

Development Support Document Original October 15, 2007 Revised August 4, 2014 Revised September 14, 2015

Pentene, all isomers

CAS Registry Numbers:

1-pentene: 109-67-1

cis-2-pentene: 627-20-3

trans-2-pentene: 646-04-8

Prepared by

Roberta L. Grant, Ph.D.

Toxicology Division

Office of the Executive Director

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Pentene, all isomers Page i

Revision History

Original Development Support Document (DSD) posted as final on October 15, 2007.

Revised DSD August 4, 2014: The DSD was revised using an analog approach using the acute and chronic ESLs for 2-butene for all acute and chronic pentene isomers, respectively.

Revised DSD September 14, 2015: the chronic ReV was updated to use the chronic ReV of 2-butene as directed in the updated TCEQ guidelines (2015)

TABLE OF CONTENTS

REVISION HISTORY	I
TABLE OF CONTENTS	II
LIST OF TABLES	III
ACRONYMS AND ABBREVIATIONS	IV
CHAPTER 1 SUMMARY TABLES	1
CHAPTER 2 MAJOR USES OR SOURCES AND AMBIENT AIR CONCENTRATIONS	4
CHAPTER 3 ACUTE EVALUATION	4
3.1 HEALTH-BASED ACUTE ESL	4
3.1.1 Physical/Chemical (Phys/Chem) Properties	
3.1.2 Key Studies	
3.1.3 NOAEL-to-LC ₅₀ Ratio Approach	
3.1.4 Analog Approach	
3.1.4.1 Identify Potential Analog Chemical(s)	
3.1.4.2 Phys/Chem Properties	
3.1.4.3 LC ₅₀ data for Pentene and Isobutene	
3.1.4.4 MOA Information	8
3.1.4.4.1 Toxicokinetics	
3.1.4.4.2 MOA for CNS Effects and Lethality	
3.1.4.4.3 MOA for Decrease Body Weight	9
3.1.4.5 Health-Based acute ESL	9
3.2 WELFARE-BASED ACUTE ESLS	
3.2.1 Odor Perception	
3.2.2 Vegetation Effects	12
3.3 SHORT-TERM ESLS AND VALUES FOR AIR MONITORING EVALUATION	
3.3.1 Values for 1-Pentene	
3.3.2 Values for c-2-Pentene and t-2-Pentene	
3.4 ACUTE INHALATION OBSERVED ADVERSE EFFECT LEVEL	13
CHAPTER 4 CHRONIC EVALUATION	13
4.1 Noncarcinogenic Potential	13
4.1.1 Identify Potential Analog Chemical(s)	
4.1.2 Phys/Chem Properties	
4.1.3 Critical Effects after Chronic Exposure	
4.1.4 MOA Information	
4.1.4.1 Metabolism of Alkenes	
4.1.5 Health-Based ^{chronic} ESL for Pentene Isomers	16
4.2 CARCINOGENIC POTENTIAL	19
4.3 WELFARE-BASED CHRONIC ESL- VEGETATION EFFECTS	
4.4 LONG-TERM ESLAND VALUES FOR AIR MONITORING EVALUATION	
4.5 CHRONIC INHALATION OBSERVED ADVERSE EFFECT LEVEL	
CHAPTER 5 REFERENCES	19

Pentene, all isomers Page iii

5.1 REFERENCES CITED IN THE DEVELOPMENT SUPPORT DOCUMENT	19
5.2 REFERENCES OF OTHER STUDIES REVIEWED BY THE TD	21
LIST OF TABLES	
TABLE 1. AIR MONITORING COMPARISON VALUES (AMCVS) FOR AMBIENT AIR	1
TABLE 2. AIR PERMITTING EFFECTS SCREENING LEVELS (ESLS)	1
TABLE 3. PHYSICAL AND CHEMICAL DATA	3
TABLE 4. PHYSICAL/CHEMICAL PARAMETERS FOR PENTENE AND 2-BUTENE	7
TABLE 5 TISSUE CONCENTRATIONS OF 1-BUTENE AND 1-PENTENE (EIDE ET AL. 1995)	9
TABLE 6 COMPARISON OF ACUTE ESLS FOR BUTENE ISOMERS	10
TABLE 7 DERIVATION OF THE ACUTE REV AND ACUTE ESL FOR 2-BUTENE (A)	11
TABLE 8 HEMOGLOBIN AND DNA ADDUCTS FOR C2-C5 ALKENES ^A	16
TABLE 9 COMPARISON OF CHRONIC ESL THRESHOLD(NC) FOR BUTENE ISOMERS	17
TABLE 10 DERIVATION OF THE CHRONIC REV AND CHRONIC ESL THRESHOLD(NC) FOR 2-BUTENE	18

Acronyms and Abbreviations

Acronyms and Abbreviations	Definition	
ACGIH	American Conference of Governmental Industrial Hygienists	
ADH	aldehyde dehydrogenase	
AEGL	Acute Exposure Guideline Levels	
ATSDR	Agency for Toxic Substances and Disease Registry	
⁰ C	degrees centigrade	
BMR	benchmark response	
CNS	central nervous system	
ConA	Concanavalin A	
DSD	development support document	
EC ₅₀	Effective concentration at a 50% response level	
ESL	Effects Screening Level	
acuteESL	acute health-based Effects Screening Level for chemicals meeting minimum database requirements	
acute ESL _{odor}	acute odor-based Effects Screening Level	
acute ESL _{veg}	acute vegetation-based Effects Screening Level	
$chronic ESL_{threshold(c)}$	chronic health-based Effects Screening Level for threshold dose response cancer effect	
chronicESL _{threshold(nc)}	chronic health-based Effects Screening Level for threshold dose response noncancer effects	
$\overline{^{chronic}ESL_{nonthreshold(c)}}$	chronic health-based Effects Screening Level for nonthreshold dose response cancer effects	
chronic ESL _{nonthreshold(nc)}	chronic health-based Effects Screening Level for nonthreshold dose response noncancer effects	
chronic ESL _{veg}	chronic vegetation-based Effects Screening Level	
EU	European Union	
GC	gas chromatography	
GLP	good laboratory practice	

Acronyms and Abbreviations	Definition
h	hour
$H_{b/g}$	blood:gas partition coefficient
$(H_{b/g})_A$	blood:gas partition coefficient, animal
$(H_{b/g})_H$	blood:gas partition coefficient, human
HEC	human equivalent concentration
HQ	hazard quotient
HSDB	Hazardous Substance Data Base
IARC	International Agency for Research on Cancer
IC ₅₀	Inhibitory concentration at a 50% response level
IL	interleukin
IOAEL	inhalation observed adverse effect level
IPCS	International Programme on Chemical Society
IRIS	USEPA Integrated Risk Information System
kg	kilogram
LC ₅₀	concentration causing lethality in 50% of test animals
LD ₅₀	dose causing lethality in 50% of test animals
LPS	lipopolysaccharide
LOAEL	lowest-observed-adverse-effect-level
LTD	Limited toxicity data
MW	molecular weight
μg	microgram
$\mu g/m^3$	micrograms per cubic meter of air
mg	milligrams
mg/m ³	milligrams per cubic meter of air
min	minute
MOA	mode of action
n	number

Acronyms and Abbreviations	Definition	
NAC	National Advisory Committee	
NIOSH	National Institute for Occupational Safety and Health	
NOAEL	no-observed-adverse-effect-level	
NOEL	no-observed-effect-level	
NRC	National Research Council	
OECD	Organization for Economic Cooperation and Development	
OSHA	Occupational Safety and Health Administration	
PBPK	physiologically based pharmacokinetic	
Phys/Chem	physical/chemical	
POD	point of departure	
POD _{ADJ}	point of departure adjusted for exposure duration	
POD _{HEC}	point of departure adjusted for human equivalent concentration	
ppb	parts per billion	
ppm	parts per million	
RD ₅₀	50% reduction in respiration rate	
ReV	reference value	
RGDR	regional gas dose ratio	
ROS	Reactive oxygen species	
RP	Relative potency	
RP _{GM}	Geometric mean of relative potency endpoints	
SA	surface area	
SD	Sprague-Dawley	
SIDS	Screening Information Data Set	
TCEQ	Texas Commission on Environmental Quality	
TD	Toxicology Division	
UF	uncertainty factor	

Pentene, all isomers Page vii

Acronyms and Abbreviations	Definition
UF_H	interindividual or intraspecies human uncertainty factor
UF _A	animal to human uncertainty factor
$\overline{UF_{Sub}}$	subchronic to chronic exposure uncertainty factor
UF _L	LOAEL to NOAEL uncertainty factor
UF _D	incomplete database uncertainty factor
USEPA	United States Environmental Protection Agency
$V_{\rm E}$	minute volume

Chapter 1 Summary Tables

Table 1 for air monitoring and Table 2 for air permitting provide a summary of health- and welfare-based values from an acute and chronic evaluation of pentene isomers. Please refer to Section 1.6.2 of the TCEQ Guidelines to Develop Toxicity Factors (TCEQ 2012) for an explanation of air monitoring comparison values (AMCVs), reference values (ReVs) and effects screening levels (ESLs) used for review of ambient air monitoring data and air permitting. Table 3 provides summary information on pentene isomers' physical/chemical data.

Table 1. Air Monitoring Comparison Values (AMCVs) for Ambient Air

Table 1. Air Monitoring Comparison Values (AMCVs) for Ambient Air			
Short-Term Values	Concentration	Notes	
Acute ReV	Short-Term Health 1-pentene c-2 and t-2-pentene 34,000 µg/m³ (12,000 ppb)	The minimum database for development of an acute ReV was not met. The 2-butene acute ReV is used as a surrogate	
acute ESL _{odor}	1-pentene Odor 290 μg/m³ (100 ppb)	50% odor detection threshold for 1-pentene	
acute ESL _{odor}	c-2 and t-2-pentene	No data found	
acute ESL _{veg}		No data found	
Long-Term Values	Concentration	Notes	
Chronic ReV	Long-Term Health 1,600 μg/m³ (560 ppb)	The minimum database for development of a chronic ReV was not met. The 2-butene chronic ReV is used as a surrogate	
$\begin{array}{c} {\rm chronic} ESL_{nonthreshold(c)} \\ {\rm chronic} ESL_{threshold(c)} \end{array}$		No data found	
$^{ m chronic} ESL_{ m veg}$		No data found	

^a Based on the acute ReV of 34,000 μg/m³ for 2-butene (see Section 3.1).

^b Based on the chronic ReV of 1,600 μg/m³ for 2-butene (see Section 4.1).

Table 2. Air Permitting Effects Screening Levels (ESLs)

Table 2. Air Permitting Effects Screening Levels (ESLs)			
Short-Term Values	Concentration	Notes	
acuteESL [1 h]	1-pentene 10,000 μg/m³ (3,500 ppb)	The minimum database for development of an acute ESL was not met. The 2-butene acute ESL is used as a surrogate	
acuteESL [1 h]	c-2 and t-2-pentene Short-Term ESL for Air Permit Reviews 10,000 µg/m³ (3,500 ppb)	The minimum database for development of an acute ESL was not met. The 2-butene acute ESL is used as a surrogate	
acuteESL _{odor}	1-pentene Short-Term ESL for Air Permit Reviews 290 µg/m³ (100 ppb)	Highly disagreeable 50% odor detection threshold for 1- pentene	
acute ESL _{odor}	c-2 and t-2-pentene	No data found	
$^{ m acute} { m ESL}_{ m veg}$		No data found	
Long-Term Values	Concentration	Notes	
chronic ESL threshold(nc)	Long-Term ESL for Air Permit Reviews 480 µg/m³ (170 ppb)	The minimum database for development of a chronic ESL was not met. The 2-butene chronic ESL is used as a surrogate	
$\begin{array}{c} {\rm chronic} ESL_{nonthreshold(c)} \\ {\rm chronic} ESL_{threshold(c)} \end{array}$		No data found	
chronic ESL _{veg}		No data found	

^a Based on the acute ESL of 10,000 μg/m³ for 2-butene (see Section 3.1).

 $[^]b$ Based on the chronic ESL of 480 $\mu\text{g/m}^3$ for 2-butene (see Section 4.1).

Table 3. Physical and Chemical Data

Parameter	1-pentene	cis-2-pentene	trans-2-pentene	Reference
Molecular Formula	C ₅ H ₁₀	C ₅ H ₁₀	C ₅ H ₁₀	HSDB (2002)
Chemical Structure	H ₂ C CH ₃	H ₃ C CH ₃	H3C CH3	ChemIDplus
Molecular Weight	70.13	70.13	70.13	HSDB (2002)
Physical State	Liquid	Liquid	Liquid	HSDB (2002)
Color	Colorless			HSDB (2002)
Odor	Highly disagreeable			HSDB (2002)
CAS Registry Number	109-67-1	627-20-3	646-04-8	HSDB (2002)
Synonyms	α-amylene; α-n-amylene; 1-pentalyene; propylethylene	β-amylene-cis; cis-β-amylene; cis-β-N-amylene; cis-pentene; (Z)-2-pentene	β-amylene-trans; trans-β-amylene; trans-β-N-amylene; (E)-2-pentene; 2-trans-pentene	HSDB (2002)
Water Solubility	148 mg/L @ 25°C	203 mg/L @ 25°C	203 mg/L @ 25°C	HSDB (2002)
Log K _{ow} or P _{ow}				
Vapor Pressure	635 mm Hg @ 25°C	495 mm Hg @ 25°C	506 mm Hg @ 25°C	HSDB (2002)
Relative Vapor Density	2.42	2.4		HSDB (2002)
Density	0.6405 @ 25°C	0.6554 @ 20°C	0.6431 @ 25°C	HSDB (2002)
Melting Point	-165.2°C	-151.4°C	-140.2°C	HSDB (2002)
Boiling Point	29.9°C	36.9°C	36.3°C	HSDB (2002)
Conversion Factors @ 25°C	$1 \mu g/m^3 = 0.35 \text{ ppb}$ $1 \text{ ppb} = 2.87 \mu g/m^3$	1 μ g/m ³ = 0.35 ppb 1 ppb = 2.87 μ g/m ³	1 $\mu g/m^3 = 0.35 \text{ ppb}$ 1 $\mu g/m^3 = 0.35 \text{ ppb}$ 1 $\mu g/m^3$	Toxicology Division

Chapter 2 Major Uses or Sources and Ambient Air Concentrations

According to the Hazardous Substances Data Bank (HSDB 2002), 1-pentene is primarily used in organic synthesis as a blending agent for high octane motor fuel and in pesticide formulations. 2-pentene is used as a polymerization inhibitor in organic synthesis.

Chapter 3 Acute Evaluation

3.1 Health-Based acute ESL

At high concentrations, pentene causes respiratory and cardiac depression in animals whereas in humans, pentene causes primary excitation (Clayton 1994).

3.1.1 Physical/Chemical (Phys/Chem) Properties

The pentene category includes three isomers: 1-pentene (CASRN 109-67-1); cis-2-pentene (CASRN 627-20-3); and trans-2-pentene (CASRN 646-04-8). Pentene isomers are liquids with a high vapor pressure, moderate water solubility, and low molecular weight (70.13), which indicates the potential for pentene isomers to be absorbed via the lungs and widely distributed within the body. Other phys/chem properties of propene isomers can be found in Table 3.

3.1.2 Key Studies

Acute toxicity studies in animals or humans with adequate dose-response data are not available for the pentene isomers. Well-conducted studies are available for petroleum distillate blending streams (Bui et al. 1998; Lapin et al. 2001; Schreiner et al. 2000). However, the distillate is a mixture of compounds, making it impossible to differentiate the effects of specific chemicals. The only acute toxicity data for pentene is LC_{50} data, concentrations shown to be lethal to 50% of the study specimens: 4-hour (h) LC_{50} in rats = 175,000 mg/m³ and 2-h LC_{50} in mice = 180,000 mg/m³ (RTECS database 2006). These LC_{50} doses are relatively high and indicate that pentene has low acute lethal toxicity.

The minimum database for estimating an acute ReV was not met so procedures outlined in TCEQ Guidelines (2012) for limited toxicity data were followed to determine an acute generic ESL (acute ESL generic). Two methods were investigated: the NOAEL-to-LC50 ratio approach and an analog approach. An analog is defined as a chemical compound that is structurally similar to another compound but differs slightly in composition (as in the replacement of one atom by an atom of a different element or in the presence of a particular functional group). In order to use the analog approach, there should be unambiguous structural and metabolic relationships between the LTD chemical and the chemical with toxicity information. A comparison of these approaches is found in Section 3.1.4.5 Health-Based acute ESL.

3.1.3 NOAEL-to-LC₅₀ Ratio Approach

As mentioned previously, the following acute toxicity data were reported in the RTECS database (2006):

Pentene, all isomers Page 5

```
4-h LC<sub>50</sub> in rats = 175,000 \text{ mg/m}^3
2-h LC<sub>50</sub> in mice = 180,000 \text{ mg/m}^3
```

Grant et al. (2007) determined a NOAEL-to- LC_{50} (N-L) ratio of 8.3 x 10^{-5} . This factor is multiplied by 4-h LC_{50} values to estimate a conservative ^{acute} $ESL_{generic}$ (TCEQ 2012). As stated in Section 4.5.2.1 of the TCEQ guidelines (2012), a duration adjustment to 4 h is required for the 2-h LC_{50} data from mice (TCEQ 2012). Since the mode of action (MOA) is unknown, default procedures discussed in TCEQ (2012) with n=1 were used to adjust the exposure duration in the mouse study from 2 to 4 h as follows:

$$C_1 \times T_1 = C_2 \times T_2$$

 $180,000 \text{ mg/m}^3 \times 2 \text{ h} = C_2 \times 4 \text{ h}$
 $C_2 = 180,000 \times (2/4)$
 $C_2 = 90,000 \text{ mg/m}^3$

When the 4-h LC_{50} values for rats and mice are multiplied by 8.3 x 10^{-5} , the potential acute $ESL_{\sigma eneric}$ values are as follows:

- $7,500 \mu g/m^3$ (2,600 ppb) based on the converted 4-h LC₅₀ value in mice; and
- $14,500 \,\mu\text{g/m}^3$ (5,060 ppb), based on the 4-hr LC₅₀ value in rats.

Both of these potential ^{acute}ESL_{generic} values are conservative and estimate an acute value where no appreciable human health risks would be expected to occur. The lowest potential ^{acute}ESL_{generic} based on the mouse study to be considered further is 7,500 μ g/m³ (2,600 ppb).

3.1.4 Analog Approach

Since pentene isomers have limited acute toxicity data (LTD), an ^{acute}ESL for pentene was derived based on an analog approach using toxicity information on butene isomers (TCEQ a, b, and c).

The following procedures outlined in TCEQ (2012) are employed when similar chemical categories or an analog chemical approach is used, depending on data availability:

- Identify potential analog chemical(s) for which toxicity factors have been developed.
- Gather data on phys/chem properties, toxicity, etc. for the potential analog chemical and the LTD chemical.
- Perform an MOA analysis.

• Evaluate the data to determine the most appropriate health-based acute ESL for the LTD chemical, which in this case are the pentene isomers.

3.1.4.1 Identify Potential Analog Chemical(s)

Members of a chemical group or class share similar phys/chem properties, and can have similar MOAs. Therefore, they may behave in a similar toxicological manner (TCEQ 2012). The butene isomers were considered as analog chemicals to predict the chronic toxicity of pentene isomers for the following reasons:

- The TCEQ has developed acute toxicity factors for 1-butene (TCEQ 2014a), 2-butene (TCEQ 2014b), and isobutene (TCEQ 2014c).
- Hexene was considered as an analog chemical for pentene, but a DSD for hexene has not been developed.
- Butenes and pentenes have similar phys/chem properties and have similar structures (i.e., both are straight-chain alkenes) (Section 3.1.4.2)
- Butenes and pentenes are considered to have low acute toxicity (Section 3.1.4.3.1)
- Butenes and pentenes are expected to produce CNS effects after acute exposure to high concentrations.
- The MOA for CNS effects are expected to be similar based on phys/chem properties (Section 3.1.4.4).

3.1.4.2 Phys/Chem Properties

For a complete listing of phys/chem properties of the butene isomers, refer to Table 3 of TCEQ (2014a, b, and c). For a complete listing for the pentene isomers, refer to Table 3 of this document. Table 4 shows a comparison of key phys/chem properties for 1-pentene to 2-butene (cis and trans). Data for 2-butene are shown since the phys/chem properties of other butene isomers (1-butene and isobutene) are similar. Pentene and butene have similar chemical structures both being straight-chain alkenes, differing by one carbon. Pentene is a liquid and butene is a gas so the vapor pressure for pentene is lower than butene by a factor of 2. Both pentene and butene are moderately soluble in water and have a moderately low $K_{\rm ow}$.

Table 4. Physical/Chemical Parameters for Pentene and 2-Butene

Parameter	1-pentene	Cis-2-butene ^a	Trans-2-butene ^a
Molecular	C ₅ H ₁₀	CH₃ HC₌CH CH₃	CH ₃ HC ₌ CH CH ₃
Formula	HSDB 2002	ChemIDplus	ChemIDplus
Chemical Structure	H ₂ C CH ₃	H ₃ C CH ₃	H₃C CH₃
	ChemIDplus	ChemIDplus	ChemIDplus
Molecular Weight	70.13	56.11	56.11
	HSDB 2002	TRRP 2006	TRRP 2006
Physical State	Liquid	Gas	Gas
	HSDB 2002	TRRP 2006	TRRP 2006
Water Solubility mg/L	148	347.58	347.58
	HSDB 2002	TRRP 2006	TRRP 2006
Log K _{ow} or P _{ow}	2.93	2.37	2.37
	TRRP 2011	TRRP 2006	TRRP 2006
Vapor Pressure	635	1460.14	1460.14
mm Hg	HSDB 2002	TRRP 2006	TRRP 2006
Relative Vapor	2.42	0.6042	0.6042
Density	HSDB 2002	OECD 2004	OECD 2004
Conversion Factors @ 25°C	1 ppb = $2.87 \mu g/m^3$ 1 $\mu g/m^3 = 0.35 \text{ ppb}$ Toxicology Division (TD)	$\begin{array}{c} 1 \text{ ppb} = 2.29 \mu\text{g/m}^3 \\ 1 \mu\text{g/m}^3 = 0.437 \text{ ppb} \\ \text{TD} \end{array}$	1 ppb = $2.29 \mu g/m^3$ $1\mu g/m^3 = 0.437 \text{ ppb}$ TD

^a Refer to the 2-Butene DSD (TCEQ 2014b) for references for phys/chem parameters for cis- and trans-2- butene.

3.1.4.3 LC₅₀ data for Pentene and Isobutene

LC₅₀ data are only available for isobutene and pentene. LC₅₀ data indicate these alkenes have low acute toxicity:

- Mice and rats were exposed to varying concentrations of isobutene vapors in order to determine the LC₅₀ for each species (Shugaev 1969; TCEQ 2014c): the 4-h LC₅₀ in rats was 270,000 ppm and the 2-h LC₅₀ in mice was 180,000 ppm.
- LC₅₀ data reported in the RTECS database (2006) for pentene are as follows: 4-h LC₅₀ in rats = 61,000 ppm and 2-h LC₅₀ in mice = 63,000 ppm.

LC₅₀ data indicate pentene is more toxic than isobutene. This may relate to the proposed MOA for CNS effects and lethality and differences in toxicokinetics, as discussed below.

3.1.4.4 MOA Information

3.1.4.4.1 Toxicokinetics

Eide et al. (1995) investigated the toxicokinetics of individual C2-C8 1-alkenes as well as measuring hemoglobin and DNA adducts to evaluate genotoxicity and reactivity. Male SD rats were exposed to 300 ppm of the individual 1-alkenes for 12 h/day for three consecutive days. Chamber concentrations were evaluated by gas chromatography.

Immediately after exposure after each of the three exposures, concentrations of the 1-alkenes in blood and tissues (liver, lung, brain, kidneys, and fat) were measured to investigate toxicokinetics. Steady state for all C2-C8 1-alkenes was reached after the first 12-h exposure. Concentrations in blood and tissues were similar when measured on day 1, 2, or 3, so only data from day 3 were provided. Table 5 shows the concentrations of 1-butene and 1-pentene in different tissues. Refer to Eide et al. (1995) for data for ethene, propene, 1- hexane,1-heptene and 1-octene. Concentrations of 1-alkenes in blood and different tissues increased with increasing number of carbon atoms.

Table 5 Tissue Concentrations of 1-Butene and 1-Pentene (Eide et al. 1995)

Tissue	1-Butene	1-Pentene
Tissuc	1-Dutene	1-1 entene
Blood	1.9 <u>+</u> 0.1	8.6 <u>+</u> 1.4
Brain	3.0 ± 0.3	41.0 ± 4.9
Liver	0.8 ± 0.3	51.6 ± 12.9
Lung	4.9 <u>+</u> 1.1	31.4 ± 10.6
Kidneys	5.7 <u>+</u> 1.4	105.7 ± 13.7
Fat	70 <u>+</u> 8	368 <u>+</u> 79
Fat after 12 h elimination	0.3 ± 0.1	19 <u>+</u> 9

3.1.4.4.2 MOA for CNS Effects and Lethality

Anesthesia, narcosis, and other CNS effects were observed for the butene isomers after acute exposure at high concentrations greater than 150,000 ppm (TCEQ 2014 a, b, c). High concentrations in the brain may cause solvent effects on lipid and fatty acid compositions of membranes. Eide et al. (1995) showed that concentrations of 1-pentene in brain were 14-times higher than for 1-butene (Table 5). This indicates that 1-pentene may cause greater CNS effects and lethality due to higher concentrations in the brain compared to 1-butene. This may also explain the lower LC_{50} data for pentene when compared to isobutene (Section 3.1.4.3), although this relates more to lethality than critical effects that would occur at lower concentrations.

3.1.4.4.3 MOA for Decrease Body Weight

For 2-butene, a decrease in body weight after exposure for one week was observed (TCEQ 2014 b). The MOA for the decrease in body weight due to 2-butene exposure is unknown.

3.1.4.5 Health-Based acute ESL

Although the acute health effects for pentene isomers are unknown, based on their similar structures, phys/chem properties, their toxicity would be similar and the toxicity values for butene isomers would be appropriate to use for pentene isomers. Table 6 provides acute ReVs and ^{acute}ESLs for 1-butene, 2-butene, and isobutene.

Table 6 Comparison of ^{acute}**ESLs for Butene Isomers**

Chemical	Acute ReV	acute ESL	Critical Effect(s)
1-butene	62,000 µg/m ³ (27,000 ppb)	19,000 µg/m ³ (8,100 ppb)	Critical Effect(s): Based on free-standing NOAEL, no adverse effects observed in SD rats in a repeat dose, subacute study. At much higher concentrations, CNS effects were observed.
2-butene	34,000 µg/m ³ (15,000 ppb)	10,000 μg/m ³ (4,500 ppb)	Critical Effect(s): Decreased body weight in female Wistar rats observed after seven days in a reproductive/developmental study. At much higher concentrations, CNS effects were observed.
isobutene	620,000 μg/m ³ (270,000 ppb)	180,000 μg/m ³ (81,000 ppb)	Critical Effect(s): Based on free-standing NOAEL, no adverse effects observed in Wistar rats in a reproductive/developmental study. At much higher concentrations, CNS effects were observed.

2-Butene has the most conservative acute ReV and ^{acute}ESL based on decreased body weight as the critical effect after a multiple day exposure. The TCEQ Guidelines (2012) state "the lowest, most conservative toxicity factor for a series of structurally-similar compounds can be used as a generic value for other structurally-similar compounds with limited toxicity information." Therefore, the acute ReV of 34,000 μ g/m³ and the ^{acute}ESL of 10,000 μ g/m³ for 2-butene will be used as an analog for all pentene isomers until toxicity data for pentene isomers become available.

The lowest potential $^{acute}ESL_{generic}$ based on the mouse study using the N-L ratio approach was 7,500 $\mu g/m^3$ (2,600 ppb) (Section 3.1.3). The N-L ratio approach is considered a conservative approach for deriving generic ESLs for LTD chemicals. The $^{acute}ESL$ of 10,000 $\mu g/m^3$ (4,500 ppb) based on the structural/analog approach is slightly higher compared to the value derived using the N-L ratio approach (less than two times higher). The structural/analog approach is preferred and will be used for the pentene isomers.

Table 7 is a summary of the derivation of the ReV and $^{acute}ESL$ for 2-butene based on the Waalkens-Brendsen and Arts (1992) study. Refer to TCEQ (2014b) for a detailed description of this study. The acute ReV of 34,000 $\mu g/m^3$ and the $^{acute}ESL$ of 10,000 $\mu g/m^3$ for 2-butene will be used as a toxicity factor analog for all pentene isomers (TCEQ 2012).

Table 7 Derivation of the Acute ReV and ^{acute}ESL for 2-Butene ^(a)

Parameter	Summary	
2-Butene	ReV and acute ESL	
Study	OECD Guideline 422 combined repeated-exposure, reproduction and screening study (Waalkens-Brendsen and Arts 1992 in OECD 2004)	
Study population	Male and female Wistar rats (12/sex/concentration)	
Study quality	High	
Exposure methods	Exposures via inhalation at 0, 2,500 and 5,000 ppm $(0, 2,476 \pm 68 \text{ ppm}, \text{ and } 5,009 \pm 88 \text{ ppm analytical})$	
Critical effects	NOAEL based on decreased body weight in female rats after 7 days of exposure	
POD	2,476 ppm (NOAEL)	
Exposure duration	6 h/day for 7 days	
Extrapolation to 1 h	6 h to 1 h (TCEQ 2012 with n = 3)	
POD _{ADJ} (1 h)	4,499 ppm	
POD _{HEC}	4,499 ppm (gas with systemic effects, based on default RGDR = 1.0)	
Total uncertainty factors (UFs)	300	
Interspecies UF	3	
Intraspecies UF	10	
LOAEL UF	Not applicable	
Incomplete Database UF	10	
Database Quality	Medium	
acute ReV [1 h] (HQ = 1)	34,000 μg/m ³ (15,000 ppb)	
acute ESL [1 h] (HQ = 0.3)	10,000 μg/m ³ (4,500 ppb)	
Pentene isomers	ReV and acuteESL	
Acute ReV	34,000 μg/m³ (12,000 ppb) ^(b)	
acuteESL	10,000 μg/m³ (3,500 ppb) ^(b)	

⁽a) Refer to TCEQ (2014b) for details on critical study for 2-butene

 $^{^{\}text{(b)}}$ after adjustment of concentration in $\mu\text{g/m}^3$ to ppb based on different molecular weights for 2-butene and pentene

3.2 Welfare-Based Acute ESLs

3.2.1 Odor Perception

The Japanese Ministry of the Environment is listed as a Level 1 source of information for odor thresholds (TCEO 2012). The 50% odor detection threshold for 1-pentene determined by the triangular odor bag method was 0.10 ppm (Nagata 2003). Therefore, the acute ESL_{odor} for 1pentene is 100 ppb (290 μ g/m³).

Odor data are unavailable for other isomers of pentene. Nagata et al. (2003) describe wide variation in the odor threshold between isomers of other substances. Therefore, unlike a healthbased acute ESL, which may be applied to all isomers, the odor threshold determined by Nagata (2003) is specific for 1-pentene.

3.2.2 Vegetation Effects

No acute vegetative studies were identified for any isomers of pentene.

3.3 Short-Term ESLs and Values for Air Monitoring Evaluation

Toxicity data are unavailable for other isomers of pentene. However, the phys/chem properties of these isomers are quite similar to 1-pentene. Therefore, the health-based acute ReV and acute ESL will be applied to all isomers.

3.3.1 Values for 1-Pentene

For 1-pentene, the acute evaluation resulted in the derivation of the following acute values:

- Acute ReV = $34,000 \mu g/m^3 (12,000 ppb)$
- acute ESL_{odor} = 290 μ g/m³ (100 ppb)
- acuteESL = 10,000 µg/m³ (3,500 ppb)

For evaluation of air monitoring data, the $^{acute}ESL_{odor}$ of 290 $\mu g/m^3$ (100 ppb) and the healthbased acute ReV = $34,000 \mu g/m^3$ (12,000 ppb) may be used (Table 1). The short-term ESL for air permit evaluations of 1-pentene is based on odor potential and is 290 µg/m³ (100 ppb) as this value is lower than the ^{acute}ESL (Table 2).

3.3.2 Values for c-2-Pentene and t-2-Pentene

For c-2-pentene and t-2-pentene, the acute evaluation resulted in the derivation of the following acute value:

- Acute ReV = 34,000 μ g/m³ (12,000 ppb) acute ESL = 10,000 μ g/m³ (3,500 ppb)

For evaluation of air monitoring data, the health-based acute ReV = $34,000 \mu g/m^3$ (12,000 ppb)

Pentene, all isomers Page 13

may be used (Table 1). The short-term ESL for air permit evaluations of c-2- and t-2-pentene is the health-based ^{acute}ESL of $10,000 \, \mu g/m^3 \, (3,500 \, ppb)$ (Table 2).

3.4 Acute Inhalation Observed Adverse Effect Level

An acute inhalation observed adverse effect level was not determined for pentene isomers since an approach for limited toxicity data was used to determine the ^{acute}ESL.

Chapter 4 Chronic Evaluation

4.1 Noncarcinogenic Potential

No studies were available describing the potential chronic toxicity of any isomer of pentene. Since pentene isomers have limited chronic toxicity data (LTD), a ^{chronic}ESL for pentene was derived based on an analog chemical approach using toxicity information on butene isomers (TCEQ 2014 a, b, and c), similar to the approach to develop an ^{acute}ESL for pentene isomers.

Procedures outlined in TCEQ (2012) were employed for an analog chemical approach. These procedures have been previously discussed in Section 3.1.4.

4.1.1 Identify Potential Analog Chemical(s)

Members of a chemical group or class that share similar phys/chem properties can have similar MOAs. Therefore, they may behave in a similar toxicological manner (TCEQ 2012). The butene isomers were considered as analog chemicals to predict the chronic toxicity of pentene isomers for the following reasons:

- The TCEQ has developed chronic toxicity factors for 1-butene (TCEQ 2014a), 2-butene (TCEQ 2014b), and isobutene (TCEQ 2014c).
- Hexene was considered for use as an analog chemical for pentene, but was not used because a DSD for hexene has not been developed.
- Butenes and pentenes have similar phys/chem properties and have similar structures (i.e., both are straight-chain alkenes differing by only one carbon) (Section 4.1.2)
- Butenes and pentenes, as well as other alkenes, are metabolized by cytochrome P450 to epoxides. The MOA for effects after chronic exposure may relate to the similar metabolism of butenes and pentenes (Section 4.1.4).

4.1.2 Phys/Chem Properties

Please refer to Section 3.1.4.2 and Table 4 for a comparison of the phys/chem properties of 1-pentene to 2-butene. As stated previously, pentene and butene have similar chemical structures (i.e., straight-chain alkenes), differing by one carbon.

4.1.3 Critical Effects after Chronic Exposure

The critical effects after acute exposure for the butene isomers observed at high concentration (> 150,000 ppm) were CNS effects and respiratory depression. CNS effects were due to high concentrations and would not be expected at lower concentrations: (1) free-standing NOAELs of 8,000 ppm for 1-butene (subacute study) and isobutene (chronic study) were observed and (2) the critical health effect observed for 2-butene was decreased body weight (NOAEL of 2,500 ppm observed in a subacute study) (TCEQ 2014 a, b, c). Based on their similar structures, similar phys/chem properties and reactivities (Section 4.1.5), critical effects after chronic exposure would be expected to be similar.

4.1.4 MOA Information

The MOA for CNS effects after high, acute exposures (Section 3.1.2) is not relevant to low level, chronic exposure. The MOA after chronic exposure to the pentenes and butenes is unknown, but may be related to the metabolism of 1-alkenes to epoxides.

4.1.4.1 Metabolism of Alkenes

The presence of the double bond makes alkenes optimal substrates for the cytochrome P450 enzymes that convert them to the respective reactive epoxides that possess alkylating capacity towards nucleophilic sites in proteins and DNA. Epoxides may be rapidly metabolized by epoxide hydrolase (EH) and glutathione-S-transferase (GST) and detoxified.

Information on the metabolism of isobutene has been studied (TCEQ 2014c). Isobutene is metabolized in the liver by the CYP2E1 cytochrome P-450 isoform to 2-methyl-1,2-epoxypropane (MEP) (1,1-dimethyloxirane), a reactive epoxide. The epoxide is rapidly metabolized by epoxide hydrolase (EH) and glutathione-S-transferase (GST), converting the epoxide to 2-methyl-1,2-propanediol and to a glutathione conjugate, respectively. Detailed information on metabolism of 1- and 2-butene and the pentene isomers is not available.

The epoxides for C4 and C8 alkenes may be less reactive when compared to other chemicals with double bonds that undergo metabolism to epoxides. Fabiani et al. (2012) investigated the reactivity for different epoxides for 1,3-butadiene, isoprene, styrene, propylene and 1-butene *in vitro* using the comet assay in human peripheral blood mononuclear cells and promyelocytic leukaemia cells. He showed that 1-butene had a low capacity for binding to proteins and DNA when compared to the other investigated chemicals.

Hemminki et al. (1994) investigated the reaction kinetics of alky epoxides with DNA and other nucleophiles *in vitro*. He found that the reaction rates with DNA for the C3 to C8 1,2-epoxy alkanes were inversely related to the chain lengths of the epoxide (i.e., reaction rates decreased with increasing chain length).

Eide et al. (1995) investigated the toxicokinetics of individual C2-C8 1-alkenes (discussed in Section 3.1.4.4) as well as measuring hemoglobin adducts in blood (N-(2-hydroxyalkyl)valine)

Pentene, all isomers Page 15

and DNA adducts in lymphocytes and liver (7-alkyguanine) to evaluate potential genotoxicity and reactivity of C2-C8 alkenes. Male SD rats were exposed to 300 ppm of the individual 1-alkenes for 12 h/day for three consecutive days. Chamber concentrations were evaluated by gas chromatography.

Concentrations of 1-alkenes in blood and different tissues increased with increasing number of carbon atoms (refer to Section 3.1.4.4 for additional information). However, levels of hemoglobin and DNA adducts, a measure of reactivity, decreased with increasing number of carbon atoms. This agrees with the *in vitro* results of Hemminki et al. (1994) who found the levels of DNA adducts decreased with increasing number of carbon atoms.

Table 5 provides data on hemoglobin and DNA adducts from Eide et al. (1995). All 1-alkenes caused formation of detectable levels of hemoglobin and DNA adducts, although the levels of hemoglobin adducts after C4-C8 exposure were low when compared to ethene and propene. The hemoglobin and DNA adducts measured for 1-pentene were in the same range compared to levels measured for 1-butene. If the MOA for butene and pentene were based on reactivity as evaluated with hemoglobin and DNA adducts, it would suggest 1-butene would be an adequate analog for the pentene isomers (i.e., indicates the toxicity of 1-pentene and 1-butene may be similar).

Table 8 Hemoglobin and DNA Adducts for C2-C5 Alkenes ^a

1-Alkene	Hemoglobin ^b	Lymphocytes ^c	Liver ^c
ethene	2730 ± 100	5.8 ± 2.2	7.4 ± 1.0
propene	740 ± 50	1.8 ± 0.9	2.8 ± 0.9
1-butene	20 ± 1	0.8 ± 0.4	2.1 ± 0.5
1-pentene	51 ± 3	0.5 ± 0.2	1.8 ± 0.6

^a Levels (mean \pm SD) of N-(2-hydroxyalkyl)valine in hemoglobin (pmol/g) and 7-alkyguanine in lymphocytes and liver (adducts/ 10^7 normal nucleotides). Background values have been subtracted.

4.1.5 Health-Based ^{chronic}ESL for Pentene Isomers

The toxicity data for pentene isomers are limited although the toxicity data for butene isomers were adequate to develop isomer-specific $^{chronic}ESL_{threshold(nc)}$ (TCEQ 2014 a, b, c). Table 6 provides $^{chronic}ESL_{threshold(nc)}$ for 1-butene, 2-butene, and isobutene. 2-Butene has the most conservative chronic ReV of 1,600 $\mu g/m^3$ (690 ppb) and $^{chronic}ESL_{threshold(nc)}$ of 480 $\mu g/m^3$ (210 ppb) (Table 9).

The TCEQ Guidelines (2012) state "the lowest, most conservative toxicity factor for a series of structurally-similar compounds can be used as a generic value for other structurally-similar compounds with limited toxicity information." The chronic ReV of 1,600 μ g/m³ and the chronic ESL_{threshold(nc)} of 480 μ g/m³ for 2-butene will be used for all pentene isomers. Table 10 is a summary of the derivation of the chronic ESL_{threshold(nc)} for 2-butene based on the Waalkens-Brendsen and Arts (1992) study (refer to TCEQ 2014b for a detailed description) and shows the chronic ReV and chronic ESL for all pentene isomers

^b n = 3-8 for hemoglobin adduct analyses

 $^{^{}c}$ n = 4 for DNA adduct analyses

Pentene, all isomers Page 17

 $Table \ 9 \ Comparison \ of \ {}^{chronic} ESL_{threshold(nc)} \ for \ Butene \ Isomers$

Chemical	Chronic ReV	chronicESL _{threshold(nc)}	Critical Effect(s)
1-butene	5,300 μg/m ³ (2,300 ppb)	1,600 μg/m ³ (690 ppb)	Critical Effect(s): Based on free-standing NOAEL, no adverse effects observed in SD rats in a repeat dose, subacute study
2-butene	1,600 μg/m ³ (690 ppb)	480 μg/m ³ (210 ppb)	Critical Effect(s): Decreased body weight in Wistar rats observed in a subacute reproductive/developmental study
isobutene	110,000 µg/m ³ (47,000 ppb)	32,000 μg/m ³ (14,000 ppb)	Critical Effect(s): Based on free-standing NOAEL in a chronic study, no adverse effects observed in F344/N rats and B6C3F1 mice

Table 10 Derivation of the Chronic ReV and chronic ESL_{threshold(nc)} for 2-Butene

Parameter	Summary ESL _{threshold(nc)} for 2-Butene		
2-Butene	ReV and chronicESLthreshold(nc)		
Study	OECD Guideline 422 combined repeated-exposure, reproduction and screening study (Waalkens-Brendsen and Arts 1992 in OECD 2004) (a)		
Study population	Male and female Wistar rats (12/sex/concentration)		
Study quality	High		
Exposure methods	Exposures via inhalation at 0, 2,500 and 5,000 ppm $(0, 2,476 \pm 68 \text{ ppm}, \text{ and } 5,009 \pm 88 \text{ ppm analytical})$		
Critical effects	NOAEL based on decreased body weight in rats		
POD	2,476 ppm (NOAEL)		
Exposure duration	6 h/day for 7 days		
POD _{ADJ} to continuous exposure	ure 619		
POD _{HEC}	619 ppm (gas with systemic effects, based on default RGDR = 1.0)		
Total uncertainty factors (UFs)	900		
Interspecies UF	3		
Intraspecies UF	10		
LOAEL UF	Not applicable		
Subchronic UF	3		
Incomplete Database UF	10		
Database Quality	low		
chronic ReV (HQ = 1)	1,600 μg/m ³ (690 ppb)		
$^{chronic}ESL_{threshold(nc)}$ (HQ = 0.3)	480 μg/m ³ (210 ppb)		
Pentene isomers	chronicESL		
chronic ReV	1,600 μg/m ³ (560 ppb) ^(b)		
chronicESL threshold(nc)	480 μg/m ³ (170 ppb) ^(b)		

⁽a) refer to TCEQ (2014b) for details on key study for 2-butene.
(b) after adjustment of concentration in μg/m³ to ppb based on different molecular weights for 2butene and pentene

4.2 Carcinogenic Potential

There are no studies indicating that pentene isomers have carcinogenic potential.

4.3 Welfare-Based Chronic ESL- Vegetation Effects

No chronic vegetative studies were identified for any isomers of pentene.

4.4 Long-Term ESLand Values for Air Monitoring Evaluation

The chronic evaluation resulted in the derivation of the following values:

- Chronic ReV = $1,600 \mu g/m^3$ (560 ppb)
- $^{\text{chronic}}\text{ESL}_{\text{threshold(nc)}} = 480 \ \mu\text{g/m}^3 \ (170 \ \text{ppb})$

The long-term ESL for air permit evaluations is the $^{chronic}ESL_{threshold(nc)}$ of 480 $\mu g/m^3$ (170 ppb) (Table 2). The chronic ReV of 1,600 $\mu g/m^3$ (560 ppb) be utilized during evaluation of air monitoring data (Table 1).

4.5 Chronic Inhalation Observed Adverse Effect Level

A chronic inhalation observed adverse effect level was not determined for pentene isomers since an approach for limited toxicity data was used to determine the ^{chronic}ESL.

Chapter 5 References

5.1 References Cited in the Development Support Document

- Bui, QQ, DM Burnett, RJ Breglia, FJ Koschier, ES Lapadula, PI Podhasky, CA Schreiner, and RD White. 1998. Toxicity evaluation of petroleum blending streams: Reproductive and developmental effects of a distillate from light alkylate naphtha. *J Toxicol Environ Health* 53:121-33.
- Chem ID Plus. Names & Synonyms: 2009. Available from: http://chem.sis.nlm.nih.gov/chemidplus/chemidheavy.jsp.
- Clayton, GD, and F Clayton (eds.). 1993-1994. Patty's Industrial Hygiene and Toxicology. Volumes 2A, 2B, 2C, 2D, 2E, 2F: Toxicology. 4th ed. New York, NY: John Wiley & Sons Inc., p. 1248.
- Eide, I, R Hagemann, K Zahlsen, E Tareke, M Tornqvist, R Kumar, P Vodicka, and K Hemminki. 1995. Uptake, distribution, and formation of hemoglobin and DNA adducts after inhalation of C2-C8 1-alkenes (olefins) in the rat. *Carcinogenesis* 16:1603-09.
- Fabiani, R, P Rosignoli, A De Bartolomeo, R Fuccelli, G Morozzi. 2012.Genotoxicity of alkene epoxides in human peripheral blood mononuclear cells and HL60 leukaemia cells

- evaluated with the comet assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 747 (1) 1–6.
- Grant, RL, BJ Kadlubar, NK Erraguntla, and M Honeycutt. 2007. Evaluation of acute inhalation toxicity for chemicals with limited toxicity information. *Regu Toxicol Pharmacol* 47:261-73.
- Hemminki A, T Väyrynen, K Hemminki. 1994. Reaction kinetics of alkyl epoxides with DNA and other nucleophiles. Chem Biol Interact 93(1):51-8.
- Hazardous Substances Data Bank (HSDB). 2002 update. United States National Library of Medicine, http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB, accessed May 4, 2007.
- Lapin, C, Q Bui, R Breglia, F Koschier, P Podhasky, E Lapadula, R Roth, C Schreiner, R White, C Clark, R Mandella, and G Hoffman. 2001. Toxicity evaluation of petroleum blending streams: Inhalation subchronic toxicity/neurotoxicity study of a light catalytic cracked naphtha distillate in rats. *Int J Toxicol* 20:307-19.
- Nagata, Y. 2003. Measurement of odor threshold by triangle odor bag method. Odor Measurement Review, Japan Ministry of the Environment. 118-27.
- Organization for Economic Cooperation and Development (OECD). 2004. SIDS Initial Assessment Report for SIAM 19, Berlin, Germany 19-22 October 2004).
- Registry of Toxic Effects of Chemical Substances (RTECS). 2006 update. Canadian Centre for Occupational Health and Safety, http://ccinfoweb.ccohs.ca/rtecs/search.html, accessed May 4, 2007.
- Schreiner, C, Q Bui, R Breglia, D Burnett, F Koschier, P Podhasky, and R White. 2000. Toxicity evaluation of petroleum blending streams: Reproductive and developmental effects of light catalytic reformed naphtha distillate in rats. *J Toxicol Environ Health* 60:169-84.
- Texas Commission on Environmental Quality (TCEQ). 2012. TCEQ guidelines to develop toxicity factors (Revised RG-442). Texas Commission on Environmental Quality. Office of the Executive Director. Available from: http://www.tceq.texas.gov/publications/rg/rg-442.html
- Texas Commission on Environmental Quality (TCEQ). 2014a. Development support document 1-Butene, CAS registry numbers: 106-98-9, Revised March 14, 2014. Toxicology Division, Office of the Executive Director.
- Texas Commission on Environmental Quality (TCEQ). 2014b. Development support document Butene (Cis and Trans), CAS registry numbers: 107-01-7, Revised March 14, 2014.

- Toxicology Division, Office of the Executive Director.
- Texas Commission on Environmental Quality (TCEQ). 2014c. Development support document Isobutene, CAS registry numbers: 115-11-7, Revised March 14, 2014. Toxicology Division, Office of the Executive Director.
- Texas Commission on Environmental Quality (TCEQ). 2015. Guidelines to develop effects screening levels, reference values, and unit risk factors. Chief Engineer's Office. RG-442.
- Screening Information Data Set (SIDS). 1997. Initial Assessment Report for 1-hexene presented in Paris, June 1997; Sponsor country USA. Organization for Economic Cooperation and Development [OECD], Paris, Cedex 16, France.
- Waalkens Berendsen, D. and JHE Arts. 1992. TNO Central Institute for Nutrition and Food Research Report-Netherlands Organization for Applied Scientific Research, Division for Nutrition and Food Research (as cited in OECD 1994).

5.2 References of Other Studies Reviewed by the TD

Schreiner, C, Q Bui, R Breglia, D Burnett, F Koschier, E Lapadula, P Podhasky, and R White. 2000. Toxicity evaluation of petroleum blending streams: Inhalation subchronic toxicity/neurotoxicity study of a light catalytic reformed naphtha distillate in rats. *J Toxicol Environ Health* 60:489-512.