1)	2.2 hrs @ Op	45,953 cu. ft.	Launder Width:	2 feet	52,292 cu. ft.
Final clarifier weir length (Qpk)	§217.152 (c)(5)	30000 gal/day/lf	125.00 feet	Launder Length:	105 feet	210 feet
Return sludge rate, min	§217.152 (j)(3)	200 gaVday/sf	mdg 099	RAS recycle:	100% of Qd	1,302 gpm
Return sludge rate, max	§217.152 (j)(3)	400 gal/day/sf	1,321 gpm	RAS recycle:	150% of Qd	1,302 gpm

3200 sf							
40 width ft		2	Cycle/Day	4,071,38 sf	2 lb/sf/cyc/wk	9217.250 (e.)(Z)(A)	Dıyıng bed Mass Loading
20 length ft		4	No. Units	5.09 beds	4-2? beds	§217.250 (e) (2)(A)	Number of Drying Beds
115 gpm		4 hrs.	Waste durifeed rate	27,483 gpd			WAS production (Max Month)
		7.5	Max/Avg PF:	18,322 gpd	1,551 lb/day		WAS production (Annual Avg)
							Sludge Dewatering Drying Beds
		Ays	44 Days		40 days (20°C)		Sludge Stabilization Biolac SRI
%59	(3)	254 nm	UV Transmittance		254 nm	§217.295 (b)	Wavelenght Output Dosage
		4.5 ft	Downstream Length	4 ft	4 ff min length	§217.297 (b)	Basin Downstream Channel
		4.5 ft	Approach Length	4 ft	4 ft min length	\$217.297 (a)	<u>UV Disinfection</u> Basin Approach Channel


ATTACHEMENT 7.0 SLUDGE MANAGEMENT PLAN


			Cond	litions at Vary	ing Flowrat	es
FLOW & WASTE STRENGTH	<u>Factor</u>	<u>Units</u>	100%	<u>75%</u>	50%	25%
Design Flow		mgd	1.25	0.94	0.63	0.31
Influent BOD		mg/l	250	250	250	250
Influent BOD		lbs	2,606	1,955	1,303	652
MLSS Operating Range		mg/l		2,500 to 3	3,500	
SLUDGE PRODUCTION						İ
Total excess WAS produced						
for Yield Coeff =	0.62	lb/day	1,616	1,212	808	404
WAS volume to Drying Beds @	1.00%	gpd	19,375	14,531	9,688	4,844
0/ UD 0 = 0/0 = 0 = 0 = 0						
SLUDGE DIGESTION						
Assume Volatiles	70%	lb/day	1,131	848	566	283
Assume Non-volatiles	30%	lb/day	485	364	242	121
Assumed VS reduction	40%	lb/day	(452)	(339)	(226)	(113)
Undestroyed solids		lb/day	1,163	873	582	291
						!
DEWATERING/DISPOSAL						
Dewatered sludge volume (daily)	16%	C.Y.	4	3	2	1
Dewatered sludge to hauled away (per year	ar)	tons	212	159	106	53


SOLIDS MANAGEMENT DESCRIPTION

The proposed treatment facilities will utilize a Biolac® system activated sludge process. Sludge will be settled in final clarifiers, from which a portion will be wasted and returned on a daily basis. Waste activated sludge (WAS) will be pumped to sludge drying beds for dewatering and drying, then will be hauled away by a designated sludge company in roll off containers. Stabilized sludge will be wasted daily to the drying beds for dewatering. Dewatered sludge will then be hauled to an existing land disposal site by Denali Water Solution or other TCEQ designated hauler.

ATTACHMENT NO. 8 Location Information, General Highway County Map, Boundary Map (Domestic Technical Report 1.0)

ATTACHMENT NO. 9 Effluent Laboratory Results (Domestic Technical Report 4.0)

Page 1 of 1

Printed

04/22/2025 12:19

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

TABLE OF CONTENTS

This report consists of this Table of Contents and the following pages:

Report Name	<u>Description</u>	Pages
1137575_r02_01_ProjectSamples	SPL Kilgore Project P:1137575 C:OWSC Project Sample Cross Reference 1:304	4
1137575_r03_03_ProjectResults	SPL Kilgore Project P:1137575 C:OWSC Project Results t:304	14
113/575_r10_05_ProjectQC	SPL Kilgore Project P:1137575 C:OWSC Project Quality Control Groups	32
1137575_r99_09_CoC1_of_1	SPL Kilgore CoC OWSC 1137575_1_of_1	6
	Total Pages:	56

SAMPLE CROSS REFERENCE

Project 113**7575**

Printed

4/22/2025

Page 1 of 4

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36

Olmito, TX 78575-0036

Sample	Sample ID	Taken	Time	Received
2384667	Effluent WW Grab Permit	02/24/2025	13:30:00	02/26/2025

Bottle 01 Polyethylene Quart

Bottle 02 Amber 32 Oz

Bottle 03 Amber 32 Oz.

Bottle 04 Amber 32 Oz

Bottle 05 Amber 32 Oz

Bottle 06 Amber 32 Oz Bottle 07 Amber 32 Oz

Bottle 07 Allioer 32 Oz

Bottle 08 Amber 32 Oz Bottle 09 Amber 32 Oz

Bottle 10 Amber 32 Oz

Bottle 11 Amber 32 Oz

Bottle 12 Amber 32 Oz

Bottle 13 Amber 32 Oz

Bottle 14 H2SO4 to pH <2 Glass Qt w/Teflon lined lid

Bottle 15 Glass /clean metals w/HCl

Bottle 16 16 oz HNO3 Metals Plastic

Bottle 17 II2SO4 to pH <2 Amber Glass 250 mL w/Teflon lined lid

Bottle 18 NaOH to pH >12 Polyethylene 250 mL/amber

Bottle 19 NaOH to pH >12 Polyethylene 250 mL/amber

Bottle 20 Cr-6 Preserved 250 Polyethylene

Bottle 21 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid

Bottle 22 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid

Bottle 23 Na2S2O3 (0.008%) Glass 40 mL vial w/Teflon lined lid (zero headspace)

Bottle 24 Na2S2O3 (0.008%) Glass 40 mL vial w/Teflon lined lid (zero headspace)

Bottle 25 Na2S2O3 (0.008%) Glass 40 mL vial w/Teflon lined lid (zero headspace)

Bottle 26 Prepared Bottle: 632L\632S 2 mL Autosampler Vial (Batch 1162578) Volume: 1.00000 mL <== Derived from 02 (1049 ml)

Bottle 27 Prepared Bottle: GCXL\GCXS 2 mL Autosampler Vial (Batch 1162580) Volume: 1.00000 mL <== Derived from 02 (1049 ml)

Bottle 28 Prepared Bottle: OPXL/OPXS 2 mL Autosampler Vial (Batch 1162581) Volume: 1.00000 mL <== Derived from 02 (1049 ml)

Bottle 29 Prepared Bottle:PCBL 2 mL Autosampler Vial (Batch 1162582) Volume: 1.00000 mL <== Derived from 02 (1049 ml)

Bottle 30 Prepared Bottle: CN TRAACS Autosampler Vial (Batch 1162686) Volume: 10.00000 mL <== Derived from 18 (5 ml)

Bottle~31~Prepared~Bottle:~CN~TRAACS~Autosampler~Vial~(Batch~1162692)~Volume:~10.00000~mL <== Derived~from~18~(~5~ml~)~TRAACS~Autosampler~Vial~(Batch~1162692)~Volume:~10.000000~mL <== Derived~from~18~(~5~ml~)~TRAACS~Autosampler~Vial~(Batch~1162692)~Volume:~10.000000~mL~== Derived~from~18~(~5~ml~)~TRAACS~Autosampler~Vial~(~5~ml~)~TRAACS~A

Bottle 32 Prepared Bottle: Phenol TRAACS Autosampler Vial (Batch 1162712) Volume: 6.00000 mL <== Derived from 17 (6 ml)

Bottle 33 Prepared Bottle: ICP Preparation for Metals (Batch 1162732) Volume: 50.00000 mL <== Derived from 16 (50 ml)

Bottle 34 Prepared Bottle: 2 mL Autosampler Vial (Batch 1162870) Volume: 10.00000 mL <== Derived from 06 (1048 ml) Bottle 35 Prepared Bottle: 2 mL Autosampler Vial (Batch 1162972) Volume: 5.00000 mL <== Derived from 03 (1050 ml)

Bottle 36 Prepared Bottle: 2 mL Autosampler Vial (Batch 1163241) Volume: 1.00000 mL <== Derived from 04 (1055 ml)

Bottle 37 Prepared Bottle: Mercury Preparation for Metals (Batch 1163631) Volume: 50.00000 mL <== Derived from 15 (47 ml)

Bottle 38 Prepared Bottle: 2 mL Autosampler Vial (Batch 1164182) Volume: 1.00000 mL <=- Derived from 14 (846 ml)

Bottle 39 Prepared Bottle: 2 mL Autosampler Vial (Batch 1164497) Volume: 1.00000 mL <== Derived from 07 (1050 ml)

Email: Kilgore.ProjectManagement@spllabs.com

SALAPLE CROSS REFERENCE

Printed

4-22-2025

Page 2 of 4

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Sample	Sample ID	Taken	Time	Received
2384667	Effluent WW Grab Permit	02/24/2025	13:30:00	02/26/2025

Bottle 02 Amber 32 Oz
Bottle 03 Amber 32 Oz
Bottle 04 Amber 32 Oz
Bottle 05 Amber 32 Oz
Bottle 06 Amber 32 Oz
Bottle 07 Amber 32 Oz
Bottle 08 Amber 32 Oz
Bottle 09 Amber 32 Oz
Bottle 10 Amber 32 Oz
Bottle 11 Amber 32 Oz
Bottle 12 Amber 32 Oz
Bottle 13 Amber 32 Oz

Bottle 01 Polyethylene Quart

Bottle 14 H2SO4 to pH <2 Glass Qt w/Teflon lined lid

Bottle 15 Glass /clean metals w/HCl

Bottle 16 16 oz HNO3 Metals Plastic

Bottle 17 H2SO4 to pH <2 Amber Glass 250 mL w/Teflon lined lid

Bottle 18 NaOH to pH > 12 Polyethylene 250 mL/amber

Bottle 19 NaOH to pH >12 Polyethylene 250 mL/amber

Bottle 20 Cr+6 Preserved 250 Polyethylene

Bottle 21 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid

Bottle 22 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid

Bottle 23 Na2S2O3 (0.008%) Glass 40 mL vial w/Teflon lined lid (zero headspace)

Bottle 24 Na2S2O3 (0.008%) Glass 40 mL vial w/Teflon lined lid (zero headspace)

Bottle 25 Na2S2O3 (0.008%) Glass 40 mL vial w/Teflon lined lid (zero headspace)

Bottle 26 Prepared Bottle: 632L\632S 2 mL Autosampler Vial (Batch 1162578) Volume: 1.00000 mL <== Derived from 02 (1049 ml)

Bottle 27 Prepared Bottle: GCXL\GCXS 2 mL Autosampler Vial (Batch 1162580) Volume: 1.00000 mL <== Derived from 02 (1049 ml)

Bottle 28 Prepared Bottle: OPXL/OPXS 2 mL Autosampler Vial (Batch 1162581) Volume: 1.00000 mL <== Derived from 02 (1049 ml)

Bottle 29 Prepared Bottle:PCBL 2 mL Autosampler Vial (Batch 1162582) Volume: 1.00000 mL <= Derived from 02 (1049 ml)

Bottle 30 Prepared Bottle: CN TRAACS Autosampler Vial (Batch 1162686) Volume: 10.00000 mL <== Derived from 18 (5 ml)

Bottle 31 Prepared Bottle: CN TRAACS Autosampler Vial (Batch 1162692) Volume: 10.00000 mL <== Derived from 18 (5 ml)

Bottle 32 Prepared Bottle: Phenol TRAACS Autosampler Vial (Batch 1162712) Volume: 6.00000 mL <== Derived from 17 (6 ml)

Bottle 33 Prepared Bottle: ICP Preparation for Metals (Batch 1162732) Volume: 50,00000 mL <== Derived from 16 (50 ml)

Bottle 34 Prepared Bottle: 2 mL Autosampler Vial (Batch 1162870) Volume: 10.00000 mL <= Derived from 06 (1048 ml)

Bottle 35 Prepared Bottle: 2 mL Autosampler Vial (Batch 1162972) Volume: 5.00000 mL <== Derived from 03 (1050 ml)

Bottle 36 Prepared Bottle: 2 mL Autosampler Vial (Batch 1163241) Volume: 1.00000 mL <== Derived from 04 (1055 ml)
Bottle 37 Prepared Bottle: Mercury Preparation for Metals (Batch 1163631) Volume: 50.00000 mL <== Derived from 15 (47 ml)

Bottle 38 Prepared Bottle: 2 mL Autosampler Vial (Batch 1164182) Volume: 1.00000 mL <== Derived from 14 (846 ml)

Bottle 39 Prepared Bottle: 2 mL Autosampler Vial (Batch 1164497) Volume: 1.00000 mL <== Derived from 07 (1050 ml)

Email: Kilgore.ProjectManagement@spllabs.com

SAMPLE CROSS REFERENCE

Printed

4-22-2025

Page 3 of 4

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Sample	Sample ID	Taken	Time	Received	
2384667	Effluent WW Grab Permit	02/24/2025	13:30:00	02/26/2025	

Bottle 01 Polyethylene Quart Bottle 02 Amber 32 Oz Bottle 03 Amber 32 Oz. Bottle 04 Amber 32 Oz Bottle 05 Amber 32 Oz Bottle 06 Amber 32 Oz Bottle 07 Amber 32 Oz Bottle 08 Amber 32 Oz. Bottle 09 Amber 32 Oz Bottle 10 Amber 32 Oz Bottle 11 Amber 32 Oz. Bottle 12 Amber 32 Oz Bottle 13 Amber 32 Oz Bottle 14 H2SO4 to pH <2 Glass Qt w/Teflon lined lid Bottle 15 Glass /clean metals w/HCl Bottle 16 16 oz HNO3 Metals Plastic Bottle 17 H2SO4 to pH <2 Amber Glass 250 mL w/Teflon lined lid Bottle 18 NaOH to pH >12 Polyethylene 250 mL/amber Bottle 19 NaOH to pH >12 Polyethylene 250 mL/amber Bottle 20 Cr-6 Preserved 250 Polyethylene Bottle 21 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid Bottle 22 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid Bottle 23 Na2S2O3 (0.008%) Glass 40 mL vial w/Teflon lined lid (zero headspace) Bottle 24 Na2S2O3 (0.008%) Glass 40 mL vial w/Teflon lined lid (zero headspace) Bottle 25 Na2S2O3 (0.008%) Glass 40 mL vial w/Tcflon lined lid (zero headspace) Bottle 26 Prepared Bottle: 632L\632S 2 mL Autosampler Vial (Batch 1162578) Volume: 1.00000 mL <== Derived from 02 (1049 ml) Bottle 27 Prepared Bottle: GCXL\GCXS 2 mL Autosampler Vial (Batch 1162580) Volume: 1.00000 mL <== Derived from 02 (1049 ml) Bottle 28 Prepared Bottle: OPXL/OPXS 2 mL Autosampler Vial (Batch 1162581) Volume: 1.00000 mL <== Derived from 02 (1049 ml) Bottle 29 Prepared Bottle:PCBL 2 mL Autosampler Vial (Batch 1162582) Volume: 1.00000 mL <= Derived from 02 (1049 ml) Bottle 30 Prepared Bottle: CN TRAACS Autosampler Vial (Batch 1162686) Volume: 10.00000 mL <== Derived from 18 (5 ml) Bottle 31 Prepared Bottle: CN TRAACS Autosampler Vial (Batch 1162692) Volume: 10.00000 mL <== Derived from 18 (5 ml) Bottle 32 Prepared Bottle: Phenol TRAACS Autosampler Vial (Batch 1162712) Volume: 6.00000 mL <== Derived from 17 (6 ml) Bottle 33 Prepared Bottle: ICP Preparation for Metals (Batch 1162732) Volume: 50.00000 mL <== Derived from 16 (50 ml) Bottle 34 Prepared Bottle; 2 mL Autosampler Vial (Batch 1162870) Volume: 10.00000 mL <-- Derived from 06 (1048 ml) Bottle 35 Prepared Bottle: 2 mL Autosampler Vial (Batch 1162972) Volume: 5.00000 mL <== Derived from 03 (1050 ml) Bottle 36 Prepared Bottle: 2 mL Autosampler Vial (Batch 1163241) Volume: 1.00000 mL <== Derived from 04 (1055 ml) Bottle 37 Prepared Bottle: Mercury Preparation for Metals (Batch 1163631) Volume: 50.00000 mL <== Derived from 15 (47 ml) Bottle 38 Prepared Bottle: 2 mL Autosampler Vial (Batch 1164182) Volume: 1.00000 mL <== Derived from 14 (846 ml) Bottle 39 Prepared Bottle: 2 mL Autosampler Vial (Batch 1164497) Volume: 1.00000 mL <== Derived from 07 (1050 ml)

Bottle

PrepSet

Email: Kilgore.ProjectManagement@spllabs.com

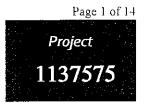
Method

Analytical

QcGroup

Preparation

SAMPLE CROSS REFERENCE



Olmito Water Supply Corp.			Printed	4/22/2025	Page 4 of 4
Tomas Tamayo					PERMIT
101 Clara Bennett Dr					
P.O. Box 36					
Olmito, TX 78575-0036					
EPA 608.3	27	1162580	02/26/2025	1163925	02/27/2025
EPA 608.3	29	1162582	02/26/2025	1164256	02/27/2025
EPA 615	34	1162870	02/27/2025	1163588	03/02/2025
EPA 632	26	1162578	02/26/2025	1164751	03/11/2025
EPA 8015C	21	1163675	02/28/2025	1163675	02/28/2025
EPA 300.0 2.1	01	1162774	02/26/2025	1162774	02/26/2025
EPA 604.1	35	1162972	02/28/2025	1166138	03/04/2025
EPA 617	27	1162580	02/26/2025	1163921	02/27/2025
EPA 625.1	36	1163241	03/03/2025	1164765	03/08/2025
EPA 624.I	22	1162696	02/26/2025	1162696	02/26/2025
EPA 624.1	24	1162699	02/26/2025	1162699	02/26/2025
EPA 614	28	1162581	02/26/2025	1163067	02/27/2025
EPA 624.1	25	1164567	03/10/2025	1164567	03/10/2025
ASTM D7065-17	38	1164182	03/07/2025	1165176	03/11/2025
TX 1001	39	1164497	03/10/2025	1166614	03/20/2025
EPA 200.8 5.4	33	1162732	02/27/2025	1162896	02/27/2025
EPA 200.8 5.4	33	1162732	02/27/2025	1163369	03/03/2025
EPA 245.7 2	37	1163631	03/05/2025	1163705	03/05/2025
EPA 200.8 5.4	33	1162732	02/27/2025	1163339	03/03/2025
EPA 625.1	36	1163241	03/03/2025	1165262	03/11/2025
SM 4500-CN G-2016			03/03/2025		03/03/2025
SM 4500-CN G-2016	31	1162692	02/27/2025	1163119	03/02/2025
SM 4500-CN E-2016	30	1162686	02/27/2025	1163122	03/02/2025
Calculation			02/28/2025		02/28/2025
SM 3500-Cr B-2011	20	1162770	02/26/2025	1162770	02/26/2025
SM 3500-Cr B-2011		1162543	02/24/2025	1162543	02/24/2025
EPA 420.4 1	32	1162712	02/27/2025	1163218	03/03/2025
EPA 622	28	1162581	02/26/2025	1163066	02/27/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Printed:

04/22/2025

RESULTS

					Sample							
						nes	iores					
	2384667	Effluent WW	Grab Permit	Olm	nito WWTP					Received:	02/26	2025
No	Non-Potable Water		=	Collected by: RDL Taken: 02/24/2025		SPL Kilgore 13:30:00			PO:			
		-		Prepared:		02/2	26/2025	12:30:32	Calculated	02/26/2025	12:30:32	CA.
•	Parameter SUB Shipped			Results Verified	Ut.	its	RL		Flags	CAS	-· ·	Bottle
				Prepared:	1162325	02/2	24/2025	13:33:00	Analyzed 1162325	02/24/2025	13:33:00	F
	Parameter Field Cl2 Che	ock for CNa		Results 0.60	Ur	its	RL		Flags	CAS		Bottie
				Prepared:	1162326	02/2	24/2025	13:34:00	Analyzed 1162326	02/24/2025	13:34:00	RD
•		Check for CNa	-	Results NEGATIVE	Un mg		RL		Flags	CAS		Bottle
A.	STM D7065-17			Prepared:	1164182	03/0	07/2025	10:30:00	Analyzed 1165176	03/11/2025	21:07:00	РМ
•	Parameter Nonylphenol			Results <0.0355	Un mg	rits /L	<i>RL</i> 0.0355		Flags	CAS 25154-52-3		Bottle 38
Ci	alculation			Prepared:		02/2	28/2025	11:48:45	Calculated	02/28/2025	11:48:45	CA.
ELAC	Parameter Trivalent Chr	omium	·	Results <0.003	Ur. mg	its /L	<i>RL</i> 0.003		Flags	CAS 16065-83-1		Bottle
El	PA 200.8 5.4			Prepared:	1162732	02/2	27/3025	07:00:00	Analyzed 1162896	02/27/2025	18:20:00	ES
	Parameter Arsenic, Tota			Results 0.0152	Ur mg	nits	<i>RL</i> 0.001		Flags	CAS 7440-38-2		Bottle 33
ELAC ELAC ELAC	Barium, Total Beryllium, To	l otal		0.0132 0.0886 <0.000139 <0.001	mg mg mg	/L /L	0.001 0.001 0.00013	•		7440-39-3 7440-41-7 7440-43-9		33 33 33
ELAC ELAC ELAC	Cadmium, To Chromium, T Copper, Total	otal		<0.001 <0.001 0.0159	mg mg	ŗ/L	0.001 0.001 0.00155			7440-47-3 7440-50-8		33

Office: 903-984-0551 * Fax: 903-984-5914

Hexachlorophene

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Page 2 of 14

Project

Printed:

04/22/2025

_									Printed:	04/2	2/2025	
	2384667	Effluent WW	Grab Permit	Oln	nito WW	ГР				Received:	02.72	6.2025
N	Con-Potable Water	r	Collected by: Taken: 02/2	RDL 4/2025	SPL Kil	gore 13:30:00			PO:			
E	FPA 200.8 5.4	·		Prepared:	1162732	02/27/2025	07:00:00	Analyzed	1162896	02/27/2025	18:20:00	ESC
	Parameter			Results	Ü	nits RL		Flags	5	CAS	 -	Bottle
NELAC	Lead, Total			< 0.000244	m	g/L 0.00	00244			7439-92-1		33
NELAC	Nickel, Total			0.00325	m;	g/L 0.0	0112			7440-02-0		33
NELAC	Silver, Total			< 0.000226	m	g/L 0.0	00226			7440-22-4		33
NELAC	Thallium, Tota	1		<0.000106	m	g/L 0.00	00106			7440-28-0		33
NELAC	Zinc, Total			0.0354	m	g/L 0.00)!			7440-66-6		33
E	PA 200.8 5.4			Prepared:	1162732	02/2//2025	07:00:00	Analyzed	1163369	03/03/2025	16:55:00	HL 7
	Parameter	•		Results	Ui	nits RL		Flags	ì	CAS		Bottle
NEL,	Aluminum, Tot	tal		0.0183	mį	g/L 0.00)5	M		7429-90-5		33
NELAC	Antimony, Tota	al		<0.003	mį	g/L 0.00)3			7440-36-0		33
NELAC	Selenium, Tota	1		<0.005	шí	g/L 0.00)5			7782-49-2		33
E.	PA 245.72			Prepared:	1163631	03/05/2025	09:45:00	Analyzed	1163705	03/05/2025	12:50:00	MPI
	Parameter			Results	Ui	nits RI.		Flags	;	CAS		Bott/e
NELAC	Mercury, Total	(low level)		<0.00000426	mg	z/L 0.00	0000426			7439-97-6		37
E	PA 300.0 2.1			Prepared:	1162774	02/26/2025	13:24:00	Analyzed	1162774	02/26/2025	13:24:00	KRA
	Parameter			Results	Ut	nits RL		Flags		CAS		Bott/e
NELAC	Fluoride			<0.5	mg	y L 0.5						01
NELAC	Nitrate-Nitroge	n Total		0.727	mg	z/L 0.22	6			14797 - 55-8		01
E	PA 420.4 I			Prepared:	1162712	02/27/2025	10:09:01	Analyzed	1163218	03/03/2025	08:47:00	AMI
	Parameter	<u> </u>	······································	Results	Ur.	nits RL		Flags		CAS		Bottle
NELAC	Phenolics, Total	l Recoverable		0.016	mg					-		32
Ei	PA 604.1			Prepared:	1162972	02/28/2025	11:00:00		1166138	03/04/2025	03:06:00	BRU
	Parameter			Results	Un	nits RL		Flags	 .	CAS		Bottle
					511							201110

mg/L

0.00238

< 0.00238

35

70-30-4

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Project 1137575

Printed:

04/22/2025

02.26.2025

2384667 Effluent WW Grab Permit Olmito WWTP

Received:

Non-Potable Water

Collected by: RDL

SPL Kilgore

PO:

Demeton

Diazinon

NELAC

NELAC

13:30:00

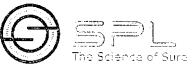
Taken: 02/24/2025 Prepared: 1162580 02/27/2025 20:14:00 KAP EPA 608.3 02/26/2025 13:50:00 Analyzed 1163925 CASBottle Results Units RLFlags Parameter 27 4,4-DDD < 0.00000953 mg/L0.00000953 72-54-8 NELAC 4,4-DDE < 0.00000953 mg/L 0.00000953 72-55-9 27 MELAC 27 4,4-DDT < 0.00000953 mg/L 0.00000953 50-29-3 MELAC 309-00-2 27 < 0.00000953 mg/L 0.00000953 Aldrin NELAC 27 Alpha-BHC(hexachlorocyclohexane) < 0.00000953 mg/L0.00000953 319-84-6 NELAC Beta-BHC(hexachlorocyclohexane) < 0.00000953 mg/L 0.00000953 319-85-7 27 NELAC 27 < 0.000191 mg/L 0.000191 57-74-9 Chlordane NELAC 27 0.00000953 319-86-8 Delta-BHC(hexachlorocyclohexane) < 0.00000953 mg/L NELAC < 0.00000953 mg/L 0.00000953 60-57-1 NELAC Dieldrin < 0.00000953 mg/L 0.00000953 959-98-8 27 Endosulfan I (alpha) NELAC 0.00000953 33213-65-9 27 NELAC Endosulfan II (beta) < 0.00000953 mg/L Endosulfan sulfate < 0.00000953 mg/L 0.00000953 1031-07-8 27 NELAC Endrin 0.0000169 mg/L 0.00000953 72-20-8 27 NELAC Endrin aldehyde < 0.00000953 mg/L 0.00000953 7421-93-4 27 NELAC Gamma-BHC(Lindane) < 0.00000953 mg/L0.00000953 58-89-9 27 NELAC < 0.00000953 mg/L 0.00000953 76-44-8 27 Heptachlor MELAC Heptachlor epoxide < 0.00000953 mg/L 0.00000953 1024-57-3 27 MELAC mg/L 27 < 0.000191 0.000191 8001-35-2 **MELAC** Toxaphene 20:14:00 EPA 608.3 Prepared: 1162582 02/26/2025 13:50:00 Analyzed 1164256 02/27/2025 KAFResults Bottle Units RLFlags CAS Parameter Х 12674-11-2 29 PCB-1016 < 0.000193 mg/L 0.000193 NELAC 29 PCB-1221 < 0.000191 mg/L 0.000191 11104-28-2 NELAC PCB-1232 < 0.000191 mg/L 0.000191 11141-16-5 29 NELAC mg/L 0.000191 53469-21-9 29 PCB-1242 < 0.000191 NELAC 12672-29-6 29 PCB-1248 < 0.000191 mg/L 0.000191 NELAC 29 PCB-1254 < 0.000191 mg/L 0.00019111097-69-1 NEL AC X 11096-82-5 29 PCB-1260 < 0.000191 mg/L 0.000191 NELAC KAP 02/27/2025 22:00:00 Prepared: 1162581 02/26/2025 13:50:00 Analyzed 1163067 EPA 614 CASBottle Results Units RLFlags Parameter 0.0000477 86-50-0 28 < 0.0000477 mg/LNELAC. Azinphos-methyl (Guthion)

0.0000477

0.0000477

mg/L

mg/L


< 0.0000477

< 0.0000477

8065-48-3


333-41-5

28

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Printed:

04:22:2025

Olmito WWTP

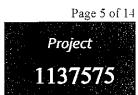
Received:

02.26.2025

2384667 Non-Potable Wate

Effluent WW Grab Permit

CDI I/:I


Non-Potable Water		Collected by: RDL Taken: ()2/24/2025		SPL Ki	lgore		PO:			
					13:30:00					
EI	PA 614		Prepared	: 1162581	02/26/2023	13:50:00	Analyzed 1163067	02/27/2025	22:00:00	—
•	Parameter	·	Results	L	Inits RL		Flags	CAS		Bottle
NELAC	Malathion		< 0.000047	7 moo	ng/L 0.0	000477	.,	121-75-5		28
NELAC	Parathion, ethyl		<0.000047	7 m.	- n g/L 0.0	000477		56-38-2		28
NELAC	Parathion, methyl		<0.000047	7	ıg/L 0.0	000477		298-00-0	_	28
EI	PA 615		Prepared	: 1162870	02/ 27/2025	14:30:00	Analyzed 1163588	03/02/2025	01:09:00	KA
-	Parameter		Results	U	Inits RI.		Flags	CAS		Bottle
NEI	2,4 Dichlorophenoxyacetic acid		< 0.000477	m	ig/L 0.0	00477		94-75-7		34
NEL.	2,4,5-TP (Silvex)		<0.000286	m	ig/L 0.0	00286		93-72-1		34
EF	PA 617		Prepared	: 1162580	02/26/2025	13:50:00	Analyzed 1163921	02/27/2025	20:14:00	KAP
-	Parameter		Results	U	nits RL		Flags	CAS		Bottle
z	Kelthane (Dicofol)		< 0.0000477	7 m.	g/L 0.0	00477		115-32-2		27
Z	Methoxychlor		<0.0000095	53 m	g/L 0.0	0000953		72-43-5		27
Z	Mirex		<0.0000093	53 m	g/L 0.00	0000953		2385-85-5		27
EF	PA 622		Prepared.	1162531	02/26/2025	13:50:00	Analyzed 1163066	02/27/2025	22:00:00	KAP
-	Parameter		Results	Ü.	nits RL		Flags	CAS		Bottle
NELAC 	Chlorpyrifos		<0.0000477	f m	g/L 0.00	000477		2921-88-2		28
EP	PA 624.1		Prepared.	1162696	02/26/2025	14:51:00	Analyzed 1162696	02/26/2025	14:51:00	MRI
_	Parameter		Results	U	ai ts RL		Flags	CAS		Bottle
NELAC	Acrolein		<0.0040	m	g/L 0.00	140	S	107-02-8		22
MELAC	Acrylonitrile		<0.0010	mį	g/L 0.00	110		107-13-1		22
EP	PA 624.1		Prepared;	1162699	02/26/2025	15:14:00	Analyzed 1162699	02/26/2025	15-14-00	MR I
-	Parameter		Results	U	inits RL		Flags	CAS		Bottle
NELAC	(MTBE) tert-Butylmethylether		< 0.0010	mį	g/L 0.00	10		1634-04-4		24
NELAC	1,1,1-Trichloroethane		< 0.0010		g/L 0.00	10		71-55-6		24
NELAC	1,1,2,2-Tetrachloroethane		< 0.0010		g/L 0.00			79-34-5		24
NEL	1,1,2-Trichloroethane		<0.0010	-	g/L 0.00			79-00-5		24
NE.	1,1-Dichloroethane		<0.0010	mį	g/L 0.00	10		75-34-3		24

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Printed:

04/22/2025

- - -

2384667

Effluent WW Grab Permit

Olmito WWTP

Received:

02.26.2025

Non-Potable Water

Collected by: RDL

Taken:

SPL Kilgore

PO:

02/24/2025 13:30:00

El	PA 624.1	Prepared:	1162699	02/26/202	5	15:14:00	Analyzed	1162699	02/26/2025	15:14:00	MR
•	Parameter	Results	Un	its R.	<u>. </u>		Flags	:	CAS		Bottle
ELAC	1,1-Dichloroethylene	< 0.0010	mg	/L 0.5	010				75-35-4		24
ELAC	1,2-Dibromoethane (EDB)	< 0.0010	mg	/L 0.0	0100				106-93-4		24
ELAC	1,2-Dichloroethane	<0.0010	mg	/L 0.1	010				107-06-2		24
LAC	1,2-Dichloropropane	< 0.0010	mg	/L 0.	010				78-87-5		24
LAC	2-Chloroethylvinyl ether	< 0.0010	mg	/L 0.	010				110-75-8		24
ELAC	Benzene	< 0.0010	mg	/L 0.0	010				71-43-2		24
ELAC	Bromodichloromethane	0.00228	mg	/L 0.0	0010				75-27-4		24
ELAC	Bromoform	< 0.0010	mg	/L 0.	010				75-25-2		24
LAC	Bromomethane (Methyl Bromi	< 0.0010	mg	/L 0.0	010				74-83-9		
ELAC	Carbon Tetrachloride	< 0.0010	mg	/L 0.	0100				56-23-5		24
ELAC	Chlorobenzene	< 0.0010	mg	/L 0.0	0100				108-90-7		24
LAC	Chloroethane	< 0.00112	mg	/L 0.4	00112				75-00-3		24
ELAC	Chloroform	0.00282	mg	/L 0.0	010				67-66-3		24
LAC	Chloromethane (Methyl Chloride)	< 0.0010	mg	/L 0.0	010				74-87-3		24
LAC	cis-1,3-Dichloropropene	< 0.0010	mg	/L 0.	0010				10061-01-5		24
LAC	Dibromochloromethane	0.00178	mg	/L 0.4	0010				12 4-4 8- 1		24
LAC	Dichloromethane	< 0.00102	mg	/L 0.	00102				75-09-2		24
ELAC	Ethylbenzene	< 0.0010	mg	/L 0.	0010				100-41-4		24
E AC	m-Dichlorobenzene (1,3-DCB)	< 0.0010	mg	/L 0.	010				541-73-1		24
HAG	Methyl ethyl ketone (Butanone)	<0.0010	mg	/L 0.	0010				78-93-3		24
ILAC	o-Dichlorobenzene (1,2-DCB)	< 0.0010	mg	/L 0.	0010				95-50-1		24
HAC.	p-Dichlorobenzene (1,4-DCB)	< 0.0010	mg	/L 0.	0010				106-46-7		24
ELAC	Tetrachloroethylene	<0.0010	mg	/L 0.	010				127-18-4		24
ELAC	Toluene	< 0.0010	mg	/L 0.	0100				108-88-3		24
ELAC	trans-1,2-Dichloroethylene	< 0.0010	mg	/L 0.	0010				156-60-5		24
ELAC	trans-1,3-Dichloropropene	< 0.0010	mg	/L 0.	0100				10061-02-6		24
ELAC	Trichloroethylene	< 0.0010	mg	/L 0.	0100				79-01-6		24
ELAC	Vinyl chloride	<0.0010	mg	/L 0.	010				75-01-4		24
EI	PA 624.1	Prepared;	1152699	02/28/202	5	12:48-42	Calculated	1162699	02/28/2025	12:48:42	CA
-	Parameter	Results	Un	its R	L		Flags		CAS		Bottle
LAC	Trihalomethanes	0.00688	mg	/L 0.	100						24
EF	PA 624.1	Prepared:	1164567	03/10/202	5	15:20:00	Analyzed	1164567	03/10/2025	15:20:00	CC.

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Printed:

04/22/2025

2384667

Effluent WW Grab Permit

Olmito WWTP

Received:

02/26/2025

Non-Potable Water

Collected by: RDL

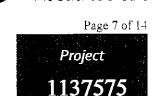
Taken:

SPL Kilgore

PO:

02/24/2025

13:30:00


EF	PA 624.1	Prepared:	116456?	03/1	0/2025	15:20:00	Analyzed	1164567	03/10/2025	15:20:00	ССН
-	Parameter	Results	Ui	nits	RL		Flags	 ī	CAS		Bottle
NELAC	Epichlorohydrin	<0.0200	mį	g/L	0.0200		_		106-89-8		25
EF	PA 625.1	Prepared:	1163241	03/0.	3/2025	14:00:00	Analyzed	1164765	03/08/2025	00:02:00	PMI
_	Parameter	Results	Uı	nits	RL		Flags		CAS		Bottle
NELAC	1,2,4,5-Tetrachlorobenzene	< 0.000976	mg	z/L	0.000976				95-94-3		36
NELAC	1,2,4-Trichlorobenzene	< 0.000948	mg	- g/L	0.000948		S		120-82-1		36
NEL	1,2-Dichlorobenzene	< 0.00474	mg	z/L	0.00474				95-50-1		36
NEL.	1,2-DPH (as azobenzene)	< 0.000948	mg	•	0.000948				122-66-7		36
NELAC	1,3-Dichlorobenzene	< 0.00474	mg		0.00474				541-73-1		36
NELAC	1,4-Dichlorobenzene	< 0.00474	mg		0.00474				106-46-7		36
NELAC	2,4,5-Trichlorophenol	< 0.00474	mg		0.00474				95-95-4		36
NELAC	2,4,6-Trichlorophenol	< 0.0019	mg		0.0019				88-06-2		36
NELAC	2,4-Dichlorophenol	< 0.000948	mg		0.000948				120-83-2		36
NELAC	2,4-Dimethylphenol	< 0.000948	mg		0.000948				105-67-9		36
NELAC	2,4-Dinitrophenol	< 0.0019	mg	•	0.0019				51-28-5		36
NELAC	2,4-Dinitrotoluene	< 0.0019	mg	•	0.0019				121-14-2		36
NELAC	2,6-Dinitrotoluene	< 0.0019	mg		0.0019				606-20-2		36
NELAC	2-Chloronaphthalene	<0.000948	mg		0.000948		S		91-58-7		36
NELAC	2-Chlorophenol	< 0.000948	mg		0.000948		.,		95-57-8		36
NELAC	2-Methylphenol (o-Cresol)	<0.00948	mg		0.00948				95-48-7		36
NELAC	2-Nitrophenol	<0.000948	mg		0.000948				88-75-5		36
NELAC	3&4-Methylphenol (m&p-Cresol)	<0.00758	mg		0.00758				MEPH34		36
NELAC	3.3'-Dichlorobenzidine	<0.0019	mg		0.0019				91-94-1		36
NELAC	4,6-Dinitro-2-methylphenol	<0.0019	mg		0.0019				534-52-I		36
	4-Bromophenyl phenyl ether	<0.000948	mg		0.000948				101-55-3		36
	4-Chlorophenyl phenyl ethe	<0.000948	mg		0.000948				7005-72-3		36
	4-Nitrophenol	<0.000948	mg		0.000948				100-02-7		36
	Acenaphthene	<0.000948	mg		0.000948				83-32-9		36
	Acenaphthylene	<0.000948	mg mg		0.000948				208-96-8		36
z	Aniline	<0.00234	mg		0.00034		S		62-53-3		36
	Anthracene	<0.00234	mg		0.00234		3		120-12-7		36
	Benzidine	<0.00142	mg mg		0.000948				92-87-5		36
	Benzo(a)anthracene	<0.00142	mg.		0.00142				56-55-3		36
	Benzo(a)pyrene	<0.000948	mg.		0.000948				50-33-3 50-32-8		36 36
	Benzo(b)fluoranthene	<0.000948	mg mg		0.000948				205-99-2		36

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Printed:

04/22/2025

2384667

Effluent WW Grab Permit

Olmito WWTP

Received:

02.26.2025

Non-Potable Water

Taken:

Collected by: RDL

02:24:2025

SPL Kilgore

PO:

13:30:00

ΕĒ	PA 625.1	Prepared: 1.	163241 03/0	03/2025 14:00:0	0 Analyzed 1164765	03/08/2025	00:02:00 PM
-	Parameter	Results	Units	RL	Flags	CAS	Botti
	Benzo(ghi)perylene	<0.000948	mg/L	0.000948		191-24-2	36
	Benzo(k)fluoranthene	< 0.000948	mg/L	0.000948		207-08-9	36
	Benzyl Butyl phthalate	< 0.00711	mg/L	0.00711		85-68-7	36
	Bis(2-chloroethoxy)methane	<0.000948	mg/L	0.000948		111-91-1	36
	Bis(2-chloroethyl)ether	< 0.000948	mg/L	0.000948		111 -44-4	36
	Bis(2-chloroisopropyl)ether	<0.000948	mg/L	0.000948		108-60-1	36
	Bis(2-ethylhexyl)phthalate	<0.00711	mg/L	0.00711		117-81-7	36
	Chrysene (Benzo(a)phenanthrene)	<0.000948	mg/L	0.000948		218-01-9	36
	Dibenz(a,h)anthracene	< 0.000948	mg/L	0.000948		53-70-3	
	Diethyl phthalate	<0.0054	mg/L	0.0054		84-66-2	30
	Dimethyl phthalate	<0.00455	mg/L	0.00455		131-11-3	36
	Di-n-butylphthalate	< 0.00711	mg/L	0.00711		84-74-2	36
	Di-n-octylphthalate	< 0.0019	mg/L	0.0019		117-84-0	36
	Fluoranthene(Benzo(j,k)fluorene)	<0.000948	mg/L	0.000948		206-44-0	30
	Fluorene	<0.000948	mg/L	0.000948		86-73-7	36
	Hexachlorobenzene	<0.000948	mg/L	0.000948		118-74-1	36
	Hexachlorobutadiene	<0.000976	mg/L	0.000976		87-68-3	36
	Hexachlorocyclopentadiene	<0.000948	mg/L	0.000948		77 -4 7-4	36
	Hexachloroethane	< 0.0019	mg/L	0.0019	S	67-72-1	36
	Indeno(1,2,3-cd)pyrene	<0.000948	mg/L	0.000948		193-39-5	36
	Isophorone	<0.000948	mg/L	0.000948		78-59-1	36
	Naphthalene	< 0.000948	mg/L	0.000948		91-20-3	30
	Nitrobenzene	< 0.000948	mg/L	0.000948		98-95-3	30
	n-Nitrosodiethylamine	<0.000948	mg/L	0.000948		55-18-5	30
	N-Nitrosodimethylamine	< 0.000948	mg/L	0.000948		62-75-9	36
	n-Nitroso-di-n-butylamine	<0.000948	mg/L	0.000948		924-16-3	36
	N-Nitrosodi-n-propylamine	<0.000948	mg/L	0.000948		621-64-7	36
	N-Nitrosodiphenylamine (as DPA	<0.000948	mg/L	0.000948		86-30-6	30
	p-Chloro-m-Cresol (4-Chloro-3-me	<0.000948	mg/L	0.000948		59-50-7	36
	Pentachlorobenzene	<0.000948	mg/L	0.000948		608-93-5	36
	Pentachlorophenol	<0.00474	mg/L	0.00474		87-86-5	36
	Phenanthrene	<0.000948	mg/L	0.000948		85-01-8	36
	Phenol	<0.000948	mg/L	0.000948		108-95-2	36
	Pyrene	<0.000948	mg/L	0.000948		129-00-0	36
	Pyridine	<0.00128	mg/L	0.00128		110-86-1	30

24 Waterway Avenue, Suite 375 The Woodlands, TX 77380

Office: 903-984-0551 * Fax: 903-984-5914

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Printed:

04.22.2025

2384667 Effluent WW Grab Permit

Olmito WWTP

Received:

02.26.2025

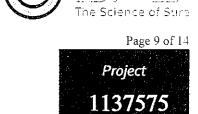
Non-Potable Water

Collected by: RDL

SPL Kilgore

PO:

....


		Taken:	02/24/2025		13:30	:00					
E	PA 625.1		Prepared:	1163241	03/6	03/2025	14:00:00	Analyzed 11652	62 03/11/2025	19:56:00	 РМ I
	Parameter Parameter		Results	U	nits	RL		Flags	CAS		Bott/e
<i>z</i>	Bisphenol A		<0.00948	m	g/L	0.00948		_	80-05-7		36
E.	PA 625.1		Prepared:	1163241	03/0	03/2025	14:00:00	Calculated 11647	65 03/18/2025	11:42:27	CAL
	Parameter		Results	U	nits	RL		Flags	CAS		Bottle
NELAC	Cresols Total		<0.00758	m	g/L	0.00758			1319-77-3,	etc.	36
F_{i}	PA 632		Prepared;	1162578	0.2/2	26/2025	13:50:00	Analyzed 11647	51 03/11/2025	07:18:00	BRU
	Parameter		Results	Ui	nits	RL		Flags	CAS		Bottle
NELAC	Carbaryl (Sevin)		<0.00238	mį	g/L	0.00238		Ť	63-25-2		26
Z	Diuron		<0.0000429	mį	g/L	0.00004	29	В	330-54-1		26
E	PA 8015C		Propared:	1163675	02/2	28/2025	19:20:00	Analyzed 11636	75 02/28/2025	19:20:00	KAP
	Paranictor		Results	U	nits	RL		Flags	CAS		Bottle
NEI AC	Ethylene Glycol		<50.0	mį	g/L	50.0		D	107-21-1		21
S.	M 3500-Cr B-2011		Prepared;	1162543	02/2	24/2025	13:30:00	Analyzed 11625	43 02/24/2025	13:30:00	RDL
	Paranieter		Results	Ui	nits	RJ.		Flags	CAS		Bottle
NELAC	Hex Cr, Field Preservation		<0.0030	mį	g/L	0.0030			18540-29-9		
S	M 3500-Cr B-2011		Prepared:	1162770	0.2/2	?6/?025	13:25:00	Analyzed 11637	70 03/26/2025	13:25:00	ALB
	Parameter		Results	Ui	nits	.R.I		Flags	CAS		Bottle
NELAC	Hexavalent Chromium		<0.0030	mį	g/L	0.0030			18540-29-9		20
Si	M 4500-CN ⁻ E-2016		Prepared:	1162686	02/2	27/2025	08:57:40	Anaiyzed [163]	22 03/02/2025	09:53:00	АМБ
	Parameter		Results	Ui	nits	RL.		Flags	ČAS		Вопів
NELAC	Cyanide, total		0.0056	mg	z/L	0.005		•			30
S.	M 4500-CN G-2016		Prepared:		03/0	03/2025	07:36:34	Calculated	03/03/2025	07:36:34	CAL
	Parameter		Results	Uz	rits	RL		Flags	CA5		Bottle

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Printed:

04/22/2025

2384667 Effluent WW Grab Permit		ito WWT				Received:	02.26	. 2025
Non-Potable Water Collected by: Taken: 02/24	RDL 4°2025	SPL Kilg	gore 3:30:00		PO:			
SM 4500-CN ⁻ G-2016	Prepared:		03/03/2025	07:36:34	Calculated	03/03/2025	07:36:34	CA.
Parameter Cyanide - Available/Amenable	Results <0.005	Un mg			Flags	CAS		Bottle
SM 4500-CN ⁻ G-2016	Prepared:	1162692	02/27/2025	09:12:49	Analyzed 1163119	03/02/2025	09:53:00	AM.
Parameter NELAC Cyanide After Chlorination	Results 0.0124	Un mg			Flags	CAS		Bottle 31
TX 1001		1164497	03/10/2025	15:00:00	Anzlyzed 1166614	03/20/2025	19:52:00	DW
Parameter Tributyltin hydride	Results <0.00000667	<i>Un</i>		0667	Flags D	CAS 688-73-3		<i>Bo</i> 39
	Sa	imple Pr	eparation	•		·		
2384667 Effluent WW Grab Permit	Olm	ito WWT	P			Received:	02/26	2025
02.24	1 2025							
	Prepared:		02/26/2025	12:30:32	Calculated	02/26/2025	12:30:32	CAL
DW Volatiles Dechlorination Vial	Verified							
	Propared:		02/26/2025	13:01:28	Calculated	02/26/2025	13:01:28	(AL
Enviro Fee (per Sampling Group)	Verified							
ASTM D7065-17	Prepared:	1164182	03/07/2025	10:30:00	Analyzed 1165176	03/11/2025	21:07:00	 PM1
Nonyl Phenol Expansion	Entered					<u></u>		38

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Printed:

04/22/2025

	2384667 Effluent WW Grab Permit	Olr	nito WW	TP				Received:	02.26	5.2025
	02	24/2025								
	EPA 200.2 2.8	Prepared:	1162732	02/27/2025	07:00:00	Analyzed	//62732	02/27/2025	07:00:00	 HLT
z	Liquid Metals Digestion	50/50	m	1		. 1				16
,	EPA 245.72	Prepared:	1163631	03/05/2025	09:45:00	Analyzed	1163631	03/05/2025	09:45:00	MP1
NEL AC	Low Level Mercury Liquid Metals	50/47	m	I					. ,	15
	1 420.4 1	Prepared;	1162712	02/27/2025	10:09:01	Analyzed	1162712	02/27/2025	10:09:01	MEG
NELAC	Phenol Distillation	6/6	mi	I						17
1	EPA 604.1	Propared:	1162972	02/28/2025	11:00:00	Analyzod	1162972	02/28/2025	11:00:00	MCC
	Hexachlorophene Extraction	5/1050	ml							03
1	EPA 604.1	Prepared:	1162972	02/28/2025	11:00:00	Analyzed	1166138	03/04/2025	03:06:00	BRU ——
	Hexachlorophene Expansion	Entered						70-30-4		35
E	FPA 608.3	Prepared:	1162580	02/26/2025	13:50:00	Analyzed	1162580	02/26/2025	13:50:00	мсс
	Liquid-Liquid Extr. W/Hex Ex	1/1049	ml							02
E	FPA 608.3	Prepared:	1162580	02/26/2025	13:50:00	Analyzed	1163925	02/27/2025	20:14:00	KAP
NELAC	TTO Pesticides	Entered					_			27
E	PA 608.3	Prepared:	1162581	02/26/2025	13:50:00	Analyzed	1163581	02/26/2025	13:50:00	мсс
	Solvent Extraction	1/1049	ml							02

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Printed:

04/22/2025

2384667 Effluent WW Grab Permit

Acrolein/Acrylonitrile Exp.

Olmito WWTP

Received:

02.26.2025

	02/24/2025								
EPA 608.3	Prepared:	1162582	02/26/2025	13:50:00	Analyzed	1162582	02/26/2025	13:50:00	МС
PCB Liq-Liq Extr. W/Hex Exch.	1/1049	m	I						02
EPA 608.3	Prepared:	1162582	02/26/2025	13:50:00	Analyzed	1164256	02/27/2025	20:14:00	KA
тто рсв	Entered								29
EPA 614	Prepared:	1162581	02/26/2025	13:50:00	Analyzed	1163067	02/27/2025	22:00:00	<i>KA</i> .
Permit Organophos. Pesticides	Entered					_			28
EPA 615	Prepared:	1162870	02/27/2025	14:30:00	Analyzed	1162870	02/27/2025	14:30:00	CR.
Esterification of Sample	10/1048	\mathbf{m}	l						06
EPA 615	Prepared:	1162870	02/27/2025	14:30:00	Analyzed	1163588	03/02/2025	01:09:00	KA.
Herbicides by GC	Entered						· -		34
EPA 617	Prepared:	1162580	03/26/2025	13:50:00	Analyzed	1163921	02/27/2025	20:14:00	K.A.
For use with IPPR only	Entered								27
EPA 622	Prepared:	1162581	02/26/2025	13:50:00	Analyzed	1163066	02/27/2025	22:00:00	KA.
For use with EXP !CPP only	Entered								28
EPA 624.1	Prepared:	1162696	02/26/2025	14:51:00	Analyzed	1162696	02/26/2025	14:51:00	MR

Entered

Page 12 of 14

Project 1137575

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Printed:

04/22/2025

2384667 Effluent WW Grab Permit

Carbaryl/Diuron EXP

MELAC

Olmito WWTP

Received:

02.26.2025

		02/24/2025								
E	PA 624.1	Prepared:	1162699	02/26/2025	15:14:00	Analyzed	/162699	02/26/2025	15:14:00	MR I
Ξ	Table D-1/D-2 w/MTBE	Entered								24
E	PA 624.1	Prepared:	1164567	03/10/2025	15:20:00	Analyzed	1164567	03/10/2025	15:20:00	ССН
NELAC	Epichlorohydrin Exp.	Entered								25
F.	PA 625.1	Prepared:	1163241	03/03/2025	14:00:00	Analyzed	1163241	03/03/2025	14:00:00	CRS
	Liquid-Liquid Extraction, BNA	1/1055	m	l						04
E	PA 625.1	Prepared:	1163241	03/03/2025	14:00:00	Analyzcd	1164765	03/08/?025	00:02:00	PM1
NELAC	Table D-1/D-2 Semivolatiles Exp	Entered								36
Е	PA 625.1	Prepared:	1163241	03/03/2025	14:00:00	Analyzed	1165262	03/11/2025	19:56:00	PM1
-:	Bisphenol A Expansion	Entered						80-05-7		36
Ε	PA 625.1	Prepared:	1164182	03/07/2025	10:30:00	Analyzed	1164182	03/07/2025	10:30:00	CR\$
	Nonylphenol Liq-Liq Extract	1/846	ml							14
E	PA 632	Prepared:	1162578	02/26/2025	13:50:00	Analyzed	1162578	02/26/2025	13:50:00	МСС
	Liquid-Liquid Extr. W/Hex Ex	1/1049	mi							02
E	PA 632	Prepared:	1162578	02/26/2025	13:50:00	Analyzed	1164751	03/11/2025	07:18:00	BRU

Entered

26

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Printed:

04/22/2025

2384667 Effluent WW Grab Permit

Olmito WWTP

Received:

02.26.2025

02-24-2025

		02:24:2023								
E	EPA METHOD 8015C	Prepared:		02/28/2025	19:20:00	Analyzed		02/28/2025	19:20:00	KAP
NELAC 	Ethylene Glycol Expansion	Entered						107-21-1		21
S	M 4500-CN ⁻ C-2016	Prepared:	1162686	02/27/2025	08:57:40	Analyzed	/162ń8ó	02/27/2025	08:57:40	MEG
NELAC	Cyanide Distillation	10/5	ml	l		I				18
S	M 4500-CN ⁻ C-2016	Prepared:	1162692	02/27/2025	09:12:49	Analyzed	1162692	02/27/2025	09:12:49	<i>МЕG</i> —
NELAC	CN Dist After Chlorination	10/5	mì	l 						18
I	X 1001	Prepared:	1164497	03/10/2025	15:00:00	Analyzed	1164497	03/10/2025	15:00:00	CRS
Z	Butyltins Extraction	1/1050	ml	1						07
T	X 1001	Prepared:	1164497	03/10/2025	15:00:00	Analyzed	1166614	03/20/2025	19:52:00	DWI.
Ξ	Butyltin Expansion	Entered								39

Page 14 of 14

Printed:

04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Qualifiers:

Bi- Analyte detected in the associated method blank

M - High reporting level resulting from matrix interference.

Di- Duplicate RPD was higher than expected III- Lab treated for Residual Chlorine

X - Standard reads higher than desired.

Si- Standard reads lower than desired

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgora. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations berformed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' in of our report (without a 'I' flag). Otherwise, we report ND (Not Detected above RL), because the result is "k" (less than) the ar in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the

Bill Poory

result column, or interferences prevent it, we work to have our RI at or below the MAL.

Bill Peery, MS, VP Technical Services

Page 1 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Olmito, TX 78575-00	36							Fillited	04 22 20		
Analytical Set	1163119								SM 4	500-CN	G-2016
				В	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Cyanide After Chlorination	1162692	ND	0.00119	0.0025	mg/L			127355755			
				(CCV						
Parameter		Reading	Кломп	Units	Recover%	Limitsoo		File			
Cyanide After Chlorination		0.480	0.500	mg/L	96.0	90.0 - 110		127355746			
Cyanide After Chlorination		0.477	0.500	mg/L	95.4	90.0 - 110		127355756			
Cyanide After Chlorination		0.481	0.500	mg/L	96.2	90.0 - 110		127355765			
Cyanide After Chlorination		0.483	0.500	mg/L	96.6	90.0 - 110		127355766			
Cyanide After Chlorination		0.476 0.480	0.500 0.500	mg/L mg/L	95.2 96.0	90.0 - 110 90.0 - 110		127355767 127355768			
Cyanide After Chlorination Cyanide After Chlorination		0.476	0.500	mg/L	95.2	90.0 - 110		127355769			
Cyanide After Chlorination		0.476	0.500	mg/L	95.2	90.0 - 110		127355770			
Cyanide After Chlorination		0.473	0.500	mg/L	94.6	90.0 - 110		127355771			
Cyanide After Chlorination		0.485	0.500	mg/L	97.0	90.0 - 110		127355772			
				Duj	plicate						
Parameter	Sample		Result	Unknowi	7		Unit		RPD		Limic,
Cyanide After Chlorination	2384555		0.0024	0.0038			mg/L		45.2	*	20.0
•				ı	ICV						
Parameter		Reading	Кпошп	Units	Recover%	Limits ^a á		File			
Cyanide After Chlorination		0.204	0.200	mg/L	102	90.0 - 110		127355745			
·				LC	S Dup						
Parameter	PrepSet	LC S	LCSD		Кпошп	Limits ^a o	LCS%	LCSD%	<i>Units</i>	RPD	Limit%
Cyanide After Chlorination	1162692	0.197	0.196		0.200	90.0 - 110	98.5	98.0	mg L	0.509	20.0
				Mat	. Spike						
Parameter	Sample	Spike	Unknown	Кпошп	Units	Recovery °o	Limits %	File			
Cyanide After Chlorination	2384555	0.388	0.0038	0.400	mg/L	96.0	90.0 - 110	127355761			
Analytical Set	1163122	· · · · · · · · · · · · · · · · · · ·					···		SM 4	1500-CN	E-2016
Analytical Set	1103122			В	lank				•		
Page 12-14-	Brown Cat	Bondino	MDL.	MQL -	Units			File			
<u>Parameter</u> Cyanide, total	<i>PrepSet</i> 1 162686	Reading ND	0.00238	0.005	mg/L			127355878			
Cyamac, total	1102000	1.2	0.00250		CCV						
		0	<i>4</i>			Limits%		File			
Parameter Cyanide, total		Reading 0.480	Кпошп 0.500	Units m g/L	Recover% 96.0	90.0 - 110		127355848			
Cyanide, total		0.477	0.500	mg/L	95.4	90.0 - 110		127355849			
Cyanide, total		0.481	0.500	mg/L	96.2	90.0 - 110		127355850			
Cyanide, total		0.483	0.500	mg/L	96.6	90.0 - 110		127355855			
Cyanide, total		0.476	0.500	mg/L	95.2	90.0 - 110		127355866			
Cyanide, total		0.480	0.500	mg/L	96.0	90.0 - 110		127355877			
Cyanide, total		0.476	0.500	mg/L	95.2	90.0 - 110		127355885			

Page 2 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

				c	CV						
Parameter .		Reading	Кпошп	Units	Recover%	Limits%		File			
Cyanide, total		0.473	0.500	mg/L	94.6	90.0 - 110		127355896			
Cyanide, total		0.485	0.500	mg/L	97.0	90.0 - 110		127355901			
•				Dup	licate						
Parameter	Sample		Result	Unknown			Unit		RPD		Limit%
Cyanide, total	2384555		ND	ND			mg/L				20.0
Cyanide, total	2384556		ND	ND			mg/L				20.0
				Īŧ	cv						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Cyanide, total		0.204	0.200	mg/L	102	90.0 - 110		127355847			
				LCS	Dup						
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits°o	LCS%	LCSD%	Units	RPD	Limit%
Cyanide, total	1162686	0.389	0.382		0.400	90.0 - 110	97.2	95.5	mg/L	1.82	20.0
				Mat.	Spike						
<u>Pr</u> r <u>ter</u>	Sample	Spike	Unknown	Known	Units	Recovery %	Limits %	File			
Ce, total	2384555	0.320	ND	0.400	mg/L	80.0	90.0 - 110	127355883		*	
Cyanide, total	2384556	0.374	ND	0.400	mg/L	93.5	90.0 - 110	127355887			
Analytical Set	1163218									EPA	A 420,4 1
Analytical Sec				ы	ank						
Parameter	PrepSet	Reading	MDL	MQL	L'nits			File			
Phenolics, Total Recoverable	1162712	ND	0.003	0.005	mg/L			127357978			
					CV CV						
Parameter		Reading	Кпошп	Units	Recover%	Limits*o		File			
Phenolics, Total Recoverable		0.204	0.200	mg/L	102	90.0 - 110		127357977			
Phenolics, Total Recoverable		0.195	0.200	mg/L	97.5	90.0 - 110		127357986			
Phenolics, Total Recoverable		0.195	0.200	mg/L	97.5	90.0 - 110		127357997			
Phenolics, Total Recoverable		0.195	0.200	mg/L	97.5	90.0 - 110		127358006			
Phenolics, Total Recoverable		0.191	0.200	mg/L	95.5	90.0 - 110		127358013			
Phenolics, Total Recoverable		0.197	0.200	mg/L	98.5	90.0 - 110		127358019			
				Dup	licate						
<u>Parameter</u>	Sample		Result	Unknown			Unit		RPD		Limit%
Phenolics, Total Recoverable	2383760		0.022	0.028			mg/L		24.0	*	20.0
Phenolics, Total Recoverable	2383765		0.052	0.056			mg/L		7,41		20.0
Phenolics, Total Recoverable	2384701		0.071	0.070			mg/L		1,42		20.0
				Id	cv						
<u>Paramet</u> er		Reading	Known	Units	Recover%	Limits%		File			
Phenolics, Total Recoverable		0.205	0.200	mg/L	102	90.0 - 110		127357976			
				LCS	Dup						
<u>F</u> _2005	PrepSet	LCS	LCSD		Клочп	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Phenolics, Total Recoverable	1162712	0.183	0.183		0.200	90.0 - 110	91.5	91.5	mg L	0	20.0

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 21 of 57

Page 3 of 32

Project 1137575

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36

Olmito, TX 78575-0036								Printed	04/22/20	25	
				Mat	Spike						
Parameter Phenolics, Total Recoverable Phenolics, Total Recoverable Phenolics, Total Recoverable	Sample 2383760 2383765 2384701	Spike 0.167 0.195 0.191	<i>Uпклоwп</i> 0.028 0.056 0.070	Known 0.200 0.200 0.200	Units mg/L mg/L mg/L	Recovery % 69.5 69.5 60.5	Limits % 90.0 - 110 90.0 - 110 90.0 - 110	File 127357983 127357987 127358018		* *	
Analytical Set	1162325					·					
				Du	plicate						
Parameter Field Cl2 Check for CNa Field Cl2 Check for CNa	Sample 2384288 2384667		Result NEG 0.80	Unknowi ND 0.60	7		Unit		RPD 28.6		<i>Limit%</i> 20 20
Analytical Set	1162326										
				Dup	olicate						
<u>Parameter</u> Field Sulfide Check for CNa Field Sulfide Check for CNa	Sample 2384288 2384667		Result NEG NEGATIV	Unknown NEGATI NEGATI	V I		Unit mg/L mg/L		RPD		<i>Limit%</i> 20 20
Analytical Set	1162774				-			·		EPA	300.0
				AWR	L/LOQ C						
<u>Parameter</u> Nitrate-Nitrogen Total		Reading 0.0237	Known 0.0226	Units mg/L	Recover% 1 05	Limits ^e a 70.0 - 130		File 127348597			
				В	lank						
<u>Parameter</u> Fluoride Nitrate-Nitrogen Total	PrepSet 1162774 1162774	Reading ND ND	MDL 0.00509 0.00464	MQL 0.100 0.0226	<i>Units</i> mg/L mg/L			File 127348598 127348598			
				C	CB						
Parameter Fluoride Fluoride Fluoride Nitrate-Nitrogen Total Nitrate-Nitrogen Total Nitrate-Nitrogen Total	PrepSet 1162774 1162774 1162774 1162774 1162774 1162774	Reading 0 0 0 0 0 0 0 0.000113 0.000361	MDL 0.00509 0.00509 0.00509 0.00464 0.00464	MQL 0.100 0.100 0.100 0.0226 0.0226 0.0226	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L			Pile 127348594 127348614 127348623 127348594 127348614 127348623			
				c	:cv						
Parameter Fluoride Fluoride Fluoride Nitrate-Nitrogen Total Nitrate-Nitrogen Total Nitrate-Nitrogen Total		Reading 10.9 10.5 10.7 2.34 2.34 2.34	Known 10.0 10.0 10.0 2.26 2.26 2.26	Units mg/L mg/L mg/L mg/L mg/L mg/L	Recover% 109 105 107 104 104 104 5 Dup	Limits ^o ₀ 90.0 - 110 90.0 - 110 90.0 - 110 90.0 - 110 90.0 - 110 90.0 - 110		File 127348593 127348613 127348622 127348593 127348613 127348622			
<u>Parameter</u>	PrepSet	LCS	LCSD		Кложп	Limits%	LCS°o	LCSD%	Units	RPD	Limit%

Page 4 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

				LC	S Dup						
<u>Parameter</u>	PrepSet	LCS	LCSD		Knowa	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Fluoride	1162774	5.63	5.63		5.00	88.0 - 118	113	113	mg/L	0	20.0
Nitrate-Nitrogen Total	1162774	1.23	1.23		1.13	86.3 - 117	109	109	mg/L	0	20.0
				N	ASD						
<u>Parameter</u>	Sample	MS	MSD	$U\lambda K$	Клоwп	Limits	MS^{o}_{o}	MSD%	Units	RPD	Limit%
Fluoride	2383617	115	116	ND	100	80.0 - 120	115	116	mg/L	0.866	20.0
Nitrate-Nitrogen Total	2383617	23.7	23.9	ND	22.6	80.0 - 120	105	106	mg/L	0.840	20.0
Fluoride	2383747	112	111	ND	100	80.0 - 120	112	111	mg/L	0.897	20.0
Nitrate-Nitrogen Total	2383747	24.2	24.2	ND	22.6	80.0 - 120	107	107	mg/L	0	20.0
Analytical Set	1162770							-	SM	3500-C	r B-2011
				В	lank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Hexavalent Chromium	1162770	ND	0.550	3.00	ug/L			127348512			
Hexavalent Chromium	1162770	ND	0.550	3.00	ug/L			127348522			
Hexavalent Chromium	1162770	ND	0.550	3.00	ug/L			127348525			
				C	CV						
<u>Parameter</u>		Reading	Known	<i>Units</i>	Recover%	Limits%		File			
Hexavalent Chromium		83.0	80.0	ug/L	104	90.0 - 110		127348513			
Hexavalent Chromium		83.0	80.0	ug/L	104	90.0 - 110		127348523			
Hexavalent Chromium		81.5	80.0	ug/L	102	90.0 - 110		127348526			
				LCS	5 Dup						
<u>Parameter</u>	PrepSet	LCS	LCSD		Кложа	Limits o	LCS%	1.CSD%	Units	RPD	Limit%
Hexavalent Chromium	1162770	83.0	82.5		80.0	85.0 - 115	104	103	ug/L	0.604	15.0
				M	I SD						
<u>Parameter</u>	Sample	MS	MSD	UNK	Кпошп	Limits	MS^{a}_{σ}	MSD%	Units	RPD	Limit%
Hexavalent Chromium	2384509	70.1	71.7	ND	80.0	70.0 - 130	87.6	89.6	ug/L	2.26	20.0
Analytical Set	1162896									EPA 2	200.8 5.4
				Bl	ank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Aluminum, Total	1162732	0.00439	0.00171	0.00171	mg/L		*	127351710			
Arsenic, Total	1162896	ND	0.000184	0.001	mg/L			127351566			
Arsenic, Total	1162732	0.00107	0.000184	0.001	mg/L		*	127351710			
Barium. Total	1162896	ND	0.000635	0.001	mg/L			127351566			
Barium, Total	1162732	ND	0.000635	0.001	mg/L			127351710			
Beryllium, Total	1162896	ND	0.000139	0.001	mg/L			127351566			
Beryllium, Total	1162732	ND	0.000139	0.001	mg/L			127351710			
Cadmium, Total	1162896	ND	0.000067	0.001	mg/L			127351566			
Cadmium, Total	1162732	ND	0.000067	0.001	mg/L			127351710			
Chromium, Total	1162896	ND	0.000621	0.001	mg/L			127351566			
('um, Total	1162732	ND	0.000621	0.001	mg/L			127351710			
Copper, Total	1162896	ND	0.00155	0.00155	mg/L			127351566			

Page 5 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

				Bla	ank		
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units		File
Copper, Total	1162732	ND	0.00155	0.00155	mg/L		127351710
Lead, Total	1162896	ND	0.000244	0.001	mg/L		127351566
Lead, Total	1162896	ND	0.000244	0.001	mg/L		127351580
Lead, Total	1162896	ND	0.000244	0.001	mg/L		127351609
Lead, Total	1162896	ND	0.000244	0.001	mg/L		127351639
Lead, Total	1162896	ND	0.000244	0.001	mg/L		127351669
Lead, Total	1162732	ND	0.000244	0.001	mg/L		127351710
Nickel, Total	1162896	ND	0.00112	0.00112	mg/L		127351566
Nickel, Total	1162732	ND	0.00112	0.00112	mg/L		127351710
Silver, Total	1162896	ND	0.000226	0.001	mg/L		127351566
Silver, Total	1162732	ND	0.000226	0.001	mg/L		127351710
Thallium, Total	1162896	ND	0.000106	0.001	mg/L		127351566
Thallium, Total	1162732	ND	0.000106	0.001	mg/L		127351710
Zinc, Total	1162896	ND	0.000875	0.001	mg/L		127351566
Zinc, Total	1162732	0.0019	0.000875	0.001	mg/L	*	127351710
				C	cv		
Parameter		Reading	Known	Units	Recover%	Limits%	File
Arsenic, Total		0.0482	0.05	mg/L	96.4	90.0 - 110	127351579
Arsenic, Total		0.0508	0.05	mg/L	102	90.0 - 110	127351691
Arsenic, Total		0.0473	0.05	mg/L	94.6	90.0 - 110	127351702
Arsenic, Total		0.0466	0.05	mg/L	93.2	90.0 - 110	127351712
Arsenic, Total		0.0514	0.05	mg/L	103	90.0 - 110	127351723
Arsenic, Total		0.0531	0.05	mg/L	106	90.0 - 110	127351730
Barium, Total		0.0489	0.05	mg/L	97.8	90.0 - 110	127351579
Barium, Total		0.048	0.05	mg/L	96.0	90.0 - 110	127351712
Barium, Total		0.0515	0.05	mg/L	103	90.0 - 110	127351723
Barium, Total		0.0518	0.05	mg/L	104	90.0 - 110	127351730
Beryllium, Total		0.0494	0.05	mg/L	98.8	90.0 - 110	127351579
Beryllium, Total		0.0477	0.05	mg/L	95.4	90.0 - 110	127351712
Beryllium, Total		0.0503	0.05	mg/L	101	90.0 - 110	127351723
Beryllium, Total		0.0492	0.05	mg/L	98.4	90.0 - 110	127351730
Cadmium, Total		0.0491	0.05	mg/L	98.2	90.0 - 110	127351579
Cadmium, Total		0.0476	0.05	mg/L	95.2	90.0 - 110	127351712
Cadmium, Total		0.0508	0.05	mg/L	102	90.0 - 110	127351723
Cadmium, Total		0.0495	0.05	mg/L	99.0	90.0 - 110	127351730
Chromium, Total		0.0482	0.05	mg/L	96.4	90.0 - 110	127351579
Chromium, Total		0.0465	0.05	mg/L	93.0	90.0 - 110	127351712
Chromium, Total		0.0499	0.05	mg/L	99.8	90.0 - 110	127351723
Chromium. Total		0.048	0.05	mg/L	96.0	90.0 - 110	127351730
Copper, Total		0.0505	0.05	mg/L	101	90.0 - 110	127351579
Copper, Total		0.0489	0.05	mg/L	97.8	90.0 - 110	127351702

Email: Kilgore.ProjectManagement@spllabs.com

0.0463

0.0497

0.050

0.05

0.05

0.05

mg/L

mg/L

mg/L

Copper, Total

Copper, Total

Copper, Total

92.6

99.4

100

90.0 - 110

90.0 - 110

90.0 - 110

127351712

127351723

127351730

Page 6 of 32

Project 113**757**5

Printed 04:22:2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

CCV												
Parameter Parameter		Reading	Кпошп	Units	Recover%	Limits%		File				
Lead, Total		0.050	0.05	mg/L	100	90.0 - 110		127351579				
Lead, Total		0.0494	0.05	mg/L	98.8	90.0 - 110		127351590				
Lead, Total		0.0494	0.05	mg/L	98.8	90.0 - 110		127351601				
Lead, Total		0.0497	0.05	mg/L	99.4	90.0 - 110		127351611				
Lead, Total		0.0491	0.05	mg/L	98.2	90.0 - 110		127351622				
Lead, Total		0.0494	0.05	mg/L	98.8	90.0 - 110		127351633				
Lead, Total		0.051	0.05	mg/L	102	90.0 - 110		127351643				
Lead, Total		0.0507	0.05	mg/L	101	90.0 - 110		127351654				
Lead, Total		0.0496	0.05	mg/L	99.2	90.0 - 110		127351665				
Lead, Total		0.0515	0.05	mg/L	103	90.0 - 110		127351675				
Lead, Total		0.0502	0.05	mg/L	100	90.0 - 110		127351684				
Lead, Total		0.0515	0.05	mg/L	103	90.0 - 110		127351691				
Lead, Total		0.0512	0.05	mg/L	102	90.0 - 110		127351702				
Lead, Total		0.0492	0.05	mg/L	98.4	90.0 - 110		127351712				
Lead, Total		0.0527	0.05	mg/L	105	90.0 - 110		127351723				
Lead Total		0.0508	0.05	mg/L	102	90.0 - 110		127351730				
N Total		0.0495	0.05	mg/L	99.0	90.0 - 110		127351579				
Nickel, Total		0.0477	0.05	mg/L	95.4	90.0 - 110		127351712				
Nickel, Total		0.0519	0.05	mg/L	104	90.0 - 110		127351723				
Nickel, Total		0.0523	0.05	mg/L	105	90.0 - 110		127351730				
Silver, Total		0.0513	0.05	mg/L	103	90.0 - 110		127351579				
Silver, Total		0.0474	0.05	mg/L	94.8	90.0 - 110		127351691				
Silver, Total		0.0504	0.05	mg/L	101	90.0 - 110		127351702				
Silver, Total		0.0494	0.05	mg/L	98.8	90.0 - 110		127351712				
Silver, Total		0.053	0.05	mg/L	106	90.0 - 110		127351723				
Silver, Total		0.0521	0.05	mg/L	104	90.0 - 110		127351730				
Thallium, Total		0.0496	0.05	mg/L	99.2	90.0 - 110		127351579				
Thallium, Total		0.0493	0.05	mg/L	98.6	90.0 - 110		127351712				
Thallium, Total		0.0526	0.05	mg/L	105	90.0 - 110		127351723				
Thallium, Total		0.0505	0.05	mg/L	101	90.0 - 110		127351730				
Zinc, Total		0.0497	0.05	mg/L	99.4	90.0 - 110		127351579				
Zinc, Total		0.0481	0.05	mg/L	96.2	90.0 - 110		127351712				
Zine, Total		0.0508	0.05	mg/L	102	90.0 - 110		127351723				
Zinc, Total		0.0511	0.05	mg/L	102	90.0 - 110		127351730				
				Dir.	SPKD							
<u>Parameter</u>	Sample	DSPK	DSPKD	UNK	Клоwп	Limits%	DSPK%	DSPKD%	Units	RPD	Limit%	
Lead, Total	2384037	0.561	0.527	0.00176	0.500	70.0 - 130	112	105	mg.L	6.25	30.0	
Lead, Total	2384060	0.564	0.507	0.0108	0.500	70.0 - 130	111	99.2	mg/L	10.6	30.0	
Lead, Total	2384071	0.513	0.537	0.0265	0.500	70.0 - 130	97.3	102	mg L	4.57	30.0	
Lead, Total	2384085	0.501	0.504	0.00131	0.500	70.0 - 130	99.9	101	mg:L	0.597	30.0	
Lead, Total	2384117	0.522	0.449	0.0115	0.500	70.0 - 130	102	87.5	mg.L	15.0	30.0	
Lead. Total	2384184	0.634	0.603	0.105	0.500	70.0 - 130	106	99.6	mg:L	5.01	30.0	
I 'otal	2384319	0.501	0.511	ND	0.500	70.0 - 130	100	102	mg L	1.98	30.0	

Page 7 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Offfito, 1X 76575-0030											
				Dire	ct SPK						
Paramet <u>e</u> r	Sample	DSPK		UNK	Кпошп	Limits*o	DSPK%		Units		
Lead, Total	2384037	0.561		0.00176	0.500	70.0 - 130	112		mg/L		30.0
Lead, Total	2384060	0.564		0.0108	0.500	70.0 - 130	111		mg/L		30.0
Lead, Total	2384071	0.513		0.0265	0.500	70.0 - 130	97.3		mg/L		30.0
Lead, Total	2384085	0.501		0.00131	0.500	70.0 - 130	99.9		mg/L		30.0
Lead, Total	2384117	0.522		0.0115	0.500	70.0 - 130	102		mg/L		30.0
Lead, Total	2384184	0.634		0.105	0.500	70.0 - 130	106		mg/L		30.0
Lead, Total	2384319	0.501		ND	0.500	70,0 - 130	100		mg/L		30.0
zena, rom	20.217				cv						
D		Donding	V	Units	Recoverso	Limits%		File			
Parameter T		Reading	Known		94.2	90.0 - 110		127351574			
Arsenic, Total		0.0471 0.0492	0.05	mg/L	98.4	90.0 - 110		127351574			
Barium, Total			0.05	mg/L	97.0	90.0 - 110		127351574			
Beryllium, Total		0.0485	0.05	mg/L	100	90.0 - 110		127351574			
Cadmium, Total		0.050	0.05	mg/L		90.0 - 110		127351574			
Chromium, Total		0.0488	0.05	mg/L	97.6 98.6	90.0 - 110		127351574			
Copper, Total		0.0493	0.05	mg/L		90.0 - 110		127351574			
Lead, Total		0.0496	0.05	mg/L	99.2			127351574			
Nickel, Total		0.0495	0.05	mg/L	99.0	90.0 - 110		127351574			
Silver, Total		0.0507	0.05	mg/L	101	90.0 - 110					
Thallium, Total		0.0485	0.05	mg/L	97.0	90.0 - 110		127351574			
Zine, Total		0.046	0.05	mg/L	92.0	90.0 - 110		127351574			
				LCS	Dup						
Parameter	PrepSet	LCS	LCSD		Кпомп	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Aluminum, Total	1162732	0.493	0.481		0.500	85.0 - 115	98.6	96.2	mg/L	2.46	20.0
Arsenic, Total	1162732	0.492	0.471		0.500	85.0 - 115	98.4	94.2	mg/L	4.36	20.0
Barium, Total	1162732	0.498	0.486		0.500	85.0 - 115	99.6	97.2	mg L	2.44	20.0
Beryllium, Total	1162732	0.197	0.189		0.200	85.0 - 115	98.5	94.5	mg L	4.15	20.0
Cadmium, Total	1162732	0.247	0.241		0.250	85.0 - 115	98.8	96.4	mg/L	2.46	20.0
Chromium, Total	1162732	0.484	0.480		0.500	85.0 - 115	96.8	96.0	mg L	0.830	20.0
Copper, Total	1162732	0.484	0.481		0.500	85.0 - 115	96.8	96.2	${ m mg/L}$	0.622	20.0
Lead, Total	1162896	0.478	0.482		0.500	85.0 - 115	95.6	96.4	${ m mg/L}$	0.833	20.0
Lead, Total	1162896	0.478	0.459		0.500	85.0 - 115	95.6	91.8	mg/L	4.06	20.0
Lead, Total	1162896	0.478	0.478		0.500	85.0 - 115	95.6	95.6	mg/L	0	20.0
Lead, Total	1162896	0.478	0.481		0.500	85.0 - 115	95.6	96.2	mg L	0.626	20.0
Lead, Total	1162732	0.518	0.502		0.500	85.0 - 115	104	100	mg/L	3.14	20.0
Nickel, Total	1162732		0.483		0.500	85.0 - 115	99.4	96.6	mg/L	2.86	20.0
Silver, Total	1162732	0.0983	0.0965		0.100	85.0 - 115	98.3	96.5	mg L	1.85	20.0
Thallium, Total	1162732	0.531	0.512		0.500	85.0 - 115	106	102	mg L	3.64	20.0
Zinc. Total	1162732	0.470	0.458		0.500	85.0 - 115	94.0	91.6	mg L	2.59	20.0
				L	DR				-		
P		Dandine	Known	- Units	Recover%	Limits%		File			
Parameter		Reading 1.05			105	90.0 - 110		127351578			
Arsenic, Total			1	mg/L	103	90.0 - 110		127351578			
Barium, Total		1.04	1	mg/L	94.9	90.0 - 110		127351576			
Beryllium, Total		9.49	10	mg/L	94.7	90.0 - 110		12/3313/0			

Page 8 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

	LDR											
Parameter		Reading	Кпошп	Units	Recover%	Limits*o		File				
Cadmium, Total		1.05	1	mg/L	105	90.0 - 110		127351578				
Chromium, Total		1.04	1	mg/L	104	90.0 - 110		127351578				
Copper, Total		1.04	1	mg/L	104	90.0 - 110		127351578				
Lead, Total		9.09	10	mg/L	90.9	90.0 - 110		127351576				
Nickel, Total		1.05	1	mg/L	105	90.0 - 110		127351578				
Thallium, Total		0.970	1	mg/L	97.0	90.0 - 110		127351578				
Zine, Total		1.01	1	mg/L	101	90.0 - 110		127351578				
				MRL	Check							
<u>Parameter</u>		Reading	Кпошп	Units	Recover%	Limits%		File				
Copper, Total		ND	0.001	mg/L	0	25.0 - 175		127351575				
Lead, Total		0.000949	0.001	mg/L	94.9	85.0 - 115		127351575				
				М	SD							
Parameter Parameter	Sample	MS	MSD	UNK	Known	Limits	M5%	MSD%	Units	RPD	Limit%	
Aluminum, Total	2384418	0.791	0.894	0.360	0.500	70.0 - 130	86.2	107	mg/L	21.3 *	20.0	
Ar Se, Total	2384418	0.467	0.491	0.00223	0.500	70.0 - 130	93.0	97.8	mg/L	5.03	20.0	
E , Total	2384418	0.475	0.505	0.0205	0.500	70.0 - 130	90.9	96.9	mg/L	6.39	20.0	
Beryllium, Total	2384418	0.191	0.193	ND	0.200	70.0 - 130	95.5	96.5	mg/L	1.04	20.0	
Cadmium, Total	2384418	0.229	0.240	ND	0.250	70.0 - 130	91.6	96.0	mg/L	4.69	20.0	
Chromium, Total	2384418	0.454	0.500	ND	0.500	70.0 - 130	90.8	100	mg/L	9.64	20.0	
Copper, Total	2384418	0.447	0.481	ND	0.500	70.0 - 130	89.4	96.2	mg/L	7.33	20.0	
Lead, Total	2384418	0.481	0.508	ND	0.500	70.0 - 130	96.2	102	mg/L	5.46	20.0	
Nickel, Total	2384418	0.460	0.484	0.00333	0.500	70.0 - 130	91.3	96.1	mg/L	5.12	20.0	
Silver, Total	2384418	0.0913	0.0955	ND	0.100	70.0 - 130	91.3	95.5	mg/L	4.50	20.0	
Thallium, Total	2384418	0.485	0.507	ND	0.500	70.0 - 130	97.0	101	mg/L	4.44	20.0	
Aluminum, Total	2384928	0.650	0.574	0.0727	0.500	70.0 - 130	115	100	mg/L	14.1	20.0	
Arsenic, Total	2384928	0.520	0.479	0.00713	0.500	70.0 - 130	103	94.4	mg L	8.33	20.0	
Barium, Total	2384928	0.595	0.541	0.0558	0.500	70.0 - 130	108	97.0	mg L	10.5	20.0	
Beryllium, Total	2384928	0.208	0.192	ND	0.200	70.0 - 130	104	96.0	mg/L	8.00	20.0	
Cadmium, Total	2384928	0.262	0.241	ND	0.250	70.0 - 130	105	96.4	mg L	8.35	20.0	
Chromium, Total	2384928	0.511	0.465	0.000769	0.500	70.0 - 130	102	92.8	mg/L	9.44	20.0	
Copper, Total	2384928	0.512	0.462	0.00452	0.500	70.0 - 130	101	91.5	mg L	10.4	20.0	
Lead, Total	2384928	0.543	0.497	0.00176	0.500	70.0 - 130	108	99.0	mg/l.	8.88	20.0	
Nickel, Total	2384928	0.545	0.497	0.0027	0.500	70.0 - 130	108	98.9	mg.L	9.26	20.0	
Silver, Total	2384928	0.105	0.0966	ND	0.100	70.0 - 130	105	96.6	mg L	8.33	20,0	
Thallium, Total	2384928	0.556	0.505	ND	0.500	70.0 - 130	111	101	mg.L	9.61	20.0	
Zinc, Total	2384928	0.673	0.625	0.158	0.500	70.0 - 130	103	93.4	mg/L	9.78	20.0	

EPA 200.8 5.4 1163339 Analytical Set Blank Parameter | PrepSet Reading MDLMQLUnits FileAntimony, Total 1162732 ND 0.000847 0.003 mg/L 127359754 :, Total 1162732 ND 0.000902 0.001 mg/L 127359754 Securum, Total 1162732 ND 0.00294 0.005 mg/L 127359754

Page 9 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Parameter Par	Onthico, 177 70373 0030											
Thallium, Total 1162732 ND 0,000966 0.001 mg/L CCV CCV Parameter Antimony, Total Anti					ВІ	ank						
Thallium, Total 1162732 ND 0,000966 0.001 mg/L CCV CCV Parameter Antimony, Total Anti	Parameter	PrenSet	Reading	MDI	MOL.	Units			File			
Parameter Para			-									
Parameter Reading Re	Than and Total	1102,02	112	0.000								
Antimony, Total						CV						
Aminony, Total	Parameter		Reading	Кпошп	Units	Recover%						
Antimony, Total	Antimony, Total		0.0468	0.05	mg/L	93.6	90.0 - 110		127359735			
Antimony, Total	Antimony, Total		0.0459	0.05	mg/L	91.8	90.0 - 110		127359745			
Antimony, Total Ou453 0.055 mg/L 90.6 90.0 - 110 127359782 Selenium, Total Ou515 0.055 mg/L 103 90.0 - 110 127359785 Selenium, Total Ou503 0.05 mg/L 101 90.0 - 110 127359785 Selenium, Total Ou503 0.05 mg/L 101 90.0 - 110 127359785 Selenium, Total Ou505 0.055 mg/L 101 90.0 - 110 127359785 Selenium, Total Ou505 0.055 mg/L 101 90.0 - 110 127359785 Selenium, Total Ou505 0.055 mg/L 101 90.0 - 110 127359782 Selenium, Total Ou505 0.055 mg/L 101 90.0 - 110 127359782 Selenium, Total Ou505 0.055 mg/L 104 90.0 - 110 127359815 Selenium, Total Ou505 0.055 mg/L 104 90.0 - 110 127359823 Selenium, Total Selenium, Total Ou505 0.055 mg/L 104 90.0 - 110 127359823 Selenium, Total Ou505 0.055 mg/L 101 90.0 - 110 127359823 Selenium, Total Ou505 0.055 mg/L 101 90.0 - 110 127359823 Selenium, Total Ou505 0.055 mg/L 101 90.0 - 110 127359823 Selenium, Total Ou505 0.055 mg/L 101 90.0 - 110 127359731 Selenium, Total Ou505 0.055 mg/L 101 90.0 - 110 127359731 Selenium, Total Ou505 0.055 mg/L 101 90.0 - 110 127359731 Selenium, Total Ou505 0.055 mg/L 101 90.0 - 110 127359731 Selenium, Total Ou505 0.055 mg/L 101 90.0 - 110 127359731 Selenium, Total Ou505 0.055 mg/L 101 90.0 - 110 127359731 Selenium, Total Ou505 0.055 0.055 mg/L 101 101 127359731 Selenium, Total Ou505 0.055 0.050 0.050 0.050 0.050 0.00 127359731 Selenium, Total Ou505 0.055 0.050 0.050 0.050 0.050 0.00 0.050 0.0	Antimony, Total		0.0458	0.05	mg/L	91.6	90.0 - 110		127359755			
Animony, Total	Antimony, Total		0.0459	0.05	mg/L	91.8	90.0 - 110		127359765			
Sclenium, Total 0.0515 0.05 mg/L 0.03 90.0 - 110 127359735 127	Antimony, Total		0.046	0.05	mg/L	92.0	90.0 - 110		127359775			
Sclenium, Total 0.0493 0.05 mg/L 98.6 90.0 - 110 127359755 127	Antimony, Total		0.0453	0.05	mg/L	90.6	90.0 - 110		127359782			
Sclenium, Total 0.0503 0.05 mg/L 0.11 0.00-110 127359765 127359765 127359765 127359775 12735	Selenium, Total		0.0515	0.05	mg/L	103	90.0 - 110		127359735			
Sclemium, Total 0.0496 0.05 mg/L 99.2 90.0 - 110 127359775 127359782 Sclemium, Total 0.0506 0.050 mg/L 101 90.0 - 110 127359782 Sclemium, Total 0.052 0.05 mg/L 104 90.0 - 110 127359815 Sclemium, Total 0.052 0.05 mg/L 104 90.0 - 110 127359823 Sclemium, Total 0.052 0.0504 0.05 mg/L 98.2 90.0 - 110 127359823 Sclemium, Total 0.0504 0.05 mg/L 101 90.0 - 110 127359823 Sclemium, Total 0.0504 0.05 mg/L 101 90.0 - 110 127359823 Sclemium, Total 0.0504 0.05 mg/L 101 90.0 - 110 127359823 Sclemium, Total 0.0504 0.05 mg/L 101 90.0 - 110 127359823 Sclemium, Total 0.0504 0.05 mg/L 101 90.0 - 110 127359823 Sclemium, Total 0.0504 0.05 mg/L 101 90.0 - 110 127359823 Sclemium, Total 0.0504 0.05 mg/L 101 90.0 - 110 127359823 Sclemium, Total 0.0504 0.05 mg/L 101 90.0 - 110 127359823 Sclemium, Total 0.0504 0.05 mg/L 101 90.0 - 110 127359823 Sclemium, Total 0.0504 0.05 mg/L 101 90.0 - 110 127359823 Sclemium, Total 0.0504 0.05 mg/L 101 90.0 - 110 127359823 Sclemium, Total 0.0504 0.05 mg/L 0.0504 0.05 mg/L 101 0.0504	Selenium, Total		0.0493	0.05	mg/L	98.6	90.0 - 110		127359755			
Sclenium, Total 0.0506	Selenium, Total		0.0503	0.05	mg/L	101	90.0 - 110		127359765			
Sclenium, Total 0.054	Selenium, Total		0.0496	0.05	mg/L	99.2	90.0 - 110		127359775			
Scientium, Total 0.052 0.05 mg/L 104 90.0 - 110 127359815 127359823 Scientium, Total 0.0491 0.05 mg/L 101 90.0 - 110 127359823 Scientium, Total 0.0504 0.050 mg/L 101 90.0 - 110 127359823 Scientium, Total 100	Selenium, Total		0.0506	0.05	mg/L	101	90.0 - 110		127359782			
Scienium, Total 0.0491 0.05 mg/L 98.2 90.0 - 110 127359823 127359827 127	Selenium, Total		0.0544	0.05	mg/L	109	90.0 - 110		127359804			
Selenium, Total 0.0504 0.05 mg/L 101 90.0 - 110 127359827	Selenium, Total		0.052	0.05	mg/L	104	90.0 - 110		127359815			
Parameter Reading Known Units Recover% Limits% File Limits% File Limits% File Limits% File Limits% File Limits%	Selenium, Total		0.0491	0.05	mg/L	98.2	90.0 - 110		127359823			
Parameter	Selenium, Total		0.0504	0.05	mg/L	101	90.0 - 110		127359827			
Parameter					i	cv						
Antimony, Total Selenium, Total 0.0504 0.055 mg/L 0.057 mg/L 0.050 mg/L 0.050 0.0478 0.05 mg/L 0.050 0.0478 0.05 mg/L 0.050 0.0478 0.05 mg/L 0.050 0.050 0.050 0.050 0.05000 0.05000 0.05000 0.05000 0.05000 0.05000 0.05000 0.05000 0.0									777			
Scientium, Total 0.0478 0.05 mg/L 95.6 90.0 - 110 127359731			-									
Parameter	• •				=							
PrepSet LCS LCSD Known Limits% LCS% LCSD% Units RPD Limits% LCSM LCSD% LCSD% Units RPD Limits% LCSM LCSD% LCSD% Units RPD Limits% LCSM LCSD% Units RPD Limits% LCSM LCSD% Units RPD Limits% LCSM Units LCSM Units LCSM Units LCSM Units U	Selenium, Total		0.0478	0.05	mg/L	95.6	90.0 - 110		127359731			
Antimony, Total 1162732 0.524 0.520 0.500 85.0 - 115 105 104 mg L 0.766 20.0 Arsenic, Total 1162732 0.503 0.505 0.500 85.0 - 115 101 101 mg L 0.397 20.0 Selenium, Total 1162732 0.503 0.502 0.500 85.0 - 115 101 100 mg L 0.199 20.0 Thallium, Total 1162732 0.482 0.486 0.500 85.0 - 115 96.4 97.2 mg L 0.826 20.0 MSD MSD					LCS	Dup						
Antimony, Total 1162732 0.524 0.520 0.500 85.0 - 115 105 104 mg L 0.766 20.0 Arsenic, Total 1162732 0.503 0.505 0.500 85.0 - 115 101 101 mg L 0.397 20.0 Selenium, Total 1162732 0.503 0.502 0.500 85.0 - 115 101 100 mg L 0.199 20.0 Thallium, Total 1162732 0.482 0.486 0.500 85.0 - 115 96.4 97.2 mg L 0.826 20.0 MSD Parameter	Parameter	PrepSet	LC S	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Arsenic, Total 1162732 0.503 0.505 0.500 85.0 - 115 101 101 mg L 0.397 20.0 Selenium, Total 1162732 0.503 0.502 0.500 85.0 - 115 101 100 mg/L 0.199 20.0 Thallium, Total 1162732 0.482 0.486 0.500 85.0 - 115 96.4 97.2 mg/L 0.826 20.0 Selenium, Total 1162732 0.482 0.486 0.500 85.0 - 115 96.4 97.2 mg/L 0.826 20.0 Selenium, Total Sample MS MSD UNK Known Limits MS° MSD% Units RPD Limit% Antimony, Total 2384418 0.523 0.525 0.00128 0.500 70.0 - 130 104 105 mg/L 0.383 20.0 Arsenic, Total 2384418 0.517 0.516 ND 0.500 70.0 - 130 103 103 mg/L 0.194 20.0 Selenium, Total 2384418 0.493 0.497 ND 0.500 70.0 - 130 98.6 99.4 mg/L 0.808 20.0 Thallium, Total 2384418 0.465 0.465 ND 0.500 70.0 - 130 93.0 93.0 mg/L 0 20.0 Selenium, Total 163369 Selenium, Total 163369 Selenium, Total 163369 Selenium, Total 162732 ND 0.0039 0.005 mg/L Units File Aluminum. Total 1162732 ND 0.0039 0.005 mg/L Units I27366894		-		0.520			85.0 - 115	105	104	mg. L	0.766	20.0
Selenium, Total 1162732 0.503 0.502 0.500 85.0 - 115 101 100 mg/L 0.199 20.0						0.500	85.0 - 115	101	101	mg/L	0.397	20.0
Thallium, Total 1162732 0.482 0.486 0.500 85.0 - 115 96.4 97.2 mg/L 0.826 20.0 MSD								101	100	mg/L	0.199	20.0
MSD Parameter Sample MS MSD UNK Known Limits MS°o MSD% Units RPD Limit% Antimony, Total 2384418 0.523 0.525 0.00128 0.500 70.0 - 130 104 105 mg°L 0.383 20.0 Arsenic, Total 2384418 0.517 0.516 ND 0.500 70.0 - 130 103 mg°L 0.194 20.0 Selenium, Total 2384418 0.493 0.497 ND 0.500 70.0 - 130 98.6 99.4 mg°L 0.808 20.0 Thallium, Total 1163369 EPA 200.8 5.4 Blank Parameter PrepSet Reading MDL MQL Units File Aluminum, Total 1162732 ND 0.0039 0.005 mg/L Units File Aluminum, Total 1162732 ND 0.0039 0.005 mg/L Units <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>96.4</td><td>97.2</td><td>mg/L</td><td>0.826</td><td>20.0</td></td<>								96.4	97.2	mg/L	0.826	20.0
Parameter Sample MS MSD UNK Known Limits MS° MSD% Units RPD Limit%	,				м					_		
Antimony, Total 2384418 0.523 0.525 0.00128 0.500 70.0 - 130 104 105 mg L 0.383 20.0 Arsenic, Total 2384418 0.517 0.516 ND 0.500 70.0 - 130 103 103 mg L 0.194 20.0 Selenium, Total 2384418 0.493 0.497 ND 0.500 70.0 - 130 98.6 99.4 mg L 0.808 20.0 Thallium, Total 2384418 0.465 0.465 ND 0.500 70.0 - 130 93.0 93.0 mg L 0 20.0 Blank Parameter Aluminom, Total 1162732 ND 0.0039 0.005 mg/L File Aluminom, Total 1162732 ND 0.0039 0.005 mg/L 127360894	_		1.40	1.00			F 1 1	3.500	1.40710/	11-14-	DDD	F 11-07
Arsenic, Total 2384418 0.517 0.516 ND 0.500 70.0 - 130 103 103 mg/L 0.194 20.0 Selenium, Total 2384418 0.493 0.497 ND 0.500 70.0 - 130 98.6 99.4 mg/L 0.808 20.0 Thallium, Total 2384418 0.465 0.465 ND 0.500 70.0 - 130 93.0 93.0 mg/L 0 20.0 EPA 200.8 5.4 Selenium, Total 1162732 ND 0.0039 0.005 mg/L 127360894		=										
Selenium, Total 2384418 0.493 0.497 ND 0.500 70.0 - 130 98.6 99.4 mg/L 0.808 20.0 Thallium, Total 2384418 0.465 ND 0.500 70.0 - 130 93.0 93.0 mg/L 0 20.0 Blank Parameter PrepSet Reading MDL MQL Units File Aluminum, Total 1162732 ND 0.0039 0.005 mg/L 127360894	•											
Thallium, Total 2384418 0.465 0.465 ND 0.500 70.0 - 130 93.0 93.0 mg/L 0 20.0 Analytical Set 1163369 EPA 200.8 5.4 Blank Parameter										-		
Analytical Set 1163369 Parameter PrepSet Reading MDL MQL Units File Aluminum, Total 1162732 ND 0.0039 0.005 mg/L 127360894	•									-		
Blank Parameter PrepSet Reading MDL MQL Units File Aluminum, Total 1162732 ND 0.0039 0.005 mg/L 127360894	Thallium, Total	2384418	0.465	0.465	ND	0.500	70.0 - 130	93.0	93.0	mg/L		20.0
Blank Parameter PrepSet Reading MDL MQL Units File Aluminum, Total 1162732 ND 0.0039 0.005 mg/L 127360894	Analytical Set	1163369									EPA :	200.8 5.4
Parameter PrepSet Reading MDL MQI. Units File Aluminum. Total 1162732 ND 0.0039 0.005 mg/L 127360894	, allay occionos				ы	ank						
Aluminum, Total 1162732 ND 0.0039 0.005 mg/L 127360894									F.1			
•		-	-									
CCV	Aluminum, Total	1162732	ND	0.0039	0.005	mg/L			127360894			
					C	CV						

Email: Kilgore.ProjectManagement@spllabs.com

Parameter

Recover% Limits%

Units

Reading Known

File

Page 10 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

				(ccv						
Parameter		Reading	Кпомп	Units	Recover%	Limits 02		File			
Aluminum, Total		0.0524	0.05	mg/L	105	90.0 - 110		127360895			
Aluminum, Total		0.0511	0.05	mg/L	102	90.0 - 110		127360905			
					ICV						
<u>Parameter</u>		Reading	Кпошп	Units	Recover%	I.imits%		File			
Aluminum, Total		0.051	0.05	mg/L	102	90.0 - 110		127360871			
				LC	S Dup						
<u>Parameter</u>	PrcpSct	I.CS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Aluminum, Total	1162732	0.536	0.533		0.500	85.0 - 115	107	107	mg∕I.	0.561	20.0
				1/	MSD						
<u>Parameter</u>	Sample	MS	MSD	U N K	Кпошп	Limits	MS%	MSD%	Units	RPD	Limit%
Aluminum, Total	2384418	0.898	0.933	0.387	0.500	70.0 - 130	102	109	mg/L	6.62	20.0
Analytical Set	1163705									EPA	A 245.7 2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				В	lank						
į ter	PrepSet	Reading	MDL	MQL	Units			File			
Mercury, Total (low level)	1163631	ND	1.20	4.00	ng/L			127367339			
					ccv						
Parameter		Reading	Known	Units	Recover%	Limits ^a 6		File			
Mercury, Total (low level)		24.4	25.0	ng/L	97.6	87.0 - 113		127367338			
Mercury, Total (low level)		25.9	25.0	ng/L	104	87.0 - 113		127367349			
Mercury, Total (low level)		25.1	25.0	ng/L	100	87.0 - 113		127367360			
Mercury, Total (low level)		26.4	25.0	ng/L	106	87.0 - 113		127367367			
Mercury, Total (low level)		26.4	25.0	ng/L	106	87.0 - 113		127367369			
					ICL						
Parameter		Reading	Кложп	Units	Recover%	f.imits*o		File			
Mercury, Total (low level)		ND	50.0	ng/L	0	90.0 - 110		127367336			
				i	ICV						
Parameter		Reading	Known	Units	Recover%	Limits*o		File			
Mercury, Total (low level)		27.4	25.0	ng/L	110	90.0 - 110		127367337			
				LC	S Dup						
Parameter Parameter	PrepSet	LCS	LCSD		Known	Limits o	LCS%	LCSD%	Units	RPD	Limit%
Mercury, Total (low level)	1163631	25.5	24.0		25.0	76.0 - 115	102	96.0	ng. L	6.06	50.0
				1	NSD						
<u>Parameter</u>	Sample	MS	MSD	UNK	Known	Limits	MS°å	MSD%	Units	RPD	Limit%
Mcrcury, Total (low level)	2384547	86.1	85.6	8.00	106	63.0 - 111	73.7	73.2	ng L	0.642	18.0
Mercury, Total (low level)	2385489	26.0	24.3	ND	26.6	63.0 - 111	97.7	91.4	ng/L	6.76	18.0

Analytical Set

1162696

EPA 624.1

Page 11 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

				В	FB			
Parameter	Sample	Ref.Mass	Reading	%	Limits**		File	
BFB Mass 173	1162696	174	118	1.0	0 - 2.00		127346677	
BFB Mass 174	1162696	95.0	12411	63.8	50.0 - 100		127346677	
BFB Mass 175	1162696	174	931	7.5	5.00 - 9.00		127346677	
BFB Mass 176	1162696	174	11929	96.1	95.0 - 101		127346677	
BFB Mass 177	1162696	176	813	6.8	5.00 - 9.00		127346677	
BFB Mass 50	1162696	95.0	3306	17.0	15.0 - 40.0		127346677	
BFB Mass 75	1162696	95.0	9464	48.7	30.0 - 60.0		127346677	
BFB Mass 95	1162696	95.0	19450	100.0	100 - 100		127346677	
BFB Mass 96	1162696	95.0	1396	7.2	5.00 - 9.00		127346677	
				Bla	ink			
Parameter	PrepSet	Reading	MDL	MQL	Units		File	
Acrolein	1162696	ND	2.33	4.00	ug/L		127346681	
Acrylonitrile	1162696	ND	0.998	1.00	ug/L		127346681	
				IS A	=			
Parameter	Sample	Туре	Reading	CCVISM	Low	High	File	PrepSet
1,4-DichlorobenzeneD4 (ISTD)	1162696	LCS	128000	124800	62400	187200	127346679	1162696
1,4-DichlorobenzeneD4 (ISTD)	1162696	LCS Dup	127700	124800	62400	187200	127346680	1162696
1,4-DichlorobenzeneD4 (ISTD)	1162696	Blank	111700	124800	62400	187200	127346681	1162696
ChlorobenzeneD5 (ISTD)	1162696	LCS	253000	246600	123300	369900	127346679	1162696
ChlorobenzeneD5 (ISTD)	1162696	LCS Dup	257200	246600	123300	369900	127346680	1162696
ChlorobenzeneD5 (ISTD)	1162696	Blank	233100	246600	123300	369900	127346681	1162696
1,4-DichlorobenzeneD4 (ISTD)	2384288	MS	109800	124800	62400	187200	127346683	1162696
1,4-DichlorobenzeneD4 (ISTD)	2384288	MSD	107100	124800	62400	187200	127346684	1162696
ChlorobenzeneD5 (ISTD)	2384288	MS	227000	246600	123300	369900	127346683	1162696
ChlorobenzeneD5 (ISTD)	2384288	MSD	218200	246600	123300	369900	127346684	1162696
1,4-DichlorobenzeneD4 (ISTD)	2384667	Unknown	121800	124800	62400	187200	127346685	1162696
ChlorobenzeneD5 (ISTD)	2384667	Unknown	259100	246600	123300	369900	127346685	1162696
				IS Ret	:Time			
Parameter .	Sample	Туре	Keading	CCVISM	Low	High	File	PrepSet
1,4-DichlorobenzeneD4 (ISTD)	1162696	LCS	11.93	11.93	11.87	11.99	127346679	1162696
1,4-DichlorobenzeneD4 (ISTD)	1162696	LCS Dup	11.93	11.93	11.87	11.99	127346680	1162696
1,4-DichlorobenzeneD4 (ISTD)	1162696	Blank	11.93	11.93	11.87	11.99	127346681	1162696
ChlorobenzeneD5 (ISTD)	1162696	LCS	9.561	9.561	9.501	9.621	127346679	1162696
ChlorobenzeneD5 (ISTD)	1162696	LCS Dup	9.561	9.561	9.501	9.621	127346680	1162696
ChlorobenzeneD5 (ISTD)	1162696	Blank	9.561	9.561	9.501	9.621	127346681	1162696
1,4-DichlorobenzeneD4 (ISTD)	2384288	MS	11.93	11.93	11.87	11.99	127346683	1162696
1,4-DichlorobenzeneD4 (ISTD)	2384288	MSD	11.93	11.93	11.87	11.99	127346684	1162696
ChlorobenzeneD5 (ISTD)	2384288	MS	9.561	9.561	9.501	9.621	127346683	1162696
ChlorobenzeneD5 (ISTD)	2384288	MSD	9.561	9.561	9.501	9.621	127346684	1162696
1,4-DichlorobenzeneD4 (ISTD)	2384667	Unknown	11.93	11.93	11.87	11.99	127346685	1162696
ChlorobenzeneD5 (ISTD)	2384667	Unknown	9.561	9.561	9.501	9.621	127346685	1162696

Page 12 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

, , +5/55-											
				LCS	S Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits*o	LCS%	I.CSD%	Units	RPD	Limit%
Acrolein	1162696	14.8	15.2		40.0	60.0 - 140	37.0 *	38.0 *	ug/L	2.67	30.0
Acrylonitrile	1162696	36.5	35.2		40.0	60.0 - 140	91.2	88.0	ug/L	3.57	30.0
				M	1SD						
Parameter Parameter	Sample	MS	MSD	UNK	Known	Limits	MS°o	MSD%	Units	RPD	Limit%
Acrolein	2384288	75.1	167	ND	400	40.0 - 160	18.8 *	41.8	ug/L	75.9 *	60.0
Acrylonitrile	2384288	451	713	ND	400	40.0 - 160	113	178 *	ug/L	45.0	60.0
				Surr	ogate						
Parameter	Sample	Туре	Reading	Кпошп	Units	Recover%	Limits%	File			
1,2-DCA-d4 (SURR)	1162696	LCS	20.4	20.0	ug/L	102	70.0 - 130	127346679			
1,2-DCA-d4 (SURR)	1162696	LCS Dup	21.4	20.0	ug/L	107	70.0 - 130	127346680			
1,2-DCA-d4 (SURR)	1162696	Blank	21.3	20.0	ug/L	106	70.0 - 130	127346681			
Bromofluorobenzene (SURR)	1162696	LCS	19.9	20.0	ug/L	99.5	70.0 - 130	127346679			
Bromofluorobenzene (SURR)	1162696	LCS Dup	19.9	20.0	ug/L	99.5	70.0 - 130	127346680			
Bromofluorobenzene (SURR)	1162696	Blank	20.1	20.0	ug/L	100	70.0 - 130	127346681			
Di nofluoromethane (SURR)	1162696	LCS	20.4	20.0	ug/L	102	70.0 - 130	127346679			
L .ofluoromethane (SURR)	1162696	LCS Dup	20.8	20.0	ug/L	104	70.0 - 130	127346680			
Dibromofluoromethane (SURR)	1162696	Blank	20.5	20.0	ug/L	102	70.0 - 130	127346681			
TolueneD8 (SURR)	1162696	LCS	20.5	20.0	ug/L	102	70.0 - 130	127346679			
TolueneD8 (SURR)	1162696	LCS Dup	20.2	20.0	ug/L	101	70.0 - 130	127346680			
TolueneD8 (SURR)	1162696	Blank	20.5	20.0	ug/L	102	70.0 - 130	127346681			
1,2-DCA-d4 (SURR)	2384288	MS	21.3	20.0	ug/L	106	70.0 - 130	127346683			
1,2-DCA-d4 (SURR)	2384288	MSD	29.8	20.0	ug/L	149 *	70.0 - 130	127346684			
Bromofluorobenzene (SURR)	2384288	MS	20.3	20.0	ug/L	102	70.0 - 130	127346683			
Bromofluorobenzene (SURR)	2384288	MSD	20.4	20.0	ug/L	102	70.0 - 130	127346684			
Dibromofluoromethane (SURR)	2384288	MS	20.9	20.0	ug/L	104	70.0 - 130	127346683			
Dibromofluoromethane (SURR)	2384288	MSD	26.9	20.0	ug/L	134 *	70.0 - 130	127346684			
TolueneD8 (SURR)	2384288	MS	20.2	20.0	ug/L	101	70.0 - 130	127346683			
TolueneD8 (SURR)	2384288	MSD	23.8	20.0	ug/L	119	70.0 - 130	127346684			
1,2-DCA-d4 (SURR)	2384667	Unknown	21.1	20.0	ug/L	106	70.0 - 130	127346685			
Bromofluorobenzene (SURR)	2384667	Unknown	21.1	20.0	ug/L	106	70.0 - 130	127346685			
Dibromofluoromethane (SURR)	2384667	Unknown	20.2	20.0	ug/L	101	70.0 - 130	127346685			
TolueneD8 (SURR)	2384667	Unknown	20.3	20.0	ug/L	102	70.0 - 130	127346685			
		•									

	Analytical Set	1162699					EPA	624.1
						BFB		
<u>Parameter</u>		Sample	RefMass	Reading	20	Limits of	File	
BFB Mass 173		1162699	174	118	1.0	0 - 2.00	127346708	
BFB Mass 174		1162699	95.0	12411	63.8	50.0 - 100	127346708	
BFB Mass 175		1162699	174	931	7.5	5.00 - 9.00	127346708	
BFB Mass 176		1162699	174	11929	96.1	95.0 - 101	127346708	
BFB Mass 177		1162699	176	813	6.8	5.00 - 9.00	127346708	
F 'ass 50		1162699	95.0	3306	17.0	15.0 - 40.0	127346708	
Bra Mass 75		1162699	95.0	9464	48.7	30.0 - 60.0	127346708	

O SPL... The Science of Sure

Page 13 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

					ьгь			
Parameter	Sample:	RefMass	Reading	%	Limits**0		File	
BFB Mass 95	1162699	95.0	19450	100.0	100 - 100		127346708	
BFB Mass 96	1162699	95.0	1396	7.2	5.00 - 9.00	•	127346708	
				ВІ	ank			
Parameter	PrepSet	Reading	MDL	MQL	Units		File	
(MTBE) tert-Butylmethylether	1162699	ND	0.638	1.00	ug/L		127346712	
1,1,1-Trichloroethane	1162699	ND	0.531	1.00	ug/L		127346712	
1,1,2-Trichloroethane	1162699	ND	0.563	1.00	ug/L ug/L		127346712	
1,1-Dichloroethane	1162699	ND	0.593	1.00	ug/L		127346712	
1,1-Dichloroethylene	1162699	ND	0.574	1.00	ug/L		127346712	
1,2-Dibromoethane (EDB)	1162699	ND	0.562	1.00	ug/L		127346712	
1,2-Dichloroethane	1162699	ND	0.590	1.00	ug/L		127346712	
1,2-Dichloropropane	1162699	ND	0.615	1.00	ug/L		127346712	
Benzene	1162699	ND	0.453	1.00	ug/L		127346712	
Bromodichloromethane	1162699	ND	0.409	1.00	ug/L		127346712	
Bromoform	1162699	ND	0.500	1.00	ug/L		127346712	
Carbon Tetrachloride	1162699	ND	0.299	1.00	ug/L		127346712	
Chlorobenzene	1162699	ND	0.558	1.00	ug/L		127346712	
Chloroethane	1162699	ND	1.12	1.12	ug/L		127346712	
Chloroform	1162699	ND	0.463	1.00	ug/L		127346712	
Chloromethane (Methyl Chloride)	1162699	ND	0.811	1.00	ug/L		127346712	
cis-1,3-Dichloropropene	1162699	ND	0.660	1.00	ug/L		127346712	
Dibromochloromethane	1162699	ND	0.311	1.00	ug/L		127346712	
Dichloromethane	1162699	ND	1.02	1.02	ug/L		127346712	
Ethylbenzene	1162699	ND	0.498	1.00	ug/L		127346712	
m-Dichlorobenzene (1,3-DCB)	1162699	ND	0.619	1.00	ug/L		127346712	
Methyl ethyl ketone (Butanone)	1162699	ND	0.742	1.00	ug/L		127346712	
o-Dichlorobenzene (1,2-DCB)	1162699	ND	0.532	1.00	ug/L		127346712	
p-Dichlorobenzene (1,4-DCB)	1162699	ND	0.837	1.00	ug/L		127346712	
Tetrachloroethylene	1162699	ND	0.607	1.00	ug/L		127346712	
Toluene	1162699	ND	0.655	1.00	ug/L		127346712	
trans-1,2-Dichloroethylene	1162699	ND	0.701	1.00	ug/L		127346712	
trans-1,3-Dichloropropene	1162699	ND	0.627	1.00	ug/L		127346712	
Trichloroethylene	1162699	ND	0.521	1.00	ug/L		127346712	
Vinyl chloride	1162699	ND	0.702	1.00	ug/L		127346712	
				IS A	reas			
Parameter	Sample	Туре	Reading	CCVISM	Low	High	File	PrepSet
1,4-DichlorobenzeneD4 (ISTD)	1162699	LCS	128000	124800	62400	187200	127346710	1162699
1,4-DichlorobenzeneD4 (ISTD)	1162699	LCS Dup	127700	124800	62400	187200	127346711	1162699
1,4-DichlorobenzeneD4 (ISTD)	1162699	Blank	111700	124800	62400	187200	127346712	1162699
ChlorobenzeneD5 (ISTD)	1162699	LCS	253000	246600	123300	369900	127346710	1162699
ChlorobenzeneD5 (ISTD)	1162699	LCS Dup	257200	246600	123300	369900	127346711	1162699
ChlorobenzeneD5 (ISTD)	1162699	Blank	233100	246600	123300	369900	127346712	1162699
1,4-DichlorobenzeneD4 (ISTD)	2384288	MS	109800	124800	62400	187200	127346714	1162699
* *								

BFB

Page 14 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

IS Areas												
<u>Parameter</u>	Sample	Type	Reading	CCVISM	Low	High		File	PrepSe	•		
1,4-DichlorobenzeneD4 (ISTD)	2384288	MSD	107100	124800	62400	187200		127346715	116269			
ChlorobenzeneD5 (ISTD)	2384288	MS	227000	246600	123300	369900		127346714	116269			
ChlorobenzeneD5 (ISTD)	2384288	MSD	218200	246600	123300	369900		127346715	116269	9		
1,4-DichlorobenzeneD4 (ISTD)	2384667	Unknown	113800	124800	62400	187200		127346716	116269	9		
ChlorobenzeneD5 (ISTD)	2384667	Unknown	236700	246600	123300	369900		127346716	116269			
				IS Ret	tTime							
Parameter	Sample	Туре	Reading	CCVISM	Low	High		File	PrepSet			
1,4-DichlorobenzeneD4 (ISTD)	1162699	LCS	11.93	11.93	11.87	11.99		127346710	116269			
1,4-DichlorobenzeneD4 (ISTD)	1162699	LCS Dup	11.93	11.93	11.87	11.99		127346711	116269			
1,4-DichlorobenzeneD4 (ISTD)	1162699	Blank	11.93	11.93	11.87	11.99		127346712	116269			
ChlorobenzeneD5 (ISTD)	1162699	LCS	9.561	9.561	9.501	9.621		127346710	116269			
ChlorobenzeneD5 (ISTD)	1162699	LCS Dup	9.561	9.561	9.501	9.621		127346711	116269			
ChlorobenzeneD5 (ISTD)	1162699	Blank	9.561	9.561	9.501	9.621		127346712	1162699			
1,4-DichlorobenzeneD4 (ISTD)	2384288	MS	11.93	11.93	11.87	11.99		127346714	1162699			
1,4-DichlorobenzeneD4 (ISTD)	2384288	MSD	11.93	11.93	11.87	11.99		127346715	1162699			
C' 'renzeneD5 (ISTD)	2384288	MS	9.561	9.561	9.501	9.621		127346714	1162699			
Civ. oenzeneD5 (ISTD)	2384288	MSD	9.561	9.561	9.501	9.621		127346715	1162699			
1,4-DichlorobenzeneD4 (ISTD)	2384667	Unknown	11.91	11.93	11.87	11.99		127346716	1162699			
ChlorobenzeneD5 (ISTD)	2384667	Unknown		9.561	9.501	9.621	*	127346716	1162699			
				LCS		,,,,,,		12/340/10	110207	,		
Parameter	PrepSet	1.00	r ccn		•	7 1 1 4	. 000	5.00004				
(MTBE) tert-Butylmethylether	1162699	LCS	LCSD		Known	Limits%	LC5%	I.CSD%	Units	RPD	Limit%	
1,1,1-Trichloroethane		16.1	16.2		20.0	70.8 - 125	80.5	81.0	ug/L	0.619	30.0	
1,1,2,2-Tetrachloroethane	1162699	17.6	17.2		20.0	70.0 - 130	88.0	86.0	ug L	2.30	21.0	
1.1.2-Trichloroethane	1162699	18.4	18.6		20.0	60.0 - 140	92.0	93.0	ug/L	1.08	36.0	
1,1-Dichloroethane	1162699	17.6	17.3		20.0	70.0 - 130	88.0	86.5	ug/L	1.72	27.0	
	1162699	17.1	16.9		20.0	70.0 - 130	85.5	84.5	ug/L	1.18	24.0	
1,1-Dichloroethylene	1162699	16.5	15.6		20.0	50.0 - 150	82.5	78.0	ug L	5.61	40.0	
1,2-Dibromoethane (EDB) 1,2-Dichloroethane	1162699	18.2	18.3		20.0	78.4 - 122	91.0	91.5	ug/L	0.548	30.0	
	1162699	18.3	18.1		20.0	70.0 - 130	91.5	90.5	ug/L	1.10	29.0	
1,2-Dichloropropane Benzene	1162699	17.0	16.7		20.0	35.0 - 165	85.0	83.5	ug L	1.78	69.0	
Bromodichloromethane	1162699	17.6	17.2		20.0	65.0 - 135	88.0	86.0	ug L	2.30	33.0	
Bromoform	1162699	17.0	16.6		20.0	65.0 - 135	85.0	83.0	ug L	2.38	34.0	
Bromomethane (Methyl Bromi	1162699	18.4	18.7		20.0	70.0 - 130	92.0	93.5	ug L	1.62	25.0	
Carbon Tetrachloride	1162699	16.8	16.0		20.0	15.0 - 185	84.0	80.0	ug. L	4.88	90.0	
	1162699	18.4	17.8		20.0	70.0 - 130	92.0	89.0	ug/L	3.31	26.0	
Chlorobenzene	1162699	17.8	17.3		20.0	65.0 - 135	89.0	86.5	ug/L	2.85	29.0	
Chloroethane	1162699	16.1	15,4		20.0	40.0 - 160	80.5	77.0	ug L	4,44	47.0	
Chloroform	1162699	17.5	17.2		20.0	70.0 - 135	87.5	86.0	ug. L	1.73	32.0	
Chloromethane (Methyl Chloride)	1162699	14.3	13.8		20.0	0.100 - 205	71.5	69.0	ug L	3.56	472	
cis-1,3-Dichloropropene	1162699	16.5	16.4		20.0	25.0 - 175	82.5	82.0	ug L	0.608	79.0	
Dibromochloromethane	1162699	17.4	17.1		20.0	70.0 - 135	87.0	85.5	ug L	1.74	30.0	
r omethane	1162699	16.4	16.0		20.0	60.0 - 140	82.0	80.0	ug L	2.47	192	
E. enzene	1162699	17.6	17.5		20.0	60.0 - 140	88.0	87.5	ug L	0.570	34.0	

Page 15 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

o											
				LCS	Dup						
Parameter	PrepSet	LCS	LCSD		Кпомп	Limits o	LCS%	LCSD%	Units	RPD	Limit%
m-Dichlorobenzene (1,3-DCB)	1162699	17.9	17.6		20.0	70.0 - 130	89.5	88.0	ug/L	1.69	24.0
Methyl ethyl ketone (Butanone)	1162699	17.2	17.1		20.0	62.3 - 136	86.0	85.5	ug/L	0.583	30.0
o-Dichlorobenzene (1,2-DCB)	1162699	18.1	17.2		20.0	65.0 - 135	90.5	86.0	ug/L	5.10	31.0
p-Dichlorobenzene (1,4-DCB)	1162699	18.2	17.7		20.0	65.0 - 135	91.0	88.5	ug/L	2.79	31.0
Tetrachloroethylene	1162699	17.0	16.5		20.0	70.0 - 130	85.0	82.5	ug/L	2.99	23.0
Toluene	1162699	17.4	17.4		20.0	70.0 - 130	87.0	87.0	ug/L	0	22.0
trans-1,2-Dichloroethylene	1162699	15.5	14.8		20.0	70.0 - 130	77.5	74.0	ug/L	4,62	27.0
trans-1,3-Dichloropropene	1162699	17.9	17.4		20.0	50.0 - 150	89.5	87.0	ugI.	2.83	52.0
Trichloroethylene	1162699	17.8	17.0		20.0	65.0 - 135	89.0	85.0	ug/L	4.60	29.0
Vinyl chloride	1162699	22.4	21.3		20.0	5.00 - 195	112	106	ug/L	5.50	100
				М	SD						
Parameter	Sample	MS	MSD	UNK	Known	Limits	M5%	MSD%	Units	RPD	Limit%
(MTBE) tert-Butylmethylether	2384288	192	228	ND	200	28.8 - 124	96.0	114	ug.L	17.1	30.0
1,1,1-Trichloroethane	2384288	177	229	ND	200	52.0 - 162	88.5	114	ug/L	25.6	36.0
1,1,2,2-Tetrachloroethane	2384288	171	169	ND	200	46.0 - 157	85.5	84.5	ug/L	1.18	61.0
1,1,2-Trichloroethane	2384288	169	202	ND	200	52.0 - 150	84.5	101	ug/L	17.8	45.0
1,1-Dichloroethane	2384288	191	264	ND	200	59.0 - 155	95.5	132	ug/L	32.1	40.0
1,1-Dichloroethylene	2384288	191	256	ND	200	0,100 - 234	95.5	128	ug/L	29.1	32.0
1,2-Dibromoethane (EDB)	2384288	176	175	ND	200	49.3 - 120	88.0	87.5	ug/L	0.570	30.0
1,2-Dichloroethane	2384288	174	249	ND	200	49.0 - 155	87.0	124	ug/L	35.5	49.0
1,2-Dichloropropane	2384288	166	241	ND	200	0.100 - 210	83.0	120	ug/L	36.9	55.0
• •	2384288	173	246	ND	200	37.0 - 151	86.5	123	ug/L	34.8	61.0
Benzene Bromodichloromethane	2384288	168	200	ND	200	35.0 - 155	84.0	100	ug/L	17.4	56.0
Bromoform	2384288	183	178	ND	200	45.0 - 169	91.5	89.0	ug/L	2.77	42.0
Bromomethane (Methyl Bromi	2384288	162	176	ND	200	0.100 - 242	81.0	88.0	ug/L	8.28	61.0
Carbon Tetrachloride	2384288	180	232	ND	200	70.0 - 140	90.0	116	ug/L	25.2	41.0
Chlorobenzene	2384288	174	169	ND	200	37.0 - 160	87.0	84.5	ug/L	2.92	53.0
Chloroethane	2384288	148	176	ND	200	14.0 - 230	74.0	88.0	ug/L	17.3	78.0
	2384288	173	243	ND	200	51.0 - 138	86.5	122	ug/L	33.7	54.0
Chloroform Chloromathona (Mathyd Chlorida)	2384288	1/3	148	ND	200	0.100 - 273	70.5	74.0	ug/L	4.84	60.0
Chloromethane (Methyl Chloride) cis-1,3-Dichloropropene	2384288	165	197	ND	200	0.100 - 227	82.5	98.5	ug/L	17.7	58.0
Dibromochloromethane	2384288	166	178	ND	200	53.0 - 149	83.0	89.0	ug/L	6.98	50.0
	2384288	190	252	ND	200	0.100 - 221	95.0	126	ug/L	28.1 *	28.0
Dichloromethane	2384288	175	171	ND	200	37.0 - 162	87.5	85.5	ug/L	2.31	63.0
Ethylbenzene	2384288	173	171	ND	200	59.0 - 156	88.5	86.0	ug/L	2.87	43.0
m-Dichlorobenzene (1,3-DCB)	2384288	191	345	ND	200	0.100 - 211		172	ug/L	57.5 *	30.0
Methyl ethyl ketone (Butanone) o-Dichlorobenzene (1,2-DCB)	2384288	185	181	ND	200	18.0 - 190	92.5	90.5	ug/L	2.19	57.0
	2384288	180	171	ND	200	18.0 - 190	90.0	85.5	ue L	5.13	57.0
p-Dichlorobenzene (1,4-DCB)	2384288	168	171	ND	200	64.0 - 148	84.0	86.0	ug/L	2.35	39.0
Tetrachloroethylene					200	47.0 - 150	86.0	98.5	ug/L	13.6	41.0
Toluene	2384288	172 183	197 210	ND ND	200	54.0 - 156	91.5	105	ug L ug L	13.7	45.0
trans-1,2-Dichloroethylene	2384288		209	ND ND	200	17.0 - 183	91.5 87.5	104	ug L	17.7	86.0
trans-1,3-Dichloropropene	2384288	175			200	70.0 - 157	94.0	126	ug/L	28.7	48.0
Trichloroethylene	2384288	188	251	ND	200	0.100 - 251		84.5	ug/L ug/L	9.94	66.0
Vinyl chloride	2384288	153	169	ND	200	0.100 - 231	10.0	OT.J	ug/L	J.JT	00.0

Page 16 of 32

Project 1137575

Printed 04-22-2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

				Sur	rogate				
<u>Parameter</u>	Sample	Туре	Reading	Кпошп	Units	Recover%	Limits o 2	File	
1,2-DCA-d4 (SURR)	1162699	LCS	20.4	20.0	ug/L	102	70.0 - 130	127346710	
1,2-DCA-d4 (SURR)	1162699	LCS Dup	21.4	20.0	ug/L	107	70.0 - 130	127346711	
1,2-DCA-d4 (SURR)	1162699	Blank	21.3	20.0	ug/L	106	70.0 - 130	127346712	
Bromofluorobenzene (SURR)	1162699	LCS	19.9	20.0	ug/L	99.5	70.0 - 130	127346710	
Bromofluorobenzene (SURR)	1162699	LCS Dup	19.9	20.0	ug/L	99.5	70.0 - 130	127346711	
Bromofluorobenzene (SURR)	1162699	Blank	20.1	20.0	ug/L	100	70.0 - 130	127346712	
Dibromofluoromethane (SURR)	1162699	LCS	20.4	20.0	ug/L	102	70.0 - 130	127346710	
Dibromofluoromethane (SURR)	1162699	LCS Dup	20.8	20.0	ug/L	104	70.0 - 130	127346711	
Dibromofluoromethane (SURR)	1162699	Blank	20.5	20.0	ug/L	102	70.0 - 130	127346712	
TolueneD8 (SURR)	1162699	LCS	20.5	20.0	ug/L	102	70.0 - 130	127346710	
TolueneD8 (SURR)	1162699	LCS Dup	20.2	20.0	ug/L	101	70.0 - 130	127346711	
TolueneD8 (SURR)	1162699	Blank	20.5	20.0	ug/L	102	70.0 - 130	127346712	
1,2-DCA-d4 (SURR)	2384288	MS	21.3	20.0	ug/L	106	70.0 - 130	127346714	
1,2-DCA-d4 (SURR)	2384288	MSD	29.8	20.0	ug/L	149 *	70.0 - 130	127346715	
Bromofluorobenzene (SURR)	2384288	MS	20.3	20.0	ug/L	102	70.0 - 130	127346714	
Bromofluorobenzene (SURR)	2384288	MSD	20.4	20.0	ug/L	102	70.0 - 130	127346715	
I tofluoromethane (SURR)	2384288	MS	20.9	20.0	ug/L	104	70.0 - 130	127346714	
Dibromofluoromethane (SURR)	2384288	MSD	26.9	20.0	ug/L	134 *	70.0 - 130	127346715	
TolueneD8 (SURR)	2384288	MS	20.2	20.0	ug/L	101	70.0 - 130	127346714	
TolueneD8 (SURR)	2384288	MSD	23.8	20.0	ug/L	119	70.0 - 130	127346715	
1,2-DCA-d4 (SURR)	2384667	Unknown	20.9	20.0	ug/L	104	70.0 - 130	127346716	
Bromofluorobenzene (SURR)	2384667	Unknown	20.3	20.0	ug/L	102	70.0 - 130	127346716	
Dibromofluoromethane (SURR)	2384667	Unknown	20.5	20.0	ug/L	102	70.0 - 130	127346716	
TolueneD8 (SURR)	2384667	Unknown	20.4	20.0	ug/L	102	70.0 - 130	127346716	
Analytical Set	1163066								EI
,				BI	ank				

	Analytical Set	1163066										EPA 622
	•				В	lank						
Parameter		PrepSet	Reading	MDL	MQL	Units			File			
Chlorpyrifos		1162581	ND	0.0000904	0.050	ug/L			127355134			
					(ccv						
<u>Parameter</u>			Reading	Каоша	Units	Recover%	Limits%		File			
Chlorpyrifos			981	1000	ug/L	98.1	48.0 - 150		127355127			
Chlorpyrifos			1070	1000	ug/L	107	48.0 - 150		127355141			
					LC	S Dup						
<u>Parameter</u>		PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	I.imít%
Chlorpyrifos		1162581	0.662	0.677		1.00	0.100 - 128	66.2	67.7	ug. L	2.24	30.0
					Sur	rogate						
<u>Parameter</u>		Sample	Type	Reading	Known	Units	Recover%	Limits%	File			
Tributylphosph	ate		CCV	1030	1000	ug/L	103	0.100 - 115	127355127			
Tributylphosph	ate		CCV	1050	1000	ug/L	105	0.100 - 115	127355141			
T nylphosp	hate		CCV	1020	1000	ug/L	102	0.100 - 115	127355127			
1 aylphosp	hate		CCV	1030	1000	ug/L	103	0.100 - 115	127355141			
Tributylphosph	ate	1162581	Blank	571	1000	ug/L	57.1	0.100 - 115	127355134			

Page 17 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

					-3						
<u>Parameter</u>	Sample	$T_{I}vpe$	Reading	Клошп	Units	Recover%	Limits o	File			
Tributylphosphate	1162581	LCS	662	1000	ug/L	66.2	0.100 - 115	127355135			
Tributylphosphate	1162581	LCS Dup	654	1000	ug/L	65.4	0.100 - 115	127355136			
Triphenylphosphate	1162581	Blank	619	1000	ug/L	61.9	0.100 - 115	127355134			
Triphenylphosphate	1162581	LCS	674	1000	ug/L	67.4	0.100 - 115	127355135			
Triphenylphosphate	1162581	LCS Dup	716	1000	ug/L	71.6	0.100 - 115	127355136			
Application	1163067										EPA 614
Analytical Set	1105007			Ri	lank						ZIII VII
Para <u>me</u> ter	PrepSet	Reading	MDL	MQL	Units			File			
Azinphos-methyl (Guthion)	1162581	ND	41.4	50.0	ug/L			127355150			
Demeton	1162581	ND	31.9	50.0	ug/L			127355150			
Diazinon	1162581	ND	19.7	50.0	ug/L			127355150			
Malathion	1162581	ND	24.8	50.0	ug/L			127355150			
Parathion, ethyl	1162581	ND	23.9	50.0	ug/L			127355150			
Parathion, methyl	1162581	ND	27.4	50.0	ug/L			127355150			
				C	CCV						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Azinphos-methyl (Guthion)		1010	1000	ug/L	101	37.5 - 164		127355143			
Azinphos-methyl (Guthion)		1120	1000	ug/L	112	37.5 - 164		127355157			
Demeton		997	1000	ug/L	99.7	58.6 - 150		127355143			
Demeton		1120	1000	ug/L	112	58.6 - 150		127355157			
Diazinon		988	1000	ug/L	98.8	65.4 - 138		127355143			
Diazinon		1070	1000	ug/L	107	65.4 - 138		127355157			
Malathion		981	1000	ug/L	98.1	49.5 - 160		127355143			
Malathion		1060	1000	ug/L	106	49.5 - 160		127355157			
Parathion, ethyl		960	1000	ug/L	96.0	56.0 - 142		127355143			
Parathion, ethyl		1050	1000	ug/L	105	56.0 - 142		127355157			
Parathion, methyl		994	1000	ug/L	99.4	12.6 - 194		127355143			
Parathion, methyl		1090	1000	ug/L	109	12.6 - 194		127355157			
. 					5 Dup						
	D C	1.00	7.000		-	T. francisco O.	LCS%	LCSD%	Units	<i>RPD</i>	Limit%
Parameter 1. LC (LC)	PrepSet	LCS	LCSD		Known	Limits%				0	30.0
Azinphos-methyl (Guthion)	1162581	1010	1010		1000	0.100 - 155	101	101	ug:L		
Demeton	1162581	476	502		1000	0.100 - 109	47.6	50.2	ug.L	5.32	30.0 30.0
Diazinon	1162581	689	678		1000	0.100 - 125	68.9	67.8	ug L	1.61	
Malathion	1162581	601	608		1000	0.100 - 130	60.1	60.8	ug L	1.16	30.0
Parathion, ethyl	1162581	657	673		1000	0.100 - 122		67.3	ug/L -	2.41	30.0
Parathion, methyl	1162581	746	743		1000	0.100 - 131	74.6	74.3	ug.L	0.403	30.0
				Surr	ogate						
Parameter	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File			
Tributylphosphate		CCV	1030	2000	ug/L	51.5	0.100 - 106	127355143			
Tributylphosphate		CCV	1050	2000	ug/L	52.5	0.100 - 106	127355157			
Triphenylphosphate		CCV	1020	2000	ug/L	51.0	0.100 - 172	127355143			
Triphenylphosphate		CCV	1030	2000	ug/L	51.5	0.100 - 172	127355157			

Surrogate

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Page 18 of 32

Project

Printed 04/22/2025

				Surr	ogate						
Parameter	Sample	Туре	Reading	Кпошп	Units	Recover%	Limits 0.6	File			
Tributylphosphate	1162581	Blank	571	2000	ug/L	28.6	0.100 - 106	127355150			
Tributylphosphate	1162581	LCS	662	2000	ug/L	33.1	0.100 - 106	127355151			
Tributylphosphate	1162581	LCS Dup	654	2000	ug/L	32.7	0.100 - 106	127355152			
Triphenylphosphate	1162581	Blank	619	2000	ug/L	31.0	0.100 - 172	127355150			
Triphenylphosphate	1162581	LCS	674	2000	ug/L	33.7	0.100 - 172	127355151			
Triphenylphosphate	1162581	LCS Dup	716	2000	ug/L	35.8	0.100 - 172	127355152			
Tributylphosphate	2384667	Unknown		1.91	ug/L ug/L	42.9	0.100 - 172	127355156			
Triphenylphosphate	2384667	Unknown		1.91	ug/L	26.6	0.100 - 172	127355156			
A C	1163588				-						EPA 615
Analytical Set	1103300			DI	ank						EPA 015
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
2,4 Dichlorophenoxyacetic acid	1162870	ND	0.237	0.500	ug/L			127365405			
2,4,5-TP (Silvex)	1162870	ND	0.130	0.300	ug/L			127365405			
				c	CV						
<u>F</u> t <u>er</u>		Reading	Known	Units	Recover%	Limits%		File			
2,4 Dichlorophenoxyacetic acid		142	150	ug/L	94.4	80.0 - 115		127365401			
2,4 Dichlorophenoxyacetic acid		157	150	ug/L	105	80.0 - 115		127365413			
2,4,5-TP (Silvex)		142	150	ug/L	94.9	80.0 - 115		127365401			
2,4,5-TP (Silvex)		163	150	ug/L	108	80.0 - 115		127365413			
				_	Dup						
Parameter	PrepSet	LC\$	LCSD		Кложп	Limits*o	LCS%	LCSD%	Units	RPD	Limit%
2,4 Dichlorophenoxyacetic acid	1162870	0.736	0.680		1.00	0.100 - 319	73.6	68.0	ug/L	7.91	30.0
2,4,5-TP (Silvex)	1162870	1.04	0.987		1.00	0.100 - 244	104	98.7	ug L	5.23	30.0
<u> </u>	1102010	1.01	0.507	Surr	ogate	0.100 - 2-17	104	70.1	ug/L	5.25	50.0
Barranatan.	C/-	T	n . /:		_	5 4/		- (
Parameter	Sample	Туре	Reading	Known	Units	Recover%	Limits?o	File			
2,4-Dichlorophenylacetic Acid		CCV	146	200	ug/L	73.0	0.100 - 313	127365401			
2,4-Dichlorophenylacetic Acid		CCV	168	200	ug/L -	84.0	0.100 - 313	127365413			
2,4-Dichlorophenylacetic Acid	1162870	Blank	133	200	ug/L _	66.5	0.100 - 313	127365405			
2,4-Dichlorophenylacetic Acid	1162870	LCS	137	200	ug/L	68.5	0.100 - 313	127365406			
2,4-Diehlorophenylacetic Acid	1162870	LCS Dup	138	200	ug/L	69.0	0.100 - 313	127365407			
2,4-Dichlorophenylacetic Acid	2384667	Unknown	5.94	1.91	ug/L	311	0.100 - 313	127365410			
Analytical Set	1163675								EPA I	METHO	D 8015C
				Bi	ank						
Parameter	PrepSet	Reading	MDI.	MQL	Units			Fi le			
Ethylene Glycol	1163675	ND	25.0	50.0	mg/L			127366866			
					cv						
Parameter		0	V			1: 2: 0		C.1			
Parameter Ed. Long Charal		Reading	Known	Units	Recover%	Limits*o		File			
Eth ine Glycol		484	500	mg/L	96.9	70.0 - 130		127366863			
l. ie Glycol		469	500	mg/L	93.9	70.0 - 130		127366870			

Page 19 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

LCS Dup Limit% Limits 00 1.CS% LCSD% Units RPDParameter. PrepSet LCSLCSDKnown 707 500 46.1 - 157 141 83.6 mg/L 51.1 * 30.0 Ethylene Glycol 1163675 418 MSD Limit% MSD $U \lambda K$ Limits M5º0 MSD% Units RPDSample MS Known Parameter 1 2 2 2 50.8 * 30.0 Ethylene Glycol 2384667 424 686 39.0 500 3.50 - 18377.0 129 mg/L EPA 617 1163921 Analytical Set Blank MDL MQLUnits File Parameter PrepSet Reading ND 127372738 5.00 ug/L Kelthane (Dicofol) 1162580 3.52 127372738 Methoxychlor 1162580 ND 0.897 1.00 ug/L ug/L Mirex 1162580 ND 0.905 1.00 127372738 CCV Recover% FijeReading Known Units Limits% <u>Parameter</u> 127372737 Kelthane (Dicofol) 98.2 100 ug/L 98.2 60.0 - 130 Kelthane (Dicofol) 112 100 ug/L 112 60.0 - 130 127372748 49.9 50.0 99.9 70.0 - 130 127372737 ug/L Methoxychlor Methoxychlor 58.1 50.0 ug/L 116 70.0 - 130 127372748 127372737 49.4 50.0 ug/L 98.9 70.0 - 130 Mirex 127372748 70.0 - 130 55.1 50.0 ug/L 110 Mirex LCS Dup RPDPrepSet LCSLCSDKnown Limits% I.CS% LCSD%Units Limit% Parameter 107 30.0 Kelthane (Dicofol) 1162580 99.7 107 100 0.100 - 137 99.7 ug/L7.06 30.0 21.5 - 151 87.2 93.2 6.65 1162580 87.2 100 ug/LMethoxychlor 93.2 1162580 74.2 100 11.6 - 140 74.2 75.0 ug/L1.07 30.0 Mirex 75.0 Surrogate Reading Known Units Recover% Limits 00 File Sample TypeParameter 5 4 1 50.3 10.0 - 150127372737 Decachlorobiphenyl CCV 50.3 100 ug/L CCV 100 ug/L 56.9 10.0 - 150 127372748 Decachlorobiphenyl 56.9 100 50.5 10.0 - 150 127372737 CCV ug/L Tetrachloro-m-Xylene (Surr) 50.5 127372748 Tetrachloro-m-Xylene (Surr) CCV 50.0 100 ug/L 50.0 10.0 - 15010.0 - 150 127372738 Decachlorobiphenyl 1162580 Blank 51.4 100 ug/L 51.4 LCS 10.0 - 150 127372739 1162580 90.7 100 ug/L 90.7 Decachlorobiphenyl 1162580 LCS Dup 100 ug/L 84.5 10.0 - 150127372740 Decachlorobiphenyl Blank 46.6 100 ug/L 46.6 10.0 - 150127372738 Tetrachloro-m-Xylene (Surr) 1162580 LCS 62.8 10.0 - 150127372739 Tetrachloro-m-Xylene (Surr) 1162580 62.8 100 ug/L Tetrachloro-m-Xvlene (Surr) 1162580 LCS Dup 62.9 100 ug/L 62.9 10.0 - 150127372740 0.0219 0.0953 ug/L 23.0 10.0 - 150127372743 Decachlorobiphenyl 2384667 Unknown 29.2 10.0 - 150 127372743 Tetrachloro-m-Xylene (Surr) 2384667 Unknown 0.0278 0.0953 ug/L EPA 608.3

Analytical Set

Parameter 1 4 1

1163925

PropSet

Reading

MDL

Blank

MOL

Units

File

OSPL The Science of Sure

Page 20 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

				•			
Parameter Parameter	PrepSet	Reading	MDL	MQL	Units		File
4,4-DDD	1162580	ND	0.731	1.00	ug/L		127372801
4,4-DDE	1162580	ND	0.361	1.00	ug/L		127372801
4,4-DDT	1162580	ND	0.862	1.00	ug/L		127372801
Aldrin	1162580	ND	0.260	1.00	ug/L		127372801
Alpha-BHC(hexachlorocyclohexane)	1162580	ND	0.280	1.00	ug/L		127372801
Beta-BHC(hexachlorocyclohexane)	1162580	ND	0.579	1.00	ug/L		127372801
Delta-BHC(hexachlorocyclohexane)	1162580	ND	0.898	1.00	ug/L		127372801
Dieldrin	1162580	ND	0.162	1.00	ug/L		127372801
Endosulfan I (alpha)	1162580	ND	0.679	1.00	ug/L		127372801
Endosulfan II (beta)	1162580	ND	0.356	1.00	ug/L		127372801
Endosulfan sulfate	1162580	ND	0.588	1.00	ug/L		127372801
Endrin	1162580	ND	0.538	1.00	ug/L		127372801
Endrin aldehyde	1162580	ND	0.699	1.00	ug/L		127372801
Gamma-BHC(Lindane)	1162580	ND	0.385	1.00	ug/L		127372801
Heptachlor	1162580	ND	0.207	1.00	ug/L		127372801
Hertachlor epoxide	1162580	ND	0.660	1.00	ug/L		127372801
.iene	1162580	ND	0.169	0.200	ug/L		127372801
				ļ	ccv		
Paramatar		Dunding	V	f Indian	Da:	7 1-1-04	P.'.
Parameter 4,4-DDD		Reading	Known	Units	Recover%	Limits%	File
4,4-DDD		45.5 51.5	50.0 50.0	ug/L	91.0	75.0 - 125	127372800
4,4-DDE		46.1	50.0	ug/L	103 92.2	75.0 - 125	127372811
4,4-DDE		50.0	50.0	ug/L	100	75.0 - 125 75.0 - 125	127372800
4,4-DDT		45.7	50.0	ug/L	91.4		127372811
4,4-DDT		51.2	50.0	ug/L	102	75.0 - 125	127372800
Aldrin		45.0	50.0	ug/L ug/L	90.0	75.0 - 125 75.0 - 125	127372811
Aldrin		50.6	50.0	_	101		127372800
Alpha-BHC(hexachlorocyclohexane)		44.6	50.0	ug/L	89.2	75.0 - 125	127372811
Alpha-BHC(hexachlorocyclohexane)		50.1	50.0	ug/L	100	75.0 - 125 75.0 - 125	127372800
Beta-BHC(hexachlorocyclohexane)		49.1		ug/L	98.2		127372811
Beta-BHC(hexachlorocyclohexane)		55.0	50.0 50.0	ug/L		75.0 - 125	127372800
Delta-BHC(hexachlorocyclohexane)		45.8	50.0	ug/L	110 91.6	75.0 - 125	127372811
Delta-BHC(hexachlorocyclohexane)		51.2	50.0	ug/L	102	75.0 - 125	127372800
Dieldrin		45.3	50.0	ug/L	90.6	75.0 - 125 75.0 - 125	127372811
Dieldrin		50.5	50.0	ug/L ug/L	101	75.0 - 125 75.0 - 125	127372800
Endosulfan I (alpha)		44.7	50.0	ug/L ug/L	89.4	75.0 - 125 75.0 - 125	127372811 127372800
Endosulfan I (alpha)		49.4	50.0	-	98.8	75.0 - 125 75.0 - 125	
Endosulfan II (beta)		43.8	50.0	ug/L			127372811
Endosulfan II (beta)		48.5	50.0	ug/L	87.6 97.0	75.0 - 125 75.0 - 125	127372800
Endosulfan sulfate		49.4	50.0	ug/L	97.0	75.0 - 125	127372811
Endosulfan sulfate		61.3	50.0	ug/L	98.8	75.0 - 125	127372800
Endosuman sumate Endrin				ug/L	123	75.0 - 125	127372811
Liberalii 1		45.7	50.0	ug/L	91.4	75.0 - 125	127372800
; F :: 111		50.2	50.0	ug/L ~	100	75.0 - 125	127372811

Blank

Email: Kilgore.ProjectManagement@spllabs.com

47.5

50.0

ug/L

Endrin aldehyde

75.0 - 125

127372800

95.0

Page 21 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Ollinto, 1X 70373 0030											
				c	CV						
Parameter Parameter		Reading	Кложа	Units	Recover%	Limits%		File			
Endrin aldehyde		50.6	50.0	ug/L	101	75.0 - 125		127372811			
Gamma-BIIC(Lindane)		48.8	50.0	ug/L	97.6	75.0 - 125		127372800			
Gamma-BHC(Lindane)		53.3	50.0	ug/L	107	75.0 - 125		127372811			
Heptachlor		49.0	50.0	ug/L	98.0	75.0 - 125		127372800			
Heptachlor		54.4	50.0	ug/L	109	75.0 - 125		127372811			
Heptachlor epoxide		43.7	50.0	ug/L	87.4	75.0 - 125		127372800			
Heptachlor epoxide		49.3	50.0	ug/L	98.6	75.0 - 125		127372811			
				LCS	Dup						
Parameter	PrepSet	LCS	LCSD		Клоwп	Limits%	LCS%	LCSD%	Units	RPD	Limit%
4,4-DDD	1162580	72.1	72.6		100	31.0 - 141	72.1	72.6	ug/L	0.691	39.0
4,4-DDE	1162580	72.0	68.7		100	30.0 - 145	72.0	68.7	ug/L	4.69	35.0
4,4-DDT	1162580	73.8	74.1		100	25.0 - 160	73.8	74.1	ug/L	0,406	42.0
Aldrin	1162580	61.9	59.5		100	42.0 - 140	61.9	59.5	ug/L	3.95	35.0
Alpha-BHC(hexachlorocyclohexane)	1162580	71.1	71.7		100	37.0 - 140	71.1	71.7	ugL	0.840	36.0
Beta-BHC(hexachlorocyclohexane)	1162580	74.8	79.9		100	17.0 - 147	74.8	79.9	ug/L	6.59	44.0
Delta-BIIC(hexachlorocyclohexane)	1162580	72.4	77.6		100	19.0 - 140	72.4	<i>7</i> 7.6	ug/L	6.93	52.0
Dieldrin	1162580	70.4	71.5		100	36.0 - 146	70.4	71.5	ug/L	1.55	49.0
Endosulfan I (alpha)	1162580	70.8	71.9		100	45.0 - 153	70.8	71.9	ug/L	1.54	28.0
Endosulfan II (beta)	1162580	71.5	75.9		100	0.100 - 202	71.5	75.9	ug L	5.97	53.0
Endosulfan sulfate	1162580	79.7	86.5		100	26.0 - 144	79.7	86.5	ug/L	8.18	38.0
Endrin	1162580	75.5	76.6		100	30.0 - 147	75.5	76.6	ug/L	1.45	48.0
Endrin aldehyde	1162580	87.8	96.0		100	37.6 - 158	87.8	96.0	ug L	8.92	30.0
Gamma-BHC(Lindane)	1162580	70.1	74.2		100	32.0 - 140	70.1	74.2	ug/L	5.68	39.0
Heptachlor	1162580	63.5	64.2		100	34.0 - 140	63.5	64.2	ug/L	1.10	43.0
Heptachlor epoxide	1162580	67.3	68.0		100	37.0 - 142	67.3	68.0	ug/L	1.03	26.0
				Surr	ogate						
Parameter Parame	Sample	Турс	Reading	Клоwп	Units	Kecover%	Limits*o	File			
Decachlorobiphenyl	o	CCV	50.3	100	ug/L	50.3	0.100 - 144	127372800			
Decachlorobiphenyl		CCV	56.9	100	ug/L	56.9	0.100 - 144	127372811			
Tetrachloro-m-Xylene (Surr)		CCV	50.5	100	ug/L	50.5	0.100 - 107	127372800			
Tetrachloro-m-Xylene (Surr)		CCV	50.0	100	ug/L	50.0	0.100 - 107	127372811			
Decachlorobiphenyl	1162580	Blank	51.4	100	ug/L	51.4	0.100 - 144	127372801			
Decachlorobiphenyl	1162580	LCS	90.7	100	ug/L	90.7	0.100 - 144	127372802			
Decachlorobiphenyl	1162580	LCS Dup	84.5	100	ug/L	84.5	0.100 - 144	127372803			
Tetrachloro-m-Xylene (Surr)	1162580	Blank	46.6	100	ug/L	46.6	0.100 - 107	127372801			
Tetrachloro-m-Xylene (Surr)	1162580	LCS	62.8	100	ug/L	62.8	0.100 - 107	127372802			
Tetrachloro-m-Xylene (Surr)	1162580	LCS Dup	62.9	100	ug/L	62.9	0.100 - 107	127372803			
Decachlorobiphenyl	2384667	Unknown	0.0219	0.0953	ug/L	23.0	0.100 - 144	127372806			
Tetrachloro-m-Xylene (Surr)	2384667	Unknown		0.0953	ug/L	29.2	0.100 - 107	127372806			

Analytical Set

Parameter 5 6 1

1164256

PrepSet

Reading MDL

Blank

MQL

Filc

Email: Kilgore.ProjectManagement@spllabs.com

Units

EPA 608.3

Page 22 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Oliffico, 1X 765/5-0036								Fillited	04722720	23	
				Е	Blank						
Parameter	D C	D //	LCDZ								
<u>Parameter</u> PCB-1016	PrepSet	Reading	MDL 0.202	MQL 0.000	Units			File			
PCB-1010	1162582	ND	0.202	0.202	ug/L			127379413			
PCB-1221	1162582	ND	0.143	0.200	ug/L ~			127379413			
	1162582	ND	0.143	0.200	ug/L			127379413			
PCB-1242	1162582	ND	0.192	0.200	ug/L -			127379413			
PCB-1248	1162582	ND	0.143	0.200	ug/L _			127379413			
PCB-1254	1162582	ND	0.143	0.200	ug/L			127379413			
PCB-1260	1162582	ND	0.161	0.200	ug/L			127379413			
				(CCV						
<u>Parameter</u>		Reading	Кпошп	Units	Recover%	Limits%		File			
PCB-1016		905	1000	ug/L	90.5	80.0 - 115		127379412			
PCB-1016		1240	1000	ug/L	124	80.0 - 115	•	127379417			
PCB-1260		911	1000	ug/L	91.1	80.0 - 115		127379412			
PCB-1260		1220	1000	ug/L	122	80.0 - 115	*	127379417			
				LC.	S Dup						
Preler	PrepSet	LCS	LCSD		•	T imaitua/	1.000/	Lachar	F. C	220	T 1 140 /
1 016	1162582	7.51	6.53		Known	Limits%	I.CS%	LCSD%	Units	RPD	Limit%
PCB-1260	1162582	7.51 8.90	6.86		10.0	39.8 - 135	75.1	65.3	ug/L	14.0	30.0
1 CB-1200	1102362	0.90	0.00		10.0	36.1 - 134	89.0	68.6	ug/L	25.9	30.0
				Sur	rogate						
<u>Parameter</u>	Sample	Type	Reading	Known	Units	Recover%	Limits%	File			
Decachlorobiphenyl	1162582	Blank	51.4	100	ug/L	51.4	10.0 - 200	127379413			
Tetrachloro-m-Xylene (Surr)	1162582	Blank	46.6	100	ug/L	46.6	10.0 - 200	127379413			
Decachlorobiphenyl	2384667	Unknown	0.0219	0.0953	ug/L	23.0	10.0 - 200	127379416			
Tetrachloro-m-Xylene (Surr)	2384667	Unknown	0.0278	0.0953	ug/L	29.2	10.0 - 200	127379416			
Analytical Set	1164567									F	PA 624.1
				E	BFB					10.	111 02-1.1
Parameter	Samula	RefMass	Dandina					F.'/			
BFB Mass 173	<i>Sample</i> 1 164567	174	Reading 0	%	Limits®			File			
BFB Mass 174	1164567	95.0		0.0	0 - 2.00			127387388			
BFB Mass 175			13044	54.3	50.0 - 100			127387388			
BFB Mass 176	1164567	174	1008	7.7	5.00 - 9.00			127387388			
BFB Mass 177	1164567	174	12570	96.4	95.0 - 101			127387388			
	1164567	176	802	6.4	5.00 - 9.00			127387388			
BFB Mass 50	1164567	95.0	3653	15.2	15.0 - 40.0			127387388			
BFB Mass 75	1164567	95.0	11484	47.8	30.0 - 60.0			127387388			
BFB Mass 95	1164567		24024	100.0	100 - 100			127387388			
BFB Mass 96	1164567	95.0	1577	6.6	5.00 - 9.00			127387388			
				В	lank						
Parameter Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Epichlorohydrin	1164567	ND	6.85	20.0	ug/L			127387392			
				c	CV						
<u>F,eter</u>		Reading	Known	Units	Recover%	Limits%		File			

The Science of Sure

Page 23 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

TolueneD8 (SURR)

, , 3,3 2				co	v						
Parameter		Reading	Кпошп	Units	Recover%	Limits%		File			
Epichlorohydrin		355	400	ug/L	88.8	70.0 - 130		127387389			
				IS A							
Parameter	Sample	Турс	Reading	CCVIS.M	Low	High		File	PrepSet		
	1164567	ccv	85100	85100	42550	127600		127387389	116456	7	
·	1164567	LCS	85590	85100	42550	127600		127387390	116456	7	
• •	1164567	LCS Dup	82140	85100	42550	127600		127387391	116456	7	
	1164567	Blank	82880	85100	42550	127600		127387392	1164561	7	
ChlorobenzeneD5 (ISTD)	1164567	CCV	180400	180400	90190	270600		127387389	1164561	7	
ChlorobenzeneD5 (ISTD)	1164567	LCS	182900	180400	90190	270600		127387390	1164561	7	
ChlorobenzeneD5 (ISTD)	1164567	LCS Dup	174800	180400	90190	270600		127387391	1164561	7	
ChlorobenzeneD5 (ISTD)	1164567	Blank	177100	180400	90190	270600		127387392	116456	7	
1,4-DichlorobenzeneD4 (ISTD)	2384667	Unknown	84480	85100	42550	127600		127387393	116456	7	
ChlorobenzeneD5 (ISTD)	2384667	Unknown	178500	180400	90190	270600		127387393	116456	7	
				IS Ret	Time						
Parameter	Sample	Type	Reading	CCVISM	Low	High		File	PrepSet		
1,4-DichlorobenzeneD4 (ISTD)	1164567	LCS	11.07	11.07	11.01	11.13		127387390	1164561	7	
1,4-DichlorobenzeneD4 (ISTD)	1164567	LCS Dup	11.07	11.07	11.01	11.13		127387391	1164561	7	
1,4-DichlorobenzeneD4 (ISTD)	1164567	Blank	11.07	11.07	11.01	11.13		127387392	1164561	7	
ChlorobenzeneD5 (ISTD)	1164567	LCS	8.714	8.714	8.654	8.774		127387390	116456	7	
ChlorobenzeneD5 (ISTD)	1164567	LCS Dup	8.714	8.714	8.654	8.774		127387391	116456	7	
ChlorobenzeneD5 (ISTD)	1164567	Blank	8.714	8.714	8.654	8.774		127387392	116456	7	
1,4-DichlorobenzeneD4 (ISTD)	2384667	Unknown	11.07	11.07	11.01	11.13		127387393	116456	7	
ChlorobenzeneD5 (ISTD)	2384667	Unknown	8.714	8.714	8.654	8.774		127387393	116456	7	
				LCS	Dup						
<u>Parameter</u>	PrepSet	LCS	LCSD		Кпошт	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Epichlorohydrin	1164567	336	332		400	27.5 - 189	84.0	83.0	ug/L	1.20	30.0
				Surro	gate						
<u>Parameter</u>	Sample	Турс	Reading	Known	Units	Recover%	Limits o	File			
1,2-DCA-d4 (SURR)	1164567	CCV	12.7	20.0	ug/L	63.5 *	72.3 - 106	127387389			
1,2-DCA-d4 (SURR)	1164567	LCS	12.5	20.0	ug/L	62.5 *	72.3 - 106	127387390			
1,2-DCA-d4 (SURR)	1164567	LCS Dup	12.8	20.0	ug/L	64.0 *	72.3 - 106	127387391			
1,2-DCA-d4 (SURR)	1164567	Blank	12.3	20.0	ug/L	61.5 *	72.3 - 106	127387392			
Bromofluorobenzene (SURR)	1164567	CCV	24.7	20.0	ug/L	124 *	87.2 - 122	127387389			
Bromofluorobenzene (SURR)	1164567	LCS	24.5	20.0	ug/L	122	87.2 - 122	127387390			
Bromofluorobenzene (SURR)	1164567	LCS Dup	24.9	20.0	ug/L	124 *	87.2 - 122	127387391			
Bromofluorobenzene (SURR)	1164567	Blank	24.3	20.0	ug/L	122	87.2 - 122	127387392			
Dibromofluoromethane (SURR)	1164567	CCV	13.2	20.0	ug/L	66.0	46.7 - 114	127387389			
	1164567	LCS	13.3	20.0	ug/L	66.5	46.7 - 114	127387390			
	1164567	LCS Dup	13.3	20.0	ug/L	66.5	46.7 - 114	127387391			
	1164567	Blank	12.6	20.0	ug/L	63.0	46.7 - 114	127387392			
	1164567	CCV	18.4	20.0	ug/L	92.0	57.4 - 112	127387389			
TolueneD8 (SURR)	1164567	LCS	18.4	20.0	ug/L	92.0	57.4 - 112	127387390			

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Page 24 of 32

Project

Printed 04/22/2025

				Suri	rogate						
<u>Parameter</u>	Sample	Туре	Reading	Known	Units	Recover%	Limits o	File			
TolueneD8 (SURR)	1164567	LCS Dup	18.2	20.0	ug/L	91.0	57.4 - 112	127387391			
TolueneD8 (SURR)	1164567	Blank	17.4	20.0	ug/L	87.0	57.4 - 112	127387392			
1,2-DCA-d4 (SURR)	2384667	Unknown	12.9	20.0	ug/L	64.5 *	72.3 - 106	127387393			
Bromofluorobenzene (SURR)	2384667	Unknown		20.0	ug/L	120	87.2 - 122	127387393			
Dibromofluoromethane (SURR)	2384667	Unknown		20.0	ug/L	66.5	46.7 - 114	127387393			
TolueneD8 (SURR)	2384667	Unknown	17.9	20.0	ug/L	89.5	57.4 - 112	127387393			
Analytical Set	1164751										EPA 632
				ВІ	lank						
<u>Parameter</u>	PrepSet	Reading	MDI.	MQL	Units			File			
Carbaryl (Sevin)	1162578	ND	66.1	2500	ug/L			127390601			
Diuron	1162578	427	44.4	45.0	ug/L		*	127390601			
				c	CV						
<u>Parameter</u>		Reading	Known	Uvits	Recover%	Limits%		File			
Carbaryl (Sevin)		1040	1000	ug/L	104	70.0 - 130		127390591			
f yl (Sevin)		1080	1000	ug/L	108	70.0 - 130		127390595			
Caroaryl (Sevin)		1100	1000	ug/L	110	70.0 - 130		127390597			
Carbaryl (Sevin)		1080	1000	ug/L	108	70.0 - 130		127390600			
Carbaryl (Sevin)		1180	1000	ug/L	118	70.0 - 130		127390604			
Carbaryl (Sevin) Diuron		1210	1000	ug/L	121	70.0 - 130		127390608			
Diuron		973	1000	ug/L	97.3	70.0 - 130		127390591			
Diuron		1130 1040	1000 1000	ug/L	113	70.0 - 130		127390595			
Diuron		1000	1000	ug/L	104 100	70.0 - 130 70.0 - 130		127390597			
Diuron		1100	1000	ug/L ug/L	110	70.0 - 130		127390600 127390604			
Diuron		1120	1000	ug/L ug/L	112	70.0 - 130		127390604			
			1000	-	Dup	70.0 150		12/3/0000			
<u>P</u> arameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Carbaryl (Sevin)	1162578	1050	1060		1000	17.1 - 131	105	106	ug/L	0.948	30.0
Diuron	1162578	1160	972		1000	0.100 - 138	116	97.2	ug I.	17.6	30.0
Analytical Set	1164765									EI	PA 625.1
				Bla	ank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
1,2,4,5-Tetrachlorobenzene	1163241	ND	1.03	1.03	ug/L			127390777			
1,2,4-Trichlorobenzene	1163241	ND	0.941	1.00	ug/L			127390777			
1,2-Dichlorobenzene	1163241	ND	1.04	5.00	ug/L			127390777			
1,2-DPH (as azobenzene)	1163241	ND	0.238	1.00	ug/L			127390777			
1,3-Dichlorobenzene	1163241	ND	0.954	5.00	ug/L			127390777			
1,4-Dichlorobenzene	1163241		1.01	5.00	ug/L			127390777			
2.4 5-Trichlorophenol	1163241	ND	0.961	5.00	ug/L			127390777			
irichlorophenol	1163241		1.24	2.00	ug/L			127390777			
2,4-Dichlorophenol	1163241	ND	0.222	1.00	ug/L			127390777			

Page 25 of 32

Project

Printed 04/22/2025

File

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

				В	lank
Parameter Parameter	PrepSet	Reading	MDL	MQL	Units
2,4-Dimethylphenol	1163241	ND	0.536	1.00	ug/L
2,4-Dinitrophenol	1163241	ND	1.34	2.00	ug/L
2,4-Dinitrotoluene	1163241	ND	1.35	2.00	ug/L
2,6-Dinitrotoluene	1163241	ND	1.29	2.00	ug/L
2-Chloronaphthalene	1163241	ND	0.150	1.00	ug/L
2-Chlorophenol	1163241	ND	0.275	1.00	ug/L
2-Methylphenol (o-Cresol)	1163241	ND	8.48	10.0	ug/L
2-Nitrophenol	1163241	ND	0.554	1.00	ug/L
3&4-Methylphenol (m&p-Cresol)	1163241	ND	7.78	8.00	ug/L
3,3'-Dichlorobenzidine	1163241	ND	1.39	2.00	ug/L
4,6-Dinitro-2-methylphenol	1163241	ND	1.15	2.00	ug/L
4-Bromophenyl phenyl ether	1163241	ND	0.772	1.00	ug/L
4-Chlorophenyl phenyl ethe	1163241	ND	0.202	1.00	ug/L
4-Nitrophenol	1163241	ND	0.789	1.00	ug/L
Acenaphthene	1163241	ND	0.177	1.00	ug/L
Acenaphthylene	1163241	ND	0.240	1.00	ug/L
Aniline	1163241	ND	2470	2470	ug/L
Anthracene	1163241	ND	0.241	1.00	ug/L
Benzidine	1163241	ND	1.40	1.50	ug/L
Benzo(a)anthracene	1163241	ND	0.225	1.00	ug/L
Benzo(a)pyrene	1163241	ND	0.900	1.00	ug/L
Benzo(b)fluoranthene	1163241	ND	0.547	1.00	ug/L
Benzo(ghi)perylene	1163241	ND	0.881	1.00	ug/L -
Benzo(k)fluoranthene	1163241	ND	0.252	1.00	ug/L -
Benzyl Butyl phthalate	1163241	0.770	0.204	7.50	ug/L ~
Bis(2-chloroethoxy)methane	1163241	ND	0.277	1.00	ug/L
Bis(2-chloroethyl)ether	1163241	ND	0.348	1.00	ug/L
Bis(2-chloroisopropyl)ether	1163241	ND	0.738	1.00	ug/L
Bis(2-ethylhexyl)phthalate	1163241	ND	1.12	7.50	ug/L
Chrysene (Benzo(a)phenanthrene)	1163241	ND	0.289	1.00	ug/L
Dibenz(a,h)anthracene	1163241	ND	0.689	1.00 5.70	ug/L
Diethyl phthalate	1163241	ND ND	0.253 0.540	4.80	ug/L ug/L
Dimethyl phthalate	1163241 1163241	ND ND	0.978	7.50	ug/L ug/L
Di-n-butylphthalate	1163241	ND ND	1.92	2.00	ug/L
Di-n-octylphthalate	1163241	ND	0.318	1.00	ug/L
Fluoranthene(Benzo(j,k)fluorene) Fluorene	1163241	ND	0.318	1.00	ug/L ug/L
Hexachlorobenzene	1163241	ND	0.275	1.00	ug/L
Hexachlorobutadiene	1163241	ND	1.03	1.03	ug/L
Hexachlorocyclopentadicne	1163241	ND	0.536	1.00	ug/L
Hexachloroethane	1163241	ND	1.05	2.00	ug/L
Indeno(1,2,3-cd)pyrene	1163241	ND	0.596	1.00	ug/L
Isophorone	1163241	ND	0.429	1.00	ug/L
Naphthalene	1163241	ND	0.225	1.00	ug/L
Nitrobenzenc	1163241	ND	0.271	1.00	ug/L
1.movement	11002-11				-8-

127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777
127390777

127390777

Email: Kilgore.ProjectManagement@spllabs.com

O SPL The Science of Sura

Page 26 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units		File
n-Nitrosodiethylamine	1163241	ND	0.747	1.00	ug/L		127390777
N-Nitrosodimethylamine	1163241	ND	0.542	1.00	ug/L		127390777
n-Nitroso-di-n-butylamine	1163241	ND	0.210	1.00	ug/L		127390777
N-Nitrosodi-n-propylamine	1163241	ND	0.425	1.00	ug/L		127390777
N-Nitrosodiphenylamine (as DPA	1163241	ND	0.404	1.00	ug/L		127390777
p-Chloro-m-Cresol (4-Chloro-3-me	1163241	ND	0.588	1.00	ug/L		127390777
Pentachlorobenzene	1163241	ND	0.977	1.00	ug/L		127390777
Pentachlorophenol	1163241	ND	0.960	5.00	ug/L		127390777
Phenanthrene	1163241	ND	0.269	1.00	ug/L		127390777
Phenol	1163241	ND	0.332	1.00	ug/L		127390777
Pyrene	1163241	ND	0.291	1.00	ug/L		127390777
Pyridine	1163241	ND	1.35	1.35	ug/L		127390777
•					CCV		
December		D "	.,				
Parameter		Reading	Known	Units ~	Recover%	Limits ^o 6	File
1,2,4,5-Tetrachlorobenzene		49200	50000	ug/L	98.4	60.0 - 140	127390775
		53900	50000	ug/L	108	61.0 - 130	127390775
1.2 DBH (so such success)		48700	50000	ug/L	97.4	60.0 - 140	127390775
1,2-DPH (as azobenzene) 1,3-Dichlorobenzene		53000	50000	ug/L	106	60.0 - 140	127390775
1,4-Dichlorobenzene		48100	50000	ug/L	96.2	60.0 - 140	127390775
*		49500	50000	ug/L	99.0	60.0 - 140	127390775
2,4,5-Trichlorophenol		48600	50000	ug/L	97.2	69.0 - 130	127390775
2,4,6-Trichlorophenol		46400	50000	ug/L	92.8	69.0 - 130	127390775
2,4-Dichlorophenol		46800	50000	ug/L	93.6	64.0 - 130	127390775
2,4-Dimethylphenol		41600	50000	ug/L	83.2	58.0 - 130	127390775
2,4-Dinitrophenol 2.4-Dinitrotoluene		47600	50000	ug/L	95.2	39.0 - 173	127390775
2,6-Dinitrotoluene		52600	50000	ug/L	105	53.0 - 130	127390775
		54200	50000	ug/L	108	68.0 - 137	127390775
2-Chlorophanul		42700	50000	ug/L	85.4	70.0 - 130	127390775
2-Chlorophenol 2-Methylphenol (o-Cresol)		42900 42200	50000 50000	ug/L	85.8	55.0 - 130	127390775
2-Nitrophenol		53000		ug/L	84.4	60.0 - 140	127390775
3&4-Methylphenol (m&p-Cresol)		40200	50000 50000	ug/L	106	61.0 - 163	127390775
3,3'-Dichlorobenzidine		52900	50000	ug/L	80.4 106	60.0 - 140 18.0 - 213	127390775
4,6-Dinitro-2-methylphenol		47400	50000	ug/L	94.8		127390775
4-Bromophenyl phenyl ether		50600	50000	ug/L	101	56.0 - 130 70.0 - 130	127390775
4-Chlorophenyl phenyl ethe		46200	50000	ug/L ug/L	92.4	70.0 - 130 57.0 - 145	127390775
4-Nitrophenol		47000	50000	ug/L ug/L	94.0	35.0 - 145 35.0 - 135	127390775
Acenaphthene		51200	50000	ug/L ug/L	102	70.0 - 130	127390775 127390775
Acenaphthylene		51400	50000	ug/L ug/L	102	60.0 - 130	
Aniline		43400	50000	_	86.8	60.0 - 140	127390775
Anthracene		50000	50000	ug/L ug/L	100	58.0 - 130	12 73 90775 12 7 390775
Benzidine		34200	50000	ug/L ug/L	68.4	20.0 - 180	127390775
(a)anthracene		53800	50000	ug/L ug/L	108	42.0 - 133	127390775
. (a)attentacene		22000	50000	ஸ்.ட	100	4 2.0 - 133	12/390//3

Blank

Email: Kilgore.ProjectManagement@spllabs.com

Benzo(a)pyrene

32.0 - 148

127390775

107

ug/L

50000

53300

Page 27 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

, , ,, ,,					CCV		
Parameter		Reading	Кпошп	Units	Recover%	Limits%	File
Benzo(b)fluoranthene		53400	50000	ug/L	107	42.0 - 140	127390775
Benzo(ghi)perylene		52000	50000	ug/L	104	13.0 - 195	127390775
Benzo(k)fluoranthene		57500	50000	ug/L	115	25.0 - 146	127390775
Benzyl Butyl phthalate		54200	50000	ug/L	108	43.0 - 140	127390775
Bis(2-chloroethoxy)methane		51200	50000	ug/L	102	52.0 - 164	127390775
Bis(2-chloroethyl)ether		48000	50000	ug/L	96.0	52.0 - 130	127390775
Bis(2-chloroisopropyl)ether		52400	50000	ug/L	105	63.0 - 139	127390775
Bis(2-ethylhexyl)phthalate		56900	50000	ug/L	114	43.0 - 137	127390775
Chrysene (Benzo(a)phenanthrene)		53600	50000	ug/L	107	44.0 - 140	127390775
Dibenz(a,h)anthracene		50700	50000	ug/L	101	13.0 - 200	127390775
Diethyl phthalate		49900	50000	ug/L	99.8	47.0 - 130	127390775
Dimethyl phthalate		51300	50000	ug/L	103	50.0 - 130	127390775
Di-n-butylphthalate		50300	50000	ug/L	101	52.0 - 130	127390775
Di-n-octylphthalate		57800	50000	ug/L	116	21.0 - 132	127390775
Fluoranthene(Benzo(j,k)fluorene)		49400	50000	ug/L	98.8	47.0 - 130	127390775
Fluorene		49600	50000	ug/L	99.2	70.0 - 130	127390775
Hexachlorobenzene		49300	50000	ug/L	98.6	38.0 - 142	127390775
Hexachlorobutadiene		54100	50000	ug/L	108	68.0 - 130	127390775
Hexachlorocyclopentadiene		45800	50000	ug/L	91.6	60.0 - 140	127390775
Hexachloroethane		49000	50000	ug/L	98.0	55.0 - 130	127390775
Indeno(1,2,3-cd)pyrene		52600	50000	ug/L	105	13.0 - 151	127390775
Isophorone		58800	50000	ug/L	118	52.0 - 180	127390775
Naphthalene		55200	50000	ug/L	110	70.0 - 130	127390775
Nitrobenzene		56400	50000	ug/L	113	54.0 - 158	127390775
n-Nitrosodiethylamine		51800	50000	ug/L	104	60.0 - 140	127390775
N-Nitrosodimethylamine		53200	50000	ug/L	106	60.0 - 140	127390775
n-Nitroso-di-n-butylamine		55900	50000	ug/L	112	60.0 - 140	127390775
N-Nitrosodi-n-propylamine		55600	50000	ug/L	111	59.0 - 170	127390775
N-Nitrosodiphenylamine (as DPA		46000	50000	ug/L	92.0	60.0 - 140	127390775
p-Chloro-m-Cresol (4-Chloro-3-me		49500	50000	ug/L	99.0	68.0 - 130	127390775
Pentachlorobenzene		44400	50000	ug/L	88.8	60.0 - 140	127390775
Pentachlorophenol		21700	50000	ug/L	43.4	42.0 - 152	127390775
Phenanthrene		49400	50000	ug/L	98.8	67.0 - 130	127390775
Phenol		39900	50000	ug/L	79.8	48.0 - 130	127390775
Pyrene		53200	50000	ug/L	106	70.0 - 130	127390775
Pyridine		48200	50000	ug/L	96.4	60.0 - 140	127390775
				E	DFTPP		
<u>Parameter</u>		RefMass	Reading	%	Limits%		File
DFTPP Mass 127	630099	198	96901	56.1	40.0 - 60.0		127390774
DFTPP Mass 197	630099	198	0	0.0	0 - 1.00		127390774
DFTPP Mass 198	630099	198	172755	100.0	100 - 100		127390774
DFTPP Mass 199	630099	198	11813	6.8	5.00 - 9.00		127390774
DFTPP Mass 275	630099	198	34971	20.2	10.0 - 30.0		127390774
DFTPP Mass 365	630099	198	3967	2.3	1.00 - 100		127390774

Email: Kilgore.ProjectManagement@spllabs.com

Page 28 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

D	F	Т	Ρ	Ρ
---	---	---	---	---

DFTPP Mass 441 630099 443 14803 77.3 0 - 100 127390774 DFTPP Mass 442 630099 198 97976 56.7 40.0 - 100 127390774	
DETPP Mass 442 630099 198 97976 56.7 40.0 - 100 127200774	
DFTPP Mass 443 630099 442 19159 19.6 17.0 - 23.0 127390774	
DFTPP Mass 51 630099 198 59760 34.6 30.0 - 60.0 127390774	
DFTPP Mass 68 630099 69.0 0 0.0 0 - 2.00 127390774	
DFTPP Mass 69 630099 198 67739 39.2 0 - 100 127390774	
DFTPP Mass 70 630099 69.0 371 0.5 0 - 2.00 127390774	
LCS Dup	
Parameter PrepSet LCS LCSD Known Limits% LCS% LCSD% Units RPD	Limit%
1,2,4,5-Tetrachlorobenzene 1163241 10.1 12.9 25.0 27.5 - 85.5 40.4 51.6 ug/L 24.3	50.0
1,2,4-Trichlorobenzene 1163241 8.59 10.7 25.0 44.0 - 142 34.4 * 42.8 * ug/L 21.8	50.0
1,2-Dichlorobenzene 1163241 8.60 9.98 25.0 23.0 - 81.8 34.4 39.9 ug/L 14.8	50.0
1,2-DPH (as azobenzene) 1163241 17.0 18.3 25.0 12.6 - 110 68.0 73.2 ug/L 7.37	50.0
1,3-Dichlorobenzene 1163241 8.23 9.87 25.0 21.1 - 80.5 32.9 39.5 ug/L 18.2	50.0
1,4-Dichlorobenzene 1163241 8.02 9.50 25.0 21.4-76.9 32.1 38.0 ug/L 16.8	50.0
2 'richlorophenol 1163241 17.3 17.7 25.0 51.3 - 109 69.2 70.8 ug/L 2.29	50.0
2, richlorophenol 1163241 15.1 15.9 25.0 37.0 - 144 60.4 63.6 ug/L 5.16	58.0
2,4-Dichlorophenol 1163241 15.1 15.5 25.0 39.0 - 135 60.4 62.0 ug/L 2.61	50.0
2,4-Dimethylphenol 1163241 7.90 8.23 25.0 23.0 - 120 31.6 32.9 ug/L 4.03	68.0
2,4-Dinitrophenol 1163241 6.16 9.29 25.0 0.100 - 191 24.6 37.2 ug/L 40.8	132
2,4-Dinitrotoluene 1163241 17.0 17.9 25.0 39.0 - 139 68.0 71.6 ug/L 5.16	42.0
2,6-Dinitrotoluene 1163241 16.2 17.0 25.0 50.0 - 158 64.8 68.0 ug/L 4.82	48.0
2-Chloronaphthalene 1163241 12.8 14.0 25.0 60.0 - 120 51.2 * 56.0 * ug/L 8.96	24.0
2-Chlorophenol 1163241 13.7 12.4 25.0 23.0 - 134 54.8 49.6 ug/L 9.96	61.0
2-Methylphenol (o-Cresol) 1163241 12.9 12.1 25.0 38.9 - 76.1 51.6 48.4 ug/L 6.40	50.0
2-Nitrophenol 1163241 14.2 14.7 25.0 29.0 - 182 56.8 58.8 ug/L 3.46	55.0
3&4-Methylphenol (m&p-Cresol) 1163241 12.2 11.7 25.0 33.0 - 70.4 48.8 46.8 ug/L 4.18	50.0
3,3'-Dichlorobenzidine 1163241 17.8 17.7 25.0 0.100 - 262 71.2 70.8 ug/L 0.563	108
4,6-Dinitro-2-methylphenol 1163241 8.60 11.9 25.0 0.100 - 181 34.4 47.6 ug.t. 32.2	203
4-Bromophenyl phenyl ether 1163241 16.2 17.4 25.0 53.0 - 127 64.8 69.6 ug/L 7.14	43.0
4-Chlorophenyl phenyl ethe 1163241 16.3 17.5 25.0 25.0 - 158 65.2 70.0 ug/L 7.10	61.0
4-Nitrophenol 1163241 5.14 6.66 25.0 0.100 - 132 20.6 26.6 ug/L 25.4	131
Acenaphthene 1163241 14.3 15.7 25.0 47.0 - 145 57.2 62.8 ug/L 9.33	48.0
Acenaphthylene 1163241 14.9 16.1 25.0 33.0 - 145 59.6 64.4 ug/L 7.74	74.0
Aniline 1163241 4490 4030 25000 70.0 - 130 18.0 * 16.1 * ug/L 11.1	50.0
Anthracene 1163241 18.1 19.1 25.0 27.0 - 133 72.4 76.4 ug/L 5.38	66.0
Benzidine 1163241 1.12 0.980 25.0 0.100 - 36.9 4.48 3.92 ug.L 13.3	90.0
Benzo(a)anthracene 1163241 20.2 20.7 25.0 33.0 - 143 80.8 82.8 ug/L 2.44	53.0
Benzo(a)pyrene 1163241 19.4 20.2 25.0 17.0 - 163 77.6 80.8 ug/L 4.04	72.0
Benzo(b)fluoranthene 1163241 20.5 20.8 25.0 24.0 - 159 82.0 83.2 ug/L 1.45	71.0
Benzo(ghi)perylene 1163241 20.0 18.8 25.0 0.100 - 219 80.0 75.2 ug. L 6.19	97.0
Ben 16(k) fluoranthene 1163241 21.8 21.8 25.0 11.0 - 162 87.2 87.2 ug. L 0	63.0
F Butyl phthalate 1163241 11.6 9.05 25.0 0.100 - 152 46.4 36.2 ug/L 24.7	60.0

1163241 15.5

Bis(2-chloroethoxy)methane

25.0

33.0 - 184 62.0

59.2

4.62

54.0

Page 29 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

LCS Dup											
<u>Parameter</u>	PrepSet	LCS	LCSD		Кпошп	Limits o	LCS%	LCSD%	Units	RPD	Limit%
Bis(2-chloroethyl)ether	1163241	14.4	12.8		25.0	12.0 - 158	57.6	51.2	ug/L	11.8	108
Bis(2-chloroisopropyl)ether	1163241	13.2	12.0		25.0	36.0 - 166	52.8	48.0	ug/L	9.52	76.0
Bis(2-ethylhexyl)phthalate	1163241	20.5	21.4		25.0	8.00 - 158	82.0	85.6	ug/L	4.30	82.0
Chrysene (Benzo(a)phenanthrene)	1163241	20.5	21.0		25.0	17.0 - 168	82.0	84.0	ug/L	2.41	87.0
Dibenz(a,h)anthracene	1163241	21.9	20.1		25.0	0.100 - 227	87.6	80.4	ug/L	8.57	126
Diethyl phthalate	1163241	9.41	9.50		25.0	0.100 - 120	37.6	38.0	ug∕I.	1.06	100
Dimethyl phthalate	1163241	1.74	1.82		25.0	0.100 - 120	6.96	7.28	ug I.	4.49	183
Di-n-butylphthalate	1163241	17.8	16.7		25.0	1.00 - 120	71.2	66.8	${\tt ug/L}$	6.38	47.0
Di-n-octylphthalate	1163241	18.6	20.0		25.0	4.00 - 146	74.4	80.0	ug/L	7.25	69.0
Fluoranthene(Benzo(j,k)fluorene)	1163241	21.4	22.3		25.0	26.0 - 137	85.6	89.2	ug/L	4.12	66.0
Fluorene	1163241	16.9	18.1		25.0	59.0 - 121	67.6	72.4	ug/L	6.86	38.0
Hexachlorobenzene	1163241	17.3	17.9		25.0	0.100 - 152	69.2	71.6	ug/L	3.41	55.0
Hexachlorobutadiene	1163241	7.00	10.5		25.0	24.0 - 120	28.0	42.0	ug/L	40.0	62.0
Hexachlorocyclopentadiene	1163241	4.22	6.55		25.0	3.97 - 68.7	16.9	26.2	ug/L	43.2	50.0
Hexachloroethane	1163241	7.45	9.90		25.0	40.0 - 120	29.8 *	39.6 *	ug L	28.2	52.0
Indeno(1,2.3-cd)pyrene	1163241	20.5	19.4		25.0	0.100 - 171	82.0	77.6	ug.L	5.51	99.0
Isophorone	1163241	15.1	15.0		25.0	21.0 - 196	60.4	60.0	ug/L	0.664	93.0
Naphthalene	1163241	11.4	12.4		25.0	21.0 - 133	45.6	49.6	ug/L, -	8.40	65.0
Nitrobenzene	1163241	14.7	13.9		25.0	35.0 - 180	58.8	55.6	ug∕L -	5.59	62.0
n-Nitrosodiethylamine	1163241	13.7	12.2		25.0	18.0 - 100	54.8	48.8	ug/L	11.6	50.0
N-Nitrosodimethylamine	1163241	11.7	9.46		25.0	30.2 - 74.9	46.8	37.8	ug.L	21.3	50.0
n-Nitroso-di-n-butylamine	1163241	15.4	15.8		25.0	48.4 - 98.5	61.6	63.2	ug/L	2,56	50.0
N-Nitrosodi-n-propylamine	1163241	18.8	17.9		25.0	0.100 - 230	75.2	71.6	ug/L	4.90	87.0
N-Nitrosodiphenylamine (as DPA	1163241	18.5	18.8		25.0	49.3 - 94.2	74.0	75.2	ug/L	1.61	50.0
p-Chloro-m-Cresol (4-Chloro-3-me	1163241	15.4	16.2		25.0	22.0 - 147	61.6	64.8	ug/L	5.06	70.0
Pentachlorobenzene	1163241	13.5	14.8		25.0	39.3 - 93.7	54.0	59.2	ug.T.	9.19	50.0
Pentachlorophenol	1163241	12.3	14.1		25.0	14.0 - 176	49.2	56.4	ug/L	13.6	86.0
Phenanthrene	1163241	18.6	19.2		25.0	54.0 - 120	74.4	76.8	ug/L	3.17	39.0
Phenol	1163241	5.60	5.50		25.0	5.00 - 120	22.4	22.0	ug/L	1.80 1.47	64.0 49.0
Pyrene	1163241	20.2 6.97	20.5 6.47		25.0 25.0	52.0 - 120 11.2 - 50.6	80.8 27.9	82.0 25.9	ug/L ug/L	7.43	50.0
Pyridine	1163241	0.97	0.47	Surr	ogate	11.2 - 30.0	21.9	23.5	ແຊະ ເ.	7.40	50.0
Parameter	Sample	Туре	Reading	Кломп	Units	Recover%	Limits*o	File			
2,4,6-Tribromophenol	629859	CCV	57500	100000	ug/L	57.5	10.0 - 150	127390775			
2-Fluorophenol-SURR	629859	CCV	57800	100000	ug/L	57.8	10.0 - 150	127390775			
4-Terphenyl-d14-SURR	629859	CCV	50100	50000	ug/L	100	30.0 - 150	127390775			
Nitrobenzene-d5-SURR	629859	ccv	57600	50000	ug/L	115	30.0 - 150	127390775			
Phenol-d6-SURR	629859	CCV	56900	100000	ug/L	56.9	10.0 - 150	127390775			
2,4,6-Tribromophenol	1163241	Blank	7.10	100	ug/L	7.10 *	10.0 - 150	127390777			
2,4,6-Tribromophenol	1163241	LCS	54.6	100	ug/L	54.6	10.0 - 150	127390778			
2,4,6-Tribromophenol	1163241	LCS Dup	56.4	100	ug/L	56.4	10.0 - 150	127390779			
2-Fluorophenol-SURR	1163241	Blank	6040	100000	ug/L	6.04 *	10.0 - 150	127390777			
2-Fluorophenol-SURR	1163241	LCS	33300	100000	ug/L	33.3	10.0 - 150	127390778			
2-Fluorophenol-SURR	1163241	LCS Dup	28900	100000	ug/L	28.9	10,0 - 150	127390779			
•		-									

Email: Kilgore.ProjectManagement@spllabs.com

Sample

1163241

1163241

Tvpc

Blank

LCS

Reading

7320

34900

Page 30 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Parameter

4-Terphenyl-d14-SURR

4-Terphenyl-d14-SURR

4-Terpnenyi-d14-SUKK	1163241	LCS	34900	50000	ug/L	69.8	30.0 - 150	127390778	
4-Terphenyl-d14-SURR	1163241	LCS Dup	34800	50000	ug/L	69.6	30.0 - 150	127390779	
Nitrobenzene-d5-SURR	1163241	Blank	4910	50000	ug/L	9.82 *	30.0 - 150	127390777	
Nitrobenzene-d5-SURR	1163241	LCS	26700	50000	ug/L	53.4	30.0 - 150	127390778	
Nitrobenzene-d5-SURR	1163241	LCS Dup	25000	50000	ug/L	50.0	30.0 - 150	127390779	
Phenol-d6-SURR	1163241	Blank	4310	100000	ug/L	4.31 *	10.0 - 150	127390777	
Phenoi-d6-SURR	1163241	LCS	23700	100000	ug/L	23.7	10.0 - 150	127390778	
Phenol-d6-SURR	1163241	LCS Dup	22000	100000	ug/L	22.0	10.0 - 150	127390779	
2,4,6-Tribromophenol	2384667	Unknown	43.9	94.8	ug/L	46.3	10.0 - 150	127390783	
2-Fluorophenol-SURR	2384667	Unknown	23.9	94.8	ug/L	25.2	10.0 - 150	127390783	
4-Terphenyl-d14-SURR	2384667	Unknown	17.0	47.4	ug/L	35.9	30.0 - 150	127390783	
Nitrobenzene-d5-SURR	2384667	Unknown	12.6	47.4	ug/L	26.6 *	30.0 - 150	127390783	
Phenol-d6-SURR	2384667	Unknown	7.48	94.8	ug/L	7.89 *	10.0 - 150	127390783	
Analytical Set	1165176				-				ASTM D7065-17
· mary creat sec	11021,0			BI	ank				A31WLD/003-1/
Parameter	PrepSet	Reading	MDL	MQI.	Units			File	
Nonylphenol	1164182	ND	5.00	30,0	ug/L			127399049	
,	110.102	T.D	5.00		_			127399049	
					CV				
<u>Parameter</u>		Reading	Кпошп	Units	Recover%	Limits%		File	
Nonylphenol		348000	300000	ug/L	116	70.0 - 130		127399048	
Nonylphenol		353000	300000	ug/L	118	70.0 - 130		127399060	
				IS A	reas				
<u>Parameter</u>	Sample	Туре	Reading	CCVISM	Low	High		File	PrepSet
Acenaphthene-d10-ISTD	626988	CCV	1445000	1445000	722600	2168000		127399048	626988
Acenaphthene-d10-ISTD	626988	CCV	1359000	1445000	722600	2168000		127399060	626988
Phenanthrene-d10-ISTD	626988	CCV	1953000	1953000	976600	2930000		127399048	626988
Phenanthrene-d10-ISTD	626988	CCV	1944000	1953000	976600	2930000		127399060	626988
Acenaphthene-d10-ISTD	1164182	Blank	821500	1445000	722600	2168000		127399049	1164182
Acenaphthene-d10-ISTD	1164182	LCS	817300	1445000	722600	2168000		127399050	1164182
Acenaphthene-d10-ISTD	1164182	LCS Dup	972800	1445000	722600	2168000		127399051	1164182
Phenanthrene-d10-ISTD	1164182	Blank	1205000	1953000	976600	2930000		127399049	1164182
Phenanthrene-d10-ISTD	1164182	LCS	1205000	1953000	976600	2930000		127399050	1164182
Phenanthrene-d10-ISTD	1164182	LCS Dup	1408000	1953000	976600	2930000		127399051	1164182
Acenaphthene-d10-ISTD	2384667	Unknown	863300	1445000	722600	2168000		127399054	1164182
Phenanthrene-d10-ISTD	2384667	Unknown	1271000	1953000	976600	2930000		127399054	1164182
				IS Ref	tTime				
<u>Parameter</u>	Sample	Туре	Reading	CCVISM	Low	High		File	PrepSet
Acenaphthene-d10-ISTD	626988	CCV	7.059	7.059	6.999	7.119		127399048	626988
hthene-d10-ISTD	626988	CCV	7.059	7.059	6.999	7.119		127399060	626988
i .athrene-d10-ISTD	626988	CCV	8.297	8.297	8.237	8.357		127399048	626988
Phenanthrene-d10-ISTD	626988	CCV	8.291	8.297	8.237	8.357		127399060	626988
			-					-21/22/000	020700

Surrogate

Units

ug/L

ug/L

Limits o

30.0 - 150

30.0 - 150

Recover%

14.6 *

69.8

File

127390777

127390778

Кпошп

50000

50000

Email: Kilgore.ProjectManagement@spllabs.com

Page 31 of 32

Project 1137575

Printed 04/22/2025

OWSC-R

 $Olmito\,Water\,Supply\,Corp.$ Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Olmito, 1X 78575-00	36							1111100			
				IS Re	tTime						
Parameter	Sample	Type	Reading	CCVISM	Low	High		File	PrepSei		
Acenaphthene-d10-ISTD	1164182	Blank	7.053	7.059	6.999	7.119		127399049	116418.		
Acenaphthene-d10-ISTD	1164182	LCS	7.053	7.059	6.999	7.119		127399050	116418		
Acenaphthene-d10-ISTD	1164182	LCS Dup	7.053	7.059	6.999	7.119		127399051	116418	2	
Phenanthrene-d10-ISTD	1164182	Blank	8.285	8.297	8.237	8.357		127399049	116418		
Phenanthrene-d10-ISTD	1164182	LCS	8.285	8.297	8.237	8.357		127399050	116418.	2	
Phenanthrene-d10-ISTD	1164182	LCS Dup	8.291	8.297	8.237	8.357		127399051	116418		
Acenaphthene-d10-ISTD	2384667	Unknown		7.059	6.999	7.119		127399054	116418	2	
Phenanthrene-d10-ISTD	2384667	Unknown		8.297	8.237	8.357		127399054	116418.	2	
i netianon ene-dro-15 i i	230-1007	OHAHOWE	0.251		Dup						
	P C-4	I CC	LCSD		Клоwп	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Parameter	PrepSet	LCS			150	56.0 - 112	63.7	71.3	ug/L	11.3	30.0
Nonylphenol	1164182	95.5	107	_		30.0 - 112	03.7	71.3	ugrt	11.3	50.0
				Surr	ogate						
<u>Parameter</u>	Sampie	Туре	Reading	Known	Units	Recover%	Limits%	File			
4-Nonylphenol-SURR	626988	CCV	55400	50000	ug/L	111	50.0 - 130	127399048			
4-Nonylphenol-SURR	626988	CCV	52600	50000	ug/L	105	50.0 - 130	127399060			
4-Nonylphenol-SURR	1164182	Blank	11100	25000	ug/L	44.4 *	50.0 - 130	127399049			
4-Nonylphenol-SURR	1164182	LCS	13800	25000	ug/L	55.2	50.0 - 130	127399050			
4-Nonylphenol-SURR	1164182	LCS Dup	15800	25000	ug/L	63.2	50.0 - 130	127399051			
4-Nonylphenol-SURR	2384667	Unknown	10.6	29.6	ug/L	35.8 *	50.0 - 130	127399054			
Analytical Set	1165262									Ε	PA 625.1
, many acon see	* * *			BI	ank						
Parameter	PrepSet	Reading	MDI.	MQL	Units			File			
Bisphenol A	1163241	ND	1.86	10.0	ug/L			127401235			
Dispiteriot A	1100211	112	1.00		CV CV						
<u>Parameter</u>		Reading	Кломп	Units	Recover%	Limits**o		File			
Bisphenol A		24600	25000	ug/L	98.2	70.0 - 130		127401234	n.		
Analytical Set	1166138	<u> </u>								E	PA 604.1
,				ы	ank						
Paramet <u>er</u>	PrepSet	Reading	MDL	MQI.	Units			File			
Hexachlorophene	1162972	ND	0.890	2.50	ug/L			127420079			
·				c	cv						
Parameter		Reading	Кпошп	Units	Recover%	Limits%		File			
Hexachlorophene		5140	5000	ug/L	103	70.0 - 130		127420078			
Hexachlorophene		4940	5000	ug/L	98.8	70.0 - 130		127420082			
Hexachlorophene		5260	5000	ug/L	105	70.0 - 130		127420084			
110.acmorophene		2200			Dup						
	Desa Car	1.00	/ ሮኖብ	-	Known	Limits o o	LCS%	LCSD%	Units	RPD	Limit%
Parameter	PrepSet	LCS	<i>LCSD</i>								
	1140070	27 0	44.4		50 A	25 5 - 145	74 0	88.8	ŋσ:T	18.2	20.0
Hexachlorophene	1162972	37.0	44.4		50.0	25.5 - 145	74.0	88.8	ug/L	18.2	50.0

Analytical Set

1166614

Email: Kilgore.ProjectManagement@spllabs.com

TX 1001

Report Page 50 of 57

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Page 32 of 32 Project 1137575

Printed 04/22/2025

R	is	_	b
			ĸ

<u>Parameter</u> Tributyltin hydride	PrepSet 11 64497	Reading ND	<i>MDI.</i> 0.005	MQL 0.007	Units ug/L			File 127431025			
				c	:cv						
<u>Parameter</u> Tributyltin hydride		Reading 50900	Клоwп 50000	<i>Units</i> u g/L	Recover% 102	<i>Limits%</i> 70.0 - 130		File 1 27431024			
				LCS	5 Dup						
<u>Parameter</u> Tributyltin hydride	PrcpSct 11 64497	LCS 216	LCSD 293		Known 500	<i>Limits%</i> 0.100 - 211	LCS% 43.2	LCSD% 58.6	<i>Units</i> ug/L	<i>RPD</i> 30.3 *	<i>Limit%</i> 30.0

*Out RPD is Relative Percent Difference; abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); MSD - Matrix Spike Duplicate (replicate of the matrix spike, same solution and amount of target analyte added to the MS is added to a third about of sample, quantifies matrix bias and precision.), LCS Dup - Laboratory Control Sample Duplicate (replicate LCS, analyzed when there is insufficient sample for duplicate or MSD, quantifies accuracy and precision.), BFB - Bromofluorobenzene, GC/MS Tuning Compound (mass intensity used as tuning acceptance criteria.); Surrogate Surrogate (mimics the analyte of interest but is unlikely to be found in environmental samples; added to analytical samples for QC purposes. **ANSI/ASQC E4 1994 Ref #4TRADE QA Resources Guide.); IS Areas - Internal Standard Area (The area of the internal stadard relative to a check standard. Internal Standard is a known concentration of an analyte(s) that is not a sample component or standard that is added to the sample and standard and is used to measure the relative responses of other analytes in the same sample or standard.); IS RetTime - Internal Standard Retention Time (the time the internal standard comes off the column. Internal Stardard is a known concentration of an analyte(s) that is not a sample component or standard that is added to the sample and standard and is used to measure the relative responses of other analytes in the same sample or standard.); CCV - Continuing Calibration Verification (same standard used to prepare the curve; typically a mid-range concentration; venifies the continued validity of the calibration curve); CC3 Continuing Calibration Blank, AWRL/LOGIC - Ambient Water Reporting Limit/LogiCheck Std; ICV - Initial Calibration Verification; LDR - Linear Dynamic Range Standard;

MRIL Check - Minimum Reporting Limit Check Std, DFTPP - GC/MS Tuning Compound

	1137575 CoC Print Grou	p 001 of 001	
2600 Dudley Rd. Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914		The	SPL e Science of Sure
CHAIN OF CUSTOD	Y	Printed)2/21/2	. –
Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX_78575-0036	OWSC-R 118	Lab Number / 140 PO Number Phone	956/350-4099
Efi	luent WW Grab Pe		:
Olmito WWTP Matrix: Non-Potable Water	K.	Hand relivered ADD FD 8 DROPS ODOLUM ARSEVITE	d by Client to Region or LAB OF (50) PPM
Sample Collection Start Date: 14 2025 Time: 13,3 Sampler Printed Name: 15 4 5 5 Sampler Affiliation: 5 5 6 5 Sampler Signature: 5 5 6 6 7 On Site Testing	Samples Contains Dioxin?	Samples Biologics Hazard	
CICk Field CI2 Field CI2 Check for CNa	2 Check for CNa		ļ.
Collected By ROL Date 2/24/25Time 13:3 Results 0.60 Units M9/1 Temp. 25		Units mall Temp. 25	3c
RI 2,20 R2 1.100	QCRI 2.48 QCR2 1.60	<u>) </u>	i
S2Ck Field Sul	Ifide Check for CNa		
Field Sulfide Check for CNa Collected By ROL Date 2 74 75 Time 13.3 Results NEGAT: 15 Units 100 Temp.	·		c
Ambor Gloss Of	u/Taflon linad lid		Ţ
9 Amber Glass Qt v	MATERIOR RUNCH HE		1
			\ ^{i'}

2600 Dudley Rd. Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914

CHAIN OF CUSTODY

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36		OWSC-R 118							
Olmito, TX 78575-0036	!CPP	Permit Organophos. Pesticides	EPA 614 (7.00 days)						
NELAC	!CPR	TTO PCB	EPA 608.3 (7.00 days)						
NELAC	!D2\$	Table D-1/ D-2 Semivolatiles Exp	EPA 625.1 (7.00 days)						
NELAC	HER	Herbicides by GC	EPA 615 (7.00 days)						
NELAC	IPPR	TTO Pesticides	EPA 608.3 (7.00 days)						
2	#MDR	For use with !PPR only	EPA 617 (7.00 days)						
NELAC	402E	For use with EXP !CPP only	EPA 622 (7.00 days)						
	HXPE	Hexachlorophene Expansion	EPA 604.1 CAS:70-30-4 (7.00 days)						
	TBTE	Butyltin Expansion	TX 1001 (14.0 days)						
NELAC	TYLC	Carbaryl/Diuron	EPA 632 (7.00 days)						
2 Glass Vial 40 mL (Zero Headspace) w/Teflon lined lid									
NELAC Short Hold	SAAE	Acrolein/Acrylonitrile Exp.	EPA 624.1 (3.00 days)						
2 H2	SO4 to	pH <2 GlQt w/Tef-lined lid							
	NYPE	Nonyl Phenol Expansion	ASTM D7065-17 (14.0 days)						
1 H2:	SO4 to	pH <2 Amber Glass 250 mL w/I	eflon lined lid						
NELAC	Plma	Phenolics, Total Recoverable	EPA 420.4 1 (28.0 days)						
3 Am	ber Gla	ss Liter w/Teflon lined lid							
Subcontract	IDIX	Dioxins and Furans Subcontract	1613 CAS:IONI (30.0 days)						
0 Z	No bot	ttle required							
Subcontract	100S	SUB Shipped							
	CKLM	Check Limits							
NELAC Short Hold	Cr+3	Trivalent Chromium	Calculation CAS: 16065-83-1 (1.00 days)						
	SKL	Sub Hold: PM Attn							
1 HN	03 to n	H <2 Polyethylene 500 mL for 1	Metals						
NELAC NELAC	*AgM	Silver, Total	EPA 200.8 5.4 CAS:7440-22-4 (180 days)						
NELAC .	*AlM	Aluminum, Total	EPA 200.8 5.4 CAS:7429-90-5 (180 days)						
-	 E II								

2600 Dudley Rd. Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914

The Science of Sure Printed 12/21/2025 Page 3 of 4

CHAIN OF CUSTODY

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36	OWSC-R 118	
Olmito, TX 78575-0036		
NELAC • A	ASM Arsenic, Total	EPA 200.8 5.4 CAS:7440 38-2 (180 days)
NELAC *E	BaM Barium, Total	EPA 200.8 5.4 CAS:7440-19-3 (180 days)
NELAC *E	BeM Beryllium, Total	EPA 200.8 5.4 CAS:7440 -41-7 (180 days)
NELAC *C	CdM Cadmium, Total	EPA 200.8 5.4 CAS:7440-43-9 (180 days)
NELAC •C	Chromium, Total	EPA 200.8 5.4 CAS:7440-47-3 (180 days)
NELAC •C	CuM Copper, Total	EPA 200.8 5.4 CAS:7440-10-8 (180 days)
NELAC •N	liM Nickel, Total	EPA 200.8 5.4 CAS:7440)2-0 (180 days)
NELAC *P	bM Lead, Total	EPA 200.8 5.4 CAS:7439 -12-1 (180 days)
NELAC *S	bM Antimony, Total	EPA 200.8 5.4 CAS:7440-36-0 (180 days)
NELAC *S	eM Selenium, Total	EPA 200.8 5.4 CAS:7782 -19-2 (180 days)
NELAC *T	lM Thallium, Total	EPA 200.8 5.4 CAS:7440 28-0 (180 days)
NELAC *Z	nM Zinc, Total	EPA 200.8 5.4 CAS:7440 ::6-6 (180 days)
30	1L Liquid Metals Digestion	EPA 200.2 2.8 (180 days)
3 Na2S2	O3 (0.008%) Glass 40 mL vial w	Teflon lined lid (zero headspace)
	2V Table D-1/D-2 Volatile Expansion	EPA 624.1 (3.00 days)
1 Glass	clean metals w/HCl	l'
NELAC *E	igi Mercury, Total (low level)	EPA 245.7 2 CAS:7439-9 ⁻ -6 (90.0 days)
NELAC 24	51 Low Level Mercury Liquid Metals	EPA 245.7 2 (90.0 days)
2 NaOH	to pH >12 Polyethylene 250 mL	/amber
NELAC CI	Na Cyanide, total	SM 4500-CN ⁻ E-2016 (1- 0 days)
NELAC C	N-A Cyanide - Available/Amenable	SM 4500-CN ⁻ G-2016 (1 0 days)
NELAC C	Cyanide After Chlorination	SM 4500-CNT G-2016 (1 0 days)
1 Polyet	hylene Quart	
NELAC !F	LL Fluoride	EPA 300.0 2.1 (28.0 days
1 Cr+6 F	Preserved 250 Polyethylene	1
NELAC Short Hold Cr	+6 Hexavalent Chromium	SM 3500-Cr B-2011 CAS 8540-29-9 (1.00 days)

2600 Dudley Rd. Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914

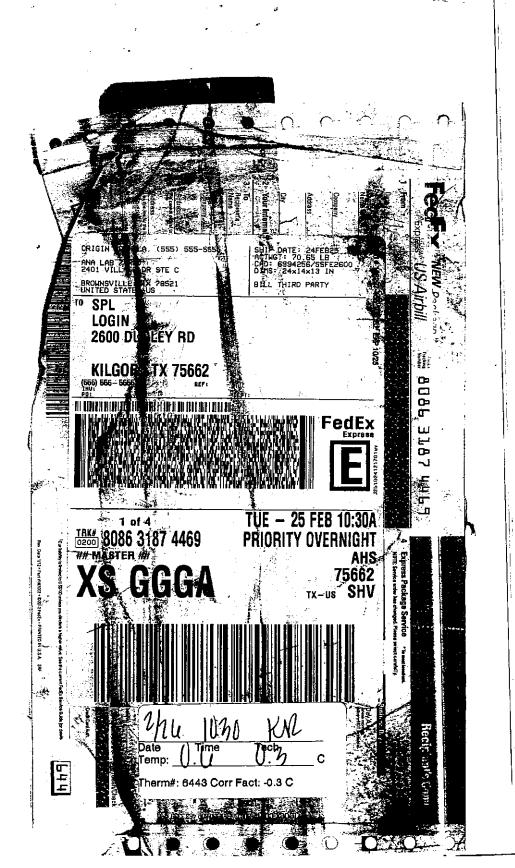
CHAIN OF CUSTODY

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036 Ambient Conditions/Comments OWSC-R 118

Date	Time	Relinquished		Received	i
72N		Printed Name R NE LEUN All.	iliation Prin	FedEx	Affiliation
125	17130	Signature Stants	Sign	manure	
			iliation Prin	nted Name Kieylstem Rossur	Affiliation m - SPL, Inc.
	ļ	Signature	Sign	mature XXX	N
			iliation Prin	nted Name	Affiliation
		Signature	Sign	mature	· · · · · · · · · · · · · · · · · · ·
		Printed Name Affi	liation Prin	nted Name	Affiliation
		Signature	Sign	паше	

Sample Received on Ice? 🏻 🎢 🕾		
Cooler/Sample Secure?	No	If Shipped: Tracking Number & Temp - See Attached

The accredited column designates accreditation by A - A2LA, N - NELAC, or z - not listed under scope of accreditation. Unless otherwise specified, SPL shall provide these ordered services pursuant to our Standard Terms & Conditions Agreement. SPL personnel collect samples as specified by SPL SOP #000323.


Comments

2600 Dudley Rd. Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914 SUBCONTRACT CHAIN OF CUSTODY Printed **OWSC-R** ALS Laboratory Group/Houston ION1 10450 Stancliff Rd 118 PO Number Suite 210 Houston, TX 77099 Effluent WW Grab Permit TAT Olmito WWTP Matrix: Non-Potable Water Sample Collection Start Sampler Printed Name: Sampler Affiliation: Sampler Signature: Samples Biological Ha: rd? Samples Radioactive? Samples Contains Dioxin? Amber Glass Liter w/Teflon lined lid 1613 CAS: JON1 (30.0 days !DIX Dioxins and Furans Subcontract Subcontract Ambient Conditions/Comments Date Time Receiv Date Time Relinquished A fliliation 2/24/29 24/25 Signature A ffilimnon Affiliation 2/24/25 2/24/5 Signature Signature 11750 Affiliation Printed Name Printed Name Signature Athiliation Printed Name Affillation Printed Name Signature Method of Shipment: [UPS [Bis FedEx Lone St. | Hand Delivered ∏ No Sample Received on Ice? Cooler/Sample Secure? If Shipped: Tracking Number & Temp - See Attached Iand Delivered to Region [] The accredited column designates accreditation by A - A2LA, N - NELAC, or z - not listed under scope of accreditation. Unless otherw specified. SPL hall provide these ordered services pursuant to our Standard Terms & Conditions Agreement . SPL personnel collect samples as specified by SPL St. ' #000323. Comments RGV Region: 2401 Vill. je Dr. Suite C Brownsville TX 78521

Kilgore.ProjectManagement@spllabs.cc n

Report Page 56 of 57

Report Page 57 of 57

SPI. Ki 240 Bro Pb F En

Logout

Session Expires in: 1183 seconds. Sample Tests

Default

Client OWSC

Olmito Water Supply Corp.

Tomas Tamayo

Sample 2384667

Project <u>1137575</u> Effluent WW Grab Permit

Olmito WWTP

2 24 2025 P

PERMIT

HOME

Preliminary Report

♠ All ○ Results ○ Open ○ Prep ○ No Prep

Filter

Parameter	Test Name	Results	Units	Flag	sRL	Class	Method	Verifie	d Fee
!DIX	Dioxins and Furans Subcontract	sent (PRELIMINARY))			S	1613	777	600
100S	SUB Shipped	Verified				S		Υ.	100
SBME	(MTBE) tert-Butylmethylether	ND	ug/L		1.00	0	EPA 624.1	Y	0.
S124	1,1,1-Trichloroethane	ND	ug/L		1.00	O	EPA 624.1	Z.	0.
S119	1,1,2,2-Tetrachloroethane	ND	ug/L		1.00	O	EPA 624.1	Y	; 0.
S125	1,1,2-Trichloroethane	ND	ug/L		1.00	0	EPA 624.1	Y	0.
S065	1,1-Dichloroethane	ND	ug/L		1.00	0	EPA 624,1	Y	0.
\$067	1,1-Dichloroethylene	ND	ug/L		1.00	0	EPA 624.1	Y	0.
\$188	1,2,4,5-Tetrachlorobenzene	ND	ug/L		0.976	0	EPA 625.1	Y	0.
\$123	1,2,4-Trichlorobenzene	ND	ug/L	S	0.948	0	EPA 625.1	Y	0.
\$12M	1,2-Dibromoethane (EDB)	ND	ug/L		1.00	0	EPA 624.1	Y	0.
S061	1,2-Dichlorobenzene	ND	ug/L		4.74	0	EPA 625.1	Y	0.
\$066	1,2-Dichloroethane	ND	ug/L		1.00	0	EPA 624.1	Y.	0.4
S070	1,2-Dichloropropane	ND	ug/L		1.00	О	EPA 624.1	Y.	0.0
S082	1,2-DPH (as azobenzene)	ND	ug/L		0.948	0	EPA 625.1	Y	0.
S060	1,3-Dichlorobenzene	ND	ug/L		4.74	0	EPA 625.1	Y	÷ (),
S062	1,4-Dichlorobenzene	ND	ug/L		4.74	0	EPA 625.1	Y	; ().
!24D	2,4 Dichlorophenoxyacetic acid	ND	ug/L		0.477	0	EPA 615	Y	0.0
!245	2,4,5-TP (Silvex)	ND	ug/L		0.286	0	EPA 615	Y	0.0
S24P	2,4,5-Trichlorophenol	ND	ug/L		4.74	0	EPA 625.1	Y	0.
\$128	2,4,6-Trichlorophenol	ND	ug/L		1,90	0	EPA 625.1	Y	0.
S069	2,4-Dichlorophenol	ND	ug/L		0.948	0	EPA 625.1	Y	0.0
\$074	2,4-Dimethylphenol	ND	ug/L	-	0.948	0	EPA 625.1	Y	0.0
\$079	2,4-Dinitrophenol	ND	ug/L		1.90	0	EPA 625.1	Y	0.0
5080	2,4-Dinitrotoluene	ND	ug/L		1.90	0	EPA 625.1	Y	0.0
S0S1	2,6-Dinitrotoluene	ND	ug/L		1.90	0	EPA 625.1	Y	0.0
\$048	2-Chloroethylvinyl ether	ND	ug/L		1.00	0	EPA 624.1	Y	0.0
S051	2-Chloronaphthalene	ND	ug/L	S	0.948	0	EPA 625.1	J.	0.0
\$052	2-Chlorophenol	ND	ug/L		0.948	0	EPA 625.1	Y	0.0
S139	2-Methylphenol (o-Cresol)	ND	ug/L		9.48	O	EPA 625.1	Y	(),(
S102	2-Nitrophenol	ND	ug/L		0.948	0	EPA 625.1	Y	0.0
S134	3&4-Methylphenol (m&p-Cresol)	ND	ug/L		58	0	EPA 625.1	Υ	0,0
S063	3,3'-Dichlorobenzidine	ND	ug/L		1.90	0	EPA 625.1	Y	0.0
!055	4,4-DDD	ND	ug/L		0.00953	0	EPA 608.3	\mathbf{Y}^{-}	0.0
!056	4,4-DDE	ND	ug/L		0.00953	0	EPA 608.3	Υ.	0.0
!057	4,4-DDT	ND	ug/L		0.00953	Ο	EPA 608.3	Y	0.0
\$078	4,6-Dinitro-2-methylphenol	ND	ug/L		1.90	0	EPA 625.1	<u>Y</u>	0.0

\$036	4-Bromophenyl phenyl ether	ND	ug/L		0.948	0	EPA 625.1	Y	0.0
S041	4-Chlorophenyl phenyl ethe	ND	ug/L		0.948	0	EPA 625.1	Υ	0.0
\$103	4-Nitrophenol	ND	ug/L		0.948	O	EPA 625.1	Y	0.0
\$016	Acenaphthene	ND	ug/L		0.948	0	EPA 625.1	Y	0.0
\$017	Acenaphthylene	ND	ug/L		0.948	()	EPA 625.1	Y	0.0
S018	Acrolein	ND	ug/L	S	4.00	O	EPA 624.1	Y	0.0
S019	Acrylonitrile	ND	ug/L		1.00	0	EPA 624.1	Y	0.0
1020	Aldrin	ND	ug/L		0.00953	0	EPA 608.3	Y	0.0
!029	Alpha-BHC(hexachlorocyclohexane)	ND	ug/L		0.00953	O	EPA 608.3	Y	0.0
SAni	Aniline	ND	ug/L	S	2.34	0	EPA 625.1	Ϋ́	0.0
S021	Anthracene	ND	ug/L		0.948	O	EPA 625.1	λ.	0.0
SGut	Azinphos-methyl (Guthion)	ND	ug/L		0.0477	О	EPA 614	Y	0.0
S022	Benzene	ND	ug/L		1.00	О	EPA 624.1	Υ	0.0
S023	Benzidine	ND	ug/L		1.42	О	EPA 625.1	Y	0.0
S024	Benzo(a)anthracene	ND	ug/L		0.948	О	EPA 625.1	Y	0.0
S025	Benzo(a)pyrene	ND	ug/L		0.948	O	EPA 625.1	Υ	0.0
S026	Benzo(b)fluoranthene	ND	ug/L		0.948	O	EPA 625.1	Υ	0.0
S027	Benzo(ghi)perylene	ND	ug/L		0.948	0	EPA 625.1	Y	0.0
\$028	Benzo(k)fluoranthene	ND	ug/L		0.948	0	EPA 625.1	Y	0.0
S042	Benzyl Butyl phthalate	ND	ug/L		7.11	О	EPA 625.1	Y	0.0
!030	Beta-BHC(hexachlorocyclohexane)	ND	ug/L		0.00953	О	EPA 608.3	Y	0.0
\$034	Bis(2-chloroethoxy)methane	ND	ug/L		0.948	0	EPA 625.1	Y	0.0
\$033	Bis(2-chloroethyl)ether	ND	ug/L		0.948	О	EPA 625.1	Y	0.0
S035	Bis(2-chloroisopropyl)ether	ND	ug/L		0.948	0	EPA 625.1	У	0.0
\$037	Bis(2-ethylhexyl)phthalate	ND	ug/L		7.11	O	EPA 625.1	Y	0.0
BPHN	Bisphenol A	ND	ug/L		9.48	0	EPA 625.1	Y	0.0
\$064	Bromodichloromethane	2.28	ug/L		1.00	O	EPA 624.1	Y	0.0
S039	Bromoform	ND	ug/L		1.00	()	EPA 624.1	Y	0.0
S040	Bromomethane (Methyl Bromi	ND	ug/L		1.00	О	EPA 624.1	Y	0.0
!Car	Carbaryl (Sevin)	ND	ug/L		2.38	О	EPA 632	Y	0.0
S043	Carbon Tetrachloride	ND	ug/L		1.00	O	EPA 624.1	Y	0.0
!044	Chlordane	ND	ug/L		0.191	0	EPA 608.3	Y	0.0
\$046	Chlorobenzene	ND	ug/L		1.00	О	EPA 624.1	Y	0.0
S047	Chloroethane	ND	ug/L		1.12	О	EPA 624.1	Y	0.0
S049	Chloroform	2.82	ug/L		1.00	0	EPA 624.1	Y	0.0
\$050	Chloromethane (Methyl Chloride)	ND	ug/L		1.00	0	EPA 624.1	Y	0.0
/402	Chlorpyrifos	ND	ug/L		0.0477	0	EPA 622	Y	0.0
\$054	Chrysene (Benzo(a)phenanthrene)	ND	ug/L		0.948	О	EPA 625.1	Y	0.0
S071	cis-1,3-Dichloropropene	ND	ug/L		1.00	O	EPA 624.1	Y	0.0
1031	Delta-BHC(hexachlorocyclohexane)	ND	ug/L		0.00953	0	EPA 608.3	Y	0.0
\$404	Demeton	ND	ug/L		0.0477	0	EPA 614	Y	0.0
\$405	Diazinon	ND	ug/L		0.0477	О	EPA 614	Y	0.0
\$058	Dibenz(a,h)anthracene	ND	ug/L		0.948	0	EPA 625.1	Ϋ́	0.0
\$059	Dibromochloromethane	1.78	ug/L		1.00	0	EPA 624.1	Y.	0.0
\$099	Dichloromethane	ND	ug/L		1.02	О	EPA 624.1	Y	0.0
!072	Dieldrin	ND	ug/L		0.00953	0	EPA 608.3	Y	0.0
\$073	Diethyl phthalate	ND	ug/L		5.40	O	EPA 625.1	Y	0.0
\$075	Dimethyl phthalate	ND	ug/L		4.55	0	EPA 625.1	Y	0.0
S076	Di-n-butylphthalate	ND	ug/L		7.11	O	EPA 625.1	λ	0.0
\$077	Di-n-octylphthalate	ND	ug/L		1.90	O	EPA 625.1	Y	0.0
!DIR	Diuron	ND	ug/L	В	0.0429	0	EPA 632	Y	0.0
!083	Endosulfan I (alpha)	ND	ug/L		0.00953	O	EPA 608.3	Υ	0.0
1084	Endosulfan II (beta)	ND	ug/L		0.00953	O	EPA 608.3	Y	0.0
!085	Endosulfan sulfate	ND	ug/L		0.00953	0	EPA 608.3	Y	0.0
!086	Endrin	0.0169	ug/L		0.00953	0	EPA 608.3	Υ	0,0
1087	Endrin aldehyde	ND	ug/L	• • • • • • • • • • • • • • • • • • • •	0.00953	0	EPA 608.3	Y	0.0
SEpi	Epichlorohydrin	ND	ug/L		20.0	0	EPA 624.1	Y	0.0
\$088	Ethylbenzene	ND	ug/L		1.00	0	EPA 624.1	Υ	10.0
J-0-010				•			·	<u> </u>	

.23 PW		SPL Nigore v	VCDLDO O	ii Giit C	ample lest	3			
!EG	Ethylene Glycol	ND	mg/L	D	50.0	О	EPA S015C	Y	0.0
\$089	Fluoranthene(Benzo(j,k)fluorene)	ND	ug/L		0.948	О	EPA 625.1	λ.	0.0
\$090	Fluorene	ND	ug/L		0.948	()	EPA 625.1	Y.	0.0
!032	Gamma-BHC(Lindane)	ND	ug/L		0.00953	O	EPA 608.3	Y	0.0
!091	Heptachlor	ND	ug/L		0.00953	0	EPA 608.3	Y	0.0
!092	Heptachlor epoxide	ND	ug/L		0.00953	O	EPA 608.3	Y	0.0
\$093	Hexachlorobenzene	ND	ug/L		0.948	0	EPA 625.1	Y	: 0.0
S094	Hexachlorobutadiene	ND	ug/L		0.976	О	EPA 625.1	Y	. 0.0
S095	Hexachlorocyclopentadiene	ND	ug/L		0.948	О	EPA 625.1	<u>Y</u>	0.0
S096	Hexachloroethane	ND	ug/L	S	1.90	О	EPA 625.1	Y	0.0
!HXP	Hexachlorophene	ND	ug/L		2.38	O	EPA 604.1	Τ.	0.0
\$097	Indeno(1,2,3-cd)pyrene	ND	ug/L		0.948	<u>O</u>	EPA 625.1	Y	0.0
\$098	Isophorone	ND	ug/L		0.948	O	EPA 625.1	Y	0.0
≖KeI	Kelthane (Dicofol)	ND	ug/L		0.0477	O	EPA 617	Y	0.0
S413	Malathion	ND ND	ug/L		0.0477	О	EPA 614	Y	0.0
\$281	m-Dichlorobenzene (1,3-DCB)	ND	ug/L		1.00	О	EPA 624.1	Y	0,0
#Met	Methoxychlor	ND	ug/L		0.00953	О	EPA 617	Y	0.0
SMEK	Methyl ethyl ketone (Butanone)	ND	ug/L		1.00	0	EPA 624.1	Y	0.0
≠Mir	Mirex	ND	ug/L		0.00953	0	EPA 617	Y	0.0
\$100	Naphthalene	ND	ug/L		0.948	0	EPA 625.1	Y	0.0
\$101	Nitrobenzene	ND	ug/L		0.948	0	EPA 625.1	Y	0.0
\$380	n-Nitrosodiethylamine	ND	ug/L		0.948	0	EPA 625.1	Y	0.0
S104	N-Nitrosodimethylamine	ND	ug/L		0.948	O	EPA 625.1	Y	0.0
\$190	n-Nitroso-di-n-butylamine	ND	ug/L		0.948	O	EPA 625.1	Y	0.0
\$105	N-Nitrosodi-n-propylamine	ND	ug/L		0.948	O	EPA 625.1	Y	0.0
S106	N-Nitrosodiphenylamine (as DPA	ND	ug/L		0.948	О	EPA 625.1	Y	0.0
SNNP	Nonylphenol	ND	ug/L		35.5	О	ASTM D7065-17	Y	0.0
S283	o-Dichlorobenzene (1,2-DCB)	ND	ug/L		1.00	O	EPA 624.1	Y	0.0
S418	Parathion, ethyl	ND	ug/L		0.0477	0	EPA 614	Y	0.0
S419	Parathion, methyl	ND	ug/L		0.0477	О	EPA 614	Y	0.0
!107	PCB-1016	ND	ug/L	X	0.193	О	EPA 608.3	Y	0.0
!108	PCB-1221	ND	ug/L		0.191	0	EPA 608.3	Y	0.0
!109	PCB-1232	ND	ug/L		0.191	О	EPA 608.3	Y	0.0
:110	PCB-1242	ND	ug/L		0.191	О	EPA 608.3	Y	0.0
!!!!	PCB-1248	ND	ug/L		0.191	О	EPA 608.3	Y	0.0
!112	PCB-1254	ND	ug/L		0.191	O	EPA 608.3	Y	0.0
!113	PCB-1260	ND	ug/L	Χ	0.191	O	EPA 608.3	Y	0.0
S045	p-Chloro-m-Cresol (4-Chloro-3-me	ND	ug/L		0.948	О	EPA 625.1	Υ	0.0
SV62	p-Dichlorobenzene (1,4-DCB)	ND	ug/L		1.00	O	EPA 624.1	Y	0.0
\$189	Pentachlorobenzene	ND	ug/L		0.948	О	EPA 625.1	Y	0.0
\$114	Pentachlorophenol	ND	ug/L		4.74	О	EPA 625.1	λ.	0.0
\$115	Phenanthrene	ND	ug/L		0.948	О	EPA 625.1	Y	0.0
S116	Phenol	ND	ug/L		0.948	О	EPA 625.1	Y	0.0
\$117	Pyrene	ND	ug/L		0.948	0	EPA 625.1	Y	0.0
SPyr	Pyridine	ND	ug/L		1.28	О	EPA 625.1	Y	0.0
S120	Tetrachloroethylene	ND	ug/L		1.00	О	EPA 624.1	Y	0.0
\$121	Toluene	ND	ug/L		1.00	0	EPA 624.1	. 7.	0.0
!122	Toxaphene	ND	ug/L		0.191	О	EPA 608.3	Y	0.0
\$06\$	trans-1,2-Dichloroethylene	ND	ug/L		1.00	О	EPA 624.1	7.	0,0
\$130	trans-1,3-Dichloropropene	ND	ug/L		1.00	O	EPA 624.1	Υ	0.0
STBT	Tributyltin hydride	ND	ug/L	D	0.00667	O	TX 1001	Y	0.0
\$126	Trichloroethylene	ND	ug/L		1.00	О	EPA 624.1	Υ	0.0
\$129	Vinyl chloride	ND	ug/L		1.00	0	EPA 624.1	Υ	0.0
*AlM	Aluminum, Total	0.0183	mg/L	М	0.005	М	EPA 200.8 5.4	Y	14.0
*SbM	Antimony, Total	ND	mg/L		0.003	М	EPA 200.8 5.4	Υ	14,0
*AsM	Arsenic, Total	0.0152	mg/L		0.001	М	EPA 200.8 5.4	Y	14.0
°BaM	Barium, Total	0.0886	mg/L		0.001	М	EPA 200.8 5.4	7	1,4,0
*BeM	Beryllium, Total	ND	mg/L		0.000139	М	EPA 200.S 5.4	7.	14.0
	· · · · · · · · · · · · · · · · · · ·				·		•		•

					•				
*CdM	Cadmium, Total	ND	mg/L	-	0.001	М	EPA 200.8 5.4	Y.	14.(
*CrM	Chromium, Total	ND	mg/I		0.001	M	EPA 200,8 5.4	λ	14.0
*CuM	Copper, Total	0.0159	mg/L		0.00155	М	EPA 200.8 5.4	Y	14.0
Cr+6	Hexavalent Chromium	ND	ug/L		3.00	М	SM 3500-Cr B-2011	Y	35.0
*PbM	Lead, Total	ND	mg/L	1	0.000244	М	EPA 200.8 5.4	Y	14.0
*Hgl	Mercury, Total (low level)	ND	ng/L		4.26	М	EPA 245.7 2	Y	90.0
*NiM	Nickel, Total	0.00325	mg/L		0.00112	М	EPA 200.8 5.4	Y	14.0
*SeM	Selenium, Total	ND	mg/L	,	0.005	М	EPA 200.8 5.4	λ.	14.0
*AgM	Silver, Total	ND	mg/L	,	0.000226	М	EPA 200.8 5.4	Y.	14.0
*TlM	Thallium, Total	ND	mg/L		0.000106	М	EPA 200.S 5.4	Y	14.(
*ZnM	Zinc, Total	0.0354	mg/L		0.001	М	EPA 200.8 5.4	Y	14.(
!FIL	Fluoride	ND	mg/L		0.5	J	EPA 300.0 2.1	Y	27.(
!N3L	Nitrate-Nitrogen Total	0.727	mg/L		0.226	I	EPA 300.0 2.1	Υ.	27,(
ClCk	Field Cl2 Check for CNa	0.60				F		Y	10.0
S2Ck	Field Sulfide Check for CNa	NEGATIVE	mg/L			F		Y	10.0
Cr6F	Hex Cr, Field Preservation	PRESERVED	ug/L	-	3	F	SM 3500-Cr B-2011	Y	5.0
CNC1	Cyanide After Chlorination	0.0124	mg/L	,	0.005	D	SM 4500-CN G-2016	Y	16.0
CNa	Cyanide, total	0.0056	mg/L	,	0.005	D	SM 4500-CN E-2016	Y	46.0
Phna	Phenolics, Total Recoverable	0.016	mg/L		0.005	D	EPA 420.4 1	Y	44,(
SCre	Cresols Total	ND	ug/L		7.58	<u>A</u>	EPA 625.1	Y	0.0
CN-A	Cyanide - Available/Amenable	ND	mg/L	_	0.005	Α	SM 4500-CN G-2016	Y	46.(
STHM	Trihalomethanes	0.00688	mg/L		0.001	А	EPA 624.1	Y	0.0
Cr÷3	Trivalent Chromium	ND	mg/L	! !	0.003	А	Calculation	Y	14.(
SAAE	Acrolein/Acrylonitrile Exp.	Entered				O	EPA 624.1	Y	72.(
BPAE	Bisphenol A Expansion	Entered				O	EPA 625.1	Y	350.
TBTE	Butyltin Expansion	Entered				О	TX 1001	Y	450.
TBXL	Butyltins Extraction	1/1050	ml			О	TX 1001	Y	0.0
TYLC	Carbaryl/Diuron EXP	Entered	!			O	EPA 632	Y	150.
SEPE	Epichlorohydrin Exp.	Entered			L	О	EPA 624.1	Y	65.0
ESRL	Esterification of Sample	10/1048	ml			O	EPA 615	Y	0.0
!EGE	Ethylene Glycol Expansion	Entered				Ō	EPA METHOD 8015C	Y.	155.
=MDR	For use with !PPR only	Entered			<u> </u>	0	EPA 617	Y	60.0
402E	For use with EXP !CPP only	Entered	i			0	EPA 622	Y	52.0
!HER	Herbicides by GC	Entered	İ			O	EPA 615	Y.	160.
HXPE	Hexachlorophene Expansion	Entered				0	EP.A 604.1	Y	150.
HXXL	Hexachlorophene Extraction	5/1050	ml			0	EPA 604.1	Y	0.0
632L	Liquid-Liquid Extr. W/Hex Ex	1/1049	ml			0	EPA 632	Y	0.0
GCXL	Liquid-Liquid Extr. W/Hex Ex	1/1049	ml			О	EPA 608.3	Y	0.0
EXTL	Liquid-Liquid Extraction, BNA	1/1055	ml			О	EPA 625.1	Y	1.0
NYPE	Nonyl Phenol Expansion	Entered				О	ASTM D7065-17	Y	300.
NYXL	Nonylphenol Liq-Liq Extract	1/846	ml			О	EPA 625.1	Y	0.0
PCBL	PCB Liq-Liq Extr. W/Hex Exch.	1/1049	ml			О	EPA 608.3	<u>Y</u>	0.0
!CPP	Permit Organophos. Pesticides	Entered		_		О	EPA 614	Y	265.
OPXL	Solvent Extraction	1/1049	ml		i	0	EPA 608.3	Y	0.0
!D2S	Table D-1/ D-2 Semivolatiles Exp	Entered				0	EPA 625.1	Y	35 <u>5</u> .
SVOP	Table D-1/D-2 w/MTBE	Entered				О	EPA 624.1	Y	145.
!CPR	TTO PCB	Entered	-			О	EPA 608.3	Y	95.0
!PPR	TTO Pesticides	Entered			<u> </u>	О	EPA 608.3	Y	145.
301L	Liquid Metals Digestion	50/50	mi			М	EPA 200,2 2.8	Y	18.0
2451	Low Level Mercury Liquid Metals	50/47	ml			М	EPA 245.7 2	Y	16.0
CNAD	CN Dist After Chlorination	10/5	ml			D	SM 4500-CN C-2016	Y	0.0
CNDL	Cyanide Distillation	10/5	ml	1		D	SM 4500-CN C-2016	Y	0.0
PhDL	Phenol Distillation	6/6	ml			D	EPA 420.4 1	J.	0.0
VDWX	DW Volatiles Dechlorination Vial	Verified				Α		Y	10.0
ENVI	Enviro Fee (per Sampling Group)	Verified				А		Υ'	20.0
			How Dago		· · · · · · · · · · · · · · · · · · ·	_			-

Allow Pages

Pending QC Review QC Verified

Page 1 of 1

Printed

03/14/2025 17:16

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

TABLE OF CONTENTS

This report consists of this Table of Contents and the following pages:

Report Name	Description	<u>Pages</u>
1139440_r02_01_ProjectSamples	SPL Kilgore Project P:1139440 C:OWSC Project Sample Cross Reference t:304	1
1139440_r03_03_ProjectResults	SPL Kilgore Project P:1139440 C:OWSC Project Results t:304	2
1i	SPL Kilgore CoC OWSC 1139440_1_of_1	1
	Total Pages:	4

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 1 of 5

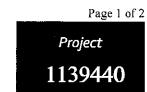
SAMPLE CROSS REFERENCE

Printed

3/14/2025

Page 1 of 1 PERMIT

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036


Sample	Sample ID	Taken	Time	- · · · · · · · · · · · · · · · · · · ·	Received	
2389011	Effluent WW Grab	03/11/2025	09:00:00		03/12/2025	_
	Method	Bottle	PrepSet	Preparation	QсGroup	Analytical
	SM 4500-C1 G-2011		1164898	03/11/2025	1164898	03/11/2025
	Subcontract			03/11/2025		03/11/2025

Email: Kilgore.ProjectManagement@spllabs.com

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Printed:

03/14/2025

RESULTS

				Sample Res	sults					
	2389011 Effluent W	/W Grab						Received:	03/12	2/2025
	on-Potable Water	Collected by: Taken: 03/	Client 11/2025	Olmito Water 09:00			PO:			
S	M 4500-Cl G-2011		Prepared:	1164898 03/	11/2025	09:00:00	Analyzed 16489e	3 03/11/2025	09:00:00	CL.
	Parameter		Results	Units	RL		Flags	CAS		Bottle
ELAC	Cl2 Res.,Total(Onsite)Spec Mmg/L]	Aid [RL 0.05	1.80	mg/L	0.05					
	contract		Prepared:	03/	11/2025	14:59:00	Analyzed	03/11/2025	14:59:00	SU
	Parameter		Results	Units	RL		Flags	CAS		Bott/e
	MPN, E.coli, Coli-18 - WW s	sub	See Attached					CCWU		

Qualifiers:

NE

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

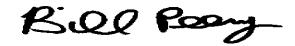
These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a' J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL

Report Page 3 of 5

The Science of Sure

Page 2 of 2


Project 1139440

Printed:

03/14/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Bill Peery, MS, VP Technical Services

1139440 CoC Print Group 001 of 001

CHAIN OF CUSTODY RECORD

Client Name: SPL L	ABS		_						_																					
Address: 2600 Dud	ley Rd.						4		$\vec{\mathcal{F}}$			We	ifer II	tilities	l al	a	ator	v			1	í								
city: Kilgore	_State: TX Zip	75662						量	扡					13101	Lec	opa	d S	i.		:: 1	Ø,	V 25 4	*							
Phone: (903) 984 - 0551	Fax:(903) 9	184 - 5914	_				Ę	Z	٥			("	s Chris Ph: (36	1)8	28-	120	0		- (The second		Œ.							
	anjarrez@splla	abs.com	is-1 Om Som				- (City	DUS				F	аж (36	H) 2	:42-	913	1		,	V			ŝ/						
Sampler: (PLEASE PRINT) ANTICK	110 am 110	<u> </u>	•				Co	No. o glain servi	eru'	T	Ma	trix	Ri	esidual hiorine	I						Α	naly	Z.6)	For						
Semple ID	Lab ID#	Date Sempled	Time Sampled		## H						Tuent Toent		To Booch	tel E	1				7-1			SI ELO			Total Affeibility		Fecal Colfform	Hom	2000	\prod
		D SS □	nes :	島	Composite	Olher	7054	SE I	율.		WW Efficent	Water	Other -Specify	inea [1 8	Ē	188	30	Ammonia-N	ē.	Salorida Salorida	Photograph	Witness	£	Total A	20	Fecal	Total Coffform	Enterococci	
Effluent WW Grab	2384011	3-11-25	9sept	X				7	2	I	X		,	1.80							I							7	办	
<u> </u>				<u> </u>						1	1		Ì					1					1	1	,,			141	1	7
1							П	T	Τ	Τ	Τ	П			Т					Ţ	T	T	T	T	П		П	T	7	1
1								1	T	T		П	╅		T		T			T	T		T	T	Τ	\vdash	П	十	\dagger	Ť
5				П	寸	T	T	十	\dagger	t	十		╅		t		T			+	\dagger	十	t	+	T	✝	十	\dagger	十	十
5	-			H	\dagger		H	\dagger	\dagger	t	+	H	+		╁	-	H	\vdash	7	+	\dagger	+	\dagger	+	\vdash	╁	H	╅	+	+
		<u> </u>		لبل	_	_	Ш		1.		_1_	Ш			Т.	L	L	لـــا	Ш	_L	丄				ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ			丄	_
Relinquished By:	lill	Dat	e: 3 \	1	 2°	5	T	īme	: \C	<u> راد</u>	30	s	pecia	al Inst	ruc	tior	ns/(Cor	nme	ents	 }:	_				_				
Received By: R.D.S	E Leon	Dat	e: 3/11	10	Κ	,	Т	me	: \ 0	, i	30	o	her -																	
Relinquished By: R-DS	· -	Dat	a: 31	1/2	_5						53	1																		
Received By:	ul A	Dat	e: 3) []	25							<u>53</u>															٠.		<u></u>		
Relinquished By:		Dat	be:				_ Т	īme	:									For	طعا	orati	жу	Use	o Or	ıly "	nate:	_				
Received By:		Dat	te:				Ţ	îme	:			S	ample	s) on ic	e: /	YEE	7	NO	T,	Strip	Lo	t/ ID	:							
Relinguished By:		Dat	te:				Т	lme	ı:			R	ecelvir	ng Temp	ر می در):	4.8	3	بر	1<2	?_	YES	3 1	40	Lin	e(t)	ŧ			
Received By:		Dar	te:					ìme	<u>:</u>			Т.		ed Licut			4-	8	т			(s):						_		
WHITE (ORIGINAL) - I th Corre	VELICIN Submillion Co											170	emp. E	Jevice li	<u>:</u>	R	5		Ĺ											

City of Corpus Christi

361-826-1200 Fax: 361-242-9131 Water Utilities Laboratory 13101 Leopard Street

Analytical Report

2/26/25 Report Date: **Time:** 13:52 **Time:** 10:00 Sample Name: EFFLUENT WW PERMIT Date Received: 02/20/2025 Date Sampled: 02/19/2025 Report# /Lab ID#: AC52158 EMAIL: Kilgore Projectmanagement@splla SPL-INC 2600 Dudley Rd. Kilgore, TX 75662 Client Info Phone:

Analysis Comments

Analyst

FK/CF 7

SM 5210 B EPA 300.0 SM 2540 D

Method

R.

Flag

Unit

FK, VM

2/24/25 12:03 2/20/25 19:34 2/20/25 12:01 Date/Time Analyzed

2.5

mg/L

0.016 1,2

mg/L J/gm:

Result 0.45 7.8 8.8 Vitrate by IC (as Nitrogen) Parameter Total Suspended Solids Carbonacious BOD

This analytical report is respectfully submitted by the Water Utilities Laboratory. The enclosed results reflect only the sample(s) identified above. The results have been carefully reviewed and, unless otherwise indicated, meet the NELAC requirements as described by the Water Utilities Lab's QA/QC program. No part of this report shall be reproduced or transmitted in any form or by any means without the written consent of the City of Corpus Christi-Water Utilities Lab. Sample Comments:

Respectfully Submitted,

THE STARTE

Technical Director (or designee)

Page 10 of 19

- Quality assurance data for the sample batch which included this sample.
- 2. Precision (PREC) is the absolute value of the relative percent difference between duplicate results.
 - 3. Recovery (RECOV) is the percent of analyte recovered from a spiked sample.
- 4. Laboratory Control Sample (LCS) results are expressed as the percent recovery of analyte.
- 5. Reporting Limit (RL), typically at or above the Limit of Quantitation (LOQ) of the analytical method.
 - 6. Data Qualifiers:

EL=Oxygen usage is less than 2mg/L for all dilutions analyzed. The reported value is an estimated less than value and is calculated for the dilution containing the greatest concentration of sample. Z=Too many colonies present to provide a result (TNTC). A=Value reported is the mean of two or more determinations. R=Reagent water contamination suspected. B=Sample broken in transit N=Analysis not performed as per client request. H=Sample exceeded holding time. P=Analysis is from an unpreserved sample. J=Value reported is less than the RL but greater than the MDL EG=Less than 1mg/L DO remained for all dilutions analyzed. The reported value is an estimated greater than value and is calculated for the dilution containing the least concentration of sample. X=MS/MSD recovery or duplicates analysis exceeded the acceptance limit or Standard failed. LA=Lab accident. LE=Lab error. OA=Outside the scope of the lab's NELAC accreditation. U=Unsuitable; sample turned turbid after incubation. T=Sample below temp requirement; not on ice. EQ=Equipment failure. I=Information on sample bottle and COC does not match. O^=Analysis flagged by outside laboratory. D=Sample dilution required for analysis/ quality control. QB=No QC data assigned to sample; sample result not affected. S=Slow to filter; sample contains floc and/or large amount of residue on filter. O=Analysis performed by an outside NELAC accredited lab; NI=Not analyzed due to interferences. K=BOD result estimated due to blank exceeding the allowable oxygen depletion. SC=BOD/CBOD calculated using a seed correction factor not within acceptable range.

E≂ The data exceed the upper calibration limit; therefore the concentration is reported as an estimate.

CHAIN OF CUSTODY RECORD

2600 Dudley Rd. SPL LABS Clent Name:

State: TX Zip: 75662 Address: 2800 Duid City: Kilgore Phone: (903) 984 - 0551 ^{Bend Email reporto<u>. kilgore.projectmanagement.spilabs.co</u>m cc: Joel.manjarrez@spilabs.com}

Samples: (NEMERE FRIE ANT ONLO (PARBILLO Fax: (903) 984 - 5914

Sampler: Chester Preim	_ ©	PARP 110			L		ŀ	1	I														
					ο,	Containeral	뮵"	Metrix	.=	Residua	93				Ì	Angl	Angliss Eas],	1	1			r
				F	1		5	t	-				-		•	1	8	<u> </u>					_
Sample ID	Lab ID# dev the my)sle nipled	amī balqm	enieo			1001A		Agrand			_		(1)-0				Viluite				\vdash	7
			rg L	ලවල වෙල	₩ 1430	FOUR CAUT	MAN ID	WV E	Water -	E .		900	50	nomen	inloride Noride	<u>etellir</u>	ideori Tasori	क्षांग शहर हार	ac	162 (col	ocean	[]00	, IRIL
EFFLUERT WAN PROMIT	T N SOLS	2 habe	19 25 10100 X				+-	2			1	- 1		1	_ !								
		1		+	7	7	-1	:1	7	l			_				Ζ	_		_	٠.		
			•	_	_			_			_	_				_		H	L	Ļ	t	1	
				‡	ļ	Ŧ	+	+	7	1	+	7	\neg	\dashv				,,,	_	_	-		
												_				_				Ļ	╁	╀╌	, -
				-	ļ	F	╀	Ł			+	‡	7	+	1	+	7	\dashv		_			
5								_	_			_	_		_								
				_							\vdash	-	F	╀	上	+	İ	╬	\pm		┪	4	
				‡	1	Ŧ	Ŧ	\pm	1		1	4		-	_		_		_	_	_	_	
,				_		_					_		_			_		_	L	L	┿	+	
				-		7	7	┨			┪	╛	4	_		-	_	_	1	_	_		
			-													l	ĺ	l	j	Ĭ	-	_	

	th inflanciform monte.	and the continue like.				For Laboratory Use Only was	Sampa(s) on los: (Yes) NO Law Law Law Law Law Law Law Law Law Law		ID (C) DI CON C27 YES NO LINES E	(c): 2 2 pale Flag (e):
	me; 13,52 Special Inc	(34.)	Time:	Time:	Time	1	Time: Sample(s) on	Time: Becelular Taux		Lime: Carreoled Temp (°C):
-	Date: 2 20 25 Time: 13:52 Special Instructions Comments.	Date: 04/1-1-10/2 1 1 1 1 1 1 1 1 1	Date:	Date; Tr	.Date:		Date: Tr	Date: Tir	note:	
	Relinguished By KEY DE LEON	Received By: 10 47 ()	Relinquished By:	Received By:	Refinguished By:	Received D.	, Ary movings.	Relinquished By:	Received By:	

SPL-INC

Client Info

City of Corpus Christi

361-826-1200 Fax: 361-242-9131 Water Utilities Laboratory 13101 Leopard Street

Analytical Report

3/12/25

Analysis Comments

Analyst

CF

SM 9223 B - Coli Method

3/11/25 14:59 Date/Time Analyzed

> Ŗ 0.1

Flag

Result

Parameter

Phone:

ΜPN Unit

0.

E. coli (MPN)

Report Date: Time: 09:00 Sample Name: EFFLUENT WW GRAB Report# /Lab ID#: AC53582 Date Received: 03/11/2025 Date Sampled: 03/11/2025 EMAIL: Kilgore.Projectmanagement@splla Kilgore, TX 75662 2600 Dudley Rd.

Sample Comments:

This analytical report is respectfully submitted by the Water Utilities Laboratory. The enclosed results reflect only the sample(s) identified above. The results have been carefully reviewed and, unless otherwise indicated, meet the NELAC requirements as described by the Water Utilities Lab's QA/QC program. No part of this report shall be reproduced or transmitted in any form or by any means without the written consent of the City of Corpus Christi-Water Utilities Lab.

Respectfully Submitted,

Fechnical Director (or designee)

- Quality assurance data for the sample batch which included this sample
- Precision (PREC) is the absolute value of the relative percent difference between duplicate results.
 - 3. Recovery (RECOV) is the percent of analyte recovered from a spiked sample.
- Laboratory Control Sample (LCS) results are expressed as the percent recovery of analyte.
 Reporting Limit (RL), typically at or above the Limit of Quantitation (LOQ) of the analytical n
- Reporting Limit (RL), typically at or above the Limit of Quantitation (LOQ) of the analytical method.

N=Analysis not performed as per client request. H=Sample exceeded holding time. P=Analysis is from an unpreserved sample. J=Value reported is less than the RL but greater than the MDL. Z=Too many colonies present to provide a result (TNTC). A=Value reported is the mean of two or more determinations. R=Reagent water contamination suspected. B=Sample broken in transit. X=MS/MSD recovery or duplicates analysis exceeded the acceptance limit or Standard failed. LA=Lab accident. LE=Lab error. OA=Outside the scope of the lab's NELAC accreditation. I=Information on sample bottle and COC does not match. O^=Analysis flagged by outside laboratory NI=Not analyzed due to interferences. K=BOD result estimated due to blank exceeding the allowable oxygen depletion. D=Sample dilution required for analysis/ quality control. QB=No QC data assigned to sample; sample result not affected. S=Slow to filter, sample contains floc and/or large amount of residue on filter, O=Analysis performed by an outside NELAC accredited lab; U=Unsuitable; sample turned turbid after incubation. T=Sample below temp requirement; not on ice. EQ=Equipment failure. SC=BOD/CBOD calculated using a seed correction factor not within acceptable range.

EL=Oxygen usage is less than 2mg/L for all dilutions analyzed. The reported value is an estimated less than value and is calculated for the dilution containing the greatest concentration of sample. EG=Less than 1mg/L DO remained for all dilutions analyzed. The reported value is an estimated greater than value and is calculated for the dilution containing the least concentration of sample.

CHAIN OF CUSTODY RECORD

State: TX, Zip: 75662 Fax (903) 984 - 5914 2600 Dudley Rd. SPL LABS Phone: (903) 984 - 0551 Address: Kilgore Client Name; __

sent Enalt report to, kilgore, projectmanagement, spllabs, com о: joel.manjarrez@spllabs.com Sample irruna man Antonio Camillo

0W5C R-105

Cock (Cock)

Water Utitides Laboratory 13101 Leopard St. Corpus Christ, TX 78410 Ptr (381) 826-1250 Fax (381) 242-8131

Page 1 of 1

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036 Printed 03/18/2025 13:51

TABLE OF CONTENTS

This report consists of this Table of Contents and the following pages:

Report Name	<u>Description</u>	<u>Pages</u>
1137378_r02_01_ProjectSamples	SPL Kilgore Project P:1137378 C:OWSC Project Sample Cross Reference t:304	1
1137378_r03_03_ProjectResults	SPL Kilgore Project P:1137378 C:OWSC Project Results t:304	4
1. 78_r10_05_ProjectQC	SPL Kilgore Project P:1137378 C:OWSC Project Quality Control Groups	5
1137378_r99_09_CoC1_of_1	SPL Kilgore CoC OWSC 1137378_1_of_1	4
	Total Pages:	14

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 1 of 15

SAMPLE CROSS REFERENCE

Project 1137378

Printed

3/18/2025

Page 1 of 1

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

 Sample
 Sample ID
 Taken
 Time
 Received

 2384277
 Effluent WW Grab/ Permit
 02/19/2025
 10:00:00
 02/25/2025

Bottle 01 Polyethylene Quart

Bottle 02 H2SO4 to pH <2 Glass Qt w/Teflon lined lid

Bottle 03 H2SO4 to pH <2 Glass Qt w/Teflon lined lid

Bottle 04 8 oz Plastic H2SO4 pH < 2

Bottle 05 HNO3 to pH <2 Polyethylene 250 mL for Metals

Bottle 06 Prepared Bottle: NH3N TRAACS Autosampler Vial (Batch 1162348) Volume: $6.00000 \text{ mL} \iff$ Derived from 04 (6 ml) Bottle 07 Prepared Bottle: TKN TRAACS Autosampler Vial (Batch 1162461) Volume: $20.00000 \text{ mL} \iff$ Derived from 04 (20 ml) Bottle 08 Prepared Bottle: ICP Preparation for Metals (Batch 1162503) Volume: $50.00000 \text{ mL} \iff$ Derived from 05 (50 ml)

Method	Bottle	PrepSet	Preparation	QcGroup	Analytical
EPA 300.0 2.1	01	1165831	03/08/2025	1165831	03/08/2025
EPA 200.7 4.4	08	1162503	02/26/2025	1162553	02/26/2025
SM 2320 B-2011	01	1163129	02/27/2025	1163129	02/27/2025
SM 5210 B-2016			02/20/2025		02/20/2025
SM 2510 B-2011	01	1162818	02/26/2025	1162818	02/26/2025
EPA 1664B (HEM)	02	1163829	03/05/2025	1163829	03/05/2025
EPA 300.0 2.1 (SUB)			02/20/2024		02/20/2024
EPA 350.1 2	06	1162348	02/25/2025	1163438	03/04/2025
SM 2540 C-2015	01	1162956	02/26/2025	1162956	02/26/2025
EPA 351.2 2	07	1162461	02/26/2025	1163011	02/28/2025
SM 2540 D (Subcontract)			02/24/2025		02/24/2025
SM 4500-H+ B-2011		1161568	02/19/2025	1161568	02/19/2025

Email: Kilgore.ProjectManagement@spllabs.com

Office: 903-984-0551 * Fax: 903-984-5914

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Printed:

03/18/2025

RESULTS

			Sample I	Results						
	2384277 Effluent WW	Grab/ Permit					Received:	02.2.	5.'2025	
N	You-Potable Water	Collected by: Client Taken: 02/19/2025		ater Supply 0:00:00		PO:				
E	FPA 1664B (IIEM)	Prepared:	1163829	03/05/2025	07:48:00	Analyzed 1163829	03/05/2025	07:48:00	MA	
	Рагатеter	Results	Uni	ts RL		Flags	CAS		Bottle	
ELAC	Oil and Grease (HEM)	<4.30	mg/l	L 4.30		-			02	
	1 200.7 4.4	Prepared:	1162503	02/26/2025	06:30:00	Analyzed 1162553	02/26/2025	11:46:00	CAS	
	Parameter	Results	Unii	ts RL		Flags	CAS		Bottle	
LAC	Phosphorus	3.70	mg/l	L 0.040			7723-14-0		08	
E.	PA 300.0 2.1	Prepared:	1165831	03/08/2025	02:38:00	Analyzed 1165831	03/08/2025	02:38:00	KRA	
	Parameter	Results	Unit	ts RL		Flags	CAS		Bottle	
ELAC	Chloride	808	mg/J	L 30.0					01	
LAC	Sulfate	645	mg/l	L 30.0					01	
E	PA 300.0 2.1 (SUB)	Prepared:	ŧ	02/20/2024	19:34:00	Analyzed	02/20/2024	19:34:00	SUB	
•	Parameter	Results	Unit	's RL		Flags	CAS		Bott/e	
	Nitrate-Nitrogen Total (SUB)	See Attached	l			·	CCWU			
Ei	PA 350.1 2	Prepared:	1162348	02/25/2025	13:58:20	Analyzed [163438	03/04/2025	06:44:00	л <i>М</i> Е	
•	Parameter	Results	Unit	s RL		Flags	CAS		Bottle	
ELAC	Ammonia Nitrogen	26.1	mg/I	2 0.200		-			06	
EI	PA 351.2 2	Prepared:	1162461 (02/26/2025	08:28:43	Analyzed 1163011	02/28/2025	09:25:00	AME	
-	Parameter	Results	Unit	s RL		Flags	CAS		Bottle	
ELAC	Total Kjeldahl Nitrogen	34.6	mg/I	0.500		•	7727-37-9		07	

Report Page 3 of 15

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Page 2 of 4

Project 1137378

Printed:

03/18/2025

N	2384277 Effluent WW Gr	rab/ Permit Collected by: Client Taken: 02/19/2025		Water Supply 10:00:00		PO:	Received:	02,2;	5.2025
S	:M 2320 B-2011	Prepare	i: 1163129	02/27/2025	15:17:00	Analyzed 1163129	02/27/2025	15:17:00	TRC
NELAC	Parameter Total Alkalinity (as CaCO3)	Results 375		nits RL g/L 1.00		Flags	CAS		Bottle 01
S.	M 2510 B-2011	Prepare	d: 1162818	02/26/2025	13:56:00	Analyzed 1162818	02/26/2025	13:56:00	A.VC
NELAC	Parameter Lab Spec. Conductance at 25 C	Results 4200	_	nits RL		Flags	CAS		<i>Bottle</i> 01
S	M 2540 C-2015	Prepare	d: 1162956	02/26/2025	09:40:00	Analyzed 1162956	02/26/2025	09:40:00	JME
NELAC	Parameter Total Dissolved Solids	Results 2400		nits RL g/L 50.0		Flags	CAS		Bottle 01
S	M 2540 D (Subcontract)	Ргераге	d:	02/24/2025	12:03:00	Analyzed	02/24/2025	12:03:00	SUB
NELAC	Parameter Total Suspended Solids (SUB) RGV	Results See Attacl		nits RL		Flags	CAS CCWU		Bottle
S.	M 4500-II+ B-2011	Prepare	d: 1161568	02/19/2025	10:00:00	Analyzed 1161568	02/19/2025	10:00:00	CLI
z	Parameter pH Client Provided	Results 7.21	C S	<i>Inits RL</i> U 0		Flags	CAS		Bottle
S.	M 5210 B-2016	Prepare	d:	02/20/2025	12:01:00	Analyzed	02/20/2025	12:01:00	SUB
NELAC	Parameter BOD Carbonaceous (SUB-RGV)	Results See Attacl		nits RL		Flags	CAS CCWU		Bottle

Sample Preparation

Report Page 4 of 15

Office: 903-984-0551 * Fax: 903-984-5914

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Page 3 of 4

Project 1137378

Printed:

03/18/2025

2384277 Effluent WW Grab/ Permit

Received:

02,25/2025

02/19/2025

		Prepared:		02/25/2025	12:30:31	Calculated	02/25/2025	12:30:31	CAL
z z 	Enviro Fee (per Sampling Group) Labor - 1 Hour	Verified Verified							
F	PA 1664B (HEM)	Prepared:	1163634	03/05/2025	07:48:00	Analyzed 1163634	03/05/2025	07:48:00	MAZ
NELAC 	O&G HEM Started	Started							
	1 200.2 2.8	Prepared:	1162503	02/26/2025	06:30:00	Analyzed 1162503	02/26/2025	06:30:00	HLT
z	Liquid Metals Digestion	50/50							05
E	PA 350.1, Rev. 2.0	Prepared:	1162348	02/25/2025	13:58:20	Analyzed 1162348	02/25/2025	13:58:20	MEC
NELAC	Ammonia Distillation	6/6	ml 			·			04
E	PA 351.2, Rev 2.0	Prepared:	1162461	02/26/2025	08:28:43	Analyzed 1162461	02/26/2025	08:28:43	A,ME
NELAC	TKN Block Digestion	20/20	m l						04
S	M 2540 C-2015	Prepared:	1162491	02/26/2025	09:40:00	Analyzed 1162491	02/26/2025	09:40:00	J.M.B
NELAC	Total Dissolved Solids Started	Started							•

Report Page 5 of 15

Office: 903-984-0551 * Fax: 903-984-5914

Page 4 of 4

Project 1137378

Printed:

03/18/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Qualifiers.


We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

 $These \ analytical \ results \ relate \ to \ the \ sample \ tested. \ This \ report \ may \ NOT \ be \ reproduced \ EXCEPT \ in FULL \ without \ written \ approval \ of \ the \ reproduced \ except \ in FULL \ without \ written \ approval \ of \ reproduced \ except \ in FULL \ without \ written \ approval \ of \ reproduced \ except \ in FULL \ without \ written \ approval \ of \ reproduced \ except \ in FULL \ without \ written \ approval \ of \ reproduced \ except \ in FULL \ without \ written \ approval \ of \ reproduced \ except \ in FULL \ without \ written \ approval \ of \ reproduced \ except \ in FULL \ without \ written \ approval \ of \ reproduced \ except \ in FULL \ without \ written \ approval \ of \ reproduced \ except \ in FULL \ without \ written \ approval \ of \ reproduced \ except \$ SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL), CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

Bill Peery, MS, VP Technical Services

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Page 1 of 5

Project 1137378

Printed 03/18/2025

0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u></u>										
Analytical Set	1163011									EP	A 351.2 2
				В	llank						
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
Fotal Kjeldahl Nitrogen	1162461	ND	0.00712	0.050	mg/L			127354125			
				(CCV						
<u>Parameter</u>		Reading	Клоwп	Units	Recover%	Limits%		File			
Total Kjeldahl Nitrogen		5.25	5.00	mg/L	105	90.0 - 110		127354115			
Total Kjeldahl Nitrogen		5.28	5.00	mg/L	106	90.0 - 110		127354123			
Total Kjeldahl Nitrogen		5.33	5.00	mg/L	107	90.0 - 110		127354134			
Fotal Kjeldahl Nitrogen		5.28	5.00	mg/L	106	90.0 - 110		127354144			
Total Kjeldahl Nitrogen		5.29	5.00	mg/L	106	90.0 - 110		127354154			
Total Kjeldahl Nitrogen		5.29	5.00	mg/L	106	90.0 - 110		127354162			
Fotal Kjeldahl Nitrogen		5.30	5.00	mg/L	106	90.0 - 110		127354165			
Total Kjeldahl Nitrogen		5.35	5.00	mg/L	107	90.0 - 110		127354166			
otal Kjeldahl Nitrogen		5.34	5.00	mg/L	107	90.0 - 110		127354172			
				Du	plicate						
?a- *-t <u>ter</u>	Sample		Result	Unknowi	7		Unit		RPD		Limit%
jeldahl Nitrogen	2384218		3.74	3.87			mg/L		3.42		20.0
				(ICV						
arameter		Reading	Known	Units	Recover%	Limits%		File			
otal Kjeldahl Nitrogen		5.45	5.00	mg/L	109	90.0 - 110		127354114			
				LC	S Dup						
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
otal Kjeldahl Nitrogen	1162461	5.40	5.26		5.00	90.0 - 110	108	105	mg/L	2.63	20.0
				Mat	. Spike						
Parameter_	Sample	Spike	Unknown	Known	Units	<i>Recovery %</i>	Limits %	File			
otal Kjeldahl Nitrogen	2384218	7.87	3.87	5.00	mg/L	80.0	80.0 - 120	127354130			
Analytical Set	1163438									EP	A 350.1 2
,				В	lank						
Parameter	Prep.Set	Reading	MDL	MQL	Units			File			
ammonia Nitrogen	1162348	ND	0.00336	0.020	mg/L			127362650			
				C	:cv						
arameter		Reading	Клочт	Units	Recover%	Limits%		File			
ammonia Nitrogen		2.06	2.00	mg/L	103	90.0 - 110		127362641			
.mmonia Nitrogen		2.19	2.00	mg/L	110	90.0 - 110		127362642			
ammonia Nitrogen		2.16	2.00	mg/L	108	90.0 - 110		127362646			
mmonia Nitrogen		2.09	2.00	mg/L	104	90.0 - 110		127362656			
mmonia Nitrogen		1.86	2.00	mg/L	93.0	90.0 - 110		127362665			
.mmonia Nitrogen		1.98	2.00	mg/L	99.0	90.0 - 110		127362676	•		
mmonia Nitrogen		2.20	2.00	mg/L	110	90.0 - 110		127362686			
nia Nitrogen		2.11	2.00	mg/L	106	90.0 - 110		127362697			

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 7 of 15

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036 Page 2 of 5

Project

1137378

Printed 03/18/2025

Olmito, 1X 78575-0036								THICA	05/10/20/	45		
				(cv							
Powers star		Dandina	Vacuus		Recover%	Limits%		File				
<u>Parameter</u> Ammonia Nitrogen		Reading 2.14	Known 2.00	Units mg/L	107	90.0 - 110		127362704				
Ammonia Nitrogen		2.06	2.00	mg/L	107	90.0 - 110		127362704				
Ammonia Nitrogen		2.04	2.00	mg/L	102	90.0 - 110		127362713				
Ammonia Nitrogen		2.12	2.00	mg/L	106	90.0 - 110		127362723				
Ammonia Nitrogen		2.12	2.00	mg/L	102	90.0 - 110		127362732				
Ammonia Nitrogen		1.99	2.00	mg/L	99.5	90.0 - 110		127362751				
Ammonia Nitrogen		2.18	2.00	mg/L	109	90.0 - 110		127362760				
Ammonia Nitrogen		1.83	2.00	mg/L	91.5	90.0 - 110		127362765				
, ministra 14.4 ogen		1.05	2.00	_	olicate	, , , , , , , , , , , , , , , , , , , ,						
				_								
<u>Parameter</u>	Sample		Result	Unknowi	7		Unit _		RPD		Limit%	
Ammonia Nitrogen	2383643		ND	ND			mg/L				20.0	
Ammonia Nitrogen	2384080		ND	ND			mg/L				20.0	
					CV							
<u>Parameter</u>		Reading	Кпошп	Units	Recover%	Limits%		Fi/e				
Ammonia Nitrogen		2.09	2.00	mg/L	104	90.0 - 110		127362640				
				LC	S Dup							
Parameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%	
Ammonia Nitrogen	1162348	1.86	2.17		2.00	90.0 - 110	93.0	108	mg/L	15.4	20.0	
· manoida : · · dogen	1102010	1.00		Mat	. Spike							
_								e d				
<u>Parameter</u>	Sample	Spike	Unknown		Units	Recovery %		File				
Ammonia Nitrogen	2383643	1.88	ND	2.00	mg/L	94.0	80.0 - 120	127362649				
Ammonia Nitrogen	2384080	1.83	ND	2.00	mg/L	91.5	80.0 - 120	127362655				
Analytical Set	1162956									SM 254	0 C-2015	
				В	lank							
Parameter	PrepSet	Reading	MDL	MQL	Units			File				
Total Dissolved Solids	1162956	ND	5.00	5.00	mg/L			127353129				
				Con	trolBik							
0	O-e-Cad	Reading	MOC		Units			File				
Parameter	PropSet		MDL	MQL				127353116				
Total Dissolved Solids	1162956	-0.0003		_	grams			12/333110				
				Dup	olicate							
<u>Parameter</u>	Sampie		Result	Unknowi	7		Unit		RPD		Limit%	
Total Dissolved Solids	2383464		162	164			mg/L		1.23		20.0	
				ı	.cs							
Parameter	PrepSet	Reading		Клоwл	Units	Recover%	Limits	File				
Total Dissolved Solids	1162956	204		200	mg/L	102	85.0 - 115	127353130				
					ndard							
	a	n	16			F 1 /2 07		F.7.				
Parameter	Sample	Reading	Known	Units	Recover%	Limits%		File				
Total Dissolved Solids		94.0	100	mg/L	94.0	90.0 - 110		127353117				

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 8 of 15

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Page 3 of 5

Project 1137378

Printed 03/18/2025

Onnico, 1x 703/3-00	.5-							T CHILCO	03.10/20		
Analytical Set	1163829								E	PA 1664	B (HEM)
				В	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Oil and Grease (HEM)	1163829	1.40	0.804	4.00	mg/L			127370720			
				Con	trolBlk						
Parameter	PrepSct	Reading	MDL	MQL	Units			File			
Oil and Grease (HEM)	1163829	0.0002	.VIDL	.wvL	grams			127370719			
Oil and Grease (HEM)	1163829	0.0004			grams			127370714			
,				,	.CS			12/3/0/44			
Para and an analysis of the same and an analysis of the sa	n a.	ь.									
Parameter Oil and Grease (HEM)	PrepSet	Reading		Known	Units	Recover%	Limits	File			
Oil and Grease (HEM)	1163829	33.7		40.0	mg/L	84.2	78.0 - 114	127370721			
				I	MS						
<u>Parameter</u>	Sample	MS	$\mathcal{M}SD$	U.VK	Кпошп	Limits	MS%	MSD%	Units	RPD	Limit%
Oil and Grease (HEM)	238 444 7	38.0	0	1.24	40.0	78.0 - 114	95.0		mg/L		20.0
Analytical Set	1165831									EPA	300.0 2.1
				В	lank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Chloride	1165831	ND	0.0593	0.300	mg/L			127414566			
Sulfate	1165831	ND	0.0605	0.300	mg/L			127414566			
				c	СВ						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Chloride	1165831	0.014	0.0593	0.300	mg/L			127414562			
Chloride	1165831	0.011	0.0593	0.300	mg/L			127414580			
Sulfate	1165831	-0.144	0.0605	0.300	mg/L			127414562			
Sulfate	1165831	-0.148	0.0605	0.300	mg/L			127414580			
				c	cv						
Parameter		Keading	Клочп	Units	Recover%	Limits%		File			
Chloride		10.1	10.0	mg/L	101	90.0 - 110		127414561			
Chloride		10.3	10.0	mg/L	103	90.0 - 110		127414579			
Sulfate		9.86	10.0	mg/L	98.6	90.0 - 110		127414561			
Sulfate		10.0	10.0	mg/L	100	90.0 - 110		127414579			
				LCS	Dup						
Parameter	PrepSet	LCS	LCSD		Кпошп	Limits%	LCS%	LC S D%	Units	RPD	Limit%
Chloride	1165831	5.18	5.10		5.00	85.0 - 115	104	102	mg/L	1.56	20.0
Sulfate	1165831	5.53	5.48		5.00	85.4 - 124	111	110	mg·L	0.908	20.0
				М	\$D				-		
Parameter -	Sample	MS	MSD	UNK	Кпошп	Limits	MS%	MSD%	Units	RPD	Limit%
Chloride	2386173	490	497	413	100	80.0 - 120	77.0 *	84.0	mg/L	8.70	20.0
Sulfate	2386173	1080	1090	1030	100	80.0 - 120	50.0 *	60.0 *	mg/L	18.2	20.0

Analytical Set

1162553

EPA 200.7 4.4

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 9 of 15

QUALITY CONTROL

Page 4 of 5

Project 1137378

Printed 03/18/2025

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Olimito, 1x 76575-0030											
				Bla	ank						
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Phosphorus	1162503	ND ND	0.0353	0.040	mg/L			127344726			
r nosphorus	1102303	142	0.0555		cv			121311723			
				C	L V						
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File			
Phosphorus		0.990	1.00	mg/L	99.0	90.0 - 110		127344725			
Phosphorus		0.967	1.00	mg/L	96.7	90.0 - 110		1 27 344735			
Phosphorus		0.949	1.00	mg/L	94.9	90.0 - 110		127344740			
				10	CL.						
Parameter		Reading	Клоwп	Units	Recover%	Limits%		File			
Phosphorus		25.0	25.0	mg/L	100	95.0 - 105		127344723			
				10	v						
Parameter		Reading	Known	Units	Recover%	Limits%		File			
Phosphorus		1.02	1.00	mg/L	102	90.0 - 110		127344724			
				_	Dup						
				Les	-	F :	F (754)	1.0004	F.F. 14-	71.00	F : :40/
<u>Parameter</u>	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Phosphorus	1162503	3.85	3.87		4.00	85.0 - 115	96.2	96.8	mg/L	0.518	25.0
				M	5D						
Parameter	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
Phosphorus	2384412	3.97	3.98	0.199	4.00	75.0 - 125	94.3	94.5	mg/L	0.265	25.0
Analytical Set	1162818				•					SM 251	0 B-2011
Analyticarsec	1102010			Bla	ank					_,,,,	
_	в с.	n	L COT					File			
Parameter 22.6	PrepSet	Reading	MDL	MQL	Units umhos/cm			127349550			
Lab Spec. Conductance at 25 C	1162818	0.416						12/349330			
				Dupl	licate						
Parameter	Sample		Result	Unknown			Unit		RPD		Limit%
Lab Spec. Conductance at 25 C	2384216		137000	137000			umhos/cm		0		20.0
Lab Spec. Conductance at 25 C	2384664		1000	1010			umhos/cm		0.995		20.0
				10	:v						
<u>Parameter</u>		Reading	Кломп	Units	Recover%	Limits%		File			
Lab Spec. Conductance at 25 C		13000	12900	umhos/cm	101	90.0 - 110		127349553			
				Star	dard						
Parameter Parameter	Sample	Reading	Known	Units	Recover%	Limits%		File			
Lab Spec. Conductance at 25 C	1162818	1390	1410	umhos/cm	98.6	90.0 - 110		127349551			
Lab Spec. Conductance at 25 C	1162818	101	100	umhos/cm		90.0 - 110		127349552			
Lab Spec. Conductance at 25 C	1162818	1390	1410	umhos/cm	98.6	90.0 - 110		127349565			
Lab Spec. Conductance at 25 C	1162818	1390	1410	umhos/cm	98.6	90.0 - 110		127349570			
-											

Email: Kilgore.ProjectManagement@spllabs.com

Analytical Set

1163129

Report Page 10 of 15

SM 2320 B-2011

QUALITY CONTROL

OWSC-R

Olmito Water Supply Corp. Tomas Tamayo 101 Clara Bennett Dr P.O. Box 36 Olmito, TX 78575-0036

Page 5 of 5

Project

Printed 03/18/2025

				В	lank					
<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File		
Total Alkalinity (as CaCO3)	1163129	ND	1.00	1.00	mg/L			127356010		
				c	.cv					
<u>Parameter</u>		Reading	Клоwп	Units	Recover%	Limits%		File		
Total Alkalinity (as CaCO3)		27.0	25.0	mg/L	108	90.0 - 110		127356009		
Total Alkalinity (as CaCO3)		27.5	25.0	mg/L	110	90.0 - 110		127356023		
Total Alkalinity (as CaCO3)		24.5	25.0	mg/L	98.0	90.0 - 110		127356036		
				Dup	licate					
<u>Parameter</u>	Sample -		Result	Unknown			Unit		RPD	Limit%
Total Alkalinity (as CaCO3)	2382542		12.3	12.3			mg/L		0	20.0
Total Alkalinity (as CaCO3)	2384364		81.4	81.4			mg/L		0	20.0
				10	CV .					
<u>Parameter</u>		Reading	Known	Units	Recover%	Limits%		File		
Total Alkalinity (as CaCO3)		27.0	25.0	mg/L	108	90.0 - 110		127356008		
				Mat.	Spike					
<u>F</u> <u>'er</u>	Sample	Spike	Unknown	Known	Units	Recovery %	Limits %	File		
Tour Alkalinity (as CaCO3)	2382542	34.8	12.3	25.0	mg/L	90.0	70.0 - 130	127356013		
Total Alkalinity (as CaCO3)	2384364	105	81.4	25.0	mg/L	94.4	70.0 - 130	127356026		

^{*}Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result/known * 100%

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); CCV - Continuing Calibration Verification (same standard used to prepare the curve; typically a mid-range concentration; verifies the continued validity of the calibration curve); MSD - Matrix Spike Duplicate (replicate of the matrix spike, same solution and amount of target analyte added to the MS is added to a third aliquot of sample; quantifies matrix bias and precision.); ICV - Initial

Calibration Verification; LCS Dup - Laboratory Control Sample Duplicate (replicate LCS; analyzed when there is insufficient sample for duplicate or MSD; quantifies

accuracy and precision.); ECS - Laboratory Control Sample (reagent water or other blank matrices that is spiked with a known quantity of target analyte(s) and carried through preparation and analytical procedures exactly like a sample, typically a mid-range concentration, verifies that bias and precision of the analytical process are within control limits; determines usability of the data.); MS - Matrix Spike (same solution and amount of target analyte added to the LCS is added to a second aliquot of sample; quantifies matrix bias.); CCB - Continuing Calibration Blank; AWRL/LOQ C - Ambient Water Reporting Limit/LOQ Check Std

Email: Kilgore.ProjectManagement@spllabs.com

Report Page 11 of 15

2600 Dudley Rd. Kilgore, Texas	75662
Office: 903-984-0551 * Fax: 903	-984-5914

cience of Sure CHAIN OF CUSTODY Printed 12/18/2025 Page 1 of 2 Olmito Water Supply Corp. OWSC-R Tomas Tamayo PO Number 101 101 Clara Bennett Dr 1956/350-4099 Phone P.O. Box 36 Olmito, TX 78575-0036 Effluent WW Grab/Permit Hand elivered by Client to Region or LAB Matrix: Non-Potable Water Sample Collection Start * We sent BODG, TSS of MIST Date: Z-19. 25 Sampler Printed Name: Portenso Carrille Sampler Affiliation: 00.5,0 Sampler Signature: Samples Radioactive? Samples Contains Dioxin? Samples Biological | azard? On Site Testing NELAC Short Hold SM 4500-H+ B-2011 (0.010- days) pH (Onsite) pH (Onsite) Collected By AC Date 2-1925 Time 10:00 A Analyzed By AC Date 2-19.25 Time 10:00 A Results 7.21 Units SV Temp. 17.6 C Duplicate 7.22 Units SI Temp. 1 8 C H2SO4 to pH <2 GlQt w/Tef-lined lid Oil and Grease (HEM) EPA 1664B (HEM) (28.0 days) NELAC Polyethylene 1/2 gal (White) SM 5210 B-2016 (TCMP Inh vitor) (2.04 days) BODc BOD Carbonaceous NELAC Short Hold TSS SM 2540 D-2015 (7.00 days) NELAC Total Suspended Solids () Z - No bottle required

RGV Region: 2401 Village :r. Suite C Brownship REport Page 12 of 15

Form ry coc [SPL1 Created 12/13/2019 v1.6

LABI

Labor - I Hour

1 HNO3 to pH <2 Polyethylene 500 mL for Metals

2600 Dudley Rd. Kilgore, Texas 75662 Office: 903-984-0551 * Fax: 903-984-5914

CHAIN OF CUSTODY

Ton 101 P.O	nito Water Supply nas Tamayo Clara Bennett Di . Box 36 nito, TX 78575-00		OWSC- 101	-R	
	NELAC	*PI	Phosphorus	EPA 200.7 4.4 CAS:7723-14-0 (180 days)	
		301L	Liquid Metals Digestion	EPA 200.2 2.8 (180 days)	
		1 H2SO4 to	pH <2 250 ml Polyethyle	ene	
	NELAC	NHaN	Ammonia Nitrogen	EPA 350.1 2 (28.0 days)	1
	NELAC	TKN	Total Kjeldahl Nitrogen	EPA 351.2 2 CAS:7727-37-9 (28.0 days)	,,,,
•		1 Polyethyle	ene Quart		
	NĨĨ.AĊ	!CIL	Chloride	EPA 300.0 2.1 (28.0 days)	
• ;	NELAC Short F	lold !N3L	Nitrate-Nitrogen Total	EPA 300.0 2.1 CAS:14797-55-8 (2.00 days)	
	NELAC	IS4L	Sulfate	EPA 300.0 2.1 (28.0 days)	
	NELAC	AlkT	Total Alkalinity (as CaCO3)	SM 2320 B-2011 (14.0 days)	•
	ViI.AC	CONL	Lab Spec. Conductance at 25 C	SM 2510 B-2011 (28.0 days)	
	VELAC	TDS	Total Dissolved Solids	SM 2540 C-2015 (7.00 days)	
bient	Conditions/Com	ments			
:	Time		nquished	Received	
	l	d Name 17040 Savn	Altiliation	Printed Name RDE LEON Altiliation SE	<u>'ل</u>
1/25	14113 Signa	rure Ch Lolan	U	Signature	
. /	Printe	d Name RDG	Alhilation SPL	Printed Name Affiliation	
v ^s	N.30 Signa	rure A		Signature	
1		d Name	A Hiliation	Printed Name Attiliation	
15	NV Signa	ure O	dEx	Signature Signature SPI Inc.	
1_	L I	d Name	Affiliation	Printed Name Affiliation	
	Signa	ште		Signature	

Comments

The accredited column designates accreditation by A - A2LA, N - NELAC, or z - not listed under scope of accreditation. Unless otherwise specified, SPL shall provide these ordered services pursuant to our Standard Terms & Conditions Agreement. SPL personnel collect samples as specified by SPL SOP #000323.

1137378 CoC Print Group 001 of 001

			СНА	IN C	OF (วบร	зто	DΥ	RE	CO	RQ						1,		_	_				_	
Cilent Name: SPL L	ABS -		<u> </u>																	<u></u> .				_	±
Address: 2600 Dud	ley Rd.		. 2 -	_				\mathcal{L}	_=	<u> </u>	 Nate	r Utilities	abo	- rate		_		/9 PJ		<u> </u>					
Gity Kilgore	_State: TX Zip	o: 75662	_					겞		•		13101	Leop	ard	St.		. 4		W.	18					
Phone: (903) 984 - 0551	_Fax: (903)	984 - 5914	- -					2			GDI	pus Christ Ph: (36 Fax: (38) 82	784 8-12	100		(1	ij)				
Send Email report to: Kilgore.proje	ectmanageme	nt.spliabs.d	com			1	City	of nus				Fax: (38	1) 24:	2-91	31		'	Ś	160	4 /					
co: ioel ma	aniarre>⊕≎p‼		S S	\ <	r	,	Chr	isti					•												
Samular N. 184	ONIO CA	VDD 1	_	91	_	,		_	8				your												
Sampler: (PLEASE PRINT) NT	ONIO CH	AKK I LU	٠، ر	<u>.</u>			No. o ontain eserva	238	!	Matri	π	Residual Chiorine						Ans	iyz	Foi	r				
	Lab ID#	ad	, Pd					-			4	Total T				z		1	5		EX.		E	5 5	
Sample ID	Clab Con Chilys	Date Sampled	Time Sampled		Composite	ő],	WW Influent	WW Effluent	Marier Other -Specify	mg.	g			Ammonla-N	Chloride	Suffate	Реозрания	Marate - P	Kitrite Total Alkalinity		Fecal Collforn	Enthrococci	- T
		S	S	용		158 1	\$:	oil A	\$ \$	<u>*</u>	e e	Free	CBOD	900	2 E	4	¥ 5	2	ž	量	Total	Ĕ	2 ;	<u> </u>	E coll
EFFLUENT WW PERMI	T	2/19/25	00:01	X	1			1		\mathbf{x}	Ш		X	þ	< _	Ш		Ш		X	L	Ц	\perp		
			•												_						٠,		\perp		
				П						T				Ī											
1					1	Ħ		1	П	1	П			7								\sqcap		П	П
3				\Box	\top	Ħ		†		\dagger	Ħ			\dashv		Ħ	T		Γ		1		T	T	\sqcap
6				\Box	+	۲	╁┼	+	Н	+			Ħ	_		H	+	十	✝	H	\top	乚		\dagger	┌╌╸
				Ļ.l			<u> </u>					<u>L</u>			l_			١	_	L .I		<u></u>			
Relinguished By: REY	NE LEO.	ر Dat	e: 2 20	10	15	7	Time	:13	:5:	2	Spe	ecial Inst	ructi	ions	/Coi	nme	ents	 :							
Received By	11 2	Date	2/1		5		Time				Othe					-									
Relinquished By:	·	Dat		, , ,			Time:																		
Received By:		Dat					Time																		
Relinquished By:		Dat	e:			-	Time	:						**	*** Fo	r Laibe	orato	ory t	Jse	Only					
Received By:		Dat	e:			-	Time	:			Sam	pie(s) on ic	e: (\	/ES	NO /	매	Strip	Lot	יסו י						
Relinquished By:		Dat	e:			-	- Ilme	:				eiving Temp		=	3.3	R	1<2	?)	/ES	NC.	L	ines)	t _		
Received By:	<u> </u>	Dat	e: _				Time	:				rected Terms			3		a <u>ta F</u>	<u>lag</u> ((<u>s):</u>			_	-	_	
MILITE POSTERIAL I												p. Device il		ڪ)									_	
WHITE (CRUGINAL) - Leb Copy	YELLOW - Submitter Co	py	-																						

		Subsurface Area Drip Dispersal	System (SADDS)		
d.	Che	eck the box next to the appropria	te application typ	pe	
		New			
		Major Amendment <u>with</u> Renewa	ıl	Minor Amendment with Renewal	
		Major Amendment <u>without</u> Ren	ewal \Box	Minor Amendment without Renewal	
	\boxtimes	Renewal without changes		Minor Modification of permit	
e.	For	amendments or modifications, d	lescribe the prop	osed changes: Click to enter text.	
f.	For	existing permits:			
		mit Number: WQ00 13817001			
	EPA	A I.D. (TPDES only): TX <u>0113875</u>			
	Exp	oiration Date: <u>December 1, 2025</u>			
Se	ectio			Co-Applicant Information	
		(Instructions Page	: 20)		
Α.		e owner of the facility must app	_		
		at is the Legal Name of the entity	(applicant) apply	ying for this permit?	
		nito Water Supply Corporation			
		ne legal name must be spelled exact legal documents forming the ent		the Texas Secretary of State, County, or i	n
				Q, what is the Customer Number (CN)? http://www15.tceq.texas.gov/crpub/	
		CN: <u>600657548</u>			
		at is the name and title of the percutive official meeting signatory		application? The person must be an 30 TAC § 305.44.	
		Prefix: <u>Miss</u>	Last Name, First	t Name: <u>Ureste, Nora G</u>	
		Title: <u>Board President</u>	Credential: Click	k to enter text.	
В.		capplicant information. Complete apply as a co-permittee.	e this section only	y if another person or entity is required	
	Wh	at is the Legal Name of the co-ap	plicant applying	for this permit?	
	Clic	ck to enter text.			
		ne legal name must be spelled exa al documents forming the entity.)	ctly as filed with t	the TX SOS, with the County, or in the	
				CEQ, what is the Customer Number (CN))?

TCEQ-10053 (10/17/2024) Domestic Wastewater Permit Application Administrative Report

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

CN: Click to enter text.

TCEQ	LISE	On	lv
ICEQ	Use	OII	y

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)

New Permit, Registration or Authorization (Core Data Form should be submitted with the program application.)

□ Renewal	(Core Data	Form sh	ould be submi	itted with the re	newal form,)			Other			
2. Customer	Reference	Numb	er (if issued)		Follow this for CN or RI			3. Re	gulated Entity Re	eference	Number (if	issued)
CN 600657	548				Central I		No.	RN :	103888004			
SECTIO	N II:	Cus	<u>tomer</u>	Inform	ation	<u>1</u>						
4. General C	ustomer li	nformat	tion	5. Effective	Date for C	ustome	er Info	rmation	Updates (mm/dd,	/yyyy)		
☐ New Custo☐ Change in L		(Verifiab		pdate to Custor xas Secretary of		nge in Regulated En c Accounts)	tity Own	ership				
The Custome	r Name su	ubmitte	d here may	be updated au	ıtomatical	ly base	d on	what is c	urrent and active	with th	he Texas Sec	retary of State
(SOS) or Text												
6. Customer	Legal Nam	ne (If an	individual, pri	nt last name firs	t: eg: Doe, J	lohn)			If new Customer,	enter pr	evious Custon	ner below:
Olmito Water	Supply Corp	oration										
7. TX SOS/CF	TX SOS/CPA Filing Number 8. TX State Tax ID (11 digits) 9. Federal Tax ID 10. DUNS Number (if										Number (if	
0023246201				17415955453					(9 digits)		applicable)	
									74-1595545			
11. Type of C	ustomer:			tion				☐ Individ	lual	Partne	ership: 🔲 Ger	neral 🗌 Limited
Government: [City 🗌 (County [Federal 🗌	Local 🗌 State	Other			Sole Pi	roprietorship	Ot	her:	
12. Number	of Employ	ees							13. Independer	ntly Ow	ned and Op	erated?
□ 0-20 🖾	21-100	101-2	50 🗌 251-	500 🗌 501 a	nd higher				⊠ Yes	☐ No		
14. Custome	r Role (Pro	posed or	Actual) – as i	t relates to the F	Regulated Er	ntity list	ed on t	his form.	Please check one of	the follo	owing	
Owner Occupation	al Licensee		erator esponsible Par		ner & Opera CP/BSA App				Other:			
15. Mailing	101 Clara	Bennet										
Address:												
	City	Olmito)		State	TX		ZIP	78575		ZIP + 4	0036
16. Country N	Mailing Inf	formatio	on (if outside	USA)	•		17. I	-Mail Ad	dress (if applicable	e)		January Comments
							amai	tinez@olr	mitowsc.com			

TCEQ-10400 (11/22)

18. Telephone Number			19. Extension o	Code	20. Fax Number (if applicable)	
956) 350-4099					(956) 350-4480		
ECTION III:	Regula	ated Ent	itv Inforr	nation			
21. General Regulated E					ation is also required.)		
☐ New Regulated Entity	Update to	Regulated Entity I	Name 🛭 Update	to Regulated Entity Infor	mation		
The Regulated Entity Na as Inc, LP, or LLC).	ıme submitte	ed may be updat	red, in order to me	et TCEQ Core Data Sto	andards (removal of	organizatio	nal endings suc
22. Regulated Entity Nar	me (Enter nan	ne of the site where	e the regulated actio	n is taking place.)			
	eatment Plant						
23. Street Address of the Regulated Entity:							
(No PO Boxes)	City		State	ZIP		ZIP+4	
24. County	Cameron			<u> </u>			•
		If no Stree	t Address is provi	ded, fields 25-28 are r	equired.		
25. Description to Physical Location:	Approximat	ely 1.7 miles north	of the intersection	of FM 511 and Old Alice I	Road		
26. Nearest City				"-	State	Ne	arest ZIP Code
Brownsville					TX	785	20
Latitude/Longitude are used to supply coordinate					lards. (Geocoding of	the Physica	l Address may b
27. Latitude (N) In Decin	nal:	26.046122		28. Longitude (W) In Decimal:	-97.5062	225
Degrees	Minutes		Seconds	Degrees	Minutes		Seconds
26		2	46.04	-97	3	30	22.41
29. Primary SIC Code		Secondary SIC (Code	31. Primary NAICS C	32. Se	condary NA	CS Code
(4 digits)	(4 0	ligits)			/2018		
4952	<u></u>			221310			
33. What is the Primary	Business of	this entity? (Do	not repeat the SIC o	or NAICS description.)			
Collect and treat domestic v	wastewater.						
	101 Clara	Bennet	-				
34. Mailing		<u>.</u>		<u>. </u>			

тх

State

37. Extension or Code

ZIP

78575

(956) 350-4480

38. Fax Number (if applicable)

ZIP + 4

36

Address:

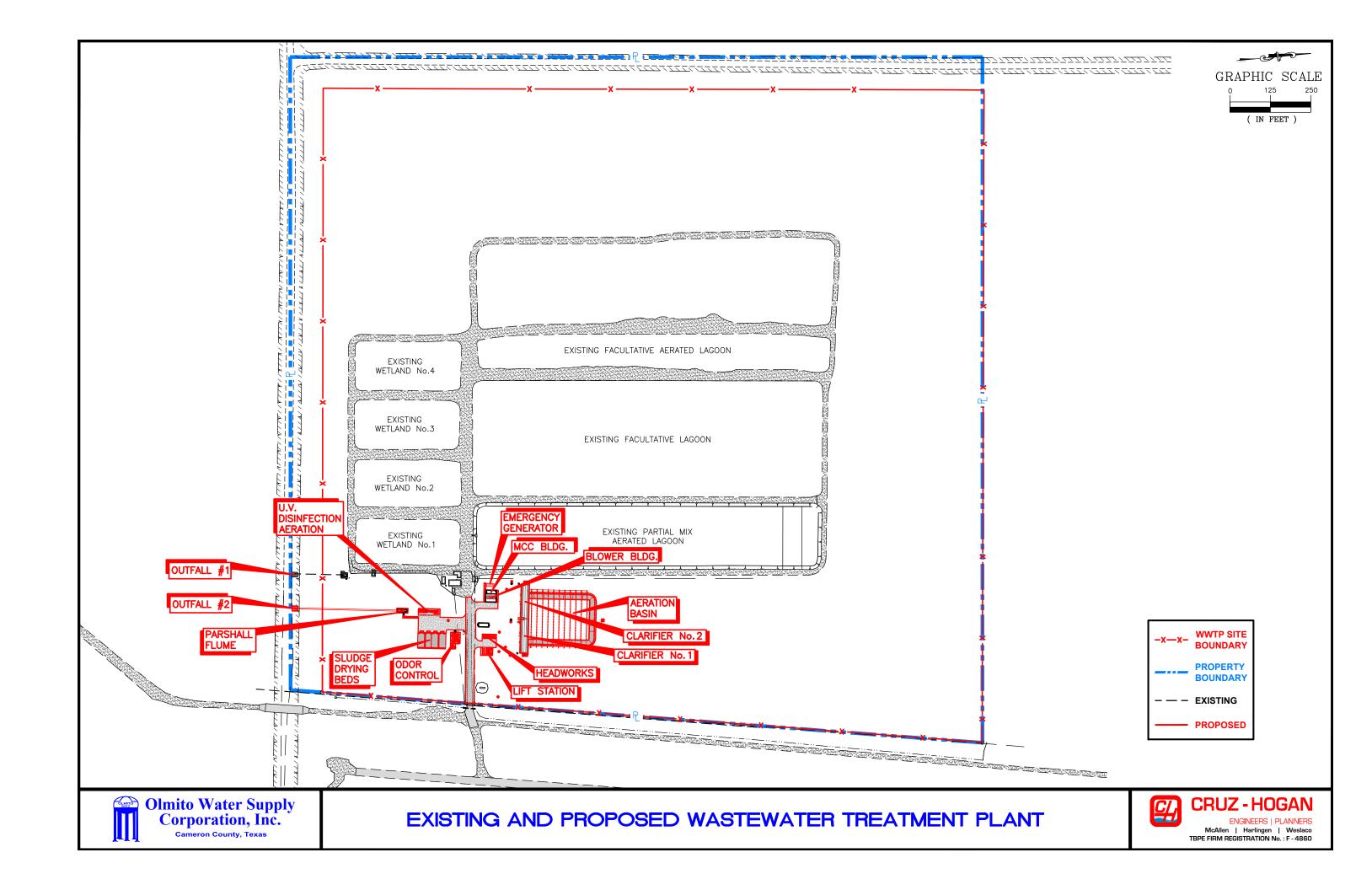
35. E-Mail Address:

(956) 350-4099

36. Telephone Number

City

Olmito


39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance. Edwards Aquifer ☐ Industrial Hazardous Waste ■ Dam Safety Districts Emissions Inventory Air ☐ New Source ☐ Municipal Solid Waste OSSF Petroleum Storage Tank ☐ PWS Review Air Sludge ☐ Title V Air Tires Used Oil Storm Water 21797 TXR055DF27 ☐ Voluntary Cleanup ■ Water Rights Other: ■ Wastewater Agriculture WQ0013817001 **SECTION IV: Preparer Information** 40. Name: Jose A. Rodriguez 41. Title: Registered Sanitarian 42. Telephone Number 43. Ext./Code 44. Fax Number 45. E-Mail Address (956) 682-2895 (956) 330-9125 xultex@yahoo.com **SECTION V: Authorized Signature** 46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39. Company: Job Title: General Manager Olmito Water Supply Corporation Name (In Print): Tomas Tamayo Phone: (956) 350-4099

Date:

05/01/2025

Signature:

TCEQ-10400 (11/22) Page 3 of 3

USER DEFINED CONTENT

LOS FRESNOS, TX

2025

Learn About The National Map: https://nationalmap.gov

pp

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT AMENDMENT

PERMIT NO. WQ0013817001

APPLICATION. Olmito Water Supply Corporation, P.O. Box 36, Olmito, Texas 78575, has applied to the Texas Commission on Environmental Quality (TCEQ) to amend Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQoo13817001 (EPA I.D. No. TXo113875) to authorize an increase in the discharge of treated wastewater to a volume not to exceed an annual average flow of 1,250,000 gallons per day; adding new treatment units; and adding a second outfall. The domestic wastewater treatment facility is located approximately 1.7 miles north of the intersection Farm-to-Market Road 511 and Old Alice Road, in Cameron County, Texas 78566. The discharge route is from the plant site to Cameron County Drainage District No. 1 Ditch No. 2; thence to San Martin Lake; thence to Brownsville Ship Channel. TCEQ received this application on May 26, 2021. The permit application is available for viewing and copying at United States Post Office, 7955 North Expressway 77, Olmito, Texas. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application. https://tceq.maps.arcgis.com/apps/webappviewer/index.html?id=db5bac44afbc468bbddd360f8168250f&marker=-97.506111%2C26.046111&level=12

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. **Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list**

for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. Public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address, and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit

their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from Olmito Water Supply Corporation at the address stated above or by calling Mr. Tomas Tamayo at 956-350-4099.

Issuance Date: September 17, 2021

В.	Method for Receiving Notice of Receipt and Intent to Obtain a Water Quality Permit Package
	Indicate by a check mark the preferred method for receiving the first notice and instructions:
	□ Fax
	□ Regular Mail
C	Contact permit to be listed in the Notices
Ċ.	Prefix: Mr. Last Name, First Name: Tamayo, Tomas
	Title: General Manager Credential: Click to enter text.
	Organization Name: Olmito Water Supply Corporation
	Mailing Address: 101 Clara Bennet Rd, Olmito, TX 78575 City, State, Zip Code: Olmito, Texas, 78575
	Phone No.: <u>956-350-4099</u> E-mail Address: <u>ttamayo@olmitowsc.com</u>
D.	Public Viewing Information
	If the facility or outfall is located in more than one county, a public viewing place for each county must be provided.
	Public building name: Community Services Dept Cameron County
	Location within the building: Main Lobby
	Physical Address of Building: 1100 E. Monroe Street, Rm. 105
	City: <u>Brownsville</u> County: <u>Cameron</u>
	Contact (Last Name, First Name): <u>: Garcia, Raul</u>
	Phone No.: <u>956- 550-1354</u> Ext.: Click to enter text.
E.	Bilingual Notice Requirements
	This information is required for new, major amendment, minor amendment or minor modification, and renewal applications.
	This section of the application is only used to determine if alternative language notices will be needed. Complete instructions on publishing the alternative language notices will be in your public notice package.
	Please call the bilingual/ESL coordinator at the nearest elementary and middle schools and obtain the following information to determine whether an alternative language notices are required.
	1. Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility?
	⊠ Yes □ No
	If no , publication of an alternative language notice is not required; skip to Section 9 below.
	2. Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school?

No

Yes

Texas Commission on Environmental Quality INTEROFFICE MEMORANDUM

	`0: RC 1/2	:5/22	Firoj Vahora, Municipal Tea		Permitting Section	Date	: January 25, 2022
F	rom:		Gordon R. Coo	oper, Municipal	Permits Team		
P	LANT	CANT: `NAMI	E: Olmito	Water Supply O WSC WWTP	Corporation		
Τ	PDES	PERM	IT NO: WQoo	13817001		EPA	ID No: TX0113875
F	ILE N	AME:	I:\WQ\MUNI	\GORDON\202	1\WQ0013817001.do	осх	
			ete Date:	9/17/21	Pretreatment Mer	mo:	N/A
		ırds Mei		10/4/21	Assign Date:		10/26/21
		i Conait ing Men	ion Memo:	10/11/21 10/13/21	Tech Complete Date:	ate:	1/25/22
			Memo:	10/13/21 10/20/21	Response Letter I	Date:	
				PER	MIT TYPE		
	☐ Pub	olic Dom	nestic		scharge (TPDES)	\boxtimes N	Major (> 1 MGD)
	⊠ Priv	vate Dor	nestic		nd Application		
YES	NO			Major	IIT ACTION Amendment IT PACKAGE		
			nittal letter to ap				
	H		nittal letter to El		for major TPDES Peri	mit	
		Permi		illilliary Decision	nor major 11 DES Fen	1111	
				ements for Major	TPDES Permits		
Н				nents for POTWs apply or dispose o	f Class B Biosolids or s	sewage s	sludge on property adjacent to
	\square	WWT]	P in draft permit			_	
				ther requirement fact sheet, attach		and ann	nual reporting, soil monitoring,
\boxtimes			EVIEW CHECK		ments.		
				ORM for PARIS			
	H		OX Printout in fi CE for admin cor	ıe nplete on or after	0/1/00		
		CAPT	ON (also saved i	in I:\EVERYON	Ewq\CAPTION)		
					ved in I:\WQ\Muni	\LEGIS	SLATIVE NOTICE)
				ERMINATION if ASTAL ZONE (if		, includ	le CMP Threshold Sheet)
		SPELI	CHECK: DRAF	Γ PERMIT/TECH	SUM/SOB/FACT SHI	EET/NO	OTICE/LETTER(S)
\bowtie	Ш		EDULE FOR EF uled for ERC	KC Part A: All m	ajor permits and peri	nits in	Edwards Aquifer area are
	\boxtimes	Locate	ed in the Edward				
					=Satisfactory (2.67	7)	
H	\boxtimes		RCEMENT ORD GES TO THE DI		used on discussion at E	RC	
			_				

A major amendment to authorize an increase in the discharge of treated domestic wastewater from a daily average flow not to exceed 750,000 gallons per day to an annual average flow not to exceed 1,250,000 gallons per day and to add new treatment units and a second outfall.

Request for Comments on Draft Permit TCEQ – Water Quality Division Phone: (512)239-4671

Fax: (512)239-4430

Mailing Address: TCEQ, Water Quality Division, P.O. Box 13087, Austin, TX 78711-3087

TO: Region: 15

Submitted by: Gordon R. Cooper E-Mail ID: gordon.cooper@tceq.texas.gov Phone: (512) 239-1963

Date Request Submitted:

Comments Deadline: Within 7 days

Date Application Received by TCEQ in Austin: May 26, 2021

REGIONAL OFFICES: The entity below has submitted an application for the project referenced below in accordance with regulations of the TCEQ. Please return comments ASAP, but no later than the comments deadline, which is 10 days from the submittal date. Permit disposition will proceed after comments are received or after the comments deadline has passed. If no comments are received within this time frame, we will assume you have no comments or objections to the project as proposed. Please return a complete copy of the form (both sides) with your comments.

PROJECT TYPE: Major Amendment TEAM ASSIGNED: MUNICIPAL

APPLICATION TYPE: TPDES TLAP REGULATED ENTITY NO.: RN103888004

PERMIT NO.: WQ0013817001 CUSTOMER REFERENCE NO.: CN600657548

COMPANY NAME: Olmito Water Supply Corporation

PLANT NAME: Olmito WSC WWTP

ADDRESS: P.O. Box 36, Olmito, Texas 78575

SEGMENT: 2494 COUNTY: Cameron

TECHNICAL CONTACT: Mr. Marcus Cruz, P.E. PHONE: 956-854-4227

marcus@cruzhogan.net

PERMIT CLASSIFICATION: MAJOR

COMPLIANCE RATING: CN&RN=Satisfactory (2.67)

SUMMARY OF APPLICATION REQUEST: A major amendment to TPDES Permit No. WQ0013817001 to authorize an increase in the discharge of treated domestic wastewater from a daily average flow not to exceed 750,000 gallons per day to an annual average flow not to exceed 1,250,000 gallons per day and to add new treatment units and a second outfall.

PERMIT WRITER COMMENTS:

- 1. The draft permit will be issued to expire **December 1**, **2025**.
- 2. The Final phase of the existing permit authorizes an annual average flow of 0.75 million gallons per day (MGD). The Final phase of the existing permit is now the Interim phase of the draft permit. The draft permit authorizes an annual average flow of 0.75 MGD in the Interim phase and 1.25 MGD in the Final phase. The permittee is currently operating in the Interim phase of the draft permit.
- 3. The effluent limitations in the Interim phase of the draft permit, based on a 30-day average, are 10 mg/l CBOD5, 15 mg/l TSS, 5 mg/l NH3-N, 126 CFU or MPN of E. coli per 100 ml and 4.0 mg/l minimum DO. The total residence time in the wastewater treatment system shall be at least 21 days, based on a daily average flow of 0.75 MGD.
- 4. The Interim phase of the draft permit includes all of the effluent limitations from the Final phase of the existing permit excluding the limits and requirements for chlorination for disinfection, which has been changed to "The effluent shall contain a chlorine residual of at least 1.0 mg/l and shall not exceed a chlorine residual of 4.0 mg/l after a detention time of at least 20 minutes (based on daily average flow) and shall be monitored daily by grab sample when chlorination is used as a disinfection method.

- 5. The Final phase of the draft permit has been included and authorizes an annual average flow of 1.25 MGD. The effluent limitations in the Final phase of the draft permit, based on a 30 day average, are 10 mg/l CBOD5, 15 mg/l TSS, 3 mg/l NH3-N, 126 CFU or MPN of E. coli per 100 ml and 4.0 mg/l minimum DO. The permittee shall utilize an Ultraviolet Light (UV) system for disinfection purposes. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.
- 6. Outfall 002 has been included in the draft permit.
- 7. The Standard Permit Conditions, Sludge Provisions, Other Requirements, and Biomonitoring sections of the draft permit have been updated.
- 8. Requirements for utilizing chlorination in the existing permit have been replaced with disinfection being accomplished by only chlorination based on daily average flow of 0.75 MGD in the Interim phase and the utilization of UV for disinfection in the Final phase of the draft permit.
- 9. Other Requirement No. 3 has been placed in the permit to provide the requirements for the mixing zone, when the facility begins to operate in the Final phase.
- 10. Other Requirement No. 7 of the existing permit (No. 8 in the draft permit) has been revised to remove the reference to chlorination.
- 11. Other Requirement No. 8 in the draft permit (No. 7 of the existing permit) has also been revised to reflect that the summary transmittal letter was received and approved by the TCEQ for the 1.25 MGD phase.
- 12. The draft permit includes all updates based on the 30 TAC § 312 rule change effective April 23, 2020.
- 13. Proposed Outfall 002 will be located approximately 60 feet from existing Outfall 001, which results in overlapping aquatic life and human health mixing zones for both outfalls. Therefore, the Water Quality Assessment team recommends that water quality-based effluent limits be developed without upstream dilution. For this reason, the 7Q2 and harmonic mean flows are both assigned 0.0 cfs, which results in 100% effluent for assessing aquatic life and human health criteria.
- 14. The combined daily average flows made via Outfalls 001 and 002 in the Interim phase shall not exceed 0.75 MGD and the combine annual average flows made via Outfall 002 in the final phase shall not 1.25 MGD.
- 15. Requirements have been placed in the permit which require that the combined lbs/day via Outfalls 001 and 002 shall not exceed the lbs/day limits listed for CBOD5, TSS, and NH3N on pages 2 and 2a of the permit.

RESPONSE TO REQUEST FOR COMMENTS ON DRAFT PERMIT

TO: Gordon R. Cooper
FROM: Region: 15
Copy of Application Received by your Office: YES NO Date Received:
COMPANY NAME: Olmito Water Supply Corporation
PERMIT NO.: WQ0013817001
REGULATED ENTITY NO: RN103888004
Investigator's/Compliance Officer's Name (Please Print):
Phone:
Comments Deadline (from pg. 1):
Date of Last Site Visit:
COMMENTS ON CONDITIONS: (Please mark up the draft special conditions with your comments Please address applicability and enforceability. List any additional conditions below):
Compliance Determination Conditions:
.
Operational Limitations:
General Comments:

Jon Niermann, *Chairman*Emily Lindley, *Commissioner*Bobby Janecka, *Commissioner*Toby Baker, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

Mr. Marcus Cruz, P.E. Project Engineer Cruz Hogan Consultants 2290 West Pike Boulevard, Suite 102 Weslaco, Texas 78596

Re: Olmito Water Supply Corporation - TPDES Permit No. WQ0013817001, EPA ID No. TX0113875 (CN600657548; RN103888004)

Dear Mr. Cruz:

Enclosed for your review and comment is a copy of a draft permit, Fact Sheet and Executive Director's Preliminary Decision for the above-referenced operation. This draft permit is subject to further staff review and modification; however, we believe it generally includes the terms and conditions that are appropriate to your discharge. Please read the entire draft carefully as there may be changes from the existing permit and note the following:

- 1. The draft permit will be issued to expire **December 1, 2025**.
- 2. The Final phase of the existing permit authorizes an annual average flow of 0.75 million gallons per day (MGD). The Final phase of the existing permit is now the Interim phase of the draft permit. The draft permit authorizes an annual average flow of 0.75 MGD in the Interim phase and 1.25 MGD in the Final phase. The permittee is currently operating in the Interim phase of the draft permit.
- 3. The effluent limitations in the Interim phase of the draft permit, based on a 30 day average, are 10 mg/l CBOD5, 15 mg/l TSS, 5 mg/l NH3-N, 126 CFU or MPN of E. coli per 100 ml and 4.0 mg/l minimum DO. The total residence time in the wastewater treatment system shall be at least 21 days, based on a daily average flow of 0.75 MGD.
- 4. The Interim phase of the draft permit includes all of the effluent limitations from the Final phase of the existing permit excluding the limits and requirements for chlorination for disinfection, which has been changed to "The effluent shall contain a chlorine residual of at least 1.0 mg/l and shall not exceed a chlorine residual of 4.0 mg/l after a detention time of at least 20 minutes (based on daily average flow) and shall be monitored daily by grab sample when chlorination is used as a disinfection method.
- 5. The Final phase of the draft permit has been included and authorizes an annual average flow of 1.25 MGD. The effluent limitations in the Final phase of the draft permit, based on a 30 day average, are 10 mg/l CBOD5, 15 mg/l TSS, 3 mg/l NH3-N,

126 CFU or MPN of E. coli per 100 ml and 4.0 mg/l minimum DO. The permittee shall utilize an Ultraviolet Light (UV) system for disinfection purposes. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.

- 6. Outfall 002 has been included in the draft permit.
- 7. The Standard Permit Conditions, Sludge Provisions, Other Requirements, and Biomonitoring sections of the draft permit have been updated.
- 8. Requirements for utilizing chlorination in the existing permit have been replaced with disinfection being accomplished by only chlorination based on daily average flow of 0.75 MGD in the Interim phase and the utilization of UV for disinfection in the Final phase of the draft permit.
- 9. Other Requirement No. 3 has been placed in the permit to provide the requirements for the mixing zone, when the facility begins to operate in the Final phase.
- 10. Other Requirement No. 7 of the existing permit (No. 8 in the draft permit) has been revised to remove the reference to chlorination.
- 11. Other Requirement No. 8 in the draft permit (No. 7 of the existing permit) has also been revised to reflect that the summary transmittal letter was received and approved by the TCEQ for the 1.25 MGD phase.
- 12. The draft permit includes all updates based on the 30 TAC § 312 rule change effective April 23, 2020.
- 13. Proposed Outfall 002 will be located approximately 60 feet from existing Outfall 001, which results in overlapping aquatic life and human health mixing zones for both outfalls. Therefore, the Water Quality Assessment team recommends that water quality-based effluent limits be developed without upstream dilution. For this reason, the 7Q2 and harmonic mean flows are both assigned 0.0 cfs, which results in 100% effluent for assessing aquatic life and human health criteria.
- 14. The combined daily average flows made via Outfalls 001 and 002 in the Interim phase shall not exceed 0.75 MGD and the combine annual average flows made via Outfall 002 in the final phase shall not 1.25 MGD.
- 15. Requirements have been placed in the permit which require that the combined lbs/day via Outfalls 001 and 002 shall not exceed the lbs/day limits listed for CBOD5, TSS, and NH3N on pages 2 and 2a of the permit.

Also enclosed for your review and comment is a copy of the draft second notice, the Notice of Application and Preliminary Decision (NAPD), that was prepared for your application. Please review this notice and provide comments if there are any inaccuracies or any information that is not consistent with your application. Please do

not publish the notice at this time; after the draft permit is filed with the Office of the Chief Clerk, you will receive instructions for publishing this notice in a newspaper from the Office of the Chief Clerk. Please note that these instructions will not be mailed if the Office of the Chief Clerk has not received the requested proof that the first notice (Notice of Receipt and Intent to Obtain a Permit) has been published. This could cause delays in the processing of your application and the final issuance of the draft permit. When the NAPD notice is received, please publish promptly and submit proof of publication (affidavit and tearsheet) to the Office of the Chief Clerk. Failure to publish notice and submit proof of publication in a timely manner may result in returning of the application and loss of authorization to operate.

It is your responsibility to submit your comments on the draft permit prior to the deadline that is indicated in the email. Comments can be sent to gordon.cooper@tceq.texas.gov in place of or in addition to a hard copy. If your comments are not received by the deadline, I will presume that you accept the provisions of the draft permit which will then be transferred to the Office of the Chief Clerk. Comments received after this deadline date will not be considered.

If you have any comments or questions, please contact me at (512) 239-1963, or if by correspondence, include MC 148 in the letterhead address following my name.

Sincerely,

Gordon R. Cooper

Gordon R. Cooper, Permit Coordinator Municipal Permits Team Wastewater Permitting Section (MC 148) Water Quality Division Texas Commission on Environmental Quality

GRC/sh

Enclosures

cc: Mr. Tomas Tamayo, General Manager, Olmito Water Supply Corporation, P.O. Box 36, Olmito, Texas 78575

Jon Niermann, *Chairman*Emily Lindley, *Commissioner*Bobby Janecka, *Commissioner*Toby Baker, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

Ms. Evelyn Rosborough (6WQ-CA) U.S. Environmental Protection Agency Region 6 1201 Elm Street, Suite 500 Dallas, Texas 75270-2102

Re: Olmito Water Supply Corporation

TPDES Draft Permit No. WQ0013817001, TX0113875

(CN600657548; RN103888004)

Dear Ms. Rosborough:

Enclosed is the draft proposed permit, Fact Sheet and Executive Director's Preliminary Decision, and application material for the draft TPDES Permit No. WQ0013817001 as required under the TCEQ/EPA Memorandum of Agreement. Please review and provide any written comments, objections (general or interim) or recommendations with respect to the draft permit within forty-five days from the receipt of this draft permit to me.

If you need additional information or have any questions, please call Gordon R. Cooper of my staff by telephone at (512) 239-1963, by e-mail at gordon.cooper@tceq.texas.gov, by fax at (512) 239-4430 or if by correspondence, include MC 148 in the letterhead address following his name. Thank you for your cooperation in this matter.

Sincerely,

Fíroj Vahora

Firoj Vahora, Team Leader Municipal Permits Team Wastewater Permitting Section Water Quality Division

FV/GRC Enclosures

ATTACHMENT 1

<u>EPA - REGION 6</u> NPDES PERMIT CERTIFICATION CHECKLIST

In accordance with the MOA established between the State of Texas and the United States Environmental Protection Agency, Region 6, the Texas Commission on Environmental Quality submits the following draft Texas Pollutant Discharge Elimination System (TPDES) permit for Agency review.

Major ⊠		$\mathbf{POTW} \; \square$	Private Domestic ⊠ N	on-PO	on-POTW □		
Pern	nittee	Olmito Water S	Supply Corporation				
SIC (Code	4952					
Regulated Activity		Domestic Wast	ewater Permit				
EPA ID No.		TX0113875	TPDES Permit No. WQ0013817001				
Segment No. Receiving Water		2494					
			ty Drainage District No. 1 Ditch No. 2, thence to rosville Ship Channel	San M	lartin	Lake,	
Pern	nit Action:	New	_				
		Renewal WITH	_				
			ut changes (permit and WQS)				
		•	nent with renewal				
		•	lodification WITHOUT renewal, ly to Question 26 below]			
		proceed unech	ty to Question 20 below				
	Answer the fol	llowing		Yes	No	N/A	
1.	Are there known or potential interstate water issues associated with this permit?						
2. Is there known regarding this p		or potential third-party interest/environmental concern permit action?					
3.	Does this facility discharge to a 303(d) listed waterbody segment?						
	If YES , does the facility discharge any of the pollutant(s) of concern identified in the 303(d) listing?						
4.	Is this permit consistent with the approved WQMP?						
5.	Are discharges continuous?						
6.	Does the facility discharge or propose to discharge process wastewaters?						
7.	Are discharges directly to a classified waterbody segment?						
8.	Does the facilit TMDL?	y discharge to a v	vater body segment which has a finalized				
	If YES , does the permit implement the TMDL consistent with the WLAs?						
9.	Does the technical summary/statement of basis document the rationale for the inclusion/omission of permit conditions for each 303(d) listed pollutant of concern or TMDL pollutant?						

ATTACHMENT 1 EPA - REGION 6 NPDES PERMIT CERTIFICATION CHECKLIST Page 2 of 2

10.	Has a priority watershed of critical concern been identified by the U.S. Fish and Wildlife Service for this segment?		
11.	Is there a thermal component to the discharges from this facility?		
12.	Does this permit authorize ammonia discharges > 4.0 mg/l at the edge of the mixing zone?		
13.	Does this permit require testing for Whole Effluent Toxicity in accordance with the state's standard practices and implementation plan?		
	If YES, were there any toxicity failures in the previous three years?		
14.	If this facility has completed and implemented a Toxicity Reduction Evaluation (TRE), has any subsequent toxicity been identified?		
15.	Does this permit propose to grant a variance request (WQS, FDF, etc.) or does it incorporate a proposed or final approval of a variance request?		
16.	If a POTW is ≥ 5 MGD, does it have an approved Pretreatment Program?		
17.	Since the last permit issuance, has the POTW had a new Pretreatment Program approved or a Pretreatment Program modification approved?		
18.	Does this permit contain authorization for wet weather-related peak-flow discharges?		
19.	Does this permit include a bypass of any treatment unit or authorize overflows in the system?		
20.	Does this permit include provisions for effluent trading?		
21.	Does this permit contain specific issues on which EPA and the state are not in agreement regarding the permitting approach?		
22.	Is this facility subject to a national effluent limitations guideline? Please specify:		
23.	Does this permit contain first-time implementation of a new federal guideline, policy, regulation, etc.? Please specify:		
24.	Is this a new facility or an expansion of an existing facility?		
25.	Does this permit incorporate any exceptions to the standards or regulations?		
26.	Is this a permit modification/amendment? Please specify: Increase the discharge of treated domestic wastewater from a daily average flow not to exceed 750,000 gallons per day to an annual average flow not to exceed 1,250,000 gallons per day and add new treatment units and a second outfall.		

Yes No N/A

Name: Gordon R. Cooper

Date: January 25, 2022

Texas Commission on Environmental Quality

NOTICE OF APPLICATION AND PRELIMINARY DECISION FOR TPDES PERMIT FOR MUNICIPAL WASTEWATER AMENDMENT

PERMIT NO. WQ0013817001

APPLICATION AND PRELIMINARY DECISION. Olmito Water Supply Corporation, P.O. Box 36, Olmito, Texas 78575, has applied to the Texas Commission on Environmental Quality (TCEQ) for a major amendment to Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0013817001 to authorize an increase in the discharge of treated domestic wastewater from a daily average flow not to exceed 750,000 gallons per day to an annual average flow not to exceed 1,250,000 gallons per day and to add new treatment units and a second outfall. The current permit authorizes the land application of Class B wastewater treatment plant biosolids for beneficial use on 50.4 acres. TCEQ received this application on May 26, 2021.

The facility is located approximately 1.7 miles north of the intersection Farm-to-Market Road 511 and Old Alice Road, in Cameron County, Texas 78566. The treated effluent is discharged to Cameron County Drainage District No. 1 Ditch No. 2, thence to San Martin Lake, thence to Brownsville Ship Channel in Segment No. 2494 of the Bays and Estuaries. The unclassified receiving water use is limited aquatic life use for Cameron County Drainage District No. 1 Ditch No. 2. The designated uses for Segment No. 2494 are non-contact recreation and exceptional aquatic life use. In accordance with 30 Texas Administrative Code Section 307.5 and the TCEQ's Procedures to Implement the Texas Surface Water Quality Standards (June 2010), an antidegradation review of the receiving waters was performed. A Tier 1 antidegradation review has preliminarily determined that existing water quality uses will not be impaired by this permit action. Numerical and narrative criteria to protect existing uses will be maintained. This review has preliminarily determined that no water bodies with exceptional, high, or intermediate aquatic life uses are present within the stream reach assessed; therefore, no Tier 2 degradation determination is required. No significant degradation of water quality is expected in water bodies with exceptional, high, or intermediate aquatic life uses downstream, and existing uses will be maintained and protected. The preliminary determination can be reexamined and may be modified if new information is received. This link to an electronic map of the site or facility's general location is provided as a public courtesy and is not part of the application or notice. For the exact location, refer to the application.

 $\frac{https://tceq.maps.arcgis.com/apps/webappviewer/index.html?id=db5bac44afbc468bbddd360f8168250f\&marker=-97.506111\%2C26.046111\&level=12$

The TCEQ Executive Director has completed the technical review of the application and prepared a draft permit. The draft permit, if approved, would establish the conditions under which the facility must operate. The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The permit application, Executive Director's preliminary decision, and draft permit are available for viewing and copying at United States Post Office, 7955 North Expressway 77, Olmito, Texas.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting about this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ holds a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting a contested case hearing or reconsideration of the Executive Director's decision. A contested case hearing is a legal proceeding similar to a civil trial in a state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period; and the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

EXECUTIVE DIRECTOR ACTION. The Executive Director may issue final approval of the application unless a timely contested case hearing request or request for reconsideration is filed. If a timely hearing request or request for reconsideration is filed, the Executive Director will not issue final approval of the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In

addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

All written public comments and public meeting requests must be submitted to the Office of the Chief Clerk, MC 105, Texas Commission on Environmental Quality, P.O. Box 13087, Austin, TX 78711-3087 or electronically at www.tceq.texas.gov/goto/comment within 30 days from the date of newspaper publication of this notice.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. Public comments and requests must be submitted either electronically at www.tceq.texas.gov/goto/comment, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Any personal information you submit to the TCEQ will become part of the agency's record; this includes email addresses. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from Olmito Water Supply Corporation at the address stated above or by calling Mr. Tomas Tamayo at 956-350-4099.

Issuance Date				

AGENDA CAPTION FOR PERMIT NO. WQ0013817001

Olmito Water Supply Corporation has applied for a major amendment to Texas Pollutant Discharge Elimination System Permit No. WQ0013817001 to authorize an increase in the discharge of treated domestic wastewater from a daily average flow not to exceed 750,000 gallons per day to an annual average flow not to exceed 1,250,000 gallons per day and to add new treatment units and a second outfall. The current permit authorizes the land application of Class B wastewater treatment plant biosolids for beneficial use on 50.4 acres. The facility is located approximately 1.7 miles north of the intersection Farm-to-Market Road 511 and Old Alice Road, in Cameron County, Texas 78566.

MUNICIPAL EPA REVIEW CHECKLIST

Permittee Name: Olmito Water Supply Corporation

Permit Number: TPDES Permit No. WQ0013817001, EPA ID No. TX0113875

For renewal, amendment or new permits check any items that apply to determine if the permit is subject to EPA review:

PLEASE CHECK X ALL THE APPLICABLE BELOW: Draft permit authorizes: YES NO \boxtimes Discharge from a designated major facility \boxtimes Discharge from a POTW with an approved pretreatment program Discharge from a facility with a daily/annual average flow >1.0 MGD Discharge to a critical concern species watershed that requires EPA review $\overline{\boxtimes}$ Discharge that includes a request for a water quality variance Storm water discharge to high priority species watershed First time implementation of a final TMDL for an existing facility Prior to a final TMDL, new permit, or expanded discharge to an impaired listed 303(d) listed segment, and that has the potential to discharge any pollutant that is causing or contributing to the impairment. \boxtimes After a final TMDL, new permit or expanded discharge to an impaired listed 303(d) listed segment where the TMDL does not allocate the loadings described in the draft permit After a final TMDL, a permit with effluent limits that allow loadings in excess of those prescribed by the TMDL for the segment After a final TMDL, a permit that allows more than a 3-year schedule for an existing facility to \boxtimes be in compliance with final effluent limits based on the TMDL allocation (new facilities have to be compliant upon discharge) Discharge directly to territorial seas of the United States (from the coastline to 3 miles out but \boxtimes П not including Bays and Estuaries) \bowtie Discharge or sewage sludge management that may affect another state or Mexico. For sewage sludge management, may affect means, accepts sewage sludge from another state or Mexico. For discharge, it means a discharge within 3 miles of a boundary with another state or Mexico. \boxtimes \Box Discharge from a Class I sludge management facility. (A Class I facility is a POTW or combination of POTWs operated by the same authority with a design flow of >5 MGD and that have IUs and are required to have an approved pretreatment program or are subject to pretreatment standards, **OR** any other treatment works treating domestic sewage sludge classified as a Class I sludge management facility by the Regional Administrator in conjunction

If any column is marked "YES", EPA <u>must</u> receive a copy of the full permit package. If all columns are marked "NO", EPA does <u>not</u> need to review the draft permit.

Permit Writer: Gordon R. Cooper

Date: January 25, 2022

with the TCEO.)

MUNICIPAL MAJOR/MINOR DETERMINATION

Permit Number: TPDES Permit No. WQoo13817001, EPA ID No. TX0113875

Type of Application: Major Amendment

Check Appropriate Classification:

☐ Major
☐ Minor

Permitted Flow: 1.25 MGD

Permit Writer: Gordon R. Cooper
Date: January 25, 2022

PARIS FACILITY EXTENSION - TREATMENT PROCESS TPDES PERMIT NO. WQ0013817001

Olmito Water Supply Corporation PERMITTEE:

PLANT NAME Olmito WSC WWTP

Application Major Amendment | Interim

Type:

WASTEWATER TREATMENT

Primary Treatment

02 Preliminary treatment – bar screen 03 Preliminary treatment – grit

- 04 Preliminary treatment comminutors 05 Preliminary treatment others
- B1 Imhoff tank
- o6 Scum removal
- 07 Flow equalization basins
- o8 Preaeration
- 09 Primary sedimentation
- D2 Septic tank

A5 Facultative lagoon

- Secondary Treatment

 10Trickling filter rock media

 11 Trickling filter plastic media

 12 Trickling filter redwood slats

- 12 Trickling filter redwood slats
 13 Trickling filter other media
 14 Activate sludge conventional
 15 Activate sludge complete mix
 16 Activate sludge contact stabilization
 17 Activated sludge extended

- 18 Pure oxygen activate sludge
- 19 Bio-Disc (rotating biological filter)

20 Oxidation ditch

- 21 Clarification using tube settlers

 22 Secondary clarification
- **B6** Constructed wetlands
- **E5 Natural treatment** E6 Overland flow

Advanced Treatment - Biological

23 Biological nitrification – separate stage **24 Biological nitrification - combined**

- 25 Biological denitrification
- 26 Post aeration (reaeration)

Advanced Treatment -

- 27 Microstrainers primary
- 28 Microstrainers secondary
- D1 Dunbar Beds
- 29 Sand filters
- 30 Mix media filters (sand and coal)
- 31 Other filtrations
- B2 Bubble diffuser (compressor)
- 32 Activated carbon granular B3 Mechanical surface aerator
- 33 Activated carbon-powered
- 34 Two stage lime treatment of raw
- 35 Two stage tertiary lime treatment
- 36 Single stage lime treatment of raw
- 37 Single state tertiary lime treatment
- 38 Recarbonation
- 39 Neutralization

Date:

40 Alum addition to primary

- 41 Alum addition to secondary
- 42 Alum addition to separate state
- 43 Ferri-chloride addition to primary
- 44 Ferri-chloride addition to secondary
- 45 Ferri-chloride addition to separate
- 46 Other chemical additions
- 47 Ion exchange 48 Breakpoint chlorination
- 49 Ammonia stripping
- 50 Dechlorination

Disinfection

51 Chlorination for disinfection

- 52 Ozonation for disinfection
- 53 Other disinfection

D3 Ultra violet light

Land Treatment

- 54 Land treatment of primary effluent 55 Land treatment of secondary effluent
- 56 Land treatment of intermediate (less than secondary)

Other Treatment

57 Stabilization ponds

- 58 Aerated lagoons 59 Outfall pumping

- 60 Outfall diffuser 61 Effluent to other plants
- 62 Effluent outfall
- 63 Other treatment
- 64 Evapo-transpiration beds
- 64 Recalcination

Disposal Method

- A7 Irrigation public access A8 Irrigation agricultural B4 Evapo-transpiration beds
- B6 Constructed wetlands
- C1 Irrigation pastureland D4 Pressure dosing system
- D₅ Percolation system
- D8 Other reuse method
- E1 Evaporation/plays

E3 Discharge and (use other #)

E4 Injection well(s)

SLUDGE TREATMENT

- 65 Aerobic digestion air 66 Aerobic digestion oxygen
- 67 Composting
- 68 Anaerobic digestion
- 69 Sludge lagoons
- 70 Heat treatment dryer
- 71 Chlorine oxidation of sludge
- 72 Lime stabilization

73 Wet air oxidation

 \boxtimes Final

74 Dewatering – sludge drying beds,

- F2 Dewatering studge drying bed vacuum 75 Dewatering mechanical-vacuum filter 76 Dewatering mechanical centrifuge
- 77 Dewatering mechanical filter press 78 Dewatering others 79 Gravity thickening

- 80 Air flotation thickening
- D6 Sludge holding tank

Incineration

- 81 Incineration multiple hearth
- 82 Incineration fluidized beds
- 83 Incineration rotary kiln
- 84 Incineration -others
- 85 Pyrolysis
- 86 Co-incineration with solid waste
- 87 Co-pyrolysis with solid waste
- 88 Co-incineration others

SLUDGE DISPOSAL 89 Co-disposal landfill

- D7 Sludge only monofill
- 90 Land application (permitted)
 91 Commercial land application (register)
- 92 Trenching

B5 Transport to another WWTPF3 Transport to Regional compost facility

- 94 Other sludge handling 95 Digest gas utilization facilities *E7 Commercial land application (permit)*
- F4 Dedicated land disposal
- F5 Marketing and distribution composted
- F6 Marketing and distribution non-

MISCELLANEOUS

- o1 Pumping raw wastewater 96 Control/lab/maintenance buildings
- 97 Fully automated using digital control -
- 98 Fully automated using analog control
- 99 Semi-automated plant
 A1 Manually operated and controlled plant
- A2 Package plant
- A3 Semi-package plant A4 Custom built plant
- A7 Irrigation public access A8 Irrigation agriculture A9 Effluent storage ponds (irrigation)

- Ci Irrigation pastureland
- D8 Other reuse method
- D9 Emergency holding ponds E1 Evaporation or playa

E8 Monitoring wells

- E9 Biomonitoring
- F7 Stormwater (SSO) F8 Unconventional

PERMIT Gordon R. Cooper

Municipal Permits Team

Wastewater Permitting Section, Water Quality Division January 25, 2022

FACT SHEET AND EXECUTIVE DIRECTOR'S PRELIMINARY DECISION

For draft Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0013817001, EPA I.D. No. TX0113875, to discharge to water in the state.

Issuing Office: Texas Commission on Environmental Quality

P.O. Box 13087

Austin, Texas 78711-3087

Applicant: Olmito Water Supply Corporation (WSC)

P.O. Box 36

Olmito, Texas 78575

Prepared By: Gordon R. Cooper

Municipal Permits Team

Wastewater Permitting Section (MC 148)

Water Quality Division

(512) 239-1963

Date: January 25, 2022

Permit Action: Major Amendment

1. EXECUTIVE DIRECTOR RECOMMENDATION

The Executive Director has made a preliminary decision that this permit, if issued, meets all statutory and regulatory requirements. The draft permit includes an expiration date of **December 1**, **2025**.

2. APPLICANT ACTIVITY

The applicant has applied to the Texas Commission on Environmental Quality (TCEQ) for an amendment of the existing permit to authorize an increase in the discharge of treated domestic wastewater from a daily average flow not to exceed 0.75 million gallons per day (MGD) to an annual average flow not to exceed 1.25 MGD and add new treatment units and a second outfall. The draft permit contains an Interim phase that authorizes a daily average flow not to exceed 0.75 MGD and a Final phase that authorizes an annual average flow not to exceed 1.25 MGD. The current permit authorizes the land application of Class B wastewater treatment plant biosolids for beneficial use on 50.4 acres. The existing wastewater treatment facility serves the City of Olmito.

3. FACILITY AND DISCHARGE LOCATION

The plant site is located approximately 1.7 miles north of the intersection Farm-to-Market Road 511 and Old Alice Road, in Cameron County, Texas 78566.

Outfall Locations:

Outfall Number	Latitude	Longitude	
001	26.045675 N	97.506284 W	
002	26.045657 N	97.506099 W	

The treated effluent is discharged (via Outfalls 001 and 002) to Cameron County Drainage District No. 1 Ditch No. 2, thence to San Martin Lake, thence to Brownsville Ship Channel in Segment No. 2494 of the Bays and Estuaries. The unclassified receiving water use is limited aquatic life use for Cameron County Drainage District No. 1 Ditch No. 2. The designated uses for Segment No. 2494 are non-contact recreation and exceptional aquatic life use.

4. TREATMENT PROCESS DESCRIPTION AND SEWAGE SLUDGE DISPOSAL

The Olmito WSC Wastewater Treatment Facility is currently operating as a pond system in the Interim phase and as an activated sludge plant operated in the extended aeration mode. Treatment units in the Interim phase include a mechanical bar screen, a facultative lagoon, an aerated lagoon, four wetland filters, and chlorination. Treatment units in the Final phase will include include a mechanical bar screen, a grit chamber, an aeration basin, two final clarifiers, four sludge drying beds, a UV contact basin, a reaeration basin, and a Parshall flume. The facility is operating in the Interim phase.

Sludge generated from the treatment facility is hauled by a registered transporter and disposed of at a TCEQ-permitted landfill, City of Edinburg Regional Disposal Facility, Permit No. 956C, in Hidalgo County. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

5. SUMMARY OF SELF-REPORTED EFFLUENT ANALYSES

The following is a summary of the applicant's effluent monitoring data for the period of September 2019 through September 2021. The average of Daily Average value is computed by the averaging of all 30-day average values for the reporting period for each parameter: daily average flow (flow), five-day carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), and ammonia nitrogen (NH₃-N). The average of Daily Average value for *Escherichia coli (E. coli)* in colony-forming units (CFU) or most probable number (MPN) per 100 ml is calculated via geometric mean.

<u>Parameter</u>	Average of Daily Avg
Flow, MGD	0.51
CBOD ₅ , mg/l	7.7
TSS, mg/l	11.8
NH ₃ -N, mg/l	3.5
E. coli, CFU or MPN per 100 ml	10

6. DRAFT PERMIT CONDITIONS AND MONITORING REQUIREMENTS

The effluent limitations and monitoring requirements for those parameters that are limited in the draft permit are as follows:

A. INTERIM PHASE EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Outfalls 001 and 002)

The daily average flow of effluent shall not exceed 0.75 MGD. The combined daily average flows made via Outfalls 001 and 002 shall not exceed 0.75 MGD.

			<u>7-Day</u>	<u>Daily</u>
<u>Parameter</u>	<u>30-Day</u>	<u>Average</u>	<u>Average</u>	<u>Maximum</u>
	mg/l	lbs/day	mg/l	<u>mg/l</u>
$CBOD_5$	10	63*	15	25
TSS	15	94*	25	40
NH ₃ -N	5	31*	7	10
DO (minimum)	4.0	N/A	N/A	N/A
E. coli, CFU or MPN per 100 ml	126	N/A	N/A	399

^{*}The combined lbs/day via Outfalls 001 and 002 shall not exceed this amount.

The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored twice per month by grab sample. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.

The effluent shall contain a chlorine residual of at least 1.0 mg/l and shall not exceed a chlorine residual of 4.0 mg/l after a detention time of at least 20 minutes (based on daily average flow) and shall be monitored daily by grab sample when chlorination is used as a disinfection method.

Monitoring Requirement
Continuous
One/week
One/week
One/week
One/week
Two /month

B. FINAL PHASE EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (Outfalls 001 and 002)

The annual average flow of effluent shall not exceed 1.25 MGD, nor shall the average discharge during any two-hour period (2-hour peak) exceed 2,604 gallons per minute. The combined annual average flows made via Outfalls 001 and 002 shall not exceed 1.25 MGD.

			<u>7-Day</u>	<u>Daily</u>
<u>Parameter</u>	<u>30-Day</u>	<u>Average</u>	<u>Average</u>	<u>Maximum</u>
	mg/l	lbs/day	mg/l	<u>mg/l</u>
$CBOD_5$	10	104*	15	25
TSS	15	156*	25	40
NH ₃ -N	3	31*	6	10
DO (minimum)	4.0	N/A	N/A	N/A
E. coli, CFU or MPN/100 ml	126	N/A	N/A	399

The combined lbs/day via Outfalls 001 and 002 shall not exceed this amount.

The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.

The permittee shall utilize an Ultraviolet Light (UV) system for disinfection purposes.

<u>Parameter</u> <u>Monitoring Requirement</u>

C. SEWAGE SLUDGE REQUIREMENTS

The draft permit includes Sludge Provisions according to the requirements of 30 TAC Chapter 312, Sludge Use, Disposal, and Transportation. Sludge generated from the treatment facility is hauled by a registered transporter and disposed of at a TCEQ-permitted landfill, City of Edinburg Regional Disposal Facility, Permit No. 956C, in Hidalgo County. The draft permit also authorizes the disposal of sludge at a TCEQ-authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge.

E. WHOLE EFFLUENT TOXICITY (BIOMONITORING) REQUIREMENTS

- (1) The draft permit includes 7-day chronic freshwater biomonitoring requirements as follows. The permit requires five dilutions in addition to the control (0% effluent) to be used in the toxicity tests. These additional effluent concentrations shall be 32%, 42%, 56%, 75%, and 100%. The low-flow effluent concentration (critical dilution) is defined as 100% effluent.
 - (a) Chronic static renewal survival and reproduction test using the water flea (*Ceriodaphnia dubia*). The frequency of the testing is once per quarter for at least the first year of testing, after which the permittee may apply for a testing frequency reduction.
 - (b) Chronic static renewal 7-day larval survival and growth test using the fathead minnow (*Pimephales promelas*). The frequency of the testing is once per quarter for at least the first year of testing, after which the permittee may apply for a testing frequency reduction.
- (2) The draft permit includes the following minimum 24-hour acute freshwater biomonitoring requirements at a frequency of once per six months:
 - (a) Acute 24-hour static toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*).
 - (b) Acute 24-hour static toxicity test using the fathead minnow (*Pimephales promelas*).

F. BUFFER ZONE REQUIREMENTS

The permittee shall comply with the requirements of 30 TAC § 309.13(a) through (d). In addition, by ownership of the required buffer zone area, the permittee shall comply with the requirements of 30 TAC § 309.13(e).

H. SUMMARY OF CHANGES FROM APPLICATION

None.

I. SUMMARY OF CHANGES FROM EXISTING PERMIT

The Final phase of the existing permit authorizes an annual average flow of 0.75 MGD. The Final phase of the existing permit is now the Interim phase of the draft permit. The draft permit authorizes a daily average flow of 0.75 MGD in the Interim phase and an annual average flow of 1.25 MGD in the Final phase. The permittee is currently operating in the Interim phase of the draft permit.

The effluent limitations in the Interim phase of the draft permit, based on a 30-day average, are 10 mg/l CBOD₅, 15 mg/l TSS, 5 mg/l NH₃-N, 126 CFU or MPN of $E.\ coli$ per 100 ml and 4.0 mg/l minimum DO. The total residence time in the wastewater treatment system shall be at least 21 days, based on a daily average flow of 0.75 MGD.

The Interim phase of the draft permit includes all of the effluent limitations from the Final phase of the existing permit excluding the limits and requirements for chlorination for disinfection, which has been changed to "The effluent shall contain a chlorine residual of at least 1.0 mg/l and shall not exceed a chlorine residual of 4.0 mg/l after a detention time of at least 20 minutes (based on daily average flow) and shall be monitored daily by grab sample when chlorination is used as a disinfection method."

The Final phase of the draft permit has been included and authorizes an annual average flow of 1.25 MGD. The effluent limitations in the Final phase of the draft permit, based on a 30-day average, are 10 mg/l CBOD $_5$, 15 mg/l TSS, 3 mg/l NH $_3$ -N, 126 CFU or MPN of E. coli per 100 ml and 4.0 mg/l minimum DO. The permittee shall utilize an Ultraviolet Light (UV) system for disinfection purposes. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.

Outfall 002 has been included in the draft permit.

The permittee must submit the annual sludge report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. The Reporting Requirements of the Sludge Provisions have also been updated.

Requirements for utilizing chlorination in the existing permit have been replaced with disinfection being accomplished by only chlorination based on daily average flow of 0.75 MGD in the Interim phase and the utilization of UV for disinfection in the Final phase of the draft permit.

Other Requirement No. 3 has been placed in the permit to provide the requirements for the mixing zone, when the facility begins to operate in the Final phase.

Other Requirement No. 7 of the existing permit (No. 8 in the draft permit) has been revised to remove the reference to chlorination.

Other Requirement No. 8 in the draft permit (No. 7 of the existing permit) has also been revised to reflect that the summary transmittal letter was received and approved by the TCEQ for the 1.25 MGD phase.

The draft permit includes all updates based on the 30 TAC § 312 rule change effective April 23, 2020.

Proposed Outfall 002 will be located approximately 60 feet from existing Outfall 001, which results in overlapping aquatic life and human health mixing zones for both outfalls. Therefore, the Water Quality Assessment team recommends that water quality-based effluent limits be developed without upstream dilution. For this reason, the 7Q2 and harmonic mean flows are both assigned 0.0 cfs, which results in 100% effluent for assessing aquatic life and human health criteria.

The combined daily average flows made via Outfalls 001 and 002 in the Interim phase shall not exceed 0.75 MGD and the combine annual average flows made via Outfall 002 in the final phase shall not 1.25 MGD.

Requirements have been placed in the permit which require that the combined lbs/day via Outfalls 001 and 002 shall not exceed the lbs/day limits listed for CBOD5, TSS, and NH3N on pages 2 and 2a of the permit.

8. DRAFT PERMIT RATIONALE

A. TECHNOLOGY-BASED EFFLUENT LIMITATIONS/CONDITIONS

Regulations promulgated in Title 40 of the CFR require that technology-based limitations be placed in wastewater discharge permits based on effluent limitations guidelines, where applicable, or on best professional judgment (BPJ) in the absence of guidelines.

Effluent limitations for maximum and minimum pH are in accordance with 40 CFR § 133.102(c) and 30 TAC § 309.1(b).

B. WATER OUALITY SUMMARY AND COASTAL MANAGEMENT PLAN

(1) WATER QUALITY SUMMARY

The treated effluent is discharged to Cameron County Drainage District No. 1 Ditch No. 2, thence to San Martin Lake, thence to Brownsville Ship Channel in Segment No. 2494 of the Bays and Estuaries. The unclassified receiving water use is limited aquatic life use for Cameron County Drainage District No. 1 Ditch No. 2. The designated uses for Segment No. 2494 are non-contact recreation and exceptional aquatic life use. The

effluent limitations in the draft permit will maintain and protect the existing instream uses. In accordance with 30 Texas Administrative Code Section 307.5 and the TCEQ's Procedures to Implement the Texas Surface Water Quality Standards (June 2010), an antidegradation review of the receiving waters was performed. A Tier 1 antidegradation review has preliminarily determined that existing water quality uses will not be impaired by this permit action. Numerical and narrative criteria to protect existing uses will be maintained. This review has preliminarily determined that no water bodies with exceptional, high, or intermediate aquatic life uses are present within the stream reach assessed; therefore, no Tier 2 degradation determination is required. No significant degradation of water quality is expected in water bodies with exceptional, high, or intermediate aquatic life uses downstream, and existing uses will be maintained and protected. The preliminary determination can be reexamined and may be modified if new information is received.

The discharge from this permit action is not expected to have an effect on any federal endangered or threatened aquatic or aquatic-dependent species or proposed species or their critical habitat. This determination is based on the United States Fish and Wildlife Service's (USFWS's) biological opinion on the State of Texas authorization of the TPDES (September 14, 1998; October 21, 1998, update). To make this determination for TPDES permits, TCEQ and EPA only considered aquatic or aquatic-dependent species occurring in watersheds of critical concern or high priority as listed in Appendix A of the USFWS biological opinion. The determination is subject to reevaluation due to subsequent updates or amendments to the biological opinion. The permit does not require EPA review with respect to the presence of endangered or threatened species.

Segment No. 2494 is not currently listed on the State's inventory of impaired and threatened waters (the 2020 Clean Water Act Section 303(d) list).

The effluent limitations and conditions in the draft permit comply with EPA-approved portions of the 2018 Texas Surface Water Quality Standards (TSWQS), 30 TAC §§ 307.1 - 307.10, effective March 1, 2018; 2014 TSWQS, effective March 6, 2014; 2010 TSWQS, effective July 22, 2010; and 2000 TSWQS, effective July 26, 2000.

(2) CONVENTIONAL PARAMETERS

Effluent limitations for the conventional effluent parameters (i.e., Five-Day Biochemical Oxygen Demand or Carbonaceous Biochemical Oxygen Demand, Ammonia Nitrogen, etc.) are based on stream standards and waste load allocations for water quality-limited streams as established in the TSWQS and the State of Texas Water Quality Management Plan (WQMP).

The effluent limitations in the draft permit have been reviewed for consistency with the WQMP. The proposed effluent limitations are not contained in the approved WQMP. However, these limits will be included

in the next WQMP update.

The effluent limitations in the draft permit meet the requirements for secondary treatment and the requirements for disinfection according to 30 TAC Chapter 309, Subchapter A: Effluent Limitations.

(3) COASTAL MANAGEMENT PLAN

The facility is not located in the Coastal Management Program boundary.

C. WATER QUALITY-BASED EFFLUENT LIMITATIONS/CONDITIONS

(1) GENERAL COMMENTS

The Texas Surface Water Quality Standards (30 TAC Chapter 307) state that surface waters will not be toxic to man, or to terrestrial or aquatic life. The methodology outlined in the "Procedures to Implement the Texas Surface Water Quality Standards, June 2010" is designed to ensure compliance with 30 TAC Chapter 307. Specifically, the methodology is designed to ensure that no source will be allowed to discharge any wastewater that: (1) results in instream aquatic toxicity; (2) causes a violation of an applicable narrative or numerical state water quality standard; (3) results in the endangerment of a drinking water supply; or (4) results in aquatic bioaccumulation that threatens human health.

(2) AQUATIC LIFE CRITERIA

(a) SCREENING

Water quality-based effluent limitations are calculated from freshwater aquatic life criteria found in Table 1 of the Texas Surface Water Quality Standards (30 TAC Chapter 307).

Outfall 001 and Proposed Outfall 002.

Acute freshwater criteria are applied at the edge of the zone of initial dilution (ZID), and chronic freshwater criteria are applied at the edge of the aquatic life mixing zone. The ZID for this discharge is defined as 20 feet upstream and 60 feet downstream from the point where the discharge enters Cameron County Drainage District No. 1, Ditch No. 2. The aquatic life mixing zone for this discharge is defined as 100 feet upstream and 300 feet downstream from the point where the discharge enters Cameron County Drainage District No. 1, Ditch No. 2.

Proposed Outfall 002 will be located approximately 60 feet from existing Outfall 001, which results in overlapping aquatic life and human health mixing zones for both outfalls. Therefore, the Water Quality Assessment team recommends that water quality-based effluent limits be developed without upstream dilution. For this reason, the 7-day, 2-year (7Q2) flow is assigned 0.0 cfs, which results in 100% effluent for assessing aquatic life criteria.

TCEQ uses the mass balance equation to estimate dilutions at the edges of the ZID and aquatic life mixing zone during critical conditions. The estimated dilution at the edge of the aquatic life mixing zone is calculated using the permitted flow of 1.25 MGD and the 7Q2 flow of 0.0 cubic feet per second (cfs) for Cameron County Drainage District No. 1, Ditch No. 2. The estimated dilution at the edge of the ZID is calculated using the permitted flow of 1.25 MGD and 25% of the 7Q2 flow. The following critical effluent percentages are being used:

Acute Effluent %: 100% Chronic Effluent %: 100%

Waste load allocations (WLAs) are calculated using the above estimated effluent percentages, criteria outlined in the Texas Surface Water Quality Standards, and partitioning coefficients for metals (when appropriate and designated in the implementation procedures). The WLA is the end-ofpipe effluent concentration that can be discharged when, after mixing in the receiving stream, instream numerical criteria will not be exceeded. From the WLA, a long-term average (LTA) is calculated using a log normal probability distribution, a given coefficient of variation (0.6), and a 99th percentile confidence level. The lower of the two LTAs (acute and chronic) is used to calculate a daily average and daily maximum effluent limitation for the protection of aquatic life using the same statistical considerations with the 99th percentile confidence level and a standard number of monthly effluent samples collected (12). Assumptions used in deriving the effluent limitations include segment values for hardness, chlorides, pH, and total suspended solids (TSS) according to the segmentspecific values contained in the TCEQ guidance document "Procedures to Implement the Texas Surface Water Quality Standards, June 2010." The segment values for the representative freshwater segment (2202) used in calculating the water quality-based effluent limits are 713 mg/l for hardness (as calcium carbonate), 860 mg/l chlorides, 7.4 standard units for pH, and 72 mg/l for TSS. For additional details on the calculation of water quality-based effluent limitations, refer to the TCEQ guidance document.

TCEQ practice for determining significant potential is to compare the reported analytical data against percentages of the calculated daily average water quality-based effluent limitation. Permit limitations are required when analytical data reported in the application exceeds 85% of the calculated daily average water quality-based effluent limitation. Monitoring and reporting are required when analytical data reported in the application exceeds 70% of the calculated daily average water quality-based effluent limitation. See Attachment A of this Fact Sheet.

(b) PERMIT ACTION

Analytical data reported in the application was screened against calculated water quality-based effluent limitations for the protection of aquatic life. Reported analytical data does not exceed 70% of the calculated daily average water quality-based effluent limitations for aquatic life protection.

(3) AQUATIC ORGANISM BIOACCUMULATION CRITERIA

(a) SCREENING

Outfall 001 and Proposed Outfall 002.

Proposed Outfall 002 will be located approximately 60 feet from existing Outfall 001, which results in overlapping aquatic life and human health mixing zones for both outfalls. Therefore, , the Water Quality Assessment team recommends that water quality-based effluent limits be developed without upstream dilution. For this reason, the harmonic mean flow is assigned 0.0 cfs, which results in 100% effluent for assessing human health criteria.

Water quality-based effluent limitations for the protection of human health are calculated using criteria for the consumption of freshwater fish tissue found in Table 2 of the Texas Surface Water Quality Standards (30 TAC Chapter 307). Freshwater fish tissue bioaccumulation criteria are applied at the edge of the human health mixing zone. The human health mixing zone for this discharge is identical to the aquatic life mixing zone. TCEQ uses the mass balance equation to estimate dilution at the edge of the human health mixing zone during average flow conditions. The estimated dilution at the edge of the human health mixing zone is calculated using the permitted flow of 1.25 MGD and the harmonic mean flow of 0.0 cfs for Cameron County Drainage District No. 1, Ditch No. 2. The following critical effluent percentage is being used:

Human Health Effluent %: 100%

Water quality-based effluent limitations for human health protection against the consumption of fish tissue are calculated using the same procedure as outlined for calculation of water quality-based effluent limitations for aquatic life protection. A 99th percentile confidence level in the long-term average calculation is used with only one long-term average value being calculated.

Significant potential is again determined by comparing reported analytical data against 70% and 85% of the calculated daily average water quality-based effluent limitation. See Attachment A of this Fact Sheet.

(b) PERMIT ACTION

Reported analytical data does not exceed 70% of the calculated daily average water quality-based effluent limitation for human health protection.

(4) DRINKING WATER SUPPLY PROTECTION

(a) SCREENING

Water Quality Segment No. 2494, which receives the discharge from this

facility, is not designated as a public water supply. Screening reported analytical data of the effluent against water quality-based effluent limitations calculated for the protection of a drinking water supply is not applicable.

(b) PERMIT ACTION

None.

(5) WHOLE EFFLUENT TOXICITY (BIOMONITORING) CRITERIA

(a) SCREENING

TCEQ has determined that there may be pollutants present in the effluent that may have the potential to cause toxic conditions in the receiving stream. Whole effluent biomonitoring is the most direct measure of potential toxicity that incorporates the effects of synergism of effluent components and receiving stream water quality characteristics. Biomonitoring of the effluent is, therefore, required as a condition of this permit to assess potential toxicity.

The applicant is not currently monitoring whole effluent toxicity because the requirements do not take effect until the Final phase.

(b) PERMIT ACTION

The test species are appropriate to measure the toxicity of the effluent consistent with the requirements of the State water quality standards. The biomonitoring frequency has been established to reflect the likelihood of ambient toxicity and to provide data representative of the toxic potential of the facility's discharge. This permit may be reopened to require effluent limits, additional testing, and/or other appropriate actions to address toxicity if biomonitoring data show actual or potential ambient toxicity to be the result of the permittee's discharge to the receiving stream or water body.

No analytical data is available because the facility is not operating in the Final phase.

(6) WHOLE EFFLUENT TOXICITY CRITERIA (24-HOUR ACUTE)

(a) SCREENING

The existing permit includes 24-hour acute freshwater biomonitoring language. A summary of the biomonitoring testing for the facility indicates that the effluent flow from this facility was previously less than 1.25 MGD. Therefore, there is no WET testing history to review. The permittee will be required to initiate WET testing within 90 days of initial discharge of the final phase 1.25 MGD facility.

(b) PERMIT ACTION

The applicant is not currently monitoring whole effluent toxicity because the requirements do not take effect until the Final phase.

9. WATER QUALITY VARIANCE REQUESTS

No variance requests have been received.

10. PROCEDURES FOR FINAL DECISION

When an application is declared administratively complete, the Chief Clerk sends a letter to the applicant advising the applicant to publish the Notice of Receipt of Application and Intent to Obtain Permit in the newspaper. In addition, the Chief Clerk instructs the applicant to place a copy of the application in a public place for review and copying in the county where the facility is or will be located. This application will be in a public place throughout the comment period. The Chief Clerk also mails this notice to any interested persons and, if required, to landowners identified in the permit application. This notice informs the public about the application and provides that an interested person may file comments on the application or request a contested case hearing or a public meeting.

Once a draft permit is completed, it is sent, along with the Executive Director's preliminary decision, as contained in the technical summary or fact sheet, to the Chief Clerk. At that time, the Notice of Application and Preliminary Decision will be mailed to the same people and published in the same newspaper as the prior notice. This notice sets a deadline for making public comments. The applicant must place a copy of the Executive Director's preliminary decision and draft permit in the public place with the application.

Any interested person may request a public meeting on the application until the deadline for filing public comments. A public meeting is intended for the taking of public comment and is not a contested case proceeding.

After the public comment deadline, the Executive Director prepares a response to all significant public comments on the application or the draft permit raised during the public comment period. The Chief Clerk then mails the Executive Director's response to comments and final decision to people who have filed comments, requested a contested case hearing, or requested to be on the mailing list. This notice provides that if a person is not satisfied with the Executive Director's response and decision, they can request a contested case hearing or file a request to reconsider the Executive Director's decision within 30 days after the notice is mailed.

The Executive Director will issue the permit unless a written hearing request or request for reconsideration is filed within 30 days after the Executive Director's response to comments and final decision is mailed. If a hearing request or request for reconsideration is filed, the Executive Director will not issue the permit and will forward the application and request to the TCEQ Commissioners for their consideration at a scheduled Commission meeting. If a contested case hearing is held, it will be a legal proceeding similar to a civil trial in state district court.

If the Executive Director calls a public meeting or the Commission grants a contested case hearing as described above, the Commission will give notice of the date, time, and place of the meeting or hearing. If a hearing request or request for reconsideration is

made, the Commission will consider all public comments in making its decision and shall either adopt the Executive Director's response to public comments or prepare its own response.

For additional information about this application, contact Gordon R. Cooper at (512) 239-1963.

11. ADMINISTRATIVE RECORD

The following items were considered in developing the draft permit:

A. PERMIT(S)

TPDES Permit No. WQ0013817001 issued on December 1, 2020.

B. APPLICATION

Application received on May 26, 2021, and additional information received on August 3, 2021.

C. MEMORANDA

Interoffice memoranda from the Water Quality Assessment Section of the TCEQ Water Quality Division.

D. MISCELLANEOUS

Federal Clean Water Act § 402; Texas Water Code § 26.027; 30 TAC Chapters 30, 305, 309, 312, and 319; Commission policies; and U.S. Environmental Protection Agency guidelines.

Texas Surface Water Quality Standards, 30 TAC §§ 307.1 - 307.10.

Procedures to Implement the Texas Surface Water Quality Standards (IP), Texas Commission on Environmental Quality, June 2010, as approved by the U.S. Environmental Protection Agency, and the IP, January 2003, for portions of the 2010 IP not approved by the U.S. Environmental Protection Agency.

Texas 2020 Clean Water Act Section 303(d) List, Texas Commission on Environmental Quality, March 25, 2020; approved by the U.S. Environmental Protection Agency on May 12, 2020.

Texas Natural Resource Conservation Commission, Guidance Document for Establishing Monitoring Frequencies for Domestic and Industrial Wastewater Discharge Permits, Document No. 98-001.000-OWR-WQ, May 1998.

Attachment A: Calculated Water Quality Based Effluent Limitations

TEXTOX MENU #3 - PERENNIAL STREAM OR RIVER

The water quality-based effluent limitations developed below are calculated using:
Table 1, 2014 Texas Surface Water Quality Standards (30 TAC 307) for Freshwater Aquatic Life
Table 2, 2018 Texas Surface Water Quality Standards for Human Health
"Procedures to Implement the Texas Surface Water Quality Standards," TCEQ, June 2010

PERMIT INFORMATION

Permittee Name:	Olmito WSC
TPDES Permit No.:	WQ0013817001
Outfall No.:	001 and 002
Prepared by:	G. Cooper
Date:	01/19/2022

DISCHARGE INFORMATION

Receiving Waterbody:	Cameron County Drainage District No. 1, Ditch No. 2
Segment No.:	2494
TSS (mg/L):	72
pH (Standard Units):	7.4
Hardness (mg/L as CaCO₃):	713
Chloride (mg/L):	860
Effluent Flow for Aquatic Life (MGD):	1.25
Critical Low Flow [7Q2] (cfs):	0
% Effluent for Chronic Aquatic Life (Mixing Zone):	100.00
% Effluent for Acute Aquatic Life (ZID):	100.00
Effluent Flow for Human Health (MGD):	1.25
Harmonic Mean Flow (cfs):	0
% Effluent for Human Health:	100.00
Human Health Criterion (select: PWS, FISH, or INC)	FISH
	

CALCULATE DISSOLVED FRACTION (AND ENTER WATER EFFECT RATIO IF APPLICABLE):

Stream/River Metal	Intercept (b)	Slope (m)	Partition Coefficient (Kp)	Dissolved Fraction (Cd/Ct)	Source	Water Effect Ratio (WER)	Source
Aluminum	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Arsenic	5.68	-0.73	21093.43	0.397		1.00	Assumed
Cadmium	6.60	-1.13	31711.32	0.305		1.00	Assumed
Chromium (total)	6.52	-0.93	62041.28	0.183		1.00	Assumed
Chromium (trivalent)	6.52	-0.93	62041.28	0.183		1.00	Assumed
Chromium (hexavalent)	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Copper	6.02	-0.74	44215.44	0.239		1.00	Assumed
Lead	6.45	-0.80	92073.36	0.131		1.00	Assumed
Mercury	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Nickel	5.69	-0.57	42787.85	0.245		1.00	Assumed
Selenium	N/A	N/A	N/A	1.00	Assumed	1.00	Assumed
Silver	6.38	-1.03	29305.39	0.322		1.00	Assumed
Zinc	6.10	-0.70	63076.45	0.180		1.00	Assumed

AQUATIC LIFE

CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

		FW						
	FW Acute	Chronic						Daily
	Criterion	Criterion	WLAa	WLAc	LTAa	LTAc	Daily Avg.	Max.
Parameter	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)

Aldrin	3.0	N/A	3.00	N/A	1.72	N/A	2.52	5.34
Aluminum	991	N/A	991	N/A	568	N/A	834	1765
Arsenic	340	150	856	378	491	291	427	904
Cadmium	57.7	0.959	189	3.15	109	2.42	3.56	7.54
Carbaryl	2.0	N/A	2.00	N/A	1.15	N/A	1.68	3.56
Chlordane	2.4	0.004	2.40	0.00400	1.38	0.00308	0.00452	0.00957
Chlorpyrifos	0.083	0.041	0.0830	0.0410	0.0476	0.0316	0.0464	0.0981
Chromium (trivalent)	2847	370	15564	2025	8918	1559	2291	4848
Chromium (hexavalent)	15.7	10.6	15.7	10.6	9.00	8.16	11.9	25.3
Copper	90.4	50.7	378	212	217	163	240	508
Cyanide (free)	45.8	10.7	45.8	10.7	26.2	8.24	12.1	25.6
4,4'-DDT	1.1	0.001	1.10	0.00100	0.630	0.000770	0.00113	0.00239
Demeton	N/A	0.1	N/A	0.100	N/A	0.0770	0.113	0.239
Diazinon	0.17	0.17	0.170	0.170	0.0974	0.131	0.143	0.302
Dicofol [Kelthane]	59.3	19.8	59.3	19.8	34.0	15.2	22.4	47.4
Dieldrin	0.24	0.002	0.240	0.00200	0.138	0.00154	0.00226	0.00478
Diuron	210	70	210	70.0	120	53.9	79.2	167
Endosulfan I (alpha)	0.22	0.056	0.220	0.0560	0.126	0.0431	0.0633	0.134
Endosulfan II (beta)	0.22	0.056	0.220	0.0560	0.126	0.0431	0.0633	0.134
Endosulfan sulfate	0.22	0.056	0.220	0.0560	0.126	0.0431	0.0633	0.134
Endrin	0.086	0.002	0.0860	0.00200	0.0493	0.00154	0.00226	0.00478
Guthion [Azinphos Methyl]	N/A	0.01	N/A	0.0100	N/A	0.00770	0.0113	0.0239
Heptachlor	0.52	0.004	0.520	0.00400	0.298	0.00308	0.00452	0.00957
Hexachlorocyclohexane (gamma) [Lindane]	1.126	0.08	1.13	0.0800	0.645	0.0616	0.0905	0.191
Lead	502	19.58	3833	149	2196	115	169	357
Malathion	N/A	0.01	N/A	0.0100	N/A	0.00770	0.0113	0.0239
Mercury	2.4	1.3	2.40	1.30	1.38	1.00	1.47	3.11
Methoxychlor	N/A	0.03	N/A	0.0300	N/A	0.0231	0.0339	0.0718
Mirex	N/A	0.001	N/A	0.00100	N/A	0.000770	0.00113	0.00239
Nickel	2467	274.0	10067	1118	5769	861	1265	2677
Nonylphenol	28	6.6	28.0	6.60	16.0	5.08	7.47	15.8
Parathion (ethyl)	0.065	0.013	0.0650	0.0130	0.0372	0.0100	0.0147	0.0311
Pentachlorophenol	13.0	10.0	13.0	10.0	7.47	7.70	10.9	23.2
Phenanthrene	30	30	30.0	30.0	17.2	23.1	25.2	53.4
Polychlorinated Biphenyls [PCBs]	2.0	0.014	2.00	0.0140	1.15	0.0108	0.0158	0.0335
Selenium	20	5	20.0	5.00	11.5	3.85	5.65	11.9
Silver	0.8	N/A	27.7	N/A	15.9	N/A	23.3	49.3
Toxaphene	0.78	0.0002	0.780	0.000200	0.447	0.000154	0.000226	0.000478
Tributyltin [TBT]	0.13	0.024	0.130	0.0240	0.0745	0.0185	0.0271	0.0574
2,4,5 Trichlorophenol	136	64	136	64.0	77.9	49.3	72.4	153
Zinc	619	624	3430	3458	1965	2663	2889	6112
	-					-		

HUMAN HEALTH

CALCULATE DAILY AVERAGE AND DAILY MAXIMUM EFFLUENT LIMITATIONS:

	Water and		Incidental				
	Fish	Fish Only	Fish				Daily
	Criterion	Criterion	Criterion	WLAh	LTAh	Daily Avg.	Max.
Parameter	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Acrylonitrile	1.0	115	1150	115	107	157	332

Aldrin	1.146E-05	1.147E-05	1.147E-04	0.0000115	0.0000107	0.0000156	0.0000331
Anthracene	1109	1317	13170	1317	1225	1800	3809
Antimony	6	1071	10710	1071	996	1464	3097
Arsenic	10	N/A	N/A	N/A	N/A	N/A	N/A
Barium	2000	N/A	N/A	N/A	N/A	N/A	N/A
Benzene	5	581	5810	581	540	794	1680
Benzidine	0.0015	0.107	1.07	0.107	0.0995	0.146	0.309
Benzo(a)anthracene	0.024	0.025	0.25	0.0250	0.0233	0.0341	0.0723
Benzo(a)pyrene	0.0025	0.0025	0.025	0.00250	0.00233	0.00341	0.00723
Bis(chloromethyl)ether	0.0024	0.2745	2.745	0.275	0.255	0.375	0.793
Bis(2-chloroethyl)ether	0.60	42.83	428.3	42.8	39.8	58.5	123
Bis(2-ethylhexyl) phthalate [Di(2-ethylhexyl) phthalate]	6	7.55	75.5	7.55	7.02	10.3	21.8
Bromodichloromethane [Dichlorobromomethane]	10.2	275	2750	275	256	375	795
Bromoform [Tribromomethane]	66.9	1060	10600	1060	986	1449	3065
Cadmium	5	N/A	N/A	N/A	N/A	N/A	N/A
Carbon Tetrachloride	4.5	46	460	46.0	42.8	62.8	133
Chlordane	0.0025	0.0025	0.025	0.00250	0.00233	0.00341	0.00723
Chlorobenzene	100	2737	27370	2737	2545	3741	7916
Chlorodibromomethane [Dibromochloromethane]	7.5	183	1830	183	170	250	529
Chloroform [Trichloromethane]	70	7697	76970	7697	7158	10522	22262
Chromium (hexavalent)	62	502	5020	502	467	686	1451
Chrysene	2.45	2.52	25.2	2.52	2.34	3.44	7.28
Cresols [Methylphenols]	1041	9301	93010	9301	8650	12715	26901
Cyanide (free)	200	N/A	N/A	N/A	N/A	N/A	N/A
4,4'-DDD	0.002	0.002	0.02	0.00200	0.00186	0.00273	0.00578
4,4'-DDE	0.00013	0.00013	0.0013	0.000130	0.000121	0.000177	0.000375
4,4'-DDT	0.0004	0.0004	0.004	0.000400	0.000372	0.000546	0.00115
2,4'-D	70	N/A	N/A	N/A	N/A	N/A	N/A
Danitol [Fenpropathrin]	262	473	4730	473	440	646	1368
1,2-Dibromoethane [Ethylene Dibromide]	0.17	4.24	42.4	4.24	3.94	5.79	12.2
m-Dichlorobenzene [1,3-Dichlorobenzene]	322	595	5950	595	553	813	1720
o-Dichlorobenzene [1,2-Dichlorobenzene]	600	3299	32990	3299	3068	4510	9541
p-Dichlorobenzene [1,4-Dichlorobenzene]	75	N/A	N/A	N/A	N/A	N/A	N/A
3,3'-Dichlorobenzidine	0.79	2.24	22.4	2.24	2.08	3.06	6.47
1,2-Dichloroethane	5	364	3640	364	339	497	1052
1,1-Dichloroethylene [1,1-Dichloroethene]	7	55114	551140	55114	51256	75346	159406
Dichloromethane [Methylene Chloride]	5	13333	133330	13333	12400	18227	38563
1,2-Dichloropropane	5	259	2590	259	241	354	749
1,3-Dichloropropene [1,3-Dichloropropylene]	2.8	119	1190	119	111	162	344
Dicofol [Kelthane]	0.30	0.30	3	0.300	0.279	0.410	0.867
Dieldrin	2.0E-05	2.0E-05	2.0E-04	0.0000200	0.0000186	0.0000273	0.0000578
2,4-Dimethylphenol	444	8436	84360	8436	7845	11532	24399
Di- <i>n</i> -Butyl Phthalate	88.9	92.4	924	92.4	85.9	126	267
Dioxins/Furans [TCDD Equivalents]	7.80E-08	7.97E-08	7.97E-07	7.97E-08	7.41E-08	1.08E-07	2.30E-07
Endrin	0.02	0.02	0.2	0.0200	0.0186	0.0273	0.0578
Epichlorohydrin	53.5	2013	20130	2013	1872	2751	5822
Ethylbenzene	700	1867	18670	1867	1736	2552	5399
Ethylene Glycol	46744	1.68E+07	1.68E+08	16800000	15624000	22967280	48590640
Fluoride	4000	N/A	N/A	N/A	N/A	N/A	N/A
Heptachlor	8.0E-05	0.0001	0.001	0.000100	0.0000930	0.000136	0.000289
Heptachlor Epoxide	0.00029	0.00029	0.0029	0.000290	0.000270	0.000396	0.000838
Hexachlorobenzene	0.00068	0.00068	0.0068	0.000680	0.000632	0.000929	0.00196
Hexachlorobutadiene	0.21	0.22	2.2	0.220	0.205	0.300	0.636
Hexachlorocyclohexane (alpha)	0.0078	0.0084	0.084	0.00840	0.00781	0.0114	0.0242
· · · · · · · · · · · · · · · · · · ·							

Hexachlorocyclohexane (beta)	0.15	0.26	2.6	0.260	0.242	0.355	0.751
Hexachlorocyclohexane (gamma) [Lindane]	0.2	0.341	3.41	0.341	0.317	0.466	0.986
Hexachlorocyclopentadiene	10.7	11.6	116	11.6	10.8	15.8	33.5
Hexachloroethane	1.84	2.33	23.3	2.33	2.17	3.18	6.73
Hexachlorophene	2.05	2.90	29	2.90	2.70	3.96	8.38
4,4'-Isopropylidenediphenol	1092	15982	159820	15982	14863	21848	46224
Lead	1.15	3.83	38.3	29.2	27.2	39.9	84.5
Mercury	0.0122	0.0122	0.122	0.0122	0.0113	0.0166	0.0352
Methoxychlor	2.92	3.0	30	3.00	2.79	4.10	8.67
Methyl Ethyl Ketone	13865	9.92E+05	9.92E+06	992000	922560	1356163	2869161
Methyl tert-butyl ether [MTBE]	15	10482	104820	10482	9748	14329	30317
Nickel	332	1140	11400	4652	4326	6359	13455
Nitrate-Nitrogen (as Total Nitrogen)	10000	N/A	N/A	N/A	N/A	N/A	N/A
Nitrobenzene	45.7	1873	18730	1873	1742	2560	5417
N-Nitrosodiethylamine	0.0037	2.1	21	2.10	1.95	2.87	6.07
N-Nitroso-di- <i>n</i> -Butylamine	0.119	4.2	42	4.20	3.91	5.74	12.1
Pentachlorobenzene	0.348	0.355	3.55	0.355	0.330	0.485	1.02
Pentachlorophenol	0.22	0.29	2.9	0.290	0.270	0.396	0.838
Polychlorinated Biphenyls [PCBs]	6.4E-04	6.4E-04	6.40E-03	0.000640	0.000595	0.000874	0.00185
Pyridine	23	947	9470	947	881	1294	2739
Selenium	50	N/A	N/A	N/A	N/A	N/A	N/A
1,2,4,5-Tetrachlorobenzene	0.23	0.24	2.4	0.240	0.223	0.328	0.694
1,1,2,2-Tetrachloroethane	1.64	26.35	263.5	26.4	24.5	36.0	76.2
Tetrachloroethylene [Tetrachloroethylene]	5	280	2800	280	260	382	809
Thallium	0.12	0.23	2.3	0.230	0.214	0.314	0.665
Toluene	1000	N/A	N/A	N/A	N/A	N/A	N/A
Toxaphene	0.011	0.011	0.11	0.0110	0.0102	0.0150	0.0318
2,4,5-TP [Silvex]	50	369	3690	369	343	504	1067
1,1,1-Trichloroethane	200	784354	7843540	784354	729449	1072290	2268587
1,1,2-Trichloroethane	5	166	1660	166	154	226	480
Trichloroethylene [Trichloroethene]	5	71.9	719	71.9	66.9	98.2	207
2,4,5-Trichlorophenol	1039	1867	18670	1867	1736	2552	5399
TTHM [Sum of Total Trihalomethanes]	80	N/A	N/A	N/A	N/A	N/A	N/A
Vinyl Chloride	0.23	16.5	165	16.5	15.3	22.5	47.7

CALCULATE 70% AND 85% OF DAILY AVERAGE EFFLUENT LIMITATIONS:

Aquatic Life	70% of Daily Avg.	85% of Daily Avg.
Parameter	(μg/L)	(μg/L)
Aldrin	1.76	2.14
Aluminum	584	709
Arsenic	299	363
Cadmium	2.49	3.02
Carbaryl	1.17	1.43
Chlordane	0.00316	0.00384
Chlorpyrifos	0.0324	0.0394
Chromium (trivalent)	1604	1947
Chromium (hexavalent)	8.39	10.1
Copper	168	204
Cyanide (free)	8.47	10.2
4,4'-DDT	0.000792	0.000962
Demeton	0.0792	0.0962
Diazinon	0.100	0.121

Dicofol [Kelthane]	15.6	19.0
Dieldrin	0.00158	0.00192
Diuron	55.4	67.3
Endosulfan I (alpha)	0.0443	0.0538
Endosulfan II (beta)	0.0443	0.0538
Endosulfan sulfate	0.0443	0.0538
Endrin	0.00158	0.00192
Guthion [Azinphos Methyl]	0.00792	0.00962
Heptachlor	0.00316	0.00384
Hexachlorocyclohexane (gamma) [Lindane]	0.0633	0.0769
Lead	118	143
Malathion	0.00792	0.00962
Mercury	1.03	1.25
Methoxychlor	0.0237	0.0288
Mirex	0.000792	0.000962
Nickel	885	1075
Nonylphenol	5.22	6.34
Parathion (ethyl)	0.0103	0.0125
Pentachlorophenol	7.68	9.33
Phenanthrene	17.6	21.4
Polychlorinated Biphenyls [PCBs]	0.0110	0.0134
Selenium	3.96	4.81
Silver	16.3	19.8
Toxaphene	0.000158	0.000192
Tributyltin [TBT]	0.0190	0.0230
2,4,5 Trichlorophenol	50.7	61.5
Zinc	2022	2455

Human Health	70% of Daily Avg.	85% of Daily Avg.
Parameter	(μg/L)	(μg/L)
Acrylonitrile	110	133
Aldrin	0.0000109	0.0000133
Anthracene	1260	1530
Antimony	1024	1244
Arsenic	N/A	N/A
Barium	N/A	N/A
Benzene	555	675
Benzidine	0.102	0.124
Benzo(a)anthracene	0.0239	0.0290
Benzo(a)pyrene	0.00239	0.00290
Bis(chloromethyl)ether	0.262	0.318
Bis(2-chloroethyl)ether	40.9	49.7
Bis(2-ethylhexyl) phthalate [Di(2-ethylhexyl) phthalate]	7.22	8.77
Bromodichloromethane [Dichlorobromomethane]	263	319
Bromoform [Tribromomethane]	1014	1231
Cadmium	N/A	N/A
Carbon Tetrachloride	44.0	53.4
Chlordane	0.00239	0.00290
Chlorobenzene	2619	3180
Chlorodibromomethane [Dibromochloromethane]	175	212
Chloroform [Trichloromethane]	7365	8944
Chromium (hexavalent)	480	583
Chrysene	2.41	2.92

Cresols [Methylphenols]	8900	10808
Cyanide (free)	N/A	N/A
4,4'-DDD	0.00191	0.00232
4,4'-DDE	0.000124	0.000151
4,4'-DDT	0.000382	0.000464
2,4'-D	N/A	N/A
Danitol [Fenpropathrin]	452	549
1,2-Dibromoethane [Ethylene Dibromide]	4.05	4.92
m-Dichlorobenzene [1,3-Dichlorobenzene]	569	691
o-Dichlorobenzene [1,2-Dichlorobenzene]	3157	3833
p-Dichlorobenzene [1,4-Dichlorobenzene]	N/A	N/A
3,3'-Dichlorobenzidine	2.14	2.60
1,2-Dichloroethane	348	422
1,1-Dichloroethylene [1,1-Dichloroethene]	52742	64044
Dichloromethane [Methylene Chloride]	12759	15493
1,2-Dichloropropane	247	300
1,3-Dichloropropene [1,3-Dichloropropylene]	113	138
Dicofol [Kelthane]	0.287	0.348
Dieldrin	0.0000191	0.0000232
2,4-Dimethylphenol	8072	9802
Di-n-Butyl Phthalate	88.4	107
		9.26E-08
Dioxins/Furans [TCDD Equivalents] Endrin	7.62E-08 0.0191	
	1926	0.0232 2339
Epichlorohydrin [thulborone]		
Ethylbenzene Ethylogo Chaol	1786 16077096	2169 19522188
Ethylene Glycol		
Fluoride	N/A	N/A
Heptachlor	0.0000956	0.000116
Heptachlore Epoxide	0.000277	0.000336
Hexachlorobenzene	0.000650	0.000790
Hexachlorobutadiene	0.210	0.255
Hexachlorocyclohexane (alpha)	0.00803	0.00976
Hexachlorocyclohexane (beta)	0.248	0.302
Hexachlorocyclohexane (gamma) [Lindane]	0.326	0.396
Hexachlorocyclopentadiene	11.1	13.4
Hexachloroethane	2.22	2.70
Hexachlorophene 1.1 december 1.2 december 1.	2.77	3.36
4,4'-Isopropylidenediphenol	15294	18571
Lead	27.9	33.9
Mercury	0.0116	0.0141
Methoxychlor Math. 15th 146 have	2.87	3.48
Methyl Ethyl Ketone	949314	1152738
Methyl tert-butyl ether [MTBE]	10030	12180
Nickel	4451	5405
Nitrate-Nitrogen (as Total Nitrogen)	N/A	N/A
Nitrobenzene	1792	2176
N-Nitrosodiethylamine	2.00	2.44
N-Nitroso-di- <i>n</i> -Butylamine	4.01	4.88
Pentachlorobenzene	0.339	0.412
Pentachlorophenol	0.277	0.336
Polychlorinated Biphenyls [PCBs]	0.000612	0.000743
Pyridine	906	1100
Selenium	N/A	N/A
1,2,4,5-Tetrachlorobenzene	0.229	0.278

1,1,2,2-Tetrachloroethane	25.2	30.6
Tetrachloroethylene [Tetrachloroethylene]	267	325
Thallium	0.220	0.267
Toluene	N/A	N/A
Toxaphene	0.0105	0.0127
2,4,5-TP [Silvex]	353	428
1,1,1-Trichloroethane	750603	911446
1,1,2-Trichloroethane	158	192
Trichloroethylene [Trichloroethene]	68.8	83.5
2,4,5-Trichlorophenol	1786	2169
TTHM [Sum of Total Trihalomethanes]	N/A	N/A
Vinyl Chloride	15.7	19.1

TPDES PERMIT NO. WQ0013817001 [For TCEQ office use only - EPA I.D. No. TX0113875]

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY P.O. Box 13087 Austin, Texas 78711-3087

This major amendment supersedes and replaces TPDES Permit No. WQ0013817001 issued on December 1, 2020.

PERMIT TO DISCHARGE WASTES

under provisions of Section 402 of the Clean Water Act and Chapter 26 of the Texas Water Code

Olmito Water Supply Corporation

whose mailing address is

P.O. Box 36 Olmito, Texas 78575

is authorized to treat and discharge wastes from the Olmito WSC Wastewater Treatment Facility, SIC Code 4952

located approximately 1.7 miles north of the intersection Farm-to-Market Road 511 and Old Alice Road in Cameron County, Texas 78566

to Cameron County Drainage District No. 1 Ditch No. 2, thence to San Martin Lake, thence to Brownsville Ship Channel in Segment No. 2494 of the Bays and Estuaries

only according to effluent limitations, monitoring requirements, and other conditions set forth in this permit, as well as the rules of the Texas Commission on Environmental Quality (TCEQ), the laws of the State of Texas, and other orders of the TCEQ. The issuance of this permit does not grant to the permittee the right to use private or public property for conveyance of wastewater along the discharge route described in this permit. This includes, but is not limited to, property belonging to any individual, partnership, corporation, or other entity. Neither does this permit authorize any invasion of personal rights nor any violation of federal, state, or local laws or regulations. It is the responsibility of the permittee to acquire property rights as may be necessary to use the discharge route.

This permit shall expire at midnight, December 1 , 2025 .	
ISSUED DATE:	
	For the Commission

INTERIM EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

Outfall Numbers 001 and 002

1. During the period beginning upon the date of issuance and lasting through the completion of expansion to the 1.25 million gallons per day (MGD) facility, the permittee is authorized to discharge subject to the following effluent limitations:

The daily average flow of effluent shall not exceed 0.75 million gallons per day (MGD). The combined annual average flows made via Outfalls 001 and 002 shall not exceed 0.75 MGD.

Effluent Characteristic	Discharge Limitations			Min. Self-Monitoring Requirements		
	Daily Avg	7-day Avg	Daily Max	Single Grab	Report Daily Avg. & Daily Max. Measurement	
	mg/l (lbs/day)	mg/l	mg/l	mg/l	Frequency	Sample Type
Flow, MGD	Report	N/A	Report	N/A	Continuous	Totalizing Meter
Carbonaceous Biochemical Oxygen Demand (5-day)	10 (63*)	15	25	35	One/week	Composite
Total Suspended Solids	15 (94*)	25	40	60	One/week	Composite
Ammonia Nitrogen	5 (31*)	7	10	15	One/week	Composite
E. coli, CFU or MPN** per 100 ml	126	N/A	399	N/A	Two/month	Grab

^{*}The combined lbs/day via Outfalls 001 and 002 shall not exceed this amount.

- 2. The effluent shall contain a chlorine residual of at least 1.0 mg/l and shall not exceed a chlorine residual of 4.0 mg/l after a detention time of at least 20 minutes (based on daily average flow) and shall be monitored daily by grab sample when chlorination is used as a disinfection method. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.
- 3. The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored twice per month by grab sample.
- 4. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.
- 5. Effluent monitoring samples shall be taken at the following location(s): Following the final treatment unit.
- 6. The effluent shall contain a minimum dissolved oxygen of 4.0 mg/l and shall be monitored once per week by grab sample.

^{**}CFU or MPN - colony-forming units or most probable number

FINAL EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

Outfall Numbers 001 and 002

1. During the period beginning upon the completion of expansion to the 1.25 million gallons per day (MGD) facility and lasting through the date of expiration, the permittee is authorized to discharge subject to the following effluent limitations:

The annual average flow of effluent shall not exceed 1.25 MGD, nor shall the average discharge during any two-hour period (2-hour peak) exceed 2,604 gallons per minute. The combined annual average flows made via Outfalls 001 and 002 shall not exceed 1.25 MGD.

Effluent Characteristic	Discharge Limitations			Min. Self-Monitoring Requirements		
	Daily Avg	7-day Avg	Daily Max	Single Grab	Report Daily A Measurement	Avg. & Daily Max.
	mg/l (lbs/day)	mg/l	mg/l	mg/l	Frequency	Sample Type
Flow, MGD	Report	N/A	Report	N/A	Continuous	Totalizing Meter
Carbonaceous Biochemical Oxygen Demand (5-day)	10 (104*)	15	25	35	Two/week	Composite
Total Suspended Solids	15 (156*)	25	40	60	Two/week	Composite
Ammonia Nitrogen	3 (31*)	6	10	15	Two/week	Composite
E. coli, CFU or MPN** per 100 ml	126	N/A	399	N/A	Daily	Grab

^{*}The combined lbs/day via Outfalls 001 and 002 shall not exceed this amount.

- 2. The permittee shall utilize an Ultraviolet Light (UV) system for disinfection purposes. An equivalent method of disinfection may be substituted only with prior approval of the Executive Director.
- 3. The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored once per week by grab sample.
- 4. There shall be no discharge of floating solids or visible foam in other than trace amounts and no discharge of visible oil.
- 5. Effluent monitoring samples shall be taken at the following location(s): Following the final treatment unit.
- 6. The effluent shall contain a minimum dissolved oxygen of 4.0 mg/l and shall be monitored twice per week by grab sample.
- 7. The annual average flow and maximum 2-hour peak flow shall be reported monthly.

^{**}CFU or MPN - colony-forming units or most probable number

DEFINITIONS AND STANDARD PERMIT CONDITIONS

As required by Title 30 Texas Administrative Code (TAC) Chapter 305, certain regulations appear as standard conditions in waste discharge permits. 30 TAC § 305.121 - 305.129 (relating to Permit Characteristics and Conditions) as promulgated under the Texas Water Code (TWC) §§ 5.103 and 5.105, and the Texas Health and Safety Code (THSC) §§ 361.017 and 361.024(a), establish the characteristics and standards for waste discharge permits, including sewage sludge, and those sections of 40 Code of Federal Regulations (CFR) Part 122 adopted by reference by the Commission. The following text includes these conditions and incorporates them into this permit. All definitions in TWC § 26.001 and 30 TAC Chapter 305 shall apply to this permit and are incorporated by reference. Some specific definitions of words or phrases used in this permit are as follows:

1. Flow Measurements

- a. Annual average flow the arithmetic average of all daily flow determinations taken within the preceding 12 consecutive calendar months. The annual average flow determination shall consist of daily flow volume determinations made by a totalizing meter, charted on a chart recorder and limited to major domestic wastewater discharge facilities with one million gallons per day or greater permitted flow.
- b. Daily average flow the arithmetic average of all determinations of the daily flow within a period of one calendar month. The daily average flow determination shall consist of determinations made on at least four separate days. If instantaneous measurements are used to determine the daily flow, the determination shall be the arithmetic average of all instantaneous measurements taken during that month. Daily average flow determination for intermittent discharges shall consist of a minimum of three flow determinations on days of discharge.
- c. Daily maximum flow the highest total flow for any 24-hour period in a calendar month.
- d. Instantaneous flow the measured flow during the minimum time required to interpret the flow measuring device.
- e. 2-hour peak flow (domestic wastewater treatment plants) the maximum flow sustained for a two-hour period during the period of daily discharge. The average of multiple measurements of instantaneous maximum flow within a two-hour period may be used to calculate the 2-hour peak flow.
- f. Maximum 2-hour peak flow (domestic wastewater treatment plants) the highest 2-hour peak flow for any 24-hour period in a calendar month.

2. Concentration Measurements

- a. Daily average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar month, consisting of at least four separate representative measurements.
 - i. For domestic wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values in the previous four consecutive month period consisting of at least four measurements shall be utilized as the daily average concentration.

- ii. For all other wastewater treatment plants When four samples are not available in a calendar month, the arithmetic average (weighted by flow) of all values taken during the month shall be utilized as the daily average concentration.
- b. 7-day average concentration the arithmetic average of all effluent samples, composite or grab as required by this permit, within a period of one calendar week, Sunday through Saturday.
- c. Daily maximum concentration the maximum concentration measured on a single day, by the sample type specified in the permit, within a period of one calendar month.
- d. Daily discharge the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in terms of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the sampling day. For pollutants with limitations expressed in other units of measurement, the daily discharge is calculated as the average measurement of the pollutant over the sampling day.
 - The daily discharge determination of concentration made using a composite sample shall be the concentration of the composite sample. When grab samples are used, the daily discharge determination of concentration shall be the arithmetic average (weighted by flow value) of all samples collected during that day.
- e. Bacteria concentration (*E. coli* or Enterococci) Colony Forming Units (CFU) or Most Probable Number (MPN) of bacteria per 100 milliliters effluent. The daily average bacteria concentration is a geometric mean of the values for the effluent samples collected in a calendar month. The geometric mean shall be determined by calculating the nth root of the product of all measurements made in a calendar month, where n equals the number of measurements made; or, computed as the antilogarithm of the arithmetic mean of the logarithms of all measurements made in a calendar month. For any measurement of bacteria equaling zero, a substituted value of one shall be made for input into either computation method. If specified, the 7-day average for bacteria is the geometric mean of the values for all effluent samples collected during a calendar week.
- f. Daily average loading (lbs/day) the arithmetic average of all daily discharge loading calculations during a period of one calendar month. These calculations must be made for each day of the month that a parameter is analyzed. The daily discharge, in terms of mass (lbs/day), is calculated as (Flow, MGD x Concentration, mg/l x 8.34).
- g. Daily maximum loading (lbs/day) the highest daily discharge, in terms of mass (lbs/day), within a period of one calendar month.

3. Sample Type

a. Composite sample - For domestic wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (a). For industrial wastewater, a composite sample is a sample made up of a minimum of three effluent portions collected in a continuous 24-hour period or during the period of daily discharge if less than 24 hours, and combined in volumes proportional to flow, and collected at the intervals required by 30 TAC § 319.9 (b).

- b. Grab sample an individual sample collected in less than 15 minutes.
- 4. Treatment Facility (facility) wastewater facilities used in the conveyance, storage, treatment, recycling, reclamation and/or disposal of domestic sewage, industrial wastes, agricultural wastes, recreational wastes, or other wastes including sludge handling or disposal facilities under the jurisdiction of the Commission.
- 5. The term "sewage sludge" is defined as solid, semi-solid, or liquid residue generated during the treatment of domestic sewage in 30 TAC Chapter 312. This includes the solids that have not been classified as hazardous waste separated from wastewater by unit processes.
- 6. The term "biosolids" is defined as sewage sludge that has been tested or processed to meet Class A, Class AB, or Class B pathogen standards in 30 TAC Chapter 312 for beneficial use.
- 7. Bypass the intentional diversion of a waste stream from any portion of a treatment facility.

MONITORING AND REPORTING REQUIREMENTS

1. Self-Reporting

Monitoring results shall be provided at the intervals specified in the permit. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall conduct effluent sampling and reporting in accordance with 30 TAC §§ 319.4 - 319.12. Unless otherwise specified, effluent monitoring data shall be submitted each month, to the Compliance Monitoring Team of the Enforcement Division (MC 224), by the 20th day of the following month for each discharge which is described by this permit whether or not a discharge is made for that month. Monitoring results must be submitted online using the NetDMR reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. Monitoring results must be signed and certified as required by Monitoring and Reporting Requirements No. 10.

As provided by state law, the permittee is subject to administrative, civil and criminal penalties, as applicable, for negligently or knowingly violating the Clean Water Act (CWA); TWC §§ 26, 27, and 28; and THSC § 361, including but not limited to knowingly making any false statement, representation, or certification on any report, record, or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or noncompliance, or falsifying, tampering with or knowingly rendering inaccurate any monitoring device or method required by this permit or violating any other requirement imposed by state or federal regulations.

2. Test Procedures

- a. Unless otherwise specified in this permit, test procedures for the analysis of pollutants shall comply with procedures specified in 30 TAC §§ 319.11 319.12. Measurements, tests, and calculations shall be accurately accomplished in a representative manner.
- b. All laboratory tests submitted to demonstrate compliance with this permit must meet the requirements of 30 TAC § 25, Environmental Testing Laboratory Accreditation and Certification.

3. Records of Results

a. Monitoring samples and measurements shall be taken at times and in a manner so as to be representative of the monitored activity.

- b. Except for records of monitoring information required by this permit related to the permittee's sewage sludge or biosolids use and disposal activities, which shall be retained for a period of at least five years (or longer as required by 40 CFR Part 503), monitoring and reporting records, including strip charts and records of calibration and maintenance, copies of all records required by this permit, records of all data used to complete the application for this permit, and the certification required by 40 CFR § 264.73(b)(9) shall be retained at the facility site, or shall be readily available for review by a TCEQ representative for a period of three years from the date of the record or sample, measurement, report, application or certification. This period shall be extended at the request of the Executive Director.
- c. Records of monitoring activities shall include the following:
 - i. date, time and place of sample or measurement;
 - ii. identity of individual who collected the sample or made the measurement.
 - iii. date and time of analysis;
 - iv. identity of the individual and laboratory who performed the analysis;
 - v. the technique or method of analysis; and
 - vi. the results of the analysis or measurement and quality assurance/quality control records.

The period during which records are required to be kept shall be automatically extended to the date of the final disposition of any administrative or judicial enforcement action that may be instituted against the permittee.

4. Additional Monitoring by Permittee

If the permittee monitors any pollutant at the location(s) designated herein more frequently than required by this permit using approved analytical methods as specified above, all results of such monitoring shall be included in the calculation and reporting of the values submitted on the approved self-report form. Increased frequency of sampling shall be indicated on the self-report form.

5. Calibration of Instruments

All automatic flow measuring or recording devices and all totalizing meters for measuring flows shall be accurately calibrated by a trained person at plant start-up and as often thereafter as necessary to ensure accuracy, but not less often than annually unless authorized by the Executive Director for a longer period. Such person shall verify in writing that the device is operating properly and giving accurate results. Copies of the verification shall be retained at the facility site and/or shall be readily available for review by a TCEQ representative for a period of three years.

6. Compliance Schedule Reports

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of the permit shall be submitted no later than 14 days following each schedule date to the Regional Office and the Compliance

Monitoring Team of the Enforcement Division (MC 224).

7. Noncompliance Notification

- a. In accordance with 30 TAC § 305.125(9) any noncompliance which may endanger human health or safety, or the environment shall be reported by the permittee to the TCEQ. Except as allowed by 30 TAC § 305.132, report of such information shall be provided orally or by facsimile transmission (FAX) to the Regional Office within 24 hours of becoming aware of the noncompliance. A written submission of such information shall also be provided by the permittee to the Regional Office and the Compliance Monitoring Team of the Enforcement Division (MC 224) within five working days of becoming aware of the noncompliance. For Publicly Owned Treatment Works (POTWs), effective December 21, 2025, the permittee must submit the written report for unauthorized discharges and unanticipated bypasses that exceed any effluent limit in the permit using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver. The written submission shall contain a description of the noncompliance and its cause; the potential danger to human health or safety, or the environment; the period of noncompliance, including exact dates and times; if the noncompliance has not been corrected, the time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance, and to mitigate its adverse effects.
- b. The following violations shall be reported under Monitoring and Reporting Requirement 7.a.:
 - i. Unauthorized discharges as defined in Permit Condition 2(g).
 - ii. Any unanticipated bypass that exceeds any effluent limitation in the permit.
 - iii. Violation of a permitted maximum daily discharge limitation for pollutants listed specifically in the Other Requirements section of an Industrial TPDES permit.
- c. In addition to the above, any effluent violation which deviates from the permitted effluent limitation by more than 40% shall be reported by the permittee in writing to the Regional Office and the Compliance Monitoring Team of the Enforcement Division (MC 224) within 5 working days of becoming aware of the noncompliance.
- d. Any noncompliance other than that specified in this section, or any required information not submitted or submitted incorrectly, shall be reported to the Compliance Monitoring Team of the Enforcement Division (MC 224) as promptly as possible. For effluent limitation violations, noncompliances shall be reported on the approved self-report form
- 8. In accordance with the procedures described in 30 TAC §§ 35.301 35.303 (relating to Water Quality Emergency and Temporary Orders) if the permittee knows in advance of the need for a bypass, it shall submit prior notice by applying for such authorization.
- 9. Changes in Discharges of Toxic Substances

All existing manufacturing, commercial, mining, and silvicultural permittees shall notify the Regional Office, orally or by facsimile transmission within 24 hours, and both the Regional Office and the Compliance Monitoring Team of the Enforcement Division (MC 224) in writing within five (5) working days, after becoming aware of or having reason to believe:

- a. That any activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic pollutant listed at 40 CFR Part 122, Appendix D, Tables II and III (excluding Total Phenols) which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. One hundred micrograms per liter (100 μ g/L);
 - ii. Two hundred micrograms per liter (200 μ g/L) for acrolein and acrylonitrile; five hundred micrograms per liter (500 μ g/L) for 2,4-dinitrophenol and for 2-methyl-4,6-dinitrophenol; and one milligram per liter (1 mg/L) for antimony;
 - iii. Five (5) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.
- b. That any activity has occurred or will occur which would result in any discharge, on a nonroutine or infrequent basis, of a toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - i. Five hundred micrograms per liter (500 μ g/L);
 - ii. One milligram per liter (1 mg/L) for antimony;
 - iii. Ten (10) times the maximum concentration value reported for that pollutant in the permit application; or
 - iv. The level established by the TCEQ.

10. Signatories to Reports

All reports and other information requested by the Executive Director shall be signed by the person and in the manner required by 30 TAC § 305.128 (relating to Signatories to Reports).

- 11. All POTWs must provide adequate notice to the Executive Director of the following:
 - a. Any new introduction of pollutants into the POTW from an indirect discharger which would be subject to CWA § 301 or § 306 if it were directly discharging those pollutants;
 - b. Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of issuance of the permit; and
 - c. For the purpose of this paragraph, adequate notice shall include information on:
 - i. The quality and quantity of effluent introduced into the POTW; and
 - ii. Any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW.

PERMIT CONDITIONS

1. General

- a. When the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in an application or in any report to the Executive Director, it shall promptly submit such facts or information.
- b. This permit is granted on the basis of the information supplied and representations made by the permittee during action on an application, and relying upon the accuracy and completeness of that information and those representations. After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked, in whole or in part, in accordance with 30 TAC Chapter 305, Subchapter D, during its term for good cause including, but not limited to, the following:
 - i. Violation of any terms or conditions of this permit;
 - ii. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts; or
 - iii. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.
- c. The permittee shall furnish to the Executive Director, upon request and within a reasonable time, any information to determine whether cause exists for amending, revoking, suspending or terminating the permit. The permittee shall also furnish to the Executive Director, upon request, copies of records required to be kept by the permit.

2. Compliance

- a. Acceptance of the permit by the person to whom it is issued constitutes acknowledgment and agreement that such person will comply with all the terms and conditions embodied in the permit, and the rules and other orders of the Commission.
- b. The permittee has a duty to comply with all conditions of the permit. Failure to comply with any permit condition constitutes a violation of the permit and the Texas Water Code or the Texas Health and Safety Code, and is grounds for enforcement action, for permit amendment, revocation, or suspension, or for denial of a permit renewal application or an application for a permit for another facility.
- c. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of the permit.
- d. The permittee shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal or other permit violation that has a reasonable likelihood of adversely affecting human health or the environment.
- e. Authorization from the Commission is required before beginning any change in the permitted facility or activity that may result in noncompliance with any permit requirements.

- f. A permit may be amended, suspended and reissued, or revoked for cause in accordance with 30 TAC §§ 305.62 and 305.66 and TWC§ 7.302. The filing of a request by the permittee for a permit amendment, suspension and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.
- g. There shall be no unauthorized discharge of wastewater or any other waste. For the purpose of this permit, an unauthorized discharge is considered to be any discharge of wastewater into or adjacent to water in the state at any location not permitted as an outfall or otherwise defined in the Other Requirements section of this permit.
- h. In accordance with 30 TAC § 305.535(a), the permittee may allow any bypass to occur from a TPDES permitted facility which does not cause permitted effluent limitations to be exceeded or an unauthorized discharge to occur, but only if the bypass is also for essential maintenance to assure efficient operation.
- i. The permittee is subject to administrative, civil, and criminal penalties, as applicable, under TWC §§ 7.051 7.075 (relating to Administrative Penalties), 7.101 7.111 (relating to Civil Penalties), and 7.141 7.202 (relating to Criminal Offenses and Penalties) for violations including, but not limited to, negligently or knowingly violating the federal CWA §§ 301, 302, 306, 307, 308, 318, or 405, or any condition or limitation implementing any sections in a permit issued under the CWA § 402, or any requirement imposed in a pretreatment program approved under the CWA §§ 402 (a)(3) or 402 (b)(8).

3. Inspections and Entry

- a. Inspection and entry shall be allowed as prescribed in the TWC Chapters 26, 27, and 28, and THSC § 361.
- b. The members of the Commission and employees and agents of the Commission are entitled to enter any public or private property at any reasonable time for the purpose of inspecting and investigating conditions relating to the quality of water in the state or the compliance with any rule, regulation, permit or other order of the Commission. Members, employees, or agents of the Commission and Commission contractors are entitled to enter public or private property at any reasonable time to investigate or monitor or, if the responsible party is not responsive or there is an immediate danger to public health or the environment, to remove or remediate a condition related to the quality of water in the state. Members, employees, Commission contractors, or agents acting under this authority who enter private property shall observe the establishment's rules and regulations concerning safety, internal security, and fire protection, and if the property has management in residence, shall notify management or the person then in charge of his presence and shall exhibit proper credentials. If any member, employee, Commission contractor, or agent is refused the right to enter in or on public or private property under this authority, the Executive Director may invoke the remedies authorized in TWC § 7.002. The statement above, that Commission entry shall occur in accordance with an establishment's rules and regulations concerning safety, internal security, and fire protection, is not grounds for denial or restriction of entry to any part of the facility, but merely describes the Commission's duty to observe appropriate rules and regulations during an inspection.

4. Permit Amendment and/or Renewal

- a. The permittee shall give notice to the Executive Director as soon as possible of any planned physical alterations or additions to the permitted facility if such alterations or additions would require a permit amendment or result in a violation of permit requirements. Notice shall also be required under this paragraph when:
 - The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in accordance with 30 TAC § 305.534 (relating to New Sources and New Dischargers); or
 - ii. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants that are subject neither to effluent limitations in the permit, nor to notification requirements in Monitoring and Reporting Requirements No. 9; or
 - iii. The alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan.
- b. Prior to any facility modifications, additions, or expansions that will increase the plant capacity beyond the permitted flow, the permittee must apply for and obtain proper authorization from the Commission before commencing construction.
- c. The permittee must apply for an amendment or renewal at least 180 days prior to expiration of the existing permit in order to continue a permitted activity after the expiration date of the permit. If an application is submitted prior to the expiration date of the permit, the existing permit shall remain in effect until the application is approved, denied, or returned. If the application is returned or denied, authorization to continue such activity shall terminate upon the effective date of the action. If an application is not submitted prior to the expiration date of the permit, the permit shall expire and authorization to continue such activity shall terminate.
- d. Prior to accepting or generating wastes which are not described in the permit application or which would result in a significant change in the quantity or quality of the existing discharge, the permittee must report the proposed changes to the Commission. The permittee must apply for a permit amendment reflecting any necessary changes in permit conditions, including effluent limitations for pollutants not identified and limited by this permit.
- e. In accordance with the TWC § 26.029(b), after a public hearing, notice of which shall be given to the permittee, the Commission may require the permittee, from time to time, for good cause, in accordance with applicable laws, to conform to new or additional conditions.
- f. If any toxic effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is promulgated under CWA § 307(a) for a toxic pollutant which is present in the discharge and that standard or prohibition is more stringent than any limitation on the pollutant in this permit, this permit shall be modified or revoked and reissued to conform to the toxic effluent standard or

prohibition. The permittee shall comply with effluent standards or prohibitions established under CWA § 307(a) for toxic pollutants within the time provided in the regulations that established those standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.

5. Permit Transfer

- a. Prior to any transfer of this permit, Commission approval must be obtained. The Commission shall be notified in writing of any change in control or ownership of facilities authorized by this permit. Such notification should be sent to the Applications Review and Processing Team (MC 148) of the Water Quality Division.
- b. A permit may be transferred only according to the provisions of 30 TAC § 305.64 (relating to Transfer of Permits) and 30 TAC § 50.133 (relating to Executive Director Action on Application or WQMP update).

6. Relationship to Hazardous Waste Activities

This permit does not authorize any activity of hazardous waste storage, processing, or disposal that requires a permit or other authorization pursuant to the Texas Health and Safety Code.

7. Relationship to Water Rights

Disposal of treated effluent by any means other than discharge directly to water in the state must be specifically authorized in this permit and may require a permit pursuant to TWC Chapter 11.

8. Property Rights

A permit does not convey any property rights of any sort, or any exclusive privilege.

9. Permit Enforceability

The conditions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstances, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

10. Relationship to Permit Application

The application pursuant to which the permit has been issued is incorporated herein; provided, however, that in the event of a conflict between the provisions of this permit and the application, the provisions of the permit shall control.

11. Notice of Bankruptcy

- a. Each permittee shall notify the Executive Director, in writing, immediately following the filing of a voluntary or involuntary petition for bankruptcy under any chapter of Title 11 (Bankruptcy) of the United States Code (11 USC) by or against:
 - i. the permittee;
 - ii. an entity (as that term is defined in 11 USC, § 101(14)) controlling the permittee or listing the permit or permittee as property of the estate; or

- iii. an affiliate (as that term is defined in 11 USC, § 101(2)) of the permittee.
- b. This notification must indicate:
 - i. the name of the permittee;
 - ii. the permit number(s);
 - iii. the bankruptcy court in which the petition for bankruptcy was filed; and
 - iv. the date of filing of the petition.

OPERATIONAL REQUIREMENTS

- 1. The permittee shall at all times ensure that the facility and all of its systems of collection, treatment, and disposal are properly operated and maintained. This includes, but is not limited to, the regular, periodic examination of wastewater solids within the treatment plant by the operator in order to maintain an appropriate quantity and quality of solids inventory as described in the various operator training manuals and according to accepted industry standards for process control. Process control, maintenance, and operations records shall be retained at the facility site, or shall be readily available for review by a TCEQ representative, for a period of three years.
- 2. Upon request by the Executive Director, the permittee shall take appropriate samples and provide proper analysis in order to demonstrate compliance with Commission rules. Unless otherwise specified in this permit or otherwise ordered by the Commission, the permittee shall comply with all applicable provisions of 30 TAC Chapter 312 concerning sewage sludge or biosolids use and disposal and 30 TAC §§ 319.21 319.29 concerning the discharge of certain hazardous metals.
- 3. Domestic wastewater treatment facilities shall comply with the following provisions:
 - a. The permittee shall notify the Municipal Permits Team, Wastewater Permitting Section (MC 148) of the Water Quality Division, in writing, of any facility expansion at least 90 days prior to conducting such activity.
 - b. The permittee shall submit a closure plan for review and approval to the Municipal Permits Team, Wastewater Permitting Section (MC 148) of the Water Quality Division, for any closure activity at least 90 days prior to conducting such activity. Closure is the act of permanently taking a waste management unit or treatment facility out of service and includes the permanent removal from service of any pit, tank, pond, lagoon, surface impoundment and/or other treatment unit regulated by this permit.
- 4. The permittee is responsible for installing prior to plant start-up, and subsequently maintaining, adequate safeguards to prevent the discharge of untreated or inadequately treated wastes during electrical power failures by means of alternate power sources, standby generators, and/or retention of inadequately treated wastewater.
- 5. Unless otherwise specified, the permittee shall provide a readily accessible sampling point and, where applicable, an effluent flow measuring device or other acceptable means by which effluent flow may be determined.

6. The permittee shall remit an annual water quality fee to the Commission as required by 30 TAC Chapter 21. Failure to pay the fee may result in revocation of this permit under TWC § 7.302(b)(6).

7. Documentation

For all written notifications to the Commission required of the permittee by this permit, the permittee shall keep and make available a copy of each such notification under the same conditions as self-monitoring data are required to be kept and made available. Except for information required for TPDES permit applications, effluent data, including effluent data in permits, draft permits and permit applications, and other information specified as not confidential in 30 TAC §§ 1.5(d), any information submitted pursuant to this permit may be claimed as confidential by the submitter. Any such claim must be asserted in the manner prescribed in the application form or by stamping the words confidential business information on each page containing such information. If no claim is made at the time of submission, information may be made available to the public without further notice. If the Commission or Executive Director agrees with the designation of confidentiality, the TCEQ will not provide the information for public inspection unless required by the Texas Attorney General or a court pursuant to an open records request. If the Executive Director does not agree with the designation of confidentiality, the person submitting the information will be notified.

- 8. Facilities that generate domestic wastewater shall comply with the following provisions; domestic wastewater treatment facilities at permitted industrial sites are excluded.
 - a. Whenever flow measurements for any domestic sewage treatment facility reach 75% of the permitted daily average or annual average flow for three consecutive months, the permittee must initiate engineering and financial planning for expansion and/or upgrading of the domestic wastewater treatment and/or collection facilities. Whenever the flow reaches 90% of the permitted daily average or annual average flow for three consecutive months, the permittee shall obtain necessary authorization from the Commission to commence construction of the necessary additional treatment and/or collection facilities. In the case of a domestic wastewater treatment facility which reaches 75% of the permitted daily average or annual average flow for three consecutive months, and the planned population to be served or the quantity of waste produced is not expected to exceed the design limitations of the treatment facility, the permittee shall submit an engineering report supporting this claim to the Executive Director of the Commission.

If in the judgment of the Executive Director the population to be served will not cause permit noncompliance, then the requirement of this section may be waived. To be effective, any waiver must be in writing and signed by the Director of the Enforcement Division (MC 219) of the Commission, and such waiver of these requirements will be reviewed upon expiration of the existing permit; however, any such waiver shall not be interpreted as condoning or excusing any violation of any permit parameter.

b. The plans and specifications for domestic sewage collection and treatment works associated with any domestic permit must be approved by the Commission and failure to secure approval before commencing construction of such works or making a discharge is

- a violation of this permit and each day is an additional violation until approval has been secured.
- c. Permits for domestic wastewater treatment plants are granted subject to the policy of the Commission to encourage the development of area-wide waste collection, treatment, and disposal systems. The Commission reserves the right to amend any domestic wastewater permit in accordance with applicable procedural requirements to require the system covered by this permit to be integrated into an area-wide system, should such be developed; to require the delivery of the wastes authorized to be collected in, treated by or discharged from said system, to such area-wide system; or to amend this permit in any other particular to effectuate the Commission's policy. Such amendments may be made when the changes required are advisable for water quality control purposes and are feasible on the basis of waste treatment technology, engineering, financial, and related considerations existing at the time the changes are required, exclusive of the loss of investment in or revenues from any then existing or proposed waste collection, treatment or disposal system.
- 9. Domestic wastewater treatment plants shall be operated and maintained by sewage plant operators holding a valid certificate of competency at the required level as defined in 30 TAC Chapter 30.
- 10. For Publicly Owned Treatment Works (POTWs), the 30-day average (or monthly average) percent removal for BOD and TSS shall not be less than 85%, unless otherwise authorized by this permit.
- 11. Facilities that generate industrial solid waste as defined in 30 TAC § 335.1 shall comply with these provisions:
 - a. Any solid waste, as defined in 30 TAC § 335.1 (including but not limited to such wastes as garbage, refuse, sludge from a waste treatment, water supply treatment plant or air pollution control facility, discarded materials, discarded materials to be recycled, whether the waste is solid, liquid, or semisolid), generated by the permittee during the management and treatment of wastewater, must be managed in accordance with all applicable provisions of 30 TAC Chapter 335, relating to Industrial Solid Waste Management.
 - b. Industrial wastewater that is being collected, accumulated, stored, or processed before discharge through any final discharge outfall, specified by this permit, is considered to be industrial solid waste until the wastewater passes through the actual point source discharge and must be managed in accordance with all applicable provisions of 30 TAC Chapter 335.
 - c. The permittee shall provide written notification, pursuant to the requirements of 30 TAC § 335.8(b)(1), to the Corrective Action Section (MC 127) of the Remediation Division informing the Commission of any closure activity involving an Industrial Solid Waste Management Unit, at least 90 days prior to conducting such an activity.
 - d. Construction of any industrial solid waste management unit requires the prior written notification of the proposed activity to the Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division. No person shall dispose of industrial solid waste, including sludge or other solids from wastewater treatment processes, prior to fulfilling the deed recordation requirements of 30 TAC § 335.5.

- e. The term "industrial solid waste management unit" means a landfill, surface impoundment, waste-pile, industrial furnace, incinerator, cement kiln, injection well, container, drum, salt dome waste containment cavern, or any other structure vessel, appurtenance, or other improvement on land used to manage industrial solid waste.
- f. The permittee shall keep management records for all sludge (or other waste) removed from any wastewater treatment process. These records shall fulfill all applicable requirements of 30 TAC § 335 and must include the following, as it pertains to wastewater treatment and discharge:
 - i. Volume of waste and date(s) generated from treatment process;
 - ii. Volume of waste disposed of on-site or shipped off-site;
 - iii. Date(s) of disposal;
 - iv. Identity of hauler or transporter;
 - v. Location of disposal site; and
 - vi. Method of final disposal.

The above records shall be maintained on a monthly basis. The records shall be retained at the facility site, or shall be readily available for review by authorized representatives of the TCEQ for at least five years.

12. For industrial facilities to which the requirements of 30 TAC § 335 do not apply, sludge and solid wastes, including tank cleaning and contaminated solids for disposal, shall be disposed of in accordance with THSC § 361.

TCEQ Revision 06/2020

SLUDGE PROVISIONS

The permittee is authorized to dispose of sludge only at a Texas Commission on Environmental Quality (TCEQ) authorized land application site, co-disposal landfill, wastewater treatment facility, or facility that further processes sludge. The disposal of sludge or biosolids by land application on property owned, leased or under the direct control of the permittee is a violation of the permit unless the site is authorized with the TCEQ. This provision does not authorize Distribution and Marketing of Class A or Class AB Sewage Sludge. The permittee is authorized to land apply Class B sewage sludge for beneficial use on 50.4 acres of land adjacent to the wastewater treatment facility that is owned, leased, or under the direct control of the permittee. (Attachment A)

SECTION I. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE OR BIOSOLIDS LAND APPLICATION

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC § 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge or biosolids.
- 2. In all cases, if the person (permit holder) who prepares the sewage sludge supplies the sewage sludge to another person for land application use or to the owner or lease holder of the land, the permit holder shall provide necessary information to the parties who receive the sludge to assure compliance with these regulations.
- 3. The land application of processed or unprocessed chemical toilet waste, grease trap waste, grit trap waste, milk solids, or similar non-hazardous municipal or industrial solid wastes, or any of the wastes listed in this provision combined with biosolids, WTP residuals or domestic septage is prohibited unless the grease trap waste is added at a fats, oil and grease (FOG) receiving facility as part of an anaerobic digestion process.

B. Testing Requirements

1. Sewage sludge or biosolids shall be tested prior to sludge disposal during the Interim phase and annually during the Final phase in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I [Toxicity Characteristic Leaching Procedure (TCLP)] or other method that receives the prior approval of the TCEQ for the contaminants listed in 40 CFR Part 261.24, Table 1. Sewage sludge or biosolids failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal. Following failure of any TCLP test, the management or disposal of sewage sludge or biosolids at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge or biosolids no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division and the Regional Director (MC Region 15) within seven (7) days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Permitting and Registration Support Division (MC 129), Texas Commission on Environmental Quality, P.O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. This annual report shall be submitted to the TCEQ Regional Office (MC Region 15) and the Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

2. Biosolids shall not be applied to the land if the concentration of the pollutants exceeds the pollutant concentration criteria in Table 1. The frequency of testing for pollutants in Table 1 is found in Section I.C. of this permit.

TABLE 1

<u>Pollutant</u>	Ceiling Concentration
	(Milligrams per kilogram)*
Arsenic	75
Cadmium	85
Chromium	3000
Copper	4300
Lead	840
Mercury	57
Molybdenum	75
Nickel	420
PCBs	49
Selenium	100
Zinc	7500

^{*} Dry weight basis

3. Pathogen Control

All sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site must be treated by one of the following methods to ensure that the sludge meets either the Class A, Class AB or Class B biosolids pathogen requirements.

a. For sewage sludge to be classified as Class A biosolids with respect to pathogens, the density of fecal coliform in the sewage sludge must be less than 1,000 most probable number (MPN) per gram of total solids (dry weight basis), or the density of Salmonella sp. bacteria in the sewage sludge must be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met:

<u>Alternative 1</u> - The temperature of the sewage sludge that is used or disposed shall be maintained at or above a specific value for a period of time. See 30 TAC § 312.82(a)(2)(A) for specific information;

Alternative 5 (PFRP) - Sewage sludge that is used or disposed of must be treated in one of the Processes to Further Reduce Pathogens (PFRP) described in 40 CFR Part 503, Appendix B. PFRP include composting, heat drying, heat treatment, and thermophilic aerobic digestion; or

Alternative 6 (PFRP Equivalent) - Sewage sludge that is used or disposed of must be treated in a process that has been approved by the U. S. Environmental Protection Agency as being equivalent to those in Alternative 5.

b. For sewage sludge to be classified as Class AB biosolids with respect to pathogens, the density of fecal coliform in the sewage sludge must be less than 1,000 MPN per gram of total solids (dry weight basis), or the density of *Salmonella* sp. bacteria in the sewage sludge be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. In addition, one of the alternatives listed below must be met:

<u>Alternative 2</u> - The pH of the sewage sludge that is used or disposed shall be raised to above 12 std. units and shall remain above 12 std. units for 72 hours.

The temperature of the sewage sludge shall be above 52° Celsius for 12 hours or longer during the period that the pH of the sewage sludge is above 12 std. units.

At the end of the 72-hour period during which the pH of the sewage sludge is above 12 std. units, the sewage sludge shall be air dried to achieve a percent solids in the sewage sludge greater than 50%; or

Alternative 3 - The sewage sludge shall be analyzed for enteric viruses prior to pathogen treatment. The limit for enteric viruses is less than one Plaque-forming Unit per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC § 312.82(a)(2)(C)(i-iii) for specific information. The sewage sludge shall be analyzed for viable helminth ova prior to pathogen treatment. The limit for viable helminth ova is less than one per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 30 TAC § 312.82(a)(2)(C)(iv-vi) for specific information; or

<u>Alternative 4</u> - The density of enteric viruses in the sewage sludge shall be less than one Plaque-forming Unit per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed. The density of viable helminth ova in the sewage sludge shall be less than one per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed.

- c. Sewage sludge that meets the requirements of Class AB biosolids may be classified a Class A biosolids if a variance request is submitted in writing that is supported by substantial documentation demonstrating equivalent methods for reducing odors and written approval is granted by the executive director. The executive director may deny the variance request or revoke that approved variance if it is determined that the variance may potentially endanger human health or the environment, or create nuisance odor conditions.
- d. Three alternatives are available to demonstrate compliance with Class B biosolids criteria.

Alternative 1

- i. A minimum of seven random samples of the sewage sludge shall be collected within 48 hours of the time the sewage sludge is used or disposed of during each monitoring episode for the sewage sludge.
- ii. The geometric mean of the density of fecal coliform in the samples collected shall be less than either 2,000,000 MPN per gram of total solids (dry weight basis) or 2,000,000 Colony Forming Units per gram of total solids (dry weight basis).

<u>Alternative 2</u> - Sewage sludge that is used or disposed of shall be treated in one of the Processes to Significantly Reduce Pathogens (PSRP) described in 40 CFR Part 503, Appendix B, so long as all of the following requirements are met by the generator of the sewage sludge.

- i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;
- ii. An independent Texas Licensed Professional Engineer must make a certification to the generator of a sewage sludge that the wastewater treatment facility generating the sewage sludge is designed to achieve one of the PSRP at the permitted design loading of the facility. The certification need only be repeated if the design loading of the facility is increased. The certification shall include a statement indicating the design meets all the applicable standards specified in Appendix B of 40 CFR Part 503;
- iii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iv. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review; and
- v. If the sewage sludge is generated from a mixture of sources, resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the PSRP, and shall meet the certification, operation, and record keeping requirements of this paragraph.

<u>Alternative 3</u> - Sewage sludge shall be treated in an equivalent process that has been approved by the U.S. Environmental Protection Agency, so long as all of the following requirements are met by the generator of the sewage sludge.

i. Prior to use or disposal, all the sewage sludge must have been generated from a single location, except as provided in paragraph v. below;

- ii. Prior to any off-site transportation or on-site use or disposal of any sewage sludge generated at a wastewater treatment facility, the chief certified operator of the wastewater treatment facility or other responsible official who manages the processes to significantly reduce pathogens at the wastewater treatment facility for the permittee, shall certify that the sewage sludge underwent at least the minimum operational requirements necessary in order to meet one of the PSRP. The acceptable processes and the minimum operational and record keeping requirements shall be in accordance with established U.S. Environmental Protection Agency final guidance;
- iii. All certification records and operational records describing how the requirements of this paragraph were met shall be kept by the generator for a minimum of three years and be available for inspection by commission staff for review;
- iv. The Executive Director will accept from the U.S. Environmental Protection Agency a finding of equivalency to the defined PSRP; and
- v. If the sewage sludge is generated from a mixture of sources resulting from a person who prepares sewage sludge from more than one wastewater treatment facility, the resulting derived product shall meet one of the Processes to Significantly Reduce Pathogens, and shall meet the certification, operation, and record keeping requirements of this paragraph.

In addition to the Alternatives 1 - 3, the following site restrictions must be met if Class B biosolids are land applied:

- i. Food crops with harvested parts that touch the biosolids/soil mixture and are totally above the land surface shall not be harvested for 14 months after application of biosolids.
- ii. Food crops with harvested parts below the surface of the land shall not be harvested for 20 months after application of biosolids when the biosolids remain on the land surface for 4 months or longer prior to incorporation into the soil.
- iii. Food crops with harvested parts below the surface of the land shall not be harvested for 38 months after application of biosolids when the biosolids remain on the land surface for less than 4 months prior to incorporation into the soil.
- iv. Food crops, feed crops, and fiber crops shall not be harvested for 30 days after application of biosolids.
- v. Domestic livestock shall not be allowed to graze on the land for 30 days after application of biosolids.
- vi. Turf grown on land where biosolids are applied shall not be harvested for 1 year after application of the biosolids when the harvested turf is placed on either land with a high potential for public exposure or a lawn.
- vii. Public access to land with a high potential for public exposure shall be restricted for 1 year after application of biosolids.

- viii. Public access to land with a low potential for public exposure shall be restricted for 30 days after application of biosolids.
- ix. Land application of biosolids shall be in accordance with the buffer zone requirements found in 30 TAC § 312.44.

4. Vector Attraction Reduction Requirements

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site shall be treated by one of the following Alternatives 1 through 10 for vector attraction reduction.

- <u>Alternative 1</u> The mass of volatile solids in the sewage sludge shall be reduced by a minimum of 38%.
- Alternative 2 If Alternative 1 cannot be met for an anaerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge anaerobically in the laboratory in a bench-scale unit for 40 additional days at a temperature between 30° and 37° Celsius. Volatile solids must be reduced by less than 17% to demonstrate compliance.
- Alternative 3 If Alternative 1 cannot be met for an aerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge with percent solids of two percent or less aerobically in the laboratory in a bench-scale unit for 30 additional days at 20° Celsius. Volatile solids must be reduced by less than 15% to demonstrate compliance.
- Alternative 4 The specific oxygen uptake rate (SOUR) for sewage sludge treated in an aerobic process shall be equal to or less than 1.5 milligrams of oxygen per hour per gram of total solids (dry weight basis) at a temperature of 20° Celsius.
- Alternative 5 Sewage sludge shall be treated in an aerobic process for 14 days or longer. During that time, the temperature of the sewage sludge shall be higher than 40° Celsius and the average temperature of the sewage sludge shall be higher than 45° Celsius.
- Alternative 6 The pH of sewage sludge shall be raised to 12 or higher by alkali addition and, without the addition of more alkali shall remain at 12 or higher for two hours and then remain at a pH of 11.5 or higher for an additional 22 hours at the time the sewage sludge is prepared for sale or given away in a bag or other container.
- Alternative 7 The percent solids of sewage sludge that does not contain unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 75% based on the moisture content and total solids prior to mixing with other materials. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

Alternative 8 -

The percent solids of sewage sludge that contains unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 90% based on the moisture content and total solids prior to mixing with other materials at the time the sludge is used. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

Alternative 9 -

- i. Biosolids shall be injected below the surface of the land.
- ii. No significant amount of the biosolids shall be present on the land surface within one hour after the biosolids are injected.
- iii. When sewage sludge that is injected below the surface of the land is Class A or Class AB with respect to pathogens, the biosolids shall be injected below the land surface within eight hours after being discharged from the pathogen treatment process.

Alternative 10-

- i. Biosolids applied to the land surface or placed on a surface disposal site shall be incorporated into the soil within six hours after application to or placement on the land.
- ii. When biosolids that are incorporated into the soil is Class A or Class AB with respect to pathogens, the biosolids shall be applied to or placed on the land within eight hours after being discharged from the pathogen treatment process.

C. Monitoring Requirements

Toxicity Characteristic Leaching Procedure
(TCLP) Test
- prior to sludge disposal during the
Interim phase and annually during the
Final phase
- prior to sludge disposal during the
Interim phase and annually during the
Final phase

All metal constituents and fecal coliform or *Salmonella* sp. bacteria shall be monitored at the appropriate frequency shown below, pursuant to 30 TAC § 312.46(a)(1):

Amount of biosolids (*) metric tons per 365-day period	Monitoring Frequency		
o to less than 290	Once/Year		
290 to less than 1,500	Once/Quarter		
1,500 to less than 15,000	Once/Two Months		
15,000 or greater	Once/Month		

(*) The amount of bulk biosolids applied to the land (dry wt. basis).

Representative samples of sewage sludge shall be collected and analyzed in accordance with the methods referenced in 30 TAC § 312.7

Identify each of the analytic methods used by the facility to analyze enteric viruses, fecal coliforms, helminth ova, *Salmonella* sp., and other regulated parameters.

Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.

Identify the nature of material generated by the facility (such as a biosolid for beneficial use or land-farming, or sewage sludge or biosolids for disposal at a monofill) and whether the material is ultimately conveyed off-site in bulk or in bags.

SECTION II. REQUIREMENTS SPECIFIC TO BULK SEWAGE SLUDGE OR BIOSOLIDS FOR APPLICATION TO THE LAND MEETING CLASS A, CLASS AB or B PATHOGEN REDUCTION AND THE CUMULATIVE LOADING RATES IN TABLE 2, OR CLASS B PATHOGEN REDUCTION AND THE POLLUTANT CONCENTRATIONS IN TABLE 3

For those permittees meeting Class A, Class AB or B pathogen reduction requirements and that meet the cumulative loading rates in Table 2 below, or the Class B pathogen reduction requirements and contain concentrations of pollutants below listed in Table 3, the following conditions apply:

A. Pollutant Limits

Table 2

	Cumulative Pollutant Loading Rate
<u>Pollutant</u>	(pounds per acre)*
Arsenic	36
Cadmium	35
Chromium	2677
Copper	1339
Lead	268
Mercury	15
Molybdenum	Report Only
Nickel	375
Selenium	89
Zinc	2500

Table 3

	Monthly Average
	Concentration
<u>Pollutant</u>	(milligrams per kilogram)*
Arsenic	41
Cadmium	39
Chromium	1200
Copper	1500
Lead	300
Mercury	17
Molybdenum	Report Only
Nickel	420
Selenium	36
Zinc	2800

^{*}Dry weight basis

B. Pathogen Control

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, a reclamation site, shall be treated by either Class A, Class AB or Class B biosolids pathogen reduction requirements as defined above in Section I.B.3.

C. Management Practices

- 1. Bulk biosolids shall not be applied to agricultural land, forest, a public contact site, or a reclamation site that is flooded, frozen, or snow-covered so that the bulk sewage sludge enters a wetland or other waters in the State.
- 2. Bulk biosolids not meeting Class A requirements shall be land applied in a manner which complies with Applicability in accordance with 30 TAC §312.41 and the Management Requirements in accordance with 30 TAC § 312.44.
- 3. Bulk biosolids shall be applied at or below the agronomic rate of the cover crop.
- 4. An information sheet shall be provided to the person who receives bulk Class A or AB biosolids sold or given away. The information sheet shall contain the following information:
 - a. The name and address of the person who prepared the Class A or AB biosolids that are sold or given away in a bag or other container for application to the land.
 - b. A statement that application of the biosolids to the land is prohibited except in accordance with the instruction on the label or information sheet.
 - c. The annual whole sludge application rate for the biosolids application rate for the biosolids that does not cause any of the cumulative pollutant loading rates in Table 2 above to be exceeded, unless the pollutant concentrations in Table 3 found in Section II above are met.

D. Notification Requirements

- 1. If bulk is applied to land in a State other than Texas, written notice shall be provided prior to the initial land application to the permitting authority for the State in which the bulk biosolids are proposed to be applied. The notice shall include:
 - a. The location, by street address, and specific latitude and longitude, of each land application site.
 - b. The approximate time period bulk biosolids will be applied to the site.
 - c. The name, address, telephone number, and National Pollutant Discharge Elimination System permit number (if appropriate) for the person who will apply the bulk biosolids.
- 2. The permittee shall give 180 days prior notice to the Executive Director in care of the Wastewater Permitting Section (MC 148) of the Water Quality Division of any change planned in the biosolids disposal practice.

E. Record keeping Requirements

The documents will be retained at the facility site and/or shall be readily available for review by a TCEQ representative. The person who prepares bulk sewage sludge or a biosolids material shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative for a

period of <u>five years</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply.

- 1. The concentration (mg/kg) in the sludge of each pollutant listed in Table 3 above and the applicable pollutant concentration criteria (mg/kg), or the applicable cumulative pollutant loading rate and the applicable cumulative pollutant loading rate limit (lbs/ac) listed in Table 2 above.
- 2. A description of how the pathogen reduction requirements are met (including site restrictions for Class AB and Class B biosolids, if applicable).
- 3. A description of how the vector attraction reduction requirements are met.
- 4. A description of how the management practices listed above in Section II.C are being met.
- 5. The following certification statement:

"I certify, under penalty of law, that the applicable pathogen requirements in 30 TAC § 312.82(a) or (b) and the vector attraction reduction requirements in 30 TAC § 312.83(b) have been met for each site on which bulk biosolids are applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices have been met. I am aware that there are significant penalties for false certification including fine and imprisonment."

- 6. The recommended agronomic loading rate from the references listed in Section II.C.3. above, as well as the actual agronomic loading rate shall be retained. The person who applies bulk biosolids shall develop the following information and shall retain the information at the facility site and/or shall be readily available for review by a TCEQ representative <u>indefinitely</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 30 TAC § 312.47 for persons who land apply:
 - a. A certification statement that all applicable requirements (specifically listed) have been met, and that the permittee understands that there are significant penalties for false certification including fine and imprisonment. See 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii), as applicable, and to the permittee's specific sludge treatment activities.
 - b. The location, by street address, and specific latitude and longitude, of each site on which biosolids are applied.
 - c. The number of acres in each site on which bulk biosolids are applied.
 - d. The date and time biosolids are applied to each site.
 - e. The cumulative amount of each pollutant in pounds/acre listed in Table 2 applied to each site.
 - f. The total amount of biosolids applied to each site in dry tons.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

F. Reporting Requirements

The permittee shall report annually to the TCEQ Regional Office (MC Region 15) and Compliance Monitoring Team (MC 224) of the Enforcement Division, by September 30th of each year the following information. The permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. Identify the nature of material generated by the facility (such as a biosolid for beneficial use or land-farming, or sewage sludge for disposal at a monofill) and whether the material is ultimately conveyed off-site in bulk or in bags.
- 3. Results of tests performed for pollutants found in either Table 2 or 3 as appropriate for the permittee's land application practices.
- 4. The frequency of monitoring listed in Section I.C. that applies to the permittee.
- 5. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 6. PCB concentration in sludge or biosolids in mg/kg.
- 7. Identity of hauler(s) and TCEQ transporter number.
- 8. Date(s) of transport.
- 9. Texas Commission on Environmental Quality registration number, if applicable.
- 10. Amount of sludge or biosolids disposal dry weight (lbs/acre) at each disposal site.
- 11. The concentration (mg/kg) in the sludge of each pollutant listed in Table 1 (defined as a monthly average) as well as the applicable pollutant concentration criteria (mg/kg) listed in Table 3 above, or the applicable pollutant loading rate limit (lbs/acre) listed in Table 2 above if it exceeds 90% of the limit.
- 12. Level of pathogen reduction achieved (Class A, Class AB or Class B).
- 13. Alternative used as listed in Section I.B.3.(a. or b.). Alternatives describe how the pathogen reduction requirements are met. If Class B biosolids, include information on how site restrictions were met.
- 14. Identify each of the analytic methods used by the facility to analyze enteric viruses, fecal coliforms, helminth ova, *Salmonella* sp., and other regulated parameters.
- 15. Vector attraction reduction alternative used as listed in Section I.B.4.

- 16. Amount of sludge or biosolids transported in dry tons/year.
- 17. The certification statement listed in either 30 TAC § 312.47(a)(4)(A)(ii) or 30 TAC § 312.47(a)(5)(A)(ii) as applicable to the permittee's sludge or biosolids treatment activities, shall be attached to the annual reporting form.
- 18. When the amount of any pollutant applied to the land exceeds 90% of the cumulative pollutant loading rate for that pollutant, as described in Table 2, the permittee shall report the following information as an attachment to the annual reporting form.
 - a. The location, by street address, and specific latitude and longitude.
 - b. The number of acres in each site on which bulk biosolids are applied.
 - c. The date and time bulk biosolids are applied to each site.
 - d. The cumulative amount of each pollutant (i.e., pounds/acre) listed in Table 2 in the bulk biosolids applied to each site.
 - e. The amount of biosolids (i.e., dry tons) applied to each site.

The above records shall be maintained on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION III. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE OR BIOSOLIDS DISPOSED IN A MUNICIPAL SOLID WASTE LANDFILL

- A. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC § 330 and all other applicable state and federal regulations to protect public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present. The permittee shall ensure that the sewage sludge meets the requirements in 30 TAC § 330 concerning the quality of the sludge or biosolids disposed in a municipal solid waste landfill.
- B. If the permittee generates sewage sludge and supplies that sewage sludge or biosolids to the owner or operator of a municipal solid waste landfill (MSWLF) for disposal, the permittee shall provide to the owner or operator of the MSWLF appropriate information needed to be in compliance with the provisions of this permit.
- C. The permittee shall give 180 days prior notice to the Executive Director in care of the Wastewater Permitting Section (MC 148) of the Water Quality Division of any change planned in the sewage sludge or biosolids disposal practice.
- D. Sewage sludge or biosolids shall be tested prior to sludge disposal during the Interim phase and annually during the Final phase in accordance with the method specified in both 40 CFR Part 261, Appendix II and 40 CFR Part 268, Appendix I (Toxicity Characteristic Leaching Procedure) or other method, which receives the prior approval of the TCEQ for contaminants listed in Table 1 of 40 CFR § 261.24. Sewage sludge or biosolids failing this test shall be managed according to RCRA standards for generators of hazardous waste, and the waste's disposition must be in accordance with all applicable requirements for hazardous waste processing, storage, or disposal.

Following failure of any TCLP test, the management or disposal of sewage sludge or biosolids at a facility other than an authorized hazardous waste processing, storage, or disposal facility shall be prohibited until such time as the permittee can demonstrate the sewage sludge or biosolids no longer exhibits the hazardous waste toxicity characteristics (as demonstrated by the results of the TCLP tests). A written report shall be provided to both the TCEQ Registration and Reporting Section (MC 129) of the Permitting and Registration Support Division and the Regional Director (MC Region 15) of the appropriate TCEQ field office within 7 days after failing the TCLP Test.

The report shall contain test results, certification that unauthorized waste management has stopped and a summary of alternative disposal plans that comply with RCRA standards for the management of hazardous waste. The report shall be addressed to: Director, Permitting and Registration Support Division (MC 129), Texas Commission on Environmental Quality, P. O. Box 13087, Austin, Texas 78711-3087. In addition, the permittee shall prepare an annual report on the results of all sludge toxicity testing. This annual report shall be submitted to the TCEQ Regional Office (MC Region 15) and the Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30 of each year.

- E. Sewage sludge or biosolids shall be tested as needed, in accordance with the requirements of 30 TAC Chapter 330.
- F. Record keeping Requirements

The permittee shall develop the following information and shall retain the information for five years.

- 1. The description (including procedures followed and the results) of all liquid Paint Filter Tests performed.
- 2. The description (including procedures followed and results) of all TCLP tests performed.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

G. Reporting Requirements

The permittee shall report annually to the TCEQ Regional Office (MC Region 15) and Compliance Monitoring Team (MC 224) of the Enforcement Division by September 30th of each year the following information. The permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. Toxicity Characteristic Leaching Procedure (TCLP) results.
- 3. Annual sludge or biosolids production in dry tons/year.
- 4. Amount of sludge or biosolids disposed in a municipal solid waste landfill in dry tons/year.
- 5. Amount of sludge or biosolids transported interstate in dry tons/year.
- 6. A certification that the sewage sludge or biosolids meets the requirements of 30 TAC § 330 concerning the quality of the sludge disposed in a municipal solid waste landfill.
- 7. Identity of hauler(s) and transporter registration number.
- 8. Owner of disposal site(s).
- 9. Location of disposal site(s).
- 10. Date(s) of disposal.

The above records shall be maintained on-site on a monthly basis and shall be made available to the Texas Commission on Environmental Quality upon request.

SECTION IV. REQUIREMENTS APPLYING TO SLUDGE OR BIOSOLIDS TRANSPORTED TO ANOTHER FACILITY FOR FURTHER PROCESSING

These provisions apply to sludge or biosolids that is transported to another wastewater treatment facility or facility that further processes sludge or biosolids. These provisions are intended to allow transport of sludge or biosolids to facilities that have been authorized to accept sludge or biosolids. These provisions do not limit the ability of the receiving facility to determine whether to accept the sludge or biosolids, nor do they limit the ability of the receiving facility to request additional testing or documentation.

A. General Requirements

- 1. The permittee shall handle and dispose of sewage sludge or biosolids in accordance with 30 TAC Chapter 312 and all other applicable state and federal regulations in a manner that protects public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present in the sludge.
- 2. Sludge or biosolids may only be transported using a registered transporter or using an approved pipeline.

B. Record Keeping Requirements

- 1. For sludge transported by an approved pipeline, the permittee must maintain records of the following:
 - a. the amount of sludge or biosolids transported;
 - b. the date of transport;
 - c. the name and TCEO permit number of the receiving facility or facilities;
 - d. the location of the receiving facility or facilities;
 - e. the name and TCEQ permit number of the facility that generated the waste; and
 - f. copy of the written agreement between the permittee and the receiving facility to accept sludge or biosolids.
- 2. For sludge or biosolids transported by a registered transporter, the permittee must maintain records of the completed trip tickets in accordance with 30 TAC § 312.145(a)(1)-(7) and amount of sludge or biosolids transported.
- 3. The above records shall be maintained on-site on a monthly basis and shall be made available to the TCEQ upon request. These records shall be retained for at least five years.

C. Reporting Requirements

The permittee shall report the following information annually to the TCEQ Regional Office (MC Region 15) and Compliance Monitoring Team (MC 224) of the Enforcement Division, by September 30th of each year. The permittee must submit this annual report using the online electronic reporting system available through the TCEQ website unless the permittee requests and obtains an electronic reporting waiver.

- 1. Identify in the following categories (as applicable) the sewage sludge or biosolids treatment process or processes at the facility: preliminary operations (e.g., sludge or biosolids grinding and degritting), thickening (concentration), stabilization, anaerobic digestion, aerobic digestion, composting, conditioning, disinfection (e.g., beta ray irradiation, gamma ray irradiation, pasteurization), dewatering (e.g., centrifugation, sludge drying beds, sludge lagoons), heat drying, thermal reduction, and methane or biogas capture and recovery.
- 2. the annual sludge or biosolids production;
- 3. the amount of sludge or biosolids transported;
- 4. the owner of each receiving facility;
- 5. the location of each receiving facility; and
- 6. the date(s) of disposal at each receiving facility.

TCEQ Revision 06/2020

OTHER REQUIREMENTS

- 1. The permittee shall employ or contract with one or more licensed wastewater treatment facility operators or wastewater system operations companies holding a valid license or registration according to the requirements of 30 TAC Chapter 30, Occupational Licenses and Registrations, and in particular 30 TAC Chapter 30, Subchapter J, Wastewater Operators and Operations Companies.
 - This Category D facility during the Interim phase and Category C facility during the Final phase must be operated by a chief operator or an operator holding a Class Class D license or higher during the Interim phase and Class C license or higher during the Final phase. The facility must be operated a minimum of five days per week by the licensed chief operator or an operator holding the required level of license or higher. The licensed chief operator or operator holding the required level of license or higher must be available by telephone or pager seven days per week. Where shift operation of the wastewater treatment facility is necessary, each shift that does not have the on-site supervision of the licensed chief operator must be supervised by an operator in charge who is licensed not less than one level below the category for the facility.
- 2. The facility is not located in the Coastal Management Program boundary.
- 3. Chronic toxic criteria apply at the edge of the mixing zone. The mixing zone is defined as 300 feet downstream and 100 feet upstream from the point of discharge. This requirement applies when the facility begins operating in the Final (1.25 MGD) phase
- 4. The permittee shall comply with the requirements of 30 TAC § 309.13(a) through (d). In addition, by ownership of the required buffer zone area, the permittee shall comply with the requirements of 30 TAC § 309.13(e).
- 5. The permittee shall provide facilities for the protection of its wastewater treatment facility from a 100-year flood.
- 6. Facilities for the retention of treated or untreated wastewater shall be adequately lined to control seepage. The following methods of pond lining are acceptable.
 - a. In-situ clay soils or placed and compacted clay soils meeting the following requirements:
 - i. More than 30% passing through a No. 200 mesh sieve;
 - ii. Liquid limit greater than 30%;
 - iii. Plasticity index greater than 15:
 - iv. A minimum thickness of 2 feet;
 - v. Permeability equal to or less than 1x10⁻⁷ cm/sec (*); and
 - vi. Soil compaction will be 95% standard proctor at optimum moisture content (*).
 - (*) For new and/or modified ponds only.
 - b. Membrane lining with a minimum thickness of 20 mils, and an underdrain leak detection system.
 - c. An alternate method of pond lining may be utilized with prior approval from the Executive Director.

The permittee shall furnish certification by a Texas Licensed Professional Engineer that the completed pond lining meets the appropriate criteria. The certification shall be sent to the TCEQ Regional Office (MC Region 15) and the Water Quality Compliance Monitoring Team (MC 224) of the Enforcement Division.

- 7. In accordance with 30 TAC § 319.9, a permittee that has at least twelve months of uninterrupted compliance with its bacteria limit may notify the commission in writing of its compliance and request a less frequent measurement schedule. To request a less frequent schedule, the permittee shall submit a written request to the TCEQ Wastewater Permitting Section (MC 148) for each phase that includes a different monitoring frequency. The request must contain all of the reported bacteria values (Daily Avg. and Daily Max/Single Grab) for the twelve consecutive months immediately prior to the request. If the Executive Director finds that a less frequent measurement schedule is protective of human health and the environment, the permittee may be given a less frequent measurement schedule. For this permit, during the Interim phase 2/month can be reduced to 1/month and daily may be reduced to 5/week in the Final phase. A violation of any bacteria limit by a facility that has been granted a less frequent measurement schedule will require the permittee to return to the standard frequency schedule and submit written notice to the TCEO Wastewater Permitting Section (MC 148). The permittee may not apply for another reduction in measurement frequency for at least 24 months from the date of the last violation. The Executive Director may establish a more frequent measurement schedule if necessary to protect human health or the environment.
- 8. Plans and specifications have been approved for the 1.25 MGD wastewater treatment facility, in accordance with 30 TAC § 217, Design Criteria for Domestic Wastewater Systems. A summary transmittal approval letter was issued December 21, 2021 (Log No. 0921/009). A copy of the summary transmittal letter shall be available at the plant site for inspection by authorized representatives of the TCEQ.
- 9. The permittee shall notify the TCEQ Regional Office (MC Region 15) and the Applications Review and Processing Team (MC 148) of the Water Quality Division in writing at least forty-five days prior to the completion of the Final phase facility on Notification of Completion Form 20007.

OTHER REQUIREMENTS FOR THE BENEFICIAL LAND APPLICATION OF SEWAGE SLUDGE

- 10. Sludge applications must not cause or contribute to the harm of a threatened or endangered species of plant, fish, or wildlife or result in the destruction or adverse modification of the critical habitat of a threatened or endangered species.
- 11. Sludge must not be applied to land that is flooded, frozen, or snow-covered to prevent the entry of bulk sewage sludge into wetlands or other water in the state.
- 12. Sludge shall be land applied in a manner which complies with 30 TAC Section 312.44, Management Requirements, including maintaining the following buffer zones for each application area.
 - a. Established school, institution, business or residence

750 feet

b.	Public water supply well, intake, spring, or similar source, public	500 feet
	water treatment plant, or public water supply elevated or ground	
	storage tank	
c.	Solution channel, sinkhole, or other conduit to groundwater	200 feet
d.	Water in the state - when sludge is not incorporated	200 feet
e.	Water in the state - when sludge is incorporated within 48 hours	33 feet
	of application and a vegetated cover is established	
f.	Private water supply well	150 feet
g.	Public right-of-way	50 feet
h.	Property boundary	50 feet
i.	Irrigation conveyance canal	10 feet

- 13. Sludge must be applied to the land at an annual application rate that is equal to or less than the agronomic rate for the vegetation in the area on which the sludge is applied.
- 14. The seasonally high water table, groundwater table, or depth to water-saturated soils must be at least three (3) feet below the treatment zone for soils with moderate to slow permeability (less than two inches per hour) or four (4) feet below the treatment zone for soils with rapid to moderately rapid permeability (between two and twenty inches per hour). Sludge cannot be applied to soils with permeation rates greater than twenty inches per hour.
- 15. The permittee shall install water table observation wells at the lowest elevation of the application field within the Benito soil group. The wells shall be screened to measure water tables between 0.5 and 4.5 feet below the soil surface. Land application of sewage sludge in these fields shall be prohibited when the wells show a water table level within three feet of the soil surface. Depths to water tables for dates receiving sludge applications shall be recorded in a logbook to be kept on-site and made available to TCEQ personnel upon request.
- 16. Sludge must be applied by a method and under conditions that prevent runoff beyond the active application area and protect the quality of the surface water and the soils in the unsaturated zone. In addition, the following conditions must be met:
- 17. The permittee shall post a sign that is visible from a road or sidewalk that is adjacent to the premises where the land application unit is located stating that a beneficial land use application site is located on the premises. The sign shall be posted three days prior to and 14 days after the commencement of land application of sewage sludge and shall include the operator name, telephone number, the classification of sewage sludge and the TCEQ authorization number. In the event of reasonably unforeseen circumstances such as weather conditions or equipment failure that necessitate a change in a planned land application site, the required sign may be posted on the day on which sewage sludge land application commences. Records of any deviation from the posting requirements listed in this subsection and associated reasons shall be retained by the operator and be readily available for review by a TCEQ representative.
- 18. The permittee shall use of flagging, fencing, or signage to distinguish the sludge application area from staging areas and areas that are not being used for sludge application.
- 19. Soil Sampling and Analysis

The permittee is required to notify the local TCEQ Regional Office 48 hours prior to taking annual soil samples at the permitted site. Samples must be taken within the same 45-day period each year, or under an approved sampling plan and analyzed within 30 days of sample collection.

The permittee must monitor the soil-sludge mixture from the site for the parameters listed below using the soil sampling requirements described in 30 TAC § 312.12(a)(1)(I) and (J). Analytical results must be provided on a dry weight basis. The Soil Sampling and Analysis plan shall be provided to the analytical laboratory prior to sample analysis.

No.	PARAMETER	NOTE	FREQUENCY	SAMPLE	DEPTH
				o" - 6"	6" - 24"
1.	Nitrate Nitrogen (NO ₃ -N, mg/kg)	1	1 per year	X	X
2.	Ammonium Nitrogen (NH ₄ -N,	1	1 per year	X	X
	mg/kg)				
3.	Total Kjeldahl Nitrogen (TKN,	2	1 per year	X	X
	mg/kg)				
4.	Phosphorus (plant available, mg/kg)	3	1 per year	X	X
5.	Potassium (plant available, mg/kg)	3	1 per year	X	X
6.	Sodium (plant available, mg/kg)	3	1 per year	X	X
7.	Magnesium (plant available, mg/kg)	3	1 per year	X	X
8.	Calcium (plant available, mg/kg)	3	1 per year	X	X
9.	Electrical Conductivity	4	1 per year	X	X
10.	Soil Water pH (S.U.)	5	1 per year	X	X
11.	Total Arsenic (mg/kg)	6	1 per 5 years	X	N/A
12.	Total Cadmium (mg/kg)	6	1 per 5 years	X	N/A
13.	Total Chromium (mg/kg)	6	1 per 5 years	X	N/A
14.	Total Copper (mg/kg)	6	1 per 5 years	X	N/A
15.	Total Lead (mg/kg)	6	1 per 5 years	X	N/A
16.	Total Mercury (mg/kg)	6	1 per 5 years	X	N/A
17.	Total Molybdenum (mg/kg)	6	1 per 5 years	X	N/A
18.	Total Nickel (mg/kg)	6	1 per 5 years	X	N/A
19.	Total Selenium (mg/kg)	6	1 per 5 years	X	N/A
20.	Total Zinc (mg/kg)	6	1 per 5 years	X	N/A

NOTES

- a. Determined in a 1 N KCl soil extract (http://soiltesting.tamu.edu/webpages/swftlmethods1209.html).
- b. Determined by Kjeldahl digestion or an equivalent accepted procedure. Methods that rely on Mercury as a catalyst are not acceptable.
- c. Mehlich III extraction (yields plant-available concentrations) with inductively coupled plasma.
- d. Electrical Conductivity (EC) determined from extract of 2:1 (volume/volume) water/soil mixture and expressed in dS/m (same as mmho/cm).
- e. Soil pH must be analyzed by the electrometric method, Method 9045C, in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods" EPA SW-846, as referenced in 40 CFR § 260.11 determined from an extract of a 2:1 (volume/volume) water/soil mixture.
- f. Analyses for metals in soil must be performed according to methods outlined in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods" EPA SW-846; method 3050B.
- 20. Within 60 days from the date of permit issuance, the permittee shall submit an Adverse

Weather and Alternative Plan. This plan shall detail procedures to address times when the sludge cannot be applied to the land application site due to adverse weather or other conditions such as wind, precipitation, field preparation delays, and access road limitations.

- 21. The permittee shall remit to the Commission annual fees per 30 TAC § 312.9. Failure to pay the fees on time may result in revocation of this permit.
- 22. The permittee may not accept Class B sludge unless the sludge has been transported to the land application unit in a covered container with the covering firmly secured at the front and back.
- 23. For the first year of this permit, the maximum sludge application rate shall not exceed 12 dry tons per acre per year. On an annual basis, the sludge application rate shall be calculated and adjusted based on current sludge and soil monitoring results. This application rate that is submitted in each annual sludge report shall not exceed the overall maximum application rate of 12 dry tons per acre per year.
- 24. During times of land application of sludge, all buffer zones must be distinguished from each other by the use of flags, posting or fencing to ensure that buffer areas and land application areas are separated from each other.
- 25. The permittee shall consider nutrient management practices appropriate for the land application of sludge and assess the potential risk for nitrogen and phosphorus to contribute to water quality impairments. Information and assistance on a certification program for Nutrient Management Specialists is available online at http://nmp.tamu.edu.

Nutrient management shall be practiced within the context of the Natural Resources Conservation Service (NRCS) Code 590 Practice Standard, which addresses the kind, source, placement, form, amount, timing, and application method of nutrients and soil amendments. This is available online at:

https://nutrientmanagement.tamu.edu/content/resources/2012 Texas 590 NM Standar d Final.pdf

The 590 Standard should be applied using the Phosphorus Index, a simple screening tool used to rank the vulnerability of fields as sources of phosphorus loss to surface runoff. Information on the Phosphorus Index is available online at: https://nutrientmanagement.tamu.edu/content/tools/txtechnote15 rev.pdf

The annual analysis of extractable phosphorus in soil samples shall be conducted using the Mehlich III extraction with inductively coupled plasma.

- 26. All sludge staging areas shall be located outside the buffer zones required by 30 TAC §312.44(c).
- 27. The permittee shall submit a separate annual report by September 30th of each year per 30 TAC §312.48 for each site. The annual report must include all the information required under 30 TAC §312.48 (including the items listed below) for a period covering September 1st of the previous year through August 31st of the current year. Additionally, the "Annual Sludge Summary Report Form" (Attachment B) should be filled out and submitted with the annual report. The permittee shall submit the report to the Land Application Team of the Water Quality Assessment Section (MC 150) and the TCEQ Regional Office (MC Region 15).

Record retention requirements must be followed in accordance with 30 TAC §312.47. The following information must be included in the report:

- a. Annual Sludge Summary Report Form (a blank form is provided as Attachment B) with the following information:
 - i. permit number;
 - ii. the site location (address or latitude and longitude);
 - iii. operator address, contact person's name, telephone number, and fax number;
 - iv. amount of sludge applied (dry metric tons) at each land application unit;
 - v. number of acres on which sludge is land applied;
 - vi. vegetation grown and number of cuttings; and
 - vii. other items listed in the summary sheet.
- b. If the concentration for any metal listed in Table 3 is exceeded, the report must include the following information:
 - i. date and time of each application;
 - ii. all certification statements required under 30 TAC §312.47(a)(5)(B);
 - iii. a description of how the information from the generator was obtained, per 30 TAC §312.42(e);
 - iv. a description of how each of the management practices in 30 TAC §312.44 were met for this site:
 - v. a description of how the site restrictions in 30 TAC §312.82(b)(3) were met for this site;
 - vi. if the vector attraction reduction requirements in 30 TAC §312.83(b)(9) or (10) were met, a description of how this was done;
 - vii. soil and sludge test reports, as required in this permit; and
 - viii. calculations of the current agronomic rate and the life of the site based on metal loadings (Appendix A of the application, or a similar form).
- c. If none of the concentrations for the metals exceed the values listed in Sludge Provisions Section II.A, Table 3, the report must include the following information:
 - i. information per 30 TAC §312.47(a)(3)(B) for Class A or AB sludge; and
 - ii. information per 30 TAC §312.47(a)(4)(B) for Class B sludge.
- d. When the amount of any pollutant applied to the land exceeds 90% of the cumulative pollutant loading rate for that pollutant, as described in Table 2 in Sludge Provisions Section II.A, the permittee shall provide the following additional information:
 - i. date and time of each application;
 - ii. the information in 30 TAC §312.47(a)(5)(A) must be obtained from the generator and included in the report; and
 - iii. the cumulative amount in pounds per acre of each pollutant listed in Table 2 applied to each application field of this site through bulk sludge.
- d. The permittee shall submit evidence it is complying with the nutrient management plan developed by a certified nutrient management specialist in accordance with the practice standards of the Natural Resources Conservation Service of the United States Department of Agriculture.

28. The permittee shall submit a quarterly report by the 15th day of the month following each quarter during the reporting period (i.e., quarterly reports will be due December 15th, March 15th, June 15th, and September 15th). Additionally, the "Quarterly Sludge Summary Report" (Attachment C) should be filled out and submitted with the quarterly report. The permittee shall submit the report to the Land Application Team of the Water Quality Assessment Section (MC 150) and the TCEQ Regional Office (MC Region 15). Record retention requirements must be followed in accordance with 30 TAC§312.47. The Quarterly Land Application Report Form must include the following information:

BIOMONITORING REQUIREMENTS

CHRONIC BIOMONITORING REQUIREMENTS: FRESHWATER

The provisions of this section apply to Outfall 001 **or** Outfall 002 for whole effluent toxicity (WET) testing.

1. Scope, Frequency, and Methodology

- a. The permittee shall test the effluent for toxicity in accordance with the provisions below. Such testing will determine if an appropriately dilute effluent sample adversely affects the survival, reproduction, or growth of the test organisms.
- b. Within 90 days of initial discharge of the final phase 1.25 MGD facility, the permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified in this part of this permit and in accordance with "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms," fourth edition (EPA-821-R-02-013) or its most recent update:
 - 1) Chronic static renewal survival and reproduction test using the water flea (*Ceriodaphnia dubia*) (Method 1002.0). This test should be terminated when 60% of the surviving adults in the control produce three broods or at the end of eight days, whichever occurs first. This test shall be conducted once per quarter.
 - 2) Chronic static renewal 7-day larval survival and growth test using the fathead minnow (*Pimephales promelas*) (Method 1000.0). A minimum of five replicates with eight organisms per replicate shall be used in the control and in each dilution. This test shall be conducted once per quarter.

The permittee must perform and report a valid test for each test species during the prescribed reporting period. An invalid test must be repeated during the same reporting period. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. The permittee shall use five effluent dilution concentrations and a control in each toxicity test. These effluent dilution concentrations are 32%, 42%, 56%, 75%, and 100% effluent. The critical dilution, defined as 100% effluent, is the effluent concentration representative of the proportion of effluent in the receiving water during critical low flow or critical mixing conditions.
- d. This permit may be amended to require a WET limit, a chemical-specific effluent limit, a best management practice, or other appropriate actions to address toxicity. The permittee may be required to conduct a toxicity reduction evaluation (TRE) after multiple toxic events.
- e. Testing Frequency Reduction

- 1) If none of the first four consecutive quarterly tests demonstrates significant toxicity, the permittee may submit this information in writing and, upon approval, reduce the testing frequency to once per six months for the invertebrate test species and once per year for the vertebrate test species.
- 2) If one or more of the first four consecutive quarterly tests demonstrates significant toxicity, the permittee shall continue quarterly testing for that species until this permit is reissued. If a testing frequency reduction had been previously granted and a subsequent test demonstrates significant toxicity, the permittee shall resume a quarterly testing frequency for that species until this permit is reissued.

2. Required Toxicity Testing Conditions

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control and all effluent dilutions, which fail to meet the following criteria:
 - 1) a control mean survival of 80% or greater;
 - 2) a control mean number of water flea neonates per surviving adult of 15 or greater;
 - 3) a control mean dry weight of surviving fathead minnow larvae of 0.25 mg or greater;
 - a control coefficient of variation percent (CV%) of 40 or less in between replicates for the young of surviving females in the water flea test; and the growth and survival endpoints in the fathead minnow test;
 - 5) a critical dilution CV% of 40 or less for the young of surviving females in the water flea test; and the growth and survival endpoints for the fathead minnow test. However, if statistically significant lethal or nonlethal effects are exhibited at the critical dilution, a CV% greater than 40 shall not invalidate the test;
 - a percent minimum significant difference of 47 or less for water flea reproduction; and
 - 7) a percent minimum significant difference of 30 or less for fathead minnow growth.

b. Statistical Interpretation

- 1) For the water flea survival test, the statistical analyses used to determine if there is a significant difference between the control and an effluent dilution shall be the Fisher's exact test as described in the manual referenced in Part 1.b.
- 2) For the water flea reproduction test and the fathead minnow larval survival and growth tests, the statistical analyses used to determine if

- there is a significant difference between the control and an effluent dilution shall be in accordance with the manual referenced in Part 1.b..
- 3) The permittee is responsible for reviewing test concentration-response relationships to ensure that calculated test-results are interpreted and reported correctly. The document entitled "Method Guidance and Recommendation for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136)" (EPA 821-B-00-004) provides guidance on determining the validity of test results.
- 4) If significant lethality is demonstrated (that is, there is a statistically significant difference in survival at the critical dilution when compared to the survival in the control), the conditions of test acceptability are met, and the survival of the test organisms are equal to or greater than 80% in the critical dilution and all dilutions below that, then the permittee shall report a survival No Observed Effect Concentration (NOEC) of not less than the critical dilution for the reporting requirements.
- 5) The NOEC is defined as the greatest effluent dilution at which no significant effect is demonstrated. The Lowest Observed Effect Concentration (LOEC) is defined as the lowest effluent dilution at which a significant effect is demonstrated. A significant effect is defined as a statistically significant difference between the survival, reproduction, or growth of the test organism in a specified effluent dilution when compared to the survival, reproduction, or growth of the test organism in the control (0% effluent).
- 6) The use of NOECs and LOECs assumes either a monotonic (continuous) concentration-response relationship or a threshold model of the concentration-response relationship. For any test result that demonstrates a non-monotonic (non-continuous) response, the NOEC should be determined based on the guidance manual referenced in Item 3.
- 7) Pursuant to the responsibility assigned to the permittee in Part 2.b.3), test results that demonstrate a non-monotonic (non-continuous) concentration-response relationship may be submitted, prior to the due date, for technical review. The guidance manual referenced in Item 3 will be used when making a determination of test acceptability.
- 8) TCEQ staff will review test results for consistency with rules, procedures, and permit requirements.

c. Dilution Water

Dilution water used in the toxicity tests must be the receiving water collected at a point upstream of the discharge point as close as possible to the discharge point but unaffected by the discharge. Where the toxicity tests are conducted on effluent discharges to receiving waters that are classified as intermittent streams, or where the toxicity tests are conducted on effluent discharges where no receiving water is available due to zero flow conditions, the permittee shall:

- a) substitute a synthetic dilution water that has a pH, hardness, and alkalinity similar to that of the closest downstream perennial water unaffected by the discharge; or
- b) use the closest downstream perennial water unaffected by the discharge.
- 2) Where the receiving water proves unsatisfactory as a result of pre-existing instream toxicity (i.e. fails to fulfill the test acceptance criteria of Part 2.a.), the permittee may substitute synthetic dilution water for the receiving water in all subsequent tests provided the unacceptable receiving water test met the following stipulations:
 - a) a synthetic lab water control was performed (in addition to the receiving water control) which fulfilled the test acceptance requirements of Part 2.a;
 - b) the test indicating receiving water toxicity was carried out to completion (i.e., 7 days); and
 - c) the permittee submitted all test results indicating receiving water toxicity with the reports and information required in Part 3.
- 3) The synthetic dilution water shall consist of standard, moderately hard, reconstituted water. Upon approval, the permittee may substitute other appropriate dilution water with chemical and physical characteristics similar to that of the receiving water.

d. Samples and Composites

- 1) The permittee shall collect a minimum of three composite samples from Outfall 001 or Outfall 002. The second and third composite samples will be used for the renewal of the dilution concentrations for each toxicity test.
- 2) The permittee shall collect the composite samples such that the samples are representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged on an intermittent basis.
- 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the first composite sample. The holding time for any subsequent composite sample shall not exceed 72 hours. Samples shall be maintained at a temperature of 0-6 degrees Centigrade during collection, shipping, and storage.
- 4) If Outfall 001 or Outfall 002 ceases discharging during the collection of effluent samples, the requirements for the minimum number of effluent samples, the minimum number of effluent portions, and the sample holding time are waived during that sampling period. However, the permittee must have collected an effluent composite sample volume

sufficient to complete the required toxicity tests with renewal of the effluent. When possible, the effluent samples used for the toxicity tests shall be collected on separate days if the discharge occurs over multiple days. The sample collection duration and the static renewal protocol associated with the abbreviated sample collection must be documented in the full report.

5) The effluent samples shall not be dechlorinated after sample collection.

3. Reporting

All reports, tables, plans, summaries, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated whether carried to completion or not.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 1 forms provided with this permit.
 - 1) Annual biomonitoring test results are due on or before January 20th for biomonitoring conducted during the previous 12-month period.
 - 2) Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.
 - 3) Quarterly biomonitoring test results are due on or before April 20th, July 20th, October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.
 - 4) Monthly biomonitoring test results are due on or before the 20th day of the month following sampling.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the water flea, Parameter TLP3B, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) For the water flea, Parameter TOP3B, report the NOEC for survival.
 - 3) For the water flea, Parameter TXP3B, report the LOEC for survival.
 - 4) For the water flea, Parameter TWP3B, enter a "1" if the NOEC for reproduction is less than the critical dilution; otherwise, enter a "o."
 - 5) For the water flea, Parameter TPP3B, report the NOEC for reproduction.
 - 6) For the water flea, Parameter TYP3B, report the LOEC for reproduction.

- 7) For the fathead minnow, Parameter TLP6C, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
- 8) For the fathead minnow, Parameter TOP6C, report the NOEC for survival.
- 9) For the fathead minnow, Parameter TXP6C, report the LOEC for survival.
- For the fathead minnow, Parameter TWP6C, enter a "1" if the NOEC for growth is less than the critical dilution; otherwise, enter a "0."
- 11) For the fathead minnow, Parameter TPP6C, report the NOEC for growth.
- 12) For the fathead minnow, Parameter TYP6C, report the LOEC for growth.
- d. Enter the following codes for retests only:
 - 1) For retest number 1, Parameter 22415, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."
 - 2) For retest number 2, Parameter 22416, enter a "1" if the NOEC for survival is less than the critical dilution; otherwise, enter a "0."

4. <u>Persistent Toxicity</u>

The requirements of this Part apply only when a test demonstrates a significant effect at the critical dilution. Significant lethality and significant effect were defined in Part 2.b. Significant sublethality is defined as a statistically significant difference in growth/reproduction at the critical dilution when compared to the growth/reproduction in the control.

- a. The permittee shall conduct a total of 2 additional tests (retests) for any species that demonstrates a significant effect (lethal or sublethal) at the critical dilution. The two retests shall be conducted monthly during the next two consecutive months. The permittee shall not substitute either of the two retests in lieu of routine toxicity testing. All reports shall be submitted within 20 days of test completion. Test completion is defined as the last day of the test.
- b. If the retests are performed due to a demonstration of significant lethality, and one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall initiate the TRE requirements as specified in Part 5. The provisions of Part 4.a. are suspended upon completion of the two retests and submittal of the TRE action plan and schedule defined in Part 5.
 - If neither test demonstrates significant lethality and the permittee is testing under the reduced testing frequency provision of Part 1.e., the permittee shall return to a quarterly testing frequency for that species.
- c. If the two retests are performed due to a demonstration of significant sublethality, and one or both of the two retests specified in Part 4.a. demonstrates

- significant lethality, the permittee shall again perform two retests as stipulated in Part 4.a.
- d. If the two retests are performed due to a demonstration of significant sublethality, and neither test demonstrates significant lethality, the permittee shall continue testing at the quarterly frequency.
- e. Regardless of whether retesting for lethal or sublethal effects, or a combination of the two, no more than one retest per month is required for a species.

5. <u>Toxicity Reduction Evaluation</u>

- a. Within 45 days of the retest that demonstrates significant lethality, or within 45 days of being so instructed due to multiple toxic events, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, or within 90 days of being so instructed due to multiple toxic events, the permittee shall submit a TRE action plan and schedule for conducting a TRE. The plan shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analyses to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall describe an approach for the reduction or elimination of lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:
 - Specific Activities The TRE action plan shall specify the approach the 1) permittee intends to utilize in conducting the TRE, including toxicity characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Toxicity Identification Evaluation: Characterization of Chronically Toxic Effluents, Phase I" (EPA/600/6-91/005F) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aquatic Toxicity Identification Evaluations, Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;
 - Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to

perform the toxicity characterization/identification/confirmation procedures, and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects a specific pollutant and source of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;

- 3) Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
- 4) Project Organization The TRE action plan should describe the project staff, project manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.
- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:
 - 1) results and interpretation of any chemical-specific analyses for the identified and suspected pollutant performed during the quarter;
 - 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;
 - any data and substantiating documentation which identifies the pollutant(s) and source of effluent toxicity;
 - 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
 - 5) any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to meet no significant lethality at the critical dilution; and
 - 6) any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.
- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive months with at least monthly

testing. At the end of the 12 months, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply as a result of corrective actions taken by the permittee. Corrective actions are defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.

- g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 28 months from the last test day of the retest that confirmed significant lethal effects at the critical dilution. The permittee may petition the Executive Director (in writing) for an extension of the 28-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE. The report shall provide information pertaining to the specific control mechanism selected that will, when implemented, result in the reduction of effluent toxicity to no significant lethality at the critical dilution. The report shall also provide a specific corrective action schedule for implementing the selected control mechanism.
- h. Based on the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements, where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and specify a chemical-specific limit.
- i. Copies of any and all required TRE plans and reports shall also be submitted to the U.S. EPA Region 6 office, 6WQ-PO.

TABLE 1 (SHEET 1 OF 4) BIOMONITORING REPORTING CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION

		Date	Time		Date	Time	
Dates and Times Composites	No. 1 FROM: _			_ TO:			
Collected	No. 2 FROM: _			_ TO:			
	No. 3 FROM:_			_ TO:			
Test initiated:			am/pm _				_date
Dilution wa	ter used:	_ Rece	eiving water		_ Synthetic	Dilution v	water

NUMBER OF YOUNG PRODUCED PER ADULT AT END OF TEST

	TOTAL	101 100110		ca .	LI LI OI II		
		Percent effluent					
REP	0%	32%	42%	56%	75%	100%	
A							
В							
С							
D							
Е							
F							
G							
Н							
I							
J							
Survival Mean							
Total Mean							
CV%*							
PMSD							

^{*}Coefficient of Variation = standard deviation x 100/mean (calculation based on young of the surviving adults)

Designate males (M), and dead females (D), along with number of neonates (x) released prior to death.

TABLE 1 (SHEET 2 OF 4)

CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION TEST

1. Dunnett's Procedure or Steel's Many-One Rank Test or Wilcoxon Rank Sum Test (with Bonferroni adjustment) or t-test (with Bonferroni adjustment) as appropriate:

Is the mean number of young produced per adult significantly less than the number of young per adult in the control for the % effluent corresponding to significant nonlethal effects?

CRITICAL DILUTION (100%): _____ YES _____ NO

PERCENT SURVIVAL

	Percent effluent					
Time of Reading	0%	32%	42%	56%	75%	100%
24h						
48h						
End of Test						

2. Fisher's Exact Test:

Is the mean survival at test end significantly less than the control survival for the % effluent corresponding to lethality?

CRITICAL DILUTION (100%): _____ YES ____ NO

- 3. Enter percent effluent corresponding to each NOEC\LOEC below:
 - a.) NOEC survival = _____ % effluent
 - b.) LOEC survival = _____% effluent
 - c.) NOEC reproduction = ______% effluent
 - d.) LOEC reproduction = _____ % effluent

TABLE 1 (SHEET 3 OF 4)

BIOMONITORING REPORTING

FATHEAD MINNOW LARVAE GROWTH AND SURVIVAL

Dates and Times	No. 1 FRO	Date Time Doi: TO:					
Composites Collected	No. 2 FR	OM:					
	No. 3 FR	OM:			_ TO:		
Test initiated:			a	m/pm _			date
Dilution wat	er used:	R	Receiving w	ater		Synthetic d	ilution water
	:	FATHEAI) MINNOV	V GROW'	ГН DATA		
Effluent	Avera	ge Dry We	eight in rep	licate cha	mbers	Mean Dry	CV%*
Concentration	A	В	С	D	Е	Weight	
0%							
32%							
42%							
56%							
75%							
100%							
PMSD							
* Coefficient of Varia 1. Dunnett's Properties Bonferroni and (growth) for	ocedure or S djustment) o lry weight (g the % effluer	teel's Mar or t-test (w growth) at nt correspo	ny-One Rar rith Bonfer 7 days sign onding to s	nk Test or roni adjust nificantly significant	stment) as less than t nonletha	s appropriat the control's	e:

TABLE 1 (SHEET 4 OF 4)

BIOMONITORING REPORTING

FATHEAD MINNOW GROWTH AND SURVIVAL TEST

FATHEAD MINNOW SURVIVAL DATA

Effluent	Percent Survival in replicate chambers					Mean percent survival			CV%*
Concentration	A	В	С	D	E	24h	48h	7 day	
0%									
32%									
42%									
56%									
75%									
100%		_	_	-	_		_		

^{*} Coefficient of Variation = standard deviation x 100/mean

icient c	or variation = standard deviation x 100/mean			
2.	Dunnett's Procedure or Steel's Many-One Rank Test or Wilcoxon Rank Sum Test (with Bonferroni adjustment) or t-test (with Bonferroni adjustment) as appropriate:			
	Is the mean survival at 7 days significantly less than the control survival for the % effluent corresponding to lethality?			
	CRITICAL DILUTION (100%): YES NO			
3.	Enter percent effluent corresponding to each NOEC\LOEC below:			
	a.) NOEC survival =% effluent			
	b.) LOEC survival =% effluent			
	c.) NOEC growth =% effluent			
	d.) LOEC growth =% effluent			

24-HOUR ACUTE BIOMONITORING REQUIREMENTS: FRESHWATER

The provisions of this section apply to Outfall 001 **or** Outfall 002 for whole effluent toxicity (WET) testing.

1. <u>Scope, Frequency, and Methodology</u>

- a. The permittee shall test the effluent for lethality in accordance with the provisions in this section. Such testing will determine compliance with Texas Surface Water Quality Standard 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival of the appropriate test organisms in 100% effluent for a 24-hour period.
- b. Within 90 days of initial discharge of the final phase 1.25 MGD facility, the toxicity tests specified shall be conducted once per six months. The permittee shall conduct the following toxicity tests using the test organisms, procedures, and quality assurance requirements specified in this section of the permit and in accordance with "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms," fifth edition (EPA-821-R-02-012) or its most recent update:
 - 1) Acute 24-hour static toxicity test using the water flea (*Daphnia pulex* or *Ceriodaphnia dubia*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.
 - 2) Acute 24-hour static toxicity test using the fathead minnow (*Pimephales promelas*). A minimum of five replicates with eight organisms per replicate shall be used in the control and each dilution.

A valid test result must be submitted for each reporting period. The permittee must report, and then repeat, an invalid test during the same reporting period. The repeat test shall include the control and the 100% effluent dilution and use the appropriate number of organisms and replicates, as specified above. An invalid test is defined as any test failing to satisfy the test acceptability criteria, procedures, and quality assurance requirements specified in the test methods and permit.

- c. In addition to an appropriate control, a 100% effluent concentration shall be used in the toxicity tests. Except as discussed in item 2.b., the control and dilution water shall consist of standard, synthetic, moderately hard, reconstituted water.
- d. This permit may be amended to require a WET limit, a Best Management Practice (BMP), Chemical-Specific (CS) limits, or other appropriate actions to address toxicity. The permittee may be required to conduct a Toxicity Reduction Evaluation after multiple toxic events.
- e. As the dilution series specified in the Chronic Biomonitoring Requirements includes a 100% effluent concentration, the results from those tests may fulfill the requirements of this Section; any tests performed in the proper time interval may be substituted. Compliance will be evaluated as specified in item a. The 50% survival in 100% effluent for a 24-hour period standard applies to all tests

utilizing a 100% effluent dilution, regardless of whether the results are submitted to comply with the minimum testing frequency defined in item b.

2. Required Toxicity Testing Conditions

- a. Test Acceptance The permittee shall repeat any toxicity test, including the control, if the control fails to meet a mean survival equal to or greater than 90%.
- b. Dilution Water In accordance with item 1.c., the control and dilution water shall normally consist of standard, synthetic, moderately hard, reconstituted water. If the permittee utilizes the results of a chronic test to satisfy the requirements in item 1.e., the permittee may use the receiving water or dilution water that meets the requirements of item 2.a as the control and dilution water.

c. Samples and Composites

- 1) The permittee shall collect one composite sample from Outfall 001 or Outfall 002.
- 2) The permittee shall collect the composite sample such that the sample is representative of any periodic episode of chlorination, biocide usage, or other potentially toxic substance being discharged.
- 3) The permittee shall initiate the toxicity tests within 36 hours after collection of the last portion of the composite sample. The sample shall be maintained at a temperature of o-6 degrees Centigrade during collection, shipping, and storage.
- 4) If Outfall 001 or Outfall 002 ceases discharging during the collection of the effluent composite sample, the requirements for the minimum number of effluent portions are waived. However, the permittee must have collected a composite sample volume sufficient for completion of the required test. The abbreviated sample collection, duration, and methodology must be documented in the full report.
- 5) The effluent sample shall not be dechlorinated after sample collection.

3. Reporting

All reports, tables, plans, summaries, and related correspondence required in this section shall be submitted to the attention of the Standards Implementation Team (MC 150) of the Water Quality Division.

- a. The permittee shall prepare a full report of the results of all tests conducted in accordance with the manual referenced in Part 1.b. for every valid and invalid toxicity test initiated.
- b. The permittee shall routinely report the results of each biomonitoring test on the Table 2 forms provided with this permit.

- 1) Semiannual biomonitoring test results are due on or before July 20th and January 20th for biomonitoring conducted during the previous 6-month period.
- 2) Quarterly biomonitoring test results are due on or before April 20th, July 20th, and October 20th, and January 20th for biomonitoring conducted during the previous calendar quarter.
- c. Enter the following codes for the appropriate parameters for valid tests only:
 - 1) For the water flea, Parameter TIE3D, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."
 - 2) For the fathead minnow, Parameter TIE6C, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."
- d. Enter the following codes for retests only:
 - 1) For retest number 1, Parameter 22415, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."
 - 2) For retest number 2, Parameter 22416, enter a "0" if the mean survival at 24 hours is greater than 50% in the 100% effluent dilution; if the mean survival is less than or equal to 50%, enter a "1."

4. <u>Persistent Mortality</u>

The requirements of this part apply when a toxicity test demonstrates significant lethality, which is defined as a mean mortality of 50% or greater of organisms exposed to the 100% effluent concentration for 24 hours.

- a. The permittee shall conduct 2 additional tests (retests) for each species that demonstrates significant lethality. The two retests shall be conducted once per week for 2 weeks. Five effluent dilution concentrations in addition to an appropriate control shall be used in the retests. These effluent concentrations are 6%, 13%, 25%, 50% and 100% effluent. The first retest shall be conducted within 15 days of the laboratory determination of significant lethality. All test results shall be submitted within 20 days of test completion of the second retest. Test completion is defined as the 24th hour.
- b. If one or both of the two retests specified in Part 4.a. demonstrates significant lethality, the permittee shall initiate the TRE requirements as specified in Part 5.

5. <u>Toxicity Reduction Evaluation</u>

a. Within 45 days of the retest that demonstrates significant lethality, the permittee shall submit a general outline for initiating a TRE. The outline shall include, but not be limited to, a description of project personnel, a schedule for obtaining

- consultants (if needed), a discussion of influent and effluent data available for review, a sampling and analytical schedule, and a proposed TRE initiation date.
- b. Within 90 days of the retest that demonstrates significant lethality, the permittee shall submit a TRE action plan and schedule for conducting a TRE. The plan shall specify the approach and methodology to be used in performing the TRE. A TRE is a step-wise investigation combining toxicity testing with physical and chemical analyses to determine actions necessary to eliminate or reduce effluent toxicity to a level not effecting significant lethality at the critical dilution. The TRE action plan shall lead to the successful elimination of significant lethality for both test species defined in Part 1.b. At a minimum, the TRE action plan shall include the following:
 - 1) Specific Activities - The TRE action plan shall specify the approach the permittee intends to utilize in conducting the TRE, including toxicity characterizations, identifications, confirmations, source evaluations, treatability studies, and alternative approaches. When conducting characterization analyses, the permittee shall perform multiple characterizations and follow the procedures specified in the document entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures" (EPA/600/6-91/003) or alternate procedures. The permittee shall perform multiple identifications and follow the methods specified in the documents entitled "Methods for Aquatic Toxicity Identification Evaluations: Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081). All characterization, identification, and confirmation tests shall be conducted in an orderly and logical progression;
 - 2) Sampling Plan The TRE action plan should describe sampling locations, methods, holding times, chain of custody, and preservation techniques. The effluent sample volume collected for all tests shall be adequate to perform the toxicity characterization/identification/confirmation procedures and chemical-specific analyses when the toxicity tests show significant lethality. Where the permittee has identified or suspects specific pollutant and source of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical-specific analyses for the identified and suspected pollutant and source of effluent toxicity;
 - 3) Quality Assurance Plan The TRE action plan should address record keeping and data evaluation, calibration and standardization, baseline tests, system blanks, controls, duplicates, spikes, toxicity persistence in the samples, randomization, reference toxicant control charts, and mechanisms to detect artifactual toxicity; and
 - 4) Project Organization The TRE Action Plan should describe the project staff, project manager, consulting engineering services (where applicable), consulting analytical and toxicological services, etc.

- c. Within 30 days of submittal of the TRE action plan and schedule, the permittee shall implement the TRE.
- d. The permittee shall submit quarterly TRE activities reports concerning the progress of the TRE. The quarterly TRE activities reports are due on or before April 20th, July 20th, October 20th, and January 20th. The report shall detail information regarding the TRE activities including:
 - 1) results and interpretation of any chemical-specific analyses for the identified and suspected pollutant performed during the quarter;
 - 2) results and interpretation of any characterization, identification, and confirmation tests performed during the quarter;
 - any data and substantiating documentation that identifies the pollutant and source of effluent toxicity;
 - 4) results of any studies/evaluations concerning the treatability of the facility's effluent toxicity;
 - 5) any data that identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to eliminate significant lethality; and
 - 6) any changes to the initial TRE plan and schedule that are believed necessary as a result of the TRE findings.
- e. During the TRE, the permittee shall perform, at a minimum, quarterly testing using the more sensitive species. Testing for the less sensitive species shall continue at the frequency specified in Part 1.b.
- f. If the effluent ceases to effect significant lethality, i.e., there is a cessation of lethality, the permittee may end the TRE. A cessation of lethality is defined as no significant lethality for a period of 12 consecutive weeks with at least weekly testing. At the end of the 12 weeks, the permittee shall submit a statement of intent to cease the TRE and may then resume the testing frequency specified in Part 1.b.

This provision accommodates situations where operational errors and upsets, spills, or sampling errors triggered the TRE, in contrast to a situation where a single toxicant or group of toxicants cause lethality. This provision does not apply as a result of corrective actions taken by the permittee. Corrective actions are defined as proactive efforts that eliminate or reduce effluent toxicity. These include, but are not limited to, source reduction or elimination, improved housekeeping, changes in chemical usage, and modifications of influent streams and effluent treatment.

The permittee may only apply this cessation of lethality provision once. If the effluent again demonstrates significant lethality to the same species, the permit will be amended to add a WET limit with a compliance period, if appropriate. However, prior to the effective date of the WET limit, the permittee may apply for

- a permit amendment removing and replacing the WET limit with an alternate toxicity control measure by identifying and confirming the toxicant and an appropriate control measure.
- g. The permittee shall complete the TRE and submit a final report on the TRE activities no later than 18 months from the last test day of the retest that demonstrates significant lethality. The permittee may petition the Executive Director (in writing) for an extension of the 18-month limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE. The report shall specify the control mechanism that will, when implemented, reduce effluent toxicity as specified in Part 5.h. The report shall also specify a corrective action schedule for implementing the selected control mechanism. A copy of the TRE final report shall also be submitted to the U.S. EPA Region 6 office.
- h. Within 3 years of the last day of the test confirming toxicity, the permittee shall comply with 30 TAC § 307.6(e)(2)(B), which requires greater than 50% survival of the test organism in 100% effluent at the end of 24-hours. The permittee may petition the Executive Director (in writing) for an extension of the 3-year limit. However, to warrant an extension the permittee must have demonstrated due diligence in its pursuit of the toxicity identification evaluation/TRE and must prove that circumstances beyond its control stalled the toxicity identification evaluation/TRE.

The permittee may be exempted from complying with 30 TAC § 307.6(e)(2)(B) upon proving that toxicity is caused by an excess, imbalance, or deficiency of dissolved salts. This exemption excludes instances where individually toxic components (e.g., metals) form a salt compound. Following the exemption, this permit may be amended to include an ion-adjustment protocol, alternate species testing, or single species testing.

- i. Based upon the results of the TRE and proposed corrective actions, this permit may be amended to modify the biomonitoring requirements where necessary, require a compliance schedule for implementation of corrective actions, specify a WET limit, specify a best management practice, and specify a chemical-specific limit.
- j. Copies of any and all required TRE plans and reports shall also be submitted to the U.S. EPA Region 6 office, 6WQ-PO.

TABLE 2 (SHEET 1 OF 2)

WATER FLEA SURVIVAL

GENERAL INFORMATION

	Time	Date
Composite Sample Collected		
Test Initiated		

PERCENT SURVIVAL

Time o	Don		Percent effluent				
Time	Rep	0%	6%	13%	25%	50%	100%
	A						
	В						
0.4h	C						
24h	D						
	E						
	MEAN						

Enter	percent effluent o	corresponding t	o the LC	50 below:
LIILUI	porcourt criticist,	corresponding t	.0 1110 110	IO DOLOW.

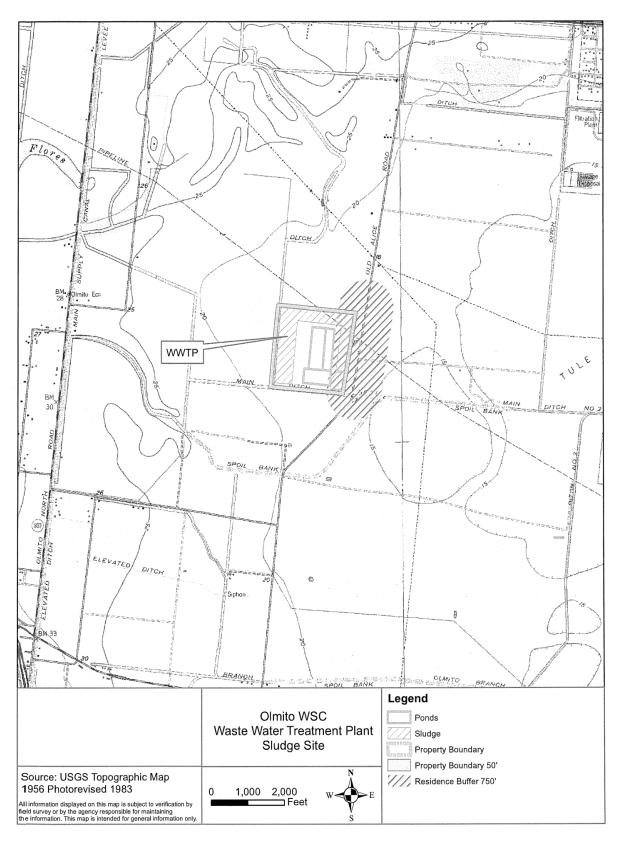
24-hour LC50 = _____% effluent

TABLE 2 (SHEET 2 OF 2)

FATHEAD MINNOW SURVIVAL

GENERAL INFORMATION

	Time	Date
Composite Sample Collected		
Test Initiated		


PERCENT SURVIVAL

Time Rej	Pop	Percent effluent					
	Kep	0%	6%	13%	25%	50%	100%
	A						
	В						
o 4h	С						
24h	D						
	E						
	MEAN	_				_	

Entonnoncent	offluort company	andina ta	tha I Cea	halarırı
Enter bercent	effluent correspo	maine to	me LC50	perow:

24-hour LC50 = _____% effluent

Attachment A

Attachment B

Annual Sludge Summary Report Form

Note 1:	If your site field.	has more than one land appl	ication field, please submi	t a separate form for each			
Note 2:	Please note		form, you need to submit	all information as required by			
Mata au	30 TAC 312.48. Note 3: If you operate other registered/permitted sludge land application sites, a form should be						
Note 3:		ate other registered/permitte for each site.	a siudge land application	sites, a form should be			
Note 4:		one complete copy of your rep	ort and this form to the To	CEQ regional office in your			
For TCEQ	Fiscal Year:	Reporting period:	From September 1,	to August 31,			
Registration No: Date							
Name of R	Registrant:						
Mailing A	ddress:						
Contact Pe	erson:	Name:	Telephone	e No:			
		y): (Please sub	mit a separate form fo	r each field)			
1.	Sewage Slud	-					
	a. Land Appl			dry tons/year			
	b. Disposed			dry tons/year			
		via MSW Landfill:		dry tons/year			
2.		estic Septage - Land Applied:		gallons/year			
		ed to treat Domestic Septage:					
3.	Water Treatn	nent Plant Sludge:					
	a. Land Appl	ied:		dry tons/year			
	b. Dedicated	Land Disposal:		dry tons/year			
	c. Disposed	via Monofill:	•	dry tons/year			
4.	Class A sludg	ge land applied:		dry tons/year			
5.	Acreage used	for sludge application/dispos	sal at this site:	acres			
	•	on (such as grass type etc.) and					
6.	cuttings:	(0 1,					
Sew	age Sludge onl	y – Please provide informatio	on regarding the following	3 items:			
		idge you have generated or re					
liste	ed in Table 3 of	30 TAC §312.43 (b)?		Yes 🗌 No 🗌			
		reached or exceeded 90% of	the cumulative metal load				
		30 TAC §312.43 (b)?	fr 0/ f 1 1'	Yes No No			
		e been applied to the field/site ble 2 of 30 TAC §312.43 (b) be		metal loading rates for any of Yes No			
		THE COMPLETED ANNUA		ies [] No []			
1 1/1		mmission on Environmental					
		olication Team (MC 150)					
		iality Assessment Section					
	P.O. Box	13087					
	Austin T	X 78711-3087					

Attachment C Annual Sludge Summary Report Form If your site has more than one land application field, please submit a separate form for each

	Note 1: If your site field.	has more than one land appl	lication field, please subm	it a separate form for each
	Note 2: Please note		form, you need to submi	t all information as required by
	30 TAC 312 Note 3: If you oper	2.48. ate other registered/permitte	ed sludge land application	sites, a form should be
		for each site.	a studge land application	i sites, a form snowd pe
		one complete copy of your rep	port and this form to the T	ICEQ regional office in your
	area.	Danautina navia da	From Contombon 1	to Angust 21
	For TCEQ Fiscal Year:	Reporting period:	From September 1,	to August 31,
ĺ	Registration No:		Date	
I	Name of Registrant:			
I	Mailing Address:			
I				
l	Contact Person:	Name:	Telephon	ne No:
	Field No. (if any	7):(Please sub	mit a separate form f	or each field)
	1. Sewage Slud	ge:	·	
	a. Land Appl			dry tons/year
	b. Disposed v	/ia Monofill:		dry tons/year
	c. Disposed v	via MSW Landfill:		dry tons/year
	Treated Dome	estic Septage - Land Applied	:	gallons/year
	a. Method us	ed to treat Domestic Septage	:	
	Water Treatm	nent Plant Sludge:		
	a. Land Appl	ied:		dry tons/year
	b. Dedicated	Land Disposal:		dry tons/year
	c. Disposed v	via Monofill:	•	dry tons/year
	4. Class A sludg	ge land applied:		dry tons/year
	5. Acreage used	for sludge application/dispos	sal at this site:	acres
	6. Site vegetation	on (such as grass type etc.) an	d number of	
	o. cuttings:			
	Sewage Sludge onl	y – Please provide information	on regarding the following	g 3 items:
		idge you have generated or re	eceived exceed the concen	
	listed in Table 3 of	30 TAC §312.43 (b)?		Yes No
		e reached or exceeded 90% of	the cumulative metal loa	
		30 TAC §312.43 (b)?	e after 00% of cumulative	Yes No netal loading rates for any of
		ole 2 of 30 TAC §312.43 (b) be		Yes No No
		THE COMPLETED ANNUA		
		mmission on Environmental	Quality	
		plication Team (MC 150)		
		ality Assessment Section		
	P.O. Box	13087 X 78711-3087		
	Ausun, I	V 10/11-2001		

Attachment D Quarterly Sludge Summary Report Form

Note: Note: Note:	2: Please place3: If you have	has more than one land appli e this sheet at the top of your more than one permitted site a copy of this sheet and all a	Quarterly Sludge Report then fill-out this form for	or each one of those sites.
For TCE	Q Fiscal Year:	Reporting period:	From September 1,	to August 31,
Registration No:			Date	
Name of Registrant:				
Mailing A	Address:			
Contact I	Person:	Name:	Telephoi	ne No:
Field No.	(if any):(Submit separate form for ea	nch field)	
1.	Class B Sewag	e Sludge Land Applied:	•	dry tons /quarter
2.	•	tic Septage Land Applied:		gallons / quarter
3.	Method used to	treat Domestic Septage:		
4.	Water Treatme	nt Plant Sludge Land Applied	d:	dry tons /quarter
5.	Class A sludge	land applied:		dry tons /quarter
	a. Acreage use	d for Sludge Application/disp	oosal at this site	
		ion (such as grass type etc.) a		
		the sludge you have generate		
	•	etals listed in Table 3 of 30 T	. ,	Yes [] No []
	d. Site location		Longitude:	
	e. Site physical	address:		
• Pl- • Pl- • Pl- 1.M so 2.Pr 3.Da 4.Da 5.Tr	ease note the foll ease place check etal concentration urce. ovide a list contante of delivery of ate of land applicate cumulative me	on regarding the following it owing information shall be p mark before each item below n, pathogen analysis data and ining the name and permit not each load of sludge land appation of each load of sludge. tal loading rates for any metal loading rate for the Class B slunomic rate for the Class B slunomic rate for the Class B slunomic rate for the Class B slunomic rate for the Class B slunomic rate for the Class B slunomic rate for the Class B slundaring rates for any metal slundaring rate for the Class B slundaring rates for the Class B slundaring rates for the class B slundaring rates fo	rovided in computer gen to indicate you have atta l vector attraction certific umber of each source of s lied.	erated report format: ached that item with this report. ations of sludge for each
PLEASE	MAIL THE CO	OMPLETED ANNUAL RE	PORT TO:	
	Land App Water Qu P.O. Box	mmission on Environmental dication Team (MC 150) ality Assessment Section 13087 X 78711-3087	Quality	

Marcus Cruz

From: Gordon Cooper <gordon.cooper@tceq.texas.gov>

Sent: Friday, May 13, 2022 11:38 AM

To: marcus@cruzhogan.net

Cc: Firoj Vahora

Subject: WQ0013817001 Olmito Water Supply Corp - Changes Made to the Permit

Attachments: WQ0013817001.pdf

Importance: High

Mr. Cruz,

As a result of our performing a final review of the approved permit before it is issued, it was discovered that due to the addition of Outfall 002 there was a potential issue with the effluent limits for flow and lbs/day limits for CBOD5, TSS, and ammonia nitrogen that required clarification and additional requirements to be placed in the permit. The issue is that it could be incorrectly assumed by the permittee that the flow limits and the lbs/day limits were cumulative for each outfall, which could result in more flow and lbs/day of CBOD5, TSS, and ammonia nitrogen being discharged than what is actually authorized in the permit.

Therefore, the following changes were made in the permit:

- The combined daily average flows made via Outfalls 001 and 002 in the Interim phase shall not exceed 0.75 MGD and the combine annual average flows made via Outfall 002 in the final phase shall not 1.25 MGD. This has been included on Pages 2 and 2a of the permit.
- Requirements have been placed in the permit which require that the combined lbs/day via Outfalls 001 and 002 shall not exceed the lbs/day limits listed for CBOD5, TSS, and NH3N on pages 2 and 2a of the permit.

These changes will help to avoid any confusion that could result in accidental exceedances and permit violations.

For your convenience a complete copy of the permit document has been attached to this e-mail for your reference. My apologies for any inconvenience.

Thank you very much,

Gordon R. Cooper Environmental Permit Specialist TCEQ Municipal Wastewater Permits Team Direct 512-239-1963

Francesca Findlay

From: Marcus Cruz <marcus@cruzhogan.net>

Sent: Friday, May 9, 2025 10:15 AM

To: Francesca Findlay

Cc: 'Tomas Tamayo'; 'Orlando Cruz'

Subject: RE: WQ0013817001 OLMITO WATER SUPPLY CORPORATION

Attachments: Admin Report 1.0, Section 3, Item A - Updated.pdf; Public Viewing Area - Updated .pdf;

TCEQ Premit Authorization Email 5-13-22.pdf; TCEQ Permit Authorization Executed Discharge Permit Received 5-13-22.pdf; OWSC - Existing and Propsed WWTP Site Plan - Updated.pdf; OWSC - USGS 7.5 WWTP - Updated.pdf; Previous NORI 9-17-2021.pdf;

Core Data Form - Updated.pdf

Good morning Francesca,

Please see the responses (including supporting attachments) for the pertaining comments from TCEQ:

- 1. Administrative Report 1.0, Section 3, item A: Please provide the same name as the signature page.
 - a. Updated (Please See attachment)
- 2. Please verify that the Public Viewing Area is in a building supported by taxpayer funds.
 - a. Please revise public viewing location to the address below: Location is verified for a building supported by taxpayer funds.
 - Community Services Dept. Cameron County 1100 E. Monroe Street, Rm. 105 Brownsville, Texas 78520
- 3. Technical Report 1.0, Section C: Please confirm that you are wanting to increase the Final Phase to 1.25 MGD. A major amendment is required.
 - a. In early 2022 a major amendment was granted by TCEQ, and with an expiration date of December 1, 2025. This current permit application would be a renewal of the previous approved major amendment. Currently the WWTP is under construction for the expansion, but delays with material deliveries including disruptions from Covid have put the construction behind schedule with an anticipated completion date now for December of this year. Please see the attached documents (email, executed 2022 permit) provided by TCEQ reviewer Gordon Cooper on May 13, 2022 with Firoj Vahora (Team Leader Municipal Permits Team (MC 148) cc'ed on the email.
- 4. Core Data Form, Section V: Please provide a date for the signature and provide an updated form.
 - a. Updated (Please See attachment)
- 5. Please provide an updated electronic map. Please provide the applicant's property boundary. The treatment facility boundaries. Points of discharge (Outfalls). Discharge route for three miles downstream or until it reaches a classified segment. One mile radius. Sludge disposal/land application site. Ponds. Effluent disposal sites.
 - a. Updated Mapping (Please See attachment)
- 6. The following is a portion of the NORI which contains information relevant to your application. Please read it carefully and indicate if it contains any errors or omissions.
 - a. NORI needs revisions to the updated viewing location, and inclusion of the 1.25 MGD discharge. I provided the NORI issued in 9/17/25 for reference.

Please feel free to contact me with any questions or concerns. I will be the point of contact for any technical revisions.

Kind Regards, Marcus D. Cruz, P.E. CFM Project Manager

TBPE Firm Reg No. F-4860

From: Francesca Findlay < Francesca. Findlay@tceq.texas.gov >

Sent: Wednesday, May 7, 2025 2:14 PM

To: Tomas Tamayo < ttamayo@olmitowsc.com>

Subject: FW: WQ0013817001 OLMITO WATER SUPPLY CORPORATION

Dear Mr. Tomas:

The attached Notice of Deficiency letter sent on May 7, 2025, requesting additional information needed to declare the application administratively complete. Please send the complete response to my attention May 22, 2025.

Thank you,

Francesca Findlay
License & Permit Specialist
ARP Team | Water Quality Division
512-239-2441
Texas Commission on Environmental Quality

Please consider whether it is necessary to print this e-mail

How is our customer service? Fill out our online customer satisfaction survey at http://www.tceq.texas.gov/customersurvey.

