Texas Commission on Environmental Quality

INTEROFFICE MEMORANDUM

To: Archie Clouse, Regional Director **Date:** December 4, 2006

Kevin Smith, Regional Air Manager

TCEQ Region 6 - El Paso

Carlos Rubinstein, Texas Border Area

Director

From: Angela Curry, M.S.

Toxicology Section, Chief Engineer Office

Subject: Health Effects Review of 2005 Data Collected from Ambient Air Network Monitoring

Sites in Region 6, El Paso

Conclusions:

• Annual average concentrations for 110 of the 113 volatile organic compounds (VOCs) and 15 metals from particulate matter less than 2.5 microns in diameter (PM_{2.5}) were monitored at levels below health-based screening values, and would not be expected to cause adverse health effects.

• Elevated hydrogen sulfide (H₂S) concentrations have been frequently measured at the El Paso-Community Air Monitoring Site (<u>CAMS 36</u>) since H₂S monitoring began at this site in August 2004.

Background Information

This memorandum conveys the Toxicology Section's evaluation of ambient air sampling conducted at monitoring network sites (see Tables 1 & 2) in Region 6–El Paso during 2005. We reviewed annual summary results for 24- and/or 1-hour VOCs including Carbonyls, and Polycylic Aromatic Hydrocarbons (PAHs). In addition, we reviewed summary results for speciated metals from 24-hour PM_{2.5} samples collected every third and/or sixth day and hourly H₂S samples. For a list of target analytes, see Table 3.

For all VOCs and speciated metals, the 24-hour maximum and available annual average concentrations were compared to their respective short-term and long-term TCEQ health-based effects screening levels (ESLs). The 24-hour canister samples are designed to provide representative long-term average concentrations and have limited use in evaluating the potential for acute health effects or odors that could be caused by short-term or peak concentrations. Generally, TCEQ requires a 75 percent data return for air monitoring data as a data completeness objective. All VOC data highlighted in this memorandum met the data completeness objective.

Archie Clouse, et al. Page 2 December 4, 2005

Evaluation

All reported 24- and/or 1-hour concentrations of VOCs, PAHs, and metals were measured below levels that would cause acute health effects or odors. The annual average concentrations for 110 of the 113 reported VOCs, 15 of the 16 PAHs, and all 15 metals at the noted monitoring sites for 2005 were less than their respective long-term health-based ESLs, and do not present a long-term health concern. Benzene, MEK/methacrolein, and phenanthrene had reported annual average concentrations that exceeded their respective long-term ESLs and are discussed below. In addition, elevated hourly H_2S levels that have the potential for acute health effects and odors are also discussed below.

Benzene

Womble

The 2005 annual average benzene concentration at the Womble site, 1.1 parts per billion by volume (ppb $_v$), slightly exceeded its long-term ESL (1.0 ppb $_v$). The 2004 annual average benzene concentration was also 1.1 ppb $_v$. These benzene levels are not expected to cause long-term adverse health effects. Because benzene is a human carcinogen, TCEQ is continuing efforts to characterize its impact on ambient air quality and reduce the potential for public exposure.

MEK/Methacrolein

Chamizal

The annual average MEK/methacrolein concentration (4.1 ppb_v) exceeded the methacrolein long-term ESL of 0.13 ppb_v. MEK and methacrolein are not analytically separated by the method, and it is unknown whether the reported concentrations were only MEK, only methacrolein, or both MEK and methacrolein. However, exposure to the reported MEK/methacrolein concentrations would not be expected to cause adverse health effects even if they were comprised entirely of methacrolein.

Phenanthrene

Sun Metro

The reported annual average phenanthrene concentration (130 ppb_v) exceeded the long-term ESL of 50 ppb_v . However, this annual average concentration would not be expected to cause long-term health effects.

<u>H₂S</u> El Paso -CAMS 36

Numerous H₂S levels exceeded the state regulatory standard, as well as the odor threshold. Investigations have shown that the Juarez North Wastewater Treatment Plant is the primary H₂S source. The Department of State Health Services (DSHS) prepared a Health Consultation, dated December 28, 2005 which details the methods, findings, and conclusions of their evaluation of H₂S levels associated with the wastewater treatment plant. According to the DSHS, exposure to the measured levels could potentially cause health effects (e.g., eye irritation, decreased lung function, headache) in sensitive individuals. For more information on the findings of this report, visit http://www.dshs.state.tx.us/epitox/consults/elpaso_juarez_final.pdf

Archie Clouse, et al. Page 3 December 4, 2005

Please contact me at 512-239-1306 or acurry@tceq.state.tx.us if you have any questions regarding this memorandum.

cc (via e-mail): Casso, Ruben – EPA Region 6, Dallas Prosperie, Susan – Department of State Health Services

Table 1. Monitoring Site Locations in TCEQ Region 6						
County	City and Site Location	EPA Site ID	Monitored Compounds			
	El Paso, 650 R E Thomason Loop	48-141-0055	VOCs			
	(Ascarte Park)					
	El Paso, 800 S. San Marcial Street	48-141-0044	VOCs, Carbonyls			
	(Chazimal)					
El Paso	El Paso, 700 San Francisco Ave	48-141-0053	VOCs, PAHs			
	(Sun Metro)					
	El Paso, 250 Rim Rd.	48-141-0037	VOCs			
	(UTEP)					
	El Paso, Clark & Cleveland Streets	48-141-0047	VOCs			
	(Womble)					
	El Paso, 8470 Plant Road	48-141-0054	H_2S			
	(CAMS 36)					

Table 2. Monitoring Site Locations in TCEQ Region 6 - Metals						
County	City and Site Location	EPA Site ID	Monitored Compounds			
El Paso	El Paso, 800 S. San Marcial Street (Chazimal)	48-141-0044	PM _{2.5}			
	El Paso, 700 San Francisco Ave (Sun Metro)	48-141-0053	PM _{2.5}			
Brewster	Alpine, 222 South Campbell St. (Tillman)	48-141-0002	PM _{2.5}			
	Big Ben, Rt. 12 and K-Bar Rd.	48-043-0101	PM _{2.5}			
Jeff Davis	Fort Davis, HC 75 Box 1337-MCD (McDonalds Observatory)	48-243-0004	PM _{2.5}			

Table 3: VOCs, Carbonyls, PAHs, and Metals (PM _{2.5})								
CAT	MN VOCs	AutoGC VOCs		Metals (PM _{2.5})				
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethylene 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Butadiene 1-Butene 1-Hexene+2-methyl-1-pentene 1-Pentene 2,2,4-Trimethylbutane 2,3-Dimethylbutane 2,3-Dimethylbutane 2,3-Dimethylbutane 2,3-Dimethylbutane 2,3-Dimethylpentane 2,4-Dimethylpentane 2,4-Dimethylpentane 2-Methyl-2-Butene 2-Methyl-2-Butene 2-Methyl-1-Butene 3-Methylhexane 3-Methylhexane 3-Methylhexane 3-Methylhexane 3-Methylhexane 3-Methyl-1-Pentene 3-Methyl-1-Pentene Acetylene Benzene Bromomethane Butyl Acetate Butyraldehyde cis 1,3-Dichloropropylene Carbon Tetrachloride Chlorobenzene Chloroperna Cyclopentane Cyclopentane Cyclopentane Cyclopentane Cyclopentene Ethane Ethyl Acetate	Ethyl Benzene Ethylene Isobutane Isopentane Isoprene Isopropylbenzene Methyl Butyl Ketone (MBK) Methyl t-Butyl ether Methylcyclohexane Methyleyclopentane Methylisobutylketone Propane Propylene Styrene Tetrachloroethylene Trichloroethylene Trichlorofluoromethane Vinyl Chloride c-2-Butene c-2-Hexene c-2-Pentene Dichlorodifluoromethane Isobutyraldehyde m-Diethylbenzene m-Ethyltoluene Methyl Chloride n-Butane n-Decane n-Heptane n-Heytane n-Propyl Acetate n-Propylbenzene n-Pentane n-Propyl Acetate n-Propylbenzene n-Undecane o-Ethyltoluene o-Xylene p-Diethylbenzene p-Ethyltoluene p-Xylene + m-Xylene t-2-Pentene trans-1-3-Dichloropropylene	1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3-Butadiene 1-Butene 1-Hexene 1-Pentene 2,2,4-Trimethylpentane 2,2,2-Trimethylbutane 2,3-Dimethylbutane 2,3-Dimethylbutane 2,3-Dimethylpentane 2,4-Dimethylpentane 2-Methyl-1-Pentene 2-Methyl-1-Butene 2-Methyl-1-Butene 3-Methylbeptane 3-Methyl-1-Butene 3-Methyl-1-Butene 3-Methyl-1-Butene 3-Methyl-1-Butene 3-Methyl-1-Pentene 4-Methyl-1-Pentene Acetylene Benzene Cyclopentane 4-Methyl-1-Pentene Acetylene Benzene Cyclopentane Cyclopentane Ethyl Benzene Ethyle Benzene Ethyle Benzene Ethylene Isobutane Isoprene Isopropyl Benzene - Cumene Methylcyclohexane Methylcyclohexane Methylcyclopentane Propylene Styrene Toluene a-Pinene b-Pinene c-2-Butene c-2-Pentene m-Diethylbenzene m-Ethyltoluene n-Butane n-Decane	n-Heptane n-Hexane n-Nonane n-Octane n-Pentane n-Pentane n-Propylbenzene n-Undecane o-Ethyltoluene o-Xylene p-Diethylbenzene p-Ethyltoluene p-Xylene + m-Xylene t-2-Butene t-2-Hexene t-2-Pentene Carbonyls 2,5-Dimethylbenzaldehyde Acetaldehyde Acetaldehyde Acetone Acrolein Benzaldehyde Butylaldehyde Crotonaldehyde - 2-Butenal Formaldehyde Hexanaldehyde Hexanaldehyde Hexanaldehyde m-Tolualdehyde m-Tolualdehyde m-Tolualdehyde p-Tolualdehyde p-Tolualdehyde Propanal - Propionaldehyde Valeraldehyde Valeraldehyde Valeraldehyde Dibenzo (a) anthracene Benzo (b) fluroanthene Benzo (b) fluroanthene Benzo (c),h) perylene Benzo (k) fluoranthene Chrysen Dibenzo (a,h) anthracene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene	Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Manganese Molybdenum Nickel Selenium Tin Zinc				