Texas Commission on Environmental Quality

INTEROFFICE MEMORANDUM

То:	Georgie Volz, Regional Director, R10 Beaumont Heather Ross, Air Section Manager, R10 Beaumont David Bower, Coastal & East Texas Area Director	Date:	August 25, 2008		
From:	Vincent A. Leopold, M.S., Toxicology Section, Chief Engineer's Office				
Subject:	Health Effects Review of Air Monitoring Data Collected in Region 10 – Beaumont during 2007				

Conclusions

- Exposure to the reported hourly volatile organic compound (VOC) concentrations would not be expected to cause acute health effects or nuisance odors.
- Exposure to the reported annual average concentrations for all monitored VOCs and all 14 metals measured in particulate matter less than 2.5 microns in diameter (PM_{2.5}) would not be expected to cause chronic adverse health effects.
- Long-term average benzene levels at the Port Arthur City Service Center and Beaumont Carroll Street Park monitoring sites are acceptable. Benzene monitoring data at these sites will be considered when associated Air Pollutant Watch List (APWL) listings are reevaluated.
- The long-term average 1,3-butadiene level at the Port Neches Merriman Street site is acceptable based on the most current assessment of 1,3-butadiene toxicity. 1,3-Butadiene monitoring data at this site will be considered when the associated APWL listing is re-evaluated.

Background Information

This memorandum conveys the Toxicology Section's evaluation of ambient air sampling conducted at nine sites in Region 10-Beaumont during 2007. We reviewed air monitoring summary results for 46 VOCs from two automated gas chromatograph (autoGC) sites, 95 VOCs from seven canister samplers, and 14 PM_{2.5} metals from one filter sampler. AutoGC samplers provided 40-minute samples each hour; we evaluated VOC concentrations that were reported in these hourly samples for their potential to cause acute (short-term) adverse health effects and odors. Annual average concentrations were reported from the following: autoGC hourly VOC samples; every-6th-day 24-hour canister VOC samples; and every-3rd-day 24-hour PM_{2.5} metal samples. All data exceeded the 75% completion requirement to help ensure the representativeness of calculated annual average concentrations. We evaluated the annual average chemical concentrations for their potential to cause chronic (long-term) adverse health effects. Chemicals were evaluated individually by comparing reported concentrations to appropriate comparison values.

Georgie Volz, et al. Page 2 August 25, 2008

Information about the monitoring sites is summarized below. Chemicals that were reviewed for this evaluation are listed in Attachment 1.

County	Site Description	EPA Site ID	Monitored Compounds
Jefferson	Beaumont, Downtown Lamar Univ. 1086 Vermont Avenue	48-245-0009	VOCs (24-hour canister & hourly autoGC)
Jefferson	Port Arthur, West 800 El Vista Rd	48-245-0011	VOCs (24-hour canister)
Jefferson	<u>Groves</u> <u>3355 Grandview Avenue & 32nd <u>Street</u></u>	48-245-0014	VOCs (24-hour canister)
Jefferson	Port Neches 1225 Merriman Street	48-245-0017	VOCs (24-hour canister)
Jefferson	Port Arthur, Jefferson County Airport	48-245-0018	VOCs (24-hour canister)
Jefferson	Port Arthur, City Service Center 201 H.O. Mills Blvd.	48-245-0019	VOCs (24-hour canister)
Jefferson	Beaumont, Carroll Street Park Grant & Grove Streets	48-245-0020	VOCs (24-hour canister)
Jefferson	Port Arthur, Memorial School 2200 Jefferson Dr.	48-245-0021	PM _{2.5} Metals (24-hour filter)
Jefferson	Nederland, High School Seattle St.	48-245-1035	VOCs (hourly autoGC)

Region 10 Sites that Provided Air Toxics Monitoring Data Evaluated in this Memorandum

Evaluation

<u>VOCs</u>

All hourly VOC concentrations were below applicable health-based comparison levels and odor thresholds and would not be expected to cause acute health effects or nuisance odors.

Annual average VOC concentrations, whether based on hourly or 24-hour measurements, would not be expected to cause chronic health effects.

Metals in PM_{2.5}

Annual average metal concentrations in $PM_{2.5}$ samples were below applicable health-based comparison levels and would not be expected to cause chronic health effects.

Georgie Volz, et al. Page 3 August 25, 2008

Air Pollutant Watch List (APWL) Areas

Following are brief discussions of monitoring data in three APWL areas: benzene in APWL1002 in Beaumont; benzene in APWL1003 in Port Arthur; and for 1,3-butadiene in an APWL area in Port Neches. These discussions are included for the purpose of providing specific health effects evaluation of pollutants and areas that have been of concern or interest over the years. The information provided, while not intended to be a thorough review of the status of these APWL areas, should be considered the status of those watch list areas are re-evaluated.

Benzene is listed as a pollutant of interest for <u>APWL1002</u> because prior to 2006 the annual average benzene levels at Beaumont Carroll Street Park, though trending downward, exceeded the long-term Effects Screening Level (ESL) which was 1 part per billion by volume (ppb_v) at that time. The annual average benzene level dropped to 0.8 ppb_v in 2006 but increased to 1.3 ppb_v in 2007. The long-term average benzene concentration at Carroll Street Park is less than the current ESL of 1.4 ppb_v which is based on the most up-to-date review of benzene toxicity. Benzene levels at the Beaumont Carroll Street Park site are not a health concern; they are shown on the chart below and will be considered when this APWL listing is re-evaluated.

Annual Average Benzene Levels (ppbv) at Beaumont Carroll Street Park

Georgie Volz, et al. Page 4 August 25, 2008

Benzene is listed as a pollutant of interest for <u>APWL1003</u> because prior to 2006 the annual average benzene levels at the Port Arthur City Service Center exceeded the long-term ESL which was 1 ppb_v at that time. Average benzene level in 2006 and 2007 dropped to 0.7 ppb_v, and annual average levels since 2002 have been below the current ESL of 1.4 ppb_v and are not a health concern. These benzene concentrations are shown on the chart below and should be considered when this APWL listing is re-evaluated.

Annual Average Benzene Levels (ppbv) at Port Arthur City Service Center

Georgie Volz, et al. Page 5 August 25, 2008

1,3-Butadiene is listed as a pollutant of interest for <u>APWL1004</u> because annual average 1,3butadiene levels at the Port Neches Merriman Street site have exceeded the former long-term ESL of 5 ppb_v, and a then-current review of 1,3-butadiene toxicity suggested that levels at this site may not be health protective. The long-term average 1,3-butadiene concentration at the Merriman Street site is less than the current ESL of 9.1 ppb_v which is based on the most up-todate assessment of 1,3-butadiene toxicity (see the <u>1,3-Butadiene Development Support</u> <u>Document</u>). Annual average 1,3-butadiene levels which are shown on the chart below are not a health concern and will be considered when this APWL listing is re-evaluated.

If you have any questions regarding this evaluation, please contact me at 512-239-1784 or <u>vleopold@tceq.state.tx.us</u>.

Georgie Volz, et al. Page 6 August 25, 2008

cc (via email): Casso, Reuben – EPA Region 6 Prosperie, Susan – Department of State Health Services Georgie Volz, et al. Page 7 August 25, 2008

Attachment 1

Chemicals Reviewed for this Evaluation

VOCs in Every-6 th -Day 24-Hour Canister Samples							
1,1,1-Trichloroethane	2-Methylheptane	Ethylbenzene	isobutyraldehyde				
1,1,2,2-tetrachloroethane	2-Methylhexane	Ethylene	m-Diethylbenzene				
1,1,2-Trichloroethane	2-Methylpentane	Isobutane	m-Ethyltoluene				
1,1-Dichloroethane	2-methyl-3-hexanone	Isopentane	methyl chloride				
1,1-Dichloroethylene	3-Methyl-1-Butene	Isoprene	n-Butane				
1,2,3-Trimethylbenzene	3-Methylheptane	Isopropylbenzene	n-Decane				
1,2,4-Trimethylbenzene	3-Methylhexane	Methyl Butyl Ketone	n-Heptane				
1,2-Dibromoethane	3-Methylpentane	Methyl Isobutyl Ketone	n-Hexane				
1,2-Dichloroethane	3-hexanone	Methyl t-Butyl Ether	n-Nonane				
1,2-Dichloropropane	3-pentanone	Methylcyclohexane	n-Octane				
1,3,5-Trimethylbenzene	4-Methyl-1-Pentene	Methylcyclopentane	n-Pentane				
1,3-Butadiene	Acetylene	Methylene Chloride	n-Propyl Acetate				
1-Butene	Benzene	Propane	n-Propylbenzene				
1-Hexene & 2-Methyl-1-	Bromomethane	Propylene	n-Undecane				
Pentene	Butyl Acetate	Styrene	o-Ethyltoluene				
1-Pentene	cis-1,3-	Tetrachloroethylene	o-Xylene				
2,2,4-Trimethylpentane	dichloropropylene	Toluene	p-Diethylbenzene				
2,2-Dimethylbutane	Carbon Tetrachloride	Trichloroethylene	p-Ethyltoluene				
2,3,4-Trimethylpentane	Chlorobenzene	Trichlorofluoromethane	p-Xylene & m-Xylene				
2,3-Dimethylbutane	Chloroform	Vinyl Chloride	t-2-Butene				
2,3-Dimethylpentane	Cyclohexane	c-2-Butene	t-2-Hexene				
2,4-Dimethylpentane	Cyclopentane	c-2-Hexene	t-2-Pentene				
2-Butanone	Cyclopentene	c-2-Pentene	trans-1-3-				
2-Chloropentane	Ethane	dichlorodifluoromethane	Dichloropropylene				
2-Methyl-2-Butene	Ethyl Acetate						
	VOCs in Hourly	AutoGC Samples					
1-Butene	2,4-Dimethylpentane	Isobutane	n-Pentane				
1-Pentene	3-Methylheptane	Isopentane	n-Propylbenzene				
1,2,3-Trimethylbenzene	3-Methylhexane	Isoprene	o-Xylene				
1,2,4-Trimethylbenzene	Acetylene	Isopropyl Benzene	p-Xylene & m-Xylene				
1,3-Butadiene	Benzene	Methylcyclohexane	Propane				
1,3,5-Trimethylbenzene	c-2-Butene	Methylcyclopentane	Propylene				
2-Methylheptane	c-2-Pentene	n-Butane	Styrene				
2-Methylhexane	Cyclohexane	n-Decane	t-2-Butene				
2,2-Dimethylbutane	Cyclopentane	n-Heptane	t-2-Pentene				
2,2,4-Trimethylpentane	Ethane	n-Hexane	Toluene				
2,3-Dimethylpentane	Ethyl Benzene	n-Nonane					
2,3,4-Trimethylpentane	Ethylene	n-Octane					
PM _{2.5} Metals on Every-3 rd -Day Filter Samples							
Aluminum PM2.5	Cadmium PM2.5	Copper PM2.5	Selenium PM2.5				
Antimony PM2.5	Chromium (total)	Manganese PM2.5	Tin PM2.5				
Arsenic PM2.5	PM2.5	Molybdenum PM2.5	Zinc PM2.5				
Barium PM2.5	Cobalt PM2.5	Nickel PM2.5					