

This file contains the following documents:

- 1. Summary of application (in plain language)
 - English
 - Alternative Language (Spanish)
- 2. First Notice (NORI-Notice of Receipt of Application and Intent to Obtain a Permit)
 - English
 - Alternative Language (Spanish)
- 3. Application materials

Este archivo contiene los siguientes documentos:

- 1. Resumen en lenguaje sencillo (PLS, por sus siglas en inglés) de la actividad propuesta
 - Inglés
 - Idioma alternativo (español)
- 2. Primer aviso (NORI, por sus siglas en inglés)
 - Inglés
 - Idioma alternativo (español)
- 3. Solicitud original

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS

Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary of your facility and application as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. You may modify the template as necessary to accurately describe your facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how you will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTICE WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

North Texas Municipal Water District ($\underline{\text{CN601365448}}$) operates Panther Creek Wastewater Treatment Plant ($\underline{\text{RN102739430}}$), an domestic wastewater treatment plant. The facility is located at 1825 Little Ranch Road, in Frisco, Denton County, Texas 75034. The application is for a renewal of the permit.

Discharges from the facility are expected to contain carbonaceous biochemical oxygen demand (CBOD), total suspended solids (TSS), Ammonia Nitrogen, and E.coli. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7 Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application. Domestic wastewater is treated by screening, grit removal, primary clarification, aeration with biological nutrient removal capability, secondary clarification, filtration, and UV disinfection. Reuse water is provided to an on-site pump station operated by City of Frisco. Sludge from the clarifiers is processed with storage and blend tanks and dewatering presses. The dewatered sludge is disposed at NTMWD 121 Regional Disposal Facility.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES DOMESTICAS /**AGUAS PLUVIALES**

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

North Texas Municipal Water District (CN601365448) opera Panther Creek Wastewater Treatment Plant RN102739430, una planta de tratamiento de aguas residuals domesticas. La instalación está ubicada en 1825 Little Ranch Road, en Frisco, Condado de Denton, Texas 75034. La solicitud es para una renovación del permiso.

Se espera que las descargas de la instalación contengan demanda bioquímica de oxígeno bioquímico (CBOD), sólidos suspendidos totales (TSS), nitrógeno de amodemanda bioquímica de oxígeno bioquímico (CBOD), sólidos suspendidos totales (TSS), nitrógeno de amoníaco y E. coli. Se incluyen contaminantes potenciales adicionales en el Informe Técnico Nacional 1.0, Sección 7 Análisis de Contaminantes de Efluentes Tratados y Hoja de Trabajo Doméstica 4.0 en la solicitud de permiso.níaco y E. coli. Se incluyen contaminantes potenciales adicionales en el Informe Técnico Nacional 1.0, Sección 7 Análisis de Contaminantes de Efluentes Tratados y Hoja de Trabajo Doméstica 4.0 en la solicitud de permiso.. Las aguas residuals domesticas. están tratado por cribado, eliminación de arena, clarificación primaria, aireación con capacidad de eliminación biológica de nutrientes, clarificación secundaria, filtración y desinfección UV. El agua reutilizada se proporciona a una estación de bombeo en el lugar que es operada por la Ciudad de Frisco. Los lodos de los clarificadores se procesan con tanques de almacenamiento y mezcla y prensas de deshidratación. Los lodos deshidratados se desechan en la Instalación Regional de Eliminación NTMWD 121.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS

Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary of your facility and application as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. You may modify the template as necessary to accurately describe your facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how you will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTICE WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

North Texas Municipal Water District ($\underline{\text{CN601365448}}$) operates Panther Creek Wastewater Treatment Plant ($\underline{\text{RN102739430}}$), a domestic wastewater treatment plant. The facility is located at 1825 Fields Parkway, in Frisco, Denton County, Texas 75034. The application is for a renewal of the permit.

Discharges from the facility are expected to contain carbonaceous biochemical oxygen demand (CBOD), total suspended solids (TSS), Ammonia Nitrogen, and E.coli. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7 Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application. Domestic wastewater is treated by screening, grit removal, primary clarification, aeration basins with biological nutrient removal capability, secondary clarification, filtration, and UV disinfection. Sludge from the clarifiers is processed with storage and blend tanks and dewatering presses. The dewatered sludge is disposed at NTMWD 121 Regional Disposal Facility.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES DOMESTICAS /**AGUAS PLUVIALES**

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

North Texas Municipal Water District (CN601365448) opera Panther Creek Wastewater Treatment Plant RN102739430, una planta de tratamiento de aguas residuals domesticas. La instalación está ubicada en 1825 Fields Parkway, en Frisco, Condado de Denton, Texas 75034. La solicitud es para una renovación del permiso.

Se espera que las descargas de la instalación contengan demanda bioquímica de oxígeno (CBOD) carbonosa, sólidos suspendidos totales (TSS), nitrógeno amoniacal y E. coli. Se incluyen otros contaminantes potenciales en el Informe Técnico Doméstico 1.0, Sección 7, Análisis de Contaminantes del Efluente Tratado, y la Hoja de Trabajo Doméstica 4.0 de la solicitud de permiso . Las aguas residuals domesticas. están tratado por cribado, eliminación de arena, clarificación primaria, tanques de aireación con capacidad de eliminación biológica de nutrientes, clarificación secundaria, filtración y desinfección UV. Los lodos de los clarificadores se procesan con tanques de almacenamiento y mezcla y prensas de deshidratación. Los lodos deshidratados se desechan en la Instalación Regional de Eliminación NTMWD 121.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF RECEIPT OF APPLICATION AND INTENT TO OBTAIN WATER QUALITY PERMIT RENEWAL.

PERMIT NO. WQ0014245001

APPLICATION. North Texas Municipal Water District, P.O. Box 2408, Wylie, Texas 75098, has applied to the Texas Commission on Environmental Quality (TCEQ) to renew Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0014245001 (EPA I.D. No. TX0123901) to authorize the discharge of treated wastewater at a volume not to exceed an annual average flow of 25,000,000 gallons per day. The domestic wastewater treatment facility is located at 1825 Fields Parkway, in the city of Frisco, in Denton County, Texas 75034. The discharge route is from the plant site to Panther Creek; thence to Lewisville lake. TCEQ received this application on October 15, 2025. The permit application will be available for viewing and copying at Little Elm Public Library, Reference Section, 100 West Eldorado Parkway, Little Elm, in Denton County, Texas prior to the date this notice is published in the newspaper. The application is available for viewing and copying at the following webpage: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-96.87344,33.203044&level=18

ALTERNATIVE LANGUAGE NOTICE. Alternative language notice in Spanish is available at: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

ADDITIONAL NOTICE. TCEQ's Executive Director has determined the application is administratively complete and will conduct a technical review of the application. After technical review of the application is complete, the Executive Director may prepare a draft permit and will issue a preliminary decision on the application. Notice of the Application and Preliminary Decision will be published and mailed to those who are on the countywide mailing list and to those who are on the mailing list for this application. That notice will contain the deadline for submitting public comments.

PUBLIC COMMENT / PUBLIC MEETING. You may submit public comments or request a public meeting on this application. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the application. TCEQ will hold a public meeting if the Executive Director determines that there is a significant degree of public

interest in the application or if requested by a local legislator. A public meeting is not a contested case hearing.

OPPORTUNITY FOR A CONTESTED CASE HEARING. After the deadline for submitting public comments, the Executive Director will consider all timely comments and prepare a response to all relevant and material, or significant public comments. Unless the application is directly referred for a contested case hearing, the response to comments, and the Executive Director's decision on the application, will be mailed to everyone who submitted public comments and to those persons who are on the mailing list for this application. If comments are received, the mailing will also provide instructions for requesting reconsideration of the Executive Director's decision and for requesting a contested case hearing. A contested case hearing is a legal proceeding similar to a civil trial in state district court.

TO REQUEST A CONTESTED CASE HEARING, YOU MUST INCLUDE THE FOLLOWING ITEMS IN YOUR REQUEST: your name, address, phone number; applicant's name and proposed permit number; the location and distance of your property/activities relative to the proposed facility; a specific description of how you would be adversely affected by the facility in a way not common to the general public; a list of all disputed issues of fact that you submit during the comment period and, the statement "[I/we] request a contested case hearing." If the request for contested case hearing is filed on behalf of a group or association, the request must designate the group's representative for receiving future correspondence; identify by name and physical address an individual member of the group who would be adversely affected by the proposed facility or activity; provide the information discussed above regarding the affected member's location and distance from the facility or activity; explain how and why the member would be affected; and explain how the interests the group seeks to protect are relevant to the group's purpose.

Following the close of all applicable comment and request periods, the Executive Director will forward the application and any requests for reconsideration or for a contested case hearing to the TCEQ Commissioners for their consideration at a scheduled Commission meeting.

The Commission may only grant a request for a contested case hearing on issues the requestor submitted in their timely comments that were not subsequently withdrawn. If a hearing is granted, the subject of a hearing will be limited to disputed issues of fact or mixed questions of fact and law relating to relevant and material water quality concerns submitted during the comment period.

TCEQ may act on an application to renew a permit for discharge of wastewater without providing an opportunity for a contested case hearing if certain criteria are met.

MAILING LIST. If you submit public comments, a request for a contested case hearing or a reconsideration of the Executive Director's decision, you will be added to the mailing list for this specific application to receive future public notices mailed by the Office of the Chief Clerk. In addition, you may request to be placed on: (1) the permanent mailing list for a specific applicant name and permit number; and/or (2) the mailing list for a specific county. If you wish to be placed on the permanent and/or the county mailing list, clearly specify which list(s) and send your request to TCEQ Office of the Chief Clerk at the address below.

INFORMATION AVAILABLE ONLINE. For details about the status of the application, visit the Commissioners' Integrated Database at www.tceq.texas.gov/goto/cid. Search the database using the permit number for this application, which is provided at the top of this notice.

AGENCY CONTACTS AND INFORMATION. All public comments and requests must be submitted either electronically at https://www14.tceq.texas.gov/epic/eComment/, or in writing to the Texas Commission on Environmental Quality, Office of the Chief Clerk, MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Please be aware that any contact information you provide, including your name, phone number, email address and physical address will become part of the agency's public record. For more information about this permit application or the permitting process, please call the TCEQ Public Education Program, Toll Free, at 1-800-687-4040 or visit their website at www.tceq.texas.gov/goto/pep. Si desea información en Español, puede llamar al 1-800-687-4040.

Further information may also be obtained from North Texas Municipal Water District at the address stated above or by calling Mr. Jerry Allen, Permitting Manager, at 469-626-4634.

Issuance Date: November 6, 2025

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ0014245001

SOLICITUD. North Texas Municipal Water District, P.O. Box 2408, Wylie, Texas 75098, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0014245001 (EPA I.D. No. TX 0123901) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio anual de 25,000,000 galones por día. La planta está ubicada 1825 Fields Parkway,en el ciudad de Frisco, en el Condado de Denton, Texas 75034. La ruta de descarga es del sitio de la planta a Panther Creek, de allí al lago Lewisville. La TCEQ recibió esta solicitud el 15 de octubre 2025. La solicitud para el permiso estará disponible para leerla y copiarla en Biblioteca Pública de Little Elm, Sección de Referencia, 100 West Eldorado Parkway, Little Elm, en el condado de Denton, Texas antes de la fecha de publicación de este aviso en el periódico. La aplicación está disponible para su visualización y copia en la siguiente página web:

https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-96.87344,33.203044&level=18

AVISO DE IDIOMA ALTERNATIVO. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ

realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión.

La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo,

la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Además, puede pedir que la TCEQ ponga su nombre en una o más de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos del solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envía por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

INFORMACIÓN DISPONIBLE EN LÍNEA. Para detalles sobre el estado de la solicitud, favor de visitar la Base de Datos Integrada de los Comisionados en www.tceq.texas.gov/goto/cid. Para buscar en la base de datos, utilizar el número de permiso para esta solicitud que aparece en la parte superior de este aviso.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía http://www14.tceq.texas.gov/epic/eComment/o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo

que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional del North Texas Municipal Water District a la dirección indicada arriba o llamando a Mr. Jerry Allen al 469-626-4634.

Fecha de emisión: 6 de noviembre de 2025

Brooke T. Paup, *Chairwoman*Catarina R. Gonzales, *Commissioner*Tonya R. Miller, *Commissioner*Kelly Keel, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

October 15, 2025

Dear Applicant:

Re: Confirmation of Submission of the Domestic Renewal Wastewater Individual Permit Application

This is an acknowledgment that you have successfully completed the Industrial Wastewater Individual Permit Application.

ER Account Number: ER093426

Application Reference Number: 819943 Authorization Number: WQ0014245001

Site Name: Panther Creek WWTP Regulated Entity: RN102739430

Customer(s): North Texas Municipal Water District

Please be aware that TCEQ staff may contact your designated contact for any additional information.

If you have any questions, you may contact the Applications Review and Processing Team by email at WQ-ARPTeam@tceq.texas.gov or by telephone at (512) 239-4671.

Sincerely,

Applications Review and Processing Team Water Quality Division

Texas Commission on Environmental Quality

Update Domestic or Industrial Individual Permit WQ0014245001

Site Information (Regulated Entity)

What is the name of the site to be authorized? PANTHER CREEK WWTP

Does the site have a physical address? Yes

Physical Address

Number and Street 1825 LITTLE RANCH RD

 City
 FRISCO

 State
 TX

 ZIP
 75033

 County
 DENTON

 Latitude (N) (##.####)
 33.203611

Longitude (W) (-###.#####) -96.875
Primary SIC Code 4952

Secondary SIC Code

Primary NAICS Code 221320

Secondary NAICS Code

Regulated Entity Site Information

What is the Regulated Entity's Number (RN)? RN102739430

What is the name of the Regulated Entity (RE)? PANTHER CREEK WASTEWATER

TREATMENT PLANT

Does the RE site have a physical address?

Physical Address

Number and Street 1825 PANTHER CREEK RD

 City
 FRISCO

 State
 TX

 ZIP
 75034

 County
 DENTON

 Latitude (N) (##.#####)
 33.203055

 Longitude (W) (-###.######)
 -96.873055

Facility NAICS Code

What is the primary business of this entity?

DOMESTIC

North T-Customer (Applicant) Information (Owner)

How is this applicant associated with this site?

Owner

What is the applicant's Customer Number (CN)?

CN601365448

Type of Customer

Local Government

Full legal name of the applicant:

Legal Name North Texas Municipal Water District

Texas SOS Filing Number

Federal Tax ID 756004258

State Franchise Tax ID

State Sales Tax ID Local Tax ID DUNS Number 77608933

Number of Employees 501+

Independently Owned and Operated? Yes

I certify that the full legal name of the entity applying for this permit has been provided and is legally authorized to do business in Texas.

Responsible Authority Contact

Organization Name North Texas Municipal Water District

Prefix

First JENNAFER

Middle

Last COVINGTON

Suffix

Credentials

Title EXECUTIVE DIRECTOR

Responsible Authority Mailing Address

Enter new address or copy one from list:

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) PO BOX 2408

Routing (such as Mail Code, Dept., or Attn:)

City

State

TX

ZIP

75098

Phone (###-###) 9724425405

Extension

Alternate Phone (###-###-####)

Fax (###-###-###)

E-mail JCOVINGTON@NTMWD.COM

Billing Contact

Responsible contact for receiving billing statements:

Select the permittee that is responsible for payment of the annual fee. CN601365448, North Texas Municipal

Water District

Yes

Organization Name NORTH TEXAS MUNICIPAL WATER

DISTRICT

Prefix MR

First HUNTER

Middle

Last STEPHENS

Suffix

Credentials

Title DIRECTOR OF WASTEWATER

Enter new address or copy one from list:

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) PO BOX 2408

Routing (such as Mail Code, Dept., or Attn:)

City WYLIE
State TX
ZIP 75098

Phone (###-###) 4696264921

Extension

Alternate Phone (###-###-###)

Fax (###-###-###)

E-mail HSTEPHENS@NTMWD.COM

Application Contact

Person TCEQ should contact for questions about this application:

Same as another contact?

Organization Name NORTH TEXAS MUNICIPAL WATER

DISTRICT

Prefix MR
First JERRY

Middle

Last ALLEN

Suffix

Credentials

Title PERMITTING MANAGER

Enter new address or copy one from list:

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) PO BOX 2408

Routing (such as Mail Code, Dept., or Attn:)

City WYLIE
State TX
ZIP 75098

Phone (###-###) 4696264634

Extension

Alternate Phone (###-###-###)

Fax (###-###-)

E-mail JALLEN@NTMWD.COM

Technical Contact

Person TCEQ should contact for questions about this application:

Same as another contact?

Organization Name NORTH TEXAS MUNICIPAL WATER

DISTRICT

Prefix MR First JERRY

Middle

Last ALLEN

Suffix

Credentials

Title PERMITTING MANAGER

Enter new address or copy one from list:

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) PO BOX 2408

Routing (such as Mail Code, Dept., or Attn:)

City WYLIE
State TX
ZIP 75098

Phone (###-####) 4696264634

Extension

Alternate Phone (###-###-###)

Fax (###-###-###)

E-mail JALLEN@NTMWD.COM

DMR Contact

Person responsible for submitting Discharge Monitoring Report Forms:

oring.

Same as another contact?

Billing Contact

Organization Name NORTH TEXAS MUNICIPAL WATER

DISTRICT

Prefix MR First HUNTER

Middle

Last STEPHENS

Suffix

Credentials

Title DIRECTOR OF WASTEWATER

Enter new address or copy one from list:

Mailing Address:

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if applicable) PO BOX 2408

Routing (such as Mail Code, Dept., or Attn:)

 City
 WYLIE

 State
 TX

 ZIP
 75098

 Phone (###-####)
 4696264921

Extension

Alternate Phone (###-###-###)

Fax (###-###-###)

E-mail HSTEPHENS@NTMWD.COM

Section 1# Permit Contact

Permit Contact#: 1

Person TCEQ should contact throughout the permit term.

1) Same as another contact? Technical Contact

2) Organization Name NORTH TEXAS MUNICIPAL WATER

DISTRICT

3) Prefix MR

4) First JERRY

5) Middle

ALLEN 6) Last

7) Suffix

8) Credentials

9) Title PERMITTING MANAGER

Mailing Address

10) Enter new address or copy one from list

11) Address Type Domestic PO BOX 2408 11.1) Mailing Address (include Suite or Bldg. here, if applicable)

11.2) Routing (such as Mail Code, Dept., or Attn:)

WYLIE 11.3) City TX 11.4) State 75098 11.5) ZIP 4696264634

12) Phone (###-###-###) 13) Extension

14) Alternate Phone (###-###-###)

15) Fax (###-###-###)

16) E-mail JALLEN@NTMWD.COM

Section 2# Permit Contact

Permit Contact#: 2

Person TCEQ should contact throughout the permit term.

1) Same as another contact?

2) Organization Name NORTH TEXAS MUNICIPAL WATER

DISTRICT

3) Prefix **MRS** SARAH 4) First

5) Middle

6) Last **BURNS**

7) Suffix

8) Credentials

9) Title PERMITTING SUPERVISOR

Mailing Address

10) Enter new address or copy one from list

11) Address Type Domestic 11.1) Mailing Address (include Suite or Bldg. here, if applicable) PO BOX 2408

11.2) Routing (such as Mail Code, Dept., or Attn:)

11.3) City **WYLIE** 11.4) State TX 11.5) ZIP 75098

12) Phone (###-###-###) 4696264632

13) Extension

14) Alternate Phone (###-###-###)

15) Fax (###-###-###)

16) E-mail SBURNS@NTMWD.COM

Owner Information

Owner of Treatment Facility

1) Prefix

2) First and Last Name

3) Organization Name NORTH TEXAS MUNICIPAL WATER

DISTRICT

WYLIE

04/14/2026

Public Domestic Wastewater

4) Mailing Address PO BOX 2408

5) City6) State

6) State TX 7) Zip Code 75098

8) Phone (###-####) 9724425405

9) Extension

10) Email JCOVINGTON@NTMWD.COM

11) What is ownership of the treatment facility? Public

Owner of Land (where treatment facility is or will be)

12) Prefix

13) First and Last Name

14) Organization Name CITY OF FRISCO

15) Mailing Address 6101 FRISCO SQUARE BLVD

16) City FRISCO

17) State TX
18) Zip Code 75034

19) Phone (###-###+) 9722925000

20) Extension

21) Email WPIERSON@FRISCO.TEXAS.GOV

22) Is the landowner the same person as the facility owner or co-

applicant?

General Information Renewal-Amendment

highway right-of-way, or a flood control district drainage ditch?

1) Current authorization expiration date:

Current Facility operational status:
 Active
 Is the facility located on or does the treated effluent cross American

Indian Land?

5) Current Authorization type:

4) What is the application type that you are seeking? Renewal without changes

5.1) What is the proposed total flow in MGD discharged at the facility?

5.2) Select the applicable fee >= 1.0 MGD - Renewal - \$2,015

... in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication is the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication is the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in the supplication in the supplication is the supplication in

6) What is the classification for your authorization? TPDES
6.1) What is the EPA Identification Number? TX0123901

6.2) Is the wastewater treatment facility location in the existing permit

Yes

accurate?

6.3) Are the point(s) of discharge and the discharge route(s) in the

existing permit correct?

6.4) City nearest the outfall(s): FRISCO
6.5) County where the outfalls are located: DENTON

6.6) Is or will the treated wastewater discharge to a city, county, or state

No

6.7) Is the daily average discharge at your facility of 5 MGD or more?

6.7.1) Provide the names of all counties located within 100 statute miles
downstream of the point(s) of discharge:

COLLIN|DALLAS|DENTON|ELLIS|FRE
ESTONE|HENDERSON|KAUFMAN|NA

VARROJROCKWALLJANDERSON

No

Yes

Public Notice Information

Individual Publishing the Notices

1) Prefix

2) First and Last Name JERRY ALLEN

3) Credential

4) Title PERMITTING MANAGER

5) Organization Name

6) Mailing Address PO BOX 2408

7) Address Line 2

 8) City
 WYLIE

 9) State
 TX

 10) Zip Code
 75098

11) Phone (###-###+) 4696264634

12) Extension

13) Fax (###-###-###)

14) Email JALLEN@NTMWD.COM

Contact person to be listed in the Notices

15) Prefix

16) First and Last Name JERRY ALLEN

17) Credential

18) Title PERMITTING MANAGER

19) Organization Name

20) Phone (###-####) 4696264634

21) Fax (###-###-###)

proposed facility?

TAC 89.1205(g)?

22) Email JALLEN@NTMWD.COM

Bilingual Notice Requirements

23) Is a bilingual education program required by the Texas Education

Yes

Code at the elementary or middle school nearest to the facility or

23.1) Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school?

23.2) Do the students at these schools attend a bilingual education Yes

program at another location?

23.3) Would the school be required to provide a bilingual education
Program but the school has waived out of this requirement under 19

23.4) Which language is required by the bilingual program?

SPANISH

Section 1# Public Viewing Information

County#: 1

1) County DENTON

2) Public building name LITTLE ELM PUBLIC LIBRARY

3) Location within the building REFERENCE SECTION
4) Physical Address of Building 100 W ELDORADO PKWY

5) City LITTLE ELM

6) Contact Name DIANA SLAVINSKY

7) Phone (###-###) 2149750430

8) Extension

9) Is the location open to the public?

Lease Agreement or Deed Attachment

1) Attach a lease agreement or deed recorded easement

[File Properties]

File Name LEASE Panther Creek WWTP Regional WW

System Contract.pdf

Hash A92AF64DC14AD167EF985548C6377F7A59C0A020803C8DD7B98A1C24E4543B6D

MIME-Type application/pdf

Plain Language

1) Plain Language [File Properties]

File Name LANG_2025 Panther Creek WWTP Renewal

PLS.pdf

Hash DC4CFB020BCA2E3212AE17D26057587BB8A487F2F48F9E57B174DD4045E7B1B4

MIME-Type application/pdf

Supplemental Permit Information Form

1) Supplemental Permit Information Form (SPIF)

[File Properties]

File Name SPIF_2025 PCX Renewal SPIF Attachment.pdf

Hash 23367ACC61BEC08092CAC5C129822209F63A55959FD22F56E576287AF83D9D19

MIME-Type application/pdf

Domestic Attachments

1) Attach an 8.5"x11", reproduced portion of the most current and original USGS Topographic Quadrangle Map(s) that meets the 1:24,000 scale.

[File Properties]

File Name MAP_2025 Renewal Panther Creek WWTP

USGS Topographic Quadrangle Map.pdf

Hash 2AC78D4AEE4314B37DDF865F28C201C3E7586634E0FE4563343BDBCFD83CAF96

MIME-Type application/pdf

2) I confirm that all required sections of Technical Report 1.0 are Yes complete and will be included in the Technical Attachment.

2.1) I confirm that Worksheet 2.0 (Receiving Waters) is complete and Yes

included in the Technical Attachment.

2.2) Are you planning to include Worksheet 2.1 (Stream Physical No

Characteristics) in the Technical Attachment?

2.3) Are you planning to include Worksheet 4.0 (Pollutant Analyses Yes

Requirements) in the Technical Attachment?

2.4) Are you planning to include Worksheet 5.0 (Toxicity Testing

Requirements) in the Technical Attachment?

Yes

2.5) I confirm that Worksheet 6.0 (Industrial Waste Contribution) is

complete and included in the Technical Attachment.

Yes

No

2.6) Are you planning to include Worksheet 7.0 (Class V Injection Well

Inventory/Authorization Form) in the Technical Attachment?

2.7) Technical Attachment

[File Properties]

File Name TECH_2025 Renewal Panther Creek WWTP

Technical Report 1.0 STEERS Attachment.pdf

Hash 7446CB1AB43EC3F1D3A96DB8F689F3AD64B3F6F76E0999C86664EB7A86910CE1

MIME-Type application/pdf

3) Buffer Zone Map4) Flow Diagram[File Properties]

File Name FLDIA_2025 Renewal Panther Creek WWTP

Process Flow Diagram.pdf

Hash 6FB70DDBBEA0355A96017F30943847A8F38F8B3FBD17455CA929BED28B12A2B0

MIME-Type application/pdf

5) Site Drawing[File Properties]

File Name SITEDR_2025 Renewal Panther Creek WWTP

Site Drawing.pdf

Hash 9C29BFE89A7F5CB5019F97F493EB33F09AD6621CB534ABD1C33ADF302BFDD847

MIME-Type application/pdf

6) Design Calculations

[File Properties]

File Name DES_CAL_2025 Panther Creek WWTP Design

Calculations - Not Applicable.pdf

Hash E7C96D9DB3B5E352BA4CB565FBD81CEAC3355802254EA29A4C2879FAF16273EB

MIME-Type application/pdf

7) Solids Management Plan

8) Water Balance9) Other Attachments

[File Properties]

File Name OTHER_2025 Renewal Panther Creek WWTP

Electronic Core Data Form -Other Attachment.pdf

Hash 38B2EF5C469BF7E3B51B8090354E22B8AA4ED0C08DE9FD9F90B84A8BCE2AE8E9

MIME-Type application/pdf

Certification

I certify that I am authorized under 30 Texas Administrative Code 305.44 to sign this document and can provide documentation in proof of such authorization upon request.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

- 1. I am Jennafer Covington, the owner of the STEERS account ER108121.
- 2. I have the authority to sign this data on behalf of the applicant named above.
- 3. I have personally examined the foregoing and am familiar with its content and the content of any attachments, and based upon my personal knowledge and/or inquiry of any individual responsible for information contained herein, that this information is true, accurate, and complete.
- 4. I further certify that I have not violated any term in my TCEQ STEERS participation agreement and that I have no reason to believe that the confidentiality or use of my password has been compromised at any time.
- 5. I understand that use of my password constitutes an electronic signature legally equivalent to my written signature.
- 6. I also understand that the attestations of fact contained herein pertain to the implementation, oversight and enforcement of a state and/or federal environmental program and must be true and complete to the best of my knowledge.
- 7. I am aware that criminal penalties may be imposed for statements or omissions that I know or have reason to believe are untrue or misleading.
- 8. I am knowingly and intentionally signing Update Domestic or Industrial Individual Permit WQ0014245001.
- 9. My signature indicates that I am in agreement with the information on this form, and authorize its submittal to the TCEQ.

OWNER Signature: Jennafer Covington OWNER

Customer Number: CN601365448

Legal Name: North Texas Municipal Water District

Account Number: ER108121
Signature IP Address: 205.166.116.4
Signature Date: 2025-10-13

Signature Hash: 40313A645E825B2D977668AAE61E705617FC5BA87276CF3FC7F595E397404224

Form Hash Code at time of

Signature:

0DF6EEFE25AD9ED8AA1489095E2665DE6FEB48298896036451E0A1538D75459F

Fee Payment

Transaction by: The application fee payment transaction was

made by ER093426/Veronica Baty

Paid by: The application fee was paid by JOEL

NICKERSON

Fee Amount: \$2000.00

Paid Date: The application fee was paid on 2025-10-15

Transaction/Voucher number: The transaction number is 582EA000689546 and

the voucher number is 788177

Submission

Reference Number: The application reference number is 819943

Submitted by:

The application was submitted by

ER093426/Veronica Baty

Submitted Timestamp: The application was submitted on 2025-10-15 at

14:21:47 CDT

Submitted From: The application was submitted from IP address

205.166.116.4

Confirmation Number: The confirmation number is 685495

Steers Version: The STEERS version is 6.93

Permit Number: The permit number is WQ0014245001

Additional Information

Application Creator: This account was created by Veronica Baty

ATTACHMENT 5

ELECTRONIC CORE DATA FORM

Texas Commission on Environmental Quality

Core Data Updates
Regulated Entity Update

Regulated Entity Information

What is the Regulated Entity's Number (RN)? RN102739430

What is the name of the Regulated Entity (RE)? PANTHER CREEK WASTEWATER

TREATMENT PLANT

Does the RE site have a physical address?

Physical Address

Number and Street 1825 PANTHER CREEK RD

City FRISCO
State TX

ZIP 75034

County DENTON
Latitude (N) (##.#####) 33.203055

Longitude (W) (-###.#####) -96.873055
Facility NAICS Code 221320

What is the primary business of this entity?

DOMESTIC

Customer Information

How is this applicant associated with this site?

Multiple

What is the applicant's Customer Number (CN)?

CN601365448

Type of Customer

Local Government

Full legal name of the applicant:

Legal Name North Texas Municipal Water District

Texas SOS Filing Number

Federal Tax ID 756004258

State Franchise Tax ID

State Sales Tax ID

Local Tax ID

DUNS Number 77608933

Number of Employees 501+
Independently Owned and Operated? Yes

General Information

Regulated Entity

1) Select the type of regulated entity change(s).

Update Regulated Entity Address

1.1) Select the reason for address update.

Make corrections

1.2) Are you planning to update the latitude and longitude? Yes 1.2.1) Provide the reason for latitude and longitude update. incorrect latitude and longitude associated with incorrect address for RN102739430 2) Select the programs impacted by this change. STORM|WWPERMIT Regulated Entity Changes 1) Regulated Entity's Number (RN) RN102739430 2) Does the RE site have a physical address? No 2.1) Because there is no physical address, describe how to locate 1825 FIELDS PARKWAY this site: **FRISCO** 2.2) Nearest City 2.3) State TX 2.4) Nearest ZIP Code 75034 3) County **DENTON** 4) Latitude (N) (##.#####) 33.203044 5) Longitude (W) (-###.#####) -96.873445 **Preparer Information** 1) Name SARAH BURNS PERMIT SUPERVISOR 2) Title 3) Phone (###-###-###) 4696264632 4) Extension 5) Fax (###-###-###) 6) Email Address SBURNS@NTMWD.COM

Electronic Core Data Form – Address Change

Due to the development in the area near Panther Creek Wastewater Treatment Plant (RN102739430), the road name in which the WWTP is located has changed from Little Ranch Road to Fields Parkway.

Therefore, North Texas Municipal Water District (NTMWD) submits an electronic Core Data Form (eCDF) to update the Facility's address to 1825 Fields Parkway in Denton County, Texas 75034. NTMWD requests this change be applied to the Stormwater and Wastewater Permit programs, as indicated in the eCDF.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS

Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary of your facility and application as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. You may modify the template as necessary to accurately describe your facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how you will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTICE WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

North Texas Municipal Water District ($\underline{\text{CN601365448}}$) operates Panther Creek Wastewater Treatment Plant ($\underline{\text{RN102739430}}$), an domestic wastewater treatment plant. The facility is located at 1825 Little Ranch Road, in Frisco, Denton County, Texas 75034. The application is for a renewal of the permit.

Discharges from the facility are expected to contain carbonaceous biochemical oxygen demand (CBOD), total suspended solids (TSS), Ammonia Nitrogen, and E.coli. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7 Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application. Domestic wastewater is treated by screening, grit removal, primary clarification, aeration with biological nutrient removal capability, secondary clarification, filtration, and UV disinfection. Reuse water is provided to an on-site pump station operated by City of Frisco. Sludge from the clarifiers is processed with storage and blend tanks and dewatering presses. The dewatered sludge is disposed at NTMWD 121 Regional Disposal Facility.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

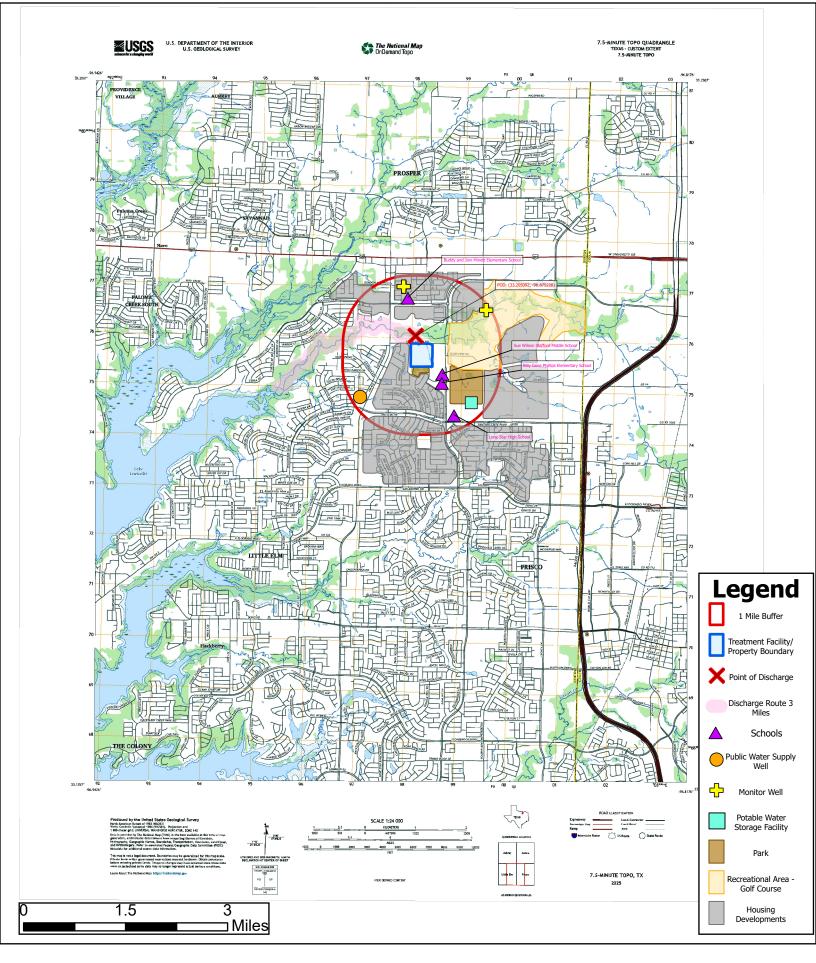
AGUAS RESIDUALES DOMESTICAS /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

North Texas Municipal Water District (CN601365448) opera Panther Creek Wastewater Treatment Plant RN102739430, una planta de tratamiento de aguas residuals domesticas. La instalación está ubicada en 1825 Little Ranch Road, en Frisco, Condado de Denton, Texas 75034. La solicitud es para una renovación del permiso.

Se espera que las descargas de la instalación contengan demanda bioquímica de oxígeno bioquímico (CBOD), sólidos suspendidos totales (TSS), nitrógeno de amodemanda bioquímica de oxígeno bioquímico (CBOD), sólidos suspendidos totales (TSS), nitrógeno de amoníaco y E. coli. Se incluyen contaminantes potenciales adicionales en el Informe Técnico Nacional 1.0, Sección 7 Análisis de Contaminantes de Efluentes Tratados y Hoja de Trabajo Doméstica 4.0 en la solicitud de permiso.níaco y E. coli. Se incluyen contaminantes potenciales adicionales en el Informe Técnico Nacional 1.0, Sección 7 Análisis de Contaminantes de Efluentes Tratados y Hoja de Trabajo Doméstica 4.0 en la solicitud de permiso.. Las aguas residuals domesticas. están tratado por cribado, eliminación de arena, clarificación primaria, aireación con capacidad de eliminación biológica de nutrientes, clarificación secundaria, filtración y desinfección UV. El agua reutilizada se proporciona a una estación de bombeo en el lugar que es operada por la Ciudad de Frisco. Los lodos de los clarificadores se procesan con tanques de almacenamiento y mezcla y prensas de deshidratación. Los lodos deshidratados se desechan en la Instalación Regional de Eliminación NTMWD 121.

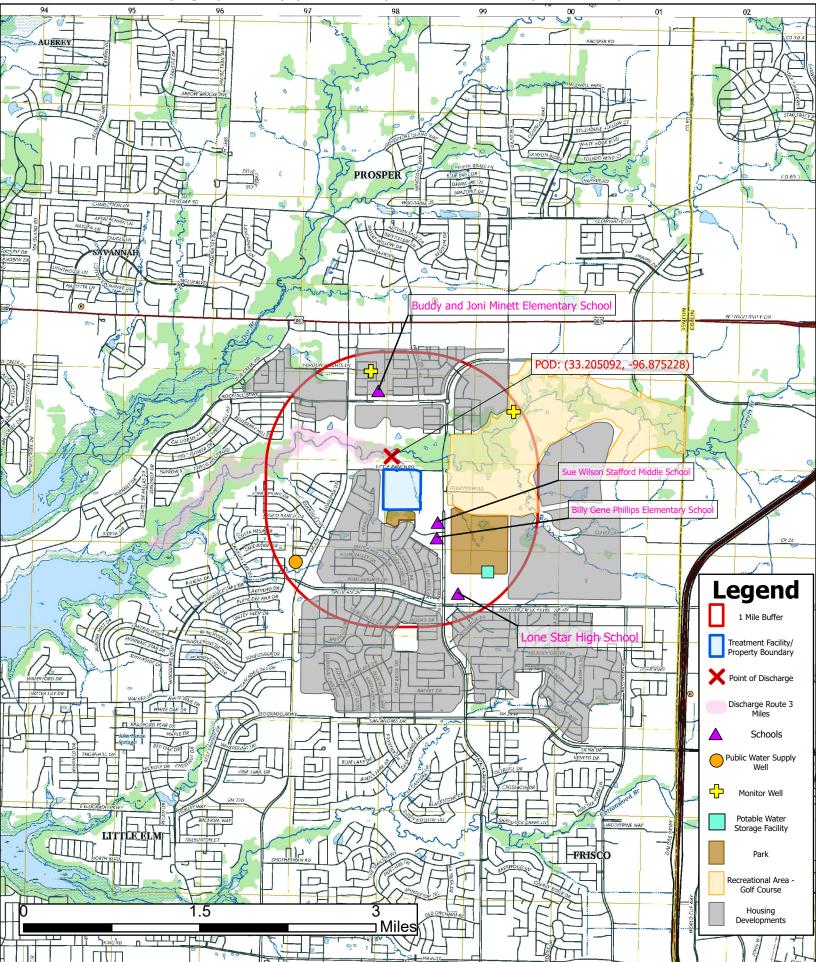
DOMESTIC ATTACHMENT 1 USGS TOPOGRAPHIC MAP



Panther Creek WWTP USGS Topographic Map

There are no sludge or effluent disposal sites or ponds associated with this permit. There are no springs, surface water supply intakes, industrial sites, sewage treatment plants or water treatment plants within one mile of the facility.

Topographic Map provided by USGS and last updated July 2025



Panther Creek WWTP USGS Topographic Map (Zoom)
There are no sludge or effluent disposal sites or ponds associated with this permit. There are no springs, surface water W-

supply intakes, industrial sites, sewage treatment plants or water treatment plants within one mile of the facility.

Topographic Map provided by USGS and last updated July 2025

DOMESTIC WASTEWATER PERMIT APPLICATION SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

This form applies to TPDES permit applications only. Complete and attach the Supplemental Permit information Form (SPIF) (TCEQ Form 20971).

Attachment: See Attachment

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

TCEO LISE ONLY	
TCEQ USE ONLY: Application type:RenewalMajor Am	endment Minor Amendment New
County:	
Admin Complete Date:	
Agency Receiving SPIF:	-
Texas Historical Commission	U.S. Fish and Wildlife
Texas Parks and Wildlife Department	
This form applies to TPDES permit application	s only. (Instructions, Page 53)
	EQ will mail a copy to each agency as required by not completely addressed or further information ormation before issuing the permit. Address
Do not refer to your response to any item in the attachment for this form separately from the Adapplication will not be declared administratively completed in its entirety including all attachmentary be directed to the Water Quality Division's Amendia at	

Provide the name, address, phone and fax number of an individual that can be contacted to answer specific questions about the property.
Prefix (Mr., Ms., Miss): MR.
First and Last Name: <u>JERRY ALLEN</u>
Credential (P.E, P.G., Ph.D., etc.): <u>N/A</u>
Title: PERMITTING MANAGER
Mailing Address: PO BOX 2408
City, State, Zip Code: WYLIE
Phone No.: <u>469-626-4634</u> Ext.: <u>N/A</u> Fax No.: <u>N/A</u>
E-mail Address: <u>JALLEN@NTMWD.COM</u>
List the county in which the facility is located: <u>DENTON</u>
If the property is publicly owned and the owner is different than the permittee/applicant, please list the owner of the property.
<u>CITY OF FRISCO</u>
Provide a description of the effluent discharge route. The discharge route must follow the flow of effluent from the point of discharge to the nearest major watercourse (from the point of discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify the classified segment number.
The treated effluent is discharged to Panther Creek, thence to Lewisville Lake in Segment No. 0823 of the Trinity River Basin.
Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report).
Provide original photographs of any structures 50 years or older on the property.
Does your project involve any of the following? Check all that apply.
□ Proposed access roads, utility lines, construction easements
□ Visual effects that could damage or detract from a historic property's integrity
☑ Vibration effects during construction or as a result of project design
Additional phases of development that are planned for the future

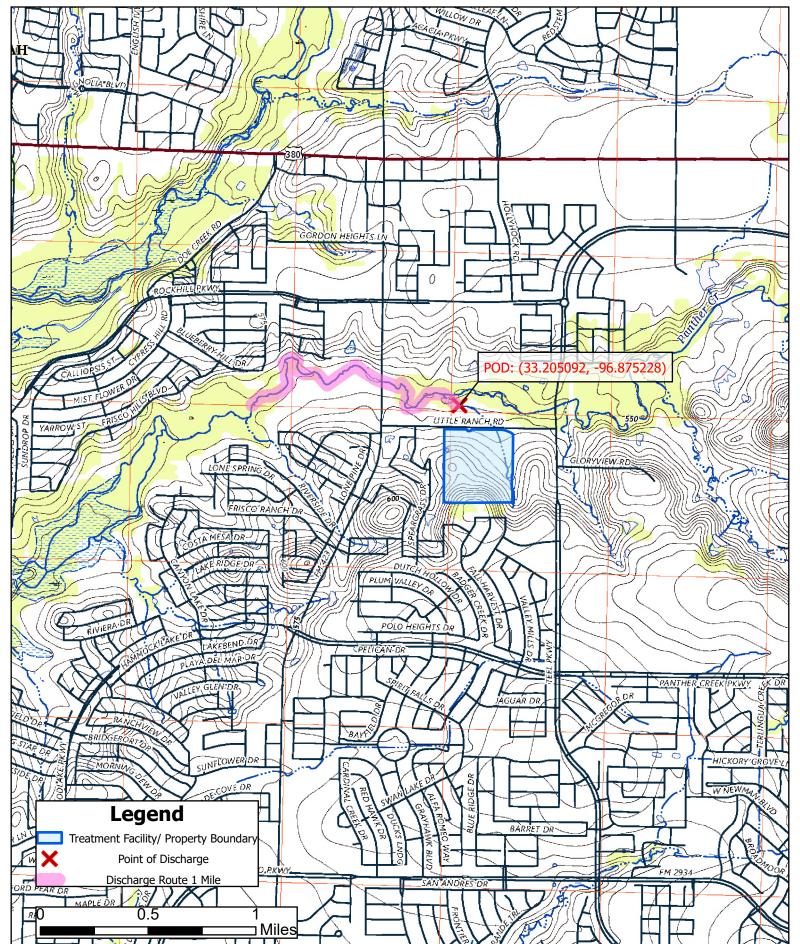
2. 3.

4.

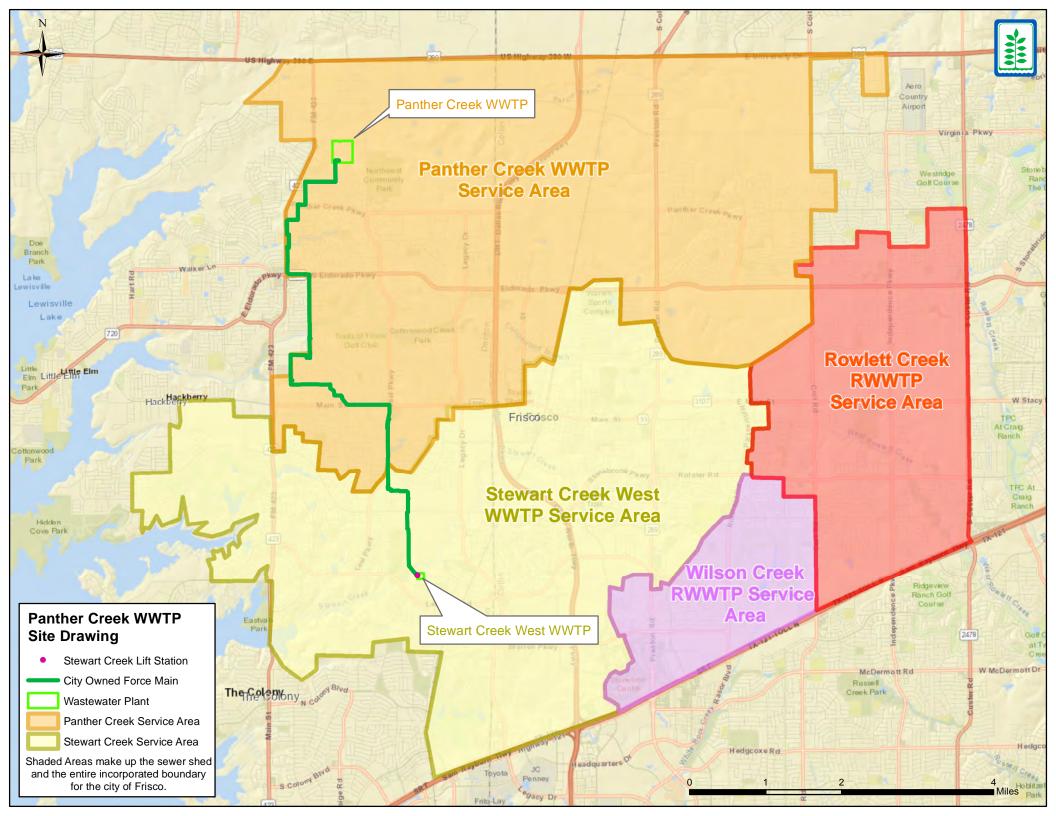
5.

Sealing caves, fractures, sinkholes, other karst features

	☐ Disturbance of vegetation or wetlands
1.	List proposed construction impact (surface acres to be impacted, depth of excavation, sealing of caves, or other karst features):
	Surface acres to be impacted is approximately 50 acres with a maximum excavation depth of approximately 50 feet. No sealing of caves or other karst features is to be expected.
2.	Describe existing disturbances, vegetation, and land use:
	The property within the fenced boundary is a wastewater treatment plant with grass cover on unpaved areas. Paved roads exist at the site providing access to buildings and facilities. The property where the outfall is located, owned by the City of Frisco, is undeveloped with grass cover, trees and shrubs.
	IE FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR MENDMENTS TO TPDES PERMITS
3.	List construction dates of all buildings and structures on the property:
	N/A
4.	Provide a brief history of the property, and name of the architect/builder, if known.
1.	N/A


ATTACHMENT 1 SPIF USGS Topographic Map

Panther Creek WWTP SPIF 7.5 Minute USGS Quadrangle Map


Topographic Map provided by USGS and last updated July 2025

ATTACHMENT 4

SITE DRAWING

Panther Creek Wastewater Treatment Plant

Site Drawing

The Site Drawing shows the service areas for the City of Frisco. The shaded areas labeled as Panther Creek Wastewater Treatment Plant (WWTP) Service Area, Stewart Creek West WWTP Service Area, Rowlett Creek Regional (WWTP) Service Area and Wilson Creek Regional (WWTP) Service Area make up the sewer shed for the entire City of Frisco. These service areas along with the Panther Creek and Stewart Creek West WWTPs are located within the incorporated boundaries of the City of Frisco. The four WWTPs that provide wastewater treatment service to these service areas of the City of Frisco are owned and operated by the North Texas Municipal Water District (NTMWD). The Rowlett Creek Regional WWTP located in the City of Plano provides service to the Rowlett Creek Regional WWTP Service Area and the Wilson Creek Regional WWTP Service Area for the City of Frisco.

Panther Creek WWTP serves a portion of the Stewart Creek West WWTP Service Area through diverted wastewater influent flow (up to 3.2 MGD) from the Stewart Creek West WWTP. As seen in the Site Drawing, this diverted influent flow is conveyed to Panther Creek WWTP for treatment from the Stewart Creek West WWTP lift station via a City of Frisco owned force main.

DOMESTIC ATTACHMENT 2 TECHNICAL REPORT 1.0

THE TONMENTAL OUR

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671.

The following information is required for all renewal, new, and amendment applications.

Section 1. Permitted or Proposed Flows (Instructions Page 42)

A. Existing/Interim I Phase

Design Flow (MGD): <u>10</u> 2-Hr Peak Flow (MGD): <u>30</u>

Estimated construction start date: June 2009

Estimated waste disposal start date: November 2010

B. Interim II Phase

Design Flow (MGD): <u>Interim II: 15; Interim III: 20</u>

2-Hr Peak Flow (MGD): <u>45</u>; <u>60</u>

Estimated construction start date: <u>June 2025; February 2029</u> Estimated waste disposal start date: <u>April 2028; October 2031</u>

C. Final Phase

Design Flow (MGD): <u>25</u> 2-Hr Peak Flow (MGD): <u>75</u>

Estimated construction start date: <u>2038</u> Estimated waste disposal start date: <u>2040</u>

D. Current Operating Phase

Provide the startup date of the facility: November 2010

Section 2. Treatment Process (Instructions Page 42)

A. Current Operating Phase

Provide a detailed description of the treatment process. **Include the type of treatment plant, mode of operation, and all treatment units.** Start with the plant's head works and

finish with the point of discharge. Include all sludge processing and drying units. **If more than one phase exists or is proposed, a description of** *each phase* **must be provided**.

Influent wastewater flow enters the headworks of the Panther Creek Wastewater Treatment Plant (WWTP) where it is treated with 2/2/2/2* fine screens followed by 2/2/2/2* grit removal units. If required during peak wet weather flow, flow can be diverted from the headworks to 0/1/1/1* 3 MG peak flow storage tank for storage before being cycled back through the headworks. Flow from the headworks enters 1/2/2/3* primary clarifier(s), then enters 2/3/4/5* aeration basins, then flows to 3/4/5/6* secondary clarifiers, followed by 2/2/2/2* traveling bridge filters and 3/6/8/10* cloth media disk filters before entering 2/4/4/4* UV disinfection channels, then discharged to Panther Creek. The WWTP's normal mode of operation is biological nutrient removal in a modified Johannesburg configuration.

In the existing 10 MGD phase, sludge from the primary clarifier is pumped to $1/0/0/0^*$ belt filter press, or to $1/1/1/1^*$ primary sludge holding tank then to the belt filter press. Sludge from the secondary clarifiers is pumped to the belt filter press, or to the WAS storage tank, then to WAS holding tank, and then to belt filter press. The $1/0/0/0^*$ gravity belt thickener is not used and the gravity belt thickener and belt filter press will be replaced during the 15 MGD expansion with $0/3/3/3^*$ screw presses. In the 15 MGD phase, the existing WAS holding tank will be repurposed into $0/1/1/1^*$ sludge blend tank, and the primary sludge holding tank will not be used or demolished. In the 15 to 25 MGD phases, sludge will be pumped from the primary clarifiers to the screw presses, or to the sludge blend tank then to the screw presses. Sludge will be pumped from the secondary clarifiers to $0/1/1/1^*$ WAS storage tank, then to the sludge blend tank and then the screw presses. The dewatered solids will be disposed of in the NTMWD 121 Regional Disposal Facility for disposal.

*Number of treatment units in Existing (10 MGD) / Interim I Phase (15 MGD) / Interim II Phase (20 MGD) / Final Phase (25 MGD)

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) of each treatment unit, accounting for *all* phases of operation.

Table 1.0(1) - Treatment Units

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
See TR-1		

C. Process Flow Diagram

Provide flow diagrams for the existing facilities and **each** proposed phase of construction.

Attachment: See Attachment 3

Section 3. Site Information and Drawing (Instructions Page 43)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

• Latitude: <u>33.205092</u>

• Longitude: -96.875228

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

Latitude: <u>N/A</u>Longitude: <u>N/A</u>

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and
- If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Attachment: See Attachment 4

Provide the name **and** a description of the area served by the treatment facility.

The Northern area of the City of Frisco is served by the WWTP, which encompasses the approximate area from East of FM 423, South of U.S. Highway 380, West of Coit Road (FM 71), North of Main Street (FM 3537) on the Eastside and Central area of the City, and North of Stonebrook Parkway on the Westside of the City.

Collection System Information **for wastewater TPDES permits only**: Provide information for each **uniquely owned** collection system, existing and new, served by this facility, including satellite collection systems. **Please see the instructions for a detailed explanation and examples.**

Collection System Information

Collection System Name	Owner Name	Owner Type	Population Served
Cottonwood Creek Basin	City of Frisco	Publicly Owned	39,774
Panther Creek Basin	City of Frisco	Publicly Owned	56,358
Stewart Creek Interceptor (via Stewart Creek Transfer Lift Station)	NTMWD	Publicly Owned	32,530
N/A	N/A	Choose an item.	N/A

Section 4. Unbuilt Phases (Instructions Page 44)

	Yes		No
If ves	does	the e	existing permit contain a phase that has not been constructed within fi

Is the application for a renewal of a permit that contains an unbuilt phase or phases?

If yes, does the existing permit contain a phase that has not been constructed within five years of being authorized by the TCEQ?

⊠ Yes □ No

If yes, provide a detailed discussion regarding the continued need for the unbuilt phase. Failure to provide sufficient justification may result in the Executive Director recommending denial of the unbuilt phase or phases.

The City of Frisco provided updated wastewater flow projections dated July 22, 2022 indicating the Panther Creek WWTP Annual Average Daily Flow (AADF) to exceed the currently permitted 10MGD by 2025. Information provided by the City indicates the need for further expansion to 20 MGD by 2030. The WWTP's expansion to 15 MGD is scheduled to complete construction and begin operation by 2028, and the 20 MGD to 25 MGD expansions are expected to be completed and begin operation by 2031 and 2040, respectively. The timing of these expansions is driven by future growth and may be expedited or delayed based on growth in the City.

The City of Frisco is recognized by the U.S. Census Bureau as on the top ten of the fastest growing cities in the nation. The population continues to increase annually and has reached almost 240,000 in 2025. The renewal of the permit to continue to build to permitted capacity in the future has been determined necessary by NTMWD and City of Frisco to comply with the TCEQ "75/90" rule while accommodating future average daily flows in an ever-growing and developing area. To sustain service to the growing region, the plant will need to expand its capacity to 25 MGD with the final unbuilt phase.

Section 5. Closure Plans (Instructions Page 44)

Have	any	treatme	ent units	been tak	en out	of servic	e permai	nently, c	or will	any un	its b	e ta	ıken
out o	of ser	vice in	the next	five year	s?								

⊠ Yes □ No

If yes, was a closure plan submitted to the TCEQ?

□ Yes ⊠ No

If yes, provide a brief description of the closure and the date of plan approval.

The belt filter press and gravity belt thickener will be replaced with screw presses in the Interim II - 15 MGD phase within the same treatment building. The primary sludge holding tank will be decommissioned in the 15 MGD phase but not demolished. Therefore, no closure plans are required.

Section 6. Permit Specific Requirements (Instructions Page 44)

For applicants with an existing permit, check the Other Requirements or Special Provisions of the permit.

A. Summary transmittal

Have plans and specifications been approved for the existing facilities and each proposed phase?

⊠ Yes □ No

If yes, provide the date(s) of approval for each phase: June 1, 2009; January 21, 2025

Provide information, including dates, on any actions taken to meet a *requirement or provision* pertaining to the submission of a summary transmittal letter. **Provide a copy of** an approval letter from the TCEQ, if applicable.

The summary transmittal letter for the 10 MGD phase was submitted December 12, 2008. TCEQ provided an approval letter on June 1, 2009. The summary transmittal letter for the 15 MGD phase was submitted to TCEQ on December 6, 2024. TCEQ provided an approval letter on January 21, 2025 (See TR-2)

B. Buffer zones

Have the buffer zone requirements been met?

⊠ Yes □ No

Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the buffer zones.

Buffer Zone requirements are met through ownership of the property.

C. Other actions required by the current permit

Does the *Other Requirements* or *Special Provisions* section in the existing permit require submission of any other information or other required actions? Examples include Notification of Completion, progress reports, soil monitoring data, etc.

⊠ Yes □ No

If yes, provide information below on the status of any actions taken to meet the conditions of an *Other Requirement* or *Special Provision*.

North Texas Municipal Water District has employed an operator holding a class A license in accordance with Other Requirement 1. Summary transmittal letters were submitted to TCEQ for the 10 MGD and 15 MGD phase on June 1, 2009 and December 6, 2024, respectively, in accordance with Other Requirement 7 (See TR-2). A Notification of Completion form for the 10 MGD (Interim I) phase was submitted in accordance with Other Requirement 8 on November 4, 2010.

D. Grit and grease treatment

1. Acceptance of grit and grease waste

Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?

□ Yes ⊠ No

If No, stop here and continue with Subsection E. Stormwater Management.

2. Grit and grease processing

Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment

		and grease is processed at the facility.
		N/A
	3.	Grit disposal
		Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal?
		□ Yes ⊠ No
		If No , contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.
		Describe the method of grit disposal.
		N/A
	4.	Grease and decanted liquid disposal
		Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335.
		Describe how the decant and grease are treated and disposed of after grit separation.
		N/A
E.	Sto	ormwater management
	1.	Applicability
		Does the facility have a design flow of 1.0 MGD or greater in any phase?
		⊠ Yes □ No
		Does the facility have an approved pretreatment program, under 40 CFR Part 403?

works and how it is separated or processed. Provide a flow diagram showing how grit

	If no to both of the above, then skip to Subsection F, Other Wastes Received.						
2.	MSGP coverage						
	Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?						
	⊠ Yes □ No						
	If yes , please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:						
TXR05 <u>X986</u> or TXRNE <u>N/A</u>							
	If no, do you intend to seek coverage under TXR050000?						
	□ Yes □ No						
3.	Conditional exclusion						
	Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?						
	□ Yes ⊠ No						
	If yes, please explain below then proceed to Subsection F, Other Wastes Received:						
4.	Existing coverage in individual permit						
	Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?						
	□ Yes ⊠ No						
	If yes , provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.						
	N/A						
_	Zava stanovnostav diaskavas						
5.	Zero stormwater discharge Do you intend to have no discharge of stormwater via use of evaporation or other						
	Do you intend to have no discharge of stormwater via use of evaporation or other means?						
	□ Yes ⊠ No						
	If yes, explain below then skip to Subsection F. Other Wastes Received.						

Yes □ No

N/A
Note: If there is a potential to discharge any stormwater to surface water in the state as
the result of any storm event, then permit coverage is required under the MSGP or an
individual discharge permit. This requirement applies to all areas of facilities with
treatment plants or systems that treat, store, recycle, or reclaim domestic sewage,
wastewater or sewage sludge (including dedicated lands for sewage sludge disposal
located within the onsite property boundaries) that meet the applicability criteria of

6. Request for coverage in individual permit

Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?

above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.

□ Yes ⊠ No

If yes, provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state.

N/A

Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.

F. Discharges to the Lake Houston Watershed

Does the facility discharge in the Lake Houston watershed?

□ Yes ⊠ No

If yes, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions. $\rm N/A$

G. Other wastes received including sludge from other WWTPs and septic waste

1. Acceptance of sludge from other WWTPs

Does or will the facility accept sludge from other treatment plants at the facility site?

	If yes, attach sewage sludge solids management plan. See Example 5 of instructions.
	In addition, provide the date the plant started or is anticipated to start accepting sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an
	estimate of the BOD_5 concentration of the sludge, and the design BOD_5 concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.
	N/A
	Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.
2.	Acceptance of septic waste
	Is the facility accepting or will it accept septic waste?
	□ Yes ⊠ No
	If yes, does the facility have a Type V processing unit?
	□ Yes □ No
	If yes, does the unit have a Municipal Solid Waste permit?
	□ Yes □ No
	If yes to any of the above , provide the date the plant started or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD₅ concentration of the septic waste, and the
	design BOD ₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.
	N/A
	Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.
<i>3.</i>	Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)
	Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above?
	□ Yes ⊠ No
	If yes , provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or

other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.

N/A			

Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 49)

Is the facility in operation?

⊠ Yes □ No

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). *Water treatment facilities* discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. **These tables are not applicable for a minor amendment without renewal.** See the instructions for guidance.

Note: The sample date must be within 1 year of application submission. See TR-4

Table1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l	N/A	2.9	1	Composite	05/20/2025 09:45 05/21/2025 09:45
Total Suspended Solids, mg/l	N/A	2.5	1	Composite	05/20/2025 09:45 05/21/2025 09:45
Ammonia Nitrogen, mg/l	N/A	0.143	1	Composite	05/20/2025 09:45 05/21/2025 09:45
Nitrate Nitrogen, mg/l	N/A	16.0	1	Composite	05/20/2025 09:45 05/21/2025 09:45
Total Kjeldahl Nitrogen, mg/l	N/A	1.59	1	Composite	05/20/2025 09:45 05/21/2025 09:45
Sulfate, mg/l	N/A	158	1	Composite	05/20/2025 09:45 05/21/2025 09:45
Chloride, mg/l	N/A	277	1	Composite	05/20/2025 09:45 05/21/2025 09:45
Total Phosphorus, mg/l	N/A	0.180	1	Composite	05/20/2025 09:45 05/21/2025 09:45
pH, standard units	N/A	7.09	1	Grab	05/21/2025 08:40
Dissolved Oxygen*, mg/l	N/A	6.23	1	Grab	05/21/2025 08:40
Chlorine Residual, mg/l	N/A	N/A	N/A	N/A	N/A
E.coli (CFU/100ml) freshwater	N/A	38.3	1	Grab	05/21/2025 10:20
Entercocci (CFU/100ml) saltwater	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids‡, mg/l	692	1010	61	Composite	10/07/2020 - 09/03/2025

Electrical Conductivity, µmohs/cm, †	N/A	1085	1	Grab	05/21/2025 08:40
Oil & Grease, mg/l	N/A	<1.39	1	Grab	05/21/2025 10:20
Alkalinity (CaCO ₃)*, mg/l	N/A	119	1	Composite	05/20/2025 09:45 05/21/2025 09:45

^{*}TPDES permits only

Table 1.0(3) - Pollutant Analysis for Water Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Suspended Solids, mg/l	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	N/A	N/A	N/A	N/A	N/A
pH, standard units	N/A	N/A	N/A	N/A	N/A
Fluoride, mg/l	N/A	N/A	N/A	N/A	N/A
Aluminum, mg/l	N/A	N/A	N/A	N/A	N/A
Alkalinity (CaCO ₃), mg/l	N/A	N/A	N/A	N/A	N/A

Section 8. Facility Operator (Instructions Page 49)

Facility Operator Name: Baron Snelgrove

Facility Operator's License Classification and Level: Wastewater Class A

Facility Operator's License Number: <u>WW00534638</u>

Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 50)

A. WWTP's Sewage Sludge or Biosolids Management Facility Type

Check all that apply. See instructions for guidance

- Design flow>= 1 MGD \boxtimes
- Serves $\geq 10,000$ people
- Class I Sludge Management Facility (per 40 CFR § 503.9)
- Biosolids generator
- Biosolids end user land application (onsite)
- Biosolids end user surface disposal (onsite)
- Biosolids end user incinerator (onsite)

B. WWTP's Sewage Sludge or Biosolids Treatment Process

Check all that apply. See instructions for guidance.

- Aerobic Digestion
- Air Drying (or sludge drying beds)
- **Lower Temperature Composting**

[†]TLAP permits only ‡<mark>See Table 1.0(2)(a) in attachment TR-4</mark>

Lime Stabilization
Higher Temperature Composting
Heat Drying
Thermophilic Aerobic Digestion
Beta Ray Irradiation
Gamma Ray Irradiation
Pasteurization
Preliminary Operation (e.g. grinding, de-gritting, blending)
Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter)
Sludge Lagoon
Temporary Storage (< 2 years)
Long Term Storage (>= 2 years)
Methane or Biogas Recovery
Other Treatment Process: <u>N/A</u>

C. Sewage Sludge or Biosolids Management

Provide information on the *intended* sewage sludge or biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize all sewage sludge or biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

Biosolids Management

Management Practice	Handler or Preparer Type	Bulk or Bag Container	Amount (dry metric tons)	Pathogen Reduction Options	Vector Attraction Reduction Option
Disposal in Landfill	On-Site Owner or Operator	Bulk	26.8 metric tons/day by 20 MGD	N/A: Disposal in Landfill	N/A: Disposal in Landfill
Choose an item.	Choose an item.	Choose an item.	N/A	Choose an item.	Choose an item.
Choose an item.	Choose an item.	Choose an item.	N/A	Choose an item.	Choose an item.

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): N/A

D. Disposal site

Disposal site name: NTMWD 121 Regional Disposal Facility

TCEQ permit or registration number: MSW No. 2294

County where disposal site is located: Collin

	Method of transportation (truck, train, pipe, other): <u>Truck</u>						
	Name of the hauler: North Texas Municipal Water District						
	Hauler registration number: <u>2248</u>						
	Sludge is transp	orted as a:					
	Liquid □	semi-liquid \square	semi-solid [sol	id ⊠	
Se	ction 10. Pe	rmit Authorizat	ion for Se	wag	e Shi	dge T	Disposal
		structions Page		wag	,c ora	age I	
Α.	Beneficial use a	authorization					
	Does the existing beneficial use?	ng permit include aut	horization fo	r lan	ıd appli	cation	of biosolids for
	□ Yes ⊠	No					
	If yes, are your beneficial use?	requesting to continu	e this author	izati	on to la	and ap	ply biosolids for
	□ Yes □	No					
	(TCEQ Form No details)?	o. 10451) attached to					l Use of Sewage Sludge e instructions for
	□ Yes □	No					
В.	Sludge process	ing authorization					
	Does the existing storage or disposition	0 -	horization fo	or any	y of the	follow	ving sludge processing,
	Sludge Com	posting			Yes	\boxtimes	No
	Marketing ar	nd Distribution of Bio	osolids		Yes	\boxtimes	No
	Sludge Surfa	ace Disposal or Sludg	e Monofill		Yes	\boxtimes	No
	Temporary s	storage in sludge lago	oons		Yes	\boxtimes	No
	authorization, is		iestic Waster	wate	r Permi	it Appl	esting to continue this lication: Sewage Sludge application?
	□ Yes □	No					
Se	ction 11. Se	wage Sludge Lag	goons (Ins	tru	ctions	Page	e 53)
		iclude sewage sludge					•
		No	<u> </u>				
If y		e remainder of this se	ection. If no,	proc	eed to S	Section	12.

E. Transportation method

A. Location information

The following maps are required to be submitted as part of the application. For each map, provide the Attachment Number.

• Original General Highway (County) Map:

Attachment: N/A

USDA Natural Resources Conservation Service Soil Map:

Attachment: N/A

Federal Emergency Management Map:

Attachment: N/A

Site map:

Attachment: N/A

Discuss in a description if any of the following exist within the lagoon area. Check all that apply.

- Overlap a designated 100-year frequency flood plain
- Soils with flooding classification
- Overlap an unstable area
- Wetlands
- Located less than 60 meters from a fault
- None of the above

Attachment: N/A

If a portion of the lagoon(s) is located within the 100-year frequency flood plain, provide the protective measures to be utilized including type and size of protective structures:

N/A		

B. Temporary storage information

Provide the results for the pollutant screening of sludge lagoons. These results are in addition to pollutant results in Section 7 of Technical Report 1.0.

Nitrate Nitrogen, mg/kg: N/A

Total Kjeldahl Nitrogen, mg/kg: N/A

Total Nitrogen (=nitrate nitrogen + TKN), mg/kg: N/A

Phosphorus, mg/kg: N/A

Potassium, mg/kg: N/A

pH, standard units: N/A

Ammonia Nitrogen mg/kg: N/A

Arsenic: N/A

	Cadmium: <u>N/A</u>
	Chromium: <u>N/A</u>
	Copper: <u>N/A</u>
	Lead: <u>N/A</u>
	Mercury: <u>N/A</u>
	Molybdenum: <u>N/A</u>
	Nickel: <u>N/A</u>
	Selenium: <u>N/A</u>
	Zinc: <u>N/A</u>
	Total PCBs: <u>N/A</u>
	Provide the following information:
	Volume and frequency of sludge to the lagoon(s): N/A
	Total dry tons stored in the lagoons(s) per 365-day period: $\underline{N/A}$
	Total dry tons stored in the lagoons(s) over the life of the unit: $\underline{N/A}$
C.	Liner information
	Does the active/proposed sludge lagoon(s) have a liner with a maximum hydraulic conductivity of $1x10^{-7}$ cm/sec?
	□ Yes □ No
	If yes, describe the liner below. Please note that a liner is required.
	N/A
D.	Site development plan
	Provide a detailed description of the methods used to deposit sludge in the lagoon(s):
	N/A
	Attach the following documents to the application.
	 Plan view and cross-section of the sludge lagoon(s)
	 Plan view and cross-section of the sludge lagoon(s) Attachment: N/A

Attachment: N/A

•	Copy of deed recordation for the site
	Attachment: N/A

Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons

Attachment: N/A

 Description of the method of controlling infiltration of groundwater and surface water from entering the site

Attachment: N/A

• Procedures to prevent the occurrence of nuisance conditions

Attachment: N/A

E. Groundwater monitoring

Is groundwater monitoring currently conducted at this site, or are any wells available for groundwater monitoring, or are groundwater monitoring data otherwise available for the sludge lagoon(s)?

□ Yes □ No

If groundwater monitoring data are available, provide a copy. Provide a profile of soil types encountered down to the groundwater table and the depth to the shallowest groundwater as a separate attachment.

Attachment: N/A

Section 12. Authorizations/Compliance/Enforcement (Instructions Page 54)

A. Additional authorizations

Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc?

⊠ Yes □ No

If yes, provide the TCEQ authorization number and description of the authorization:

The TCEQ issued Authorization No. R14245-001 on November 8, 2007 for Type I Reclaimed Water.

B. Permittee enforcement status

Is the permittee currently under enforcement for this facility?

□ Yes ⊠ No

Is the permittee required to meet an implementation schedule for compliance or enforcement?

mary of the enforcement, the implementa

Section 13. RCRA/CERCLA Wastes (Instructions Page 55)

A. RCRA hazardous wastes

Yes

No

Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste?

□ Yes ⊠ No

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

□ Yes ⊠ No

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment: N/A

ATTACHMENT TR-1

TREATMENT UNITS

Panther Creek WWTP Treatment Units Interim I: Current Capacity of 10 MGD

Tre	eatment Unit Type	Number of Units	Dimensions
Fine Screens	Perforated Plate Screen	1	5 ft. x 7 ft. channels
Fine Screens	Step Screen	1	5 rt. x / rt. channels
Grit Removal	Forced Vortex	1	18 ft. diameter x 5 ft.
GIIL KEIIIOVAI	Multi-Tray Free Vortex	1	12 ft. diameter x 5 ft.
F	Primary Clarifier	1	145 ft. diameter, 14 ft. SWD
Aeration Basins Biological Nutrient Removal Treatment Process 2 132 ft. x 86 ft. x 18 ft. s		132 ft. x 86 ft. x 18 ft. SWD	
Secondary Clarifier		3	95 ft. diameter, 14 ft. SWD
	Traveling Bridge Filters	2	5.6 MGD
Tertiary Filters	Cloth Media Disk Filter	3	5 MGD
UV Disinfection Channels		2	6 banks per channel
Primary Sludge Holding Tank		1	30,211 gallons
Waste Activated Sludge (WAS) Holding Tank		1	27,520 gallons
Gravity Belt Thickener		1	1 meter
Belt Filter Press		1	2 meters

Panther Creek WWTP Treatment Units Interim II Phase: 15 MGD¹

Treatment Unit Type Perforated Plate Screen Fine Screens Step Screen		Total number of Units	Breakdown of Total Number of Units	Dimensions
		2	1	5 ft. x 7 ft. Channels
Grit Removal	Forced Vortex Multi-Tray Free Vortex	2	1 1	18 ft. diameter x 5 ft. 12 ft. diameter x 5 ft.
Peak F	low Storage Tank	1	1	140 ft diameter, 26.5 ft SWD
Pri	imary Clarifier	2	1 1	145 ft. diameter, 14 ft. SWD 145 ft. diameter, 14.5 ft. SWD
Aeration Basins Biological Nutrient Removal Treatment Process		3	2 1	132 ft. x 86 ft. x 18 ft. SWD 132 ft. x 86 ft. x 18 ft. SWD
Sec	Secondary Clarifier		3 1	95 ft. diameter 14 ft. SWD 125 ft. diameter, 14.5 ft. SWD
	Traveling Bridge Filter	2	2	5.6 MGD
Tertiary Filters	Cloth Media Disk Filter ²	6	3 3	5 MGD 7.5 MGD
UV Disi	nfection channels ³	4	2 2	6 banks per channel 3 banks per channel
Primary Sludge Holding Tank (Decommissioned)		1	1	28,000 gallons
Waste Activated Sludge (WAS) Holding Tank Sludge Blend Tank⁴		1	1	21,000 gallons
Waste Activated Sludge (WAS) Storage Tank		1	1	375,000 gallons
Screw Press⁵		3	3	24 ft.

Note: Shading indicates the unit is added during this phase.

⁽¹⁾ Final design for future phases has not been complete and will be updated when determined.

⁽²⁾ A new tertiary filtration facility with three new Cloth Media Disk filters will be added in the 15 MGD phase and will be used to house new cloth media disk filters added through the 25 MGD phase.

⁽³⁾ The UV disinfection will be designed in accordance with TCEQ TAC 30 Chapter 217 sizing criteria. A new UV facility will be constructed in the 15 MGD phase to house the two new channels and new banks added through the 25 MGD phase.

⁽⁴⁾ The WAS Holding Tank from the 10 MGD phase will be converted to a sludge blend tank in the 15 MGD phase

⁽⁵⁾ Belt Filter Press and Gravity belt thickener will be removed and replaced with Screw Press in the 15 MGD phase.

Panther Creek WWTP Treatment Units Interim III Phase: 20 MGD¹

Treatment Unit Type		Total number of Units	Breakdown of Total Number of Units	Dimensions
Fine Screens	Perforated Plate Screen Step Screen	2	1	5 ft. x 7 ft. Channels
Grit Removal	Forced Vortex Multi-Tray Free Vortex	2	1 1	18 ft. diameter x 5 ft. 12 ft. diameter x 5 ft.
Peak F	low Storage Tank	1	1	140 ft diameter, 26.5 ft SWD
Pri	imary Clarifier	2	1 1	145 ft. diameter, 14 ft. SWD 145 ft. diameter, 14.5 ft. SWD
Aeration Basins	Aeration Basins Biological Nutrient Removal Treatment Process		2 1 1	132 ft. x 86 ft. x 18 ft. SWD 132 ft. x 86 ft. x 18 ft. SWD 132 ft. x 86 ft. x 18 ft. SWD
Seco	Secondary Clarifier		3 1 1	95 ft. diameter 14 ft. SWD 125 ft. diameter, 14.5 ft. SWD 130 ft. diameter
	Traveling Bridge Filter	2	2	5.6 MGD
Tertiary Filters Cloth Media Disk Filter ²		8	3 3 2	5 MGD 7.5 MGD 7.5 MGD
			2	6 banks per channel
UV Disinfection channels ³		4	2	3 banks per channel 2 new banks, one per existing channel
Primary Sludge Holding Tank (Decommissioned)		1	1	28,000 gallons
Sludge Blend Tank⁴		1	1	21,000 gallons
Waste Activated Sludge (WAS) Storage Tank		1	1	375,000 gallons
Screw Press⁵		3	3	24 ft.

Note: Shading indicates the unit is added during this phase.

Panther Creek Wastewater Treatment Plant 2025 Domestic Wastewater Permit Application for Renewal

⁽¹⁾ Final design for future phases has not been complete and will be updated when determined.

⁽²⁾ A new tertiary filtration facility with three new Cloth Media Disk filters will be added in the 15 MGD phase and will be used to house new cloth media disk filters added through the 25 MGD phase.

⁽³⁾ The UV disinfection will be designed in accordance with TCEQ TAC 30 Chapter 217 sizing criteria. A new UV facility will be constructed in the 15 MGD phase to house the two new channels and new banks added through the 25 MGD phase.

⁽⁴⁾ The WAS Holding Tank from the 10 MGD phase will be converted to a sludge blend tank in the 15 MGD phase

⁽⁵⁾ Belt Filter Press and Gravity belt thickener will be removed and replaced with Screw Press in the 15 MGD phase.

Panther Creek WWTP Treatment Units Final Phase: 25 MGD¹

Treatment Unit Type		Total number of Units	Breakdown of Total Number of Units	Dimensions
Fine Screens	Perforated Plate Screen Step Screen	2	1	5 ft. x 7 ft. Channels
Cuit Danas val	Forced Vortex	2	1	18 ft. diameter x 5 ft.
Grit Removal	Multi-Tray Free Vortex	2	1	12 ft. diameter x 5 ft.
Peak F	low Storage Tank	1	1	140 ft diameter, 26.5 ft SWD
			1	145 ft. diameter, 14 ft. SWD
Pri	mary Clarifier	3	1	145 ft. diameter, 14.5 ft. SWD
	- ,	-	1	145 ft diameter, 14.5 ft. SWD
			2	132 ft. x 86 ft. x 18 ft. SWD
	Piological Nutrient Pemayal		1	132 ft. x 86 ft. x 18 ft. SWD
Aeration Basins	Biological Nutrient Removal Treatment Process	5	1	132 ft. x 86 ft. x 18 ft. SWD
			1	132 ft. x 86 ft. x 18 ft. SWD
			3	95 ft. diameter 14 ft. SWD
			1	125 ft. diameter, 14.5 ft. SWD
Secondary Clarifier		6	1	130 ft. diameter
			1	155 ft. diameter
	Traveling Bridge Filter	2	2	5.6 MGD
		10	3	5 MGD
Tertiary Filters	Cloth Media Disk Filter ²		3	7.5 MGD
	Cloth Wedia Disk Hitel		2	7.5 MGD
			2	7.5 MGD
			2	6 banks per channel
				3 banks per channel
UV Disi	nfection channels ³	4	2	2 new banks, one per existing channel
				2 new banks, one per existing channel
Primary Sludge Holding Tank (Decommissioned)		1	1	28,000 gallons
Sluc	dge Blend Tank⁴	1	1	21,000 gallons
Waste Activated	Sludge (WAS) Storage Tank	1	1	375,000 gallons
Screw Press ⁵		3	3	24 ft.

Note: Shading indicates the unit is added during this phase.

Panther Creek Wastewater Treatment Plant 2025 Domestic Wastewater Permit Application for Renewal

⁽¹⁾ Final design for future phases has not been complete and will be updated when determined.

⁽²⁾ A new tertiary filtration facility with three new Cloth Media Disk filters will be added in the 15 MGD phase and will be used to house new cloth media disk filters added through the 25 MGD phase.

⁽³⁾ The UV disinfection will be designed in accordance with TCEQ TAC 30 Chapter 217 sizing criteria. A new UV facility will be constructed in the 15 MGD phase to house the two new channels and new banks added through the 25 MGD phase.

⁽⁴⁾ The WAS Holding Tank from the 10 MGD phase will be converted to a sludge blend tank in the 15 MGD phase

⁽⁵⁾ Belt Filter Press and Gravity belt thickener will be removed and replaced with Screw Press in the 15 MGD phase.

ATTACHMENT TR-2

APPROVAL LETTER

Buddy Garcia, Chairman
Larry R. Soward, Commissioner
Bryan W. Shaw, Ph.D., Commissioner
Mark R. Vickery, P.G., Executive Director

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

June 1, 2009

Scott Hoff, P.E. Carollo Engineers PC 14785 Preston Rd. Suite 950 Dallas, Texas 75254

Re:

North Texas Municipal Water District
Panther Creek WWTP Expansion Project
Texas Commission on Environmental Quality Permit No. 14245-001
WWPR Log No. 1208/035
CN601365448; RN102739430
Denton County

Dear Mr. Hoff:

On December 12, 2008 we received the summary transmittal letter for the Panther Creek WWTP Expansion Project. As noted in your cover letter dated December 12, 2008, the rules that regulate the design, installation, and testing of domestic wastewater projects are found in 30 TAC Chapter 217, Design Criteria for Domestic Wastewater Systems. Your request to be considered under the 317 Variance specified in 217.1 was used for the design review. We issued a letter on January 13, 2009 to call in the plans and specifications for a full review. We received the engineering report on February 17, 2009.

The proposed increase in capacity from 5 MGD to 10 MGD wastewater treatment system includes:

- Influent Pump Station (IPS)
- Replace 5 MGD pump with a 10 MGD pump
- Add a fourth 10 MGD pump
- Headworks
- Add second fine screen; to be a step-screen
- Add a passive by-pass around the headworks
- Add second grit removal system (Eutek)
- Add one Primary Clarifier
- Primary sludge pump station
- Primary clarifier odor control
- Modification of aeration basins for biological nutrient removal (BNR)
- Add a third secondary clarifier
- Add tertiary filtration units
- Modifications to the Solids Handling Building
- Add primary sludge storage tank
- Add two primary sludge feed pumps
- Add one primary sludge recirculation pump

P.O. Box 13087 • Austin, Texas 78711-3087 • 512-239-1000 • Internet address: www.tceg.state.tx.us

Scott Hoff, P.E. Page 2 June 1, 2009

- Modify the primary scum piping
- Add UV modules to the existing UV channels
- · Addition of an Administration Building
- Modifications to existing generator and switchgear

Our review indicated that the documents provided are in general compliance with the applicable minimum standards as set forth in Chapter 317 of the Texas Commission on Environmental Quality's rules entitled *Design Criteria for Sewerage Systems*. On that basis, this project is approved for construction with the following conditions:

- Design and specifications shall also comply with the provisions of 30 TAC Section 217.
 Subchapter M.
- Any changes from installing the back up power system must be reviewed by this agency and a suitable alternative contingency strategy be developed to ensure compliance with the discharge permit conditions when there could be a power outage.

As noted in 217.5.(b) The executive director's approval of plans and specifications of a facility does not relieve an owner of the responsibility to obtain a wastewater permit or other authorization in accordance with Texas Water Code, Chapter 26.

As noted in 217.12 (f) A substantial design change must be approved by the executive director before it can be built, installed, or put into service.

As noted in 217.14 (a) upon completion of the construction of a collection system or treatment facility, an owner shall provide a completion notice to the executive director that:

- is signed, sealed, and dated by an engineer;
- certifies that the completed work substantially complies with this chapter, the approved plans and specifications, any approved variances, any approved substantial design changes, and the associated wastewater permit; and
- states that an operation and maintenance manual, as required in §217.16 of this title (relating to Treatment Facility Operation and Maintenance Manual), has been prepared and a copy is located at the facility.

and 217.14 (b) An owner shall disclose in a completion notice any deviation from the approved plans and specifications that is incorporated into a project after construction began or from an approved substantial design change. An owner shall certify that, based on the best professional judgment of an engineer, the change that was not submitted for approval will not result in substantial design change, as defined in §217.12(a) of this title (relating to Substantial Design Changes).

This approval shall not relieve the sewerage system owner or the design engineer of any liabilities or responsibilities with respect to the proper design, construction, or authorized operation of the project in accordance with applicable commission rules."

Scott Hoff, P.E. Page 3 June 1, 2009

Please contact me at <u>rismith@tceq.state.tx.us</u> or (512) 239-5788, or Louis C. Herrin, III, P.E., at <u>lherrin@tceq.state.tx.us</u> or (512) 239-4552, if you have any questions or if we can be of any further assistance.

Sincerely,

Richard H. Smith, P.E.

Wastewater Permits Section (MC 148)

Water Quality Division

Texas Commission on Environmental Quality

RHS/ms

egn. ddi

cc: North Texas Municipal Water District, P.O. Box 2408, Wylie, Texas 75098

TCEQ, Region 4, Water Section

Brooke Paup, *Chairwoman*Bobby Janecka, *Commissioner*Catarina R. Gonzales, *Commissioner*Kelly Keel, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

January 21, 2025

Joel Cantwell, P.E. HDR Engineering, Inc. 17111 Preston Road, Suite 300 Dallas, TX 75248

Re: North

North Texas Municipal Water District

North Texas Municipal Water District - Panther Creek WWTP Expansion to 15 MGD

Permit No. WQ0014245001 WWPR Log No. 1224/065

CN601365448, RN102739430

Denton County

Dear Mr. Cantwell:

The Texas Commission on Environmental Quality (TCEQ) received the project summary transmittal letter, dated 12/6/2024; and the subsequent submission of additional project information.

The TCEQ rules regulating the design, installation, and testing of domestic wastewater treatment projects are found in 30 TAC Chapter 217, titled <u>Design Criteria for Wastewater Systems</u>.

This project proposes the expansion of the Panther Creek Wastewater Treatment Plant (WWTP) capacity to 15 million gallons per day MGD. The engineer indicates that the existing WWTP is currently a 10-MGD activated sludge plant with influent pumping, screening, grit removal, primary clarification, aeration with biological nutrient removal capability, secondary clarification, filtration, and UV disinfection.

The Panther Creek WWTP is regulated by TPDES Permit No. WQ0014245001, which allows an Interim I phase annual average flow of 10.0 MGD, 2-hr peak flow of 20,833 gallons per minute (gpm), and daily average effluent limits of 5-7 mg/L of CBOD₅, 12 mg/L of TSS, 2-4 mg/L of Ammonia Nitrogen, 1 mg/L of Total Phosphorus (TP), and 126 CFU or MPN of *E. coli* per 100 mL; an Interim II phase annual average flow of 15.0 MGD (2-hr peak flow of 31,250 gpm), and daily average effluent limits of 5-7 mg/L of CBOD₅, 12 mg/L of TSS, 2-4 mg/L of Ammonia Nitrogen, reporting the daily average and mass loading for TP, and 126 CFU or MPN of *E. coli* per 100 mL; an Interim III phase annual average flow of 20.0 MGD (2-hr peak flow of 41,667 gpm), and daily average effluent limits of 5-7 mg/L of CBOD₅, 12 mg/L of TSS, 2-4 mg/L of Ammonia Nitrogen, reporting the daily average and mass loading for TP, and 126 CFU or MPN of *E. coli* per 100 mL; and a Final phase annual average flow of 25.0 MGD (2-hr peak flow of 52,083 gpm), and daily average effluent limits of 5-7 mg/L of CBOD₅, 12 mg/L of TSS, 2-4 mg/L of Ammonia Nitrogen, reporting the daily average and mass loading for TP, and 126 CFU or MPN of *E. coli* per 100 mL.

Joel Cantwell, P.E. Page 2 January 21, 2025

The proposed improvements at the Panther Creek WWTP include:

- Peak flow storage tank with cleaning and odor control systems
- 5-MGD treatment train consisting of:
 - o Primary clarifier and related sludge and scum piping equipment
 - Aeration basin with biological nutrient removal capability and 125-foot diameter secondary clarifier
 - o RAS/WAS pumping station and blower building to support the new secondary treatment facilities
 - o Tertiary cloth-media filters
 - o Ultraviolet (UV) disinfection facility
- Parshall flume for plant effluent flow volume measurement
- Expansion of the solids handling and dewatering facilities including construction of a WAS storage tank and replacement of the belt filter presses and gravity filter thickener with screw presses

The Summary Transmittal Letter also contained a request for a variance from the 30 TAC §217.154(c)(1) rules, which require a maximum clarifier surface loading rate at two-hour peak flow of 1,200 gallons per day per square foot (gpd/ft²). The engineer indicates that the proposed 125-foot diameter secondary clarifier has a two-hour peak flow surface loading rate of 1,220 gpd/ft², which is slightly above the criteria, but the detention time of 2.1 hours is well above the minimum detention time at two-hour peak flow of 1.8 hours required by the criteria. The engineer indicates that process modeling confirms that the proposed clarifier diameter performs well during peak flows. The engineer also indicates that the 125-foot diameter for the proposed clarifier allows future expansions involving similar-sized units to fit on the existing site while complying with buffer zone rules. Upon review, TCEQ is granting this variance.

TCEQ reviewed the submitted project documentation and determined, based on the information provided, that the project meets at least the minimum requirements set forth in 30 TAC Chapter 217, <u>Design Criteria for Wastewater Systems</u>. Based on this, your project is conditionally approved for construction under the provision that all work will be completed in accordance with the requirements in 30 TAC Chapter 217.

You must keep records of certain materials for the life of the project and be prepared to provide them to TCEQ upon request. These materials include an engineering report, test results, a summary transmittal letter, and the final version of the project plans and specifications. These materials shall be prepared and sealed by a Professional Engineer licensed in the State of Texas and must show substantial compliance with 30 TAC Chapter 217. All plans and specifications must conform to any wastewater discharge requirements authorized in a permit issued by TCEQ. Specific items to be addressed in the engineering report must include all constants, graphs, equations, and calculations needed to show substantial compliance with 30 TAC Chapter 217.

Within 60 days of construction completion, an appointed engineer shall notify both the TCEQ Wastewater Permitting Section and the appropriate TCEQ Regional Office of the date of completion. The engineer shall also provide written certification that all construction materials and equipment were substantially in accordance with the approved project and the rules of TCEQ, as well as provide any change orders filed with TCEQ throughout the duration of project

Joel Cantwell, P.E. Page 3 January 21, 2025

construction. All notifications, certifications, and change orders must include the signed and dated seal of a Professional Engineer licensed in the State of Texas.

Please note 30 TAC §217.7(a) states "approval given by the executive director or other authorized review authority does not relieve an owner of any liability or responsibility with respect to designing, constructing, or operating a collection system or treatment facility in accordance with applicable commission rules and the associated wastewater permit."

If you have any questions, or if I can be of any further assistance, please call me at (512) 239-4924.

Sincerely

Baltacar Lucero-Ramirez, Ph.D., P.E. Wastewater Permits Section (MC 148)

Water Quality Division

Texas Commission on Environmental Quality

BLR/ec

cc: TCEQ, Region 4 Office

ATTACHMENT TR-3 WORKSHEET 2.0 RECEIVING WATERS

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

• • • • • • • • • • • • • • • • • • • •
Section 1. Domestic Drinking Water Supply (Instructions Page 63)
Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge?
□ Yes ⊠ No
If no , proceed it Section 2. If yes , provide the following:
Owner of the drinking water supply: $\underline{N/A}$
Distance and direction to the intake: N/A
Attach a USGS map that identifies the location of the intake.
Attachment: <u>N/A</u>
Section 2. Discharge into Tidally Affected Waters (Instructions Page 63)
Does the facility discharge into tidally affected waters?
□ Yes ⊠ No
If no , proceed to Section 3. If yes , complete the remainder of this section. If no, proceed to Section 3.
A. Receiving water outfall
Width of the receiving water at the outfall, in feet: $\underline{N/A}$
B. Oyster waters
Are there oyster waters in the vicinity of the discharge?
□ Yes □ No
If yes, provide the distance and direction from outfall(s).
N/A
C. Sea grasses
Are there any sea grasses within the vicinity of the point of discharge?
□ Yes □ No
If yes, provide the distance and direction from the outfall(s).
N/A

Is the discharge directly into (or within 300 feet of) a classified segment? Yes ⊠ No If yes, this Worksheet is complete. **If no**, complete Sections 4 and 5 of this Worksheet. Section 4. **Description of Immediate Receiving Waters (Instructions Page 63)** Name of the immediate receiving waters: Panther Creek A. Receiving water type Identify the appropriate description of the receiving waters. \boxtimes Stream Freshwater Swamp or Marsh Lake or Pond Surface area, in acres: N/A Average depth of the entire water body, in feet: N/A Average depth of water body within a 500-foot radius of discharge point, in feet: Man-made Channel or Ditch Open Bay Tidal Stream, Bayou, or Marsh Other, specify: N/A **B.** Flow characteristics If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area *upstream* of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one). Intermittent - dry for at least one week during most years Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses Perennial - normally flowing Check the method used to characterize the area upstream (or downstream for new dischargers). USGS flow records Historical observation by adjacent landowners \boxtimes Personal observation Other, specify: N/A

Classified Segments (Instructions Page 63)

Section 3.

C.	Downstream perennial confluences
	List the names of all perennial streams that join the receiving water within three miles downstream of the discharge point.
	N/A
D.	Downstream characteristics
	Do the receiving water characteristics change within three miles downstream of the discharge (e.g., natural or man-made dams, ponds, reservoirs, etc.)?
	⊠ Yes □ No
	If yes, discuss how.
	Panther Creek converges with Lake Lewisville approximately 2.75 stream miles downstream of the discharge.
E.	Normal dry weather characteristics
	Provide general observations of the water body during normal dry weather conditions.
	Creek was flowing. Water is turbid in deeper areas and clear in shallow areas. The streambed is rocky and muddy. The creek has sloped banks covered in dense vegetation like grasses, shrubs, and trees. Minnows and other fish were observed swimming. The area around the creek is densely vegetated with grasses. No evidence of recreation, fishing, or watering was observed.
	Date and time of observation: 7/25/2025 @ 11:00 am
	Was the water body influenced by stormwater runoff during observations?
	□ Yes ⊠ No
Se	ection 5. General Characteristics of the Waterbody (Instructions Page 65)
A.	Upstream influences
	Is the immediate receiving water upstream of the discharge or proposed discharge site influenced by any of the following? Check all that apply.
	☐ Oil field activities ☑ Urban runoff
	□ Upstream discharges ⊠ Agricultural runoff

 \boxtimes

Other(s), specify: Golf Course Runoff

☐ Septic tanks

B. Waterbody uses Observed or evidences of the following uses. Check all that apply. Livestock watering Contact recreation Irrigation withdrawal Non-contact recreation **Fishing Navigation** Domestic water supply Industrial water supply Park activities Other(s), specify: Click to enter text. C. Waterbody aesthetics Check one of the following that best describes the aesthetics of the receiving water and the surrounding area. Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored Common Setting: not offensive; developed but uncluttered; water may be colored or turbid

Offensive: stream does not enhance aesthetics; cluttered; highly developed;

dumping areas; water discolored

ATTACHMENT TR-4

POLLUTANT ANALYSIS OF TREATED EFFLUENT

Table 1.0(2)(a)

NAME	DATESTAMP	SAMPLE VALUE	UNITS
PCX DMR EFFL TDS	10/7/2020	679	mg/L
PCX DMR EFFL TDS	11/4/2020	718	mg/L
PCX DMR EFFL TDS	12/2/2020	672	mg/L
PCX DMR EFFL TDS	1/6/2021	661	mg/L
PCX DMR EFFL TDS	2/3/2021	661	mg/L
PCX DMR EFFL TDS	3/3/2021	670	mg/L
PCX DMR EFFL TDS	4/7/2021	688	mg/L
PCX DMR EFFL TDS	5/5/2021	724	mg/L
PCX DMR EFFL TDS	6/2/2021	672	mg/L
PCX DMR EFFL TDS	7/7/2021	696	mg/L
PCX DMR EFFL TDS	8/4/2021	675	mg/L
PCX DMR EFFL TDS	9/2/2021	608	mg/L
PCX DMR EFFL TDS	10/6/2021	597	mg/L
PCX DMR EFFL TDS	11/3/2021	689	mg/L
PCX DMR EFFL TDS	12/1/2021	686	mg/L
PCX DMR EFFL TDS	1/5/2022	598	mg/L
PCX DMR EFFL TDS	2/2/2022	674	mg/L
PCX DMR EFFL TDS	3/2/2022	709	mg/L
PCX DMR EFFL TDS	4/6/2022	703	mg/L
PCX DMR EFFL TDS	5/4/2022	735	mg/L
PCX DMR EFFL TDS	6/1/2022	740	mg/L
PCX DMR EFFL TDS	7/6/2022	700	mg/L
PCX DMR EFFL TDS	8/3/2022	574	mg/L
PCX DMR EFFL TDS	9/7/2022	700	mg/L
PCX DMR EFFL TDS	10/5/2022	746	mg/L
PCX DMR EFFL TDS	11/2/2022	795	mg/L
PCX DMR EFFL TDS	12/7/2022	811	mg/L
PCX DMR EFFL TDS	1/4/2023	728	mg/L
PCX DMR EFFL TDS	2/8/2023	731	mg/L
PCX DMR EFFL TDS	3/1/2023	702	mg/L
PCX DMR EFFL TDS	4/5/2023	724	mg/L
PCX DMR EFFL TDS	5/2/2023	686	mg/L
PCX DMR EFFL TDS	6/7/2023	710	mg/L
PCX DMR EFFL TDS	7/12/2023	682	mg/L
PCX DMR EFFL TDS	8/2/2023	559	mg/L
PCX DMR EFFL TDS	9/6/2023	684	mg/L
PCX DMR EFFL TDS	10/4/2023	680	mg/L
PCX DMR EFFL TDS	11/1/2023	739	mg/L
PCX DMR EFFL TDS	12/6/2023	638	mg/L
PCX DMR EFFL TDS	1/10/2024	658	mg/L
PCX DMR EFFL TDS	2/7/2024	686	mg/L
PCX DMR EFFL TDS	3/6/2024	754	mg/L
PCX DMR EFFL TDS	4/3/2024	695	mg/L
PCX DMR EFFL TDS	5/8/2024	699	mg/L
PCX DMR EFFL TDS	6/5/2024	631	mg/L
PCX DMR EFFL TDS	7/10/2024	693	mg/L
PCX DMR EFFL TDS	8/7/2024	656	mg/L
PCX DMR EFFL TDS	9/4/2024	657	mg/L
PCX DMR EFFL TDS	10/2/2024	719	mg/L

Table 1.0(2)(a)

		. , . ,	
NAME	DATESTAMP	SAMPLE VALUE	UNITS
PCX DMR EFFL TDS	11/6/2024	738	mg/L
PCX DMR EFFL TDS	12/4/2024	720	mg/L
PCX DMR EFFL TDS	1/15/2025	676	mg/L
PCX DMR EFFL TDS	2/5/2025	667	mg/L
PCX DMR EFFL TDS	3/12/2025	708	mg/L
PCX DMR EFFL TDS	4/2/2025	675	mg/L
PCX DMR EFFL TDS	5/7/2025	744	mg/L
PCX DMR EFFL TDS	5/21/2025	1010	mg/L
PCX DMR EFFL TDS	6/4/2025	640	mg/L
PCX DMR EFFL TDS	7/9/2025	647	mg/L
PCX DMR EFFL TDS	8/6/2025	662	mg/L
PCX DMR EFFL TDS	9/3/2025	640	mg/L
	Average	692	mg/L

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

ANALYTICAL REPORT FOR SAMPLES

Laboratory ID: 2520003-02

Influent Equipment Blank Sample Name : Sample Alias:

Reported:

2025-06-18 14:29

Sample Type : Grab

2025-05-19 11:39 Sampled Begin: Sampled Ended : 2025-05-19 11:39 Matrix Aqueous; (Water)

Outfall

Sampler A : Gary Usey

Sampler B : Grayson Townsend

2520003-04

Effluent TC

24 Hour Composite

2025-05-20 09:45

2025-05-21 09:45

Job Info

Laboratory ID :

Laboratory ID :

Sample Alias:

Sample Type :

Sampled Begin:

Sampled Ended :

Matrix

Outfall

Sampler A

Sampler B

Job Info

Sample Name :

Sample Name : Influent G Sample Alias:

Sample Type : Grab

Sampled Begin: Sampled Ended : Matrix Outfall

Sampler A Sampler B :

Job Info

2520003-03

2520003-01

Influent TC

Gary Usey

24 Hour Composite

2025-05-20 09:30

2025-05-21 09:30

Aqueous; (Water)

Grayson Townsend

Laboratory ID : 2520003-05

Effluent Equipment Blank Sample Name : Sample Alias:

Sample Type :

Sampled Begin: 2025-05-19 11:46 Sampled Ended: 2025-05-19 11:46 Aqueous; (Water) Outfall

Sampler A Gary Usey Sampler B : Gravson Townsend

Job Info

Laboratory ID:

Sample Name :

2520003-07 Trip Blank

Sample Alias: Sample Type :

Grab Sampled Begin: 2025-05-19 11:57 Sampled Ended : 2025-05-19 11:57 Aqueous; (Water) Outfall

Sampler A : Gary Usey Sampler B : Grayson Townsend

Job Info

2025-05-21 09:35 2025-05-21 09:35 Aqueous; (Water)

Gary Usey Grayson Townsend Sample Alias : Sample Type : Sampled Begin: Sampled Ended:

Laboratory ID :

Sample Name :

Matrix Outfall Sampler A : Sampler B :

Aqueous; (Water) Gary Usey

Grayson Townsend Job Info

Laboratory ID: 2520003-06 Effluent G Sample Name : Sample Alias:

Sample Type : Grab

Sampled Begin: 2025-05-21 10:20 Sampled Ended : 2025-05-21 10:20 Matrix Aqueous; (Water) Outfall

Sampler A : Gary Usey Sampler B : Gravson Townsend Job Info

2520003-08 Laboratory ID: Sample Name : Sample Alias:

Sample Type Grab Sampled Begin: 2025-05-21 08:40 Sampled Ended : 2025-05-21 08:40 Matrix Aqueous; (Water)

Effluent G

Outfall Sampler A : Sampler B : Gary Usey Grayson Townsend Job Info

North Texas Municipal Water District

Kelly Harden, Laboratory Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

North Texas Municipal Water District Laboratory 201 E Brown St. Wylie, TX 75098

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Total Metals by EPA 200.8												
North Texas Municipal Water	r District											
Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Silver	lmg	ND	0.500	0.250	0.500	ug/L	1	2515323	2025-06-03	2025-06-05	EPA 200.8	
Arsenic	lmg	1.71	0.500	0.250	0.500	ug/L	1	"	2025-06-03	2025-06-05	"	
Barium	lmg	63.3	1.00	0.500	1.00	ug/L	1	"	2025-06-03	2025-06-05	"	
Beryllium	lmg	ND	0.500	0.250	0.500	ug/L	1	"	2025-06-03	2025-06-05	"	
Cadmium	lmg	ND	1.00	0.500	1.00	ug/L	1	"	2025-06-03	2025-06-05	"	
Chromium	lmg	4.10	2.50	1.25	2.50	ug/L	1	"	2025-06-03	2025-06-05	"	
Copper	lmg	113	1.00	0.500	1.00	ug/L	1	"	2025-06-03	2025-06-05	"	
Nickel	lmg	15.6	1.00	0.500	1.00	ug/L	1	"	2025-06-03	2025-06-05	"	
Lead	lmg	0.673	0.500	0.250	0.500	ug/L	1	"	2025-06-03	2025-06-05	"	
Antimony	lmg	ND	2.50	1.25	2.50	ug/L	1	"	2025-06-03	2025-06-05	"	CCI
Selenium	lmg	2.46	1.00	0.500	1.00	ug/L	1	"	2025-06-03	2025-06-05	"	
Thallium	lmg	ND	0.500	0.250	0.500	ug/L	1	"	2025-06-03	2025-06-05	"	
Zinc	lmg	132	2.50	1.25	2.50	ug/L	1	"	2025-06-03	2025-06-05	"	
North Texas Municipal Water Analyte	r District Analyst		SRL	MDL	MRL	Units	Prep	Batch	Prepared	Analyzed	Method	Notes
Analyte	Analyst	Result					Ratio		-	-		Notes
Analyte Mercury				MDL 0 0.00180		Units ug/L		Batch 2515426	Prepared 2025-06-04	Analyzed 2025-06-04	Method EPA 245.7	Notes
Analyte Mercury Anions by EPA 300 Series	Analyst ran	Result 0.0116					Ratio		-	-		Notes
Analyte Mercury Anions by EPA 300 Series	Analyst ran	Result 0.0116					Ratio		-	-		Notes
Analyte Mercury Anions by EPA 300 Series	Analyst ran	Result 0.0116					Ratio 1 Prep		-	-		Notes
Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte	Analyst ran	Result 0.0116	0.0050	0 0.00180	0.00500	ug/L Units	Ratio 1	2515426	2025-06-04	2025-06-04	EPA 245.7	
Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte Fluoride	Analyst ran r District Analyst	Result 0.0116	0.0050 SRL	0 0.00180 MDL	0.00500 MRL	ug/L	Ratio 1 Prep Ratio	2515426 Batch	2025-06-04 Prepared	2025-06-04 Analyzed	EPA 245.7 Method	
Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte Fluoride Nitrate as N	Analyst ran r District Analyst tns tns	Result 0.0116 Result 198 341	0.0050 SRL 20	0 0.00180 MDL 10	0.00500 MRL 20	ug/L Units ug/L	Ratio 1 Prep Ratio 1	2515426 Batch 2514105	2025-06-04 Prepared 2025-05-21	2025-06-04 Analyzed 2025-05-21	Method EPA 300.0	
Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte Fluoride Nitrate as N Carbamate and Urea Pesticid	Analyst ran r District Analyst tns tns	Result 0.0116 Result 198 341	0.0050 SRL 20	0 0.00180 MDL 10	0.00500 MRL 20	ug/L Units ug/L	Ratio 1 Prep Ratio 1	2515426 Batch 2514105	2025-06-04 Prepared 2025-05-21	2025-06-04 Analyzed 2025-05-21	Method EPA 300.0	
Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte Fluoride Nitrate as N Carbamate and Urea Pesticid Eurofins Dallas	Analyst ran r District Analyst tns tns es (HPLC	Result 0.0116 Result 198 341	0.0050 SRL 20 20	MDL 10	0.00500 MRL 20 20	ug/L Units ug/L ug/L	Ratio 1 Prep Ratio 1	2515426 Batch 2514105	Prepared 2025-05-21 250521 1400	2025-06-04 Analyzed 2025-05-21 250521 1843	Method EPA 300.0	Notes
Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte Fluoride Nitrate as N Carbamate and Urea Pesticid Eurofins Dallas Analyte	Analyst ran T District Analyst tns tns es (HPLC Analyst	Result 0.0116 Result 198 341	0.0050 SRL 20 20	MDL 10 10	0.00500 MRL 20 20	ug/L Units ug/L ug/L	Prep Ratio 1	2515426 Batch 2514105 "	Prepared 2025-05-21 250521 1400	2025-06-04 Analyzed 2025-05-21 250521 1843 Analyzed	Method EPA 300.0 " Method	Notes
Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte Fluoride Nitrate as N Carbamate and Urea Pesticid Eurofins Dallas Analyte Diuron	Analyst ran r District Analyst tns tns es (HPLC Analyst yg	Result 0.0116 Result 198 341 C) Result ND	0.0050 SRL 20 20 SRL 0.0051	MDL 10 10 MDL 4 0.0514	0.00500 MRL 20 20 MRL 0.0900	ug/L Units ug/L ug/L Units ug/L	Prep Ratio 1 1	Batch 2514105 " Batch 238365	Prepared 2025-05-21 250521 1400 Prepared 2025-05-28	2025-06-04 Analyzed 2025-05-21 250521 1843 Analyzed 2025-06-02	Method EPA 300.0	Notes Notes
Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte Fluoride Nitrate as N Carbamate and Urea Pesticid Eurofins Dallas Analyte Diuron	Analyst ran T District Analyst tns tns es (HPLC Analyst	Result 0.0116 Result 198 341	0.0050 SRL 20 20	MDL 10 10	0.00500 MRL 20 20	ug/L Units ug/L ug/L	Prep Ratio 1 1	2515426 Batch 2514105 "	Prepared 2025-05-21 250521 1400	2025-06-04 Analyzed 2025-05-21 250521 1843 Analyzed	Method EPA 300.0	Notes Notes
Analyte Mercury Anions by EPA 300 Series North Texas Municipal Wate: Analyte Fluoride Nitrate as N Carbamate and Urea Pesticid Eurofins Dallas Analyte Diuron Carbaryl	Analyst ran T District Analyst tns tns es (HPLC Analyst yg yg	Result 0.0116 Result 198 341 C) Result ND	0.0050 SRL 20 20 SRL 0.0051	MDL 10 10 MDL 4 0.0514	0.00500 MRL 20 20 MRL 0.0900	ug/L Units ug/L ug/L Units ug/L	Prep Ratio 1 1	Batch 2514105 " Batch 238365	Prepared 2025-05-21 250521 1400 Prepared 2025-05-28	2025-06-04 Analyzed 2025-05-21 250521 1843 Analyzed 2025-06-02	Method EPA 300.0	Notes
Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte Fluoride Nitrate as N Carbamate and Urea Pesticid Eurofins Dallas Analyte Diuron Carbaryl Glycols- Direct Injection (GC	Analyst ran T District Analyst tns tns es (HPLC Analyst yg yg	Result 0.0116 Result 198 341 C) Result ND	0.0050 SRL 20 20 SRL 0.0051	MDL 10 10 MDL 4 0.0514	0.00500 MRL 20 20 MRL 0.0900	ug/L Units ug/L ug/L Units ug/L	Prep Ratio 1 1	Batch 2514105 " Batch 238365	Prepared 2025-05-21 250521 1400 Prepared 2025-05-28	2025-06-04 Analyzed 2025-05-21 250521 1843 Analyzed 2025-06-02	Method EPA 300.0	Notes Notes
Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte Fluoride Nitrate as N Carbamate and Urea Pesticid Eurofins Dallas Analyte Diuron Carbaryl Glycols- Direct Injection (GC Eurofins Dallas	Analyst ran r District Analyst tns tns es (HPLO Analyst yg yg C/FID)	Result 0.0116 Result 198 341 C) Result ND 0.631	SRL 20 20 SRL 0.0051- 0.185	MDL 10 10 MDL 4 0.0514 1.85	0.00500 MRL 20 20 MRL 0.0900 5.00	ug/L Units ug/L ug/L Units ug/L ug/L	Prep Ratio 1 1 Prep Ratio 1 1 Prep Ratio 1 1 Prep Ratio 1 1 1	Batch 2514105 " Batch 238365 "	Prepared 2025-05-21 250521 1400 Prepared 2025-05-28 2025-05-28	Analyzed 2025-06-02 Analyzed 2025-05-21 250521 1843 Analyzed 2025-06-02 2025-06-02	Method EPA 300.0 " Method 632 "	Notes Notes SU
Analyte Mercury Anions by EPA 300 Series North Texas Municipal Water Analyte Fluoride Nitrate as N Carbamate and Urea Pesticid Eurofins Dallas Analyte	Analyst ran T District Analyst tns tns es (HPLC Analyst yg yg	Result 0.0116 Result 198 341 C) Result ND 0.631	0.0050 SRL 20 20 SRL 0.0051	MDL 10 10 MDL 4 0.0514	0.00500 MRL 20 20 MRL 0.0900	ug/L Units ug/L ug/L Units ug/L	Prep Ratio 1 Prep Ratio 1 1	Batch 2514105 " Batch 238365	Prepared 2025-05-21 250521 1400 Prepared 2025-05-28	2025-06-04 Analyzed 2025-05-21 250521 1843 Analyzed 2025-06-02	Method EPA 300.0	Notes Notes

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Influent TC (2520003-01)

Herbicides (GC)

Eurofins Dallas

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Surrogate: 2,4-Dichlorophenylacetic aci	d	268 %	6 4	15-150			1	238206	2025-05-27	2025-05-30	615	S1+,SUB
Dalapon	wp	ND	0.0478	0.00004	47@.000200	ug/L	1	"	2025-05-27	2025-05-30	"	SUB
2,4-D	wp	ND	0.0541	0.0000	5390.000200	ug/L	1	"	2025-05-27	2025-05-30	"	SUB
Hexachlorophene	wp	ND	0.811	0.00080	08 0.00500	ug/L	1	"	2025-05-27	2025-05-30	"	SUB
Pentachlorophenol	wp	ND	0.0445	0.00004	4430.000200	ug/L	1	"	2025-05-27	2025-05-30	"	SUB
Dinoseb	wp	ND	0.0344	0.00003	3430.000200	ug/L	1	"	2025-05-27	2025-05-31	"	*1,SUB
Dicamba	wp	ND	0.0425	0.00004	4230.000200	ug/L	1	"	2025-05-27	2025-05-30	"	*+,SUB
Silvex (2,4,5-TP)	wp	ND	0.0424	0.00004	4220.000200	ug/L	1	"	2025-05-27	2025-05-30	"	*+,SUB

Organochlorine Pesticides in Water

Eurofins Dallas

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Surrogate: Tetrachloro-m-xylene		63 5	%	18-126			1	238461	2025-05-28	2025-05-29	EPA 608.3	p,SUB
Surrogate: DCB Decachlorobiphenyl (Surr)	75 9	%	15-136			1	"	2025-05-28	2025-05-29	"	SUB
alpha-BHC	wp	ND	0.0006	52 5 0.00062	5 0.00500	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Endrin	wp	ND	0.0025	0.00250	0.0200	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
4,4'-DDE	wp	ND	0.0012	25 0.00125	0.0100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Aldrin	wp	ND	0.0012	25 0.00125	0.0100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
beta-BHC	wp	ND	0.0012	25 0.00125	0.0100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Endrin aldehyde	wp	ND	0.0059	0.00592	0.0500	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Heptachlor	wp	ND	0.0016	69 0.00169	0.00500	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Heptachlor epoxide	wp	ND	0.0012	25 0.00125	0.0100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
4,4'-DDT	wp	ND	0.0025	0.00250	0.0200	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Endosulfan sulfate	wp	ND	0.0055	9 0.00559	0.0500	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Chlordane	wp	ND	0.025	0.0250	0.200	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Toxaphene	wp	ND	0.078	0.0780	0.200	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
gamma-BHC (Lindane)	wp	ND	0.0034	14 0.00344	0.0100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Endosulfan II	wp	ND	0.0012	25 0.00125	0.0100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Endosulfan I	wp	ND	0.0012	25 0.00125	0.0100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Dieldrin	wp	ND	0.0006	5250.00062	5 0.00500	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
delta-BHC	wp	ND	0.0025	0.00250	0.0200	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
4,4'-DDD	wp	ND	0.0025	0.00250	0.0200	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Methoxychlor	wp	ND	0.0125	0.00001	250.000100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Dicofol	wp	ND	0.5	0.00050	0 0.000500	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Mirex	wp	ND	0.02	0.00002	0(0.000020(ug/L	1	"	2025-05-28	2025-05-29	"	SUB

Polychlorinated Biphenyls (PCBs) (GC)

Eurofins Dallas

Analyte	Analyst Result	SRL	MDL	MRL	Units	Prep	Batch	Prepared	Analyzed	Method	Notes
111111111111111111111111111111111111111	ranning or recourt	5112			Cinto	Ratio	Dutten	reparea	1 2224		11000

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Influent TC (2520003-01)

Polychlorinated Biphenyls (PCBs) (GC)

Eurofins Dallas

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Surrogate: Tetrachloro-m-xylene		79 9	%	18-126			1	238461	2025-05-28	2025-05-29	EPA 608.3	SUB
Surrogate: DCB Decachlorobiphenyl (S	Surr)	69 9	%	15-136			1	"	2025-05-28	2025-05-29	"	SUB
Polychlorinated biphenyls,	km	ND	0.039	0.0390	0.100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Total												
PCB-1221	km	ND	0.0443	0.0443	0.100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
PCB-1232	km	ND	0.0443	0.0443	0.100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
PCB-1016	km	ND	0.0443	0.0443	0.100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
PCB-1242	km	ND	0.0443	0.0443	0.100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
PCB-1248	km	ND	0.0443	0.0443	0.100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
PCB-1260	km	ND	0.039	0.0390	0.100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
PCB-1254	km	ND	0.039	0.0390	0.100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB

Semivolatile Organic Compounds (GC/MS)

Eurofins Dallas

Analyte	Analyst Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Surrogate: 2-Fluorophenol (Surr)	0 9	%	28-114			1	240475	2025-06-05	2025-06-05	EPA 625.1	S1-,SUB
Surrogate: Nitrobenzene-d5 (Surr)	0 9	%	15-314			1	"	2025-06-05	2025-06-05	"	S1-,SUB
Surrogate: Phenol-d5 (Surr)	0 9	%	8-424			1	"	2025-06-05	2025-06-05	"	S1-,SUB
Surrogate: p-Terphenyl-d14 (Surr)	0 9	%	20-141			1	"	2025-06-05	2025-06-05	"	*3, S1-,SUB
Surrogate: 2,4,6-Tribromophenol (Surr)	0 9	%	31-132			1	"	2025-06-05	2025-06-05	"	S1-,SUB
Surrogate: 2-Fluorobiphenyl (Surr)	0 9	%	29-112			1	"	2025-06-05	2025-06-05	"	S1-,SUB

Semivolatile Organic Compounds (GC/MS) TICs

Eurofins Dallas

Analyte	Analys	t Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
2,3,7,8-TCDD TIC 01	lpl	ND	10			ug/L	1	"	2025-06-05	2025-06-05	625.1 TICs	SUB

Semivolatile Organic Compounds (GC-MS/MS)

Eurofins Dallas

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Surrogate: 2-Fluorobiphenyl (Surr)		61 9	%	43-130			1	238065	2025-05-28	2025-05-30	EPA 625.1	SUB
Surrogate: p-Terphenyl-d14 (Surr)		60 9	%	47-130			1	"	2025-05-28	2025-05-30	"	SUB
Surrogate: 2-Fluorobiphenyl		61 9	%	43-130			1	"	2025-05-28	2025-05-30	"	SUB
Surrogate: Phenol-d5 (Surr)		55 9	%	8-124			1	"	2025-05-28	2025-05-30	"	SUB
Surrogate: 2,4,6-Tribromophenol (Surr)		96 9	%	35-130			1	"	2025-05-28	2025-05-30	"	SUB
Surrogate: 2-Fluorophenol (Surr)		56 9	%	19-120			1	"	2025-05-28	2025-05-30	"	SUB
Surrogate: Nitrobenzene-d5 (Surr)		78 9	%	37-133			1	"	2025-05-28	2025-05-30	"	SUB
N-Nitrosodi-n-butylamine	lpl	ND	0.516	j		ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Demeton, Total	lpl	ND	0.016	0.0168	0.0571	ug/L	1	"	2025-05-28	2025-05-30	"	SUB
4-Chlorophenyl phenyl ether	lpl	ND	0.13			ug/L	1	"	2025-05-28	2025-05-30	"	SUB

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Influent TC (2520003-01)

Semivolatile Organic Compounds (GC-MS/MS)

Eurofins Dallas

Edi Offilo Bulluo		_					Prep					
Analyte	Analyst		SRL	MDL	MRL	Units	Ratio	Batch	Prepared	Analyzed	Method	Notes
Isophorone	lpl	ND	0.107			ug/L	1	238065	2025-05-28	2025-05-30	EPA 625.1	SUB
Guthion	lpl	ND	0.0162	0.0162	0.0571	ug/L	1	"	2025-05-28	2025-05-30	,,	*-,SUB
Azobenzene	lpl	ND	0.104			ug/L	1	"	2025-05-28	2025-05-30		SUB
Dimethyl phthalate	lpl	ND	1.43			ug/L	1	"	2025-05-28	2025-05-30		SUB
Di-n-octyl phthalate	lpl	ND	1.43			ug/L	1	"	2025-05-28	2025-05-30		SUB
Di-n-butyl phthalate	lpl	ND	1.43			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
N-Nitrosodi-n-propylamine	lpl	ND	0.119			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Indeno[1,2,3-cd]pyrene	lpl	ND	0.1			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Hexachlorocyclopentadiene	lpl	ND	0.218			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Benzo[a]anthracene	lpl	ND	0.0821			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Disulfoton	lpl	ND	0.203	0.203	0.571	ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Benzo[a]pyrene	lpl	ND	0.07			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Fluorene	lpl	ND	0.0948			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
4-Chloro-3-methylphenol	lpl	ND	0.104			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
4-Nitrophenol	lpl	ND	0.44			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Chlorpyrifos	lpl	ND	0.0159	0.0159	0.0571	ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Diethyl phthalate	lpl	ND	1.43			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Chrysene	lpl	ND	0.0815			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Diazinon	lpl	ND	0.0148	0.0148	0.114	ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Dibenz(a,h)anthracene	lpl	ND	0.0509			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
N-Nitrosodimethylamine	lpl	ND	0.1			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Fluoranthene	lpl	ND	0.0883			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Butyl benzyl phthalate	lpl	ND	1.43			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
4,6-Dinitro-2-methylphenol	lpl	ND	1			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
3,3'-Dichlorobenzidine	lpl	ND	0.183			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Benzidine	lpl	ND	0.446			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Benzo[b]fluoranthene	lpl	ND	0.0664			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
4-Bromophenyl phenyl ether	lpl	ND	0.1			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Pentachlorobenzene	lpl	ND	0.266			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
N-Nitrosodiphenylamine	lpl	ND	0.145			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Ethyl Parathion	lpl	ND	0.0502	0.0502	0.114	ug/L	1	"	2025-05-28	2025-05-30	"	SUB
N-Nitrosodiethylamine	lpl	ND	0.538			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Acenaphthene	lpl	ND	0.107			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Hexachloroethane	lpl	ND	0.102			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
1,2,4,5-Tetrachlorobenzene	lpl	ND	0.0957			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
1,2,4-Trichlorobenzene	lpl	ND	0.0766			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Pyridine	lpl	ND	1.44			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Pyrene	lpl	ND	0.0849			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Phenol	lpl	ND	1.14			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2,4,6-Trichlorophenol	lpl	ND	0.231			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
	•											

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Influent TC (2520003-01)

Semivolatile Organic Compounds (GC-MS/MS)

Eurofins Dallas

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Pentachlorophenol	lpl	ND	0.199			ug/L	1	238065	2025-05-28	2025-05-30	EPA 625.1	SUB
2,4-Dichlorophenol	lpl	ND	0.14			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Nitrobenzene	lpl	ND	0.0736			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Naphthalene	lpl	ND	0.0944			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Methyl parathion	lpl	ND	0.319	0.319	0.571	ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Malathion	lpl	ND	0.015	0.0150	0.0571	ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2,4,5-Trichlorophenol	lpl	ND	0.143			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2,2'-oxybis[1-chloropropane	lpl	ND	0.128			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
1,2-Diphenylhydrazine	lpl	ND	0.286			ug/L	1	,,	2025-05-28	2025-05-30	"	SUB
Phenanthrene	lpl	ND	0.134			ug/L	1	,,	2025-05-28	2025-05-30	"	SUB
2-Nitrophenol	lpl	ND	0.136			ug/L	1	,,	2025-05-28	2025-05-30	"	SUB
Bis(2-chloroethyl)ether	lpl	ND	0.214			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Bis(2-chloroethoxy)methane	lpl	ND	0.0974			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Benzo[k]fluoranthene	lpl	ND	0.0473			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Benzo[g,h,i]perylene	lpl	ND	0.0345			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Anthracene	lpl	ND	0.0938			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Acenaphthylene	lpl	ND	0.0996			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
3 & 4 Methylphenol	lpl	17	0.139			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Hexachlorobenzene	lpl	ND	0.0975			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
4-Nonylphenol	lpl	ND	1.92			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Bis(2-ethylhexyl) phthalate	lpl	ND	1.43			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2-Methylphenol	lpl	ND	0.105			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2-Chlorophenol	lpl	ND	0.0756			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2-Chloronaphthalene	lpl	ND	0.378			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2,6-Dinitrotoluene	lpl	ND	0.116			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2,4-Dinitrotoluene	lpl	ND	0.205			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2,4-Dinitrophenol	lpl	ND	0.311			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2,4-Dimethylphenol	lpl	ND	0.192			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Total Cresols	lpl	17	0.128			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Hexachlorobutadiene	lpl	ND	0.103			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Bisphenol-A	lpl	ND	0.431			ug/L	1	"	2025-05-28	2025-05-30	"	SUB

Pesticides by 1657

SPL

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Parathion, methyl	kap	ND	0.0481			ug/L	1	1178710	2025-05-28	2025-05-30	EPA 1657	SUB
Parathion, ethyl	kap	ND	0.0481			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Guthion	kap	ND	0.0481			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Malathion	kan	ND	0.0481			ug/L	1	"	2025-05-28	2025-05-30	"	SUB

Panther Creek WWTP 1825 Little Ranch Road Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Reported: 2025-06-18 14:29

Frisco, TEXAS 75034

Project Manager: Kristen Suprobo

ANALYTICAL REPORT FOR SAMPLES

Influent TC (2520003-01)												
Pesticides by 1657 SPL												
Analyte Chlorpyrifos	Analyst kap	Result ND	SRL 0.0481	MDL	MRL	Units ug/L	Prep Ratio 1	Batch 1178710	Prepared 2025-05-28	Analyzed 2025-05-30	Method EPA 1657	Notes SUB
Demeton Diazinon	kap kap	ND ND	0.0481 0.0481			ug/L ug/L	1	"	2025-05-28 2025-05-28	2025-05-30 2025-05-30	"	SUB SUB
Influent TC (2520003-01RE1)												
Total Metals by EPA 200.8 North Texas Municipal Wa	ter District											
Analyte Aluminum	Analyst bgk	Result 391	SRL 25.0	MDL 1.25	MRL 2.50	Units ug/L	Prep Ratio 10	Batch 2515628	Prepared 2025-06-06	Analyzed 2025-06-09	Method EPA 200.8	Notes
Influent Equipment Blank (25)	20003-02)											
Total Mercury by EPA 245 North Texas Municipal Wa												
Analyte Mercury	Analyst ran	Result ND	SRL 0.00500	MDL 0.00180	MRL 0.00500	Units ug/L	Prep Ratio 1	Batch 2515426	Prepared 2025-06-04	Analyzed 2025-06-04	Method EPA 245.7	Notes
Influent G (2520003-03)												
Chromium, Hexavalent Eurofins Dallas												
Analyte Chromium, hexavalent	Analyst ejh	Result 11.2	SRL 2.8	MDL 0.00280	MRL 0.0100	Units ug/L	Prep Ratio 1	Batch 28744	Prepared 2025-05-21	Analyzed 2025-05-21	Method SM 3500 CR B	Notes SUB
Chromium, Trivalent Eurofins Dallas												
Analyte Cr (III)	Analyst jdm	Result ND	SRL 2	MDL	MRL	Units ug/L	Prep Ratio 1	Batch 238228	Prepared 2025-05-27	Analyzed 2025-05-27	Method	Notes SUB
Cyanide, Amenable Eurofins Dallas												
Analyte Cyanide, Amenable	Analyst yg	Result ND	SRL 2.33	MDL	MRL	Units ug/L	Prep Ratio 1	Batch 238995	Prepared 2025-05-29	Analyzed 2025-05-29	Method SM 4500 CN G	Notes SUB
Cyanide, Non-amenable Eurofins Dallas												
Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYZICAL DEPONT FOR CAMPLES

ANALYTICAL REPORT FOR SAMPLES

Influent G (2520003-03)												
Cyanide, Non-amenable Eurofins Dallas												
Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Cyanide, Non-amenable	mlei	29.6	2.33	2.33	5.00	ug/L	1	238610	2025-05-28	2025-05-29	4500 CN G NonAm	SUB
Cyanide, Total, Acid Dissocia Eurofins Dallas	able and	Thiocy	anate									
Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Cyanide, Total	bw	ND	1.98	0.00198	0.00500	ug/L	1	238527	2025-05-27	2025-05-27	Kelada 01	SUB
Metals (ICP/MS) Total Recov Eurofins Dallas	verable											
Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Cr	dp	1.73	0.89	0.00089	0 0.00400	ug/L	1	237918	2025-05-23	2025-05-27	200.8	Ja,SUB
Phenolics, Total Recoverable												
Eurofins Dallas												

Prep

Ratio

Batch

238157

Prepared

2025-05-23

Analyzed

2025-05-23

Method

420.4

Notes

SUB

Units

ug/L

Volatile Organic Compounds (GC/MS)

Analyst Result

62.7

SRL

5.8

MDL

5.80

MRL

10.0

Eurofins Dallas

Analyte

Phenols, Total

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Surrogate: Toluene-d8 (Surr)		102 9	%	80-120			2	237654	2025-05-23	2025-05-23	EPA 624.1	SUB
Surrogate: Dibromofluoromethane (Surr)	109 9	%	75-131			2	"	2025-05-23	2025-05-23	"	SUB
Surrogate: 1,2-Dichloroethane-d4 (Surr)		114 9	%	63-144			2	"	2025-05-23	2025-05-23	"	SUB
Surrogate: 4-Bromofluorobenzene (Surr)		101 9	%	74-124			2	"	2025-05-23	2025-05-23	"	SUB
Vinyl chloride	na	ND	0.856	0.428	2.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Chloroform	na	1.66	0.928	0.464	1.00	ug/L	2	"	2025-05-23	2025-05-23	"	Ja,SUB
Chloroethane	na	ND	3.97	1.98	10.0	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Chloromethane	na	ND	4.07	2.04	10.0	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
cis-1,3-Dichloropropene	na	ND	2.13	1.07	5.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Dibromochloromethane	na	ND	1.09	0.547	5.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Vinyl acetate	na	ND	4.28	2.14	20.0	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
1,2-Dichloroethane	na	ND	0.744	0.372	1.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
1,3-Dichloropropene, Total	na	ND	2.53	1.27	5.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
1,4-Dichlorobenzene	na	ND	0.898	0.449	1.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
1,3-Dichlorobenzene	na	ND	0.826	0.413	1.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
1,2-Dichloropropane	na	ND	1.11	0.556	5.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
1,2-Dichlorobenzene	na	ND	0.858	0.429	1.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
1,1,1-Trichloroethane	na	ND	1.17	0.585	5.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Toluene	na	11.9	0.95	0.475	1.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Influent G (2520003-03)

Volatile Organic Compounds (GC/MS)

Eurofins Dallas

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Ethylbenzene	na	ND	0.77	0.385	1.00	ug/L	2	237654	2025-05-23	2025-05-23	EPA 624.1	SUB
Carbon tetrachloride	na	ND	1.79	0.896	2.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
1,1,2,2-Tetrachloroethane	na	ND	0.94	0.470	1.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Trihalomethanes, Total	na	1.66	1.27	0.633	5.00	ug/L	2	"	2025-05-23	2025-05-23	"	Ja,SUB
trans-1,3-Dichloropropene	na	ND	2.53	1.27	5.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
trans-1,2-Dichloroethene	na	ND	0.736	0.368	1.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Tetrachloroethene	na	ND	1.31	0.655	1.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Chlorobenzene	na	ND	0.91	0.455	1.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Bromomethane	na	ND	2.84	1.42	5.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Bromoform	na	ND	1.27	0.633	5.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Bromodichloromethane	na	ND	1.1	0.552	1.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Benzene	na	ND	0.919	0.460	1.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Acrylonitrile	na	ND	28.6	14.3	50.0	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Acrolein	na	ND	22.2	11.1	50.0	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
1,2,4-Trichlorobenzene	na	ND	3.51	1.75	5.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
1,1,2-Trichloroethane	na	ND	0.822	0.411	1.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
1,1-Dichloroethane	na	ND	1.27	0.635	1.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Methylene Chloride	na	ND	3.45	1.73	5.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
2-Chloroethyl vinyl ether	na	ND	1.51	0.753	5.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
1,1-Dichloroethene	na	ND	1.48	0.738	1.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
1,2-Dibromoethane	na	ND	2	0.999	5.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Trichloroethene	na	ND	3	1.50	5.00	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
2-Butanone	na	ND	16.6	8.28	50.0	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Acetone	na	215	6.13	0.00307	0.100	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
o-Xylene	na	ND	1	0.000502	2 0.00100	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Naphthalene	na	ND	2.71	0.00135	0.0100	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Xylenes, Total	na	ND	2.48	0.00124	0.00200	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
MTBE	na	ND	2.78	0.00139	0.00500	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Bromochloromethane	na	ND	1.15	0.000577	7 0.00100	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
Epichlorohydrin	na	ND	15	0.00752	0.0500	ug/L	2	"	2025-05-23	2025-05-23	"	SUB
m,p-Xylenes	na	ND	2.48	0.00124	0.00200	ug/L	2	"	2025-05-23	2025-05-23	"	SUB

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Total Metals by EPA 200.8	8											
North Texas Municipal Wa	ater District											
Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Silver	lmg	ND	0.500	0.250	0.500	ug/L	1	2515323	2025-06-03	2025-06-05	EPA 200.8	
Aluminum	lmg	15.9	2.50	1.25	2.50	ug/L	1	"	2025-06-03	2025-06-05	"	
Arsenic	lmg	1.06	0.500	0.250	0.500	ug/L	1	"	2025-06-03	2025-06-05	"	
Barium	lmg	47.2	1.00	0.500	1.00	ug/L	1	"	2025-06-03	2025-06-05	"	
Beryllium	lmg	ND	0.500	0.250	0.500	ug/L	1	"	2025-06-03	2025-06-05	"	
Cadmium	lmg	ND	1.00	0.500	1.00	ug/L	1	"	2025-06-03	2025-06-05	"	
Chromium	lmg	ND	2.50	1.25	2.50	ug/L	1	"	2025-06-03	2025-06-05	"	
Copper	lmg	12.5	1.00	0.500	1.00	ug/L	1	"	2025-06-03	2025-06-05	"	
Nickel	lmg	12.0	1.00	0.500	1.00	ug/L	1	"	2025-06-03	2025-06-05	"	
Lead	lmg	ND	0.500	0.250	0.500	ug/L	1	"	2025-06-03	2025-06-05	"	
Antimony	lmg	ND	2.50	1.25	2.50	ug/L	1	"	2025-06-03	2025-06-05	"	CCI
Selenium	lmg	1.89	1.00	0.500	1.00	ug/L	1	"	2025-06-03	2025-06-05	"	
Thallium	lmg	ND	0.500	0.250	0.500	ug/L	1	"	2025-06-03	2025-06-05	"	
Haman												
Zinc Total Mercury by EPA 24:	lmg 5.7	25.9	2.50	1.25	2.50	ug/L	1	II	2025-06-03	2025-06-05	"	
Zinc Total Mercury by EPA 24: North Texas Municipal Wa	lmg 5.7	25.9	SRL	1.25 MDL 0.00180	MRL	ug/L Units ug/L	Prep Ratio 1	Batch 2515426	2025-06-03 Prepared 2025-06-04	2025-06-05 Analyzed 2025-06-04	Method EPA 245.7	Notes
Zinc Total Mercury by EPA 24: North Texas Municipal Wanner Analyte Mercury Conventional Chemistry F	5.7 ater District Analyst ran Parameters b	Result ND	SRL 0.00500	MDL) 0.00180	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Zinc Total Mercury by EPA 24: North Texas Municipal Wannercury Analyte Mercury Conventional Chemistry F North Texas Municipal Wannercury	5.7 Sater District Analyst ran Parameters b Sater District	Result ND y EPA M	srl 0.00500 Method	MDL 0 0.00180 S	MRL 0.00500	Units ug/L	Prep Ratio	Batch 2515426	Prepared 2025-06-04	Analyzed 2025-06-04	Method EPA 245.7	
Zine Total Mercury by EPA 24: North Texas Municipal Wanalyte Mercury Conventional Chemistry F North Texas Municipal Wanalyte	5.7 Sater District Analyst ran Parameters b Sater District Analyst	Result ND y EPA N Result	SRL 0.00500 Method	MDL) 0.00180 S MDL	MRL 0.00500 MRL	Units ug/L	Prep Ratio 1	Batch 2515426 Batch	Prepared 2025-06-04 Prepared	Analyzed 2025-06-04 Analyzed	Method EPA 245.7	Notes
Zine Total Mercury by EPA 24: North Texas Municipal Wanalyte Mercury Conventional Chemistry F North Texas Municipal Wanalyte Analyte Ammonia as N	5.7 Sater District Analyst ran Parameters b Sater District Analyst jkp	Result ND Y EPA M	SRL 0.00500 Method SRL 50.0	MDL 0 0.00180 S MDL 50.0	MRL 0.00500 MRL 100	Units ug/L Units ug/L	Prep Ratio 1 Prep Ratio 1	Batch 2515426 Batch 2514121	Prepared 2025-06-04 Prepared 2025-05-22	Analyzed 2025-06-04 Analyzed 2025-05-22	Method EPA 245.7 Method EPA 350.1	
Zine Total Mercury by EPA 24: North Texas Municipal Wanalyte Mercury Conventional Chemistry F North Texas Municipal Wanalyte Analyte Ammonia as N Total Phosphate as P	Img 5.7 Sater District Analyst ran Parameters b Sater District Analyst jkp maj	Result ND Y EPA M Result 143	SRL 0.00500 Method SRL 50.0 10.0	MDL 0 0.00180 S MDL 50.0 10.0	MRL 0.00500 MRL 100 20.0	Units ug/L Units ug/L ug/L	Prep Ratio 1 Prep Ratio 1	Batch 2515426 Batch 2514121 2514232	Prepared 2025-06-04 Prepared 2025-05-22 2025-05-23	Analyzed 2025-06-04 Analyzed 2025-05-22 2025-05-23	Method EPA 245.7 Method EPA 350.1 EPA 365.1	
Total Mercury by EPA 24: North Texas Municipal Wanalyte Mercury Conventional Chemistry F North Texas Municipal Wanalyte Ammonia as N Total Phosphate as P Total Kjeldal Nitrogen	Img 5.7 Sater District Analyst ran Parameters b Sater District Analyst jkp maj pp	Result ND Y EPA M Result 143 180 1590	SRL 0.00500 Method SRL 50.0 10.0	MDL 0 0.00180 S MDL 50.0 10.0 100	MRL 0.00500 MRL 100	Units ug/L Units ug/L	Prep Ratio 1 Prep Ratio 1	Batch 2515426 Batch 2514121	Prepared 2025-06-04 Prepared 2025-05-22	Analyzed 2025-06-04 Analyzed 2025-05-22	Method EPA 245.7 Method EPA 350.1	
Zine Total Mercury by EPA 24: North Texas Municipal Wanalyte Mercury Conventional Chemistry F North Texas Municipal Wanalyte Analyte Ammonia as N Total Phosphate as P	Img 5.7 Sater District Analyst ran Parameters b Sater District Analyst jkp maj pp Parameters b	Result ND Y EPA M Result 143 180 1590	SRL 0.00500 Method SRL 50.0 10.0	MDL 0 0.00180 S MDL 50.0 10.0 100	MRL 0.00500 MRL 100 20.0	Units ug/L Units ug/L ug/L	Prep Ratio 1 Prep Ratio 1	Batch 2515426 Batch 2514121 2514232	Prepared 2025-06-04 Prepared 2025-05-22 2025-05-23	Analyzed 2025-06-04 Analyzed 2025-05-22 2025-05-23	Method EPA 245.7 Method EPA 350.1 EPA 365.1	
Total Mercury by EPA 24: North Texas Municipal Wanalyte Mercury Conventional Chemistry F North Texas Municipal Wanalyte Ammonia as N Total Phosphate as P Total Kjeldal Nitrogen Conventional Chemistry F	Img 5.7 Sater District Analyst ran Parameters b Sater District Analyst jkp maj pp Parameters b	Result ND YEPA N Result 143 180 1590 y Standa	SRL 0.00500 Method SRL 50.0 10.0	MDL 0 0.00180 S MDL 50.0 10.0 100	MRL 0.00500 MRL 100 20.0	Units ug/L Units ug/L ug/L	Prep Ratio 1 Prep Ratio 1 1 1 Prep Ratio 1	Batch 2515426 Batch 2514121 2514232	Prepared 2025-06-04 Prepared 2025-05-22 2025-05-23	Analyzed 2025-06-04 Analyzed 2025-05-22 2025-05-23	Method EPA 245.7 Method EPA 350.1 EPA 365.1	
Total Mercury by EPA 24: North Texas Municipal Wanalyte Mercury Conventional Chemistry F North Texas Municipal Wanalyte Ammonia as N Total Phosphate as P Total Kjeldal Nitrogen Conventional Chemistry F North Texas Municipal Wanalyte	5.7 Sater District Analyst ran Parameters b Sater District Analyst jkp maj pp Parameters b Sater District	Result ND YEPA N Result 143 180 1590 y Standa	SRL 0.00500 Method SRL 50.0 10.0 100 ard Me	MDL 0 0.00180 S MDL 50.0 10.0 100 thods	MRL 0.00500 MRL 100 20.0 200	Units ug/L Units ug/L ug/L ug/L	Prep Ratio 1 Prep Ratio 1 1	Batch 2515426 Batch 2514121 2514232 2515308	Prepared 2025-06-04 Prepared 2025-05-22 2025-05-23 2025-06-04	Analyzed 2025-06-04 Analyzed 2025-05-22 2025-05-23 2025-06-04	Method EPA 245.7 Method EPA 350.1 EPA 365.1 EPA 351.2	Notes
Total Mercury by EPA 24: North Texas Municipal Wanalyte Mercury Conventional Chemistry F North Texas Municipal Wanalyte Amalyte Ammonia as N Total Phosphate as P Total Kjeldal Nitrogen Conventional Chemistry F North Texas Municipal Wanalyte	lmg 5.7 fater District Analyst ran Parameters b fater District Analyst jkp maj pp Parameters b fater District Analyst Analyst	Result ND PAN Result 143 180 1590 y Standa	SRL 0.00500 Method SRL 50.0 10.0 100 ard Me	MDL 0 0.00180 S MDL 50.0 10.0 100 thods	MRL 0.00500 MRL 100 20.0 200	Units ug/L Units ug/L ug/L ug/L	Prep Ratio 1 Prep Ratio 1 1 Prep Ratio 1	Batch 2515426 Batch 2514121 2514232 2515308	Prepared 2025-06-04 Prepared 2025-05-22 2025-05-23 2025-06-04	Analyzed 2025-06-04 Analyzed 2025-05-22 2025-05-23 2025-06-04	Method EPA 245.7 Method EPA 350.1 EPA 351.2	Notes

North Texas Municipal Water District

Analyte

Chloride

Fluoride

Nitrate as N

North Texas Municipal Water District

Analyst Result

ran

tns

tns

277000

16000

404

 \mathbf{SRL}

5000

20

200

MDL

500

10

10

MRL

1000

20

20

Prepared

2025-05-22

2025-05-21

250521 1400

Analyzed

2025-05-22

2025-05-21

250521 1927

Method

EPA 300.0

Notes

Prep

Ratio

5

1

10

Batch

2514216

2514105

Units

ug/L

ug/L

ug/L

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Anions by EPA 300 Series

North Texas Municipal Water District

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Sulfate	ran	158000	5000	500	1000	ug/L	5	2514216	2025-05-22	2025-05-22	EPA 300.0	

Carbamate and Urea Pesticides (HPLC)

Eurofins Dallas

Analyte	Analy	st Result	SRL	MDL	MRL	Units	Ratio	Batch	Prepared	Analyzed	Method	Notes
Diuron	yg	0.052	0.0051	4 0.0514	0.0900	ug/L	1	238365	2025-05-28	2025-06-02	632	SUB
Carbaryl	yg	ND	0.185	1.85	5.00	ug/L	1	"	2025-05-28	2025-06-02	"	SUB

Glycols- Direct Injection (GC/FID)

Eurofins Dallas

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Ethylene glycol	jbs	ND	1220	1.22	5.00	ug/L	1	237761	2025-05-23	2025-05-23	8015D	SUB
Propylene glycol	ibs	ND	1840	1.84	5.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB

Herbicides (GC)

Eurofins Dallas

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Surrogate: 2,4-Dichlorophenylacetic acid	d	175 %	6 4	5-150			1	238206	2025-05-27	2025-05-30	615	SI+,SUB
Pentachlorophenol	wp	ND	0.0444	0.00004	430.000200	ug/L	1	"	2025-05-27	2025-05-30	"	SUB
2,4-D	wp	ND	0.054	0.00005	390.000200	ug/L	1	"	2025-05-27	2025-05-30	"	SUB
Silvex (2,4,5-TP)	wp	ND	0.0423	0.00004	220.000200	ug/L	1	"	2025-05-27	2025-05-30	"	*+,SUB
Dinoseb	wp	ND	0.0344	0.00003	430.000200	ug/L	1	"	2025-05-27	2025-05-31	"	*1,SUB
Hexachlorophene	wp	ND	0.81	0.00080	08 0.00500	ug/L	1	"	2025-05-27	2025-05-30	"	SUB
Dicamba	wp	ND	0.0424	0.00004	230.000200	ug/L	1	"	2025-05-27	2025-05-30	"	*+,SUB
Dalapon	wp	ND	0.0477	0.00004	760.000200	ug/L	1	"	2025-05-27	2025-05-30	"	SUB

Organochlorine Pesticides in Water

Eurofins Dallas

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Surrogate: Tetrachloro-m-xylene		53	%	18-126			1	238461	2025-05-28	2025-05-29	EPA 608.3	SUB
Surrogate: DCB Decachlorobiphenyl (S	urr)	74	%	15-136			1	"	2025-05-28	2025-05-29	"	SUB
Endosulfan sulfate	wp	ND	0.005	559 0.00559	0.0500	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
4,4'-DDT	wp	ND	0.002	25 0.00250	0.0200	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Aldrin	wp	ND	0.001	25 0.00125	0.0100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
beta-BHC	wp	ND	0.001	25 0.00125	0.0100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
delta-BHC	wp	ND	0.002	25 0.00250	0.0200	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Endrin aldehyde	wp	ND	0.005	592 0.00592	0.0500	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
gamma-BHC (Lindane)	wp	ND	0.003	344 0.00344	0.0100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
4,4'-DDD	wp	ND	0.002	25 0.00250	0.0200	ug/L	1	"	2025-05-28	2025-05-29	"	SUB

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Effluent TC (2520003-04)

Organochlorine Pesticides in Water

Eurofins Dallas

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Dieldrin	wp	ND	0.00062	250.000625	0.00500	ug/L	1	238461	2025-05-28	2025-05-29	EPA 608.3	SUB
Toxaphene	wp	ND	0.078	0.0780	0.200	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Endosulfan II	wp	ND	0.00125	5 0.00125	0.0100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Heptachlor	wp	ND	0.00169	0.00169	0.00500	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Endrin	wp	ND	0.0025	0.00250	0.0200	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
alpha-BHC	wp	0.00903	0.00062	250.000625	5 0.00500	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Heptachlor epoxide	wp	ND	0.00125	5 0.00125	0.0100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Chlordane	wp	ND	0.025	0.0250	0.200	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
4,4'-DDE	wp	ND	0.00125	5 0.00125	0.0100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Endosulfan I	wp	ND	0.00125	5 0.00125	0.0100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Mirex	wp	ND	0.02	0.000020	00.0000200	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Dicofol	wp	ND	0.5	0.000500	0.000500	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
Methoxychlor	wp	ND	0.0125	0.000012	20.000100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB

Polychlorinated Biphenyls (PCBs) (GC)

Eurofins Dallas

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Surrogate: Tetrachloro-m-xylene		60 %	6	18-126			1	"	2025-05-28	2025-05-29	"	SUB
Surrogate: DCB Decachlorobiphenyl (Su	rr)	85 %	6	15-136			1	"	2025-05-28	2025-05-29	"	SUB
Polychlorinated biphenyls, Total	km	ND	0.039	0.0390	0.100	ug/L	1	"	2025-05-28	2025-05-29	II	SUB
PCB-1260	km	ND	0.039	0.0390	0.100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
PCB-1254	km	ND	0.039	0.0390	0.100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
PCB-1248	km	ND	0.044	3 0.0443	0.100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
PCB-1232	km	ND	0.044	3 0.0443	0.100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
PCB-1221	km	ND	0.044	3 0.0443	0.100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
PCB-1016	km	ND	0.044	3 0.0443	0.100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB
PCB-1242	km	ND	0.044	3 0.0443	0.100	ug/L	1	"	2025-05-28	2025-05-29	"	SUB

Semivolatile Organic Compounds (GC/MS)

Eurofins Dallas

Analyte	Analyst Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Surrogate: 2-Fluorophenol (Surr)	0 9	%	28-114			1	240475	2025-06-05	2025-06-05	EPA 625.1	S1-,SUB
Surrogate: 2-Fluorobiphenyl (Surr)	0 9	%	29-112			1	"	2025-06-05	2025-06-05	"	S1-,SUB
Surrogate: Phenol-d5 (Surr)	0 9	%	8-424			1	"	2025-06-05	2025-06-05	"	S1-,SUB
Surrogate: Nitrobenzene-d5 (Surr)	0 9	%	15-314			1	"	2025-06-05	2025-06-05	"	S1-,SUB
Surrogate: 2,4,6-Tribromophenol (Surr)	0 9	%	31-132			1	"	2025-06-05	2025-06-05	"	S1-,SUB
Surrogate: p-Terphenyl-d14 (Surr)	0 9	%	20-141			1	"	2025-06-05	2025-06-05	"	S1-,SUB

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Effluent TC (2520003-04)

Semivolatile Organic Compounds (GC/MS) TICs

Eurofins Dallas

Prep Analyte Analyst Result SRL MDL MRL Units Batch Prepared Analyzed Method Notes Ratio 2,3,7,8-TCDD TIC 01 lpl ND 10 ug/L 1 240475 2025-06-05 2025-06-05 625.1 TICs SUB

Semivolatile Organic Compounds (GC-MS/MS)

Eurofins Dallas

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Surrogate: p-Terphenyl-d14 (Surr)		58 :	%	47-130			1	238065	2025-05-28	2025-05-30	EPA 625.1	SUB
Surrogate: Phenol-d5 (Surr)		18 9	%	8-124			1	"	2025-05-28	2025-05-30	"	SUB
Surrogate: 2-Fluorophenol (Surr)		27 :	%	19-120			1	"	2025-05-28	2025-05-30	"	SUB
Surrogate: 2-Fluorobiphenyl		67	%	43-130			1	"	2025-05-28	2025-05-30	"	SUB
Surrogate: 2-Fluorobiphenyl (Surr)		67	%	43-130			1	"	2025-05-28	2025-05-30	"	SUB
Surrogate: Nitrobenzene-d5 (Surr)		82 :	%	37-133			1	"	2025-05-28	2025-05-30	"	SUB
Surrogate: 2,4,6-Tribromophenol (Surr)		94	%	35-130			1	"	2025-05-28	2025-05-30	"	SUB
Total Cresols	lpl	ND	0.128			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Nitrobenzene	lpl	ND	0.073	7		ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Di-n-octyl phthalate	lpl	ND	1.43			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Disulfoton	lpl	ND	0.203	0.203	0.571	ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Hexachlorobutadiene	lpl	ND	0.103			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Hexachlorocyclopentadiene	lpl	ND	0.219)		ug/L	1	"	2025-05-28	2025-05-30	"	SUB
N-Nitrosodimethylamine	lpl	ND	0.1			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Demeton, Total	lpl	ND	0.016	8 0.0168	0.0571	ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Hexachloroethane	lpl	ND	0.102			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Indeno[1,2,3-cd]pyrene	lpl	ND	0.1			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
N-Nitrosodi-n-butylamine	lpl	ND	0.516			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
N-Nitrosodi-n-propylamine	lpl	ND	0.119			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
N-Nitrosodiphenylamine	lpl	ND	0.145			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Pentachlorobenzene	lpl	ND	0.266			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Isophorone	lpl	ND	0.107			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Acenaphthene	lpl	ND	0.108			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2,4,6-Trichlorophenol	lpl	ND	0.231			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2-Chloronaphthalene	lpl	ND	0.379)		ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2-Chlorophenol	lpl	ND	0.075	7		ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2-Methylphenol	lpl	ND	0.105			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2-Nitrophenol	lpl	ND	0.136	i		ug/L	1	"	2025-05-28	2025-05-30	"	SUB
3 & 4 Methylphenol	lpl	ND	0.139)		ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Butyl benzyl phthalate	lpl	ND	1.43			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
4-Nonylphenol	lpl	ND	1.92			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
1,2-Diphenylhydrazine	lpl	ND	0.287			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Acenaphthylene	lpl	ND	0.099	8		ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Anthracene	lpl	ND	0.093	9		ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Benzo[g,h,i]perylene	lpl	ND	0.034	-6		ug/L	1	"	2025-05-28	2025-05-30	"	SUB

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Effluent TC (2520003-04)

Semivolatile Organic Compounds (GC-MS/MS)

Eurofins Dallas

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Pentachlorophenol	lpl	ND	0.199			ug/L	1	238065	2025-05-28	2025-05-30	EPA 625.1	SUB
Bis(2-chloroethoxy)methane	lpl	ND	0.0976			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Di-n-butyl phthalate	lpl	ND	1.43			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Bis(2-ethylhexyl) phthalate	lpl	ND	1.43			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
4-Nitrophenol	lpl	ND	0.44			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
4-Chlorophenyl phenyl ether	lpl	ND	0.131			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2,4-Dimethylphenol	lpl	ND	0.192			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2,4-Dichlorophenol	lpl	ND	0.14			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
1,2,4,5-Tetrachlorobenzene	lpl	ND	0.0959			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2,4-Dinitrotoluene	lpl	ND	0.205			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2,6-Dinitrotoluene	lpl	ND	0.116			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
3,3'-Dichlorobenzidine	lpl	ND	0.183			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
4,6-Dinitro-2-methylphenol	lpl	ND	1			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2,4,5-Trichlorophenol	lpl	ND	0.143			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
4-Chloro-3-methylphenol	lpl	ND	0.104			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2,2'-oxybis[1-chloropropane	lpl	ND	0.128			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
1											_	
Azobenzene	lpl	ND	0.104			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Benzidine	lpl	ND	0.447			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Benzo[a]anthracene	lpl	ND	0.0822			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Benzo[a]pyrene	lpl	ND	0.0701			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Benzo[b]fluoranthene	lpl	ND	0.0665			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
1,2,4-Trichlorobenzene	lpl	ND	0.0767			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Bis(2-chloroethyl)ether	lpl	ND	0.215			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
4-Bromophenyl phenyl ether	lpl	ND	0.1			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Phenol	lpl	ND	1.14			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Dimethyl phthalate	lpl	ND	1.43			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Diethyl phthalate	lpl	ND	1.43			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
2,4-Dinitrophenol	lpl	ND	0.311			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Pyridine	lpl	ND	1.44			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Benzo[k]fluoranthene	lpl	ND	0.0473			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Pyrene	lpl	ND	0.085			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Chlorpyrifos	lpl	ND	0.0159	0.0159	0.0571	ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Phenanthrene	lpl	ND	0.134			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
N-Nitrosodiethylamine	lpl	ND	0.539			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Naphthalene	lpl	ND	0.0946			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Methyl parathion	lpl	ND	0.32	0.319	0.571	ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Malathion	lpl	ND	0.015	0.0150	0.0571	ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Hexachlorobenzene	lpl	ND	0.0976			ug/L	1	"	2025-05-28	2025-05-30	"	SUB
Guthion	lpl	ND	0.0162	0.0162	0.0571	ug/L	1	"	2025-05-28	2025-05-30	"	*-,SUB

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Semivolatile Organic Co	ompounds (GC	C-MS/N	MS)									
Eurofins Dallas												
Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Fluorene	lpl	ND	0.095			ug/L	1	238065	2025-05-28	2025-05-30	EPA 625.1	SUE
Fluoranthene	lpl	ND	0.0884			ug/L	1	"	2025-05-28	2025-05-30	"	SUE
Ethyl Parathion	lpl	ND	0.0503	0.0502	0.114	ug/L	1	"	2025-05-28	2025-05-30	"	SUE
Diazinon	lpl	ND	0.0149	0.0148	0.114	ug/L	1	"	2025-05-28	2025-05-30	"	SUE
Dibenz(a,h)anthracene	lpl	ND	0.051			ug/L	1	"	2025-05-28	2025-05-30	"	SUE
Chrysene	lpl	ND	0.0817			ug/L	1	"	2025-05-28	2025-05-30	"	SUE
Bisphenol-A	lpl	ND	0.432			ug/L	1	"	2025-05-28	2025-05-30	"	SUI
Pesticides by 1657												
SPL												
Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Guthion	kap	ND	0.0498			ug/L	1	1178710	2025-05-28	2025-05-30	EPA 1657	SUI
Chlorpyrifos	kap	ND	0.0498			ug/L	1	"	2025-05-28	2025-05-30	"	SUI
Demeton	kap	ND	0.0498			ug/L	1	"	2025-05-28	2025-05-30	"	SUI
Diazinon	kap	ND	0.0498			ug/L	1	"	2025-05-28	2025-05-30	"	SUI
Malathion	kap	ND	0.0498			ug/L	1	"	2025-05-28	2025-05-30	"	SUE
Parathion, ethyl	kap	ND	0.0498			ug/L	1	"	2025-05-28	2025-05-30	"	SUE
Parathion, methyl	kap	ND	0.0498			ug/L	1	"	2025-05-28	2025-05-30	"	SUE
·		v Stano	dard Me	thods								
Conventional Chemistry	Parameters b	y Stand	dard Me	thods								
Effluent TC (2520003-04RE Conventional Chemistry North Texas Municipal V Analyte	Parameters b		dard Me	thods	MRL	Units	Prep	Batch	Prepared	Analyzed	Method	Notes
Conventional Chemistry North Texas Municipal V	Parameters b Water District				MRL 500	Units ug/L	Prep Ratio 1	Batch 2514209	Prepared 2025-05-22	Analyzed 2025-05-22	Method SM 2540D	Notes
Conventional Chemistry North Texas Municipal V Analyte Total Suspended Solids	Parameters b Water District Analyst cjp	Result	SRL	MDL			Ratio		•	•		Notes
Conventional Chemistry North Texas Municipal V Analyte Total Suspended Solids Effluent Equipment Blank (Parameters b Water District Analyst cjp (2520003-05)	Result	SRL	MDL			Ratio		•	•		Notes
Conventional Chemistry North Texas Municipal V Analyte Total Suspended Solids Effluent Equipment Blank (Total Mercury by EPA 24	Parameters b Water District Analyst cjp (2520003-05)	Result	SRL	MDL			Ratio		•	•		Notes
Conventional Chemistry North Texas Municipal V Analyte Total Suspended Solids Effluent Equipment Blank (Total Mercury by EPA 24	Parameters b Water District Analyst cjp (2520003-05)	Result 2500	SRL	MDL			Ratio 1		•	•		Notes
Conventional Chemistry North Texas Municipal V Analyte Total Suspended Solids Effluent Equipment Blank (Total Mercury by EPA 24 North Texas Municipal V	Parameters b Water District Analyst cjp (2520003-05) 45.7 Water District	Result 2500	SRL 500	MDL 500	500	ug/L	Ratio 1	2514209	2025-05-22	2025-05-22	SM 2540D	
Conventional Chemistry North Texas Municipal V Analyte Total Suspended Solids Effluent Equipment Blank (Total Mercury by EPA 24 North Texas Municipal V Analyte Mercury	Parameters b Water District Analyst cjp (2520003-05) 45.7 Water District Analyst	Result 2500	SRL 500	MDL 500	500 MRL	ug/L Units	Ratio 1 Prep Ratio	2514209 Batch	2025-05-22 Prepared	2025-05-22 Analyzed	SM 2540D Method	
Conventional Chemistry North Texas Municipal V Analyte Total Suspended Solids Effluent Equipment Blank (Total Mercury by EPA 24 North Texas Municipal V Analyte Mercury Effluent G (2520003-06) Coliform by Quantitray	Parameters b Water District Analyst cjp (2520003-05) 45.7 Water District Analyst ran	Result 2500	SRL 500	MDL 500	500 MRL	ug/L Units	Ratio 1 Prep Ratio	2514209 Batch	2025-05-22 Prepared	2025-05-22 Analyzed	SM 2540D Method	
Conventional Chemistry North Texas Municipal V Analyte Total Suspended Solids Effluent Equipment Blank (Total Mercury by EPA 24 North Texas Municipal V Analyte	Parameters b Water District Analyst cjp (2520003-05) 45.7 Water District Analyst ran	Result 2500 Result ND	SRL 500	MDL 500	500 MRL	ug/L Units	Ratio 1 Prep Ratio	2514209 Batch	2025-05-22 Prepared	2025-05-22 Analyzed	SM 2540D Method	

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

.....

ANALYTICAL REPORT FOR SAMPLES

Effluent G (2520003-06)												
Coliform by Quantitray North Texas Municipal Water	er District											
Analyte Escherichia Coliform	Analyst ama	Result 38.3	SRL 1.0	MDL 1.0	MRL 1.0	Units MPN/10 0mL	Prep Ratio 1	Batch 2514118	Prepared 250521 1551	Analyzed 250522 1652	Method MPN E-Coli	Notes
Chromium, Hexavalent Eurofins Dallas												
Analyte Chromium, hexavalent	Analyst cjh	Result ND	SRL 2.8	MDL 0.00280	MRL 0.0100	Units ug/L	Prep Ratio 1	Batch 28744	Prepared 2025-05-21	Analyzed 2025-05-21	Method SM 3500 CR B	Notes SUB
Chromium, Trivalent Eurofins Dallas												
Analyte Cr (III)	Analyst jdm	Result ND	SRL 2	MDL	MRL	Units ug/L	Prep Ratio 1	Batch 238228	Prepared 2025-05-27	Analyzed 2025-05-27	Method	Notes SUB
Cyanide, Amenable Eurofins Dallas												
Analyte Cyanide, Amenable	Analyst yg	Result ND	SRL 2.33	MDL	MRL	Units ug/L	Prep Ratio 1	Batch 238995	Prepared 2025-05-29	Analyzed 2025-05-29	Method SM 4500 CN G	Notes SUB
Cyanide, Non-amenable Eurofins Dallas												
Analyte Cyanide, Non-amenable	Analyst mlei	Result 3.38	SRL 2.33	MDL 2.33	MRL 5.00	Units ug/L	Prep Ratio	Batch 238610	Prepared 2025-05-28	Analyzed 2025-05-29	Method 4500 CN G NonAm	Notes Ja,SUB
Cyanide, Total, Acid Dissoc Eurofins Dallas	iable and	Thiocy	anate									
Analyte Cyanide, Total	Analyst bw	Result ND	SRL 1.98	MDL 0.00198	MRL 0.00500	Units ug/L	Prep Ratio 1	Batch 238527	Prepared 2025-05-27	Analyzed 2025-05-27	Method Kelada 01	Notes SUB
HEM and SGT-HEM Eurofins Dallas												
Analyte Oil & Grease (Hexane Extr)	Analyst tm	Result ND	SRL 1390	MDL 1.14	MRL 5.00	Units ug/L	Prep Ratio 1	Batch 28860	Prepared 2025-05-27	Analyzed 2025-05-27	Method 1664B	Notes SUB
Metals (ICP/MS) Total Reco	tm overable	ND	1280	1.05	5.00	ug/L	1	"	2025-05-27	2025-05-27	"	SUB
Eurofins Dallas												
Analyte Cr	Analyst dp	Result ND	SRL 0.89	MDL 0.000890	MRL 0 0.00400	Units ug/L	Prep Ratio 1	Batch 237918	Prepared 2025-05-23	Analyzed 2025-05-27	Method 200.8	Notes SUB

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Effluent G (2520003-06)

Phenolics, Total Recoverable

Eurofins Dallas

Prep Analyte SRL MDL MRL Analyst Result Units Batch Prepared Analyzed Method Notes Ratio Phenols, Total bw ND 5.8 5.80 10.0 ug/L 1 238157 2025-05-23 2025-05-23 420.4 SUB

Volatile Organic Compounds (GC/MS)

Eurofins Dallas

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Surrogate: Dibromofluoromethane (Surr))	111 9	6	75-131			1	237654	2025-05-23	2025-05-23	EPA 624.1	SUB
Surrogate: 4-Bromofluorobenzene (Surr)		103 %	6	74-124			1	"	2025-05-23	2025-05-23	"	SUB
Surrogate: 1,2-Dichloroethane-d4 (Surr)		115 %	6	63-144			1	"	2025-05-23	2025-05-23	"	SUB
Surrogate: Toluene-d8 (Surr)		98 9	6	80-120			1	"	2025-05-23	2025-05-23	"	SUB
Vinyl acetate	na	ND	2.14	2.14	20.0	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
1,1-Dichloroethane	na	ND	0.635	0.635	1.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
1,1-Dichloroethene	na	ND	0.738	0.738	1.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
1,3-Dichlorobenzene	na	ND	0.413	0.413	1.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Trihalomethanes, Total	na	ND	0.633	0.633	5.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
1,4-Dichlorobenzene	na	ND	0.449	0.449	1.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Carbon tetrachloride	na	ND	0.896	0.896	2.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
2-Butanone	na	ND	8.28	8.28	50.0	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Chloroethane	na	ND	1.98	1.98	10.0	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Acrolein	na	ND	11.1	11.1	50.0	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
1,2-Dibromoethane	na	ND	0.999	0.999	5.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Trichloroethene	na	ND	1.5	1.50	5.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
trans-1,3-Dichloropropene	na	ND	1.27	1.27	5.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Chlorobenzene	na	ND	0.455	0.455	1.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
trans-1,2-Dichloroethene	na	ND	0.368	0.368	1.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Toluene	na	ND	0.475	0.475	1.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Chloromethane	na	ND	2.04	2.04	10.0	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Chloroform	na	ND	0.464	0.464	1.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
2-Chloroethyl vinyl ether	na	ND	0.753	0.753	5.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Bromoform	na	ND	0.633	0.633	5.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
1,3-Dichloropropene, Total	na	ND	1.27	1.27	5.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Vinyl chloride	na	ND	0.428	0.428	2.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Tetrachloroethene	na	ND	0.655	0.655	1.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Methylene Chloride	na	ND	1.73	1.73	5.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Ethylbenzene	na	ND	0.385	0.385	1.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Dibromochloromethane	na	ND	0.547	0.547	5.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
cis-1,3-Dichloropropene	na	ND	1.07	1.07	5.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
1,1,2-Trichloroethane	na	ND	0.411	0.411	1.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Bromomethane	na	ND	1.42	1.42	5.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
1,2,4-Trichlorobenzene	na	ND	1.75	1.75	5.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Bromodichloromethane	na	ND	0.552	0.552	1.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Effluent G (2520003-06)

Volatile Organic Compounds (GC/MS)

Eurofins Dallas

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Benzene	na	ND	0.46	0.460	1.00	ug/L	1	237654	2025-05-23	2025-05-23	EPA 624.1	SUB
Acrylonitrile	na	ND	14.3	14.3	50.0	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
1,2-Dichloropropane	na	ND	0.556	0.556	5.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
1,1,2,2-Tetrachloroethane	na	ND	0.47	0.470	1.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
1,2-Dichloroethane	na	ND	0.372	0.372	1.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
1,2-Dichlorobenzene	na	ND	0.429	0.429	1.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
1,1,1-Trichloroethane	na	ND	0.585	0.585	5.00	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
m,p-Xylenes	na	ND	1.24	0.00124	0.00200	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Xylenes, Total	na	ND	1.24	0.00124	0.00200	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
o-Xylene	na	ND	0.502	0.000502	2 0.00100	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
MTBE	na	ND	1.39	0.00139	0.00500	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Epichlorohydrin	na	ND	7.52	0.00752	0.0500	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Bromochloromethane	na	ND	0.577	0.000577	7 0.00100	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Acetone	na	ND	3.07	0.00307	0.100	ug/L	1	"	2025-05-23	2025-05-23	"	SUB
Naphthalene	na	ND	1.35	0.00135	0.0100	ug/L	1	"	2025-05-23	2025-05-23	"	SUB

<u>Trip Blank (2520003-07)</u>

Total Mercury by EPA 245.7

North Texas Municipal Water District

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Mercury	ran	ND	0.00500	0.00180	0.00500	ug/L	1	2515426	2025-06-04	2025-06-04	EPA 245.7	

Effluent G (2520003-08)

Conventional Chemistry Parameters by Field Personnel

Analyte	Analyst	Result	SRL	MDL	MRL	Units	Prep Ratio	Batch	Prepared	Analyzed	Method	Notes
Conductance at 25°C	gu/gt	1085	2.000		2.000	uS/cm	1	2514114	2025-05-21	2025-05-21	SM 2510B	AccFD
Dissolved Oxygen	gu/gt	6.23				mg/L	1	"	250521 0840	250521 0840	SM 4500-O-G	AccFD
рН	gu/gt	7.09				pH/SU	1	"	250521 0840	250521 0840	SM 4500-H-B	AccFD
Temperature	gu/gt	24.3				$^{\circ}\mathrm{C}$	1	"	250521 0840	250521 0840	SM 2550B	AccFD

Panther Creek WWTP

Project: 30TAC307 Monitoring

1825 Little Ranch Road Frisco, TEXAS 75034 Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Total Metals by EPA 200.8 - Quality Control North Texas Municipal Water District

				Spike		Source		%REC		RPD		
Analyte	Result	AQL	Units	Level	MDL	Result	%REC	Limits	RPD	Limit	Notes	

Batch 2515323 -	[200.8 Digestion]	Digested down to	10mL at 95°C

Blank (2515323-BLK1)					Prepared: 20	025-06-03 Analyze	d: 2025-06-05			
Aluminum	ND	2.50	ug/L		1.25	•				
Arsenic	ND	0.500	"		0.250					
Barium	ND	1.00	"		0.500					
Cadmium	ND	1.00	"		0.500					
Copper	ND	1.00	"		0.500					
Lead	ND	0.500	"		0.250					
Nickel	ND	1.00	"		0.500					
Selenium	ND	1.00	"		0.500					
Silver	ND	0.500	"		0.250					
Zinc	ND	2.50	"		1.25					
Antimony	ND	2.50	"		1.25					CCB
Beryllium	ND	0.500	"		0.250					
Thallium	ND	0.500	"		0.250					
Chromium	ND	2.50	"		1.25					
LCS (2515323-BS1)					Prepared: 20	025-06-03 Analyze	d: 2025-06-05			
Aluminum	52.8	2.50	ug/L	50.0	1.25	106	85-115			
Arsenic	50.4	0.500	"	50.0	0.250	101	85-115			
Barium	51.7	1.00	"	50.0	0.500	103	85-115			
Cadmium	49.8	1.00	"	50.0	0.500	99.6	85-115			
Copper	53.6	1.00	"	50.0	0.500	107	85-115			
Lead	52.1	0.500	"	50.0	0.250	104	85-115			
Nickel	52.1	1.00	"	50.0	0.500	104	85-115			
Selenium	49.9	1.00	"	50.0	0.500	99.9	85-115			
Silver	50.0	0.500	"	50.0	0.250	100	85-115			
Zinc	52.1	2.50	"	50.0	1.25	104	85-115			
Antimony	46.6	2.50	"	50.0	1.25	93.2	85-115			CCB
Beryllium	52.4	0.500	"	50.0	0.250	105	85-115			
Thallium	51.7	0.500	"	50.0	0.250	103	85-115			
Chromium	50.8	2.50	"	50.0	1.25	102	85-115			
LCS Dup (2515323-BSD1)					Prepared: 20	025-06-03 Analyze	d: 2025-06-05			
Aluminum	52.1	2.50	ug/L	50.0	1.25	104	85-115	1.41	20	
Arsenic	51.2	0.500	"	50.0	0.250	102	85-115	1.41	20	
Barium	51.5	1.00	"	50.0	0.500	103	85-115	0.360	20	
Cadmium	49.9	1.00	"	50.0	0.500	99.9	85-115	0.207	20	
Copper	54.0	1.00	"	50.0	0.500	108	85-115	0.776	20	
Lead	52.2	0.500	"	50.0	0.250	104	85-115	0.109	20	
Nickel	53.0	1.00	"	50.0	0.500	106	85-115	1.61	20	
Selenium	51.2	1.00	"	50.0	0.500	102	85-115	2.53	20	
Silver	49.6	0.500	"	50.0	0.250	99.1	85-115	0.837	20	
Zinc		2.50	"				85-115	0.672	20	

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Total Metals by EPA 200.8 - Quality Control North Texas Municipal Water District

Analyte	Result	AQL	Units	Spike Level	MDL	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2515323 - [200.8 Digestion] Dig	ested down	to 10mL	at 95°C								
LCS Dup (2515323-BSD1)					Prepared:	2025-06-03	Analyzed: 2	2025-06-05			
Antimony	48.6	2.50	ug/L	50.0	1.25		97.3	85-115	4.35	20	CCE
Beryllium	53.8	0.500	"	50.0	0.250		108	85-115	2.65	20	
Thallium	51.6	0.500	"	50.0	0.250		103	85-115	0.194	20	
Chromium	51.7	2.50	"	50.0	1.25		103	85-115	1.72	20	
Matrix Spike (2515323-MS1)		Sourc	e: 2523018-02		Prepared:	2025-06-03	Analyzed: 2	2025-06-05			
Aluminum	147	2.50	ug/L	50.0	1.25	95.2	104	70-130			
Arsenic	58.9	0.500	"	50.0	0.250	4.32	109	70-130			
Barium	100	1.00	"	50.0	0.500	51.9	97.1	70-130			
Cadmium	51.7	1.00	"	50.0	0.500	ND	103	70-130			
Copper	51.9	1.00	"	50.0	0.500	1.56	101	70-130			
Lead	47.3	0.500	"	50.0	0.250	0.412	93.7	70-130			
Nickel	58.0	1.00	"	50.0	0.500	7.75	101	70-130			
Selenium	56.6	1.00	"	50.0	0.500	1.05	111	70-130			
Silver	46.9	0.500	"	50.0	0.250	ND	93.9	70-130			
Zinc	57.9	2.50	"	50.0	1.25	5.08	106	70-130			
Antimony	47.1	2.50	"	50.0	1.25	1.86	90.5	70-130			CCB
Beryllium	56.7	0.500	"	50.0	0.250	0.281	113	70-130			
Thallium	47.4	0.500	"	50.0	0.250	ND	94.8	70-130			
Chromium	51.1	2.50	"	50.0	1.25	ND	102	70-130			
Matrix Spike (2515323-MS2)		Sourc	e: 2523018-03		Prepared:	2025-06-03	Analyzed: 2	2025-06-05			
Arsenic	54.8	0.500	ug/L	50.0	0.250	2.20	105	70-130			
Barium	97.2	1.00	"	50.0	0.500	49.3	95.7	70-130			
Cadmium	50.8	1.00	"	50.0	0.500	ND	102	70-130			
Copper	53.2	1.00	"	50.0	0.500	1.49	104	70-130			
Lead	45.5	0.500	"	50.0	0.250	ND	91.0	70-130			
Nickel	58.8	1.00	"	50.0	0.500	5.02	108	70-130			
Selenium	53.9	1.00	"	50.0	0.500	0.851	106	70-130			
Silver	42.4	0.500	"	50.0	0.250	ND	84.8	70-130			
Zinc	57.4	2.50	"	50.0	1.25	2.83	109	70-130			
Beryllium	62.8	0.500	"	50.0	0.250	ND	126	70-130			
Thallium	45.8	0.500	"	50.0	0.250	ND	91.7	70-130			
Chromium	56.0	2.50	"	50.0	1.25	ND	112	70-130			
Matrix Spike Dup (2515323-MSD1)		Sourc	e: 2523018-02		Prepared:	2025-06-03	Analvzed: 2	2025-06-05			
Aluminum	147	2.50	ug/L	50.0	1.25	95.2	104	70-130	0.0132	20	
Arsenic	61.3	0.500	"	50.0	0.250	4.32	114	70-130	4.00	20	
Barium	99.5	1.00	"	50.0	0.500	51.9	95.1	70-130	0.975	20	
Cadmium	52.0	1.00	"	50.0	0.500	ND	104	70-130	0.591	20	
Copper	54.8	1.00	,,	50.0	0.500	1.56	106	70-130	5.29	20	
Lead	47.2	0.500	"	50.0	0.250	0.412	93.6	70-130	0.0566	20	

Panther Creek WWTP 1825 Little Ranch Road

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

Frisco, TEXAS 75034

ANALYTICAL REPORT FOR SAMPLES

Total Metals by EPA 200.8 - Quality Control North Texas Municipal Water District

Analyte	Result	AQL	Units	Spike Level	MDL	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2515323 - [200.8 Digestion] Dig	ested down	to 10mL	at 95°C								
Matrix Spike Dup (2515323-MSD1)		Sourc	e: 2523018-02		Prepared:	2025-06-03	Analyzed: 2	2025-06-05			
Nickel	60.9	1.00	ug/L	50.0	0.500	7.75	106	70-130	4.77	20	
Selenium	58.5	1.00	"	50.0	0.500	1.05	115	70-130	3.39	20	
Silver	43.1	0.500	"	50.0	0.250	ND	86.1	70-130	8.61	20	
Zinc	60.4	2.50	"	50.0	1.25	5.08	111	70-130	4.09	20	
Antimony	47.3	2.50	"	50.0	1.25	1.86	90.8	70-130	0.305	20	CCE
Beryllium	58.2	0.500	"	50.0	0.250	0.281	116	70-130	2.58	20	
Thallium	47.4	0.500	"	50.0	0.250	ND	94.8	70-130	0.0104	20	
Chromium	53.5	2.50	"	50.0	1.25	ND	107	70-130	4.51	20	
Matrix Spike Dup (2515323-MSD2)		Sourc	ee: 2523018-03		Prepared:	2025-06-03	Analyzed: 2	2025-06-05			
Arsenic	55.0	0.500	ug/L	50.0	0.250	2.20	106	70-130	0.344	20	
Barium	98.2	1.00	"	50.0	0.500	49.3	97.7	70-130	1.01	20	
Cadmium	50.9	1.00	"	50.0	0.500	ND	102	70-130	0.299	20	
Copper	51.9	1.00	"	50.0	0.500	1.49	101	70-130	2.49	20	
Lead	46.0	0.500	"	50.0	0.250	ND	92.0	70-130	1.09	20	
Nickel	58.1	1.00	"	50.0	0.500	5.02	106	70-130	1.19	20	
Selenium	53.7	1.00	"	50.0	0.500	0.851	106	70-130	0.459	20	
Silver	37.9	0.500	"	50.0	0.250	ND	75.8	70-130	11.3	20	
Zinc	56.4	2.50	"	50.0	1.25	2.83	107	70-130	1.66	20	
Beryllium	63.0	0.500	"	50.0	0.250	ND	126	70-130	0.210	20	
Thallium	46.2	0.500	"	50.0	0.250	ND	92.4	70-130	0.757	20	
Chromium	55.9	2.50	"	50.0	1.25	ND	112	70-130	0.133	20	
Batch 2515628 - [200.8 Digestion] Dig	ested down	to 10mL	at 95°C								
Blank (2515628-BLK1)					Prepared:	2025-06-06	Analyzed: 2	2025-06-09			
Aluminum	ND	2.50	ug/L		1.25						
LCS (2515628-BS1)					Prepared:	2025-06-06	Analyzed: 2	2025-06-09			
Aluminum	48.5	2.50	ug/L	50.0	1.25		97.0	85-115			
LCS Dup (2515628-BSD1)					Prepared:	2025-06-06	Analyzed: 2	2025-06-09			
Aluminum	48.5	2.50	ug/L	50.0	1.25		96.9	85-115	0.0679	20	
Matrix Spike (2515628-MS2)		Sourc	e: 2523001-04		Prepared:	2025-06-06	Analyzed: 2	2025-06-09			
Aluminum	153	2.50	ug/L	50.0	1.25	103	99.6	70-130			
Matrix Spike (2515628-MS3)		Sourc	e: 2523001-01F	RE1	Prepared:	2025-06-06	Analyzed: 2	2025-06-09			
Aluminum	1330	25.0	ug/L	500	12.5	754	116	70-130			
Matrix Spike Dup (2515628-MSD2)		Sourc	e: 2523001-04		Prepared:	2025-06-06	Analyzed: 2	2025-06-09			
Aluminum	148	2.50	ug/L	50.0	1.25	103	90.0	70-130	3.18	20	
Matrix Spike Dup (2515628-MSD3)		Sourc	e: 2523001-01F	RE1	Prepared:	2025-06-06	Analyzed: 2	2025-06-09			
Aluminum	1280	25.0	ug/L	500	12.5	754	105	70-130	4.01	20	

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL DEPODT FOR CAMPLES

ANALYTICAL REPORT FOR SAMPLES Total Mercury by EPA 245.7 - Quality Control North Texas Municipal Water District

Analyte	Result	AQL	Units	Spike Level	MDL	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
ı imiyo	Acsult	11QL	Units	Level	MDL	Result	/UNEC	Limits	M D	Limit	110103
Batch 2515426 - [245.7 Digestion] 245.7	Digestion 7	1									
Blank (2515426-BLK1)					Prepared &	& Analyzed:	2025-06-04	ļ			
Mercury	ND	0.00500	ug/L		0.00180						
MRL Check (2515426-MRL1)					Prepared &	& Analyzed:	2025-06-04	ŀ			
Mercury	0.00540	0.00500	ug/L	0.00500	0.00180		108	50-150			
Matrix Spike (2515426-MS1)		Sourc	ee: 2520003-02		Prepared &	& Analyzed:	2025-06-04	ļ			
Mercury	0.0111	0.00500	ug/L	0.0100	0.00180	ND	111	63-111			
Matrix Spike (2515426-MS2)		Sourc	e: 2522001-04		Prepared &	& Analyzed:	2025-06-04	ļ			
Mercury	0.00977	0.00500	ug/L	0.0100	0.00180	ND	97.7	63-111			
Matrix Spike Dup (2515426-MSD1)		Sourc	e: 2520003-02		Prepared &	& Analyzed:	2025-06-04	,			
Mercury	0.0116	0.00500	ug/L	0.0100		ND	116	63-111	4.42	18	Y-01
Matrix Spike Dup (2515426-MSD2)		Sourc	ee: 2522001-04		Prepared &	& Analyzed:	2025-06-04	l.			
Mercury	0.0100	0.00500	ug/L	0.0100	•	ND	100	63-111	2.58	18	
	. 10	71 • 4	D.		EDAM		O 114	C 4 1	ı		
Conve	ntionai C	nemist	ry Paramet	ters by	y EPA M	ietnoas -	Quanty	Control	l		
		North	n Texas Mu	nicipa	ıl Water	District					
				Spike		Source		%REC		RPD	
Analyte	Result	AQL	Units	Level	MDL	Result	%REC	Limits	RPD	Limit	Notes
Batch 2514121 - [350.1 NH3 w/o Distill	ation 350.	.1 NH3 w	ithout Distilla	ation							
Blank (2514121-BLK1)	•				Prepared &	& Analyzed:	2025-05-22	!			
Ammonia as N	ND	100	ug/L		50.0	•					
LCS (2514121-BS1)					Prepared &	& Analyzed:	2025-05-22	!			
Ammonia as N	1950	100	ug/L	2000	50.0		97.7	90-110			
LCS Dup (2514121-BSD1)					Prepared &	& Analyzed:	2025-05-22	!			
Ammonia as N	2010	100	ug/L	2000	50.0		101	90-110	2.97	10	
LOQ Check Standard (2514121-MRL1)					Prepared &	& Analyzed:	2025-05-22				
Ammonia as N	102	100	ug/L	100	50.0	z i maryzea.	102	70-130			
Matrix Spike (2514121-MS1)		Sauma	ee: 2521128-01		Propored 1	& Analyzed:	2025 05 22				
Ammonia as N	70100	2000	ug/L	40000	1000	29500	101	90-110			
		~	-				2025 05 22				
Matrix Spike (2514121-MS2) Ammonia as N	71200	2000	ee: 2521130-01 ug/L	40000	1000	& Analyzed: 30100	103	90-110			
	/1200		-	40000							
Matrix Spike Dup (2514121-MSD1)			e: 2521128-01			& Analyzed:					
Ammonia as N	70600	2000	ug/L	40000	1000	29500	103	90-110	0.711	10	
Matrix Spike Dup (2514121-MSD2)		Sourc	e: 2521130-01		Prepared &	& Analyzed:	2025-05-22	•			
Ammonia as N	70100	2000	ug/L	40000	1000	30100	100	90-110	1.53	10	

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Conventional Chemistry Parameters by EPA Methods - Quality Control North Texas Municipal Water District

Analyte	Result	AQL	Units	Spike Level	MDL	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2514232 - [365.1 PO4 Digestion] 3	365.3 PO4	Digestio	n								
Blank (2514232-BLK1)					Prepared	& Analyzed:	2025-05-23	3			
Total Phosphate as P	ND	20.0	ug/L		10.0						
LCS (2514232-BS1)					Prepared	& Analyzed:	2025-05-23	3			
Total Phosphate as P	104	20.0	ug/L	100	10.0		104	90-110			
LCS Dup (2514232-BSD1)					Prepared	& Analyzed:	2025-05-23	3			
Total Phosphate as P	102	20.0	ug/L	100	10.0	•	102	90-110	1.94	10	
Matrix Spike (2514232-MS1)		Sourc	e: 2521169-02		Prepared	& Analyzed:	2025-05-23	3			
Total Phosphate as P	663	66.7	ug/L	333	33.3	340	97.0	90-110			
Matrix Spike (2514232-MS2)		Sourc	e: 2521172-01		Prepared	& Analyzed:	2025-05-23	3			
Total Phosphate as P	7050	500	ug/L	2500	250	4720	93.0	90-110			
Matrix Spike Dup (2514232-MSD1)		Sourc	e: 2521169-02		Prepared	& Analyzed:	2025-05-23	3			
Total Phosphate as P	670	66.7	ug/L	333	33.3	340	99.0	90-110	1.00	10	
Matrix Spike Dup (2514232-MSD2)		Source	e: 2521172-01		Prepared	& Analyzed:	2025-05-23	2			
Total Phosphate as P	7280	500	ug/L	2500	250	4720	102	90-110	3.14	10	
Reference (2514232-SRM1)					Dranarad	& Analyzed:	2025 05 23	2			
Total Phosphate as P	1920	500	ug/L	1820	250	& Allalyzeu.	106	80-119			
Batch 2515308 - [351.2 TKN Digestion]	351.2 TKI	N Digesti	ion								
Blank (2515308-BLK1)		•			Prepared	& Analyzed:	2025-06-04	1			
Total Kjeldal Nitrogen	ND	200	ug/L		100	•					
LCS (2515308-BS1)					Prepared	& Analyzed:	2025-06-04	1			
Total Kjeldal Nitrogen	2040	200	ug/L	2000	100		102	90-110			
LCS Dup (2515308-BSD1)					Prepared	& Analyzed:	2025-06-04	1			
		200	77			oo i marj zoa.			2.03	10	
Total Kjeldal Nitrogen	2000	200	ug/L	2000	100		100	90-110			
	2000	200	ug/L	2000		& Analyzed					
	258	200	ug/L ug/L	2000		& Analyzed:					
LOQ Check Standard (2515308-MRL1) Total Kjeldal Nitrogen					Prepared 100		2025-06-04 129	70-130			
LOQ Check Standard (2515308-MRL1) Total Kjeldal Nitrogen MRL Check (2515308-MRL2)	258	200	ug/L	200	Prepared 100 Prepared	& Analyzed:	2025-06-04 129	70-130			
LOQ Check Standard (2515308-MRL1) Total Kjeldal Nitrogen MRL Check (2515308-MRL2) Total Kjeldal Nitrogen		200	ug/L		Prepared 100 Prepared 100	& Analyzed:	2025-06-04 129 2025-06-04 93.5	70-130 4 70-130			
LOQ Check Standard (2515308-MRL1) Total Kjeldal Nitrogen MRL Check (2515308-MRL2) Total Kjeldal Nitrogen Matrix Spike (2515308-MS1)	258	200 200 Source	ug/L ug/L	200	Prepared 100 Prepared 100 Prepared Prepared 100	& Analyzed:	2025-06-04 129 2025-06-04 93.5 2025-06-04	70-130 4 70-130 4			
LOQ Check Standard (2515308-MRL1) Total Kjeldal Nitrogen MRL Check (2515308-MRL2) Total Kjeldal Nitrogen Matrix Spike (2515308-MS1) Total Kjeldal Nitrogen	258	200 200 Sourc 200	ug/L ug/L ee: 2520004-01 ug/L	200	Prepared 100 Prepared 100 Prepared 100	& Analyzed: & Analyzed: 817	2025-06-04 129 2025-06-04 93.5 2025-06-04 102	70-130 4 70-130 4 90-110			
LOQ Check Standard (2515308-MRL1) Total Kjeldal Nitrogen MRL Check (2515308-MRL2) Total Kjeldal Nitrogen Matrix Spike (2515308-MS1) Total Kjeldal Nitrogen Matrix Spike (2515308-MS2)	258 187 2860	200 200 Source 200 Source	ug/L ug/L ee: 2520004-01 ug/L ee: 2520004-09	200	Prepared 100 Prepared 100 Prepared 100 Prepared 100 Prepared 100	& Analyzed: & Analyzed: 817 & Analyzed:	2025-06-04 129 2025-06-04 93.5 2025-06-04 102	70-130 4 70-130 4 90-110			
LOQ Check Standard (2515308-MRL1) Total Kjeldal Nitrogen MRL Check (2515308-MRL2) Total Kjeldal Nitrogen Matrix Spike (2515308-MS1) Total Kjeldal Nitrogen	258	200 200 Sourc 200	ug/L ug/L ee: 2520004-01 ug/L	200	Prepared 100 Prepared 100 Prepared 100	& Analyzed: & Analyzed: 817	2025-06-04 129 2025-06-04 93.5 2025-06-04 102	70-130 4 70-130 4 90-110			
LOQ Check Standard (2515308-MRL1) Total Kjeldal Nitrogen MRL Check (2515308-MRL2) Total Kjeldal Nitrogen Matrix Spike (2515308-MS1) Total Kjeldal Nitrogen Matrix Spike (2515308-MS2)	258 187 2860	200 Source 200 Source 200	ug/L ug/L ee: 2520004-01 ug/L ee: 2520004-09	200	Prepared 100 Prepared 100 Prepared 100 Prepared 100 Prepared	& Analyzed: & Analyzed: 817 & Analyzed:	2025-06-04 129 2025-06-04 93.5 2025-06-04 102	70-130 4 70-130 4 90-110 4	0.490	10	

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Conventional Chemistry Parameters by EPA Methods - Quality Control North Texas Municipal Water District

Result AQL Units Spike Result AQL Units Spike Result Start Start Start Start Tamis RPD Limit Notes			North	i Texas Mu	nicipa	ıl Water	· District					
National Part Par	Analyte	Result	AQL	Units		MDL		%REC		RPD		Notes
Martin Kapike Dup (2515308-MSD2)	Batch 2515308 - [351.2 TKN Digestion]	351.2 TK	N Digesti	on								
Prepared & Analyzed: 2025-06-04 Prepared & Analyzed: 2025-06-04 Prepared & Analyzed: 2025-06-04 Prepared & Analyzed: 2025-05-21 Prepared & Analyzed: 2025-05-22 Prepared & Analyzed: 2025-05-21 Prepared & Analyzed: 2025-05-22 Prep						Prepared	& Analyzed:	2025-06-0	4			
Total Kijedali Niirogen	Total Kjeldal Nitrogen	2820	200	ug/L	2000	100	714	105	90-110	2.51	10	
Table Kijeklal Nitrogen Table	Reference (2515308-SRM1)					Prepared	& Analyzed:	2025-06-04	4			
North Texas Municipal Water District Nature Spike Source Spike Source Spike Source Spike Spike Source Spike		1610	200	ug/L	1610		20111111111111111111111					
Mailyte Result AQL Units Spike Revult Source WaREC Limits RPD Limit Note	Conventi	onal Ch	emistry	Parameter	s by S	tandaro	d Method	s - Qual	ity Cont	rol		
Result AqU Units Level MDL Result %REC Limits RPD Limit Notes			North	Texas Mu	nicipa	ıl Water	District					
Batch 2514116 - Solids Preparation Solids Solids					Spike		Source		%REC		RPD	
Prepared & Analyzed: 2025-05-21 Total Suspended Solids	Analyte	Result	AQL	Units	Level	MDL	Result	%REC	Limits	RPD	Limit	Notes
Total Suspended Solids	Batch 2514116 - [Solids Preparation]											
Prepared & Analyzed: 2025-05-21 Total Suspended Solids	Blank (2514116-BLK1)					Prepared	& Analyzed:	2025-05-2	1			
Total Suspended Solids	Total Suspended Solids	ND	5000	ug/L		5000						
Total Suspended Solids ND 500 ug/L 500 Solids Prepared & Analyzed: 2025-05-21 Solids	Blank (2514116-BLK2)					Prepared	& Analyzed:	2025-05-2	1			
Total Suspended Solids 37000 5000 ug/L 40000 5000 92.5 80-120		ND	500	ug/L								
Total Suspended Solids 37000 5000 ug/L 40000 5000 92.5 80-120	LCS (2514116-RS1)					Prenared	& Analyzed:	2025-05-2	1			
Total Suspended Solids 3800 5000 ug/L 40000 5000 95.0 80-120		37000	5000	ug/L	40000	•	<u> </u>					
Total Suspended Solids 3800 5000 ug/L 40000 5000 95.0 80-120	I CS (2514116-RS2)					Prepared	& Analyzed:	2025-05-2	1			
Total Suspended Solids		38000	5000	ug/L	40000	•	æ i maryzea.					
Total Suspended Solids	Dunkasta (2514116 DUD1)		Cours	o. 2521141 40		Duamanad	P- Amalagada	2025 05 2	1			
Duplicate (2514116-DUP2) Source: 2521141-42 Prepared & Analyzed: 2025-05-21		9430000						2023-03-2	l	1.07	10	
Total Suspended Solids	•			_					_			
Blank (2514204 - [GenChem Demand]		10100000					•	2025-05-2	l	1 31	10	
Prepared: 2025-05-22 Analyzed: 2025-05-27	Total Suspended Solids	10100000	107000	ug/L		16/000	10200000			1.51	10	
Carbonaceous Biochemical Oxygen Demand	Batch 2514204 - [GenChem Demand]											
LCS (2514204-BS1) Prepared: 2025-05-22 Analyzed: 2025-05-27 Carbonaceous Biochemical Oxygen Demand 211000 100000 ug/L 198000 5000 106 84-115 MBN, QDA 0xygen Demand Duplicate (2514204-DUP1) Source: 2521165-02 Prepared: 2025-05-22 Analyzed: 2025-05-27 Carbonaceous Biochemical Oxygen Demand 920 2200 ug/L 100 1970 72.3 15 MBN, QDA 0xygen Demand Batch 2514209 - [Solids Preparation] Prepared & Analyzed: 2025-05-22	Blank (2514204-BLK1)					Prepared:	2025-05-22	Analyzed: 2	2025-05-27			
Carbonaceous Biochemical Oxygen Demand 211000 100000 ug/L 198000 5000 106 84-115 MBN, QDA Duplicate (2514204-DUP1) Source: 2521165-02 Prepared: 2025-05-22 Analyzed: 2025-05-27 Carbonaceous Biochemical Oxygen Demand 920 2200 ug/L 100 1970 72.3 15 MBN, QDA Batch 2514209 - [Solids Preparation] Prepared & Analyzed: 2025-05-22		ND	2000	ug/L		100						MBN, QDA
Oxygen Demand Prepared: 2025-05-22 Analyzed: 2025-05-27 Carbonaceous Biochemical Oxygen Demand 920 2200 ug/L 100 1970 72.3 15 MBN, QDA Batch 2514209 - [Solids Preparation] Prepared & Analyzed: 2025-05-22	LCS (2514204-BS1)					Prepared:	2025-05-22	Analyzed:	2025-05-27			
Carbonaceous Biochemical 920 2200 ug/L 100 1970 72.3 15 MBN, QDA Oxygen Demand Batch 2514209 - [Solids Preparation] Blank (2514209-BLK1) Prepared & Analyzed: 2025-05-22		211000	100000	ug/L	198000	5000		106	84-115			MBN, QDA
Oxygen Demand Batch 2514209 - [Solids Preparation] Blank (2514209-BLK1) Prepared & Analyzed: 2025-05-22	Duplicate (2514204-DUP1)		Sourc	e: 252 <u>1</u> 165-02		Prepared:	2025-05-22	Analyzed:	2025-05-27			
Blank (2514209-BLK1) Prepared & Analyzed: 2025-05-22		920	2200	ug/L		100	1970			72.3	15	MBN, QDA
	Batch 2514209 - [Solids Preparation]											
Total Suspended Solids ND 500 ug/L 500	Blank (2514209-BLK1)					Prepared	& Analyzed:	2025-05-22	2			
		ND	500	ug/L		500						

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

Conventional Chemistry Parameters by Standard Methods - Quality Control

North Texas Municipal Water District

Analyte	Result	AQL	Units	Spike	MDL	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Maryte	Result	AQL	Units	Level	MDL	Result	70KEC	Limits	KI D	Lillit	TVOICE
Batch 2514209 - [Solids Preparation]											
Blank (2514209-BLK2)					Prepared	& Analyzed:	2025-05-22	2			
Total Suspended Solids	ND	500	ug/L		500						
Blank (2514209-BLK3)					Prepared	& Analyzed:	2025-05-22	2			
Total Suspended Solids	ND	500	ug/L		500						
LCS (2514209-BS1)					Prepared	& Analyzed:	2025-05-2	,			
Total Suspended Solids	34000	5000	ug/L	40000	5000	& Anaryzeu.	85.0	80-120			
•			C				2025.05.05				
LCS (2514209-BS2)	42000	5000	110/I	10000		& Analyzed:					
Total Suspended Solids	42000	5000	ug/L	40000	5000		105	80-120			
LCS (2514209-BS3)					Prepared	& Analyzed:	2025-05-22	2			
Total Suspended Solids	43000	5000	ug/L	40000	5000		108	80-120			
Duplicate (2514209-DUP1)		Sour	ce: 2521171-11		Prepared	& Analyzed:	2025-05-22	2			
Total Suspended Solids	8040000	100000	ug/L		100000	7940000			1.25	10	
Duplicate (2514209-DUP2)		Sour	ce: 2521165-12		Prepared	& Analyzed:	2025-05-23)			
Total Suspended Solids	4380000		ug/L		100000	4380000	2020 00 2	_	0.00	10	
D. P. 4 (2514200 DUD2)		6	2521175 20		D 1	0 4 1 1	2025 05 20	,			
Duplicate (2514209-DUP3) Total Suspended Solids	4680000		ug/L		100000	& Analyzed: 4720000	2023-03-22	2	0.851	10	
•	.000000	100000	ug 2						0.051	10	
LOQ Check Standard (2514209-MRL1)	2000	500	/7			& Analyzed:					
Total Suspended Solids	2800	500	ug/L	2500	500		112	70-130			
Batch 2514222 - [Solids Preparation]											
Blank (2514222-BLK1)					Prepared:	2025-05-22	Analyzed: 2	2025-05-23			
Total Dissolved Solids	ND	10000	ug/L		5000						
I CS (2514222 DS1)					Dranaradi	2025 05 22	Analyzadi '	2025 05 22			
LCS (2514222-BS1) Total Dissolved Solids	242000	10000	ug/L	240000		2025-05-22	101	80-120			
John Busser, ed Solids	2.2000	10000	46 Z	240000							
Duplicate (2514222-DUP1)	1010000		ce: 2520003-04			2025-05-22	Analyzed: 2	2025-05-23	0.000		
Total Dissolved Solids	1010000	10000	ug/L		5000	1010000			0.298	10	
LOQ Check Standard (2514222-MRL1)					Prepared:	2025-05-22	Analyzed: 2	2025-05-23			
Total Dissolved Solids	8000	10000	ug/L	9600	5000		83.3	70-130			
Batch 2514404 - [Solids Preparation]											
Blank (2514404-BLK1)					Prepared	& Analyzed:	2025-05-2	5			
Total Suspended Solids	ND	500	ug/L		500						
Blank (2514404-BLK2)					Prepared	& Analyzed:	2025-05-25	5			
Total Suspended Solids	ND	500	ug/L		500	-,					
I CC (2514404 DC1)					D 1	0 A1 1	2025 05 2	-			
LCS (2514404-BS1)					Prepared	& Analyzed:	2025-05-23)			

Panther Creek WWTP 1825 Little Ranch Road Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

Frisco, TEXAS 75034

ANALYTICAL REPORT FOR SAMPLES

Conventional Chemistry Parameters by Standard Methods - Quality Control North Texas Municipal Water District

Analyte	P coult	AOI	I I.e. !+-	Spike	MDI	Source	%REC	%REC	RPD	RPD Limit	Notes
Analyte	Result	AQL	Units	Level	MDL	Result	70KEC	Limits	KLD	Limit	Notes
Batch 2514404 - [Solids Preparation]											
LCS (2514404-BS1)					Prepared	& Analyzed:	2025-05-25				
Total Suspended Solids	37000	5000	ug/L	40000	5000		92.5	80-120			
LCS (2514404-BS2)					Prepared	& Analyzed:	2025-05-25				
Total Suspended Solids	43000	5000	ug/L	40000	5000		108	80-120			
Duplicate (2514404-DUP1)		Sour	ce: 2521141-30F	RE1	Prepared	& Analyzed:	2025-05-25				
Total Suspended Solids	3460000	100000	ug/L		100000	3380000			2.34	10	
Duplicate (2514404-DUP2)		Sour	ce: 2522009-01		Prepared	& Analyzed:	2025-05-25				
Total Suspended Solids	255000	5000	ug/L		5000	251000			1.58	10	
D 4 L 2514516 DW 4 O P4 D	4. 1337		u n								
Batch 2514716 - [Water Quality Prepar	ation] wa	iter Qua	nty Preparatio	n							
Blank (2514716-BLK1)	ND	20000	, vo/I		•	& Analyzed:	2025-05-27				
Total Alkalinity	ND	20000	ug/L		10000						
LCS (2514716-BS1)					Prepared	& Analyzed:					
Fotal Alkalinity	51000	20000	ug/L	50000	10000		102	90-110			
LCS Dup (2514716-BSD1)					Prepared	& Analyzed:	2025-05-27				
Total Alkalinity	49000	20000	ug/L	50000	10000		98.0	90-110	4.00	10	
Duplicate (2514716-DUP1)		Sour	ce: 2521001-01		Prepared	& Analyzed:	2025-05-27				
Total Alkalinity	175000	20000	ug/L		10000	173000			1.15	10	
Duplicate (2514716-DUP2)		Sour	rce: 2521002-03		Prepared	& Analyzed:	2025-05-27				
Total Alkalinity	154000	20000	ug/L		10000	150000			2.63	10	
LOQ Check Standard (2514716-MRL1)					Prepared	& Analyzed:	2025-05-27				
Total Alkalinity	25000	20000	ug/L	20000	10000		125	70-130			
		Colifo	rm by Quan	titray	- Quali	ity Contro	ol				
			th Texas Mu	•		•					
								0/DEG		DDD	
Analyte	Result	AQL	Units	Spike Level	MDL	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2514118 - [IDEXX Colilert Quan	titray] ID	EXX Co	lilert Quantitr	ay							
Blank (2514118-BLK1)					Prepared	: 2025-05-21	Analyzed: 2	025-05-22			
Diank (2314110-DERT)	ND	1.0	MPN/100mL		1.0						
Escherichia Coliform					D 1	. 2025 05 21	Analyzadi 2	025-05-22			
		Sour	rce: 2520003-06		Prepared	: 2025-05-21	Allalyzcu. 2	023-03-22			

Panther Creek WWTP

Project: 30TAC307 Monitoring

1825 Little Ranch Road Frisco, TEXAS 75034

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

				C '1		C		0/ DEC		מממ	
Analyte	Result	AQL	Units	Spike Level	MDL	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2514105 - [300.0 Anions] 300.0 A	Anions										
Blank (2514105-BLK1)					Prepared of	& Analyzed:	2025-05-21				
Nitrate as N	ND	20	ug/L		10						
Fluoride	ND	20	"		10						
LCS (2514105-BS1)					Prepared of	& Analyzed:	2025-05-21				
Nitrate as N	989	20	ug/L	1000	10		98.9	90-110			
Fluoride	1000	20	"	1000	10		100	90-110			
LCS Dup (2514105-BSD1)					Prepared of	& Analyzed:	2025-05-21				
Nitrate as N	997	20	ug/L	1000	10		99.7	90-110	0.806	10	
Fluoride	985	20	"	1000	10		98.5	90-110	1.51	10	
MRL Check (2514105-MRL1)					Prepared of	& Analyzed:	2025-05-21				
Nitrate as N	22	20	ug/L	20.0	10		110	70-130			
Fluoride	22	20	"	20.0	10		110	70-130			
Matrix Spike (2514105-MS1)		Sourc	e: 2521050-01	1RE1	Prepared of	& Analyzed:	2025-05-21				
Nitrate as N	1040	20	ug/L	1000	10	30	101	80-120			
Fluoride	1130	20	"	1000	10	94	103	80-120			
Matrix Spike (2514105-MS2)		Sourc	ee: 2521070-07	7RE1	Prepared of	& Analyzed:	2025-05-21				
Nitrate as N	1740	20	ug/L	1000	10	672	107	80-120			
Fluoride	1470	20	"	1000	10	440	103	80-120			
Matrix Spike Dup (2514105-MSD1)		Sourc	e: 2521050-01	1RE1	Prepared of	& Analyzed:	2025-05-21				
Nitrate as N	1030	20	ug/L	1000	10	30	99.6	80-120	0.970	10	
Fluoride	1120	20	"	1000	10	94	103	80-120	0.622	10	
Matrix Spike Dup (2514105-MSD2)		Sourc	e: 2521070-07	7RE1	Prepared of	& Analyzed:	2025-05-21				
Nitrate as N	1730	20	ug/L	1000	10	672	106	80-120	0.980	10	
Fluoride	1450	20	"	1000	10	440	101	80-120	1.16	10	
Batch 2514216 - [300.0 Anions] 300.0 A	Anions										
Blank (2514216-BLK1)					Prepared of	& Analyzed:	2025-05-22				
Sulfate	ND	1000	ug/L		500						
Chloride	ND	1000	"		500						
LCS (2514216-BS1)					Prepared	& Analyzed:	2025-05-22				
Chloride	30300	1000	ug/L	30000	500		101	90-110			
Sulfate	30000	1000	"	30000	500		100	90-110			
LCS Dup (2514216-BSD1)					Prepared	& Analyzed:	2025-05-22				
Chloride	30800	1000	ug/L	30000	500		103	90-110	1.52	10	_
Sulfate	30500	1000	"	30000	500		102	90-110	1.73	10	
MRL Check (2514216-MRL2)					Prepared	& Analyzed:	2025-05-22				
Chloride	4950	1000	ug/L	5000	500		99.0	70-130			
Sulfate	4680	1000	"	5000	500		93.6	70-130			
Matrix Spike (2514216-MS1)		Sourc	e: 2519002-40	6	Prepared of	& Analyzed:	2025-05-22				
·~p (20410		-	1	-,					

Panther Creek WWTP 1825 Little Ranch Road

Project: 30TAC307 Monitoring

Project Number: 30TAC307+Table III+ Permit Renewal

Project Manager: Kristen Suprobo

Reported: 2025-06-18 14:29

Frisco, TEXAS 75034

ANALYTICAL REPORT FOR SAMPLES

Anions by EPA 300 Series - Quality Control North Texas Municipal Water District

				Spike		Source		%REC		RPD	
Analyte	Result	AQL	Units	Level	MDL	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (2514216-MS1)		Sour	rce: 2519002-46		Prepared	& Analyzed: 2	2025-05-2	2							
Sulfate	53700 1000		ug/L	30000	500	25700	93.0	80-120							
Chloride	38600	38600 1000		" 30000		10000	95.1	80-120							
Matrix Spike (2514216-MS2)		Sour	rce: 2520018-051	RE1	Prepared	& Analyzed: 2	2025-05-2	2							
Sulfate	176000	2000	ug/L	60000	1000	116000	99.7	80-120							
Chloride	141000	2000 "		60000	1000	82300	98.6	80-120							
Matrix Spike Dup (2514216-MSD1)		Sour	rce: 2519002-46		Prepared & Analyzed: 2025-05-22										
Chloride	39300	1000	ug/L	30000	500	10000	97.4	80-120	1.73	10					
Sulfate	54800	1000	"	30000	500	25700	96.7	80-120	2.05	10					
Matrix Spike Dup (2514216-MSD2)		Sour	rce: 2520018-051	RE1	Prepared	& Analyzed: 2	2025-05-2	2							
Matrix Spike Dup (2314210-MSD2)															
Chloride Chloride	140000	2000	ug/L	60000	1000	82300	96.1	80-120	1.09	10					

Panther Creek WWTP Project: 30TAC307 Monitoring

1825 Little Ranch Road Project Number: 30TAC307+Table III+ Permit Renewal Frisco, TEXAS 75034

Reported: Project Manager: Kristen Suprobo 2025-06-18 14:29

ANALYTICAL REPORT FOR SAMPLES

General Notes and Definitions

DET Analyte DETECTED

Sample results reported on a dry weight basis dry

MDL Method Detection Limit MRL Method Reporting Limit

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

SRL Sample Reporting Limit

"Conductance at 25°C" is also known as Specific Conductance Note:

Report Notes and Definitions

LCS and/or LCSD is outside acceptance limits, low biased.

LCS and/or LCSD is outside acceptance limits, high biased.

*1 LCS/LCSD RPD exceeds control limits.

*3 ISTD response or retention time outside acceptable limits.

AccFD Field Data, not performed by laboratory, presented per client request.

CCB is >1/2 IMRL and <IMRL **CCBJ CCVA** CCV acceptable at this range.

Estimated value. The analyte was positively identified but the quantitation is estimation. This estimated report value is between

the MDL and MRL (PQL).

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. Ja

MBN Method Blank between 0.2 and 1.0 mg/L in associated batch method blank for BOD/CBOD.

The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported. p

Quality control criteria is acceptable with duplicate RPD failure due to reported value equal or below PQL at maximum sample QDA

aliquot method volume.

S1-Surrogate recovery exceeds control limits, low biased.

S1+Surrogate recovery exceeds control limits, high biased.

QA/QC for subcontracted analysis appears on hardcopy of subcontract laboratory report. **SUB**

Y-01 Lims does not subtract the source value when it is below the MRL, if it had this would be in range

<u>≒Panther Cre</u> ਯੂ1825 Panthe		ıd		•											/ork Order Number: 2520003 roject: 30TAC307+Table III+Permit Renewal										Page	1_	of _3											
[™] Frisco <u>, TX 7</u> :						NFLU	JEN1	T COL	LECT	ו מסוי ל	ΓEAN L'304	4 E	FFL	UEN	T CO	LLE	CTIC	ON TE	EAM								_				ble III	+Peru	it Re	newal	ļ	_ E	Muent R	
Contact: KR	ISTEN SUPR	OBO		Comp. Sx. Beg/End Date	Time	5-20	~ <u>}-</u> C	9:50	Am/	5-71-7	ر ک	" 5	-20)- <u>25</u>	9:0	45H	m/5	-21-	255	?;4	54	m		Ke	viev	ved	ву:	_	U.	بد							Chlori	ine
				Sample Collector Nar	ne(s):¿	2004	Use	cy/0	-eys	on		1	? ?&?	e lie	24/	16	con	Sen	Tou	UN S	-	d																mg
								' /	Tors	وجود	ril.			_	_' `	_	÷			_	_		,		ᅩ	_				ــــــــــــــــــــــــــــــــــــــ			_	—				7
								[5]	Z X	//	1	gCv.			_/	•	//	, co	/,	Ζ.	/>	/	/	/ ,	Ζ.	/5	/	/	/	/,	/_/	//	/ , /	//	/a/	///	//	•
								5%.	//		/c.	./	//		/ ,	/、	din	/		83/Y	87	1	$\sqrt{\ }$	/.	3/2	37	1	s/:	35/	/5	<u> </u>	/38	\$ ⁷ .	/3	%	//		
			. Sx.						STATE OF THE PARTY	35/25		γ,	CALL FALLICE	Y.	/3		Stopped &	September 1	Medient S	Š	/ 6) e\/		365/	A Person	15.03/			Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	388 (30 m)	ADRE A	. is/.	Zigge Roger Se	49		x/3		, N	
		1	Nu			8	<u> </u>) 381/.	33/2	o Nite	*/ _{\$\$}	L	S)	₹ ⁷ /		elf bic.	23.00	Ser C	×20)		~			of stales	\d.	Y.S.			3 'is)					737		zije!	Ψ	
Date	Time	Type	100	Sample Name	<u> </u>	<u> </u>	<u>/\s</u>	<u> Z</u>	Z.W.	50.	٧Z	ď	<u>C.</u>)	\ 4%	1/200	\angle	<u>o`/</u>	Chy/	<i>E</i> / q	<i>\$</i> /\$	8 S	9 C	97 s	37/2	<u> </u>	<u> </u>	80/	<u> </u>	5/\	80,5	8 ₀ / '	<u> Y</u>	<u> </u>		<u> </u>	<u>/</u>		
5-20-25							X	X	X		\bot					4	X	X	X	X	X	Body S	X	X	L	↓_	11	1		1			(3)	<u> </u>	(14)	Temper	*	
5-18-52	11:39	Grab	02	Influent Equipment Blank		į	X			:	1_					\bot	_	┷		$\perp \perp$		ļ	<u> </u>	<u> </u>	<u> </u>	↓_	1	1	<u> </u>	 	<u> </u>	<u> </u>		<u> </u>			ooler In	
5-21-25		Grab	03	Influent G		ì				:	X		X	X	X			<u> </u>		1			_		_	<u> </u>	1	1			(1)	(1)		<u> </u>	<u> </u>	C Ter		
5-20-25				Effluent TC	X		X	X	<u> X</u>		4		_	- 1		-	X	X	X -	X	X	X	X	X	1	1		1	1	1	1		(3)		(14)		Cor.	ID Y/
5-19-25	11:46	Grab	05	Effluent Equipment Blank			X	:			4	_	_	1				-	ļ .				ļ	ļ	ļ	4_	1	 	 	<u> </u>	↓	↓		<u> </u>		13.8	5+0	1PY
5-21-45	10:00	Grab	06	Effluent G	ļ					! X	X		X	X	X	<u> </u>	<u> </u>		-	-		-	<u> </u>	_	_		<u> </u>	-	2	(1)	(1)	(1)	(3)	(1)		24.6	1.50	INY
5-15-25	5-15-25 11:57 Grab 07 Trip Blank	Imp Blank		i	X	:		:	+	ļ.							1	1 1	_		<u> </u>	<u> </u>	┡	+-	1	<u> </u>	 	-	 	-		<u> </u>		3 70.3	40.1 0	+H V		
						!		-				1 .	-+		 -	+ 1			<u>:</u>		١.			1		ĺ						48.8 5 265	3770	IN V				
			<u> </u>		-			+	-	-+			+- ,		-	+	<u>.</u>		<u>i </u>	<u> </u>	1	┨—	+	+	+	+	+	 	┼		\vdash	-) au >	09.40	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
	 	 	┼		-			-				÷					ſ					 	•	 	├	+-	+	-	+-	+-	+	-			1	0	-	7.0
ļ	1	<u> </u>	+								 -						 	-	:			<u> </u>			├	1	+	+	┼	+	 	┼		-		D		5\2
			+				i	L				-	-	7	<i></i>		-	++	+-;	<u> </u>				·	╁	 	+-	+	+	+	4	 	-	 		- 6	eservati ik/Adj.	D. A
	}	-	+					-			\div	-			4112 a		tract	coc					<u>. </u>		├-	 -	╁	+-	+	-	 	+		 -	_	-11 62	Auj.	2)// S
	ł	 	 									-			e Jul	ovori	iiaci	COC							╁	-	+-	+-	+	┼	+	┼			\vdash	pri Su Itan	ips:N <u>Z</u> 18 Adjus	יייונ <u>ק</u>
	+	 	┼─								<u> </u>	<u></u>	-1					:							\vdash	-	+-	+-	-		+	┼		 			o pH < 2	
		 	 	The state of the s						- :					,	·		-							┢╌	 	+	 	+-	†	┼			ب		Reage		-
	 	 	†								······································		- :			_									 	+	+	+	+	†	† 	1		\vdash	-		H _i ! ID) pH
		†	† -				Ī								-			<u>.</u>		-						+	+	+	+-	+-	+-	+-		\vdash	-		1	P
Mark Mores, and a country transfer configuration to the		1	1	erapharategypa (1964) - Y - yanta el erapena (1964) a de ropadamantido, aguarateg establisha a							_	i												į	\vdash	†	+	†						\Box			<u> </u>	-
THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.		T	1										Fiel	d D	ata		···								t		1	 			1			ı			1	
	 	1.	1		Sx.		Sa	mple	:	-	Chlo	orine	;	Con	ducti	ivity	,	DO	pl	Н	Т	ешр	eratu	re		t		1	 	1	1	T		\sqcap			1	
	İ	<u> </u>		THE RESERVE OF THE PROPERTY OF	Nu			lame				dual			uS/cu	-	1.6	ıg/L	SI		•		C		—	1		T^{-}	İ		1			\sqcap			<u> </u>	
5-21-25	08:40	Grab	1	. 108	X	C Ef	fluer	ıt G						10	85	<u> </u>	4	23	7.0	29	1	14.					İ		╁──	1	1	1		\Box			1	
		1	1	6-1708	5						************			- 4 <u>-</u>				· -				- 1			T-	T	T	T	İ	Ī	1	1				to	pH > 10	0
			1	5.1						***************************************																	Т									Reage	· 	*************
			1					-			,	and the sector	ork identification													İ				-							H _i ID	Hq C
			I	A STATE OF THE PROPERTY OF THE							****	*************															Т			1	-	T					1	
			1	AND THE PROPERTY OF THE PROPER																:											1						1	***************************************
																		:								-		Ī		-	İ						ı	
																																					ı	
																														1							1	
																										İ				-							1	
Relinquished	-	Date S.J.JS	Time 13	Received by:			Relin	rquish	ed by:			Da	ate T	ıme		Re	ceive	d by:								Reli	inqui	shed t	by:			Date		Time		Received	oy:	
Sarlle		<u> </u>									ш																											
Relinquished	by:	Date	Time		ry by	:		T		_	$\overline{}$		~~	Date						Tune		_					Rer	narkis	-NI-	HOUS	SE PA	TRAN	ELE	RS				
				My		1	νтмν	ND		5.	ال	1 6	J১						13	3,6) /						-		d	5	14	114	1、	ريم				
Legend:FC=F	low Compos	site, Obs.=Ob	serve	l. Cor.=Corrected																													4			C:36-29	93R:3E:	07/05/1

Eurofins Eaton Analytical South Bend

Phone: 574-233-4777 Fax: 574-233-8207

110 S. Hill Street Southbend, IN 46617

Chain of Custody Record

eurofins

Environment Testing America

Client Information	Sampler. Gary Use	· Court	a Taura		Lab PM Sylvia	/i: a Garz	za						ľ	Carrie	r Trac	king I	No(s):				COC No: 2520003	
Client Information Client Contact:	Phone: /	4 61.43	og rabbi-		E-Mail:							-	- 1	State	of Orig	jin:					Page:	/
Kelly Harden Company:	469-626-4610		PWSID:		syliva.	.garz	а@ец	ırofin	set.c	om											Page 2 of 3	W. Vie
North Texas Municipal Water District			r WOID.							Ar	alys	is I	Requ	ıes	ted						Job#: \$ 2	
Address: 201 E. Brown St.	Due Date Request	ted:																ï			Preservation Code A - HCL	M - Hexane
City: Wylie																					B - NaOH C - Zn Acetate	N - None O - AsNaO2 P - Na2O4S
State, Zip: Texas 75098	Compliance Proje	ct: A Yes	Δ No							ł	l		1	- 1			- 1				D - Nitric Acid E - NaHSO4	Q - Na2SO3
Phone: 469-626-4610	PO#:														624.1						F - MeOH G - Amchlor H - Ascorbic Acid	R - Na2S2O3 S - H2SO4 T - TSP Dodecahydrate
Email: kharden@ntmwd.com	WO #:			·											by EPA						i - Ice J - Di Water	U - Acetone V - MCAA W - pH 4-5
Project Name: PCX 30TAC307 + Table III + Permit Renewal	Project #:					strijele ((h.k.). Nejerge)	EPA 626.1												9	ALC: YES	K - EDTA L - EDA	Y - Trizma Z - other (specify)
Site:	SSOW#:		#			(Int)		A 608.3	9	1613	29	اء		_	hydrin	2			by 8016	100	Other:	
		Sample	Sample Type (C=comp,	Matri (W=wab S=solid C=waste/	r, (3)		BPA and BNA by	Pest/PCB by EPA	Herb by EPA 616	Dioxins by 613/1613	Pest by EPA 1667	Cr, Cr (III), Cr (VI)	Cn, Cn-A	Phenols by 420.1	MTBE/Epichlorohydrin/VOC	Pest by EPA 632	Dioxins by 625.1	Oil & Grease	Ethylene Glycol by	Total Number of		
Sample Identification	Sample Date	Time	G=grab)	87=Tissue, /			à	ů.	He	ă	9	5	ნ		E	å	ă	5	蓝	3	Special Ins	tructions/Note:
	5-20-25	642.04.4	* Preserva	I .					4												e e e e e e e e e e e e e e e e e e e	# (
25200C3-01 Influent TC	521-25	9:30:4m 9:30:4m	C	W		N	21	21	21	21	21					21	21			17		
2520003-03 Influent G	5-2+25	9:3544	G	w	<u>''</u>	N						11	1B	18	31	_				6		w
2520003-04 Effluent TC	5-20-25	9:45 AM 9:45 AM	С	w	ľ	N	21	21	21	21	21				-	21	21		31	17		
2520003-06 Effluent G	5-21-25	10:20 Am	G	, w	ŀ	N						11	1B	18	31			18		7		
												_		_								
						\perp						_		_		_	\dashv	_				
					\perp	\bot				_	\perp	4		\dashv	_	4	\dashv	-			· · · · · · · · · · · · · · · · · · ·	
					\dashv	_	\vdash		\dashv		4	\dashv	+	\perp		_	-	_				
					+	╀			\dashv	-	+	+	+	\dashv	\dashv	-						
					\dashv	╁				-1	+	\dashv	+	\dashv	\dashv	\dashv	-					
Peorible Herord Identification						+-		Diag		(1	<u> </u>					[al lamper than d	
Possible Hazard Identification ☐ Non-Hazard ☐ Flammable ☐ Skin Irritant ☐ Poiso	n B Unkno	own \square_R	adiological	,		Sa			To C				Dis					s ar	_		ed longer than 1 ve For	month) _ Months
Deliverable Requested: I, II, III, IV, Other (specify)						Sp	ecial I	Instru	uction	s/Q(C Rec	uire	ment	s:								
Empty Kit Relinquished by:		Date:			T	Γime:		/	7						Metho	of S	hipme	ent;				
Relinquished by: Law Oler	Date/Time: 5/21/25	(3)	05	Company NTMWD			Recei	ived/b	Th	m)	$\overline{\mathbb{C}}$	_				Date/	ime:	<i>21</i>	l a	15-13:05	Company NTMN
Relinquished by:	Date/Time:	<u> </u>	<u> </u>	Company			Rece	ive t b									Date/				y	Control 5/21/25
Relinquished by:	Date/Time:			Company			Rece	ived b	ıy:								Date/	ime:				Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No			···········	<u> </u>			Coole	er Ten	nperatu	ırə(s)	°C and	Oth	er Rer	narks	:							

Eurofins Eaton Analytical South Bend

110 S. Hill Street Southbend, IN 46617

Chain of Custody Record

Phone: 574-233-4777 Fax: 574-233-8207

Client Information	Sampler: Gary Usey/ Gra	yson Towns	end		.ab PM: Sylvia (a						ľ	arrier	rack	ing N	lo(s):			2	520003 PS		
Client Contact: Kelly Harden	Phone: 469-626-4610				E-Mail: syliva.g	garza	а@ец	ırofin	set.co	om			5	tate o	of Orig	in:					Page: Page 3 of 3		
Company: North Texas Municipal Water District			PWSID:	1-						Ar	alys	is F	Real	ıest	ed						ob #:		
Address: 201 E. Brown St.	Due Date Request	ed:									Ť		Ť				T				Preservation Cod	M - Hexane	÷
City: Wylie																				E	B - NaOH C - Zn Acetate	N - None O - AsNaO P - Na2O4	
State, Zip: Texas 75098	Compliance Projec	ct: A Yes	Δ No		-															E	D - Nitric Acid E - NaHSO4	Q - Na2SO R - Na2S20	3
Phone: 469-626-4610	PO#:				6										EPA 624.1					33 (F - MeOH G - Amchlor H - Ascorbic Acid	S - H2SO4	decahydrate
Email: <u>kharden@ntmwd.com</u>	WO #:				Sample (Nes.or No.										by EP					X	I - Ice J - DI Water K - EDTA	V - MCAA W - pH 4-5	
Project Name: PCX 30TAC307 + Table III + Permit Renewal	Project #:				le (We		EPA 625.1	ا نا	l						200				15		L - EDA	Y - Trizma Z - other (s	pecify)
Site:	SSOW#:				Samo		y EPA	A 608.3	2	613/1613	57	اء		_	hydri	,	_		by 80	8 C	Other:		
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matri (w=wate S=solid O=waste/ BT=Tissue, /	aid Filtered		BPA and BNA by	Pest/PCB by EPA	Herb by EPA 615	Dioxins by 613/	Pest by EPA 1657	Cr, Cr (III), Cr (VI)	Cn, Cn-A	Phenois by 420.1	MTBE/Epichlorohydrin/VOC by	Pest by EPA 632	Dioxins by 625.1	Oil & Grease	Ethylene Glycol by 8015	Total Number	Special In	structions	s/Note:
	> <	\mathcal{N}	Preserva	tion Coc	e: X	\otimes														$\!$			
2520003-01 Influent TC	5/20/25 - 5/21/25	0930-0930	С	W	N	1	21	21	21	21	21					21	21		31	17		 	
2520003-03 Influent G	5/21/25	0935	G	w	N	1						11	1B	1S	31					6			
2520003-04 Effluent TC	5/20/25 - 5/21/25	0945-0945	O	W	N	1	21	21	21	21	21					21	21		31	17			
2520003-06 Effluent G	5/21/25	1020	G	W	N	1						11	1B	18	31			1S		7			
																_							
						<u> </u>																	
						$oldsymbol{ol}}}}}}}}}}}}}}$									\perp	_						··· · · · ·	
						L						\perp		_		_							
						<u> </u>																	
Possible Hazard Identification ☐ Non-Hazard ☐ Flammable ☐ Skin Irritant ☐ Poiso	n B Unkno	own \square_R	adiological			Sai	\neg		rosal To C				be as					s are	_		d longer than 1 e For	month) Months	3
Deliverable Requested: I, II, III, IV, Other (specify)						Spe					C Red				<u>-</u> - ,								
Empty Kit Relinquished by:		Date:	***************************************		Т	ime:								ľ	Method	of S	hipme	ent:	•				
Relinquished by:	Date/Time:			Company NTMWD			Rece	eived b	y:			•				ľ	Date/1	ime:				Company Eurofins	
Relinquished by:	Date/Time:			Company			Rece	eived b	y:							Ī	Date/1	ime:				Company	
Relinquished by:	Date/Time:			Company			Rece	eived b	y;						······	Ī	Date/T	ime:				Company	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No							Cool	er Ten	nperati	ıre(s)°C an	d Oth	er Rei	narks									

12 13

14 15

16

ANALYTICAL REPORT

PREPARED FOR

Attn: Kelly Harden North Texas Municipal Water District PO BOX 2408 Wylie, Texas 75098

Generated 6/11/2025 1:27:50 PM

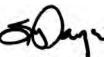
JOB DESCRIPTION

PCX 30TAC307 + Table III + Permit Renewal

JOB NUMBER

870-36460-1

Eurofins Dallas 9701 Harry Hines Blvd Dallas TX 75220


Eurofins Dallas

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

(832)544-2004

Authorized for release by Sylvia Garza, Project Manager Sylvia.Garza@et.eurofinsus.com Generated 6/11/2025 1:27:50 PM 9

3

5

6

4.4

40

13

14

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	6
Detection Summary	8
Client Sample Results	9
Surrogate Summary	19
QC Sample Results	22
QC Association Summary	40
Lab Chronicle	45
Certification Summary	47
Method Summary	48
Sample Summary	49
Subcontract Data	50
Chain of Custody	59
Receipt Checklists	62

__

Λ

5

6

8

9

11

12

14

15

Definitions/Glossary

Client: North Texas Municipal Water District Job ID: 870-36460-1

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Qualifier	Qualifier Description
*-	LCS and/or LCSD is outside acceptance limits, low biased.
*3	ISTD response or retention time outside acceptable limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
S1-	Surrogate recovery exceeds control limits, low biased.
U	Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA TICs

Qualifier	Qualifier Description
-----------	-----------------------

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier	Qualifier Description
*+	LCS and/or LCSD is outside acceptance limits, high biased.
*1	LCS/LCSD RPD exceeds control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
р	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.
HPLC/IC	
Qualifier	Qualifier Description

	•
U	Indicates the analyte was analyzed for but not detected.

Metals

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)

Eurofins Dallas

3

Page 4 of 63 6/11/2025

Definitions/Glossary

Client: North Texas Municipal Water District Job ID: 870-36460-1

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Too Numerous To Count

Glossary (Continued)

TNTC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Eurofins Dallas

Page 5 of 63 6/11/2025

Case Narrative

Client: North Texas Municipal Water District

Project: PCX 30TAC307 + Table III + Permit Renewal

Job ID: 870-36460-1 **Eurofins Dallas**

Job Narrative 870-36460-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/21/2025 4:12 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.5°C.

Subcontract Work

Method Ana Lab - 1657 Ogano PEST: This method was subcontracted to Ana-Lab Corporation. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

GC/MS VOA

Method 624.1: The following sample was diluted due to being cloudy and foaming: 25220003-03 Influent G (870-36460-1). Elevated reporting limits (RL) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 625.1: sample activated out of sample hold time. TIC ONLY-2,3,7,8-TCDD

Method 625.1: Samples are reported for TIC only, ran from QQQ extraction and no surrogates recoveries.

Method 625.1 QQQ: The laboratory is using 70 - 200% as interim acceptance criteria for recovery of Guthion, until in-house LCS limits are developed. Data is flagged and reported.

Method 625.1_QQQ: The continuing calibration verification (CCV) associated with batch 860-238438 recovered above the upper control limit for Guthion. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is:(CCV 860-238438/4).

Method 625.1 QQQ: The continuing calibration verification (CCV) associated with batch 860-238978 recovered above the upper control limit for Disulfoton, Methyl parathion and Ethyl Parathion. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is:(CCV 860-238978/4).

Method 625.1 QQQ: The laboratory control sample and the laboratory control sample duplicate (LCS/LCSD) for preparation batch 860-238065 and analytical batch 860-240233 recovered outside control limits for the following analyte: Demeton-S. Demeton-S. has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified.

Method 625.1 QQQ: The continuing calibration verification (CCV) associated with batch 860-240233 recovered above the upper control limit for 2,4,6-Tribromophenol (Surr). The associated sample is:(CCVIS 860-240233/2).

Method 625.1 QQQ: Internal standard (ISTD) Perylene-d12 for the following sample in analytical batch 860-240233 was outside acceptance criteria (biased low): (MB 860-238065/1-A). This ISTD does not correspond to any of the requested target compounds reported from this analytical batch; therefore, the data have been reported.

Method 625.1 QQQ: The continuing calibration verification (CCV) associated with batch 860-238978 recovered above the upper control limit for 2,4-Dinitrophenol, 4,6-Dinitro-2-methylphenol, Bisphenol-A, Hexachlorocyclopentadiene, and Pentachlorophenol.

Eurofins Dallas

Page 6 of 63 6/11/2025

Job ID: 870-36460-1

3

Case Narrative

Client: North Texas Municipal Water District

Project: PCX 30TAC307 + Table III + Permit Renewal

Job ID: 870-36460-1 (Continued)

Eurofins Dallas

Job ID: 870-36460-1

The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is:(CCVIS 860-238978/2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 615 MOD: The surrogate recovery for the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) associated with preparation batch 860-238206 and analytical batch 860-238779 was outside the upper control limits. (LCS 860-238206/2-A), (LCS 860-238206/4-A), (LCSD 860-238206/3-A) and (LCSD 860-238206/5-A)

Method 615 MOD: Surrogate recovery for the following samples were outside the upper control limit: 25220003-01 Influent TC (870-36460-3) and 25220003-04 Effluent TC (870-36460-4). This sample did not contain any target analytes; therefore, reextraction and/or re-analysis was not performed.

Method 615 MOD: The continuing calibration verification (CCV) associated with batch 860-238779 recovered above the upper control limit for 2,4-Dichlorophenylacetic acid. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is:(CCVIS 860-238779/2).

Method 615 MOD: The continuing calibration verification (CCV) associated with batch 860-238779 recovered above the upper control limit for 2,4-D, Dicamba, Pentachlorophenol and Silvex (2,4,5-TP). The samples associated with this CCV were nondetects for the affected analytes; therefore, the data have been reported. The associated sample is:(CCVIS 860-238779/2).

Method 615 MOD: The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 860-238206 and analytical batch 860-238779 recovered outside control limits for the following analytes: Dicamba and Silvex (2,4,5-TP). These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 615 MOD: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 860-238206 and analytical batch 860-238779 recovered outside control limits for the following analytes: Dinoseb.

Method 615 MOD: The surrogate recovery for the blank associated with preparation batch 860-238206 and analytical batch 860-238779 was outside the upper control limits. (MB 860-238206/1-A)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Pesticides

Method 608.3 Pest: The continuing calibration verification (CCV) associated with batch 860-238719 recovered above the upper control limit for Endrin. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is:(CCVIS 860-238719/45).

Method 608.3 Pest: The continuing calibration verification (CCV) associated with batch 860-238719 recovered above the upper control limit for Dicofol. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is:(CCV 860-238719/46).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Dallas

Page 7 of 63 6/11/2025

Detection Summary

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Job ID: 870-36460-1

Client Sample ID: 25220003-03 Influent G

Lab Sample ID: 870-36460-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	0.215		0.200	0.00613	mg/L	2	_	624.1	Total/NA
Chloroform	1.66	J	2.00	0.928	ug/L	2		624.1	Total/NA
Toluene	11.9		2.00	0.950	ug/L	2		624.1	Total/NA
Trihalomethanes, Total	1.66	J	10.0	1.27	ug/L	2		624.1	Total/NA
Cr	0.00173	J	0.00400	0.000890	mg/L	1		200.8	Total Recoverable
Phenols, Total	62.7		10.0	5.80	ug/L	1		420.4	Total/NA
Cyanide, Non-amenable	29.6		5.00	2.33	ug/L	1		4500 CN G NonAm	Total/NA
Chromium, hexavalent	0.0112		0.0100	0.00280	mg/L	1		SM 3500 CR B	Total/NA

Client Sample ID: 25220003-06 Effluent G

Lab Sample ID: 870-36460-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Cyanide, Non-amenable	3.38	J	5.00	2.33	ug/L	1	4500 CN G NonAm	Total/NA

Client Sample ID: 25220003-01 Influent TC

Lab Sample ID: 870-36460-3

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
3 & 4 Methylphenol	17.0	0.571	0.139	ug/L	1	_	625.1	Total/NA
Total Cresols	17.0	0.571	0.128	ug/L	1		625.1	Total/NA
Propylene glycol	6.42	5.00	1.84	mg/L	1		8015D	Total/NA
Carbaryl	0.631	0.500	0.185	ug/L	1		632	Total/NA

Client Sample ID: 25220003-04 Effluent TC

Lab Sample ID: 870-36460-4

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D I	Method	Prep Type
alpha-BHC	0.00903	0.00500	0.000625	ug/L	1	_ (608.3	Total/NA
Diuron	0.0520	0.00900	0.00514	ug/L	1	6	632	Total/NA

This Detection Summary does not include radiochemical test results.

3

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Lab Sample ID: 870-36460-1

Matrix: Water

Job ID: 870-36460-1

3

Client Sample ID: 25220003-03 Influent G

Date Collected: 05/21/25 09:35 Date Received: 05/21/25 16:12

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

101

109

Analyte	Volatile Organic Cor	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.215		0.200	0.00613			Tiopaieu	05/23/25 16:24	2
Acrolein	<22.2	U	100		ug/L			05/23/25 16:24	2
Acrylonitrile	<28.6		100		ug/L			05/23/25 16:24	2
Benzene	<0.919		2.00	0.919				05/23/25 16:24	2
Bromochloromethane	<0.00115		0.00200	0.00115	•			05/23/25 16:24	2
Bromodichloromethane	<1.10		2.00		ug/L			05/23/25 16:24	2
Bromoform	<1.27		10.0		ug/L			05/23/25 16:24	2
Bromomethane	<2.84		10.0		ug/L			05/23/25 16:24	2
2-Butanone	<16.6		100		ug/L			05/23/25 16:24	2
Carbon tetrachloride	<1.79		4.00		ug/L			05/23/25 16:24	2
Chlorobenzene	<0.910		2.00	0.910	-			05/23/25 16:24	2
Chloroethane	<3.97		20.0		ug/L			05/23/25 16:24	2
2-Chloroethyl vinyl ether	<1.51		10.0		ug/L			05/23/25 16:24	2
Chloroform	1.66		2.00	0.928	-			05/23/25 16:24	2
Chloromethane	<4.07		20.0	4.07	-			05/23/25 16:24	2
cis-1,3-Dichloropropene	<2.13		10.0		ug/L			05/23/25 16:24	2
Dibromochloromethane	<1.09		10.0		ug/L			05/23/25 16:24	2
1,2-Dibromoethane	<2.00		10.0		ug/L			05/23/25 16:24	2
1,2-Dichlorobenzene	<0.858	U	2.00	0.858				05/23/25 16:24	2
1,3-Dichlorobenzene	<0.826	U	2.00	0.826	-			05/23/25 16:24	2
1,4-Dichlorobenzene	<0.898	U	2.00	0.898	_			05/23/25 16:24	2
1,1-Dichloroethane	<1.27	U	2.00		ug/L			05/23/25 16:24	2
1,2-Dichloroethane	<0.744	U	2.00	0.744	_			05/23/25 16:24	2
1,1-Dichloroethene	<1.48	U	2.00		ug/L			05/23/25 16:24	2
1,2-Dichloropropane	<1.11	U	10.0		ug/L			05/23/25 16:24	2
1,3-Dichloropropene, Total	<2.53	U	10.0		ug/L			05/23/25 16:24	2
Epichlorohydrin	<0.0150	U	0.100	0.0150	mg/L			05/23/25 16:24	2
Ethylbenzene	<0.770	U	2.00	0.770	ug/L			05/23/25 16:24	2
Methylene Chloride	<3.45	U	10.0	3.45	ug/L			05/23/25 16:24	2
MTBE	<0.00278	U	0.0100	0.00278	mg/L			05/23/25 16:24	2
1,1,2,2-Tetrachloroethane	<0.940	U	2.00	0.940	ug/L			05/23/25 16:24	2
Tetrachloroethene	<1.31	U	2.00	1.31	ug/L			05/23/25 16:24	2
Toluene	11.9		2.00	0.950	ug/L			05/23/25 16:24	2
trans-1,2-Dichloroethene	<0.736	U	2.00	0.736	ug/L			05/23/25 16:24	2
trans-1,3-Dichloropropene	<2.53	U	10.0	2.53	ug/L			05/23/25 16:24	2
1,2,4-Trichlorobenzene	<3.51	U	10.0	3.51	ug/L			05/23/25 16:24	2
1,1,1-Trichloroethane	<1.17	U	10.0	1.17	ug/L			05/23/25 16:24	2
1,1,2-Trichloroethane	<0.822	U	2.00	0.822	ug/L			05/23/25 16:24	2
Trichloroethene	<3.00	U	10.0	3.00	ug/L			05/23/25 16:24	2
Trihalomethanes, Total	1.66	J	10.0	1.27	ug/L			05/23/25 16:24	2
Vinyl acetate	<4.28	U	40.0	4.28				05/23/25 16:24	2
Vinyl chloride	<0.856	U	4.00	0.856	ug/L			05/23/25 16:24	2
Naphthalene	<0.00271	U	0.0200	0.00271	mg/L			05/23/25 16:24	2
Xylenes, Total	<0.00248	U	0.00400	0.00248	mg/L			05/23/25 16:24	2
m,p-Xylenes	<0.00248	U	0.00400	0.00248	mg/L			05/23/25 16:24	2
o-Xylene	<0.00100	U	0.00200	0.00100	mg/L			05/23/25 16:24	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
			74 404				<u>-</u>	05/02/05 46:04	

74 - 124

75 - 131

Eurofins Dallas

2

05/23/25 16:24

05/23/25 16:24

Page 9 of 63 6/11/2025

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Lab Sample ID: 870-36460-1 Client Sample ID: 25220003-03 Influent G

Date Collected: 05/21/25 09:35 Date Received: 05/21/25 16:12

Matrix: Water

05/29/25 21:09

Job ID: 870-36460-1

Method: EPA 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

<2.33 U

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	114		63 - 144		05/23/25 16:24	2
l	Toluene-d8 (Surr)	102		80 - 120		05/23/25 16:24	2

Method: EPA 200.8 - Metals (ICP/MS) - Total Recoverable

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr	0.00173	J	0.00400	0.000890	mg/L		05/23/25 20:19	05/27/25 14:09	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenols, Total (EPA 420.4)	62.7		10.0	5.80	ug/L			05/23/25 21:20	1
Cyanide, Non-amenable (SM 4500 CN G NonAm)	29.6		5.00	2.33	ug/L		05/28/25 16:26	05/29/25 13:31	1
Cyanide, Total (EPA Kelada 01)	<0.00198	U	0.00500	0.00198	mg/L			05/27/25 22:37	1
Chromium, hexavalent (SM 3500 CR B)	0.0112		0.0100	0.00280	mg/L			05/21/25 18:20	1
Cr (III) (SM 3500 CR B)	<2.00	U	10.0	2.00	ug/L			05/27/25 21:56	1

5.00 Client Sample ID: 25220003-06 Effluent G Lab Sample ID: 870-36460-2

2.33 ug/L

Date Collected: 05/21/25 10:20 **Matrix: Water**

Cyanide, Amenable (SM 4500 CN G)

Method: EPA 624.1 - Volati Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<0.00307	U	0.100	0.00307	mg/L		-	05/23/25 16:04	1
Acrolein	<11.1	U	50.0	11.1	ug/L			05/23/25 16:04	1
Acrylonitrile	<14.3	U	50.0	14.3	ug/L			05/23/25 16:04	1
Benzene	<0.460	U	1.00	0.460	ug/L			05/23/25 16:04	1
Bromochloromethane	< 0.000577	U	0.00100	0.000577	mg/L			05/23/25 16:04	1
Bromodichloromethane	< 0.552	U	1.00	0.552	ug/L			05/23/25 16:04	1
Bromoform	< 0.633	U	5.00	0.633	ug/L			05/23/25 16:04	1
Bromomethane	<1.42	U	5.00	1.42	ug/L			05/23/25 16:04	1
2-Butanone	<8.28	U	50.0	8.28	ug/L			05/23/25 16:04	1
Carbon tetrachloride	<0.896	U	2.00	0.896	ug/L			05/23/25 16:04	1
Chlorobenzene	< 0.455	U	1.00	0.455	ug/L			05/23/25 16:04	1
Chloroethane	<1.98	U	10.0	1.98	ug/L			05/23/25 16:04	1
2-Chloroethyl vinyl ether	<0.753	U	5.00	0.753	ug/L			05/23/25 16:04	1
Chloroform	< 0.464	U	1.00	0.464	ug/L			05/23/25 16:04	1
Chloromethane	<2.04	U	10.0	2.04	ug/L			05/23/25 16:04	1
cis-1,3-Dichloropropene	<1.07	U	5.00	1.07	ug/L			05/23/25 16:04	1
Dibromochloromethane	< 0.547	U	5.00	0.547	ug/L			05/23/25 16:04	1
1,2-Dibromoethane	< 0.999	U	5.00	0.999	ug/L			05/23/25 16:04	1
1,2-Dichlorobenzene	< 0.429	U	1.00	0.429	ug/L			05/23/25 16:04	1
1,3-Dichlorobenzene	< 0.413	U	1.00	0.413	ug/L			05/23/25 16:04	1
1,4-Dichlorobenzene	< 0.449	U	1.00	0.449	ug/L			05/23/25 16:04	1
1,1-Dichloroethane	< 0.635	U	1.00	0.635	ug/L			05/23/25 16:04	1
1,2-Dichloroethane	< 0.372	U	1.00	0.372	ug/L			05/23/25 16:04	1
1,1-Dichloroethene	<0.738	U	1.00	0.738	ug/L			05/23/25 16:04	1
1,2-Dichloropropane	<0.556	U	5.00	0.556	ug/L			05/23/25 16:04	1
1,3-Dichloropropene, Total	<1.27	U	5.00	1.27	ug/L			05/23/25 16:04	1

Eurofins Dallas

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Client Sample ID: 25220003-06 Effluent G Lab Sample ID: 870-36460-2

Date Received: 05/21/25 16:12

Date Collected: 05/21/25 10:20 **Matrix: Water**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Epichlorohydrin	<0.00752	U	0.0500	0.00752	mg/L			05/23/25 16:04	1
Ethylbenzene	<0.385	U	1.00	0.385	ug/L			05/23/25 16:04	1
Methylene Chloride	<1.73	U	5.00	1.73	ug/L			05/23/25 16:04	1
MTBE	< 0.00139	U	0.00500	0.00139	mg/L			05/23/25 16:04	1
1,1,2,2-Tetrachloroethane	<0.470	U	1.00	0.470	ug/L			05/23/25 16:04	1
Tetrachloroethene	<0.655	U	1.00	0.655	ug/L			05/23/25 16:04	1
Toluene	<0.475	U	1.00	0.475	ug/L			05/23/25 16:04	1
trans-1,2-Dichloroethene	<0.368	U	1.00	0.368	ug/L			05/23/25 16:04	1
trans-1,3-Dichloropropene	<1.27	U	5.00	1.27	ug/L			05/23/25 16:04	1
1,2,4-Trichlorobenzene	<1.75	U	5.00	1.75	ug/L			05/23/25 16:04	1
1,1,1-Trichloroethane	<0.585	U	5.00	0.585	ug/L			05/23/25 16:04	1
1,1,2-Trichloroethane	<0.411	U	1.00	0.411	ug/L			05/23/25 16:04	1
Trichloroethene	<1.50	U	5.00	1.50	ug/L			05/23/25 16:04	1
Trihalomethanes, Total	<0.633	U	5.00	0.633	ug/L			05/23/25 16:04	1
Vinyl acetate	<2.14	U	20.0	2.14	ug/L			05/23/25 16:04	1
Vinyl chloride	<0.428	U	2.00	0.428	ug/L			05/23/25 16:04	1
Naphthalene	<0.00135	U	0.0100	0.00135	mg/L			05/23/25 16:04	1
Xylenes, Total	<0.00124	U	0.00200	0.00124	mg/L			05/23/25 16:04	1
m,p-Xylenes	< 0.00124	U	0.00200	0.00124	mg/L			05/23/25 16:04	1
o-Xylene	<0.000502	U	0.00100	0.000502	mg/L			05/23/25 16:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		74 - 124			-		05/23/25 16:04	1
Dibromofluoromethane (Surr)	111		75 - 131					05/23/25 16:04	1
1,2-Dichloroethane-d4 (Surr)	115		63 - 144					05/23/25 16:04	1
Toluene-d8 (Surr)	98		80 - 120					05/23/25 16:04	1

Method: EPA 200.8 - Metals (IC	•								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr	<0.000890	U	0.00400	0.000890	mg/L		05/23/25 20:19	05/27/25 14:11	1
General Chemistry									

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (1664B)	<1.39	U	6.08	1.39	mg/L			05/27/25 08:27	1
SGT-HEM (1664B)	<1.28	U	6.08	1.28	mg/L			05/27/25 08:27	1
Phenols, Total (EPA 420.4)	<5.80	U	10.0	5.80	ug/L			05/23/25 21:22	1
Cyanide, Non-amenable (SM 4500 CN G NonAm)	3.38	J	5.00	2.33	ug/L		05/28/25 16:26	05/29/25 13:35	1
Cyanide, Total (EPA Kelada 01)	<0.00198	U	0.00500	0.00198	mg/L			05/27/25 22:43	1
Chromium, hexavalent (SM 3500 CR B)	<0.00280	U	0.0100	0.00280	mg/L			05/21/25 18:20	1
Cr (III) (SM 3500 CR B)	<2.00	U	10.0	2.00	ug/L			05/27/25 21:56	1
Cyanide, Amenable (SM 4500 CN G)	<2.33	U	5.00	2.33	ug/L			05/29/25 21:09	1

Lab Sample ID: 870-36460-3 Client Sample ID: 25220003-01 Influent TC

Date Collected: 05/21/25 09:30 Date Received: 05/21/25 16:12

Method: EPA 625.1 - Semivola	tile Organic	Compou	ınds (G	C/MS)					
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD TIC	<10.0	U	ug/L		9.25	1746-01-6	06/05/25 13:00	06/05/25 13:57	1

Eurofins Dallas

Matrix: Water

Page 11 of 63 6/11/2025

Job ID: 870-36460-1

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Client Sample ID: 25220003-01 Influent TC

Lab Sample ID: 870-36460-3

Matrix: Water

Job ID: 870-36460-1

Date Collected: 05/21/25 09:30 Date Received: 05/21/25 16:12

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)		S1-	29 - 112	06/05/25 13:00	06/05/25 13:57	1
2-Fluorophenol (Surr)	0	S1-	28 - 114	06/05/25 13:00	06/05/25 13:57	1
Nitrobenzene-d5 (Surr)	0	S1-	15 - 314	06/05/25 13:00	06/05/25 13:57	1
Phenol-d5 (Surr)	0	S1-	8 - 424	06/05/25 13:00	06/05/25 13:57	1
p-Terphenyl-d14 (Surr)	0	*3 S1-	20 - 141	06/05/25 13:00	06/05/25 13:57	1
2,4,6-Tribromophenol (Surr)	0	S1-	31 - 132	06/05/25 13:00	06/05/25 13:57	1

Wethou: EPA 625.1 - Semivola	ille Organic	; Compound	S (GC-IVI 3/IV	13)
Analyte	Result	Qualifier	RL	ı
Accephathone	-0.107	11	0.571	

Analyte	Result (RL	MDL		D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.107 l	U	0.571	0.107	ug/L		05/28/25 05:00	05/30/25 15:04	1
Guthion	<0.0162 l	U *-	0.0571	0.0162	ug/L		05/28/25 05:00	05/30/25 15:04	1
Acenaphthylene	<0.0996 l	U	0.571	0.0996	ug/L		05/28/25 05:00	05/30/25 15:04	1
Diazinon	<0.0148 U	U	0.114	0.0148	ug/L		05/28/25 05:00	05/30/25 15:04	1
Anthracene	<0.0938 l	U	0.571	0.0938	ug/L		05/28/25 05:00	05/30/25 15:04	1
Demeton, Total	<0.0168 l	U	0.0571	0.0168	ug/L		05/28/25 05:00	05/30/25 15:04	1
Azobenzene	<0.104 l	U	0.571	0.104	ug/L		05/28/25 05:00	05/30/25 15:04	1
Benzidine	<0.446 l	U	2.86	0.446	ug/L		05/28/25 05:00	05/30/25 15:04	1
Benzo[a]anthracene	<0.0821 l	U	0.286	0.0821	ug/L		05/28/25 05:00	05/30/25 15:04	1
Disulfoton	<0.203 l	U	0.571	0.203	ug/L		05/28/25 05:00	05/30/25 15:04	1
Benzo[a]pyrene	<0.0700 l	U	0.286	0.0700	ug/L		05/28/25 05:00	05/30/25 15:04	1
Malathion	<0.0150 l	U	0.0571	0.0150	ug/L		05/28/25 05:00	05/30/25 15:04	1
Benzo[b]fluoranthene	<0.0664 l	U	0.571	0.0664	ug/L		05/28/25 05:00	05/30/25 15:04	1
Methyl parathion	<0.319 l	U	0.571	0.319	ug/L		05/28/25 05:00	05/30/25 15:04	1
Benzo[g,h,i]perylene	<0.0345 l	U	0.571	0.0345	ug/L		05/28/25 05:00	05/30/25 15:04	1
Ethyl Parathion	<0.0502 l	U	0.114	0.0502	ug/L		05/28/25 05:00	05/30/25 15:04	1
Benzo[k]fluoranthene	<0.0473 l	U	0.571	0.0473	ug/L		05/28/25 05:00	05/30/25 15:04	1
Bis(2-chloroethoxy)methane	<0.0974 l	U	0.571	0.0974	ug/L		05/28/25 05:00	05/30/25 15:04	1
Bis(2-chloroethyl)ether	<0.214 l	U	0.571	0.214	ug/L		05/28/25 05:00	05/30/25 15:04	1
Chlorpyrifos	<0.0159 l	U	0.0571	0.0159	ug/L		05/28/25 05:00	05/30/25 15:04	1
Bis(2-ethylhexyl) phthalate	<1.43 l	U	2.86	1.43	ug/L		05/28/25 05:00	05/30/25 15:04	1
Bisphenol-A	<0.000431 U	U	0.00114	0.000431	mg/L		05/28/25 05:00	05/30/25 15:04	1
4-Bromophenyl phenyl ether	<0.100 l	U	0.571	0.100	ug/L		05/28/25 05:00	05/30/25 15:04	1
Butyl benzyl phthalate	<1.43 l	U	2.86	1.43	ug/L		05/28/25 05:00	05/30/25 15:04	1
4-Chloro-3-methylphenol	<0.104 l	U	0.571	0.104	ug/L		05/28/25 05:00	05/30/25 15:04	1
2-Chloronaphthalene	<0.378 l	U	0.571	0.378	ug/L		05/28/25 05:00	05/30/25 15:04	1
2-Chlorophenol	<0.0756 l	U	0.571	0.0756	ug/L		05/28/25 05:00	05/30/25 15:04	1
4-Chlorophenyl phenyl ether	<0.130 l	U	0.571	0.130	ug/L		05/28/25 05:00	05/30/25 15:04	1
Chrysene	<0.0815 l	U	0.571	0.0815	ug/L		05/28/25 05:00	05/30/25 15:04	1
Dibenz(a,h)anthracene	<0.0509 l	U	0.114	0.0509	ug/L		05/28/25 05:00	05/30/25 15:04	1
3,3'-Dichlorobenzidine	<0.183 l	U	0.571	0.183	ug/L		05/28/25 05:00	05/30/25 15:04	1
2,4-Dichlorophenol	<0.140 l	U	0.571	0.140	ug/L		05/28/25 05:00	05/30/25 15:04	1
Diethyl phthalate	<1.43 l	U	2.86	1.43	ug/L		05/28/25 05:00	05/30/25 15:04	1
2,4-Dimethylphenol	<0.192 l	U	0.571	0.192	ug/L		05/28/25 05:00	05/30/25 15:04	1
Dimethyl phthalate	<1.43 l	U	2.86	1.43	ug/L		05/28/25 05:00	05/30/25 15:04	1
Di-n-butyl phthalate	<1.43 l	U	2.86	1.43	ug/L		05/28/25 05:00	05/30/25 15:04	1
4,6-Dinitro-2-methylphenol	<1.00 l	Ú	2.86	1.00	ug/L		05/28/25 05:00	05/30/25 15:04	1
2,4-Dinitrophenol	<0.311 l	U	5.71	0.311	-		05/28/25 05:00	05/30/25 15:04	1
2,4-Dinitrotoluene	<0.205 l	U	0.571	0.205	-		05/28/25 05:00	05/30/25 15:04	1
2,6-Dinitrotoluene	<0.116 l	U	0.571	0.116			05/28/25 05:00	05/30/25 15:04	1
Di-n-octyl phthalate	<1.43 l		2.86	1.43	-			05/30/25 15:04	1

Eurofins Dallas

Client: North Texas Municipal Water District

2,4,6-Tribromophenol (Surr)

2-Fluorobiphenyl (Surr)

2-Fluorophenol (Surr)

Nitrobenzene-d5 (Surr)

p-Terphenyl-d14 (Surr)

2,4,6-Tribromophenol (Surr)

Phenol-d5 (Surr)

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Client Sample ID: 25220003-01 Influent TC

Lab Sample ID: 870-36460-3

Matrix: Water

Job ID: 870-36460-1

Date Collected: 05/21/25 09:30 Date Received: 05/21/25 16:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Diphenylhydrazine	<0.286	U	0.571	0.286	ug/L		05/28/25 05:00	05/30/25 15:04	1
Fluoranthene	<0.0883	U	0.571	0.0883	ug/L		05/28/25 05:00	05/30/25 15:04	1
Fluorene	<0.0948	U	0.571	0.0948	ug/L		05/28/25 05:00	05/30/25 15:04	1
Hexachlorobenzene	< 0.0975	U	0.571	0.0975	ug/L		05/28/25 05:00	05/30/25 15:04	1
Hexachlorobutadiene	<0.103	U	0.571	0.103	ug/L		05/28/25 05:00	05/30/25 15:04	1
Hexachlorocyclopentadiene	<0.218	U	1.14	0.218	ug/L		05/28/25 05:00	05/30/25 15:04	1
Hexachloroethane	<0.102	U	0.571	0.102	ug/L		05/28/25 05:00	05/30/25 15:04	1
Indeno[1,2,3-cd]pyrene	<0.100	U	0.571	0.100	ug/L		05/28/25 05:00	05/30/25 15:04	1
Isophorone	<0.107	U	0.571	0.107	ug/L		05/28/25 05:00	05/30/25 15:04	1
2-Methylphenol	<0.105	U	0.571	0.105	ug/L		05/28/25 05:00	05/30/25 15:04	1
3 & 4 Methylphenol	17.0		0.571	0.139	ug/L		05/28/25 05:00	05/30/25 15:04	1
Naphthalene	< 0.0944	U	0.571	0.0944	ug/L		05/28/25 05:00	05/30/25 15:04	1
Nitrobenzene	< 0.0736	U	0.571	0.0736	ug/L		05/28/25 05:00	05/30/25 15:04	1
2-Nitrophenol	<0.136	U	0.571	0.136	ug/L		05/28/25 05:00	05/30/25 15:04	1
4-Nitrophenol	<0.440	U	1.14	0.440	ug/L		05/28/25 05:00	05/30/25 15:04	1
N-Nitrosodiethylamine	<0.538	U	1.14	0.538	ug/L		05/28/25 05:00	05/30/25 15:04	1
N-Nitrosodimethylamine	<0.100	U	0.571	0.100	ug/L		05/28/25 05:00	05/30/25 15:04	1
N-Nitrosodi-n-butylamine	<0.516	U	1.14	0.516	ug/L		05/28/25 05:00	05/30/25 15:04	1
N-Nitrosodi-n-propylamine	<0.119	U	0.571	0.119	ug/L		05/28/25 05:00	05/30/25 15:04	1
N-Nitrosodiphenylamine	<0.145	U	0.571	0.145	ug/L		05/28/25 05:00	05/30/25 15:04	1
4-Nonylphenol	<1.92	U	10.0	1.92	ug/L		05/28/25 05:00	05/30/25 15:04	1
2,2'-oxybis[1-chloropropane]	<0.128	U	0.571	0.128	ug/L		05/28/25 05:00	05/30/25 15:04	1
Pentachlorobenzene	<0.266	U	0.571	0.266	ug/L		05/28/25 05:00	05/30/25 15:04	1
Pentachlorophenol	<0.199	U	0.571	0.199	ug/L		05/28/25 05:00	05/30/25 15:04	1
Phenanthrene	<0.134	U	0.571	0.134	ug/L		05/28/25 05:00	05/30/25 15:04	1
Phenol	<1.14	U	1.14	1.14	ug/L		05/28/25 05:00	05/30/25 15:04	1
Pyrene	<0.0849	U	0.571	0.0849	ug/L		05/28/25 05:00	05/30/25 15:04	1
Pyridine	<1.44	U	2.86	1.44	ug/L		05/28/25 05:00	05/30/25 15:04	1
1,2,4,5-Tetrachlorobenzene	<0.0957	U	0.571	0.0957	ug/L		05/28/25 05:00	05/30/25 15:04	1
Total Cresols	17.0		0.571	0.128	ug/L		05/28/25 05:00	05/30/25 15:04	1
1,2,4-Trichlorobenzene	< 0.0766	U	0.571	0.0766	ug/L		05/28/25 05:00	05/30/25 15:04	1
2,4,5-Trichlorophenol	<0.143	U	0.571	0.143	ug/L		05/28/25 05:00	05/30/25 15:04	1
2,4,6-Trichlorophenol	<0.231	U	0.571	0.231	ug/L		05/28/25 05:00	05/30/25 15:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	61		43 - 130				05/28/25 05:00	05/30/25 15:04	1
2-Fluorophenol (Surr)	56		19 - 120				05/28/25 05:00	05/30/25 15:04	1
Nitrobenzene-d5 (Surr)	78		37 - 133				05/28/25 05:00	05/30/25 15:04	1
Phenol-d5 (Surr)	55		8 - 124				05/28/25 05:00	05/30/25 15:04	1
p-Terphenyl-d14 (Surr)	60		47 - 130				05/28/25 05:00	05/30/25 15:04	1

Eurofins Dallas

05/28/25 05:00 05/30/25 15:04

05/28/25 05:00 05/30/25 15:04

05/28/25 05:00 05/30/25 15:04

05/28/25 05:00 05/30/25 15:04

05/28/25 05:00 05/30/25 15:04

05/28/25 05:00 05/30/25 15:04

05/28/25 05:00 05/30/25 15:04

35 - 130

43 - 130

19 - 120

37 - 133

8 - 124

47 - 130

35 - 130

96

61

56

78

55

60

96

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Lab Sample ID: 870-36460-3

Job ID: 870-36460-1

Matrix: Water

Client Sample ID: 25220003-01 Influent TC Date Collected: 05/21/25 09:30

Date Received: 05/21/25 16:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<0.00125	U	0.0100	0.00125	ug/L		05/28/25 11:34	05/29/25 12:10	1
alpha-BHC	< 0.000625	U	0.00500	0.000625	ug/L		05/28/25 11:34	05/29/25 12:10	1
beta-BHC	<0.00125	U	0.0100	0.00125	ug/L		05/28/25 11:34	05/29/25 12:10	1
delta-BHC	<0.00250	U	0.0200	0.00250	ug/L		05/28/25 11:34	05/29/25 12:10	1
gamma-BHC (Lindane)	< 0.00344	U	0.0100	0.00344	ug/L		05/28/25 11:34	05/29/25 12:10	1
4,4'-DDD	< 0.00250	U	0.0200	0.00250	ug/L		05/28/25 11:34	05/29/25 12:10	1
4,4'-DDE	<0.00125	U	0.0100	0.00125	ug/L		05/28/25 11:34	05/29/25 12:10	1
4,4'-DDT	<0.00250	U	0.0200	0.00250	ug/L		05/28/25 11:34	05/29/25 12:10	1
Dieldrin	< 0.000625	U	0.00500	0.000625	ug/L		05/28/25 11:34	05/29/25 12:10	1
Endosulfan I	<0.00125	U	0.0100	0.00125	ug/L		05/28/25 11:34	05/29/25 12:10	1
Endosulfan II	< 0.00125	U	0.0100	0.00125	ug/L		05/28/25 11:34	05/29/25 12:10	1
Endosulfan sulfate	< 0.00559	U	0.0500	0.00559	ug/L		05/28/25 11:34	05/29/25 12:10	1
Endrin	<0.00250	U	0.0200	0.00250	ug/L		05/28/25 11:34	05/29/25 12:10	1
Endrin aldehyde	< 0.00592	U	0.0500	0.00592	ug/L		05/28/25 11:34	05/29/25 12:10	1
Dicofol	< 0.000500	U	0.000500	0.000500	mg/L		05/28/25 11:34	05/29/25 12:10	1
Heptachlor	<0.00169	U	0.00500	0.00169	ug/L		05/28/25 11:34	05/29/25 12:10	1
Heptachlor epoxide	< 0.00125	U	0.0100	0.00125	ug/L		05/28/25 11:34	05/29/25 12:10	1
Toxaphene	<0.0780	U	0.200	0.0780	ug/L		05/28/25 11:34	05/29/25 12:10	1
Chlordane	<0.0250	U	0.200	0.0250	ug/L		05/28/25 11:34	05/29/25 12:10	1
Methoxychlor	<0.0000125	U	0.000100	0.0000125	mg/L		05/28/25 11:34	05/29/25 12:10	1
Mirex	<0.0000200	U	0.0000200	0.0000200	mg/L		05/28/25 11:34	05/29/25 12:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	75		15 - 136				05/28/25 11:34	05/29/25 12:10	1
Tetrachloro-m-xylene	63	p	18 - 126				05/28/25 11:34	05/29/25 12:10	1

Method: EPA 608.3 - Polych	Iorinated Bipl	henyls (PC	Bs) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0443	U	0.100	0.0443	ug/L		05/28/25 11:34	05/29/25 13:14	1
PCB-1242	< 0.0443	U	0.100	0.0443	ug/L		05/28/25 11:34	05/29/25 13:14	1
PCB-1254	< 0.0390	U	0.100	0.0390	ug/L		05/28/25 11:34	05/29/25 13:14	1
PCB-1221	<0.0443	U	0.100	0.0443	ug/L		05/28/25 11:34	05/29/25 13:14	1
PCB-1232	< 0.0443	U	0.100	0.0443	ug/L		05/28/25 11:34	05/29/25 13:14	1
PCB-1248	< 0.0443	U	0.100	0.0443	ug/L		05/28/25 11:34	05/29/25 13:14	1
PCB-1260	< 0.0390	U	0.100	0.0390	ug/L		05/28/25 11:34	05/29/25 13:14	1
Polychlorinated biphenyls, Total	<0.0390	U	0.100	0.0390	ug/L		05/28/25 11:34	05/29/25 13:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	79		18 - 126				05/28/25 11:34	05/29/25 13:14	1
DCB Decachlorobiphenyl (Surr)	69		15 - 136				05/28/25 11:34	05/29/25 13:14	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<0.0000541	U	0.000201	0.0000541	mg/L		05/27/25 14:20	05/30/25 01:34	1
Hexachlorophene	<0.000811	U	0.00502	0.000811	mg/L		05/27/25 14:20	05/30/25 01:34	1
Silvex (2,4,5-TP)	<0.0000424	U *+	0.000201	0.0000424	mg/L		05/27/25 14:20	05/30/25 01:34	1
Dalapon	<0.0000478	U	0.000201	0.0000478	mg/L		05/27/25 14:20	05/30/25 01:34	1
Dicamba	< 0.0000425	U *+	0.000201	0.0000425	mg/L		05/27/25 14:20	05/30/25 01:34	1
Dinoseb	<0.0000344	U *1	0.000201	0.0000344	mg/L		05/27/25 14:20	05/31/25 02:00	1
Pentachlorophenol	<0.0000445	U	0.000201	0.0000445	mg/L		05/27/25 14:20	05/30/25 01:34	1

Page 14 of 63

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Lab Sample ID: 870-36460-3 Client Sample ID: 25220003-01 Influent TC

Date Collected: 05/21/25 09:30 Date Received: 05/21/25 16:12

Matrix: Water

%Recovery Qualifier Prepared Surrogate Limits Analyzed Dil Fac 2,4-Dichlorophenylacetic acid 268 S1+ 45 - 150 05/27/25 14:20 05/30/25 01:34

Method: SW846 8015D - Glycols- Direct Injection (GC/FID) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Ethylene glycol <1.22 U 5.00 1.22 mg/L 05/23/25 15:31 Propylene glycol 6.42 5.00 1.84 mg/L 05/23/25 15:31

Method: EPA-01 632 - Carbamate and Urea Pesticides (HPLC) Analyte Result Qualifier MDL Unit Prepared RL Analyzed Dil Fac 05/28/25 05:49 06/02/25 22:49 Carbaryl 0.631 0.500 0.185 ug/L Diuron <0.00514 U 0.00900 0.00514 ug/L 05/28/25 05:49 06/02/25 22:49

Client Sample ID: 25220003-04 Effluent TC

Lab Sample ID: 870-36460-4 Date Collected: 05/21/25 09:45 **Matrix: Water**

Date Received: 05/21/25 16:12

Method: EPA 625.1 - Semivolatile Organic Compounds (GC/MS)

Tentatively Identified Compound Est. Result Qualifier RT CAS No. Dil Fac Unit Prepared Analyzed 2,3,7,8-TCDD TIC <10.0 U ug/L 8.66 1746-01-6 06/05/25 13:00 06/05/25 14:20 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac S1-06/05/25 13:00 06/05/25 14:20 2-Fluorobiphenyl (Surr) 0 29 - 112 2-Fluorophenol (Surr) 0 S1-28 - 114 06/05/25 13:00 06/05/25 14:20 Nitrobenzene-d5 (Surr) 0 S1-15 - 314 06/05/25 13:00 06/05/25 14:20 Phenol-d5 (Surr) 0 S1-8 - 424 06/05/25 13:00 06/05/25 14:20 p-Terphenyl-d14 (Surr) 0 S1-20 - 141 06/05/25 13:00 06/05/25 14:20 2,4,6-Tribromophenol (Surr) 0 S1-31 - 132 06/05/25 13:00 06/05/25 14:20

Method: EPA 625.1 - Semive Analyte	Result C		` RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<0.108 L	J	0.572	0.108	ug/L		05/28/25 05:00	05/30/25 15:32	1
Guthion	<0.0162 L	J *-	0.0572	0.0162	ug/L		05/28/25 05:00	05/30/25 15:32	1
Acenaphthylene	<0.0998 L	J	0.572	0.0998	ug/L		05/28/25 05:00	05/30/25 15:32	1
Diazinon	<0.0149 L	j	0.114	0.0149	ug/L		05/28/25 05:00	05/30/25 15:32	1
Anthracene	<0.0939 L	J	0.572	0.0939	ug/L		05/28/25 05:00	05/30/25 15:32	1
Demeton, Total	<0.0168 L	J	0.0572	0.0168	ug/L		05/28/25 05:00	05/30/25 15:32	1
Azobenzene	<0.104 L	J	0.572	0.104	ug/L		05/28/25 05:00	05/30/25 15:32	1
Benzidine	<0.447 L	J	2.86	0.447	ug/L		05/28/25 05:00	05/30/25 15:32	1
Benzo[a]anthracene	<0.0822 L	J	0.286	0.0822	ug/L		05/28/25 05:00	05/30/25 15:32	1
Disulfoton	<0.203 L	j	0.572	0.203	ug/L		05/28/25 05:00	05/30/25 15:32	1
Benzo[a]pyrene	<0.0701 L	J	0.286	0.0701	ug/L		05/28/25 05:00	05/30/25 15:32	1
Malathion	<0.0150 L	J	0.0572	0.0150	ug/L		05/28/25 05:00	05/30/25 15:32	1
Benzo[b]fluoranthene	<0.0665 L	j	0.572	0.0665	ug/L		05/28/25 05:00	05/30/25 15:32	1
Methyl parathion	<0.320 L	J	0.572	0.320	ug/L		05/28/25 05:00	05/30/25 15:32	1
Benzo[g,h,i]perylene	<0.0346 L	J	0.572	0.0346	ug/L		05/28/25 05:00	05/30/25 15:32	1
Ethyl Parathion	<0.0503 L	j	0.114	0.0503	ug/L		05/28/25 05:00	05/30/25 15:32	1
Benzo[k]fluoranthene	<0.0473 L	J	0.572	0.0473	ug/L		05/28/25 05:00	05/30/25 15:32	1
Bis(2-chloroethoxy)methane	<0.0976 L	J	0.572	0.0976	ug/L		05/28/25 05:00	05/30/25 15:32	1
Bis(2-chloroethyl)ether	<0.215 L	j	0.572	0.215	ug/L		05/28/25 05:00	05/30/25 15:32	1
Chlorpyrifos	<0.0159 L	J	0.0572	0.0159	ug/L		05/28/25 05:00	05/30/25 15:32	1
Bis(2-ethylhexyl) phthalate	<1.43 L	J	2.86	1.43	ug/L		05/28/25 05:00	05/30/25 15:32	1

Eurofins Dallas

Page 15 of 63 6/11/2025

Job ID: 870-36460-1

3

6

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Lab Sample ID: 870-36460-4

Job ID: 870-36460-1

Matrix: Water

Client Sample ID: 25220003-04 Effluent TC

Date Collected: 05/21/25 09:45 Date Received: 05/21/25 16:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bisphenol-A	<0.000432	U	0.00114	0.000432	mg/L		05/28/25 05:00	05/30/25 15:32	
4-Bromophenyl phenyl ether	<0.100	U	0.572	0.100	ug/L		05/28/25 05:00	05/30/25 15:32	
Butyl benzyl phthalate	<1.43	U	2.86	1.43	ug/L		05/28/25 05:00	05/30/25 15:32	
4-Chloro-3-methylphenol	<0.104	U	0.572	0.104	ug/L		05/28/25 05:00	05/30/25 15:32	
2-Chloronaphthalene	< 0.379	U	0.572	0.379	ug/L		05/28/25 05:00	05/30/25 15:32	
2-Chlorophenol	<0.0757	U	0.572	0.0757	ug/L		05/28/25 05:00	05/30/25 15:32	
4-Chlorophenyl phenyl ether	<0.131	U	0.572	0.131	ug/L		05/28/25 05:00	05/30/25 15:32	
Chrysene	<0.0817	U	0.572	0.0817	ug/L		05/28/25 05:00	05/30/25 15:32	
Dibenz(a,h)anthracene	<0.0510	U	0.114	0.0510	ug/L		05/28/25 05:00	05/30/25 15:32	
3,3'-Dichlorobenzidine	<0.183	U	0.572	0.183	ug/L		05/28/25 05:00	05/30/25 15:32	
2,4-Dichlorophenol	<0.140	U	0.572	0.140	_		05/28/25 05:00	05/30/25 15:32	
Diethyl phthalate	<1.43	U	2.86		ug/L		05/28/25 05:00	05/30/25 15:32	
2,4-Dimethylphenol	<0.192		0.572	0.192			05/28/25 05:00	05/30/25 15:32	
Dimethyl phthalate	<1.43		2.86		ug/L			05/30/25 15:32	
Di-n-butyl phthalate	<1.43		2.86		ug/L		05/28/25 05:00		
4,6-Dinitro-2-methylphenol	<1.00		2.86		ug/L			05/30/25 15:32	
2,4-Dinitrophenol	<0.311		5.72	0.311	ug/L		05/28/25 05:00		
2,4-Dinitrotoluene	<0.205		0.572	0.205			05/28/25 05:00		
2,6-Dinitrotoluene	<0.116		0.572					05/30/25 15:32	
Di-n-octyl phthalate	<1.43		2.86		ug/L			05/30/25 15:32	
1,2-Diphenylhydrazine	<0.287		0.572	0.287	_			05/30/25 15:32	
Fluoranthene	<0.0884		0.572	0.0884				05/30/25 15:32	
					_				
Fluorene	<0.0950		0.572		J			05/30/25 15:32	
Hexachlorobenzene	<0.0976		0.572	0.0976				05/30/25 15:32	
Hexachlorobutadiene	<0.103		0.572	0.103	-			05/30/25 15:32	
Hexachlorocyclopentadiene	<0.219		1.14	0.219	-			05/30/25 15:32	
Hexachloroethane	<0.102		0.572	0.102				05/30/25 15:32	
Indeno[1,2,3-cd]pyrene	<0.100		0.572	0.100	-			05/30/25 15:32	
Isophorone	<0.107		0.572	0.107				05/30/25 15:32	
2-Methylphenol	<0.105		0.572	0.105				05/30/25 15:32	
3 & 4 Methylphenol	<0.139		0.572		J			05/30/25 15:32	
Naphthalene	<0.0946	U	0.572	0.0946	•			05/30/25 15:32	
Nitrobenzene	<0.0737	U	0.572	0.0737			05/28/25 05:00	05/30/25 15:32	
2-Nitrophenol	<0.136	U	0.572	0.136	-		05/28/25 05:00	05/30/25 15:32	
4-Nitrophenol	<0.440	U	1.14	0.440	ug/L		05/28/25 05:00	05/30/25 15:32	
N-Nitrosodiethylamine	<0.539	U	1.14	0.539			05/28/25 05:00	05/30/25 15:32	
N-Nitrosodimethylamine	<0.100	U	0.572	0.100	ug/L		05/28/25 05:00	05/30/25 15:32	
N-Nitrosodi-n-butylamine	<0.516	U	1.14	0.516	ug/L		05/28/25 05:00	05/30/25 15:32	
N-Nitrosodi-n-propylamine	<0.119	U	0.572	0.119	ug/L		05/28/25 05:00	05/30/25 15:32	
N-Nitrosodiphenylamine	<0.145	U	0.572	0.145	ug/L		05/28/25 05:00	05/30/25 15:32	
4-Nonylphenol	<1.92	U	10.0	1.92	ug/L		05/28/25 05:00	05/30/25 15:32	
2,2'-oxybis[1-chloropropane]	<0.128	U	0.572	0.128	ug/L		05/28/25 05:00	05/30/25 15:32	
Pentachlorobenzene	<0.266		0.572	0.266			05/28/25 05:00	05/30/25 15:32	
Pentachlorophenol	<0.199		0.572	0.199	_			05/30/25 15:32	
Phenanthrene	<0.134		0.572	0.134	•			05/30/25 15:32	
Phenol	<1.14		1.14		ug/L			05/30/25 15:32	
Pyrene	<0.0850		0.572	0.0850	•			05/30/25 15:32	
Pyridine	<1.44		2.86		ug/L			05/30/25 15:32	
1,2,4,5-Tetrachlorobenzene	<0.0959		0.572	0.0959				05/30/25 15:32	

Eurofins Dallas

Client: North Texas Municipal Water District

Date Collected: 05/21/25 09:45

Date Received: 05/21/25 16:12

2,4,6-Tribromophenol (Surr)

Analyte

PCB-1016

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Client Sample ID: 25220003-04 Effluent TC

Lab Sample ID: 870-36460-4

05/28/25 05:00 05/30/25 15:32

Job ID: 870-36460-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Cresols	<0.128	U	0.572	0.128	ug/L		05/28/25 05:00	05/30/25 15:32	1
1,2,4-Trichlorobenzene	< 0.0767	U	0.572	0.0767	ug/L		05/28/25 05:00	05/30/25 15:32	1
2,4,5-Trichlorophenol	<0.143	U	0.572	0.143	ug/L		05/28/25 05:00	05/30/25 15:32	1
2,4,6-Trichlorophenol	<0.231	U	0.572	0.231	ug/L		05/28/25 05:00	05/30/25 15:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	67		43 - 130				05/28/25 05:00	05/30/25 15:32	1
2-Fluorophenol (Surr)	27		19 - 120				05/28/25 05:00	05/30/25 15:32	1
Nitrobenzene-d5 (Surr)	82		37 - 133				05/28/25 05:00	05/30/25 15:32	1
Phenol-d5 (Surr)	18		8 - 124				05/28/25 05:00	05/30/25 15:32	1
p-Terphenyl-d14 (Surr)	58		47 - 130				05/28/25 05:00	05/30/25 15:32	1
2,4,6-Tribromophenol (Surr)	94		35 - 130				05/28/25 05:00	05/30/25 15:32	1
2-Fluorobiphenyl (Surr)	67		43 - 130				05/28/25 05:00	05/30/25 15:32	1
2-Fluorophenol (Surr)	27		19 - 120				05/28/25 05:00	05/30/25 15:32	1
Nitrobenzene-d5 (Surr)	82		37 - 133				05/28/25 05:00	05/30/25 15:32	1
Phenol-d5 (Surr)	18		8 - 124				05/28/25 05:00	05/30/25 15:32	1
p-Terphenyl-d14 (Surr)	58		47 - 130				05/28/25 05:00	05/30/25 15:32	1

35 - 130

94

Method: EPA 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Result Qualifier

<0.0443 U

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<0.00125	U	0.0100	0.00125	ug/L		05/28/25 11:34	05/29/25 12:23	1
alpha-BHC	0.00903		0.00500	0.000625	ug/L		05/28/25 11:34	05/29/25 12:23	1
beta-BHC	< 0.00125	U	0.0100	0.00125	ug/L		05/28/25 11:34	05/29/25 12:23	1
delta-BHC	<0.00250	U	0.0200	0.00250	ug/L		05/28/25 11:34	05/29/25 12:23	1
gamma-BHC (Lindane)	< 0.00344	U	0.0100	0.00344	ug/L		05/28/25 11:34	05/29/25 12:23	1
4,4'-DDD	<0.00250	U	0.0200	0.00250	ug/L		05/28/25 11:34	05/29/25 12:23	1
4,4'-DDE	<0.00125	U	0.0100	0.00125	ug/L		05/28/25 11:34	05/29/25 12:23	1
4,4'-DDT	< 0.00250	U	0.0200	0.00250	ug/L		05/28/25 11:34	05/29/25 12:23	1
Dieldrin	< 0.000625	U	0.00500	0.000625	ug/L		05/28/25 11:34	05/29/25 12:23	1
Endosulfan I	<0.00125	U	0.0100	0.00125	ug/L		05/28/25 11:34	05/29/25 12:23	1
Endosulfan II	< 0.00125	U	0.0100	0.00125	ug/L		05/28/25 11:34	05/29/25 12:23	1
Endosulfan sulfate	< 0.00559	U	0.0500	0.00559	ug/L		05/28/25 11:34	05/29/25 12:23	1
Endrin	<0.00250	U	0.0200	0.00250	ug/L		05/28/25 11:34	05/29/25 12:23	1
Endrin aldehyde	< 0.00592	U	0.0500	0.00592	ug/L		05/28/25 11:34	05/29/25 12:23	1
Dicofol	< 0.000500	U	0.000500	0.000500	mg/L		05/28/25 11:34	05/29/25 12:23	1
Heptachlor	<0.00169	U	0.00500	0.00169	ug/L		05/28/25 11:34	05/29/25 12:23	1
Heptachlor epoxide	< 0.00125	U	0.0100	0.00125	ug/L		05/28/25 11:34	05/29/25 12:23	1
Toxaphene	<0.0780	U	0.200	0.0780	ug/L		05/28/25 11:34	05/29/25 12:23	1
Chlordane	<0.0250	U	0.200	0.0250	ug/L		05/28/25 11:34	05/29/25 12:23	1
Methoxychlor	<0.0000125	U	0.000100	0.0000125	mg/L		05/28/25 11:34	05/29/25 12:23	1
Mirex	<0.0000200	U	0.0000200	0.0000200	mg/L		05/28/25 11:34	05/29/25 12:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	74		15 - 136				05/28/25 11:34	05/29/25 12:23	1
Tetrachloro-m-xylene	53		18 - 126				05/28/25 11:34	05/29/25 12:23	1

Eurofins Dallas

Analyzed

05/28/25 11:34 05/29/25 14:28

Prepared

0.100

MDL Unit

0.0443 ug/L

13

Dil Fac

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Client Sample ID: 25220003-04 Effluent TC Lab Sample ID: 870-36460-4 **Matrix: Water**

Date Collected: 05/21/25 09:45 Date Received: 05/21/25 16:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1242	<0.0443	U	0.100	0.0443	ug/L		05/28/25 11:34	05/29/25 14:28	1
PCB-1254	< 0.0390	U	0.100	0.0390	ug/L		05/28/25 11:34	05/29/25 14:28	1
PCB-1221	<0.0443	U	0.100	0.0443	ug/L		05/28/25 11:34	05/29/25 14:28	1
PCB-1232	< 0.0443	U	0.100	0.0443	ug/L		05/28/25 11:34	05/29/25 14:28	1
PCB-1248	< 0.0443	U	0.100	0.0443	ug/L		05/28/25 11:34	05/29/25 14:28	1
PCB-1260	<0.0390	U	0.100	0.0390	ug/L		05/28/25 11:34	05/29/25 14:28	1
Polychlorinated biphenyls, Total	<0.0390	U	0.100	0.0390	ug/L		05/28/25 11:34	05/29/25 14:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	60		18 - 126				05/28/25 11:34	05/29/25 14:28	1
DCB Decachlorobiphenyl (Surr)	85		15 - 136				05/28/25 11:34	05/29/25 14:28	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<0.0000540	U	0.000200	0.0000540	mg/L		05/27/25 14:20	05/30/25 01:59	1
Hexachlorophene	<0.000810	U	0.00501	0.000810	mg/L		05/27/25 14:20	05/30/25 01:59	1
Silvex (2,4,5-TP)	<0.0000423	U *+	0.000200	0.0000423	mg/L		05/27/25 14:20	05/30/25 01:59	1
Dalapon	<0.0000477	U	0.000200	0.0000477	mg/L		05/27/25 14:20	05/30/25 01:59	1
Dicamba	<0.0000424	U *+	0.000200	0.0000424	mg/L		05/27/25 14:20	05/30/25 01:59	1
Dinoseb	<0.0000344	U *1	0.000200	0.0000344	mg/L		05/27/25 14:20	05/31/25 02:25	1
Pentachlorophenol	<0.0000444	U	0.000200	0.0000444	mg/L		05/27/25 14:20	05/30/25 01:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid		S1+	45 - 150				05/27/25 14:20	05/30/25 01:59	1

Method: SW846 8015D - Gly	cols- Direct Ir	njection (GC	;/FID)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylene glycol	<1.22	U	5.00	1.22	mg/L			05/23/25 15:43	1
Propylene alycol	<1 84	U	5 00	1 84	ma/l			05/23/25 15:43	1

Method: EPA-01 632 - Carbam	ate and Ure	a Pesticid	es (HPLC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbaryl	<0.185	U	0.500	0.185	ug/L		05/28/25 05:49	06/02/25 23:22	1
Diuron	0.0520		0.00900	0.00514	ug/L		05/28/25 05:49	06/02/25 23:22	1

Job ID: 870-36460-1

Surrogate Summary

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		BFB	DBFM	DCA	TOL
Lab Sample ID	Client Sample ID	(74-124)	(75-131)	(63-144)	(80-120)
870-36460-1	25220003-03 Influent G	101	109	114	102
870-36460-2	25220003-06 Effluent G	103	111	115	98
LCS 860-237654/3	Lab Control Sample	100	106	106	101
LCSD 860-237654/4	Lab Control Sample Dup	101	107	107	102
MB 860-237654/9	Method Blank	103	108	113	101
MB 860-237654/9	Method Blank	103	108	113	101

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)								
		FBP	2FP	NBZ	PHL	TPHd14	TBP			
ab Sample ID	Client Sample ID	(29-112)	(28-114)	(15-314)	(8-424)	(20-141)	(31-132)			
70-36460-3	25220003-01 Influent TC	0 S1-	0 S1-	0 S1-	0 S1-	0 *3 S1-	0 S1-			
0-36460-4	25220003-04 Effluent TC	0 S1-	0 S1-	0 S1-	0 S1-	0 S1-	0 S1-			
IB 860-240475/1-A	Method Blank	94	77	96	67	103	89			

Surrogate Legend

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

Method: 625.1 - Semivolatile Organic Compounds (GC-MS/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)									
		FBP	FBP	2FP	2FP	NBZ	NBZ	PHL	PHL		
Lab Sample ID	Client Sample ID	(43-130)	(43-130)	(19-120)	(19-120)	(37-133)	(37-133)	(8-124)	(8-124		
870-36460-3	25220003-01 Influent TC	61	61	56	56	78	78	55	55		
870-36460-4	25220003-04 Effluent TC	67	67	27	27	82	82	18	18		
			Pe	ercent Surre	ogate Reco	very (Accep	tance Limi	ts)			
		TPHd14	TPHd14	TBP	TBP						
Lab Sample ID	Client Sample ID	(47-130)	(47-130)	(35-130)	(35-130)						
870-36460-3	25220003-01 Influent TC	60	60	96	96						
870-36460-4	25220003-04 Effluent TC	58	58	94	94						

Surrogate Legend

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

Eurofins Dallas

6/11/2025

Job ID: 870-36460-1

3

Page 19 of 63

Surrogate Summary

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Method: 625.1 - Semivolatile Organic Compounds (GC-MS/MS)

Matrix: Water Prep Type: Total/NA

_			Pe	rcent Surre	ogate Recov	ery (Acce	ptance Limi	ts)	
		FBP	FBP	2FP	NBZ	PHL	TPHd14	ТВР	
Lab Sample ID	Client Sample ID	(43-130)	(43-130)	(19-120)	(37-133)	(8-124)	(47-130)	(35-130)	
LCS 860-238065/2-A	Lab Control Sample	79	79	77	68	61	73	76	
LCS 860-238065/4-A	Lab Control Sample	84	84	83	74	66	74	81	
LCS 860-238065/6-A	Lab Control Sample	61	61	64	53	47	54	48	
LCS 860-238065/6-A - RA	Lab Control Sample	59	59	53	60	53	52	64	
LCSD 860-238065/3-A	Lab Control Sample Dup	78	78	78	69	62	73	80	
LCSD 860-238065/5-A	Lab Control Sample Dup	80	80	80	71	63	72	73	
LCSD 860-238065/7-A	Lab Control Sample Dup	67	67	75	59	52	66	57	
LCSD 860-238065/7-A - RA	Lab Control Sample Dup	67	67	60	67	61	56	71	
MB 860-238065/1-A	Method Blank	80	80	88	67	63	77	73	
MB 860-238065/1-A - RA	Method Blank	82	82	69	88	66	70	89	

Surrogate Legend

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

Method: 608.3 - Organochlorine Pesticides in Water

Matrix: Water Prep Type: Total/NA

			Perce	ent Surrogate Recovery (Acceptance Limits)
		DCB2	TCX2	
Lab Sample ID	Client Sample ID	(15-136)	(18-126)	
870-36460-3	25220003-01 Influent TC	75	63 p	
870-36460-4	25220003-04 Effluent TC	74	53	
LCS 860-238461/2-A	Lab Control Sample	99	101	
LCSD 860-238461/3-A	Lab Control Sample Dup	95	98	
MB 860-238461/1-A	Method Blank	100	105	
Surrogate Legend				

DCB = DCB Decachlorobiphenyl (Surr)

TCX = Tetrachloro-m-xylene

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		TCX1	DCB1						
Lab Sample ID	Client Sample ID	(18-126)	(15-136)						
870-36460-3	25220003-01 Influent TC	79	69						
870-36460-4	25220003-04 Effluent TC	60	85						
LCS 860-238461/4-A	Lab Control Sample	94	95						
LCSD 860-238461/5-A	Lab Control Sample Dup	95	94						
MB 860-238461/1-A	Method Blank	90	92						

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl (Surr)

Eurofins Dallas

Page 20 of 63

Job ID: 870-36460-1

14

Surrogate Summary

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Method: 615 - Herbicides (GC)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCPAA1	
Lab Sample ID	Client Sample ID	(45-150)	
870-36460-3	25220003-01 Influent TC	268 S1+	
870-36460-4	25220003-04 Effluent TC	175 S1+	
LCS 860-238206/2-A	Lab Control Sample	177 S1+	
LCS 860-238206/4-A	Lab Control Sample	151 S1+	
LCSD 860-238206/3-A	Lab Control Sample Dup	183 S1+	
LCSD 860-238206/5-A	Lab Control Sample Dup	165 S1+	
MB 860-238206/1-A	Method Blank	0 S1-	
Surrogate Legend			

Job ID: 870-36460-1

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Job ID: 870-36460-1

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-237654/9

Matrix: Water

Analysis Batch: 237654

Client	Sample	ID: I	Vietho	od Bl	lank
	Pro	ep T	ype:	Tota	I/NA

	MB	MB							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	< 0.00307	U	0.100	0.00307	-			05/23/25 09:55	1
Acrolein	<11.1	U	50.0		ug/L			05/23/25 09:55	1
Acrylonitrile	<14.3	U	50.0	14.3	ug/L			05/23/25 09:55	1
Benzene	<0.460	U	1.00	0.460	ug/L			05/23/25 09:55	1
Bromochloromethane	< 0.000577	U	0.00100	0.000577	mg/L			05/23/25 09:55	1
Bromodichloromethane	<0.552	U	1.00	0.552	ug/L			05/23/25 09:55	1
Bromoform	<0.633	U	5.00	0.633	ug/L			05/23/25 09:55	1
Bromomethane	<1.42	U	5.00	1.42	ug/L			05/23/25 09:55	1
2-Butanone	<8.28	U	50.0	8.28	ug/L			05/23/25 09:55	1
Carbon tetrachloride	<0.896	U	2.00	0.896	ug/L			05/23/25 09:55	1
Chlorobenzene	<0.455	U	1.00	0.455	ug/L			05/23/25 09:55	1
Chloroethane	<1.98	U	10.0		ug/L			05/23/25 09:55	1
2-Chloroethyl vinyl ether	<0.753	U	5.00	0.753				05/23/25 09:55	1
Chloroform	<0.464	U	1.00	0.464	-			05/23/25 09:55	1
Chloromethane	<2.04	U	10.0		ug/L			05/23/25 09:55	1
cis-1,3-Dichloropropene	<1.07	U	5.00		ug/L			05/23/25 09:55	1
Dibromochloromethane	<0.547		5.00	0.547	-			05/23/25 09:55	1
1,2-Dibromoethane	<0.999	U	5.00	0.999	-			05/23/25 09:55	1
1,2-Dichlorobenzene	<0.429		1.00	0.429				05/23/25 09:55	· · · · · · · · · 1
1,3-Dichlorobenzene	<0.413		1.00	0.413	-			05/23/25 09:55	1
1,4-Dichlorobenzene	<0.449		1.00	0.449	_			05/23/25 09:55	1
1,1-Dichloroethane	< 0.635		1.00	0.635				05/23/25 09:55	· · · · · · · · · 1
1,2-Dichloroethane	<0.372		1.00	0.372	-			05/23/25 09:55	
1,1-Dichloroethene	<0.738		1.00	0.738	-			05/23/25 09:55	1
1,2-Dichloropropane	<0.556		5.00	0.556				05/23/25 09:55	· · · · · · · · · · · · · · · · · · ·
1,3-Dichloropropene, Total	<1.27		5.00		ug/L			05/23/25 09:55	1
Epichlorohydrin	<0.00752		0.0500	0.00752	-			05/23/25 09:55	1
Ethylbenzene	<0.385		1.00	0.385				05/23/25 09:55	
Methylene Chloride	<1.73		5.00		ug/L			05/23/25 09:55	1
MTBE	<0.00139		0.00500	0.00139	-			05/23/25 09:55	1
1,1,2,2-Tetrachloroethane	<0.470		1.00	0.470				05/23/25 09:55	
Tetrachloroethene	<0.470		1.00	0.470	-			05/23/25 09:55	1
Toluene	<0.475		1.00	0.033	-				1
trans-1,2-Dichloroethene	<0.368		1.00	0.473				05/23/25 09:55 05/23/25 09:55	'
•	<0.306 <1.27		5.00		ug/L ug/L			05/23/25 09:55	1
trans-1,3-Dichloropropene					-				1
1,2,4-Trichlorobenzene	<1.75		5.00		ug/L			05/23/25 09:55	۱
1,1,1-Trichloroethane	<0.585		5.00	0.585				05/23/25 09:55	1
1,1,2-Trichloroethane	<0.411		1.00	0.411	-			05/23/25 09:55	1
Trichloroethene	<1.50		5.00		ug/L			05/23/25 09:55	
Trihalomethanes, Total	< 0.633		5.00	0.633	_			05/23/25 09:55	1
Vinyl acetate	<2.14		20.0		ug/L			05/23/25 09:55	1
Vinyl chloride	<0.428		2.00	0.428				05/23/25 09:55	1
Naphthalene	<0.00135		0.0100	0.00135	-			05/23/25 09:55	1
Xylenes, Total	<0.00124		0.00200	0.00124	-			05/23/25 09:55	1
m,p-Xylenes	<0.00124		0.00200	0.00124				05/23/25 09:55	1
o-Xylene	< 0.000502	U	0.00100	0.000502	mg/L			05/23/25 09:55	1

Eurofins Dallas

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Job ID: 870-36460-1

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 860-237654/9

Matrix: Water

Analysis Batch: 237654

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Dil Fac Prepared %Recovery Qualifier Limits Surrogate Analyzed 4-Bromofluorobenzene (Surr) 103 74 - 124 05/23/25 09:55 05/23/25 09:55 Dibromofluoromethane (Surr) 108 75 - 131 1,2-Dichloroethane-d4 (Surr) 63 - 144 05/23/25 09:55 113 Toluene-d8 (Surr) 101 80 - 120 05/23/25 09:55

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 860-237654/3 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 237654

	Spike	LCS	LCS		%Rec	
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
Acetone	0.250	0.2237	mg/L	89	60 - 140	
Acrolein	250	208.0	ug/L	83	60 - 140	
Acrylonitrile	500	510.3	ug/L	102	60 - 140	
Benzene	50.0	50.71	ug/L	101	75 - 125	
Bromochloromethane	0.0500	0.05340	mg/L	107	60 - 140	
Bromodichloromethane	50.0	50.95	ug/L	102	75 - 125	
Bromoform	50.0	44.71	ug/L	89	70 - 130	
Bromomethane	50.0	53.40	ug/L	107	60 - 140	
2-Butanone	250	245.2	ug/L	98	60 - 140	
Carbon tetrachloride	50.0	51.16	ug/L	102	70 - 125	
Chlorobenzene	50.0	49.21	ug/L	98	82 - 135	
Chloroethane	50.0	54.83	ug/L	110	60 - 140	
2-Chloroethyl vinyl ether	50.0	45.17	ug/L	90	50 - 150	
Chloroform	50.0	56.09	ug/L	112	70 - 121	
Chloromethane	50.0	53.73	ug/L	107	60 - 140	
cis-1,3-Dichloropropene	50.0	54.59	ug/L	109	74 - 125	
Dibromochloromethane	50.0	47.24	ug/L	94	73 - 125	
1,2-Dibromoethane	50.0	49.23	ug/L	98	73 - 125	
1,2-Dichlorobenzene	50.0	48.46	ug/L	97	75 - 125	
1,3-Dichlorobenzene	50.0	48.40	ug/L	97	75 - 125	
1,4-Dichlorobenzene	50.0	48.12	ug/L	96	75 - 125	
1,1-Dichloroethane	50.0	54.56	ug/L	109	71 - 130	
1,2-Dichloroethane	50.0	52.81	ug/L	106	72 - 130	
1,1-Dichloroethene	50.0	48.34	ug/L	97	50 - 150	
1,2-Dichloropropane	50.0	51.66	ug/L	103	74 - 125	
Ethylbenzene	50.0	50.93	ug/L	102	75 - 125	
Methylene Chloride	50.0	48.84	ug/L	98	71 - 125	
MTBE	0.0500	0.04831	mg/L	97	65 - 135	
1,1,2,2-Tetrachloroethane	50.0	50.88	ug/L	102	74 - 125	
Tetrachloroethene	50.0	45.63	ug/L	91	71 - 125	
Toluene	50.0	50.49	ug/L	101	75 - 130	
trans-1,2-Dichloroethene	50.0	48.70	ug/L	97	75 - 125	
trans-1,3-Dichloropropene	50.0	50.73	ug/L	101	66 - 125	
1,2,4-Trichlorobenzene	50.0	44.77	ug/L	90	75 - 135	
1,1,1-Trichloroethane	50.0	52.80	ug/L	106	70 - 130	
1,1,2-Trichloroethane	50.0	50.81	ug/L	102	75 - 130	
Trichloroethene	50.0	47.40	ug/L	95	75 - 135	
Vinyl acetate	250	286.5	ug/L	115	60 - 140	

Eurofins Dallas

2

3

4

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 860-237654/3

Matrix: Water

Analysis Batch: 237654

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 870-36460-1

	Spike	LCS	LUS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride	50.0	53.16		ug/L		106	60 - 140	
Naphthalene	0.0500	0.04601		mg/L		92	70 - 130	
m,p-Xylenes	0.0500	0.05026		mg/L		101	75 - 125	
o-Xylene	0.0500	0.04954		mg/L		99	75 - 125	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		74 - 124
Dibromofluoromethane (Surr)	106		75 - 131
1,2-Dichloroethane-d4 (Surr)	106		63 - 144
Toluene-d8 (Surr)	101		80 - 120

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 237654

Lab Sample ID: LCSD 860-237654/4

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	0.250	0.2321		mg/L		93	60 - 140	4	25
Acrolein	250	214.5		ug/L		86	60 - 140	3	25
Acrylonitrile	500	526.1		ug/L		105	60 - 140	3	25
Benzene	50.0	49.54		ug/L		99	75 - 125	2	25
Bromochloromethane	0.0500	0.05292		mg/L		106	60 - 140	1	25
Bromodichloromethane	50.0	50.60		ug/L		101	75 - 125	1	25
Bromoform	50.0	44.81		ug/L		90	70 - 130	0	25
Bromomethane	50.0	52.71		ug/L		105	60 - 140	1	25
2-Butanone	250	242.4		ug/L		97	60 - 140	1	25
Carbon tetrachloride	50.0	48.52		ug/L		97	70 - 125	5	25
Chlorobenzene	50.0	48.76		ug/L		98	82 - 135	1	25
Chloroethane	50.0	55.18		ug/L		110	60 - 140	1	25
2-Chloroethyl vinyl ether	50.0	45.90		ug/L		92	50 - 150	2	25
Chloroform	50.0	54.44		ug/L		109	70 - 121	3	25
Chloromethane	50.0	53.54		ug/L		107	60 - 140	0	25
cis-1,3-Dichloropropene	50.0	55.52		ug/L		111	74 - 125	2	25
Dibromochloromethane	50.0	46.98		ug/L		94	73 - 125	1	25
1,2-Dibromoethane	50.0	48.61		ug/L		97	73 - 125	1	25
1,2-Dichlorobenzene	50.0	48.12		ug/L		96	75 - 125	1	25
1,3-Dichlorobenzene	50.0	48.12		ug/L		96	75 - 125	1	25
1,4-Dichlorobenzene	50.0	47.40		ug/L		95	75 - 125	2	25
1,1-Dichloroethane	50.0	51.44		ug/L		103	71 - 130	6	25
1,2-Dichloroethane	50.0	52.87		ug/L		106	72 - 130	0	25
1,1-Dichloroethene	50.0	50.93		ug/L		102	50 - 150	5	25
1,2-Dichloropropane	50.0	51.45		ug/L		103	74 - 125	0	25
Ethylbenzene	50.0	49.59		ug/L		99	75 - 125	3	25
Methylene Chloride	50.0	54.00		ug/L		108	71 - 125	10	25
MTBE	0.0500	0.04768		mg/L		95	65 - 135	1	25
1,1,2,2-Tetrachloroethane	50.0	51.27		ug/L		103	74 - 125	1	25
Tetrachloroethene	50.0	44.07		ug/L		88	71 - 125	3	25
Toluene	50.0	49.36		ug/L		99	75 - 130	2	25
trans-1,2-Dichloroethene	50.0	47.34		ug/L		95	75 ₋ 125	3	25

Eurofins Dallas

Page 24 of 63

3

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Job ID: 870-36460-1

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 860-237654/4

Matrix: Water

Analysis Batch: 237654

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
trans-1,3-Dichloropropene	50.0	50.12		ug/L		100	66 - 125	1	25
1,2,4-Trichlorobenzene	50.0	43.58		ug/L		87	75 - 135	3	25
1,1,1-Trichloroethane	50.0	50.47		ug/L		101	70 - 130	4	25
1,1,2-Trichloroethane	50.0	49.45		ug/L		99	75 - 130	3	25
Trichloroethene	50.0	45.82		ug/L		92	75 - 135	3	25
Vinyl acetate	250	262.5		ug/L		105	60 - 140	9	25
Vinyl chloride	50.0	50.98		ug/L		102	60 - 140	4	25
Naphthalene	0.0500	0.04577		mg/L		92	70 - 130	1	25
m,p-Xylenes	0.0500	0.04908		mg/L		98	75 - 125	2	25
o-Xylene	0.0500	0.04864		mg/L		97	75 - 125	2	25

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		74 - 124
Dibromofluoromethane (Surr)	107		75 - 131
1,2-Dichloroethane-d4 (Surr)	107		63 - 144
Toluene-d8 (Surr)	102		80 - 120

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-240475/1-A

Matrix: Water

Analysis Batch: 240863

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 240475

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2-Fluorobiphenyl (Surr) 94 29 - 112 06/05/25 13:10 06/06/25 19:08 2-Fluorophenol (Surr) 77 28 - 114 06/05/25 13:10 06/06/25 19:08 Nitrobenzene-d5 (Surr) 96 15 - 314 06/05/25 13:10 06/06/25 19:08 67 Phenol-d5 (Surr) 8-424 06/05/25 13:10 06/06/25 19:08 p-Terphenyl-d14 (Surr) 103 20 - 141 06/05/25 13:10 06/06/25 19:08 2,4,6-Tribromophenol (Surr) 89 31 - 132 06/05/25 13:10 06/06/25 19:08

Method: 625.1 - Semivolatile Organic Compounds (GC-MS/MS)

MB MB

Lab Sample ID: MB 860-238065/1-A

Matrix: Water

Analysis Batch: 238438

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 238065

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Guthion	<0.0162	U	0.0571	0.0162	ug/L		05/27/25 06:34	05/28/25 12:48	1
Diazinon	<0.0148	U	0.114	0.0148	ug/L		05/27/25 06:34	05/28/25 12:48	1
Demeton, Total	<0.0168	U	0.0571	0.0168	ug/L		05/27/25 06:34	05/28/25 12:48	1
Disulfoton	<0.203	U	0.571	0.203	ug/L		05/27/25 06:34	05/28/25 12:48	1
Malathion	<0.0150	U	0.0571	0.0150	ug/L		05/27/25 06:34	05/28/25 12:48	1
Methyl parathion	<0.319	U	0.571	0.319	ug/L		05/27/25 06:34	05/28/25 12:48	1
Ethyl Parathion	<0.0502	U	0.114	0.0502	ug/L		05/27/25 06:34	05/28/25 12:48	1
Chlorpyrifos	< 0.0159	U	0.0571	0.0159	ug/L		05/27/25 06:34	05/28/25 12:48	1

Eurofins Dallas

Page 25 of 63

2

3

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Job ID: 870-36460-1

Method: 625.1 - Semivolatile Organic Compounds (GC-MS/MS) (Continued)

Lab Sample ID: MB 860-238065/1-A

Lab Sample ID: LCS 860-238065/2-A

Matrix: Water

Matrix: Water

Analysis Batch: 238438

Bis(2-ethylhexyl) phthalate

4-Bromophenyl phenyl ether

Butyl benzyl phthalate

2-Chloronaphthalene

4-Chloro-3-methylphenol

Bisphenol-A

Analysis Batch: 238438

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 238065

	MB MB				
Surrogate	%Recovery Qual	ifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	80	43 - 130	05/27/25 06:34	05/28/25 12:48	1
2-Fluorobiphenyl (Surr)	80	43 - 130	05/27/25 06:34	05/28/25 12:48	1
2-Fluorophenol (Surr)	88	19 - 120	05/27/25 06:34	05/28/25 12:48	1
Nitrobenzene-d5 (Surr)	67	37 - 133	05/27/25 06:34	05/28/25 12:48	1
Phenol-d5 (Surr)	63	8 - 124	05/27/25 06:34	05/28/25 12:48	1
p-Terphenyl-d14 (Surr)	77	47 - 130	05/27/25 06:34	05/28/25 12:48	1
2,4,6-Tribromophenol (Surr)	73	35 - 130	05/27/25 06:34	05/28/25 12:48	1

Client Sample ID: Lab Control Sample

86

98

100

101

96

103

43 - 137

39 - 130

70 - 130

43 - 140

68 - 130

70 - 130

Prep Type: Total/NA

Prep Batch: 238065 %Rec

•	Spike	LCS L	_CS				%Rec	
Analyte	Added	Result (Qualifier	Unit	D	%Rec	Limits	
Acenaphthene		5.209		ug/L		91	70 - 130	
Acenaphthylene	5.71	6.060		ug/L		106	60 - 130	
Anthracene	5.71	5.437		ug/L		95	58 - 130	
Azobenzene	5.71	5.914		ug/L		104	63 - 130	
Benzidine	5.71	2.276 J	J	ug/L		40	11 - 110	
Benzo[a]anthracene	5.71	5.463		ug/L		96	42 - 133	
Benzo[a]pyrene	5.71	5.189		ug/L		91	32 - 148	
Benzo[b]fluoranthene	5.71	5.535		ug/L		97	42 - 140	
Benzo[g,h,i]perylene	5.71	5.393		ug/L		94	13 - 195	
Benzo[k]fluoranthene	5.71	5.132		ug/L		90	25 - 146	
Bis(2-chloroethoxy)methane	5.71	4.863		ug/L		85	52 - 164	
Bis(2-chloroethyl)ether	5.71	4.632		ug/L		81	52 - 130	

5.71

5.71

5.71

5.71

5.71

5.71

4.898

5.588

5.743

5.750

5.466

5.866

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

2 3

4

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Job ID: 870-36460-1

Method: 625.1 - Semivolatile Organic Compounds (GC-MS/MS) (Continued)

Lab Sample ID: LCS 860-238065/2-A

Matrix: Water

Analysis Batch: 238438

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 238065

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluorene	5.71	5.343		ug/L		93	70 - 130	
Hexachlorobenzene	5.71	5.435		ug/L		95	38 - 142	
Hexachlorobutadiene	5.71	5.560		ug/L		97	68 - 130	
Hexachlorocyclopentadiene	5.71	6.602		ug/L		116	10 - 130	
Hexachloroethane	5.71	5.520		ug/L		97	55 - 130	
Indeno[1,2,3-cd]pyrene	5.71	5.474		ug/L		96	13 - 151	
Isophorone	5.71	5.198		ug/L		91	52 - 180	
2-Methylphenol	5.71	5.065		ug/L		89	14 - 176	
3 & 4 Methylphenol	5.71	5.161		ug/L		90	22 - 130	
Naphthalene	5.71	5.454		ug/L		95	70 - 130	
Nitrobenzene	5.71	5.546		ug/L		97	54 - 158	
2-Nitrophenol	5.71	5.351		ug/L		94	61 - 163	
4-Nitrophenol	5.71	6.054		ug/L		106	35 - 130	
N-Nitrosodiethylamine	5.71	4.726		ug/L		83	54 - 130	
N-Nitrosodimethylamine	5.71	5.709		ug/L		100	30 - 130	
N-Nitrosodi-n-butylamine	5.71	6.371		ug/L		111	58 - 130	
N-Nitrosodi-n-propylamine	5.71	5.533		ug/L		97	59 - 170	
N-Nitrosodiphenylamine	5.71	5.531		ug/L		97	60 - 130	
2,2'-oxybis[1-chloropropane]	5.71	4.824		ug/L		84	63 - 139	
Pentachlorobenzene	5.71	5.530		ug/L		97	47 - 130	
Pentachlorophenol	5.71	7.362		ug/L		129	42 - 152	
Phenanthrene	5.71	5.426		ug/L		95	67 - 130	
Phenol	5.71	4.346		ug/L		76	48 - 130	
Pyrene	5.71	5.367		ug/L		94	70 - 130	
Pyridine	5.71	2.552	J	ug/L		45	1 - 126	
1,2,4,5-Tetrachlorobenzene	5.71	5.946		ug/L		104	52 - 130	
1,2,4-Trichlorobenzene	5.71	5.568		ug/L		97	61 - 130	
2,4,5-Trichlorophenol	5.71	6.029		ug/L		106	35 - 130	
2,4,6-Trichlorophenol	5.71	6.088		ug/L		107	69 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	79	-	43 - 130
2-Fluorobiphenyl (Surr)	79		43 - 130
2-Fluorophenol (Surr)	77		19 - 120
Nitrobenzene-d5 (Surr)	68		37 - 133
Phenol-d5 (Surr)	61		8 - 124
p-Terphenyl-d14 (Surr)	73		47 - 130
2,4,6-Tribromophenol (Surr)	76		35 - 130

Lab Sample ID: LCS 860-238065/4-A

Matrix: Water

Analysis Batch: 238438

Client Sample	ID: Lab	Control	Sample
---------------	---------	---------	--------

Prep Type: Total/NA

Prep Batch: 238065

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Disulfoton	4.29	3.341		ug/L		78	38 - 134	
Methyl parathion	4.29	3.274		ug/L		76	26 - 159	
Ethyl Parathion	4.29	3.062		ug/L		71	25 - 173	

Eurofins Dallas

2

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Job ID: 870-36460-1

Method: 625.1 - Semivolatile Organic Compounds (GC-MS/MS) (Continued)

Lab Sample ID: LCS 860-238065/4-A

Matrix: Water

Analysis Batch: 238438

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 238065

LCS LCS

Surrogate	%Recovery Qualifie		Limits
2-Fluorobiphenyl	84		43 - 130
2-Fluorobiphenyl (Surr)	84		43 - 130
2-Fluorophenol (Surr)	83		19 - 120
Nitrobenzene-d5 (Surr)	74		37 - 133
Phenol-d5 (Surr)	66		8 - 124
p-Terphenyl-d14 (Surr)	74		47 - 130
2,4,6-Tribromophenol (Surr)	81		35 - 130

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 238065

Lab Sample ID: LCS 860-238065/6-A

Lab Sample ID: LCSD 860-238065/3-A

Matrix: Water

Matrix: Water

Analysis Batch: 238438

l		Spike	LCS	LCS				%Rec	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Guthion	2.86	1.541	*_	ug/L	_	54	70 - 200	
I	Diazinon	2.86	1.558		ug/L		55	37 - 130	
	Demeton-O	0.857	0.4348		ug/L		51	50 - 150	
ı	Malathion	2.86	1.600		ug/L		56	50 - 150	
	Chlorpyrifos	2.86	1.188		ug/L		42	34 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	61		43 - 130
2-Fluorobiphenyl (Surr)	61		43 - 130
2-Fluorophenol (Surr)	64		19 - 120
Nitrobenzene-d5 (Surr)	53		37 - 133
Phenol-d5 (Surr)	47		8 - 124
p-Terphenyl-d14 (Surr)	54		47 - 130
2,4,6-Tribromophenol (Surr)	48		35 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 238065

Analysis Batch: 238438 Spike LCSD LCSD %Rec RPD Added Result Qualifier %Rec Limits **RPD** Limit Analyte Unit 5.71 5.179 91 70 - 130 29 Acenaphthene ug/L 5.71 107 Acenaphthylene 6.097 ug/L 60 - 130 30 Anthracene 5.71 5.597 ug/L 98 58 - 130 30 Azobenzene 5.71 5.989 105 63 - 130 30 ug/L Benzidine 5.71 2.445 J ug/L 43 11 - 110 30 Benzo[a]anthracene 5.71 5.499 ug/L 96 42 - 133 30 Benzo[a]pyrene 5.71 5.083 ug/L 89 32 - 148 30 ug/L Benzo[b]fluoranthene 5.71 5.657 99 42 - 140 2 30 ug/L 92 13 - 195 2 30 Benzo[g,h,i]perylene 5.71 5.275 Benzo[k]fluoranthene 5.71 5.264 ug/L 92 25 - 146 30 Bis(2-chloroethoxy)methane 5.71 52 - 164 4.777 ug/L 84 30 Bis(2-chloroethyl)ether 5.71 80 52 - 130 30 4.551 ug/L Bis(2-ethylhexyl) phthalate 5.71 5.107 ug/L 89 43 - 137 30 Bisphenol-A 5.71 5.737 100 39 - 130 30 ug/L 100 70 - 130 26 4-Bromophenyl phenyl ether 5.71 5.686 ug/L

Eurofins Dallas

Page 28 of 63

2

3

4

5

6/11/2025

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Job ID: 870-36460-1

Method: 625.1 - Semivolatile Organic Compounds (GC-MS/MS) (Continued)

Lab Sample ID: LCSD 860-238065/3-A

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

i ieb i	ype. iot	aiiiA
Prep I	Batch: 23	38065
%Rec		RPD
Limita	DDD	Limit

%Rec		RPD
Limits	RPD	Limit
43 - 140	2	30

ľ		,	
	7	4	
	Ц		

2

3

8

Spike Added 5.71 5.71 5.71 5.71 5.71	5.844 5.603 5.919	CCSD Qualifier Unit ug/L ug/L	<u>D</u> %Rec	%Rec Limits 43 - 140	RPD 2	RPD Limit
5.71 5.71 5.71 5.71 5.71	5.844 5.603	ug/L				
5.71 5.71 5.71 5.71	5.603			43 - 140	2	30
5.71 5.71 5.71		ua/L				30
5.71 5.71	5.919		98	68 - 130	2	30
5.71		ug/L	104	70 - 130	1	15
	5.158	ug/L	90	55 - 130	1	30
	5.000	ug/L	88	57 - 145	1	30
5.71	5.270	ug/L	92	44 - 140	1	30
5.71	5.506	ug/L	96	13 - 200	2	30
5.71	4.042	ug/L	71	18 - 200	2	30
5.71	6.542	ug/L	114	64 - 130	0	30
5.71	5.305	ug/L	93	47 - 130	3	30
5.71	5.107	ug/L	89	58 - 130	1	30
5.71	6.136	ug/L	107	50 - 130	1	30
5.71	4.842	ug/L	85	52 - 130	2	28
5.71	6.269	ug/L	110	56 - 130	1	30
5.71	7.957	ug/L	139	39 - 173	0	30
5.71	6.250	ug/L	109	53 - 130	4	25
5.71	6.537	ug/L	114	68 - 137	3	29
5.71	6.022	ug/L	105	21 - 132	3	30
5.71	6.372	ug/L	112	48 - 130	2	30
5.71	5.970	ug/L	104	47 - 130	1	30
5.71	5.386	_	94	70 - 130	1	23
5.71	5.349		94	38 - 142	2	30
5.71	5.551		97	68 - 130	0	30
5.71		_	115	10 - 130	1	30
5.71			97	55 - 130	0	30
5.71		-	95	13 - 151	1	30
5.71			91	52 - 180	1	30
5.71			90	14 - 176	1	30
					1	30
			94		1	30
						30
						30
						30
						30
						30
		-				30
						30
					•	30
		-				30
						30
						30
						24
						30
		_				30
						30
		=				30
		_				30
						30
	5.71 5.71 5.71 5.71 5.71 5.71 5.71 5.71	5.71 5.506 5.71 4.042 5.71 6.542 5.71 5.305 5.71 5.107 5.71 6.136 5.71 4.842 5.71 6.269 5.71 6.250 5.71 6.537 5.71 6.372 5.71 5.970 5.71 5.386 5.71 5.349 5.71 5.540 5.71 5.547 5.71 5.547 5.71 5.405 5.71 5.440 5.71 5.391 5.71 5.381 5.71 5.381 5.71 5.381 5.71 5.405 5.71 5.430 5.71 5.440 5.71 5.492 5.71 5.493 5.71 5.493 5.71 5.493 5.71 5.493 5.71 5.493 5.71 5.463 5.71 5.481	5.71 5.506 ug/L 5.71 4.042 ug/L 5.71 6.542 ug/L 5.71 5.305 ug/L 5.71 5.107 ug/L 5.71 5.107 ug/L 5.71 6.136 ug/L 5.71 6.136 ug/L 5.71 6.269 ug/L 5.71 6.269 ug/L 5.71 6.250 ug/L 5.71 6.250 ug/L 5.71 6.537 ug/L 5.71 6.537 ug/L 5.71 6.537 ug/L 5.71 6.372 ug/L 5.71 5.970 ug/L 5.71 5.386 ug/L 5.71 5.349 ug/L 5.71 5.349 ug/L 5.71 5.546 ug/L 5.71 5.547 ug/L 5.71 5.405 ug/L 5.71 5.17 ug/L 5.71 5.391 ug/L 5.71	5.71 5.506 ug/L 96 5.71 4.042 ug/L 71 5.71 6.542 ug/L 114 5.71 5.305 ug/L 93 5.71 5.107 ug/L 89 5.71 6.136 ug/L 107 5.71 6.136 ug/L 110 5.71 6.269 ug/L 110 5.71 7.957 ug/L 139 5.71 6.269 ug/L 109 5.71 6.250 ug/L 109 5.71 6.537 ug/L 105 5.71 6.537 ug/L 105 5.71 6.372 ug/L 105 5.71 6.372 ug/L 105 5.71 5.970 ug/L 104 5.71 5.386 ug/L 94 5.71 5.349 ug/L 97 5.71 5.547 ug/L 97 5.71 5.546 ug/L 91 5.71 5.405 ug	5.71 5.506 ug/L 96 13-200 5.71 4.042 ug/L 71 18-200 5.71 6.542 ug/L 114 64-130 5.71 5.305 ug/L 93 47-130 5.71 5.107 ug/L 89 58-130 5.71 6.136 ug/L 107 50-130 5.71 6.136 ug/L 110 56-130 5.71 6.269 ug/L 110 56-130 5.71 6.260 ug/L 109 53-130 5.71 6.250 ug/L 109 53-130 5.71 6.537 ug/L 114 68-137 5.71 6.372 ug/L 105 21-132 5.71 5.370 ug/L 104 47-130 5.71 5.366 ug/L 104 47-130 5.71 5.349 ug/L 104 47-130 5.71 5.547 ug/L	5.71 5.506 ug/L 96 13.200 2 5.71 4.042 ug/L 71 18.200 2 5.71 6.542 ug/L 114 64.130 0 5.71 5.305 ug/L 93 47.130 3 5.71 5.107 ug/L 89 58.130 1 5.71 6.136 ug/L 107 50.130 1 5.71 6.136 ug/L 110 56.130 1 5.71 6.269 ug/L 110 56.130 1 5.71 6.250 ug/L 109 53.130 4 5.71 6.537 ug/L 109 53.130 4 5.71 6.372 ug/L 104 47.130 1 5.71 5.386 ug/L 94 70.130 1 5.71 5.349 ug/L 94 38.142 2 5.71 5.340 ug/L 97

Eurofins Dallas

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Job ID: 870-36460-1

Method: 625.1 - Semivolatile Organic Compounds (GC-MS/MS) (Continued)

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	78		43 - 130
2-Fluorobiphenyl (Surr)	78		43 - 130
2-Fluorophenol (Surr)	78		19 - 120
Nitrobenzene-d5 (Surr)	69		37 - 133
Phenol-d5 (Surr)	62		8 - 124
p-Terphenyl-d14 (Surr)	73		47 - 130
2,4,6-Tribromophenol (Surr)	80		35 - 130

Lab Sample ID: LCSD 860-238065/5-A

Matrix: Water

Analysis Batch: 238438

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 238065

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit Disulfoton 4.29 3.073 72 38 - 134 8 30 ug/L 4.29 Methyl parathion 3.021 ug/L 70 26 - 159 8 30 **Ethyl Parathion** 4.29 2.846 ug/L 25 - 173 30

LCSD LCSD %Recovery Qualifier Surrogate Limits 2-Fluorobiphenyl 80 43 - 130 2-Fluorobiphenyl (Surr) 80 43 - 130 2-Fluorophenol (Surr) 80 19 - 120 Nitrobenzene-d5 (Surr) 71 37 - 133 Phenol-d5 (Surr) 8 - 124 63 p-Terphenyl-d14 (Surr) 72 47 - 130 2,4,6-Tribromophenol (Surr) 73 35 - 130

Lab Sample ID: LCSD 860-238065/7-A

Matrix: Water

Analysis Batch: 238438

Client Sample ID: L	ab Control	Sample Dup
		- 4 1/51.6

Prep Type: Total/NA Prep Batch: 238065

RPD %Rec

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Guthion	2.86	1.648	*_	ug/L		58	70 - 200	7	30
Diazinon	2.86	1.730		ug/L		61	37 - 130	10	30
Demeton-O	0.857	0.4927		ug/L		57	50 - 150	12	30
Malathion	2.86	1.913		ug/L		67	50 - 150	18	30
Chlorpyrifos	2.86	1.449		ug/L		51	34 - 130	20	30
,	CSD ICSD								

Spike

LCSD LCSD

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	67		43 - 130
2-Fluorobiphenyl (Surr)	67		43 - 130
2-Fluorophenol (Surr)	75		19 - 120
Nitrobenzene-d5 (Surr)	59		37 - 133
Phenol-d5 (Surr)	52		8 - 124
p-Terphenyl-d14 (Surr)	66		47 - 130
2,4,6-Tribromophenol (Surr)	57		35 - 130

3

6

9

10

13

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Job ID: 870-36460-1

Method: 625.1 - Semivolatile Organic Compounds (GC-MS/MS) - RA

Lab Sample ID: MB 860-238065/1-A

Matrix: Water

Analysis Batch: 240233

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 238065

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Demeton, Total - RA	<0.0168	U	0.0571	0.0168	ug/L		05/27/25 06:34	06/04/25 18:06	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl - RA	82		43 - 130				05/27/25 06:34	06/04/25 18:06	1
2-Fluorobiphenyl (Surr) - RA	82		43 - 130				05/27/25 06:34	06/04/25 18:06	1
2-Fluorophenol (Surr) - RA	69		19 - 120				05/27/25 06:34	06/04/25 18:06	1
Nitrobenzene-d5 (Surr) - RA	88		37 - 133				05/27/25 06:34	06/04/25 18:06	1
Phenol-d5 (Surr) - RA	66		8 - 124				05/27/25 06:34	06/04/25 18:06	1
p-Terphenyl-d14 (Surr) - RA	70		47 - 130				05/27/25 06:34	06/04/25 18:06	1
2,4,6-Tribromophenol (Surr) - RA	89		35 - 130				05/27/25 06:34	06/04/25 18:06	1

Lab Sample ID: LCS 860-238065/6-A

Matrix: Water

Analysis Batch: 240233

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 238065 %Rec

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits Demeton-O - RA 0.857 0.6233 73 50 - 150 ug/L Demeton-S - RA 2.00 0.8699 *ug/L 43 50 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl - RA	59		43 - 130
2-Fluorobiphenyl (Surr) - RA	59		43 - 130
2-Fluorophenol (Surr) - RA	53		19 - 120
Nitrobenzene-d5 (Surr) - RA	60		37 - 133
Phenol-d5 (Surr) - RA	53		8 - 124
p-Terphenyl-d14 (Surr) - RA	52		47 - 130
2,4,6-Tribromophenol (Surr) - RA	64		35 - 130

Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 240233

Lab Sample ID: LCSD 860-238065/7-A

Prep Type: Total/NA Prep Batch: 238065

LCSD LCSD Spike %Rec **RPD** Analyte Added Limits RPD Limit Result Qualifier Unit D %Rec Demeton-O - RA 0.857 0.6853 ug/L 50 - 150 9 30 80 Demeton-S - RA 2.00 0.9776 *ug/L 49 50 - 150 30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl - RA	67		43 - 130
2-Fluorobiphenyl (Surr) - RA	67		43 - 130
2-Fluorophenol (Surr) - RA	60		19 - 120
Nitrobenzene-d5 (Surr) - RA	67		37 - 133
Phenol-d5 (Surr) - RA	61		8 - 124
p-Terphenyl-d14 (Surr) - RA	56		47 - 130
2,4,6-Tribromophenol (Surr) -	71		35 - 130

Eurofins Dallas

3

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Job ID: 870-36460-1

Method: 608.3 - Organochlorine Pesticides in Water

Lab Sample ID: MB 860-238461/1-A

Matrix: Water

Analysis Batch: 238719

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 238461

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<0.00125	U	0.0100	0.00125	ug/L		05/28/25 11:34	05/29/25 09:17	1
alpha-BHC	< 0.000625	U	0.00500	0.000625	ug/L		05/28/25 11:34	05/29/25 09:17	1
beta-BHC	<0.00125	U	0.0100	0.00125	ug/L		05/28/25 11:34	05/29/25 09:17	1
delta-BHC	<0.00250	U	0.0200	0.00250	ug/L		05/28/25 11:34	05/29/25 09:17	1
gamma-BHC (Lindane)	<0.00344	U	0.0100	0.00344	ug/L		05/28/25 11:34	05/29/25 09:17	1
4,4'-DDD	<0.00250	U	0.0200	0.00250	ug/L		05/28/25 11:34	05/29/25 09:17	1
4,4'-DDE	<0.00125	U	0.0100	0.00125	ug/L		05/28/25 11:34	05/29/25 09:17	1
4,4'-DDT	<0.00250	U	0.0200	0.00250	ug/L		05/28/25 11:34	05/29/25 09:17	1
Dieldrin	< 0.000625	U	0.00500	0.000625	ug/L		05/28/25 11:34	05/29/25 09:17	1
Endosulfan I	<0.00125	U	0.0100	0.00125	ug/L		05/28/25 11:34	05/29/25 09:17	1
Endosulfan II	<0.00125	U	0.0100	0.00125	ug/L		05/28/25 11:34	05/29/25 09:17	1
Endosulfan sulfate	< 0.00559	U	0.0500	0.00559	ug/L		05/28/25 11:34	05/29/25 09:17	1
Endrin	<0.00250	U	0.0200	0.00250	ug/L		05/28/25 11:34	05/29/25 09:17	1
Endrin aldehyde	<0.00592	U	0.0500	0.00592	ug/L		05/28/25 11:34	05/29/25 09:17	1
Dicofol	<0.000500	U	0.000500	0.000500	mg/L		05/28/25 11:34	05/29/25 09:17	1
Heptachlor	<0.00169	U	0.00500	0.00169	ug/L		05/28/25 11:34	05/29/25 09:17	1
Heptachlor epoxide	<0.00125	U	0.0100	0.00125	ug/L		05/28/25 11:34	05/29/25 09:17	1
Toxaphene	<0.0780	U	0.200	0.0780	ug/L		05/28/25 11:34	05/29/25 09:17	1
Chlordane	<0.0250	U	0.200	0.0250	ug/L		05/28/25 11:34	05/29/25 09:17	1
Methoxychlor	<0.0000125	U	0.000100	0.0000125	mg/L		05/28/25 11:34	05/29/25 09:17	1

MB MB

<0.0000200 U

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	100		15 - 136	05/28/25 11:34 05/29/25 09:17	1
Tetrachloro-m-xylene	105		18 - 126	05/28/25 11:34 05/29/25 09:17	1

0.0000200 0.0000200 mg/L

Lab Sample ID: LCS 860-238461/2-A

Matrix: Water

Mirex

Client Sample ID: Lab Control Sample Prep Type: Total/NA

05/28/25 11:34 05/29/25 09:17

Analysis Batch: 238719 Prep Batch: 238461 Spike LCS LCS %Rec **Analyte** Added Result Qualifier Unit %Rec Limits Aldrin 0.100 0.08684 ug/L 87 42 - 140 alpha-BHC 0.100 0.08653 ug/L 87 37 - 140 beta-BHC 0.100 0.09726 97 ug/L 17 - 147delta-BHC 0.100 0.04853 49 19 - 140 ug/L gamma-BHC (Lindane) 0.100 0.08986 ug/L 90 34 - 140 4,4'-DDD 0.100 0.08908 89 ug/L 31 - 1414,4'-DDE 0.100 0.09067 ug/L 91 30 - 145 4,4'-DDT 0.100 0.09147 ug/L 91 25 - 160 Dieldrin 0.100 0.09063 ug/L 91 36 - 146 Endosulfan I 0.100 0.09328 ug/L 93 45 - 153 Endosulfan II 87 0.100 0.08734 ug/L 22 - 171 Endosulfan sulfate 0.100 0.07687 ug/L 77 26 - 144 0.100 121 30 - 147 Endrin 0.1211 ug/L Endrin aldehyde 0.100 0.06765 ug/L 68 60 - 130 Heptachlor 0.100 0.1000 ug/L 100 34 - 140 Heptachlor epoxide 0.100 0.09409 94 37 - 142 ug/L 0.000100 0.00009575 J 50 - 130 Methoxychlor 96 mg/L

Eurofins Dallas

Page 32 of 63

2

3

4 5

6

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Job ID: 870-36460-1

Method: 608.3 - Organochlorine Pesticides in Water (Continued)

Lab Sample ID: LCS 860-238461/2-A

Lab Sample ID: LCSD 860-238461/3-A

Matrix: Water

Analysis Batch: 238719

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 238461

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	99		15 - 136
Tetrachloro-m-xylene	101		18 - 126

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 238461

Matrix: Water

Analysis Batch: 238719

Alialysis Datoli. 2007 19							i ieb De	ALCII. Z	JUTUI
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aldrin	0.100	0.08552		ug/L		86	42 - 140	2	30
alpha-BHC	0.100	0.08564		ug/L		86	37 - 140	1	30
beta-BHC	0.100	0.09510		ug/L		95	17 - 147	2	30
delta-BHC	0.100	0.04744		ug/L		47	19 - 140	2	30
gamma-BHC (Lindane)	0.100	0.08835		ug/L		88	34 - 140	2	30
4,4'-DDD	0.100	0.08665		ug/L		87	31 - 141	3	30
4,4'-DDE	0.100	0.08913		ug/L		89	30 - 145	2	30
4,4'-DDT	0.100	0.08889		ug/L		89	25 - 160	3	30
Dieldrin	0.100	0.08833		ug/L		88	36 - 146	3	30
Endosulfan I	0.100	0.09163		ug/L		92	45 - 153	2	30
Endosulfan II	0.100	0.08525		ug/L		85	22 - 171	2	30
Endosulfan sulfate	0.100	0.07508		ug/L		75	26 - 144	2	30
Endrin	0.100	0.1177		ug/L		118	30 - 147	3	30
Endrin aldehyde	0.100	0.06831		ug/L		68	60 - 130	1	30
Heptachlor	0.100	0.09819		ug/L		98	34 - 140	2	30
Heptachlor epoxide	0.100	0.09211		ug/L		92	37 - 142	2	30
Methoxychlor	0.000100	0.00009309	J	mg/L		93	50 - 130	3	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	95		15 - 136
Tetrachloro-m-xylene	98		18 - 126

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Lab Sample ID: MB 860-238461/1-A Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 238721

ı		MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	PCB-1016	<0.0443	U	0.100	0.0443	ug/L		05/28/25 11:34	05/29/25 10:45	1
I	PCB-1242	< 0.0443	U	0.100	0.0443	ug/L		05/28/25 11:34	05/29/25 10:45	1
	PCB-1254	< 0.0390	U	0.100	0.0390	ug/L		05/28/25 11:34	05/29/25 10:45	1
ı	PCB-1221	<0.0443	U	0.100	0.0443	ug/L		05/28/25 11:34	05/29/25 10:45	1
	PCB-1232	<0.0443	U	0.100	0.0443	ug/L		05/28/25 11:34	05/29/25 10:45	1
	PCB-1248	<0.0443	U	0.100	0.0443	ug/L		05/28/25 11:34	05/29/25 10:45	1
I	PCB-1260	<0.0390	U	0.100	0.0390	ug/L		05/28/25 11:34	05/29/25 10:45	1
	Polychlorinated biphenyls, Total	< 0.0390	U	0.100	0.0390	ug/L		05/28/25 11:34	05/29/25 10:45	1

мв мв

Eurofins Dallas

Prep Batch: 238461

Page 33 of 63 6/11/2025

3

2

4

6

8

9

11

12

14

Client: North Texas Municipal Water District Job ID: 870-36460-1

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC) (Continued)

Lab Sample ID: MB 860-238461/1-A **Matrix: Water**

Analysis Batch: 238721

MB MB

94

95

94

<0.0000539 U

<0.000808 U

%Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed DCB Decachlorobiphenyl (Surr) 92 15 - 136 05/28/25 11:34 05/29/25 10:45

Spike

Added

Limits

18 - 126

Added

15 - 136

1.00

1.00

1.00

Lab Sample ID: LCS 860-238461/4-A

Matrix: Water

PCB-1260

Analysis Batch: 238721

Analyte PCB-1016

LCS LCS Surrogate %Recovery Qualifier

Tetrachloro-m-xylene DCB Decachlorobiphenyl (Surr)

Lab Sample ID: LCSD 860-238461/5-A

Matrix: Water

Analyte PCB-1016

Analysis Batch: 238721

PCB-1260 1.00 LCSD LCSD Qualifier Limits Surrogate %Recovery 18 - 126 95

Tetrachloro-m-xylene DCB Decachlorobiphenyl (Surr)

Method: 615 - Herbicides (GC)

Lab Sample ID: MB 860-238206/1-A

Matrix: Water

Hexachlorophene

Analysis Batch: 238779

MB MB Analyte Result Qualifier 2,4-D

Silvex (2,4,5-TP) <0.0000422 U Dalapon <0.0000476 U Dicamba <0.0000423 U Dinoseb <0.0000343 U

Pentachlorophenol <0.0000443 U MB MB

Surrogate %Recovery Qualifier 2,4-Dichlorophenylacetic acid 0 S1-

15 - 136 Client Sample ID: Lab Control Sample Dup

0.9193

0.9273

LCS LCS

Result Qualifier

Unit

ug/L

ug/L

Spike LCSD LCSD

Result Qualifier 0.9119

0.9156

0.0000443 mg/L

ug/L ug/L

Unit

D %Rec

92

93

37 - 130

%Rec

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec

Limits

61 - 103

37 - 130

Prep Type: Total/NA

Prep Batch: 238461

Prep Type: Total/NA

Prep Batch: 238461

Prep Type: Total/NA

Prep Batch: 238461

D %Rec Limits RPD Limit 91 61 - 103 24 1 92 28

16

RPD

13

2

3

4

5

6

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 238206

RL MDL Unit Prepared Analyzed Dil Fac 0.000200 0.0000539 mg/L 05/27/25 14:20 05/29/25 19:56 0.00500 0.000808 mg/L 05/27/25 14:20 05/29/25 19:56 05/27/25 14:20 05/29/25 19:56 0.000200 0.0000422 mg/L 0.000200 0.0000476 mg/L 05/27/25 14:20 05/29/25 19:56 0.000200 0.0000423 mg/L 05/27/25 14:20 05/29/25 19:56 0.000200 0.0000343 mg/L 05/27/25 14:20 05/29/25 19:56

Limits 45 - 150

0.000200

Prepared

05/27/25 14:20 05/29/25 19:56

Analyzed Dil Fac 05/27/25 14:20 05/29/25 19:56

Eurofins Dallas

Page 34 of 63

6/11/2025

Client: North Texas Municipal Water District Job ID: 870-36460-1

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Method: 615 - Herbicides (GC) (Continued)

Lab Sample ID: LCS 860-238206/2-A

Analysis Batch: 238779

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

2

3

13

14

16

Prep Batch: 238206

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-D	0.00200	0.002815		mg/L		141	55 - 145	
Silvex (2,4,5-TP)	0.00200	0.003161	*+	mg/L		158	55 - 140	
Dalapon	0.00200	0.002662		mg/L		133	50 - 150	
Dicamba	0.00200	0.002996	*+	mg/L		150	55 - 135	
Dinoseb	0.00200	0.0005442		mg/L		27	20 - 100	
Pentachlorophenol	0.00200	0.002515		mg/L		126	50 - 135	

LCS LCS

Surrogate %Recovery Qualifier Limits 177 S1+ 45 - 150 2,4-Dichlorophenylacetic acid

Client Sample ID: Lab Control Sample

Matrix: Water

Hexachlorophene

Analyte

Analysis Batch: 238779

Lab Sample ID: LCS 860-238206/4-A

Prep Type: Total/NA

Prep Batch: 238206

Spike LCS LCS %Rec Added Result Qualifier Unit D Limits %Rec

0.00800 60 - 135 0.008338 mg/L 104

LCS LCS

%Recovery Qualifier Surrogate Limits 2,4-Dichlorophenylacetic acid 151 S1+ 45 - 150

Lab Sample ID: LCSD 860-238206/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 238779

Prep Type: Total/NA

Prep Batch: 238206

%Rec	RPD
Limits RPD	Limit
55 - 145 2	25
55 - 140 2	25
50 - 150 3	25
55 - 135 0	25
20 - 100 42	25
50 - 135 1	25
	Limits RPD 2 55 - 145 2 55 - 140 2 50 - 150 3 55 - 135 0 20 - 100 42

LCSD LCSD

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 183 S1+ 45 - 150

Lab Sample ID: LCSD 860-238206/5-A Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 238779

Prep Type: Total/NA

Prep Batch: 238206 %Rec **RPD**

Spike LCSD LCSD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Hexachlorophene 0.00800 0.008755 mg/L 109 60 - 135 5

LCSD LCSD

%Recovery Qualifier Limits 165 S1+ 45 - 150 2,4-Dichlorophenylacetic acid

Eurofins Dallas

Client: North Texas Municipal Water District Job ID: 870-36460-1

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Method: 8015D - Glycols- Direct Injection (GC/FID)

Lab Sample ID: MB 860-237761/10

Matrix: Water

Analysis Batch: 237761

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte D **Prepared** Analyzed 5.00 Ethylene glycol <1.22 U 1.22 mg/L 05/23/25 14:15 Propylene glycol <1.84 U 5.00 1.84 mg/L 05/23/25 14:15

Lab Sample ID: LCS 860-237761/4

Matrix: Water

Analysis Batch: 237761

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Ethylene glycol 50.2 45.70 mg/L 91 71 - 132 Propylene glycol 51.0 46.67 72 - 128 mg/L 92

Lab Sample ID: LCSD 860-237761/5 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 237761

Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Analyte Unit D %Rec Limits RPD Limit Ethylene glycol 50.2 49.04 98 71 - 132 7 30 mg/L 51.0 50.43 99 Propylene glycol mg/L 72 - 128 8 30

Method: 632 - Carbamate and Urea Pesticides (HPLC)

Lab Sample ID: MB 860-238365/1-A

Matrix: Water

Analysis Batch: 239697

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbaryl	<1.85	U	5.00	1.85	ug/L		05/28/25 05:49	06/02/25 16:13	1
Diuron	<0.0514	U	0.0900	0.0514	ug/L		05/28/25 05:49	06/02/25 16:13	1

Lab Sample ID: LCS 860-238365/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 239697

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Carbaryl	100	101.2		ug/L		101	70 - 130	
Diuron	2.00	2.009		ug/L		100	70 - 130	

Lab Sample ID: LCSD 860-238365/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 239697							itch: 23	38365	
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Carbaryl	100	102.6		ug/L		103	70 - 130	1	20
Diuron	2.00	2.063		ug/L		103	70 - 130	3	20

Eurofins Dallas

6/11/2025

2

3

6

8

10

13

14

16

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 238365

Prep Batch: 238365

Prep Type: Total/NA

Client: North Texas Municipal Water District Job ID: 870-36460-1

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 860-237918/2-A

Matrix: Water

Analysis Batch: 238223

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 237918

Prep Batch: 237918

2

3

5

6

8

13

14

16

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 0.00400 05/23/25 20:19 05/27/25 13:06 Cr <0.000890 U 0.000890 mg/L

Lab Sample ID: LCS 860-237918/3-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable Analysis Batch: 238223 Prep Batch: 237918**

Spike LCS LCS %Rec

Added Result Qualifier D %Rec Limits Analyte Unit Cr 0.100 85 - 115 0.1020 mg/L 102

Lab Sample ID: LCSD 860-237918/4-A Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total Recoverable Analysis Batch: 238223 Prep Batch: 237918

Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Limits RPD Limit Analyte Unit %Rec Cr 0.100 0.1025 103 85 - 115 mg/L

Lab Sample ID: LLCS 860-237918/1-A **Client Sample ID: Lab Control Sample Prep Type: Total Recoverable**

Matrix: Water

Analysis Batch: 238223 Spike LLCS LLCS

%Rec Analyte Added Result Qualifier Unit %Rec Limits

0.00400 0.004419 mg/L 110 50 - 150

Method: 1664B - HEM and SGT-HEM

Lab Sample ID: MB 870-28860/1 **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 28860

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac HEM <1.14 U 5.00 1.14 mg/L 05/27/25 08:27 SGT-HEM <1.05 U 5.00 1.05 mg/L 05/27/25 08:27

Lab Sample ID: LCS 870-28860/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 28860

LCS LCS %Rec Spike Result Qualifier Added Limits Analyte Unit %Rec HEM 40.0 36.10 mg/L 90 78 - 114 64 - 132 SGT-HEM 20.0 16.10 mg/L 81

Lab Sample ID: LCSD 870-28860/3 Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 28860

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
HEM	 40.0	35.70		mg/L		89	78 - 114	1	11
SGT-HEM	20.0	15.90		ma/L		80	64 - 132	1	28

Eurofins Dallas

6/11/2025

Prep Type: Total/NA

Client: North Texas Municipal Water District Job ID: 870-36460-1 Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Method: 420.4 - Phenolics, Total Recoverable

Lab Sample ID: MB 860-238157/49 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 238157

MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte D Prepared Analyzed 10.0 05/23/25 19:20 Phenols, Total <5.80 U 5.80 ug/L

Lab Sample ID: LCS 860-238157/50 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 238157** Spike LCS LCS %Rec Added Result Qualifier D %Rec Limits Analyte Unit 100 104.2 Phenols, Total ug/L 104 90 - 110

Lab Sample ID: LCSD 860-238157/51 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 238157** Spike LCSD LCSD %Rec RPD Added Result Qualifier Limits RPD Analyte Unit %Rec Limit Phenols, Total 100 107.4 107 90 - 110 20 ug/L

Method: 4500 CN G NonAm - Cyanide, Non-amenable

Lab Sample ID: MB 860-238610/4-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 238882 Prep Batch: 238610** MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

Cyanide, Non-amenable <2.33 U 5.00 2.33 ug/L 05/28/25 16:26 05/29/25 13:18

Method: Kelada 01 - Cyanide, Total, Acid Dissociable and Thiocyanate

Analysis Batch: 238527 MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac

Cyanide, Total <0.00198 U 0.00500 0.00198 mg/L 05/27/25 19:55 Lab Sample ID: MB 860-238527/64 Client Sample ID: Method Blank **Matrix: Water**

Analysis Batch: 238527

Lab Sample ID: MB 860-238527/24

Matrix: Water

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Cyanide, Total <0.00198 U 0.00500 0.00198 mg/L 05/27/25 21:55

Lab Sample ID: LCS 860-238527/65 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 238527

LCS LCS Spike %Rec Added Limits Analyte Result Qualifier Unit %Rec 0.100 0.09009 90 Cyanide, Total 90 - 110 mg/L

Eurofins Dallas

Page 38 of 63

3

2

5 6

9

8

13

14

16

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Client: North Texas Municipal Water District Job ID: 870-36460-1

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Method: Kelada 01 - Cyanide, Total, Acid Dissociable and Thiocyanate (Continued)

Lab Sample ID: LCSD 860-238527/66	Client Sample ID: Lab Control Sample Dup
Matrix: Water	Prep Type: Total/NA

Matrix: Water

Analysis Batch: 238527

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cyanide, Total	0.100	0.09200		mg/L		92	90 - 110	2	20

Lab Sample ID: LLCS 860-238527/27 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 238527

Analysis Baton. 200021								
	Spike	LLCS	LLCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cyanide, Total	0.00500	0.005558	-	mg/L		111	50 - 150	

Method: SM 3500 CR B - Chromium, Hexavalent

Lab Sample ID: MB 870-28744/9 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 28744

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	<0.00280	U	0.0100	0.00280	mg/L			05/21/25 18:20	1

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 870-28744/10 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 28744

_	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier Un	it D	%Rec	Limits	
Chromium, hexavalent	0.499	0.5100	mg.	/L	102	85 - 115	

Lab Sample ID: 870-36460-2 MS Client Sample ID: 25220003-06 Effluent G Prep Type: Total/NA

Matrix: Water

Analysis Batch: 28744

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium, hexavalent	<0.00280	U	0.499	0.4811		mg/L		97	85 - 115	

Lab Sample ID: 870-36460-2 MSD Client Sample ID: 25220003-06 Effluent G **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 28744

•	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chromium, hexavalent	<0.00280	U	0.499	0.4823		mg/L		97	85 - 115	0	20

Eurofins Dallas

6/11/2025

Page 39 of 63

3

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

GC/MS VOA

Analysis Batch: 237654

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-1	25220003-03 Influent G	Total/NA	Water	624.1	
870-36460-2	25220003-06 Effluent G	Total/NA	Water	624.1	
MB 860-237654/9	Method Blank	Total/NA	Water	624.1	
LCS 860-237654/3	Lab Control Sample	Total/NA	Water	624.1	
LCSD 860-237654/4	Lab Control Sample Dup	Total/NA	Water	624.1	

GC/MS Semi VOA

Prep Batch: 238065

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-3	25220003-01 Influent TC	Total/NA	Water	3511	
870-36460-4	25220003-04 Effluent TC	Total/NA	Water	3511	
MB 860-238065/1-A - RA	Method Blank	Total/NA	Water	3511	
MB 860-238065/1-A	Method Blank	Total/NA	Water	3511	
LCS 860-238065/2-A	Lab Control Sample	Total/NA	Water	3511	
LCS 860-238065/4-A	Lab Control Sample	Total/NA	Water	3511	
LCS 860-238065/6-A - RA	Lab Control Sample	Total/NA	Water	3511	
LCS 860-238065/6-A	Lab Control Sample	Total/NA	Water	3511	
LCSD 860-238065/3-A	Lab Control Sample Dup	Total/NA	Water	3511	
LCSD 860-238065/5-A	Lab Control Sample Dup	Total/NA	Water	3511	
LCSD 860-238065/7-A - RA	Lab Control Sample Dup	Total/NA	Water	3511	
LCSD 860-238065/7-A	Lab Control Sample Dup	Total/NA	Water	3511	

Analysis Batch: 238438

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 860-238065/1-A	Method Blank	Total/NA	Water	625.1	238065
LCS 860-238065/2-A	Lab Control Sample	Total/NA	Water	625.1	238065
LCS 860-238065/4-A	Lab Control Sample	Total/NA	Water	625.1	238065
LCS 860-238065/6-A	Lab Control Sample	Total/NA	Water	625.1	238065
LCSD 860-238065/3-A	Lab Control Sample Dup	Total/NA	Water	625.1	238065
LCSD 860-238065/5-A	Lab Control Sample Dup	Total/NA	Water	625.1	238065
LCSD 860-238065/7-A	Lab Control Sample Dup	Total/NA	Water	625.1	238065

Analysis Batch: 238978

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-3	25220003-01 Influent TC	Total/NA	Water	625.1	238065
870-36460-4	25220003-04 Effluent TC	Total/NA	Water	625.1	238065

Analysis Batch: 240233

Lab Sample ID MB 860-238065/1-A - RA	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Water	Method 625.1	Prep Batch 238065
LCS 860-238065/6-A - RA	Lab Control Sample	Total/NA	Water	625.1	238065
LCSD 860-238065/7-A - RA	Lab Control Sample Dup	Total/NA	Water	625.1	238065

Analysis Batch: 240430

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-3	25220003-01 Influent TC	Total/NA	Water	625.1	240475
870-36460-4	25220003-04 Effluent TC	Total/NA	Water	625.1	240475

Eurofins Dallas

6/11/2025

Page 40 of 63

Job ID: 870-36460-1

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Job ID: 870-36460-1

GC/MS Semi VOA

Prep Batch: 240475

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-3	25220003-01 Influent TC	Total/NA	Water	625	
870-36460-4	25220003-04 Effluent TC	Total/NA	Water	625	
MB 860-240475/1-A	Method Blank	Total/NA	Water	625	

Analysis Batch: 240863

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 860-240475/1-A	Method Blank	Total/NA	Water	625.1	240475

GC Semi VOA

Analysis Batch: 237761

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-3	25220003-01 Influent TC	Total/NA	Water	8015D	
870-36460-4	25220003-04 Effluent TC	Total/NA	Water	8015D	
MB 860-237761/10	Method Blank	Total/NA	Water	8015D	
LCS 860-237761/4	Lab Control Sample	Total/NA	Water	8015D	
LCSD 860-237761/5	Lab Control Sample Dup	Total/NA	Water	8015D	

Prep Batch: 238206

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-3	25220003-01 Influent TC	Total/NA	Water	3511	
870-36460-4	25220003-04 Effluent TC	Total/NA	Water	3511	
MB 860-238206/1-A	Method Blank	Total/NA	Water	3511	
LCS 860-238206/2-A	Lab Control Sample	Total/NA	Water	3511	
LCS 860-238206/4-A	Lab Control Sample	Total/NA	Water	3511	
LCSD 860-238206/3-A	Lab Control Sample Dup	Total/NA	Water	3511	
LCSD 860-238206/5-A	Lab Control Sample Dup	Total/NA	Water	3511	

Prep Batch: 238461

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-3	25220003-01 Influent TC	Total/NA	Water	608	<u> </u>
870-36460-4	25220003-04 Effluent TC	Total/NA	Water	608	
MB 860-238461/1-A	Method Blank	Total/NA	Water	608	
LCS 860-238461/2-A	Lab Control Sample	Total/NA	Water	608	
LCS 860-238461/4-A	Lab Control Sample	Total/NA	Water	608	
LCSD 860-238461/3-A	Lab Control Sample Dup	Total/NA	Water	608	
LCSD 860-238461/5-A	Lab Control Sample Dup	Total/NA	Water	608	

Analysis Batch: 238719

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-3	25220003-01 Influent TC	Total/NA	Water	608.3	238461
870-36460-4	25220003-04 Effluent TC	Total/NA	Water	608.3	238461
MB 860-238461/1-A	Method Blank	Total/NA	Water	608.3	238461
LCS 860-238461/2-A	Lab Control Sample	Total/NA	Water	608.3	238461
LCSD 860-238461/3-A	Lab Control Sample Dup	Total/NA	Water	608.3	238461

Analysis Batch: 238721

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-3	25220003-01 Influent TC	Total/NA	Water	608.3	238461
870-36460-4	25220003-04 Effluent TC	Total/NA	Water	608.3	238461
MB 860-238461/1-A	Method Blank	Total/NA	Water	608.3	238461

Eurofins Dallas

Page 41 of 63

2

3

_

6

Q

<u> 11</u>

13

14

15

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

GC Semi VOA (Continued)

Analysis Batch: 238721 (C	continued)
---------------------------	------------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 860-238461/4-A	Lab Control Sample	Total/NA	Water	608.3	238461
LCSD 860-238461/5-A	Lab Control Sample Dup	Total/NA	Water	608.3	238461

Analysis Batch: 238779

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-3	25220003-01 Influent TC	Total/NA	Water	615	238206
870-36460-4	25220003-04 Effluent TC	Total/NA	Water	615	238206
MB 860-238206/1-A	Method Blank	Total/NA	Water	615	238206
LCS 860-238206/2-A	Lab Control Sample	Total/NA	Water	615	238206
LCS 860-238206/4-A	Lab Control Sample	Total/NA	Water	615	238206
LCSD 860-238206/3-A	Lab Control Sample Dup	Total/NA	Water	615	238206
LCSD 860-238206/5-A	Lab Control Sample Dup	Total/NA	Water	615	238206

Analysis Batch: 239038

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-3	25220003-01 Influent TC	Total/NA	Water	615	238206
870-36460-4	25220003-04 Effluent TC	Total/NA	Water	615	238206

HPLC/IC

Prep Batch: 238365

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-3	25220003-01 Influent TC	Total/NA	Water	CWA_Prep	
870-36460-4	25220003-04 Effluent TC	Total/NA	Water	CWA_Prep	
MB 860-238365/1-A	Method Blank	Total/NA	Water	CWA_Prep	
LCS 860-238365/2-A	Lab Control Sample	Total/NA	Water	CWA_Prep	
LCSD 860-238365/3-A	Lab Control Sample Dup	Total/NA	Water	CWA_Prep	

Analysis Batch: 239697

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-3	25220003-01 Influent TC	Total/NA	Water	632	238365
870-36460-4	25220003-04 Effluent TC	Total/NA	Water	632	238365
MB 860-238365/1-A	Method Blank	Total/NA	Water	632	238365
LCS 860-238365/2-A	Lab Control Sample	Total/NA	Water	632	238365
LCSD 860-238365/3-A	Lab Control Sample Dup	Total/NA	Water	632	238365

Metals

Prep Batch: 237918

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-1	25220003-03 Influent G	Total Recoverable	Water	200.8	 -
870-36460-2	25220003-06 Effluent G	Total Recoverable	Water	200.8	
MB 860-237918/2-A	Method Blank	Total Recoverable	Water	200.8	
LCS 860-237918/3-A	Lab Control Sample	Total Recoverable	Water	200.8	
LCSD 860-237918/4-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	
LLCS 860-237918/1-A	Lab Control Sample	Total Recoverable	Water	200.8	

Analysis Batch: 238223

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-1	25220003-03 Influent G	Total Recoverable	Water	200.8	237918
870-36460-2	25220003-06 Effluent G	Total Recoverable	Water	200.8	237918
MB 860-237918/2-A	Method Blank	Total Recoverable	Water	200.8	237918

Eurofins Dallas

Job ID: 870-36460-1

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Metals (Continued)

Analysis Batch: 238223 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 860-237918/3-A	Lab Control Sample	Total Recoverable	Water	200.8	237918
LCSD 860-237918/4-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	237918
LLCS 860-237918/1-A	Lab Control Sample	Total Recoverable	Water	200.8	237918

General Chemistry

Analysis Batch: 28744

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-1	25220003-03 Influent G	Total/NA	Water	SM 3500 CR B	
870-36460-2	25220003-06 Effluent G	Total/NA	Water	SM 3500 CR B	
MB 870-28744/9	Method Blank	Total/NA	Water	SM 3500 CR B	
LCS 870-28744/10	Lab Control Sample	Total/NA	Water	SM 3500 CR B	
870-36460-2 MS	25220003-06 Effluent G	Total/NA	Water	SM 3500 CR B	
870-36460-2 MSD	25220003-06 Effluent G	Total/NA	Water	SM 3500 CR B	

Analysis Batch: 28860

Lab Sample ID 870-36460-2	Client Sample ID 25220003-06 Effluent G	Prep Type Total/NA	Matrix Water	Method 1664B	Prep Batch
MB 870-28860/1	Method Blank	Total/NA	Water	1664B	
LCS 870-28860/2	Lab Control Sample	Total/NA	Water	1664B	
LCSD 870-28860/3	Lab Control Sample Dup	Total/NA	Water	1664B	

Analysis Batch: 238157

Lab Sample ID 870-36460-1	Client Sample ID 25220003-03 Influent G	Prep Type Total/NA	Matrix Water	Method 420.4	Prep Batch
870-36460-2	25220003-06 Effluent G	Total/NA	Water	420.4	
MB 860-238157/49	Method Blank	Total/NA	Water	420.4	
LCS 860-238157/50	Lab Control Sample	Total/NA	Water	420.4	
LCSD 860-238157/51	Lab Control Sample Dup	Total/NA	Water	420.4	

Analysis Batch: 238228

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-1	25220003-03 Influent G	Total/NA	Water	SM 3500 CR B	
870-36460-2	25220003-06 Effluent G	Total/NA	Water	SM 3500 CR B	

Analysis Batch: 238527

_ *					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-1	25220003-03 Influent G	Total/NA	Water	Kelada 01	
870-36460-2	25220003-06 Effluent G	Total/NA	Water	Kelada 01	
MB 860-238527/24	Method Blank	Total/NA	Water	Kelada 01	
MB 860-238527/64	Method Blank	Total/NA	Water	Kelada 01	
LCS 860-238527/65	Lab Control Sample	Total/NA	Water	Kelada 01	
LCSD 860-238527/66	Lab Control Sample Dup	Total/NA	Water	Kelada 01	
LLCS 860-238527/27	Lab Control Sample	Total/NA	Water	Kelada 01	

Prep Batch: 238610

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-1	25220003-03 Influent G	Total/NA	Water	Distill/CN	
870-36460-2	25220003-06 Effluent G	Total/NA	Water	Distill/CN	
MB 860-238610/4-A	Method Blank	Total/NA	Water	Distill/CN	
LCS 860-238610/5-A	Lab Control Sample	Total/NA	Water	Distill/CN	

Eurofins Dallas

Page 43 of 63 6/11/2025

Job ID: 870-36460-1

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

General Chemistry (Continued)

Prep Batch: 238610 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 860-238610/6-A	Lab Control Sample Dup	Total/NA	Water	Distill/CN	

Analysis Batch: 238882

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-1	25220003-03 Influent G	Total/NA	Water	4500 CN G	238610
				NonAm	
870-36460-2	25220003-06 Effluent G	Total/NA	Water	4500 CN G	238610
				NonAm	
MB 860-238610/4-A	Method Blank	Total/NA	Water	4500 CN G	238610
				NonAm	
LCS 860-238610/5-A	Lab Control Sample	Total/NA	Water	4500 CN G	238610
				NonAm	
LCSD 860-238610/6-A	Lab Control Sample Dup	Total/NA	Water	4500 CN G	238610
				NonAm	

Analysis Batch: 238995

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
870-36460-1	25220003-03 Influent G	Total/NA	Water	SM 4500 CN G	
870-36460-2	25220003-06 Effluent G	Total/NA	Water	SM 4500 CN G	

Job ID: 870-36460-1

3

Lab Chronicle

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Client Sample ID: 25220003-03 Influent G

Date Collected: 05/21/25 09:35

Lab Sample ID: 870-36460-1

Matrix: Water

Job ID: 870-36460-1

Date Received: 05/21/25 16:12

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		2	5 mL	5 mL	237654	05/23/25 16:24	NA	EET HOU
Total Recoverable	Prep	200.8			50 mL	50 mL	237918	05/23/25 20:19	SHZ	EET HOU
Total Recoverable	Analysis	200.8		1			238223	05/27/25 14:09	DP	EET HOU
Total/NA	Analysis	420.4		1	10 mL	10 mL	238157	05/23/25 21:20	BW	EET HOU
Total/NA	Prep	Distill/CN			6 mL	6 mL	238610	05/28/25 16:26	MLEI	EET HOU
Total/NA	Analysis	4500 CN G NonAm		1			238882	05/29/25 13:31	MLEI	EET HOU
Total/NA	Analysis	Kelada 01		1	10 mL	10 mL	238527	05/27/25 22:37	BW	EET HOU
Total/NA	Analysis	SM 3500 CR B		1			238228	05/27/25 21:56	JDM	EET HOU
Total/NA	Analysis	SM 3500 CR B		1	10 mL	10 mL	28744	05/21/25 18:20	CJH	EET DAL
Total/NA	Analysis	SM 4500 CN G		1			238995	05/29/25 21:09	YG	EET HOU

Client Sample ID: 25220003-06 Effluent G

Date Collected: 05/21/25 10:20

Lab Sample ID: 870-36460-2

Matrix: Water

Date Received: 05/21/25 16:12

Total/NA

Total/NA

Total/NA

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	5 mL	5 mL	237654	05/23/25 16:04	NA	EET HOU
Total Recoverable	Prep	200.8			50 mL	50 mL	237918	05/23/25 20:19	SHZ	EET HOU
Total Recoverable	Analysis	200.8		1			238223	05/27/25 14:11	DP	EET HOU
Total/NA	Analysis	1664B		1	822 mL	1000 mL	28860	05/27/25 08:27	TM	EET DAL
Total/NA	Analysis	420.4		1	10 mL	10 mL	238157	05/23/25 21:22	BW	EET HOU
Total/NA	Prep	Distill/CN			6 mL	6 mL	238610	05/28/25 16:26	MLEI	EET HOU
Total/NA	Analysis	4500 CN G NonAm		1			238882	05/29/25 13:35	MLEI	EET HOU
Total/NA	Analysis	Kelada 01		1	10 mL	10 mL	238527	05/27/25 22:43	BW	EET HOU
Total/NA	Analysis	SM 3500 CR B		1			238228	05/27/25 21:56	JDM	EET HOU
Total/NA	Analysis	SM 3500 CR B		1	10 mL	10 mL	28744	05/21/25 18:20	CJH	EET DAI
Total/NA	Analysis	SM 4500 CN G		1			238995	05/29/25 21:09	YG	EET HO

Analysis

Analysis

Prep

608.3

608.3

608

Client Sample ID: 25220003-01 Influent TC Lab Sample ID: 870-36460-3 Date Collected: 05/21/25 09:30 Matrix: Water Date Received: 05/21/25 16:12 Matrix: Water										
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	625			1000 mL	1 mL	240475	06/05/25 13:00	BH	EET HOU
Total/NA	Analysis	625.1		1	1 mL	1 mL	240430	06/05/25 13:57	LPL	EET HOU
Total/NA	Prep	3511			70 mL	4 mL	238065	05/28/25 05:00	DR	EET HOU
Total/NA	Analysis	625.1		1	1 mL	1 mL	238978	05/30/25 15:04	LPL	EET HOU
Total/NA	Prep	608			1000 mL	1 mL	238461	05/28/25 11:34	ВН	EET HOU

238721

238461

238719

1 mL

05/29/25 13:14 KM

05/28/25 11:34 BH

05/29/25 12:10 WP

Eurofins Dallas

Page 45 of 63

1000 mL

2

3

13

EET HOU

EET HOU

EET HOU

Lab Chronicle

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Client Sample ID: 25220003-01 Influent TC

Date Collected: 05/21/25 09:30

Date Received: 05/21/25 16:12

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3511			49.8 mL	4 mL	238206	05/27/25 14:20	BH	EET HOU
Total/NA	Analysis	615		1			238779	05/30/25 01:34	WP	EET HOU
Total/NA	Prep	3511			49.8 mL	4 mL	238206	05/27/25 14:20	ВН	EET HOU
Total/NA	Analysis	615		1			239038	05/31/25 02:00	WP	EET HOU
Total/NA	Analysis	8015D		1	1 mL	1 mL	237761	05/23/25 15:31	JBS	EET HOU
Total/NA	Prep	CWA_Prep			1000 mL	1 mL	238365	05/28/25 05:49	DR	EET HOU
Total/NA	Analysis	632		1			239697	06/02/25 22:49	YG	EET HOU

Client Sample ID: 25220003-04 Effluent TC

Date Collected: 05/21/25 09:45

Date Received: 05/21/25 16:12

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	625			1000 mL	1 mL	240475	06/05/25 13:00	ВН	EET HOU
Total/NA	Analysis	625.1		1	1 mL	1 mL	240430	06/05/25 14:20	LPL	EET HOU
Total/NA	Prep	3511			69.9 mL	4 mL	238065	05/28/25 05:00	DR	EET HOU
Total/NA	Analysis	625.1		1	1 mL	1 mL	238978	05/30/25 15:32	LPL	EET HOU
Total/NA	Prep	608			1000 mL	1 mL	238461	05/28/25 11:34	ВН	EET HOU
Total/NA	Analysis	608.3		1			238721	05/29/25 14:28	KM	EET HOU
Total/NA	Prep	608			1000 mL	1 mL	238461	05/28/25 11:34	ВН	EET HOU
Total/NA	Analysis	608.3		1			238719	05/29/25 12:23	WP	EET HOU
Total/NA	Prep	3511			49.9 mL	4 mL	238206	05/27/25 14:20	ВН	EET HOU
Total/NA	Analysis	615		1			238779	05/30/25 01:59	WP	EET HOU
Total/NA	Prep	3511			49.9 mL	4 mL	238206	05/27/25 14:20	ВН	EET HOU
Total/NA	Analysis	615		1			239038	05/31/25 02:25	WP	EET HOU
Total/NA	Analysis	8015D		1	1 mL	1 mL	237761	05/23/25 15:43	JBS	EET HOU
Total/NA	Prep	CWA_Prep			1000 mL	1 mL	238365	05/28/25 05:49	DR	EET HOU
Total/NA	Analysis	632		1			239697	06/02/25 23:22	YG	EET HOU

Laboratory References:

EET DAL = Eurofins Dallas, 9701 Harry Hines Blvd, Dallas, TX 75220, TEL (214)902-0300 EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200 SPL = SPL Kilgore, 2600 Dudley Rd, Kilgore, TX 75662

Job ID: 870-36460-1

Matrix: Water

Matrix: Water

Lab Sample ID: 870-36460-3

Lab Sample ID: 870-36460-4

2

3

4

7

9

11

13

15

Accreditation/Certification Summary

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Job ID: 870-36460-1

Laboratory: Eurofins Dallas

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704295	06-30-25

Laboratory: Eurofins Houston

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	uthority Program		Expiration Date
Texas	NELAP	T104704215	07-01-26

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
420.4		Water	Phenols, Total
4500 CN G NonAm	Distill/CN	Water	Cyanide, Non-amenable
608.3	608	Water	Dicofol
608.3	608	Water	Mirex
608.3	608	Water	Polychlorinated biphenyls, Total
615	3511	Water	Hexachlorophene
615	3511	Water	Pentachlorophenol
624.1		Water	1,2,4-Trichlorobenzene
624.1		Water	1,3-Dichloropropene, Total
624.1		Water	Bromochloromethane
624.1		Water	Epichlorohydrin
624.1		Water	Naphthalene
624.1		Water	Trihalomethanes, Total
624.1		Water	Vinyl acetate
625.1	3511	Water	3 & 4 Methylphenol
625.1	3511	Water	4-Nonylphenol
625.1	3511	Water	Azobenzene
625.1	3511	Water	Bisphenol-A
625.1	3511	Water	Chlorpyrifos
625.1	3511	Water	Demeton, Total
625.1	3511	Water	Diazinon
625.1	3511	Water	Disulfoton
625.1	3511	Water	Ethyl Parathion
625.1	3511	Water	Guthion
625.1	3511	Water	Malathion
625.1	3511	Water	Methyl parathion
625.1	3511	Water	Total Cresols
632	CWA_Prep	Water	Diuron
SM 3500 CR B		Water	Cr (III)

5

3

7

8

9

11

13

14

Method Summary

Client: North Texas Municipal Water District

Project/Site: PCX 30TAC307 + Table III + Permit Renewal

lethod	Method Description	Protocol	Laboratory
24.1	Volatile Organic Compounds (GC/MS)	EPA	EET HOU
25.1	Semivolatile Organic Compounds (GC-MS/MS)	EPA	EET HOU
25.1	Semivolatile Organic Compounds (GC/MS)	EPA	EET HOU
08.3	Organochlorine Pesticides in Water	EPA	EET HOU
08.3	Polychlorinated Biphenyls (PCBs) (GC)	EPA	EET HOU
15	Herbicides (GC)	EPA-01	EET HOU
015D	Glycols- Direct Injection (GC/FID)	SW846	EET HOU
32	Carbamate and Urea Pesticides (HPLC)	EPA-01	EET HOU
8.00	Metals (ICP/MS)	EPA	EET HOU
664B	HEM and SGT-HEM	1664B	EET DAL
20.4	Phenolics, Total Recoverable	EPA	EET HOU
500 CN G lonAm	Cyanide, Non-amenable	SM	EET HOU
elada 01	Cyanide, Total, Acid Dissociable and Thiocyanate	EPA	EET HOU
M 3500 CR B	Chromium, Hexavalent	SM	EET DAL
M 3500 CR B	Chromium, Trivalent	SM	EET HOU
M 4500 CN G	Cyanide, Amenable	SM	EET HOU
ubcontract	Ana Lab - 1657 Ogano PEST	None	SPL
8.00	Preparation, Total Recoverable Metals	EPA	EET HOU
511	Microextraction of Organic Compounds	SW846	EET HOU
08	Liquid-Liquid Extraction (Separatory Funnel)	EPA	EET HOU
25	Liquid-Liquid Extraction	EPA	EET HOU
WA_Prep	Liquid-Liquid Extraction (Separatory Funnel)	EPA	EET HOU
istill/CN	Distillation, Cyanide	None	EET HOU

Protocol References:

1664B = EPA-821-98-002

EPA = US Environmental Protection Agency

EPA-01 = "Methods For The Determination Of Nonconventional Pesticides In Municipal And Industrial Wastewater", EPA/821/R/92/002, April 1992. None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET DAL = Eurofins Dallas, 9701 Harry Hines Blvd, Dallas, TX 75220, TEL (214)902-0300

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

SPL = SPL Kilgore, 2600 Dudley Rd, Kilgore, TX 75662

Job ID: 870-36460-1

Sample Summary

Client: North Texas Municipal Water District Project/Site: PCX 30TAC307 + Table III + Permit Renewal

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
870-36460-1	25220003-03 Influent G	Water	05/21/25 09:35	05/21/25 16:12
870-36460-2	25220003-06 Effluent G	Water	05/21/25 10:20	05/21/25 16:12
870-36460-3	25220003-01 Influent TC	Water	05/21/25 09:30	05/21/25 16:12
870-36460-4	25220003-04 Effluent TC	Water	05/21/25 09:45	05/21/25 16:12

Job ID: 870-36460-1

3

Office: 903-984-0551 * Fax: 903-984-5914

Page 1 of 1

Project 1148662

Printed

06/06/2025 12:59

XNKS-N

Eurofins Xenco Mike Kimmel 9701 Harry Hines Blvd Dallas, TX 75220

TABLE OF CONTENTS

This report consists of this Table of Contents and the following pages:

Report Name	<u>Description</u>	<u>Pages</u>
1148662_r02_01_ProjectSamples	SPL Kilgore Project P:1148662 C:XNKS Project Sample Cross Reference t:304	1
1148662_r03_03_ProjectResults	SPL Kilgore Project P:1148662 C:XNKS Project Results t:304 PO: US1314463442	3
1148662_r10_05_ProjectQC	SPL Kilgore Project P:1148662 C:XNKS Project Quality Control Groups	2
1148662_r99_09_CoC1_of_1	SPL Kilgore CoC XNKS 1148662_1_of_1	2
	Total Pages:	8

Email: Kilgore.ProjectManagement@spllabs.com

North Texas Region: 1301 Copagge 50 6 6 Arlington TX 76006

SAMPLE CROSS REFERENCE

Printed

6/6/2025

Received

Received

05/23/2025

Page 1 of 1

		Eurofins Xenco
		Mike Kimmel
		9701 Harry Hines Blvd
		Dallas, TX 75220
Sample	Sample ID	

2522003-04 EFFLUENT 870-36460-

2410976	25220003-01 INFLUENT 870-36460	05/21/2025	09:30:00		05/23/2025	
Bottle 02 Client	Supplied Amber Glass Supplied Amber Glass red Bottle: OPXL/OPXS 2 mL Autosampler Vial (B	atch 1177296) Volume: 1.	00000 mL <== De	rived from 01 (103	39 ml)	
	Method	Bottle	PrepSet	Preparation	QcGroup	Analytical
	EPA 1657	03	1177296	05/28/2025	1178710	05/30/2025

Time

Time

09:45:00

Taken

Taken

05/21/2025

Bottle 01 Client Supplied Amber Glass Bottle 02 Client Supplied Amber Glass

Sample ID

Sample

2410977

Bottle 03 Prepared Bottle: OPXL/OPXS 2 mL Autosampler Vial (Batch 1177296) Volume: 1.00000 mL <== Derived from 01 (1005 ml)

Method	Bottle	PrepSet	Preparation	QcGroup	Analytical Analytical
EPA 1657	03	1177296	05/28/2025	1178710	05/30/2025

Email: Kilgore.ProjectManagement@spllabs.com

Page 1 of 3

Project

1148662

11-0002

Printed: 06/06/2025

XNKS-N

Eurofins Xenco Mike Kimmel 9701 Harry Hines Blvd Dallas, TX 75220

RESULTS

					Sample Res	sults						
	2410976	25220003-01 IN	IFLUENT	870-36460						Received:	05/23	3/2025
	Non-Potable Wate	er	Collecte	ed by: Client	Eurofins Xen	со			PO:		US13144	163442
			Taken:	05/21/2025	09:30	0:00						
_	EPA 1657			Prepared:	1177296 05/	28/2025	13:50:00	Analyzed 1	1178710	05/30/2025	02:55:00	KAP
	Parameter			Results	Units	RL		Flags		CAS		Bottle
	Azinphos-met	hyl (Guthion)		<0.0481	ug/L	0.0481				86-50-0		03
	Chlorpyrifos			<0.0481	ug/L	0.0481				2921-88-2		03
	Demeton			<0.0481	ug/L	0.0481				8065-48-3		03
	Diazinon			<0.0481	ug/L	0.0481				333-41-5		03
	Malathion			<0.0481	ug/L	0.0481				121-75-5		03
	Parathion, ethy	yl		<0.0481	ug/L	0.0481				56-38-2		03
	Parathion, met	thyl		<0.0481	ug/L	0.0481				298-00-0		03

2410977	2522003-04 EFFLUENT 870-36460-	Received:	05/23/2025

Non-Potable Water Collected by: Client Eurofins Xenco PO: US1314463442

Taken: 05/21/2025 09:45:00

PA 1657	Prepared:	1177296 05/2	8/2025	13:50:00 Analyzed 117871	0 05/30/2025	03:22:00 KAI
Parameter	Results	Units	RL	Flags	CAS	Bottle
Azinphos-methyl (Guthion)	<0.0498	ug/L	0.0498		86-50-0	03
Chlorpyrifos	<0.0498	ug/L	0.0498		2921-88-2	03
Demeton	<0.0498	ug/L	0.0498		8065-48-3	03
Diazinon	<0.0498	ug/L	0.0498		333-41-5	03
Malathion	<0.0498	ug/L	0.0498		121-75-5	03
Parathion, ethyl	<0.0498	ug/L	0.0498		56-38-2	03
Parathion, methyl	<0.0498	ug/L	0.0498		298-00-0	03

Sample Preparation

Report Page 3 of 9

Page 2 of 3

Project 1148662

XNKS-N

Eurofins Xenco Mike Kimmel 9701 Harry Hines Blvd Dallas, TX 75220

							-	Printed:	06/	06/2025	
	2410976	25220003-01 INFLUE							Received:	05/23/ US131446	
			05/21/2025								
			Prepared:		05/23/2025	15:17:52	Calculated		05/23/2025	15:17:52	CAL
Z	Enviro Fee (p	er Sampling Group)	Verified								
			Prepared:		06/06/2025	12:48:00	Analyzed		06/06/2025	12:48:00	WJP
Z	Check Limits		Completed								
	EPA 1657		Prepared:	1177296	05/28/2025	13:50:00	Analyzed	1178710	05/30/2025	02:55:00	KAP
Z	Organophos. l	Pesticides/1657	Entered								03
	EPA 608.3		Prepared:	1177296	05/28/2025	13:50:00	Analyzed	1177296	05/28/2025	13:50:00	CRS
	Solvent Extra	ction	1/1039	ml	l						01
	2410977	2522003-04 EFFLUEN	TT 870-36460-						Received:	05/23/	2025
			05/21/2025							US131446	53442
			Prepared:		06/06/2025	12:48:00	Analyzed		06/06/2025	12:48:00	WJP
Z	Check Limits		Completed								
	EPA 1657		Prepared:	1177296	05/28/2025	13:50:00	Analyzed	1178710	05/30/2025	03:22:00	KAP
Z	Organophos. 1	Pesticides/1657	Entered								03

Report Page 4 of 9

Eurofins Xenco Mike Kimmel

9701 Harry Hines Blvd Dallas, TX 75220

XNKS-N

Page 3 of 3

1148662

Project

Printed:

06/06/2025

2410977

EPA 608.3

2522003-04 EFFLUENT 870-36460-

Received:

05/23/2025

US1314463442

05/21/2025

Prepared: 1177296 05/28/2025

13:50:00

Analyzed 1177296 05/28/2025

13:50:00

CRS

Solvent Extraction

1/1005

ml

01

Qualifiers

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC. RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

Bill Peery, MS, VP Technical Services

Report Page 5 of 9

QUALITY CONTROL

Page 1 of 2

Project 1148662

Printed 06/06/2025

XNKS-N

Eurofins Xenco Mike Kimmel 9701 Harry Hines Blvd Dallas, TX 75220

Analytical Set	1178710									Е	PA 165'
				В	Blank						
Parameter Parame	PrepSet	Reading	MDL	MQL	Units			File			
Azinphos-methyl (Guthion)	1177296	ND	41.4	50.0	ug/L			127674872			
Chlorpyrifos	1177296	ND	22.6	50.0	ug/L			127674872			
Demeton	1177296	ND	31.9	50.0	ug/L			127674872			
Diazinon	1177296	ND	19.7	50.0	ug/L			127674872			
Malathion	1177296	ND	24.8	50.0	ug/L			127674872			
Parathion, ethyl	1177296	ND	23.9	50.0	ug/L			127674872			
Parathion, methyl	1177296	ND	27.4	50.0	ug/L			127674872			
					ccv						
Parameter Parame		Reading	Known	Units	Recover%	Limits%		File			
Azinphos-methyl (Guthion)		1050	1000	ug/L	105	37.0 - 150		127674864			
Azinphos-methyl (Guthion)		1270	1000	ug/L	127	37.0 - 150		127674871			
Azinphos-methyl (Guthion)		1560	1000	ug/L	156	37.0 - 150	*	127674878			
Chlorpyrifos		1000	1000	ug/L	100	48.0 - 150		127674864			
Chlorpyrifos		1080	1000	ug/L	108	48.0 - 150		127674871			
Chlorpyrifos		1030	1000	ug/L	103	48.0 - 150		127674878			
Demeton		1020	1000	ug/L	102	16.0 - 150		127674864			
Demeton		1070	1000	ug/L	107	16.0 - 150		127674871			
Demeton		1180	1000	ug/L	118	16.0 - 150		127674878			
Diazinon		1030	1000	ug/L	103	50.0 - 150		127674864			
Diazinon		1060	1000	ug/L	106	50.0 - 150		127674871			
Diazinon		1120	1000	ug/L	112	50.0 - 150		127674878			
Malathion		1000	1000	ug/L	100	50.0 - 150		127674864			
Malathion		1070	1000	ug/L	107	50.0 - 150		127674871			
Malathion		1100	1000	ug/L	110	50.0 - 150		127674878			
Parathion, ethyl		1030	1000	ug/L	103	50.0 - 150		127674864			
Parathion, ethyl		1140	1000	ug/L	114	50.0 - 150		127674871			
Parathion, ethyl		1240	1000	ug/L	124	50.0 - 150		127674878			
Parathion, methyl		1040	1000	ug/L	104	50.0 - 150		127674864			
Parathion, methyl		1030	1000	ug/L	103	50.0 - 150		127674871			
Parathion, methyl		1210	1000	ug/L	121	50.0 - 150		127674878			
				LC	S Dup						
Parameter Parame	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
Azinphos-methyl (Guthion)	1177296	870	789		1000	0.100 - 152	87.0	78.9	ug/L	9.76	50.0
Chlorpyrifos	1177296	518	529		1000	0.100 - 132	51.8	52.9	ug/L	2.10	50.0
Demeton	1177296	477	518		1000	0.100 - 114	47.7	51.8	ug/L	8.24	50.0
Diazinon	1177296	518	563		1000	0.100 - 119	51.8	56.3	ug/L	8.33	50.0
Malathion	1177296	562	582		1000	0.100 - 126	56.2	58.2	ug/L	3.50	50.0
Parathion, ethyl	1177296	605	610		1000	0.100 - 138	60.5	61.0	ug/L	0.823	50.0
Parathion, methyl	1177296	550	540		1000	0.100 - 125	55.0	54.0	ug/L	1.83	50.0
				Sur	rogate						

Email: Kilgore.ProjectManagement@spllabs.com

Sample

Type

Units

Report Page 6 of 9

File

Recover% Limits%

Reading Known

Parameter

3

4

5

7

4.4

12

14

QUALITY CONTROL

Page 2 of 2

Project 1148662

Printed 06/06/2025

XNKS-N

Eurofins Xenco Mike Kimmel 9701 Harry Hines Blvd Dallas, TX 75220

Surrogate

<u>Parameter</u>	Sample	Туре	Reading	Known	Units	Recover%	Limits%	File
Tributylphosphate		CCV	1050	2000	ug/L	52.5	0.100 - 106	127674864
Tributylphosphate		CCV	1050	2000	ug/L	52.5	0.100 - 106	127674871
Tributylphosphate		CCV	1150	2000	ug/L	57.5	0.100 - 106	127674878
Triphenylphosphate		CCV	1020	2000	ug/L	51.0	0.100 - 172	127674864
Triphenylphosphate		CCV	1200	2000	ug/L	60.0	0.100 - 172	127674871
Triphenylphosphate		CCV	1210	2000	ug/L	60.5	0.100 - 172	127674878
Tributylphosphate	1177296	Blank	424	2000	ug/L	21.2	0.100 - 106	127674872
Tributylphosphate	1177296	LCS	516	2000	ug/L	25.8	0.100 - 106	127674873
Tributylphosphate	1177296	LCS Dup	576	2000	ug/L	28.8	0.100 - 106	127674874
Triphenylphosphate	1177296	Blank	492	2000	ug/L	24.6	0.100 - 172	127674872
Triphenylphosphate	1177296	LCS	601	2000	ug/L	30.0	0.100 - 172	127674873
Triphenylphosphate	1177296	LCS Dup	625	2000	ug/L	31.2	0.100 - 172	127674874
Tributylphosphate	2410976	Unknown	0.415	1.92	ug/L	21.6	0.100 - 106	127674876
Triphenylphosphate	2410976	Unknown	0.391	1.92	ug/L	20.4	0.100 - 172	127674876
Tributylphosphate	2410977	Unknown	0.484	1.99	ug/L	24.3	0.100 - 106	127674877
Triphenylphosphate	2410977	Unknown	0.576	1.99	ug/L	28.9	0.100 - 172	127674877

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

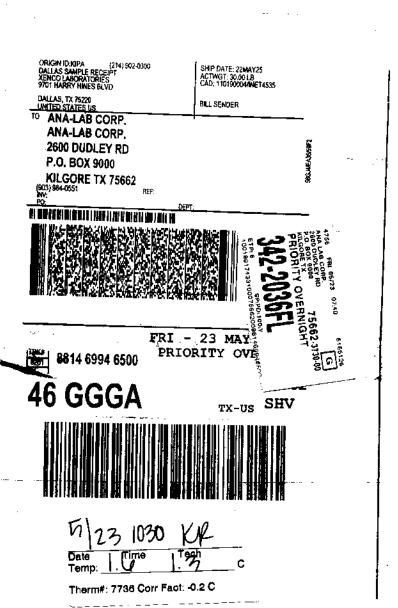
Recover% is Recovery Percent: result / known * 100%

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); CCV - Continuing Calibration Verification (same standard used to prepare the curve; typically a mid-range concentration; verifies the continued validity of the calibration curve); LCS Dup - Laboratory Control Sample Duplicate

 $(replicate\ LCS; analyzed\ when\ there\ is\ insufficient\ sample\ for\ duplicate\ or\ MSD; quantifies\ accuracy\ and\ precision.); Surrogate\ -\ Surrogate$ (mimics the analyte of

interest but is unlikely to be found in environmental samples; added to analytical samples for QC purposes. **ANSI/ASQC E4 1994 Ref #4 TRADE QA Resources Guide.)

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 7 of 9

1148662 CoC Print Group 001 of 001

970: Harry Hines Blud Dalles, TX 75220 Phone: 214-902-0300	•	Strain	of Cus	stody i	रेस्ट	orc	1-				B	佬					d curofins	Environment To
P1008: 214-802-0300	Mamoiar			hisi	pur							ante 1	Tarabar	TOYET			KOOC HEE	
Cflent information (Sub Contract Lab)	N/A				žá, 5 ₎	rivra						WA.					870-8420,1	
Client Contact	Phone			E-M	at:	-						SLEED OF	Origin:				Page:	
Shipping/Receiving	N/A			Syl				ofinave				Texas					Page 1 of 1	
Company: Ana-Lab Corporation						AP -		ared (Se	ne note).								Job #: 870-38460-1	
Adduss: 2600 Dudley Rd,	5/30/2025	wd			Т				Anal	ysis	Req	ae z te	đ				Preservation Co -	odes:
r~	FAT Projectives of				11			<u> </u>	1		, ,		1	1	- !	1:-	1	
Kilgore		N/A	4		2.3	ي ۋي			1	ł	1 1		1		- 1	iei	ai	
State, Zipx					1213				1			- 1	ļ	ΙĒ			1	
TX, 75862	L				136	£ 13				1		- 1	Ĺ				8	
N/A	PO# N/A				2	# 15			-	l		- 1	1			- 1	Ė	
Emri.	MOS.	_			- ≥ }	眶			- 1	1				ll	L		i	
N/A	N/A				100	δρ _ω	† -1	t t		1-	11	\neg	\top	T	$\neg \Gamma$			
Project Name	Project #:				-1816	⊉io				1	li			1 1		25	H	
PCX 30TAC307 + Table III + Permit Renewel	87000985				1216	315				1	ł l	-				8		
Ster	5FOWS				- 86	ЪĎ.				<u> </u>	-	_	Щ.		-	— #	Ograv.	
N/A	N/A				14	*				1	il	1				32	PAUA	
	1	Ī	т —	1	1212	. L	.			1	1 1		1					
	1	į.	Sample	Matrix	H	3 (1)	31			1						ä		
		1	Type	-	閾的	H 5	•			1	ll						Ä	
		Sample	(C=comp.	CONVERSION.	46					1	ll						Į.	
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab)	BT-Throm. A-Ab		ŖŘ	5[1	L		L			32	5 Special I	natructions/Note:
A STATE OF THE PARTY OF THE PAR	(a)		Preserv	ation Code		XIE	36	35	2 33	184		N 95	4 443	松色	231	图》		
25220003-01 Influent TC (870-38460-3)	5/21/25	09:30	G	Water	11	×				_			1	\Box	-	- 15	See Altached In:	structions
20220003-01 3 100111 10 (6) 0-30100-3)	9921729	Central 09:45	G	***	11	^^				<u> </u>	\sqcup		\perp		_	_9	<u> </u>	
25220903-04 Effluent TC (870-38460-4)	5/21/25		G	Water	11	X				Į.	i I					- 100	See Attached In:	structions
		Central	 		4+	+	-	\vdash	+	┿	! —⊦	-	+	\vdash	-	- 3		
		l		l	11				ŀ	1	il				1		3	
		-	 		11	_	_	 	+-	+			+-	\vdash	\dashv			_
	i				ш			LL	_		↓ →			1	\rightarrow	_ 3	<u> </u>	
				i	11						1 1							
	ļ		-		++	-	+	-	-	+	₩	_	-	₩	-		F	
				ľ	11		1		1			- 1			- i		l l	
		-	_		++	+-	+	 +	-	1-	++		+-	┿╌┪	-1	- 3	Ř –	
					11		1 1					- 1			i	錢	Ä	
<u></u> -					т						ГП	1.	Т	П	\neg	200	2	
					┵╌┢╴		-	Щ	_	-	\vdash	_		┦	-	- 3	į.	
					11		1 1		1						Į	8	3	
										٠								
Note: Since tetropiony accreditations are subject to change, Eurotina Environme laboratory does not currently meintain accreditation in the State of Origin labor at accreditation status should be brought to Eurofine Environment Testing South Ce	oove for enalysis/less	grand sutremise	analyzed, the	samples must	be shop	ped be	ck to the	e Eurofi	ns Emin	MATERIO	(Tesan	South	Central	LLC	borsk	NY OF D	her matryctions will b	e provided. Any change
Possible Hexard Identification					2	*mot	+ Disc	1020	A fee	may.	De as	5455W	d # 58	mple	are	retain	ed longer then :	(month)
Unconfirmed					- (\Box	Datur	To Cl	unt	1		posei	Dul-	h		ت. ر⊂	ive For	Months
Deliverable Requested: I, R, III, IV, Other (specify)	Primary Delivers	able Oner 1	,			200-	Lines	اب دار	QC R	- nui-	טת	Avryagi	Dy Le			MICH	-70 F-C	-myrinia
Pervalente mequasies: F, R, III, IV, Other (specify)	FARRISTY DENVEYS	obe Hank: 2	•		٦ì	heca	i irişkili				eamerit.	φ.						
Empty Kit Relinquished by		Date.			Time	į-		•	- 60	EX-	┫-	Me	thed of	Shipme	nt:			
Reinquished by: A			_		1	•	eved b							0994				Company
relanguished by: AA	75722	175	- 170	deutench.		Kec	eved b	" W W Y	122	703	NE.			(decet)	ume.			Campuly
Reinquished by:	Dela/Dea:	1		Company	_	107-	arved b	PIA	++	, (41	12~			Date	ene:	_	100	Company D 1
	DHI/TO 23	175	102()	Company		Kec	And D	YI	VИ	١V	γV	171		ťΛ	17:	3/2	s 103/L	XVIII
			W)U	Company		4_	asynd b	1-	بالاناب	_	•	<u>~ `</u>		No.	ئيد	44	~ II///U	Соприну
Retinquished by	Deta/Time:																	

Report Page 8 of 9

Report Page 9 of 9

Chain of Custody Record

le Skin Irritant V. Other (specify)	ue Skin Irritant	le Skin Irritant	le □Skin Irritant □ V. Other (specify)	le Skin Irritant Cother (specify)	Identification Skin Irritant	Possible Hazard Identification								2520003-06 Effluent G	2520003-04 Effluent TC	2520003-03 Influent G	2520003-01 Influent TC		Sample Identification	Site:	Project Name: PCX 30TAC307 + Table III + Permit Renewal	kharden@ntmwd.com	469-626-4610	Texas 75098	City: Wylie	201 E. Brown St.	Company. North Texas Municipal Water District	Client Contact: Kelly Harden	Client Information	Eurofins Eaton Analytical South Bend 110 S. Hill Street Southbend, IN 46617 Phone: 574-233-4777 Fax: 574-233-8207
Date/Time:	60	5				Poison B Unknown								5/21/25	5/20/25 - 5/21/25	5/21/25	5/20/25 - 5/21/25	\bigvee	Sample Date	SSOW#:	Project #:		WO #	Compliance Project:	<u> </u>	Pub Paic Inchase	Due Date Bequested:	Phone: 469-626-4610	Sampler: Gary Usey/ Grayson Townsend	
		<i>s</i>	7	Date:		Г								1020	0945-0945	0935	0930-0930	X	Sample					∆ Yes			4		yson Town	Chain
	4		اسلم			Radiological								G	С	G	C	Preserva	Sample Type (C=comp,					Δ No			PWSID:		send	Chain of Custody Record
	Company	Company	Company											8	W	٧	×	Preservation Code:	Matrix (w=water, S=solid, O=waste/oil, BT=Tbsus, A=Atr									E-Mail: syliva.	Syl	tody I
				Time:	Sper	 -	San							z	z	z	z	X	Field Filtered Sa	(No	No)				i.	E-Mail: syliva.garza@eurofinset.co	Sylvia Garza	Reco
	Received by:	Received by:	Received by:		Special Instructions/QC Requirements	Return	Sample Disposal	-				+			21 21		21 21		BPA and BNA by I Pest/PCB by EPA	+	-							<u>Qeurofir</u>		ਕੈ
		N×	<u>پري</u>		uctions		osal (ļ					21		21		Herb by EPA 615								4	set.co		
		7	1		QC F	ient	A fee			-	+	+			21 21		21 21		Dioxins by 613/16 Pest by EPA 1657								Analysis	I3		
Co of and other Bonnette.		1-	J. J.		equire	_	may be							=		=			Cr, Cr (III), Cr (VI)	I										
			7		ment	x_Dis	be as				_			B		â			Cn, Cn-A								Requested	- v		
l				3	ς.	Disposal By Lab	sesse			-	+	+		1S 3I		1S 3I			Phenois by 420.1 MTBE/Epichlorohy	/dri	n/VO	: hv	FPA 6	24.1			este	State of Origin:	Carner tracking No(s):	
ļ				Method of Shipment:		ByL	difs	٠ ,			٠,	+			21	_	2		Pest by EPA 632								H°	Origin:	rackin	
F	Dat	Date	Date	Ship		ab	amp		870-				-		21		2		Dioxins by 625.1	Ť		П					Ħ		g No(s	
١	Date/Time	Date/Time:	Date/Time:	nent:		۱_	es a	-	3646					18					Oil & Grease											
		21/1			l	L	e re		0 Ch						<u>3</u>		<u> </u>		Ethylene Glycol b	y 80	15									
		ν̈́	SC			Archive For	aine		ain o					7	17	6	17	X	Total Number of					- T. III			-	77 70		
		1612	المالا			For	assessed if samples are retained longer than 1 month)		870-36460 Chain of Custody									V	Special Ins	Other:		J - DI Water K - EDTA	Acid		C - Zn Acetate D - Nitric Acid		Preservation Code	Page: Page 1 of 1	COC NO.	eurofins
1.	Company	Company	Company Eurofins			Months	month)												Special Instructions/Note:		Z - other (specify)	W-pH 4-5	U - Acetone V - MCAA	R - Na2S2O3 S - H2SO4	0 - AsNaO2 P - Na2O4S	M - Hexane	36:			Environment Testing America

4

Eurofins Dallas

9701 Harry Hines Blvd Dallas, TX 75220 Phone, 214-902-0300	ប	hain c	of Cusi	hain of Custody Record	ecor	-		- FE				😍 eurofins	Environment Testing
Client Information (Sub Contract Lab)	Sampler N/A			Lab PM Garza,	a, Sylvia			ÖZ	Carrier Tracking No(s) N/A	.(s)oN fi		COC No: 870-8413 1	
	Phone: N/A			E-Mai Sylvi	a. Garza@	E-Mail: Sylvia.Garza@et.eurofinsus.com	IS.COM	<i>S</i> 1−	State of Origin: Texas	.,		Page: Page 1 of 1	
Company Eurofins Eaton Analytical					Accreditatio	Accreditations Required (See note) NELAP - Texas	see note)					Job #: 870-36460-1	
Address. 941 Corporate Center Dnve, ,	Due Date Requested. 5/29/2025	d.					Analys	Analysis Requested	ested			Preservation Codes	səpc
City Pomona	TAT Requested (da	ys): N/A											
State, Zip: CA, 91768-2642													
Phone: 626-386-1100(Tel)	PO#: N/A					-							
Email: N/A	WO#: N/A				(oN						3,000	8.16	
Project Name: PCX 30TAC307 + Table III + Permit Renewal	Project #: 87000965				10 80)							əureru	
Site: N/A	SSOW#: N/A				v) asv						80 an 18 an 10	other N/A	
		Sample	Sample Type (C=comp,	Matrix (wwwater S=solid, O=waste/oll,	beteilligeted MSM miohi reriadi_Ber							(eqwn) jejo	
Sample Identification - Client ID (Lab ID)	Sample Date	Hime V	G=grab) BT=TISSUE, A=A Preservation Code:	BT=TISSUR, A=AIr)	a X								Special Instructions/Note:
25220003-01 Influent TC (870-36460-3)	5/21/25	08 60	ဗ	Water	×	1						2 ON HOLD pending 625	ing 625
25220003-04 Effluent TC (870-36460-4)	5/21/25	09:45	ŋ	Water	×				-			2 ON HOLD pending 625	ing 625
		Cerilla						-					
Note: Since laboratory accreditations are subject to change Eurofins Environment Testing South Central LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratory or other instructions will be provided. Any changes to laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC laboratory or other instructions will be provided. Any changes to	nent Testing South Cent above for analysis/tests	al LLC places	s the ownership analyzed, the s	o of method, an	alyte & accr	editation comp	liance upon of	ur subcontra	tct laborator South Cent	ies. This sal, LLC lab	ample ship oratory or o	ment is forwarded und	er chain-of-custody If the e provided. Any changes to
accreditation status should be brought to Euronins Environment Lesung South L Possible Hazard Identification	Central, LLC attention in	Imediately if	all requested a	ccreditations at	Samp	e Disposa	(A fee m	ay be ass	y attesung to	amples	are retail	iment to date; return the signed chain of custody artesuing to said compliance to Euroins Environment. Testing Soc Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	esting south Central, LLC.
Unconfirmed						Return To Client	ient	Diss		ab	Arc	☐Archive For	Months
Deliverable Requested 1, II, III, IV Other (specify)	Primary Deliverable Rank:	ble Rank: 2			Specia	Special Instructions/QC Requirements	1s/QC Requi	uirements				•	
Empty Kit Relinquished by:		Date			Time.	•	100 E		Method	Majorand Bilangent: 88	28	1876 60 6	,(o4
Relinquished by	Dall Lines 1 2 2	125	- 170	() () () () () () () () () () () () () (Re	Received by: MAY 2 2 2025	W 22	3707	•	Date/Time	ne:	,	Company
Relinquished by- [‡] , ∪	Date/Time:			Company	2	Received by:	Se Se	_		Come/Pime?	23/12	5 1008	Company
Relinquished by	Date/Time:			Company	Se	Received by:				Date/Time:	ne:		Company
Custody Seals Infact: Custody Seal No					رق	Cooler Temperature(s) & and Other Remarks.	Osicial Control of the Control of th	Other Remo	売 な	3	48000	7	
										l			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Custody Seals Intact: Custody Seal No.	Relinquished by:	Relinquished by:	Relinquished by: 222	Empty Kit Relinquished by	Deliverable Requested: I, II, III, IV Other (specify)	Possible Hazard Identification Unconfirmed	Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing South Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory score not currently maintain accreditation in the State of Origin issued above for analysistaststimative being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, LLC.				ENERGY FILES II A (S. BACATOCA)	5220003 04 EMILIENT TO (870, 35450.4)	25220003-01 Influent TC (870-36460-3)	25220003-06 Effluent G (870-36460-2)	25220003-03 Influent G (870-36460-1)		Sample Identification - Client ID (Lab ID)	Site:	Project Name: PCX 30TAC307 + Table III + Permit Renewal	Email: N/A	Phone: 281-240-4200(Tel)	State, Zip: TX, 77477	City: Stafford	Address: 4145 Greenbriar Dr	Company: Eurofins Environment Testing South Centr		Client Information (Sub Contract Lab)	9701 Harry Hines Blvd Dallas, TX 75220 Phone: 214-902-0300
	Date/Time:	Date/Time:	Date / 2		Primary Deliverable Rank: 2		ent Testing South Cent above for analysis/test Sentral, LLC attention in				W#1120	5/21/25	5/21/25	5/21/25	5/21/25	X	Sample Date	N/A	Project #: 87000965	N/A #	N/A #		TAT Requested (days):	Due Date Requested: 5/29/2025		Phone: N/A	Sampler N/A	
			2125	Date:	ible Rank:		ral, LLC place s/matrix being nmediately.				Central	Central 09:45	09:30	10:20 Central	09:35 Central	X	Sample Time						tye): N/A	, š				hain
			- 17		2		es the ownersh analyzed, the fall requested					n	ေ	6	G	Preserva	Sample Type (C=comp, G=grab)											of Cus
	Company	Company	Panpany				ip of method, a samples must accreditations				1000	Water	Water	Water	Water	Preservation Code:	Matrix (www.cor, s-solid, cwyn.co/ol, Bf'eTiasue, A-A/r					 				E-Mai Sylvii	୍ଷ କ୍ର	Chain of Custody Record
Ì				Time:	Sp	Sa	analyte & be shippe are curre					#	7		_	簽	Field Filtere Perform MS				Yo)				Accreditations Required (See note): NELAP Texas		Lab PM: Garza, Sylvia	Reco
Coole	Recei	Recei	Received by:		Special Instructions/QC Requirer	∐mg/e Re	accredi nd back nt to da					I		×	×		200.8/200.8_P	_TR (M	OD) 20	0,8 Me	tala				P Te	a@et	<u>g</u> .	ă
Temp	Received by:	ved by	Received by		nstruc	Disp	to the				\bot	\bot	4	×	×		3600_CR3_B/			4					Texas	euro		
unterak			7	mofe, same	tions	le Disposal (A 1 Return To Client	complia Eurofic				4	_	\dashv	×	×		420,4_NP/ EP 624.1/624_Pro					h			ed (Se	insus		
Cooler Temperature(s) °C and Othe		~ r	2 20	×	QC F	A fee	nce up			-	+	+	\dashv	×	×	N.	Ac/Ac/2Cleve SM4500CN_G	<u> </u>						Ana	e note	.co m		
and C	Y		7.) 	Requi	e ma	ironme Chain	\vdash		_	+	+	\dashv	Ŷ	×		4500_CN_G_I					nable		Analysis	ľ			
When R	.)	~	i		reme	∏be ¿	r subco			$\neg \uparrow$	+	+	-	×	×		Cyanide Kelada_01							Re			ļ	
A	1	\			nents:	e assessed if san Disposal By Lab	ontract ting Sc stody a				1,	<	×			181.00	632/CWA_Pre	p EPA	32		*******			Requested		State of Texas	N/A	
<u>-"</u>]]	5	,	Meth		sed.	labora outh Co				,	〈	×			2000	608.3_Pest/60	8_Prep	(MDD)	110	608			sted	[State of Origin: Texas	Carrier Tracking No(s): N/A	
d				Method of Shipment		fsan /Lab	stories. entral, ig to sa				>	〈	×				608.3_PCB/60									gin	cking r	
1	Date/Time:	Date/Time:	Date/Time:	hipme		ples	ata agar LLCIP				1	<u> </u>	×				615_MOD/351 Hexachtoropt 625.1_QQQ/3	nene									(s):	
, }	ű,	ime:		1 N		ave.	sampi borato npliano				-+-		×			a sec	Pesticides S	UB		anop.		100						
	l					retai. ⊐ _{Arc}	e ship any or o	 - November 1	e e e e e e e e e e e e				×	man X			8016D_OAI_G			- 97 es s			- X-1500					
Ì	1		3	\triangleright		tained Iong Archive For	ment is ther in		-	Andrew Pro-	ू सू		₫ ! ≩ !	ത ≨ ஜ	თ ≲.ஜ		Total Numb	and the second	12.7.9.9.	018	<u>(martinalis</u>			20	87 5	20.20	8 8	17,3
	Company	Company	Company			Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Months	bcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the feeting South/Central, LLC laboratory or other instructions will be provided. Any changes to Custody attesting to said compliance to Eurofins Environment Testing South Central, LLC.				RUN 1x. Need to meet Texas Wastewater	Must meet Texas Wastewater MAL's.	/ust meet Texas Wastewater MAL's.	Run Low Standard to meet Texas Wastewater MAL's Run low standard of 1	Run Low Standard to meet Texas Wastewater MAL's., Run low standard of 1		Special Instructions/Note:	Other						Preservation Codes:	570-36460-1	Page: Page 1 of 1	COC No; 870-8416.1	Seurofins Environment Testing

Login Sample Receipt Checklist

Client: North Texas Municipal Water District Job Number: 870-36460-1

Login Number: 36460 List Source: Eurofins Dallas

List Number: 1

Creator: Virani, Tycho L

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

_

<u>၁</u>

4

5

7

8

40

11

12

14

15

16

<6mm (1/4").

Login Sample Receipt Checklist

Client: North Texas Municipal Water District Job Number: 870-36460-1

List Source: Eurofins Houston
List Number: 2
List Creation: 05/23/25 08:43 AM

5

6

Creator: Torrez, Lisandra

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Eurofins DallasPage 63 of 63

6/11/2025

ATTACHMENT TR-5 WORKSHEET 4.0 POLLUTANT ANALYSIS REQUIREMENTS

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Toxic Pollutants (Instructions Page 76)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab ⊠

Composite ⊠

See Attachment TR-6

Date and time sample(s) collected: <u>05/20/2025 09:45 to 05/21/2025 09:45, 05/21/2025 10:20</u>

Table 4.0(1) - Toxics Analysis

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrylonitrile	N/A	<50	1	50
Aldrin	N/A	<0.01	1	0.01
Aluminum	N/A	15.9	1	2.5
Anthracene	N/A	<10	1	10
Antimony	N/A	<5	1	5
Arsenic	N/A	1.06	1	0.5
Barium	N/A	47.2	1	3
Benzene	N/A	<10	1	10
Benzidine	N/A	<50	1	50
Benzo(a)anthracene	N/A	<5	1	5
Benzo(a)pyrene	N/A	<5	1	5
Bis(2-chloroethyl)ether	N/A	<10	1	10
Bis(2-ethylhexyl)phthalate	N/A	<10	1	10
Bromodichloromethane	N/A	<10	1	10
Bromoform	N/A	<10	1	10
Cadmium	N/A	<1	1	1
Carbon Tetrachloride	N/A	<2	1	2
Carbaryl	N/A	<5	1	5
Chlordane*	N/A	<0.2	1	0.2
Chlorobenzene	N/A	<10	1	10
Chlorodibromomethane	N/A	<10	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (μg/l)
Chloroform	N/A	<10	1	10
Chlorpyrifos	N/A	<0.05	1	0.05
Chromium (Total)	N/A	<3	1	3
Chromium (Tri) (*1)	N/A	<3	1	N/A
Chromium (Hex)	N/A	<3	1	3
Copper	N/A	12.5	1	2
Chrysene	N/A	<5	1	5
p-Chloro-m-Cresol	N/A	<10	1	10
4,6-Dinitro-o-Cresol	N/A	<50	1	50
p-Cresol	N/A	<10	1	10
Cyanide (*2)	N/A	<10	1	10
4,4'- DDD	N/A	<0.1	1	0.1
4,4'- DDE	N/A	<0.1	1	0.1
4,4'- DDT	N/A	<0.02	1	0.02
2,4-D	N/A	<0.7	1	0.7
Demeton (O and S)	N/A	<0.20	1	0.20
Diazinon	N/A	<0.1	1	0.5/0.1
1,2-Dibromoethane	N/A	<10	1	10
m-Dichlorobenzene	N/A	<10	1	10
o-Dichlorobenzene	N/A	<10	1	10
p-Dichlorobenzene	N/A	<10	1	10
3,3'-Dichlorobenzidine	N/A	<5	1	5
1,2-Dichloroethane	N/A	<10	1	10
1,1-Dichloroethylene	N/A	<10	1	10
Dichloromethane	N/A	<20	1	20
1,2-Dichloropropane	N/A	<10	1	10
1,3-Dichloropropene	N/A	<10	1	10
Dicofol	N/A	<1	1	1
Dieldrin	N/A	<0.02	1	0.02
2,4-Dimethylphenol	N/A	<10	1	10
Di-n-Butyl Phthalate	N/A	<10	1	10
Diuron	N/A	<0.09	1	0.09
Endosulfan I (alpha)	N/A	<0.01	1	0.01

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Endosulfan II (beta)	N/A	<0.02	1	0.02
Endosulfan Sulfate	N/A	<0.1	1	0.1
Endrin	N/A	<0.02	1	0.02
Epichlorohydrin	N/A	<50	1	
Ethylbenzene	N/A	<10	1	10
Ethylene Glycol	N/A	<5000	1	
Fluoride	N/A	<500	1	500
Guthion	N/A	<0.1	1	0.1
Heptachlor	N/A	<0.01	1	0.01
Heptachlor Epoxide	N/A	<0.01	1	0.01
Hexachlorobenzene	N/A	<5	1	5
Hexachlorobutadiene	N/A	<10	1	10
Hexachlorocyclohexane (alpha)	N/A	<0.05	1	0.05
Hexachlorocyclohexane (beta)	N/A	<0.05	1	0.05
gamma-Hexachlorocyclohexane	N/A	<0.05	1	0.05
(Lindane)				
Hexachlorocyclopentadiene	N/A	<10	1	10
Hexachloroethane	N/A	<20	1	20
Hexachlorophene	N/A	<10	1	10
4,4'-Isopropylidenediphenol	N/A	<1	1	1
Lead	N/A	<0.5	1	0.5
Malathion	N/A	<0.1	1	0.1
Mercury	N/A	<0.005	1	0.005
Methoxychlor	N/A	<2	1	2
Methyl Ethyl Ketone	N/A	<50	1	50
Methyl tert-butyl ether	N/A	<5	1	
Mirex	N/A	<0.02	1	0.02
Nickel	N/A	12.0	1	2
Nitrate-Nitrogen	N/A	16000	1	100
Nitrobenzene	N/A	<10	1	10
N-Nitrosodiethylamine	N/A	<20	1	20
N-Nitroso-di-n-Butylamine	N/A	<20	1	20
Nonylphenol	N/A	<333	1	333

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Parathion (ethyl)	N/A	<0.1	1	0.1
Pentachlorobenzene	N/A	<20	1	20
Pentachlorophenol	N/A	<5	1	5
Phenanthrene	N/A	<10	1	10
Polychlorinated Biphenyls (PCB's) (*3)	N/A	<0.2	1	0.2
Pyridine	N/A	<20	1	20
Selenium	N/A	<5	1	5
Silver	N/A	<0.5	1	0.5
1,2,4,5-Tetrachlorobenzene	N/A	<20	1	20
1,1,2,2-Tetrachloroethane	N/A	<10	1	10
Tetrachloroethylene	N/A	<10	1	10
Thallium	N/A	<0.5	1	0.5
Toluene	N/A	<10	1	10
Toxaphene	N/A	<0.3	1	0.3
2,4,5-TP (Silvex)	N/A	<0.3	1	0.3
Tributyltin (see instructions for explanation)	N/A	N/A	1	0.01
1,1,1-Trichloroethane	N/A	<10	1	10
1,1,2-Trichloroethane	N/A	<10	1	10
Trichloroethylene	N/A	<10	1	10
2,4,5-Trichlorophenol	N/A	<50	1	50
TTHM (Total Trihalomethanes)	N/A	<10	1	10
Vinyl Chloride	N/A	<10	1	10
Zinc	N/A	25.9	1	5

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

^(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab ⊠ Composite ⊠

Date and time sample(s) collected: <u>05/20/2025</u> <u>09:45</u> to <u>05/21/2025</u> <u>09:45</u>, <u>05/21/2025</u> <u>10:20</u>

Table 4.0(2)A - Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Antimony	N/A	<5	1	5
Arsenic	N/A	1.06	1	0.5
Beryllium	N/A	<0.5	1	0.5
Cadmium	N/A	<1	1	1
Chromium (Total)	N/A	<3	1	3
Chromium (Hex)	N/A	<3	1	3
Chromium (Tri) (*1)	N/A	<3	1	N/A
Copper	N/A	12.5	1	2
Lead	N/A	<0.5	1	0.5
Mercury	N/A	< 0.005	1	0.005
Nickel	N/A	12.0	1	2
Selenium	N/A	<5	1	5
Silver	N/A	<0.5	1	0.5
Thallium	N/A	<0.5	1	0.5
Zinc	N/A	25.9	1	5
Cyanide (*2)	N/A	<10	1	10
Phenols, Total	N/A	<10	1	10

^(*1) Determined by subtracting hexavalent Cr from total Cr.

^(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)B - Volatile Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acrolein	N/A	<50	1	50
Acrylonitrile	N/A	<50	1	50
Benzene	N/A	<10	1	10
Bromoform	N/A	<10	1	10
Carbon Tetrachloride	N/A	<2	1	2
Chlorobenzene	N/A	<10	1	10
Chlorodibromomethane	N/A	<10	1	10
Chloroethane	N/A	<50	1	50
2-Chloroethylvinyl Ether	N/A	<10	1	10
Chloroform	N/A	<10	1	10
Dichlorobromomethane [Bromodichloromethane]	N/A	<10	1	10
1,1-Dichloroethane	N/A	<10	1	10
1,2-Dichloroethane	N/A	<10	1	10
1,1-Dichloroethylene	N/A	<10	1	10
1,2-Dichloropropane	N/A	<10	1	10
1,3-Dichloropropylene	N/A	<10	1	10
[1,3-Dichloropropene]				
1,2-Trans-Dichloroethylene	N/A	<10	1	10
Ethylbenzene	N/A	<10	1	10
Methyl Bromide	N/A	<50	1	50
Methyl Chloride	N/A	<50	1	50
Methylene Chloride	N/A	<20	1	20
1,1,2,2-Tetrachloroethane	N/A	<10	1	10
Tetrachloroethylene	N/A	<10	1	10
Toluene	N/A	<10	1	10
1,1,1-Trichloroethane	N/A	<10	1	10
1,1,2-Trichloroethane	N/A	<10	1	10
Trichloroethylene	N/A	<10	1	10
Vinyl Chloride	N/A	<10	1	10

Table 4.0(2)C - Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
2-Chlorophenol	N/A	<10	1	10
2,4-Dichlorophenol	N/A	<10	1	10
2,4-Dimethylphenol	N/A	<10	1	10
4,6-Dinitro-o-Cresol	N/A	<50	1	50
2,4-Dinitrophenol	N/A	<50	1	50
2-Nitrophenol	N/A	<20	1	20
4-Nitrophenol	N/A	<50	1	50
P-Chloro-m-Cresol	N/A	<10	1	10
Pentalchlorophenol	N/A	<5	1	5
Phenol	N/A	<10	1	10
2,4,6-Trichlorophenol	N/A	<10	1	10

Table 4.0(2)D - Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Acenaphthene	N/A	<10	1	10
Acenaphthylene	N/A	<10	1	10
Anthracene	N/A	<10	1	10
Benzidine	N/A	<50	1	50
Benzo(a)Anthracene	N/A	<5	1	5
Benzo(a)Pyrene	N/A	<5	1	5
3,4-Benzofluoranthene	N/A	<10	1	10
Benzo(ghi)Perylene	N/A	<20	1	20
Benzo(k)Fluoranthene	N/A	<5	1	5
Bis(2-Chloroethoxy)Methane	N/A	<10	1	10
Bis(2-Chloroethyl)Ether	N/A	<10	1	10
Bis(2-Chloroisopropyl)Ether	N/A	<10	1	10
Bis(2-Ethylhexyl)Phthalate	N/A	<10	1	10
4-Bromophenyl Phenyl Ether	N/A	<10	1	10
Butyl benzyl Phthalate	N/A	<10	1	10
2-Chloronaphthalene	N/A	<10	1	10
4-Chlorophenyl phenyl ether	N/A	<10	1	10
Chrysene	N/A	<5	1	5
Dibenzo(a,h)Anthracene	N/A	<5	1	5
1,2-(o)Dichlorobenzene	N/A	<10	1	10
1,3-(m)Dichlorobenzene	N/A	<10	1	10
1,4-(p)Dichlorobenzene	N/A	<10	1	10
3,3-Dichlorobenzidine	N/A	<5	1	5
Diethyl Phthalate	N/A	<10	1	10
Dimethyl Phthalate	N/A	<10	1	10
Di-n-Butyl Phthalate	N/A	<10	1	10
2,4-Dinitrotoluene	N/A	<10	1	10
2,6-Dinitrotoluene	N/A	<10	1	10
Di-n-Octyl Phthalate	N/A	<10	1	10
1,2-Diphenylhydrazine (as Azobenzene)	N/A	<20	1	20
Fluoranthene	N/A	<10	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Fluorene	N/A	<10	1	10
Hexachlorobenzene	N/A	<5	1	5
Hexachlorobutadiene	N/A	<10	1	10
Hexachlorocyclo-pentadiene	N/A	<10	1	10
Hexachloroethane	N/A	<20	1	20
Indeno(1,2,3-cd)pyrene	N/A	<5	1	5
Isophorone	N/A	<10	1	10
Naphthalene	N/A	<10	1	10
Nitrobenzene	N/A	<10	1	10
N-Nitrosodimethylamine	N/A	<50	1	50
N-Nitrosodi-n-Propylamine	N/A	<20	1	20
N-Nitrosodiphenylamine	N/A	<20	1	20
Phenanthrene	N/A	<10	1	10
Pyrene	N/A	<10	1	10
1,2,4-Trichlorobenzene	N/A	<10	1	10

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (μg/l)
Aldrin	N/A	<10	1	0.01
alpha-BHC (Hexachlorocyclohexane)	N/A	<0.05	1	0.05
beta-BHC (Hexachlorocyclohexane)	N/A	<0.05	1	0.05
gamma-BHC (Hexachlorocyclohexane)	N/A	<0.05	1	0.05
delta-BHC (Hexachlorocyclohexane)	N/A	<0.05	1	0.05
Chlordane	N/A	<0.2	1	0.2
4,4-DDT	N/A	<0.02	1	0.02
4,4-DDE	N/A	<0.1	1	0.1
4,4,-DDD	N/A	<0.1	1	0.1
Dieldrin	N/A	<0.02	1	0.02
Endosulfan I (alpha)	N/A	< 0.01	1	0.01
Endosulfan II (beta)	N/A	<0.02	1	0.02
Endosulfan Sulfate	N/A	<0.1	1	0.1
Endrin	N/A	<0.02	1	0.02
Endrin Aldehyde	N/A	<0.1	1	0.1
Heptachlor	N/A	<0.01	1	0.01
Heptachlor Epoxide	N/A	<0.01	1	0.01
PCB-1242	N/A	<0.2	1	0.2
PCB-1254	N/A	<0.2	1	0.2
PCB-1221	N/A	<0.2	1	0.2
PCB-1232	N/A	<0.2	1	0.2
PCB-1248	N/A	<0.2	1	0.2
PCB-1260	N/A	<0.2	1	0.2
PCB-1016	N/A	<0.2	1	0.2
Toxaphene	N/A	<0.3	1	0.3

^{*} For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Section 3. Dioxin/Furan Compounds

Α.		te which of the following compounds from may be present in the influent from a buting industrial user or significant industrial user. Check all that apply.
		2,4,5-trichlorophenoxy acetic acid
		Common Name 2,4,5-T, CASRN 93-76-5
		2-(2,4,5-trichlorophenoxy) propanoic acid
		Common Name Silvex or 2,4,5-TP, CASRN 93-72-1
		2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate
		Common Name Erbon, CASRN 136-25-4
		0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate
		Common Name Ronnel, CASRN 299-84-3
		2,4,5-trichlorophenol
		Common Name TCP, CASRN 95-95-4
		hexachlorophene
		Common Name HCP, CASRN 70-30-4
		ch compound identified, provide a brief description of the conditions of its/their nce at the facility.
	N <u>/A</u>	
В.		u know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin O) or any congeners of TCDD may be present in your effluent?
		Yes 🗵 No
	If yes,	provide a brief description of the conditions for its presence.
	N <u>/A</u>	

C. If any of the compounds in Subsection A **or** B are present, complete Table 4.0(2)F.

For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab □ Composite □

Date and time sample(s) collected: N/A

Table 4.0(2)F - Dioxin/Furan Compounds

Compound	Toxic Equivalenc y Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1	N/A	N/A	N/A	N/A	10
1,2,3,7,8 PeCDD	0.5	N/A	N/A	N/A	N/A	50
2,3,7,8 HxCDDs	0.1	N/A	N/A	N/A	N/A	50
1,2,3,4,6,7,8 HpCDD	0.01	N/A	N/A	N/A	N/A	50
2,3,7,8 TCDF	0.1	N/A	N/A	N/A	N/A	10
1,2,3,7,8 PeCDF	0.05	N/A	N/A	N/A	N/A	50
2,3,4,7,8 PeCDF	0.5	N/A	N/A	N/A	N/A	50
2,3,7,8 HxCDFs	0.1	N/A	N/A	N/A	N/A	50
2,3,4,7,8 HpCDFs	0.01	N/A	N/A	N/A	N/A	50
OCDD	0.0003	N/A	N/A	N/A	N/A	100
OCDF	0.0003	N/A	N/A	N/A	N/A	100
PCB 77	0.0001	N/A	N/A	N/A	N/A	0.5
PCB 81	0.0003	N/A	N/A	N/A	N/A	0.5
PCB 126	0.1	N/A	N/A	N/A	N/A	0.5
PCB 169	0.03	N/A	N/A	N/A	N/A	0.5
Total		N/A	N/A	N/A	N/A	

ATTACHMENT TR-6 WORKSHEET 5.0 TOXICITY TESTING REQUIREMENTS

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: TOXICITY TESTING REQUIREMENTS

The following **is required** for facilities with a current operating design flow of **1.0 MGD** or **greater**, with an EPA-approved **pretreatment** program (or those required to have one under 40 CFR Part 403), or are required to perform Whole Effluent Toxicity testing. See Page 86 of the instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Required Tests

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic: <u>18</u> 48-hour Acute: <u>9</u>

Section 2. Toxicity Reduction Evaluations (TREs)

Has this facility	completed a	TRE in the	past four	and a l	half years?	Or is the	facility	currently
performing a TI	RE?							

□ Yes ⊠ No

If yes, describe the progress to date, if applicable, in identifying and confirming the toxicant.

N <u>/A</u>			

Section 3. Summary of WET Tests

If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed.

Table 5.0(1) Summary of WET Tests

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal
DMRs submitted via	NetDMR. Table 1s submitted to	TCEQ email WET@to	ceq.texas.gov

ATTACHMENT TR-8 WORKSHEET 6.0 INDUSTRIAL WASTE CONTRIBUTION

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works.

Section 1. All POTWs (Instructions Page 87)

A. Industrial users (IUs)

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

If there are no users, enter 0 (zero).

Categorical IUs:

Number of IUs: o

Average Daily Flows, in MGD: o

Significant IUs - non-categorical:

Number of IUs: o

Average Daily Flows, in MGD: o

Other IUs:

Number of IUs: o

Average Daily Flows, in MGD: o

B. Treatment plant interference

In the past three years, has your POTW experienced treatment plant interference (see instructions)?

□ Yes ⊠ No

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

N <u>/A</u>		

	In the past three years, has your POTW experienced pass through (see instructions)?
	□ Yes ⊠ No
	If yes , identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.
	N <u>/A</u>
D.	Pretreatment program
_	Does your POTW have an approved pretreatment program?
	⊠ Yes □ No
	If yes, complete Section 2 only of this Worksheet.
	Is your POTW required to develop an approved pretreatment program?
	□ Yes □ No
	If yes, complete Section 2.c. and 2.d. only, and skip Section 3.
	If no to either question above , skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.
Se	ection 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 87)
A.	Substantial modifications
	Have there been any substantial modifications to the approved pretreatment program that have not been submitted to the TCEQ for approval according to <i>40 CFR §403.18</i> ?
	,
	that have not been submitted to the TCEQ for approval according to 40 CFR §403.18?
	that have not been submitted to the TCEQ for approval according to <i>40 CFR §403.18</i> ? ☐ Yes ☒ No If yes, identify the modifications that have not been submitted to TCEQ, including the
	that have not been submitted to the TCEQ for approval according to <i>40 CFR §403.18</i> ? ☐ Yes ☑ No If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.
	that have not been submitted to the TCEQ for approval according to <i>40 CFR §403.18</i> ? ☐ Yes ☑ No If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.
	that have not been submitted to the TCEQ for approval according to <i>40 CFR §403.18</i> ? ☐ Yes ☑ No If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.
	that have not been submitted to the TCEQ for approval according to <i>40 CFR §403.18</i> ? ☐ Yes ☑ No If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.

C. Treatment plant pass through

	Drogram mat nave	e not been submitte	.u (() () () () ()	c.vic.w and acce.	otance?
		No		,	
		non-substantial mo pose of the modific		have not been	submitted to TCEQ,
	N <u>/A</u>				
C.	Effluent paramete	ers above the MAL			
Tal		t all parameters me g the last three year ters Above the MAL			
	ollutant	Concentration	MAL	Units	Date
S	ee TR-9				
D.	Industrial user in	terruptions			
D.	Has any SIU, CIU,	terruptions or other IU caused ass throughs) at yo			
D.	Has any SIU, CIU, interferences or p	or other IU caused			
D.	Has any SIU, CIU, interferences or p ☐ Yes ☑ If yes, identify the	or other IU caused (ass throughs) at yo	ur POTW in the each episode, i	past three year	
D.	Has any SIU, CIU, interferences or p ☐ Yes ☑ If yes, identify the	or other IU caused of ass throughs) at your No e industry, describe	ur POTW in the each episode, i	past three year	s?
D.	Has any SIU, CIU, interferences or p ☐ Yes ☑ If yes, identify the of the problems, a	or other IU caused of ass throughs) at your No e industry, describe	ur POTW in the each episode, i	past three year	s?
D.	Has any SIU, CIU, interferences or p ☐ Yes ☑ If yes, identify the of the problems, a	or other IU caused of ass throughs) at your No e industry, describe	ur POTW in the each episode, i	past three year	s?
D.	Has any SIU, CIU, interferences or p ☐ Yes ☑ If yes, identify the of the problems, a	or other IU caused of ass throughs) at your No e industry, describe	ur POTW in the each episode, i	past three year	s?

B. Non-substantial modifications

Section 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 88)

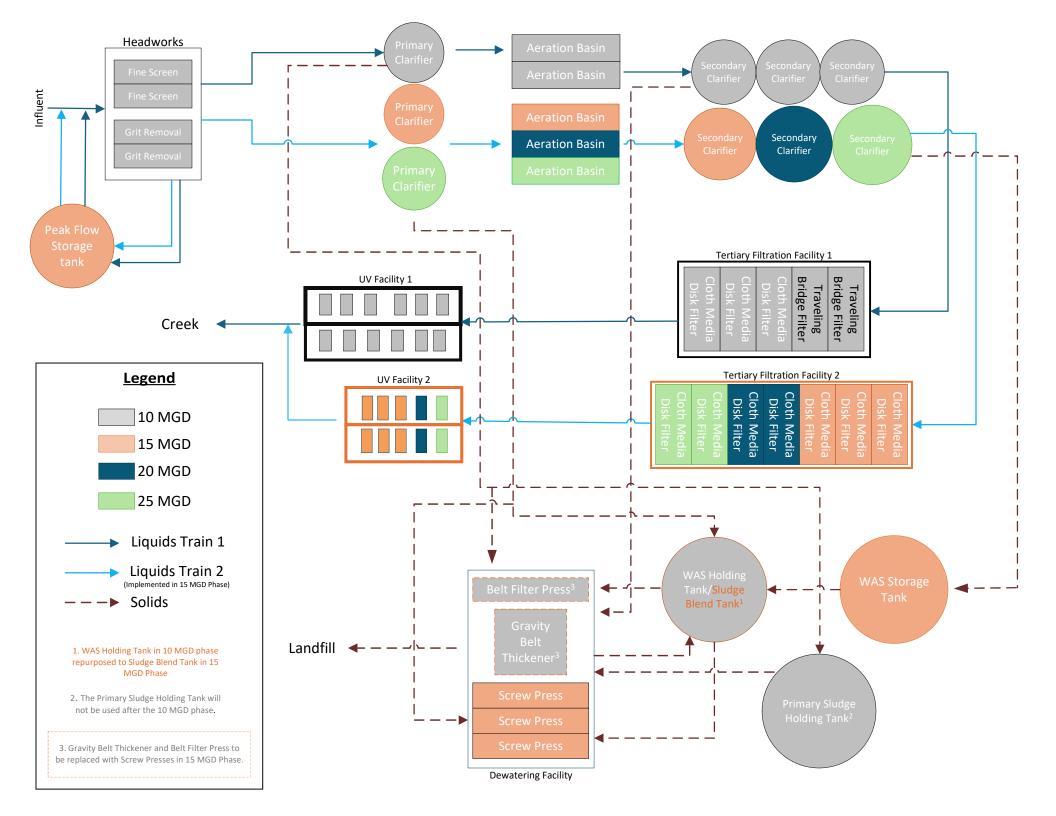
A. General information

	Company Name: <u>N/A</u>							
	SIC Code: <u>N/A</u>							
	Contact name: <u>N/A</u>							
	Address: <u>N/A</u>							
	City, State, and Zip Code: <u>N/A</u>							
	Telephone number: <u>N/A</u>							
	Email address: <u>N/A</u>							
B.	Process information							
	Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).							
	N/A							
C.	Product and service information							
C.	Product and service information Provide a description of the principal product(s) or services performed.							
C.								
C.	Provide a description of the principal product(s) or services performed.							
C.	Provide a description of the principal product(s) or services performed.							
C.	Provide a description of the principal product(s) or services performed.							
C.	Provide a description of the principal product(s) or services performed.							
C.	Provide a description of the principal product(s) or services performed.							
	Provide a description of the principal product(s) or services performed. N/A							
	Provide a description of the principal product(s) or services performed. N/A Flow rate information							
	Provide a description of the principal product(s) or services performed. N/A Flow rate information See the Instructions for definitions of "process" and "non-process wastewater."							
	Provide a description of the principal product(s) or services performed. N/A Flow rate information See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater:							
	Provide a description of the principal product(s) or services performed. N/A Flow rate information See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater: Discharge, in gallons/day: N/A							
	Provide a description of the principal product(s) or services performed. N/A Flow rate information See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater: Discharge, in gallons/day: N/A Discharge Type: Continuous Batch Intermittent							
	Provide a description of the principal product(s) or services performed. N/A Flow rate information See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater: Discharge, in gallons/day: N/A Discharge Type: Continuous Batch Intermittent Non-Process Wastewater:							
	Provide a description of the principal product(s) or services performed. N/A Flow rate information See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater: Discharge, in gallons/day: N/A Discharge Type: □ Continuous □ Batch □ Intermittent Non-Process Wastewater: Discharge, in gallons/day: N/A							
	Provide a description of the principal product(s) or services performed. N/A Flow rate information See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater: Discharge, in gallons/day: N/A Discharge Type: Continuous Batch Intermittent Non-Process Wastewater:							

E.	Pretreatment standards						
Is the SIU or CIU subject to technically based local limits as defined in the i nstructions							
	□ Yes □ No						
	Is the SIU or CIU subject to categorical pretreatment standards found in 40 CFR Parts 405 - 471 ?						
	□ Yes □ No						
If subject to categorical pretreatment standards , indicate the applicable category subcategory for each categorical process.							
	Category: Subcategories: <u>N/A</u>						
	Click or tap here to enter text. <u>N/A</u>						
	Category: <u>N/A</u>						
	Subcategories: <u>N/A</u>						
	Category: <u>N/A</u>						
Subcategories: <u>N/A</u> Category: <u>N/A</u>							
	Category: <u>N/A</u>						
	Subcategories: <u>N/A</u>						
F.	Industrial user interruptions						
Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years?							
\square Yes \square No If yes , identify the SIU, describe each episode, including dates, duration, description o problems, and probable pollutants.							

ATTACHMENT TR-9 EFFLUENT PARAMETERS ABOVE THE MAL

THREE YEARS ABOVE THE MAL


	122 12/11/07/190	VE IIIE		_
Pollutant	Concentration	MAL	Units	Date
Aluminum	49.8	2.5	ug/L	5/26/2022
Arsenic	1.51	0.5	ug/L	5/26/2022
Barium	58.1		ug/L	5/26/2022
Copper	4.98	2	ug/L	5/26/2022
Di-n-Butyl Phthalate	23.1		ug/L	5/26/2022
Fluoride	617		ug/L	5/26/2022
Nickel	9.43		ug/L	5/26/2022
Nitrate-Nitrogen	11900		ug/L	5/26/2022
Zinc	14.8		ug/L	5/26/2022
Arsenic	1.16		ug/L	8/25/2022
Copper	7.61		ug/L	8/25/2022
Cyanide, Total	12		ug/L	8/25/2022
Nickel	7.5		ug/L	8/25/2022
Phenols, Total	102		ug/L	8/25/2022
Zinc	13.8		ug/L	8/25/2022
Aluminum	7.07		ug/L	11/2/2022
Arsenic	0.85		ug/L	11/2/2022
Barium	42.5		ug/L	11/2/2022
Copper	5.27		ug/L	11/2/2022
Fluoride	680	500	-	11/2/2022
Nickel	6.37		ug/L	11/2/2022
Nitrate-Nitrogen	17800		ug/L	11/2/2022
Zinc	11		ug/L	11/2/2022
Arsenic	0.888		ug/L	2/23/2023
Copper	7.57		ug/L ug/L	2/23/2023
Nickel	9.16		ug/L ug/L	2/23/2023
Zinc	28		ug/L ug/L	2/23/2023
Aluminum	9		ug/L ug/L	5/10/2023
Arsenic	0.866		ug/L ug/L	5/10/2023
Barium	42.5			5/10/2023
Copper	6.44		ug/L ug/L	5/10/2023
Fluoride	665		_	5/10/2023
Nickel	7.68	500	ug/L ug/L	5/10/2023
Nitrate-Nitrogen	13800	100	-	5/10/2023
Zinc	13.3		ug/L ug/L	5/10/2023
Arsenic	0.962			8/9/2023
Copper	8.16		ug/L	8/9/2023
Nickel	7.51		ug/L ug/L	8/9/2023
Zinc	17.7		-	8/9/2023
Aluminum	7.58		ug/L	
	0.84		ug/L	11/29/2023 11/29/2023
Arsenic			ug/L	
Barium	47.2		ug/L	11/29/2023
Copper	5		ug/L	11/29/2023
Nickel	6.72		ug/L	11/29/2023
Nitrate-Nitrogen	25700		ug/L	11/29/2023
Zinc	16.7		ug/L	11/29/2023
Arsenic	1.15		ug/L	2/7/2024
Copper	5.8		ug/L	2/7/2024
Cyanide	23		ug/L	2/7/2024
Nickel	10.1		ug/L	2/7/2024
Phenols, total	59.2		ug/L	2/7/2024
Zinc	22	5	ug/L	2/7/2024

Aluminum	15	2.5 ug/L	5/23/2024
Arsenic	0.835	0.5 ug/L	5/23/2024
Barium	52	3 ug/L	5/23/2024
Copper	5.85	2 ug/L	5/23/2024
Diuron	0.263	500 ug/L	5/23/2024
Nickel	7.49	2 ug/L	5/23/2024
Nitrate-Nitrogen	12700	100 ug/L	5/23/2024
Zinc	16.1	5 ug/L	5/23/2024
Arsenic	0.915	0.5 ug/L	8/22/2024
Copper	9.4	2 ug/L	8/22/2024
Nickel	7.31	2 ug/L	8/22/2024
Zinc	30.9	5 ug/L	8/22/2024
Aluminum	12.1	2.5 ug/L	11/22/2024
Arsenic	0.995	0.5 ug/L	11/22/2024
Barium	48.7	3 ug/L	11/22/2024
Copper	7.68	2 ug/L	11/22/2024
Di-n-Butyl Phthalate	16.8	10 ug/L	11/22/2024
Fluoride	504	500 ug/L	11/22/2024
Nickel	6.78	2 ug/L	11/22/2024
Nitrate-Nitrogen	16700	100 ug/L	11/22/2024
Phenols, total	75.9	10 ug/L	11/22/2024
Zinc	23.6	5 ug/L	11/22/2024
Arsenic	0.862	0.5 ug/L	2/6/2025
Copper	7.04	2 ug/L	2/6/2025
Nickel	6.45	2 ug/L	2/6/2025
Zinc	27.4	5 ug/L	2/6/2025
Aluminum	15.9	2.5 ug/L	5/21/2025
Arsenic	1.06	0.5 ug/L	5/21/2025
Barium	47.2	3 ug/L	5/21/2025
Copper	12.5	2 ug/L	5/21/2025
Nickel	12	2 ug/L	5/21/2025
Nitrate-Nitrogen	16000	100 ug/L	5/21/2025
Zinc	25.9	5 ug/L	5/21/2025

Per the Instructions for Completing the Domestic Wastewater Permit Application (TCEQ-10053-Instructions), Design Calculations are not required for Renewal Domestic Wastewater Permit Applications.

ATTACHMENT 3

PROCESS FLOW DIAGRAM

PANTHER CREEK REGIONAL WASTEWATER SYSTEM CONTRACT

WHEREAS, North Texas Municipal Water District (the "District") is a conservation and reclamation district created and functioning under Article 16, Section 59 of the Texas Constitution, pursuant to Chapter 62, Acts of the 52nd Legislature of the State of Texas, Regular Session, 1951, as amended, (the "District Act"), with the authority to provide and develop regional systems for wastewater treatment; and

WHEREAS, there have been prepared for the District the following:

Report on a Panther Creek Regional Wastewater Treatment System Preliminary Engineering Study, by Freese and Nichols, Inc., Fort Worth, Texas (the "Initial Engineering Report"); and

WHEREAS, the parties hereto wish to provide for the acquisition, construction, improvement, operation and maintenance of a Regional Wastewater System (as further defined herein, the "System") for the purpose of providing facilities to adequately receive, transport, treat, and dispose of Wastewater; and

WHEREAS, the parties hereto are entering into this contract in order to control water pollution, and protect, improve, and enhance the water quality of Panther Creek and the Trinity River and the water supplies impounded therein; and

WHEREAS, the City of Frisco ("Frisco") in Collin and Denton Counties, presently owns, operates, and maintains a combined waterworks and sanitary sewer systems; and

WHEREAS, Frisco has deemed it necessary and desirable to contract with the District to provide for the acquisition, construction, improvement, operation and maintenance of the System to achieve efficiencies of cost and operation; and

WHEREAS, the District has been and is willing to accept the responsibility of providing improved waste treatment in the service area to protect water quality and develop reuse potential, and

WHEREAS, the District and Frisco are authorized to make and enter into this Contract under the District Act, Chapter 30, Texas Water Code, as amended, and other applicable laws; and

WHEREAS, the parties hereto recognize these facts

(a) That the District will use the payments to be received under this Contract and similar contracts, if any, for the payment of Operation and Maintenance Expense of the System and for the payment of the principal of, redemption premium, if any, and interest on its Bonds, and to establish and maintain debt service reserves and other funds if and as

provided in any Bond Resolution; and that the revenues under such contracts will be pledged to such purposes; and

- (b) That contracts similar to this instrument may be executed between the District and subsequent Additional Participants; and
- (c) That the District will issue Bonds from time to time in the future to acquire, construct, extend, enlarge, improve, and/or repair the System.

NOW, THEREFORE, the District and Frisco hereby contract and agree as follows:

ARTICLE I

DEFINITIONS

- Section 1.01. DEFINITION OF TERMS. In addition to the definitions stated in the preamble hereof, the terms and expressions as hereinafter used in this contract, unless the context clearly shows otherwise, shall have the following meanings:
- (a) "Additional Participants" means any Person or Persons in addition to Frisco with which the District makes a contract for receiving, transporting, treating, and/or disposing of Wastewater through the System.
- (b) "Adjusted Annual Payment" means the Annual Payment, as adjusted in accordance with Section 5.03 of this Contract during or after each Fiscal Year.
- (c) "Annual Payment" means the amount of money estimated as provided in Section 5.03 of this Contract to be paid to the District by Participants as their proportionate share of the Annual Requirement.
- (d) "Annual Requirement" means the total amount of money required for the District to pay all Operation and Maintenance Expense of the System, with the exception of any surcharges to be paid directly by the Participants under Sections 4.02 and 3.04(c) hereof, and to pay the principal of, and redemption premium, if any, and interest on its Bonds, including all charges and expenses of the paying agents and registrars for its Bonds, and to pay any amounts required to be deposited in any special or reserve funds, including a debt service reserve fund and a repair and replacement fund, as required to be established and/or maintained by the provisions of any Bond Resolution.
- (e) "Bond Resolution" means any resolution of the Board of Directors of the District authorizing the issuance of Bonds and providing for their security and payment, as such resolution(s) may be amended from time to time as therein permitted.
- (f) "Bonds" means any bonds, notes, or other obligations to be issued by the District pursuant to this Contract for the acquisition, construction, enlargement, improvement, extension,

repair, or replacement of the System or any part thereof, whether in one or several issues, or any Bonds issued by the District to refund any or all of same.

- (g) "Construction Fund" means the fund by that name established in Section 2.03 hereof.
- (h) "Contingency Fund" means the fund by that name established in Section 5.03(h) hereof.
- (i) "Contract", or "this contract", means this contract between Frisco and the District and all similar contracts, if any, executed between the District and Additional Participants.
- means all of the District's facilities generally as described in the Engineering Report acquired, constructed, used, or operated by the District for receiving, transporting, treating, and disposing of Wastewater of and for Participants pursuant to this Contract (but excluding any facilities acquired or constructed with Special Facilities Bonds, and excluding any facilities required to transport Wastewater to any Point of Entry of the System), together with any improvements, enlargements, or additions to the System facilities and any extensions, repairs, or replacements of the System facilities acquired, constructed, used, operated, or otherwise incorporated into or made a part of the System facilities in the future by the District. Said terms shall include only those facilities which are acquired, constructed, used, or operated by the District to provide service to Participants pursuant to this Contract, and which, as determined by the District, can economically and efficiently provide service to Participants. Said terms do not include any District facilities which provide Wastewater services of any kind to Persons which are not Participants under this Contract or parties to a contract pursuant to Section 8.03 hereof, nor do they in any way include or affect the District's water supply system
- (k) "Engineering Report" means, collectively, the Initial Engineering Report, and any additions, supplements, amendments or modifications thereof, including, without limitation, any additional engineering studies made pursuant to Section 8.02 hereof.
- (l) "Fiscal Year" means the twelve (12) month period beginning each October 1 and ending the following September 30, or such other twelve (12) month period as may be established in the future to constitute the District's Fiscal Year.
- (m) "Local Wastewater Facilities" means the waste collection and treatment facilities owned and operated by The Participants
- (n) "Operation and Maintenance Expense" means all costs of operation and maintenance of the System including, but not limited to, repairs and replacements for which no special fund is created in a Bond Resolution, the cost of utilities, supervision, engineering, accounting, auditing, legal services, insurance premiums, and any other supplies, services, administrative costs, and equipment necessary for proper operation and maintenance of the System, any payments required to be made hereunder into the Contingency Fund, payments made for the use of operation of any property, payments of fines, and payments made by the District in satisfaction of judgments or other liabilities

resulting from claims not covered by the District's insurance or not paid by one particular Participant arising in connection with the operation and maintenance of the System. Depreciation shall not be considered an item of Operation and Maintenance Expense.

- (o) "Participants" means Frisco and all Additional Participants.
- (p) "Participant" means any of the Participants.
- (q) "Person" shall have the meaning set forth in the Texas Code Construction Act, Chapter 311, Texas government Code, as amended.
- (r) "Point of Entry" means any point or points at which Wastewater enters the System, as such point or points shall be agreed upon between the District and the Participant.
- (s) "Service Commencement Date" means the first date upon which the System is available to treat Wastewater from the Participants.
- (t) "Special Facilities Bonds", means revenue obligations of the District which are not secured by or payable from Annual Payments under this Contract, but which are payable solely from other sources; but Special Facilities Bonds may be made payable from payments from any Person, including any Participant, under a separate contract whereunder the facilities to be acquired or constructed are declared not to be part of the System and are not made payable from the Annual Payments as defined in this Contract
- (u) "Wastewater" means Sewage, Industrial Waste, Municipal Waste, Recreational Waste, and Agricultural Waste, as defined in the Texas Water Code, as amended, together with properly shredded garbage, and such infiltration water that may be present.

ARTICLE II

PROVIDING OF FACILITIES BY THE DISTRICT

Section 2.01. FACILITIES AND INITIAL CONTRACT. In order to provide services for receiving, transporting, treating, and disposing of Wastewater for Participants, the District will use its best efforts to design, acquire, construct, and complete the System, as generally described in the Engineering Report with respect to Frisco, and as generally described in appropriate additional engineering reports hereafter to be obtained with respect to any Participant and will own, operate, and maintain the System, and from time to time enlarge, improve, repair, replace, and/or extend the System to provide service to the Participants. The District shall obtain and hold in its name all required discharge permits from the appropriate Federal and State agencies, and each Participant shall assist the District in obtaining same. The District shall provide, manage, operate, and maintain the System in such manner as it determines is necessary for providing adequate, efficient, and economical service to Participants, and shall have the right to provide single plants, multiplants, or combine two

or more plants, and to use or discontinue the use of any facilities of the System as the District deems necessary.

Section 2.02. CONSULTING ENGINEERS. The District and the Participant agree that Black and Veatch Corporation., Consulting Engineers, shall constitute and be defined as the "Consulting Engineers" for the System. However, the District reserves the right to enter into any such contracts with other engineers deemed necessary to provide engineering services to design the System. Engineering fees and expenses, if any, paid by the District shall be reimbursed from proceeds of the Bonds as a cost of acquisition and construction of the System.

Section 2.03. ACQUISITION AND CONSTRUCTION CONTRACTS. The District will enter into such contracts as are necessary to provide for acquiring and constructing the System, and said contracts shall be executed as required by the laws applicable to the District. The District shall cause the amounts due under such contracts to be paid from the proceeds from the sale of its Bonds. The District shall deposit the proceeds from the sale of its Bonds into a special Panther Creek Regional Wastewater System Construction Fund (the "Construction Fund"). The Construction Fund shall be used for paying the District's costs and expenses incident to the Bonds and the System, and to pay the costs of acquiring, by purchase and construction, the System. Pending use as required by this Contract, the amounts in the Construction Fund may be invested in accordance with law, provided that all investment earnings therefrom (excepting any which may be required to be rebated to the federal government to prevent the Bonds from becoming "arbitrage bonds" under the Internal Revenue Code of 1986, as amended) shall be deposited in and become a part of the Construction Fund. If, after final completion of all facilities constituting the System, any surplus remains on hand in the Construction Fund, such surplus shall be deposited into the interest and sinking fund for the Bonds. Any proceeds from the sale of its Bonds remaining after completion of the System shall be used to pay principal and interest on the Bonds, and reduce to that extent the Annual Payments required to be made by the Participants under this Contract.

Section 2.04. ACQUISITION AND CONSTRUCTION. The District agrees to proceed promptly with the acquisition and construction of the System. The District does not anticipate any delays in commencing or completing the System, but the District shall not be liable for any damages occasioned by, or arising out of, the construction or completion of the System, any delays in completion of the System, or the performance of the System for its intended purpose.

Section 2.05. CONDITIONS PRECEDENT. The obligation on the part of the District to acquire and construct the System shall be conditioned upon the following:

- (a) sale of Bonds in an amount sufficient to assure the acquisition and construction of the System; and
- (b) the District's ability, or the ability of the contractors, to obtain all permits, material, labor, and equipment necessary for the acquisition and construction of the System.

ARTICLE III

DISCHARGE OF WASTEWATER AND METERING

- Section 3.01. DISCHARGE. In consideration of the payments to be made under its respective contract with the District, each of the Participants have and shall have the right to discharge such Wastewater into the District's System as is generally described in the Engineering Report and Wastewater from such other areas as is consented to by the District (acting through its General Manager), provided that such Wastewater meets the requirements for quantity and quality as set forth in its respective Contract with the District; and further provided that, the District is able to obtain permits for the treatment and discharge of such quantity and quality of Wastewater and that discharge of such Wastewater to the System may be made only after notice by the District that it is ready to receive the same pursuant to this Contract.
- Section 3.02. POINT OF ENTRY. Each Participant may discharge Wastewater generated from such Participant's sewer system only into the designated Point or Points of Entry for such Participant.
- Section 3.03. CONVEYANCE TO POINT OF ENTRY. It shall be the sole responsibility of each Participant to transport, or cause to be transported, at no cost to the other Participants, its Wastewater to its Point or Points of Entry.
- Section 3.04. QUANTITY AT POINT OF ENTRY. (a) The quantity of Wastewater conveyed to the Point or Points of Entry shall be metered by the District and the total annual contributing flow of Wastewater received during any Fiscal Year shall be used to determine each Participant's Annual Payment for service as set forth in Article V.
- (b) The maximum discharge rate is defined as a rate in million gallons per day (MGD), exceeded for a period of sixty minutes, which, if continued over a period of 24 hours, would be equal to 3.50 times the Participant's average daily flow during that Fiscal Year.
- (c) Any Participant exceeding the maximum discharge rate shall have a surcharge applied to the next Fiscal Year's Annual Payment equal to 1% of the Annual Payment in that Fiscal Year for each 1/10th that the ratio of the maximum discharge to the average daily flow exceeds 3.50.
- Section 3.05. LIABILITY FOR DAMAGES AND RESPONSIBILITY FOR TREATMENT AND DISPOSAL OF WASTEWATER. Liability for damages arising from the reception, transportation, delivery, and disposal of all Wastewater discharged shall remain in each Participant to its Point or Points of Entry, and upon passing through the District's meters installed at such Points of Entry, liability for such damages and title to such Wastewater shall pass to the District. As between the District and each Participant, each party agrees, to the full extent permitted by law, to indemnify and to save and hold the other party harmless from any and all claims, demands, causes of action, damages, losses, costs, fines, and expenses, including reasonable attorney's fees, which may arise or be asserted by anyone at any time on account of the reception, transportation, delivery, and disposal while Wastewater is in the control of such responsible party, or on account of a prohibited

discharge by a Participant. The District has the responsibility as between the parties for the proper reception, treatment, and disposal of all Wastewater discharged by any Participant through Points of Entry, but not for prohibited discharges passing through any Point of Entry. The District has the right as between the parties to reuse all Wastewater discharged through any Point of Entry.

Section 3.06. METERING. The District will furnish, install, operate and maintain at its own expense at each Point of Entry the necessary equipment and devices of standard type for measuring properly all Wastewater to be discharged into the System by Participants. Such meters and other equipment shall remain the property of the District. Each Participant shall have access to such metering equipment at all reasonable times for inspection and examination, but the reading, calibration, and adjustment thereof shall be done only by employees or agents of the District in the presence of a representative of the Participant if requested by such Participant. All readings of meters will be entered upon proper books of record maintained by the District. Upon written request the Participant may have access to said record books during reasonable business hours.

Not more than three times in each year of operation, the District shall calibrate its meters, if requested in writing by a Participant to do so, in the presence of a representative of such Participant, and the parties shall jointly observe any adjustments which are made to the meters in case any adjustment is found to be necessary.

If, for any reason, any meters are out of service or out of repair, or if, upon any test, the percentage of inaccuracy of any meter is found to be in excess of five (5%) per cent, registration thereof shall be corrected for a period of time extending back to the time when such inaccuracy began, if such time is ascertainable, and if such time is not ascertainable, then for a period extending back one-half (1/2) of the time elapsed since the date of the last calibration, but in no event further back than a period of six (6) months.

Each Participant may, at its option and its own expense, install and operate a check meter to check each meter installed by the District, but the measurement for the purpose of this agreement shall be solely by the District's meters.

Section 3.07. UNIT OF MEASUREMENT. The unit of measurement for Wastewater delivered hereunder shall be 1,000 gallons, U. S. Standard Liquid Measure.

ARTICLE IV

QUALITY

Section 4.01. GENERAL. Each Participant agrees to limit discharge into the District's System to Wastewater that complies with quality requirements the District finds it necessary from time to time to establish in order to meet standards imposed by regulatory agencies having appropriate jurisdiction or to protect the water quality for water supply purposes. No discharge shall be made into the System which would cause the District to violate any permit granted, or any rule or regulation promulgated, by any State or Federal agency having jurisdiction over the District. Each

Participant specifically covenants that it will enact and enforce procedures which will prohibit or prevent customers of its sewer system from making any discharge which would cause such Participant to violate the provisions of this contract or any applicable State or Federal permit, law, rule, or regulation. To enable the highest degree of treatment in the most economical manner possible, certain solids, liquids, and gases have been and are hereby prohibited from entering the System, either absolutely or in excess of established standards, and the prohibited discharges will be listed and furnished to all Participants, with a minimum of sixty days of notice before the effective date thereof

Section 4.02 NORMAL QUALITY. To determine normal quality of Wastewater, the District will collect twenty-four (24) hour composite samples of Wastewater at each Point of Entry and cause same to be analyzed in accordance with testing procedures as set forth in the latest edition of Standard Methods of Examination of Water and Wastewater, published by American Public Health Association, Inc. Composite samples will normally be taken once a month, or at more frequent intervals if necessary to determine Wastewater quality. Such Wastewater shall not exceed the limits of concentration specified for Normal Wastewater as follows:

Normal Wastewater Concentration

Biological Oxygen Demand ("BOD")
Total Suspended Solids ("TSS")

pН

. Hydrogen Sulfide 275 mg/l 300 mg/l

not less than 6 nor greater than 9

0.1 mg/l

Should the analysis disclose concentrations higher than those listed, the District will at once inform the Participant of such disqualification. With approval of the District, Wastewater with concentrations of BOD and TSS greater than normal may be discharged by a Participant into the System with the payment of a surcharge, which shall be in addition to such Participant's proportionate share of the Annual Requirement as outlined in Article V of this contract, and this surcharge shall be sufficient to cover and pay for the additional cost of treatment.

ARTICLE V

PAYMENTS

Section 5.01. FINANCING. The District will issue its Bonds, in amounts and at times as determined by the District, to provide the System. The proceeds from the sale of the Bonds will be used for the payment of all of the District's costs and expenses in connection with the design, acquisition, and construction of the System and the Bonds, including, without limitation, all financing, legal, printing, administrative overhead, and other expenses and costs incurred in issuing its Bonds and to fund a debt service reserve and other funds if required by any Bond Resolution. Each Bond Resolution of the District shall specify the exact principal amount of the Bonds initially issued, which shall mature not more than 40 years from the date of such Bonds, and shall bear interest at not to exceed the maximum legal rates, and the Bond Resolution may create and provide for the maintenance of a revenue fund, an interest and sinking fund, a debt service reserve fund, and other

funds and accounts, all in the manner and amounts as provided in such Bond Resolution. Prior to the sale of any such Bonds, the District shall provide to the Participants a copy of the Preliminary Official Statement relating to such Bonds, which shall include, among other things, proposed maturity schedule and optional and mandatory redemption provisions. The Participants agree that if such Bonds are actually issued and delivered to the purchaser thereof, the Bond Resolution authorizing the Bonds shall for all purposes be deemed to be in compliance with this Contract in all respects, and the Bonds issued thereunder will constitute Bonds as defined in this Contract.

Section 5.02. ANNUAL REQUIREMENT. It is acknowledged and agreed that payments to be made under this Contract will be the only source available to the District to provide the Annual Requirement; and that the District has a statutory duty to establish and from time to time to revise the charges for services to be rendered and made available to Participants hereunder so that the Annual Requirement shall at all times be not less than an amount sufficient to pay or provide for the payment of:

- (a) An "Operation and Maintenance Component" equal to the amount paid or payable for all Operation and Maintenance Expense; and
- (b) A "Bond Service Component" equal to:
 - (l) the principal of, redemption premium, if any, and interest on, its Bonds, as such principal, redemption premium, if any, and interest become due, less interest to be paid out of Bond proceeds if permitted by any Bond Resolution; and
 - (2) during each Fiscal Year, the proportionate part of any special or reserve funds required to be established and/or maintained by the provisions of any Bond Resolution; and
 - (3) an amount in addition thereto sufficient to restore any deficiency in any of such funds required to be accumulated and maintained by the provisions of any Bond Resolution; and
 - (4) the charges of paying agents and registrars for paying principal of, redemption premium, if any, and interest on, all Bonds, and for registering and transferring Bonds.

Section 5.03. PAYMENTS BY PARTICIPANTS. (a) For services to be rendered to each Participant by the District under this Contract and other similar contracts, if any, each Participant has agreed to pay, at the time and in the manner hereinafter provided, its proportionate share of the Annual Requirement, which shall be determined as hereafter described and shall constitute a Participant's Annual Payment or Adjusted Annual Payment. For the Fiscal Year beginning on October 1, 2004, and for each Fiscal Year thereafter each Participant's proportionate share of the Annual Requirement shall, subject to the subsequent provisions hereof, be a percentage obtained by dividing such Participant's estimated contributing flow to the System for the next succeeding Fiscal

Year or portion thereof by the total estimated contributing flow to the System by all Participants during such Fiscal Year or portion thereof. The calculation of each Annual Payment as determined herein, and each Adjusted Annual Payment, shall be determined as provided in this Section. The terms "contributing flow to the System" and "contributing flow" as used in this Contract with respect to any Fiscal Year, commencing with the Fiscal Year beginning October 1, 2004, shall mean the greater of (i) the actual metered contributing flow of a Participant or (ii) the minimum annual contributing flow for which a Participant has agreed to pay, which minimum annual contributing flow for Frisco is as follows:

Frisco

500,000 gallons per day

The above minimum annual contributing flows may be adjusted by the District and the Participants to include minimum annual contributing flows of Additional Participants should Additional Participants be approved for connection to the System in accordance with Section 8.02 hereof. Each Participant's Annual Payment shall be calculated by the District by multiplying such Participant's estimated percentage of the estimated total contributing flow times the Annual Requirement. Each Participant's Annual Payment shall be made to the District in monthly installments, on or before the twentieth (20th) day of each month, for its required part of the Annual Requirement for each Fiscal Year, commencing with the Fiscal Year or portion thereof beginning October 1, 2004. Such payments shall be made in accordance with a Schedule of Payments for each Fiscal Year which will be supplied to each Participant. At the close of the Fiscal Year or portion thereof which commenced on October 1, 2004, and for each Fiscal Year thereafter, the District shall redetermine each Participant's percentage by dividing each Participant's contributing flow to the System by the total contributing flow of all Participants. Each Participant's Adjusted Annual Payment shall be calculated by multiplying each Participant's redetermined percentage times the Annual Requirement. The difference between the Adjusted Annual Payment and the Annual Payment, if any, when determined, shall be applied as a credit or a debit to each Participant's account with the District and shall be credited or debited to such Participant's next subsequent monthly payment or payments.

- (b) If a Participant fails to pay its monthly charge on or before the twentieth (20th) day of any month, it shall incur and pay a penalty of ten percent of the amount due together with any legal or other costs incurred by the District in collecting the amount due. The District is authorized to discontinue service to any Participant which fails to make any monthly payment, and which, after written notice, does not make such payment.
- (c) If, during any Fiscal Year, the District begins providing services to an Additional Participant, each Participant's Annual Payment for such Fiscal Year shall be redetermined consistent with the provisions of this contract.
- (d) Each Participant's Annual Payment also shall be adjusted and redetermined for the balance of any applicable Fiscal Year, consistent with the provisions of this contract, and initially based on estimated contributing flow, at any time during any Fiscal Year if

- (i) Additions, enlargements, repairs, extensions, or improvements to the System are placed in service by the District which require an increase and redetermination of the Annual Requirement; or
- (ii) Unusual or extraordinary expenditures for operation and maintenance of the System are required which are not provided for in the Annual Budget or in a Bond Resolution; or
- (iii) A Participant's contributing flow to the System, after the beginning of the Fiscal Year, is estimated to be substantially different from that on which Annual Payments are based as determined by the District, to the extent that such difference in flow will substantially affect such Participant's Budget, and consequently such Participant's Annual Payment to the District; or
- (iv) The District issues additional Bonds, the payments in connection with which require an increase and redetermination of the Annual Requirement; or
- (v) The District receives significantly more or significantly less revenue or other amounts than those contemplated.
- (vi) It appears to the District that for any other reason it will not receive the full amount of the Annual Requirement unless such adjustment and redetermination are made.
- (e) During each Annual Payment Period all revenues received by the District from providing services of the System to parties which are not Participants, shall (i) first be credited to the Operation and Maintenance Component of the Annual Requirement, and (ii) then any remainder credited to the Bond Service Component of the Annual Requirement, with the results that such credits under (i) and (ii), respectively, shall reduce, to the extent of such credits, the amounts of such Components, respectively, which otherwise would be payable by the Participants pursuant to the method prescribed in (a) above. The District may estimate all such credits which it expects to make during each Annual Payment Period in calculating each Annual Payment.
- (f) The District shall give all Participants at least 21 days written notice prior to consideration by the Board of Directors of the District of making any Adjusted Annual Payment for any Participant during any Fiscal Year.
- (g) The Annual Payment set forth in this section shall be considered the Basic Charge for service hereunder, and each Participant shall pay a surcharge for excess BOD and/or TSS as provided in Section 4.02, and for excessive discharge in the manner set forth in Section 3.04(c).
- (h) The District may establish and maintain a separate fund entitled the "Panther Creek Regional Wastewater System Contingency Fund" (the "Contingency Fund"). The Contingency Fund shall be used solely for the purpose of paying unexpected or extraordinary Operation and Maintenance Expenses of the System for which funds are not otherwise available under this Contract.

The Contingency Fund shall initially be funded, and any subsequent deficiency shall be restored, with amounts included as Operation and Maintenance Expenses in the Annual Budget.

- The facilities and services of the System to be provided to each Participant pursuant to this Contract are and will be essential and necessary to the operation of such Participant's combined waterworks and sanitary sewer system, and all payments to be made hereunder by each Participant will constitute reasonable and necessary "operating expenses" of such Participant's combined waterworks and sanitary sewer system, within the meaning of Section 30.030, Texas Water Code, as amended, and Section 1502.056, Texas Government Code, and the provisions of all ordinances authorizing the issuance of all waterworks and sanitary sewer system revenue bond issues of such Participant, with the effect that such Participant's obligation to make payments from its waterworks and sanitary sewer system revenues under this Contract shall have priority over its obligations to make payments of the principal of and interest on any and all of its waterworks and sanitary sewer system revenue bonds. Each Participant agrees to fix and collect such rates and charges for waterworks and sanitary sewer system services to be supplied by its waterworks and sanitary sewer system as will make possible the prompt payment of all expenses of operating and maintaining its entire waterworks and sanitary sewer system, including all payments, obligations, and indemnities contracted hereunder, and the prompt payment of the principal of and interest on its bonds payable from the net revenues of its waterworks and sanitary sewer system. The District shall never have the right to demand payment of the amounts due hereunder from funds raised or to be raised from taxation by a Participant. Each Participant's payments hereunder shall be made pursuant to the authority granted by Section 30.030, Texas Water Code, as amended, and Section 1502.056, Texas Government Code. Recognizing the fact that the Participants urgently require the facilities and services covered by this Contract, and that such facilities and services are necessary for actual use and for stand-by purposes, and further recognizing that the District will use the payments received from the Participants hereunder to pay, secure, and finance the issuance of its Bonds, it is hereby agreed that the Participants shall be obligated unconditionally, and without offset or counterclaim, to make the payments designated as the "Bond Service Component" of the Annual Requirement, in the manner provided in this Contract, regardless of whether or not the District actually provides such facilities and services, or whether or not any Participant actually receives or uses such facilities and services, and regardless of the validity or performance of the other parts of this or any other contract, and such "Bond Service Component" shall in all events be applied and used for providing debt service and other requirements of the Bonds, and the holders of the Bonds shall be entitled to rely on the foregoing agreement and representation, regardless of any other agreement between the District and the Participants. Each Participant further agree that it shall be obligated to make the payments designated as the "Operation and Maintenance Component" of the Annual Requirement as described in Section 5.02 of this Contract, so long as the District is willing and able to provide the facilities and services contemplated hereunder to any Participant.
- (j) As soon as practicable after issuance of the Bonds, the District shall furnish each Participant with a schedule of monthly payments to be made for the balance of the Fiscal Year commencing October 1, 2004. On or before August 1 of each year, commencing August 1, 2005, the District will furnish each Participant with a tentative budget and an estimated schedule of monthly payments to be made by such Participant for the ensuing Fiscal Year. On July 1 of each year, commencing July 1, 2005, the District shall be in a position to furnish any Participant an estimate of

the Participants's annual requirement. On or before October I of each year, commencing October I, 2005, the District shall furnish such Participant with a finalized schedule of the monthly payments to be made by such Participant to the District for the ensuing Fiscal Year. Each Participant agrees that it will make such payments to the District on or before the twentieth (20th) day of each month of such Fiscal Year. If any Participant shall dispute the Annual Budget, and proceed as provided in Article VII, such Participant nevertheless promptly shall make the payment or payments determined by the District, and if it is subsequently determined by agreement that such disputed payments made by such Participant should have been less, the District shall promptly revise, reallocate, and readjust the charges among all Participants then being served by the District in such manner that such Participant will recover its overpayment. In the event any Participant is assessed a surcharge for excess BOD and/or TSS, the District will bill such Participant for such surcharge on or before the tenth (10th) day of the month following the determination of the surcharge and such Participant shall pay such surcharge on or before the twentieth (20th) day of the month of receipt of any such bill. Any such surcharge collected by the District shall be applied by the District against the total cost of Operation and Maintenance Expense of the System.

- (k) If any Participant's Annual Payment is redetermined as is herein provided, the District will promptly furnish such Participant with an updated schedule of monthly payments reflecting such redetermination
- (l) All interest income earned by the investment of any Funds created pursuant to any Bond Resolution shall be credited towards the payment of the Bond Service Component and taken into account in determining the Annual Requirement; except that as to any Acquisition or Construction Fund created from any Bond proceeds all interest income earned by the investment thereof may, at the option of the District, be credited to such Acquisition or Construction Fund and used for the System purposes for which the Bonds are issued, or be credited towards the payment of the Bond Service Component.

Section 5.04. USE OF OTHER REVENUES OF SYSTEM. If the District receives any net income from the sale of treated Wastewater from the System prior to its discharge into a public stream of the State of Texas, the District will apply and credit said net income towards payments of Operation and Maintenance Expenses.

Section 5.05. ADDITIONAL CAPACITY AND FACILITIES. As the responsible agency for the establishment, administration, management, operation, and maintenance of the System, the District will, from time to time, determine when and to what extent it is necessary to provide additions, enlargements, improvements, repairs, and extensions to the System to receive, transport, treat, and dispose of Wastewater of any Participants, including all Additional Participants, and to issue its Bonds to accomplish such purposes, and all Participants, including Additional Participants, shall be obligated to pay both the Operation and Maintenance Component and the Bond Service Component included in the Annual Requirement with respect to the entire System, as expanded, as provided in Section 5.03; provided that this Section shall not be construed so as to reduce or alter the requirements of Sections 5.03 and 8.02 with respect to minimum payments.

ARTICLE VI

GENERAL PROVISIONS

Section 6.01. FORCE MAJEURE. In case by reason of "Force Majeure" the District or any Participant shall be rendered unable wholly or in part to carry out its obligations under this agreement, then if such party shall give notice and full particulars of such "Force Majeure" in writing to the other parties within a reasonable time after occurrence of the event or cause relied on, the obligation of the party giving such notice, so far as it is affected by such Force Majeure (with the exception of the obligation of each Participant to make the payments required in Section 5.03 of this Contract, which in all events shall be made as provided therein) shall be suspended during the continuance of the inability then claimed, but for no longer periods, and any such party shall endeavor to remove or overcome such inability with all reasonable dispatch. The term "Force Majeure" as employed herein, shall mean acts of God, strikes, lockouts, or other industrial disturbances, acts of public enemy, orders of any kind of the Government of the United States or the State of Texas or any civil or military authority, insurrections, riots, epidemics, landslides, lightning, earthquakes, fires, hurricanes, storms, floods, washouts, droughts, arrests, restraint of government and people, civil disturbances, explosions, breakage or accidents to machinery, pipe lines or canals, partial or entire failure of water supply, and inability on the part of a Participant to provide water necessary for operation of its water and Local Wastewater Facilities hereunder, or of the District to receive Wastewater on account of any other causes not reasonably within the control of the party claiming such inability. It is understood and agreed that the settlement of strikes and lockouts shall be entirely within the discretion of the party having the difficulty, and that the above requirement that any Force Majeure shall be remedied with all reasonable dispatch shall not require the settlement of strikes and lockouts by acceding to the demands of the opposing party or parties when such settlement is unfavorable to it in the judgment of the party having the difficulty.

Section 6.02. INSURANCE. The District will carry insurance (including self-insurance) for such purposes and in such amounts as are determined by the District to be necessary or advisable.

Section 6.03. REGULATORY BODIES. This Contract shall be subject to all valid rules, regulations and laws applicable hereto passed or promulgated by the United States of America, the State of Texas, or any authorized representative or agency of any of them.

Section 6.04. EFFLUENT REUSE: (a) The District will make the effluent discharge from its Wastewater treatment plants available for any lawful and beneficial reuse purpose, and a charge shall be made to the customer receiving such effluent sufficient to cover any additional cost involved in providing the service, plus a reasonable portion of the cost of treating the Wastewater which produced such effluent; provided that such portion of the cost allocable to treatment shall not be required to exceed an amount which would, in the judgment of the District, render the use of such effluent by a customer economically infeasible.

(b) Notwithstanding the provisions of subsection 6.04(a), each Participant shall have the first right to use all effluent produced from its Wastewater for reuse solely for its own municipal purposes without any charge except for any additional costs to the District necessary to provide the

effluent for such municipal use; provided that no Participant shall sell such effluent or make it available to any other customer, and subject to the aforesaid first right of each Participant, the District shall have the right to use all such effluent for District purposes without any charge except for any additional costs necessary to provide the effluent for District purposes. In accordance with the provisions of Section 3.05, and notwithstanding the foregoing, to the extent that effluent produced by the District is discharged to watercourses of the State, any right of any Participant to reuse such effluent produced from its Wastewater is terminated, and the District shall have the right as between parties, and pursuant to any necessary authorization of the State of Texas, to reuse such discharged effluent.

Section 6.05. ANNUAL AUDIT OF SYSTEM. The District shall, at the close of each Fiscal Year, commencing with the fiscal year beginning October 1, 2004, cause an annual audit of the System to be prepared.

Section 6.06. PUBLICATIONS, REFERENCE WORKS, GOVERNMENTAL REGULATIONS. In each instance herein where reference is made to a publication, reference work or Federal or State regulation, it is the intention of the parties that at any given time the then current edition of any such publication of reference work or Federal or State regulation shall apply. If a publication or reference work is discontinued or ceases to be the generally accepted work in its field or if conditions change or new methods or processes are implemented by the District, new standards shall be adopted which are in compliance with State and Federal laws and any valid rules and regulations issued pursuant thereto.

Section 6.07. OPERATION OF THE SYSTEM. The District covenants that it will operate and maintain the System in accordance with accepted good business and engineering practices.

ARTICLE VII

DISTRICT ANNUAL BUDGET

Section 7.01. FILING WITH PARTICIPANT. (a) Not less than sixty (60) days before the commencement of each Fiscal Year while this Contract, is in effect, the District shall cause its tentative budget for operation and maintenance of the System for the ensuing Fiscal Year to be prepared and a copy thereof filed with each Participant. If no protest or request for a hearing on such tentative budget is presented to the District within thirty (30) days after such filing of the tentative budget by one or more Participants, the tentative budget for the System, when adopted by the District's Board of Directors, shall be considered for all purposes as the "Annual Budget" for the ensuing Fiscal Year. But if a protest or request for a hearing is duly filed, it shall be the duty of the District to fix the date and time for a hearing on the tentative budget. The Board of Directors of the District shall consider the testimony and showings made in such hearing. The Board of Directors of the District may adopt the budget or make such amendments thereof as to it may seem proper. The budget thus approved by the Board of Directors of the District shall be the Annual Budget for the next ensuing Fiscal Year.

(b) The Annual Budget may be amended to provide for transfers of budgeted funds between expenditure accounts, provided however that said transfers do not result in an overall increase in budgeted funds as provided in the Annual Budget. The Annual Budget may be amended and increased through formal action by the Board of Directors of the District, if required. Certified copies of any amended Annual Budget and the resolution authorizing same shall be filed immediately by the District with each Participant.

ARTICLE VIII

THE SYSTEM

Section 8.01. OTHER CONTRACTS BETWEEN THE DISTRICT AND THE PARTICIPANTS. Nothing contained in this Contract shall in any way affect any payments to the District by a Participant or rates charged by the District to such Participant for the providing of water, wastewater or other services or facilities pursuant to other contractual relationships between the District and such Participant.

Section 8.02. DISTRICT CONTRACTS WITH ADDITIONAL PARTICIPANTS. (a) The District reserves the right, with the consent of Frisco, to contract with subsequent Additional Participants to provide the services of the System to such Additional Participants; provided that the terms and provisions of such contracts with Additional Participants shall be, to the extent practicable and applicable, the same as the terms and provisions of this Contract except that with respect to any Local Wastewater Facilities of such Additional Participant which are to be acquired, operated, or used by the District as a part of the System as a result of such contract, the District and the Additional Participant may agree in such contract for mutually acceptable payments in connection therewith from Bond proceeds or as an Operation and Maintenance Expense of the System (provided that in any formula used for determining such payments, the value attributed to such Local Wastewater Facilities shall not exceed a sum equal to the principal amount of all then outstanding bonds or other obligations issued by the Additional Participant to acquire and construct such Local Wastewater Facilities), and except that such contract shall provide for payments calculated on the basis of adequate minimum flows as hereinafter provided. The District shall not enter into contracts for any services by the System except with persons which become Additional Participants, or as otherwise provided in Section 8.03 of this Contract.

- (b) A Person may become an Additional Participant in the following manner and under the following conditions;
 - (i) A formal request must be submitted to the District furnishing information on the area to be served, a description of existing facilities, and the latest annual audit of such proposed Additional Participant's waterworks and/or sewer systems, if any
 - (ii) Such proposed Additional Participant must provide funds for any necessary engineering studies if funds are not available from the appropriate Federal or State agencies. The preliminary studies must determine or estimate, for the ensuing five

year period, the size and type of any proposed facilities, their estimated cost, and estimated flows of Wastewater, so as to enable the District to ascertain or estimate the requirements of the proposed Additional Participant for the ensuing five year period.

- (c) Each Additional Participant must agree to make minimum payments under its contract, on the basis of estimated annual minimum flows, that would provide amounts annually at least sufficient, as determined by the District, to pay such Additional Participant's proportionate share of the Annual Requirement.
- (d) The provisions of this Section and the payments to be made under an Additional Participant's contract are further subject to the provisions of Section 5.03 of this Contract.

Section 8.03. USE OF EXCESS CAPACITY. Notwithstanding any other provisions of this Contract, the District may provide any excess available capacity or service of the System to any Person; provided that such service does not interfere with or impair the rights of any Participant under this Contract, and any such service shall in all events be subordinate and subject to such rights; and provided further that the District must charge for such service in amounts at least sufficient to pay all Operation and Maintenance Expense attributable thereto plus an amount which will produce an estimated reasonable allocation as determined by the District, to be credited to the Bond Service Component of the Annual Requirement, plus an additional amount of not less than 20% of the foregoing to cover prior incurred costs. The District is not authorized to issue Bonds, as defined in this Contract, to provide the services of the System to any persons other than Participants (including Additional Participants).

ARTICLE IX

REMEDIES

Section 9.01. LEGAL AND EQUITABLE. Any party to this Contract, and any holder of the District's Bonds, may require any party hereto, and its officials and employees, to carry out, respect, and enforce the covenants and obligations of this Contract, by all legal and equitable means, including specifically, but without limitation, the use and filing of mandamus proceedings, in any court of competent jurisdiction, against such party, and its officials and employees.

ARTICLE X

CONTINUING DISCLOSURE OF INFORMATION

Section 10.01. PARTICIPANTS TO COMPLY. The Participants shall comply or, upon request of the District, shall provide to the District such information as will enable the District to comply, with any continuing disclosure requirements with respect to the Bonds imposed by Securities and Exchange Commission Rule 15c2-12.

ARTICLE XI

EFFECTIVE DATE AND TERM

Section 11.01. EFFECTIVE DATE. This Contract shall become effective as of the date of execution hereof.

Section 11.02. TERM OF CONTRACT. This Contract shall continue in force from the effective date hereof at least until all Bonds, including any Bonds issued to refund same, shall have been paid in full; and shall also remain in force thereafter throughout the useful life of the System.

ARTICLE XII

NOTICES

Section 12.01. NOTICES. Any notice, request or other communication under this Contract shall be given in writing and shall be deemed to have been given by either party to the other party at the addresses shown below upon any of the following dates:

- (a) The date of notice by telefax, telecopy, or similar telecommunications, which is confirmed promptly in writing;
- (b) Three business days after the date of the mailing thereof, as shown by the post office receipt if mailed to the other party hereto by registered or certified mail;
- (c) The date of actual receipt thereof by such other party if not given pursuant to (a) or (b) above.

The address for notice for each of the parties shall be as follows:

North Texas Municipal Water District 505 East Brown Street Wylie, Texas 75098 Attention: Executive Director and General Manager Fax #: (972) 442-5405

City of Frisco, Texas 6891 Main Street Frisco, Texas 75034 Attention: City Manager Fax# (972) 335-5559

or the latest address specified by such other party in writing.

ARTICLE XIII

<u>SEVERABILITY</u>

Section 13.01. SEVERABILITY. If any clause, provision or Section of this Contract should be held illegal or invalid by any court, the invalidity of such clause, provision or Section shall not affect any of the remaining clauses, provisions or Sections hereof and this Contract shall be construed and enforced as if such illegal or invalid clause, provision or Section had not been contained herein. In case any agreement or obligation contained in this Contract should be held to be in violation of law, then such agreement or obligation shall be deemed to be the agreement or obligation of the Participants or the District, as the case may be, to the full extent permitted by law.

ARTICLE XIV

MODIFICATION

Section 14.01. MODIFICATION. This Contract may be changed or modified only with the consent of the governing bodies of the District and the affected Participant or Participants. No such change or modification may be made which will affect adversely the prompt payment when due of all moneys required to be paid by the Participants under the terms of this Contract.

ARTICLE XV

VENUE

Section 15.01. VENUE. All amounts due under this Contract, including, but no limited to, payments due under this Contract or damages for the breach of this Contract, shall be paid and be due in Collin County, Texas, which is the County in which the principal administrative offices of the District are located. It is specifically agreed among the parties to this Contract that Collin County, Texas, is the place of performance of this Contract, and in the event that any legal proceeding is brought to enforce this Contract or any provision hereof, the same shall be brought in Collin County, Texas.

IN WITNESS WHEREOF, the parties hereto acting under authority of their respective governing bodies have caused this Contract to be duly executed in several counterparts, each of which shall constitute an original, all as of the 23rd day of 5 pt mbs 2004, which is the date of this Contract.

NORTH TEXAS MUNICIPAL WATER DISTRICT

Ву:

President, Board of Directors

ATTEST:

Secretary, Board of Directors

(SEAL)

CITY OF FRISCO, TEXAS

Bv

Mayor City Manager

ATTEST:

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS

Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary of your facility and application as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. You may modify the template as necessary to accurately describe your facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how you will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTICE WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

North Texas Municipal Water District ($\underline{\text{CN601365448}}$) operates Panther Creek Wastewater Treatment Plant ($\underline{\text{RN102739430}}$), a domestic wastewater treatment plant. The facility is located at 1825 Fields Parkway, in Frisco, Denton County, Texas 75034. The application is for a renewal of the permit.

Discharges from the facility are expected to contain carbonaceous biochemical oxygen demand (CBOD), total suspended solids (TSS), Ammonia Nitrogen, and E.coli. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7 Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application. Domestic wastewater is treated by screening, grit removal, primary clarification, aeration basins with biological nutrient removal capability, secondary clarification, filtration, and UV disinfection. Sludge from the clarifiers is processed with storage and blend tanks and dewatering presses. The dewatered sludge is disposed at NTMWD 121 Regional Disposal Facility.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES DOMESTICAS /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

North Texas Municipal Water District (CN601365448) opera Panther Creek Wastewater Treatment Plant RN102739430, una planta de tratamiento de aguas residuals domesticas. La instalación está ubicada en 1825 Fields Parkway, en Frisco, Condado de Denton, Texas 75034. La solicitud es para una renovación del permiso.

Se espera que las descargas de la instalación contengan demanda bioquímica de oxígeno (CBOD) carbonosa, sólidos suspendidos totales (TSS), nitrógeno amoniacal y E. coli. Se incluyen otros contaminantes potenciales en el Informe Técnico Doméstico 1.0, Sección 7, Análisis de Contaminantes del Efluente Tratado, y la Hoja de Trabajo Doméstica 4.0 de la solicitud de permiso . Las aguas residuals domesticas. están tratado por cribado, eliminación de arena, clarificación primaria, tanques de aireación con capacidad de eliminación biológica de nutrientes, clarificación secundaria, filtración y desinfección UV. Los lodos de los clarificadores se procesan con tanques de almacenamiento y mezcla y prensas de deshidratación. Los lodos deshidratados se desechan en la Instalación Regional de Eliminación NTMWD 121.

INSTRUCTIONS

- 1. Enter the name of applicant in this section. The applicant name should match the name associated with the customer number.
- 2. Enter the Customer Number in this section. Each Individual or Organization is issued a unique 11-digit identification number called a CN (e.g. CN123456789).
- 3. Choose "operates" in this section for existing facility applications or choose "proposes to operate" for new facility applications.
- 4. Enter the name of the facility in this section. The facility name should match the name associated with the regulated entity number.
- 5. Enter the Regulated Entity number in this section. Each site location is issued a unique 11-digit identification number called an RN (e.g. RN123456789).
- 6. Choose the appropriate article (a or an) to complete the sentence.
- 7. Enter a description of the facility in this section. For example: steam electric generating facility, nitrogenous fertilizer manufacturing facility, etc.
- 8. Choose "is" for an existing facility or "will be" for a new facility.
- 9. Enter the location of the facility in this section.
- 10. Enter the City nearest the facility in this section.
- 11. Enter the County nearest the facility in this section.
- 12. Enter the zip code for the facility address in this section.
- 13. Enter a summary of the application request in this section. For example: renewal to discharge 25,000 gallons per day of treated domestic wastewater, new application to discharge process wastewater and stormwater on an intermittent and flow-variable basis, or major amendment to reduce monitoring frequency for pH, etc. If more than one outfall is included in the application, provide applicable information for each individual outfall.
- 14. List all pollutants expected in the discharge from this facility in this section. If applicable, refer to the pollutants from any federal numeric effluent limitations that apply to your facility.
- 15. Enter the discharge types from your facility in this section (e.g., stormwater, process wastewater, once through cooling water, etc.)
- 16. Choose the appropriate verb tense to complete the sentence.
- 17. Enter a description of the wastewater treatment used at your facility. Include a description of each process, starting with initial treatment and finishing with the outfall/point of disposal. Use additional lines for individual discharge types if necessary.

Questions or comments concerning this form may be directed to the Water Quality Division's Application Review and Processing Team by email at <a href="https://www.wq-arthu.org/wq-arthu.or

Example 1: Industrial Wastewater TPDES Application (ENGLISH)

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

ABC Corporation (CN600000000) operates the Starr Power Station (RN10000000000), a two-unit gas-fired electric generating facility. Unit 1 has a generating capacity of 393 megawatts (MWs) and Unit 2 has a generating capacity of 528 MWs. The facility is located at 1356 Starr Street, near the City of Austin, Travis County, Texas 78753.

This application is for a renewal to discharge 870,000,000 gallons per day of once through cooling water, auxiliary cooling water, and also authorizes the following waste streams monitored inside the facility (internal outfalls) before it is mixed with the other wastewaters authorized for discharge via main Outfall 001, referred to as "previously monitored effluents" (low-volume wastewater, metal-cleaning waste, and stormwater (from diked oil storage area yards and storm drains)) via Outfall 001. Low-volume waste sources, metal-cleaning waste, and stormwater drains on a continuous and flow-variable basis via internal Outfall 101.

The discharge of once through cooling water via Outfall 001 and low-volume waste and metal-cleaning waste via Outfall 101 from this facility is subject to federal effluent limitation guidelines at 40 CFR Part 423. The pollutants expected from these discharges based on 40 CFR Part 423 are: free available chlorine, total residual chlorine, total suspended solids, oil and grease, total iron, total copper, and pH. Temperature is also expected from these discharges. Additional potential pollutants are included in the Industrial Wastewater Application Technical Report, Worksheet 2.0.

Cooling water and boiler make-up water are supplied by Lake Starr Reservoir. The City of Austin municipal water plant (CN600000000, PWS 00000) supplies the facility's potable water and serves as an alternate source of boiler make-up water. Water from the Lake Starr Reservoir is withdrawn at the intake structure and treated with sodium hypochlorite to prevent biofouling and sodium bromide as a chlorine enhancer to improve efficacy and then passed through condensers and auxiliary equipment on a once-through basis to cool equipment and condense exhaust steam.

Low-volume wastewater from blowdown of boiler Units 1 and 2 and metal-cleaning wastes receive no treatment prior to discharge via Outfall 101. Plant floor and equipment drains and stormwater runoff from diked oil storage areas, yards, and storm drains are routed through an oil and water separator prior to discharge via Outfall 101. Domestic wastewater, blowdown, and backwash water from the service water filter, clarifier, and sand filter are routed to the Starr Creek Domestic Sewage Treatment Plant, TPDES Permit No. WQ0010000001, for treatment and disposal. Metal-cleaning waste from equipment cleaning is generally disposed of off-site.

Example 2: Domestic Wastewater TPDES Renewal application

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

The City of Texas (CN000000000) operates the City of Texas wastewater treatment plant (RN00000000), an activated sludge process plant operated in the complete mix mode. The facility is located at 123 Texas Street, near the City of More Texas, Texas County, Texas 71234.

This application is for a renewal to discharge at an annual average flow of 1,200,000 gallons per day of treated domestic wastewater via Outfalls 001 and 002.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), ammonia nitrogen (NH₃-N), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a bar screen, a grit chamber, aeration basins, final clarifiers, sludge digesters, a belt filter press, chlorine contact chambers and a dechlorination chamber.

Example 3: Domestic Wastewater TPDES New Application

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

The City of Texas (CN000000000) proposes to operate the City of Texas wastewater treatment plant (RN00000000), an activated sludge process plant operated in the extended aeration mode. The facility will be located at 123 Texas Street, in the City of More Texas, Texas County, Texas 71234.

This application is for a new application to discharge at a daily average flow of 200,000 gallons per day of treated domestic wastewater.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), ammonia nitrogen (NH₃-N), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent in the permit application package. Domestic wastewater will be treated by an activated sludge process plant and the treatment units will include a bar screen, a grit chamber, aeration basins, final clarifiers, sludge digesters, a belt filter press, chlorine contact chambers and a dechlorination chamber.

Example 4: Domestic Wastewater TLAP Renewal application

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations

of the permit application.

The City of Texas (CN000000000) operates the City of Texas wastewater treatment plant (RN00000000), an activated sludge process plant operated in the complete mix mode. The facility is located at 123 Texas Street, near the City of More Texas, Texas County, Texas 71234.

This application is for a renewal to dispose a daily average flow not to exceed 76,500 gallons per day of treated domestic wastewater via public access subsurface drip irrigation system with a minimum area of 32 acres. This permit will not authorize a discharge of pollutants into water in the state.

Land application of domestic wastewater from the facility are expected to contain five-day biochemical oxygen demand (BOD_5), total suspended solids (TSS), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a bar screen, an equalization basin, an aeration basin, a final clarifier, an aerobic sludge digester, tertiary filters, and a chlorine contact chamber. In addition, the facility includes a temporary storage that equals to at least three days of the daily average flow.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

TCEQ USE ONLY:	
Application type:RenewalMajor An	nendment Minor Amendment New
County:	
Admin Complete Date:	
Agency Receiving SPIF:	
Texas Historical Commission	U.S. Fish and Wildlife
Texas Parks and Wildlife Department	U.S. Army Corps of Engineers
This form applies to TPDES permit application	ns only. (Instructions, Page 53)
	EQ will mail a copy to each agency as required by not completely addressed or further information formation before issuing the permit. Address
Do not refer to your response to any item in tattachment for this form separately from the Adapplication will not be declared administratively completed in its entirety including all attachmed may be directed to the Water Quality Division's email at	

Provide the name, address, phone and fax number of an individual that can be contacted to answer specific questions about the property.
Prefix (Mr., Ms., Miss): MR.
First and Last Name: <u>JERRY ALLEN</u>
Credential (P.E, P.G., Ph.D., etc.): <u>N/A</u>
Title: PERMITTING MANAGER
Mailing Address: PO BOX 2408
City, State, Zip Code: WYLIE
Phone No.: <u>469-626-4634</u> Ext.: <u>N/A</u> Fax No.: <u>N/A</u>
E-mail Address: <u>JALLEN@NTMWD.COM</u>
List the county in which the facility is located: <u>DENTON</u>
If the property is publicly owned and the owner is different than the permittee/applicant, please list the owner of the property.
CITY OF FRISCO
Provide a description of the effluent discharge route. The discharge route must follow the flow of effluent from the point of discharge to the nearest major watercourse (from the point of discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify the classified segment number. The treated effluent is discharged to Panther Creek, thence to Lewisville Lake in Segment
No. 0823 of the Trinity River Basin.
Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report).
Provide original photographs of any structures 50 years or older on the property.
Does your project involve any of the following? Check all that apply.
☐ Proposed access roads, utility lines, construction easements
☐ Visual effects that could damage or detract from a historic property's integrity
☑ Vibration effects during construction or as a result of project design
■ Additional phases of development that are planned for the future

2. 3.

4.

5.

Sealing caves, fractures, sinkholes, other karst features

	☐ Disturbance of vegetation or wetlands
1.	List proposed construction impact (surface acres to be impacted, depth of excavation, sealing of caves, or other karst features):
	Surface acres to be impacted is approximately 50 acres with a maximum excavation depth of approximately 50 feet. No sealing of caves or other karst features is to be expected.
2.	Describe existing disturbances, vegetation, and land use:
	The property within the fenced boundary is a wastewater treatment plant with grass cover on unpaved areas. Paved roads exist at the site providing access to buildings and facilities. The property where the outfall is located, owned by the City of Frisco, is undeveloped with grass cover, trees and shrubs.
	IE FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR MENDMENTS TO TPDES PERMITS
3.	List construction dates of all buildings and structures on the property:
	N/A
4.	Provide a brief history of the property, and name of the architect/builder, if known.
	N/A

Regional. Reliable. Everyday.

October 23, 2025

Francesca Findlay

VIA ELECTRONIC MAIL

Applications Review and Processing Team (MC148)
Water Quality Division

Francesca.Findlay@tceq.texas.gov

Water Quality Division

Texas Commission of Environmental Quality

P.O. Box 13087

Austin, Texas 78711-3087

Re: Response to TCEQ Notice of Deficiency

Applicant Name: North Texas Municipal Water District (CN601365448)

Permit Number: WQ0014245001 (EPA I.D. No. TX0123901)

Site Name: Panther Creek WWTP (RN102739430) Type of Application: Renewal without Changes

Dear Ms. Findlay:

This letter is submitted regarding the above-referenced TPDES Domestic Wastewater Permit Application ("Application") associated with the North Texas Municipal Water District's ("NTMWD's") Panther Creek Wastewater Treatment Plant ("Panther Creek WWTP") in response to items noted in the October 21, 2025, letter to Jerry Allen transmitting the notice of deficiencies for the application. NTMWD offers the following comments for your consideration:

Request 1 (Review the portion of the NORI provided and indicate if it contains any errors or omissions.)

Response:

NTMWD has reviewed the portion of the NORI provided. The portion of the NORI describing the facility location states: "The domestic wastewater treatment facility is located at 1825 Panther Creek Road, in the city of Frisco, in Denton County, Texas 75034." NTMWD received confirmation from the City of Frisco that the address of Panther Creek WWTP has changed. NTMWD submitted an electronic Core Data Form via STEERS on October 6, 2025, to update the Regulated Entity's (RN102739430) location to "1825 Fields Parkway, Frisco, TX 75034". The Core Data form was also submitted in the permit application on October 15, 2025, in the "Other Attachments" Section of the STEERS application titled "OTHER_2025 Renewal Panther Creek WWTP Electronic Core Data Form".

Please revise the statement to read: "The domestic wastewater treatment facility is located at 1825 <u>Fields Parkway</u>, in the city of Frisco, in Denton County, Texas 75034."

Ms. Francesca Findlay October 23, 2025 Page **2**

Request 2 (Provide a Spanish NORI)

Response:

The English NORI provided on October 21, 2025, has been translated to Spanish with the corrected address for Panther Creek WWTP included. The Spanish NORI is provided as an attachment to the email with this letter.

Should you have any questions or need additional information please contact me at jallen@ntmwd.com or 469-626-4634.

Sincerely,

erry Allen

Permitting Manager

JA/vb

Enclosures

cc: Hunter Stephens, NTMWD
Joel Nickerson, NTMWD
R.J. Muraski, NTMWD
Lauren Kalisek, Lloyd Gosselink Rochelle & Townsend, P.C.
Lora Naismith, Lloyd Gosselink Rochelle & Townsend, P.C.

Regional. Reliable. Everyday.

October 29, 2025

Francesca Findlay

VIA ELECTRONIC MAIL

Applications Review and Processing Team (MC148)

Francesca.Findlay@tceq.texas.gov

Water Quality Division

Texas Commission of Environmental Quality

P.O. Box 13087

Austin, Texas 78711-3087

Re: Response to TCEQ Notice of Deficiency

Applicant Name: North Texas Municipal Water District (CN601365448)

Permit Number: WQ0014245001 (EPA I.D. No. TX0123901)

Site Name: Panther Creek WWTP (RN102739430) Type of Application: Renewal without Changes

Dear Ms. Findlay:

This letter is submitted regarding the above-referenced TPDES Domestic Wastewater Permit Application ("Application") associated with the North Texas Municipal Water District's ("NTMWD's") Panther Creek Wastewater Treatment Plant ("Panther Creek WWTP") in response to items noted in the October 28, 2025, email to Jerry Allen transmitting the request for updated information for the application. NTMWD offers the following comments for your consideration:

Request 1 (Update the address for Panther Creek WWTP in Plain Language Summary and Supplemental Permit Information Form.)

Response:

The Plain Language Summary and Supplemental Permit Information form have been updated with the corrected address of "1825 Fields Parkway" for Panther Creek WWTP. The forms are provided as an attachment to the email with this letter. An electronic Core Data form with this updated address was submitted via STEERS on October 6, 2025.

Should you have any questions or need additional information please contact me at <u>jallen@ntmwd.com</u> or 469-626-4634.

Sincerely,

Jerry Allen

Permitting Manager

Ms. Francesca Findlay October 29, 2025 Page **2**

JA/vb

Enclosures

cc: Hunter Stephens, NTMWD
Joel Nickerson, NTMWD
R.J. Muraski, NTMWD
Lauren Kalisek, Lloyd Gosselink Rochelle & Townsend, P.C.
Lora Naismith, Lloyd Gosselink Rochelle & Townsend, P.C.

Francesca Findlay

From: Jerry Allen <jallen@NTMWD.COM>
Sent: Thursday, October 23, 2025 10:49 AM

To: Francesca Findlay

Subject: RE: WQ0014245001 North Texas Municipal Water District

Attachments: 2025-10-23 NOD Response Letter to TCEQ Panther Creek WWTP SIGNED.pdf; 2025

Panther Creek WWTP Permit Renewal Spanish NORI.docx

Caution: This email may contain suspicious content. Please take care when clicking links or opening attachments. When in doubt, contact the TCEQ Help Desk.

Francesca,

See attached response letter and Spanish NORI. Let me know if need anything further. Thank you and have a good day.

Sincerely,

JERRY ALLEN NTMWD Permitting Manager

OPEN RECORDS NOTICE: This email and responses may be subject to the Texas Public Information Act and may be disclosed to the public upon request. Please respond accordingly

From: Jerry Allen

Sent: Tuesday, October 21, 2025 1:47 PM

To: 'Francesca Findlay' <Francesca.Findlay@tceq.texas.gov>

Subject: RE: WQ0014245001 North Texas Municipal Water District

Francesca,

I will review and provide a Spanish NORI.

Sincerely,

JERRY ALLEN NTMWD Permitting Manager

OPEN RECORDS NOTICE: This email and responses may be subject to the Texas Public Information Act and may be disclosed to the public upon request. Please respond accordingly

From: Francesca Findlay <Francesca.Findlay@tceq.texas.gov>

Sent: Tuesday, October 21, 2025 1:25 PM **To:** Jerry Allen <jallen@NTMWD.COM>

Subject: [EXTERNAL] FW: WQ0014245001 North Texas Municipal Water District

WARNING: This email is from an external source. Do not click links or open attachments without positive sender verification of purpose. Never enter username, password or sensitive information on linked pages from this email.

If you are unsure about the message, please forward to itsupport@ntmwd.com for assistance.

Dear Mr. Allen:

The attached Notice of Deficiency letter sent on October 21, 2025, requesting additional information needed to declare the application administratively complete. Please send the complete response to my attention November 5, 2025.

Thank you,

Francesca Findlay
License & Permit Specialist
ARP Team | Water Quality Division
512-239-2441
Texas Commission on Environmental Quality

Please consider whether it is necessary to print this e-mail

How is our customer service? Fill out our online customer satisfaction survey at http://www.tceq.texas.gov/customersurvey.

Francesca Findlay

From: Jerry Allen <jallen@NTMWD.COM>
Sent: Wednesday, October 29, 2025 10:02 AM

To: Francesca Findlay

Subject:RE: WQ0014245001 North Texas Municipal Water District Panther Creek WWTPAttachments:2025-10-29 RFI PLS SPIF Response Letter to TCEQ_Panther Creek WWTP SIGNED.pdf;

2025 Panther Creek WWTP Renewal SPIF_Updated.pdf; 2025 Panther Creek WWTP

Renewal PLS_Updated.pdf

Caution: This email may contain suspicious content. Please take care when clicking links or opening attachments. When in doubt, contact the TCEQ Help Desk.

Francesca,

See attached. Let me know if you have any questions or need anything else. Have a good day.

Sincerely,

JERRY ALLEN NTMWD Permitting Manager

OPEN RECORDS NOTICE: This email and responses may be subject to the Texas Public Information Act and may be disclosed to the public upon request. Please respond accordingly

From: Francesca Findlay < Francesca. Findlay@tceq.texas.gov>

Sent: Tuesday, October 28, 2025 10:55 AM **To:** Jerry Allen <jallen@NTMWD.COM>

Subject: [EXTERNAL] RE: WQ0014245001 North Texas Municipal Water District

WARNING: This email is from an external source. Do not click links or open attachments without positive sender verification of purpose. Never enter username, password or sensitive information on linked pages from this email.

If you are unsure about the message, please forward to itsupport@ntmwd.com for assistance.

Good morning,

I am reviewing your documents, and I have noticed that the Plain Language Summary's and the Supplemental Permit Information Form, "SPIF" do not have the updated address of 1825 Fields Parkway. Please provide the updated forms with this information. Please let me know if you have any questions.

Thank you,

Francesca Findlay License & Permit Specialist ARP Team | Water Quality Division 512-239-2441

Texas Commission on Environmental Quality

Please consider whether it is necessary to print this e-mail

How is our customer service? Fill out our online customer satisfaction survey at http://www.tceq.texas.gov/customersurvey.

From: Jerry Allen < <u>jallen@NTMWD.COM</u>>
Sent: Thursday, October 23, 2025 10:49 AM

To: Francesca Findlay <Francesca.Findlay@tceq.texas.gov>

Subject: RE: WQ0014245001 North Texas Municipal Water District

Caution: This email may contain suspicious content. Please take care when clicking links or opening attachments. When in doubt, contact the TCEQ Help Desk.

Francesca,

See attached response letter and Spanish NORI. Let me know if need anything further. Thank you and have a good day.

Sincerely,

JERRY ALLEN NTMWD Permitting Manager

OPEN RECORDS NOTICE: This email and responses may be subject to the Texas Public Information Act and may be disclosed to the public upon request. Please respond accordingly

From: Jerry Allen

Sent: Tuesday, October 21, 2025 1:47 PM

To: 'Francesca Findlay' < Francesca. Findlay@tceq.texas.gov >

Subject: RE: WQ0014245001 North Texas Municipal Water District

Francesca,

I will review and provide a Spanish NORI.

Sincerely,

JERRY ALLEN NTMWD Permitting Manager

OPEN RECORDS NOTICE: This email and responses may be subject to the Texas Public Information Act and may be disclosed to the public upon request. Please respond accordingly

From: Francesca Findlay < Francesca. Findlay@tceq.texas.gov>

Sent: Tuesday, October 21, 2025 1:25 PM To: Jerry Allen <jallen@NTMWD.COM>

Subject: [EXTERNAL] FW: WQ0014245001 North Texas Municipal Water District

WARNING: This email is from an external source. Do not click links or open attachments without positive sender verification of purpose. Never enter username, password or sensitive information on linked pages from this email.

If you are unsure about the message, please forward to itsupport@ntmwd.com for assistance.

Dear Mr. Allen:

The attached Notice of Deficiency letter sent on October 21, 2025, requesting additional information needed to declare the application administratively complete. Please send the complete response to my attention November 5, 2025.

Thank you,

Francesca Findlay
License & Permit Specialist
ARP Team | Water Quality Division
512-239-2441
Texas Commission on Environmental Quality

Please consider whether it is necessary to print this e-mail

How is our customer service? Fill out our online customer satisfaction survey at http://www.tceq.texas.gov/customersurvey.

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ00

SOLICITUD. North Texas Municipal Water District, P.O. Box 2408, Wylie, Texas 75098, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0014245001 (EPA I.D. No. TX 0123901) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio diario de 25,000,000 galones por día. La planta está ubicada 1825 Fields Parkway, en el ciudad de Frisco, en el Condado de Denton, Texas 75034. La ruta de descarga es del sitio de la planta a Panther Creek, de allí al lago Lewisville. La TCEQ recibió esta solicitud el 15 de octubre 2025. La solicitud para el permiso estará disponible para leerla y copiarla en Biblioteca Pública de Little Elm, Sección de Referencia, 100 West Eldorado Parkway, Little Elm, en el condado de Denton, Texas antes de la fecha de publicación de este aviso en el periódico. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-96.87344,33.203044&level=18

AVISO DE IDIOMA ALTERNATIVO. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ

realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión.

La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo,

la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Además, puede pedir que la TCEQ ponga su nombre en una o más de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos del solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envía por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

INFORMACIÓN DISPONIBLE EN LÍNEA. Para detalles sobre el estado de la solicitud, favor de visitar la Base de Datos Integrada de los Comisionados en www.tceq.texas.gov/goto/cid. Para buscar en la base de datos, utilizar el número de permiso para esta solicitud que aparece en la parte superior de este aviso.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía http://www14.tceq.texas.gov/epic/eComment/o.por.escrito.dirigidos a la Comisión

http://www14.tceq.texas.gov/epic/eComment/o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional del North Texas Municipal Water District a la dirección indicada arriba o llamando a Mr. Jerry Allen al 469-626-4634.

Fecha de emisión: [Date notice issued]

Regional. Reliable. Everyday.

October 23, 2025

Francesca Findlay

VIA ELECTRONIC MAIL

Applications Review and Processing Team (MC148)
Water Quality Division

Francesca.Findlay@tceq.texas.gov

Water Quality Division

Texas Commission of Environmental Quality

P.O. Box 13087

Austin, Texas 78711-3087

Re: Response to TCEQ Notice of Deficiency

Applicant Name: North Texas Municipal Water District (CN601365448)

Permit Number: WQ0014245001 (EPA I.D. No. TX0123901)

Site Name: Panther Creek WWTP (RN102739430) Type of Application: Renewal without Changes

Dear Ms. Findlay:

This letter is submitted regarding the above-referenced TPDES Domestic Wastewater Permit Application ("Application") associated with the North Texas Municipal Water District's ("NTMWD's") Panther Creek Wastewater Treatment Plant ("Panther Creek WWTP") in response to items noted in the October 21, 2025, letter to Jerry Allen transmitting the notice of deficiencies for the application. NTMWD offers the following comments for your consideration:

Request 1 (Review the portion of the NORI provided and indicate if it contains any errors or omissions.)

Response:

NTMWD has reviewed the portion of the NORI provided. The portion of the NORI describing the facility location states: "The domestic wastewater treatment facility is located at 1825 Panther Creek Road, in the city of Frisco, in Denton County, Texas 75034." NTMWD received confirmation from the City of Frisco that the address of Panther Creek WWTP has changed. NTMWD submitted an electronic Core Data Form via STEERS on October 6, 2025, to update the Regulated Entity's (RN102739430) location to "1825 Fields Parkway, Frisco, TX 75034". The Core Data form was also submitted in the permit application on October 15, 2025, in the "Other Attachments" Section of the STEERS application titled "OTHER_2025 Renewal Panther Creek WWTP Electronic Core Data Form".

Please revise the statement to read: "The domestic wastewater treatment facility is located at 1825 <u>Fields Parkway</u>, in the city of Frisco, in Denton County, Texas 75034."

Ms. Francesca Findlay October 23, 2025 Page **2**

Request 2 (Provide a Spanish NORI)

Response:

The English NORI provided on October 21, 2025, has been translated to Spanish with the corrected address for Panther Creek WWTP included. The Spanish NORI is provided as an attachment to the email with this letter.

Should you have any questions or need additional information please contact me at jallen@ntmwd.com or 469-626-4634.

Sincerely,

erry Allen

Permitting Manager

JA/vb

Enclosures

cc: Hunter Stephens, NTMWD
Joel Nickerson, NTMWD
R.J. Muraski, NTMWD
Lauren Kalisek, Lloyd Gosselink Rochelle & Townsend, P.C.
Lora Naismith, Lloyd Gosselink Rochelle & Townsend, P.C.

Francesca Findlay

From: Jerry Allen <jallen@NTMWD.COM>
Sent: Thursday, October 23, 2025 10:49 AM

To: Francesca Findlay

Subject: RE: WQ0014245001 North Texas Municipal Water District

Attachments: 2025-10-23 NOD Response Letter to TCEQ Panther Creek WWTP SIGNED.pdf; 2025

Panther Creek WWTP Permit Renewal Spanish NORI.docx

Caution: This email may contain suspicious content. Please take care when clicking links or opening attachments. When in doubt, contact the TCEQ Help Desk.

Francesca,

See attached response letter and Spanish NORI. Let me know if need anything further. Thank you and have a good day.

Sincerely,

JERRY ALLEN NTMWD Permitting Manager

OPEN RECORDS NOTICE: This email and responses may be subject to the Texas Public Information Act and may be disclosed to the public upon request. Please respond accordingly

From: Jerry Allen

Sent: Tuesday, October 21, 2025 1:47 PM

To: 'Francesca Findlay' <Francesca.Findlay@tceq.texas.gov>

Subject: RE: WQ0014245001 North Texas Municipal Water District

Francesca,

I will review and provide a Spanish NORI.

Sincerely,

JERRY ALLEN NTMWD Permitting Manager

OPEN RECORDS NOTICE: This email and responses may be subject to the Texas Public Information Act and may be disclosed to the public upon request. Please respond accordingly

From: Francesca Findlay <Francesca.Findlay@tceq.texas.gov>

Sent: Tuesday, October 21, 2025 1:25 PM **To:** Jerry Allen <jallen@NTMWD.COM>

Subject: [EXTERNAL] FW: WQ0014245001 North Texas Municipal Water District

WARNING: This email is from an external source. Do not click links or open attachments without positive sender verification of purpose. Never enter username, password or sensitive information on linked pages from this email.

If you are unsure about the message, please forward to itsupport@ntmwd.com for assistance.

Dear Mr. Allen:

The attached Notice of Deficiency letter sent on October 21, 2025, requesting additional information needed to declare the application administratively complete. Please send the complete response to my attention November 5, 2025.

Thank you,

Francesca Findlay
License & Permit Specialist
ARP Team | Water Quality Division
512-239-2441
Texas Commission on Environmental Quality

Please consider whether it is necessary to print this e-mail

How is our customer service? Fill out our online customer satisfaction survey at http://www.tceq.texas.gov/customersurvey.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS

Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary of your facility and application as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. You may modify the template as necessary to accurately describe your facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how you will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTICE WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

North Texas Municipal Water District ($\underline{\text{CN601365448}}$) operates Panther Creek Wastewater Treatment Plant ($\underline{\text{RN102739430}}$), a domestic wastewater treatment plant. The facility is located at 1825 Fields Parkway, in Frisco, Denton County, Texas 75034. The application is for a renewal of the permit.

Discharges from the facility are expected to contain carbonaceous biochemical oxygen demand (CBOD), total suspended solids (TSS), Ammonia Nitrogen, and E.coli. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7 Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application. Domestic wastewater is treated by screening, grit removal, primary clarification, aeration basins with biological nutrient removal capability, secondary clarification, filtration, and UV disinfection. Sludge from the clarifiers is processed with storage and blend tanks and dewatering presses. The dewatered sludge is disposed at NTMWD 121 Regional Disposal Facility.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES DOMESTICAS /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

North Texas Municipal Water District (CN601365448) opera Panther Creek Wastewater Treatment Plant RN102739430, una planta de tratamiento de aguas residuals domesticas. La instalación está ubicada en 1825 Fields Parkway, en Frisco, Condado de Denton, Texas 75034. La solicitud es para una renovación del permiso.

Se espera que las descargas de la instalación contengan demanda bioquímica de oxígeno (CBOD) carbonosa, sólidos suspendidos totales (TSS), nitrógeno amoniacal y E. coli. Se incluyen otros contaminantes potenciales en el Informe Técnico Doméstico 1.0, Sección 7, Análisis de Contaminantes del Efluente Tratado, y la Hoja de Trabajo Doméstica 4.0 de la solicitud de permiso . Las aguas residuals domesticas. están tratado por cribado, eliminación de arena, clarificación primaria, tanques de aireación con capacidad de eliminación biológica de nutrientes, clarificación secundaria, filtración y desinfección UV. Los lodos de los clarificadores se procesan con tanques de almacenamiento y mezcla y prensas de deshidratación. Los lodos deshidratados se desechan en la Instalación Regional de Eliminación NTMWD 121.

INSTRUCTIONS

- 1. Enter the name of applicant in this section. The applicant name should match the name associated with the customer number.
- 2. Enter the Customer Number in this section. Each Individual or Organization is issued a unique 11-digit identification number called a CN (e.g. CN123456789).
- 3. Choose "operates" in this section for existing facility applications or choose "proposes to operate" for new facility applications.
- 4. Enter the name of the facility in this section. The facility name should match the name associated with the regulated entity number.
- 5. Enter the Regulated Entity number in this section. Each site location is issued a unique 11-digit identification number called an RN (e.g. RN123456789).
- 6. Choose the appropriate article (a or an) to complete the sentence.
- 7. Enter a description of the facility in this section. For example: steam electric generating facility, nitrogenous fertilizer manufacturing facility, etc.
- 8. Choose "is" for an existing facility or "will be" for a new facility.
- 9. Enter the location of the facility in this section.
- 10. Enter the City nearest the facility in this section.
- 11. Enter the County nearest the facility in this section.
- 12. Enter the zip code for the facility address in this section.
- 13. Enter a summary of the application request in this section. For example: renewal to discharge 25,000 gallons per day of treated domestic wastewater, new application to discharge process wastewater and stormwater on an intermittent and flow-variable basis, or major amendment to reduce monitoring frequency for pH, etc. If more than one outfall is included in the application, provide applicable information for each individual outfall.
- 14. List all pollutants expected in the discharge from this facility in this section. If applicable, refer to the pollutants from any federal numeric effluent limitations that apply to your facility.
- 15. Enter the discharge types from your facility in this section (e.g., stormwater, process wastewater, once through cooling water, etc.)
- 16. Choose the appropriate verb tense to complete the sentence.
- 17. Enter a description of the wastewater treatment used at your facility. Include a description of each process, starting with initial treatment and finishing with the outfall/point of disposal. Use additional lines for individual discharge types if necessary.

Questions or comments concerning this form may be directed to the Water Quality Division's Application Review and Processing Team by email at <a href="https://www.wq-arthu.org/wq-arthu.or

Example 1: Industrial Wastewater TPDES Application (ENGLISH)

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

ABC Corporation (CN600000000) operates the Starr Power Station (RN10000000000), a two-unit gas-fired electric generating facility. Unit 1 has a generating capacity of 393 megawatts (MWs) and Unit 2 has a generating capacity of 528 MWs. The facility is located at 1356 Starr Street, near the City of Austin, Travis County, Texas 78753.

This application is for a renewal to discharge 870,000,000 gallons per day of once through cooling water, auxiliary cooling water, and also authorizes the following waste streams monitored inside the facility (internal outfalls) before it is mixed with the other wastewaters authorized for discharge via main Outfall 001, referred to as "previously monitored effluents" (low-volume wastewater, metal-cleaning waste, and stormwater (from diked oil storage area yards and storm drains)) via Outfall 001. Low-volume waste sources, metal-cleaning waste, and stormwater drains on a continuous and flow-variable basis via internal Outfall 101.

The discharge of once through cooling water via Outfall 001 and low-volume waste and metal-cleaning waste via Outfall 101 from this facility is subject to federal effluent limitation guidelines at 40 CFR Part 423. The pollutants expected from these discharges based on 40 CFR Part 423 are: free available chlorine, total residual chlorine, total suspended solids, oil and grease, total iron, total copper, and pH. Temperature is also expected from these discharges. Additional potential pollutants are included in the Industrial Wastewater Application Technical Report, Worksheet 2.0.

Cooling water and boiler make-up water are supplied by Lake Starr Reservoir. The City of Austin municipal water plant (CN600000000, PWS 00000) supplies the facility's potable water and serves as an alternate source of boiler make-up water. Water from the Lake Starr Reservoir is withdrawn at the intake structure and treated with sodium hypochlorite to prevent biofouling and sodium bromide as a chlorine enhancer to improve efficacy and then passed through condensers and auxiliary equipment on a once-through basis to cool equipment and condense exhaust steam.

Low-volume wastewater from blowdown of boiler Units 1 and 2 and metal-cleaning wastes receive no treatment prior to discharge via Outfall 101. Plant floor and equipment drains and stormwater runoff from diked oil storage areas, yards, and storm drains are routed through an oil and water separator prior to discharge via Outfall 101. Domestic wastewater, blowdown, and backwash water from the service water filter, clarifier, and sand filter are routed to the Starr Creek Domestic Sewage Treatment Plant, TPDES Permit No. WQ0010000001, for treatment and disposal. Metal-cleaning waste from equipment cleaning is generally disposed of off-site.

Example 2: Domestic Wastewater TPDES Renewal application

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

The City of Texas (CN000000000) operates the City of Texas wastewater treatment plant (RN00000000), an activated sludge process plant operated in the complete mix mode. The facility is located at 123 Texas Street, near the City of More Texas, Texas County, Texas 71234.

This application is for a renewal to discharge at an annual average flow of 1,200,000 gallons per day of treated domestic wastewater via Outfalls 001 and 002.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), ammonia nitrogen (NH₃-N), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a bar screen, a grit chamber, aeration basins, final clarifiers, sludge digesters, a belt filter press, chlorine contact chambers and a dechlorination chamber.

Example 3: Domestic Wastewater TPDES New Application

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

The City of Texas (CN000000000) proposes to operate the City of Texas wastewater treatment plant (RN00000000), an activated sludge process plant operated in the extended aeration mode. The facility will be located at 123 Texas Street, in the City of More Texas, Texas County, Texas 71234.

This application is for a new application to discharge at a daily average flow of 200,000 gallons per day of treated domestic wastewater.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), ammonia nitrogen (NH₃-N), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent in the permit application package. Domestic wastewater will be treated by an activated sludge process plant and the treatment units will include a bar screen, a grit chamber, aeration basins, final clarifiers, sludge digesters, a belt filter press, chlorine contact chambers and a dechlorination chamber.

Example 4: Domestic Wastewater TLAP Renewal application

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations

of the permit application.

The City of Texas (CN000000000) operates the City of Texas wastewater treatment plant (RN00000000), an activated sludge process plant operated in the complete mix mode. The facility is located at 123 Texas Street, near the City of More Texas, Texas County, Texas 71234.

This application is for a renewal to dispose a daily average flow not to exceed 76,500 gallons per day of treated domestic wastewater via public access subsurface drip irrigation system with a minimum area of 32 acres. This permit will not authorize a discharge of pollutants into water in the state.

Land application of domestic wastewater from the facility are expected to contain five-day biochemical oxygen demand (BOD_5), total suspended solids (TSS), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a bar screen, an equalization basin, an aeration basin, a final clarifier, an aerobic sludge digester, tertiary filters, and a chlorine contact chamber. In addition, the facility includes a temporary storage that equals to at least three days of the daily average flow.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

TCEQ USE ONLY:	
Application type:RenewalMajor An	nendment Minor Amendment New
County:	
Admin Complete Date:	
Agency Receiving SPIF:	
Texas Historical Commission	U.S. Fish and Wildlife
Texas Parks and Wildlife Department	U.S. Army Corps of Engineers
This form applies to TPDES permit application	ns only. (Instructions, Page 53)
	EQ will mail a copy to each agency as required by not completely addressed or further information formation before issuing the permit. Address
Do not refer to your response to any item in tattachment for this form separately from the Adapplication will not be declared administratively completed in its entirety including all attachmed may be directed to the Water Quality Division's email at	

Provide the name, address, phone and fax number of an individual that can be contacted to answer specific questions about the property.
Prefix (Mr., Ms., Miss): MR.
First and Last Name: <u>JERRY ALLEN</u>
Credential (P.E, P.G., Ph.D., etc.): <u>N/A</u>
Title: PERMITTING MANAGER
Mailing Address: PO BOX 2408
City, State, Zip Code: WYLIE
Phone No.: <u>469-626-4634</u> Ext.: <u>N/A</u> Fax No.: <u>N/A</u>
E-mail Address: <u>JALLEN@NTMWD.COM</u>
List the county in which the facility is located: <u>DENTON</u>
If the property is publicly owned and the owner is different than the permittee/applicant, please list the owner of the property.
CITY OF FRISCO
Provide a description of the effluent discharge route. The discharge route must follow the flow of effluent from the point of discharge to the nearest major watercourse (from the point of discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify the classified segment number. The treated effluent is discharged to Panther Creek, thence to Lewisville Lake in Segment
No. 0823 of the Trinity River Basin.
Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report).
Provide original photographs of any structures 50 years or older on the property.
Does your project involve any of the following? Check all that apply.
☐ Proposed access roads, utility lines, construction easements
☐ Visual effects that could damage or detract from a historic property's integrity
☑ Vibration effects during construction or as a result of project design
■ Additional phases of development that are planned for the future

2. 3.

4.

5.

Sealing caves, fractures, sinkholes, other karst features

	☐ Disturbance of vegetation or wetlands
1.	List proposed construction impact (surface acres to be impacted, depth of excavation, sealing of caves, or other karst features):
	Surface acres to be impacted is approximately 50 acres with a maximum excavation depth of approximately 50 feet. No sealing of caves or other karst features is to be expected.
2.	Describe existing disturbances, vegetation, and land use:
	The property within the fenced boundary is a wastewater treatment plant with grass cover on unpaved areas. Paved roads exist at the site providing access to buildings and facilities. The property where the outfall is located, owned by the City of Frisco, is undeveloped with grass cover, trees and shrubs.
	IE FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR MENDMENTS TO TPDES PERMITS
3.	List construction dates of all buildings and structures on the property:
	N/A
4.	Provide a brief history of the property, and name of the architect/builder, if known.
	N/A

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUMMARY OF APPLICATION IN PLAIN LANGUAGE FOR TPDES OR TLAP PERMIT APPLICATIONS

Summary of Application (in plain language) Template and Instructions for Texas Pollutant Discharge Elimination System (TPDES) and Texas Land Application (TLAP) Permit Applications

Applicants should use this template to develop a plain language summary of your facility and application as required by Title 30, Texas Administrative Code (30 TAC), Chapter 39, Subchapter H. You may modify the template as necessary to accurately describe your facility as long as the summary includes the following information: (1) the function of the proposed plant or facility; (2) the expected output of the proposed plant or facility; (3) the expected pollutants that may be emitted or discharged by the proposed plant or facility; and (4) how you will control those pollutants, so that the proposed plant will not have an adverse impact on human health or the environment.

If you are subject to the alternative language notice requirements in 30 TAC Section 39.426, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS DOMESTICE WASTEWATER/STORMWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and is not a federal enforceable representation of the permit application.

North Texas Municipal Water District ($\underline{\text{CN601365448}}$) operates Panther Creek Wastewater Treatment Plant ($\underline{\text{RN102739430}}$), a domestic wastewater treatment plant. The facility is located at 1825 Fields Parkway, in Frisco, Denton County, Texas 75034. The application is for a renewal of the permit.

Discharges from the facility are expected to contain carbonaceous biochemical oxygen demand (CBOD), total suspended solids (TSS), Ammonia Nitrogen, and E.coli. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7 Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application. Domestic wastewater is treated by screening, grit removal, primary clarification, aeration basins with biological nutrient removal capability, secondary clarification, filtration, and UV disinfection. Sludge from the clarifiers is processed with storage and blend tanks and dewatering presses. The dewatered sludge is disposed at NTMWD 121 Regional Disposal Facility.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS DE TPDES o TLAP

AGUAS RESIDUALES DOMESTICAS /AGUAS PLUVIALES

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no es una representación ejecutiva fedérale de la solicitud de permiso.

North Texas Municipal Water District (CN601365448) opera Panther Creek Wastewater Treatment Plant RN102739430, una planta de tratamiento de aguas residuals domesticas. La instalación está ubicada en 1825 Fields Parkway, en Frisco, Condado de Denton, Texas 75034. La solicitud es para una renovación del permiso.

Se espera que las descargas de la instalación contengan demanda bioquímica de oxígeno (CBOD) carbonosa, sólidos suspendidos totales (TSS), nitrógeno amoniacal y E. coli. Se incluyen otros contaminantes potenciales en el Informe Técnico Doméstico 1.0, Sección 7, Análisis de Contaminantes del Efluente Tratado, y la Hoja de Trabajo Doméstica 4.0 de la solicitud de permiso . Las aguas residuals domesticas. están tratado por cribado, eliminación de arena, clarificación primaria, tanques de aireación con capacidad de eliminación biológica de nutrientes, clarificación secundaria, filtración y desinfección UV. Los lodos de los clarificadores se procesan con tanques de almacenamiento y mezcla y prensas de deshidratación. Los lodos deshidratados se desechan en la Instalación Regional de Eliminación NTMWD 121.

INSTRUCTIONS

- 1. Enter the name of applicant in this section. The applicant name should match the name associated with the customer number.
- 2. Enter the Customer Number in this section. Each Individual or Organization is issued a unique 11-digit identification number called a CN (e.g. CN123456789).
- 3. Choose "operates" in this section for existing facility applications or choose "proposes to operate" for new facility applications.
- 4. Enter the name of the facility in this section. The facility name should match the name associated with the regulated entity number.
- 5. Enter the Regulated Entity number in this section. Each site location is issued a unique 11-digit identification number called an RN (e.g. RN123456789).
- 6. Choose the appropriate article (a or an) to complete the sentence.
- 7. Enter a description of the facility in this section. For example: steam electric generating facility, nitrogenous fertilizer manufacturing facility, etc.
- 8. Choose "is" for an existing facility or "will be" for a new facility.
- 9. Enter the location of the facility in this section.
- 10. Enter the City nearest the facility in this section.
- 11. Enter the County nearest the facility in this section.
- 12. Enter the zip code for the facility address in this section.
- 13. Enter a summary of the application request in this section. For example: renewal to discharge 25,000 gallons per day of treated domestic wastewater, new application to discharge process wastewater and stormwater on an intermittent and flow-variable basis, or major amendment to reduce monitoring frequency for pH, etc. If more than one outfall is included in the application, provide applicable information for each individual outfall.
- 14. List all pollutants expected in the discharge from this facility in this section. If applicable, refer to the pollutants from any federal numeric effluent limitations that apply to your facility.
- 15. Enter the discharge types from your facility in this section (e.g., stormwater, process wastewater, once through cooling water, etc.)
- 16. Choose the appropriate verb tense to complete the sentence.
- 17. Enter a description of the wastewater treatment used at your facility. Include a description of each process, starting with initial treatment and finishing with the outfall/point of disposal. Use additional lines for individual discharge types if necessary.

Questions or comments concerning this form may be directed to the Water Quality Division's Application Review and Processing Team by email at wq-ARPTeam@tceq.texas.gov or by phone at (512) 239-4671.

Example 1: Industrial Wastewater TPDES Application (ENGLISH)

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 TAC Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

ABC Corporation (CN600000000) operates the Starr Power Station (RN10000000000), a two-unit gas-fired electric generating facility. Unit 1 has a generating capacity of 393 megawatts (MWs) and Unit 2 has a generating capacity of 528 MWs. The facility is located at 1356 Starr Street, near the City of Austin, Travis County, Texas 78753.

This application is for a renewal to discharge 870,000,000 gallons per day of once through cooling water, auxiliary cooling water, and also authorizes the following waste streams monitored inside the facility (internal outfalls) before it is mixed with the other wastewaters authorized for discharge via main Outfall 001, referred to as "previously monitored effluents" (low-volume wastewater, metal-cleaning waste, and stormwater (from diked oil storage area yards and storm drains)) via Outfall 001. Low-volume waste sources, metal-cleaning waste, and stormwater drains on a continuous and flow-variable basis via internal Outfall 101.

The discharge of once through cooling water via Outfall 001 and low-volume waste and metal-cleaning waste via Outfall 101 from this facility is subject to federal effluent limitation guidelines at 40 CFR Part 423. The pollutants expected from these discharges based on 40 CFR Part 423 are: free available chlorine, total residual chlorine, total suspended solids, oil and grease, total iron, total copper, and pH. Temperature is also expected from these discharges. Additional potential pollutants are included in the Industrial Wastewater Application Technical Report, Worksheet 2.0.

Cooling water and boiler make-up water are supplied by Lake Starr Reservoir. The City of Austin municipal water plant (CN600000000, PWS 00000) supplies the facility's potable water and serves as an alternate source of boiler make-up water. Water from the Lake Starr Reservoir is withdrawn at the intake structure and treated with sodium hypochlorite to prevent biofouling and sodium bromide as a chlorine enhancer to improve efficacy and then passed through condensers and auxiliary equipment on a once-through basis to cool equipment and condense exhaust steam.

Low-volume wastewater from blowdown of boiler Units 1 and 2 and metal-cleaning wastes receive no treatment prior to discharge via Outfall 101. Plant floor and equipment drains and stormwater runoff from diked oil storage areas, yards, and storm drains are routed through an oil and water separator prior to discharge via Outfall 101. Domestic wastewater, blowdown, and backwash water from the service water filter, clarifier, and sand filter are routed to the Starr Creek Domestic Sewage Treatment Plant, TPDES Permit No. WQ0010000001, for treatment and disposal. Metal-cleaning waste from equipment cleaning is generally disposed of off-site.

Example 2: Domestic Wastewater TPDES Renewal application

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

The City of Texas (CN000000000) operates the City of Texas wastewater treatment plant (RN00000000), an activated sludge process plant operated in the complete mix mode. The facility is located at 123 Texas Street, near the City of More Texas, Texas County, Texas 71234.

This application is for a renewal to discharge at an annual average flow of 1,200,000 gallons per day of treated domestic wastewater via Outfalls 001 and 002.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), ammonia nitrogen (NH₃-N), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent and Domestic Worksheet 4.0 in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a bar screen, a grit chamber, aeration basins, final clarifiers, sludge digesters, a belt filter press, chlorine contact chambers and a dechlorination chamber.

Example 3: Domestic Wastewater TPDES New Application

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application.

The City of Texas (CN000000000) proposes to operate the City of Texas wastewater treatment plant (RN00000000), an activated sludge process plant operated in the extended aeration mode. The facility will be located at 123 Texas Street, in the City of More Texas, Texas County, Texas 71234.

This application is for a new application to discharge at a daily average flow of 200,000 gallons per day of treated domestic wastewater.

Discharges from the facility are expected to contain five-day carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), ammonia nitrogen (NH₃-N), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent in the permit application package. Domestic wastewater will be treated by an activated sludge process plant and the treatment units will include a bar screen, a grit chamber, aeration basins, final clarifiers, sludge digesters, a belt filter press, chlorine contact chambers and a dechlorination chamber.

Example 4: Domestic Wastewater TLAP Renewal application

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations

of the permit application.

The City of Texas (CN000000000) operates the City of Texas wastewater treatment plant (RN00000000), an activated sludge process plant operated in the complete mix mode. The facility is located at 123 Texas Street, near the City of More Texas, Texas County, Texas 71234.

This application is for a renewal to dispose a daily average flow not to exceed 76,500 gallons per day of treated domestic wastewater via public access subsurface drip irrigation system with a minimum area of 32 acres. This permit will not authorize a discharge of pollutants into water in the state.

Land application of domestic wastewater from the facility are expected to contain five-day biochemical oxygen demand (BOD_5), total suspended solids (TSS), and *Escherichia coli*. Additional potential pollutants are included in the Domestic Technical Report 1.0, Section 7. Pollutant Analysis of Treated Effluent in the permit application package. Domestic wastewater is treated by an activated sludge process plant and the treatment units include a bar screen, an equalization basin, an aeration basin, a final clarifier, an aerobic sludge digester, tertiary filters, and a chlorine contact chamber. In addition, the facility includes a temporary storage that equals to at least three days of the daily average flow.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC OR INDUSTRIAL TPDES WASTEWATER PERMIT APPLICATIONS

TCEQ USE ONLY:	
Application type:RenewalMajor An	nendment Minor Amendment New
County:	
Admin Complete Date:	
Agency Receiving SPIF:	
Texas Historical Commission	U.S. Fish and Wildlife
Texas Parks and Wildlife Department	U.S. Army Corps of Engineers
This form applies to TPDES permit application	ns only. (Instructions, Page 53)
	EQ will mail a copy to each agency as required by not completely addressed or further information formation before issuing the permit. Address
Do not refer to your response to any item in tattachment for this form separately from the Adapplication will not be declared administratively completed in its entirety including all attachmed may be directed to the Water Quality Division's email at	

Provide the name, address, phone and fax number of an individual that can be contacted to answer specific questions about the property.
Prefix (Mr., Ms., Miss): MR.
First and Last Name: <u>JERRY ALLEN</u>
Credential (P.E, P.G., Ph.D., etc.): <u>N/A</u>
Title: PERMITTING MANAGER
Mailing Address: PO BOX 2408
City, State, Zip Code: WYLIE
Phone No.: <u>469-626-4634</u> Ext.: <u>N/A</u> Fax No.: <u>N/A</u>
E-mail Address: <u>JALLEN@NTMWD.COM</u>
List the county in which the facility is located: <u>DENTON</u>
If the property is publicly owned and the owner is different than the permittee/applicant, please list the owner of the property.
CITY OF FRISCO
Provide a description of the effluent discharge route. The discharge route must follow the flow of effluent from the point of discharge to the nearest major watercourse (from the point of discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify the classified segment number. The treated effluent is discharged to Panther Creek, thence to Lewisville Lake in Segment
No. 0823 of the Trinity River Basin.
Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report).
Provide original photographs of any structures 50 years or older on the property.
Does your project involve any of the following? Check all that apply.
☐ Proposed access roads, utility lines, construction easements
☐ Visual effects that could damage or detract from a historic property's integrity
☑ Vibration effects during construction or as a result of project design
■ Additional phases of development that are planned for the future

2. 3.

4.

5.

Sealing caves, fractures, sinkholes, other karst features

	☐ Disturbance of vegetation or wetlands
1.	List proposed construction impact (surface acres to be impacted, depth of excavation, sealing of caves, or other karst features):
	Surface acres to be impacted is approximately 50 acres with a maximum excavation depth of approximately 50 feet. No sealing of caves or other karst features is to be expected.
2.	Describe existing disturbances, vegetation, and land use:
	The property within the fenced boundary is a wastewater treatment plant with grass cover on unpaved areas. Paved roads exist at the site providing access to buildings and facilities. The property where the outfall is located, owned by the City of Frisco, is undeveloped with grass cover, trees and shrubs.
	IE FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR MENDMENTS TO TPDES PERMITS
3.	List construction dates of all buildings and structures on the property:
	N/A
4.	Provide a brief history of the property, and name of the architect/builder, if known.
	N/A

Regional. Reliable. Everyday.

October 23, 2025

Francesca Findlay

VIA ELECTRONIC MAIL

Applications Review and Processing Team (MC148)
Water Quality Division

Francesca.Findlay@tceq.texas.gov

Water Quality Division

Texas Commission of Environmental Quality

P.O. Box 13087

Austin, Texas 78711-3087

Re: Response to TCEQ Notice of Deficiency

Applicant Name: North Texas Municipal Water District (CN601365448)

Permit Number: WQ0014245001 (EPA I.D. No. TX0123901)

Site Name: Panther Creek WWTP (RN102739430) Type of Application: Renewal without Changes

Dear Ms. Findlay:

This letter is submitted regarding the above-referenced TPDES Domestic Wastewater Permit Application ("Application") associated with the North Texas Municipal Water District's ("NTMWD's") Panther Creek Wastewater Treatment Plant ("Panther Creek WWTP") in response to items noted in the October 21, 2025, letter to Jerry Allen transmitting the notice of deficiencies for the application. NTMWD offers the following comments for your consideration:

Request 1 (Review the portion of the NORI provided and indicate if it contains any errors or omissions.)

Response:

NTMWD has reviewed the portion of the NORI provided. The portion of the NORI describing the facility location states: "The domestic wastewater treatment facility is located at 1825 Panther Creek Road, in the city of Frisco, in Denton County, Texas 75034." NTMWD received confirmation from the City of Frisco that the address of Panther Creek WWTP has changed. NTMWD submitted an electronic Core Data Form via STEERS on October 6, 2025, to update the Regulated Entity's (RN102739430) location to "1825 Fields Parkway, Frisco, TX 75034". The Core Data form was also submitted in the permit application on October 15, 2025, in the "Other Attachments" Section of the STEERS application titled "OTHER_2025 Renewal Panther Creek WWTP Electronic Core Data Form".

Please revise the statement to read: "The domestic wastewater treatment facility is located at 1825 <u>Fields Parkway</u>, in the city of Frisco, in Denton County, Texas 75034."

Ms. Francesca Findlay October 23, 2025 Page **2**

Request 2 (Provide a Spanish NORI)

Response:

The English NORI provided on October 21, 2025, has been translated to Spanish with the corrected address for Panther Creek WWTP included. The Spanish NORI is provided as an attachment to the email with this letter.

Should you have any questions or need additional information please contact me at jallen@ntmwd.com or 469-626-4634.

Sincerely,

erry Allen

Permitting Manager

JA/vb

Enclosures

cc: Hunter Stephens, NTMWD
Joel Nickerson, NTMWD
R.J. Muraski, NTMWD
Lauren Kalisek, Lloyd Gosselink Rochelle & Townsend, P.C.
Lora Naismith, Lloyd Gosselink Rochelle & Townsend, P.C.

Regional. Reliable. Everyday.

October 29, 2025

Francesca Findlay

VIA ELECTRONIC MAIL

Applications Review and Processing Team (MC148)

Francesca.Findlay@tceq.texas.gov

Water Quality Division

Texas Commission of Environmental Quality

P.O. Box 13087

Austin, Texas 78711-3087

Re: Response to TCEQ Notice of Deficiency

Applicant Name: North Texas Municipal Water District (CN601365448)

Permit Number: WQ0014245001 (EPA I.D. No. TX0123901)

Site Name: Panther Creek WWTP (RN102739430) Type of Application: Renewal without Changes

Dear Ms. Findlay:

This letter is submitted regarding the above-referenced TPDES Domestic Wastewater Permit Application ("Application") associated with the North Texas Municipal Water District's ("NTMWD's") Panther Creek Wastewater Treatment Plant ("Panther Creek WWTP") in response to items noted in the October 28, 2025, email to Jerry Allen transmitting the request for updated information for the application. NTMWD offers the following comments for your consideration:

Request 1 (Update the address for Panther Creek WWTP in Plain Language Summary and Supplemental Permit Information Form.)

Response:

The Plain Language Summary and Supplemental Permit Information form have been updated with the corrected address of "1825 Fields Parkway" for Panther Creek WWTP. The forms are provided as an attachment to the email with this letter. An electronic Core Data form with this updated address was submitted via STEERS on October 6, 2025.

Should you have any questions or need additional information please contact me at <u>jallen@ntmwd.com</u> or 469-626-4634.

Sincerely,

Jerry Allen

Permitting Manager

Ms. Francesca Findlay October 29, 2025 Page **2**

JA/vb

Enclosures

cc: Hunter Stephens, NTMWD
Joel Nickerson, NTMWD
R.J. Muraski, NTMWD
Lauren Kalisek, Lloyd Gosselink Rochelle & Townsend, P.C.
Lora Naismith, Lloyd Gosselink Rochelle & Townsend, P.C.

Francesca Findlay

From: Jerry Allen <jallen@NTMWD.COM>
Sent: Thursday, October 23, 2025 10:49 AM

To: Francesca Findlay

Subject: RE: WQ0014245001 North Texas Municipal Water District

Attachments: 2025-10-23 NOD Response Letter to TCEQ Panther Creek WWTP SIGNED.pdf; 2025

Panther Creek WWTP Permit Renewal Spanish NORI.docx

Caution: This email may contain suspicious content. Please take care when clicking links or opening attachments. When in doubt, contact the TCEQ Help Desk.

Francesca,

See attached response letter and Spanish NORI. Let me know if need anything further. Thank you and have a good day.

Sincerely,

JERRY ALLEN NTMWD Permitting Manager

OPEN RECORDS NOTICE: This email and responses may be subject to the Texas Public Information Act and may be disclosed to the public upon request. Please respond accordingly

From: Jerry Allen

Sent: Tuesday, October 21, 2025 1:47 PM

To: 'Francesca Findlay' <Francesca.Findlay@tceq.texas.gov>

Subject: RE: WQ0014245001 North Texas Municipal Water District

Francesca,

I will review and provide a Spanish NORI.

Sincerely,

JERRY ALLEN NTMWD Permitting Manager

OPEN RECORDS NOTICE: This email and responses may be subject to the Texas Public Information Act and may be disclosed to the public upon request. Please respond accordingly

From: Francesca Findlay <Francesca.Findlay@tceq.texas.gov>

Sent: Tuesday, October 21, 2025 1:25 PM **To:** Jerry Allen <jallen@NTMWD.COM>

Subject: [EXTERNAL] FW: WQ0014245001 North Texas Municipal Water District

WARNING: This email is from an external source. Do not click links or open attachments without positive sender verification of purpose. Never enter username, password or sensitive information on linked pages from this email.

If you are unsure about the message, please forward to itsupport@ntmwd.com for assistance.

Dear Mr. Allen:

The attached Notice of Deficiency letter sent on October 21, 2025, requesting additional information needed to declare the application administratively complete. Please send the complete response to my attention November 5, 2025.

Thank you,

Francesca Findlay
License & Permit Specialist
ARP Team | Water Quality Division
512-239-2441
Texas Commission on Environmental Quality

Please consider whether it is necessary to print this e-mail

How is our customer service? Fill out our online customer satisfaction survey at http://www.tceq.texas.gov/customersurvey.

Francesca Findlay

From: Jerry Allen <jallen@NTMWD.COM>
Sent: Wednesday, October 29, 2025 10:02 AM

To: Francesca Findlay

Subject:RE: WQ0014245001 North Texas Municipal Water District Panther Creek WWTPAttachments:2025-10-29 RFI PLS SPIF Response Letter to TCEQ_Panther Creek WWTP SIGNED.pdf;

2025 Panther Creek WWTP Renewal SPIF_Updated.pdf; 2025 Panther Creek WWTP

Renewal PLS_Updated.pdf

Caution: This email may contain suspicious content. Please take care when clicking links or opening attachments. When in doubt, contact the TCEQ Help Desk.

Francesca,

See attached. Let me know if you have any questions or need anything else. Have a good day.

Sincerely,

JERRY ALLEN NTMWD Permitting Manager

OPEN RECORDS NOTICE: This email and responses may be subject to the Texas Public Information Act and may be disclosed to the public upon request. Please respond accordingly

From: Francesca Findlay < Francesca. Findlay@tceq.texas.gov>

Sent: Tuesday, October 28, 2025 10:55 AM **To:** Jerry Allen <jallen@NTMWD.COM>

Subject: [EXTERNAL] RE: WQ0014245001 North Texas Municipal Water District

WARNING: This email is from an external source. Do not click links or open attachments without positive sender verification of purpose. Never enter username, password or sensitive information on linked pages from this email.

If you are unsure about the message, please forward to itsupport@ntmwd.com for assistance.

Good morning,

I am reviewing your documents, and I have noticed that the Plain Language Summary's and the Supplemental Permit Information Form, "SPIF" do not have the updated address of 1825 Fields Parkway. Please provide the updated forms with this information. Please let me know if you have any questions.

Thank you,

Francesca Findlay License & Permit Specialist ARP Team | Water Quality Division 512-239-2441

Texas Commission on Environmental Quality

Please consider whether it is necessary to print this e-mail

How is our customer service? Fill out our online customer satisfaction survey at http://www.tceq.texas.gov/customersurvey.

From: Jerry Allen < <u>jallen@NTMWD.COM</u>>
Sent: Thursday, October 23, 2025 10:49 AM

To: Francesca Findlay <Francesca.Findlay@tceq.texas.gov>

Subject: RE: WQ0014245001 North Texas Municipal Water District

Caution: This email may contain suspicious content. Please take care when clicking links or opening attachments. When in doubt, contact the TCEQ Help Desk.

Francesca,

See attached response letter and Spanish NORI. Let me know if need anything further. Thank you and have a good day.

Sincerely,

JERRY ALLEN NTMWD Permitting Manager

OPEN RECORDS NOTICE: This email and responses may be subject to the Texas Public Information Act and may be disclosed to the public upon request. Please respond accordingly

From: Jerry Allen

Sent: Tuesday, October 21, 2025 1:47 PM

To: 'Francesca Findlay' < Francesca. Findlay@tceq.texas.gov >

Subject: RE: WQ0014245001 North Texas Municipal Water District

Francesca,

I will review and provide a Spanish NORI.

Sincerely,

JERRY ALLEN NTMWD Permitting Manager

OPEN RECORDS NOTICE: This email and responses may be subject to the Texas Public Information Act and may be disclosed to the public upon request. Please respond accordingly

From: Francesca Findlay < Francesca. Findlay@tceq.texas.gov>

Sent: Tuesday, October 21, 2025 1:25 PM To: Jerry Allen <jallen@NTMWD.COM>

Subject: [EXTERNAL] FW: WQ0014245001 North Texas Municipal Water District

WARNING: This email is from an external source. Do not click links or open attachments without positive sender verification of purpose. Never enter username, password or sensitive information on linked pages from this email.

If you are unsure about the message, please forward to itsupport@ntmwd.com for assistance.

Dear Mr. Allen:

The attached Notice of Deficiency letter sent on October 21, 2025, requesting additional information needed to declare the application administratively complete. Please send the complete response to my attention November 5, 2025.

Thank you,

Francesca Findlay
License & Permit Specialist
ARP Team | Water Quality Division
512-239-2441
Texas Commission on Environmental Quality

Please consider whether it is necessary to print this e-mail

How is our customer service? Fill out our online customer satisfaction survey at http://www.tceq.texas.gov/customersurvey.

Comisión de Calidad Ambiental del Estado de Texas

AVISO DE RECIBO DE LA SOLICITUD Y EL INTENTO DE OBTENER PERMISO PARA LA CALIDAD DEL AGUA RENOVACION

PERMISO NO. WQ00

SOLICITUD. North Texas Municipal Water District, P.O. Box 2408, Wylie, Texas 75098, ha solicitado a la Comisión de Calidad Ambiental del Estado de Texas (TCEQ) para renovar el Permiso No. WQ0014245001 (EPA I.D. No. TX 0123901) del Sistema de Eliminación de Descargas de Contaminantes de Texas (TPDES) para autorizar la descarga de aguas residuales tratadas en un volumen que no sobrepasa un flujo promedio diario de 25,000,000 galones por día. La planta está ubicada 1825 Fields Parkway, en el ciudad de Frisco, en el Condado de Denton, Texas 75034. La ruta de descarga es del sitio de la planta a Panther Creek, de allí al lago Lewisville. La TCEQ recibió esta solicitud el 15 de octubre 2025. La solicitud para el permiso estará disponible para leerla y copiarla en Biblioteca Pública de Little Elm, Sección de Referencia, 100 West Eldorado Parkway, Little Elm, en el condado de Denton, Texas antes de la fecha de publicación de este aviso en el periódico. La solicitud (cualquier actualización y aviso inclusive) está disponible electrónicamente en la siguiente página web: https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications. Este enlace a un mapa electrónico de la ubicación general del sitio o de la instalación es proporcionado como una cortesía y no es parte de la solicitud o del aviso. Para la ubicación exacta, consulte la solicitud.

https://gisweb.tceq.texas.gov/LocationMapper/?marker=-96.87344,33.203044&level=18

AVISO DE IDIOMA ALTERNATIVO. El aviso de idioma alternativo en español está disponible en https://www.tceq.texas.gov/permitting/wastewater/pending-permits/tpdes-applications.

AVISO ADICIONAL. El Director Ejecutivo de la TCEQ ha determinado que la solicitud es administrativamente completa y conducirá una revisión técnica de la solicitud. Después de completar la revisión técnica, el Director Ejecutivo puede preparar un borrador del permiso y emitirá una Decisión Preliminar sobre la solicitud. El aviso de la solicitud y la decisión preliminar serán publicados y enviado a los que están en la lista de correo de las personas a lo largo del condado que desean recibir los avisos y los que están en la lista de correo que desean recibir avisos de esta solicitud. El aviso dará la fecha límite para someter comentarios públicos.

COMENTARIO PUBLICO / REUNION PUBLICA. Usted puede presentar comentarios públicos o pedir una reunión pública sobre esta solicitud. El propósito de una reunión pública es dar la oportunidad de presentar comentarios o hacer preguntas acerca de la solicitud. La TCEQ

realiza una reunión pública si el Director Ejecutivo determina que hay un grado de interés público suficiente en la solicitud o si un legislador local lo pide. Una reunión pública no es una audiencia administrativa de lo contencioso.

OPORTUNIDAD DE UNA AUDIENCIA ADMINISTRATIVA DE LO CONTENCIOSO. Después del plazo para presentar comentarios públicos, el Director Ejecutivo considerará todos los comentarios apropiados y preparará una respuesta a todo los comentarios públicos esenciales, pertinentes, o significativos. A menos que la solicitud haya sido referida directamente a una audiencia administrativa de lo contencioso, la respuesta a los comentarios y la decisión del Director Ejecutivo sobre la solicitud serán enviados por correo a todos los que presentaron un comentario público y a las personas que están en la lista para recibir avisos sobre esta solicitud. Si se reciben comentarios, el aviso también proveerá instrucciones para pedir una reconsideración de la decisión del Director Ejecutivo y para pedir una audiencia administrativa de lo contencioso. Una audiencia administrativa de lo contencioso es un procedimiento legal similar a un procedimiento legal civil en un tribunal de distrito del estado.

PARA SOLICITAR UNA AUDIENCIA DE CASO IMPUGNADO, USTED DEBE INCLUIR EN SU SOLICITUD LOS SIGUIENTES DATOS: su nombre, dirección, y número de teléfono; el nombre del solicitante y número del permiso; la ubicación y distancia de su propiedad/actividad con respecto a la instalación; una descripción específica de la forma cómo usted sería afectado adversamente por el sitio de una manera no común al público en general; una lista de todas las cuestiones de hecho en disputa que usted presente durante el período de comentarios; y la declaración "[Yo/nosotros] solicito/solicitamos una audiencia de caso impugnado". Si presenta la petición para una audiencia de caso impugnado de parte de un grupo o asociación, debe identificar una persona que representa al grupo para recibir correspondencia en el futuro; identificar el nombre y la dirección de un miembro del grupo que sería afectado adversamente por la planta o la actividad propuesta; proveer la información indicada anteriormente con respecto a la ubicación del miembro afectado y su distancia de la planta o actividad propuesta; explicar cómo y porqué el miembro sería afectado; y explicar cómo los intereses que el grupo desea proteger son pertinentes al propósito del grupo.

Después del cierre de todos los períodos de comentarios y de petición que aplican, el Director Ejecutivo enviará la solicitud y cualquier petición para reconsideración o para una audiencia de caso impugnado a los Comisionados de la TCEQ para su consideración durante una reunión programada de la Comisión.

La Comisión sólo puede conceder una solicitud de una audiencia de caso impugnado sobre los temas que el solicitante haya presentado en sus comentarios oportunos que no fueron retirados posteriormente. Si se concede una audiencia, el tema de la audiencia estará limitado a cuestiones de hecho en disputa o cuestiones mixtas de hecho y de derecho relacionadas a intereses pertinentes y materiales de calidad del agua que se hayan presentado durante el período de comentarios. Si ciertos criterios se cumplen, la TCEQ puede actuar sobre una solicitud para renovar un permiso sin proveer una oportunidad de una audiencia administrativa de lo contencioso.

LISTA DE CORREO. Si somete comentarios públicos, un pedido para una audiencia administrativa de lo contencioso o una reconsideración de la decisión del Director Ejecutivo,

la Oficina del Secretario Principal enviará por correo los avisos públicos en relación con la solicitud. Además, puede pedir que la TCEQ ponga su nombre en una o más de las listas correos siguientes (1) la lista de correo permanente para recibir los avisos del solicitante indicado por nombre y número del permiso específico y/o (2) la lista de correo de todas las solicitudes en un condado específico. Si desea que se agrega su nombre en una de las listas designe cual lista(s) y envía por correo su pedido a la Oficina del Secretario Principal de la TCEQ.

INFORMACIÓN DISPONIBLE EN LÍNEA. Para detalles sobre el estado de la solicitud, favor de visitar la Base de Datos Integrada de los Comisionados en www.tceq.texas.gov/goto/cid. Para buscar en la base de datos, utilizar el número de permiso para esta solicitud que aparece en la parte superior de este aviso.

CONTACTOS E INFORMACIÓN A LA AGENCIA. Todos los comentarios públicos y solicitudes deben ser presentadas electrónicamente vía http://www14.tceq.texas.gov/epic/eComment/o.por.escrito.dirigidos a la Comisión

http://www14.tceq.texas.gov/epic/eComment/o por escrito dirigidos a la Comisión de Texas de Calidad Ambiental, Oficial de la Secretaría (Office of Chief Clerk), MC-105, P.O. Box 13087, Austin, Texas 78711-3087. Tenga en cuenta que cualquier información personal que usted proporcione, incluyendo su nombre, número de teléfono, dirección de correo electrónico y dirección física pasarán a formar parte del registro público de la Agencia. Para obtener más información acerca de esta solicitud de permiso o el proceso de permisos, llame al programa de educación pública de la TCEQ, gratis, al 1-800-687-4040. Si desea información en Español, puede llamar al 1-800-687-4040.

También se puede obtener información adicional del North Texas Municipal Water District a la dirección indicada arriba o llamando a Mr. Jerry Allen al 469-626-4634.

Fecha de emisión: [Date notice issued]

Regional. Reliable. Everyday.

October 23, 2025

Francesca Findlay

VIA ELECTRONIC MAIL

Applications Review and Processing Team (MC148)
Water Quality Division

Francesca.Findlay@tceq.texas.gov

Water Quality Division

Texas Commission of Environmental Quality

P.O. Box 13087

Austin, Texas 78711-3087

Re: Response to TCEQ Notice of Deficiency

Applicant Name: North Texas Municipal Water District (CN601365448)

Permit Number: WQ0014245001 (EPA I.D. No. TX0123901)

Site Name: Panther Creek WWTP (RN102739430) Type of Application: Renewal without Changes

Dear Ms. Findlay:

This letter is submitted regarding the above-referenced TPDES Domestic Wastewater Permit Application ("Application") associated with the North Texas Municipal Water District's ("NTMWD's") Panther Creek Wastewater Treatment Plant ("Panther Creek WWTP") in response to items noted in the October 21, 2025, letter to Jerry Allen transmitting the notice of deficiencies for the application. NTMWD offers the following comments for your consideration:

Request 1 (Review the portion of the NORI provided and indicate if it contains any errors or omissions.)

Response:

NTMWD has reviewed the portion of the NORI provided. The portion of the NORI describing the facility location states: "The domestic wastewater treatment facility is located at 1825 Panther Creek Road, in the city of Frisco, in Denton County, Texas 75034." NTMWD received confirmation from the City of Frisco that the address of Panther Creek WWTP has changed. NTMWD submitted an electronic Core Data Form via STEERS on October 6, 2025, to update the Regulated Entity's (RN102739430) location to "1825 Fields Parkway, Frisco, TX 75034". The Core Data form was also submitted in the permit application on October 15, 2025, in the "Other Attachments" Section of the STEERS application titled "OTHER_2025 Renewal Panther Creek WWTP Electronic Core Data Form".

Please revise the statement to read: "The domestic wastewater treatment facility is located at 1825 <u>Fields Parkway</u>, in the city of Frisco, in Denton County, Texas 75034."

Ms. Francesca Findlay October 23, 2025 Page **2**

Request 2 (Provide a Spanish NORI)

Response:

The English NORI provided on October 21, 2025, has been translated to Spanish with the corrected address for Panther Creek WWTP included. The Spanish NORI is provided as an attachment to the email with this letter.

Should you have any questions or need additional information please contact me at jallen@ntmwd.com or 469-626-4634.

Sincerely,

erry Allen

Permitting Manager

JA/vb

Enclosures

cc: Hunter Stephens, NTMWD
Joel Nickerson, NTMWD
R.J. Muraski, NTMWD
Lauren Kalisek, Lloyd Gosselink Rochelle & Townsend, P.C.
Lora Naismith, Lloyd Gosselink Rochelle & Townsend, P.C.

Francesca Findlay

From: Jerry Allen <jallen@NTMWD.COM>
Sent: Thursday, October 23, 2025 10:49 AM

To: Francesca Findlay

Subject: RE: WQ0014245001 North Texas Municipal Water District

Attachments: 2025-10-23 NOD Response Letter to TCEQ Panther Creek WWTP SIGNED.pdf; 2025

Panther Creek WWTP Permit Renewal Spanish NORI.docx

Caution: This email may contain suspicious content. Please take care when clicking links or opening attachments. When in doubt, contact the TCEQ Help Desk.

Francesca,

See attached response letter and Spanish NORI. Let me know if need anything further. Thank you and have a good day.

Sincerely,

JERRY ALLEN NTMWD Permitting Manager

OPEN RECORDS NOTICE: This email and responses may be subject to the Texas Public Information Act and may be disclosed to the public upon request. Please respond accordingly

From: Jerry Allen

Sent: Tuesday, October 21, 2025 1:47 PM

To: 'Francesca Findlay' <Francesca.Findlay@tceq.texas.gov>

Subject: RE: WQ0014245001 North Texas Municipal Water District

Francesca,

I will review and provide a Spanish NORI.

Sincerely,

JERRY ALLEN NTMWD Permitting Manager

OPEN RECORDS NOTICE: This email and responses may be subject to the Texas Public Information Act and may be disclosed to the public upon request. Please respond accordingly

From: Francesca Findlay <Francesca.Findlay@tceq.texas.gov>

Sent: Tuesday, October 21, 2025 1:25 PM **To:** Jerry Allen <jallen@NTMWD.COM>

Subject: [EXTERNAL] FW: WQ0014245001 North Texas Municipal Water District

WARNING: This email is from an external source. Do not click links or open attachments without positive sender verification of purpose. Never enter username, password or sensitive information on linked pages from this email.

If you are unsure about the message, please forward to itsupport@ntmwd.com for assistance.

Dear Mr. Allen:

The attached Notice of Deficiency letter sent on October 21, 2025, requesting additional information needed to declare the application administratively complete. Please send the complete response to my attention November 5, 2025.

Thank you,

Francesca Findlay
License & Permit Specialist
ARP Team | Water Quality Division
512-239-2441
Texas Commission on Environmental Quality

Please consider whether it is necessary to print this e-mail

How is our customer service? Fill out our online customer satisfaction survey at http://www.tceq.texas.gov/customersurvey.