This file contains the following documents: - 1. Summary of application (in plain language) - English - Alternative Language (Spanish) - 2. First Notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit) - English - Alternative Language (Spanish) - 3. Application materials # Este archivo contiene los siguientes documentos: - 1. Resumen en lenguaje sencillo (PLS, por sus siglas en inglés) de la actividad propuesta - Inglés - Idioma alternativo (español) - 2. Primer aviso (NORI, por sus siglas en inglés) - Inglés - Idioma alternativo (español) - 3. Solicitud original # TEXAS COMMISSION ON ENVIRONMENTAL QUALITY # SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS # Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications Applicants should use this template to develop a plain language summary of your facility and application as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. You may modify the template as necessary to accurately describe your facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how you will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment. Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements. After filling in the information for your facility delete these instructions. If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below. # ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTIC WASTEWATER/STORMWATER The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application. North Texas Municipal Water District (CN601365448) operates Stewart Creek West Wastewater Treatment Plant (RN101607265), a domestic wastewater treatment plant. The facility is located at 5100 Fourth Army Drive, in Frisco, Denton County, Texas 75034. Through this application, North Texas Municipal Water District is requesting a renewal of permit no. WQ0014008001 to discharge 15 million gallons per day. Discharges from the facility are expected to contain Carbonaceous Biochemical Oxygen Demand (CBOD), Total Suspended Solids (TSS), Ammonia Nitrogen, and E. coli. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7 Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application. Domestic wastewater is treated by grit chambers, primary clarifiers, aeration basins, secondary clarifiers, tertiary cloth filters, U.V. disinfection. Sludge from the clarifiers is processed with sludge holding tanks and belt filter presses. The dewatered sludge is disposed at the NTMWD 121 Regional Disposal Facility and C.M. Hinton Jr. Regional Landfill. # PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP # AGUAS RESIDUALES DOMÉSTICAS/AGUAS PLUVIALES El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso. El Districto Municipal de Agua del Norte de Texas (CN601365448) opera la planta de tratamiento de aguas residuales de Stewart Creek West (RN101607265), una planta de tratamiento de aguas residuales domésticas. La instalación está ubicada en 5100 Fourth Army Drive, en Frisco, Condado de Denton, Texas 75034. A través de esta solicitud, el Distrito Municipal de Agua del Norte de Texas solicita la renovación del permiso numero WQ0014008001 para descargar 15 millones de galones por día. Se espera que las descargas de la instalación contengan demanda bioquímica de oxígeno bioquímico (CBOD), sólidos suspendidos totales (TSS), nitrógeno de amoníaco y E. coli. Se incluyen contaminantes potenciales adicionales en el Informe Técnico Nacional 1.0, Sección 7 Análisis de contaminantes de la Hoja de trabajo de efluentes tratados y domésticos 4.0 en la solicitud de permiso. Las aguas residuales domésticas son tratadas por cámaras de arena, clarificadores primarios, cuencas de aireación, clarificadores secundarios, filtros de tela terciaria, U.V. desinfección. El lodo de los clarificadores se procesa con tanques de sostenimiento de lodo y prensas de filtro de correa. Los lodos deshidratados se eliminan en la Instalación de Eliminación Regional NTMWD 121 y en el Vertedero Regional C.M. Hinton Jr. # **TEXAS COMMISSION ON ENVIRONMENTAL QUALITY** # NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL. # PERMIT NO. WQ0014008001 APPLICATION. North Texas Municipal Water District, P.O Box 2408, Wylie, Texas 75098, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0014008001 (EPA I.D. No. TX0103501) to authorize the discharge of treated wastewater at a volume not to exceed an annual average flow of 15,000,000 gallons per day. The domestic wastewater treatment facility is located at 5100 4th Army Drive, Frisco, in Denton County, Texas 75034. The discharge route is from the plant site to Stewart Creek; thence to Garza/Little Elm Reservoir portion of Lewisville Lake. TCEQ received this application on July 30, 2025. The permit application will be available for viewing and copying at Little Elm Public Library, 2nd Floor, 100 West Eldorado Parkway, Little Elm, in Denton County, Texas prior to the date this notice is published in the newspaper. The application, including any updates, and associated notices are available electronically at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-96.85944,33.12&level=18 ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments. **PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application.** The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing. OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court. TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the
facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose. Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting. The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period. TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met. MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below. **INFORMATION AVAILABLE ONLINE.** For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice. AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040. Further information may also be obtained from North Texas Municipal Water District at the address stated above or by calling Mr. Jerry Allen, Permitting Manager, at 469-626-4634. Issuance Date: August 7, 2025 # Comisión de Calidad Ambiental del Estado de Texas # AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION #### PERMISO NO. WQ0014008001 **SOLICITUD.** Districto Municipal de Agua del Norte de Texas, Apartado Postal 2408, Wylie, Texas 75098, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0014008001 (EPA I.D. No. TX 0103501) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio anual de 15,000,000 galones por día. La planta está ubicada Calle 4 Army, 5100, Frisco, en el Condado de Denton, Texas 75034. La ruta de descarga es del sitio de la planta a Arroyo Stewart; y de ahí a Garza/Little Elm embalse. La TCEO recibió esta solicitud el 30 de Julio del 2025. La solicitud para el permiso estará disponible para leerla y copiarla en la biblioteca publica de Little Elm, segundo piso, 100 Oeste Eldorado Parkway, Little Elm, en el condado de Denton, Texas antes de la fecha de publicación de este aviso en el periódico. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud. https://gisweb.tceq.texas.gov/LocationMapper/?marker=-96.85944,33.12&level=18 **AVISO DE IDIOMA ALTERNATIVO.** El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos. COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso. OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado. PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo. Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión. La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso. **LISTA DE CORREO.** Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una
reconsideración de la decisión del Director Ejecutivo, la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Además, puede pedir que la TCEQ ponga su nombre en una o más de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos del solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envía por correo su pedido a la Oficina del Secretario Principal de la TCEQ. **INFORMACIÓN DISPONIBLE EN LÍNEA.** Para detalles sobre el estado de la solicitud, favor de visitar la Base de Datos Integrada de los Comisionados en www.tceq.texas.gov/goto/cid. Para buscar en la base de datos, utilizar el número de permiso para esta solicitud que aparece en la parte superior de este aviso. CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía http://www14.tceq.texas.gov/epic/eComment/o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información También se puede obtener información adicional del North Texas Municipal Water District a la dirección indicada arriba o llamando a Jerry Allen al 469-626-4634. Fecha de emisión: 7 de agosto de 2025 en Español, puede llamar al 1-800-687-4040. Brooke T. Paup, *Chairwoman*Bobby Janecka, *Commissioner*Catarina R. Gonzales, *Commissioner*Kelly Keel, *Executive Director* # TEXAS COMMISSION ON ENVIRONMENTAL QUALITY Protecting Texas by Reducing and Preventing Pollution July 30, 2025 Re: Confirmation of Submission of the Renewal without changes for Public Domestic Wastewater Authorization. Dear Applicant: This is an acknowledgement that you have successfully completed Renewal without changes for the Public Domestic Wastewater authorization. ER Account Number: ER112295 Application Reference Number: 802045 Authorization Number: WQ0014008001 Site Name: Stewart Creek West WWTP Regulated Entity: RN101607265 - Stewart Creek West Wastewater Treatment Plant Customer(s): CN601365448 - North Texas Municipal Water District Please be aware that TCEQ staff may contact your designated contact for any additional information. If you have any questions, you may contact the Applications Review and Processing Team by email at WQ-ARPTeam@tceq.texas.gov or by telephone at (512) 239-4671. Sincerely, Applications Review and Processing Team Water Quality Division # **Texas Commission on Environmental Quality** Update Domestic or Industrial Individual Permit WQ0014008001 # Site Information (Regulated Entity) What is the name of the site to be authorized? STEWART CREEK WEST WWTP Does the site have a physical address? Yes **Physical Address** Number and Street 5100 4TH ARMY DR City FRISCO State TX ZIP 75034 County DENTON Latitude (N) (##.#####) 33.12 Longitude (W) (-###.#####) -96.85944 Primary SIC Code 4952 Secondary SIC Code Primary NAICS Code 221320 Secondary NAICS Code **Regulated Entity Site Information** What is the Regulated Entity's Number (RN)? RN101607265 What is the name of the Regulated Entity (RE)? STEWART CREEK WEST WASTEWATER TREATMENT PLANT Does the RE site have a physical address? **Physical Address** Number and Street 5100 4TH ARMY DR City FRISCO State TX ZIP 75034 County DENTON Latitude (N) (##.#####) 33.120108 Longitude (W) (-###.######) -96.859344 Facility NAICS Code What is the primary business of this entity? DOMESTIC WASTEWATER # North T-Customer (Applicant) Information (Owner) How is this applicant associated with this site? Owner What is the applicant's Customer Number (CN)? CN601365448 Type of Customer Local Government Full legal name of the applicant: Legal Name North Texas Municipal Water District Texas SOS Filing Number Federal Tax ID 756004258 State Franchise Tax ID Local Tax ID State Sales Tax ID DUNS Number 77608933 Number of Employees 501+ Independently Owned and Operated? Yes I certify that the full legal name of the entity applying for this permit has been provided and is legally authorized to do business in Texas. **Responsible Authority Contact** Organization Name North Texas Municipal Water District Prefix First JENNAFER Middle Last COVINGTON Suffix Credentials Title EXECUTIVE DIRECTOR **Responsible Authority Mailing Address** Enter new address or copy one from list: Address Type Domestic Mailing Address (include Suite or Bldg. here, if applicable) PO BOX 2408 Routing (such as Mail Code, Dept., or Attn:) City WYLIE State TX 75098 Phone (###-###) 9724425405 Extension Alternate Phone (###-###-###) Fax (###-###-###) E-mail JCOVINGTON@NTMWD.COM # Billing Contact Responsible contact for receiving billing statements: Select the permittee that is responsible for payment of the annual fee. CN601365448, North Texas Municipal Water District Organization Name NORTH TEXAS MUNICIPAL WATER DISTRICT Prefix First HUNTER Middle Last STEPHENS Suffix Credentials Title DIRECTOR OF WASTEWATER Enter new address or copy one from list: **Mailing Address** Address Type Domestic Mailing Address (include Suite or Bldg. here, if applicable) PO BOX 2408 Routing (such as Mail Code, Dept., or Attn:) City WYLIE State TX ZIP 75098 Phone (###-###) 4696264921 Extension Alternate Phone (###-###-###) Fax (###-###-###) E-mail HSTEPHENS@NTMWD.COM # **Application Contact** Person TCEQ should contact for questions about this application: Same as another contact? Organization Name NORTH TEXAS MUNICIPAL WATER DISTRICT Prefix MR First JERRY Middle Last ALLEN Suffix Credentials Title PERMITTING MANAGER Enter new address or copy one from list: **Mailing Address** Address Type Domestic Mailing Address (include Suite or Bldg. here, if applicable) PO BOX 2408 Routing (such as Mail Code, Dept., or Attn:) City WYLIE State TX ZIP 75098 Phone (###-###) 4696264634 Extension Alternate Phone (###-###-###) Fax (###-###-) E-mail JALLEN@NTMWD.COM #### **Technical Contact** Person TCEQ should contact for questions about this application: Same as another contact? Application Contact Organization Name NORTH TEXAS MUNICIPAL WATER DISTRICT Prefix MR First JERRY Middle Last ALLEN Suffix Credentials Title PERMITTING MANAGER Enter new address or copy one from list: **Mailing Address** Address Type Domestic Mailing Address (include Suite or Bldg. here, if applicable) PO BOX 2408 Routing (such as Mail Code, Dept., or Attn:) City WYLIE State TX ZIP 75098 Phone (###-####) 4696264634 Extension Alternate Phone (###-###-###) Fax (###-###-###) E-mail JALLEN@NTMWD.COM ## **DMR Contact** Person responsible for submitting Discharge Monitoring Report Forms: Same as another contact? Billing Contact Organization Name NORTH TEXAS MUNICIPAL WATER DISTRICT Prefix First HUNTER Middle Last STEPHENS Suffix Credentials Title DIRECTOR OF WASTEWATER Enter new address or copy one from list: **Mailing Address:** Address Type Domestic Mailing Address (include Suite or Bldg. here, if applicable) PO BOX 2408 Routing (such as Mail Code, Dept., or Attn:) City WYLIE State TX ZIP 75098 Phone (###-####) 4696264921 Extension Alternate Phone (###-###-###) Fax (###-###-###) E-mail HSTEPHENS@NTMWD.COM ## Section 1# Permit Contact # Permit Contact#: 1 Person TCEQ should contact throughout the permit term. 1) Same as another contact? Technical Contact 2) Organization Name NORTH TEXAS MUNICIPAL WATER DISTRICT 3) Prefix MR 4) First JERRY 5) Middle ALLEN 6) Last 7) Suffix 8) Credentials 9) Title PERMITTING MANAGER **Mailing Address** 10) Enter new address or copy one from list 11) Address Type Domestic PO BOX 2408 11.1) Mailing Address (include Suite or Bldg. here, if applicable) 11.2) Routing (such as Mail Code, Dept., or Attn:) **WYLIE** 11.3) City TX 11.4) State 75098 11.5) ZIP 4696264634 12) Phone (###-###-###) 13) Extension 14) Alternate Phone (###-###-) 15) Fax (###-###-###) 16) E-mail JALLEN@NTMWD.COM ## Section 2# Permit Contact ## Permit Contact#: 2 #### Person TCEQ should contact throughout the permit term. 1) Same as another contact? 2) Organization Name NORTH TEXAS MUNICIPAL WATER DISTRICT 3) Prefix 4) First SARAH 5) Middle 6) Last **BURNS** 7) Suffix 8) Credentials 9) Title PERMIT SUPERVISOR **Mailing Address** 10) Enter new address or copy one from list 11) Address Type Domestic 11.1) Mailing Address (include Suite or Bldg. here, if applicable) PO BOX 2408 11.2) Routing (such as Mail Code, Dept., or Attn:) 11.3) City **WYLIE** 11.4) State TX 11.5) ZIP 75098 12) Phone (###-###-###) 4696264632 13) Extension 14) Alternate Phone (###-###-) 15) Fax (###-###-###) 16) E-mail SBURNS@NTMWD.COM ## Owner Information ## **Owner of Treatment Facility** 1) Prefix 2) First and Last Name 3) Organization Name NORTH TEXAS MUNICIPAL WATER DISTRICT **WYLIE** 01/29/2026 Public Domestic Wastewater P.O. BOX 2408 4) Mailing Address 5) City TX 6) State 75098 7) Zip Code 8) Phone (###-###-###) 9724425405 9) Extension 10) Email JCOVINGTON@NTMWD.COM 11) What is ownership of the treatment facility? Public Owner of Land (where treatment facility is or will be) 12) Prefix 13) First and Last Name CITY OF FRISCO 14) Organization Name 6101 FRISCO SQUARE BLVD 15) Mailing Address **FRISCO** 16) City 17) State TX 75034 18) Zip Code 9722925000 19) Phone (###-###-###) 20) Extension 21) Email WPIERSON@FRISCO.TEXAS.GOV 22) Is the landowner the same person as the facility owner or co-No applicant?
General Information Renewal-Amendment highway right-of-way, or a flood control district drainage ditch? 1) Current authorization expiration date: 2) Current Facility operational status: Active 3) Is the facility located on or does the treated effluent cross American No Indian Land? 4) What is the application type that you are seeking? Renewal without changes 5) Current Authorization type: 5.1) What is the proposed total flow in MGD discharged at the facility? 10 >= 1.0 MGD - Renewal - \$2,015 5.2) Select the applicable fee **TPDES** 6) What is the classification for your authorization? 6.1) What is the EPA Identification Number? TX0103501 6.2) Is the wastewater treatment facility location in the existing permit Yes accurate? 6.3) Are the point(s) of discharge and the discharge route(s) in the Yes existing permit correct? **FRISCO** 6.4) City nearest the outfall(s): DENTON 6.5) County where the outfalls are located: 6.6) Is or will the treated wastewater discharge to a city, county, or state No 6.7) Is the daily average discharge at your facility of 5 MGD or more? Yes 6.7.1) Provide the names of all counties located within 100 statute miles ANDERSON|DALLAS|DENTON|ELLIS| downstream of the point(s) of discharge: HENDERSON|KAUFMAN|NAVARRO|R OCKWALL|FREESTONE No ## **Public Notice Information** #### **Individual Publishing the Notices** 1) Prefix 2) First and Last Name JERRY ALLEN 3) Credential 4) Title PERMITTING MANAGER 5) Organization Name NORTH TEXAS MUNICIPAL WATER DISTRICT 4696264634 6) Mailing Address PO BOX 2408 7) Address Line 2 8) City WYLIE 9) State TX 10) Zip Code 75098 11) Phone (###-###-###) 12) Extension 13) Fax (###-###-###) 14) Email JALLEN@NTMWD.COM Contact person to be listed in the Notices 15) Prefix 16) First and Last Name JERRY ALLEN 17) Credential 18) Title PERMITTING MANAGER 19) Organization Name NORTH TEXAS MUNICIPAL WATER DISTRICT 20) Phone (###-###) 4696264634 21) Fax (###-###-###) 22) Email JALLEN@NTMWD.COM **Bilingual Notice Requirements** 23) Is a bilingual education program required by the Texas Education Yes Code at the elementary or middle school nearest to the facility or proposed facility? 23.1) Are the students who attend either the elementary school or the Yes middle school enrolled in a bilingual education program at that school? 23.2) Do the students at these schools attend a bilingual education No program at another location? 23.3) Would the school be required to provide a bilingual education No program but the school has waived out of this requirement under 19 TAC 89.1205(g)? 23.4) Which language is required by the bilingual program? SPANISH # Section 1# Public Viewing Information # County#: 1 1) County DENTON 2) Public building name Little Elm Public Library 3) Location within the building 2nd Floor 4) Physical Address of Building 100 W. ELDORADO PKWY 5) City LITTLE ELM 6) Contact Name DIANA SLAVINSKY 7) Phone (###-####) 2149750435 8) Extension 9) Is the location open to the public? # Lease Agreement or Deed Attachment 1) Attach a lease agreement or deed recorded easement [File Properties] File Name LEASE Stewart Creek West WWTP - Wastewater System Contract.pdf Hash F46C6F397220E51F7CDB528C356B026C3F58440132DBFC9639F8E803E4857484 MIME-Type application/pdf # Plain Language Plain Language [File Properties] File Name LANG_Plain Language Summary.pdf Hash 715745EF2FB25F3440DA84EC43523983B1A4EDAEF1C26C7FE0B082D14183CF68 MIME-Type application/pdf # Supplemental Permit Information Form 1) Supplemental Permit Information Form (SPIF) [File Properties] File Name SPIF_SPIF.pdf Hash 3A74DEB361E2E36251E988313BED474E0F558BBA58DA2822CDFA7920FF818EBD MIME-Type application/pdf ## **Domestic Attachments** 1) Attach an 8.5"x11", reproduced portion of the most current and original USGS Topographic Quadrangle Map(s) that meets the 1:24,000 scale. [File Properties] File Name MAP_USGS Topo Map.pdf Hash AE2B699EE19D5A4BB05F1251ADA3E62B0E60181B7CD3907FB9692BA321E04DF7 MIME-Type application/pdf 2) I confirm that all required sections of Technical Report 1.0 are complete and will be included in the Technical Attachment. 2.1) I confirm that Worksheet 2.0 (Receiving Waters) is complete and Yes included in the Technical Attachment. 2.2) Are you planning to include Worksheet 2.1 (Stream Physical No Characteristics) in the Technical Attachment? 2.3) Are you planning to include Worksheet 4.0 (Pollutant Analyses Yes Requirements) in the Technical Attachment? 2.4) Are you planning to include Worksheet 5.0 (Toxicity Testing Requirements) in the Technical Attachment? Yes 2.5) I confirm that Worksheet 6.0 (Industrial Waste Contribution) is complete and included in the Technical Attachment. Yes No 2.6) Are you planning to include Worksheet 7.0 (Class V Injection Well Inventory/Authorization Form) in the Technical Attachment? 2.7) Technical Attachment [File Properties] File Name TECH Technical Report (1).pdf 52A791125AC1B89E59619C8006209739CD75C8A892156368E37C7BACA1D5BA48 Hash MIME-Type application/pdf 3) Buffer Zone Map 4) Flow Diagram [File Properties] File Name FLDIA Flow Diagram.pdf 7E05D3B2580C18F3C6DCA17FF7F5021FABDF669C4504D243E071A1EB92C8EA02 Hash MIME-Type application/pdf 5) Site Drawing [File Properties] File Name SITEDR Site Drawing.pdf CB858F380E492ED2310528E6390771F3F7D61BDC750F3CF9CA67333C71727A9F Hash MIME-Type application/pdf 6) Design Calculations [File Properties] File Name DES_CAL_Design Calcuations (Not Required for Renewal).pdf Hash 854180FDBB9CF72D767C4F9EC7634D1C930C2B55F092A6E86AAD5ED02B985CF4 MIME-Type application/pdf 7) Solids Management Plan 8) Water Balance 9) Other Attachments #### Certification I certify that I am authorized under 30 Texas Administrative Code 305.44 to sign this document and can provide documentation in proof of such authorization upon request. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. - 1. I am Jennafer Covington, the owner of the STEERS account ER108121. - 2. I have the authority to sign this data on behalf of the applicant named above. - 3. I have personally examined the foregoing and am familiar with its content and the content of any attachments, and based upon my personal knowledge and/or inquiry of any individual responsible for information contained herein, that this information is true, accurate, and complete. - 4. I further certify that I have not violated any term in my TCEQ STEERS participation agreement and that I have no reason to believe that the confidentiality or use of my password has been compromised at any time. - 5. I understand that use of my password constitutes an electronic signature legally equivalent to my written signature. - 6. I also understand that the attestations of fact contained herein pertain to the implementation, oversight and enforcement of a state and/or federal environmental program and must be true and complete to the best of my knowledge. - 7. I am aware that criminal penalties may be imposed for statements or omissions that I know or have reason to believe are untrue or misleading. - 8. I am knowingly and intentionally signing Update Domestic or Industrial Individual Permit WQ0014008001. - 9. My signature indicates that I am in agreement with the information on this form, and authorize its submittal to the TCEQ. OWNER Signature: Jennafer Covington OWNER Customer Number: CN601365448 Legal Name: North Texas Municipal Water District Account Number: ER108121 Signature IP Address: 205.166.116.4 Signature Date: 2025-07-29 Signature Hash: B27378DF90A45F1EE5D3A76C993DFA2A477E4EAF0E92A4826303FA58ED8725E5 Form Hash Code at time of 45F831C9D735C844DBAD85374A84DFE22BF1EC047C079E6AC348C4E767F0100E Signature: # Fee Payment Transaction by: The application fee payment transaction was made by ER112295/Keith White Paid by: The application fee was paid by JOEL NICKERSON Fee Amount: \$2000.00 Paid Date: The application fee was paid on 2025-07-30 Transaction/Voucher number: The transaction number is 582EA000678621 and the voucher number is 777142 # Submission Reference Number: The application reference number is 802045 Submitted by: The application was submitted by ER112295/Keith White Submitted Timestamp: The application was submitted on 2025-07-30 at 11:38:35 CDT Submitted From: The application was submitted from IP address 205.166.116.4 Confirmation Number: The confirmation number is 667957 Steers Version: The STEERS version is 6.92 Permit Number: The permit number is WQ0014008001 ## Additional Information Application Creator: This account was created by Keith White # TEXAS COMMISSION ON ENVIRONMENTAL QUALITY # SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS # Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications Applicants should use this template to develop a plain language summary of your facility and application as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. You may modify the template as necessary to accurately describe your facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how you will control those pollutants, so that the
proposed plant will not have an adverse impact on human health or the environment. Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements. After filling in the information for your facility delete these instructions. If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below. # ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTIC WASTEWATER/STORMWATER The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application. North Texas Municipal Water District (CN601365448) operates Stewart Creek West Wastewater Treatment Plant (RN101607265), a domestic wastewater treatment plant. The facility is located at 5100 Fourth Army Memorial Drive, in Frisco, Denton County, Texas 75034. The application is for a renewal of the permit. Discharges from the facility are expected to contain Carbonaceous Biochemical Oxygen Demand (CB0D), Total Suspended Solids (TSS), Ammonia Nitrogen, and E. coli. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7 Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application. Domestic wastewater is treated by grit chambers, primary clarifiers, aeration basins, secondary clarifiers, tertiary cloth filters, U.V. disinfection. Sludge from the clarifiers is processed with sludge holding tanks and belt filter presses. The dewatered sludge is disposed at the NTMWD 121 Regional Disposal Facility and C.M. Hinton Jr. Regional Landfill. # PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP # AGUAS RESIDUALES DOMÉSTICAS/AGUAS PLUVIALES El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso. North Texas Municipal Water District (CN601365448) opera la planta de tratamiento de aguas residuales de Stewart Creek West (RN101607265), una planta de tratamiento de aguas residuales domésticas. La instalación está ubicada en 5100 Fourth Army Memorial Drive, en Frisco, Condado de Denton, Texas 75034. La solicitud es para una renovación del permiso. Se espera que las descargas de la instalación contengan demanda bioquímica de oxígeno bioquímico (CBOD), sólidos suspendidos totales (TSS), nitrógeno de amoníaco y E. coli. Se incluyen contaminantes potenciales adicionales en el Informe Técnico Nacional 1.0, Sección 7 Análisis de contaminantes de la Hoja de trabajo de efluentes tratados y domésticos 4.0 en la solicitud de permiso. Las aguas residuales domésticas son tratadas por cámaras de arena, clarificadores primarios, cuencas de aireación, clarificadores secundarios, filtros de tela terciaria, U.V. desinfección. El lodo de los clarificadores se procesa con tanques de sostenimiento de lodo y prensas de filtro de correa. Los lodos deshidratados se eliminan en la Instalación de Eliminación Regional NTMWD 121 y en el Vertedero Regional C.M. Hinton Jr. # **ATTACHMENT AR-2** # WASTEWATER SYSTEM CONTRACT # THE STATE OF TEXAS COUNTIES OF COLLIN, DALLAS, KAUFMAN, AND ROCKWALL NORTH TEXAS MUNICIPAL WATER DISTRICT # STEWART CREEK WEST REGIONAL WASTEWATER SYSTEM AMENDATORY CONTRACT #### RECITALS WHEREAS, North Texas Municipal Water District (the "District") is a conservation and reclamation district created and functioning under Article 16, Section 59 of the Texas Constitution, pursuant to Chapter 62, Acts of the 52nd Legislature of the State of Texas, Regular Session, 1951, as amended, (the "District Act"), with the authority to provide and develop a Regional System for Wastewater Treatment in the general area of portions of the Trinity Riverlying in Collin and Denton Counties; WHEREAS, capitalized terms used in these Recitals and not defined in these Recitals, shall have the meanings given to them in Section 1.01 hereof; WHEREAS, The City of The Colony ("The Colony"), a home rule municipality located in Denton County, Texas and the City of Frisco ("Frisco"), a home rule municipality located in Collin and Denton Counties, Texas have entered into a "Stewart Creek West Regional Wastewater System Contract," dated as of May 28, 1998 (the "Original Contract"), with the District; WHEREAS, pursuant to the Original Contract, the District has issued its "North Texas Municipal Water District Stewart Creek Wastewater System Contract Revenue Bonds, Series 2004" (the "Outstanding Bonds"); WHEREAS, pursuant to the Original Contract, the District has acquired and improved the System for the purpose of providing facilities to receive, transport, treat, and dispose of Wastewater from The Colony and Frisco; WHEREAS, under the Original Contract each of The Colony and Frisco is obligated to pay its respective proportionate share of the Annual Requirement (as defined in the Original Contract), which proportionate shares are based upon each Participant's minimum "contributing flow to the System"; WHEREAS, The Colony has never actually delivered any Wastewater flow to the System; WHEREAS, The Colony sued Frisco and the District for various causes of action arising out of the Original Contract; WHEREAS, in settlement of all of such causes of action, The Colony, Frisco, and the District executed a Settlement Agreement, dated February 25, 2010 (the "Settlement Agreement"); WHEREAS, pursuant to the Settlement Agreement, The Colony and Frisco executed a Relinquishment Agreement, dated February 16, 2010 (the "Relinquishment Agreement") pursuant to which Frisco agreed to make certain payments to the District on behalf of the Colony in return for The Colony's agreement to relinquish its right to Wastewater service under the Original Contract; WHEREAS, the District and Frisco desire to improve and expand the System and, subject to the provisions of this Contract with respect to Additional Participants, Frisco is willing to pay the Bond Service Component for Bonds issued to provide funds for such improvement and expansion; WHEREAS, in order to provide that The Colony shall have no liability for Bonds issued to provide funds for such improvement and expansion of the System, Bonds issued to refinance the Outstanding Bonds, or Bonds issued in the future for either of such purposes, it is necessary for the District and Frisco to enter into this Contract; WHEREAS, the Original Contract provides that the Original Contract remains in force until all bonds, including refunding bonds, in either case issued under the Original Contract, have been paid in full, and remains in force thereafter throughout the useful life of the System; WHEREAS, Frisco and the District are willing to terminate the Original Contract and enter into this Amendatory Contract; WHEREAS, subject to the provisions of this Contract with respect to Additional Participants, Frisco is willing to pay all amounts necessary to pay the Bond Service Component for Bonds issued to refinance the Outstanding Bonds; WHEREAS, the parties hereto are entering into this contract in order to control water pollution, and protect, improve, and enhance the water quality of the Trinity River and the water supplies impounded therein; and WHEREAS, the District and Frisco are authorized to make and enter into this Contract under the District Act, Chapter 30, Texas Water Code, as amended (the "Water Code"), and other applicable laws; #### WHEREAS, the parties hereto recognize these facts: - (a) That the District will use the payments to be received under this Contract and similar contracts, if any, for the payment of the principal of, redemption premium, if any, and interest on its Bonds, and to establish and maintain debt service reserves and other funds if and as provided in any Bond Resolution and, after the Original Contract Termination Date, for the payment of Operation and Maintenance Expense of the System; and that the revenues under this Contract will be pledged to such purposes; and - (b) That contracts similar to this instrument may be executed between the District and subsequent Additional Participants; and (c) That the District will issue Bonds from time to time in the future to acquire, construct, extend, enlarge, improve, and/or repair the System. NOW, THEREFORE, the District and Frisco hereby contract and agree as follows: ARTICLE I #### **DEFINITIONS** - Section 1.01. DEFINITION OF TERMS. In addition to the definitions stated in the preamble hereof, the terms and expressions as hereinafter used in this contract, unless the context clearly shows otherwise, shall have the following meanings: - (a) "Additional Participants" means any city or cities in addition to Frisco with which the District makes a contract for receiving, transporting, treating, and/or disposing of Wastewater through the System. - (b) "Adjusted Annual Payment" means the Annual Payment, as adjusted in accordance with Section 5.03 of this Contract during or after each Fiscal Year. - (c) "Annual Payment" means the amount of money estimated as provided in Section 5.03 of this Contract to be paid to the District by Participants as their
proportionate share of the Annual Requirement. - (d) "Annual Requirement" means the total amount of money required for the District to pay all Operation and Maintenance Expense of the System and to pay the principal of, and redemption premium, if any, and interest on its Bonds, including all charges and expenses of the paying agents and registrars for its Bonds, and to pay any amounts required to be deposited in any special or reserve funds, including a debt service reserve fund and a repair and replacement fund, as required to be established and/or maintained by the provisions of any Bond Resolution. - (e) "Bond Resolution" means any resolution of the Board of Directors of the District authorizing the issuance of Bonds and providing for their security and payment, as such resolution(s) may be amended from time to time as therein permitted. - (f) "Bonds" means any bonds, notes, or other obligations to be issued by the District pursuant to this Contract for the acquisition, construction, enlargement, improvement, extension, repair, or replacement of the System or any part thereof, or for the refunding of any or all bonds, notes, or other obligations of the District issued for any of such purposes, or for the refunding of any or all refunding bonds, notes, or other obligations, whether in one or several issues. - (g) "Contingency Fund" means the fund by that name established in Section 5.03(g) hereof. - (h) "Contract", or "this contract", means this Stewart Creek West Regional Wastewater System Amendatory Contract, between Frisco and the District and all similar contracts, if any, executed between the District and Additional Participants. - (i) "District's System", "Regional System", "Regional Wastewater System", or "System" means all of the District's facilities acquired, constructed, used, or operated by the District for receiving, transporting, treating, and disposing of Wastewater of and for Participants, pursuant to the Original Contract and this Contract (but excluding any facilities acquired or constructed with Special Facilities Bonds, and excluding any facilities required to transport Wastewater to any Point of Entry of the District's System), together with any improvements, enlargements, or additions to said System facilities and any extensions, repairs, or replacements of said System facilities acquired, constructed, used, operated, or otherwise incorporated into or made a part of said System facilities in the future by the District. Said terms shall include only those facilities which are acquired, constructed, used, or operated by the District to provide service to Participants pursuant to this Contract, and which, as determined by the District, can economically and efficiently provide service to Participants. Said terms do not include any District facilities which provide Wastewater services of any kind to cities, political subdivisions, or persons which are not Participants, nor do they in any way include or affect the District's water supply system. - (j) "Engineering Report" means the report on a Proposed Regional Wastewater System for the Cities of Frisco and The Colony, Denton and Collin Counties, Texas, Dated February, 1997, by Hunter Associates, Texas, Ltd., Consulting Engineers, Dallas, Texas, as such Report has been or may be supplemented or amended. - (k) "Fiscal Year" means the twelve (12) month period beginning each October 1 and ending the following September 30, or such other twelve (12) month period as may be established in the future to constitute the District's Fiscal Year. - (l) "Local Wastewater Facilities" means the waste collection and treatment facilities owned and operated by the Participants. - (m) "Operation and Maintenance Expense" means all costs of operation and maintenance of the District's System including, but not limited to, repairs and replacements for which no special fund is created in a Bond Resolution, the cost of utilities, supervision, engineering, accounting, auditing, legal services, insurance premiums, and any other supplies, services, administrative costs, and equipment necessary for proper operation and maintenance of the District's System, any payments required to be made hereunder into the Contingency Fund, payments made for the use of operation of any property, payments of fines, and payments made by the District in satisfaction of judgments or other liabilities resulting from claims not covered by the District's insurance or not paid by one particular Participant arising in connection with the operation and maintenance of the District's System. Depreciation shall not be considered an item of Operation and Maintenance Expense. - (n) "Original Contract Termination Date" means the date of termination of the Original Contract as specified in writing to the District by The Colony at any time after the effective date of this Contract. - (o) "Participants" means Frisco and all Additional Participants. - (p) "Participant" means any of the Participants. - (q) "Point of Entry" means any point at which Wastewater enters the property on which any Wastewater treatment plant operated by the District is located, as shown on Exhibit A hereto, and such additional point or points, if any, agreed upon by the District and a Participant in the future. - (r) "Special Facilities Bonds", means revenue obligations of the District which are not secured by or payable from Annual Payments under this Contract, but which are payable solely from other sources; but Special Facilities Bonds may be made payable from payments from any person, including any Participant, under a separate contract whereunder the facilities to be acquired or constructed are declared not to be part of the System and are not made payable from the Annual Payments as defined in this Contract. - (s) "Wastewater" means Sewage, Industrial Waste, Municipal Waste, Recreational Waste, and Agricultural Waste, as defined in the Code, together with properly shredded garbage, and such infiltration water that may be present. ### ARTICLE II # PROVIDING AND OPERATION AND MAINTENANCE OF FACILITIES BY THE DISTRICT Section 2.01. FACILITIES. In order to provide services for receiving, transporting, treating, and disposing of Wastewater for Participants, the District will use its best efforts to design, acquire, construct, and complete the System, as generally described in the Engineering Report with respect to Frisco, and as generally described in appropriate additional engineering reports hereafter to be obtained with respect to any Participant or Additional Participant, and will from time to time enlarge, improve, repair, replace, and/or extend the System to provide service to the Participants. The District shall obtain and hold in its name all required discharge permits from the appropriate Federal and State agencies, and each Participant shall assist the District in obtaining same. The District shall provide the System in such manner as it determines is necessary for providing adequate, efficient, and economical service to Participants, and shall have the right to provide single plants, multiplants, or combine two or more plants, and to use or discontinue the use of any facilities of the System as the District deems necessary. Section 2.02. OPERATION AND MAINTENANCE. From and after the Original Contract Termination Date, the District shall manage, operate, and maintain the System in such manner as it determines is necessary for providing adequate and economical service to the Participants. The District covenants that it will operate and maintain the System in accordance with accepted good business and engineering practices. #### ARTICLE III #### DISCHARGE OF WASTEWATER AND METERING Section 3.01. DISCHARGE. In consideration of the payments to be made under this Contract, Frisco shall have the right to discharge all of its Wastewater from its sewer system into the District's System, provided that such Wastewater meets the requirements for quantity and quality as set forth in this Contract; and further provided that, as to Wastewater from areas not currently being served by the Plant, the District is able to obtain permits for the treatment and discharge of such quantity and quality of Wastewater and that discharge of such Wastewater to the System may be made only after notice by the District that it is ready to receive the same pursuant to this Contract. Section 3.02. POINT OF ENTRY. Each Participant may discharge all such Wastewater generated from such Participant's Local Wastewater Facilities into the designated Point or Points of Entry for such Participant, unless such Participant and the District mutually agree that like service can be provided elsewhere in the System. Section 3.03. CONVEYANCE TO POINT OF ENTRY. It shall be the sole responsibility of each Participant to transport, or cause to be transported, at no cost to the District or the other Participants, its Wastewater to its Point or Points of Entry. Section 3.04. QUANTITY AT POINT OF ENTRY. (a) The quantity of Wastewater delivered by a Participant at the Point or Points of Entry shall be metered by the District and the total annual contributing flow of Wastewater received during any Fiscal Year shall be used to determine each Participant's Annual Payment and the Basic Charge for service as set forth in Article V. - (b) The maximum discharge rate is defined as a rate in million gallons per day (MGD), exceeded for a period of sixty minutes, which, if continued over a period of 24 hours, would be equal to 3.50 times the Participant's average daily flow during that Fiscal Year. - (c) Any Participant exceeding the maximum discharge rate shall have a surcharge applied to the next Fiscal Year's Annual Payment equal to 1% of the Annual Payment in that Fiscal Year for each 1/10th that the ratio of the maximum discharge to the average daily flow exceeds 3.50. Section 3.05. LIABILITY FOR DAMAGES AND RESPONSIBILITY FOR TREATMENT AND DISPOSAL OF WASTEWATER. Liability for
damages arising from the reception, transportation, delivery, and disposal of all Wastewater discharged shall remain in each Participant to Points of Entry, and upon passing through the District's meters installed at Points of Entry, liability for such damages and title to such Wastewater shall pass to the District. As between the District and each Participant, each party agrees, to the full extent permitted by law, to indemnify and to save and hold the other party harmless from any and all claims, demands, causes of action, damages, losses, costs, fines, and expenses, including reasonable attorney's fees, which may arise or be asserted by anyone at any time on account of the reception, transportation, delivery, and disposal while Wastewater is in the control of such responsible party, or on account of a prohibited discharge by a Participant. The District has the responsibility as between the parties for the proper reception, treatment, and disposal of all Wastewater, but not for prohibited discharges passing through any Point of Entry. The District has the right as between the parties to reuse all Wastewater discharged through any Point of Entry. Section 3.06. METERING. The District will furnish, install, operate and maintain at its own expense at each Point of Entry the necessary equipment and devices of standard type for measuring properly all Wastewater to be discharged into the System by Participants. Such meters and other equipment shall remain the property of the District. Each Participant shall have access to such metering equipment at all reasonable times for inspection and examination, but the reading, calibration, and adjustment thereof shall be done only by employees or agents of the District in the presence of a representative of the Participant if requested by such Participant. All readings of meters will be entered upon proper books of record maintained by the District. Upon written request the Participant may have access to said record books during reasonable business hours. Not more than three times in each year of operation, the District shall calibrate its meters, if requested in writing by a Participant to do so, in the presence of a representative of such Participant, and the parties shall jointly observe any adjustments which are made to the meters in case any adjustment is found to be necessary. If, for any reason, any meters are out of service or out of repair, or if, upon any test, the percentage of inaccuracy of any meter is found to be in excess of five (5%) per cent, registration thereof shall be corrected for a period of time extending back to the time when such inaccuracy began, if such time is ascertainable, and if such time is not ascertainable, then for a period extending back one-half (1/2) of the time elapsed since the date of the last calibration, but in no event further back than a period of six (6) months. Each Participant may, at its option and its own expense, install and operate a check meter to check each meter installed by the District, but the measurement for the purpose of this agreement shall be solely by the District's meters. Section 3.07. UNIT OF MEASUREMENT. The unit of measurement for Wastewater delivered hereunder shall be 1,000 gallons, U. S. Standard Liquid Measure. #### ARTICLE IV #### QUALITY Section 4.01. GENERAL. Each Participant agrees to limit discharge into the District's System to Wastewater that complies with quality requirements the District finds it necessary from time to time to establish in order to meet standards imposed by regulatory agencies having appropriate jurisdiction or to protect the water quality for water supply purposes. No discharge shall be made into the System which would cause the District to violate any permit granted, or any rule or regulation promulgated, by any State or Federal agency having jurisdiction over the District. Each Participant specifically covenants that it will enact and enforce procedures which will prohibit or prevent customers of its sewer system from making any discharge which would cause such Participant to violate the provisions of this contract or any applicable State or Federal permit, law, rule, or regulation. To enable the highest degree of treatment in the most economical manner possible, certain solids, liquids, and gases have been and are hereby prohibited from entering the System, either absolutely or in excess of established standards, and the prohibited discharges will be listed and furnished to all Participants, with a minimum of sixty days of notice before the effective date thereof. Section 4.02. NORMAL QUALITY. To determine normal quality of Wastewater, the District will collect twenty-four (24) hour composite samples of Wastewater at each Point of Entry and cause same to be analyzed in accordance with testing procedures as set forth in the latest edition of Standard Methods of Examination of Water and Wastewater, published by American Public Health Association, Inc. Composite samples will normally be taken once a month, or at more frequent intervals if necessary to determine Wastewater quality. Such Wastewater shall not exceed the limits of concentration specified for Normal Wastewater as follows: #### Normal Wastewater Concentration | BOD | 275 mg/l | |------------------|------------------------------------| | SS | 300 mg/l | | pН | not less than 6 nor greater than 9 | | Hydrogen Sulfide | 0.1 mg/l | Should the analysis disclose concentrations higher than those listed, the District will at once inform the Participant of such disqualification. With approval of the District, Wastewater with concentrations of BOD and SS greater than normal may be discharged into System with the payment of a surcharge, which shall be in addition to the basic charge as outlined in Article V of this contract, and this surcharge shall be sufficient to cover and pay for the additional cost of treatment. #### ARTICLE V #### **PAYMENTS** Section 5.01. FINANCING. The District will issue its Bonds, in amounts and at times as determined by the District, to provide the System. Section 5.02. ANNUAL REQUIREMENT. It is acknowledged and agreed that payments to be made under this Contract will be the only source available to the District to provide the Annual Requirement; and that the District has a statutory duty to establish and from time to time to revise the charges for services to be rendered and made available to Participants hereunder so that the Annual Requirement shall at all times be not less than an amount sufficient to pay or provide for the payment of: - (a) An "Operation and Maintenance Component" equal to the amount paid or payable for all Operation and Maintenance Expense; and - (b) A "Bond Service Component" equal to: - (l) the principal of, redemption premium, if any, and interest on, its Bonds, as such principal, redemption premium, if any, and interest become due, less interest to be paid out of Bond proceeds if permitted by any Bond Resolution; and - (2) during each Fiscal Year, the proportionate part of any special or reserve funds required to be established and/or maintained by the provisions of any Bond Resolution; and - (3) an amount in addition thereto sufficient to restore any deficiency in any of such funds required to be accumulated and maintained by the provisions of any Bond Resolution; and - (4) the charges of paying agents and registrars for paying principal of, redemption premium, if any, and interest on, all Bonds, and for registering and transferring Bonds. Section 5.03. PAYMENTS BY PARTICIPANTS. (a) For services to be rendered to each Participant by the District under this Contract and other similar contracts, if any, each Participant agrees to pay, at the time and in the manner hereinafter provided, its proportionate share of the Annual Requirement, which shall be determined as hereafter described and shall constitute a Participant's Annual Payment or Adjusted Annual Payment. For each Fiscal Year each Participant's proportionate share of the Annual Requirement shall, subject to the subsequent provisions hereof, be a percentage obtained by dividing such Participant's estimated contributing flow to the System by the total estimated contributing flow to the System by all Participants during such Fiscal Year or portion thereof. The calculation of each Annual Payment as determined herein, and each Adjusted Annual Payment, shall be determined as provided in this Section. The terms "contributing flow to the System" and "contributing flow" as used in this Contract with respect to any Fiscal Year, shall mean the greater of (i) the actual metered contributing flow of a Participant or (ii) the minimum annual contributing flow for which a Participant has agreed to pay, which minimum annual contributing flow for Frisco is as follows: Frisco 2.0 m.g.d. Each Participant's Annual Payment shall be calculated by the District by multiplying such Participant's estimated percentage of the estimated total contributing flow times the Annual Requirement. Each Participant's Annual Payment shall be made to the District in monthly installments, on or before the twentieth (20th) day of each month, for its required part of the Annual Requirement for each Fiscal Year. Such payments shall be made in accordance with a schedule of payments for each Fiscal Year which will be supplied to each Participant. At the close of the Fiscal Year, the District shall redetermine each Participant's percentage by dividing each Participant's contributing flow to the System by the total contributing flow of all Participants. Each Participant's Adjusted Annual Payment shall be calculated by multiplying each Participant's redetermined percentage times the Annual Requirement. The difference between the Adjusted Annual Payment and the Annual Payment, if any, when determined, shall be applied as a credit or a debit to each Participant's account with the District and shall be credited or debited to such Participant's next subsequent
monthly payment or payments. (b) If a Participant fails to pay its monthly charge on or before the twentieth (20th) day of any month, it shall incur and pay a penalty of fifteen percent of the amount due together with any legal or other costs incurred by the District in collecting the amount due. The District is authorized to discontinue service to any Participant which fails to make any monthly payment, and which, after written notice, does not make such payment. - (c) If, during any Fiscal Year, the District begins providing services to an Additional Participant, each Participant's Annual Payment for such Fiscal Year shall be redetermined consistent with the provisions of this contract. - (d) Each Participant's Annual Payment also shall be adjusted and redetermined for the balance of any applicable Fiscal Year, consistent with the provisions of this contract, and initially based on estimated contributing flow, at any time during any Fiscal Year if: - (i) Additions, enlargements, repairs, extensions, or improvements to the System are placed in service by the District which require an increase and redetermination of the Annual Requirement; or - (ii) Unusual or extraordinary expenditures for operation and maintenance of the System are required which are not provided for in the Annual Budget or in a Bond Resolution; or - (iii) A Participant's contributing flow to the System, after the beginning of the Fiscal Year, is estimated to be substantially different from that on which Annual Payments are based as determined by the District, to the extent that such difference in flow will substantially affect such Participant's Budget, and consequently such Participant's Annual Payment to the District; or - (iv) The District issues additional Bonds, the payments in connection with which require an increase and redetermination of the Annual Requirement; or - (v) It appears to the District that for any other reason it will not receive the full amount of the Annual Requirement unless such adjustment and redetermination are made. - (e) The District shall give all Participants at least 21 days written notice prior to consideration by the Board of Directors of the District of making any Adjusted Annual Payment for any Participant during any Fiscal Year. - (f) The Annual Payment set forth in this section shall be considered the basic charge for service hereunder, and each Participant shall pay a surcharge for excess BOD and/or SS as provided in Section 4.02, and for excessive discharge in the manner set forth in Section 3.04(c). In the event any Participant is assessed a surcharge for excess BOD and/or SS, the District will bill such Participant for such surcharge on or before the tenth (10th) day of the month following the determination of the surcharge and such Participant shall pay such surcharge on or before the twentieth (20th) day of the month of receipt of any such bill. Any such surcharge collected by the District shall be applied by the District against the total cost of Operation and Maintenance Expense of the System. - Municipal Water District Stewart Creek West Regional Wastewater System Contingency Fund." The Contingency Fund shall be used solely for the purpose of paying unexpected or extraordinary Operation and Maintenance Expenses of the System for which funds are not otherwise available under this Contract. The Contingency Fund shall initially be funded, and any subsequent deficiency shall be restored, with amounts included as Operation and Maintenance Expenses in the Annual Budget, not to exceed \$25,000 for any Fiscal Year, up to a maximum of \$100,000. So long as the Contingency Fund contains money and investments not less than \$100,000 in market value, any surplus in the Contingency Fund shall be applied and credited towards the payment of Operation and Maintenance Expenses. - The facilities and services of the System to be provided to each Participant pursuant (h) to this Contract are and will be essential and necessary to the operation of such Participant's combined waterworks and sanitary sewer system, and all payments to be made hereunder by each Participant will constitute reasonable and necessary "operating expenses" of such Participant's combined waterworks and sanitary sewer system, within the meaning of Section 30.030 of the Water Code and Section 1502.056, Texas Government Code, and the provisions of all ordinances authorizing the issuance of all waterworks and sanitary sewer system revenue bond issues of such Participant, with the effect that such Participant's obligation to make payments from its waterworks and sanitary sewer system revenues under this Contract shall have priority over its obligations to make payments of the principal of and interest on any and all of its waterworks and sanitary sewer system revenue bonds. Each Participant agrees to fix and collect such rates and charges for waterworks and sanitary sewer system services to be supplied by its waterworks and sanitary sewer system as will make possible the prompt payment of all expenses of operating and maintaining its entire waterworks and sanitary sewer system, including all payments, obligations, and indemnities contracted hereunder, and the prompt payment of the principal of and interest on its bonds payable from the net revenues of its waterworks and sanitary sewer system. The District shall never have the right to demand payment of the amounts due hereunder from funds raised or to be raised from taxation by a Participant. Each Participant's payments hereunder shall be made pursuant to the authority granted by Section 30.030 of the Water Code and Section 1502.056, Texas Government Code. Recognizing the fact that the Participants urgently require the facilities and services covered by this Contract, and that such facilities and services are necessary for actual use and for stand-by purposes; and further recognizing that the District will use the payments received from the Participants hereunder to pay, secure, and finance the issuance of its Bonds, it is hereby agreed that the Participants shall be obligated unconditionally, and without offset or counterclaim, to make the payments designated as the "Bond Service Component" of the Annual Requirement, in the manner provided in this Contract, regardless of whether or not the District actually provides such facilities and services, or whether or not any Participant actually receives or uses such facilities and services, and regardless of the validity or performance of the other parts of this or any other contract, and such "Bond Service Component" shall in all events be applied and used for providing debt service and other requirements of the Bonds, and the holders of the Bonds shall be entitled to rely on the foregoing agreement and representation, regardless of any other agreement between the District and the Participants. Each Participant further agree that it shall be obligated to make the payments designated as the "Operation and Maintenance Component" of the Annual Requirement as described in Section 5.02 of this Contract, so long as the District is willing and able to provide the facilities and services contemplated hereunder to any Participant. - (i) On or before August l of each year, the District will furnish each Participant with a tentative budget and an estimated schedule of monthly payments to be made by such Participant for the ensuing Fiscal Year. On July l of each year, the District shall be in a position to furnish any Participant an estimate of the Participants's annual requirement. On or before October l of each year, the District shall furnish such Participant with a finalized schedule of the monthly payments to be made by such Participant to the District for the ensuing Fiscal Year. Each Participant agrees that it will make such payments to the District on or before the twentieth (20th) day of each month of such Fiscal Year. If any Participant shall dispute the Annual Budget, and proceed as provided in Article VII, such Participant nevertheless promptly shall make the payment or payments determined by the District, and if it is subsequently determined by agreement that such disputed payments made by such Participant should have been less, the District shall promptly revise, reallocate, and readjust the charges among all Participants then being served by the District in such manner that such Participant will recover its overpayment. - (j) If any Participant's Annual Payment is redetermined as is herein provided, the District will promptly furnish such Participant with an updated schedule of monthly payments reflecting such redetermination. - (k) All interest income earned by the investment of any Funds created pursuant to any Bond Resolution shall be credited towards the payment of the Bond Service Component and taken into account in determining the Annual Requirement; except that as to any Acquisition or Construction Fund created from any Bond proceeds all interest income earned by the investment thereof may, at the option of the District, be credited to such Acquisition or Construction Fund and used for the System purposes for which the Bonds are issued, or be credited towards the payment of the Bond Service Component. Section 5.04. USE OF OTHER REVENUES OF SYSTEM. (a) If the District receives any net income from the sale of treated Wastewater from the System prior to its discharge into a public stream of the State of Texas, the District will apply and credit said net income towards payments of Operation and Maintenance Expenses. (b) Notwithstanding any other provisions of this Contract, the District may provide any excess available capacity or service of the System to any Person (as defined by the Water Code); provided that such service does not interfere with or impair the rights of any Participant under this Contract, and any such service shall in all events be subordinate and subject to such rights; and provided further that the District must charge for
such service in amounts at least sufficient to pay all Operation and Maintenance Expense attributable thereto plus an amount which will produce an estimated reasonable allocation as determined by the District, plus an additional amount of not less than 20% of the foregoing to cover prior incurred costs, to be credited to the Bond Service Component of the Annual Requirement. The District is not authorized to issue Bonds, as defined in this Contract, to provide the services of the System to any persons other than Participants (including Additional Participants). #### ARTICLE VI #### **GENERAL PROVISIONS** Section 6.01. FORCE MAJEURE. In case by reason of "Force Majeure" the District or any Participant shall be rendered unable wholly or in part to carry out its obligations under this agreement, then if such party shall give notice and full particulars of such "Force Majeure" in writing to the other parties within a reasonable time after occurrence of the event or cause relied on, the obligation of the party giving such notice, so far as it is affected by such Force Majeure (with the exception of the obligation of each Participant to make the payments required in Section 5.03 of this Contract, which in all events shall be made as provided therein) shall be suspended during the continuance of the inability then claimed, but for no longer periods, and any such party shall endeavor to remove or overcome such inability with all reasonable dispatch. The term "Force Majeure" as employed herein, shall mean acts of God, strikes, lockouts, or other industrial disturbances, acts of public enemy, orders of any kind of the Government of the United States or the State of Texas or any civil or military authority, insurrections, riots, epidemics, landslides, lightning, earthquakes, fires, hurricanes, storms, floods, washouts, droughts, arrests, restraint of government and people, civil disturbances, explosions, breakage or accidents to machinery, pipe lines or canals, partial or entire failure of water supply, and inability on the part of a Participant to provide water necessary for operation of its water and Local Wastewater Facilities hereunder, or of the District to receive Wastewater on account of any other causes not reasonably within the control of the party claiming such inability. It is understood and agreed that the settlement of strikes and lockouts shall be entirely within the discretion of the party having the difficulty, and that the above requirement that any Force Majeure shall be remedied with all reasonable dispatch shall not require the settlement of strikes and lockouts by acceding to the demands of the opposing party or parties when such settlement is unfavorable to it in the judgment of the party having the difficulty. Section 6.02. INSURANCE. The District will carry insurance (including self-insurance) for such purposes and in such amounts as are determined by the District to be necessary or advisable. Section 6.03. REGULATORY BODIES. This Contract shall be subject to all valid rules, regulations and laws applicable hereto passed or promulgated by the United States of America, the State of Texas, or any authorized representative or agency of any of them. Section 6.04. EFFLUENT REUSE: (a) The District will make the effluent discharge from its Wastewater treatment plants available for any lawful and beneficial reuse purpose, and a charge shall be made to the customer receiving such effluent sufficient to cover any additional cost involved in providing the service, plus a reasonable portion of the cost of treating the Wastewater which produced such effluent; provided that such portion of the cost allocable to treatment shall not be required to exceed an amount which would, in the judgment of the District, render the use of such effluent by a customer economically infeasible. (b) Notwithstanding the provisions of Section 3.05 and subsection 6.04(a), each Participant shall have the first right to use all effluent produced from its Wastewater for reuse solely for its own municipal purposes without any charge except for any additional costs to the District necessary to provide the effluent for such municipal use; provided that no Participant shall sell such effluent or make it available to any other customer, and subject to the aforesaid first right of each Participant, the District shall have the right to use all such effluent for District purposes without any charge expect for additional costs necessary to provide the effluent for District purposes. In accordance with the provisions of Section 3.05, and notwithstanding the foregoing, to the extent that effluent produced by the District is discharged to watercourses of the State, the right of any Participant to reuse such effluent produced from its Wastewater is terminated, and the District shall have the right as between parties, and pursuant to any necessary authorization of the State, to reuse such discharged effluent. Section 6.05. PUBLICATIONS, REFERENCE WORKS, GOVERNMENTAL REGULATIONS. In each instance herein where reference is made to a publication, reference work or Federal or State regulation, it is the intention of the parties that at any given time the then current edition of any such publication of reference work or Federal or State regulation shall apply. If a publication or reference work is discontinued or ceases to be the generally accepted work in its field or if conditions change or new methods or processes are implemented by the District, new standards shall be adopted which are in compliance with State and Federal laws and any valid rules and regulations issued pursuant thereto. #### ARTICLE VII #### **FINANCIAL PROVISIONS** Section 7.01. DISTRICT ANNUAL BUDGET. (a) Not less than sixty (60) days before the commencement of each Fiscal Year while this Contract, is in effect, the District shall cause its tentative budget for operation and maintenance of the System for the ensuing Fiscal Year to be prepared and a copy thereof filed with each Participant. If no protest or request for a hearing on such tentative budget is presented to the District within thirty (30) days after such filing of the tentative budget by one or more Participants, the tentative budget for the System, when adopted by the District's Board of Directors, shall be considered for all purposes as the "Annual Budget" for the ensuing Fiscal Year. But if a protest or request for a hearing is duly filed, it shall be the duty of the District to fix the date and time for a hearing on the tentative budget. The Board of Directors of the District shall consider the testimony and showings made in such hearing. The Board of Directors of the District may adopt the budget or make such amendments thereof as to it may seem proper. The budget thus approved by the Board of Directors of the District shall be the Annual Budget for the next ensuing Fiscal Year. (b) The Annual Budget may be amended to provide for transfers of budgeted funds between expenditure accounts, provided however that said transfers do not result in an overall increase in budgeted funds as provided in the Annual Budget. The Annual Budget may be amended and increased through formal action by the Board of Directors of the District, if required. Certified copies of any amended Annual Budget and the resolution authorizing same shall be filed immediately by the District with each Participant. Section 7.02. ANNUAL AUDIT OF SYSTEM. The District shall, at the close of each Fiscal Year, cause an annual audit of the System to be prepared. #### ARTICLE VIII #### THE SYSTEM Section 8.01. INITIAL FACILITIES OF THE SYSTEM. (a) The System initially consisted of the wastewater treatment plant owned by Frisco, known as the "Stewart Creek West Plant (the "Plant"). (b) As permitted and authorized by Chapter 30 of the Water Code, and other provisions of law, the District and the Participants agree that, from and after the Original Contract Termination Date, this Contract shall constitute an operating agreement with respect to the Plant and the property more fully described in Exhibit B hereto (the "Frisco Facilities") and which on the date of the Original Contract constituted a part of the Local Wastewater Facilities of Frisco. In the Original Contract, the District has been granted, and upon the Original Contract Termination Date, the District is hereby granted, by Frisco the sole and exclusive right to manage, administer, operate, maintain, and use the Frisco Facilities as part of the System, and in consideration thereof, the District agreed in the Original Contract, and upon the Original Contract Termination Date, hereby agrees, to pay to Frisco, in each of the Fiscal Years, respectively, the annual amounts, respectively, as set forth in the following schedule: | EACH FISCAL YEAR
ENDING SEPTEMBER 30: | ANNUAL
<u>AMOUNT</u> : | |--|---------------------------| | 2000 | \$200,000 | | 2001 | 200,000 | | 2002 | 200,000 | | 2003 | 200,000 | | 2004 | 200,000 | | 2005 | 200,000 | | 2006 | 200,000 | | 2007 | 200,000 | | 2008 | 200,000 | | 2009 | 200,000 | | 2010 | 200,000 | | 2011 | 200,000 | | 2012 | 200,000 | | 2013 | 200,000 | | 2014 | 200,000 | Such payments shall constitute a part of the fixed Operation and Maintenance Expenses of the System, and the District shall include such amount in each Annual Budget, to be paid, along with all other items of Operation and Maintenance Expenses, according to the formulae and methods provided in this Contract for the payment of the Annual Requirement. (c) Upon the Original Contract Termination Date, all other agreements, contracts, and other arrangements between the District and Frisco with respect to the Frisco Facilities, including the Original Contract, shall be void and of no further force or effect, and this Contract shall supersede the same and become the sole and entire present agreement between the parties with respect thereto. Except as provided in the
preceding sentence, nothing contained in this Contract shall in any way affect any payments to the District by a Participant or rates charged by the District to such Participant for the providing of water, wastewater or other services or facilities pursuant to other contractual relationships between the District and such Participant. Section 8.02. DISTRICT CONTRACTS WITH ADDITIONAL PARTICIPANTS. (a) The District reserves the right to contract with subsequent Additional Participants to provide the services of the System to such Additional Participants; provided that the terms and provisions of such contracts with Additional Participants shall be, to the extent practicable and applicable, the same as the terms and provisions of this Contract except that with respect to any Local Wastewater Facilities of such Additional Participant which are to be acquired, operated, or used by the District as a part of the System as a result of such contract, the District and the Additional Participant may agree in such contract for mutually acceptable payments in connection therewith from Bond proceeds or as an Operation and Maintenance Expense of the System (provided that in any formula used for determining such payments, the value attributed to such Local Wastewater Facilities shall not exceed a sum equal to the principal amount of all then outstanding bonds or other obligations issued by the Additional Participant to acquire and construct such Local Wastewater Facilities), and except that such contract shall provide for payments calculated on the basis of adequate minimum flows as hereinafter provided. The District shall not enter into contracts for any services by the System except with cities which become Participants, or as otherwise provided in this Contract. - (b) A city may become an Additional Participant in the following manner and under the following conditions; - (i) A formal request must be submitted to the District furnishing information on the area to be served, a description of existing facilities, and the latest annual audit of such proposed Additional Participant's waterworks and/or sewer systems, if any. - (ii) Such proposed Additional Participant must provide funds for any necessary engineering studies if funds are not available from the appropriate Federal or State agencies. The preliminary studies must determine or estimate, for the ensuing five year period, the size and type of any proposed facilities, their estimated cost, and estimated flows of Wastewater, so as to enable the District to ascertain or estimate the requirements of the proposed Additional Participant for the ensuing five year period. - (iii) After all preliminary data is developed, the Board of Directors of the District shall call a hearing and notify all Participants to review the request of the proposed Additional Participant. The Board of Directors of the District then shall determine if the proposed Additional Participant shall become a Participant. - (c) Each Additional Participant must agree to make minimum payments under its contract, on the basis of estimated annual minimum flows, that would provide amounts annually at least sufficient, as determined by the District, to pay: - (i) all of the annual Operation and Maintenance Component of the Annual Requirement which is attributable to any Local Wastewater Facilities of such Additional Participant which are to be acquired, operated, used, or improved by the District as part of the System and any other new and additional facilities of the System provided and designated by the District to serve such Participant, less any amount thereof attributable to the use of any part of said facilities for the benefit of any other Participant; and - (ii) an amount (to be credited and applied to the Bond Service Component of each Annual Requirement), at least equal to: - (A) all of that part of the Bond Service Component of each future Annual Requirement attributable to Bonds issued to acquire or improve any existing Local Wastewater Facilities of such Additional Participant to be a part of the System, and all Bonds issued to provide any other new and additional facilities for the System to serve such Additional Participant, plus - (B) a percentage of the Bond Service Component of each future Annual Requirement for all then outstanding Bonds equal to the then estimated percentage of use by such proposed Additional Participant of any portion of the then existing System; and - (iii) an annual amount (to be credited to the Bond Service Component of the Annual Requirement and/or to the Operation and Maintenance Component of the Annual Requirement, at the option of the District) as estimated and determined by the District to equalize the previous capital cost (including the cost of previously constructed excess capacity) of facilities to be used to provide service to the Additional Participant. - (d) The provisions of this Section and the payments to be made under an Additional Participant's contract are further subject to the provisions of Section 5.03 of this Contract. Section 8.03. ADDITIONAL CAPACITY AND FACILITIES. As the responsible agency for the establishment, administration, management, operation, and maintenance of the System, the District will, from time to time, determine when and to what extent it is necessary to provide additions, enlargements, improvements, repairs, and extensions to the System to receive, transport, treat, and dispose of Wastewater of any Participants, including all Additional Participants, and to issue its Bonds to accomplish such purposes, and all Participants, including Additional Participants, shall be obligated to pay both the Operation and Maintenance Component and the Bond Service Component included in the Annual Requirement with respect to the entire System, as expanded, as provided in Section 5.03; provided that this Section shall not be construed so as to reduce or alter the requirements of Section 8.02 with respect to minimum payments. #### ARTICLE IX #### **REMEDIES** Section 9.01. LEGAL AND EQUITABLE. Any party to this Contract, and any holder of the District's Bonds, may require any party hereto, and its officials and employees, to carry out, respect, and enforce the covenants and obligations of this Contract, by all legal and equitable means, including specifically, but without limitation, the use and filing of mandamus proceedings, in any court of competent jurisdiction, against such party, and its officials and employees. #### ARTICLE X #### CONTINUING DISCLOSURE OF INFORMATION Section 10.01. PARTICIPANTS TO COMPLY. The Participants shall comply with any continuing disclosure requirements with respect to the Bonds imposed by Securities and Exchange Commission Rule 15c2-12. #### ARTICLE XI #### TERMINATION OF ORIGINAL CONTRACT. EFFECTIVE DATE AND TERM Section 11.01. TERMINATION OF ORIGINAL CONTRACT. The District and Frisco hereby agree to the termination of the Original Contract. Such termination shall occur on the Original Contract Termination Date without necessity of any further action by the District or Frisco. Section 11.02. EFFECTIVE DATE. This Contract shall become effective as of the date of issuance of the first series of Bonds issued pursuant to this Contract; provided that Articles III, IV, and VI hereof, Sections 2.02, 5.03(f), 5.03(g), 5.04, 7.01, and 8.01, and all provisions relating to "Operation and Maintenance Expense" and "Operation and Maintenance Component" shall become effective upon the Original Contract Termination Date. Section 11.02. TERM OF CONTRACT. This Contract shall continue in force from the effective date hereof at least until all Bonds, including any Bonds issued to refund same, shall have been paid in full; and shall also remain in force thereafter throughout the useful life of the System. #### ARTICLE XII #### **NOTICES** Section 12.01. NOTICES. Any notice, request or other communication under this Contract shall be given in writing and shall be deemed to have been given by either party to the other party at the addresses shown below upon any of the following dates: (a) The date of notice by telefax, telecopy, or similar telecommunications, which is confirmed promptly in writing; - (b) Three business days after the date of the mailing thereof, as shown by the post office receipt if mailed to the other party hereto by registered or certified mail; - (c) The date of actual receipt thereof by such other party if not given pursuant to (a) or (b) above. The address for notice for each of the parties shall be as follows: North Texas Municipal Water District 505 East Brown Street Wylie, Texas 75098 Attention: Executive Director and General Manager Fax #: (972) 442-5405 City of Frisco, Texas 6891 Main Street Frisco, Texas 75034 Attention: City Manager Fax #: (972) 335-5559 or the latest address specified by such other party in writing. #### ARTICLE XIII #### **SEVERABILITY** Section 13.01. SEVERABILITY. If any clause, provision or Section of this Contract should be held illegal or invalid by any court, the invalidity of such clause, provision or Section shall not affect any of the remaining clauses, provisions or Sections hereof and this Contract shall be construed and enforced as if such illegal or invalid clause, provision or Section had not been contained herein. In case any agreement or obligation contained in this Contract should be held to be in violation of law, then such agreement or obligation shall be deemed to be the agreement or obligation of the Participants or the District, as the case may be, to the full extent permitted by law. IN WITNESS WHEREOF, the parties hereto acting under authority of their respective governing bodies have caused this Contract to be duly executed in several counterparts, each of which shall constitute an original, all as of the <u>27</u>th day of <u>October</u>, 2011, which is the date of this Contract. NORTH TEXAS MUNICIPAL WATER DISTRICT By: President, Board of Directors ATTEST:
ATTEST: atam, Board of Directors CITY OF FRISCO, TEXAS By: Mayor The same of sa ## EXHIBIT "B" 25.78 ACRES WASTEWATER TREATMENT PLANT SITE BEING a tract of land located in the J. Ogden Survey, Abstract No. 980, and the S. Collins Survey, Abstract No. 286 and being part of that certain 173.356 acre tract of land known as Tract II, deeded to Tomlin Properties, Trustee as recorded in Volume 1231, Page 381 of the Deed Records of Denton County, Texas, and being more particularly described as follows: COMMENCING at a point in the northwest corner of said Tomlin Properties tract, said point also being in the center of a road; THENCE South 02° 37' 10" West, along the west line of said Tomlin Properties tract, 1116.76 feet to the PLACE OF BEGINNING; THENCE South 87° 22' 50" East, 78.18 feet to a point; THENCE North 66° 05' 14" East, 460.63 feet to a point; THENCE North 22° 14' 07" East, 611.14 feet to a point; THENCE North 61° 17' 34" East, 302.16 feet to a point; THENCE South 89° 09' 32" East, 500.08 feet to a point; THENCE South 02° 00' 58" West, 1132.48 feet to a point; THENCE North 87° 41' 51" West, 1265.37 feet to a point; THENCE South 60° 23' 11" West, 236.44 feet to a point in the west line of said Tomlin Properties tract, said point being in the center of a road; THENCE North 02° 37' 10" East, along the west line of said Tomlin Properties tract, 311.46 feet to the PLACE OF BEGINNING and containing 25.78 acres of land. Jania Roberta PE 8112198 F:\Frisco\L98026E\ExhibitB.WWTPSite.wpd #### HUNTER ASSOCIATES TEXAS, LTD. ENGINEERS/PLANNERS/SURVEYORS 8140 WALNUT HILL LANE ONE GLEN LAKES • SUITE 500 DALLAS, TEXAS 75231-4350 (214) 369-9171 | PRO | JECT: | | CREEK VEST TATE DP | ANSION | |------|-----------|---------|--------------------|---------------| | JOB | NUMBER: _ | L98026E | DATE: | Aug. 12, 1998 | | BY:_ | JZM | | SHEET | _ OF | TRACT THREE TRACT ONE 25.78 oc. 10.1 oc. 15.68 oc. CROSS AREA FLOOD PLAIN RECOVERABLE FLOOD PLAIN NET AREA AREA 3A 29.82 oc AREA 3B 16.64 oc GROSS AREA 45.45 ac FLOOD PLAIN 13.55 ac NET AREA 32.61 oc RECOVERABLE 6.13 oc FLOOD PLAIN 6.13 oc TOTAL NET AREA 38.74 oc TOTAL OF TRACT ONE AND TRACT THREE TRACT ONE TOTAL NET AREA TRACT THREE TOTAL NET AREA 38.74 oc TOTAL NET AREA 58.42 Ac. IMPORTANT: LONE STAR GAS CO. PIPELINE THROUGH PROPERTY LOCATION SHOWN IS BASED ON BEST AVAILABLE INFORMATION. (SEE GENERAL MOTE 11 ON SH-2) CONTACT: EXHIBIT B NORTH TEXAS MUNICIPAL WATER DISTRICT CITY OF FRISCO, TEXAS STEWART CREEK WEST WWTP EXPANSION EXISTING PLANT BOUNDARY ## H9L5G7CAA=GGCB'CB'9BJ=FCBA9BH5@EI 5@HM GI DD@9A9BH5@D9FA=H'=B: CFA5H-CB': CFA'fGD; Ł : CF '5; 9B7=9GF9J=9K-B; '8CA9GH-7'CF'-B8I GHF-5@' HD89GK5GH9K5H9F'D9FA-H'5DD@-75H-CBG' | LIZOE I CO'CD @M' | | |--|-----------------------------------| | H79E 1 C9'CB@M' 5dd`]Wh]cb`hndY.''FYbYkU'AU'cf'5a YbXa YbhA]bcf'5a YbXa YbhBYk | . | | 7ci bha: 'GY[a YbhBi a VYf. ' | ` | | 5Xa]b '7ca d 'Yh Y 8Uh' | | | 5[YbWhiFYW]j]b['CD+.' | | | 'HM Ug'< ghcf]W\''7ca a gg cb' 'I ''G'': g\\ 'UbX'K]`X`]ZY` | | | 'HM Ug'DUf_g'UbX'K]'X']ZY'8 YdUfha Ybh' 'I 'G''5fa m'7cfdg'cZ9b[]bYYfg' | | | | | | H\ g'Zcfa 'Udd` Yg'lıc HD89GdYfa hUdd` Wl cbg'cb`n'i'fl bg fi W cbgžDU[Y) | | | 7cad`YhYh\]gʻZcfaʻUgʻUgYdUfUhYʻXcWaYbh''H79E`k]```aU]``UWdmhcʻYUW`U,YbWhiUgʻfYei
cifʻU,fYYaYbhk]h\`9D5'''=ZUbmcZh\Y]hYagʻUfYbchWad`YhY`mUXXfYggYX`cfʻZifh\Yf`]bZcfa
]gʻbYYXYXžkYk]```WbhUMinci`hc`dfcj]XYh\Y]bZcfaUh]cb`VYZcfY]ggi]b[`h\YdYfa]h''5XXfY
YUW`]hYa`Wad`YhY`n'i` | a Uhcb | | 8c bchfYZYf hc`nci f`fYgdcbgYhc`Ubni]hYa`]b`h\YdYfa]hUdd`]WV cb`Zcfa"Dfcj]XYYUW`
UHLWaYbhZcf`h\]g`Zcfa gYdUfUhYmZfca h\Y5Xa]b]ghfUhj YFYdcfhcZh\YUdd`]WV cb"H\
Udd`]WVh cb`k]``bchVYXYWUfYX`UXa]b]ghfUhj YmWad`YhYk]h\ci hih\]g`CD+ 'Zcfa VY]b[
Wad`YhYX`]b`]hg`Ybh fYhm]bWiX]b['U``UhUWaYbhg"EiYgh cbg`cf`WaaYbhg`WbWfb]b['h\
aUmVYX]fYWhYX`hc`h\YKUhYfEiU]hm8]j]g cbNg`5dd`]WVh cb`FYj]Yk`UbXDfcWgg b['HYUa'\
YaU]``Uh <u>KE!5FDHMUa4hWe'hMUg' cj</u> `cf`Vmd\cbYUhfl %&E&'-!(*+%'' | Y
]g [:] Z cfa | | H\YZc``ck]b[`Udd`]Yg'lc`U``Udd`]Wll]cbg` | | | %'DYfa]HYY.' <u>Bcfh\HMUg'Aib]WydU'KUNYf'8]gHf]Wn@HMkUFh'7fYY'KYghKKHDQ</u> | | | DYfa]hBc"'KE\$\$ <u>%(\$\$,\$\$%</u> 9D5 '=8 'Bc"'HL ' <u>\$%\$')</u> \$% | | | 5XXfYgg`cZh\Y`dfc^YVhiftcf`U``cWh]cb`XYgW]dh]cb`h\Uri]bWiXYg`glfYYh#\][\kUnžVJm#j]V]
UbX`WibhnL | [b]hnž | |) %\$; ci fh\ '5fa m8f j Yž: f g\V;žHM Ug'+) \$' (ž8Ybhcb '7ci bhm | Provide the name, address, phone and fax number of an individual that can be contacted to answer specific questions about the property. | |--| | Prefix (Mr., Ms., Miss): <u>Mr.</u> | | First and Last Name: <u>Jerry Allen</u> | | Credential (P.E, P.G., Ph.D., etc.): <u>N/A</u> | | Title: Permitting Manager | | Mailing Address: P.O. Box 2408 | | City, State, Zip Code: Wylie, Texas 75098 | | Phone No.: <u>469-626-4634</u> Ext.: <u>N/A</u> Fax No.: <u>972-295-6436</u> | | E-mail Address: jallen@ntmwd.com | | List the county in which the facility is located: <u>Denton</u> | | If the property is publicly owned and the owner is different than the permittee/applicant, please list the owner of the property. | | City of Frisco | | | | | | Provide a description of the effluent discharge route. The discharge route must follow the flow | | of effluent from the point of discharge to the nearest major watercourse (from the point of discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify the classified segment number. | | | | The effluent discharges to Stewart Creek; thence to Garza - Little Elm Reservoir portion of Lewisville Lake in Segment No. 0823 of the Trinity River Basin. | | | | | | | | Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report). See Attachment 1 | | Provide original photographs of any structures 50 years or older on the property. | | Does your project involve any of the following? Check all that apply. | | □ Proposed access roads, utility lines, construction easements | | □ Visual effects that could damage or detract from a historic property's integrity | | ☑ Vibration effects during construction or as a result of project design | | Additional phases of development that are planned for the future | 2. 3. 4. 5. Sealing caves, fractures, sinkholes, other karst features | | □ Disturbance of vegetation or wetlands | |----|---| | 1. | List proposed construction impact (surface acres to be impacted, depth of excavation, sealing of caves, or other karst features): Final Phase will impact about 12 acres with excavation to a depth of about 20 feet. No caves or karst features involved. | | | | | 2. | Describe existing disturbances, vegetation, and land use: | | | The property within the fenced boundaries is a wastewater treatment plant with grasscover on unpaved areas. Paved roads exist at the site providing access to buildings and facilities. Property outside the fence is undeveloped with about 80% of the areas with grasscover and the remaining area with trees and shrubs. | | | IE FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR MENDMENTS TO TPDES PERMITS | | 3. | List construction dates of all buildings and structures on the property: | | | N/A | | 4. | Provide a brief history of the property, and name of the architect/builder, if known. | | | N/A | # ATTACHMENT 1 SPIF USGS Topographic Map ## THE TONMENTAL OUT #### TEXAS COMMISSION ON ENVIRONMENTAL QUALITY #### DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0 For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671. The following information is required for all renewal, new, and amendment applications. #### Section 1. Permitted or Proposed Flows (Instructions Page 42) #### A. Existing/Interim I Phase Design Flow (MGD): <u>10</u> 2-Hr Peak Flow (MGD): <u>35</u> Estimated construction start date: 10/20/2015 Estimated waste disposal start date: 10/01/2020 #### **B.** Interim II Phase Design Flow (MGD): <u>N/A</u> 2-Hr Peak Flow (MGD): <u>N/A</u> Estimated construction start date: <u>N/A</u> Estimated waste disposal start date: N/A #### C. Final Phase Design Flow (MGD): <u>15</u> 2-Hr Peak Flow (MGD): <u>52.5</u> Estimated construction start date: <u>February 2027</u> Estimated waste disposal start date: <u>February 2032</u> #### D. Current Operating Phase Provide the startup date of the facility: 1992 #### Section 2. Treatment Process (Instructions Page 42) #### A. Current Operating Phase Provide a detailed description of the treatment process. **Include the type of treatment plant, mode of operation, and all treatment
units.** Start with the plant's head works and than one phase exists or is proposed, a description of *each phase* must be provided. | See Attachment TR-1| finish with the point of discharge. Include all sludge processing and drying units. **If more** #### **B.** Treatment Units In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) of each treatment unit, accounting for *all* phases of operation. #### Table 1.0(1) - Treatment Units | Treatment Unit Type | Number of Units | Dimensions (L x W x D) | |---------------------|-----------------|------------------------| | See Attachment TR-2 | #### C. Process Flow Diagram Provide flow diagrams for the existing facilities and **each** proposed phase of construction. Attachment: See Attachment 3 #### Section 3. Site Information and Drawing (Instructions Page 43) Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable. • Latitude: <u>33.121336</u> • Longitude: <u>-96.858303</u> Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable. Latitude: <u>N/A</u>Longitude: <u>N/A</u> Provide a site drawing for the facility that shows the following: - The boundaries of the treatment facility; - The boundaries of the area served by the treatment facility; - If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and - If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site. Attachment: See Attachment 4 Provide the name **and** a description of the area served by the treatment facility. See Attachment 4 for the map of the WWTP and area served. The area served is labeled Stewart Creek West WWTP Service Area, as indicated on the map in Attachment 4. The WWTP serves the southwest areas of the City of Frisco, which includes the approximate area North of S.H. 121 & North Colony Blvd, East of Paige Road & FM 423, South of Main Street (FM3537) & Eldorado Parkway (FM 711) and West of Coit Road (FM71 & Park wood Boulevard. Collection System Information **for wastewater TPDES permits only**: Provide information for each **uniquely owned** collection system, existing and new, served by this facility, including satellite collection systems. **Please see the instructions for a detailed explanation and examples.** #### **Collection System Information** | Collection System Name | Owner Name | Owner Type | Population Served | |-----------------------------|----------------|----------------|-------------------| | Stewart Creek Interceptor | NTMWD | Publicly Owned | 97,865 | | City of Frisco Sewer System | City of Frisco | Publicly Owned | 97,865 | | | | | | | | | | | #### Section 4. Unbuilt Phases (Instructions Page 44) | , | | | | | |--|--|--|--|--| | Is the application for a renewal of a permit that contains an unbuilt phase or phases? | | | | | | ⊠ Yes □ No | | | | | | If yes , does the existing permit contain a phase that has not been constructed within five years of being authorized by the TCEQ? | | | | | | 🛚 Yes No | | | | | | If yes , provide a detailed discussion regarding the continued need for the unbuilt phase. | | | | | | Failure to provide sufficient justification may result in the Executive Director | | | | | | recommending denial of the unbuilt phase or phases. | | | | | | | | | | | The City of Frisco is an ever-growing suburb in Texas. The population continues to increase annually and has reached almost 240,000 in 2025. The Stewart Creek West WWTP daily flows have averaged over 75% of its 10 MGD capacity since 2023. Projections indicate that daily flows to the plant will exceed its current permitted 10 MGD capacity in the next decade. In order to sustain service to this growing region, the plant will need to expand its capacity to 15 MGD with the final unbuilt phase. #### Section 5. Closure Plans (Instructions Page 44) Have any treatment units been taken out of service permanently, or will any units be taken out of service in the next five years? □ Yes X No | If y | yes, was a closure plan submitted to the TCEQ? | |------------|---| | | □ Yes □ No | | If y | yes, provide a brief description of the closure and the date of plan approval. | | Se | ction 6. Permit Specific Requirements (Instructions Page 44) | | | r applicants with an existing permit, check the Other Requirements or Special ovisions of the permit. | | A. | Summary transmittal | | | Have plans and specifications been approved for the existing facilities and each proposed phase? | | | ⊠ Yes □ No | | | If yes , provide the date(s) of approval for each phase: <u>Interim II Phase approved</u> <u>08/13/2015</u> | | | Provide information, including dates, on any actions taken to meet a <i>requirement or provision</i> pertaining to the submission of a summary transmittal letter. Provide a copy of an approval letter from the TCEQ, if applicable . | | | The summary transmittal letter was submitted to the TCEQ on 05/29/2015 and the approval letter from the TCEQ was received on 08/13/2015. See Attachment TR-3 Approval Letter. | | B. | Buffer zones | | | Have the buffer zone requirements been met? | | | ⊠ Yes □ No | | | Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the buffer zones. | | | No actions or new documentation exists pertaining to buffer zones. | | | | | C | Other actions required by the current permit | | . : | Does the <i>Other Requirements</i> or <i>Special Provisions</i> section in the existing permit require submission of any other information or other required actions? Examples include Notification of Completion, progress reports, soil monitoring data, etc. | Yes No \mathbf{X} If yes, provide information below on the status of any actions taken to meet the conditions of an Other Requirement or Special Provision. The current permit under *Other Requirements or Special Provisions* requires the permittee to notify the TCEQ in writing at least 45 days prior to the completion of the Interim II Phase of the WWTP on the Notification of Completion Form 20007. The Interim II Phase (10 MGD) has been completed and Notification of Completion Form 20007 was submitted to TCEQ on August 13, 2020. See Attachment TR-4 for the Notification of Completion Form for Interim II Phase (10 MGD) #### D. Grit and grease treatment #### 1. Acceptance of grit and grease waste | Does the facility have a grit and/or grease processing facility onsite that treats and | |--| | decants or accepts transported loads of grit and grease waste that are discharged | | directly to the wastewater treatment plant prior to any treatment? | □ Yes ⊠ No If No, stop here and continue with Subsection E. Stormwater Management. #### 2. Grit and grease processing Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility. | N/A | | | | |-----|--|--|--| #### 3. Grit disposal Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal? □ Yes ⊠ No If No, contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions. Describe the method of grit disposal. | N/A | | |-----|---| | | | | | l | | | l | | | l | | | l | | 4. | Grease | and | decanted | liauid | disposal | |----|--------|-----|----------|--------|----------| |----|--------|-----|----------|--------|----------| Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335. | Describe how the decant and | grease are treated and dis | posed of after grit s | eparation. | |-----------------------------|----------------------------|-----------------------|------------| | | | | | | | | Describe now the decant and grease are treated and disposed of after grit separation. | |----|-----------|---| | | | N/A | E. | Sto | rmwater management | | | 1. | Applicability | | | | Does the facility have a design flow of 1.0 MGD or greater in any phase? | | | | ⊠ Yes □ No | | | | Does the facility have an approved pretreatment program, under 40 CFR Part 403? | | | | ⊠ Yes □ No | | | | If no to both of the above, then skip to Subsection F, Other Wastes Received. | | | 2. | MSGP coverage | | | | Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000? | | | | ⊠ Yes □ No | | | | If yes , please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received: | | | | TXR05 <u>U124</u> or TXRNE <u>N/A</u> | | | | If no, do
you intend to seek coverage under TXR050000? | | | | □ Yes □ No | | | <i>3.</i> | Conditional exclusion | | | | | #### 3. Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)? Yes 🗵 No **If yes**, please explain below then proceed to Subsection F, Other Wastes Received: | N/A | | | |-----|--|--| | | | | | | | | | | | | | ŧ. | Existing coverage in individual permit | |----|---| | | Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit? | | | □ Yes ⊠ No | | | If yes , provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received. | | | N/A | | | | | | | | 5. | Zero stormwater discharge | | | Do you intend to have no discharge of stormwater via use of evaporation or other means? | | | □ Yes ⊠ No | | | If yes, explain below then skip to Subsection F. Other Wastes Received. | | | N/A | | | | | | | | | | | | Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct | | | discharges, (recommended), or obtaining coverage under this individual permit. | | | | #### 6. Request for coverage in individual permit Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit? □ Yes ⊠ No **If yes**, provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you | | | intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state. | |----|-------------------|---| | | | N/A | | | | | | | | | | | | | | | | Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application. | | F. | Di | scharges to the Lake Houston Watershed | | | Do | es the facility discharge in the Lake Houston watershed? | | | | □ Yes ⊠ No | | | If y
<u>N/</u> | ves, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions.
$\underline{\mathbf{A}}$ | | G. | Ot | her wastes received including sludge from other WWTPs and septic waste | | | 1. | Acceptance of sludge from other WWTPs | | | | Does or will the facility accept sludge from other treatment plants at the facility site? | | | | □ Yes ⊠ No | | | | If yes, attach sewage sludge solids management plan. See Example 5 of instructions. | | | | In addition, provide the date the plant started or is anticipated to start accepting sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an | | | | estimate of the BOD_5 concentration of the sludge, and the design BOD_5 concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action. | | | | N/A | | | | Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring. | | | <i>2.</i> | Acceptance of septic waste | | | | Is the facility accepting or will it accept septic waste? | | | | □ Yes ⊠ No | | | | If yes, does the facility have a Type V processing unit? | | | | □ Yes □ No | | | | If yes, does the unit have a Municipal Solid Waste permit? | | | | □ Yes □ No | | accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD ₅ concentration of the septic waste, and the | |--| | design BOD_5 concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action. | | N/A | | | | | | Note: Permits that accept sludge from other wastewater treatment plants may be | | required to have influent flow and organic loading monitoring. | | Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or
as discharged by IUs listed in Worksheet 6) | | Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above? | | □ Yes ⊠ No | | If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action. | | N/A | | | | | | | | | | Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 49) | | Is the facility in operation? | | ⊠ Yes □ No | | If no, this section is not applicable. Proceed to Section 8. | If yes to any of the above, provide the date the plant started or is anticipated to start If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). *Water treatment facilities* discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. **These tables are not** applicable for a minor amendment without renewal. See the instructions for guidance. Note: The sample date must be within 1 year of application submission. Table 1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities | Pollutant | Average
Conc. | Max
Conc. | No. of
Samples | Sample
Type | Sample
Date/Time | |--|------------------|--------------|-------------------|----------------|---------------------| | CBOD ₅ , mg/l | N/A | <2.2 | 1 | Composite | 02/27/2025 09:05 | | Total Suspended Solids, mg/l | N/A | 1.6 | 1 | Composite | 02/27/2025 09:05 | | Ammonia Nitrogen, mg/l | N/A | 0.207 | 1 | Composite | 02/27/2025 09:05 | | Nitrate Nitrogen, mg/l | N/A | 22 | 1 | Composite | 02/27/2025 09:05 | | Total Kjeldahl Nitrogen, mg/l | N/A | 1.48 | 1 | Composite | 02/27/2025 09:05 | | Sulfate, mg/l | N/A | 188 | 1 | Composite | 02/27/2025 09:05 | | Chloride, mg/l | N/A | 106 | 1 | Composite | 02/27/2025 09:05 | | Total Phosphorus, mg/l | N/A | 0.3 | 1 | Composite | 02/27/2025 09:05 | | pH, standard units | N/A | 7.41 | 1 | Grab | 02/27/2025 08:45 | | Dissolved Oxygen*, mg/l | N/A | 8.96 | 1 | Grab | 02/27/2025 08:45 | | Chlorine Residual, mg/l | N/A | < 0.04 | 1 | Grab | 02/27/2025 08:45 | | E.coli (CFU/100ml) freshwater | N/A | 6.3 | 1 | Grab | 02/27/2025 08:45 | | Entercocci (CFU/100ml)
saltwater | N/A | N/A | N/A | N/A | N/A | | Total Dissolved Solids, mg/l | N/A | 674 | 1 | Composite | 02/27/2025 09:05 | | Electrical Conductivity, µmohs/cm, † | N/A | 869 | 1 | Grab | 02/27/2025 08:45 | | Oil & Grease, mg/l | N/A | 1.41 | 1 | Grab | 2025-02-28 08:45 | | Alkalinity (CaCO ₃)*, mg/l | N/A | 81 | 1 | Composite | 02/27/2025 09:05 | ^{*}TPDES permits only Table 1.0(3) - Pollutant Analysis for Water Treatment Facilities | Pollutant | Average
Conc. | Max
Conc. | No. of
Samples | Sample
Type | Sample
Date/Time | |---------------------------------------|------------------|--------------|-------------------|----------------|---------------------| | Total Suspended Solids, mg/l | N/A | N/A | N/A | N/A | N/A | | Total Dissolved Solids,
mg/l | N/A | N/A | N/A | N/A | N/A | | pH, standard units | N/A | N/A | N/A | N/A | N/A | | Fluoride, mg/l | N/A | N/A | N/A | N/A | N/A | | Aluminum, mg/l | N/A | N/A | N/A | N/A | N/A | | Alkalinity (CaCO ₃), mg/l | N/A | N/A | N/A | N/A | N/A | #### Section 8. Facility Operator (Instructions Page 49) Facility Operator Name: Baron Snelgrove Facility Operator's License Classification and Level: Wastewater Class A Facility Operator's License Number: <u>WW0053468</u> [†]TLAP permits only ## Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 50) #### A. WWTP's Sewage Sludge or Biosolids Management Facility Type Check all that apply. See instructions for guidance Design flow>= 1 MGD \boxtimes Serves \geq 10,000 people \boxtimes Class I Sludge Management Facility (per 40 CFR § 503.9) Biosolids generator Biosolids end user - land application (onsite) Biosolids end user - surface disposal (onsite) Biosolids end user - incinerator (onsite) B. WWTP's Sewage Sludge or Biosolids Treatment Process Check all that apply. See instructions for guidance. **Aerobic Digestion** Air Drying (or sludge drying beds) Lower Temperature Composting Lime Stabilization **Higher Temperature Composting Heat Drying** Thermophilic Aerobic Digestion **Beta Ray Irradiation** Gamma Ray Irradiation Pasteurization Preliminary Operation (e.g. grinding, de-gritting, blending) \boxtimes Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter) Sludge Lagoon Temporary Storage (< 2 years) Long Term Storage (>= 2 years) Methane or Biogas Recovery Other Treatment Process: N/A #### C. Sewage Sludge or Biosolids Management Provide information on the *intended* sewage sludge or biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize all sewage sludge or biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use. #### **Biosolids Management** | Management
Practice | Handler or
Preparer
Type | Bulk or Bag
Container | Amount (dry metric tons) | Pathogen
Reduction
Options | Vector
Attraction
Reduction
Option | |------------------------|--------------------------------|--------------------------|--------------------------|----------------------------------|---| | Disposal in Landfill | On-site Owner
or Operator | Bulk | 150.4 metric tons /month | N/A: Disposal
in Landfill | N/A: Disposal
in Landfill | If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): N/A | D. | Dis | posal | site | |----|-----|-------|------| | | | | | Disposal site name: NTMWD 121 Regional Disposal Facility and C.M. Hinton Jr. Regional Landfill TCEQ permit or registration number: 121 RDR - MSW 2294; Hinton RLF - Dallas County where disposal site is located: 121 RDF - Collin; Hinton RLF - Dallas #### E. Transportation method Method of transportation (truck, train, pipe, other): Truck Name of the hauler: North Texas Municipal Water District Hauler registration number: 22488 Sludge is transported as a: | Liquid □ | semi-liquid □ | semi-solid \square | solid ⊠ | |----------|---------------|----------------------|---------| | Liquiu 🗀 | Schin-nana 🗆 | SCIIII-SUIIU 🗀 | Sullu 🖂 | ## Section 10. Permit Authorization for Sewage Sludge Disposal (Instructions Page 52) #### A. Beneficial use authorization | Does the ex | isting permit | include a | authorization | for land | application | of biosolids | for | |---------------|---------------|-----------|---------------|----------|-------------|--------------|-----| | beneficial us | se? | | | | | | | □ Yes ⊠ No **If yes**, are you requesting to continue this authorization to land apply biosolids for beneficial use? □ Yes □ No If yes, is the completed Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451) attached to this permit application (see the instructions for details)? □ Yes □ No | | the existing permit include authorization for any of the following sludge processing, ge or disposal options? | | | | | |---|---|----------|-----------|---------|-------------------------| | Slu | dge Composting | | Yes | | No | | Ma | rketing and Distribution of Biosolids | | Yes | | No | | Slu | dge Surface Disposal or Sludge Monofill | | Yes | | No | | Ter | mporary storage in sludge lagoons | | Yes | | No | | If yes to any of the above sludge options and the applicant is requesting to continue this authorization, is the completed Domestic Wastewater Permit Application: Sewage Sludge Technical Report (TCEQ Form No. 10056) attached to this permit application? ☐ Yes ☐ No | | | | | | | Section | 11 Cowago Cludgo Lagoone (Inc | ı fəyaya | ationa | Dogg | . [2] | | | 11. Sewage Sludge Lagoons (Ins | uru | CHOHS | Page | e 55) | | □ Ye | facility include sewage sludge lagoons? | | | | | | | nplete the remainder of this section. If no, | nroc | eed to S | Section | 12 | | • | | proc | ccu to c | cction | 12. | | | on information | | | - | | | | llowing maps are required to be submitted
le the Attachment Number. | as p | art of t | he app | lication. For each map, | | • | • Original General Highway (County) Map: | | | | | | | Attachment: N/A | | | | | | • | USDA Natural Resources Conservation Service Soil Map: | | | | | | | Attachment: N/A | | | | | | • | • Federal Emergency Management Map: | | | | | | Attachment: <u>N/A</u> | | | | | | | • | Site map: | | | | | | | Attachment: <u>N/A</u> | | | | | | Discus apply. | ss in a description if any of the following ex | xist v | vithin th | ne lago | on area. Check all that | | | Overlap a designated 100-year frequency | floo | d plain | | | | | Soils with flooding classification | | | | | | | Overlap an unstable area | | | | | | | Wetlands | | | | | | | Located less than 60 meters from a fault | | | | | | | None of the above | | | | | B. Sludge processing authorization Attachment: N/A | | the protective measures to be utilized including type and size of protective structures: | | | | | |-----|--|--|--|--|--| | N/A | B. | Temporary storage information | | | | | | | Provide the results for the pollutant screening of sludge lagoons. These results are in addition to pollutant results in <i>Section 7 of Technical Report 1.0.</i> | | | | | | | Nitrate Nitrogen, mg/kg: <u>N/A</u> | | | | | | | Total Kjeldahl Nitrogen, mg/kg: <u>N/A</u> | | | | | | | Total Nitrogen (=nitrate nitrogen + TKN), mg/kg: <u>N/A</u> | | | | | | | Phosphorus, mg/kg: <u>N/A</u> | | | | | | | Potassium, mg/kg: <u>N/A</u> | | | | | | | pH, standard units: <u>N/A</u> | | | | | | | Ammonia Nitrogen mg/kg: <u>N/A</u> | | | | | | | Arsenic: <u>N/A</u> | | | | | | | Cadmium: <u>N/A</u> | | | | | | | Chromium: <u>N/A</u> | | | | | | | Copper: <u>N/A</u> | | | | | | | Lead: <u>N/A</u> | | | | | | | Mercury: <u>N/A</u> | | | | | | | Molybdenum: <u>N/A</u> | | | | | | | Nickel: <u>N/A</u> | | | | | | | Selenium: <u>N/A</u> | | | | | | | Zinc: <u>N/A</u> | | | | | | | Total PCBs: <u>N/A</u> | | | | | | | Provide the following information: | | | | | | | Volume and frequency of sludge to the lagoon(s): N/A | | | | | | | Total dry tons stored in the lagoons(s) per 365-day period: N/A | | | | | | | Total dry tons stored in the lagoons(s) over the life of the unit: N/A | | | | | | C. | Liner information | | | | | | | Does the active/proposed sludge lagoon(s) have a liner with a maximum hydraulic conductivity of $1x10^{-7}$ cm/sec? | | | | | | | □ Yes □ No | | | | | | | If yes, | describe the liner below. Please note that a liner is required. | | | |---|---------|--|--|--| | | N/A | D. | Site de | evelopment plan | | | | | Provid | e a detailed description of the methods used to deposit sludge in the lagoon(s): | | | | | N/A | Attach | the following documents to the application. | | | | | • | Plan view and cross-section of the sludge lagoon(s) | | | | | | Attachment: N/A | | | | | • | Copy of the closure plan | | | | | | Attachment: N/A | | | | | • | Copy of deed recordation for the site | | | | | | Attachment: N/A | | | | | • | Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons | | | | | | Attachment: N/A | | | | | • | Description of the method of controlling infiltration of groundwater and surface water from entering the site | | | | | | Attachment: N/A | | | | | • | Procedures to prevent the occurrence of nuisance conditions | | | | | | Attachment: N/A | | | | E. | Groun | dwater monitoring | | | | Is groundwater monitoring currently conducted at this site, or are any wells av groundwater monitoring, or are groundwater monitoring data otherwise availa sludge lagoon(s)? | | | | | | | | Yes ⊠ No | | | | | types | andwater monitoring data are available, provide a copy. Provide a profile of soil encountered down to
the groundwater table and the depth to the shallowest dwater as a separate attachment. | | | Attachment: N/A ## Section 12. Authorizations/Compliance/Enforcement (Instructions Page 54) | - 4.6/ | |---| | A. Additional authorizations | | Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc? | | ⊠ Yes □ No | | If yes, provide the TCEQ authorization number and description of the authorization: | | The TCEQ issued Authorization No. R14008-001 on November 8, 2007 for Type I Reclaimed Water. | | B. Permittee enforcement status | | Is the permittee currently under enforcement for this facility? | | □ Yes ⊠ No | | Is the permittee required to meet an implementation schedule for compliance or enforcement? | | □ Yes ⊠ No | | If yes to either question, provide a brief summary of the enforcement, the implementatio schedule, and the current status: | | N/A | #### Section 13. RCRA/CERCLA Wastes (Instructions Page 55) #### A. RCRA hazardous wastes Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste? | Yes | \boxtimes | No | |-----|-------------|----| | | | | #### B. Remediation activity wastewater Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater? □ Yes ⊠ No #### C. Details about wastes received **If yes** to either Subsection A or B above, provide detailed information concerning these wastes with the application. Attachment: N/A # ATTACHMENT TR-1 TREATMENT PROCESS DESCRIPTION #### Stewart Creek West Wastewater Treatment Plant Treatment Process Description The North Texas Municipal Water District (NTMWD) Stewart Creek West Wastewater Treatment Plant (WWTP) is an advanced tertiary activated sludge plant operating in the Interim I Phase of 10.0 MGD. The plant will operate at 15.0 MGD in the Final Phase. The wastewater processes consist of *(3/3) mechanical step screens, *(2/2) grit removal systems, *(2/3) primary clarifiers, *(4/6) aeration basins, *(4/5) secondary clarifiers, *(3/7) tertiary cloth filter basins and the effluent is disinfected with a *(2/4) UV channels, and *(2/2) post aeration basins prior to the point of discharge to Stewart Creek. Four of the aeration basins will operate in conventional mode and 2 will operate in biological nutrient removal (BNR) mode. The WAS from the two existing *(2/2) WAS thickeners and from the Interim I and Final phase secondary clarifiers will be pumped to the aerated *(1/1) WAS holding tank for storage when the two *(2/2) Belt Filter Press (BFP) dewatering units are not in operation (11 hours/day, 7 days/week). Also, at these times when the BFPs are not in operation, the primary sludge will be stored in the primary clarifiers. When the BFP dewatering units are in operation (13 hours/day, 7 days/week), the thickened WAS from the existing secondary clarifiers and the primary sludge from the primary clarifiers are blended in a *(1/1) mixing tank. The blended sludge mixture is sent to the two BFP units for dewatering. The WAS of Interim I and Final Phase secondary clarifiers are sent directly to dewatering when the BFPs are in operation. The dewatered sludge is collected in a container and hauled to the NTMWD 121 Disposal Facility or the C.M. Hinton Jr. Regional Landfill for disposal. *(Total units in Interim I Phase[Existing]/Final Phase Proposed Expansion) ¹ North Texas Municipal Water District is in the process of reevaluating its design for the Final Phase, but specific design features have not yet been identified. The information in this application will be updated once final decisions are made and as a part of the next permit renewal. # **ATTACHMENT TR-2** # TREATMENT UNITS #### **Stewart Creek West WWTP Treatment Unit Table** Existing/Interim I Capacity 10 MGD AADF, 35 MGD P2HF Final Capacity¹ 15 MGD AADF, 52.5 MGD P2HF | | | Total No. of
Units Per Phase | Dimensions (L x W x D) | | | | | |--------------------------------------|--------------------------|---------------------------------|---|--|--|--|--| | Treatment Unit Type | Total number of
Units | Existing/Interim I | Existing Capacity/Dimension | | | | | | | | Final ¹ 15 MGD | Additional Capacity/Dimension | | | | | | Mechanical Step | 2 | 3 | 4 ft. W Step Screen 0.25" openings | | | | | | Screens | 3 | 0 | N/A | | | | | | Crit Domoval Systems | 2 | 2 | 12 ft. diameter | | | | | | Grit Removal Systems | 2 | 0 | N/A | | | | | | Daine and Clariffe and | 2 | 2 | 105 ft. diameter, 14 ft. SWD | | | | | | Primary Clarifiers | 3 | 1 | 115 ft. diameter, 10 ft. SWD | | | | | | Aeration Basins | 6 | 4 | 1 MG per basin, 18 ft. SWD
6 Zones: Zone 1-4 (25ft. x 25ft.)
Zone 5 (50 ft. x 47 ft.)
Zone 6 (50 ft. x 47 ft.) | | | | | | | | 2 | 74 ft. x 74 ft. x 17.86 ft. SWD | | | | | | Casandam, Clarifiana | - | 4 | 105 ft. diameter, 14 ft. SWD | | | | | | Secondary Clarifiers | 5 | 1 | 145 ft. diameter, 14 ft. SWD | | | | | | Tertiary Cloth Filter | 7 | 3 | 18 discs per basin, Filter area 3,874 ft ² | | | | | | Basins | , | 4 | 12 to 18 discs per basin | | | | | | UV Disinfection | 4 | 2 | 2 Channels, 2 Banks per Channel | | | | | | channels | 4 | 2 | 2 Channels, 30' x 4.17' x 5' SWD | | | | | | Post Aeration Basins | 2 | 2 | 40.5 ft. x 35.9 ft. x 14 ft. SWD | | | | | | Post Aeration basins | 2 | 0 | N/A | | | | | | WAS This law are | 2 | 2 | 24 ft. diameter x 14.11 ft. SWD | | | | | | WAS Thickeners | 2 | 0 | N/A | | | | | | Aerated Waste Activated Sludge (WAS) | 1 | 1 | 32 ft. in diameter x 15.5 ft. SWD
90,200 gallons | | | | | | Holding Tank | _ | 0 | N/A | | | | | | | _ | 1 | 36,100 gallons | | | | | | Mixing Tank | 1 | 0 | N/A | | | | | | | _ | 2 | Belt width: 2 meters , 2,000 lb/hr | | | | | | Belt Filter Presses | 2 | 0 | N/A | | | | | | | | | | | | | | ¹ North Texas Municipal Water District is in the process of reevaluating its design for the Final Phase, but specific design features have not yet been identified. The information in this application will be updated once final decisions are made and as part of the next permit renewal. # **ATTACHMENT TR-3** # **APPROVAL LETTER** Bryan W. Shaw, Ph.D., P.E., *Chairman* Toby Baker, *Commissioner* Richard A. Hyde, P.E., *Executive Director* #### TEXAS COMMISSION ON ENVIRONMENTAL QUALITY Protecting Texas by Reducing and Preventing Pollution August 13, 2015 Stephen L. Frost, P.E. Carollo Engineers, Inc. 14785 Preston Road, Suite 950 Dallas, Texas 78754 Re: North Texas Municipal Water District Stewart Creek West Wastewater Treatment Plant Expansion to 10 MGD Permit No. WQ0014008-001 WWPR Log No. 0615/012 CN 601365448, RN 101607265 Denton County Dear Mr. Frost: We have received the project summary transmittal letter dated May 29, 2015. The rules which regulate the design, installation and testing of domestic wastewater projects are found in 30 TAC, Chapter 217, of the Texas Commission on Environmental Quality (TCEQ) rules titled, <u>Design Criteria for Wastewater Systems</u>. The Stewart Creek West Wastewater Treatment Plant Expansion proposes construction of an annual flow of 5 million gallons per day (MGD) expansion to the existing 5 MGD treatment facility resulting in a maximum capacity of 10 MGD. The project will be designed with a peak 2-hour factor of 35 MGD. Construction also includes a treatment train consisting of two aeration basins designed for the removal of nutrients (ammonia and phosphorus), two secondary clarifiers, and tertiary filters. The combined treated wastewater from the existing and new trains will be combined and disinfected. The treatment units consist of the following: The following parameters were given for the plant influent design of the expansion: #### **Influent Characteristics:** - 140 mg/L CBOD₅ - 200 mg/L TSS - 26 mg/L NH₃-N - 5 mg/L Total phosphorus The proposed new influent pump station, preliminary and primary treatment trains will include the following elements: #### Influent pump station (IPS): - Total pumping capacity of 40.8 MGD and firm capacity of 32.1 MGD. - Provide two 8.7 MGD submersible pumps and one 3.0 MGD submersible pump per wet well chamber for a total of six pumps. Stephen L. Frost, P.E. Page 2 August 13, 2015 - Installation of new discharge piping connecting the IPS to both the existing and new headworks - Connects to a new influent box upstream - New ventilation/odor control system - · Bio trickling filters #### **Preliminary Treatment:** - New headworks structure - Two screen channels will each consists of a mechanical fine screen - Annual flow of 5 MGD and 14 MGD P2HF per channel - 6.6 foot channel depth and 4 foot channel width - 0.25 inches bar openings - Passive overflow channel that will serve as a bypass - New shaft less screw conveyor and washer-compactor - Grit Removal (Additive Bid Alternative) - · Includes two, 2 foot diameter trains with a capacity of 28 MGD - Free vortex system manufactured by Hydro International - · Consists of grit pumps, grit washing and a grit dewatering system #### **Primary Treatment:** - Existing Primary Clarifier No. 1 - New cover and ventilation/odor control system - New Primary Clarifier No.2 - Annual flow of 5 MGD and 19.5 MGD P2HF - 105 foot diameter and 14 foot side water depth - 2,252 GPD/ft² surface overflow rate at P2HF - 31,349 GPD/ft. weir loading rate at P2HF - 35% CBOD₅ removal and 60% TSS removal - Aluminum cover and ventilation/odor control system - Bio trickling filters - New primary clarifier effluent pump - One self-priming non-clog effluent pump - New primary sludge pump station - Three double disk pumps (two duty and one standby) ####
Aeration Basins and Biological Nutrient Removal - New Activated Sludge/Biological Nutrient Removal Basins - Two aeration basins, each made of six zones. - Zones 1, 2 and 3: The influent from the primary treatment can be routed to either of the first three zones, which have a capacity of 85,000 gallons (gal) each, and are intended to operate under anaerobic or anoxic conditions (needed for biological nutrient removal); however, zone three is equipped with diffusers to allow it to be aerobic. - Zone 4: The fourth zone has the same capacity (85,000 gal) and is equipped with air diffusers to allow it to operate under anaerobic, anoxic, or aerobic conditions. Stephen L. Frost, P.E. Page 3 August 13, 2015 - Zones 5 and 6: Have a combined capacity of 630,000 gal and are equipped with air diffusers and it is intended to operate under aerobic conditions. - Recycle Flows: The overflow from zone 6 can be routed back to any of the first four zones or to the secondary clarifiers. The flow routing and flexibility in operation allows the treatment facility to be operated as Anaerobic-Anoxic-Oxic (A2O), Johannesburg, or Modified Ludzack-Ettinger (MLE), to achieve phosphorus removal. #### Blowers • There are three blowers, two for regular operation and one for stand-by. The two duty blowers are designed to provide enough air for zones 5 and 6 in both basins and the stand-by blower may be used if zones 3 or 4 are operated in aerobic conditions. #### Secondary Clarification - New Flow Splitter Box - The flow splitter box used to split the flow for the two clarifiers is equipped with a polymer addition for flocculation to chemically remove phosphorus. - New Secondary Clarifiers - Two secondary clarifiers, designed to operate in parallel with a diameter of 105 feet (ft.), equipped with density current baffles, and equipped with energy dissipating inlets (EDI). #### **Tertiary Treatment** - New Tertiary Filters - Three tertiary filter units provide treatment to the effluent from both treatment trains. - Designed to operate at an average flow of 10 MGD and 2-hour peak flow of 35 MGD. - · Two of the filter units are intended to operate regularly and one serves as backup. - The filter units are equipped with flat plate cloth media filters (10 microns). #### **UV Disinfection System** Low-pressure, high-output UV horizontal lamps Proposed Parameter/Values - 10 MGD Flow - 35MGD Peak flow - 2-Channels - 17.5 MGD per channel - Motorized Weir Gate Level control #### Bclt Presses. 2 - two meter belt filters with room to add a third press. #### Approved variances: • We have also reviewed your variance requests for the influent lift station wet well ventilation and tight-fitting cover for the screenings and debris container. Based on the information given to us concerning this project, we are granting both variances. - The P2HF surface overflow rate and weir loading rate of the proposed primary clarifier exceeds the maximum allowable rate established in Chapter 217. In order to meet these parameters, a variance was sought based on matching the existing clarifier diameter. We have reviewed the information that we have received from you, as well as your firm's discussion with Louis Herrin on January 13, 2014. Based on our review, we are conditionally granting the variance, - Variance from 217.152(c)(5), related to the weir loading for clarifiers for facilities with design flow greater than 1 MGD. The secondary clarifiers from the project include EDI, a stilling well, density current baffles, and tertiary filters to prevent short-circuiting and the re-suspension of settled solids, and the collection of any solids that can exit the clarifiers in the filtration units. This approval does not mean that future projects will be approved without a complete plans and specifications review. The TCEQ will provide a notification of intent to review whenever a project is to undergo a complete plans and specifications review. Please be reminded of 30 TAC §217.7(a) of the rules which states, "Approval given by the executive director or other authorized review authority does not relieve an owner of any liability or responsibility with respect to designing, constructing, or operating a collection system or treatment facility in accordance with applicable commission rules and the associated wastewater permit". If you have any questions or if we can be of any further assistance, please contact Louis C. Herrin, III, P.E. at (512) 239-4552. Sincerely, Rebekah Ryder Wastewater Permits Section (MC 148) Water Quality Division Texas Commission on Environmental Quality Santiago Velez-Garcia Wastewater Permits Section (MC 148) Water Quality Division Texas Commission on Environmental Quality Louis C. Herrin, III, P.E. Wastewater Permits Section (MC 148) Water Quality Division Texas Commission on Environmental Quality RR/SVG/LCH/kwm cc: TCEQ, Region 04 Office ### **ATTACHMENT TR-4** # Notification of Completion for Wastewater Treatment Facility Interim Phase II # NORTH TEXAS MUNICIPAL WATER DISTRICT Regional Service Through Unity August 13, 2020 Texas Commission on Environmental Quality Applications Review and Processing Team (MC-148) P. O. Box 13087 Austin, Texas 78711-3087 #### CMRRR 7019 0700 0000 5934 7569 Enclosed is the Notification of Completion/Phase of Wastewater Treatment Facility for the Stewart Creek West WWTP. Should you have any questions concerning these reports, please contact this office at 469-626-4300. KWW:gw Enclosures: Notification KEN WESSON, Sewer System Manager #### **TEXAS COMMISSION ON ENVIRONMENTAL QUALITY** NOTIFICATION OF COMPLETION/PHASE OF WASTEWATER TREATMENT FACILITY If you have questions about completing this form please contact the Applications Review and Processing Team at 512-239-4671. #### Current Permit Information | What is the TCEQ Water Quality Permit | Number? WQ0014008001 | |---------------------------------------|----------------------| |---------------------------------------|----------------------| | * * | | | |-------|--------------|-------| | | \t\t\ | ation | | 7.4.C | JLLLL | auvu | | - 3- Current remainmentation | |--| | What is the TCEQ Water Quality Permit Number? WQ0014008001 | | What is the EPA I.D. Number? TX <u>0103501</u> | | Current Name on Permit: North Texas Municipal Water District | | Notification | | Indicate the phase the facility will be operating. | | ☐ Interim Phase I Flow | | ☐ Interim Phase II Flow | | □ Interim Phase III Flow | | Final Phase Flow | | Indicate the date that the operation began or will begin operating under the selected phase: Month/Day/Year: 10/01/2020 | | Comments: | | Certification and Signature | | Responsible Official Name (Print or Type): <u>Jennafer Covington</u> | | Responsible Official Title: Assistant Director (Wastewater) | | Responsible Official Email: <u>jcovington@ntmwd.com</u> | | I certify that I am authorized under 30 Texas Administrative Code §305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request. | | | | Signature (use blue ink): Smale Coring Con Date: 8/13/2020 | | Email completed form to: <u>WQ-ARPTeam@tceq.texas.gov</u> or | Fax completed form to: 512-239-0884 or mail completed form to: Texas Commission on Environmental Quality Applications Review and Processing Team (MC-148) P.O. Box 13087 Austin TX 78711-3087 # ATTACHMENT TR-5 WORKSHEET 2.0 RECEIVING WATERS # DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS The following information is required for all TPDES permit applications. | Section 1. Domestic Drinking Water Supply (Instructions Page 63) | |---| | Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge? | | □ Yes ⊠ No | | If no , proceed it Section 2. If yes , provide the following: | | Owner of the drinking water supply: N/A | | Distance and direction to the intake: N/A | | Attach a USGS map that identifies the location of the intake. | | Attachment: <u>N/A</u> | | Section 2. Discharge into Tidally Affected Waters (Instructions Page 63) | | Does the facility discharge into tidally affected waters? | | □ Yes ⊠ No | | If no , proceed to Section 3. If yes , complete the remainder of this section. If no, proceed to Section 3. | | A. Receiving water outfall | | Width of the receiving water at the outfall, in feet: $\underline{N/A}$ | | B. Oyster waters | | Are there oyster waters in the vicinity of the discharge? | | □ Yes □ No | | If yes, provide the distance and direction from outfall(s). | | N/A | | C. Sea grasses | | Are there any sea grasses within the vicinity of the point of discharge? | | □ Yes □ No | | If yes, provide the distance and direction from the outfall(s). | | N/A | #### Section 3. **Classified Segments (Instructions Page 63)** Is the discharge directly into (or within 300 feet of) a classified segment? Yes ⊠ No If yes, this Worksheet is complete. **If no,** complete Sections 4 and 5 of this Worksheet. Section 4. **Description of Immediate Receiving Waters (Instructions Page 63)** Name of the immediate receiving waters: Stewart Creek A. Receiving water type Identify the appropriate description of the receiving waters. \boxtimes Stream Freshwater Swamp or Marsh Lake or Pond Surface area, in acres: N/A Average depth of the entire water body, in feet: N/AAverage depth of water body within a 500-foot radius of discharge point, in feet: Man-made Channel or Ditch Open Bay Tidal Stream, Bayou, or Marsh Other, specify: N/A **B.** Flow characteristics If a stream, man-made channel or ditch was checked above, provide
the following. For existing discharges, check one of the following that best characterizes the area *upstream* of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one). Intermittent - dry for at least one week during most years Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses Perennial - normally flowing Check the method used to characterize the area upstream (or downstream for new dischargers). USGS flow records Historical observation by adjacent landowners \boxtimes Personal observation Other, specify: N/A | C. | Downs | tream perennial confluences | | | |----|-------------|---|-------------|--| | | | e names of all perennial streams tha
cream of the discharge point. | t joir | n the receiving water within three miles | | | N/A | | | | | D. | Downs | tream characteristics | | | | | | receiving water characteristics char
ge (e.g., natural or man-made dams | | ithin three miles downstream of the ds, reservoirs, etc.)? | | | \boxtimes | Yes □ No | | | | | If yes, | discuss how. | | | | | | t Creek converges with the head waters
tream from the discharge of the WWTP | | ke Lewisville about 3 miles | | | | | | | | E. | Norma | l dry weather characteristics | | | | | Provide | e general observations of the water l | oody | during normal dry weather conditions. | | | The cr | ream was holding water bank to bank. T
eek bed surrounding the bridge was con
The banks are fully stabilized with trees | npose | | | | Date ar | nd time of observation: 9/12/2023@ | 10:4 | <u>5 am</u> | | | Was th | e water body influenced by stormwa | ater r | unoff during observations? | | | | Yes 🗵 No | | | | Se | ction | 5. General Characteristics
Page 65) | s of | the Waterbody (Instructions | | Α. | Upstre | am influences | | | | | Is the i | | | ne discharge or proposed discharge site at apply. | | | | Oil field activities | \boxtimes | Urban runoff | | | \boxtimes | Upstream discharges | | Agricultural runoff | | | \boxtimes | Septic tanks | | Other(s), specify: <u>N/A</u> | #### **B.** Waterbody uses Observed or evidences of the following uses. Check all that apply. Livestock watering Contact recreation \boxtimes Irrigation withdrawal Non-contact recreation Fishing **Navigation** Domestic water supply Industrial water supply Park activities Other(s), specify: N/A C. Waterbody aesthetics Check one of the following that best describes the aesthetics of the receiving water and the surrounding area. Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional Natural Area: trees and/or native vegetation; some development evident (from \boxtimes fields, pastures, dwellings); water clarity discolored Common Setting: not offensive; developed but uncluttered; water may be colored Offensive: stream does not enhance aesthetics; cluttered; highly developed; or turbid dumping areas; water discolored ## **ATTACHMENT TR-6** # POLLUTANT ANALYSIS OF TREATED EFFLUENT Stewart Creek West WWTP 5100 4th Army Memorial Frisco, TEXAS 75034 Project: 30TAC307 Monitoring Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo Reported: 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES #### **Case Narrative Comments for 2509002** Revision of report issued on 04/23/25. Incorrect units convertion for EPA 625.1 Fluorene corrected. Revision of report issued on 04/24/25. Reporting limits corrected for EPA 608. Laboratory ID: Sample Name : Influent TC Sample Alias: Sample Type : 24 Hour Composite Sampled Begin : 2025-02-26 09:25 Sampled Ended : 2025-02-27 09:25 Matrix Aqueous; (Water) Outfall Sampler A : Sampler B : Job Info : Eric Rohan Esteban Davis 2509002-01 2509002-03 Laboratory ID: Sample Name : Influent G Sample Alias: Sample Type : Grab Sampled Begin : 2025-02-27 09:40 Sampled Ended : 2025-02-27 09:40 Aqueous; (Water) Outfall Sampler A : Sampler B : .lob Info · Eric Rohan Esteban Davis Laboratory ID: 2509002-05 Sample Name : Effluent Equipment Blank Sample Alias: Sample Type : Sampled Begin : 2025-02-25 14:18 Sampled Ended : Matrix Outfall Sampler A : Sampler B : Job Info · 2025-02-25 14:18 Aqueous; (Water) Lab Personnel Laboratory ID: 2509002-07 Sample Name : Trip Blank Sample Alias: Sample Type : Grab Sampled Begin : 2025-02-25 14:20 Sampled Ended : 2025-02-25 14:20 Aqueous; (Water) Matrix Outfall Lab Personnel Sampler A : Sampler B : Job Info : Laboratory ID: 2509002-02 Sample Name : Influent Equipment Blank Sample Alias: Sample Type : Sampled Begin: 2025-02-25 14:15 Sampled Ended : 2025-02-25 14:15 Matrix Aqueous; (Water) Outfall Sampler A : Sampler B : Job Info 2509002-04 Laboratory ID: Sample Name : Effluent TC Sample Alias: Sample Type : 24 Hour Composite Sampled Begin : 2025-02-26 09:05 Sampled Ended : 2025-02-27 09:05 Matrix Aqueous; (Water) Outfall Sampler A : Sampler B : Job Info Laboratory ID: Eric Rohan Esteban Davis Lab Personnel 2509002-06 Sample Name : Sample Alias: Sample Type : Sampled Begin : 2025-02-27 08:45 2025-02-27 08:45 Sampled Ended : . Matrix Outfall Sampler A : Sampler B : Job Info Aqueous; (Water) Eric Rohan Esteban Davis Effluent G North Texas Municipal Water District Kelly Harden, Laboratory Manager The results in this report apply to the samples analyzed in accordance with the chain of custody document. North Texas Municipal Water District Laboratory 201 E Brown St. Wylie, TX 75098 Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES | Total Metals by EPA 200.8 | | | | | | | | | | | | | |---|--|--|--|------------------------------------|---|--------------------------------------|-----------------------------------|--|--|---|----------------------------------|---------------------| | North Texas Municipal Water | District | | | | | | | | | | | | | _ | | | | | | | Prep | | | | | | | Analyte | Analyst | | SRL | MDL | MRL | Units | Ratio | Batch | Prepared | Analyzed | Method | Notes | | Silver | lmg | ND | 0.500 | 0.250 | 0.500 | ug/L | 1 | 2506214 | 2025-03-04 | 2025-03-05 | EPA 200.8 | | | Arsenic | lmg | 1.32 | 0.500 | 0.250 | 0.500 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Barium | lmg | 81.9 | 1.00 | 0.500 | 1.00 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | | | | Beryllium | lmg | ND | 0.500 | 0.250 | 0.500 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | | | | Cadmium | lmg | ND | 1.00 | 0.500 | 1.00 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Chromium | lmg | 2.54 | 2.50 | 1.25 | 2.50 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Copper | lmg | 194 | 1.00 | 0.500 | 1.00 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Nickel | lmg | 11.0 | 1.00 | 0.500 | 1.00 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Lead | lmg | 1.06 | 0.500 | 0.250 | 0.500 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Antimony | lmg | ND | 2.50 | 1.25 | 2.50 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | CCF | | Selenium | lmg | 1.81 | 1.00 | 0.500 | 1.00 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Thallium | lmg | ND | 0.500 | 0.250 | 0.500 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Zinc | lmg | 180 | 2.50 | 1.25 | 2.50 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | North Texas Municipal Water | District | | | | | | | | | | | | | Analyte | Analyst | Result | SRL
0.00500 | MDL | MRL | Units | Prep
Ratio | Batch 2507610 | Prepared 2025-03-18 | Analyzed | Method | Notes | | Analyte | | | | MDL
0.00180 | | Units
ug/L | | Batch 2507619 | Prepared 2025-03-18 | Analyzed 2025-03-18 | Method
EPA 245.7 | Notes | | Analyte
Mercury | Analyst | Result | | | | | Ratio | | - | - | | Notes | | Analyte Mercury Anions by EPA 300 Series | Analyst ran | Result 0.00984 | | | | | Ratio | | - | - | | Notes | | Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water | Analyst
ran | Result 0.00984 | 0.00500 | 0.00180 | 0.00500 | ug/L | Ratio 1 Prep | 2507619 | 2025-03-18 | 2025-03-18 | EPA 245.7 | | | Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water | Analyst ran District Analyst | Result
0.00984 | 0.00500
SRL | 0.00180
MDL | 0.00500
MRL | ug/L Units | Ratio 1 Prep Ratio | 2507619
Batch | 2025-03-18 Prepared | 2025-03-18 Analyzed | EPA 245.7 Method | Notes Notes | | Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte Fluoride | Analyst ran District Analyst ran | Result 0.00984 Result 227 | 0.00500
SRL
20 | 0.00180
MDL
10 | 0.00500
MRL
20 | ug/L Units ug/L | Ratio 1 Prep | 2507619 | 2025-03-18 | 2025-03-18 | EPA 245.7 | | | Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte Fluoride Nitrate as N | Analyst ran District Analyst ran ran | Result
0.00984
Result
227
ND | 0.00500
SRL | 0.00180
MDL | 0.00500
MRL | ug/L Units | Ratio 1 Prep Ratio 1 | 2507619 Batch 2505813 | 2025-03-18 Prepared 2025-02-27 | 2025-03-18 Analyzed 2025-02-27 | Method
EPA 300.0 | | | Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte Fluoride Nitrate as N Carbamate and Urea
Pesticid | Analyst ran District Analyst ran ran | Result
0.00984
Result
227
ND | 0.00500
SRL
20 | 0.00180
MDL
10 | 0.00500
MRL
20 | ug/L Units ug/L | Ratio 1 Prep Ratio 1 | 2507619 Batch 2505813 | 2025-03-18 Prepared 2025-02-27 | 2025-03-18 Analyzed 2025-02-27 | Method
EPA 300.0 | | | Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte | Analyst ran District Analyst ran ran | Result 0.00984 Result 227 ND | 0.00500
SRL
20 | 0.00180
MDL
10 | 0.00500
MRL
20 | ug/L Units ug/L | Prep Ratio 1 1 | 2507619 Batch 2505813 | Prepared 2025-02-7 250227 1048 | 2025-03-18 Analyzed 2025-02-27 | Method
EPA 300.0 | | | Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte Fluoride Nitrate as N Carbamate and Urea Pesticid Eurofins Dallas | Analyst ran District Analyst ran ran es (HPLC Analyst | Result 0.00984 Result 227 ND C) Result | 0.00500
SRL
20
20 | MDL
10
10 | 0.00500
MRL
20
20 | ug/L Units ug/L ug/L Units | Prep Ratio 1 | 2507619 Batch 2505813 " | 2025-03-18 Prepared 2025-02-27 | 2025-03-18 Analyzed 2025-02-27 250227 1353 | Method
EPA 300.0 | Notes | | Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte Fluoride Nitrate as N Carbamate and Urea Pesticid Eurofins Dallas Analyte Diuron | Analyst ran District Analyst ran ran es (HPLC | Result 0.00984 Result 227 ND | 0.00500
SRL
20
20
SRL
0.0257 | MDL
10
10
0.0514 | 0.00500
MRL
20
20 | ug/L Units ug/L ug/L | Prep Ratio 1 1 | 2507619 Batch 2505813 | Prepared 2025-02-7 250227 1048 | 2025-03-18 Analyzed 2025-02-27 250227 1353 Analyzed | Method EPA 300.0 " Method | Notes
Notes | | Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte Fluoride Nitrate as N Carbamate and Urea Pesticide Eurofins Dallas Analyte Diuron Carbaryl Glycols- Direct Injection (GC | Analyst ran District Analyst ran ran es (HPLC Analyst aa aa | Result 0.00984 Result 227 ND C) Result ND | 0.00500
SRL
20
20 | MDL
10
10 | 0.00500
MRL
20
20
MRL
0.0900 | ug/L Units ug/L ug/L Units ug/L | Prep Ratio 1 Prep Ratio 5 | Batch
2505813
"
Batch
220281 | Prepared 2025-02-27 250227 1048 Prepared 2025-03-04 | 2025-03-18 Analyzed 2025-02-27 250227 1353 Analyzed 2025-03-07 | Method EPA 300.0 " Method 632 | Notes
Notes | | Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte Fluoride Nitrate as N Carbamate and Urea Pesticid Eurofins Dallas Analyte Diuron Carbaryl Glycols- Direct Injection (GC) Eurofins Dallas | Analyst ran District Analyst ran ran es (HPLO Analyst aa aa | Result 227 ND C) Result ND ND | 0.00500
SRL
20
20
SRL
0.0257
0.927 | MDL
10
10
.0.0514
1.85 | 0.00500
MRL
20
20
MRL
0.0900
5.00 | ug/L ug/L ug/L ug/L ug/L ug/L | Prep Ratio 1 1 1 Prep Ratio 5 5 5 | Batch 2505813 " Batch 220281 " | Prepared 2025-02-27 250227 1048 Prepared 2025-03-04 | 2025-03-18 Analyzed 2025-02-27 250227 1353 Analyzed 2025-03-07 2025-03-07 | Method EPA 300.0 " Method 632 " | Notes Notes SU SU | | Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte Fluoride Nitrate as N Carbamate and Urea Pesticid Eurofins Dallas Analyte | Analyst ran District Analyst ran ran es (HPLC Analyst aa aa | Result 227 ND C) Result ND ND | 0.00500
SRL
20
20
SRL
0.0257 | MDL
10
10
0.0514 | 0.00500
MRL
20
20
MRL
0.0900 | ug/L Units ug/L ug/L Units ug/L | Prep Ratio 1 Prep Ratio 5 5 | Batch
2505813
"
Batch
220281 | Prepared 2025-02-27 250227 1048 Prepared 2025-03-04 | 2025-03-18 Analyzed 2025-02-27 250227 1353 Analyzed 2025-03-07 | Method EPA 300.0 " Method 632 | Notes
Notes | Stewart Creek West WWTP 5100 4th Army Memorial Frisco, TEXAS 75034 Project: 30TAC307 Monitoring Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES #### Influent TC (2509002-01) Herbicides (GC) **Eurofins Dallas** | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |---|---------|--------|--------|---------|-------------|-------|---------------|--------|------------|------------|--------|------------| | Surrogate: 2,4-Dichlorophenylacetic aci | d | 118 % | 6 4 | 15-150 | | | 1 | 220040 | 2025-03-04 | 2025-03-05 | 615 | SUB | | Pentachlorophenol | wp | ND | 0.0446 | 0.00004 | 1430.000200 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | SUB | | Hexachlorophene | wp | ND | 0.813 | 0.00080 | 08 0.00500 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | SUB | | Dinoseb | wp | ND | 0.0345 | 0.00003 | 3430.000200 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | *-, *1,SUB | | 2,4-D | wp | ND | 0.0542 | 0.00005 | 5390.000200 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | SUB | | Dalapon | wp | ND | 0.0479 | 0.00004 | 47@.000200 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | SUB | | Dicamba | wp | ND | 0.0426 | 0.00004 | 4230.000200 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | SUB | | Silvex (2,4,5-TP) | wp | ND | 0.0425 | 0.00004 | 4220.000200 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | SUB | #### Organochlorine Pesticides in Water **Eurofins Dallas** | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |-------------------------------------|---------|--------|--------|-------------|------------|-------|---------------|--------|------------|------------|-----------|-------| | Surrogate: Tetrachloro-m-xylene | | 47 9 | % | 18-126 | | | 1 | 220428 | 2025-03-05 | 2025-03-06 | EPA 608.3 | SUB | | Surrogate: DCB Decachlorobiphenyl (| Surr) | 29 9 | % | 15-136 | | | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Heptachlor epoxide | wp | ND | 0.0012 | 5 0.00125 | 0.0100 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Toxaphene | wp | ND | 0.078 | 0.0780 | 0.200 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | delta-BHC | wp | ND | 0.0025 | 0.00250 | 0.0200 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Dieldrin | wp | ND | 0.0006 | 5250.000625 | 5 0.00500 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Chlordane | wp | ND | 0.025 | 0.0250 | 0.200 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Heptachlor | wp | ND | 0.0016 | 9 0.00169 | 0.00500 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | gamma-BHC (Lindane) | wp | ND | 0.0034 | 4 0.00344 | 0.0100 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Endosulfan II | wp | ND | 0.0012 | 5 0.00125 | 0.0100 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Endrin aldehyde | wp | ND | 0.0059 | 2 0.00592 | 0.0500 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Endosulfan sulfate | wp | ND | 0.0055 | 9 0.00559 | 0.0500 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Endrin | wp | ND | 0.0025 | 0.00250 | 0.0200 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Endosulfan I | wp | ND | 0.0012 | 5 0.00125 | 0.0100 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Aldrin | wp | ND | 0.0012 | 5 0.00125 | 0.0100 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | beta-BHC | wp | ND | 0.0012 | 5 0.00125 | 0.0100 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | alpha-BHC | wp | ND | 0.0006 | 5250.000625 | 5 0.00500 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | 4,4'-DDD | wp | ND | 0.0025 | 0.00250 | 0.0200 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | 4,4'-DDT | wp | ND | 0.0025 | 0.00250 | 0.0200 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | 4,4'-DDE | wp | ND | 0.0012 | 5 0.00125 | 0.0100 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Mirex | wp | ND | 0.02 | 0.000020 | 00.0000200 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Methoxychlor | wp | ND | 0.0125 | 0.000012 | 20.000100 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Dicofol | wp | ND | 0.5 | 0.000500 | 0.000500 | ug/L | 1 | " | 2025-03-05 | 2025-03-06 | " | SUB | Polychlorinated Biphenyls (PCBs) (GC) **Eurofins Dallas** | Analyte | Analyst Result | SRL | MDL | MRL | Units | Prep | Batch | Prepared | Analyzed | Method | Notes | | |---------|----------------|-----|-----|-----|-------|------|-------|----------|----------|--------|-------|--| Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES #### Influent TC (2509002-01) Polychlorinated Biphenyls (PCBs) (GC) **Eurofins Dallas** | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |--------------------------------------|---------|--------|--------|--------|-------|-------|---------------|--------|------------|------------|-----------|--------| | Surrogate: DCB Decachlorobiphenyl (S | Surr) | 32 % | 6 | 15-136 | | | 1 | 220428 | 2025-03-05 | 2025-03-07 | EPA 608.3 | SUB | | Surrogate: Tetrachloro-m-xylene | | 18 % | 6 | 18-126 | | | 1 | " | 2025-03-05 | 2025-03-07 | " | SUB | | PCB-1242 | wp | ND | 0.0443 | 0.0443 | 0.100 | ug/L | 1 | " | 2025-03-05 | 2025-03-07 | " | SUB | | PCB-1016 | wp | ND | 0.0443 | 0.0443 | 0.100 | ug/L | 1 | " | 2025-03-05 | 2025-03-07 | " | *+,SUB | | Polychlorinated biphenyls, | wp | ND | 0.039 | 0.0390 | 0.100 | ug/L | 1 | " | 2025-03-05 | 2025-03-07 | " | SUB | | Total | | | | | | | | | | | | | | PCB-1260 | wp | ND | 0.039 | 0.0390 | 0.100 | ug/L | 1 | " | 2025-03-05 | 2025-03-07 | " | SUB | | PCB-1254 | wp | ND | 0.039 | 0.0390 | 0.100 | ug/L | 1 | " | 2025-03-05 | 2025-03-07 | " | SUB | | PCB-1248 | wp | ND | 0.0443 | 0.0443 | 0.100 | ug/L | 1 | " | 2025-03-05 | 2025-03-07 | " | SUB | | PCB-1221 | wp | ND | 0.0443 | 0.0443 | 0.100 | ug/L | 1 | " | 2025-03-05 | 2025-03-07 | " | SUB | | PCB-1232 | wp | ND | 0.0443 | 0.0443 | 0.100 | ug/L | 1 | " | 2025-03-05 | 2025-03-07 | " | SUB |
Semivolatile Organic Compounds (GC/MS) **Eurofins Dallas** | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |--|---------|--------|-------|--------|------|-------|---------------|--------|------------|------------|-----------|--------| | Surrogate: 2-Fluorobiphenyl (Surr) | | 76 % | 6 | 29-112 | | | 1 | 219948 | 2025-03-03 | 2025-03-04 | EPA 625.1 | SUB | | Surrogate: Phenol-d5 (Surr) | | 18 % | 6 | 8-424 | | | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Surrogate: Nitrobenzene-d5 (Surr) | | 71 % | ó | 15-314 | | | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Surrogate: p-Terphenyl-d14 (Surr) | | 119 % | 6 | 20-141 | | | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Surrogate: 2-Fluorophenol (Surr) | | 34 % | 6 | 28-114 | | | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Surrogate: 2,4,6-Tribromophenol (Surr) | | 78 % | ó | 31-132 | | | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Phenanthrene | pxs | ND | 1.42 | 1.42 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Acenaphthene | pxs | ND | 1.39 | 1.39 | 5.70 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Hexachlorocyclopentadiene | pxs | ND | 10 | 10.0 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Hexachloroethane | pxs | ND | 0.526 | 0.526 | 4.80 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Indeno[1,2,3-cd]pyrene | pxs | ND | 2.29 | 2.29 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Isophorone | pxs | ND | 1.64 | 1.64 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | N-Nitrosodi-n-propylamine | pxs | ND | 2.88 | 2.88 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | N-Nitrosodiphenylamine | pxs | ND | 1.81 | 1.81 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Diethyl phthalate | pxs | ND | 1.59 | 1.59 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Pentachlorophenol | pxs | ND | 0.234 | 0.234 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Dibenz(a,h)anthracene | pxs | ND | 0.246 | 0.246 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 2,6-Dinitrotoluene | pxs | ND | 1.61 | 1.61 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 2,4,6-Trichlorophenol | pxs | ND | 1.42 | 1.42 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | 2-Chlorophenol | pxs | ND | 0.649 | 0.649 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 2-Nitrophenol | pxs | ND | 1.67 | 1.67 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 4-Nitrophenol | pxs | ND | 2.36 | 2.36 | 7.20 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 4-Nonylphenol | pxs | ND | 10 | 10.0 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Pentachlorobenzene | pxs | ND | 1.07 | 1.07 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Azobenzene | pxs | ND | 1.5 | 1.50 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | | | | | | | | | | | | | | Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES #### Influent TC (2509002-01) Semivolatile Organic Compounds (GC/MS) **Eurofins Dallas** | Eurofins Dallas | | | | | | | | | | | | | |-----------------------------|---------|--------|-------|-------|------|-------|---------------|--------|------------|------------|-----------|--------| | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | | 2,4-Dichlorophenol | pxs | ND | 0.314 | 0.314 | 5.00 | ug/L | 1 | 219948 | 2025-03-03 | 2025-03-04 | EPA 625.1 | *+,SUB | | 2,4-Dimethylphenol | pxs | ND | 0.649 | 0.649 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 2,4-Dinitrophenol | pxs | ND | 1.61 | 1.61 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 2,4-Dinitrotoluene | pxs | ND | 1.31 | 1.31 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 3,3'-Dichlorobenzidine | pxs | ND | 0.341 | 0.341 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 4,6-Dinitro-2-methylphenol | pxs | ND | 1.44 | 1.44 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 4-Bromophenyl phenyl ether | pxs | ND | 0.256 | 0.256 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Hexachlorobutadiene | pxs | ND | 1 | 1.00 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | 4-Chlorophenyl phenyl ether | pxs | ND | 1.28 | 1.28 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 2-Methylphenol | pxs | ND | 1.62 | 1.62 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Benzidine | pxs | ND | 20 | 20.0 | 20.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *-,SUB | | Benzo[a]anthracene | pxs | ND | 0.173 | 0.173 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Benzo[a]pyrene | pxs | ND | 0.364 | 0.364 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Benzo[b]fluoranthene | pxs | ND | 2.04 | 2.04 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Bisphenol-A | pxs | ND | 10 | 10.0 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *-,SUB | | Butyl benzyl phthalate | pxs | ND | 0.337 | 0.337 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Chrysene | pxs | ND | 0.222 | 0.222 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | 4-Chloro-3-methylphenol | pxs | ND | 1.57 | 1.57 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 2,2'-oxybis[1-chloropropane | pxs | ND | 1.79 | 1.79 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 1 | | | | | | | | | | | | | | Fluoranthene | pxs | ND | 1.59 | 1.59 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Hexachlorobenzene | pxs | ND | 0.307 | 0.307 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Naphthalene | pxs | ND | 2.5 | 2.50 | 2.50 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Acenaphthylene | pxs | ND | 1.41 | 1.41 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | N-Nitrosodiethylamine | pxs | ND | 1.75 | 1.75 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 2-Chloronaphthalene | pxs | ND | 0.462 | 0.462 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | 1,2,4,5-Tetrachlorobenzene | pxs | ND | 1.32 | 1.32 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Di-n-octyl phthalate | pxs | ND | 0.373 | 0.373 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 1,2-Diphenylhydrazine | pxs | ND | 1.49 | 1.49 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Nitrobenzene | pxs | ND | 1.66 | 1.66 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 2,4,5-Trichlorophenol | pxs | ND | 2 | 2.00 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | N-Nitrosodi-n-butylamine | pxs | ND | 1.49 | 1.49 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Pyrene | pxs | ND | 0.178 | 0.178 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Total Cresols | pxs | 7.82 | 2.62 | 2.62 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | Ja,SUB | | 3 & 4 Methylphenol | pxs | 7.82 | 2.62 | 2.62 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | Ja,SUB | | Pyridine | pxs | ND | 10 | 10.0 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Phenol | pxs | 3.05 | 0.423 | 0.423 | 4.50 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | Ja,SUB | | 1,2,4-Trichlorobenzene | pxs | ND | 1.61 | 1.61 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Bis(2-ethylhexyl) phthalate | pxs | ND | 0.277 | 0.277 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Anthracene | pxs | ND | 1.5 | 1.50 | 5.70 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Benzo[g,h,i]perylene | pxs | ND | 2.68 | 2.68 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | Stewart Creek West WWTP 5100 4th Army Memorial Frisco, TEXAS 75034 Project: 30TAC307 Monitoring Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES | Semivolatile Organic Com | pounds (G0 | C/MS) | | | | | | | | | | | |--|--------------|--------|----------|---------|---------|-------|---------------|---------|------------|------------|------------|--------| | Eurofins Dallas | ` | , | | | | | | | | | | | | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | | Benzo[k]fluoranthene | pxs | ND | 5 | 5.00 | 5.00 | ug/L | 1 | 219948 | 2025-03-03 | 2025-03-04 | EPA 625.1 | *+,SUE | | Bis(2-chloroethoxy)methane | pxs | ND | 1.76 | 1.76 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUE | | N-Nitrosodimethylamine | pxs | ND | 2.02 | 2.02 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUE | | Bis(2-chloroethyl)ether | pxs | ND | 2.16 | 2.16 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUE | | Dimethyl phthalate | pxs | ND | 2.5 | 2.50 | 2.50 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUE | | Di-n-butyl phthalate | pxs | ND | 0.252 | 0.252 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUE | | Fluorene | pxs | ND | 1.63 | 1630 | 5000 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUI | | Semivolatile Organic Com
Eurofins Dallas | pounds (GO | C/MS) | TICs | | | | | | | | | | | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | | 2,3,7,8-TCDD TIC 01 | pxs | ND | 10 | | | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | 625.1 TICs | SUE | | Pesticides by 1657
SPL | | | | | | | | | | | | | | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | | Parathion, methyl | kap | ND | 0.0491 | | | ug/L | 0.98 | 1165735 | 2025-03-04 | 2025-03-05 | EPA 1657 |
SUE | | Guthion | kap | ND | 0.0491 | | | ug/L | 0.98 | " | 2025-03-04 | 2025-03-05 | " | SUE | | Chlorpyrifos | kap | ND | 0.0491 | | | ug/L | 0.98 | " | 2025-03-04 | 2025-03-05 | " | SUE | | Parathion, ethyl | kap | ND | 0.0491 | | | ug/L | 0.98 | " | 2025-03-04 | 2025-03-05 | " | SUE | | Demeton | kap | ND | 0.0491 | | | ug/L | 0.98 | " | 2025-03-04 | 2025-03-05 | " | SUE | | Diazinon | kap | ND | 0.0491 | | | ug/L | 0.98 | " | 2025-03-04 | 2025-03-05 | " | SUE | | Malathion | kap | ND | 0.0491 | | | ug/L | 0.98 | " | 2025-03-04 | 2025-03-05 | " | SUE | | Influent TC (2509002-01RE1) | | | | | | | | | | | | | | Total Metals by EPA 200.8 | | | | | | | | | | | | | | North Texas Municipal Wa | ter District | | | | | | | | | | | | | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | | Aluminum | lmg | 386 | 25.0 | 1.25 | 2.50 | ug/L | 10 | 2506214 | 2025-03-04 | 2025-03-05 | EPA 200.8 | | | Influent Equipment Blank (25) | 09002-02) | | | | | | | | | | | | | Total Mercury by EPA 245
North Texas Municipal Wa | | | | | | | | | | | | | | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | | Mercury | ran | ND | 0.00.500 | 0.00100 | 0.00500 | ug/L | 1 | 2507619 | 2025-03-18 | 2025-03-18 | EPA 245.7 | | #### Influent G (2509002-03) Stewart Creek West WWTP 5100 4th Army Memorial Frisco, TEXAS 75034 Project: 30TAC307 Monitoring Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES | Influent G (2509002-03) | | | | | | | | | | | | | |---|--------------------|----------------|----------------|----------------|------------------|---------------|--------------------|---------------------|----------------------------|----------------------------|-------------------------------|-----------------| | Chromium, Hexavalent
Eurofins Dallas | | | | | | | | | | | | | | Analyte
Chromium, hexavalent | Analyst cjh | Result
15.7 | SRL 2.8 | MDL
0.00280 | MRL
0.0100 | Units
ug/L | Prep
Ratio
1 | Batch 26763 | Prepared 2025-02-27 | Analyzed 2025-02-27 | Method
SM 3500 CR B | Notes
SUB | | Chromium, Trivalent
Eurofins Dallas | | | | | | | | | | | | | | Analyte
Cr (III) | Analyst
nr | Result
ND | SRL
2 | MDL | MRL | Units
ug/L | Prep
Ratio
1 | Batch 221193 | Prepared 2025-03-10 | Analyzed 2025-03-10 | Method | Notes
SUB | | Cyanide, Amenable
Eurofins Dallas | | | | | | | | | | | | | | Analyte
Cyanide, Amenable | Analyst
mc | Result
ND | SRL
2.33 | MDL | MRL | Units
ug/L | Prep
Ratio
1 | Batch 219959 | Prepared 2025-03-07 | Analyzed 2025-03-07 | Method
SM 4500 CN G | Notes
SUB | | Cyanide, Non-amenable
Eurofins Dallas | | | | | | | | | | | | | | Analyte
Cyanide, Non-amenable | Analyst all | Result 33.5 | SRL
2.33 | MDL
2.33 | MRL
5.00 | Units
ug/L | Prep
Ratio
1 | Batch 219679 | Prepared 2025-02-28 | Analyzed 2025-02-28 | Method
4500 CN G
NonAm | Notes
SUB | | Cyanide, Total, Acid Dissocial
Eurofins Dallas | ole and | Thiocya | ınate | | | | | | | | | | | Analyte
Cyanide, Total | Analyst
bw | Result 5.74 | SRL
1.98 | MDL
0.00198 | MRL
0.00500 | Units
ug/L | Prep
Ratio
1 | Batch 221070 | Prepared 2025-03-06 | Analyzed 2025-03-06 | Method
Kelada 01 | Notes
SUB | | Metals (ICP/MS) Total Recove
Eurofins Dallas | erable | | | | | | | | | | | | | Analyte
Cr | Analyst
dp | Result 2.67 | SRL
0.89 | MDL
0.00089 | MRL
0 0.00300 | Units
ug/L | Prep
Ratio
1 | Batch 220982 | Prepared 2025-03-07 | Analyzed 2025-03-07 | Method
200.8 | Notes
Ja,SUB | | Phenolics, Total Recoverable
Eurofins Dallas | | | | | | | | | | | | | | Analyte
Phenols, Total | Analyst
bw | Result
44.3 | SRL 5.8 | MDL
5.80 | MRL
10.0 | Units
ug/L | Prep
Ratio
1 | Batch 220873 | Prepared 2025-03-05 | Analyzed 2025-03-05 | Method
420.4 | Notes
SUB | | Volatile Organic Compounds (
Eurofins Dallas | GC/MS | S) | | | | | | | | | | | | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | | Surrogate: Toluene-d8 (Surr) | | 102 % | 6 | 80-120 | | | 2 | 219795 | 2025-03-03 | 2025-03-03 | EPA 624.1 | SUB | | Surrogate: 1,2-Dichloroethane-d4 (Surr) | | 103 % | 6 | 63-144 | | | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Surrogate: Dibromofluoromethane (Surr |) | 101 % | 6 | 75-131 | | | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Surrogate: 4-Bromofluorobenzene (Surr) | | 100 % | 6 | 74-124 | | | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES #### Influent G (2509002-03) Volatile Organic Compounds (GC/MS) **Eurofins Dallas** | Eurofins Dallas | | | | | | | | | | | | | |---------------------------|---------|--------|-------|-------|------|-------|---------------|--------|------------|------------|-----------|--------| | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | | Bromoform | an | ND | 1.27 | 0.633 | 5.00 | ug/L | 2 | 219795 | 2025-03-03 | 2025-03-03 | EPA 624.1 | SUB | | Acetone | an | 305 | 6.13 | 3.07 | 100 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | cis-1,2-Dichloroethene | an | ND | 0.914 | 0.457 | 1.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Chloromethane | an | ND | 4.07 | 2.04 | 10.0 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Chloroethane | an | ND | 3.97 | 1.98 | 10.0 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Chlorobenzene | an | ND | 0.91 | 0.455 | 1.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Carbon tetrachloride | an | ND | 1.79 | 0.896 | 2.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 2-Chloroethyl vinyl ether | an | ND | 1.51 | 0.753 | 5.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | MTBE | an | ND | 2.78 | | | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,1,1-Trichloroethane | an | ND | 1.17 | 0.585 | 5.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Bromodichloromethane | an | ND | 1.1 | 0.552 | 1.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Benzene | an | ND | 0.919 | 0.460 | 1.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Acrylonitrile | an | ND | 28.6 | 14.3 | 50.0 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | cis-1,3-Dichloropropene | an | ND | 2.13 | 1.07 | 5.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Acrolein | an | ND | 22.2 | 11.1 | 50.0 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 2-Butanone | an | ND | 16.6 | 8.28 | 50.0 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Bromomethane | an | ND | 2.84 | 1.42 | 5.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,1-Dichloroethene | an | ND | 1.48 | 0.738 | 1.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Ethylbenzene | an | ND | 0.77 | 0.385 | 1.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Epichlorohydrin | an | ND | 15 | | | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,4-Dichlorobenzene | an | ND | 0.898 | 0.449 | 1.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,3-Dichlorobenzene | an | ND | 0.826 | 0.413 | 1.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,2-Dichloroethane | an | ND | 0.744 | 0.372 | 1.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,2-Dichlorobenzene | an | ND | 0.858 | 0.429 | 1.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | m,p-Xylenes | an | ND | 2.48 | 1.24 | 10.0 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,2,4-Trichlorobenzene | an | ND | 3.51 | 1.75 | 5.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,1,2,2-Tetrachloroethane | an | ND | 0.94 | 0.470 | 1.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,1-Dichloroethane | an | ND | 1.27 | 0.635 | 1.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,1,2-Trichloroethane | an | ND | 0.822 | 0.411 | 1.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,2-Dichloropropane | an | 3.33 | 1.11 | 0.556 | 5.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | Ja,SUB | | o-Xylene | an | ND | 1 | 0.502 | 1.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Toluene | an | 1.66 | 0.95 | 0.475 | 1.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | Ja,SUB | | Trihalomethanes, Total | an | 1.33 | 1.27 | 0.633 | 5.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | Ja,SUB | | Chloroform | an | 1.33 | 0.928 | 0.464 | 1.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | Ja,SUB | | 1,2-Dibromoethane | an | ND | 2 | 0.999 | 5.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Dibromochloromethane | an | ND | 1.09 | 0.547 | 5.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Naphthalene | an | ND | 2.71 | 1.35 | 10.0 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Tetrachloroethene | an | ND | 1.31 | 0.655 | 1.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | trans-1,2-Dichloroethene | an | ND | 0.736 | 0.368 | 1.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | trans-1,3-Dichloropropene | an | ND | 2.53 | 1.27 | 5.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | | | | | | | | | | | | | | Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES | Influent G (| 2509002-03) | ١ | |--------------|-------------|---| |--------------|-------------|---| Volatile Organic Compounds
(GC/MS) **Eurofins Dallas** | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |----------------------------|---------|--------|-------|-------|------|-------|---------------|--------|------------|------------|-----------|-------| | Trichloroethene | an | ND | 3 | 1.50 | 5.00 | ug/L | 2 | 219795 | 2025-03-03 | 2025-03-03 | EPA 624.1 | SUB | | Vinyl acetate | an | ND | 4.28 | 2.14 | 20.0 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Vinyl chloride | an | ND | 0.856 | 0.428 | 2.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,3-Dichloropropene, Total | an | ND | 2.53 | 1.27 | 5.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Xylenes, Total | an | ND | 2.48 | 1.24 | 10.0 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Methylene Chloride | an | ND | 3.45 | 1.73 | 5.00 | ug/L | 2 | " | 2025-03-03 | 2025-03-03 | " | SUB | #### Effluent TC (2509002-04) Total Metals by EPA 200.8 North Texas Municipal Water District | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |-----------|---------|--------|-------|-------|-------|-------|---------------|---------|------------|------------|-----------|-------| | Silver | lmg | ND | 0.500 | 0.250 | 0.500 | ug/L | 1 | 2506214 | 2025-03-04 | 2025-03-05 | EPA 200.8 | | | Aluminum | lmg | 5.72 | 2.50 | 1.25 | 2.50 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Arsenic | lmg | 0.768 | 0.500 | 0.250 | 0.500 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Barium | lmg | 27.9 | 1.00 | 0.500 | 1.00 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Beryllium | lmg | ND | 0.500 | 0.250 | 0.500 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Cadmium | lmg | ND | 1.00 | 0.500 | 1.00 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Chromium | lmg | ND | 2.50 | 1.25 | 2.50 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Copper | lmg | 7.79 | 1.00 | 0.500 | 1.00 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Nickel | lmg | 7.24 | 1.00 | 0.500 | 1.00 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Lead | lmg | ND | 0.500 | 0.250 | 0.500 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Antimony | lmg | ND | 2.50 | 1.25 | 2.50 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | CCBJ | | Selenium | lmg | 1.27 | 1.00 | 0.500 | 1.00 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Thallium | lmg | ND | 0.500 | 0.250 | 0.500 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | | Zinc | lmg | 23.3 | 2.50 | 1.25 | 2.50 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | | Total Mercury by EPA 245.7 North Texas Municipal Water District | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |---------|---------|--------|---------|---------|---------|-------|---------------|---------|------------|------------|-----------|-------| | Mercury | ran | ND | 0.00500 | 0.00180 | 0.00500 | ug/L | 1 | 2507619 | 2025-03-18 | 2025-03-18 | EPA 245.7 | | Conventional Chemistry Parameters by EPA Methods North Texas Municipal Water District | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |------------------------|---------|--------|------|------|------|-------|---------------|---------|------------|------------|-----------|-------| | Ammonia as N | tns | 207 | 50.0 | 50.0 | 100 | ug/L | 1 | 2505827 | 2025-02-28 | 2025-02-28 | EPA 350.1 | | | Total Phosphate as P | hfs | 300 | 10.0 | 10.0 | 20.0 | ug/L | 1 | 2506212 | 2025-03-03 | 2025-03-04 | EPA 365.1 | | | Total Kjeldal Nitrogen | lac | 1480 | 100 | 100 | 200 | ug/L | 1 | 2506305 | 2025-03-04 | 2025-03-04 | EPA 351.2 | | Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 ANALYTICAL REPORT FOR SAMPLES | ANALI IICAL KEI OKI | FOR SAMILLES | |---------------------|--------------| | | | | Effluent TC (2509002-04)
Conventional Chemistry Pa | rameters h | v Stand | ard Me | thods | | | | | | | | | |---|---------------|-----------------|----------------|-----------------|---------------|---------------|--------------------|--------------|---------------------|---------------------|---------------|--------------------| | North Texas Municipal Wat | | y Stand | ara ivic | anous | | | | | | | | | | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | | Total Alkalinity | yjs | 81000 | 20000 | 10000 | 20000 | ug/L | 1 | 2505910 | 2025-02-28 | 2025-02-28 | SM 2320B | | | Carbonaceous Biochemical | smm/s | ND | 2200 | 100 | 2000 | ug/L | 1.11 | 2505905 | 250228 1159 | 250305 0914 | SM 5210B | | | Oxygen Demand | | 67. 4000 | | | | | | | | | | | | Total Dissolved Solids | pp | 674000 | 5000 | 5000 | 10000 | ug/L | 1 | 2505914 | 2025-03-06 | 2025-03-07 | SM 2540C | H | | Total Suspended Solids | be | 1600 | 500 | 500 | 500 | ug/L | 1 | 2505913 | 2025-03-03 | 2025-03-03 | SM 2540D | | | Anions by EPA 300 Series | | | | | | | | | | | | | | North Texas Municipal Wat | er District | | | | | | | | | | | | | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep | Batch | Prepared | Analyzed | Method | Notes | | Chloride | nv | 106000 | 5000 | 500 | 1000 | ug/L | Ratio
5 | 2505801 | 2025-02-27 | 2025-02-27 | EPA 300.0 | | | Fluoride | ran | 339 | 20 | 10 | 20 | ug/L | 1 | 2505813 | 2025-02-27 | 2025-02-27 | " | | | Sulfate | nv | 188000 | 5000 | 500 | 1000 | ug/L | 5 | 2505801 | 2025-02-27 | 2025-02-27 | " | | | Analyte
Diuron | Analyst
aa | | SRL
0.00514 | MDL
4 0.0514 | MRL
0.0900 | Units
ug/L | Prep
Ratio
1 | Batch 220281 | Prepared 2025-03-04 | Analyzed 2025-03-05 | Method
632 | Notes
SU | | | aa | ND | | 4 0.0514 | 0.0900 | ug/L | | 220281 | | | 632 | SU | | Carbaryl | aa | ND | 0.185 | 1.85 | 5.00 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | | SU | | Glycols- Direct Injection (C | GC/FID) | | | | | | | | | | | | | Eurofins Dallas | | | | | | | | | | | | | | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | | Propylene glycol | jbs | ND | 1840 | 1.84 | 5.00 | ug/L | 1 | 219904 | 2025-03-03 | 2025-03-03 | 8015D | SUI | | Ethylene glycol | jbs | ND | 1220 | 1.22 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUI | | Herbicides (GC) | | | | | | | | | | | | | | Eurofins Dallas | | | | | | | | | | | | | | Luioillis Dallas | | | | | | | D | | | | | | | Analyte | Analyst | | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | | Surrogate: 2,4-Dichlorophenylacetic | acid | 90 % | % 4 | 15-150 | | | 1 | 220040 | 2025-03-04 | 2025-03-05 | 615 | SU | | Pentachlorophenol | wp | ND | 0.0446 | 0.00004 | 1430.000200 | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | SU | | | | 3.775 | 0.0540 | 0.0000 | 200 000200 | 22.co/T | 1 | " | 2025-03-04 | 2025-03-05 | | SU | | 2,4-D | wp | ND | 0.0542 | 0.00005 | 390.000200 | ug/L | 1 | | 2023-03-04 | 2023-03-03 | | 30. | | 2,4-D
Dalapon
Dicamba | wp
wp | ND
ND | 0.0542 | | 17(0.000200 | ug/L
ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | SU:
SU: | Organochlorine Pesticides in Water ND ND ND 0.813 wp wp wp **Eurofins Dallas** Hexachlorophene Silvex (2,4,5-TP) Dinoseb Analyte Analyst Result SRL MDL MRL Units Prepared Analyzed Method Notes $0.000808\,0.00500$ $0.0425 \quad 0.000042 \\ 20.000200$ $0.0345 \quad 0.00003430.000200$ ug/L ug/L ug/L 1 1 1 North Texas Municipal Water District 2025-03-04 2025-03-04 2025-03-04 2025-03-05 2025-03-05 2025-03-05 SUB SUB *-, *1,SUB Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES #### Effluent TC (2509002-04) #### Organochlorine Pesticides in Water #### **Eurofins Dallas** | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |--------------------------------------|---------|--------|--------|------------|------------|-------|---------------|--------|------------|------------|-----------|---------| | Surrogate: DCB Decachlorobiphenyl (S | Surr) | 224 % | 6 | 15-136 | | | 2 | 220428 | 2025-03-05 | 2025-03-06 | EPA 608.3 | S1+,SUB | | Surrogate: Tetrachloro-m-xylene | | 249 % | 6 | 18-126 | | | 2 | " | 2025-03-05 | 2025-03-06 | " | S1+,SUB | | Toxaphene | wp | ND | 0.156 | 0.0780 | 0.200 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | 4,4'-DDD | wp | ND | 0.005 | 0.00250 | 0.0200 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | 4,4'-DDE | wp | ND | 0.0025 | 0.00125 | 0.0100 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | 4,4'-DDT | wp | ND | 0.005 | 0.00250 | 0.0200 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Aldrin | wp | ND | 0.0025 | 0.00125 | 0.0100 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Endosulfan II | wp | ND | 0.0025 | 0.00125 | 0.0100 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Endosulfan sulfate | wp | ND | 0.0112 | 0.00559 | 0.0500 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Endrin | wp | ND | 0.005 | 0.00250 | 0.0200 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Endrin aldehyde | wp | ND | 0.0118 | 0.00592 | 0.0500 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | gamma-BHC (Lindane) | wp | ND | 0.0068 | 8 0.00344 | 0.0100 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Chlordane | wp | ND | 0.05 | 0.0250 | 0.200 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | delta-BHC | wp | ND | 0.005 | 0.00250 | 0.0200 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | alpha-BHC | wp | ND | 0.0012 | 5 0.000625 | 5 0.00500 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | beta-BHC | wp | ND | 0.0025 | 0.00125 | 0.0100 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Dieldrin |
wp | ND | 0.0012 | 5 0.000625 | 5 0.00500 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Endosulfan I | wp | ND | 0.0025 | 0.00125 | 0.0100 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Heptachlor | wp | ND | 0.0033 | 8 0.00169 | 0.00500 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Heptachlor epoxide | wp | ND | 0.0025 | 0.00125 | 0.0100 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Mirex | wp | ND | 0.04 | 0.000020 | 00.0000200 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Methoxychlor | wp | ND | 0.025 | 0.000012 | 250.000100 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | | Dicofol | wp | ND | 1 | 0.000500 | 0.000500 | ug/L | 2 | " | 2025-03-05 | 2025-03-06 | " | SUB | #### Polychlorinated Biphenyls (PCBs) (GC) #### **Eurofins Dallas** | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |-----------------------------------|---------|--------|-------|----------|-------|-------|---------------|-------|------------|------------|--------|---------| | Surrogate: DCB Decachlorobiphenyl | (Surr) | 185 9 | % | 15-136 | | | 2 | " | 2025-03-05 | 2025-03-07 | " | S1+,SUB | | Surrogate: Tetrachloro-m-xylene | | 178 9 | % | 18-126 | | | 2 | " | 2025-03-05 | 2025-03-07 | " | S1+,SUB | | PCB-1248 | wp | ND | 0.088 | 7 0.0443 | 0.100 | ug/L | 2 | " | 2025-03-05 | 2025-03-07 | " | SUB | | PCB-1016 | wp | ND | 0.088 | 7 0.0443 | 0.100 | ug/L | 2 | " | 2025-03-05 | 2025-03-07 | " | *+,SUB | | PCB-1260 | wp | ND | 0.078 | 0.0390 | 0.100 | ug/L | 2 | " | 2025-03-05 | 2025-03-07 | " | SUB | | Polychlorinated biphenyls, | wp | ND | 0.078 | 0.0390 | 0.100 | ug/L | 2 | " | 2025-03-05 | 2025-03-07 | " | SUB | | Total | | | | | | | | | | | | | | PCB-1242 | wp | ND | 0.088 | 7 0.0443 | 0.100 | ug/L | 2 | " | 2025-03-05 | 2025-03-07 | " | SUB | | PCB-1254 | wp | ND | 0.078 | 0.0390 | 0.100 | ug/L | 2 | " | 2025-03-05 | 2025-03-07 | " | SUB | | PCB-1232 | wp | ND | 0.088 | 7 0.0443 | 0.100 | ug/L | 2 | " | 2025-03-05 | 2025-03-07 | " | SUB | | PCB-1221 | wp | ND | 0.088 | 7 0.0443 | 0.100 | ug/L | 2 | " | 2025-03-05 | 2025-03-07 | " | SUB | Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES #### Effluent TC (2509002-04) Semivolatile Organic Compounds (GC/MS) Eurofins Dallas | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |--|---------|--------|-------|--------|------|-------|---------------|--------|------------|------------|-----------|--------| | Surrogate: Nitrobenzene-d5 (Surr) | | 110 % | 6 | 15-314 | | | 1 | 219948 | 2025-03-03 | 2025-03-04 | EPA 625.1 | SUB | | Surrogate: p-Terphenyl-d14 (Surr) | | 132 % | % | 20-141 | | | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Surrogate: Phenol-d5 (Surr) | | 26 % | % | 8-424 | | | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Surrogate: 2,4,6-Tribromophenol (Surr) | | 77 9 | 6 | 31-132 | | | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Surrogate: 2-Fluorobiphenyl (Surr) | | 112 % | % | 29-112 | | | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Surrogate: 2-Fluorophenol (Surr) | | 47 9 | % | 28-114 | | | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Acenaphthylene | pxs | ND | 1.41 | 1.41 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Anthracene | pxs | ND | 1.5 | 1.50 | 5.70 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Azobenzene | pxs | ND | 1.5 | 1.50 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Benzidine | pxs | ND | 20 | 20.0 | 20.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *-,SUB | | N-Nitrosodi-n-butylamine | pxs | ND | 1.49 | 1.49 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Acenaphthene | pxs | ND | 1.39 | 1.39 | 5.70 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Fluoranthene | pxs | ND | 1.59 | 1.59 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Bis(2-chloroethoxy)methane | pxs | ND | 1.76 | 1.76 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Bis(2-chloroethyl)ether | pxs | ND | 2.16 | 2.16 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Bis(2-ethylhexyl) phthalate | pxs | ND | 0.277 | 0.277 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Bisphenol-A | pxs | ND | 10 | 10.0 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *-,SUB | | Butyl benzyl phthalate | pxs | ND | 0.337 | 0.337 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Di-n-octyl phthalate | pxs | ND | 0.373 | 0.373 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Hexachloroethane | pxs | ND | 0.526 | 0.526 | 4.80 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | N-Nitrosodiethylamine | pxs | ND | 1.75 | 1.75 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Benzo[a]pyrene | pxs | ND | 0.364 | 0.364 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Benzo[b]fluoranthene | pxs | ND | 2.04 | 2.04 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Benzo[g,h,i]perylene | pxs | ND | 2.68 | 2.68 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Benzo[k]fluoranthene | pxs | ND | 5 | 5.00 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Chrysene | pxs | ND | 0.222 | 0.222 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Dibenz(a,h)anthracene | pxs | ND | 0.246 | 0.246 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Diethyl phthalate | pxs | ND | 1.59 | 1.59 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 4-Nonylphenol | pxs | ND | 10 | 10.0 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Di-n-butyl phthalate | pxs | ND | 0.252 | 0.252 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 4-Nitrophenol | pxs | ND | 2.36 | 2.36 | 7.20 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Indeno[1,2,3-cd]pyrene | pxs | ND | 2.29 | 2.29 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Isophorone | pxs | ND | 1.64 | 1.64 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Naphthalene | pxs | ND | 2.5 | 2.50 | 2.50 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Nitrobenzene | pxs | ND | 1.66 | 1.66 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Pentachlorobenzene | pxs | ND | 1.07 | 1.07 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Pentachlorophenol | pxs | ND | 0.234 | 0.234 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Phenanthrene | pxs | ND | 1.42 | 1.42 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Phenol | pxs | ND | 0.423 | 0.423 | 4.50 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Pyrene | pxs | ND | 0.178 | | 5.00 | ug/L | 1 | ,, | 2025-03-03 | 2025-03-04 | " | *+,SUB | Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES #### Effluent TC (2509002-04) Semivolatile Organic Compounds (GC/MS) **Eurofins Dallas** | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |-----------------------------|---------|--------|-------|-------|--------------|-------|---------------|--------|------------|------------|-----------|---------| | Dimethyl phthalate | pxs | ND | 2.5 | 2.50 | 2.50 | ug/L | 1 | 219948 | 2025-03-03 | 2025-03-04 | EPA 625.1 | SUB | | 1,2,4-Trichlorobenzene | pxs | ND | 1.61 | 1.61 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Hexachlorobutadiene | pxs | ND | 1 | 1.00 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Hexachlorocyclopentadiene | pxs | ND | 10 | 10.0 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | 4,6-Dinitro-2-methylphenol | pxs | ND | 1.44 | 1.44 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | N-Nitrosodimethylamine | pxs | ND | 2.02 | 2.02 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 2,4,5-Trichlorophenol | pxs | ND | 2 | 2.00 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | N-Nitrosodi-n-propylamine | pxs | ND | 2.88 | 2.88 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | N-Nitrosodiphenylamine | pxs | ND | 1.81 | 1.81 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Pyridine | pxs | ND | 10 | 10.0 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Benzo[a]anthracene | pxs | ND | 0.173 | 0.173 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | 1,2,4,5-Tetrachlorobenzene | pxs | ND | 1.32 | 1.32 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | Hexachlorobenzene | pxs | ND | 0.307 | 0.307 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 1,2-Diphenylhydrazine | pxs | ND | 1.49 | 1.49 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | 2,4-Dinitrophenol | pxs | ND | 1.61 | 1.61 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 2,4-Dinitrotoluene | pxs | ND | 1.31 | 1.31 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 2,6-Dinitrotoluene | pxs | ND | 1.61 | 1.61 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 2-Chloronaphthalene | pxs | ND | 0.462 | 0.462 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | 2-Chlorophenol | pxs | ND | 0.649 | 0.649 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 4-Bromophenyl phenyl ether | pxs | ND | 0.256 | 0.256 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | 4-Chloro-3-methylphenol | pxs | ND | 1.57 | 1.57 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 4-Chlorophenyl phenyl ether | pxs | ND | 1.28 | 1.28 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | Total Cresols | pxs | ND | 2.62 | 2.62 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 3 & 4 Methylphenol |
pxs | ND | 2.62 | 2.62 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 2-Nitrophenol | pxs | ND | 1.67 | 1.67 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 2-Methylphenol | pxs | ND | 1.62 | 1.62 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 2,4-Dichlorophenol | pxs | ND | 0.314 | 0.314 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | 3,3'-Dichlorobenzidine | pxs | ND | 0.341 | 0.341 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 2,4-Dimethylphenol | pxs | ND | 0.649 | 0.649 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | | 2,4,6-Trichlorophenol | pxs | ND | 1.42 | 1.42 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | | 2,2'-oxybis[1-chloropropane | pxs | ND | 1.79 | 1.79 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | |] | | | 1.62 | 1.000 | 7 000 | ar. | | _ | 2025 02 02 | 2025 02 04 | ,, | *: 0170 | | Fluorene | pxs | ND | 1.63 | 1630 | 5000 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | *+,SUB | Semivolatile Organic Compounds (GC/MS) TICs **Eurofins Dallas** | Analyte | Analys | st Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |---------------------|--------|-----------|-----|-----|-----|-------|---------------|-------|------------|------------|------------|-------| | 2,3,7,8-TCDD TIC 01 | pxs | ND | 10 | | | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | 625.1 TICs | SUB | Stewart Creek West WWTP 5100 4th Army Memorial Frisco, TEXAS 75034 Project: 30TAC307 Monitoring Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES | Effluent | TC | (2509002-04) | | |----------|----|---------------------------|--| | Linuciii | 1 | (4307004-0 4) | | Tetra Chlorinated Dioxin (GC/MS/MS) **Eurofins Dallas** | Analyte | Analy | st Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |-----------------------------|-------|-----------|-------|---------|------|-------|---------------|--------|------------|------------|--------|-------| | Surrogate: 13C-2,3,7,8-TCDD | | 68 | % | 31-137 | | | 1 | 139033 | 2025-03-03 | 2025-03-04 | 1613B | SUB | | 2,3,7,8-TCDD | x8aa | ND | 0.000 | 0022.07 | 4.93 | ug/L | 1 | " | 2025-03-03 | 2025-03-04 | " | SUB | Pesticides by 1657 SPL | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |-------------------|---------|--------|--------|-----|-----|-------|---------------|---------|------------|------------|----------|-------| | Guthion | kap | ND | 0.0499 | | | ug/L | 1 | 1165735 | 2025-03-04 | 2025-03-05 | EPA 1657 | SUB | | Parathion, ethyl | kap | ND | 0.0499 | | | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | SUB | | Malathion | kap | ND | 0.0499 | | | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | SUB | | Diazinon | kap | ND | 0.0499 | | | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | SUB | | Demeton | kap | ND | 0.0499 | | | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | SUB | | Chlorpyrifos | kap | ND | 0.0499 | | | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | SUB | | Parathion, methyl | kap | ND | 0.0499 | | | ug/L | 1 | " | 2025-03-04 | 2025-03-05 | " | SUB | #### Effluent TC (2509002-04RE1) Anions by EPA 300 Series North Texas Municipal Water District | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |--------------|---------|--------|-----|-----|-----|-------|---------------|---------|-------------|-------------|-----------|-------| | Nitrate as N | ran | 22000 | 200 | 10 | 20 | ug/L | 10 | 2505813 | 250227 1048 | 250227 1522 | EPA 300.0 | | #### Effluent Equipment Blank (2509002-05) Total Mercury by EPA 245.7 North Texas Municipal Water District | Analyte | Analyst | t Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |---------|---------|----------|---------|---------|---------|-------|---------------|---------|------------|------------|-----------|-------| | Mercury | ran | ND | 0.00500 | 0.00180 | 0.00500 | ug/L | 1 | 2507619 | 2025-03-18 | 2025-03-18 | EPA 245.7 | | #### Effluent G (2509002-06) Conventional Chemistry Parameters by Field Personnel North Texas Municipal Water District | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |---------------------|---------|--------|--------|-----|--------|-------|---------------|---------|-------------|-------------|-------------|-------| | Residual Chlorine | er/ed | ND | 0.0400 | | 0.0400 | mg/L | 1 | 2505822 | 250227 0845 | 250227 0845 | 4500-Cl-G | AccFD | | Conductance at 25°C | er/ed | 869 | | | | mS/cm | 1 | " | 2025-02-27 | 2025-02-27 | SM 2510B | AccFD | | Dissolved Oxygen | er/ed | 8.96 | | | | mg/L | 1 | " | 250227 0845 | 250227 0845 | SM 4500-O-G | AccFD | | рН | er/ed | 7.41 | | | | pH/SU | 1 | " | 250227 0845 | 250227 0845 | SM 4500-H-B | AccFD | | Temperature | er/ed | 18.0 | | | | °C | 1 | " | 250227 0845 | 250227 0845 | SM 2550B | AccFD | Stewart Creek West WWTP 5100 4th Army Memorial Frisco, TEXAS 75034 Project: 30TAC307 Monitoring Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo Reported: 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES | Effluent G (2509002-06) | | | | | | | | | | | | | |--|----------|--------|-------|---------|-----------|---------------|---------------|---------|-------------|-------------|--------------|--------| | Coliform by Quantitray | | | | | | | | | | | | | | North Texas Municipal Water | District | | | | | | | | | | | | | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | | Escherichia Coliform | srb | 6.3 | 1.0 | 1.0 | 1.0 | MPN/10
0mL | 1 | 2505828 | 250227 1505 | 250228 1527 | MPN E-Coli | | | Chromium, Hexavalent
Eurofins Dallas | | | | | | | | | | | | | | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | | Chromium, hexavalent | cjh | 3.59 | 2.8 | 0.00280 | 0.0100 | ug/L | 1 | 26763 | 2025-02-27 | 2025-02-27 | SM 3500 CR B | Ja,SUB | | Chromium, Trivalent
Eurofins Dallas | | | | | | | | | | | | | | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | | Cr (III) | nr | ND | 2 | | | ug/L | 1 | 221193 | 2025-03-10 | 2025-03-10 | II . | SUB | | Cyanide, Amenable
Eurofins Dallas | | | | | | | | | | | | | | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | | Cyanide, Amenable | mc | ND | 2.33 | | | ug/L | 1 | 219959 | 2025-03-07 | 2025-03-07 | SM 4500 CN G | SUB | | Cyanide, Non-amenable
Eurofins Dallas | | | | | | | | | | | | | | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep | Batch | Prepared | Analyzed | Method | Notes | | Cyanide, Non-amenable | all | ND | 2.33 | 2.33 | 5.00 | ug/L | Ratio
1 | 219679 | 2025-02-28 | 2025-02-28 | 4500 CN G | SUB | | Cyanide, Total, Acid Dissocia
Eurofins Dallas | ble and | Thiocy | anate | | | | | | | | NonAm | | | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep | Batch | Prepared | Analyzed | Method | Notes | | Cyanide, Total | bw | ND | 1.98 | 0.00198 | 0.00500 | ug/L | Ratio
1 | 221070 | 2025-03-06 | 2025-03-06 | Kelada 01 | SUB | | Metals (ICP/MS) Total Recov
Eurofins Dallas | erable | | | | | | | | | | | | | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | | Cr | dp | ND | 0.89 | 0.00089 | 0 0.00300 | ug/L | 1 | 220982 | 2025-03-07 | 2025-03-07 | 200.8 | SUB | | Phenolics, Total Recoverable
Eurofins Dallas | | | | | | | | | | | | | | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | | Phenols, Total | bw | ND | 5.8 | 5.80 | 10.0 | ug/L | 1 | 220873 | 2025-03-05 | 2025-03-05 | 420.4 | SUB | Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES #### Effluent G (2509002-06) Volatile Organic Compounds (GC/MS) **Eurofins Dallas** | | | | | | | | Ratio | | Prepared | Analyzed | | Notes | |---|------|-------|-------|--------|------|------|-------|--------|------------|------------|-----------|-------| | Surrogate: Toluene-d8 (Surr) | | 101 9 | % | 80-120 | | | 1 | 219795 | 2025-03-03 | 2025-03-03 | EPA 624.1 | SUB | | Surrogate: 4-Bromofluorobenzene (Surr) | | 99 9 | % | 74-124 | | | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Surrogate: 1,2-Dichloroethane-d4 (Surr) | | 107 9 | % | 63-144 | | | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Surrogate: Dibromofluoromethane (Surr |) | 105 9 | % | 75-131 | | | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Vinyl acetate | an | ND | 2.14 | 2.14 | 20.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | o-Xylene | an | ND | 0.502 | 0.502 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Tetrachloroethene | an | ND | 0.655 | 0.655 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Toluene | an | ND | 0.475 | 0.475 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | trans-1,2-Dichloroethene | an | ND | 0.368 | 0.368 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Xylenes, Total | an | ND | 1.24 | 1.24 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Trichloroethene | an | ND | 1.5 | 1.50 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Vinyl chloride | an | ND | 0.428 | 0.428 | 2.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,3-Dichloropropene, Total | an | ND | 1.27 | 1.27 | 5.00 | ug/L | 1 | "
 2025-03-03 | 2025-03-03 | " | SUB | | Trihalomethanes, Total | an | ND | 0.633 | 0.633 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | cis-1,2-Dichloroethene | an | ND | 0.457 | 0.457 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Naphthalene | an | ND | 1.35 | 1.35 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | trans-1,3-Dichloropropene | an | ND | 1.27 | 1.27 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,2-Dibromoethane | an | ND | 0.999 | 0.999 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Dibromochloromethane | an | ND | 0.547 | 0.547 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 2-Chloroethyl vinyl ether | an | ND | 0.753 | 0.753 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 2-Butanone | an | ND | 8.28 | 8.28 | 50.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,4-Dichlorobenzene | an | ND | 0.449 | 0.449 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,3-Dichlorobenzene | an | ND | 0.413 | 0.413 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,2-Dichloropropane | an | ND | 0.556 | 0.556 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Acrolein | an | ND | 11.1 | 11.1 | 50.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,2-Dichlorobenzene | an | ND | 0.429 | 0.429 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Acrylonitrile | an | ND | 14.3 | 14.3 | 50.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,2,4-Trichlorobenzene | an | ND | 1.75 | 1.75 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,1-Dichloroethene | an | ND | 0.738 | 0.738 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,1-Dichloroethane | an | ND | 0.635 | 0.635 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,1,2-Trichloroethane | an | ND | 0.411 | 0.411 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,1,2,2-Tetrachloroethane | an | ND | 0.47 | 0.470 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,1,1-Trichloroethane | an | ND | 0.585 | 0.585 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | 1,2-Dichloroethane | an | ND | 0.372 | 0.372 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Chloroethane | an | ND | 1.98 | 1.98 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Methylene Chloride | an | ND | 1.73 | 1.73 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | m,p-Xylenes | an | ND | 1.24 | 1.24 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Ethylbenzene | an | ND | 0.385 | 0.385 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Epichlorohydrin | 0.00 | ND | 7.52 | | | ug/L | 1 | ,, | 2025-03-03 | 2025-03-03 | " | SUB | | Epichiolonyum | an | ND | 1.52 | | | g | - | | | | | | Stewart Creek West WWTP 5100 4th Army Memorial Frisco, TEXAS 75034 Project: 30TAC307 Monitoring Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES #### Effluent G (2509002-06) Volatile Organic Compounds (GC/MS) **Eurofins Dallas** | Analyte | Analyst | Result | SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |----------------------|---------|--------|-------|-------|------|-------|---------------|--------|------------|------------|-----------|-------| | Acetone | an | ND | 3.07 | 3.07 | 100 | ug/L | 1 | 219795 | 2025-03-03 | 2025-03-03 | EPA 624.1 | SUB | | Chloroform | an | ND | 0.464 | 0.464 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | MTBE | an | ND | 1.39 | | | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Chlorobenzene | an | ND | 0.455 | 0.455 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Carbon tetrachloride | an | ND | 0.896 | 0.896 | 2.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Bromomethane | an | ND | 1.42 | 1.42 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Bromoform | an | ND | 0.633 | 0.633 | 5.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Bromodichloromethane | an | ND | 0.552 | 0.552 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Benzene | an | ND | 0.46 | 0.460 | 1.00 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | | Chloromethane | an | ND | 2.04 | 2.04 | 10.0 | ug/L | 1 | " | 2025-03-03 | 2025-03-03 | " | SUB | #### Trip Blank (2509002-07) Total Mercury by EPA 245.7 | Analyte | Analyst Resu | lt SRL | MDL | MRL | Units | Prep
Ratio | Batch | Prepared | Analyzed | Method | Notes | |---------|--------------|--------|------------|---------|-------|---------------|---------|------------|------------|-----------|-------| | Mercury | ran ND | 0.0050 | 00 0 00180 | 0.00500 | ug/L | 1 | 2507619 | 2025-03-18 | 2025-03-18 | EPA 245.7 | | Stewart Creek West WWTP 5100 4th Army Memorial Frisco, TEXAS 75034 Project: 30TAC307 Monitoring Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES #### Total Metals by EPA 200.8 - Quality Control North Texas Municipal Water District | | | | | Spike | | Source | | %REC | | RPD | | |---------|--------|-----|-------|-------|-----|--------|------|--------|-----|-------|-------| | Analyte | Result | AQL | Units | Level | MDL | Result | %REC | Limits | RPD | Limit | Notes | | Blank (2506214-BLK1) | | | | | Prepared: 202 | 5-03-04 Analyzed: | 2025-03-05 | | | | |-----------------------|------|-------|------|------|---------------|-------------------|------------|--------|----|-----| | Aluminum | ND | 2.50 | ug/L | | 1.25 | | | | | | | Arsenic | ND | 0.500 | " | | 0.250 | | | | | | | Barium | ND | 1.00 | " | | 0.500 | | | | | | | Cadmium | ND | 1.00 | " | | 0.500 | | | | | | | Copper | ND | 1.00 | " | | 0.500 | | | | | | | ead | ND | 0.500 | " | | 0.250 | | | | | | | Nickel | ND | 1.00 | " | | 0.500 | | | | | | | elenium | ND | 1.00 | " | | 0.500 | | | | | | | lilver | ND | 0.500 | " | | 0.250 | | | | | | | Zinc | ND | 2.50 | " | | 1.25 | | | | | | | Antimony | ND | 2.50 | " | | 1.25 | | | | | CCB | | Beryllium | ND | 0.500 | " | | 0.250 | | | | | | | `hallium | ND | 0.500 | " | | 0.250 | | | | | | | Chromium | ND | 2.50 | " | | 1.25 | | | | | | | LCS (2506214-BS1) | | | | | Prepared: 202 | 5-03-04 Analyzed: | 2025-03-05 | | | | | luminum | 49.1 | 2.50 | ug/L | 50.0 | 1.25 | 98.2 | 85-115 | | | | | rsenic | 50.5 | 0.500 | " | 50.0 | 0.250 | 101 | 85-115 | | | | | arium | 54.6 | 1.00 | " | 50.0 | 0.500 | 109 | 85-115 | | | | | admium | 49.5 | 1.00 | " | 50.0 | 0.500 | 99.0 | 85-115 | | | | | Copper | 50.9 | 1.00 | " | 50.0 | 0.500 | 102 | 85-115 | | | | | ead | 50.8 | 0.500 | " | 50.0 | 0.250 | 102 | 85-115 | | | | | lickel | 50.4 | 1.00 | " | 50.0 | 0.500 | 101 | 85-115 | | | | | elenium | 50.2 | 1.00 | " | 50.0 | 0.500 | 100 | 85-115 | | 20 | | | Silver | 50.4 | 0.500 | " | 50.0 | 0.250 | 101 | 85-115 | | | | | Cinc | 51.9 | 2.50 | " | 50.0 | 1.25 | 104 | 85-115 | | | | | antimony | 48.0 | 2.50 | " | 50.0 | 1.25 | 96.0 | 85-115 | | | CCB | | Beryllium | 51.1 | 0.500 | " | 50.0 | 0.250 | 102 | 85-115 | | | | | `hallium | 48.3 | 0.500 | " | 50.0 | 0.250 | 96.5 | 85-115 | | | | | Chromium | 50.8 | 2.50 | " | 50.0 | 1.25 | 102 | 85-115 | | | | | CS Dup (2506214-BSD1) | | | | | Prepared: 202 | 5-03-04 Analyzed: | 2025-03-05 | | | | | Aluminum | 49.8 | 2.50 | ug/L | 50.0 | 1.25 | 99.5 | 85-115 | 1.32 | 20 | | | Arsenic | 50.4 | 0.500 | " | 50.0 | 0.250 | 101 | 85-115 | 0.335 | 20 | | | Barium | 55.0 | 1.00 | " | 50.0 | 0.500 | 110 | 85-115 | 0.782 | 20 | | | Cadmium | 49.7 | 1.00 | " | 50.0 | 0.500 | 99.4 | 85-115 | 0.374 | 20 | | | Copper | 51.4 | 1.00 | " | 50.0 | 0.500 | 103 | 85-115 | 1.09 | 20 | | | Lead | 51.1 | 0.500 | " | 50.0 | 0.250 | 102 | 85-115 | 0.641 | 20 | | | lickel | 51.3 | 1.00 | " | 50.0 | 0.500 | 103 | 85-115 | 1.75 | 20 | | | Selenium | 50.6 | 1.00 | " | 50.0 | 0.500 | 101 | 85-115 | 0.669 | 20 | | | ilver | 50.4 | 0.500 | " | 50.0 | 0.250 | 101 | 85-115 | 0.0136 | 20 | | | Zinc | 52.0 | 2.50 | " | 50.0 | 1.25 | 104 | 85-115 | 0.216 | 20 | | Frisco, TEXAS 75034 Project: 30TAC307 Monitoring Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 ANALYTICAL REPORT FOR SAMPLES #### Total Metals by EPA 200.8 - Quality Control North Texas Municipal Water District | | | | | | | _ | | | | | | |---------------------------------------|------------|---------|---------------|----------------|-----------|------------------|-----------|----------------|--------|--------------|-------| | Analyte | Result | AQL | Units | Spike
Level | MDL | Source
Result | %REC | %REC
Limits | RPD | RPD
Limit | Notes | | Batch 2506214 - [200.8 Digestion] Dig | ested down | to 10mL | at 95°C | | | | | | | | | | LCS Dup (2506214-BSD1) | | | | | Prepared: | 2025-03-04 | Analyzed: | 2025-03-05 | | | | | Antimony | 50.8 | 2.50 | ug/L | 50.0 | 1.25 | | 102 | 85-115 | 5.73 | 20 | CCE | | Beryllium | 51.7 | 0.500 | " | 50.0 | 0.250 | | 103 | 85-115 | 1.09 | 20 | | | Thallium | 48.6 | 0.500 | " | 50.0 | 0.250 | | 97.3 | 85-115 | 0.752 | 20 | | | Chromium | 51.2 | 2.50 | " | 50.0 | 1.25 | | 102 | 85-115 | 0.620 | 20 | | | Matrix Spike (2506214-MS1) | | Sourc | e: 2510020-03 | | Prepared: | 2025-03-04 | Analyzed: | 2025-03-05 | | | | | Aluminum | 165 | 2.50 | ug/L | 50.0 | 1.25 | 126 | 79.6 | 70-130 | | | | | Arsenic | 51.8 | 0.500 | " | 50.0 | 0.250 | 1.45 | 101 | 70-130 | | | | | Barium | 94.2 | 1.00 | " | 50.0 | 0.500 | 46.8 | 94.8 | 70-130 | | | | | Cadmium | 48.2 | 1.00 | " | 50.0 | 0.500 | ND | 96.3 | 70-130 | | | | | Copper | 48.3 | 1.00 | " | 50.0 | 0.500 | 1.17 | 94.2 | 70-130 | | | | | Lead | 47.0 | 0.500 | " | 50.0 | 0.250 | ND | 94.1 | 70-130 | | | | | Nickel | 51.3 | 1.00 | " | 50.0 | 0.500 | 3.39 | 95.9 | 70-130 | | | | | Selenium | 51.8 | 1.00 | " | 50.0 | 0.500 | 0.683 | 102 | 70-130 | | 20 |
| | Silver | 37.5 | 0.500 | " | 50.0 | 0.250 | ND | 75.0 | 70-130 | | | | | Zinc | 54.0 | 2.50 | " | 50.0 | 1.25 | 5.16 | 97.7 | 70-130 | | | | | Antimony | 50.1 | 2.50 | " | 50.0 | 1.25 | 1.58 | 97.0 | 70-130 | | | CCB | | Beryllium | 48.9 | 0.500 | " | 50.0 | 0.250 | ND | 97.8 | 70-130 | | | | | Thallium | 45.7 | 0.500 | " | 50.0 | 0.250 | ND | 91.4 | 70-130 | | | | | Chromium | 49.0 | 2.50 | " | 50.0 | 1.25 | ND | 98.1 | 70-130 | | | | | Matrix Spike (2506214-MS2) | | Sourc | e: 2510020-05 | | Prepared: | 2025-03-04 | Analyzed: | 2025-03-05 | | | | | Arsenic | 52.4 | 0.500 | ug/L | 50.0 | 0.250 | 1.52 | 102 | 70-130 | | | | | Barium | 93.4 | 1.00 | " | 50.0 | 0.500 | 47.0 | 92.7 | 70-130 | | | | | Cadmium | 49.3 | 1.00 | " | 50.0 | 0.500 | ND | 98.7 | 70-130 | | | | | Copper | 49.6 | 1.00 | " | 50.0 | 0.500 | 2.49 | 94.2 | 70-130 | | | | | Lead | 46.9 | 0.500 | " | 50.0 | 0.250 | ND | 93.8 | 70-130 | | | | | Nickel | 50.4 | 1.00 | " | 50.0 | 0.500 | 3.35 | 94.2 | 70-130 | | | | | Selenium | 52.0 | 1.00 | " | 50.0 | 0.500 | 0.606 | 103 | 70-130 | | 20 | | | Silver | 38.1 | 0.500 | " | 50.0 | 0.250 | ND | 76.1 | 70-130 | | | | | Zinc | 52.0 | 2.50 | " | 50.0 | 1.25 | 3.43 | 97.1 | 70-130 | | | | | Antimony | 49.1 | 2.50 | " | 50.0 | 1.25 | ND | 98.2 | 70-130 | | | CCB | | Thallium | 45.9 | 0.500 | " | 50.0 | 0.250 | ND | 91.9 | 70-130 | | | | | Chromium | 47.5 | 2.50 | " | 50.0 | 1.25 | ND | 95.0 | 70-130 | | | | | Matrix Spike Dup (2506214-MSD1) | | Sourc | e: 2510020-03 | | Prepared: | 2025-03-04 | Analyzed: | 2025-03-05 | | | | | Aluminum | 165 | 2.50 | ug/L | 50.0 | 1.25 | 126 | 79.8 | 70-130 | 0.0750 | 20 | | | Arsenic | 51.9 | 0.500 | " | 50.0 | 0.250 | 1.45 | 101 | 70-130 | 0.133 | 20 | | | Barium | 93.6 | 1.00 | " | 50.0 | 0.500 | 46.8 | 93.7 | 70-130 | 0.592 | 20 | | | Cadmium | 48.2 | 1.00 | " | 50.0 | 0.500 | ND | 96.4 | 70-130 | 0.0518 | 20 | | | Copper | 48.1 | 1.00 | " | 50.0 | 0.500 | 1.17 | 93.9 | 70-130 | 0.357 | 20 | | | Lead | 46.8 | 0.500 | " | 50.0 | 0.250 | ND | 93.6 | 70-130 | 0.437 | 20 | | #### Stewart Creek West WWTP 5100 4th Army Memorial Frisco, TEXAS 75034 Project: 30TAC307 Monitoring Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES #### Total Metals by EPA 200.8 - Quality Control North Texas Municipal Water District | | | | | Spike | | Source | | %REC | | RPD | | |---------|--------|-----|-------|-------|-----|--------|------|--------|-----|-------|-------| | Analyte | Result | AQL | Units | Level | MDL | Result | %REC | Limits | RPD | Limit | Notes | | | | | | | | | | | | | | #### Batch 2506214 - [200.8 Digestion] Digested down to 10mL at 95°C | Matrix Spike Dup (2506214-MSD1) | | Sour | ce: 2510020-03 | | Prepared: | : 2025-03-04 | Analyzed: | 2025-03-05 | | | | | | | | | | |---------------------------------|------|-------|----------------|------|-----------|--------------|-----------|------------|-------|----|------|--|--|--|--|--|--| | Nickel | 50.7 | 1.00 | ug/L | 50.0 | 0.500 | 3.39 | 94.7 | 70-130 | 1.21 | 20 | | | | | | | | | Selenium | 52.0 | 1.00 | " | 50.0 | 0.500 | 0.683 | 103 | 70-130 | 0.300 | 20 | | | | | | | | | Silver | 40.4 | 0.500 | " | 50.0 | 0.250 | ND | 80.8 | 70-130 | 7.45 | 20 | | | | | | | | | Zinc | 53.6 | 2.50 | " | 50.0 | 1.25 | 5.16 | 96.9 | 70-130 | 0.706 | 20 | | | | | | | | | Antimony | 48.8 | 2.50 | " | 50.0 | 1.25 | 1.58 | 94.3 | 70-130 | 2.65 | 20 | CCBJ | | | | | | | | Beryllium | 47.3 | 0.500 | " | 50.0 | 0.250 | ND | 94.6 | 70-130 | 3.28 | 20 | | | | | | | | | Thallium | 45.4 | 0.500 | " | 50.0 | 0.250 | ND | 90.7 | 70-130 | 0.709 | 20 | | | | | | | | | Chromium | 48.2 | 2.50 | " | 50.0 | 1.25 | ND | 96.5 | 70-130 | 1.66 | 20 | | | | | | | | | Matrix Spike Dup (2506214-MSD2) | | Sour | ce: 2510020-05 | | Prepared: | : 2025-03-04 | Analyzed: | 2025-03-05 | | | | | | | | | | | Arsenic | 52.2 | 0.500 | ug/L | 50.0 | 0.250 | 1.52 | 101 | 70-130 | 0.455 | 20 | | | | | | | | | Barium | 93.2 | 1.00 | " | 50.0 | 0.500 | 47.0 | 92.3 | 70-130 | 0.208 | 20 | | | | | | | | | Cadmium | 49.9 | 1.00 | " | 50.0 | 0.500 | ND | 99.8 | 70-130 | 1.15 | 20 | | | | | | | | | Copper | 50.2 | 1.00 | " | 50.0 | 0.500 | 2.49 | 95.5 | 70-130 | 1.34 | 20 | | | | | | | | | Lead | 47.4 | 0.500 | " | 50.0 | 0.250 | ND | 94.9 | 70-130 | 1.14 | 20 | | | | | | | | | Nickel | 50.9 | 1.00 | " | 50.0 | 0.500 | 3.35 | 95.1 | 70-130 | 0.927 | 20 | | | | | | | | | Selenium | 52.1 | 1.00 | " | 50.0 | 0.500 | 0.606 | 103 | 70-130 | 0.158 | 20 | | | | | | | | | Silver | 41.3 | 0.500 | " | 50.0 | 0.250 | ND | 82.6 | 70-130 | 8.21 | 20 | | | | | | | | | Zinc | 52.8 | 2.50 | " | 50.0 | 1.25 | 3.43 | 98.7 | 70-130 | 1.48 | 20 | | | | | | | | | Antimony | 47.7 | 2.50 | " | 50.0 | 1.25 | ND | 95.4 | 70-130 | 2.87 | 20 | CCBJ | | | | | | | | Thallium | 46.1 | 0.500 | " | 50.0 | 0.250 | ND | 92.1 | 70-130 | 0.270 | 20 | | | | | | | | | Chromium | 47.7 | 2.50 | " | 50.0 | 1.25 | ND | 95.4 | 70-130 | 0.364 | 20 | | | | | | | | #### **Total Mercury by EPA 245.7 - Quality Control** #### **North Texas Municipal Water District** | | | | | Cnilco | | Source | | %REC | | RPD | | | |---------|--------|-----|-------|--------|-----|--------|------|--------|-----|-------|-------|--| | | | | | Spike | | bource | | /orche | | ICI D | | | | Analyte | Result | AQL | Units | Level | MDL | Result | %REC | Limits | RPD | Limit | Notes | | #### **Batch 2507619 - [245.7 Digestion] 245.7 Digestion** | Blank (2507619-BLK1) | | | | | Prepared & | & Analyzed: | 2025-03-18 | | | | | |---------------------------------|---------|---------|---------------|---------|------------|-------------|------------|--------|-------|----|--| | Mercury | ND | 0.00500 | ug/L | | 0.00180 | | | | | | | | MRL Check (2507619-MRL1) | | | | | Prepared & | & Analyzed: | 2025-03-18 | | | | | | Mercury | 0.00568 | 0.00500 | ug/L | 0.00500 | 0.00180 | | 114 | 0-200 | | | | | Matrix Spike (2507619-MS1) | | Source | e: 2508001-04 | | Prepared & | & Analyzed: | 2025-03-18 | | | | | | Mercury | 0.0107 | 0.00500 | ug/L | 0.0100 | 0.00180 | ND | 107 | 63-111 | | | | | Matrix Spike (2507619-MS3) | | Source | e: 2511001-01 | | Prepared & | & Analyzed: | 2025-03-18 | | | | | | Mercury | 0.0197 | 0.00500 | ug/L | 0.0100 | 0.00180 | 0.0108 | 88.7 | 63-111 | | | | | Matrix Spike Dup (2507619-MSD1) | | Source | e: 2508001-04 | | Prepared & | & Analyzed: | 2025-03-18 | | | | | | Mercury | 0.0106 | 0.00500 | ug/L | 0.0100 | 0.00180 | ND | 106 | 63-111 | 0.309 | 18 | | Project: 30TAC307 Monitoring Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo Reported: 2025-05-30 11:29 # ANALYTICAL REPORT FOR SAMPLES # **Total Mercury by EPA 245.7 - Quality Control** | | | Nort | h Texas Mu | nicipa | l Water | r District | | | | | | |---|-------------|----------|-----------------|---------|----------|--------------|-----------|------------|-------|-------|-------| | | | | | Spike | | Source | | %REC | | RPD | | | Analyte | Result | AQL | Units | Level | MDL | Result | %REC | Limits | RPD | Limit | Notes | | Batch 2507619 - [245.7 Digestion] 245.7 | Digestion | | | | | | | | | | | | Matrix Spike Dup (2507619-MSD3) | | Sour | ce: 2511001-01 | | Prepared | & Analyzed: | 2025-03-1 | 8 | | | | | Mercury | 0.0197 | 0.00500 | ug/L | 0.0100 | 0.00180 | 0.0108 | 88.3 | 63-111 | 0.168 | 18 | | | Conve | ntional C | hemist | try Parame | ters by | y EPA N | Aethods - | Quality | Contro | l | | | | | | Nort | h Texas Mu | nicipa | l Water | r District | | | | | | | | | | | Spike | | Source | | %REC | | RPD | | | Analyte | Result | AQL | Units | Level | MDL | Result | %REC | Limits | RPD | Limit | Notes | | Batch 2505827 - [350.1 NH3 w/o Distillation | ation] 350. | 1 NH3 w | vithout Distill | ation | | | | | | | | | Blank (2505827-BLK1) | | | | | Prepared | & Analyzed: | 2025-02-2 | 8 | | | | | Ammonia as N | ND | 100 | ug/L | | 50.0 | | | | | | | | LCS (2505827-BS1) | | | | | Prepared | & Analyzed: | 2025-02-2 | 8 | | | | | Ammonia as N | 1940 | 100 | ug/L | 2000 | 50.0 | | 97.0 | 90-110 | | | | | LCS Dup (2505827-BSD1) | | | | | Prepared | & Analyzed: | 2025-02-2 | 8 | | | | | Ammonia as N | 1950 | 100 | ug/L | 2000 | 50.0 | | 97.4 | 90-110 | 0.360 | 10 | | | Matrix Spike (2505827-MS1) | | Sour | ce: 2509175-01 | | Prepared | & Analyzed: | 2025-02-2 | 8 | | | | | Ammonia as N | 70700 | 2000 | ug/L | 40000 | 1000 | 32400 | 95.8 | 90-110 | | | | | Matrix Spike (2505827-MS2) | | Sour | ce: 2509206-01 | | Prepared | & Analyzed: | 2025-02-2 | 8 | | | | | Ammonia as N | 62900 | 2000 | ug/L | 40000 | 1000 | 27200 | 89.4 | 90-110 | | | QMI | | Matrix Spike Dup (2505827-MSD1) | | Sour | ce: 2509175-01 | | Prepared | & Analyzed: | 2025-02-2 | 8 | | | | | Ammonia as N | 71300 | 2000 | ug/L | 40000 | 1000 | 32400 | 97.4 | 90-110 | 0.845 | 10 | | | Matrix Spike Dup (2505827-MSD2) | | Sour | ce: 2509206-01 | | Prepared | & Analyzed: | 2025-02-2 | 8 | | | | | Ammonia as N | 62400 | 2000 | ug/L | 40000 | 1000 | 27200 | 88.1 | 90-110 | 0.830 | 10 | QMI | | Batch 2506212 - [365.1 PO4 Digestion] | 365.3 PO4 | Digestic | on | | | | | | | | | | Blank (2506212-BLK1) | | | | | Prepared | : 2025-03-03 | Analyzed: | 2025-03-04 | | | | | Total Phosphate as P | ND | 20.0 | ug/L | | 10.0 | | | | | | | | Blank (2506212-BLK1) | | | | | Prepared | l: 2025-03-03 . | Analyzed: | 2025-03-04 | | | | |----------------------------|------|------|----------------|------|----------|-----------------|-----------|------------|------|----|------| | Total Phosphate as P | ND | 20.0 | ug/L | | 10.0 | | | | | | | | LCS (2506212-BS1) | | | | | Prepared | 1: 2025-03-03 | Analyzed: | 2025-03-04 | | | | | Total Phosphate as P | 98.0 | 20.0 | ug/L | 100 | 10.0 | | 98.0 | 90-110 | | | | | LCS Dup (2506212-BSD1) | | | | | Prepared | 1: 2025-03-03 | Analyzed: | 2025-03-04 | | | | | Total Phosphate as P | 99.0 | 20.0 | ug/L | 100 | 10.0 | | 99.0 | 90-110 |
1.02 | 10 | | | Matrix Spike (2506212-MS1) | | Sour | ce: 2509002-04 | | Prepared | 1: 2025-03-03 | Analyzed: | 2025-03-04 | | | | | Total Phosphate as P | 406 | 20.0 | ug/L | 100 | 10.0 | 300 | 106 | 90-110 | | | | | Matrix Spike (2506212-MS2) | | Sour | ce: 2509207-18 | | Prepared | l: 2025-03-03 | Analyzed: | 2025-03-04 | | | | | Total Phosphate as P | 7900 | 500 | ug/L | 2500 | 250 | 5550 | 94.0 | 90-110 | | | QMFa | Project: 30TAC307 Monitoring Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 # ANALYTICAL REPORT FOR SAMPLES # Conventional Chemistry Parameters by EPA Methods - Quality Control North Texas Municipal Water District | PO4 406 | | Units n e: 2509002-04 | Level | MDL | Result | %REC | Limits | RPD | Limit | Notes | |---------|---------------------|---|--|--|--|--|--|--------------------------------------|---|---| | | Sourc | | | | | | | | | | | 406 | | 2500002 04 | | | | | | | | | | 406 | | e: 2509002-04 | | Prepared: | : 2025-03-03 | Analyzed: 2 | 2025-03-04 | | | | | | 20.0 | ug/L | 100 | 10.0 | 300 | 106 | 90-110 | 0.00 | 10 | | | | Sourc | e: 2509207-18 | | Prepared: | : 2025-03-03 | Analyzed: 2 | 2025-03-04 | | | | | 7780 | 500 | ug/L | 2500 | 250 | 5550 | 89.0 | 90-110 | 1.59 | 10 | QMF | | | | | | Prepared: | : 2025-03-03 | Analyzed: 2 | 2025-03-04 | | | | | 1920 | 500 | ug/L | 1820 | 250 | | 106 | 80-119 | | | | | 2 TKN | N Digesti | on | | | | | | | | | | | • • | | | Prepared | & Analyzed: | 2025-03-04 | 4 | | | | | ND | 200 | ug/L | | 100 | | | | | | | | | | | | Prepared | & Analyzed: | 2025-03-04 | 4 | | | | | 1910 | 200 | ug/L | 2000 | 100 | | 95.6 | 90-110 | | | | | | | | | Prepared | & Analyzed: | 2025-03-04 | 4 | | | | | 1960 | 200 | ug/L | 2000 | 100 | | 98.2 | 90-110 | 2.58 | 10 | | | | | | | Prepared | & Analyzed: | 2025-03-04 | 4 | | | | | 156 | 200 | ug/L | 200 | 100 | | 78.0 | 70-130 | | | | | | Sourc | e: 2507002-11 | | Prepared | & Analyzed: | 2025-03-04 | 4 | | | | | 1980 | 200 | ug/L | 2000 | 100 | ND | 98.9 | 90-110 | | | | | | Sourc | e: 2507002-11 | | Prepared | & Analyzed: | 2025-03-04 | 4 | | | | | 1970 | 200 | ug/L | 2000 | 100 | ND | 98.5 | 90-110 | 0.405 | 10 | | | | | | | Prepared | & Analyzed: | 2025-03-04 | 4 | | | | | 1600 | 200 | ug/L | 1610 | 100 | | 99.2 | 73-122 | | | | | | | | | | | | | | | | | Cha | mistry | Parameters | s hv S | tandare | 1 Method | s - Oneli | ity Cont | rol | | | | 1 | 156
1980
1970 | 156 200 Source 1980 200 Source 1970 200 | 156 200 ug/L Source: 2507002-11 1980 200 ug/L Source: 2507002-11 1970 200 ug/L | 156 200 ug/L 200 Source: 2507002-11 1980 200 ug/L 2000 Source: 2507002-11 1970 200 ug/L 2000 | 1960 200 ug/L 2000 100 Prepared 156 200 ug/L 200 100 Source: 2507002-11 Prepared 1980 200 ug/L 2000 100 Source: 2507002-11 Prepared 1970 200 ug/L 2000 100 Prepared | 1960 200 ug/L 2000 100 Prepared & Analyzed: 156 200 ug/L 200 100 | 1960 200 ug/L 2000 100 98.2 Prepared & Analyzed: 2025-03-04 156 200 ug/L 200 100 78.0 Source: 2507002-11 Prepared & Analyzed: 2025-03-04 1980 200 ug/L 2000 100 ND 98.9 Source: 2507002-11 Prepared & Analyzed: 2025-03-04 1970 200 ug/L 2000 100 ND 98.5 Prepared & Analyzed: 2025-03-04 | Prepared & Analyzed: 2025-03-04 156 | 1960 200 ug/L 2000 100 98.2 90-110 2.58 Prepared & Analyzed: 2025-03-04 156 200 ug/L 200 100 78.0 70-130 Source: 2507002-11 Prepared & Analyzed: 2025-03-04 1980 200 ug/L 2000 100 ND 98.9 90-110 Source: 2507002-11 Prepared & Analyzed: 2025-03-04 1970 200 ug/L 2000 100 ND 98.5 90-110 0.405 Prepared & Analyzed: 2025-03-04 | 1960 200 ug/L 2000 100 98.2 90-110 2.58 10 Prepared & Analyzed: 2025-03-04 156 200 ug/L 200 100 78.0 70-130 Source: 2507002-11 Prepared & Analyzed: 2025-03-04 1980 200 ug/L 2000 100 ND 98.9 90-110 Source: 2507002-11 Prepared & Analyzed: 2025-03-04 1970 200 ug/L 2000 100 ND 98.5 90-110 0.405 10 Prepared & Analyzed: 2025-03-04 | | Analyte | Result | AQL | Units | Spike
Level | MDL | Source
Result | %REC | %REC
Limits | RPD | RPD
Limit | Notes | |---|--------|--------|---------------|----------------|-----------|------------------|-------------|----------------|-----|--------------|-------| | Batch 2505905 - [GenChem Demand] | | | | | | | | | | | | | Blank (2505905-BLK1) | | | | | Prepared: | 2025-02-28 | Analyzed: 2 | 2025-03-05 | | | | | Carbonaceous Biochemical
Oxygen Demand | ND | 2000 | ug/L | | 100 | | | | | | | | LCS (2505905-BS1) | | | | | Prepared: | 2025-02-28 | Analyzed: 2 | 2025-03-05 | | | | | Carbonaceous Biochemical
Oxygen Demand | 186000 | 100000 | ug/L | 198000 | 5000 | | 94.0 | 84-115 | | | | | Duplicate (2505905-DUP1) | | Source | e: 2509209-02 | | Prepared: | 2025-02-28 | Analyzed: 2 | 2025-03-05 | | | | Project: 30TAC307 Monitoring Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 # ANALYTICAL REPORT FOR SAMPLES # Conventional Chemistry Parameters by Standard Methods - Quality Control North Texas Municipal Water District | Analyte | Result | AQL | Units | Spike
Level | MDL | Source
Result | %REC | %REC
Limits | RPD | RPD
Limit | Notes | |---|------------|----------|------------------------|----------------|-----------------|---------------------|-------------|----------------|-------|--------------|-------| | Batch 2505905 - [GenChem Demand] | | | | | | | | | | | | | Duplicate (2505905-DUP1) | | Source | ce: 2509209-02 | | Prepared: | 2025-02-28 | Analyzed: 2 | 025-03-05 | | | | | Carbonaceous Biochemical
Oxygen Demand | 1110 | 2200 | ug/L | | 100 | 1210 | | | 8.65 | 15 | | | Batch 2505910 - [Water Quality Prepa | ration] Wa | ter Qual | ity Preparatio | n | | | | | | | | | Blank (2505910-BLK1) | | | | | Prepared | & Analyzed: | 2025-02-28 | | | | | | Total Alkalinity | ND | 20000 | ug/L | | 10000 | | | | | | | | LCS (2505910-BS1) | | | | | Prepared | & Analyzed: | 2025-02-28 | | | | | | Total Alkalinity | 51500 | 20000 | ug/L | 50000 | 10000 | | 103 | 90-110 | | | | | LCS Dup (2505910-BSD1) | | | | | Prepared | & Analyzed: | 2025-02-28 | | | | | | Total Alkalinity | 51300 | 20000 | ug/L | 50000 | 10000 | | 103 | 90-110 | 0.292 | 10 | | | Duplicate (2505910-DUP1) | | Sour | ce: 2509002-04 | | Prepared | & Analyzed: | 2025-02-28 | | | | | | Total Alkalinity | 81200 | 20000 | ug/L | | 10000 | 81000 | | | 0.136 | 10 | | | Batch 2505913 - [Solids Preparation] | | | | | | | | | | | | | Blank (2505913-BLK1) | | | | | Prepared | & Analyzed: | 2025-03-03 | | | | | | Total Suspended Solids | ND | 500 | ug/L | | 500 | | | | | | | | Blank (2505913-BLK2) | | | | | Prepared | & Analyzed: | 2025-03-03 | | | | | | Total Suspended Solids | ND | 500 | ug/L | | 500 | | | | | | | | Blank (2505913-BLK3) | | | | | Prepared | & Analyzed: | 2025-03-03 | | | | | | Total Suspended Solids | ND | 500 | ug/L | | 500 | <u> </u> | | | | | | | LCS (2505913-BS1) | | | | | Prepared | & Analyzed: | 2025-03-03 | | | | | | Total Suspended Solids | 40000 | 5000 | ug/L | 40000 | 5000 | <u></u> | 100 | 80-120 | | | | | LCS (2505913-BS2) | | | | | Prepared | & Analyzed: | 2025-03-03 | | | | | | Total Suspended Solids | 40000 | 5000 | ug/L | 40000 | 5000 | a Analyzed. | 100 | 80-120 | | | | | I CS (2505013 BS3) | | | | | | & Analyzad. | 2025 02 02 | | | | | | LCS (2505913-BS3) Total Suspended Solids | 40000 | 5000 | ug/L | 40000 | 5000 | & Analyzed: | 100 | 80-120 | | | | | • | | | | | | | | | | | | | Duplicate (2505913-DUP1) Total Suspended Solids | 6820000 | | ee: 2509206-12
ug/L | | Prepared 100000 | & Analyzed: 6920000 | 2025-03-03 | | 1.46 | 10 | | | - | 0020000 | | _ | | | | | | 1.70 | 10 | | | Duplicate (2505913-DUP2) | 16600000 | | ce: 2509146-07 | | • | & Analyzed: | 2025-03-03 | | 12.7 | 10 | | | Total Suspended Solids | 16600000 | 167000 | ug/L | | 167000 | 14500000 | | | 13.7 | 10 | | | Duplicate (2505913-DUP3) | | | ce: 2509146-08 | | Prepared | & Analyzed: | 2025-03-03 | | | | | | Total Suspended Solids | 13600000 | 167000 | ug/L | | 167000 | 12700000 | | | 6.86 | 10 | | | LOQ Check Standard (2505913-MRL1) | | | | | Prepared | & Analyzed: | 2025-03-03 | | | | | | Total Suspended Solids | 2500 | 500 | ug/L | 2500 | 500 | | 100 | 70-130 | | | | Project: 30TAC307 Monitoring Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 ANALYTICAL REPORT FOR SAMPLES # Conventional Chemistry Parameters by Standard Methods - Quality Control North Texas Municipal Water District | | | | |
Spike | | Source | | %REC | | RPD | | |---|------------|--------|-------------------------|--------|----------|----------------|-----------|------------|-------|-------|-------| | Analyte | Result | AQL | Units | Level | MDL | Result | %REC | Limits | RPD | Limit | Notes | | atch 2505914 - [Solids Preparation] | | | | | | | | | | | | | Blank (2505914-BLK1) | | | | | Prepared | : 2025-03-06 | Analyzed: | 2025-03-07 | | | | | Total Dissolved Solids | ND | 10000 | ug/L | | 5000 | | | | | | | | Blank (2505914-BLK2) | | | | | Prepared | : 2025-03-06 | Analyzed: | 2025-03-07 | | | | | Total Dissolved Solids | ND | 10000 | ug/L | | 5000 | | | | | | | | Blank (2505914-BLK3) | | | | | Prepared | : 2025-03-06 | Analyzed: | 2025-03-07 | | | | | Total Dissolved Solids | ND | 10000 | ug/L | | 5000 | | | | | | | | LCS (2505914-BS1) | | | | | Prepared | : 2025-03-06 | Analyzed: | 2025-03-07 | | | | | Total Dissolved Solids | 235000 | 10000 | ug/L | 240000 | 5000 | . 2020 00 00 . | 97.9 | 80-120 | | | | | LCS (2505914-BS2) | | | | | Prepared | : 2025-03-06 | Analyzed: | 2025-03-07 | | | | | Total Dissolved Solids | 240000 | 10000 | ug/L | 240000 | | . 2023 03 00 1 | 100 | 80-120 | | | | | LCS (2505914-BS3) | | | | | | : 2025-03-06 | Analyzad. | 2025 02 07 | | | | | Total Dissolved Solids | 241000 | 10000 | ug/L | 240000 | 5000 | . 2023-03-00 | 100 | 80-120 | | | | | D. 1. (2505014 DVD4) | | G | _ | | | 2025 02 06 | . 1 1 | 2025 02 07 | | | | | Duplicate (2505914-DUP1) Total Dissolved Solids | 670000 | 10000 | rce: 2509002-04
ug/L | | 5000 | : 2025-03-06 A | Anaiyzed: | 2023-03-07 | 0.595 | 10 | | | | 0,0000 | | _ | | | | | | 0.575 | 10 | | | Duplicate (2505914-DUP2) | 210000 | | rce: 2509164-19 | | | : 2025-03-06 | Analyzed: | 2025-03-07 | 2.06 | 10 | | | Total Dissolved Solids | 310000 | 10000 | ug/L | | 5000 | 319000 | | | 2.86 | 10 | | | Duplicate (2505914-DUP3) | | | rce: 2510062-02 | | Prepared | : 2025-03-06 | Analyzed: | 2025-03-07 | | | | | Total Dissolved Solids | 579000 | 10000 | ug/L | | 5000 | 575000 | | | 0.693 | 10 | | | LOQ Check Standard (2505914-MRL1) | | | | | Prepared | : 2025-03-06 | Analyzed: | 2025-03-07 | | | | | Total Dissolved Solids | 9000 | 10000 | ug/L | 9600 | 5000 | | 93.8 | 70-130 | | | | | | | Colifo | rm by Quan | titray | - Quali | ity Contro | ol | | | | | | | | Nort | h Texas Mu | nicipa | ıl Wateı | r District | | | | | | | | | | | Spike | | Source | | %REC | | RPD | | | Analyte | Result | AQL | Units | Level | MDL | Result | %REC | Limits | RPD | Limit | Notes | | Batch 2505828 - [IDEXX Colilert Quan | titravl ID | EXX C | olilert Quantit | rav | | | | | | | | | Blank (2505828-BLK1) | | | Quantiti | J | Prepared | : 2025-02-27 | Analyzed: | 2025-02-28 | | | | | Escherichia Coliform | ND | 1.0 | MPN/100mL | | 1.0 | | | | | | | | Duplicate (2505828-DUP1) | | Sam | rce: 2509002-06 | | Prepared | : 2025-02-27 | Analyzed: | 2025-02-28 | | | | | Escherichia Coliform | 3.0 | 1.0 | MPN/100mL | | 1.0 | 6.3 | maiyzed: | 2023-02-20 | 71.0 | 200 | | **Anions by EPA 300 Series - Quality Control North Texas Municipal Water District** Stewart Creek West WWTP Project: 30TAC307 Monitoring 5100 4th Army Memorial Frisco, TEXAS 75034 Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 ANALYTICAL REPORT FOR SAMPLES | | | | | Spike | | Source | | %REC | | RPD | | |--------------------------------------|--------|------|----------------|--------|----------|---------------------------------------|-----------|--------|-------|-------|-------| | Analyte | Result | AQL | Units | Level | MDL | Result | %REC | Limits | RPD | Limit | Notes | | Batch 2505801 - [300.0 Anions] 300.0 | Anions | | | | | | | | | | | | Blank (2505801-BLK1) | | | | | Prepared | & Analyzed: | 2025-02-2 | 7 | | | | | Sulfate | ND | 1000 | ug/L | | 500 | | | | | | | | Chloride | ND | 1000 | " | | 500 | | | | | | | | LCS (2505801-BS1) | | | | | Prepared | & Analyzed: | 2025-02-2 | 7 | | | | | Sulfate | 30600 | 1000 | ug/L | 30000 | 500 | · · · · · · · · · · · · · · · · · · · | 102 | 90-110 | | | | | Chloride | 30400 | 1000 | " | 30000 | 500 | | 101 | 90-110 | | | | | LCS Dup (2505801-BSD1) | | | | | Prepared | & Analyzed: | 2025-02-2 | 7 | | | | | Chloride | 30500 | 1000 | ug/L | 30000 | 500 | • | 102 | 90-110 | 0.456 | 10 | | | Sulfate | 30900 | 1000 | " | 30000 | 500 | | 103 | 90-110 | 1.05 | 10 | | | LOQ Check Standard (2505801-MRL1) | | | | | Prepared | & Analyzed: | 2025-02-2 | 7 | | | | | Chloride | 1020 | 1000 | ug/L | 1000 | 500 | • | 102 | 70-130 | | | | | ulfate | 1020 | 1000 | " | 1000 | 500 | | 102 | 70-130 | | | | | Aatrix Spike (2505801-MS1) | | Sour | ce: 2509164-10 | | Prepared | & Analyzed: | 2025-02-2 | 7 | | | | | Chloride | 190000 | 5000 | ug/L | 150000 | 2500 | 34800 | 103 | 80-120 | | | | | ulfate | 256000 | 5000 | " | 150000 | 2500 | 97900 | 105 | 80-120 | | | | | 1atrix Spike (2505801-MS2) | | Sour | ce: 2509164-20 | | Prepared | & Analyzed: | 2025-02-2 | 7 | | | | | Chloride | 191000 | 5000 | ug/L | 150000 | 2500 | 36300 | 103 | 80-120 | | | | | ulfate | 252000 | 5000 | " | 150000 | 2500 | 95500 | 105 | 80-120 | | | | | Matrix Spike Dup (2505801-MSD1) | | Sour | ce: 2509164-10 | | Prepared | & Analyzed: | 2025-02-2 | 7 | | | | | ulfate | 255000 | 5000 | ug/L | 150000 | 2500 | 97900 | 105 | 80-120 | 0.311 | 10 | | | Chloride | 188000 | 5000 | " | 150000 | 2500 | 34800 | 102 | 80-120 | 0.701 | 10 | | | Matrix Spike Dup (2505801-MSD2) | | Sour | ce: 2509164-20 | | Prepared | & Analyzed: | 2025-02-2 | 7 | | | | | ulfate | 253000 | 5000 | ug/L | 150000 | | 95500 | 105 | 80-120 | 0.109 | 10 | | | Chloride | 191000 | 5000 | " | 150000 | 2500 | 36300 | 103 | 80-120 | 0.102 | 10 | | | Batch 2505813 - [300.0 Anions] 300.0 | Anions | | | | | | | | | | | | Blank (2505813-BLK1) | | | | | Prepared | & Analyzed: | 2025-02-2 | 7 | | | | | Vitrate as N | ND | 20 | ug/L | | 10 | , , | | | | | | | luoride | ND | 20 | " | | 10 | | | | | | | | .CS (2505813-BS1) | | | | | Prepared | & Analyzed: | 2025-02-2 | 7 | | | | | Nitrate as N | 1000 | 20 | ug/L | 1000 | 10 | <u> </u> | 100 | 90-110 | | | | | luoride | 997 | 20 | " | 1000 | 10 | | 99.7 | 90-110 | | | | | CS Dup (2505813-BSD1) | | | | | Prepared | & Analyzed: | 2025-02-2 | 7 | | | | | litrate as N | 1000 | 20 | ug/L | 1000 | 10 | <u> </u> | 100 | 90-110 | 0.200 | 10 | | | luoride | 995 | 20 | " | 1000 | 10 | | 99.5 | 90-110 | 0.201 | 10 | | | MRL Check (2505813-MRL1) | | | | | Prepared | & Analyzed: | 2025-02-2 | 7 | | | | | Vitrate as N | 23 | 20 | ug/L | 20.0 | 10 | <u> </u> | 115 | 70-130 | | | | | Fluoride | 24 | 20 | " | 20.0 | 10 | | 120 | 70-130 | | | | | Matrix Spike (2505813-MS1) | | Sour | ce: 2509183-07 | | Prepared | & Analyzed: | 2025-02-2 | 7 | | | | | r (| | ., | | | 1 | <i>J</i> | | | | | | Project: 30TAC307 Monitoring Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo Reported: 2025-05-30 11:29 # ANALYTICAL REPORT FOR SAMPLES # Anions by EPA 300 Series - Quality Control North Texas Municipal Water District | | | | | Spike | | Source | | %REC | | RPD | | |---------|--------|-----|-------|-------|-----|--------|------|--------|-----|-------|-------| | Analyte | Result | AQL | Units | Level | MDL | Result | %REC | Limits | RPD | Limit | Notes | **Batch 2505813 - [300.0 Anions] 300.0 Anions** | Matrix Spike (2505813-MS1) | | Sour | ce: 2509183-07 | | Prepared | & Analyzed: | 2025-02-2 | 7 | | | | |---------------------------------|------|------|----------------|------|----------|-------------|-----------|--------|--------|----|--| | Nitrate as N | 1960 | 20 | ug/L | 1000 | 10 | 908 | 106 | 80-120 | | | | | Fluoride | 1340 | 20 | " | 1000 | 10 | 328 | 101 | 80-120 | | | | | Matrix Spike Dup (2505813-MSD1) | | Sour | ce: 2509183-07 | | Prepared | & Analyzed: | 2025-02-2 | 7 | | | | | Nitrate as N | 1960 | 20 | ug/L | 1000 | 10 | 908 | 106 | 80-120 | 0.0509 | 10 | | | Fluoride | 1350 | 20 | " | 1000 | 10 | 328 | 102 | 80-120 | 0.669 | 10 | | Project: 30TAC307 Monitoring Project Number: 30TAC307+Table III+ Permit Renewal Project Manager: Kristen Suprobo **Reported:** 2025-05-30 11:29 #### ANALYTICAL REPORT FOR SAMPLES #### **General Notes and Definitions** DET Analyte DETECTED dry Sample results reported on a dry weight basis MDL Method Detection Limit MRL Method Reporting Limit ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported RPD Relative Percent Difference SRL Sample Reporting Limit Note: "Conductance at 25°C" is also known as Specific Conductance #### Report Notes and Definitions *- LCS and/or LCSD is outside acceptance limits, low biased. *+ LCS and/or LCSD is outside acceptance limits, high biased. *1 LCS/LCSD RPD exceeds control limits. *3 ISTD response or retention time outside acceptable limits. AccFD Field Data, not performed by laboratory, presented per client request. CCBJ CCB is >1/2 IMRL and <IMRL HT The analyte was reported with values analyzed out of holding time. Estimated value. The analyte was positively identified but the quantitation is estimation. This estimated report value is between the MDL and MRL (PQL). Ja Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. QMF Reportable Data is valid. MS % recovery, MSD % recovery, and/or RPD failed MS2/MSD2 Low Recoveries; however, all LCS/LCSD criteria passed. QMFa Reportable Data is valid. MS % recovery, MSD % recovery, and/or RPD failed MSD2 Low Recovery; however, all LCS/LCSD criteria passed. S1+ Surrogate recovery exceeds control limits, high biased. SUB QA/QC for subcontracted analysis appears on hardcopy of subcontract laboratory report. Contact: KRISTEN SUPROBO Seewart Creek WWTP Frisco, TX 75034 NTMWD Chain of Custody Record Eric Roman / Estebra Duris Comp. Sx. Beg/End Date/Time 2/26/25/211215 09:25 2/20/25/2121126 09:05 INFLUENT COLLECTION TEAM | EFFLUENT COLLECTION TEAM Sample
Collector Name(s): Eric Roum / Egtebur Davis **Project:** Work Order Number: Page 1 of Z US Efficient Residual UNIVS 30TAC307+Table III+Permit Renewal Reviewed By: Chk/Adj. By V.C. pH Strips: NYLOUSC PH. PHd # Obs. Cor. ID Y/N Temperature IR# 24 4 5.9 6.4 4A V 1 12:813:51 2 13.1 13.6 IN 3 4.6 10.14 Items Adjusted C TempC Ctr pH, ID Cooler Info to pH > 10 to pH < 2 DH, I ID Reagent:N Reagent: N Received by: Ω n 3 3 me 2 (1) (1) (1) (3) (1) Remarks: IN-HOUSE PARAMETERS ව 3 3 3 ව elinquished by $\mathbf{X} \mid \mathbf{X} \mid \mathbf{X} \mid \mathbf{X} \mid \mathbf{X} \mid \mathbf{X} \mid \mathbf{X}$ Temperature 18.0 ပွ 7,7 Hd SC DO mg/L 8.96 See Subcontract COC Received by: × Conductivity uS/cm × × 869 Field Data 2/27/25 X X X ate Chlorine Residual 0.00 × telinquished by Notice in Sample Name Effluent G × × × Received for Laboratory by: ž Effluent TC Effluent Equipment Blank Influent Equipment Blank Sample Name Received by: Effluent G Trip Blank Influent G 2-12705 11:52 Date Time 05 63 05 8 6 8 Sx. see above 96-p.24 hr Grab Grab Grab Grab Grab 2:18 pm 8:45 pm 2 . 208m 2:15 pm #Oh: b see above Si Me d pausing pa 2112115 2/27/25 2/25/25 2/25/25 Date Recor Legend:FC=Flow Composite, Obs.=Observed, Cor.=Corrected Date Time Relinquished by: NTMWD C:36-293R:3E:07/05/16 7.0 #2505827 me # Seurofins Environment Testing America # **Chain of Custody Record** Eurofins Eaton Analytical South Bend 110 S. Hill Street Southbend, IN 46617 Phone: 574-233-4777 Fax: 574-233-8207 | Phone: 5/4-233-4/// Fax: 5/4-233-820/ | | | | | | | ı | | ١ | ľ | | | 100 | l | 000 | , | | | |--|------------------------|----------------|----------------------------|-------------------|--|--------------|--|---|--------------------|----------|-----------------------------------|---------------|---------------------|----------------------|---|-----------------|---------------------|--| | Client Information | Err Roun | | Esteban Di | Davis Sylvia | Sylvia Garza | | | | | | - E | acking. | NO(s). | | 2509002 | رع <i>کا</i> ہے | _ | | | Client Contact:
Kelly Harden | Phone:
469-626-4610 | | | E-Mail:
Syliva | E-Mail:
syliva.garza@eurofinset.com | Jenrofi | nset.co | 띪 | | <u>"</u> | State of Origin: | Origin: | | | | 2 of 2 3 | | Sarapsa | | Company:
North Texas Municipal Water District | | | PWSID: | | | | : | Ana | Analysis | | Requested | - | | | Job #: | | | | | Address:
201 E. Brown St. | Due Date Requested: | ed: | | | | | | <u> </u> | <u> </u> | | | | | <u> </u> | Preserva | Š | 10s:
M - He | xane | | City:
Wylie | | | | | | | | | | | | ······ | | | B - NaOH
C - Zn Acetate | | N - N | N - None
O - AsNaO2
P - Na2O4S | | State, Zip:
Texas 75098 | Compliance Project: | ct: △ Yes △ No | ∆ No | | | | | • | | | | | | | D - Nitric /
E - NaHS | | N N N | 2545
25503
25203 | | | PO #: | | | | (6 | | | | | | . 624. | | | ~ | G - Amchlor
H - Ascorbic Acid | | S-H28 | SO4
P Dodecahydrate | | Email:
kharden@ntmwd.com | ₩O#: | | | | | | | | | | by EPA | | | | | | > - > S | etone
XAA
1 4-5 | | Project Name:
SCX 30TAC307 + Table III + Permit Renewal | Project #: | | | | 10000 | | | | | | WOC. | | | 91 | SECURIOR SECURIO | | Y - Triz
Z - oth | Y - Trizma
Z - other (specify) | | Site: | SSOW#: | | | | W)(e15j | | 91 | | | | | | ı | l by 80 | of co | | | | | | 2 | Sample | Sample
Type
(C=comp, | | : beteril∃ blei
Mi⊠Mimrorie | PA and BNA b | lerb by EPA 61 | lest by EPA 16 | ۲, C۲ (۱۱۱), C۲ (۷ | A-nO (n | henols by 420 | est by EPA 63 | Noxins by 625. | il & Grease | TedmuN lato | | | i los de la constanta co | | Sample Identification | Sample Date | | -18008 | | X | | 1 | 1000 | - | | | | | \$100.00
\$100.00 | | | and and | olishote. | | 2509002-01 Influent TC | 2/26/25 | 9:25 | υ | W | z | 21 21 | 2 | 21 21 | | | | 21 | 2 | 3 | 7. | | | | | 2509002-03 Influent G | 2127125 | Oh:6 | O | 3 | z | _ | | | = | 6 | 18 31 | | | | 9 | | | | | 2509002-04 Effluent TC | 2/21/28 | 9:05
9:05 | U | W | z | 21 21 | 21 | 21 21 | _ | | | 21 | 21 | 8 | 17 | | | | | 2509002-06 Effluent G | 211212 | 5h:8 | 9 | W | z | | | | 1 | 18 | 18 31 | | 1 | 18 | 2 | Sam | ole Dis | posal | (A fee | may | be as | sesse | d if sa | mples | are [| Sample Disposal (A fee may be assessed if samples are retained longer than 1 month | r than 1 | month | (r | | X Non-Hazard — Flammable — Skin Irritant — Poison B Deliverable Requested: I, III, IV, Other (specify) | son B Unknown | | Radiological | | Spec | Retur | Return 10 Client
al Instructions/Q(| Special Instructions/QC Requirements: | Requir | x C | x <i>Disposal By Lab</i> rements: | By Lai | | | Archive For | | Months | าเทร | | Empty Kit Relinquished by: | | Date: | | ľ | Time: | | | | l | l | Met | hod of | Method of Shipment: | | | | | | | / h | Date/Time: 2 / 27 / 25 | 11.3 | 2 | Company
NTMWD | œ | Received by: | | SPECE | 1 5 | | - | | Date/Time: | 2/ L 2 | 511 | 2 | Company | Owwhy si | | | Date/Time: | | | Company | lœ. | Received by | by: | | | | | | Date/Time | ne: | | | Company | ıny | | Relinquished by: | Date/Time: | | O | Company | œ. | Received by: | by: | | | | | | Date/Time | ne: | | | Company | any | | Custody Seals Intact: Custody Seal No.: | | | | | O) | ooler Te | mperatu | Cooler Temperature(s) °C and Other Remarks: | and O | ther Rei | narks: | Ver: 0 | Ver: 01/16/2019 | # **Environment Testing** 💸 eurofins **Eurofins Eaton Analytical South Bend** Phone: 574-233-4777 Fax: 574-233-8207 Southbend, IN 46617 110 S. Hill Street Chain of Custody Record N - None O - AsNaO2 P - Na2O45 Q - Na2SO3 R - Na2S2O3 S - H2SO4 T - TSP Dodecanydrate U - Acetone W - PH 4-5 Y - Trizma Special Instructions/Note: Z - other (specify) Months Company Eurofins Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Preservation Codes COC No: 2509002 A - HCL B - NaOH C - Zn Acetate D - Nitric Acid F - MaSO4 F - MeOH G - Amchlor H - Ascorbic Acid Page: Page 3 of 3 Job#: I - Ice J - DI Water K - EDTA L - EDA Archive For Total Number of containers 15 9 16 ဖ Ethylene Glycol by 8015 ਲ Date/Time: Date/Time: Oil & Grease Method of Shipment: Carrier Tracking No(s): ₹ 7 Dioxins by 625.1 X Disposal By Lab 7 7 Pest by EPA 632 State of Origin: **Analysis Requested** ਲ ਲ MTBE/Epichlorohydrin/VOC by EPA 624.1 Cooler Temperature(s) °C and Other Remarks: 13 5 Special Instructions/QC Requirements: 9 6 = Cr, Cr (III), Cr (VI) = = Pest by EPA 1657 Lab PM: Sylvia Garza E-Mait: syliva.garza@eurofinset.com Return To Client 7 7 Dioxins by 613/1613 = 7 Received by: Received by: Received by: 7 Pest/PCB by EPA 608.3 7 7 7 FPA and BNA by EPA 625.1 (on to sey) demism more Time: z Z Z Z BT=Tissue, A=Air) Matrix Preservation Code ≥ ≥ ≥ ≥ Company NTMWD Company Company Radiological (C=comp, Sample G=grab) Type ပ ග ပ ഗ Compliance Project: A Yes A No Sampler. Eric Rohan/Esteban Davis Sample Time 0925 0940 0845 9000 Date: Unknown Due Date Requested: 2/26/25-2/27/25 2/26/25-2/27/25 Phone: 469-626-4610 Sample Date 2/27/25 2/27/25 Project #: Date/Time: Date/Time: SSOW#: ₩OW Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Project Name: SCX 30TAC307 + Table III + Permit Renewal Custody Seals Intact: Custody Seal No∴ △ Yes △ No Sompany: North Texas Municipal Water District X
Non-Hazard Flammable Possible Hazard Identification Empty Kit Relinquished by: 2509002-01 Influent TC 2509002-04 Effluent TC Client Information Sample Identification 2509002-03 Influent G 2509002-06 Effluent G charden@ntmwd.com Address: 201 E. Brown St. 469-626-4610 Client Contact: Kelly Harden State, Zip: Texas 75098 elinquished by: Relinquished by Relinquished by Wylie 12 13 14 15 16 17 **JOB NUMBER** PREPARED FOR Attn: Kelly Harden Wylie, Texas 75098 PO BOX 2408 **ANALYTICAL REPORT** North Texas Municipal Water District Generated 4/30/2025 11:57:35 AM Revision 2 **JOB DESCRIPTION** SCX 30TAC307 + Table 3 870-34261-1 **Eurofins Dallas** 9701 Harry Hines Blvd Dallas TX 75220 # **Eurofins Dallas** # **Job Notes** This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page. Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. # **Authorization** Authorized for release by Sylvia Garza, Project Manager Sylvia.Garza@et.eurofinsus.com (832)544-2004 Generated 4/30/2025 11:57:35 AM Revision 2 3 4 5 6 8 9 44 12 --- 15 16 # **Table of Contents** | Cover Page | 1 | |-------------------------|----| | Table of Contents | 3 | | Definitions/Glossary | 4 | | Case Narrative | 6 | | Detection Summary | 9 | | Client Sample Results | 10 | | Surrogate Summary | 19 | | sotope Dilution Summary | 21 | | QC Sample Results | 22 | | QC Association Summary | 38 | | Lab Chronicle | 43 | | Certification Summary | 45 | | Method Summary | 47 | | Sample Summary | 48 | | Subcontract Data | 49 | | Chain of Custody | 58 | | Receint Chacklists | 61 | 1 5 7 a 10 12 13 15 **Definitions/Glossary** Client: North Texas Municipal Water District Job ID: 870-34261-1 Project/Site: SCX 30TAC307 + Table 3 **Qualifiers GC/MS VOA** Qualifier **Qualifier Description** J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. **GC/MS Semi VOA** Qualifier **Qualifier Description** LCS and/or LCSD is outside acceptance limits, low biased. *+ LCS and/or LCSD is outside acceptance limits, high biased. J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. S1+Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected. **GC/MS Semi VOA TICs** Qualifier **Qualifier Description** U Indicates the analyte was analyzed for but not detected. GC Semi VOA Qualifier **Qualifier Description** LCS and/or LCSD is outside acceptance limits, low biased. *+ LCS and/or LCSD is outside acceptance limits, high biased. *1 LCS/LCSD RPD exceeds control limits. J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected. HPLC/IC Qualifier **Qualifier Description** Indicates the analyte was analyzed for but not detected. **Dioxin** Qualifier **Qualifier Description** J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. **Metals** Qualifier **Qualifier Description** J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. **General Chemistry** Qualifier **Qualifier Description** J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected. | Glossary | | |----------------|---| | Abbreviation | These commonly used abbreviations may or may not be present in this report. | | * | Listed under the "D" column to designate that the result is reported on a dry weight basis | | %R | Percent Recovery | | CFL | Contains Free Liquid | | CFU | Colony Forming Unit | | CNF | Contains No Free Liquid | | DER | Duplicate Error Ratio (normalized absolute difference) | | Dil Fac | Dilution Factor | | DL | Detection Limit (DoD/DOE) | | DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample | | DLC | Decision Level Concentration (Radiochemistry) | | EDL | Estimated Detection Limit (Dioxin) | | LOD | Limit of Detection (DoD/DOE) | **Eurofins Dallas** 2 3 # **Definitions/Glossary** Client: North Texas Municipal Water District Job ID: 870-34261-1 Project/Site: SCX 30TAC307 + Table 3 Toxicity Equivalent Quotient (Dioxin) Too Numerous To Count # **Glossary (Continued)** TEQ TNTC | Abbreviation | These commonly used abbreviations may or may not be present in this report. | |--------------|--| | LOQ | Limit of Quantitation (DoD/DOE) | | MCL | EPA recommended "Maximum Contaminant Level" | | MDA | Minimum Detectable Activity (Radiochemistry) | | MDC | Minimum Detectable Concentration (Radiochemistry) | | MDL | Method Detection Limit | | ML | Minimum Level (Dioxin) | | MPN | Most Probable Number | | MQL | Method Quantitation Limit | | NC | Not Calculated | | ND | Not Detected at the reporting limit (or MDL or EDL if shown) | | NEG | Negative / Absent | | POS | Positive / Present | | PQL | Practical Quantitation Limit | | PRES | Presumptive | | QC | Quality Control | | RER | Relative Error Ratio (Radiochemistry) | | RL | Reporting Limit or Requested Limit (Radiochemistry) | | RPD | Relative Percent Difference, a measure of the relative difference between two points | | TEF | Toxicity Equivalent Factor (Dioxin) | | | | **Eurofins Dallas** # **Case Narrative** Client: North Texas Municipal Water District Project: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 **Eurofins Dallas** Job ID: 870-34261-1 Job Narrative 870-34261-1 #### REVISION The report being provided is a revision of the original report sent on 3/25/2025. The report (revision 2) is being revised due to update PCB RLs 0.1ppb. #### Report revision history Revision 1 - 4/24/2025 - Reason - update RL for 608 list per client request. Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable. - Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. - Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative. Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits. The samples were received on 2/27/2025 4:28 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. #### Subcontract Work Method Ana Lab - 1657 Ogano PEST: This method was subcontracted to Ana-Lab Corporation. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety. #### GC/MS VOA Method 624.1: The following sample was diluted due to floating particles and cloudy appearance: 2509002-03 Influent G (870-34261-2). Elevated reporting limits (RL) are provided. Method 624.1: The continuing calibration verification (CCV) associated with batch 860-219795 recovered above the upper control limit for Chloroethane (20.8%). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCVIS 860-219795/2). No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page. #### GC/MS Semi VOA Method 625.1: During the extraction process, heavy emulsion occurred. Sample was filtered through sodium sulfate to remove emulsion. Method 625.1: The surrogate recovery for the blank, laboratory control sample, and laboratory control sample duplicate associated with preparation batch 860-219948 and analytical batch 860-219508 was outside the upper control limits. Method 625.1: The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 860-219948 and analytical batch 860-219508 recovered outside control limits for multiple analytes. These analytes were biased high in the LCS/LCSD and were not detected in the associated samples; therefore, the data have been reported. Method 625.1: The laboratory control sample and the laboratory control sample duplicate (LCS/LCSD) for preparation batch 860-219948 and analytical batch 860-219508 recovered outside control limits for the following analyte: Benzidine. Benzidine has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified. Method 625.1: The laboratory control sample and laboratory control sample duplicate (LCS/LCSD) for preparation batch 860-219948 and analytical batch 860-219508 recovered outside control limits for the following analyte: Bisphenol-A. The **Eurofins Dallas** 4/30/2025 (Rev. 2) # **Case
Narrative** Client: North Texas Municipal Water District Project: SCX 30TAC307 + Table 3 **Eurofins Dallas** Job ID: 870-34261-1 ## Job ID: 870-34261-1 (Continued) associated sample was re-prepared and re-analyzed. Both sets of data have been reported. Method 625.1: The surrogate recovery for the method blank and laboratory control sample duplicate associated with preparation batch 860-220661 and analytical batch 860-220575 was outside the upper control limits. Method 625.1: The laboratory control sample and laboratory control sample duplicate (LCS/LCSD) for preparation batch 860-220661 and analytical batch 860-220575 recovered outside control limits for multiple analytes. The associated sample was reprepared and re-analyzed. Both sets of data have reported. Method 625.1: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 860-220661 and analytical batch 860-220575 recovered outside control limits for the following analytes: 2-Chloronaphthalene, 3,3'-Dichlorobenzidine and Bisphenol-A. No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page. #### GC Semi VOA Method 615 MOD: The continuing calibration verification (CCV) associated with batch 860-220466 recovered above the upper control limit for Dalapon and Dinoseb. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCVIS 860-220466/3). Method 615 MOD: The laboratory control sample and the laboratory control sample duplicate (LCS/LCSD) for preparation batch 860-220040 and analytical batch 860-220466 recovered outside control limits for the following analyte(s): Dinoseb. Dinoseb has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. Batch precision also exceeded control limits for these analyte(s). These results have been reported and qualified. No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page. Method 608.3 PCB: The surrogate recovery for the blank associated with preparation batch 860-220428 and analytical batch 860-220823 was outside the upper control limits. (MB 860-220428/1-A) Method 608.3_PCB: The continuing calibration verification (CCV) associated with batch 860-220823 recovered above the upper control limit for PCB-1221. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 860-220823/6). Method 608.3 PCB: The continuing calibration verification (CCV) associated with batch 860-220823 recovered above the upper control limit for DCB Decachlorobiphenyl (Surr). The associated sample is impacted: (CCV 860-220823/36). Method 608.3_PCB: The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 860-220428 and analytical batch 860-220823 recovered outside control limits for the following analytes: PCB-1016. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. Method 608.3 PCB: Surrogate recovery for the following sample was outside control limits: 2509002-04 Effluent TC (870-34261-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed. Method 608.3_PCB: The following sample was diluted due to the nature of the sample matrix: 2509002-04 Effluent TC (870-34261-3). Elevated reporting limits (RLs) are provided. No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page. Method 608.3 Pest: Surrogate recovery for the following sample was outside the upper control limit: 2509002-04 Effluent TC (870-34261-3). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed. Method 608.3_Pest: The following sample was diluted due to the nature of the sample matrix: 2509002-04 Effluent TC (870-34261-3). Elevated reporting limits (RLs) are provided. No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page. **Eurofins Dallas** Page 7 of 63 4/30/2025 (Rev. 2) # **Case Narrative** Client: North Texas Municipal Water District Project: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 # Job ID: 870-34261-1 (Continued) # **Eurofins Dallas** #### HPLC/IC No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page. No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page. #### Metals No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page. ### **General Chemistry** No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page. # **Detection Summary** Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 | ١, | |----| Client Sample ID: 2509002-01 Influent TC Lab Sample ID: 870-34261-1 | Analyte | Result Qualifier | RL | MDL | Unit | Dil Fac | D | Method | Prep Type | |--------------------|------------------|------|-------|------|---------|---|--------|-----------| | 3 & 4 Methylphenol | 7.82 J | 10.0 | 2.62 | ug/L | 1 | _ | 625.1 | Total/NA | | Phenol | 3.05 J | 4.50 | 0.423 | ug/L | 1 | | 625.1 | Total/NA | | Total Cresols | 7.82 J | 10.0 | 2.62 | ug/L | 1 | | 625.1 | Total/NA | # Client Sample ID: 2509002-03 Influent G | Lab Sample ID: 870-34261-2 | |----------------------------| |----------------------------| | Analyte | Result | Qualifier | RL | MDL | Unit | Dil Fac | D | Method | Prep Type | |------------------------|---------|-----------|---------|----------|------|---------|---|--------------|-------------| | Acetone | 0.305 | | 0.200 | 0.00613 | mg/L | 2 | _ | 624.1 | Total/NA | | Chloroform | 0.00133 | J | 0.00200 | 0.000928 | mg/L | 2 | | 624.1 | Total/NA | | 1,2-Dichloropropane | 0.00333 | J | 0.0100 | 0.00111 | mg/L | 2 | | 624.1 | Total/NA | | Toluene | 0.00166 | J | 0.00200 | 0.000950 | mg/L | 2 | | 624.1 | Total/NA | | Trihalomethanes, Total | 0.00133 | J | 0.0100 | 0.00127 | mg/L | 2 | | 624.1 | Total/NA | | Cr | 0.00267 | J | 0.00300 | 0.000890 | mg/L | 1 | | 200.8 | Total | | | | | | | | | | | Recoverable | | Phenols, Total | 44.3 | | 10.0 | 5.80 | ug/L | 1 | | 420.4 | Total/NA | | Cyanide, Non-amenable | 33.5 | | 5.00 | 2.33 | ug/L | 1 | | 4500 CN G | Total/NA | | | | | | | | | | NonAm | | | Cyanide, Total | 0.00574 | | 0.00500 | 0.00198 | mg/L | 1 | | Kelada 01 | Total/NA | | Chromium, hexavalent | 0.0157 | | 0.0100 | 0.00280 | mg/L | 1 | | SM 3500 CR B | Total/NA | | Lah | Sample | ID: | 270-24261-3 | |-----|--------|-----|-------------| No Detections. # Client Sample ID: 2509002-06 Effluent G Client Sample ID: 2509002-04 Effluent TC # Lab Sample ID: 870-34261-4 15 | Analyte | Result | Qualifier | RL | MDL | Unit | Dil Fac | D | Method | Prep Type | | |----------------------|---------|-----------|--------|---------|------|---------|---|--------------|-----------|--| | Chromium, hexavalent | 0.00359 | J | 0.0100 | 0.00280 | mg/L | 1 | _ | SM 3500 CR B | Total/NA | | This Detection Summary does not include radiochemical test results. **Eurofins Dallas** Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Lab Sample ID: 870-34261-1 Matrix Water **Matrix: Water** Job ID: 870-34261-1 Client Sample ID: 2509002-01 Influent TC Date Collected: 02/27/25 09:25 Date Received: 02/27/25 16:28 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fa | |-----------------------------|---------|-----------|------|-------|------|---|----------------|----------------|--------| | Acenaphthene | <1.39 | U | 5.70 | 1.39 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | Acenaphthylene | <1.41 | U *+ | 10.0 | 1.41 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | Anthracene | <1.50 | U *+ | 5.70 | 1.50 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | Azobenzene | <1.50 | U *+ | 10.0 | 1.50 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | Benzidine | <20.0 | U *- | 20.0 | 20.0 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | Benzo[a]anthracene | < 0.173 | U *+ | 5.00 | 0.173 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | Benzo[a]pyrene | < 0.364 | U *+ | 5.00 | 0.364 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | Benzo[b]fluoranthene | <2.04 | U *+ | 10.0 | 2.04 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | Benzo[g,h,i]perylene | <2.68 | U | 10.0 | 2.68 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | Benzo[k]fluoranthene | <5.00 | U *+ | 5.00 | 5.00 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | Bis(2-chloroethoxy)methane | <1.76 | U | 10.0 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | Bis(2-chloroethyl)ether | <2.16 | U | 10.0 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | Bis(2-ethylhexyl) phthalate | <0.277 | | 5.00 | 0.277 | | | | 03/04/25 18:08 | | | 4-Bromophenyl phenyl ether | <0.256 | | 5.00 | 0.256 | - | | 03/03/25 13:49 | | | | Butyl benzyl phthalate | < 0.337 | | 5.00 | 0.337 | • | | | 03/04/25 18:08 | | | 4-Chloro-3-methylphenol | <1.57 | | 5.00 | | ug/L | | | 03/04/25 18:08 | | | 2-Chloronaphthalene | <0.462 | | 5.00 | 0.462 | _ | | | 03/04/25 18:08 | | | 2-Chlorophenol | < 0.649 | | 5.00 | 0.649 | - | | | 03/04/25 18:08 | | | 4-Chlorophenyl phenyl ether | <1.28 | | 10.0 | | ug/L | | | 03/04/25 18:08 | | | Chrysene | <0.222 | | 5.00 | 0.222 | - | | | 03/04/25 18:08 | | | Dibenz(a,h)anthracene | <0.246 | | 5.00 | 0.246 | - | | | 03/04/25 18:08 | | | 3,3'-Dichlorobenzidine | <0.341 | | 5.00 | 0.240 | | | | 03/04/25 18:08 | | | 2,4-Dichlorophenol | <0.341
| | 5.00 | 0.314 | - | | | 03/04/25 18:08 | | | Diethyl phthalate | <1.59 | | 5.00 | | - | | | 03/04/25 18:08 | | | 2,4-Dimethylphenol | <0.649 | | 5.00 | 0.649 | | | | 03/04/25 18:08 | | | • • | | | | | _ | | | | | | Dimethyl phthalate | <2.50 | | 2.50 | | ug/L | | | 03/04/25 18:08 | | | Di-n-butyl phthalate | <0.252 | | 5.00 | 0.252 | | | | 03/04/25 18:08 | | | 4,6-Dinitro-2-methylphenol | <1.44 | | 10.0 | | ug/L | | | 03/04/25 18:08 | | | 2,4-Dinitrophenol | <1.61 | | 10.0 | | ug/L | | | 03/04/25 18:08 | | | 2,4-Dinitrotoluene | <1.31 | | 10.0 | | ug/L | | | 03/04/25 18:08 | | | 2,6-Dinitrotoluene | <1.61 | | 5.00 | | ug/L | | | 03/04/25 18:08 | | | Di-n-octyl phthalate | <0.373 | | 5.00 | 0.373 | • | | | 03/04/25 18:08 | | | 1,2-Diphenylhydrazine | <1.49 | | 10.0 | | ug/L | | | 03/04/25 18:08 | | | Fluoranthene | <1.59 | | 5.00 | | ug/L | | | 03/04/25 18:08 | | | Fluorene | <1630 | | 5000 | 1630 | | | | 03/04/25 18:08 | | | Hexachlorobenzene | <0.307 | | 5.00 | 0.307 | | | | 03/04/25 18:08 | | | Hexachlorobutadiene | <1.00 | | 1.00 | | ug/L | | | 03/04/25 18:08 | | | Hexachlorocyclopentadiene | <10.0 | | 10.0 | | ug/L | | | 03/04/25 18:08 | | | Hexachloroethane | <0.526 | | 4.80 | 0.526 | | | | 03/04/25 18:08 | | | Indeno[1,2,3-cd]pyrene | <2.29 | U *+ | 5.00 | 2.29 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | Isophorone | <1.64 | | 5.00 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | 2-Methylphenol | <1.62 | U | 10.0 | 1.62 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | 3 & 4 Methylphenol | 7.82 | J | 10.0 | 2.62 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | Naphthalene | <2.50 | U *+ | 2.50 | 2.50 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | Nitrobenzene | <1.66 | U | 5.00 | 1.66 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | 2-Nitrophenol | <1.67 | U | 10.0 | 1.67 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | 4-Nitrophenol | <2.36 | | 7.20 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | | | N-Nitrosodiethylamine | <1.75 | U | 10.0 | | ug/L | | | 03/04/25 18:08 | | | N-Nitrosodimethylamine | <2.02 | | 10.0 | | ug/L | | | 03/04/25 18:08 | | **Eurofins Dallas** 2 7 J 1 9 11 13 14 16 1 / Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Lab Sample ID: 870-34261-1 Job ID: 870-34261-1 Client Sample ID: 2509002-01 Influent TC Date Collected: 02/27/25 09:25 **Matrix: Water** Date Received: 02/27/25 16:28 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |---------------------------------|-------------|-----------|----------|-------|------|-----------|----------------|----------------|---------| | N-Nitrosodi-n-butylamine | <1.49 | U | 10.0 | 1.49 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | N-Nitrosodi-n-propylamine | <2.88 | U | 10.0 | 2.88 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | N-Nitrosodiphenylamine | <1.81 | U | 10.0 | 1.81 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | 4-Nonylphenol | <10.0 | U | 10.0 | 10.0 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | 2,2'-oxybis[1-chloropropane] | <1.79 | U | 10.0 | 1.79 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | Pentachlorobenzene | <1.07 | U | 10.0 | 1.07 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | Pentachlorophenol | < 0.234 | U | 10.0 | 0.234 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | Phenanthrene | <1.42 | U *+ | 10.0 | 1.42 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | Phenol | 3.05 | J | 4.50 | 0.423 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | Pyrene | <0.178 | U *+ | 5.00 | 0.178 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | Pyridine | <10.0 | U | 10.0 | 10.0 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | 1,2,4,5-Tetrachlorobenzene | <1.32 | U *+ | 10.0 | 1.32 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | Total Cresols | 7.82 | J | 10.0 | 2.62 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | 1,2,4-Trichlorobenzene | <1.61 | U | 5.00 | 1.61 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | 2,4,5-Trichlorophenol | <2.00 | U *+ | 10.0 | 2.00 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | 2,4,6-Trichlorophenol | <1.42 | U *+ | 5.00 | 1.42 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | Bisphenol-A | <10.0 | U *- | 10.0 | 10.0 | ug/L | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | Tentatively Identified Compound | Est. Result | Qualifier | Unit | D | RT | CAS No. | Prepared | Analyzed | Dil Fac | | 2,3,7,8-TCDD TIC | <10.0 | U | ug/L | | | 1746-01-6 | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 2,4,6-Tribromophenol (Surr) | 78 | | 31 - 132 | | | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | 2-Fluorobiphenyl (Surr) | 76 | | 29 - 112 | | | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | 2-Fluorophenol (Surr) | 34 | | 28 - 114 | | | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | Nitrobenzene-d5 (Surr) | 71 | | 15 - 314 | | | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | p-Terphenyl-d14 (Surr) | 119 | | 20 - 141 | | | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | Phenol-d5 (Surr) | 18 | | 8 - 424 | | | | 03/03/25 13:49 | 03/04/25 18:08 | 1 | | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |---------------------|------------|-----------|----------|----------|------|---|----------------|----------------|---------| | Aldrin | <0.00125 | U | 0.0100 | 0.00125 | ug/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | alpha-BHC | < 0.000625 | U | 0.00500 | 0.000625 | ug/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | beta-BHC | <0.00125 | U | 0.0100 | 0.00125 | ug/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | delta-BHC | <0.00250 | U | 0.0200 | 0.00250 | ug/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | gamma-BHC (Lindane) | < 0.00344 | U | 0.0100 | 0.00344 | ug/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | 4,4'-DDD | <0.00250 | U | 0.0200 | 0.00250 | ug/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | 4,4'-DDE | <0.00125 | U | 0.0100 | 0.00125 | ug/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | 4,4'-DDT | <0.00250 | U | 0.0200 | 0.00250 | ug/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | Dieldrin | < 0.000625 | U | 0.00500 | 0.000625 | ug/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | Endosulfan I | <0.00125 | U | 0.0100 | 0.00125 | ug/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | Endosulfan II | <0.00125 | U | 0.0100 | 0.00125 | ug/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | Endosulfan sulfate | < 0.00559 | U | 0.0500 | 0.00559 | ug/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | Endrin | <0.00250 | U | 0.0200 | 0.00250 | ug/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | Endrin aldehyde | < 0.00592 | U | 0.0500 | 0.00592 | ug/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | Dicofol | <0.000500 | U | 0.000500 | 0.000500 | mg/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | Heptachlor | <0.00169 | U | 0.00500 | 0.00169 | ug/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | Heptachlor epoxide | <0.00125 | U | 0.0100 | 0.00125 | ug/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | Toxaphene | <0.0780 | U | 0.200 | 0.0780 | ug/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | Chlordane | <0.0250 | U | 0.200 | 0.0250 | ug/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | **Eurofins Dallas** 2 13 14 Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Client Sample ID: 2509002-01 Influent TC Lab Sample ID: 870-34261-1 Date Collected: 02/27/25 09:25 Date Received: 02/27/25 16:28 Matrix: Water Job ID: 870-34261-1 | Method: EPA 608.3 - Organo | chlorine Pes | ticides in ' | Water (Co | ntinued) | | | | | | |-------------------------------|--------------|--------------|-----------|-----------|------|---|----------------|----------------|---------| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | Methoxychlor | <0.0000125 | U | 0.000100 | 0.0000125 | mg/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | Mirex | <0.0000200 | U | 0.0000200 | 0.0000200 | mg/L | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | DCB Decachlorobiphenyl (Surr) | 29 | | 15 - 136 | | | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | Tetrachloro-m-xylene | 47 | | 18 - 126 | | | | 03/05/25 08:32 | 03/06/25 15:06 | 1 | | Method: EPA 608.3 - Polych | - | | | | | _ | | | | |----------------------------------|-----------|-----------|----------|--------|------|---|----------------|----------------|---------| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | PCB-1016 | < 0.0443 | U *+ | 0.100 | 0.0443 | ug/L | | 03/05/25 08:32 | 03/07/25 02:56 | 1 | | PCB-1242 | < 0.0443 | U | 0.100 | 0.0443 | ug/L | | 03/05/25 08:32 | 03/07/25 02:56 | 1 | | PCB-1254 | < 0.0390 | U | 0.100 | 0.0390 | ug/L | | 03/05/25 08:32 | 03/07/25 02:56 | 1 | | PCB-1221 | <0.0443 | U | 0.100 | 0.0443 | ug/L | | 03/05/25 08:32 | 03/07/25 02:56 | 1 | | PCB-1232 | < 0.0443 | U | 0.100 | 0.0443 | ug/L | | 03/05/25 08:32 | 03/07/25 02:56 | 1 | | PCB-1248 | < 0.0443 | U | 0.100 | 0.0443 | ug/L | | 03/05/25 08:32 | 03/07/25 02:56 | 1 | | PCB-1260 | <0.0390 | U | 0.100 | 0.0390 | ug/L | | 03/05/25 08:32 | 03/07/25 02:56 | 1 | | Polychlorinated biphenyls, Total | <0.0390 | U | 0.100 | 0.0390 | ug/L | | 03/05/25 08:32 | 03/07/25 02:56 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | Tetrachloro-m-xylene | 18 | | 18 - 126 | | | | 03/05/25 08:32 | 03/07/25 02:56 | 1 | | DCB Decachlorobiphenyl (Surr) | 32 | | 15 - 136 | | | | 03/05/25 08:32 | 03/07/25 02:56 | 1 | | Method: EPA-01 615 - Herbici | Method: EPA-01 615 - Herbicides (GC) | | | | | | | | | | | |-------------------------------|--------------------------------------|-----------|----------|-----------|------|---|----------------|----------------|---------|--|--| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | | | 2,4-D | <0.0000542 | U | 0.000201 | 0.0000542 | mg/L | | 03/04/25 10:05 | 03/05/25 19:10 | 1 | | | | Hexachlorophene
| <0.000813 | U | 0.00503 | 0.000813 | mg/L | | 03/04/25 10:05 | 03/05/25 19:10 | 1 | | | | Silvex (2,4,5-TP) | <0.0000425 | U | 0.000201 | 0.0000425 | mg/L | | 03/04/25 10:05 | 03/05/25 19:10 | 1 | | | | Dalapon | < 0.0000479 | U | 0.000201 | 0.0000479 | mg/L | | 03/04/25 10:05 | 03/05/25 19:10 | 1 | | | | Dicamba | <0.0000426 | U | 0.000201 | 0.0000426 | mg/L | | 03/04/25 10:05 | 03/05/25 19:10 | 1 | | | | Dinoseb | < 0.0000345 | U *- *1 | 0.000201 | 0.0000345 | mg/L | | 03/04/25 10:05 | 03/05/25 19:10 | 1 | | | | Pentachlorophenol | <0.0000446 | U | 0.000201 | 0.0000446 | mg/L | | 03/04/25 10:05 | 03/05/25 19:10 | 1 | | | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | | | 2,4-Dichlorophenylacetic acid | 118 | | 45 - 150 | | | | 03/04/25 10:05 | 03/05/25 19:10 | 1 | | | | Method: SW846 8015D - | Glycols- Direct li | ijection (GC | /FID) | | | | | | | |-----------------------|--------------------|--------------|-------|------|------|---|----------|----------------|---------| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | Ethylene glycol | <1.22 | U | 5.00 | 1.22 | mg/L | | | 03/03/25 13:36 | 1 | | Propylene glycol | <1.84 | U | 5.00 | 1.84 | mg/L | | | 03/03/25 13:36 | 1 | | Method: EPA-01 632 - Carbamate and Urea Pesticides (HPLC) | | | | | | | | | | | |---|----------|---------|-----------|--------|--------|------|---|----------------|----------------|---------| | | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | | Carbaryl | <0.927 | U | 2.50 | 0.927 | ug/L | | 03/04/25 13:54 | 03/07/25 11:55 | 5 | | | Diuron | <0.0257 | U | 0.0450 | 0.0257 | ug/L | | 03/04/25 13:54 | 03/07/25 11:55 | 5 | Client Sample ID: 2509002-03 Influent G Date Collected: 02/27/25 09:40 Date Received: 02/27/25 16:28 Lab Sample ID: 870-34261-2 Matrix: Water | Method: EPA 624.1 - Volatile O | rganic Com | pounds (| GC/MS) | | | | | | | |--------------------------------|------------|-----------|--------|--------|------|---|----------|----------------|---------| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | Epichlorohydrin | <0.0150 | U | 0.100 | 0.0150 | mg/L | | | 03/03/25 14:36 | 2 | **Eurofins Dallas** _ 4 5 7 ŏ 1 N <u> 11</u> 13 14 15 Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Client Sample ID: 2509002-03 Influent G Lab Sample ID: 870-34261-2 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fa | |---------------------------------|-----------------------|-----------|---------------------|---------------------|------|---|----------|----------------------------------|--------| | Acetone | 0.305 | | 0.200 | 0.00613 | mg/L | | | 03/03/25 14:36 | | | Acrylonitrile | <0.0286 | U | 0.100 | 0.0286 | mg/L | | | 03/03/25 14:36 | | | Acrolein | <0.0222 | U | 0.100 | 0.0222 | mg/L | | | 03/03/25 14:36 | | | Benzene | < 0.000919 | U | 0.00200 | 0.000919 | mg/L | | | 03/03/25 14:36 | | | Bromodichloromethane | < 0.00110 | U | 0.00200 | 0.00110 | mg/L | | | 03/03/25 14:36 | | | Bromoform | <0.00127 | U | 0.0100 | 0.00127 | mg/L | | | 03/03/25 14:36 | | | Bromomethane | <0.00284 | U | 0.0100 | 0.00284 | mg/L | | | 03/03/25 14:36 | | | 2-Butanone | < 0.0166 | U | 0.100 | 0.0166 | mg/L | | | 03/03/25 14:36 | | | Carbon tetrachloride | <0.00179 | U | 0.0100 | 0.00179 | mg/L | | | 03/03/25 14:36 | | | Chlorobenzene | < 0.000910 | U | 0.00200 | 0.000910 | mg/L | | | 03/03/25 14:36 | | | Chloroethane | < 0.00397 | U | 0.0200 | 0.00397 | mg/L | | | 03/03/25 14:36 | | | 2-Chloroethyl vinyl ether | <0.00151 | U | 0.0100 | 0.00151 | mg/L | | | 03/03/25 14:36 | | | Chloromethane | < 0.00407 | U | 0.0200 | 0.00407 | - | | | 03/03/25 14:36 | | | Chloroform | 0.00133 | J | 0.00200 | 0.000928 | - | | | 03/03/25 14:36 | | | cis-1,2-Dichloroethene | <0.000914 | | 0.00200 | 0.000914 | | | | 03/03/25 14:36 | | | cis-1,3-Dichloropropene | < 0.00213 | | 0.0100 | 0.00213 | - | | | 03/03/25 14:36 | | | Dibromochloromethane | < 0.00109 | | 0.0100 | 0.00109 | - | | | 03/03/25 14:36 | | | 1,2-Dibromoethane | <0.00200 | | 0.0100 | 0.00200 | | | | 03/03/25 14:36 | | | 1,2-Dichlorobenzene | <0.000858 | | 0.00200 | 0.000858 | - | | | 03/03/25 14:36 | | | 1,3-Dichlorobenzene | <0.000826 | | 0.00200 | 0.000826 | Ü | | | 03/03/25 14:36 | | | 1,4-Dichlorobenzene | <0.000898 | | 0.00200 | 0.000898 | | | | 03/03/25 14:36 | | | 1,2-Dichloroethane | < 0.000744 | | 0.00200 | 0.000744 | Ü | | | 03/03/25 14:36 | | | 1,1-Dichloroethane | < 0.00127 | | 0.00200 | 0.00147 | Ū | | | 03/03/25 14:36 | | | 1,1-Dichloroethene | <0.00127 | | 0.00200 | 0.00127 | | | | 03/03/25 14:36 | | | 1,2-Dichloropropane | 0.00333 | | 0.0100 | 0.00140 | • | | | 03/03/25 14:36 | | | 1,3-Dichloropropene, Total | <0.00253 | | 0.0100 | 0.00253 | - | | | 03/03/25 14:36 | | | Ethylbenzene | <0.00233 | | 0.00200 | 0.00233 | | | | 03/03/25 14:36 | | | Methylene Chloride | < 0.00345 | | 0.0100 | 0.00345 | • | | | 03/03/25 14:36 | | | m,p-Xylenes | <0.00248 | | 0.0200 | 0.00343 | - | | | 03/03/25 14:36 | | | MTBE | <0.00248 | | 0.0200 | 0.00248 | | | | 03/03/25 14:36 | | | Naphthalene | <0.00270 | | 0.0200 | 0.00270 | - | | | 03/03/25 14:36 | | | o-Xylene | <0.00271 | | 0.0200 | 0.00271 | - | | | 03/03/25 14:36 | | | 1,1,2,2-Tetrachloroethane | <0.000940 | | 0.00200 | 0.00100 | | | | 03/03/25 14:36 | | | Tetrachloroethene | <0.000940 | | 0.00200 | 0.000940 | - | | | 03/03/25 14:36 | | | | | | | 0.00131 | U | | | 03/03/25 14:36 | | | Toluene | 0.00166 | | 0.00200 | | | | | | | | trans-1,2-Dichloroethene | <0.000736 | | 0.00200 | 0.000736 | - | | | 03/03/25 14:36 | | | trans-1,3-Dichloropropene | <0.00253 | | 0.0100 | 0.00253 | - | | | 03/03/25 14:36 | | | 1,2,4-Trichlorobenzene | <0.00351 | | 0.0100 | 0.00351 | | | | 03/03/25 14:36 | | | 1,1,1-Trichloroethane | <0.00117 | | 0.0100 | 0.00117 | - | | | 03/03/25 14:36 | | | 1,1,2-Trichloroethane | <0.000822 | | 0.00200 | 0.000822 | - | | | 03/03/25 14:36 | | | Trichloroethene | <0.00300 | | 0.0100 | 0.00300 | | | | 03/03/25 14:36 | | | Trihalomethanes, Total | 0.00133 | | 0.0100 | 0.00127 | - | | | 03/03/25 14:36 | | | Xylenes, Total | <0.00248 | | 0.0200 | 0.00248 | - | | | 03/03/25 14:36 | | | Vinyl acetate
Vinyl chloride | <0.00428
<0.000856 | | 0.0400
0.00400 | 0.00428
0.000856 | | | | 03/03/25 14:36
03/03/25 14:36 | | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fa | | 1,2-Dichloroethane-d4 (Surr) | 103 | **** | 63 - 144 | | | - | -1 | 03/03/25 14:36 | | | 4-Bromofluorobenzene (Surr) | 100 | | 74 - 124 | | | | | 03/03/25 14:36 | | | Dibromofluoromethane (Surr) | 101 | | 75 ₋ 131 | | | | | 03/03/25 14:36 | | **Eurofins Dallas** 2 Job ID: 870-34261-1 6 g J ___ 13 14 **15** סו 1 / Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Lab Sample ID: 870-34261-2 **Matrix: Water** Job ID: 870-34261-1 Client Sample ID: 2509002-03 Influent G Date Collected: 02/27/25 09:40 Date Received: 02/27/25 16:28 Method: EPA 624.1 - Volatile Organic Compounds (GC/MS) (Continued) | Surrogate | %Recovery Qualifier | Limits | Prepared | Analyzed | Dil Fac | |-------------------|---------------------|----------|----------|----------------|---------| | Toluene-d8 (Surr) | 102 | 80 - 120 | | 03/03/25 14:36 | 2 | | | 102 | | 00 - 120 | | | | | 03/03/23 14.30 | | |----------------------------------|---------|-----------|----------|----------|------|---|----------------|----------------|---------| | Method: EPA 200.8 - Metals (ICI | • | | | | | | | | | | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | Cr | 0.00267 | J | 0.00300 | 0.000890 | mg/L | | 03/07/25 07:47 | 03/07/25 16:59 | 1 | | General Chemistry | | | | | | | | | | | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | Phenois, Total (EPA 420.4) | 44.3 | | 10.0 | 5.80 | ug/L | | | 03/05/25 20:04 | 1 | | Cyanide, Non-amenable (SM 4500 | 33.5 | | 5.00 | 2.33 | ug/L | | 02/28/25 16:03 | 02/28/25 18:49 | 1 | | CN G NonAm) | | | | | | | | | | | Cyanide, Total (EPA Kelada 01) | 0.00574 | | 0.00500 | 0.00198 | mg/L | | | 03/06/25 19:54 | 1 | | Chromium, hexavalent (SM 3500 | 0.0157 | | 0.0100 | 0.00280 | mg/L | | | 02/27/25 17:37 | 1 | | CR B) | | | | | | | | | | | Cr (III) (SM 3500 CR B) | <2.00 | U | 3.00 | 2.00 | ug/L | | | 03/10/25 18:10 | 1 | | Cyanide, Amenable (SM 4500 CN G) | <2.33 | U | 5.00 | 2.33 | ug/L | | | 03/07/25 13:57 | 1 | | | | | | | | | | | | Lab Sample ID: 870-34261-3 Client Sample ID: 2509002-04 Effluent TC Date Collected: 02/27/25 09:05 **Matrix: Water** Date Received: 02/27/25 16:28 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |-----------------------------|---------|-----------|------|-------|------|---|----------------|----------------|---------| | Acenaphthene | <1.39 | U | 5.70 | 1.39 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | Acenaphthylene | <1.41 | U *+ | 10.0 | 1.41 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | Anthracene | <1.50 | U *+ | 5.70 | 1.50 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | Azobenzene | <1.50 | U *+ | 10.0 | 1.50 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | Benzidine | <20.0 | U *- | 20.0 | 20.0 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | Benzo[a]anthracene | <0.173 | U *+ | 5.00 | 0.173 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | Benzo[a]pyrene | < 0.364 | U *+ | 5.00 | 0.364 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | Benzo[b]fluoranthene | <2.04 | U *+ | 10.0 | 2.04 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | Benzo[g,h,i]perylene | <2.68 | U | 10.0 | 2.68 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | Benzo[k]fluoranthene | <5.00 | U *+ | 5.00 | 5.00 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | Bis(2-chloroethoxy)methane | <1.76 | U | 10.0 | 1.76 | ug/L |
| 03/03/25 13:49 | 03/04/25 18:32 | 1 | | Bis(2-chloroethyl)ether | <2.16 | U | 10.0 | 2.16 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | Bis(2-ethylhexyl) phthalate | <0.277 | U | 5.00 | 0.277 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | 4-Bromophenyl phenyl ether | <0.256 | U *+ | 5.00 | 0.256 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | Butyl benzyl phthalate | < 0.337 | U | 5.00 | 0.337 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | 4-Chloro-3-methylphenol | <1.57 | U | 5.00 | 1.57 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | 2-Chloronaphthalene | < 0.462 | U *+ | 5.00 | 0.462 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | 2-Chlorophenol | < 0.649 | U | 5.00 | 0.649 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | 4-Chlorophenyl phenyl ether | <1.28 | U | 10.0 | 1.28 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | Chrysene | <0.222 | U *+ | 5.00 | 0.222 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | Dibenz(a,h)anthracene | <0.246 | U | 5.00 | 0.246 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | 3,3'-Dichlorobenzidine | <0.341 | U | 5.00 | 0.341 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | 2,4-Dichlorophenol | < 0.314 | U *+ | 5.00 | 0.314 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | Diethyl phthalate | <1.59 | U | 5.00 | 1.59 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | 2,4-Dimethylphenol | <0.649 | U | 5.00 | 0.649 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | Dimethyl phthalate | <2.50 | U | 2.50 | 2.50 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | | Di-n-butyl phthalate | <0.252 | U | 5.00 | 0.252 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | 1 | **Eurofins Dallas** Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Lab Sample ID: 870-34261-3 Job ID: 870-34261-1 Client Sample ID: 2509002-04 Effluent TC Date Collected: 02/27/25 09:05 **Matrix: Water** Date Received: 02/27/25 16:28 | Method: EPA 625.1 - Semivol
Analyte | _ | Qualifier | ` RL | | Unit | D | Prepared | Analyzed | Dil Fa | |--|----------------|-----------|--------------|----------|--------------|-----------|----------------------------------|----------------------------------|--------| | 4,6-Dinitro-2-methylphenol | <1.44 | U | 10.0 | 1.44 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | 2,4-Dinitrophenol | <1.61 | U | 10.0 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | 2,4-Dinitrotoluene | <1.31 | U | 10.0 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | 2,6-Dinitrotoluene | <1.61 | U | 5.00 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | Di-n-octyl phthalate | <0.373 | | 5.00 | 0.373 | _ | | 03/03/25 13:49 | 03/04/25 18:32 | | | 1,2-Diphenylhydrazine | <1.49 | | 10.0 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | Fluoranthene | <1.59 | | 5.00 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | Fluorene | <1630 | | 5000 | 1630 | - | | 03/03/25 13:49 | 03/04/25 18:32 | | | Hexachlorobenzene | <0.307 | | 5.00 | 0.307 | | | 03/03/25 13:49 | 03/04/25 18:32 | | | Hexachlorobutadiene | <1.00 | | 1.00 | | ug/L | | 03/03/25 13:49 | | | | Hexachlorocyclopentadiene | <10.0 | | 10.0 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | Hexachloroethane | <0.526 | | 4.80 | 0.526 | • | | 03/03/25 13:49 | | | | Indeno[1,2,3-cd]pyrene | <2.29 | | 5.00 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | Isophorone | <1.64 | | 5.00 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | 2-Methylphenol | <1.62 | | 10.0 | | ug/L
ug/L | | 03/03/25 13:49 | | | | 3 & 4 Methylphenol | <2.62 | | 10.0 | | ug/L
ug/L | | 03/03/25 13:49 | | | | Naphthalene | <2.50 | | 2.50 | | ug/L
ug/L | | 03/03/25 13:49 | | | | Nitrobenzene | <1.66 | | 5.00 | | ug/L
ug/L | | 03/03/25 13:49 | | | | | | | | | | | | | | | 2-Nitrophenol | <1.67
<2.36 | | 10.0
7.20 | | ug/L
ug/L | | 03/03/25 13:49
03/03/25 13:49 | 03/04/25 18:32
03/04/25 18:32 | | | 4-Nitrophenol | | | | | - | | | | | | N-Nitrosodiethylamine | <1.75 | | 10.0 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | N-Nitrosodimethylamine | <2.02 | | 10.0 | | ug/L | | 03/03/25 13:49 | | | | N-Nitrosodi-n-butylamine | <1.49 | | 10.0 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | N-Nitrosodi-n-propylamine | <2.88 | | 10.0 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | N-Nitrosodiphenylamine | <1.81 | | 10.0 | | ug/L | | 03/03/25 13:49 | | | | 4-Nonylphenol | <10.0 | | 10.0 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | 2,2'-oxybis[1-chloropropane] | <1.79 | | 10.0 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | Pentachlorobenzene | <1.07 | | 10.0 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | Pentachlorophenol | <0.234 | | 10.0 | 0.234 | • | | 03/03/25 13:49 | 03/04/25 18:32 | | | Phenanthrene | <1.42 | | 10.0 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | Phenol | <0.423 | | 4.50 | 0.423 | _ | | 03/03/25 13:49 | 03/04/25 18:32 | | | Pyrene | <0.178 | | 5.00 | 0.178 | - | | 03/03/25 13:49 | | | | Pyridine | <10.0 | | 10.0 | | ug/L | | 03/03/25 13:49 | | | | 1,2,4,5-Tetrachlorobenzene | <1.32 | | 10.0 | | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | Total Cresols | <2.62 | U | 10.0 | 2.62 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | 1,2,4-Trichlorobenzene | <1.61 | U | 5.00 | 1.61 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | 2,4,5-Trichlorophenol | <2.00 | U *+ | 10.0 | 2.00 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | 2,4,6-Trichlorophenol | <1.42 | U *+ | 5.00 | 1.42 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | Bisphenol-A | <10.0 | U *- | 10.0 | 10.0 | ug/L | | 03/03/25 13:49 | 03/04/25 18:32 | | | Tentatively Identified Compound | Est. Result | | Unit | <u>D</u> | RT _ | CAS No. | Prepared | Analyzed | Dil Fa | | 2,3,7,8-TCDD TIC | <10.0 | U | ug/L | | | 1746-01-6 | 03/03/25 13:49 | 03/04/25 18:32 | | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil F | | 2,4,6-Tribromophenol (Surr) | 77 | | 31 - 132 | | | | 03/03/25 13:49 | | | | 2-Fluorobiphenyl (Surr) | 112 | | 29 - 112 | | | | | 03/04/25 18:32 | | | 2-Fluorophenol (Surr) | 47 | | 28 - 114 | | | | | 03/04/25 18:32 | | | Nitrobenzene-d5 (Surr) | 110 | | 15 - 314 | | | | 03/03/25 13:49 | 03/04/25 18:32 | | | p-Terphenyl-d14 (Surr) | 132 | | 20 - 141 | | | | 03/03/25 13:49 | 03/04/25 18:32 | | | Phenol-d5 (Surr) | 26 | | 8 - 424 | | | | 03/03/25 13:49 | 03/04/25 18:32 | | **Eurofins Dallas** Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Date Received: 02/27/25 16:28 DCB Decachlorobiphenyl (Surr) Lab Sample ID: 870-34261-3 Client Sample ID: 2509002-04 Effluent TC Date Collected: 02/27/25 09:05 **Matrix: Water** Job ID: 870-34261-1 Method: EPA 608.3 - Organochlorine Pesticides in Water RL Result Qualifier **MDL** Unit Prepared Analyzed Dil Fac Aldrin <0.00250 U 0.0200 0.00250 ug/L 03/05/25 08:32 03/06/25 15:20 2 2 alpha-BHC <0.00125 U 0.0100 0.00125 ug/L 03/05/25 08:32 03/06/25 15:20 beta-BHC <0.00250 U 0.0200 0.00250 ug/L 03/05/25 08:32 03/06/25 15:20 2 2 delta-BHC <0.00500 U 0.0400 0.00500 ug/L 03/05/25 08:32 03/06/25 15:20 gamma-BHC (Lindane) <0.00688 U 0.0200 0.00688 ug/L 03/05/25 08:32 03/06/25 15:20 2 03/05/25 08:32 03/06/25 15:20 2 4,4'-DDD <0.00500 U 0.0400 0.00500 ug/L 4,4'-DDE <0.00250 U 0.0200 0.00250 ug/L 03/05/25 08:32 03/06/25 15:20 2 4,4'-DDT 03/05/25 08:32 03/06/25 15:20 2 <0.00500 U 0.0400 0.00500 ug/L 2 Dieldrin <0.00125 U 0.0100 0.00125 ug/L 03/05/25 08:32 03/06/25 15:20 Endosulfan I <0.00250 U 0.0200 0.00250 ug/L 03/05/25 08:32 03/06/25 15:20 2 2 Endosulfan II <0.00250 U 0.0200 0.00250 ug/L 03/05/25 08:32 03/06/25 15:20 2 Endosulfan sulfate <0.0112 U 0.100 0.0112 ug/L 03/05/25 08:32 03/06/25 15:20 2 Endrin <0.00500 U 0.0400 0.00500 ug/L 03/05/25 08:32 03/06/25 15:20 Endrin aldehyde <0.0118 U 0.100 0.0118 ug/L 03/05/25 08:32 03/06/25 15:20 2 2 Dicofol 0.00100 0.00100 mg/L 03/05/25 08:32 03/06/25 15:20 <0.00100 U 03/05/25 08:32 03/06/25 15:20 2 Heptachlor <0.00338 U 0.0100 0.00338 ug/L 03/05/25 08:32 03/06/25 15:20 Heptachlor epoxide <0.00250 U 0.0200 0.00250 ug/L 2 Toxaphene <0.156 U 0.400 0.156 ug/L 03/05/25 08:32 03/06/25 15:20 2 Chlordane 2 <0.0500 U 0.400 0.0500 ug/L 03/05/25 08:32 03/06/25 15:20 Methoxychlor <0.0000250 U 0.000200 0.0000250 mg/L 03/05/25 08:32 03/06/25 15:20 2 Mirex <0.000400 U 0.0000400 0.0000400 mg/L 03/05/25 08:32 03/06/25 15:20 %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 03/05/25 08:32 03/06/25 15:20 DCB Decachlorobiphenyl (Surr) 224 S1+ 15 - 136 2 Tetrachloro-m-xylene 249 S1+ 18 - 126 03/05/25 08:32 03/06/25 15:20 | Method: EPA 608.3 - Polych | Iorinated Bipl | henyls (PC | Bs) (GC) | | | | | | | |----------------------------------|----------------|------------|----------|--------|------|---|----------------|----------------|---------| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | PCB-1016 | <0.0887 | U *+ | 0.200 | 0.0887 | ug/L | | 03/05/25 08:32 | 03/07/25 04:17 | 2 | | PCB-1242 | < 0.0887 | U | 0.200 | 0.0887 | ug/L | | 03/05/25 08:32 | 03/07/25 04:17 | 2 | | PCB-1254 | < 0.0780 | U | 0.200 | 0.0780 | ug/L | | 03/05/25 08:32 | 03/07/25 04:17 | 2 | | PCB-1221 | <0.0887 | U | 0.200 | 0.0887 | ug/L | | 03/05/25 08:32 | 03/07/25 04:17 | 2 | | PCB-1232 | < 0.0887 | U | 0.200 | 0.0887 | ug/L | | 03/05/25 08:32 | 03/07/25 04:17 | 2 | | PCB-1248 | < 0.0887 | U | 0.200 | 0.0887 | ug/L | | 03/05/25 08:32 | 03/07/25 04:17 | 2 | | PCB-1260 | <0.0780 | U | 0.200 | 0.0780 | ug/L | | 03/05/25 08:32 | 03/07/25 04:17 | 2 | | Polychlorinated biphenyls, Total | <0.0780 | U | 0.200 | 0.0780 | ug/L | | 03/05/25 08:32 | 03/07/25 04:17 | 2 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | Tetrachloro-m-xylene | 178 | S1+ | 18 - 126 | | | | 03/05/25 08:32 | 03/07/25 04:17 | 2 | | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |-------------------|-------------|-----------|----------|-----------|------|---|----------------|----------------
---------| | 2,4-D | <0.0000542 | U | 0.000201 | 0.0000542 | mg/L | | 03/04/25 10:05 | 03/05/25 19:36 | 1 | | Hexachlorophene | <0.000813 | U | 0.00503 | 0.000813 | mg/L | | 03/04/25 10:05 | 03/05/25 19:36 | 1 | | Silvex (2,4,5-TP) | < 0.0000425 | U | 0.000201 | 0.0000425 | mg/L | | 03/04/25 10:05 | 03/05/25 19:36 | 1 | | Dalapon | < 0.0000479 | U | 0.000201 | 0.0000479 | mg/L | | 03/04/25 10:05 | 03/05/25 19:36 | 1 | | Dicamba | < 0.0000426 | U | 0.000201 | 0.0000426 | mg/L | | 03/04/25 10:05 | 03/05/25 19:36 | 1 | | Dinoseb | < 0.0000345 | U *- *1 | 0.000201 | 0.0000345 | mg/L | | 03/04/25 10:05 | 03/05/25 19:36 | 1 | | Pentachlorophenol | <0.0000446 | U | 0.000201 | 0.0000446 | mg/L | | 03/04/25 10:05 | 03/05/25 19:36 | 1 | 15 - 136 185 S1+ **Eurofins Dallas** 03/05/25 08:32 03/07/25 04:17 Page 16 of 63 2 3 4 6 13 Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Date Received: 02/27/25 16:28 Lab Sample ID: 870-34261-3 Client Sample ID: 2509002-04 Effluent TC Date Collected: 02/27/25 09:05 **Matrix: Water** Job ID: 870-34261-1 Surrogate %Recovery Qualifier I imits Propared Analyzed Dil Fac | Julioguic | fortecovery quanties | Lilling | ricparea | Analyzea | Dir r ac | |-------------------------------|----------------------|----------|----------------|----------------|----------| | 2,4-Dichlorophenylacetic acid | 90 | 45 - 150 | 03/04/25 10:05 | 03/05/25 19:36 | 1 | | | | | | | | | Method: SW846 8015D - Gly | /cols- Direct Injection (GC | /FID) | | | | | | |---------------------------|-----------------------------|-------|-----------|---|----------|----------------|---------| | Analyte | Result Qualifier | RL | MDL Unit | D | Prepared | Analyzed | Dil Fac | | Ethylene glycol | <1.22 U | 5.00 | 1.22 mg/L | | | 03/03/25 13:49 | 1 | | Propylene glycol | <1.84 U | 5.00 | 1.84 mg/L | | | 03/03/25 13:49 | 1 | | Method: EPA-01 632 - Carbam | ate and Ure | a Pesticid | es (HPLC) | | | | | | | |-----------------------------|-------------|------------|-----------|---------|------|---|----------------|----------------|---------| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | Carbaryl | <0.185 | U | 0.500 | 0.185 | ug/L | | 03/04/25 13:54 | 03/05/25 17:13 | 1 | | Diuron | < 0.00514 | U | 0.00900 | 0.00514 | ug/L | | 03/04/25 13:54 | 03/05/25 17:13 | 1 | | Method: EPA 1613B - Tetra Ch | Iorinated D | ioxin (GC/ | MS/MS) | | | | | | | |--------------------------------------|--------------|------------|----------|------|------|---|--------------------------------|-------------------------|---------| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | 2,3,7,8-TCDD | <2.03 | U | 4.84 | 2.03 | pg/L | | 03/03/25 04:37 | 03/04/25 03:06 | 1 | | Isotope Dilution
13C-2,3,7,8-TCDD | %Recovery 68 | Qualifier | 21 - 137 | | | | Prepared 03/03/25 04:37 | Analyzed 03/04/25 03:06 | Dil Fac | Lab Sample ID: 870-34261-4 Client Sample ID: 2509002-06 Effluent G Date Collected: 02/27/25 08:45 **Matrix: Water** Date Received: 02/27/25 16:28 | Analyte | Result Qu | ualifier RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |----------------------------|-------------|-------------|----------|------|---|----------|----------------|---------| | Epichlorohydrin | <0.00752 U | 0.0500 | 0.00752 | mg/L | | | 03/03/25 14:56 | 1 | | Acetone | <0.00307 U | 0.100 | 0.00307 | mg/L | | | 03/03/25 14:56 | 1 | | Acrylonitrile | <0.0143 U | 0.0500 | 0.0143 | mg/L | | | 03/03/25 14:56 | 1 | | Acrolein | <0.0111 U | 0.0500 | 0.0111 | mg/L | | | 03/03/25 14:56 | 1 | | Benzene | <0.000460 U | 0.00100 | 0.000460 | mg/L | | | 03/03/25 14:56 | 1 | | Bromodichloromethane | <0.000552 U | 0.00100 | 0.000552 | mg/L | | | 03/03/25 14:56 | 1 | | Bromoform | <0.000633 U | 0.00500 | 0.000633 | mg/L | | | 03/03/25 14:56 | 1 | | Bromomethane | <0.00142 U | 0.00500 | 0.00142 | mg/L | | | 03/03/25 14:56 | 1 | | 2-Butanone | <0.00828 U | 0.0500 | 0.00828 | mg/L | | | 03/03/25 14:56 | 1 | | Carbon tetrachloride | <0.000896 U | 0.00500 | 0.000896 | mg/L | | | 03/03/25 14:56 | 1 | | Chlorobenzene | <0.000455 U | 0.00100 | 0.000455 | mg/L | | | 03/03/25 14:56 | 1 | | Chloroethane | <0.00198 U | 0.0100 | 0.00198 | mg/L | | | 03/03/25 14:56 | 1 | | 2-Chloroethyl vinyl ether | <0.000753 U | 0.00500 | 0.000753 | mg/L | | | 03/03/25 14:56 | 1 | | Chloromethane | <0.00204 U | 0.0100 | 0.00204 | mg/L | | | 03/03/25 14:56 | 1 | | Chloroform | <0.000464 U | 0.00100 | 0.000464 | mg/L | | | 03/03/25 14:56 | 1 | | cis-1,2-Dichloroethene | <0.000457 U | 0.00100 | 0.000457 | mg/L | | | 03/03/25 14:56 | 1 | | cis-1,3-Dichloropropene | <0.00107 U | 0.00500 | 0.00107 | mg/L | | | 03/03/25 14:56 | 1 | | Dibromochloromethane | <0.000547 U | 0.00500 | 0.000547 | mg/L | | | 03/03/25 14:56 | 1 | | 1,2-Dibromoethane | <0.000999 U | 0.00500 | 0.000999 | mg/L | | | 03/03/25 14:56 | 1 | | 1,2-Dichlorobenzene | <0.000429 U | 0.00100 | 0.000429 | mg/L | | | 03/03/25 14:56 | 1 | | 1,3-Dichlorobenzene | <0.000413 U | 0.00100 | 0.000413 | mg/L | | | 03/03/25 14:56 | 1 | | 1,4-Dichlorobenzene | <0.000449 U | 0.00100 | 0.000449 | mg/L | | | 03/03/25 14:56 | 1 | | 1,2-Dichloroethane | <0.000372 U | 0.00100 | 0.000372 | mg/L | | | 03/03/25 14:56 | 1 | | 1,1-Dichloroethane | <0.000635 U | 0.00100 | 0.000635 | mg/L | | | 03/03/25 14:56 | 1 | | 1,1-Dichloroethene | <0.000738 U | 0.00100 | 0.000738 | mg/L | | | 03/03/25 14:56 | 1 | | 1,2-Dichloropropane | <0.000556 U | 0.00500 | 0.000556 | mg/L | | | 03/03/25 14:56 | 1 | | 1,3-Dichloropropene, Total | <0.00127 U | 0.00500 | 0.00127 | mg/L | | | 03/03/25 14:56 | 1 | **Eurofins Dallas** Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Lab Sample ID: 870-34261-4 **Matrix: Water** Job ID: 870-34261-1 Client Sample ID: 2509002-06 Effluent G Method: EPA 200.8 - Metals (ICP/MS) - Total Recoverable Result Qualifier Analyte Date Collected: 02/27/25 08:45 Date Received: 02/27/25 16:28 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|------------|-----------|----------|----------|------|---|----------|----------------|---------| | Ethylbenzene | <0.000385 | U | 0.00100 | 0.000385 | mg/L | | | 03/03/25 14:56 | 1 | | Methylene Chloride | <0.00173 | U | 0.00500 | 0.00173 | mg/L | | | 03/03/25 14:56 | 1 | | m,p-Xylenes | <0.00124 | U | 0.0100 | 0.00124 | mg/L | | | 03/03/25 14:56 | 1 | | MTBE | <0.00139 | U | 0.00500 | 0.00139 | mg/L | | | 03/03/25 14:56 | 1 | | Naphthalene | < 0.00135 | U | 0.0100 | 0.00135 | mg/L | | | 03/03/25 14:56 | 1 | | o-Xylene | < 0.000502 | U | 0.00100 | 0.000502 | mg/L | | | 03/03/25 14:56 | 1 | | 1,1,2,2-Tetrachloroethane | <0.000470 | U | 0.00100 | 0.000470 | mg/L | | | 03/03/25 14:56 | 1 | | Tetrachloroethene | < 0.000655 | U | 0.00100 | 0.000655 | mg/L | | | 03/03/25 14:56 | 1 | | Toluene | < 0.000475 | U | 0.00100 | 0.000475 | mg/L | | | 03/03/25 14:56 | 1 | | trans-1,2-Dichloroethene | <0.000368 | U | 0.00100 | 0.000368 | mg/L | | | 03/03/25 14:56 | 1 | | trans-1,3-Dichloropropene | < 0.00127 | U | 0.00500 | 0.00127 | mg/L | | | 03/03/25 14:56 | 1 | | 1,2,4-Trichlorobenzene | < 0.00175 | U | 0.00500 | 0.00175 | mg/L | | | 03/03/25 14:56 | 1 | | 1,1,1-Trichloroethane | <0.000585 | U | 0.00500 | 0.000585 | mg/L | | | 03/03/25 14:56 | 1 | | 1,1,2-Trichloroethane | < 0.000411 | U | 0.00100 | 0.000411 | mg/L | | | 03/03/25 14:56 | 1 | | Trichloroethene | <0.00150 | U | 0.00500 | 0.00150 | mg/L | | | 03/03/25 14:56 | 1 | | Trihalomethanes, Total | < 0.000633 | U | 0.00500 | 0.000633 | mg/L | | | 03/03/25 14:56 | 1 | | Xylenes, Total | < 0.00124 | U | 0.0100 | 0.00124 | mg/L | | | 03/03/25 14:56 | 1 | | Vinyl acetate | <0.00214 | U | 0.0200 | 0.00214 | mg/L | | | 03/03/25 14:56 | 1 | | Vinyl chloride | <0.000428 | U | 0.00200 | 0.000428 | mg/L | | | 03/03/25 14:56 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 107 | | 63 - 144 | | | - | | 03/03/25 14:56 | 1 | | 4-Bromofluorobenzene (Surr) | 99 | | 74 - 124 | | | | | 03/03/25 14:56 | 1 | | Dibromofluoromethane (Surr) | 105 | | 75 - 131 | | | | | 03/03/25 14:56 | 1 | | Toluene-d8 (Surr) | 101 | | 80 - 120 | | | | | 03/03/25 14:56 | 1 | | Cr
- | <0.000890 | U | 0.00300 | 0.000890 | mg/L | | 03/07/25 07:47 | 03/07/25 17:01 | 1 | |--|-----------|-----------|---------|----------|------|---|----------------|----------------|---------| | General Chemistry | | | | | | | | | | | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | Phenols, Total (EPA 420.4) | <5.80 | U | 10.0 | 5.80 | ug/L | | | 03/05/25 20:06 | 1 | | Cyanide, Non-amenable (SM 4500 CN G NonAm) | <2.33 | U | 5.00 | 2.33 | ug/L | | 02/28/25 16:03 | 02/28/25 18:50 | 1 | | Cyanide, Total (EPA Kelada 01) | <0.00198 | U | 0.00500 | 0.00198 | mg/L | | | 03/06/25 19:51 | 1 | | Chromium, hexavalent (SM 3500 CR B) | 0.00359 | J | 0.0100 | 0.00280 | mg/L | | | 02/27/25 17:37 | 1 | | Cr (III) (SM 3500 CR B) | <2.00 | U | 3.00 | 2.00 | ug/L | | | 03/10/25 18:10 | 1 | | Cyanide, Amenable (SM 4500 CN G) | <2.33 | U | 5.00 | 2.33 | ug/L | | | 03/07/25 13:57 | 1 | RL MDL Unit Prepared Analyzed **Eurofins Dallas** 3 2 16 Dil Fac # **Surrogate Summary** Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 3 # Method: 624.1 - Volatile Organic Compounds (GC/MS) Matrix: Water Prep Type: Total/NA | | | Percent Surrogate Recovery (Acceptance Limits) | | | | | | | |-------------------|------------------------|--|----------|----------|----------|--|--|--| | | | DCA | BFB | DBFM | TOL | | | | | Lab Sample ID | Client Sample ID | (63-144) | (74-124) | (75-131) | (80-120) | | | | | 870-34261-2 | 2509002-03 Influent G | 103 | 100 | 101 | 102 | | | | | 870-34261-4 | 2509002-06 Effluent G | 107 | 99 | 105 | 101
 | | | | LCS 860-219795/3 | Lab Control Sample | 98 | 100 | 100 | 99 | | | | | LCSD 860-219795/4 | Lab Control Sample Dup | 98 | 100 | 100 | 99 | | | | | MB 860-219795/9 | Method Blank | 105 | 105 | 104 | 101 | | | | | Surrogate Legend | | | | | | | | | #### Surrogate Legend DCA = 1,2-Dichloroethane-d4 (Surr) BFB = 4-Bromofluorobenzene (Surr) DBFM = Dibromofluoromethane (Surr) TOL = Toluene-d8 (Surr) # Method: 625.1 - Semivolatile Organic Compounds (GC/MS) Matrix: Water Prep Type: Total/NA | | | Percent Surrogate Recovery (Acceptance Limits) | | | | | | | | |--------------------|------------------------|--|----------|----------|----------|----------|---------|--|--| | | | TBP | FBP | 2FP | NBZ | TPHd14 | PHL | | | | Lab Sample ID | Client Sample ID | (31-132) | (29-112) | (28-114) | (15-314) | (20-141) | (8-424) | | | | 870-34261-1 | 2509002-01 Influent TC | 78 | 76 | 34 | 71 | 119 | 18 | | | | 70-34261-3 | 2509002-04 Effluent TC | 77 | 112 | 47 | 110 | 132 | 26 | | | | CS 860-219948/2-A | Lab Control Sample | 121 | 145 S1+ | 107 | 153 | 154 S1+ | 97 | | | | CSD 860-219948/3-A | Lab Control Sample Dup | 107 | 126 S1+ | 106 | 135 | 130 | 91 | | | | MB 860-219948/1-A | Method Blank | 62 | 116 S1+ | 88 | 122 | 122 | 74 | | | ### Surrogate Legend TBP = 2,4,6-Tribromophenol (Surr) FBP = 2-Fluorobiphenyl (Surr) 2FP = 2-Fluorophenol (Surr) NBZ = Nitrobenzene-d5 (Surr) TPHd14 = p-Terphenyl-d14 (Surr) PHL = Phenol-d5 (Surr) # Method: 608.3 - Organochlorine Pesticides in Water Matrix: Water Prep Type: Total/NA | | | | Percent Surro | ogate Recovery (Acceptance Limits) | |---------------------|------------------------|----------|---------------|------------------------------------| | | | DCB1 | TCX1 | | | Lab Sample ID | Client Sample ID | (15-136) | (18-126) | | | 870-34261-1 | 2509002-01 Influent TC | 29 | 47 | | | 870-34261-3 | 2509002-04 Effluent TC | 224 S1+ | 249 S1+ | | | LCS 860-220428/2-A | Lab Control Sample | 108 | 93 | | | LCSD 860-220428/3-A | Lab Control Sample Dup | 102 | 88 | | | MB 860-220428/1-A | Method Blank | 109 | 78 | | #### **Surrogate Legend** DCB = DCB Decachlorobiphenyl (Surr) TCX = Tetrachloro-m-xylene **Eurofins Dallas** # **Surrogate Summary** Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC) Matrix: Water Prep Type: Total/NA | | | | Percent S | surrogate Recovery (Acceptance Limits) | |-----------------------|------------------------|----------|-----------|--| | | | TCX1 | DCB1 | | | Lab Sample ID | Client Sample ID | (18-126) | (15-136) | | | 870-34261-1 | 2509002-01 Influent TC | 18 | 32 | | | 870-34261-3 | 2509002-04 Effluent TC | 178 S1+ | 185 S1+ | | | LCS 860-220428/4-A | Lab Control Sample | 110 | | | | LCSD 860-220428/5-A | Lab Control Sample Dup | 109 | | | | MB 860-220428/1-A | Method Blank | 99 | | | | Surrogate Legend | | | | | | TCX = Tetrachloro-m-x | ylene | | | | | DCB = DCB Decachlor | obiphenyl (Surr) | | | | Method: 615 - Herbicides (GC) Matrix: Water Prep Type: Total/NA | | | | Percent Surrogate Recovery (Acceptance Limits) | |---------------------|------------------------|----------|--| | | | DCPAA1 | | | Lab Sample ID | Client Sample ID | (45-150) | | | 370-34261-1 | 2509002-01 Influent TC | 118 | | | 370-34261-3 | 2509002-04 Effluent TC | 90 | | | _CS 860-220040/2-A | Lab Control Sample | 109 | | | _CS 860-220040/4-A | Lab Control Sample | 70 | | | _CSD 860-220040/3-A | Lab Control Sample Dup | 92 | | | _CSD 860-220040/5-A | Lab Control Sample Dup | 73 | | | MB 860-220040/1-A | Method Blank | 76 | | DCPAA = 2,4-Dichlorophenylacetic acid **Eurofins Dallas** 2 3 # **Isotope Dilution Summary** Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 Method: 1613B - Tetra Chlorinated Dioxin (GC/MS/MS) Matrix: Water Prep Type: Total/NA | | | Percent Isotope Dilution Recovery (Acceptance Limits) | | | | | | | |----------------------|------------------------|---|--|--|--|--|--|--| | | | TCDD | | | | | | | | Lab Sample ID | Client Sample ID | (31-137) | | | | | | | | 870-34261-3 | 2509002-04 Effluent TC | 68 | | | | | | | | MBL 380-139033/21-A | Method Blank | 59 | | | | | | | | Surrogate Legend | | | | | | | | | | TCDD = 13C-2,3,7,8-T | CDD | | | | | | | | Method: 1613B - Tetra Chlorinated Dioxin (GC/MS/MS) Matrix: Water Prep Type: Total/NA | | | | Percent Isotope Dilution Recovery (Acceptance Limits | |----------------------|------------------------|----------|--| | | | TCDD | | | Lab Sample ID | Client Sample ID | (25-141) | | | LCS 380-139033/19-A | Lab Control Sample | 60 | | | LCSD 380-139033/20-A | Lab Control Sample Dup | 65 | | | MRL 380-139033/22-A | Lab Control Sample | 66 | | | Surrogate Legend | | | | **Eurofins Dallas** 2 3 4 6 _____ 8 10 11 12 13 14 15 10 Client: North Texas Municipal Water District Job ID: 870-34261-1 Project/Site: SCX 30TAC307 + Table 3 # Method: 624.1 - Volatile Organic Compounds (GC/MS) Lab Sample ID: MB 860-219795/9 Matrix: Water | Client Sample | ID: | Metho | od Blan | k | |----------------------|------|-------|----------|---| | Pr | ep ' | Type: | Total/N/ | Δ | | | MB | MB | | | | | | | | |----------------------------|----------|-----------|---------|---------|--------------|---|----------|----------------|--------| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fa | | Epichlorohydrin | <0.00752 | U | 0.0500 | 0.00752 | mg/L | | <u> </u> | 03/03/25 10:09 | | | Acetone | <3.07 | U | 100 | 3.07 | ug/L | | | 03/03/25 10:09 | | | Acrylonitrile | <14.3 | U | 50.0 | 14.3 | ug/L | | | 03/03/25 10:09 | | | Acrolein | <11.1 | U | 50.0 | 11.1 | ug/L | | | 03/03/25 10:09 | | | Benzene | < 0.460 | U | 1.00 | 0.460 | | | | 03/03/25 10:09 | | | Bromodichloromethane | <0.552 | U | 1.00 | 0.552 | - | | | 03/03/25 10:09 | | | Bromoform | <0.633 | | 5.00 | 0.633 | | | | 03/03/25 10:09 | | | Bromomethane | <1.42 | U | 5.00 | | ug/L | | | 03/03/25 10:09 | | | 2-Butanone | <8.28 | U | 50.0 | | ug/L | | | 03/03/25 10:09 | | | Carbon tetrachloride | <0.896 | | 2.00 | 0.896 | | | | 03/03/25 10:09 | | | Chlorobenzene | <0.455 | U | 1.00 | 0.455 | - | | | 03/03/25 10:09 | | | Chloroethane | <1.98 | U | 10.0 | | ug/L | | | 03/03/25 10:09 | | | 2-Chloroethyl vinyl ether | <0.753 | | 5.00 | 0.753 | - | | | 03/03/25 10:09 | | | Chloromethane | <2.04 | U | 10.0 | | ug/L | | | 03/03/25 10:09 | | | Chloroform | <0.464 | U | 1.00 | 0.464 | - | | | 03/03/25 10:09 | | | cis-1,2-Dichloroethene | <0.457 | | 1.00 | 0.457 | | | | 03/03/25 10:09 | | | cis-1,3-Dichloropropene | <1.07 | | 5.00 | | ug/L | | | 03/03/25 10:09 | | | Dibromochloromethane | <0.547 | | 5.00 | 0.547 | - | | | 03/03/25 10:09 | | | 1,2-Dibromoethane | <0.999 | | 5.00 | 0.999 | | | | 03/03/25 10:09 | | | 1,2-Dichlorobenzene | <0.429 | | 1.00 | 0.429 | - | | | 03/03/25 10:09 | | | 1,3-Dichlorobenzene | < 0.413 | | 1.00 | 0.413 | _ | | | 03/03/25 10:09 | | | 1,4-Dichlorobenzene | <0.449 | | 1.00 | 0.449 | | | | 03/03/25 10:09 | | | 1,2-Dichloroethane | < 0.372 | | 1.00 | 0.372 | _ | | | 03/03/25 10:09 | | | 1,1-Dichloroethane | <0.635 | | 1.00 | 0.635 | - | | | 03/03/25 10:09 | | | 1,1-Dichloroethene | <0.738 | | 1.00 | 0.738 | - | | | 03/03/25 10:09 | | | 1,2-Dichloropropane | <0.556 | | 5.00 | 0.556 | - | | | 03/03/25 10:09 | | | 1,3-Dichloropropene, Total | <1.27 | | 5.00 | | ug/L | | | 03/03/25 10:09 | | | Ethylbenzene | <0.385 | | 1.00 | 0.385 | | | | 03/03/25 10:09 | | | Methylene Chloride | <1.73 | | 5.00 | | ug/L | | | 03/03/25 10:09 | | | m,p-Xylenes | <1.24 | | 10.0 | | ug/L | | | 03/03/25 10:09 | | | MTBE | <0.00139 | | 0.00500 | 0.00139 | - | | | 03/03/25 10:09 | | | Naphthalene | <1.35 | | 10.0 | | ug/L | | | 03/03/25 10:09 | | | o-Xylene | <0.502 | | 1.00 | 0.502 | | | | 03/03/25 10:09 | | | 1,1,2,2-Tetrachloroethane | <0.470 | | 1.00 | 0.470 | | | | 03/03/25 10:09 | | | Tetrachloroethene | <0.655 | | 1.00 | 0.655 | - | | | 03/03/25 10:09 | | | Toluene | <0.475 | | 1.00 | 0.475 | - | | | 03/03/25 10:09 | | | trans-1,2-Dichloroethene | <0.368 | | 1.00 | 0.368 | | | | 03/03/25 10:09 | | | trans-1,3-Dichloropropene | <1.27 | | 5.00 | | ug/L | | | 03/03/25 10:09 | | | 1,2,4-Trichlorobenzene | <1.75 | | 5.00 | | ug/L | | | 03/03/25 10:09 | | | 1,1,1-Trichloroethane | <0.585 | | 5.00 | 0.585 | | | | 03/03/25 10:09 | | | 1,1,2-Trichloroethane | <0.411 | | 1.00 | 0.411 | _ | | | 03/03/25 10:09 | | | Trichloroethene | <1.50 | | 5.00 | | ug/L | | | 03/03/25 10:09 | | | Trihalomethanes, Total | < 0.633 | | 5.00 | 0.633 | | | | 03/03/25 10:09 | | | Xylenes, Total | <1.24 | | 10.0 | | ug/L | | | 03/03/25 10:09 | | | Vinyl acetate | <2.14 | | 20.0 | | ug/L
ug/L | | | 03/03/25 10:09 | | | Vinyl chloride | <0.428 | | 2.00 | 0.428 | | | | 03/03/25 10:09 | | **Eurofins Dallas** 2 Client: North Texas Municipal Water District Job ID: 870-34261-1 Project/Site: SCX 30TAC307 + Table 3 # Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: MB 860-219795/9 **Matrix: Water** **Analysis Batch: 219795** **Client Sample ID: Method Blank Prep Type: Total/NA** MB MB Dil Fac %Recovery Qualifier Prepared Surrogate Limits Analyzed 03/03/25 10:09 1,2-Dichloroethane-d4 (Surr) 105 63 - 144 4-Bromofluorobenzene (Surr) 105 74 - 124 03/03/25 10:09 Dibromofluoromethane (Surr) 104 75 - 131 03/03/25 10:09 Toluene-d8 (Surr) 101 80 - 120 03/03/25 10:09 Lab Sample ID: LCS 860-219795/3 **Matrix: Water** trans-1,2-Dichloroethene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane trans-1,3-Dichloropropene | Client Sample | ID: Lab Control Sample | |----------------------|-------------------------------| | | Prep Type: Total/NA | 2 3 4 6 | Matrix: Water | | | | | | | Prep Type: Total/N |
|---------------------------|--------|---------|-----------|------|---|------|--------------------| | Analysis Batch: 219795 | Spike | LCS | LCS | | | | %Rec | | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | | Acetone | 250 | 246.0 | | ug/L | | 98 | 60 - 140 | | Acrylonitrile | 500 | 526.5 | | ug/L | | 105 | 60 - 140 | | Acrolein | 250 | 263.4 | | ug/L | | 105 | 60 - 140 | | Benzene | 50.0 | 52.53 | | ug/L | | 105 | 75 - 125 | | Bromodichloromethane | 50.0 | 53.78 | | ug/L | | 108 | 75 - 125 | | Bromoform | 50.0 | 50.81 | | ug/L | | 102 | 70 - 130 | | Bromomethane | 50.0 | 55.02 | | ug/L | | 110 | 60 - 140 | | 2-Butanone | 250 | 248.1 | | ug/L | | 99 | 60 - 140 | | Carbon tetrachloride | 50.0 | 52.11 | | ug/L | | 104 | 70 - 125 | | Chlorobenzene | 50.0 | 51.76 | | ug/L | | 104 | 82 - 135 | | Chloroethane | 50.0 | 59.43 | | ug/L | | 119 | 60 - 140 | | 2-Chloroethyl vinyl ether | 50.0 | 53.51 | | ug/L | | 107 | 50 - 150 | | Chloromethane | 50.0 | 57.22 | | ug/L | | 114 | 60 - 140 | | Chloroform | 50.0 | 50.93 | | ug/L | | 102 | 70 - 121 | | cis-1,2-Dichloroethene | 50.0 | 53.12 | | ug/L | | 106 | 75 - 125 | | cis-1,3-Dichloropropene | 50.0 | 52.27 | | ug/L | | 105 | 74 - 125 | | Dibromochloromethane | 50.0 | 52.02 | | ug/L | | 104 | 73 - 125 | | 1,2-Dibromoethane | 50.0 | 52.52 | | ug/L | | 105 | 73 - 125 | | 1,2-Dichlorobenzene | 50.0 | 50.92 | | ug/L | | 102 | 75 - 125 | | 1,3-Dichlorobenzene | 50.0 | 50.71 | | ug/L | | 101 | 75 - 125 | | 1,4-Dichlorobenzene | 50.0 | 51.29 | | ug/L | | 103 | 75 - 125 | | 1,2-Dichloroethane | 50.0 | 53.65 | | ug/L | | 107 | 72 - 130 | | 1,1-Dichloroethane | 50.0 | 53.54 | | ug/L | | 107 | 71 - 130 | | 1,1-Dichloroethene | 50.0 | 54.61 | | ug/L | | 109 | 50 - 150 | | 1,2-Dichloropropane | 50.0 | 53.13 | | ug/L | | 106 | 74 - 125 | | Ethylbenzene | 50.0 | 52.36 | | ug/L | | 105 | 75 - 125 | | Methylene Chloride | 50.0 | 48.48 | | ug/L | | 97 | 71 - 125 | | m,p-Xylenes | 50.0 | 51.62 | | ug/L | | 103 | 75 - 125 | | MTBE | 0.0500 | 0.05304 | | mg/L | | 106 | 65 - 135 | | Naphthalene | 50.0 | 50.85 | | ug/L | | 102 | 70 - 130 | | o-Xylene | 50.0 | 51.69 | | ug/L | | 103 | 75 - 125 | | 1,1,2,2-Tetrachloroethane | 50.0 | 50.42 | | ug/L | | 101 | 74 - 125 | | Tetrachloroethene | 50.0 | 52.70 | | ug/L | | 105 | 71 - 125 | | Toluene | 50.0 | 51.44 | | ug/L | | 103 | 75 - 130 | | | | | | | | | | **Eurofins Dallas** 55.20 52.51 51.52 53.93 ug/L ug/L ug/L ug/L 110 105 103 108 75 - 125 66 - 125 75 - 135 70 - 130 50.0 50.0 50.0 50.0 Spike Added 50.0 50.0 250 50.0 LCS LCS ug/L 51.94 53.09 284.2 53.13 Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 # Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: LCS 860-219795/3 **Matrix: Water** 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride **Analysis Batch: 219795** **Client Sample ID: Lab Control Sample Prep Type: Total/NA** %Rec Result Qualifier Unit %Rec Limits 104 75 - 130 ug/L ug/L 106 75 - 135 ug/L 114 60 - 140 106 LCS LCS | Surrogate | %Recovery | Qualifier | Limits | |------------------------------|-----------|-----------|----------| | 1,2-Dichloroethane-d4 (Surr) | 98 | | 63 - 144 | | 4-Bromofluorobenzene (Surr) | 100 | | 74 - 124 | | Dibromofluoromethane (Surr) | 100 | | 75 - 131 | | Toluene-d8 (Surr) | 99 | | 80 - 120 | Lab Sample ID: LCSD 860-219795/4 **Matrix: Water** 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1.1-Dichloroethane 1,1,2,2-Tetrachloroethane Analysis Batch: 219795 Client Sample ID: Lab Control Sample Dup 98 94 93 96 102 99 73 - 125 75 - 125 75 - 125 75 - 125 72 - 130 71 - 130 74 - 125 Prep Type: Total/NA 60 - 140 | Analysis Batch: 219795 | | | | | | | | | | |---------------------------|-------|--------|-----------|------|---|------|----------|-----|-------| | | Spike | LCSD | LCSD | | | | %Rec | | RPD | | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | Acetone | 250 | 228.3 | | ug/L | | 91 | 60 - 140 | 7 | 25 | | Acrylonitrile | 500 | 502.3 | | ug/L | | 100 | 60 - 140 | 5 | 25 | | Acrolein | 250 | 236.4 | | ug/L | | 95 | 60 - 140 | 11 | 25 | | Benzene | 50.0 | 48.84 | | ug/L | | 98 | 75 - 125 | 7 | 25 | | Bromodichloromethane | 50.0 | 50.80 | | ug/L | | 102 | 75 - 125 | 6 | 25 | | Bromoform | 50.0 | 47.74 | | ug/L | | 95 | 70 - 130 | 6 | 25 | | Bromomethane | 50.0 | 51.17 | | ug/L | | 102 | 60 - 140 | 7 | 25 | | 2-Butanone | 250 | 228.4 | | ug/L | | 91 | 60 - 140 | 8 | 25 | | Carbon tetrachloride | 50.0 | 49.95 | | ug/L | | 100 | 70 - 125 | 4 | 25 | | Chlorobenzene | 50.0 | 46.94 | | ug/L | | 94 | 82 - 135 | 10 | 25 | | Chloroethane | 50.0 | 61.95 | | ug/L | | 124 | 60 - 140 | 4 | 25 | | 2-Chloroethyl vinyl ether | 50.0 | 50.91 | | ug/L | | 102 | 50 - 150 | 5 | 25 | | Chloromethane | 50.0 | 53.26 | | ug/L | | 107 | 60 - 140 | 7 | 25 | | Chloroform | 50.0 | 47.59 | | ug/L | | 95 | 70 - 121 | 7 | 25 | | cis-1,2-Dichloroethene | 50.0 | 49.55 | | ug/L | | 99 | 75 - 125 | 7 | 25 | | cis-1,3-Dichloropropene | 50.0 | 49.55 | | ug/L | | 99 | 74 - 125 | 5 | 25 | | Dibromochloromethane | 50.0 | 48.35 | | ug/L | | 97 | 73 - 125 | 7 | 25 | | | | | | U | | | | | | ug/L 1,1-Dichloroethene 50.0 52.15 ug/L 104 50 - 150 25 1,2-Dichloropropane 50.0 50.34 ug/L 101 74 - 125 25 50.0 25 Ethylbenzene 47.49 95 75 - 125 10 ug/L Methylene Chloride 50.0 45.33 91 71 - 125 25 ug/L m,p-Xylenes 50.0 46.66 ug/L 93 75 - 125 10 25 **MTBE** 0.0500 0.05035 mg/L 101 65 - 135 25 50.0 46.53 70 - 130 25 Naphthalene ug/L 93 9 o-Xylene 50.0 46.86 ug/L 94 75 - 125 10 25 50.0 50.0 50.0 50.0 50.0 50.0 50.0 48.97 46.83 46.67 47.90 50.78 49.68 47.86 ug/L ug/L ug/L ug/L ug/L ug/L **Eurofins Dallas** Page 24 of 63 2 3 4 6 13 25 25 25 25 25 25 25 Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 # Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: LCSD 860-219795/4 **Matrix: Water** Analysis Batch: 219795 **Client Sample ID: Lab Control Sample Dup** **Prep Type: Total/NA RPD** %Rec | Spike | LCSD | LCSD | | | | %Rec | | RPD | |-------|--|--|--|--|--|--|--|---| | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | 50.0 | 48.23 | | ug/L | | 96 | 71 - 125 | 9 | 25 | | 50.0 | 46.76 | |
ug/L | | 94 | 75 - 130 | 10 | 25 | | 50.0 | 51.20 | | ug/L | | 102 | 75 - 125 | 8 | 25 | | 50.0 | 48.71 | | ug/L | | 97 | 66 - 125 | 8 | 25 | | 50.0 | 46.88 | | ug/L | | 94 | 75 - 135 | 9 | 25 | | 50.0 | 49.32 | | ug/L | | 99 | 70 - 130 | 9 | 25 | | 50.0 | 48.17 | | ug/L | | 96 | 75 - 130 | 8 | 25 | | 50.0 | 49.68 | | ug/L | | 99 | 75 - 135 | 7 | 25 | | 250 | 270.5 | | ug/L | | 108 | 60 - 140 | 5 | 25 | | 50.0 | 49.18 | | ug/L | | 98 | 60 - 140 | 8 | 25 | | | 50.0
50.0
50.0
50.0
50.0
50.0
50.0
50.0 | Added Result 50.0 48.23 50.0 46.76 50.0 51.20 50.0 48.71 50.0 46.88 50.0 49.32 50.0 48.17 50.0 49.68 250 270.5 | Added Result Qualifier 50.0 48.23 50.0 46.76 50.0 51.20 50.0 48.71 50.0 46.88 50.0 49.32 50.0 48.17 50.0 49.68 250 270.5 | Added Result Qualifier Unit 50.0 48.23 ug/L 50.0 46.76 ug/L 50.0 51.20 ug/L 50.0 48.71 ug/L 50.0 46.88 ug/L 50.0 49.32 ug/L 50.0 48.17 ug/L 50.0 49.68 ug/L 250 270.5 ug/L | Added Result Qualifier Unit D 50.0 48.23 ug/L ug/L 50.0 46.76 ug/L ug/L 50.0 51.20 ug/L ug/L 50.0 48.71 ug/L ug/L 50.0 49.32 ug/L ug/L 50.0 48.17 ug/L ug/L 50.0 49.68 ug/L ug/L 250 270.5 ug/L ug/L | Added Result Qualifier Unit D %Rec 50.0 48.23 ug/L 96 50.0 46.76 ug/L 94 50.0 51.20 ug/L 102 50.0 48.71 ug/L 97 50.0 46.88 ug/L 94 50.0 49.32 ug/L 99 50.0 48.17 ug/L 96 50.0 49.68 ug/L 99 250 270.5 ug/L 108 | Added Result Qualifier Unit D %Rec Limits 50.0 48.23 ug/L 96 71 - 125 50.0 46.76 ug/L 94 75 - 130 50.0 51.20 ug/L 102 75 - 125 50.0 48.71 ug/L 97 66 - 125 50.0 46.88 ug/L 94 75 - 135 50.0 49.32 ug/L 99 70 - 130 50.0 48.17 ug/L 96 75 - 135 50.0 49.68 ug/L 99 75 - 135 250 270.5 ug/L 108 60 - 140 | Added Result Qualifier Unit D %Rec Limits RPD 50.0 48.23 ug/L 96 71 - 125 9 50.0 46.76 ug/L 94 75 - 130 10 50.0 51.20 ug/L 102 75 - 125 8 50.0 48.71 ug/L 97 66 - 125 8 50.0 46.88 ug/L 94 75 - 135 9 50.0 49.32 ug/L 99 70 - 130 9 50.0 48.17 ug/L 96 75 - 130 8 50.0 49.68 ug/L 99 75 - 135 7 250 270.5 ug/L 108 60 - 140 5 | LCSD LCSD Surrogate %Recovery Qualifier Limits 98 63 - 144 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) 74 - 124 100 Dibromofluoromethane (Surr) 100 75 - 131 Toluene-d8 (Surr) 99 80 - 120 # Method: 625.1 - Semivolatile Organic Compounds (GC/MS) Lab Sample ID: MB 860-219948/1-A **Matrix: Water** **Analysis Batch: 219508** **Client Sample ID: Method Blank** Prep Type: Total/NA Prep Batch: 219948 | | MB | MB | | | | | | | | |-----------------------------|---------|-----------|------|-------|------|---|----------------|----------------|---------| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | Acenaphthene | <1.39 | U | 5.70 | 1.39 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Acenaphthylene | <1.41 | U | 10.0 | 1.41 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Anthracene | <1.50 | U | 5.70 | 1.50 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Azobenzene | <1.50 | U | 10.0 | 1.50 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Benzidine | <20.0 | U | 20.0 | 20.0 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Benzo[a]anthracene | <0.173 | U | 5.00 | 0.173 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Benzo[a]pyrene | <0.364 | U | 5.00 | 0.364 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Benzo[b]fluoranthene | <2.04 | U | 10.0 | 2.04 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Benzo[g,h,i]perylene | <2.68 | U | 10.0 | 2.68 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Benzo[k]fluoranthene | <5.00 | U | 5.00 | 5.00 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Bis(2-chloroethoxy)methane | <1.76 | U | 10.0 | 1.76 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Bis(2-chloroethyl)ether | <2.16 | U | 10.0 | 2.16 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Bis(2-ethylhexyl) phthalate | <0.277 | U | 5.00 | 0.277 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 4-Bromophenyl phenyl ether | <0.256 | U | 5.00 | 0.256 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Butyl benzyl phthalate | < 0.337 | U | 5.00 | 0.337 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 4-Chloro-3-methylphenol | <1.57 | U | 5.00 | 1.57 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 2-Chloronaphthalene | <0.462 | U | 5.00 | 0.462 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 2-Chlorophenol | <0.649 | U | 5.00 | 0.649 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 4-Chlorophenyl phenyl ether | <1.28 | U | 10.0 | 1.28 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Chrysene | <0.222 | U | 5.00 | 0.222 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Dibenz(a,h)anthracene | <0.246 | U | 5.00 | 0.246 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 3,3'-Dichlorobenzidine | <0.341 | U | 5.00 | 0.341 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 2,4-Dichlorophenol | <0.314 | U | 5.00 | 0.314 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Diethyl phthalate | <1.59 | U | 5.00 | 1.59 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 2,4-Dimethylphenol | < 0.649 | U | 5.00 | 0.649 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | **Eurofins Dallas** Page 25 of 63 3 Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 # Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued) MB MB Lab Sample ID: MB 860-219948/1-A **Matrix: Water** Surrogate 2,4,6-Tribromophenol (Surr) 2-Fluorobiphenyl (Surr) 2-Fluorophenol (Surr) Nitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr) **Analysis Batch: 219508** **Client Sample ID: Method Blank** | Prep | Type: Total/NA | |------|----------------| | Prep | Batch: 219948 | | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|---------|-----------|------|-------|------|---|----------------|----------------|---------| | Dimethyl phthalate | <2.50 | U | 2.50 | 2.50 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Di-n-butyl phthalate | <0.252 | U | 5.00 | 0.252 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 4,6-Dinitro-2-methylphenol | <1.44 | U | 10.0 | 1.44 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 2,4-Dinitrophenol | <1.61 | U | 10.0 | 1.61 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 2,4-Dinitrotoluene | <1.31 | U | 10.0 | 1.31 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 2,6-Dinitrotoluene | <1.61 | U | 5.00 | 1.61 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Di-n-octyl phthalate | < 0.373 | U | 5.00 | 0.373 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 1,2-Diphenylhydrazine | <1.49 | U | 10.0 | 1.49 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Fluoranthene | <1.59 | U | 5.00 | 1.59 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Fluorene | <1630 | U | 5000 | 1630 | ppt | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Hexachlorobenzene | < 0.307 | U | 5.00 | 0.307 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Hexachlorobutadiene | <1.00 | U | 1.00 | 1.00 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Hexachlorocyclopentadiene | <10.0 | U | 10.0 | 10.0 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Hexachloroethane | <0.526 | U | 4.80 | 0.526 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Indeno[1,2,3-cd]pyrene | <2.29 | U | 5.00 | 2.29 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Isophorone | <1.64 | U | 5.00 | 1.64 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 2-Methylphenol | <1.62 | U | 10.0 | | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 3 & 4 Methylphenol | <2.62 | U | 10.0 | 2.62 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Naphthalene | <2.50 | U | 2.50 | 2.50 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Nitrobenzene | <1.66 | U | 5.00 | 1.66 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 2-Nitrophenol | <1.67 | U | 10.0 | 1.67 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 4-Nitrophenol | <2.36 | U | 7.20 | 2.36 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | N-Nitrosodiethylamine | <1.75 | U | 10.0 | 1.75 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | N-Nitrosodimethylamine | <2.02 | U | 10.0 | 2.02 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | N-Nitrosodi-n-butylamine | <1.49 | U | 10.0 | 1.49 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | N-Nitrosodi-n-propylamine | <2.88 | U | 10.0 | 2.88 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | N-Nitrosodiphenylamine | <1.81 | U | 10.0 | 1.81 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 4-Nonylphenol | <10.0 | U | 10.0 | 10.0 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 2,2'-oxybis[1-chloropropane] | <1.79 | U | 10.0 | 1.79 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Pentachlorobenzene | <1.07 | U | 10.0 | 1.07 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Pentachlorophenol | <0.234 | U | 10.0 | 0.234 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Phenanthrene | <1.42 | U | 10.0 | 1.42 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Phenol | <0.423 | U | 4.50 | 0.423 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Pyrene | <0.178 | U | 5.00 | 0.178 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Pyridine | <10.0 | U | 10.0 | 10.0 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 1,2,4,5-Tetrachlorobenzene | <1.32 | U | 10.0 | 1.32 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Total Cresols | <2.62 | U | 10.0 | 2.62 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 1,2,4-Trichlorobenzene | <1.61 | U | 5.00 | 1.61 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 2,4,5-Trichlorophenol | <2.00 | U | 10.0 | | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | 2,4,6-Trichlorophenol | <1.42 | U | 5.00 | 1.42 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | Bisphenol-A | <10.0 | U | 10.0 | 10.0 | ug/L | | 03/03/25 13:49 | 03/04/25 14:39 | 1 | | | MB | МВ | | | | | | | | 03/03/25 13:49 03/04/25 14:39 03/03/25 13:49 03/04/25 14:39 03/03/25 13:49 03/04/25 14:39 03/03/25 13:49 03/04/25 14:39 03/03/25 13:49 03/04/25 14:39 Analyzed Prepared **Eurofins Dallas** Dil Fac Limits 31 - 132 29 - 112 28 - 114 15-314 20 - 141 %Recovery Qualifier 116 S1+ 62
88 122 122 2 Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 #### Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: MB 860-219948/1-A Lab Sample ID: LCS 860-219948/2-A **Matrix: Water** **Analysis Batch: 219508** Client Sample ID: Method Blank **Prep Type: Total/NA** **Prep Batch: 219948** MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 03/03/25 13:49 03/04/25 14:39 Phenol-d5 (Surr) 74 8 - 424 **Client Sample ID: Lab Control Sample** | Matrix: Water | | | | | | | Prep Type: Total/NA | |------------------------|-------|--------|-----------|------|---|------|---------------------| | Analysis Batch: 219508 | | | | | | | Prep Batch: 219948 | | | Spike | LCS | LCS | | | | %Rec | | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | | Acenaphthene | 40.0 | 50.74 | | ug/L | | 127 | 60 - 132 | | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | | |-----------------------------|-------|--------|-----------|------|---|------|----------|--| | Acenaphthene | 40.0 | 50.74 | | ug/L | | 127 | 60 - 132 | | | Acenaphthylene | 40.0 | 55.25 | *+ | ug/L | | 138 | 54 - 126 | | | Anthracene | 40.0 | 56.62 | *+ | ug/L | | 142 | 43 - 120 | | | Azobenzene | 40.0 | 61.33 | *+ | ug/L | | 153 | 28 - 136 | | | Benzidine | 40.0 | <20.0 | U *- | ug/L | | 14 | 25 - 125 | | | Benzo[a]anthracene | 40.0 | 55.27 | *+ | ug/L | | 138 | 42 - 133 | | | Benzo[a]pyrene | 40.0 | 63.16 | *+ | ug/L | | 158 | 32 - 148 | | | Benzo[b]fluoranthene | 40.0 | 65.79 | *+ | ug/L | | 164 | 42 - 140 | | | Benzo[g,h,i]perylene | 40.0 | 58.93 | | ug/L | | 147 | 13 - 195 | | | Benzo[k]fluoranthene | 40.0 | 65.99 | *+ | ug/L | | 165 | 25 - 146 | | | Bis(2-chloroethoxy)methane | 40.0 | 42.23 | | ug/L | | 106 | 49 - 165 | | | Bis(2-chloroethyl)ether | 40.0 | 39.46 | | ug/L | | 99 | 43 - 126 | | | Bis(2-ethylhexyl) phthalate | 40.0 | 27.36 | | ug/L | | 68 | 29 - 137 | | | 4-Bromophenyl phenyl ether | 40.0 | 54.72 | *+ | ug/L | | 137 | 65 - 120 | | | Butyl benzyl phthalate | 40.0 | 22.05 | | ug/L | | 55 | 12 - 140 | | | 4-Chloro-3-methylphenol | 40.0 | 50.10 | | ug/L | | 125 | 41 - 128 | | | 2-Chloronaphthalene | 40.0 | 53.06 | *+ | ug/L | | 133 | 65 - 120 | | | 2-Chlorophenol | 40.0 | 38.69 | | ug/L | | 97 | 36 - 120 | | | 4-Chlorophenyl phenyl ether | 40.0 | 54.71 | | ug/L | | 137 | 38 - 145 | | | Chrysene | 40.0 | 57.06 | *+ | ug/L | | 143 | 44 - 140 | | | Dibenz(a,h)anthracene | 40.0 | 64.12 | | ug/L | | 160 | 16 - 200 | | | Benzo[b]fluoranthene Benzo[g,h,i]perylene Benzo[k]fluoranthene Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-ethylhexyl) phthalate | 40.0
40.0
40.0
40.0
40.0
40.0
40.0 | 65.79 *+ 58.93 65.99 *+ 42.23 39.46 27.36 | ug/L
ug/L
ug/L
ug/L
ug/L | 164
147
165
106 | 42 - 140
13 - 195
25 - 146
49 - 165 | | |---|--|---|--------------------------------------|--------------------------|--|--| | Benzo[k]fluoranthene Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether | 40.0
40.0
40.0
40.0 | 65.99 *+
42.23
39.46 | ug/L
ug/L | 165 | 25 - 146 | | | Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether | 40.0
40.0
40.0 | 42.23
39.46 | ug/L | | | | | Bis(2-chloroethyl)ether | 40.0
40.0 | 39.46 | | 106 | 40 165 | | | | 40.0 | | ua/l | | 49 - 103 | | | Bis(2-ethylhexyl) phthalate | | 27 36 | ug/∟ | 99 | 43 - 126 | | | | 40.0 | 21.00 | ug/L | 68 | 29 - 137 | | | 4-Bromophenyl phenyl ether | | 54.72 *+ | ug/L | 137 | 65 - 120 | | | Butyl benzyl phthalate | 40.0 | 22.05 | ug/L | 55 | 12 - 140 | | | 4-Chloro-3-methylphenol | 40.0 | 50.10 | ug/L | 125 | 41 - 128 | | | 2-Chloronaphthalene | 40.0 | 53.06 *+ | ug/L | 133 | 65 - 120 | | | 2-Chlorophenol | 40.0 | 38.69 | ug/L | 97 | 36 - 120 | | | 4-Chlorophenyl phenyl ether | 40.0 | 54.71 | ug/L | 137 | 38 - 145 | | | Chrysene | 40.0 | 57.06 *+ | ug/L | 143 | 44 - 140 | | | Dibenz(a,h)anthracene | 40.0 | 64.12 | ug/L | 160 | 16 - 200 | | | 3,3'-Dichlorobenzidine | 40.0 | 14.95 | ug/L | 37 | 18 - 213 | | | 2,4-Dichlorophenol | 40.0 | 49.71 *+ | ug/L | 124 | 53 - 122 | | | Diethyl phthalate | 40.0 | 45.57 | ug/L | 114 | 17 - 120 | | | 2,4-Dimethylphenol | 40.0 | 39.72 | ug/L | 99 | 42 - 120 | | | Dimethyl phthalate | 40.0 | 47.59 | ug/L | 119 | 25 - 120 | | | Di-n-butyl phthalate | 40.0 | 30.00 | ug/L | 75 | 8 - 120 | | | 4,6-Dinitro-2-methylphenol | 40.0 | 49.43 | ug/L | 124 | 53 - 130 | | | 2,4-Dinitrophenol | 40.0 | 39.97 | ug/L | 100 | 12 - 173 | | | 2,4-Dinitrotoluene | 40.0 | 47.51 | ug/L | 119 | 48 - 127 | | | 2,6-Dinitrotoluene | 40.0 | 45.86 | ug/L | 115 | 68 - 137 | | | Di-n-octyl phthalate | 40.0 | 31.00 | ug/L | 78 | 19 - 132 | | | 1,2-Diphenylhydrazine | 40.0 | 61.33 *+ | ug/L | 153 | 28 - 136 | | | Fluoranthene | 40.0 | 53.77 *+ | ug/L | 134 | 43 - 121 | | | Fluorene | 40000 | 53090 *+ | ppt | 133 | 70 - 120 | | | Hexachlorobenzene | 40.0 | 53.60 | ug/L | 134 | 8 - 142 | | | Hexachlorobutadiene | 40.0 | 57.30 *+ | ug/L | 143 | 38 - 120 | | | Hexachlorocyclopentadiene | 40.0 | 66.49 *+ | ug/L | 166 | 41 - 125 | | | Hexachloroethane | 40.0 | 55.29 *+ | ug/L | 138 | 55 - 120 | | | Indeno[1,2,3-cd]pyrene | 40.0 | 67.82 *+ | ug/L | 170 | 13 - 151 | | | Isophorone | 40.0 | 40.39 | ug/L | 101 | 47 - 180 | | **Eurofins Dallas** 3 2 4 5 Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: LCS 860-219948/2-A **Matrix: Water** **Analysis Batch: 219508** **Client Sample ID: Lab Control Sample** Prep Type: Total/NA Prep Batch: 219948 | | Spike | LCS | LCS | | | | %Rec | | |------------------------------|-------|--------|-----------|------|---|------|---------------------|--| | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | | | 2-Methylphenol | 40.0 | 35.81 | | ug/L | | 90 | 14 - 176 | | | 3 & 4 Methylphenol | 40.0 | 37.18 | | ug/L | | 93 | 14 - 176 | | | Naphthalene | 40.0 | 50.43 | *+ | ug/L | | 126 | 36 - 120 | | | Nitrobenzene | 40.0 | 54.65 | | ug/L | | 137 | 54 - 158 | | | 2-Nitrophenol | 40.0 | 37.09 | | ug/L | | 93 | 45 - 167 | | | 4-Nitrophenol | 40.0 | 49.32 | | ug/L | | 123 | 13 - 129 | | | N-Nitrosodiethylamine | 40.0 | 49.84 | | ug/L | | 125 | 30 - 160 | | | N-Nitrosodimethylamine | 40.0 | 39.79 | | ug/L | | 99 | 20 - 125 | | | N-Nitrosodi-n-butylamine | 40.0 | 31.13 | | ug/L | | 78 | 33 - 141 | | | N-Nitrosodi-n-propylamine | 40.0 | 33.68 | | ug/L | | 84 | 14 - 198 | | | N-Nitrosodiphenylamine | 40.0 | 46.07 | | ug/L | | 115 | 2 - 196 | | | 2,2'-oxybis[1-chloropropane] | 40.0 | 34.03 | | ug/L | | 85 | 63 - 139 | | | Pentachlorobenzene | 40.0 | 51.58 | | ug/L | | 129 | 25 - 131 | | | Pentachlorophenol | 40.0 | 49.99 | | ug/L | | 125 | 38 - 152 | | | Phenanthrene | 40.0 | 53.80 | *+ | ug/L | | 135 | 65 - 120 | | | Phenol | 40.0 | 37.24 | | ug/L | | 93 | 17 - 120 | | | Pyrene | 40.0 | 52.48 | *+ | ug/L | | 131 | 70 - 120 | | | Pyridine | 80.0 | 54.91 | | ug/L | | 69 | 5 - 94 | | | 1,2,4,5-Tetrachlorobenzene | 40.0 | 52.17 | *+ | ug/L | | 130 | 41 - 125 | | | 1,2,4-Trichlorobenzene | 40.0 | 50.19 | | ug/L | | 125 | 57 ₋ 130 | | | 2,4,5-Trichlorophenol | 40.0 | 49.93 | *+ | ug/L | | 125 | 35 - 111 | | | 2,4,6-Trichlorophenol | 40.0 | 54.97 | *+ | ug/L | | 137 | 52 - 129 | | | Bisphenol-A | 40.0 | 13.74 | *_ | ug/L | | 34 | 70 - 130 | | | | | | | | | | | | LCS LCS | Surrogate | %Recovery | Qualifier | Limits | |-----------------------------|-----------|-----------|----------| | 2,4,6-Tribromophenol (Surr) | 121 | | 31 - 132 | | 2-Fluorobiphenyl (Surr) | 145 | S1+ | 29 - 112 | | 2-Fluorophenol (Surr) | 107 | | 28 - 114 | | Nitrobenzene-d5 (Surr) | 153 | | 15 - 314 | | p-Terphenyl-d14 (Surr) | 154 | S1+ | 20 - 141 | | Phenol-d5 (Surr) | 97 | | 8 - 424 | Lab Sample ID: LCSD 860-219948/3-A **Matrix: Water** **Client Sample ID: Lab Control Sample Dup** **Prep Type: Total/NA** Prep Batch: 219948 **Analysis Batch: 219508** LCSD LCSD Spike %Rec **RPD** Added Analyte Result Qualifier Unit D %Rec Limits RPD Limit 40.0 44.35 60 - 132 13 29 Acenaphthene ug/L 111 40.0 48.67 Acenaphthylene ug/L 122 54 - 126 13 30 Anthracene 40.0 49.47 *+ ug/L 124 43 - 120 13 30 Azobenzene 40.0 54.41 ug/L 136 28 - 136 12 30 40.0 <20.0 U *-30 Benzidine ug/L 14 25 - 125 4 ug/L Benzo[a]anthracene 40.0 48.16 120 42 - 133 30 Benzo[a]pyrene 40.0 55.68 ug/L 139 32 - 148 13 30 Benzo[b]fluoranthene 40.0 56.89 *+ ug/L 142 42 - 140 15 30 40.0 51.36 ug/L 128 30 Benzo[g,h,i]perylene 13 - 195 14 Benzo[k]fluoranthene 40.0 57.04 ug/L 143 25 - 146 15 30 Bis(2-chloroethoxy)methane 40.0 49 - 165 38.56 ug/L 96 30 **Eurofins Dallas** Page 28 of 63 2 3 5 Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: LCSD 860-219948/3-A Matrix: Water **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA | Analysis Batch: 219508 | | | | | | | Prep Batch: 219948 | | | |------------------------------|----------------|-------|-------------------|--------------|-----|------|---------------------|-----|--------------| | Analyte | Spike
Added | | LCSD
Qualifier | Unit | D | %Rec | %Rec
Limits | RPD | RPD
Limit | | Bis(2-chloroethyl)ether | 40.0 | 35.82 | Qualifier | ug/L | _ = | 90 | 43 - 126 | 10 | 30 | | Bis(2-ethylhexyl) phthalate | 40.0 | 24.59 | | ug/L | | 61 | 29 - 137 | 11 | 30 | | | 40.0 | 47.99 | | - | | 120 | 65 ₋ 120 | 13 | 26 | | 4-Bromophenyl phenyl ether | 40.0 | 19.59 | | ug/L | | 49 | 12 - 140 | 12 | 30 | | Butyl benzyl phthalate | | | | ug/L | | | | | | | 4-Chloro-3-methylphenol | 40.0
 44.08 | | ug/L | | 110 | 41 - 128 | 13 | 30 | | 2-Chloronaphthalene | 40.0 | 46.85 | | ug/L | | 117 | 65 - 120 | 12 | 15 | | 2-Chlorophenol | 40.0 | 36.89 | | ug/L | | 92 | 36 - 120 | | 30 | | 4-Chlorophenyl phenyl ether | 40.0 | 46.82 | | ug/L | | 117 | 38 - 145 | 16 | 30 | | Chrysene | 40.0 | 48.94 | | ug/L | | 122 | 44 - 140 | 15 | 30 | | Dibenz(a,h)anthracene | 40.0 | 56.45 | | ug/L | | 141 | 16 - 200 | 13 | 30 | | 3,3'-Dichlorobenzidine | 40.0 | 14.81 | | ug/L | | 37 | 18 - 213 | 1 | 30 | | 2,4-Dichlorophenol | 40.0 | 45.27 | | ug/L | | 113 | 53 - 122 | 9 | 30 | | Diethyl phthalate | 40.0 | 39.21 | | ug/L | | 98 | 17 - 120 | 15 | 30 | | 2,4-Dimethylphenol | 40.0 | 36.13 | | ug/L | | 90 | 42 - 120 | 9 | 30 | | Dimethyl phthalate | 40.0 | 42.31 | | ug/L | | 106 | 25 - 120 | 12 | 30 | | Di-n-butyl phthalate | 40.0 | 26.21 | | ug/L | | 66 | 8 - 120 | 14 | 28 | | 4,6-Dinitro-2-methylphenol | 40.0 | 44.01 | | ug/L | | 110 | 53 - 130 | 12 | 30 | | 2,4-Dinitrophenol | 40.0 | 36.67 | | ug/L | | 92 | 12 - 173 | 9 | 30 | | 2,4-Dinitrotoluene | 40.0 | 41.72 | | ug/L | | 104 | 48 - 127 | 13 | 25 | | 2,6-Dinitrotoluene | 40.0 | 40.45 | | ug/L | | 101 | 68 - 137 | 13 | 29 | | Di-n-octyl phthalate | 40.0 | 27.73 | | ug/L | | 69 | 19 - 132 | 11 | 30 | | 1,2-Diphenylhydrazine | 40.0 | 54.41 | | ug/L | | 136 | 28 - 136 | 12 | 30 | | Fluoranthene | 40.0 | 46.68 | | ug/L | | 117 | 43 - 121 | 14 | 30 | | Fluorene | 40000 | 46880 | | ppt | | 117 | 70 - 120 | 12 | 23 | | Hexachlorobenzene | 40.0 | 46.40 | | ug/L | | 116 | 8 - 142 | 14 | 30 | | Hexachlorobutadiene | 40.0 | 50.91 | *+ | ug/L | | 127 | 38 - 120 | 12 | 30 | | Hexachlorocyclopentadiene | 40.0 | 62.50 | | ug/L | | 156 | 41 - 125 | 6 | 30 | | Hexachloroethane | 40.0 | 48.30 | | ug/L | | 121 | 55 - 120 | 13 | 30 | | Indeno[1,2,3-cd]pyrene | 40.0 | 59.00 | | ug/L | | 148 | 13 - 151 | 14 | 30 | | Isophorone | 40.0 | 37.53 | | ug/L | | 94 | 47 - 180 | 7 | 30 | | 2-Methylphenol | 40.0 | 34.20 | | ug/L
ug/L | | 85 | 14 - 176 | 5 | 30 | | 3 & 4 Methylphenol | 40.0 | 33.69 | | ug/L | | 84 | 14 - 176 | 10 | 30 | | Naphthalene | 40.0 | 44.54 | | ug/L
ug/L | | 111 | 36 - 120 | 12 | 30 | | Nitrobenzene | 40.0 | 48.48 | | - | | 121 | 54 ₋ 158 | 12 | 30 | | | | | | ug/L | | | | 2 | 30 | | 2-Nitrophenol | 40.0 | 36.28 | | ug/L | | 91 | 45 ₋ 167 | | | | 4-Nitrophenol | 40.0 | 41.98 | | ug/L | | 105 | 13 - 129 | 16 | 30 | | N-Nitrosodiethylamine | 40.0 | 46.44 | | ug/L | | 116 | 30 - 160 | | 30 | | N-Nitrosodimethylamine | 40.0 | 38.91 | | ug/L | | 97 | 20 - 125 | 2 | 30 | | N-Nitrosodi-n-butylamine | 40.0 | 28.35 | | ug/L | | 71 | 33 - 141 | 9 | 30 | | N-Nitrosodi-n-propylamine | 40.0 | 31.12 | | ug/L | | 78 | 14 - 198 | 8 | 30 | | N-Nitrosodiphenylamine | 40.0 | 40.83 | | ug/L | | 102 | 2 - 196 | 12 | 30 | | 2,2'-oxybis[1-chloropropane] | 40.0 | 29.67 | | ug/L | | 74 | 63 - 139 | 14 | 30 | | Pentachlorobenzene | 40.0 | 44.77 | | ug/L | | 112 | 25 - 131 | 14 | 30 | | Pentachlorophenol | 40.0 | 44.74 | | ug/L | | 112 | 38 - 152 | 11 | 30 | | Phenanthrene | 40.0 | 48.69 | *+ | ug/L | | 122 | 65 - 120 | 10 | 30 | | Phenol | 40.0 | 35.45 | | ug/L | | 89 | 17 - 120 | 5 | 30 | | Pyrene | 40.0 | 45.13 | | ug/L | | 113 | 70 - 120 | 15 | 30 | | Pyridine | 80.0 | 49.99 | | ug/L | | 62 | 5 - 94 | 9 | 30 | | 1,2,4,5-Tetrachlorobenzene | 40.0 | 47.35 | | ug/L | | 118 | 41 - 125 | 10 | 30 | **Eurofins Dallas** 3 4 6 13 Job ID: 870-34261-1 Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 #### Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: LCSD 860-219948/3-A **Matrix: Water** **Analysis Batch: 219508** Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 219948 2 3 4 5 10 13 14 1 | | Spike | LCSD | | %Rec | | | | | | |------------------------|-------|--------|-----------|------|---|------|----------|-----|-------| | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | 1,2,4-Trichlorobenzene | 40.0 | 46.79 | | ug/L | | 117 | 57 - 130 | 7 | 30 | | 2,4,5-Trichlorophenol | 40.0 | 46.37 | *+ | ug/L | | 116 | 35 - 111 | 7 | 30 | | 2,4,6-Trichlorophenol | 40.0 | 49.68 | | ug/L | | 124 | 52 - 129 | 10 | 30 | | Bisphenol-A | 40.0 | 12.14 | *_ | ug/L | | 30 | 70 - 130 | 12 | 30 | LCSD LCSD | Surrogate | %Recovery | Qualifier | Limits | |-----------------------------|-----------|-----------|----------| | 2,4,6-Tribromophenol (Surr) | 107 | | 31 - 132 | | 2-Fluorobiphenyl (Surr) | 126 | S1+ | 29 - 112 | | 2-Fluorophenol (Surr) | 106 | | 28 - 114 | | Nitrobenzene-d5 (Surr) | 135 | | 15-314 | | p-Terphenyl-d14 (Surr) | 130 | | 20 - 141 | | Phenol-d5 (Surr) | 91 | | 8 - 424 | #### Method: 608.3 - Organochlorine Pesticides in Water Lab Sample ID: MB 860-220428/1-A **Matrix: Water** **Analysis Batch: 220734** **Client Sample ID: Method Blank** Prep Type: Total/NA Prep Batch: 220428 MB MB Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Aldrin <0.00125 U 0.0100 0.00125 ug/L 03/05/25 08:32 03/06/25 11:42 alpha-BHC <0.000625 U 0.00500 0.000625 ug/L 03/05/25 08:32 03/06/25 11:42 beta-BHC <0.00125 U 0.0100 0.00125 ug/L 03/05/25 08:32 03/06/25 11:42 delta-BHC <0.00250 U 0.0200 0.00250 ug/L 03/05/25 08:32 03/06/25 11:42 gamma-BHC (Lindane) 0.00344 ug/L 03/05/25 08:32 03/06/25 11:42 <0.00344 U 0.0100 03/05/25 08:32 03/06/25 11:42 4,4'-DDD <0.00250 U 0.0200 0.00250 ug/L 03/05/25 08:32 03/06/25 11:42 4,4'-DDE <0.00125 U 0.0100 0.00125 ug/L 4,4'-DDT <0.00250 U 0.0200 0.00250 ug/L 03/05/25 08:32 03/06/25 11:42 Dieldrin 0.00500 0.000625 ug/L 03/05/25 08:32 03/06/25 11:42 <0.000625 U Endosulfan I <0.00125 U 0.0100 0.00125 ug/L 03/05/25 08:32 03/06/25 11:42 Endosulfan II 0.0100 0.00125 ug/L 03/05/25 08:32 03/06/25 11:42 <0.00125 U Endosulfan sulfate <0.00559 U 0.0500 0.00559 ug/L 03/05/25 08:32 03/06/25 11:42 03/05/25 08:32 03/06/25 11:42 Endrin <0.00250 U 0.0200 0.00250 ug/L Endrin aldehyde <0.00592 U 0.0500 0.00592 ug/L 03/05/25 08:32 03/06/25 11:42 Dicofol <0.000500 U 0.000500 0.000500 mg/L 03/05/25 08:32 03/06/25 11:42 Heptachlor <0.00169 U 0.00500 0.00169 ug/L 03/05/25 08:32 03/06/25 11:42 Heptachlor epoxide <0.00125 U 0.0100 0.00125 ug/L 03/05/25 08:32 03/06/25 11:42 Toxaphene <0.0780 U 0.200 0.0780 ug/L 03/05/25 08:32 03/06/25 11:42 Chlordane 03/05/25 08:32 03/06/25 11:42 <0.0250 U 0.200 0.0250 ug/L <0.000125 U Methoxychlor 0.000100 0.0000125 mg/L 03/05/25 08:32 03/06/25 11:42 Mirex <0.0000200 U 0.0000200 0.0000200 mg/L 03/05/25 08:32 03/06/25 11:42 | Surrogate | %Recovery | Qualifier | Limits | Prepared Analy. | zed Dil Fac | |-------------------------------|-----------|-----------|----------|-------------------------|-------------| | DCB Decachlorobiphenyl (Surr) | 109 | | 15 - 136 | 03/05/25 08:32 03/06/25 | 11:42 | | Tetrachloro-m-xylene | 78 | | 18 - 126 | 03/05/25 08:32 03/06/25 | 11:42 1 | **Eurofins Dallas** Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 # Method: 608.3 - Organochlorine Pesticides in Water (Continued) Lab Sample ID: LCS 860-220428/2-A **Matrix: Water** **Analysis Batch: 220734** **Client Sample ID: Lab Control Sample** **Prep Type: Total/NA** Prep Batch: 220428 | | Spike | LCS I | LCS | | | | %Rec | | |---------------------|----------|-----------|-----------|------|---|------|----------|--| | Analyte | Added | Result (| Qualifier | Unit | D | %Rec | Limits | | | Aldrin | 0.100 | 0.08679 | | ug/L | | 87 | 42 - 140 | | | alpha-BHC | 0.100 | 0.09208 | | ug/L | | 92 | 37 - 140 | | | beta-BHC | 0.100 | 0.09823 | | ug/L | | 98 | 17 - 147 | | | delta-BHC | 0.100 | 0.09933 | | ug/L | | 99 | 19 - 140 | | | gamma-BHC (Lindane) | 0.100 | 0.09701 | | ug/L | | 97 | 34 - 140 | | | 4,4'-DDD | 0.100 | 0.1018 | | ug/L | | 102 | 31 - 141 | | | 4,4'-DDE | 0.100 | 0.07858 | | ug/L | | 79 | 30 - 145 | | | 4,4'-DDT | 0.100 | 0.1161 | | ug/L | | 116 | 25 - 160 | | | Dieldrin | 0.100 | 0.09711 | | ug/L | | 97 | 36 - 146 | | | Endosulfan I | 0.100 | 0.1193 | | ug/L | | 119 | 45 - 153 | | | Endosulfan II | 0.100 | 0.1130 | | ug/L | | 113 | 22 - 171 | | | Endosulfan sulfate | 0.100 | 0.1064 | | ug/L | | 106 | 26 - 144 | | | Endrin | 0.100 | 0.1306 | | ug/L | | 131 | 30 - 147 | | | Endrin aldehyde | 0.100 | 0.08878 | | ug/L | | 89 | 60 - 130 | | | Heptachlor | 0.100 | 0.1026 | | ug/L | | 103 | 34 - 140 | | | Heptachlor epoxide | 0.100 | 0.09616 | | ug/L | | 96 | 37 - 142 | | | Methoxychlor | 0.000100 | 0.0001168 | | mg/L | | 117 | 50 - 130 | | LCS LCS | Surrogate | %Recovery | Qualifier | Limits | |-------------------------------|-----------|-----------|----------| | DCB Decachlorobiphenyl (Surr) | 108 | | 15 - 136 | | Tetrachloro-m-xylene | 93 | | 18 - 126 | **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA Lab Sample ID: LCSD 860-220428/3-A **Matrix: Water** | Analysis Batch: 220734 | | | | | | | Prep Ba | atch: 22 | 20428 | |------------------------|----------|-----------|-----------|------|---|------|----------|----------|-------| | | Spike | LCSD | LCSD | | | | %Rec | | RPD | | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | Aldrin | 0.100 | 0.07794 | | ug/L | | 78 | 42 - 140 | 11 | 30 | | alpha-BHC | 0.100 | 0.08499 | | ug/L | | 85 | 37 - 140 | 8 | 30 | | beta-BHC | 0.100 | 0.09422 | | ug/L | | 94 | 17 - 147 | 4 | 30 | | delta-BHC | 0.100 | 0.09435 | | ug/L | | 94 | 19 - 140 | 5 | 30 | | gamma-BHC (Lindane) | 0.100 | 0.08765 | | ug/L | | 88 | 34 - 140 | 10 | 30 | | 4,4'-DDD | 0.100 | 0.09499 | | ug/L | | 95 | 31 - 141 | 7 | 30 | | 4,4'-DDE | 0.100 | 0.07126 | | ug/L | | 71 | 30 - 145 | 10 | 30 | | 4,4'-DDT | 0.100 | 0.1093 | | ug/L | | 109 | 25 - 160 | 6 | 30 | | Dieldrin | 0.100 | 0.09130 | | ug/L | | 91 | 36 - 146 | 6 | 30 | | Endosulfan I | 0.100 | 0.1095 | | ug/L | | 109 | 45 - 153 | 9 | 30 | | Endosulfan II | 0.100 | 0.1069 | | ug/L | | 107 | 22 - 171 | 6 | 30 | | Endosulfan sulfate | 0.100 | 0.1011 | | ug/L | | 101 | 26 - 144 | 5 | 30 | | Endrin | 0.100 | 0.1225 | |
ug/L | | 123 | 30 - 147 | 6 | 30 | | Endrin aldehyde | 0.100 | 0.08404 | | ug/L | | 84 | 60 - 130 | 5 | 30 | | Heptachlor | 0.100 | 0.09494 | | ug/L | | 95 | 34 - 140 | 8 | 30 | | Heptachlor epoxide | 0.100 | 0.08844 | | ug/L | | 88 | 37 - 142 | 8 | 30 | | Methoxychlor | 0.000100 | 0.0001141 | | mg/L | | 114 | 50 - 130 | 2 | 30 | | | | | | | | | | | | LCSD LCSD | Surrogate | %Recovery | Qualifier | Limits | |-------------------------------|-----------|-----------|----------| | DCB Decachlorobiphenyl (Surr) | 102 | | 15 - 136 | | Tetrachloro-m-xylene | 88 | | 18 - 126 | **Eurofins Dallas** 2 3 Client: North Texas Municipal Water District Job ID: 870-34261-1 Project/Site: SCX 30TAC307 + Table 3 # Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC) Lab Sample ID: MB 860-220428/1-A **Matrix: Water** **Analysis Batch: 220823** **Client Sample ID: Method Blank** Prep Type: Total/NA Prep Batch: 220428 | | MB | MB | | | | | | | | |----------------------------------|----------|-----------|-------|--------|------|---|----------------|----------------|---------| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | PCB-1016 | <0.0443 | U | 0.100 | 0.0443 | ug/L | | 03/05/25 08:32 | 03/07/25 00:37 | 1 | | PCB-1242 | < 0.0443 | U | 0.100 | 0.0443 | ug/L | | 03/05/25 08:32 | 03/07/25 00:37 | 1 | | PCB-1254 | < 0.0390 | U | 0.100 | 0.0390 | ug/L | | 03/05/25 08:32 | 03/07/25 00:37 | 1 | | PCB-1221 | < 0.0443 | U | 0.100 | 0.0443 | ug/L | | 03/05/25 08:32 | 03/07/25 00:37 | 1 | | PCB-1232 | < 0.0443 | U | 0.100 | 0.0443 | ug/L | | 03/05/25 08:32 | 03/07/25 00:37 | 1 | | PCB-1248 | < 0.0443 | U | 0.100 | 0.0443 | ug/L | | 03/05/25 08:32 | 03/07/25 00:37 | 1 | | PCB-1260 | <0.0390 | U | 0.100 | 0.0390 | ug/L | | 03/05/25 08:32 | 03/07/25 00:37 | 1 | | Polychlorinated biphenyls, Total | <0.0390 | U | 0.100 | 0.0390 | ug/L | | 03/05/25 08:32 | 03/07/25 00:37 | 1 | | | | | | | | | | | | MB MB %Recovery Surrogate Qualifier Limits Prepared Analyzed Dil Fac Tetrachloro-m-xylene 18 - 126 03/05/25 08:32 03/07/25 00:37 99 Lab Sample ID: LCS 860-220428/4-A **Matrix: Water** **Analysis Batch: 220823** **Client Sample ID: Lab Control Sample** Prep Type: Total/NA Prep Batch: 220428 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits PCB-1016 1.00 1.058 *+ 61 - 103 ug/L 106 PCB-1260 1.00 1.151 37 - 130 ug/L 115 LCS LCS %Recovery Qualifier Surrogate Limits Tetrachloro-m-xylene 110 18 - 126 Lab Sample ID: LCSD 860-220428/5-A **Matrix: Water** **Analysis Batch: 220823** **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA Prep Batch: 220428 | | Spike | LCSD | LCSD | | | | %Rec | | RPD | | |----------|-------|--------|-----------|------|---|------|----------|-----|-------|--| | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | | PCB-1016 | 1.00 | 1.069 | *+ | ug/L | | 107 | 61 - 103 | 1 | 24 | | | PCB-1260 | 1.00 | 1.215 | | ug/L | | 122 | 37 - 130 | 5 | 28 | | LCSD LCSD Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 109 18 - 126 #### Method: 615 - Herbicides (GC) Lab Sample ID: MB 860-220040/1-A **Matrix: Water** **Analysis Batch: 220466** | Client Sample ID: Method Blank | |--------------------------------| |--------------------------------| Prep Type: Total/NA Prep Batch: 220040 | | MB | MB | | | | | | | | |-------------------|-------------|-----------|----------|-----------|------|---|----------------|----------------|---------| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | 2,4-D | <0.0000539 | U | 0.000200 | 0.0000539 | mg/L | | 03/03/25 17:37 | 03/05/25 11:14 | 1 | | Hexachlorophene | <0.000808 | U | 0.00500 | 0.000808 | mg/L | | 03/03/25 17:37 | 03/05/25 11:14 | 1 | | Silvex (2,4,5-TP) | <0.0000422 | U | 0.000200 | 0.0000422 | mg/L | | 03/03/25 17:37 | 03/05/25 11:14 | 1 | | Dalapon | <0.0000476 | U | 0.000200 | 0.0000476 | mg/L | | 03/03/25 17:37 | 03/05/25 11:14 | 1 | | Dicamba | < 0.0000423 | U | 0.000200 | 0.0000423 | mg/L | | 03/03/25 17:37 | 03/05/25 11:14 | 1 | | Dinoseb | < 0.0000343 | U | 0.000200 | 0.0000343 | mg/L | | 03/03/25 17:37 | 03/05/25 11:14 | 1 | | Pentachlorophenol | <0.0000443 | U | 0.000200 | 0.0000443 | mg/L | | 03/03/25 17:37 | 03/05/25 11:14 | 1 | **Eurofins Dallas** Page 32 of 63 2 3 6 **12** 13 14 Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 Method: 615 - Herbicides (GC) (Continued) | | MB | MB | | | | | |-------------------------------|-----------|-----------|----------|----------------|----------------|---------| | Surrogate | %Recovery | Qualifier | Limits | Prepared | Analyzed | Dil Fac | | 2,4-Dichlorophenylacetic acid | 76 | | 45 - 150 | 03/03/25 17:37 | 03/05/25 11:14 | 1 | Lab Sample ID: LCS 860-220040/2-A Matrix: Water Analysis Batch: 220466 Spike Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 220040 %Rec | | Spike | LCS | LCS | | | | %Rec | | |-------------------|---------|------------|-----------|------|---|------|----------|--| | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | | | 2,4-D | 0.00200 | 0.002075 | | mg/L | | 104 | 55 - 145 | | | Silvex (2,4,5-TP) | 0.00200 | 0.002176 | | mg/L | | 109 | 55 - 140 | | | Dalapon | 0.00200 | 0.002000 | | mg/L | | 100 | 50 - 150 | | | Dicamba | 0.00200 | 0.002017 | | mg/L | | 101 | 55 - 135 | | | Dinoseb | 0.00200 | <0.0000343 | U *- | mg/L | | 0.1 | 20 - 100 | | | Pentachlorophenol | 0.00200 | 0.001864 | | mg/L | | 93 | 50 - 135 | | | | | | | | | | | | Surrogate LCS LCS 2,4-Dichlorophenylacetic acid 109 Limits 45 - 150 Lab Sample ID: LCS 860-220040/4-A Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 220466 Analyte Added Hexachlorophene Result Qualifier Unit Downs In Mark Unit Downs In Mark WRec Downs In Mark Hexachlorophene 0.00800 0.004880 J mg/L 61 60 - 135 LCS LCS Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 70 45 - 150 Lab Sample ID: LCSD 860-220040/3-A Matrix: Water Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 220040 **Analysis Batch: 220466** LCSD LCSD %Rec **RPD** Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit 2,4-D 0.00200 91 55 - 145 25 0.001821 mg/L 13 Silvex (2,4,5-TP) 0.00200 0.001924 mg/L 96 55 - 14012 25 Dalapon 0.00200 0.001720 mg/L 86 50 - 150 15 25 Dicamba 0.00200 0.001756 mg/L 88 55 - 135 14 25 Dinoseb 0.00200 <0.0000343 U *- *1 mg/L 0.08 20 - 100 41 25 0.00200 25 Pentachlorophenol 0.001647 mg/L 82 50 - 135 12 Surrogate%Recovery
2,4-Dichlorophenylacetic acidQualifier
92Limits
45 - 150 Lab Sample ID: LCSD 860-220040/5-A **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA **Analysis Batch: 220466** Prep Batch: 220040 Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit %Rec Limits Limit **RPD** 0.00800 0.005294 66 60 - 135 Hexachlorophene mg/L **Eurofins Dallas** 2 3 5 6 13 14 16 Prep Batch: 220040 Client: North Texas Municipal Water District Job ID: 870-34261-1 Project/Site: SCX 30TAC307 + Table 3 Method: 615 - Herbicides (GC) (Continued) Lab Sample ID: LCSD 860-220040/5-A **Matrix: Water** **Analysis Batch: 220466** LCSD LCSD %Recovery Qualifier Limits Surrogate 2,4-Dichlorophenylacetic acid 73 45 - 150 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 220040 **Prep Type: Total/NA** Prep Type: Total/NA Prep Batch: 220281 **Prep Type: Total/NA** **Client Sample ID: Method Blank** **Client Sample ID: Lab Control Sample** Client Sample ID: Lab Control Sample Dup Method: 8015D - Glycols- Direct Injection (GC/FID) Lab Sample ID: MB 860-219904/10 Client Sample ID: Method Blank **Matrix: Water** Analysis Batch: 219904 MB MB Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac Ethylene glycol <1.22 U 5.00 1.22 mg/L 03/03/25 12:45 Propylene glycol <1.84 U 5.00 1.84 mg/L 03/03/25 12:45 Method: 632 - Carbamate and Urea Pesticides (HPLC) Lab Sample ID: MB 860-220281/1-A **Matrix: Water** Analysis Batch: 220464 мв мв MDL Unit Dil Fac Analyte Result Qualifier RL Prepared Analyzed Carbaryl <1.85 U 5.00 1.85 ug/L 03/04/25 13:54 03/05/25 12:50 Diuron <0.0514 U 0.0900 03/04/25 13:54 03/05/25 12:50 0.0514 ug/L Lab Sample ID: LCS 860-220281/2-A **Matrix: Water** | Analysis Batch: 220464 | | | | | | | Prep Ba | tch: 220281 | |------------------------|---------|--------|-----------|------|---|------|----------|-------------| | | Spike | LCS | LCS | | | | %Rec | | | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | | | Carbaryl |
100 | 106.5 | | ug/L | | 107 | 70 - 130 | | | Diuron | 2.00 | 1.989 | | ug/L | | 99 | 70 - 130 | | Lab Sample ID: LCSD 860-220281/3-A | Matrix: Water
Analysis Batch: 220464 | | | | | | | Prep Ty
Prep Ba | • | | |---|-------|--------|-----------|------|---|------|--------------------|-----|-------| | | Spike | LCSD | LCSD | | | | %Rec | | RPD | | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | Carbaryl | 100 | 106.4 | | ug/L | | 106 | 70 - 130 | 0 | 20 | | Diuron | 2.00 | 1.995 | | ug/L | | 100 | 70 - 130 | 0 | 20 | Method: 1613B - Tetra Chlorinated Dioxin (GC/MS/MS) | Lab Sample ID: MBL 380-139033/21-A | Client Sample ID: Method Blank | |------------------------------------|--------------------------------| | Matrix: Water | Prep Type: Total/NA | | Analysis Batch: 139270 | Prep Batch: 139033 | | MBL MBL | | Result Qualifier RL MDL Unit Dil Fac Analyte Prepared Analyzed 2,3,7,8-TCDD <2.07 U 4.93 2.07 pg/L 03/03/25 04:37 03/03/25 19:38 MBL MBL Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C-2,3,7,8-TCDD 59 31 - 137 03/03/25 04:37 03/03/25 19:38 **Eurofins Dallas** 2 3 4 QC Sample Results Client: North Texas Municipal Water District Job ID: 870-34261-1 Project/Site: SCX 30TAC307 + Table 3 Method: 1613B - Tetra Chlorinated Dioxin (GC/MS/MS) (Continued) Lab Sample ID: LCS
380-139033/19-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 139270 Prep Batch: 139033** Spike LCS LCS %Rec Result Qualifier Added Limits Analyte Unit %Rec 2,3,7,8-TCDD 197 180.8 pg/L 92 73 - 146 LCS LCS Isotope Dilution %Recovery Qualifier Limits 13C-2.3.7.8-TCDD 60 25 - 141 Lab Sample ID: LCSD 380-139033/20-A Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA **Matrix: Water Analysis Batch: 139270 Prep Batch: 139033** LCSD LCSD %Rec Spike **RPD** Analyte Added Result Qualifier Unit %Rec Limits RPD Limit 2,3,7,8-TCDD 197 168.8 86 73 - 146 pg/L LCSD LCSD %Recovery Qualifier **Isotope Dilution** Limits 13C-2,3,7,8-TCDD 25 - 141 65 **Client Sample ID: Lab Control Sample** Lab Sample ID: MRL 380-139033/22-A **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 139270 Prep Batch: 139033** Spike MRL MRL %Rec Added Result Qualifier Limits Analyte Unit D %Rec 2,3,7,8-TCDD 4.93 50 - 150 4.151 J pg/L 84 MRL MRL Isotope Dilution %Recovery Qualifier Limits 13C-2,3,7,8-TCDD 25 - 141 66 Method: 200.8 - Metals (ICP/MS) Lab Sample ID: MB 860-220982/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total Recoverable Analysis Batch: 221165 Prep Batch: 220982** MB MB **Analyte** Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.000890 mg/L <0.000890 U 0.00300 03/07/25 07:46 03/07/25 16:08 Lab Sample ID: LCS 860-220982/2-A **Client Sample ID: Lab Control Sample** Lab Sample ID: LCSD 860-220982/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Water Prep Type: Total Recoverable Analysis Batch: 221165** Prep Batch: 220982 LCSD LCSD %Rec **RPD** Spike Added Analyte Result Qualifier Unit %Rec Limits **RPD** Limit Cr 0.100 0.1011 mg/L 101 85 - 115 20 LCS LCS 0.1014 Result Qualifier Unit mg/L Spike Added 0.100 **Matrix: Water** **Analyte** Cr **Analysis Batch: 221165** **Eurofins Dallas** **Prep Type: Total Recoverable** %Rec Limits 85 - 115 101 Prep Batch: 220982 2 3 4 5 6 10 13 14 Client: North Texas Municipal Water District Job ID: 870-34261-1 Project/Site: SCX 30TAC307 + Table 3 Method: 200.8 - Metals (ICP/MS) (Continued) Lab Sample ID: LLCS 860-220982/4-A Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable Matrix: Water Analysis Batch: 221165** Prep Batch: 220982 Spike LLCS LLCS %Rec Added Result Qualifier Limits Analyte Unit %Rec Cr 0.00400 0.003302 mg/L 83 50 - 150 Method: 420.4 - Phenolics, Total Recoverable Lab Sample ID: MB 860-220873/16 **Client Sample ID: Method Blank** Prep Type: Total/NA **Matrix: Water** Analysis Batch: 220873 MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed 10.0 <5.80 U 5.80 ug/L 03/05/25 18:41 Phenols, Total Lab Sample ID: LCS 860-220873/57 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 220873** LCS LCS %Rec Spike Added Result Qualifier Unit Limits Analyte D %Rec Phenols, Total 100 106.7 ug/L 107 90 - 110 Lab Sample ID: LCSD 860-220873/58 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 220873** RPD Spike LCSD LCSD %Rec Added RPD Analyte Result Qualifier Unit D %Rec Limits Limit Phenols, Total 100 107.4 ug/L 107 90 - 110 20 Method: 4500 CN G NonAm - Cyanide, Non-amenable Lab Sample ID: MB 860-219679/4-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA **Analysis Batch: 219759 Prep Batch: 219679** MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 2.33 ug/L Cyanide, Non-amenable <2.33 U 5.00 02/28/25 16:03 02/28/25 18:24 Client Sample ID: 2509002-06 Effluent G Lab Sample ID: 870-34261-4 DU **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 219759** Prep Batch: 219679 DU DU RPD Sample Sample Result Qualifier Result Qualifier Unit **RPD** Limit Cyanide, Non-amenable <2.33 U <2.33 U ug/L Method: Kelada 01 - Cyanide, Total, Acid Dissociable and Thiocyanate Lab Sample ID: MB 860-221070/24 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 221070** MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Cyanide, Total <0.00198 U 0.00500 0.00198 mg/L 03/06/25 19:10 **Eurofins Dallas** 2 5 6 9 **10** 13 QC Sample Results Client: North Texas Municipal Water District Job ID: 870-34261-1 Project/Site: SCX 30TAC307 + Table 3 Method: Kelada 01 - Cyanide, Total, Acid Dissociable and Thiocyanate (Continued) Lab Sample ID: LCS 860-221070/25 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 221070** Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit %Rec 90 - 110 Cyanide, Total 0.100 0.1040 mg/L 104 Lab Sample ID: LCSD 860-221070/26 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 221070** Spike LCSD LCSD %Rec **RPD** Added Result Qualifier D %Rec Limits RPD Limit Analyte Unit 0.100 Cyanide, Total 0.1001 mg/L 100 90 - 110 Lab Sample ID: LLCS 860-221070/27 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 221070** Spike LLCS LLCS %Rec Added Result Qualifier Limits Analyte Unit %Rec Cyanide, Total 0.00500 0.005734 50 - 150 mg/L Method: SM 3500 CR B - Chromium, Hexavalent Lab Sample ID: MB 870-26763/9 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 26763** MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chromium, hexavalent <0.00280 U 0.0100 0.00280 mg/L 02/27/25 17:37 Lab Sample ID: LCS 870-26763/10 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 26763** LCS LCS Spike %Rec Analyte Added Result Qualifier Unit Limits mg/L 103 85 - 115 Client Sample ID: 2509002-06 Effluent G Prep Type: Total/NA 2 3 5 6 13 14 15 16 Sample Sample MS MS Spike %Rec Result Qualifier Added Result Qualifier Unit %Rec Limits 0.00359 0.499 0.5143 102 85 - 115 mg/L 0.5119 Client Sample ID: 2509002-06 Effluent G Lab Sample ID: 870-34261-4 MSD **Matrix: Water** Prep Type: Total/NA 0.499 **Analysis Batch: 26763** **Analysis Batch: 26763** Chromium, hexavalent Chromium, hexavalent **Matrix: Water** Analyte Lab Sample ID: 870-34261-4 MS **RPD** Sample Sample Spike MSD MSD %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit 0.00359 J 0.499 0.4997 100 Chromium, hexavalent mg/L 85 - 115 **Eurofins Dallas** Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 #### **GC/MS VOA** #### **Analysis Batch: 219795** | Lab Sample ID
870-34261-2 | Client Sample ID
2509002-03 Influent G | Prep Type Total/NA | Matrix
Water | Method 624.1 | Prep Batch | |-------------------------------------|---|--------------------|-----------------|--------------|------------| | 870-34261-4 | 2509002-06 Effluent G | Total/NA | Water | 624.1 | | | MB 860-219795/9 | Method Blank | Total/NA | Water | 624.1 | | | LCS 860-219795/3 | Lab Control Sample | Total/NA | Water | 624.1 | | | LCSD 860-219795/4 | Lab Control Sample Dup | Total/NA | Water | 624.1 | | #### **GC/MS Semi VOA** #### **Analysis Batch: 219508** | Lab Sample ID
870-34261-1 | Client Sample ID 2509002-01 Influent TC | Prep Type Total/NA | Matrix
Water | Method 625.1 | Prep Batch 219948 | |-------------------------------------|---|--------------------|-----------------|--------------|-------------------| | 870-34261-3 | 2509002-04 Effluent TC | Total/NA | Water | 625.1 | 219948 | | MB 860-219948/1-A | Method Blank | Total/NA | Water | 625.1 | 219948 | | LCS 860-219948/2-A | Lab Control Sample | Total/NA | Water | 625.1 | 219948 | | LCSD 860-219948/3-A | Lab Control Sample Dup | Total/NA | Water | 625.1 | 219948 | #### Prep Batch: 219948 | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-----------|--------|--------|------------| | 870-34261-1 | 2509002-01 Influent TC | Total/NA | Water | 625 | | | 870-34261-3 | 2509002-04 Effluent TC | Total/NA | Water | 625 | | | MB 860-219948/1-A | Method Blank | Total/NA | Water | 625 | | | LCS 860-219948/2-A | Lab Control Sample | Total/NA | Water | 625 | | | LCSD 860-219948/3-A | Lab Control Sample Dup | Total/NA | Water | 625 | | #### **Analysis Batch: 220575** | Lab Sample ID
870-34261-1 - RE | Client Sample ID 2509002-01 Influent TC | Prep Type Total/NA | Matrix
Water | Method 625.1 | Prep Batch 220661 | |-----------------------------------|---|--------------------|-----------------|--------------|-------------------| | 870-34261-3 - RE | 2509002-04 Effluent TC | Total/NA | Water | 625.1 | 220661 | | MB 860-220661/1-A | Method Blank | Total/NA | Water | 625.1 | 220661 | | LCS 860-220661/2-A | Lab Control Sample | Total/NA | Water | 625.1 | 220661 | | LCSD 860-220661/3-A | Lab Control Sample Dup | Total/NA | Water | 625.1 | 220661 | #### **Prep Batch: 220661** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-----------|--------|--------|------------| | 870-34261-1 - RE | 2509002-01 Influent TC | Total/NA | Water | 625 | | | 870-34261-3 - RE | 2509002-04 Effluent TC | Total/NA | Water | 625 | | | MB 860-220661/1-A | Method Blank | Total/NA | Water | 625 | | | LCS 860-220661/2-A | Lab Control Sample | Total/NA | Water | 625 | | | LCSD 860-220661/3-A | Lab Control Sample Dup | Total/NA | Water | 625 | | #### **GC Semi VOA** #### Analysis Batch: 219904 | Lab Sample ID
870-34261-1 | Client Sample ID 2509002-01 Influent TC | Prep Type Total/NA | Matrix
Water | Method
8015D | Prep Batch | |-------------------------------------|---|--------------------|-----------------|-----------------|------------| | 870-34261-3 | 2509002-04 Effluent TC | Total/NA | Water | 8015D | | | MB 860-219904/10 | Method Blank |
Total/NA | Water | 8015D | | #### Prep Batch: 220040 | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------|------------------------|-----------|--------|--------|------------| | 870-34261-1 | 2509002-01 Influent TC | Total/NA | Water | 3511 | <u> </u> | | 870-34261-3 | 2509002-04 Effluent TC | Total/NA | Water | 3511 | | **Eurofins Dallas** _____3 4 5 7 _ **10** 40 13 - 16 Client: North Texas Municipal Water District Job ID: 870-34261-1 Project/Site: SCX 30TAC307 + Table 3 # **GC Semi VOA (Continued)** #### Prep Batch: 220040 (Continued) | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-----------|--------|--------|------------| | MB 860-220040/1-A | Method Blank | Total/NA | Water | 3511 | | | LCS 860-220040/2-A | Lab Control Sample | Total/NA | Water | 3511 | | | LCS 860-220040/4-A | Lab Control Sample | Total/NA | Water | 3511 | | | LCSD 860-220040/3-A | Lab Control Sample Dup | Total/NA | Water | 3511 | | | LCSD 860-220040/5-A | Lab Control Sample Dup | Total/NA | Water | 3511 | | #### Prep Batch: 220428 | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-----------|--------|--------|------------| | 870-34261-1 | 2509002-01 Influent TC | Total/NA | Water | 608 | | | 870-34261-3 | 2509002-04 Effluent TC | Total/NA | Water | 608 | | | MB 860-220428/1-A | Method Blank | Total/NA | Water | 608 | | | LCS 860-220428/2-A | Lab Control Sample | Total/NA | Water | 608 | | | LCS 860-220428/4-A | Lab Control Sample | Total/NA | Water | 608 | | | LCSD 860-220428/3-A | Lab Control Sample Dup | Total/NA | Water | 608 | | | LCSD 860-220428/5-A | Lab Control Sample Dup | Total/NA | Water | 608 | | #### **Analysis Batch: 220466** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-----------|--------|--------|------------| | 870-34261-1 | 2509002-01 Influent TC | Total/NA | Water | 615 | 220040 | | 870-34261-3 | 2509002-04 Effluent TC | Total/NA | Water | 615 | 220040 | | MB 860-220040/1-A | Method Blank | Total/NA | Water | 615 | 220040 | | LCS 860-220040/2-A | Lab Control Sample | Total/NA | Water | 615 | 220040 | | LCS 860-220040/4-A | Lab Control Sample | Total/NA | Water | 615 | 220040 | | LCSD 860-220040/3-A | Lab Control Sample Dup | Total/NA | Water | 615 | 220040 | | LCSD 860-220040/5-A | Lab Control Sample Dup | Total/NA | Water | 615 | 220040 | #### **Analysis Batch: 220734** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-----------|--------|--------|------------| | 870-34261-1 | 2509002-01 Influent TC | Total/NA | Water | 608.3 | 220428 | | 870-34261-3 | 2509002-04 Effluent TC | Total/NA | Water | 608.3 | 220428 | | MB 860-220428/1-A | Method Blank | Total/NA | Water | 608.3 | 220428 | | LCS 860-220428/2-A | Lab Control Sample | Total/NA | Water | 608.3 | 220428 | | LCSD 860-220428/3-A | Lab Control Sample Dup | Total/NA | Water | 608.3 | 220428 | #### **Analysis Batch: 220823** | Lab Sample ID
870-34261-1 | Client Sample ID 2509002-01 Influent TC | Prep Type Total/NA | Matrix
Water | Method 608.3 | Prep Batch 220428 | |------------------------------|---|---------------------|-----------------|--------------|-------------------| | 870-34261-3 | 2509002-04 Effluent TC | Total/NA | Water | 608.3 | 220428 | | MB 860-220428/1-A | Method Blank | Total/NA | Water | 608.3 | 220428 | | LCS 860-220428/4-A | Lab Control Sample | Total/NA | Water | 608.3 | 220428 | | LCSD 860-220428/5-A | Lab Control Sample Dup | Total/NA | Water | 608.3 | 220428 | #### HPLC/IC #### Prep Batch: 220281 | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-----------|--------|----------|------------| | 870-34261-1 | 2509002-01 Influent TC | Total/NA | Water | CWA_Prep | | | 870-34261-3 | 2509002-04 Effluent TC | Total/NA | Water | CWA_Prep | | | MB 860-220281/1-A | Method Blank | Total/NA | Water | CWA_Prep | | | LCS 860-220281/2-A | Lab Control Sample | Total/NA | Water | CWA_Prep | | | LCSD 860-220281/3-A | Lab Control Sample Dup | Total/NA | Water | CWA Prep | | **Eurofins Dallas** Page 39 of 63 2 3 4/30/2025 (Rev. 2) Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 #### HPLC/IC #### Analysis Batch: 220464 | Lab Sample ID
870-34261-1 | Client Sample ID 2509002-01 Influent TC | Prep Type Total/NA | Matrix
Water | Method 632 | Prep Batch 220281 | |------------------------------|---|--------------------|-----------------|------------|-------------------| | 870-34261-3 | 2509002-04 Effluent TC | Total/NA | Water | 632 | 220281 | | MB 860-220281/1-A | Method Blank | Total/NA | Water | 632 | 220281 | | LCS 860-220281/2-A | Lab Control Sample | Total/NA | Water | 632 | 220281 | | LCSD 860-220281/3-A | Lab Control Sample Dup | Total/NA | Water | 632 | 220281 | #### **Specialty Organics** #### Prep Batch: 139033 | Lab Sample ID
870-34261-3 | Client Sample ID 2509002-04 Effluent TC | Prep Type Total/NA | Matrix Water | Method
1613B | Prep Batch | |------------------------------|---|---------------------|--------------|-----------------|------------| | MBL 380-139033/21-A | Method Blank | Total/NA | Water | 1613B | | | LCS 380-139033/19-A | Lab Control Sample | Total/NA | Water | 1613B | | | LCSD 380-139033/20-A | Lab Control Sample Dup | Total/NA | Water | 1613B | | | MRL 380-139033/22-A | Lab Control Sample | Total/NA | Water | 1613B | | #### **Analysis Batch: 139270** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |----------------------|------------------------|-----------|--------|--------|------------| | 870-34261-3 | 2509002-04 Effluent TC | Total/NA | Water | 1613B | 139033 | | MBL 380-139033/21-A | Method Blank | Total/NA | Water | 1613B | 139033 | | LCS 380-139033/19-A | Lab Control Sample | Total/NA | Water | 1613B | 139033 | | LCSD 380-139033/20-A | Lab Control Sample Dup | Total/NA | Water | 1613B | 139033 | | MRL 380-139033/22-A | Lab Control Sample | Total/NA | Water | 1613B | 139033 | #### **Metals** #### Prep Batch: 220982 | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-------------------|--------|--------|------------| | 870-34261-2 | 2509002-03 Influent G | Total Recoverable | Water | 200.8 | | | 870-34261-4 | 2509002-06 Effluent G | Total Recoverable | Water | 200.8 | | | MB 860-220982/1-A | Method Blank | Total Recoverable | Water | 200.8 | | | LCS 860-220982/2-A | Lab Control Sample | Total Recoverable | Water | 200.8 | | | LCSD 860-220982/3-A | Lab Control Sample Dup | Total Recoverable | Water | 200.8 | | | LLCS 860-220982/4-A | Lab Control Sample | Total Recoverable | Water | 200.8 | | #### **Analysis Batch: 221165** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-------------------|--------|--------|------------| | 870-34261-2 | 2509002-03 Influent G | Total Recoverable | Water | 200.8 | 220982 | | 870-34261-4 | 2509002-06 Effluent G | Total Recoverable | Water | 200.8 | 220982 | | MB 860-220982/1-A | Method Blank | Total Recoverable | Water | 200.8 | 220982 | | LCS 860-220982/2-A | Lab Control Sample | Total Recoverable | Water | 200.8 | 220982 | | LCSD 860-220982/3-A | Lab Control Sample Dup | Total Recoverable | Water | 200.8 | 220982 | | LLCS 860-220982/4-A | Lab Control Sample | Total Recoverable | Water | 200.8 | 220982 | # **General Chemistry** #### **Analysis Batch: 26763** | - | | | | | | |------------------|-----------------------|-----------|--------|--------------|------------| | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | | 870-34261-2 | 2509002-03 Influent G | Total/NA | Water | SM 3500 CR B | | | 870-34261-4 | 2509002-06 Effluent G | Total/NA | Water | SM 3500 CR B | | | MB 870-26763/9 | Method Blank | Total/NA | Water | SM 3500 CR B | | | LCS 870-26763/10 | Lab Control Sample | Total/NA | Water | SM 3500 CR B | | Page 40 of 63 **Eurofins Dallas** 4/30/2025 (Rev. 2) 3 5 7 0 10 12 1.0 15 ט ו Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 #### **General Chemistry (Continued)** #### **Analysis Batch: 26763 (Continued)** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |-----------------|-----------------------|-----------|--------|--------------|------------| | 870-34261-4 MS | 2509002-06 Effluent G | Total/NA | Water | SM 3500 CR B | | | 870-34261-4 MSD | 2509002-06 Effluent G | Total/NA | Water | SM 3500 CR B | | #### **Prep Batch: 219679** | Lab Sample ID
870-34261-2 | Client Sample ID 2509002-03 Influent G | Prep Type Total/NA | Matrix Water | Method Distill/CN | Prep Batch | |-------------------------------------|--|--------------------|--------------|-------------------|------------| | 870-34261-4 | 2509002-06 Effluent G | Total/NA | Water | Distill/CN | | | MB 860-219679/4-A | Method Blank | Total/NA | Water | Distill/CN | | | LCS 860-219679/5-A | Lab Control Sample | Total/NA | Water | Distill/CN | | | LCSD 860-219679/6-A | Lab Control Sample Dup | Total/NA | Water | Distill/CN | | | LLCS 860-219679/7-A | Lab Control Sample | Total/NA | Water | Distill/CN | | | 870-34261-4 DU | 2509002-06 Effluent G | Total/NA | Water | Distill/CN | | #### **Analysis Batch: 219759** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------------|------------------------|-----------|--------|-----------|------------| |
870-34261-2 | 2509002-03 Influent G | Total/NA | Water | 4500 CN G | 219679 | | | | | | NonAm | | | 870-34261-4 | 2509002-06 Effluent G | Total/NA | Water | 4500 CN G | 219679 | | | | | | NonAm | | | MB 860-219679/4-A | Method Blank | Total/NA | Water | 4500 CN G | 219679 | | | | | | NonAm | | | LCS 860-219679/5-A | Lab Control Sample | Total/NA | Water | 4500 CN G | 219679 | | | | | | NonAm | | | LCSD 860-219679/6-A | Lab Control Sample Dup | Total/NA | Water | 4500 CN G | 219679 | | | | | | NonAm | | | LLCS 860-219679/7-A | Lab Control Sample | Total/NA | Water | 4500 CN G | 219679 | | | | | | NonAm | | | 870-34261-4 DU | 2509002-06 Effluent G | Total/NA | Water | 4500 CN G | 219679 | | | | | | NonAm | | #### **Analysis Batch: 219959** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------|-----------------------|-----------|--------|--------------|------------| | 870-34261-2 | 2509002-03 Influent G | Total/NA | Water | SM 4500 CN G | | | 870-34261-4 | 2509002-06 Effluent G | Total/NA | Water | SM 4500 CN G | | #### **Analysis Batch: 220873** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |--------------------|------------------------|-----------|--------|--------|------------| | 870-34261-2 | 2509002-03 Influent G | Total/NA | Water | 420.4 | | | 870-34261-4 | 2509002-06 Effluent G | Total/NA | Water | 420.4 | | | MB 860-220873/16 | Method Blank | Total/NA | Water | 420.4 | | | LCS 860-220873/57 | Lab Control Sample | Total/NA | Water | 420.4 | | | LCSD 860-220873/58 | Lab Control Sample Dup | Total/NA | Water | 420.4 | | #### **Analysis Batch: 221070** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |--------------------|------------------------|-----------|--------|-----------|------------| | 870-34261-2 | 2509002-03 Influent G | Total/NA | Water | Kelada 01 | | | 870-34261-4 | 2509002-06 Effluent G | Total/NA | Water | Kelada 01 | | | MB 860-221070/24 | Method Blank | Total/NA | Water | Kelada 01 | | | LCS 860-221070/25 | Lab Control Sample | Total/NA | Water | Kelada 01 | | | LCSD 860-221070/26 | Lab Control Sample Dup | Total/NA | Water | Kelada 01 | | | LLCS 860-221070/27 | Lab Control Sample | Total/NA | Water | Kelada 01 | | **Eurofins Dallas** Page 41 of 63 _ ! 2 3 4 C Ω 9 10 <u>11</u> 13 14 4.0 Client: North Texas Municipal Water District Job ID: 870-34261-1 Project/Site: SCX 30TAC307 + Table 3 # **General Chemistry** #### **Analysis Batch: 221193** | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |---------------|-----------------------|-----------|--------|--------------|------------| | 870-34261-2 | 2509002-03 Influent G | Total/NA | Water | SM 3500 CR B | | | 870-34261-4 | 2509002-06 Effluent G | Total/NA | Water | SM 3500 CR B | | 4 C 8 9 11 12 14 15 10 #### **Lab Chronicle** Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Lab Sample ID: 870-34261-1 Job ID: 870-34261-1 **Matrix: Water** Client Sample ID: 2509002-01 Influent TC Date Collected: 02/27/25 09:25 Date Received: 02/27/25 16:28 | | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|----------|-----|--------|---------|--------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 625 | | | 1000 mL | 1 mL | 219948 | 03/03/25 13:49 | DR | EET HOU | | Total/NA | Analysis | 625.1 | | 1 | 1 mL | 1 mL | 219508 | 03/04/25 18:08 | PXS | EET HOU | | Total/NA | Prep | 625 | RE | | 1000 mL | 1 mL | 220661 | 03/06/25 05:00 | DR | EET HOU | | Total/NA | Analysis | 625.1 | RE | 1 | 1 mL | 1 mL | 220575 | 03/06/25 23:24 | PXS | EET HOU | | Total/NA | Prep | 608 | | | 1000 mL | 1 mL | 220428 | 03/05/25 08:32 | ВН | EET HOU | | Total/NA | Analysis | 608.3 | | 1 | | | 220734 | 03/06/25 15:06 | WP | EET HOU | | Total/NA | Prep | 608 | | | 1000 mL | 1 mL | 220428 | 03/05/25 08:32 | ВН | EET HOU | | Total/NA | Analysis | 608.3 | | 1 | 0 mL | 1.0 mL | 220823 | 03/07/25 02:56 | WP | EET HOU | | Total/NA | Prep | 3511 | | | 49.7 mL | 4 mL | 220040 | 03/04/25 10:05 | ВН | EET HOU | | Total/NA | Analysis | 615 | | 1 | | | 220466 | 03/05/25 19:10 | WP | EET HOU | | Total/NA | Analysis | 8015D | | 1 | 1 mL | 1 mL | 219904 | 03/03/25 13:36 | JBS | EET HOU | | Total/NA | Prep | CWA_Prep | | | 1000 mL | 1 mL | 220281 | 03/04/25 13:54 | DR | EET HOU | | Total/NA | Analysis | 632 | | 5 | | | 220464 | 03/07/25 11:55 | AA | EET HOU | Client Sample ID: 2509002-03 Influent G Lab Sample ID: 870-34261-2 Date Collected: 02/27/25 09:40 Date Received: 02/27/25 16:28 | | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-------------------|----------|--------------------|-----|--------|---------|--------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Analysis | 624.1 | | 2 | 5 mL | 5 mL | 219795 | 03/03/25 14:36 | AN | EET HOU | | Total Recoverable | Prep | 200.8 | | | 50 mL | 50 mL | 220982 | 03/07/25 07:47 | AGR | EET HOU | | Total Recoverable | Analysis | 200.8 | | 1 | | | 221165 | 03/07/25 16:59 | DP | EET HOU | | Total/NA | Analysis | 420.4 | | 1 | 10 mL | 10 mL | 220873 | 03/05/25 20:04 | BW | EET HOU | | Total/NA | Prep | Distill/CN | | | 6 mL | 6 mL | 219679 | 02/28/25 16:03 | ALL | EET HOU | | Total/NA | Analysis | 4500 CN G
NonAm | | 1 | | | 219759 | 02/28/25 18:49 | ALL | EET HOU | | Total/NA | Analysis | Kelada 01 | | 1 | 10 mL | 10 mL | 221070 | 03/06/25 19:54 | BW | EET HOU | | Total/NA | Analysis | SM 3500 CR B | | 1 | 10 mL | 10 mL | 26763 | 02/27/25 17:37 | CJH | EET DAL | | Total/NA | Analysis | SM 3500 CR B | | 1 | | | 221193 | 03/10/25 18:10 | NR | EET HOU | | Total/NA | Analysis | SM 4500 CN G | | 1 | | | 219959 | 03/07/25 13:57 | MC | EET HOU | Client Sample ID: 2509002-04 Effluent TC Date Collected: 02/27/25 09:05 Date Received: 02/27/25 16:28 | _ | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|--------|-----|--------|---------|--------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 625 | | | 1000 mL | 1 mL | 219948 | 03/03/25 13:49 | DR | EET HOU | | Total/NA | Analysis | 625.1 | | 1 | 1 mL | 1 mL | 219508 | 03/04/25 18:32 | PXS | EET HOU | | Total/NA | Prep | 625 | RE | | 1000 mL | 1 mL | 220661 | 03/06/25 05:00 | DR | EET HOU | | Total/NA | Analysis | 625.1 | RE | 1 | 1 mL | 1 mL | 220575 | 03/06/25 23:47 | PXS | EET HOU | | Total/NA | Prep | 608 | | | 1000 mL | 1 mL | 220428 | 03/05/25 08:32 | ВН | EET HOU | | Total/NA | Analysis | 608.3 | | 2 | | | 220734 | 03/06/25 15:20 | WP | EET HOU | | Total/NA | Prep | 608 | | | 1000 mL | 1 mL | 220428 | 03/05/25 08:32 | ВН | EET HOU | | Total/NA | Analysis | 608.3 | | 2 | | | 220823 | 03/07/25 04:17 | WP | EET HOU | **Eurofins Dallas** **Matrix: Water** Page 43 of 63 13 **Matrix: Water** Lab Sample ID: 870-34261-3 #### **Lab Chronicle** Client: North Texas Municipal Water District Job ID: 870-34261-1 Project/Site: SCX 30TAC307 + Table 3 Client Sample ID: 2509002-04 Effluent TC Lab Sample ID: 870-34261-3 Date Collected: 02/27/25 09:05 **Matrix: Water** Date Received: 02/27/25 16:28 | | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-----------|----------|----------|-----|--------|---------|--------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Prep | 3511 | | | 49.7 mL | 4 mL | 220040 | 03/04/25 10:05 | ВН | EET HOU | | Total/NA | Analysis | 615 | | 1 | | | 220466 | 03/05/25 19:36 | WP | EET HOU | | Total/NA | Analysis | 8015D | | 1 | 1 mL | 1 mL | 219904 | 03/03/25 13:49 | JBS | EET HOU | | Total/NA | Prep | CWA_Prep | | | 1000 mL | 1 mL | 220281 | 03/04/25 13:54 | DR | EET HOU | | Total/NA | Analysis | 632 | | 1 | | | 220464 | 03/05/25 17:13 | AA | EET HOU | | Total/NA | Prep | 1613B | | | 1033 mL | 20 uL | 139033 | 03/03/25 04:37 | U7RS | EA POM | | Total/NA | Analysis | 1613B | | 1 | 20 uL | 20 uL | 139270 | 03/04/25 03:06 | X8AA | EA POM | Client Sample ID: 2509002-06 Effluent G Lab Sample ID: 870-34261-4 Date Collected: 02/27/25 08:45 **Matrix: Water** Date Received: 02/27/25 16:28 | | Batch | Batch | | Dil | Initial | Final | Batch | Prepared | | | |-------------------|----------|--------------------|-----|--------|---------|--------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Amount | Amount | Number | or Analyzed | Analyst | Lab | | Total/NA | Analysis | 624.1 | | 1 | 5 mL | 5 mL | 219795 | 03/03/25 14:56 | AN | EET HO | | Total Recoverable | Prep | 200.8 | | | 50 mL | 50 mL | 220982 | 03/07/25 07:47 | AGR | EET HO | | Total Recoverable | Analysis | 200.8 | | 1 | | | 221165 | 03/07/25 17:01 | DP | EET HO | | Total/NA | Analysis | 420.4 | | 1 | 10 mL | 10 mL | 220873 | 03/05/25 20:06 | BW | EET HO | | Total/NA | Prep | Distill/CN | | | 6 mL | 6 mL | 219679 | 02/28/25 16:03 | ALL | EET HO | | Total/NA | Analysis | 4500 CN G
NonAm | | 1 | | | 219759 | 02/28/25 18:50 | ALL | EET HO | | Total/NA | Analysis | Kelada 01 | | 1 | 10 mL | 10 mL | 221070 | 03/06/25 19:51 | BW | EET HO | | Total/NA | Analysis | SM 3500 CR B | | 1 | 10 mL | 10 mL | 26763 | 02/27/25 17:37 | CJH | EET DAL | | Total/NA | Analysis | SM 3500 CR B | | 1 | | | 221193 | 03/10/25 18:10 | NR | EET HO | | Total/NA | Analysis | SM 4500 CN G | | 1 | | | 219959 | 03/07/25 13:57 | MC | EET HO | #### **Laboratory References:** EA POM = Eurofins Eaton Analytical Pomona, 941 Corporate Center Drive, Pomona, CA 91768-2642, TEL (626)386-1100 EET DAL = Eurofins Dallas, 9701 Harry Hines Blvd, Dallas, TX 75220, TEL (214)902-0300 EET HOU = Eurofins Houston,
4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200 SPL = SPL Kilgore, 2600 Dudley Rd, Kilgore, TX 75662 **Eurofins Dallas** 4/30/2025 (Rev. 2) # **Accreditation/Certification Summary** Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 #### **Laboratory: Eurofins Dallas** The accreditations/certifications listed below are applicable to this report. | Authority | Program | Identification Number | Expiration Date | | |-----------|---------|-----------------------|-----------------|--| | Texas | NELAP | T104704295 | 06-30-25 | | # **Laboratory: Eurofins Eaton Analytical Pomona** All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report. | Authority | Program | Identification Number | Expiration Date | |-------------------------------|---------------|-----------------------|-----------------| | A2LA | ISO/IEC 17025 | 5890.01 & 5890.02 | 06-30-25 | | Alabama | State | 41060 | 06-18-25 | | Arizona | State | AZ0833 | 02-27-26 | | Arkansas (DW) | State | CA00006 | 01-31-26 | | California | State | 2813 | 04-06-25 | | Colorado | State | CA00006 | 01-31-26 | | Connecticut | State | PH-0107 | 03-31-26 | | Delaware (DW) | State | CA00006 | 01-31-26 | | Florida | NELAP | E871024 | 06-30-25 | | Georgia (DW) | State | 947 | 01-31-26 | | Guam | State | 25-02R | 03-31-25 | | Hawaii | State | CA00006 | 03-13-25 | | Hawaii (Micro) | State | CA00006 | 01-31-26 | | Idaho (DW) | State | CA00006 | 01-31-26 | | Idaho (Micro) | State | CA00006 | 03-31-25 | | Illinois | NELAP | 200033 | 03-12-25 | | Indiana | State | C-CA-01 | 06-18-25 | | Kansas | NELAP | E-10268 | 04-30-25 | | Kentucky (DW) | State | KY90107 | 12-31-25 | | Louisiana (DW) | State | LA008 | 12-31-25 | | Maine | State | CA00006A | 04-09-25 | | Maryland | State | 224 | 03-31-26 | | Massachusetts | State | M-CA006 | 04-21-25 | | MI - RadChem Recognition | State | 9906 | 06-18-25 | | Michigan | State | 9906 | 06-18-25 | | Mississippi | State | CA2813 | 06-18-25 | | Montana (DW) | State | CERT0035 | 01-01-26 | | Nebraska | State | NE-OS-21-13 | 01-31-26 | | Nevada | State | CA00006 | 07-31-25 | | New Hampshire | NELAP | 2959 | 03-29-25 | | New Jersey | NELAP | CA008 | 06-30-25 | | New Mexico | State | CA00006 | 01-31-26 | | New York | NELAP | 11320 | 03-31-25 | | North Carolina (DW) | State | 06701 | 07-31-25 | | North Dakota | State | R-009 | 01-31-24 * | | Northern Mariana Islands (DW) | State | CA00006 | 01-31-26 | | Ohio | State | 87786 | 01-31-26 | | Oregon | NELAP | 4034 | 01-29-26 | | Pennsylvania | NELAP | 68-00565 | 10-31-25 | | Puerto Rico | State | CA00006 | 03-25-25 | | Rhode Island | State | LAO00381 | 12-30-25 | | South Dakota (DW) | State | CA11320 | 06-18-25 | | Tennessee | State | TN02839 | 01-31-25 * | | Texas | NELAP | T104704230 | 09-30-25 | ^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid. **Eurofins Dallas** 3 4 6 8 9 11 13 . . 16 # **Accreditation/Certification Summary** Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 #### **Laboratory: Eurofins Eaton Analytical Pomona (Continued)** All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report. | Authority | Program | Identification Number | Expiration Date | |--------------|---------------------|-----------------------|-----------------| | USEPA UCMR 5 | US Federal Programs | CA00006 | 12-31-25 | | Utah | NELAP | CA00006 | 01-31-26 | | Vermont | State | VT-0114 | 04-16-25 | | Virginia | NELAP | 460260 | 06-14-25 | | Washington | State | C838 | 03-11-25 | | Wyoming | State | 8-TMS-L | 06-18-25 | #### **Laboratory: Eurofins Houston** Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. | Authority | Program | Identification Number | Expiration Date | | |-----------|---------|------------------------------|------------------------|--| | Texas | NELAP | T104704215 | 07-01-26 | | The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. | Analysis Method | Prep Method | Matrix | Analyte | |-----------------|-------------|--------|----------------------------------| | 420.4 | | Water | Phenols, Total | | 4500 CN G NonAm | Distill/CN | Water | Cyanide, Non-amenable | | 608.3 | 608 | Water | Dicofol | | 608.3 | 608 | Water | Mirex | | 608.3 | 608 | Water | Polychlorinated biphenyls, Total | | 615 | 3511 | Water | Hexachlorophene | | 615 | 3511 | Water | Pentachlorophenol | | 624.1 | | Water | 1,2,4-Trichlorobenzene | | 624.1 | | Water | 1,3-Dichloropropene, Total | | 624.1 | | Water | Epichlorohydrin | | 624.1 | | Water | Naphthalene | | 624.1 | | Water | Trihalomethanes, Total | | 624.1 | | Water | Vinyl acetate | | 625.1 | 625 | Water | 3 & 4 Methylphenol | | 625.1 | 625 | Water | 4-Nonylphenol | | 625.1 | 625 | Water | Azobenzene | | 625.1 | 625 | Water | Bisphenol-A | | 625.1 | 625 | Water | Total Cresols | | 632 | CWA_Prep | Water | Diuron | | SM 3500 CR B | | Water | Cr (III) | **Eurofins Dallas** 3 4 5 ____ 9 10 12 13 15 16 # **Method Summary** Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 | Method | Method Description | Protocol | Laboratory | |--------------------|--|----------|------------| | 624.1 | Volatile Organic Compounds (GC/MS) | EPA | EET HOU | | 625.1 | Semivolatile Organic Compounds (GC/MS) | EPA | EET HOU | | 608.3 | Organochlorine Pesticides in Water | EPA | EET HOU | | 608.3 | Polychlorinated Biphenyls (PCBs) (GC) | EPA | EET HOU | | 615 | Herbicides (GC) | EPA-01 | EET HOU | | 8015D | Glycols- Direct Injection (GC/FID) | SW846 | EET HOU | | 632 | Carbamate and Urea Pesticides (HPLC) | EPA-01 | EET HOU | | 1613B | Tetra Chlorinated Dioxin (GC/MS/MS) | EPA | EA POM | | 200.8 | Metals (ICP/MS) | EPA | EET HOU | | 420.4 | Phenolics, Total Recoverable | EPA | EET HOU | | 4500 CN G
NonAm | Cyanide, Non-amenable | SM | EET HOU | | Kelada 01 | Cyanide, Total, Acid Dissociable and Thiocyanate | EPA | EET HOU | | SM 3500 CR B | Chromium, Hexavalent | SM | EET DAL | | SM 3500 CR B | Chromium, Trivalent | SM | EET HOU | | SM 4500 CN G | Cyanide, Amenable | SM | EET HOU | | Subcontract | Ana Lab - 1657 Ogano PEST | None | SPL | | 1613B | Solid-Phase Extraction (SPE) | EPA | EA POM | | 200.8 | Preparation, Total Recoverable Metals | EPA | EET HOU | | 3511 | Microextraction of Organic Compounds | SW846 | EET HOU | | 608 | Liquid-Liquid Extraction (Separatory Funnel) | EPA | EET HOU | | 625 | Liquid-Liquid Extraction | EPA | EET HOU | | CWA_Prep | Liquid-Liquid Extraction (Separatory Funnel) | EPA | EET HOU | | Distill/CN | Distillation, Cyanide | None | EET HOU | #### **Protocol References:** EPA = US Environmental Protection Agency EPA-01 = "Methods For The Determination Of Nonconventional Pesticides In Municipal And Industrial Wastewater", EPA/821/R/92/002, April 1992. SM = "Standard Methods For The Examination Of Water And Wastewater" SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. #### **Laboratory References:** EA POM = Eurofins Eaton Analytical Pomona, 941 Corporate Center Drive, Pomona, CA 91768-2642, TEL (626)386-1100 EET DAL = Eurofins Dallas, 9701 Harry Hines Blvd, Dallas, TX 75220, TEL (214)902-0300 EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200 SPL = SPL Kilgore, 2600 Dudley Rd, Kilgore, TX 75662 **Eurofins Dallas** 4/30/2025 (Rev. 2) 2 5 7 0 9 11 12 13 16 # **Sample Summary** Client: North Texas Municipal Water District Project/Site: SCX 30TAC307 + Table 3 Job ID: 870-34261-1 | Lab Sample ID
870-34261-1 | Client Sample ID c5a9aacsa Wah fo I DBTC | Matrix
Water | Collected 02/27/25 09:25 | Received 02/27/25 16:28 | |-------------------------------------|--|-----------------|--------------------------|-------------------------| | 870-34261-2 | 2509002-03 Influent G | Water | 02/27/25 09:40 | 02/27/25 16:28 | | 870-34261-3 | 2509002-04 Effluent TC | Water | 02/27/25 09:05 | 02/27/25 16:28 | | 870-34261-4 | 2509002-06 Effluent G | Water | 02/27/25 08:45 | 02/27/25 16:28 | 3 2 4 5 _ 8 40 11 12 13 14 4.0 Office: 903-984-0551 * Fax: 903-984-5914 Page 1 of 1 *Project* 1138016 Printed 03/18/2025 12:13 #### XNKS-N Eurofins Xenco John Builes 9701 Harry Hines Blvd Dallas, TX 75220 # **TABLE OF CONTENTS** This report consists of this Table of Contents and the following pages: | Report Name | <u>Description</u> | <u>Pages</u> | |-------------------------------|---|--------------| | 1138016_r02_01_ProjectSamples | SPL Kilgore Project P:1138016 C:XNKS Project Sample Cross Reference t:304 | 1 | | 1138016_r03_03_ProjectResults | SPL Kilgore Project P:1138016 C:XNKS Project Results t:304 PO: US1312966443 | 3 | | 1138016_r10_05_ProjectQC | SPL Kilgore Project P:1138016 C:XNKS Project Quality Control Groups | 2 | | 1138016_r99_09_CoC1_of_1 | SPL Kilgore CoC XNKS 1138016_1_of_1 | 2 | | | Total Pages: | 8 | Email: Kilgore.ProjectManagement@spllabs.com # SAMPLE CROSS REFERENCE Printed 3/18/2025 Page 1 of 1 | Eurofins Xenco | |-----------------------| | John Builes | | 9701 Harry Hines Blvd | | Dallas, TX 75220 | Sample Taken Time Received Sample ID 2385511 2509002-01 INFLUENT TC 02/27/2025 09:25:00 02/28/2025 Bottle 01 Client Supplied Amber Glass Bottle 02 Client Supplied Amber Glass Rottle 03 Prepared Bottle: OPXI /OPXS 2 ml. Autosampler Vial (Batch 1163456) Volume: 1 00000 ml. <== Derived from 01 (1018 ml.) | Воше оз гтера | Method EPA 1657 |
Bottle 03 | PrepSet 1163456 | Preparation 03/04/2025 | QcGroup 1165735 | Analytical 03/05/2025 | | |---------------|------------------------|------------|-----------------|------------------------|------------------------|------------------------------|--| | Sample | Sample ID | Taken | Time | | Received | | | | 2385513 | 2509002-04 EFFLUENT TC | 02/27/2025 | 09:05:00 | | 02/28/2025 | | | Bottle 01 Client Supplied Amber Glass Bottle 02 Client Supplied Amber Glass Bottle 03 Prepared Bottle: OPXL/OPXS 2 mL Autosampler Vial (Batch 1163456) Volume: 1.00000 mL <== Derived from 01 (1003 ml) | Method | Bottle | PrepSet | Preparation | QcGroup | Analytical | |----------|--------|---------|-------------|---------|------------| | EPA 1657 | 03 | 1163456 | 03/04/2025 | 1165735 | 03/05/2025 | Email: Kilgore.ProjectManagement@spllabs.com Page 1 of 3 Project 1138016 Printed: 03/18/2025 #### XNKS-N Eurofins Xenco John Builes 9701 Harry Hines Blvd Dallas, TX 75220 #### **RESULTS** | Sample Results | | | | | | | | | | | | |-------------------|---------------------|---------------------------|-------------------------|---------|----------|------------------|------------|----------|--------|--|--| | 2385511 | 2509002-01 INFLUENT | TC | | | | | Received: | 02/28 | /2025 | | | | Non-Potable Water | Collect
Taken: | ded by: Client 02/27/2025 | Eurofins Xenc
09:25: | | | PO: | | US13129 | 66443 | | | | EPA 1657 | | Prepared: | 1163456 03/0 | 14/2025 | 14:15:00 | Analyzed 1165735 | 03/05/2025 | 21:53:00 | KAI | | | | Parameter | | Results | Units | RL | | Flags | CAS | | Bottle | | | | Azinphos-meth | yl (Guthion) | <0.0491 | ug/L | 0.0491 | | | 86-50-0 | | 03 | | | | Chlorpyrifos | | <0.0491 | ug/L | 0.0491 | | | 2921-88-2 | | 03 | | | | Demeton | | <0.0491 | ug/L | 0.0491 | | | 8065-48-3 | | 03 | | | | Diazinon | | <0.0491 | ug/L | 0.0491 | | | 333-41-5 | | 03 | | | | Malathion | | <0.0491 | ug/L | 0.0491 | | | 121-75-5 | | 03 | | | | Parathion, ethy | 1 | <0.0491 | ug/L | 0.0491 | | | 56-38-2 | | 03 | | | | Parathion, meth | ıvl | < 0.0491 | ug/L | 0.0491 | | | 298-00-0 | | 03 | | | | 2385513 250 | 09002-04 EFFLUENT TC | |-------------|----------------------| |-------------|----------------------| Non-Potable Water Collected by: Client Eurofins Xenco Taken: 02/27/2025 09:05:00 | I | EPA 1657 | Prepared: 1 | 163456 03/0 | 04/2025 | 14:15:00 | Analyzed 1165735 | 03/05/2025 | 22:19:00 | KAP | |---|---------------------------|-------------|-------------|---------|----------|------------------|------------|----------|--------| | | Parameter | Results | Units | RL | | Flags | CAS | | Bottle | | Z | Azinphos-methyl (Guthion) | <0.0499 | ug/L | 0.0499 | | | 86-50-0 | | 03 | | Z | Chlorpyrifos | <0.0499 | ug/L | 0.0499 | | | 2921-88-2 | | 03 | | Z | Demeton | <0.0499 | ug/L | 0.0499 | | | 8065-48-3 | | 03 | | Z | Diazinon | <0.0499 | ug/L | 0.0499 | | | 333-41-5 | | 03 | | Z | Malathion | <0.0499 | ug/L | 0.0499 | | | 121-75-5 | | 03 | | Z | Parathion, ethyl | <0.0499 | ug/L | 0.0499 | | | 56-38-2 | | 03 | | Z | Parathion, methyl | <0.0499 | ug/L | 0.0499 | | | 298-00-0 | | 03 | Sample Preparation Report Page 3 of 9 3 4 5 7 9 11 12 14 16 Ш 02/28/2025 US1312966443 Received: PO: Page 2 of 3 XNKS-N **Eurofins Xenco** John Builes 9701 Harry Hines Blvd Project 1138016 | | Dallas, TX 75220 | | | | | ' | | | 1 | |--------------|-----------------------|---------------------------|---------|------------|----------|------------------|------------|--------------------|-----| | | | | | | | Printed: | 03/1 | 18/2025 | | | 2385511 | 2509002-01 INFLUENT T | 02/27/2025 | | | | | Received: | 02/28/
US131296 | | | | | Prepared: | | 02/28/2025 | 15:55:00 | Calculated | 02/28/2025 | 15:55:00 | CAI | | Enviro Fee (| per Sampling Group) | Verified Prepared: | | 03/18/2025 | 11:52:00 | Analyzed | 03/18/2025 | 11:52:00 | WJF | | Check Limit | S | Completed | | | | | | | | | EPA 1657 | | Prepared: | 1163456 | 03/04/2025 | 14:15:00 | Analyzed 1165735 | 03/05/2025 | 21:53:00 | KAI | | Organophos. | . Pesticides/1657 | Entered | | | | | | | 03 | | EPA 608.3 | | Prepared: | 1163456 | 03/04/2025 | 14:15:00 | Analyzed 1163456 | 03/04/2025 | 14:15:00 | CRS | | Solvent Extr | raction | 1/1018 | ml | | | | | | 01 | | 2385513 | 2509002-04 EFFLUENT T | rc | | | | | Received: | 02/28/
US131290 | | | Organophos. Pesticides/1657 | Entered | | | | | | 03 | |-----------------------------|--------------|-------------------|----------|------------------|------------|----------|-----| | EPA 1657
 | Prepared: 11 | 163456 03/04/2025 | 14:15:00 | Analyzed 1165735 | 03/05/2025 | 22:19:00 | KAP | | Check Limits | Completed | | | | | | | | | Prepared: | 03/18/2025 | 11:52:00 | Analyzed | 03/18/2025 | 11:52:00 | WJP | 02/27/2025 Report Page 4 of 9 Page 3 of 3 Project 1138016 XNKS-N **Eurofins Xenco** John Builes 9701 Harry Hines Blvd Dallas, TX 75220 2509002-04 EFFLUENT TC Printed: 03/18/2025 Received: US1312966443 02/28/2025 02/27/2025 EPA 608.3 Prepared: 1163456 03/04/2025 14:15:00 Analyzed 1163456 03/04/2025 14:15:00 CRS Solvent Extraction 1/1003 ml 01 Qualifiers 2385513 We report results on an As Received (or Wet) basis unless marked Dry Weight. Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details. (N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC. $RL\ is\ the\ Reporting\ Limit\ (sample\ specific\ quantitation\ limit)\ and\ is\ at\ or\ above\ the\ Method\ Detection\ Limit\ (MDL).\ CAS\ is\ Chemical\ is\$ Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL. Bill Peery, MS, VP Technical Services Report Page 5 of 9 # **QUALITY CONTROL** Page 1 of 2 Project 1138016 Printed 03/18/2025 #### XNKS-N Eurofins Xenco John Builes 9701 Harry Hines Blvd Dallas, TX 75220 | | | | | | | | | Printed | 03/18/20 | 25 | | |---------------------------|---------|---------|---------|-----------|----------|-------------|-------------|-----------|----------|------|----------| | Analytical Set | 1165735 | | | | | | | | | E | EPA 1657 | | , | | | | ВІ | lank | | | | | | | | Parameter | PrepSet | Reading | MDL | MQL | Units | | | File | | | | | Azinphos-methyl (Guthion) | 1163456 | ND | 41.4 | 50.0 | ug/L | | | 127412478 | | | | | Chlorpyrifos | 1163456 | ND | 22.6 | 50.0 | ug/L | | | 127412478 | | | | | Demeton | 1163456 | ND | 31.9 | 50.0 | ug/L | | | 127412478 | | | | | Diazinon | 1163456 | ND | 19.7 | 50.0 | ug/L | | | 127412478 | | | | | Malathion | 1163456 | ND | 24.8 | 50.0 | ug/L | | | 127412478 | | | | | Parathion, ethyl | 1163456 | ND | 23.9 | 50.0 | ug/L | | | 127412478 | | | | | Parathion, methyl | 1163456 | ND | 27.4 | 50.0 | ug/L | | | 127412478 | | | | | ccv | | | | | | | | | | | | | <u>Parameter</u> | | Reading | Known | Units | Recover% | Limits% | | File | | | | | Azinphos-methyl (Guthion) | | 1050 | 1000 | ug/L | 105 | 37.0 - 150 | | 127412477 | | | | | Azinphos-methyl (Guthion) | | 1170 | 1000 | ug/L | 117 | 37.0 - 150 | | 127412487 | | | | | Chlorpyrifos | | 1060 | 1000 | ug/L | 106 | 48.0 - 150 | | 127412477 | | | | | Chlorpyrifos | | 1110 | 1000 | ug/L | 111 | 48.0 - 150 | | 127412487 | | | | | Demeton | | 1030 | 1000 | ug/L | 103 | 16.0 - 150 | | 127412477 | | | | | Demeton | | 1040 | 1000 | ug/L | 104 | 16.0 - 150 | | 127412487 | | | | | Diazinon | | 1020 | 1000 | ug/L | 102 | 50.0 - 150 | | 127412477 | | | | | Diazinon | | 1040 | 1000 | ug/L | 104 | 50.0 - 150 | | 127412487 | | | | | Malathion | | 1030 | 1000 | ug/L | 103 | 50.0 - 150 | | 127412477 | | | | | Malathion | | 1040 | 1000 | ug/L | 104 | 50.0 - 150 | | 127412487 | | | | | Parathion, ethyl | | 1030 | 1000 | ug/L | 103 | 50.0 - 150 | | 127412477 | | | | | Parathion, ethyl | | 1020 | 1000 | ug/L | 102 | 50.0 - 150 | | 127412487 | | | | | Parathion, methyl | | 1060 | 1000 | ug/L
~ | 106 | 50.0 - 150 | | 127412477 | | | | | Parathion, methyl | | 891 | 1000 | ug/L | 89.1 | 50.0 - 150 | | 127412487 | | | | | | | | | LCS | 5 Dup | | | | | | | | <u>Parameter</u> | PrepSet | LCS | LCSD | | Known | Limits% | LCS% | LCSD% | Units | RPD | Limit% | | Azinphos-methyl (Guthion) | 1163456 | 774 | 670 | | 1000 | 0.100 - 152 | 77.4 | 67.0 | ug/L | 14.4 | 50.0 | | Chlorpyrifos | 1163456 | 562 | 517 | | 1000 | 0.100 - 132 | 56.2 | 51.7 | ug/L | 8.34 | 50.0 | | Demeton | 1163456 | 392 | 384 | | 1000 | 0.100 - 114 | 39.2 | 38.4 | ug/L | 2.06 | 50.0 | | Diazinon | 1163456 | 541 | 512 | | 1000 | 0.100 - 119 | | 51.2 | ug/L | 5.51 | 50.0 | | Malathion | 1163456 | 503 | 465 | | 1000 | 0.100 - 126 | 50.3 | 46.5 | ug/L | 7.85 | 50.0 | | Parathion, ethyl | 1163456 | 549 | 500 | | 1000 | 0.100 - 138 | 54.9 | 50.0 | ug/L | 9.34 | 50.0 | | Parathion, methyl | 1163456 | 570 | 460 | | 1000 | 0.100 - 125 | 57.0 | 46.0 | ug/L | 21.4 | 50.0 | | | | | | Suri | rogate | | | | | | | | <u>Parameter</u> | Sample | Type | Reading | Known | Units | Recover% | Limits% | File | | | | | Tributylphosphate | | CCV | 1080 | 2000 | ug/L | 54.0 | 0.100 - 106 |
127412477 | | | | | Tributylphosphate | | CCV | 1050 | 2000 | ug/L | 52.5 | 0.100 - 106 | 127412487 | | | | | Triphenylphosphate | | CCV | 1030 | 2000 | ug/L | 51.5 | 0.100 - 172 | 127412477 | | | | | Triphenylphosphate | | CCV | 1310 | 2000 | ug/L | 65.5 | 0.100 - 172 | 127412487 | | | | | Tributylphosphate | 1163456 | Blank | 663 | 2000 | ug/L | 33.2 | 0.100 - 106 | 127412478 | | | | | Tributylphosphate | 1163456 | LCS | 519 | 2000 | ug/L | 26.0 | 0.100 - 106 | 127412479 | | | | | Tributylphosphate | 1163456 | LCS Dup | 498 | 2000 | ug/L | 24.9 | 0.100 - 106 | 127412480 | | | | Email: Kilgore.ProjectManagement@spllabs.com Report Page 6 of 9 # **QUALITY CONTROL** Page 2 of 2 Project 1138016 Printed 03/18/2025 #### XNKS-N Eurofins Xenco John Builes 9701 Harry Hines Blvd Dallas, TX 75220 #### Surrogate | <u>Parameter</u> | Sample | Туре | Reading | Known | Units | Recover% | Limits% | File | |--------------------|---------|---------|---------|-------|-------|----------|-------------|-----------| | Triphenylphosphate | 1163456 | Blank | 751 | 2000 | ug/L | 37.6 | 0.100 - 172 | 127412478 | | Triphenylphosphate | 1163456 | LCS | 599 | 2000 | ug/L | 30.0 | 0.100 - 172 | 127412479 | | Triphenylphosphate | 1163456 | LCS Dup | 566 | 2000 | ug/L | 28.3 | 0.100 - 172 | 127412480 | | Tributylphosphate | 2385511 | Unknown | 0.381 | 1.96 | ug/L | 19.4 | 0.100 - 106 | 127412483 | | Triphenylphosphate | 2385511 | Unknown | 0.393 | 1.96 | ug/L | 20.1 | 0.100 - 172 | 127412483 | | Tributylphosphate | 2385513 | Unknown | 0.545 | 1.99 | ug/L | 27.4 | 0.100 - 106 | 127412484 | | Triphenylphosphate | 2385513 | Unknown | 0.614 | 1.99 | ug/L | 30.9 | 0.100 - 172 | 127412484 | * Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100% Recover% is Recovery Percent: result / known * 100% Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); CCV - Continuing Calibration Verification (same standard used to prepare the curve; typically a mid-range concentration; verifies the continued validity of the calibration curve); LCS Dup - Laboratory Control Sample Duplicate (replicate LCS; analyzed when there is insufficient sample for duplicate or MSD; quantifies accuracy and precision.); Surrogate - Surrogate (mimics the analyte of interest but is unlikely to be found in environmental samples; added to analytical samples for QC purposes. **ANSI/ASQC E4_1994 Ref #4 TRADE QA Resources Guide.) 17 Email: Kilgore. Project Management@spllabs.com Report Page 7 of 9 4 5 6 8 10 40 13 15 #### 1138016 CoC Print Group 001 of 001 | Eurofins Dallas
9701 Harry Hines Blvd
Dallas, TX 75220 | C | Chain (| of Cus | stody | Rec | ord | ı | | | | | X) | ý) | | | | | ž | s eurofins | Environ | ment Tes | |---|------------------------------|------------------|---------------------|---------------------------------|-------------------|--|----------|----------|----------|----------|----------|----------|-----------------|---------|----------|----------|-----------------|---|------------------------|--------------|------------| | Phone: 214-902-0300 | Sampler: | | | | PM: | | | | | | | | arrier T | racking | No(s |): | | | COC No: | | | | Client Information (Sub Contract Lab) | N/A
Phone: | | | Ga
E-M | arza, Sy
Mail: | lvia | | | | | | | /A
late of 0 | Origin: | | | | | 870-7950.1
Page: | | | | Shipping/Receiving | N/A | | | | lvia.Ga | | | | | | | | exas | | | | | | Page 1 of 1 | | | | Company:
Ana-Lab Corporation | | | | | | ditation
AP - T | | | See no | ote): | | | | | | | | | Job#:
870-34261-1 | | | | Address:
2600 Dudley Rd. | Due Date Request
3/7/2025 | ed: | | | 1 | | | | ۸. | alvo | ic E | | este | 4 | | | | | Preservation Co | ies: | | | Dity: | TAT Requested (d | | | - | | | т | П | | laiys | 13 1 | equ | -516 | ┺ | Т | т- | | | | | | | Kilgore
State, Zip: | _ | N/A | ` | | | 1657 | | | | - 1 | - 1 | | | | | | | | | | | | TX, 75662 | | | | | | PEST)/ Ana Lab - 165 | | | | - 1 | - | . | | | | | | | | | | | Phone:
N/A | PO #:
N/A | | | | | E E | | | | | ı | | | | | | | | | | | | Email: | WO #: | | | | - 2 | E | | | | - 1 | | | | 1 | | | | | | | | | N/A Project Name: | N/A
Project #: | | | | ⊣ š ₹ | E . | | | | | | Í | | 1. | - | | | 10 TS | | | | | SCX 30TAC307 + Table 3 | 87000965 | | | | 9 | E E | | | | | | | | | l | | | container | | | | | Site:
N/A | SSOW#:
N/A | | | | ame | 168 | | П | | | | - | | | | | | | Other:
N/A | | | | WO | | Sample | Sample
Type | Matrix
(w-water,
8=solid, | Hiltered S | SUB (Ana Lab - 1657 Ogano I
Organo PEST | | | | | | | | | | | - | Total Number o | WA | | | | Sample Identification - Client ID (Lab ID) | Sample Date | Time | (C=comp,
G=grab) | O=waste/oil,
BT=Tissue, A=A | | SUB | 5 | | | - 1 | - 1 | | | | | | | Total | Special In | structions | s/Note: | | | | >< | Preserv | ation Code: | \bowtie | | | | 1 | | | | | | | | 100 | X | | | | | 2509002-01 Influent TC (870-34261-1) | 2/27/25 | 09:25
Central | G | Water | П | x | | | | | | | | T | | | | 2 | 1385 | 571 | | | 2509002-04 Effluent TC (870-34261-3) | 2/27/25 | 09:05 | G | Water | $\top \top$ | x | | | | | | \top | T | 1 | 1 | | | 2 | | 513 | | | | | Central | <u> </u> | | + | +- | 1 | Н | | \dashv | + | + | \top | + | ╁ | H | | | | | | | | + | | | | ₩ | + | + | | | | + | + | + | + | 1 | ├ | \vdash | | | | | | | | | | | 44 | 4 | ↓_ | | | \dashv | 1 | 4 | 4 | 4 | <u> </u> | L | | | | | | | | | | | | ш | | | | | | \perp | \perp | | \perp | | | | | | | | | | | ĺ | | | \mathbf{H} | | | | | | 1 | | | 1 | İ | l | | | | | | | | | | | | TT | | | | | | | T | | Т | | | | | | | | | | | | | | + | + | † | m | | 十 | 7 | \top | T | † | †- | \vdash | | | | | | | | | | | | ++ | + | + | Н | \vdash | + | \dashv | + | + | + | ┢ | ╁ | - | | | | | | | _1 | | | | Ш | | | | | | L | ᆚ | | | | L | | 1000
1000
1000
1000
1000
1000
1000
100 | | | | | Note: Since laboratory accreditations are subject to change, Eurofins Environ
laboratory does not currently maintain accreditation in the State of Origin lister
accreditation status should be brought to Eurofins Environment Testing South | d above for analysis/tes | ts/matrix being | analyzed, the | samples mus | t be ship | ped bad | ck to th | ne Euro | ofins E | nvironr | ment 1 | esting | South | Centra | I, LLC | labora | atory or | other | r instructions will be | provided. An | ny changes | | Possible Hazard Identification | | | | | s | | | | | | ay b | _ | | | | s ar | e reta | inea | l longer than 1 | nonth) | | | Unconfirmed | D-1 D-1 | - No Barrier | | | 1 | | | 1 To C | | | | | osal | By La | b | ł | □ _{Ar} | chive | e For | Months | | | Deliverable Requested: I, II, III, IV, Other (specify) | Primary Deliver | abie Kank: | 2 | | s | pecial | ınstr | uction | ns/Q(| Req | uiren | nents | : | | | | | | 1 | | | | Empty Kit Relinquished by: | | DateEn | EY 4 | | Time | | | | | | | | Me | thod of | Shipn | | | | | - | | | Relinquished by: KW | Date/Time: | | -/ \ | Company | | | eived | <u> </u> | بور | de | ¥ | | | | Date | /Time | | | | Company | | | Relinquished by: | 1 | FEB 2.7 | 2025 | Company | | | eived | | L | Ū | J | <u> </u> | 1 | _ | Date | /lime | la | 5 | 10.50 | Company | | | Relinquished by: | Date/Time: | | | Company | | Rec | eived | by: | - | | | П | | | Date | Time | | | | Company | | | Custody Seals Intact: Custody Seal No.: Δ Yes Δ No | | | | | | Coo | ler Ter | mperat | ure(s) | °C and | d Othe | Rem | arks: | | | | | | | | 100 | Report Page 8 of 9 3 5 6 g 9 10 12 13 15 Report Page 9 of 9 Page 57 of 63 4/30/2025 (Rev. 2) State, Zip: Texas 75098 Wylie Deliverable Requested: I, II, III, IV, Other (specify) Project Name: SCX 30TAC307 + Table III + Permit Renewal Southbend, IN 46617 Empty Kit Relinquished by: Possible Hazard Identification 2509002-06 Effluent G 2509002-04 Effluent TC Sample Identification Phone: 574-233-4777 Fax: 574-233-8207 **Eurofins Eaton Analytical South Bend** x Non-Hazard 2509002-03 Influent G 2509002-01 Influent TC 201 E. Brown St North Texas Municipal Water District Client Information Client Contact: 469-626-4610 Celly Harden harden@ntmwd.com 3 Flammable 4 Top Custody Seal No. 5 6 Skin Irritant 7 8 9 10 Poison B Eric Rohan/Esteban Davis Date/Time: 2/26/25-2/27/25 WO #: Due Date Requested: 2/26/25-2/27/25 Project #: Phone: 469-626-4610 Sample Date 2/27/25 2/27/25 14 Unknown Project: Chain of Custody Record Date: 12 13 14 15 16 Sample 0905 0925 0845 0940 Yes Radiological 200 1402 G=grab (C=comp, Sample Preservation Code: G C G C Company Company Later Star Company (W=water, S=solid, O=waste/oil, BT=Tissue, ≶ ≶ ≶ ≶ Lab PM: Sylvia Garza syliva.garza@eurofinset.com z z z z Field Filtered Sample (Yes or No) Special Instructions/QC Requirements: T No Received by: Cooler Temperature(s) °C and Other Remarks: BPA and BNA by EPA 625.1 2 2 2 Pest/PCB by EPA 608.3 2 2 2 Herb by EPA 615 2 2 Dioxins by 613/1613 Analysis Requested 2 2 Pest by EPA 1657 = Cr, Cr (III), Cr (VI) \Rightarrow ₽ ₽ Cn. Cn-A 870-34261 Chain of Custody State of Origin: is ż Phenols by 420.1 Method of Shipment <u>ω</u> ω MTBE/Epichlorohydrin/VOC by EPA 624.1 Tracking No(s): 2 2 Pest by EPA 632 2 2 Dioxins by 625.1 DATE TO S ร Oil & Grease <u>ω</u> $\underline{\omega}$ Ethylene Glycol by 8015 17 17 0 Total Number of containers A - HCL B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH G - Amchlor H
- Ascorbic Acid J - DI Water K - EDTA L - EDA eurofins Page: Page Preservation Codes: M - Hexane COC No: 628 COMI Special Instructions/Note: 1 of 1 U - Acetone V - MCAA W - pH 4-5 Y - Trizma N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 Company Eu**rin**os T - TSP Dodecahydrate S - H2SO4 **Environment Testing** Company Company Ver: 01/16/2019 Months Page 58 of 63 4/30/2025 (Rev. 2) # Chain of Custody Record **Eurofins Dallas** 9701 Harry Hines Blvd Phone 214-902-0300 Dallas TX 75220 | | Sampler | | | Lab PM | | | | | | ၁ | arrier Tı | Carrier Tracking No(s) | .(s)o | | J | COC No: | | |--|--------------------------------|------------------|----------------------------|---------------------------------------|------------------------------|--------------------------------------|---------------------------------|--|--------------------|----------|-----------------|------------------------|----------|---|-------------|----------------------------|--| | Client Information (Sub Contract Lab) | N/A | | | Garza | Garza Sylvıa | . | | | | <u>z</u> | N/A | | | | ω, | 870-7949 1 | | | Client Contact: | Phone: | | | E-Mail: | | | | | | S | State of Origin | higin | | | 4 | Page: | | | Shipping/Receiving | N/A | | | Sylvia | Garza | @et.e. | Sylvia. Garza@et.eurofinsus.com | s.com | | _ | Texas | | | | <u> </u> | Page 1 of 1 | | | Company
Eurofins Eaton Analytical | | | | <u> </u> | ccredita
ELAP | Accreditations Requ
NELAP - Texas | quired (9
S | Accreditations Required (See note) NELAP - Texas | | | | | | | 7 00 | Job #:
870-34261-1 | | | Address.
941 Corporate Center Drive, | Due Date Requested
3/7/2025 | , | | | | | | Anal | Analysis Requested | Sequ | este | _ | | | | Preservation Codes
- | | | City
Pomona | TAT Requested (days): | ys):
N/A | | | | | | | | | | | <u> </u> | | | | | | State Zip:
CA, 91768-2642 | . | | | | | | | | | | | | | | | | | | Phone:
626-386-1100(Tel) | PO#:
N/A | | | | lo. | | | | | | | | | | | | | | Email:
N/A | WO#:
N/A | | | | | ili List | | | | | | | | | 8.1 | | | | Project Name:
SCX 30TAC307 + Table 3 | Project #:
87000965 | | | | | 1348
141 | | | | | | | | | anlain | | | | Site:
N/A | SSOW#:
N/A | | | | | _4_8£ | • | | | | | | | | *********** | Other N/A | | | | | Sample | Sample
Type
(C=comp, | Matrix (W=water S=solid, O=waste/oil, | eld Filtered
Mortorm MS/I | rari_asr | | | | | | | | | edmuN [s) | | | | Sample Identification - Client ID (Lab ID) | Sample Date | Time | G=grab) e | BT=TIssue, A=Air) | | 91 | | | | | _ | | \dashv | | οT | Special Instructions/Note: | | | | $\sqrt{}$ | $\sqrt{}$ | Preservation Code: | on Code: | \Diamond | | | | | | | | | | X | | | | 2509002-01 Influent TC (870-34261-1) | 2/27/25 | 09.25
Central | 9 | Water | | × | | | | | | | | | 23 | ON HOLD pending 625 | | | 2509002-04 Effluent TC (870-34261-3) | 2/27/25 | 09 05
Central | თ | Water | | × | | | | | | | | | N | ON HOLD pending 625 | - | | - | - | - | | | - | - | - | - | - | | | Note: Since laboratory accreditations are subject to change Eurofins Environment Testing South Central, LLC places the ownership of method analyte & accreditation compliance upon our subcontract laboratory or other instructions will be provided. Any changes to above for analysis/lests/matrix being analyzed the samples must be shipped back to the Eurofins Environment Testing South Central, LLC laboratory or other instructions will be provided. Any changes to above for analysis/lests/matrix being analyzed the samples must be shipped back to the Eurofins Environment Testing South Central, LLC attention immediately If all requested accreditations are current to date return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, LLC. Method (#5408erf. 7723 75 37 2.70) Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mont Special Instructions/QC Requirements. Time. Primary Deliverable Rank. 2 Date. Date/Time: Deliverable Requested 1 II III IV Other (specify) Possible Hazard Identification Empty Kit Relinquished by Inconfirmed 2 Ver 10/10/2024 Series Series 27.28/12 9:40 Fred year Company Company SEE 7 2025 Date/Time: Date/Time: Date/Time: le trosen Cooler Temperature 6 °C and Other Remarks: Received by: Received by: 8 9 10 12 13 14 151617 elinquished by elinquished by: Custody Seal No. Custody Seals Intact: 3 **Chain of Custody Record** Eurofins Dallas 9701 Harry Hines Blvd Dallas, TX 75220 Phone: 214-902-0300 & eurofins | Environment Testing | | Francisco | | | 1 24 1 | 1 | ١ | ۱ | ١ | ١ | 1 | ١ | | | 2 | 8 | 1 | | , | ĺ | | | 3 | | | |--|---|--|---|--|---|---|------------|--------------|--------------|--------------------------|--|----------------|--------------------|-------------------------|-------------------|--------------------------------------|--------------------|------------|-----------------------|-----------------|--------------|---------------|---|--| | Client Information (Sub Contract Lab) | N/A | | | Garza, | Garza, Sylvia | ₩. | ĺ | ĺ | ĺ | | | | ĺ | Zζ | ≯ | å | N/A | ο(s). | | | | 870 | 870-7951 1 | | | Client Confact Shipping/Receiving | Phone:
N/A | | | E-Mail:
Sylvia | E-Mail:
Sylvia.Garza@et.eurofinsus.com | Za | Det. | orus | finsı | S.C. | ä | | | <u> </u> | State of
Texas | State of Origin:
Texas | ₹. | İ | ı | | | Page: | Page:
Page 1 of 1 | | | Company: Eurofins Environment Testing South Centr | | | | | Accreditations Requ | Accreditations Required (See note NELAP Texas | Te ons | တွင် | P. G | See | ote): | | | | | ĺ | | | | | | Job # | Job#:
870-34261-1 | | | Address:
4145 Greenbriar Dr | Due Date Requested:
3/7/2025 | Ä | | | | | | . | | ≥ | Anal | lysis | | ğ | Requested | ed | | | | | | Pre | Preservation Codes: | | | City:
Stafford | TAT Requested (days): | ys):
N/A | | | | | | | | | | \dashv | | | | | | | | | | | | | | State, Zip:
TX, 77477 | | | | | | <u></u> | | | | | C) & | | | | nable | | | | | | | | | | | Phone:
281-240-4200(Tel) | PO#: | | | | lo) | | | 808 | СВ | | des (G | | ls. | | | | | ais | | oustor | | | | | | Email: | WO# | | | | dang on the | waj | | 110 | TO P | TTO | erbici | | Pheno | | | | | .8 Met | | drin-He | 78 | | | | | Project Name: SCX 30TAC307 + Table 3 | Project #:
87000965 | | | | | | | MOD) | CBT | 625.1 | rep F | | | |
| | | D) 200 | Cr | rohy | telne | | | | | | SSOW# | | | | | | | p (1 | p_f | D) | b_f | ols | | | | | _ | /OI | ent | hlo | or | Other | | | | N/A | N/A | | | | 65.00 CO | | | _Pres | _Pres | (MOI | | | | | | | | TR (M | rivate | Epic | ofc | N C | 9 | | | | | | Sample | Matrix | tered | MS/I | Prep | st/608 | B/608 | _Prep | 0/3511
prophe | Al_G/ | Y EPA | | G_N | |)1 |),8_P | 3_B/ 1 | _Prep | ımbe | | | | | | | Sample | (C≡comp, | Sesolid, | | | | 3.3_P | 3.,P | .1/62 | | | | | | anide | ada_(| .8/20 | 0_CF | .1/62 | tal N | | | | | Sample Identification Cilent ID (Lab ID) | Sample Date | Vine | Preservation Code: | ation Code: | 25 AP . 155 | - | - 1 | 6 | 6 | 6: | | 100,000 | - | - | | c | K | 21 | 3 | 6. | ΧĮτ | | Special Instructions/Note: | ons/Note: | | 2509002-01 Influent TC (870-34261 1) | 2/27/25 | 09:25
Central | 6 | Water | | _ | <u>×</u> | × | × | × | × | × | | | - | _ | | | | | 3 | | Must meet Texas Wastewater MAL's. RUN 1x. Need to meet Texas Wastewater | vater MAL's.
was Wastewater | | 2509002-03 Influent G (870-34281-2) | 2/27/25 | 09:40
Central | G | Water | | | | | | | | | × | | × | × | × | × | × | × | ဖ | الع لإ | in Low Standard to me stewater MAL's. | et Texas | | 2509002-04 Effluent TC (870-34261-3) | 2/27/25 | 09:05
Central | ဝ | Water | | | × | × | × | × | × | × | - | | | | | | | | 13 | | Must meet Texas Wastewater MAL's. RUN 1x, Need to meet Texas Wastewater | vater MAL's.
xas Wastewater | | 2509002-06 Effluent G (870-34251-4) | 2/27/25 | 08:45
Central | G | Water | | | | | | | | | × | ├ | × | × | × | × | × | × | ယ | ¥ R | Run Low Standard to meet Texas Wastewater MAL's. | et Texas | | | | | | | | - | _ | | | | | - | | + | + | | | | | | | | | | | | | | | | | | _ | | | | | 寸 | | | | | | | | | | 1 | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | | | | | | | | | \vdash | | | | | | | | | | | | | | | | | \vdash | <u> </u> | <u> </u> | | | | | | \vdash | ļ | ļ | | | L | | | | | | | Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing South Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, LLC. | nt Testing South Cent
bove for analysis/tests
entral LLC attention in | ral, LLC places
s/matrix being nmediately. If | s the ownership
analyzed, the s
all requested a | o of method, an amples must be careditations a | talyte
e ship
re cur | Ped t | back o dat | e, ret | um t | olianc
ofins I | parking with the control of cont | on me
Chair | r sub | contr
sting
ustoc | Sout
Sout | borat
h Cer
ssting | to sa | 8 LL 18 | sam
abora
mplia | pie sh
nce t | or oth | er ins | This sample shipment is forwarded under chain-of-custody. If the LC laboratory or other instructions will be provided. Any changes to compliance to Eurofins Environment Testing South Central, LLC | f-custody. If the 1. Any changes to 1. The central, LLC. | | Possible Hazard Identification
Unconfirmed | | | | | - JS | ∏∰ | o⁄e≀
Re | tum
deiC | osa.
To (| mple Disposal (A f | # fee | maj | □be | ess
Dist | essa | e assessed if san
Disposal By Lab | san | ηρ/e. |]
Sare | | aine
rchi | retained long | Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Months | ths | | Deliverable Requested: I, II, III, IV Other (specify) | Primary Deliverable Rank: | ible Rank: 2 | | | S | Special Instructions/QC | iaih | nstru | ction | D/S/C | .70 | equire | . 222 | ents | | | | | | | | | | | | Empty Kit Relinquished by: | | Date: | | | Time: | ۳. | | | Ш | [] | | 3 | 1 | | F | etho | Method of Shipment | hip | at. | | | | | | | Relinquished by: | Date/Time: 2 / | 2712 | 5 - 17 | Company | | 70 | ecei | Received by: | * | EB | | 2 7 | 2 7 2025 | K | | | | Date/Time: | Time: | | | | Company | any | | Relinquished by: | Date/Time: | | | Company | | 20 | eceiv | Received by: | ** | | | | | | | | | Date/Time: | Time: | | | | Company | any | | Relinquished by | Date/Time: | | | Company | | 20 | eceiv | Received by | | | 7 | | | | | | | Date/Time: | ime: | 3 | સ્કૃષ્ટ | i i | CSCL Company | any | | Custody Seals Intact: Custody Seal No. | | | | | | 0 | ا
ق | 1/3 | | Cooler Temporature(s) °C | | and C | and Other Remarks: | Rema | Š | a | | 20 | | 300 | 1 | 7 | Arm 26 | | | | | | | | | | ſ | 1 | | | | | | | | | | | | | | | Ver 1 | Ver 10/10/2024 | # **Login Sample Receipt Checklist** Client: North Texas Municipal Water District Job Number: 870-34261-1 Login Number: 34261 List Source: Eurofins Dallas List Number: 1 Creator: Sharp, Michael | Question | Answer | Comment | |--|--------|---------| | The cooler's custody seal, if present, is intact. | N/A | | | Sample custody seals, if present, are intact. | N/A | | | The cooler or samples do not appear to have been compromised or tampered with. | True | | | Samples were received on ice. | True | | | Cooler Temperature is acceptable. | True | | | Cooler Temperature is recorded. | True | | | COC is present. | True | | | COC is filled out in ink and legible. | True | | | COC is filled out with all pertinent information. | True | | | Is the Field Sampler's name present on COC? | True | | | There are no discrepancies between the containers received and the COC. | True | | | Samples are received within Holding Time (excluding tests with immediate HTs) | True | | | Sample containers have legible labels. | True | | | Containers are not broken or leaking. | True | | | Sample collection date/times are provided. | True | | | Appropriate sample containers are used. | True | | | Sample bottles are completely filled. | True | | | Sample Preservation Verified. | True | | | There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True | | | Containers requiring zero headspace have no headspace or bubble is <6mm (1/4"). | True | | # 5 # 7 # 9 # 10 # 11 |--| # Login Sample Receipt Checklist Client: North Texas Municipal Water District Job Number: 870-34261-1 Login Number: 34261 List Source: Eurofins Eaton Analytical Pomona List Number: 3 List Creation: 02/28/25 12:17 PM | Question | Answer | Comment | |--|--------|---------| | The cooler's custody seal, if present, is intact. | N/A | | | Sample custody seals, if present, are intact. | N/A | | | Samples were received on ice. | True | | | Cooler Temperature is acceptable. | True | | | Cooler Temperature is recorded. | True | | | COC is present. | True | | | COC is filled out in ink and legible. | True | | | COC is filled out with all pertinent information. | True | | | There are no discrepancies between the containers received and the COC. | True | | | Samples are received within Holding Time (excluding tests with immediate HTs) | True | | | Sample containers have legible labels. | True | | | Containers are not broken or leaking. | True | | | Sample collection date/times are provided. | True | | | There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True | | | Containers requiring zero headspace have no headspace or bubble is <6mm (1/4"). | True | | | Samples do not require splitting or compositing. | True | | | Container provided by EEA | True | | 1 5 **6** 9 11 12 14 16 # **Login Sample Receipt Checklist** Client: North Texas Municipal Water District Job Number: 870-34261-1 List Source: Eurofins Houston List Number: 2 List Creation: 02/28/25 06:54 AM **Creator: Grandits, Corey** | Question | Answer | Comment | |--|--------|---------| | The cooler's custody seal, if present, is intact. | True | | | Sample custody seals, if present, are intact. | N/A | | | The cooler or samples do not appear to have been compromised or tampered with. | True | | | Samples were received on ice. | True | | | Cooler Temperature is acceptable. | True | | | Cooler Temperature is recorded. | True | | | COC is present. | True | | | COC is filled out in ink and legible. | True | | | COC is filled out with all pertinent information. | True | | | Is the Field Sampler's name present on COC? | True | | | There are no discrepancies between the containers received and the COC. | True | | | Samples are received within Holding Time (excluding tests with immediate HTs) | True | | | Sample containers have legible labels. | True | | | Containers are not broken or leaking. | True | | | Sample collection date/times are provided. | True | | | Appropriate sample containers are used. | True | | | Sample bottles are completely filled. | True | | | Sample Preservation Verified. | True | | | There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True | | | Containers requiring zero headspace have no headspace or bubble is <6mm (1/4"). | True | | 3 4 6 5 8 10 12 1 4 15 17 # ATTACHMENT TR-7 WORKSHEET 4.0 POLLUTANT ANALYSIS REQUIREMENTS # DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details. This worksheet is not required minor amendments without
renewal. # Section 1. Toxic Pollutants (Instructions Page 76) For pollutants identified in Table 4.0(1), indicate the type of sample. Grab ⊠ Composite ⊠ See Attachment TR-6 Date and time sample(s) collected: Grab: 02/27/2025 08:45; Composite: 02/27/2025 09:05 # Table 4.0(1) - Toxics Analysis | Pollutant | AVG
Effluent
Conc. (μg/l) | MAX
Effluent
Conc. (µg/l) | Number of
Samples | MAL
(μg/l) | |----------------------------|---------------------------------|---------------------------------|----------------------|---------------| | Acrylonitrile | N/A | <50 | 1 | 50 | | Aldrin | N/A | < 0.01 | 1 | 0.01 | | Aluminum | N/A | 5.72 | 1 | 2.5 | | Anthracene | N/A | <10 | 1 | 10 | | Antimony | N/A | <5 | 1 | 5 | | Arsenic | N/A | 0.768 | 1 | 0.5 | | Barium | N/A | 27.9 | 1 | 3 | | Benzene | N/A | <10 | 1 | 10 | | Benzidine | N/A | <50 | 1 | 50 | | Benzo(a)anthracene | N/A | <5 | 1 | 5 | | Benzo(a)pyrene | N/A | <5 | 1 | 5 | | Bis(2-chloroethyl)ether | N/A | <10 | 1 | 10 | | Bis(2-ethylhexyl)phthalate | N/A | <10 | 1 | 10 | | Bromodichloromethane | N/A | <10 | 1 | 10 | | Bromoform | N/A | <10 | 1 | 10 | | Cadmium | N/A | <1 | 1 | 1 | | Carbon Tetrachloride | N/A | <2 | 1 | 2 | | Carbaryl | N/A | <5 | 1 | 5 | | Chlordane* | N/A | <0.2 | 1 | 0.2 | | Chlorobenzene | N/A | <10 | 1 | 10 | | Chlorodibromomethane | N/A | <10 | 1 | 10 | | Pollutant | AVG
Effluent
Conc. (µg/l) | MAX
Effluent
Conc. (µg/l) | Number of
Samples | MAL
(μg/l) | |------------------------|---------------------------------|---------------------------------|----------------------|---------------| | Chloroform | N/A | <10 | 1 | 10 | | Chlorpyrifos | N/A | <0.05 | 1 | 0.05 | | Chromium (Total) | N/A | <3 | 1 | 3 | | Chromium (Tri) (*1) | N/A | <2 | 1 | N/A | | Chromium (Hex) | N/A | 3.59 | 1 | 3 | | Copper | N/A | 7.79 | 1 | 2 | | Chrysene | N/A | <5 | 1 | 5 | | p-Chloro-m-Cresol | N/A | <10 | 1 | 10 | | 4,6-Dinitro-o-Cresol | N/A | <50 | 1 | 50 | | p-Cresol | N/A | <10 | 1 | 10 | | Cyanide (*2) | N/A | <10 | 1 | 10 | | 4,4'- DDD | N/A | <0.1 | 1 | 0.1 | | 4,4'- DDE | N/A | <0.1 | 1 | 0.1 | | 4,4'- DDT | N/A | <0.02 | 1 | 0.02 | | 2,4-D | N/A | <0.7 | 1 | 0.7 | | Demeton (O and S) | N/A | <0.2 | 1 | 0.20 | | Diazinon | N/A | <0.1 | 1 | 0.5/0.1 | | 1,2-Dibromoethane | N/A | <10 | 1 | 10 | | m-Dichlorobenzene | N/A | <10 | 1 | 10 | | o-Dichlorobenzene | N/A | <10 | 1 | 10 | | p-Dichlorobenzene | N/A | <10 | 1 | 10 | | 3,3'-Dichlorobenzidine | N/A | <5 | 1 | 5 | | 1,2-Dichloroethane | N/A | <10 | 1 | 10 | | 1,1-Dichloroethylene | N/A | <10 | 1 | 10 | | Dichloromethane | N/A | <20 | 1 | 20 | | 1,2-Dichloropropane | N/A | <10 | 1 | 10 | | 1,3-Dichloropropene | N/A | <10 | 1 | 10 | | Dicofol | N/A | <1 | 1 | 1 | | Dieldrin | N/A | <0.02 | 1 | 0.02 | | 2,4-Dimethylphenol | N/A | <10 | 1 | 10 | | Di-n-Butyl Phthalate | N/A | <10 | 1 | 10 | | Diuron | N/A | <0.09 | 1 | 0.09 | | Endosulfan I (alpha) | N/A | <0.01 | 1 | 0.01 | | Pollutant | AVG
Effluent
Conc. (µg/l) | MAX
Effluent
Conc. (μg/l) | Number of
Samples | MAL (µg/l) | |-------------------------------|---------------------------------|---------------------------------|----------------------|------------| | Endosulfan II (beta) | N/A | <0.02 | 1 | 0.02 | | Endosulfan Sulfate | N/A | <0.1 | 1 | 0.1 | | Endrin | N/A | <0.02 | 1 | 0.02 | | Epichlorohydrin | N/A | <7.52 | 1 | | | Ethylbenzene | N/A | <10 | 1 | 10 | | Ethylene Glycol | N/A | <1220 | 1 | | | Fluoride | N/A | <500 | 1 | 500 | | Guthion | N/A | <0.1 | 1 | 0.1 | | Heptachlor | N/A | <0.01 | 1 | 0.01 | | Heptachlor Epoxide | N/A | <0.01 | 1 | 0.01 | | Hexachlorobenzene | N/A | <5 | 1 | 5 | | Hexachlorobutadiene | N/A | <10 | 1 | 10 | | Hexachlorocyclohexane (alpha) | N/A | <0.05 | 1 | 0.05 | | Hexachlorocyclohexane (beta) | N/A | <0.05 | 1 | 0.05 | | gamma-Hexachlorocyclohexane | N/A | <0.05 | 1 | 0.05 | | (Lindane) | | | | | | Hexachlorocyclopentadiene | N/A | <10 | 1 | 10 | | Hexachloroethane | N/A | <20 | 1 | 20 | | Hexachlorophene | N/A | <10 | 1 | 10 | | 4,4'-Isopropylidenediphenol | N/A | <10 | 1 | 1 | | Lead | N/A | <0.5 | 1 | 0.5 | | Malathion | N/A | <0.1 | 1 | 0.1 | | Mercury | N/A | <0.005 | 1 | 0.005 | | Methoxychlor | N/A | <2 | 1 | 2 | | Methyl Ethyl Ketone | N/A | <50 | 1 | 50 | | Methyl tert-butyl ether | N/A | <1.39 | 1 | | | Mirex | N/A | <0.02 | 1 | 0.02 | | Nickel | N/A | 7.24 | 1 | 2 | | Nitrate-Nitrogen | N/A | 2200 | 1 | 100 | | Nitrobenzene | N/A | <10 | 1 | 10 | | N-Nitrosodiethylamine | N/A | <20 | 1 | 20 | | N-Nitroso-di-n-Butylamine | N/A | <20 | 1 | 20 | | Nonylphenol | N/A | <333 | 1 | 333 | | Pollutant | AVG
Effluent
Conc. (µg/l) | MAX
Effluent
Conc. (µg/l) | Number of
Samples | MAL
(μg/l) | |--|---------------------------------|---------------------------------|----------------------|---------------| | Parathion (ethyl) | N/A | <0.1 | 1 | 0.1 | | Pentachlorobenzene | N/A | <20 | 1 | 20 | | Pentachlorophenol | N/A | <5 | 1 | 5 | | Phenanthrene | N/A | <10 | 1 | 10 | | Polychlorinated Biphenyls (PCB's) (*3) | N/A | <0.2 | 1 | 0.2 | | Pyridine | N/A | <20 | 1 | 20 | | Selenium | N/A | <5 | 1 | 5 | | Silver | N/A | <0.5 | 1 | 0.5 | | 1,2,4,5-Tetrachlorobenzene | N/A | <20 | 1 | 20 | | 1,1,2,2-Tetrachloroethane | N/A | <10 | 1 | 10 | | Tetrachloroethylene | N/A | <10 | 1 | 10 | | Thallium | N/A | <0.5 | 1 | 0.5 | | Toluene | N/A | <10 | 1 | 10 | | Toxaphene | N/A | <0.3 | 1 | 0.3 | | 2,4,5-TP (Silvex) | N/A | <0.3 | 1 | 0.3 | | Tributyltin (see instructions for explanation) | N/A | N/A | N/A | 0.01 | | 1,1,1-Trichloroethane | N/A | <10 | 1 | 10 | | 1,1,2-Trichloroethane | N/A | <10 | 1 | 10 | | Trichloroethylene | N/A | <10 | 1 | 10 | | 2,4,5-Trichlorophenol | N/A | <50 | 1 | 50 | | TTHM (Total Trihalomethanes) | N/A | <10 | 1 | 10 | | Vinyl Chloride | N/A | <10 | 1 | 10 | | Zinc | N/A | 23.3 | 1 | 5 | ^(*1) Determined by subtracting hexavalent Cr from total Cr. ^(*2) Cyanide, amenable to chlorination or weak-acid dissociable. ^(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016. # **Section 2. Priority Pollutants** For pollutants identified in Tables 4.0(2)A-E, indicate type of sample. Grab ⊠ Composite ⊠ See Attachment TR-6 Date and time sample(s) collected: <u>Grab: 02/27/2025 08:45</u>; <u>Composite: 02/27/2025 09:05</u> # Table 4.0(2)A - Metals, Cyanide, and Phenols | Pollutant | AVG
Effluent
Conc. (µg/l) | MAX
Effluent
Conc. (µg/l) | Number of
Samples | MAL (µg/l) | |---------------------|---------------------------------|---------------------------------|----------------------|------------| | Antimony | N/A | <5 | 1 | 5 | | Arsenic | N/A | 0.768 | 1 | 0.5 | | Beryllium | N/A | <0.5 | 1 | 0.5 | | Cadmium | N/A | <1 | 1 | 1 | | Chromium (Total) | N/A | <3 | 1 | 3 | | Chromium (Hex) | N/A | 3.59 | 1 | 3 | | Chromium (Tri) (*1) | N/A | <2 | 1 | N/A | | Copper | N/A | 7.79 | 1 | 2 | | Lead | N/A | <0.5 | 1 | 0.5 | | Mercury | N/A | < 0.005 | 1 | 0.005 | | Nickel | N/A | 7.24 | 1 | 2 | | Selenium | N/A | <5 | 1 | 5 | | Silver | N/A | <0.5 | 1 | 0.5 | | Thallium | N/A | <0.5 | 1 | 0.5 | | Zinc | N/A | 23.3 | 1 | 5 | | Cyanide (*2) | N/A | <10 | 1 | 10 | | Phenols, Total | N/A | <10 | 1 | 10 | ^(*1) Determined by subtracting hexavalent Cr from total Cr. ^(*2) Cyanide, amenable to chlorination or weak-acid dissociable Table 4.0(2)B - Volatile Compounds | Pollutant | AVG
Effluent
Conc. (µg/l) | MAX
Effluent
Conc. (µg/l) | Number of
Samples | MAL
(μg/l) | |--|---------------------------------|---------------------------------|----------------------|---------------| | Acrolein | N/A | <50 | 1 | 50 | | Acrylonitrile | N/A | <50 | 1 | 50 | | Benzene | N/A | <10 | 1 | 10 | | Bromoform | N/A | <10 | 1 | 10 | | Carbon Tetrachloride | N/A | <2 | 1 | 2 | | Chlorobenzene | N/A | <10 | 1 | 10 | | Chlorodibromomethane | N/A | <10 | 1 | 10 | | Chloroethane | N/A | <50 | 1 | 50 | | 2-Chloroethylvinyl Ether | N/A | <10 | 1 | 10 | | Chloroform | N/A | <10 | 1 | 10 | | Dichlorobromomethane
[Bromodichloromethane] | N/A | <10 | 1 | 10 | | 1,1-Dichloroethane | N/A | <10 | 1 | 10 | | 1,2-Dichloroethane | N/A | <10 | 1 | 10 | | 1,1-Dichloroethylene | N/A | <10 | 1 | 10 | | 1,2-Dichloropropane | N/A | <10 | 1 | 10 | | 1,3-Dichloropropylene | N/A | <10 | 1 | 10 | | [1,3-Dichloropropene] | | | | | | 1,2-Trans-Dichloroethylene | N/A | <10 | 1 | 10 | | Ethylbenzene | N/A | <10 | 1 | 10 | | Methyl Bromide | N/A | <50 | 1 | 50 | | Methyl Chloride | N/A | <50 | 1 | 50 | | Methylene Chloride | N/A | <20 | 1 | 20 | | 1,1,2,2-Tetrachloroethane | N/A | <10 | 1 | 10 | | Tetrachloroethylene | N/A | <10 | 1 | 10 | | Toluene | N/A | <10 | 1 | 10 | | 1,1,1-Trichloroethane | N/A | <10 | 1 | 10 | | 1,1,2-Trichloroethane | N/A | <10 | 1 | 10 | | Trichloroethylene | N/A | <10 | 1 | 10 | | Vinyl Chloride | N/A | <10 | 1 | 10 | Table 4.0(2)C - Acid Compounds | Pollutant | AVG
Effluent
Conc. (µg/l) | MAX
Effluent
Conc. (µg/l) | Number of
Samples | MAL
(μg/l) | |-----------------------|---------------------------------|---------------------------------|----------------------|---------------| | 2-Chlorophenol | N/A | <10 | 1 | 10 | | 2,4-Dichlorophenol | N/A | <10 | 1 | 10 | | 2,4-Dimethylphenol | N/A | <10 | 1 | 10 | | 4,6-Dinitro-o-Cresol | N/A | <50 | 1 | 50 | | 2,4-Dinitrophenol | N/A | <50 | 1 | 50 | | 2-Nitrophenol | N/A | <20 | 1 | 20 | | 4-Nitrophenol | N/A | <50 | 1 | 50 | | P-Chloro-m-Cresol | N/A | <10 | 1 | 10 | | Pentalchlorophenol | N/A | <5 | 1 | 5 | | Phenol | N/A | <10 | 1 | 10 | | 2,4,6-Trichlorophenol | N/A | <10 | 1 | 10 | Table 4.0(2)D - Base/Neutral Compounds | Pollutant | AVG
Effluent
Conc. (µg/l) | MAX
Effluent
Conc. (µg/l) | Number of
Samples | MAL
(μg/l) | |---------------------------------------|---------------------------------|---------------------------------|----------------------
---------------| | Acenaphthene | N/A | <10 | 1 | 10 | | Acenaphthylene | N/A | <10 | 1 | 10 | | Anthracene | N/A | <10 | 1 | 10 | | Benzidine | N/A | <50 | 1 | 50 | | Benzo(a)Anthracene | N/A | <5 | 1 | 5 | | Benzo(a)Pyrene | N/A | <5 | 1 | 5 | | 3,4-Benzofluoranthene | N/A | <10 | 1 | 10 | | Benzo(ghi)Perylene | N/A | <20 | 1 | 20 | | Benzo(k)Fluoranthene | N/A | <5 | 1 | 5 | | Bis(2-Chloroethoxy)Methane | N/A | <10 | 1 | 10 | | Bis(2-Chloroethyl)Ether | N/A | <10 | 1 | 10 | | Bis(2-Chloroisopropyl)Ether | N/A | <10 | 1 | 10 | | Bis(2-Ethylhexyl)Phthalate | N/A | <10 | 1 | 10 | | 4-Bromophenyl Phenyl Ether | N/A | <10 | 1 | 10 | | Butyl benzyl Phthalate | N/A | <10 | 1 | 10 | | 2-Chloronaphthalene | N/A | <10 | 1 | 10 | | 4-Chlorophenyl phenyl ether | N/A | <10 | 1 | 10 | | Chrysene | N/A | <5 | 1 | 5 | | Dibenzo(a,h)Anthracene | N/A | <5 | 1 | 5 | | 1,2-(o)Dichlorobenzene | N/A | <10 | 1 | 10 | | 1,3-(m)Dichlorobenzene | N/A | <10 | 1 | 10 | | 1,4-(p)Dichlorobenzene | N/A | <10 | 1 | 10 | | 3,3-Dichlorobenzidine | N/A | <5 | 1 | 5 | | Diethyl Phthalate | N/A | <10 | 1 | 10 | | Dimethyl Phthalate | N/A | <10 | 1 | 10 | | Di-n-Butyl Phthalate | N/A | <10 | 1 | 10 | | 2,4-Dinitrotoluene | N/A | <10 | 1 | 10 | | 2,6-Dinitrotoluene | N/A | <10 | 1 | 10 | | Di-n-Octyl Phthalate | N/A | <10 | 1 | 10 | | 1,2-Diphenylhydrazine (as Azobenzene) | N/A | <20 | 1 | 20 | | Fluoranthene | N/A | <10 | 1 | 10 | | Pollutant | AVG
Effluent
Conc. (µg/l) | MAX
Effluent
Conc. (µg/l) | Number of
Samples | MAL (µg/l) | |----------------------------|---------------------------------|---------------------------------|----------------------|------------| | Fluorene | N/A | <10 | 1 | 10 | | Hexachlorobenzene | N/A | <5 | 1 | 5 | | Hexachlorobutadiene | N/A | <10 | 1 | 10 | | Hexachlorocyclo-pentadiene | N/A | <10 | 1 | 10 | | Hexachloroethane | N/A | <20 | 1 | 20 | | Indeno(1,2,3-cd)pyrene | N/A | <5 | 1 | 5 | | Isophorone | N/A | <10 | 1 | 10 | | Naphthalene | N/A | <10 | 1 | 10 | | Nitrobenzene | N/A | <10 | 1 | 10 | | N-Nitrosodimethylamine | N/A | <50 | 1 | 50 | | N-Nitrosodi-n-Propylamine | N/A | <20 | 1 | 20 | | N-Nitrosodiphenylamine | N/A | <20 | 1 | 20 | | Phenanthrene | N/A | <10 | 1 | 10 | | Pyrene | N/A | <10 | 1 | 10 | | 1,2,4-Trichlorobenzene | N/A | <10 | 1 | 10 | Table 4.0(2)E - Pesticides | Pollutant | AVG
Effluent
Conc. (µg/l) | MAX
Effluent
Conc. (µg/l) | Number of
Samples | MAL
(μg/l) | |--------------------------------------|---------------------------------|---------------------------------|----------------------|---------------| | Aldrin | N/A | <0.01 | 1 | 0.01 | | alpha-BHC (Hexachlorocyclohexane) | N/A | <0.05 | 1 | 0.05 | | beta-BHC (Hexachlorocyclohexane) | N/A | <0.05 | 1 | 0.05 | | gamma-BHC
(Hexachlorocyclohexane) | N/A | <0.05 | 1 | 0.05 | | delta-BHC (Hexachlorocyclohexane) | N/A | <0.05 | 1 | 0.05 | | Chlordane | N/A | <0.2 | 1 | 0.2 | | 4,4-DDT | N/A | <0.02 | 1 | 0.02 | | 4,4-DDE | N/A | <0.1 | 1 | 0.1 | | 4,4,-DDD | N/A | <0.1 | 1 | 0.1 | | Dieldrin | N/A | <0.02 | 1 | 0.02 | | Endosulfan I (alpha) | N/A | <0.01 | 1 | 0.01 | | Endosulfan II (beta) | N/A | <0.02 | 1 | 0.02 | | Endosulfan Sulfate | N/A | <0.1 | 1 | 0.1 | | Endrin | N/A | <0.02 | 1 | 0.02 | | Endrin Aldehyde | N/A | <0.1 | 1 | 0.1 | | Heptachlor | N/A | <0.01 | 1 | 0.01 | | Heptachlor Epoxide | N/A | <0.01 | 1 | 0.01 | | PCB-1242 | N/A | <0.2 | 1 | 0.2 | | PCB-1254 | N/A | <0.2 | 1 | 0.2 | | PCB-1221 | N/A | <0.2 | 1 | 0.2 | | PCB-1232 | N/A | <0.2 | 1 | 0.2 | | PCB-1248 | N/A | <0.2 | 1 | 0.2 | | PCB-1260 | N/A | <0.2 | 1 | 0.2 | | PCB-1016 | N/A | <0.2 | 1 | 0.2 | | Toxaphene | N/A | <0.3 | 1 | 0.3 | ^{*} For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<". # Section 3. Dioxin/Furan Compounds | Α. | | te which of the following compounds from may be present in the influent from a buting industrial user or significant industrial user. Check all that apply. | |----|------------------|---| | | | 2,4,5-trichlorophenoxy acetic acid | | | | Common Name 2,4,5-T, CASRN 93-76-5 | | | | 2-(2,4,5-trichlorophenoxy) propanoic acid | | | | Common Name Silvex or 2,4,5-TP, CASRN 93-72-1 | | | | 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate | | | | Common Name Erbon, CASRN 136-25-4 | | | | 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate | | | | Common Name Ronnel, CASRN 299-84-3 | | | | 2,4,5-trichlorophenol | | | | Common Name TCP, CASRN 95-95-4 | | | | hexachlorophene | | | | Common Name HCP, CASRN 70-30-4 | | | | ch compound identified, provide a brief description of the conditions of its/their | | | presei | nce at the facility. | | | N/A | nce at the facility. | | | | nce at the facility. | | | | nce at the facility. | | | | nce at the facility. | | В. | N/A Do yo | u know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin)) or any congeners of TCDD may be present in your effluent? | | В. | N/A Do yo (TCDI | u know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin O) or any congeners of TCDD may be present in your effluent? Yes No | | В. | Do yo (TCDI | u know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin)) or any congeners of TCDD may be present in your effluent? | | В. | N/A Do yo (TCDI | u know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin O) or any congeners of TCDD may be present in your effluent? Yes No | | В. | Do yo (TCDI | u know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin O) or any congeners of TCDD may be present in your effluent? Yes No | | В. | Do yo (TCDI | u know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin O) or any congeners of TCDD may be present in your effluent? Yes No | **C.** If any of the compounds in Subsection A **or** B are present, complete Table 4.0(2)F. For pollutants identified in Table 4.0(2)F, indicate the type of sample. Grab □ Composite □ Date and time sample(s) collected: N/A # Table 4.0(2)F - Dioxin/Furan Compounds | Compound | Toxic
Equivalenc
y Factors | Wastewater
Concentration
(ppq) | Wastewater
Equivalents
(ppq) | Sludge
Concentration
(ppt) | Sludge
Equivalents
(ppt) | MAL
(ppq) | |------------------------|----------------------------------|--------------------------------------|------------------------------------|----------------------------------|--------------------------------|--------------| | 2,3,7,8 TCDD | 1 | N/A | N/A | N/A | N/A | 10 | | 1,2,3,7,8 PeCDD | 0.5 | N/A | N/A | N/A | N/A | 50 | | 2,3,7,8 HxCDDs | 0.1 | N/A | N/A | N/A | N/A | 50 | | 1,2,3,4,6,7,8
HpCDD | 0.01 | N/A | N/A | N/A | N/A | 50 | | 2,3,7,8 TCDF | 0.1 | N/A | N/A | N/A | N/A | 10 | | 1,2,3,7,8 PeCDF | 0.05 | N/A | N/A | N/A | N/A | 50 | | 2,3,4,7,8 PeCDF | 0.5 | N/A | N/A | N/A | N/A | 50 | | 2,3,7,8 HxCDFs | 0.1 | N/A | N/A | N/A | N/A | 50 | | 2,3,4,7,8
HpCDFs | 0.01 | N/A | N/A | N/A | N/A | 50 | | OCDD | 0.0003 | N/A | N/A | N/A | N/A | 100 | | OCDF | 0.0003 | N/A | N/A | N/A | N/A | 100 | | PCB 77 | 0.0001 | N/A | N/A | N/A | N/A | 0.5 | | PCB 81 | 0.0003 | N/A | N/A | N/A | N/A | 0.5 | | PCB 126 | 0.1 | N/A | N/A | N/A | N/A | 0.5 | | PCB 169 | 0.03 | N/A | N/A | N/A | N/A | 0.5 | | Total | | N/A | N/A | N/A | N/A | | # ATTACHMENT TR-8 WORKSHEET 5.0 TOXICITY TESTING REQUIREMENTS # DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: TOXICITY TESTING REQUIREMENTS The following **is required** for facilities with a current operating design flow of **1.0 MGD or greater**, with an EPA-approved **pretreatment** program (or those required to have one under 40 CFR Part 403), or are required to perform Whole Effluent Toxicity testing. See instructions for further details. This worksheet is not required minor amendments without renewal. # Section 1. Required Tests (Instructions Page 88) Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application. 7-day Chronic: <u>17</u> 48-hour Acute: 8 # **Section 2.** Toxicity Reduction Evaluations (TREs) | Has this facility | completed a | TRE in the | past four | and a ha | alf years? | Or is the | facility | currently | |-------------------|-------------|------------|-----------|----------|------------|-----------|----------|-----------| | performing a TI | RE? | | | | | | | | □ Yes ⊠ No If yes, describe the progress to date, if applicable, in identifying and confirming the toxicant. | N <u>/A</u> | | | | |-------------|--|--|--| # **Section 3.** Summary of WET Tests If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed. Table 5.0(1) Summary of WET Tests | Test Date | Test Species | NOEC Survival | NOEC Sub-lethal | |--------------|--------------------------------------|---------------------------|-------------------| | DMRs submitt | <mark>ed via NetDMR. Table 1s</mark> | submitted to TCEQ email W | ET@tceq.texas.gov | # ATTACHMENT TR-9 WORKSHEET 6.0 INDUSTRIAL WASTE CONTRIBUTION # DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION The following is required for all publicly owned treatment works. # Section 1. All POTWs (Instructions Page 87) ### A. Industrial users (IUs) Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW
and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs. ## If there are no users, enter 0 (zero). Categorical IUs: Number of IUs: o Average Daily Flows, in MGD: o Significant IUs - non-categorical: Number of IUs: 1 Average Daily Flows, in MGD: o.oog Other IUs: Number of IUs: o Average Daily Flows, in MGD: o ### B. Treatment plant interference In the past three years, has your POTW experienced treatment plant interference (see instructions)? □ Yes ⊠ No **If yes**, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference. | N <u>/A</u> | |-------------| In the past three years, has your POTW experienced pass through (see instructions)? | |----|---| | | □ Yes ⊠ No | | | If yes , identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through. | | | N/A | | | | | | | | | | | | | | | | | - | | | D. | Pretreatment program Does your POTW have an approved pretreatment program? | | | Does your POTW have an approved pretreatment program? ☑ Yes □ No | | | | | | If yes, complete Section 2 only of this Worksheet. Is your POTW required to develop an approved pretreatment program? | | | | | | If yes, complete Section 2.c. and 2.d. only, and skip Section 3. | | | If no to either question above, skip Section 2 and complete Section 3 for each significant | | | industrial user and categorical industrial user. | | Se | ction 2. POTWs with Approved Programs or Those Required to | | | Develop a Program (Instructions Page 87) | | Α. | Substantial modifications | | | Have there been any substantial modifications to the approved pretreatment program that have not been submitted to the TCEQ for approval according to <i>40 CFR §403.18</i> ? | | | □ Yes ⊠ No | | | If yes , identify the modifications that have not been submitted to TCEQ, including the purpose of the modification. | | | N <u>/A</u> | | | | | | | | | | | | | | | | C. Treatment plant pass through | | e not been submitte | | | - | |-----------------------|--|-------------------|--------------------|-----------------------| | □ Yes ⊠ | No | | | | | | non-substantial mo
pose of the modifica | | ave not been s | submitted to TCEQ, | | N/A | C. Effluent paramete | | | | | | | t all parameters mea
g the last three years | | | | | Table 6.0(1) – Parame | • | 5. Judini an acac | Allineire in Trees | :55ai y . | | Pollutant | Concentration | MAL | Units | Date | | See Attachment TR-10 | | | | | | | 1 | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | D. Industrial user in | terruptions | | | | | | or other IU caused o | | | | | | ass throughs) at you
No | ar POTW in the pa | ist inree years |) <i>?</i> | | | | each enisode inc | rluding dates | duration, description | | | and probable polluta | | idding dates, | duration, accerption | | N/A | **B.** Non-substantial modifications # Section 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 88) A. General information | | Company Name: <u>N/A</u> | |----|--| | | SIC Code: N/A | | | Contact name: <u>N/A</u> | | | Address: <u>N/A</u> | | | City, State, and Zip Code: <u>N/A</u> | | | Telephone number: <u>N/A</u> | | | Email address: <u>N/A</u> | | В. | Process information | | | Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater). | | | N/A | C. | Product and service information | | C. | Product and service information Provide a description of the principal product(s) or services performed. | | C. | | | C. | Provide a description of the principal product(s) or services performed. | | C. | Provide a description of the principal product(s) or services performed. | | C. | Provide a description of the principal product(s) or services performed. | | C. | Provide a description of the principal product(s) or services performed. | | C. | Provide a description of the principal product(s) or services performed. | | | Provide a description of the principal product(s) or services performed. N/A | | | Provide a description of the principal product(s) or services performed. N/A Flow rate information | | | Provide a description of the principal product(s) or services performed. N/A Flow rate information See the Instructions for definitions of "process" and "non-process wastewater." | | | Provide a description of the principal product(s) or services performed. N/A Flow rate information See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater: | | | Provide a description of the principal product(s) or services performed. N/A Flow rate information See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater: Discharge, in gallons/day: N/A | | | Provide a description of the principal product(s) or services performed. N/A Flow rate information See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater: Discharge, in gallons/day: N/A Discharge Type: Continuous Batch Intermittent | | | Provide a description of the principal product(s) or services performed. N/A Flow rate information See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater: Discharge, in gallons/day: N/A Discharge Type: Continuous Batch Intermittent Non-Process Wastewater: | | | Provide a description of the principal product(s) or services performed. N/A Flow rate information See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater: Discharge, in gallons/day: N/A Discharge Type: □ Continuous □ Batch □ Intermittent Non-Process Wastewater: Discharge, in gallons/day: N/A | | | Provide a description of the principal product(s) or services performed. N/A Flow rate information See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater: Discharge, in gallons/day: N/A Discharge Type: Continuous Batch Intermittent Non-Process Wastewater: | | E. | Pretreatment standards | |----|---| | | Is the SIU or CIU subject to technically based local limits as defined in the <i>i</i> nstructions? | | | □ Yes □ No | | | Is the SIU or CIU subject to categorical pretreatment standards found in $40\ CFR\ Parts\ 405-471?$ | | | □ Yes □ No | | | If subject to categorical pretreatment standards , indicate the applicable category and subcategory for each categorical process. | | | Category: Subcategories: <u>N/A</u> | | | Click or tap here to enter text. <u>N/A</u> | | | Category: <u>N/A</u> | | | Subcategories: <u>N/A</u> | | | Category: <u>N/A</u> | | | Subcategories: <u>N/A</u> | | | Category: <u>N/A</u> | | | Subcategories: <u>N/A</u> | | | Category: <u>N/A</u> | | | Subcategories: <u>N/A</u> | | F. | Industrial user interruptions | | | Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years? | | | □ Yes □ No | | | If yes , identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants. | | | N/A | | | | | | | | | | | | | | | | # ATTACHMENT TR-10 EFFLUENT PARAMETERS ABOVE THE MAL # THREE YEARS ABOVE THE MAL | Pollutant | Concentration | MAL | Units | Date | |------------------|---------------|------|-------|------------| | Arsenic | 0.83 | 0.5 | ug/L | 6/22/2022 | | Copper | 7.16 | | ug/L | 6/22/2022 | | Nickel | 9.14 | 2 | ug/L | 6/22/2022 | | Zinc | 34.1 | 5 | ug/L | 6/22/2022 | | Aluminum | 5.04 | 2.5 | ug/L | 6/22/2022 | | Barium | 16.5 | 3 | ug/L | 6/22/2022 | | Arsenic | 0.68 | 0.5 | ug/L | 12/15/2022 | | Copper | 10.7 | 2 | ug/L | 12/15/2022 | | Nickel | 6.95 | 2 | ug/L | 12/15/2022 | | Zinc | 15.4 | 5 | ug/L | 12/15/2022 | | Arsenic | 1.09 | | ug/L | 6/21/2023 | | Chromium (Hex) | 3.56 | 3 | ug/L | 6/21/2023 | | Copper | 18.2 | 2 | ug/L | 6/21/2023 | | Nickel | 10.9 | 2 | ug/L | 6/21/2023 | | Zinc | 24.5 | 5 | ug/L | 6/21/2023 | | Alumium | 6.74 | 2.5 | ug/L | 6/21/2023 | | Barium | 29.2 | 3 | ug/L | 6/21/2023 | | Fluoride | 648 | 500 | ug/L | 6/21/2023 | | Nitrate-Nitrogen | 15500 | 100 | ug/L | 6/21/2023 | | Arsenic | 0.809 | 0.5 | ug/L | 12/13/2023 | | Copper | 6.49 | 2 | ug/L | 12/13/2023 | | Nickel | 9.59 | 2 | ug/L | 12/13/2023 | | Zinc | 20 | 5 | ug/L | 12/13/2023 | | Arsenic | 0.616 | 0.5 | ug/L | 6/20/2024 | | Copper | 8.49 | 2 | ug/L | 6/20/2024 | | Nickel | 6.34 | 2 | ug/L | 6/20/2024 | | Zinc | 25.9 | 5 | ug/L | 6/20/2024 | | Alumium | 7.6 | 2.5 | ug/L | 6/20/2024 | | Barium | 34.1 | 3 | ug/L | 6/20/2024 |
 Fluoride | 601 | 500 | ug/L | 6/20/2024 | | Nitrate-Nitrogen | 19700 | 100 | ug/L | 6/20/2024 | | alpha-Endosulfar | 0.0285 | 0.01 | ug/L | 6/20/2024 | | Arsenic | 0.817 | 0.5 | ug/L | 12/12/2024 | | Copper | 6.15 | 2 | ug/L | 12/12/2024 | | Nickel | 6.71 | 2 | ug/L | 12/12/2024 | | Zinc | 18.6 | | ug/L | 12/12/2024 | | Alumium | 5.72 | 2.5 | ug/L | 2/27/2025 | | Arsenic | 0.768 | | ug/L | 2/27/2025 | | Barium | 27.9 | | ug/L | 2/27/2025 | | Copper | 7.79 | | ug/L | 2/27/2025 | | Nickel | 7.24 | | ug/L | 2/27/2025 | | Nitrate-Nitrogen | 2200 | | ug/L | 2/27/2025 | | Zinc | 23.3 | | ug/L | 2/27/2025 | # Description of the Service Areas Indicated in the Site Drawing Stewart Creek West Wastewater Treatment Plant (WWTP), Panther Creek WWTP, Rowlett Creek Regional WWTP and Wilson Creek Regional WWTP service areas shaded on the site drawing make up the sewer shed of the entire City of Frisco and are within the incorporated boundary of the City. Two of the WWTPs reside within the City's limits; Stewart Creek West WWTP serves the southwest and southcentral portion of the City of Frisco and Panther Creek WWTP serves the northern portion of the City. When necessary, Panther Creek WWTP can receive diverted flow from the Stewart Creek West WWTP via the City's force main (FM) as indicated by the dark green line on the site drawing. The other two service areas in the City of Frisco serve the southeast part of the City; the Rowlett Creek Regional WWTP and the Wilson Creek Regional WWTP service areas. Rowlett Creek Regional WWTP is located in the City of Plano and treats wastewater that originates from many areas in the region including the Rowlett Creek Regional WWTP service area of the City of Frisco. Likewise, the Wilson Creek Regional WWTP located partially in the City of Lucas treats the wastewater that comes from many areas in the region including the Wilson Creek RWWTP service area of the City of Frisco. The Stewart Creek West WWTP, Panther Creek WWTP, Rowlett Creek Regional WWTP and Wilson Creek Regional WWTP are owned and operated by the North Texas Municipal Water District. Stewart Creek West WWTP – Interim I Phase (10 MGD) **Influent Pump Station** Mechanical Mechanical Mechanical Hauled to **Step Screens Step Screens Step Screens** Landfill **Grit Removal Grit Removal** System System Primary Belt Belt Clarifer Filter Filter Press Press Primary Aeration Aeration Clarifer Mixing Basin Basin Tank WAS Aeration Aeration WAS Holding Basin Basin Tank Secondary Clarifer Secondary Clarifer Thickene Secondary Secondary Clarifer Clarifer **Tertiary Cloth Tertiary Cloth Tertiary Cloth** Filter Basin Filter Basin Filter Basin **Legend** Water Flow -**UV** Disinfection **UV** Disinfection Sludge Flow — — — → BFP in Operation Channels Channels Sludge Flow ─ ─ ─ ─ ─ BFP not in Operation **Post Aeration Post Aeration** Basin Basin City of Frisco Reclaim Water To Outfall Stewart Creek West WWTP – Final Phase (15 MGD) **Influent Pump Station** Mechanical Mechanical Mechanical Hauled to **Step Screens** Step Screens Step Screens Landfill **Grit Removal** Grit Removal System System Primary Belt Belt Clarifer Filter Filter Press \ Press Primary Primary Clarifer Clarifer Aeration Aeration Mixing Basin Basin WAS Aeration Aeration Aeration Aeration WAS Holding Basin Basin Basin Basin Tank Secondary Clarifer Secondary WAS Clarifer Secondary Secondary Secondary Clarifer Clarifer Clarifer **Tertiary Cloth Tertiary Cloth Tertiary Cloth** Filter Basin Filter Basin Filter Basin **Tertiary Cloth Legend** Filter Basin **Tertiary Cloth Tertiary Cloth Tertiary Cloth** Filter Basin Filter Basin Filter Basin Water Flow -Sludge Flow — — — — BFP in Operation Sludge Flow — — — — **UV** Disinfection UV Disinfection UV Disinfection UV Disinfection Channels Channels Channels Channels **Post Aeration Post Aeration** Basin Basin City of Frisco Reclaim Water То Outfall # **DOMESTIC ATTACHMENT 5 – DESIGN CALCULATIONS** Design calculations are required in Technical Report 1.1, which is submitted with new and major amendment applications. This application is for renewal of an existing permit and therefore submission of design calculations is not required. ### **Candice Calhoun** From: Jerry Allen <jallen@NTMWD.COM> Sent: Tuesday, August 5, 2025 9:38 AM **To:** Candice Calhoun Subject: RE: Application to Renew Permit No. WQ0014008001 (North Texas MWD) - Notice of Deficiency **Attachments:** 2025-08 to TCEQ re NTMWD Response to Stewart Creek West WWTP NOD SIGNED.pdf; 2025-08 Stewart Creek West WWTP Plain Language Summary - Revised.pdf; 2025-08 Stewart Creek WWTP NORI (Spanish Template).docx **Caution:** This email may contain suspicious content. Please take care when clicking links or opening attachments. When in doubt, contact the TCEQ Help Desk. Good morning, Candice, Attached is the response to the NOD with the requested documents. Please let me know if you need anything else. Have a good day. Thank you, # JERRY ALLEN Permitting Manager North Texas Municipal Water District O: 469-626-4634 | C: 214-212-6153 OPEN RECORDS NOTICE: This email and responses may be subject to the Texas Public Information Act and may be disclosed to the public upon request. Please respond accordingly. From: Jerry Allen Sent: Monday, August 4, 2025 8:37 AM To: Candice Calhoun < Candice. Calhoun@tceq.texas.gov> Subject: RE: Application to Renew Permit No. WQ0014008001 (North Texas MWD) - Notice of Deficiency Good morning, Candice, I have received the NOD letter and I will respond accordingly. Thank you, # JERRY ALLEN Permitting Manager North Texas Municipal Water District O: 469-626-4634 | C: 214-212-6153 OPEN RECORDS NOTICE: This email and responses may be subject to the Texas Public Information Act and may be disclosed to the public upon request. Please respond accordingly. From: Candice Calhoun < Candice.Calhoun@tceq.texas.gov> Sent: Monday, August 4, 2025 8:28 AM To: Jerry Allen <jallen@NTMWD.COM> Subject: [EXTERNAL] Application to Renew Permit No. WQ0014008001 (North Texas MWD) - Notice of Deficiency Importance: High WARNING: This email is from an external source. Do not click links or open attachments without positive sender verification of purpose. Never enter username, password or sensitive information on linked pages from this email. If you are unsure about the message, please forward to itsupport@ntmwd.com for assistance. Good morning, Mr. Allen, The attached Notice of Deficiency (NOD) letter dated <u>August 4, 2025</u>, requests additional information needed to declare the application administratively complete. Please send complete response no later than <u>August 18, 2025</u>. Please let me know if you have any questions. # Regards, ## Candice Courville License & Permit Specialist ARP Team | Water Quality Division Texas Commission on Environmental Quality 512-239-4312 candice.calhoun@tceq.texas.gov How is our customer service? Fill out our online customer satisfaction survey at www.tceq.texas.gov/customersurvey # Regional. Reliable. Everyday. August 05, 2025 Candice Calhoun **VIA ELECTRONIC MAIL** Applications Review and Processing Team (MC148) candice.calhoun@tceq.texas.gov Water Quality Division Texas Commission on Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087 Re: Response to TCEQ Notice of Deficiency Applicant Name: North Texas Municipal Water District (CN601365448) Permit Number: WQ0014008001 (EPA I.D. No. TX0103501) Site Name: Stewart Creek West WWTP (RN101607265) Type of Application: Renewal ### Dear Ms. Calhoun: This letter is submitted regarding the above-referenced TPDES Domestic Wastewater Permit Application ("Application") associated with the North Texas Municipal Water District's ("NTMWD's") Stewart Creek West Wastewater Treatment Plant ("Stewart Creek West WWTP") in response to items noted in the August 4, 2025 Notice of Deficiency letter addressed to Jerry Allen. NTMWD offers the following comments for your consideration: Request 1 (Plain Language Summary (PLS): The Plain Language Summary, in English and Spanish language, provided, did not include the final flow that is permitted. Please provide a revised PLS, in English and Spanish language, to include the final phase flow. Most applicant say something along the lines of: "[Applicant's Name] is requesting a renewal of permit no. WQ00XXXXXXXXX to discharge [final phase flow amount] gallons per day".) ### Response: The Plain Language Summary has been revised to incorporate the final phase flow. The revised Plain Language Summary document is attached to the response email in both English and Spanish language. Request 2 (Review the portion of the NORI provided and indicate if it contains any errors or omissions.) Regional Service Through Unity...Meeting Our Region's Needs Today and Tomorrow Ms. Candice Calhoun August 05, 2025 Page **2** ## Response: NTMWD has reviewed the portion of the NORI provided. The portion of the NORI stating the discharge route states: "The discharge route is from the plant site to Stewart Creek; thence to Garza/Little Elm Reservoir portion of Lewisville Lake." Please edit the statement as follows: "The discharge route is from the plant site to Stewart Creek; thence to Garza/Little Elm Reservoir portion of Lewisville Lake in Segment No. 0823 of the Trinity River Basin." # Request 3 (Please provide the translated Spanish NORI in a Microsoft Word document.) A translated Spanish NORI, in Microsoft Word document format, has been attached to the NTMWD response email with this letter. Should you have any questions or need additional information please contact me at jallen@ntmwd.com or 469-626-4634. Sincerely, Jerry Allen Permitting Manager JA/kw ### **Enclosures** cc: Hunter Stephens, NTMWD Joel Nickerson, NTMWD R.J. Muraski, NTMWD Lauren Kalisek, Lloyd Gosselink Rochelle & Townsend, P.C. Lora Naismith, Lloyd Gosselink Rochelle & Townsend, P.C. # TEXAS COMMISSION ON ENVIRONMENTAL QUALITY # SUMMARY OF APPLICATION IN PLAIN
LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS # Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications Applicants should use this template to develop a plain language summary of your facility and application as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. You may modify the template as necessary to accurately describe your facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how you will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment. Fill in the highlighted areas below to describe your facility and application in plain language. Instructions and examples are provided below. Make any other edits necessary to improve readability or grammar and to comply with the rule requirements. After filling in the information for your facility delete these instructions. If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below. # ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTIC WASTEWATER/STORMWATER The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application. North Texas Municipal Water District (CN601365448) operates Stewart Creek West Wastewater Treatment Plant (RN101607265), a domestic wastewater treatment plant. The facility is located at 5100 Fourth Army Drive, in Frisco, Denton County, Texas 75034. Through this application, North Texas Municipal Water District is requesting a renewal of permit no. WQ0014008001 to discharge 15 million gallons per day. Discharges from the facility are expected to contain Carbonaceous Biochemical Oxygen Demand (CBOD), Total Suspended Solids (TSS), Ammonia Nitrogen, and E. coli. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7 Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application. Domestic wastewater is treated by grit chambers, primary clarifiers, aeration basins, secondary clarifiers, tertiary cloth filters, U.V. disinfection. Sludge from the clarifiers is processed with sludge holding tanks and belt filter presses. The dewatered sludge is disposed at the NTMWD 121 Regional Disposal Facility and C.M. Hinton Jr. Regional Landfill. # PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP ## AGUAS RESIDUALES DOMÉSTICAS/AGUAS PLUVIALES El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso. El Districto Municipal de Agua del Norte de Texas (CN601365448) opera la planta de tratamiento de aguas residuales de Stewart Creek West (RN101607265), una planta de tratamiento de aguas residuales domésticas. La instalación está ubicada en 5100 Fourth Army Drive, en Frisco, Condado de Denton, Texas 75034. A través de esta solicitud, el Distrito Municipal de Agua del Norte de Texas solicita la renovación del permiso numero WQ0014008001 para descargar 15 millones de galones por día. Se espera que las descargas de la instalación contengan demanda bioquímica de oxígeno bioquímico (CBOD), sólidos suspendidos totales (TSS), nitrógeno de amoníaco y E. coli. Se incluyen contaminantes potenciales adicionales en el Informe Técnico Nacional 1.0, Sección 7 Análisis de contaminantes de la Hoja de trabajo de efluentes tratados y domésticos 4.0 en la solicitud de permiso. Las aguas residuales domésticas son tratadas por cámaras de arena, clarificadores primarios, cuencas de aireación, clarificadores secundarios, filtros de tela terciaria, U.V. desinfección. El lodo de los clarificadores se procesa con tanques de sostenimiento de lodo y prensas de filtro de correa. Los lodos deshidratados se eliminan en la Instalación de Eliminación Regional NTMWD 121 y en el Vertedero Regional C.M. Hinton Jr.