From:
 Randy Ammons

 To:
 Jarrod Hoskinson

 Cc:
 Ramiro Garcia; OCE

Subject: RE: Erthwrks - Sequitur Texon Central Gas Lift Facility - JJJJ Sept2020 - Notification Waiver Request

Date: Wednesday, August 19, 2020 7:43:58 AM

Good afternoon Mr. Hoskinson,

This is in response to your August 17, 2020 request seeking enforcement discretion from a 30-day notification requirement due to your

as a result of the COVID-19 pandemic. Thank you for the additional information submitted on August 18. The TCEQ is committed to working with you as we respond to this pandemic. This request is approved for the performance testing notification requirements of the source emission testing on the four engines at the Texon Central Gas Lift Facility (TCEQ RN 110816543). If you have any questions or if new information becomes available, please feel free to contact us at any time.

The TCEQ will revisit this issue at the appropriate time and reserves the right to withdraw this approval.

Regards,

Randy J. Ammons, Director North Central and West Texas Texas Commission on Environmental Quality

From: Jarrod Hoskinson <

Sent: Tuesday, August 18, 2020 12:09 PM

To: Randy Ammons <randy.ammons@tceq.texas.gov>

Subject: Re: Erthwrks - Sequitur Texon Central Gas Lift Facility - JJJJ Sept2020 - Notification Waiver

Request

Mr. Ammons,

The information for the Texon Central Gas Lift Facility is as follows:

Sequitur Permian, LLC

Project Description/Unit: Texon Central Gas Lift Facility

City: Big Lake, Reagan County

Regulated Entity Number: RN110816543 Customer Reference Number: CN605190081

Thank You.

Jarrod Hoskinson

Get Outlook for iOS

From: Randy Ammons < <u>randy.ammons@tceq.texas.gov</u>>

Sent: Tuesday, August 18, 2020 7:27:35 AM

To: Jarrod Hoskinson <

Subject: Re: Erthwrks - Sequitur Texon Central Gas Lift Facility - JJJJ Sept2020 - Notification Waiver

Request

Good morning Mr. Hoskinson.

We are in receipt of your request regarding Sequitur Texon Central Gas Lift Facility.

Please include the location, RN number and CN number of the facility on your request.

Thank you.

Randy

From: Jarrod Hoskinson <

Sent: Monday, August 17, 2020 12:47 PM

To: OCE < OCE@tceq.texas.gov >; Ramiro Garcia < ramiro.garcia@tceq.texas.gov >

Cc: Trey Chapman <

Subject: Erthwrks - Sequitur Texon Central Gas Lift Facility - JJJJ Sept2020 - Notification Waiver

Request

All,

I have attached a test protocol and notification document concerning upcoming US EPA JJJJ testing at the Sequitur Permian Texon Central Gas Lift Facility in Reagan County, TX. The proposed test dates are September 9^{th} – September 11^{th} . I am requesting a 30-day notification waiver, as this notification does not meet the 30-day minimum requirement.

, therefore this notification was

unfortunately not prepared and submitted in time.

Please let me know if this is an acceptable request, and if we can continue with our original scheduled test program.

Sincerely,

Jarrod Hoskinson Erthwrks, Inc. 512-994-7487

This transmission is intended to be delivered only to the named addressee(s) and may contain information that is confidential, proprietary or privileged. If this information is received by anyone other than the named addressee(s), the recipient should immediately notify the sender by email and by telephone 512-413-2725 and obtain instructions as to the disposal of the transmitted material. In no event shall this material be read, used, copied, reproduced, stored or retained by anyone other than the named addressee(s), except with the express consent of the sender or the named addressee(s). If you are not the intended recipient, you are hereby notified that any use, dissemination, distribution, copying or storage of this message or any attachment is strictly prohibited and to do so might constitute a violation of the Electronic Communications Privacy Act, 18 U.S.C. 2510-2521.

for Sequitur Permian

at the Texon Central Gas Lift Facility in Reagan County, Texas

on Four (4) Caterpillar 3516 Compressor Engines

subject to EPA Title 40 <u>CFR</u> Part 60, Subpart JJJJ

Prepared for:

Projected Test Date: September 9 - 11, 2020 Erthwrks Project No. 8723

Endorsement Page

This air emission test plan has been prepared and reviewed by the following representatives:

Erthwrks	, Inc.	Sequit	ır Permian
Name: _	Trey Chapman	Name:	Russ Perry
Title: <u> </u>	Senior Partner	Title:	Health Safety & Environment
Signature:_	Try Mapa	Signatu	re:

Table of Contents 1.0 INTRODUCTION.......4 Identification, location and dates of tests4 1.1 1.2 Purpose of Testing4 Description of Source5 1.3 1.4 2.0 3.0 3.1 Description of Analytical Procedures (QAQC)......8 3.2 O₂ Determination QAQC Procedures......8 3.2.1 3.2.2 3.3 List of Tables Table 3: Analytical Instrumentation ______6 List of Figures APPENDICES Example Detailed Results of Emissions Test A. Example Quality Assurance/Quality Control Documentation B. **Example Calculations** C.

D.

Erthwrks Personnel Resumes

1.0 INTRODUCTION

1.1 Identification, location and dates of tests

Erthwrks, Inc. is contracted to complete the source emission testing on four engines at the Texon Central Gas Lift Facility. This testing is scheduled to be conducted between the 9th and 11th of September 2020. The following table lists the engines to be tested during this project.

Table 1: Facility Unit Information

Unit	Serial Number	Make	Model	HP Rating
E190416	N6W00830	Caterpillar	3516B	1380
E190424	N6W00826	Caterpillar	3516	1380
811082	JEF01819	Caterpillar	G3516ULB	1380
412705	NE600202	Caterpillar	G3516ULB	1380

1.2 Purpose of Testing

These units at the Sequitur Permian Texon Lift Facility are to be tested according to the procedures in, and to satisfy the requirements of 40 <u>CFR</u> 60, Subpart JJJJ. (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines). Testing will be conducted for the determination of carbon monoxide (CO), oxides of nitrogen (NOx), and volatile organic compounds (VOC). Oxygen (O₂) concentrations will also be measured to normalize the pollutant concentrations to 15% excess O₂.

Table 2: JJJJ Unit Limits

Unit ID	NOx	CO	VOC
	g/hp-hr	g/hp-hr	g/hp-hr
See Table 1	1.0	2.0	0.7

1.3 Description of Source

These Caterpillar engines are 4-stroke, lean burn (4SLB), spark ignited, natural gas fired compression engine. These Caterpillar engines are used to compress and transmit natural gas through a local gas pipeline.

1.4 Contact Information

Sequitur Permian

Russ Perry Health Safety & Environment Manager 2050 West Sam Houston Parkway S. Suite 1850 Houston, TX 77042 713-395-3014 ph

Sequitur Permian – Texon Central Gas Lift Facility

Reagan County, TX

Erthwrks, Inc.

Jarrod Hoskinson Project Manager P.O. Box 150549 Austin, TX 78715 512-994-7487 phone 888-573-9994 fax

2.0 SOURCE OPERATION DURING TEST

The engines will be tested while operating at approximately full load capacity or highest achievable load at the time of the test. A complete list of operating parameters, ambient conditions, and engine fuel consumption will be recorded on the Erthwrks summary of results.

3.0 ANALYTICAL PROCEDURES

Erthwrks, Inc. will conduct the engine emission tests following all procedures set forth in 40 CFR 60, Appendix A. As specified in 40 CFR 60 Subpart JJJJ, Erthwrks will utilized the following methods for the determination of O₂, CO₂, NO_x, CO, VOCs and moisture content.

- EPA Method 3A for O₂ concentration
- ASTM D-6348-03 (Extractive Direct Interface FTIR) for NOx, CO, VOC, and moisture content.
- EPA Method 19 for mass emission rate calculations

Table 3: Analytical Instrumentation

Effluent Tested	Analyzer Make/Model	Expected Range to be utilized	Detection Principle
NOx*	California Analytical 700 FTIR	Dynamic Range Internal Reference Spectra	FTIR
CO*	California Analytical 700 FTIR	Dynamic Range Internal Reference Spectra	FTIR
VOC* (NMNEHC)	California Analytical 700 FTIR	Dynamic Range Internal Reference Spectra	FTIR
O_2	Teledyne Model 200EH	25 %	Paramagnetic Cell

^{*}Common FTIR analyzer

3.1 Description of sampling and field procedures

Erthwrks will utilize a mobile laboratory on site to conduct the emission testing. A stainless-steel sample probe of sufficient length to reach all traverse points, if greater than 6 inches, and a heated sample line will be used to direct the sample to the FTIR analyzer. The sample will maintain 191oC temperature throughout the sample system until exiting the FTIR exhaust port. Upon exit of the FTIR exhaust port, the sample will be directed to a moisture removal condenser and a dry, cool sample stream will then be sent to the O₂ analyzer.

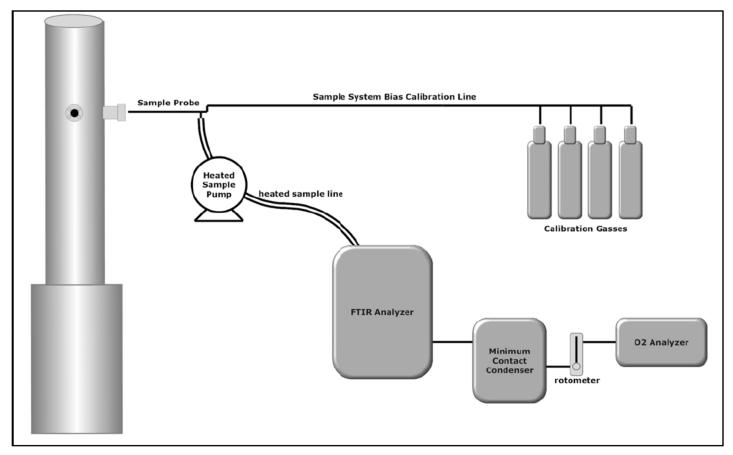


Figure 1: Sample System Diagram

3.2 Description of Analytical Procedures (QAQC)

3.2.1 O₂ Determination QAQC Procedures

Erthwrks will follow all quality assurance and quality control procedures as defined in US EPA 40 CFR 60 Appendix A, Method 3A for the determination of the concentrations of O₂.

The Calibration Error (CE) Test will be conducted as specified in **EPA Method 7E §8.2.3**. In accordance with this requirement, a three-point analyzer calibration error test will be conducted prior to sampling. The CE test will be conducted by introducing the low, mid, and high-level calibration gasses (as defined in **EPA Method 7E §3.3.1-3**) sequentially and the response will be recorded. The results of the CE test are acceptable if the calculated calibration error is within $\pm 2.0\%$ of calibration span (or ≤ 0.5 ppmv).

The *Initial System Bias and System Calibration Error Check* will be conducted in accordance with **EPA Method 7E §8.2.5**. The upscale calibration gas will be introduced at the probe upstream of all sample system components and the response will be recorded. The procedure will be repeated with the low-level gas and the response will be recorded. The sample system response time will also be recorded. This specification is acceptable if the calculated values of the system calibration error check are within $\pm 5.0\%$ of the calibration span value (or ≤ 0.5 ppmv).

After each compliance test run, the sample system bias check will be conducted to validate the run data. The low-level and upscale drift will be calculated using *Equation 7E-4*. The run data is valid if the calculated drift is within $\pm 3.0\%$ of the calibration span value (or ≤ 0.5 ppmv).

After each test run, the effluent gas concentration will be calculated as specified in **EPA Method 7E §12.6.** The arithmetic average of all valid concentration values will be adjusted for bias using equation 7E-5B.

3.2.2 Direct Interface FTIR NOx, CO, VOC, and Moisture

Erthwrks will follow all quality assurance and sampling procedures as outlined in ASTM D6348-12. Three 1-hour sampling runs will be used to quantify average concentrations of the desired pollutants.

A series of pre-test preparations and evaluations will be conducted on site prior to sampling as outlined in ASTM D6348-12 sections 11.2.1 - 11.3.6.1. These procedures include determining a minimum detection limit (MDL), determining the sample system response time, developing a spectral background, and the introduction of a calibration transfer standard (CTS).

The calibration transfer standard will be introduced directly to the FTIR sampling cell and the results will be recorded. The measured response of the FTIR will be within 5% of the certificate value. Erthwrks will use an EPA Protocol 1 gas cylinder containing ethylene at approximately 100 ppm as the CTS.

Upon completion of all required pre-test measures, Erthwrks will perform a dynamic spike. A pollutant of known concentration will be introduced to the sample system at the tip of the probe, and will be mixed with the effluent gas at a ratio no greater than 10:1. A flowmeter and tracer gas (SF6) will be used to measure the spiking rate. Equations A5.1 – A5.4 from Annex 5 in ASTM D6348-12 will be used to calculate the spiking rate and percent recovery. A recovery percentage between 70% -130% will be achieved before sampling commences.

During sampling Erthwrks will utilize a scanning rate of 16 scans/minute and an averaging rate of 60 seconds. A spectrum will then be generated once every 60 seconds, and the resulting concentrations will be added to the cumulative data file. All spectra and raw interferograms will be appropriately named and saved.

Table 5. FTIR Data Quality Objectives

Pollutant	Infrared Analysis Region (cm ⁻¹)	Expected Concentration Range (ppm)	Minimum Detection Limit* (ppm)	System Accuracy / Precision
NOx	1975 – 2000	0 - 100	>0.5 ppm	<±10% / <±5%
СО	2100 - 2250	0 - 50	>1.0 ppm	<±10% / <±5%
VOC	2900 – 3200	0-50	>.10 ppm	<±10% / <±5%
Moisture	1300 – 1700	11% - 15%	N/A	<±10% / <±5%

3.3 Discussion of methodology variations or operational variances

This emission testing program is expected to be conducted with no sampling or operational variances.

Appendix A Example Detailed Results of Emission Test

Erthwrks Tabular Results of Emission Test

Client	
Facility Name	
Location	
Unit Identification	
Unit Carial Number	

Offic Oction Hamber				
Run Information				
Run Number	Run 1	Run 2	Run 3	1
Date	7/25/2017	7/25/2017	7/25/2017	
Run Start Time	9:38	10:56	11:49	
Run End Time	10:38	11:56	12:55	
Operating Conditions				
Intake Manifold Pressure (" Hg)	50.9	51.4	52.9	1
Intake Manifold Temperature (°F)	148.3	150.3	152.6	
% Load	100%	100%	100%	
Suction Pressure (psi)	22.0	23.0	23.0	
1st Discharge Pressure (psi)	135.0	135.0	135.0	
2nd Discharge Pressure (psi)	390.0	390.0	390.0	
Discharge Pressure (psi)	930	930	930	
Actual Speed (RPM)	1385	1383	1385	
Ignition Timing (°BTDC)	29.7	29.7	29.7	
Engine Hours	9554			
Engine Horsepower	1380	1380	1380	
Ambient Conditions				
Temperature (°F)	82	78	85	1
Pressure ("Hg)	27.10	27.11	27.12	
Fuel Analysis				
Fuel Heating Value (Btu/scf)	1264	1264	1264	
Fuel F Factor (F _d) (scf/MMBtu)	8810	8810	8810	
The second secon	55.5	55.5		
Unit Fuel Data via Table 29 Fuel Flow (scf/hr)	8964	8964	8964	
Fuel Consumption (Btu/hp-hr)	8211	8211	8211	
Fuel Heat Rate (F _H) (MMBtu/hr)	11.33	11.33	11.33	
Method 19 Exhaust Flow (scf/hr)	1.80E+05	1.80E+05	1.81E+05	
Emission Concentrations				
NOx (ppmvd)	51.49	51.72	51.30	
CO (ppmvd)	73.34	73.60	75.18	
O ₂ (%)	9.30	9.32	9.37	
NMEHC [VOC] (ppmvd)	27.13	26.50	26.60	
Stack Moisture %	12.41	12.17	12.09	
Emission Concentrations (Corrected to	15% O2)			Average
NOx (ppmv @ 15% O2) Limit 82	26.18	26.35	26.26	26.3 ppmv
CO (ppmv @ 15% O2) Limit 270	37.29	37.49	38.48	37.8 ppmv
NME VOC (ppmvd @ 15% Limit 60	13.80	13.50	13.61	13.6 ppmv
	.0.00		.0.0	
Emission Rates (lb/scf)	C 15E 0C	6.17E-06	6.125.06	
NOx (lb/scf) CO (lb/scf)	6.15E-06 5.33E-06	5.35E-06	6.13E-06 5.46E-06	
NME VOC (lb/scf)**	3.10E-06	3.03E-06	3.04E-06	
	3.10E-06	3.03E-06	3.04E-06	_
Emission Rates (Ib/MMBtu)	0.000	2.222	0.000	Average
NOx (lb/MMBtu)	0.098	0.098	0.098	0.098 lb/MMBt
CO (lb/MMBtu)	0.085	0.085	0.087	0.086 lb/MMBt
NME VOC (lb/MMBtu)**	0.049	0.048	0.049	0.049 lb/MMBti
Emission Rates (lb/hr)				Average
NOx (lb/hr)	1.11	1.11	1.11	1.11 lb/hr
CO (lb/hr)	0.96	0.96	0.99	0.97 lb/hr
NME VOC (lb/hr)**	0.56	0.55	0.55	0.55 lb/hr
Emission Rates (g/Hp-hr) via M19 Table	29 Fuel Consump			Average
NOx (g/Hp-hr) Limit 1.0 ^T	0.36	0.37	0.36	0.36 g/hp-hr
CO (g/Hp-hr) Limit 1.42 [†]	0.32	0.32	0.33	0.32 g/hp-hr
NME VOC (g/Hp-hr)** Limit 0.41†	0.18	0.18	0.18	0.18 g/hp-hr

^{**} JJJJ NME VOC represent non methane / non-ethane

Appendix B Example QA/QC Documentation and Calculations

Erthwrks Gaseous Sample Collection and Quality Assurance Worksheet

Date:	7/25/2017
Client:	
Facility Name:	
Location:	
Unit Identification:	ENG-3
Unit Serial Number:	JEF03285

Calibration Gas Concentration

Pollutant	Low-Level	Mid-Level	High-Level
	Target Gas	Target Gas	Target Gas
	Conc. (C _v)	Conc. (C _V)	Conc. (C _V /CS)
02	NA	10.09	20.95

Certified Bottles Serial Number

Low-Level	Mid-Level	High-Level	Dilutor Root
Cylinder Cert	Cylinder Cert	Cylinder Cert	Gas
NA	CC194254	CC470375	NA

Calibration Error Test

Pollutant	Zero Gas Response (C _{Dir})	Calibration Error (ACE)*	Low-Level Response (C _{Dir})	Calibration Error (ACE)*	Mid-Level Response (C _{Dir})	Calibration Error (ACE)*	High-Level Response (C _{Dir})	Calibration Error (ACE)*
02	0.00	0.01%	NA	NA	10.11	0.08%	20 96	0 03%

^{*} ACE must either be within ± 2.0% or ≤ 0.5 ppmv absolute difference/VOC must be ± 5.0% of certified gas

Initial Sample System Bias and Response Time

Pollutant	Upscale Gas Cert. Conc. (C _{MA})	Upscale Gas Direct (C _{Dir})	Upscale Response (C _s)	Sample System Bias (SB)*	Response Time (sec)	Downscale Response (C _s)	Sample System Bias (SB)*	Response Time (sec)
02	10.09	10.11	10.09	-0.07%	15	0.02	-0.09%	15

^{*} SB must either be within ± 5.0% or ≤ 0.5 ppmv absolute difference/ VOC not applicable

Sample Collection Raw Data--Pre and Post Sample System Calibration (SSC) and Raw Run Results

		Run #:	Run 1		Run #:	Run 2		Run #:	Run 3			
		Start Time:	9 26 AM		Start Time:	10:37 AM		Start Time:	11:49 AM			
		End Time:	10:32 AM		End Time:	11:43 AM		End Time:	12:55 PM			
Pollutant	Zero SSC (C _S)	Zoro SSC (C.) Upscale SSC	Upscale SSC	Raw Results	Zoro SSC (C.)	Upscale SSC (C _s)	Raw Results	Zero SSC (C _s)	Upscale SSC	Raw Results	Zero SSC (C _s)	Upscale SSC
Pollutarit		(C _s)	(C _{Avg})	Zei0 330 (0 _S)	Upscale 33C (C _S)	(C _{Avg})	Ze10 33C (C _S)	(C _s)	(C _{Avg})	Ze10 33C (C _S)	(C _s)	
02	0.02	10.09	9.31	0 06	10.11	9.34	0.06	10.10	9.38	0.05	10.09	

Run 1 Sample Collection Calculations--Pre- and Post-Run Sample System Bias Check, Drift Assessment, Corrected Results

Pollutant	Initial Zero Sys. Bias (SB)*	Initial Upscale Sys. Bias (SB)*	Final Zero Sys. Bias (SB)*	Final Upscale Sys. Bias (SB)*	Avg. Zero Sys. Bias (C ₀)	Avg. Upscale Sys. Bias (C _M)	Zero Drift Assessment (D)	Upscale Drift Assessment (D)	Corrected Results (C _{gas})
O2	0.09%	-0.07%	0.26%	0.02%	0.04	10.10	0.17%	0.09%	9.30

SB must either be within \pm 5.0% or \leq 0.5 ppmv absolute difference/ VOC not applicable \dagger D must either be within \pm 3.0% or the pre- and post-run bias responses are \leq 0.5 ppmv absolute difference

Run 2 Sample Collection Calculations--Pre- and Post-Run Sample System Bias Check, Drift Assessment, Corrected Results

Pollutant	Initial Zero Sys. Bias (SB)*	Initial Upscale Sys. Bias (SB)*	Final Zero Sys. Bias (SB)*	Final Upscale Sys. Bias (SB)*	Avg. Zero Sys. Bias (C ₀)	Avg. Upscale Sys. Bias (C _M)	Zero Drift Assessment (D)	Upscale Drift Assessment (D)	Corrected Results (C _{gas})
02	0.26%	0.02%	0.28%	-0.02%	0.06	10.11	0 02%	0.05%	9.32

^{*} SB must either be within ± 5.0% or ≤ 0.5 ppmv absolute difference/ VOC not applicable

Run 3 Sample Collection Calculations--Pre- and Post-Run Sample System Bias Check, Drift Assessment, Corrected Results

Pollutant	Initial Zero Sys. Bias (SB)*	Initial Upscale Sys. Bias (SB)*	Final Zero Sys. Bias (SB)*	Final Upscale Sys. Bias (SB)*	Avg. Zero Sys. Bias (C ₀)	Avg. Upscale Sys. Bias (C _M)	Zero Drift Assessment (D)	Upscale Drift Assessment (D)	Corrected Results (C _{gas})
02	0.28%	-0.02%	0.20%	-0.08%	0.05	10.10	0 08%	0.05%	9.37

SB must either be within ± 5.0% or ≤ 0.5 ppmv absolute difference/ VOC not applicable

 $[\]dagger$ D must either be within \pm 3.0% or the pre- and post-run bias responses are \leq 0.5 ppmv absolute difference

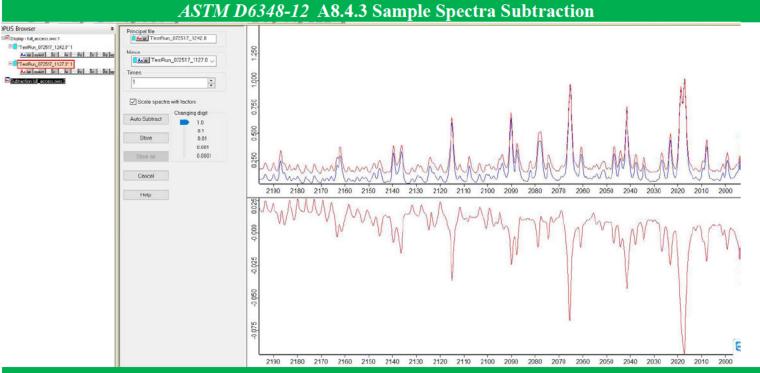
 $[\]dagger$ D must either be within \pm 3.0% or the pre- and post-run bias responses are \leq 0.5 ppmv absolute difference

Source Validation Summary

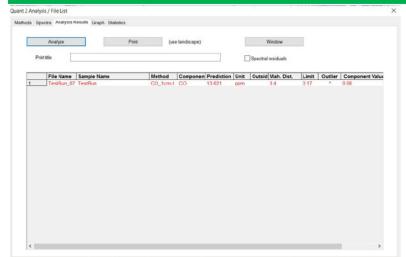
Erthwrks Tuesday, July 25, 2017

Instrument Performance	(Unit 1412002)	Completed		
Amplitude:		8:39 AM		-2106
Apodized Resolution (cm-1):		8:41 AM		1.58
Peak Position (cm-1):		8:41 AM	Expected: 1481.29	1481.30
Temperature (°C):		8:39 AM		192.3
Pressure (torr):		8:39 AM		685
Pathlength (m):		8:48 AM		10.20
Limits of Dotostion 4 N	1 a a cura mants	Maan	Standard Daviation Limit	of Dotostion

Limits of Detection	4 Measurements	Mean	Standard Deviation	Limit of Detection
C2H2	ppm	1.111	1.061	3.184
C2H4	ppm	-2.815	1.089	3.266
C2H4O	ppm	0.043	0.601	1.804
C2H6	ppm	-1.245	1.715	5.145
C2H4O	ppm	0.000	0.000	0.000
C3H4O	ppm	0.095	0.318	0.953
C3H6	ppm	-1.020	1.251	3.754
C3H8	ppm	1.790	0.345	1.034
C6H6	ppm	-0.535	1.588	4.763
СНЗОН	ppm	-0.064	0.128	0.385
CH4	ppm	-0.925	0.501	1.504
CO	ppm	0.378	0.199	0.598
CO2	%	0.000	0.000	0.000
H2O	%	-0.006	0.003	0.010
HCHO	ppm	0.024	0.378	1.135
HCI	ppm	0.037	0.177	0.531
N2O	ppm	-0.136	0.059	0.176
NH3	ppm	-0.056	0.136	0.408
NO	ppm	0.713	0.671	2.012
NO2	ppm	-0.256	0.122	0.365
SF6	ppm	0.003	0.007	0.022
SO2	ppm	0.192	0.175	0.526
Completion Time	e: 8:39 AM			


Dynamic	Dynamic Response		Mechanica	Mechanical Response		System Response		Time to Zero	
CTS:									
C2H4				0:52		1:32		1:15	
Spike Rec	overy F	Results	Bottle	Direct	Bias	Native	Spiked	Recovery	
Bottle 1		Dilution Factor: 0.	036						
CO	ppm		95.680	100.873	104.710	69.845	65.365	0.920	
NO	ppm		95.520	99.640	96.050	48.428	51.540	1.028	
NO	ρρ								

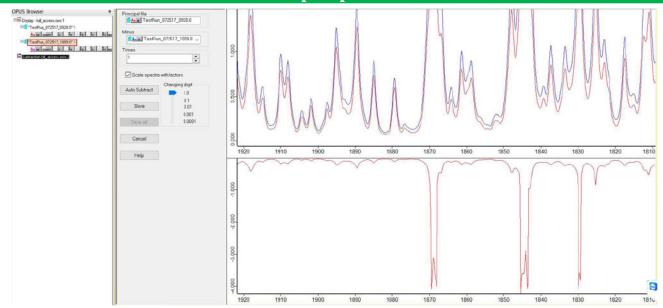
Completion Time: 9:22 AM


CTS: 1:03 PM C2H4 1025

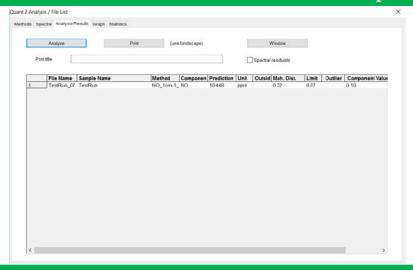
Operator: Max Kammer Signature: Max Kammer

ASTM D6348-12 Annex 8.4.3.1 Procedures - CO Spectral Validation

ASTM D6348-12 A8.4.3 CO Concentration of Difference Spectrum (Analytical Algorithm)



ASTM D6348-12 A8.4.4 Difference Spectrum Comparison


Spectra Identification	C:\gaslog\SV_250717_0827\TestRun_072517_1127.0	C:\gaslog\SV_250717_0827\TestRun_072517_1242.0
Analyte Concentrations (ppmv)	64.960	83.236
Manually Calculated Conc. Of Difference Spectrum (ppmv)	18.276	
Analytical Algorithm Calculated Conc. Of Difference Spectrum (ppmv) *(Corrected to 760mmHg)	15.097	
Percent Difference ASTM D6348.12 A8.4.4 ≥ ± 20%	17.40%	

ASTM D6348-12 Annex 8.4.3.1 Procedures - NO Spectral Validation

ASTM D6348-12 A8.4.3 Sample Spectra Subtraction

ASTM D6348-12 A8.4.3 NO Concentration of Difference Spectrum (Analytical Algorithm)

ASTM D6348-12 A8.4.4 Difference Spectrum Comparison

Spectra Identification	C:\gaslog\SV_250717_0827\TestRun_072517_1009.0	C:\gaslog\SV_250717_0827\TestRun_072517_0928.0
NO Concentrations (ppmv)	35.758	48.160
Manually Calculated Conc. Of Difference Spectrum (ppmv)	12.402	
Analytical Algorithm Calculated Conc. Of Difference Spectrum (ppmv) *(pressure corrected to 760mmHg)	10.607	
Percent Difference ASTM D6348.12 A8.4.4 ≥ ± 20%	14.47%	

Appendix C Example Calculations

Example Calcs: Run 1 ENG-3

Example Calcs for Pollutant: O2

 C_V = 10.09 = Target concentration of calibration gas, ppmv.

C_{Dir} = 10.11 = Measured concentration of the cal gas when introduced in direct mode, ppmv.

CS = 20.95 = Calibration span, ppmv.

C_s = 10.09 = Measured concentration of the cal gas when introduced in the system cal mode, ppmv.

SB_i -0.07% = Pre-run system bias, percent of calibration span.
 SB_f 0.02% = Post-run system bias, percent of calibration span.

 $\mathbf{C}_{\mathsf{Avg}}$ = 9.31 = Average unadjusted gas concentration for test run, ppmv.

C₀ 0.04 = Average of the pre- and post-run system cal bias responses from zero gas, ppmv.

 C_{M} = 10.10 = Average of the pre- and post-run system cal bias responses from the upscale gas, ppmv.

 C_{MA} = 10.09 = Actual concentration of the upscale calibration gas, ppmv.

Analyzer Calibration Error (Eq. 7E-1)

$$ACE = \frac{C_{Dir} - C_{V}}{CS} \times 100$$

$$ACE = \frac{10.11 - 10.09}{20.95} \times 100$$

Sample System Bias (Eq. 7E-2)

$$SB = \frac{C_S - C_{Dir}}{CS} \times 100$$

$$SB = \frac{10.09 - 10.11}{20.95} \times 100$$

$$SB = -0.07\%$$

Drift Assessment (Eq. 7E-4)

$$D = ABS (SB_f - SB_i)$$

$$D = ABS (0.000 -- 0.0007)$$

$$D = 0.09\%$$

Effluent Gas Concentration (Eq. 7E-5)

$$C_{Gas}$$
 = $(C_{Avg}$ - $C_O)$ $\frac{C_{MA}}{C_M}$ - C_O

$$C_{Gas} = (9.31 - 0.04) \frac{10.09}{10.10 - 0.04}$$

$$C_{Gas} = 9.30$$

Nomenclature

MGV Molar gas volume, volume of gas at standard conditions, scf/lbmol

V Volume, ft3 n Moles, Ibmol

F_d Fuel F Factor, scf/MMBtu

%O2d Oxygen concentration measured on a dry basis, %

F_H Fuel Heating Value (MMBtu/hr)Hp Engine horse power during test, hp

Constants

R	10.7316	Universal gas constant, ft ³ psi / R lbmol
T_s	527.67	Standard Temperature, R
p_s	14.696	Standard Pressure, psi
MW_{NOx}	46.0055	Molecular Weight of NOx, lb/lbmol
MW_CO	28.0104	Molecular Weight of CO, lb/lbmol
MW_{SO2}	64.0588	Molecular Weight of SO ₂ , lb/lbmol
MW_{VOC}	44.0962	Molecular Weight of VOC as propane, lb/lbmol
F_d	8810	Fuel F Factor for Natural Gas, scf/MMBtu
$Conv_{lb-g}$	453.6	Number of grams in one pound

Molar gas volume (MGV) calculation at standard conditions (Ideal Gas Law)

MGV =
$$\frac{V}{n}$$
 = $\frac{R * T_s}{p_s}$

MGV = $\frac{V}{n}$ = $\frac{10.7316 * 527.67}{14.696}$

MGV = $\frac{385.325}{|bmol}$

Emission Concentration, C_{NOx}, Ib/scf (For NOx, Run 1)

$$C_{NOx}$$
 = $\frac{PPM_{NOx} * MW_{NOx}}{MGV}$ * 10^{-6}
 C_{NOx} = $\frac{51.49 * 46.0055}{385.325}$ * 10^{-6}
 C_{NOx} = $6.15E-06$ $\frac{Ib}{scf}$

Emission Rate Calculation, E_(lb/MMBtu), (For NOx, Run 1)

$$E_{(Ib/MMBtu)}$$
 = C_{NOx} * F_{d} * $\frac{20.9}{20.9 - \%O2d}$
 $E_{(Ib/MMBtu)}$ = $6.15E-06$ * 8810 * $\frac{20.9}{20.9 - 9.30}$
 $E_{(Ib/MMBtu)}$ = 0.098 $\frac{Ib}{MMBtu}$

Emission Rate Calculation, E_(lb/hr), (For NOx, Run 1)

$$E_{(lb/hr)} = E_{(lb/MMBtu)} * F_{H}$$

$$E_{(lb/hr)} = 0.098 * 0.000$$

$$E_{(lb/hr)} = 0.00 \frac{lb}{hr}$$

Emission Rate Calculation, $E_{(g/hp-hr)}$, (For NOx, Run 1)

$$E_{(g/hp-hr)}$$
 = $\frac{E_{(lb/hr)} \quad Conv_{lb-g}}{Hp}$
 $E_{(g/hp-hr)}$ = $\frac{0.000 \quad * \quad 453.60}{1380}$
 $E_{(g/hp-hr)}$ = $\frac{g}{hp-hr}$

Nomenclature

C_{CO} Carbon Monoxide concentration measured on a dry basis, ppmv

C_{Nox} NOx concentration measured on a dry basis, ppmv C_{VOC} VOC concentration measured on a dry basis, ppmv %O2d Oxygen concentration measured on a dry basis, %

Emission Concentrations Corrected to 15% O2

(For CO, Run 1)

CO =
$$C_{CO}$$
 * $\frac{20.9 - 15\%O2}{20.9 - \%O2d}$

CO = 73.34 $\frac{20.9 - 15.00}{20.9 - 9.30}$

CO = 37.29 ppmvd@ $15\%O2$

Emission Concentrations Corrected to 15% O2

(For NOx, Run 1)

Nox =
$$C_{NOx}$$
 * $\frac{20.9 - 15\%O2}{20.9 - \%O2d}$
Nox = 51.49 $\frac{20.9 - 15.00}{20.9 - 9.30}$
Nox = 26.18 ppmvd@ $\frac{20.9 - 15.00}{20.9 - 9.30}$

Emission Concentrations Corrected to 15% O2

(For VOC, Run 1)

VOC =
$$C_{VOC}$$
 * $\frac{20.9 - 15\%O2}{20.9 - \%O2d}$
VOC = 27.13 $\frac{20.9 - 15.00}{20.9 - 9.30}$
VOC = 13.80 ppmvd@ $15\%O2$

Appendix G Erthwrks Personnel Resumes

EDUCATION

B.S. Chemisty – Texas State University, 2003 Graduate Studies in Polymer Chemistry – Texas State University, (All coursework completed, no degree obtained)

REPRESENTATIVE EXPERIENCE

Mr. Hoskinson has more than eight (8) years of experience in air measurements. His qualifications include active participation in a variety of air measurements projects, with primary responsibilities in preparation, field sampling, sample recovery, data analysis, and reporting. Mr. Hoskinson has functioned as a field technician, field test leader and project manager on multiple emissions testing programs covering a wide variety of sampling techniques and methods. Mr. Hoskinson has extensive experience in the source testing methodology and regulations associated with the power and utilities industries, gas transmission pipeline industry, and the oil and petrochemical refining industries. The below project descriptions provide a snapshot of some large projects Jarrod Hoskinson was involved in.

Mesaieed Power Company, Ltd (MPower) USEPA Part 75 RATA and CEMS Audit (Project Manager: September 2015)

Mr. Hoskinson served as the Project Manager and on-site Qualified Stack Testing Individual (QSTI) during the CEMS certification program at MPower. Hoskinson and the Glotech team conducted RATA tests on six (6) combined cycle power turbines and two (2) gas turbine generators. Hoskinson and the Glotech team also conducted calibration error tests and linearity tests on all associated CEMS at the MPower facility.

Technip Chiyoda Joint Venture (TCJV) Qatargas QG1 Plateau Maintenance Project (PMP) Ras Laffan Industrial City (Associate Project Manager: February 2015)

Mr. Hoskinson served as the onsite Qualified Stack Testing Individual (QSTI) during the CEMS certification programs on Qatargas GG1 assets.. Hoskinson performed US EPA 40 CFR Part 60 RATA and calibration tests on all units and their associated CEMS. Hoskinson generated all reference method data, compiled all corresponding CEMS data, and participated in the generation of the final report for submittal to Qatargas personnel.

RasGas, LNG facility, Ras Laffan Industrial City (Associate Project Manager: October-December 2014)

Mr. Hoskinson served as the onsite Qualified Stack Testing Individual (QSTI) during the CEMS certification programs on several RasGas assets (Train 6, Train 7, AKG-2 and all associated utilities). Hoskinson performed US EPA 40 CFR Part 75 RATA and calibration tests on all units and their associated CEMS. Hoskinson generated all

reference method data, compiled all corresponding CEMS data, and participated in the generation of the final report for submittal to RasGas personnel.

Qatargas, LNG facility, Ras Laffan Industrial City (Associate Project Manager: October-December 2013)

Mr. Hoskinson served as the onsite Qualified Stack Testing Individual (QSTI) during the CEMS certification programs on all Qatargas assets (Train 4-7, all utilities, Laffan Refinery, CVOC). Hoskinson performed US EPA 40 CFR Part 75 RATA and calibration tests on all units and their associated CEMS. Hoskinson generated all reference method data, compiled all corresponding CEMS data, and participated in the generation of the final report for submittal to Qatargas personnel.

WTG Gas Processing, LP 2012 - Current

Mr. Hoskinson currently serves as the Erthwrks project manager and coordinator for West Texas Gas (WTG) pipeline and gas transmission. Mr. Hoskinson develops test plans, conducts emissions tests and prepares compliance reports for numerous stationary compressors throughout West Texas. Mr. Hoskinson utilizes Fourier Transform Infra-Red (FTIR) technology and standard instrumentation for WTG Gas Processing, LP.

Targa Pipeline WesTex 2014 - Current

Mr. Hoskinson currently serves as the Erthwrks project manager and coordinator for Targa pipeline and gas transmission. Mr. Hoskinson develops test plans, conducts emissions tests and prepares compliance reports for numerous stationary compressors throughout Targa's asset region in West Texas.

Calpine Corporation, Freestone Energy Center – Fairfield, Texas Associate Project Manager: June, 2012)

Mr. Hoskinson served as the onsite Qualified Individual (QI) during the CEMS certification programs. Hoskinson performed US EPA 40 CFR Part 60 & 75 RATA tests on four GE Frame 7 power turbines and their associated CEMS. Hoskinson generated all reference method data, compiled all corresponding CEMS data, and generated the final report for submittal to Calpine personnel.

Entegra Power Partners LP, Union Power Station, El Dorado Arkansas (Associate Project Manager 2011 & FTIR operator and sample recovery specialist 2012)

In 2011 Mr. Hoskinson certified the CEMS of eight power turbines at the Union Power facility. Hoskinson worked closely with Union Power staff to verify the accuracy of each CEMS. Hoskinson generated onsite, daily Relative Accuracy (RA) calculations and Bias Adjustment Factors (BAF) for facility staff review.

In 2012 Mr. Hoskinson performed Fourier Transform Infrared Spectroscopy (FTIR) measurements on one of the eight units for the determination of ammonia slip.

Hoskinson was able to provide real time ammonia concentrations to plant personnel, in order to ensure their catalytic injection system was functioning properly.

Suez Energy, Poolville, Texas (Associate Project Manager: August, 2011)

Mr. Hoskinson served as the onsite Qualified Individual (QI) during the CEMS certification programs. Hoskinson performed US EPA 40 CFR Part 75 RATA tests on two GE Frame 7 power turbines and their associated CEMS. Hoskinson generated all reference method data, compiled all corresponding CEMS data, and generated the final report for submittal to Suez Energy personnel. Hoskinson also compiled the results of ammonia field sampling for comparison with facility's ammonia CEMS, and prepared an ammonia RATA report.

Chevron Texaco, Pascagoula, MS (Field Test Technician: April 2010-2012)

Mr. Hoskinson has performed a multitude of source tests on numerous sources at the Chevron Refinery. Hoskinson has functioned as a test technician, manual sampling operator, instrumental operator, and field chemist responsible for sample recovery, reagent preparation, and sample shipment.

Luminant, Big Brown Power Generation, Fairfield TX (Associate Project Manager/Field Test Team Leader July 2011)

Mr. Hoskinson served as the on-site field supervisor during a complex test program at the facility. Hoskinson was responsible for three test teams sampling for mercury, halogen, and particulate emissions. Hoskinson also measured sulfur dioxide emissions from the three locations via instrumental analysis (M 6C). Hoskinson coordinated with plant staff, and pollution control contractors to ensure each test was performed simultaneously and accurately at each of the three locations.

Oglethorpe Power Partners, Dalton Georgia (Associate Project Manager: June 2011)

Mr. Hoskinson served as the onsite Qualified Individual (QI) during the CEMS certification programs. Hoskinson performed US EPA 40 CFR Part 60 & 75 RATA tests on four GE Frame 7 power turbines and their associated CEMS. Hoskinson generated all reference method data, compiled all corresponding CEMS data, and generated the final report for submittal to plant personnel.

Cemex, Odessa, Texas (Associate Project Manager: October, June 2011)

Mr. Hoskinson served as the on-site field supervisor and FTIR operator. Hoskinson lead a team of three technicians for the determination of metals, particulate matter, organic HAPs, VOCs, and HCI emissions. Hoskinson also served as the instrument and FTIR operator and supplied plant engineers with real time formaldehyde, acetaldehyde, and HCI emissions data. Hoskinson also collected all field data, samples, and generated a final report for submission to Cemex staff. The report was used as an informational tool in the development of new compliance procedures as dictated by recent Federal Regulations concerning the pollutants measured.

SPECIALIZED TRAINING

- Qualified Source Testing Individual (QSTI) Groups I, II, III, and IV
- Basic Plus Safety Training, current
- Hydrogen Sulfide Safety Training, current